1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 *	Copyright (c) 1988 AT&T
24 *	  All Rights Reserved
25 *
26 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#include	"machdep.h"
31#include	"_audit.h"
32#if	defined(lint)
33#include	<sys/types.h>
34#include	"_rtld.h"
35#else
36#include	<sys/stack.h>
37#include	<sys/asm_linkage.h>
38
39	.file	"boot_elf.s"
40	.seg	".text"
41#endif
42
43/*
44 * We got here because the initial call to a function resolved to a procedure
45 * linkage table entry.  That entry did a branch to the first PLT entry, which
46 * in turn did a call to elf_rtbndr (refer elf_plt_init()).
47 *
48 * the code sequence that got us here was:
49 *
50 * PLT entry for foo():
51 *	sethi	(.-PLT0), %g1
52 *	ba,a	.PLT0				! patched atomically 2nd
53 *	nop					! patched 1st
54 *	nop
55 *	nop
56 *	nop
57 *	nop
58 *	nop
59 *
60 * Therefore on entry, %i7 has the address of the call, which will be added
61 * to the offset to the plt entry in %g1 to calculate the plt entry address
62 * we must also subtract 4 because the address of PLT0 points to the
63 * save instruction before the call.
64 *
65 * The PLT entry is rewritten in one of several ways.  For the full 64-bit
66 * span, the following sequence is generated:
67 *
68 *	nop
69 *	sethi	%hh(entry_pt), %g1
70 *	sethi	%lm(entry_pt), %g5
71 *	or	%g1, %hm(entry_pt), %g1
72 *	sllx	%g1, 32, %g1
73 *	or	%g1, %g5, %g5
74 *	jmpl	%g5 + %lo(entry_pt), %g0
75 *	nop
76 *
77 * Shorter code sequences are possible, depending on reachability
78 * constraints.  Note that 'call' is not as useful as it might seem in
79 * this context, because it is only capable of plus or minus 2Gbyte
80 * PC-relative jumps, and the rdpc instruction is very slow.
81 *
82 * At the time of writing, the present and future SPARC CPUs that will use
83 * this code are only capable of addressing the bottom 43-bits and top 43-bits
84 * of the address space.  And since shared libraries are placed at the top
85 * of the address space, the "top 44-bits" sequence will effectively always be
86 * used.  See elf_plt_write() below.  The "top 32-bits" are used when they
87 * can reach.
88 */
89
90#if	defined(lint)
91
92extern unsigned long	elf_bndr(Rt_map *, unsigned long, caddr_t);
93
94/*
95 * We're called here from .PLTn in a new frame, with %o0 containing
96 * the result of a sethi (. - .PLT0), and %o1 containing the pc of
97 * the jmpl instruction we're got here with inside .PLT1
98 */
99void
100elf_rtbndr(Rt_map *lmp, unsigned long pltoff, caddr_t from)
101{
102	(void) elf_bndr(lmp, pltoff, from);
103}
104
105#else
106	.weak	_elf_rtbndr		! keep dbx happy as it likes to
107	_elf_rtbndr = elf_rtbndr	! rummage around for our symbols
108
109	ENTRY(elf_rtbndr)
110	mov	%i7, %o3		! Save callers address(profiling)
111	save	%sp, -SA(MINFRAME), %sp
112	mov	%g4, %l5		! Save g4 (safe across function calls)
113	sub	%i1, 0x38, %o1		! compute addr of .PLT0 from addr of .PLT1 jmpl
114	ldx	[%o1 + 0x40], %o0	! ld PLT2[X] into third arg
115	srl	%i0, 10, %o1		! shift offset set by sethi
116	call	elf_bndr		! returns function address in %o0
117	mov	%i3, %o2		! Callers address is arg 3
118	mov	%o0, %g1		! save address of routine binded
119	mov	%l5, %g4		! restore g4
120	restore				! how many restores needed ? 2
121	jmp	%g1			! jump to it
122	restore
123	SET_SIZE(elf_rtbndr)
124
125#endif
126
127
128#if	defined(lint)
129void
130elf_rtbndr_far(Rt_map *lmp, unsigned long pltoff, caddr_t from)
131{
132	(void) elf_bndr(lmp, pltoff, from);
133}
134#else
135ENTRY(elf_rtbndr_far)
136	mov	%i7, %o3		! Save callers address
137	save	%sp, -SA(MINFRAME), %sp
138	mov	%g4, %l5		! preserve %g4
139	sub	%i1, 0x18, %o2		! compute address of .PLT0 from
140					!   .PLT0 jmpl instr.
141	sub	%i0, %o2, %o1		! pltoff = pc - 0x10 - .PLT0
142	sub	%o1, 0x10, %o1
143	ldx	[%o2 + 0x40], %o0	! ld PLT2[X] into third arg
144	call	elf_bndr		! returns function address in %o0
145	mov	%i3, %o2		! Callers address is arg3
146	mov	%o0, %g1		! save address of routine binded
147	mov	%l5, %g4		! restore g4
148	restore				! how many restores needed ? 2
149	jmp	%g1			! jump to it
150	restore
151SET_SIZE(elf_rtbndr_far)
152#endif
153
154
155/*
156 * Initialize a plt entry so that function calls go to 'bindfunc'
157 * (We parameterize the binding function here because we call this
158 * routine twice - once for PLT0 and once for PLT1 with different
159 * binding functions.)
160 *
161 * The plt entries (PLT0 and PLT1) look like:
162 *
163 *	save	%sp, -176, %sp
164 *	sethi	%hh(bindfunc), %l0
165 *	sethi	%lm(bindfunc), %l1
166 *	or	%l0, %hm(bindfunc), %l0
167 *	sllx	%l0, 32, %l0
168 *	or	%l0, %l1, %l0
169 *	jmpl	%l0 + %lo(bindfunc), %o1
170 *	mov	%g1, %o0
171 */
172
173#define	M_SAVE_SP176SP	0x9de3bf50	/*	save	%sp, -176, %sp */
174#define	M_SETHI_L0	0x21000000	/*	sethi	0x0, %l0 */
175#define	M_SETHI_L1	0x23000000	/*	sethi	0x0, %l1 */
176#define	M_OR_L0L0	0xa0142000	/*	or	%l0, 0x0, %l0 */
177#define	M_SLLX_L032L0	0xa12c3020	/*	sllx	%l0, 32, %l0 */
178#define	M_OR_L0L1L0	0xa0140011	/*	or	%l0, %l1, %l0 */
179#define	M_JMPL_L0O1	0x93c42000	/*	jmpl	%l0 + 0, %o1 */
180#define	M_MOV_G1O0	0x90100001	/*	or	%g0, %g1, %o0 */
181
182#if	defined(lint)
183
184#define	HH22(x)	0		/* for lint's benefit */
185#define	LM22(x)	0
186#define	HM10(x)	0
187#define	LO10(x)	0
188
189/* ARGSUSED */
190void
191elf_plt_init(void *plt, caddr_t bindfunc)
192{
193	uint_t	*_plt;
194
195	_plt = (uint_t *)plt;
196	_plt[0] = M_SAVE_SP176SP;
197	_plt[1] = M_SETHI_L0 | HH22(bindfunc);
198	_plt[2] = M_SETHI_L1 | LM22(bindfunc);
199	_plt[3] = M_OR_L0L0 | HM10(bindfunc);
200	_plt[4] = M_SLLX_L032L0;
201	_plt[5] = M_OR_L0L1L0;
202	_plt[6] = M_JMPL_L0O1 | LO10(bindfunc);
203	_plt[7] = M_MOV_G1O0;
204}
205
206#else
207	ENTRY(elf_plt_init)
208	save	%sp, -SA(MINFRAME), %sp	! Make a frame
209
210	sethi	%hi(M_SAVE_SP176SP), %o0	! Get save instruction
211	or	%o0, %lo(M_SAVE_SP176SP), %o0
212	st	%o0, [%i0]		! Store in plt[0]
213
214	sethi	%hi(M_SETHI_L0), %o4	! Get "sethi 0x0, %l0" insn
215	srlx	%i1, 42, %o2		! get %hh(function address)
216	or	%o4, %o2, %o4		!	or value into instruction
217	st	%o4, [%i0 + 0x4]	! Store instruction in plt[1]
218	iflush	%i0			! .. and flush
219
220	sethi	%hi(M_SETHI_L1), %o4	! Get "sethi 0x0, %l1" insn
221	srl	%i1, 10, %o2		! get %lm(function address)
222	or	%o4, %o2, %o4		!	or value into instruction
223	st	%o4, [%i0 + 0x8]	! Store instruction in plt[2]
224
225	sethi	%hi(M_OR_L0L0), %o4	! Get "or %l0, 0x0, %l0" insn
226	or	%o4, %lo(M_OR_L0L0), %o4
227	srlx	%i1, 32, %o2		! get %hm(function address)
228	and	%o2, 0x3ff, %o2		! pick out bits 42-33
229	or	%o4, %o2, %o4		!	or value into instruction
230	st	%o4, [%i0 + 0xc]	! Store instruction in plt[3]
231	iflush	%i0 + 8			! .. and flush
232
233	sethi	%hi(M_SLLX_L032L0), %o4	! get "sllx %l0, 32, %l0" insn
234	or	%o4, %lo(M_SLLX_L032L0), %o4
235	st	%o4, [%i0 + 0x10]	! Store instruction in plt[4]
236
237	sethi	%hi(M_OR_L0L1L0), %o4	! get "or %l0, %l1, %l0" insn
238	or	%o4, %lo(M_OR_L0L1L0), %o4
239	st	%o4, [%i0 + 0x14]	! Store instruction in plt[5]
240	iflush	%i0 + 0x10		! .. and flush
241
242	sethi	%hi(M_JMPL_L0O1), %o4	! get "jmpl %l0 + 0, %o1" insn
243	or	%o4, %lo(M_JMPL_L0O1), %o4
244	and	%i1, 0x3ff, %o2		! get %lo(function address)
245	or	%o4, %o2, %o4		!	or value into instruction
246	st	%o4, [%i0 + 0x18]	! Store instruction in plt[6]
247
248	sethi	%hi(M_MOV_G1O0), %o4	! get "mov %g1, %o0" insn
249	or	%o4, %lo(M_MOV_G1O0), %o4
250	st	%o4, [%i0 + 0x1c]	! Store instruction in plt[7]
251	iflush	%i0 + 0x18		! .. and flush
252
253	ret
254	restore
255	SET_SIZE(elf_plt_init)
256#endif
257
258
259
260
261#if	defined(lint)
262/*
263 *  The V9 ABI assigns the link map identifier, the
264 *  Rt_map pointer, to the start of .PLT2.
265 */
266void
267elf_plt2_init(unsigned int *plt2, Rt_map * lmp)
268{
269	/* LINTED */
270	*(unsigned long *)plt2 = (unsigned long)lmp;
271}
272#else
273	ENTRY(elf_plt2_init)
274	stx	%o1, [%o0]
275	retl
276	iflush	%o0
277	SET_SIZE(elf_plt2_init)
278#endif
279
280
281
282/*
283 * After the first call to a plt, elf_bndr() will have determined the true
284 * address of the function being bound.  The plt is now rewritten so that
285 * any subsequent calls go directly to the bound function.  If the library
286 * to which the function belongs is being profiled refer to _plt_cg_write.
287 *
288 * For complete 64-bit spanning, the new plt entry is:
289 *
290 *	nop
291 *	sethi	%hh(function address), %g1
292 *	sethi	%lm(function address), %g5
293 *	or	%g1, %hm(function address), %g1
294 *	sllx	%g1, 32, %g1
295 *	or	%g1, %g5, %g5
296 *	jmpl	%g5, %lo(function address), %g0
297 *	nop
298 *
299 * However, shorter instruction sequences are possible and useful.
300 * This version gets us anywhere in the top 44 bits of the
301 * address space - since this is where shared objects live most
302 * of the time, this case is worth optimizing.
303 *
304 *	nop
305 *	sethi	%h44(~function_address), %g5
306 *	xnor	%g5, %m44(~function address), %g1
307 *	sllx	%g1, 12, %g1
308 *	jmpl	%g1 + %l44(function address), %g0
309 *	nop
310 *	nop
311 *	nop
312 *
313 * This version gets anywhere in the top 32 bits:
314 *
315 *	nop
316 *	sethi	%hi(~function_address), %g5
317 *	xnor	%g5, %lo(~function_address), %g1
318 *	jmpl	%g1, %g0
319 *	nop
320 *	nop
321 *	nop
322 *	nop
323 *
324 * This version get's us to a destination within
325 * +- 8megs of the PLT's address:
326 *
327 *	nop
328 *	ba,a	<dest>
329 *	nop
330 *	nop
331 *	nop
332 *	nop
333 *	nop
334 *	nop
335 *
336 * This version get's us to a destination within
337 * +- 2megs of the PLT's address:
338 *
339 *	nop
340 *	ba,a,pt	%icc, <dest>
341 *	nop
342 *	nop
343 *	nop
344 *	nop
345 *	nop
346 *	nop
347 *
348 *
349 * The PLT is written in reverse order to ensure re-entrant behaviour.
350 * Note that the first two instructions must be overwritten with a
351 * single stx.
352 *
353 * Note that even in the 44-bit case, we deliberately use both %g5 and
354 * %g1 to prevent anyone accidentally relying on either of them being
355 * non-volatile across a function call.
356 */
357
358#define	M_JMPL_G5G0	0x81c16000	/* jmpl %g5 + 0, %g0 */
359#define	M_OR_G1G5G5	0x8a104005	/* or %g1, %g5, %g5 */
360#define	M_SLLX_G132G1	0x83287020	/* sllx %g1, 32, %g1 */
361#define	M_OR_G1G1	0x82106000	/* or %g1, 0x0, %g1 */
362#define	M_SETHI_G5	0x0b000000	/* sethi 0x0, %g5 */
363#define	M_SETHI_G1	0x03000000	/* sethi 0x0, %g1 */
364#define	M_NOP		0x01000000	/* sethi 0x0, %g0 */
365
366#define	M_JMPL_G1G0	0x81c06000	/* jmpl %g1 + 0, %g0 */
367#define	M_SLLX_G112G1	0x8328700c	/* sllx %g1, 12, %g1 */
368#define	M_XNOR_G5G1	0x82396000	/* xnor	%g5, 0, %g1 */
369
370#if	defined(lint)
371
372/* ARGSUSED */
373#define	MASK(m)		((1ul << (m)) - 1ul)
374#define	BITS(v, u, l)	(((v) >> (l)) & MASK((u) - (l) + 1))
375#define	H44(v)		BITS(v, 43, 22)
376#define	M44(v)		BITS(v, 21, 12)
377#define	L44(v)		BITS(v, 11, 0)
378
379#endif
380
381#if	defined(lint)
382
383void
384/* ARGSUSED1 */
385plt_upper_32(uintptr_t pc, uintptr_t symval)
386{
387	ulong_t		sym = (ulong_t)symval;
388	/* LINTED */
389	ulong_t		nsym = ~sym;
390	uint_t *	plttab = (uint_t *)pc;
391
392	plttab[3] = M_JMPL_G1G0;
393	plttab[2] = (uint_t)(M_XNOR_G5G1 | LO10(nsym));
394	*(ulong_t *)pc =
395	    ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | LM22(nsym));
396}
397
398#else
399
400
401	ENTRY(plt_upper_32)
402	!
403	! Address lies in top 32-bits of address space, so use
404	! compact PLT sequence
405	!
406	sethi	%hi(M_JMPL_G1G0), %o3	! Get "jmpl %g1, %g0" insn
407	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
408	iflush	%o0 + 0xc		! .. and flush
409
410	not	%o1, %o4
411	sethi	%hi(M_XNOR_G5G1), %o3	! Get "xnor %g5, %g1, %g1" insn
412	and	%o4, 0x3ff, %o2		! pick out bits 0-9
413	or	%o3, %o2, %o3		!	or value into instruction
414	st	%o3, [%o0 + 0x8]	! store instruction in plt[2]
415	iflush	%o0 + 0x8		! .. and flush
416
417	sethi	%hi(M_SETHI_G5), %o3	! Get "sethi 0x0, %g5" insn
418	srl	%o4, 10, %o2		! get %lm(~function address)
419	or	%o3, %o2, %o3		!	or value into instruction
420
421	sethi	%hi(M_NOP), %o4		! Get "nop" instruction
422	sllx	%o4, 32, %o4		! shift to top of instruction pair
423	or	%o3, %o4, %o3		!	or value into instruction pair
424	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
425	retl
426	iflush	%o0			! .. and flush
427	SET_SIZE(plt_upper_32)
428#endif	/* defined lint */
429
430
431#if	defined(lint)
432
433void
434/* ARGSUSED1 */
435plt_upper_44(uintptr_t pc, uintptr_t symval)
436{
437	ulong_t		sym = (ulong_t)symval;
438	ulong_t		nsym = ~sym;
439	uint_t *	plttab = (uint_t *)pc;
440
441	/* LINTED */
442	plttab[4] = (uint_t)(M_JMPL_G1G0 | L44(sym));
443	plttab[3] = M_SLLX_G112G1;
444	/* LINTED */
445	plttab[2] = (uint_t)(M_XNOR_G5G1 | M44(nsym));
446	*(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | H44(nsym));
447}
448
449#else
450
451
452	ENTRY(plt_upper_44)
453	!
454	! Address lies in top 44-bits of address space, so use
455	! compact PLT sequence
456	!
457	setuw	M_JMPL_G1G0, %o3	! Get "jmpl %g1, %g0" insn
458	and	%o1, 0xfff, %o2		! lower 12 bits of function address
459	or	%o3, %o2, %o3		!	is or'ed into instruction
460	st	%o3, [%o0 + 0x10]	! store instruction in plt[4]
461	iflush	%o0 + 0x10		! .. and flush
462
463	setuw	M_SLLX_G112G1, %o3	! Get "sllx %g1, 12, %g1" insn
464	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
465
466	not	%o1, %o4
467	setuw	M_XNOR_G5G1, %o3	! Get "xnor %g5, 0, %g1" insn
468	srlx	%o4, 12, %o2		! get %m44(0 - function address)
469	and	%o2, 0x3ff, %o2		! pick out bits 21-12
470	or	%o3, %o2, %o3		!	or value into instruction
471	st	%o3, [%o0 + 8]		! store instruction in plt[2]
472	iflush	%o0 + 8			! .. and flush
473
474	setuw	M_SETHI_G5, %o3		! Get "sethi 0x0, %g5" insn
475	srlx	%o4, 22, %o2		! get %h44(0 - function address)
476	or	%o3, %o2, %o3		!	or value into instruction
477
478	setuw	M_NOP, %o4		! Get "nop" instruction
479	sllx	%o4, 32, %o4		! shift to top of instruction pair
480	or	%o3, %o4, %o3		!	or value into instruction pair
481	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
482	retl
483	iflush	%o0			! .. and flush
484	SET_SIZE(plt_upper_44)
485
486#endif	/* defined(lint) */
487
488
489#if	defined(lint)
490
491void
492/* ARGSUSED1 */
493plt_full_range(uintptr_t pc, uintptr_t symval)
494{
495	uint_t *	plttab = (uint_t *)pc;
496
497	plttab[6] = M_JMPL_G5G0 | LO10(symval);
498	plttab[5] = M_OR_G1G5G5;
499	plttab[4] = M_SLLX_G132G1;
500	plttab[3] = M_OR_G1G1 | HM10(symval);
501	plttab[2] = M_SETHI_G5 | LM22(symval);
502	*(ulong_t *)pc =
503		((ulong_t)M_NOP << 32) | (M_SETHI_G1 | HH22(symval));
504}
505
506#else
507	ENTRY(plt_full_range)
508	!
509	! Address lies anywhere in 64-bit address space, so use
510	! full PLT sequence
511	!
512	sethi	%hi(M_JMPL_G5G0), %o3	! Get "jmpl %g5, %g0" insn
513	and	%o1, 0x3ff, %o2		! lower 10 bits of function address
514	or	%o3, %o2, %o3		!	is or'ed into instruction
515	st	%o3, [%o0 + 0x18]	! store instruction in plt[6]
516	iflush	%o0 + 0x18		! .. and flush
517
518	sethi	%hi(M_OR_G1G5G5), %o3	! Get "or %g1, %g5, %g1" insn
519	or	%o3, %lo(M_OR_G1G5G5), %o3
520	st	%o3, [%o0 + 0x14]	! store instruction in plt[5]
521
522	sethi	%hi(M_SLLX_G132G1), %o3	!  Get "sllx %g1, 32, %g1" insn
523	or	%o3, %lo(M_SLLX_G132G1), %o3
524	st	%o3, [%o0 + 0x10]	! store instruction in plt[4]
525	iflush	%o0 + 0x10		! .. and flush
526
527	sethi	%hi(M_OR_G1G1), %o3	! Get "or %g1, 0x0, %g1" insn
528	or	%o3, %lo(M_OR_G1G1), %o3
529	srlx	%o1, 32, %o2		! get %hm(function address)
530	and	%o2, 0x3ff, %o2		! pick out bits 42-33
531	or	%o3, %o2, %o3		!	or value into instruction
532	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
533
534	sethi	%hi(M_SETHI_G5), %o3	! Get "sethi 0x0, %g5" insn
535	srl	%o1, 10, %o2		! get %lm(function address)
536	or	%o3, %o2, %o3		!	or value into instruction
537	st	%o3, [%o0 + 0x8]	! store instruction in plt[2]
538	iflush	%o0 + 8			! .. and flush
539
540	sethi	%hi(M_SETHI_G1), %o3	! Get "sethi 0x0, %g1" insn
541	srlx	%o1, 42, %o2		! get %hh(function address)
542	or	%o3, %o2, %o3		!	or value into instruction
543
544	sethi	%hi(M_NOP), %o4		! Get "nop" instruction
545	sllx	%o4, 32, %o4		! shift to top of instruction pair
546	or	%o3, %o4, %o3		!	or value into instruction pair
547	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
548	retl
549	iflush	%o0			! .. and flush
550
551	SET_SIZE(plt_full_range)
552
553#endif	/* defined(lint) */
554
555/*
556 * performs the 'iflush' instruction on a range of memory.
557 */
558#if	defined(lint)
559void
560iflush_range(caddr_t addr, size_t len)
561{
562	/* LINTED */
563	uintptr_t base;
564
565	base = (uintptr_t)addr & ~7;	/* round down to 8 byte alignment */
566	len = (len + 7) & ~7;		/* round up to multiple of 8 bytes */
567	for (len -= 8; (long)len >= 0; len -= 8)
568		/* iflush(base + len) */;
569}
570#else
571	ENTRY(iflush_range)
572	add	%o1, 7, %o1
573	andn	%o0, 7, %o0
574	andn	%o1, 7, %o1
5751:	subcc	%o1, 8, %o1
576	bge,a,pt %xcc, 1b
577	iflush	%o0 + %o1
578	retl
579	nop
580	SET_SIZE(iflush_range)
581#endif
582
583
584#if	defined(lint)
585
586ulong_t
587elf_plt_trace()
588{
589	return (0);
590}
591#else
592	.global	elf_plt_trace
593	.type   elf_plt_trace, #function
594
595/*
596 * The dyn_plt that called us has already created a stack-frame for
597 * us and placed the following entries in it:
598 *
599 *	[%fp + STACK_BIAS + -0x8]	* dyndata
600 *	[%fp + STACK_BIAS + -0x10]	* prev stack size
601 *
602 * dyndata currently contains:
603 *
604 *	dyndata:
605 *	0x0	Addr		*reflmp
606 *	0x8	Addr		*deflmp
607 *	0x10	Word		symndx
608 *	0x14	Word		sb_flags
609 *	0x18	Sym		symdef.st_name
610 *	0x1c			symdef.st_info
611 *	0x1d			symdef.st_other
612 *	0x1e			symdef.st_shndx
613 *	0x20			symdef.st_value
614 *	0x28			symdef.st_size
615 */
616#define	REFLMP_OFF		0x0
617#define	DEFLMP_OFF		0x8
618#define	SYMNDX_OFF		0x10
619#define	SBFLAGS_OFF		0x14
620#define	SYMDEF_OFF		0x18
621#define	SYMDEF_VALUE_OFF	0x20
622
623#define	LAREGSSZ	0x40	/* sizeof (La_sparcv9_regs) */
624
625
626elf_plt_trace:
6271:	call	2f
628	sethi	%hi(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
6292:	or	%l7, %lo(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
630	add	%l7, %o7, %l7
631
632	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! l1 = * dyndata
633	lduw	[%l1 + SBFLAGS_OFF], %l2		! l2 = sb_flags
634	andcc	%l2, LA_SYMB_NOPLTENTER, %g0
635	be,pt	%icc, .start_pltenter
636	ldx	[%l1 + SYMDEF_VALUE_OFF], %l0	! l0 =
637						!  sym.st_value(calling address)
638	ba,a,pt	%icc, .end_pltenter
639	nop
640
641	/*
642	 * save all registers into La_sparcv9_regs
643	 */
644.start_pltenter:
645	sub	%sp, LAREGSSZ, %sp	! create space for La_sparcv9_regs
646					! storage on the stack.
647
648	add	%fp, STACK_BIAS - (LAREGSSZ + (2 * CLONGSIZE)), %o4	! addr of new space.
649
650	stx	%i0, [%o4 + 0x0]
651	stx	%i1, [%o4 + 0x8]
652	stx	%i2, [%o4 + 0x10]
653	stx	%i3, [%o4 + 0x18]	! because a regwindow shift has
654	stx	%i4, [%o4 + 0x20]	! already occured our current %i*
655	stx	%i5, [%o4 + 0x28]	! register's are the equivalent of
656	stx	%i6, [%o4 + 0x30]	! the %o* registers that the final
657	stx	%i7, [%o4 + 0x38]	! procedure shall see.
658	mov	%g4, %l5		! save g4 (safe across function calls)
659
660
661	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! %l1 == * dyndata
662	ldx	[%l1 + REFLMP_OFF], %o0		! %o0 = reflmp
663	ldx	[%l1 + DEFLMP_OFF], %o1		! %o1 = deflmp
664	add	%l1, SYMDEF_OFF, %o2		! %o2 = symp
665	lduw	[%l1 + SYMNDX_OFF], %o3		! %o3 = symndx
666	call	audit_pltenter
667	add	%l1, SBFLAGS_OFF, %o5		! %o3 = * sb_flags
668
669	mov	%o0, %l0		! %l0 == calling address
670	add	%sp, LAREGSSZ, %sp	! cleanup La_sparcv9_regs off
671					! of the stack.
672
673.end_pltenter:
674	/*
675	 * If *no* la_pltexit() routines exist we do not need
676	 * to keep the stack frame before we call the actual
677	 * routine.  Instead we jump to it and remove ourself
678	 * from the stack at the same time.
679	 */
680	ldx	[%l7+audit_flags], %l3
681	lduw	[%l3], %l3				! %l3 = audit_flags
682	andcc	%l3, AF_PLTEXIT, %g0			! AF_PLTEXIT = 2
683	be,pt	%icc, .bypass_pltexit
684	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! %l1 = * dyndata
685	lduw	[%l1 + SBFLAGS_OFF], %l2		! %l2 = sb_flags
686	andcc	%l2, LA_SYMB_NOPLTEXIT, %g0		! LA_SYMB_NOPLTEXIT = 2
687	bne,a,pt	%icc, .bypass_pltexit
688	nop
689
690	ba,a,pt	%icc, .start_pltexit
691	nop
692.bypass_pltexit:
693	mov	%l5, %g4		! restore g4
694	jmpl	%l0, %g0
695	restore
696
697.start_pltexit:
698	/*
699	 * In order to call la_pltexit() we must duplicate the
700	 * arguments from the 'callers' stack on our stack frame.
701	 *
702	 * First we check the size of the callers stack and grow
703	 * our stack to hold any of the arguments that need
704	 * duplicating (these are arguments 6->N), because the
705	 * first 6 (0->5) are passed via register windows on sparc.
706	 */
707
708	/*
709	 * The first calculation is to determine how large the
710	 * argument passing area might be.  Since there is no
711	 * way to distinquish between 'argument passing' and
712	 * 'local storage' from the previous stack this amount must
713	 * cover both.
714	 */
715	ldx	[%fp + STACK_BIAS + -(2 * CLONGSIZE)], %l1	! %l1 = callers
716						!	stack size
717	sub	%l1, MINFRAME, %l1		! %l1 = argument space on
718						!	caller's stack
719	/*
720	 * Next we compare the prev. stack size against the audit_argcnt.  We
721	 * copy at most 'audit_argcnt' arguments.  The default arg count is 64.
722	 *
723	 * NOTE: on sparc we always copy at least six args since these
724	 *	 are in reg-windows and not on the stack.
725	 *
726	 * NOTE: Also note that we multiply (shift really) the arg count
727	 *	 by 8 which is the 'word size' to calculate the amount
728	 *	 of stack space needed.
729	 */
730	ldx	[%l7 + audit_argcnt], %l2
731	lduw	[%l2], %l2			! %l2 = audit_argcnt
732	cmp	%l2, 6
733	ble,pn	%icc, .grow_stack
734	sub	%l2, 6, %l2
735	sllx	%l2, CLONGSHIFT, %l2		! arg count * 8
736	cmp	%l1, %l2			!
737	ble,a,pn	%icc, .grow_stack
738	nop
739	mov	%l2, %l1
740.grow_stack:
741	/*
742	 * When duplicating the stack we skip the first SA(MINFRAME)
743	 * bytes. This is the space on the stack reserved for preserving
744	 * the register windows and such and do not need to be duplicated
745	 * on this new stack frame.  We start duplicating at the portion
746	 * of the stack reserved for argument's above 6.
747	 */
748	sub	%sp, %l1, %sp		! grow our stack by amount required.
749	srax	%l1, CLONGSHIFT, %l1	! %l1 = %l1 / 8 (words to copy)
750	mov	SA(MINFRAME), %l2	! %l2 = index into stack & frame
751
7521:
753	cmp	%l1, 0
754	ble,a,pn	%icc, 2f
755	nop
756
757	add	%fp, %l2, %l4
758	ldx	[%l4 + STACK_BIAS], %l3		! duplicate args from previous
759	add	%sp, %l2, %l4
760	stx	%l3, [%l4 + STACK_BIAS]		! stack onto current stack
761
762	add	%l2, CLONGSIZE, %l2
763	ba,pt	%icc, 1b
764	sub	%l1, 0x1, %l1
7652:
766	mov	%i0, %o0		! copy ins to outs
767	mov	%i1, %o1
768	mov	%i2, %o2
769	mov	%i3, %o3
770	mov	%i4, %o4
771	mov	%i5, %o5
772	call	%l0			! call original routine
773	mov	%l5, %g4		! restore g4
774	mov	%o1, %l2		! l2 = second 1/2 of return value
775					! for those those 64 bit operations
776					! link div64 - yuck...
777
778					! %o0 = retval
779	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1
780	ldx	[%l1 + REFLMP_OFF], %o1		! %o1 = reflmp
781	ldx	[%l1 + DEFLMP_OFF], %o2		! %o2 = deflmp
782	add	%l1, SYMDEF_OFF, %o3		! %o3 = symp
783	call	audit_pltexit
784	lduw	[%l1 + SYMNDX_OFF], %o4		! %o4 = symndx
785
786	mov	%o0, %i0			! pass on return code
787	mov	%l2, %i1
788	ret
789	restore
790	.size	elf_plt_trace, . - elf_plt_trace
791
792#endif
793
794