1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2013 Joyent, Inc.  All rights reserved.
30 */
31
32/*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38#include <sys/types.h>
39#include <sys/bootconf.h>
40#include <sys/bootsvcs.h>
41#include <sys/bootinfo.h>
42#include <sys/multiboot.h>
43#include <sys/multiboot2.h>
44#include <sys/multiboot2_impl.h>
45#include <sys/bootvfs.h>
46#include <sys/bootprops.h>
47#include <sys/varargs.h>
48#include <sys/param.h>
49#include <sys/machparam.h>
50#include <sys/machsystm.h>
51#include <sys/archsystm.h>
52#include <sys/boot_console.h>
53#include <sys/cmn_err.h>
54#include <sys/systm.h>
55#include <sys/promif.h>
56#include <sys/archsystm.h>
57#include <sys/x86_archext.h>
58#include <sys/kobj.h>
59#include <sys/privregs.h>
60#include <sys/sysmacros.h>
61#include <sys/ctype.h>
62#include <sys/fastboot.h>
63#ifdef __xpv
64#include <sys/hypervisor.h>
65#include <net/if.h>
66#endif
67#include <vm/kboot_mmu.h>
68#include <vm/hat_pte.h>
69#include <sys/kobj.h>
70#include <sys/kobj_lex.h>
71#include <sys/pci_cfgspace_impl.h>
72#include <sys/fastboot_impl.h>
73#include <sys/acpi/acconfig.h>
74#include <sys/acpi/acpi.h>
75
76static int have_console = 0;	/* set once primitive console is initialized */
77static char *boot_args = "";
78
79/*
80 * Debugging macros
81 */
82static uint_t kbm_debug = 0;
83#define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
84#define	DBG(x)		{ if (kbm_debug)			\
85	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
86	}
87
88#define	PUT_STRING(s) {				\
89	char *cp;				\
90	for (cp = (s); *cp; ++cp)		\
91		bcons_putchar(*cp);		\
92	}
93
94bootops_t bootop;	/* simple bootops we'll pass on to kernel */
95struct bsys_mem bm;
96
97/*
98 * Boot info from "glue" code in low memory. xbootp is used by:
99 *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
100 */
101static struct xboot_info *xbootp;
102static uintptr_t next_virt;	/* next available virtual address */
103static paddr_t next_phys;	/* next available physical address from dboot */
104static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
105
106/*
107 * buffer for vsnprintf for console I/O
108 */
109#define	BUFFERSIZE	512
110static char buffer[BUFFERSIZE];
111
112/*
113 * stuff to store/report/manipulate boot property settings.
114 */
115typedef struct bootprop {
116	struct bootprop *bp_next;
117	char *bp_name;
118	uint_t bp_vlen;
119	char *bp_value;
120} bootprop_t;
121
122static bootprop_t *bprops = NULL;
123static char *curr_page = NULL;		/* ptr to avail bprop memory */
124static int curr_space = 0;		/* amount of memory at curr_page */
125
126#ifdef __xpv
127start_info_t *xen_info;
128shared_info_t *HYPERVISOR_shared_info;
129#endif
130
131/*
132 * some allocator statistics
133 */
134static ulong_t total_bop_alloc_scratch = 0;
135static ulong_t total_bop_alloc_kernel = 0;
136
137static void build_firmware_properties(struct xboot_info *);
138
139static int early_allocation = 1;
140
141int force_fastreboot = 0;
142volatile int fastreboot_onpanic = 0;
143int post_fastreboot = 0;
144#ifdef	__xpv
145volatile int fastreboot_capable = 0;
146#else
147volatile int fastreboot_capable = 1;
148#endif
149
150/*
151 * Information saved from current boot for fast reboot.
152 * If the information size exceeds what we have allocated, fast reboot
153 * will not be supported.
154 */
155multiboot_info_t saved_mbi;
156mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159int saved_cmdline_len = 0;
160size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
161
162/*
163 * Turn off fastreboot_onpanic to avoid panic loop.
164 */
165char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
167
168/*
169 * Pointers to where System Resource Affinity Table (SRAT), System Locality
170 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171 * are mapped into virtual memory
172 */
173ACPI_TABLE_SRAT	*srat_ptr = NULL;
174ACPI_TABLE_SLIT	*slit_ptr = NULL;
175ACPI_TABLE_MSCT	*msct_ptr = NULL;
176
177/*
178 * Arbitrary limit on number of localities we handle; if
179 * this limit is raised to more than UINT16_MAX, make sure
180 * process_slit() knows how to handle it.
181 */
182#define	SLIT_LOCALITIES_MAX	(4096)
183
184#define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
185#define	SLIT_PROPNAME		"acpi-slit"
186
187/*
188 * Allocate aligned physical memory at boot time. This allocator allocates
189 * from the highest possible addresses. This avoids exhausting memory that
190 * would be useful for DMA buffers.
191 */
192paddr_t
193do_bop_phys_alloc(uint64_t size, uint64_t align)
194{
195	paddr_t	pa = 0;
196	paddr_t	start;
197	paddr_t	end;
198	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
199
200	/*
201	 * Be careful if high memory usage is limited in startup.c
202	 * Since there are holes in the low part of the physical address
203	 * space we can treat physmem as a pfn (not just a pgcnt) and
204	 * get a conservative upper limit.
205	 */
206	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207		high_phys = pfn_to_pa(physmem);
208
209	/*
210	 * find the lowest or highest available memory in physinstalled
211	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
212	 */
213#if defined(__i386)
214	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
215		high_phys = FOUR_GIG;
216#endif
217
218	/*
219	 * find the highest available memory in physinstalled
220	 */
221	size = P2ROUNDUP(size, align);
222	for (; ml; ml = ml->ml_next) {
223		start = P2ROUNDUP(ml->ml_address, align);
224		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
225		if (start < next_phys)
226			start = P2ROUNDUP(next_phys, align);
227		if (end > high_phys)
228			end = P2ALIGN(high_phys, align);
229
230		if (end <= start)
231			continue;
232		if (end - start < size)
233			continue;
234
235		/*
236		 * Early allocations need to use low memory, since
237		 * physmem might be further limited by bootenv.rc
238		 */
239		if (early_allocation) {
240			if (pa == 0 || start < pa)
241				pa = start;
242		} else {
243			if (end - size > pa)
244				pa = end - size;
245		}
246	}
247	if (pa != 0) {
248		if (early_allocation)
249			next_phys = pa + size;
250		else
251			high_phys = pa;
252		return (pa);
253	}
254	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
255	    ") Out of memory\n", size, align);
256	/*NOTREACHED*/
257}
258
259uintptr_t
260alloc_vaddr(size_t size, paddr_t align)
261{
262	uintptr_t rv;
263
264	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
265	rv = (uintptr_t)next_virt;
266	next_virt += size;
267	return (rv);
268}
269
270/*
271 * Allocate virtual memory. The size is always rounded up to a multiple
272 * of base pagesize.
273 */
274
275/*ARGSUSED*/
276static caddr_t
277do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
278{
279	paddr_t a = align;	/* same type as pa for masking */
280	uint_t pgsize;
281	paddr_t pa;
282	uintptr_t va;
283	ssize_t s;		/* the aligned size */
284	uint_t level;
285	uint_t is_kernel = (virthint != 0);
286
287	if (a < MMU_PAGESIZE)
288		a = MMU_PAGESIZE;
289	else if (!ISP2(a))
290		prom_panic("do_bsys_alloc() incorrect alignment");
291	size = P2ROUNDUP(size, MMU_PAGESIZE);
292
293	/*
294	 * Use the next aligned virtual address if we weren't given one.
295	 */
296	if (virthint == NULL) {
297		virthint = (caddr_t)alloc_vaddr(size, a);
298		total_bop_alloc_scratch += size;
299	} else {
300		total_bop_alloc_kernel += size;
301	}
302
303	/*
304	 * allocate the physical memory
305	 */
306	pa = do_bop_phys_alloc(size, a);
307
308	/*
309	 * Add the mappings to the page tables, try large pages first.
310	 */
311	va = (uintptr_t)virthint;
312	s = size;
313	level = 1;
314	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
315	if (xbootp->bi_use_largepage && a == pgsize) {
316		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
317		    s >= pgsize) {
318			kbm_map(va, pa, level, is_kernel);
319			va += pgsize;
320			pa += pgsize;
321			s -= pgsize;
322		}
323	}
324
325	/*
326	 * Map remaining pages use small mappings
327	 */
328	level = 0;
329	pgsize = MMU_PAGESIZE;
330	while (s > 0) {
331		kbm_map(va, pa, level, is_kernel);
332		va += pgsize;
333		pa += pgsize;
334		s -= pgsize;
335	}
336	return (virthint);
337}
338
339/*
340 * Free virtual memory - we'll just ignore these.
341 */
342/*ARGSUSED*/
343static void
344do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
345{
346	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
347	    (void *)virt, size);
348}
349
350/*
351 * Old interface
352 */
353/*ARGSUSED*/
354static caddr_t
355do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
356    int align, int flags)
357{
358	prom_panic("unsupported call to BOP_EALLOC()\n");
359	return (0);
360}
361
362
363static void
364bsetprop(char *name, int nlen, void *value, int vlen)
365{
366	uint_t size;
367	uint_t need_size;
368	bootprop_t *b;
369
370	/*
371	 * align the size to 16 byte boundary
372	 */
373	size = sizeof (bootprop_t) + nlen + 1 + vlen;
374	size = (size + 0xf) & ~0xf;
375	if (size > curr_space) {
376		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
377		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
378		curr_space = need_size;
379	}
380
381	/*
382	 * use a bootprop_t at curr_page and link into list
383	 */
384	b = (bootprop_t *)curr_page;
385	curr_page += sizeof (bootprop_t);
386	curr_space -=  sizeof (bootprop_t);
387	b->bp_next = bprops;
388	bprops = b;
389
390	/*
391	 * follow by name and ending zero byte
392	 */
393	b->bp_name = curr_page;
394	bcopy(name, curr_page, nlen);
395	curr_page += nlen;
396	*curr_page++ = 0;
397	curr_space -= nlen + 1;
398
399	/*
400	 * copy in value, but no ending zero byte
401	 */
402	b->bp_value = curr_page;
403	b->bp_vlen = vlen;
404	if (vlen > 0) {
405		bcopy(value, curr_page, vlen);
406		curr_page += vlen;
407		curr_space -= vlen;
408	}
409
410	/*
411	 * align new values of curr_page, curr_space
412	 */
413	while (curr_space & 0xf) {
414		++curr_page;
415		--curr_space;
416	}
417}
418
419static void
420bsetprops(char *name, char *value)
421{
422	bsetprop(name, strlen(name), value, strlen(value) + 1);
423}
424
425static void
426bsetprop64(char *name, uint64_t value)
427{
428	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
429}
430
431static void
432bsetpropsi(char *name, int value)
433{
434	char prop_val[32];
435
436	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
437	bsetprops(name, prop_val);
438}
439
440/*
441 * to find the size of the buffer to allocate
442 */
443/*ARGSUSED*/
444int
445do_bsys_getproplen(bootops_t *bop, const char *name)
446{
447	bootprop_t *b;
448
449	for (b = bprops; b; b = b->bp_next) {
450		if (strcmp(name, b->bp_name) != 0)
451			continue;
452		return (b->bp_vlen);
453	}
454	return (-1);
455}
456
457/*
458 * get the value associated with this name
459 */
460/*ARGSUSED*/
461int
462do_bsys_getprop(bootops_t *bop, const char *name, void *value)
463{
464	bootprop_t *b;
465
466	for (b = bprops; b; b = b->bp_next) {
467		if (strcmp(name, b->bp_name) != 0)
468			continue;
469		bcopy(b->bp_value, value, b->bp_vlen);
470		return (0);
471	}
472	return (-1);
473}
474
475/*
476 * get the name of the next property in succession from the standalone
477 */
478/*ARGSUSED*/
479static char *
480do_bsys_nextprop(bootops_t *bop, char *name)
481{
482	bootprop_t *b;
483
484	/*
485	 * A null name is a special signal for the 1st boot property
486	 */
487	if (name == NULL || strlen(name) == 0) {
488		if (bprops == NULL)
489			return (NULL);
490		return (bprops->bp_name);
491	}
492
493	for (b = bprops; b; b = b->bp_next) {
494		if (name != b->bp_name)
495			continue;
496		b = b->bp_next;
497		if (b == NULL)
498			return (NULL);
499		return (b->bp_name);
500	}
501	return (NULL);
502}
503
504/*
505 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
506 */
507static int
508parse_value(char *p, uint64_t *retval)
509{
510	int adjust = 0;
511	uint64_t tmp = 0;
512	int digit;
513	int radix = 10;
514
515	*retval = 0;
516	if (*p == '-' || *p == '~')
517		adjust = *p++;
518
519	if (*p == '0') {
520		++p;
521		if (*p == 0)
522			return (0);
523		if (*p == 'x' || *p == 'X') {
524			radix = 16;
525			++p;
526		} else {
527			radix = 8;
528			++p;
529		}
530	}
531	while (*p) {
532		if ('0' <= *p && *p <= '9')
533			digit = *p - '0';
534		else if ('a' <= *p && *p <= 'f')
535			digit = 10 + *p - 'a';
536		else if ('A' <= *p && *p <= 'F')
537			digit = 10 + *p - 'A';
538		else
539			return (-1);
540		if (digit >= radix)
541			return (-1);
542		tmp = tmp * radix + digit;
543		++p;
544	}
545	if (adjust == '-')
546		tmp = -tmp;
547	else if (adjust == '~')
548		tmp = ~tmp;
549	*retval = tmp;
550	return (0);
551}
552
553static boolean_t
554unprintable(char *value, int size)
555{
556	int i;
557
558	if (size <= 0 || value[0] == '\0')
559		return (B_TRUE);
560
561	for (i = 0; i < size; i++) {
562		if (value[i] == '\0')
563			return (i != (size - 1));
564
565		if (!isprint(value[i]))
566			return (B_TRUE);
567	}
568	return (B_FALSE);
569}
570
571/*
572 * Print out information about all boot properties.
573 * buffer is pointer to pre-allocated space to be used as temporary
574 * space for property values.
575 */
576static void
577boot_prop_display(char *buffer)
578{
579	char *name = "";
580	int i, len;
581
582	bop_printf(NULL, "\nBoot properties:\n");
583
584	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
585		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
586		(void) do_bsys_getprop(NULL, name, buffer);
587		len = do_bsys_getproplen(NULL, name);
588		bop_printf(NULL, "len=%d ", len);
589		if (!unprintable(buffer, len)) {
590			buffer[len] = 0;
591			bop_printf(NULL, "%s\n", buffer);
592			continue;
593		}
594		for (i = 0; i < len; i++) {
595			bop_printf(NULL, "%02x", buffer[i] & 0xff);
596			if (i < len - 1)
597				bop_printf(NULL, ".");
598		}
599		bop_printf(NULL, "\n");
600	}
601}
602
603/*
604 * 2nd part of building the table of boot properties. This includes:
605 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
606 *
607 * lines look like one of:
608 * ^$
609 * ^# comment till end of line
610 * setprop name 'value'
611 * setprop name value
612 * setprop name "value"
613 *
614 * we do single character I/O since this is really just looking at memory
615 */
616void
617boot_prop_finish(void)
618{
619	int fd;
620	char *line;
621	int c;
622	int bytes_read;
623	char *name;
624	int n_len;
625	char *value;
626	int v_len;
627	char *inputdev;	/* these override the command line if serial ports */
628	char *outputdev;
629	char *consoledev;
630	uint64_t lvalue;
631	int use_xencons = 0;
632
633#ifdef __xpv
634	if (!DOMAIN_IS_INITDOMAIN(xen_info))
635		use_xencons = 1;
636#endif /* __xpv */
637
638	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
639	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
640	DBG(fd);
641
642	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
643	while (fd >= 0) {
644
645		/*
646		 * get a line
647		 */
648		for (c = 0; ; ++c) {
649			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
650			if (bytes_read == 0) {
651				if (c == 0)
652					goto done;
653				break;
654			}
655			if (line[c] == '\n')
656				break;
657		}
658		line[c] = 0;
659
660		/*
661		 * ignore comment lines
662		 */
663		c = 0;
664		while (ISSPACE(line[c]))
665			++c;
666		if (line[c] == '#' || line[c] == 0)
667			continue;
668
669		/*
670		 * must have "setprop " or "setprop\t"
671		 */
672		if (strncmp(line + c, "setprop ", 8) != 0 &&
673		    strncmp(line + c, "setprop\t", 8) != 0)
674			continue;
675		c += 8;
676		while (ISSPACE(line[c]))
677			++c;
678		if (line[c] == 0)
679			continue;
680
681		/*
682		 * gather up the property name
683		 */
684		name = line + c;
685		n_len = 0;
686		while (line[c] && !ISSPACE(line[c]))
687			++n_len, ++c;
688
689		/*
690		 * gather up the value, if any
691		 */
692		value = "";
693		v_len = 0;
694		while (ISSPACE(line[c]))
695			++c;
696		if (line[c] != 0) {
697			value = line + c;
698			while (line[c] && !ISSPACE(line[c]))
699				++v_len, ++c;
700		}
701
702		if (v_len >= 2 && value[0] == value[v_len - 1] &&
703		    (value[0] == '\'' || value[0] == '"')) {
704			++value;
705			v_len -= 2;
706		}
707		name[n_len] = 0;
708		if (v_len > 0)
709			value[v_len] = 0;
710		else
711			continue;
712
713		/*
714		 * ignore "boot-file" property, it's now meaningless
715		 */
716		if (strcmp(name, "boot-file") == 0)
717			continue;
718		if (strcmp(name, "boot-args") == 0 &&
719		    strlen(boot_args) > 0)
720			continue;
721
722		/*
723		 * If a property was explicitly set on the command line
724		 * it will override a setting in bootenv.rc
725		 */
726		if (do_bsys_getproplen(NULL, name) > 0)
727			continue;
728
729		bsetprop(name, n_len, value, v_len + 1);
730	}
731done:
732	if (fd >= 0)
733		(void) BRD_CLOSE(bfs_ops, fd);
734
735	/*
736	 * Check if we have to limit the boot time allocator
737	 */
738	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
739	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
740	    parse_value(line, &lvalue) != -1) {
741		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
742			physmem = (pgcnt_t)lvalue;
743			DBG(physmem);
744		}
745	}
746	early_allocation = 0;
747
748	/*
749	 * check to see if we have to override the default value of the console
750	 */
751	if (!use_xencons) {
752		inputdev = line;
753		v_len = do_bsys_getproplen(NULL, "input-device");
754		if (v_len > 0)
755			(void) do_bsys_getprop(NULL, "input-device", inputdev);
756		else
757			v_len = 0;
758		inputdev[v_len] = 0;
759
760		outputdev = inputdev + v_len + 1;
761		v_len = do_bsys_getproplen(NULL, "output-device");
762		if (v_len > 0)
763			(void) do_bsys_getprop(NULL, "output-device",
764			    outputdev);
765		else
766			v_len = 0;
767		outputdev[v_len] = 0;
768
769		consoledev = outputdev + v_len + 1;
770		v_len = do_bsys_getproplen(NULL, "console");
771		if (v_len > 0) {
772			(void) do_bsys_getprop(NULL, "console", consoledev);
773			if (post_fastreboot &&
774			    strcmp(consoledev, "graphics") == 0) {
775				bsetprops("console", "text");
776				v_len = strlen("text");
777				bcopy("text", consoledev, v_len);
778			}
779		} else {
780			v_len = 0;
781		}
782		consoledev[v_len] = 0;
783		bcons_init2(inputdev, outputdev, consoledev);
784	} else {
785		/*
786		 * Ensure console property exists
787		 * If not create it as "hypervisor"
788		 */
789		v_len = do_bsys_getproplen(NULL, "console");
790		if (v_len < 0)
791			bsetprops("console", "hypervisor");
792		inputdev = outputdev = consoledev = "hypervisor";
793		bcons_init2(inputdev, outputdev, consoledev);
794	}
795
796	if (find_boot_prop("prom_debug") || kbm_debug)
797		boot_prop_display(line);
798}
799
800/*
801 * print formatted output
802 */
803/*PRINTFLIKE2*/
804/*ARGSUSED*/
805void
806bop_printf(bootops_t *bop, const char *fmt, ...)
807{
808	va_list	ap;
809
810	if (have_console == 0)
811		return;
812
813	va_start(ap, fmt);
814	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
815	va_end(ap);
816	PUT_STRING(buffer);
817}
818
819/*
820 * Another panic() variant; this one can be used even earlier during boot than
821 * prom_panic().
822 */
823/*PRINTFLIKE1*/
824void
825bop_panic(const char *fmt, ...)
826{
827	va_list ap;
828
829	va_start(ap, fmt);
830	bop_printf(NULL, fmt, ap);
831	va_end(ap);
832
833	bop_printf(NULL, "\nPress any key to reboot.\n");
834	(void) bcons_getchar();
835	bop_printf(NULL, "Resetting...\n");
836	pc_reset();
837}
838
839/*
840 * Do a real mode interrupt BIOS call
841 */
842typedef struct bios_regs {
843	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
844} bios_regs_t;
845typedef int (*bios_func_t)(int, bios_regs_t *);
846
847/*ARGSUSED*/
848static void
849do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
850{
851#if defined(__xpv)
852	prom_panic("unsupported call to BOP_DOINT()\n");
853#else	/* __xpv */
854	static int firsttime = 1;
855	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
856	bios_regs_t br;
857
858	/*
859	 * The first time we do this, we have to copy the pre-packaged
860	 * low memory bios call code image into place.
861	 */
862	if (firsttime) {
863		extern char bios_image[];
864		extern uint32_t bios_size;
865
866		bcopy(bios_image, (void *)bios_func, bios_size);
867		firsttime = 0;
868	}
869
870	br.ax = rp->eax.word.ax;
871	br.bx = rp->ebx.word.bx;
872	br.cx = rp->ecx.word.cx;
873	br.dx = rp->edx.word.dx;
874	br.bp = rp->ebp.word.bp;
875	br.si = rp->esi.word.si;
876	br.di = rp->edi.word.di;
877	br.ds = rp->ds;
878	br.es = rp->es;
879
880	DBG_MSG("Doing BIOS call...");
881	DBG(br.ax);
882	DBG(br.bx);
883	DBG(br.dx);
884	rp->eflags = bios_func(intnum, &br);
885	DBG_MSG("done\n");
886
887	rp->eax.word.ax = br.ax;
888	rp->ebx.word.bx = br.bx;
889	rp->ecx.word.cx = br.cx;
890	rp->edx.word.dx = br.dx;
891	rp->ebp.word.bp = br.bp;
892	rp->esi.word.si = br.si;
893	rp->edi.word.di = br.di;
894	rp->ds = br.ds;
895	rp->es = br.es;
896#endif /* __xpv */
897}
898
899static struct boot_syscalls bop_sysp = {
900	bcons_getchar,
901	bcons_putchar,
902	bcons_ischar,
903};
904
905static char *whoami;
906
907#define	BUFLEN	64
908
909#if defined(__xpv)
910
911static char namebuf[32];
912
913static void
914xen_parse_props(char *s, char *prop_map[], int n_prop)
915{
916	char **prop_name = prop_map;
917	char *cp = s, *scp;
918
919	do {
920		scp = cp;
921		while ((*cp != NULL) && (*cp != ':'))
922			cp++;
923
924		if ((scp != cp) && (*prop_name != NULL)) {
925			*cp = NULL;
926			bsetprops(*prop_name, scp);
927		}
928
929		cp++;
930		prop_name++;
931		n_prop--;
932	} while (n_prop > 0);
933}
934
935#define	VBDPATHLEN	64
936
937/*
938 * parse the 'xpv-root' property to create properties used by
939 * ufs_mountroot.
940 */
941static void
942xen_vbdroot_props(char *s)
943{
944	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
945	const char lnamefix[] = "/dev/dsk/c0d";
946	char *pnp;
947	char *prop_p;
948	char mi;
949	short minor;
950	long addr = 0;
951
952	pnp = vbdpath + strlen(vbdpath);
953	prop_p = s + strlen(lnamefix);
954	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
955		addr = addr * 10 + *prop_p++ - '0';
956	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
957	pnp = vbdpath + strlen(vbdpath);
958	if (*prop_p == 's')
959		mi = 'a';
960	else if (*prop_p == 'p')
961		mi = 'q';
962	else
963		ASSERT(0); /* shouldn't be here */
964	prop_p++;
965	ASSERT(*prop_p != '\0');
966	if (ISDIGIT(*prop_p)) {
967		minor = *prop_p - '0';
968		prop_p++;
969		if (ISDIGIT(*prop_p)) {
970			minor = minor * 10 + *prop_p - '0';
971		}
972	} else {
973		/* malformed root path, use 0 as default */
974		minor = 0;
975	}
976	ASSERT(minor < 16); /* at most 16 partitions */
977	mi += minor;
978	*pnp++ = ':';
979	*pnp++ = mi;
980	*pnp++ = '\0';
981	bsetprops("fstype", "ufs");
982	bsetprops("bootpath", vbdpath);
983
984	DBG_MSG("VBD bootpath set to ");
985	DBG_MSG(vbdpath);
986	DBG_MSG("\n");
987}
988
989/*
990 * parse the xpv-nfsroot property to create properties used by
991 * nfs_mountroot.
992 */
993static void
994xen_nfsroot_props(char *s)
995{
996	char *prop_map[] = {
997		BP_SERVER_IP,	/* server IP address */
998		BP_SERVER_NAME,	/* server hostname */
999		BP_SERVER_PATH,	/* root path */
1000	};
1001	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1002
1003	bsetprop("fstype", 6, "nfs", 4);
1004
1005	xen_parse_props(s, prop_map, n_prop);
1006
1007	/*
1008	 * If a server name wasn't specified, use a default.
1009	 */
1010	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1011		bsetprops(BP_SERVER_NAME, "unknown");
1012}
1013
1014/*
1015 * Extract our IP address, etc. from the "xpv-ip" property.
1016 */
1017static void
1018xen_ip_props(char *s)
1019{
1020	char *prop_map[] = {
1021		BP_HOST_IP,		/* IP address */
1022		NULL,			/* NFS server IP address (ignored in */
1023					/* favour of xpv-nfsroot) */
1024		BP_ROUTER_IP,		/* IP gateway */
1025		BP_SUBNET_MASK,		/* IP subnet mask */
1026		"xpv-hostname",		/* hostname (ignored) */
1027		BP_NETWORK_INTERFACE,	/* interface name */
1028		"xpv-hcp",		/* host configuration protocol */
1029	};
1030	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1031	char ifname[IFNAMSIZ];
1032
1033	xen_parse_props(s, prop_map, n_prop);
1034
1035	/*
1036	 * A Linux dom0 administrator expects all interfaces to be
1037	 * called "ethX", which is not the case here.
1038	 *
1039	 * If the interface name specified is "eth0", presume that
1040	 * this is really intended to be "xnf0" (the first domU ->
1041	 * dom0 interface for this domain).
1042	 */
1043	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1044	    (strcmp("eth0", ifname) == 0)) {
1045		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1046		bop_printf(NULL,
1047		    "network interface name 'eth0' replaced with 'xnf0'\n");
1048	}
1049}
1050
1051#else	/* __xpv */
1052
1053static void
1054setup_rarp_props(struct sol_netinfo *sip)
1055{
1056	char buf[BUFLEN];	/* to hold ip/mac addrs */
1057	uint8_t *val;
1058
1059	val = (uint8_t *)&sip->sn_ciaddr;
1060	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1061	    val[0], val[1], val[2], val[3]);
1062	bsetprops(BP_HOST_IP, buf);
1063
1064	val = (uint8_t *)&sip->sn_siaddr;
1065	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1066	    val[0], val[1], val[2], val[3]);
1067	bsetprops(BP_SERVER_IP, buf);
1068
1069	if (sip->sn_giaddr != 0) {
1070		val = (uint8_t *)&sip->sn_giaddr;
1071		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1072		    val[0], val[1], val[2], val[3]);
1073		bsetprops(BP_ROUTER_IP, buf);
1074	}
1075
1076	if (sip->sn_netmask != 0) {
1077		val = (uint8_t *)&sip->sn_netmask;
1078		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1079		    val[0], val[1], val[2], val[3]);
1080		bsetprops(BP_SUBNET_MASK, buf);
1081	}
1082
1083	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1084		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1085		    sip->sn_mactype, sip->sn_maclen);
1086	} else {
1087		val = sip->sn_macaddr;
1088		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1089		    val[0], val[1], val[2], val[3], val[4], val[5]);
1090		bsetprops(BP_BOOT_MAC, buf);
1091	}
1092}
1093
1094#endif	/* __xpv */
1095
1096static void
1097build_panic_cmdline(const char *cmd, int cmdlen)
1098{
1099	int proplen;
1100	size_t arglen;
1101
1102	arglen = sizeof (fastreboot_onpanic_args);
1103	/*
1104	 * If we allready have fastreboot-onpanic set to zero,
1105	 * don't add them again.
1106	 */
1107	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1108	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1109		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1110		    fastreboot_onpanic_cmdline);
1111		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1112			arglen = 1;
1113	}
1114
1115	/*
1116	 * construct fastreboot_onpanic_cmdline
1117	 */
1118	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1119		DBG_MSG("Command line too long: clearing "
1120		    FASTREBOOT_ONPANIC "\n");
1121		fastreboot_onpanic = 0;
1122	} else {
1123		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1124		if (arglen != 1)
1125			bcopy(fastreboot_onpanic_args,
1126			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1127		else
1128			fastreboot_onpanic_cmdline[cmdlen] = 0;
1129	}
1130}
1131
1132
1133#ifndef	__xpv
1134/*
1135 * Construct boot command line for Fast Reboot. The saved_cmdline
1136 * is also reported by "eeprom bootcmd".
1137 */
1138static void
1139build_fastboot_cmdline(struct xboot_info *xbp)
1140{
1141	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1142	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1143		DBG(saved_cmdline_len);
1144		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1145		fastreboot_capable = 0;
1146	} else {
1147		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1148		    saved_cmdline_len);
1149		saved_cmdline[saved_cmdline_len - 1] = '\0';
1150		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1151	}
1152}
1153
1154/*
1155 * Save memory layout, disk drive information, unix and boot archive sizes for
1156 * Fast Reboot.
1157 */
1158static void
1159save_boot_info(struct xboot_info *xbi)
1160{
1161	multiboot_info_t *mbi = xbi->bi_mb_info;
1162	struct boot_modules *modp;
1163	int i;
1164
1165	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1166	if (mbi->mmap_length > sizeof (saved_mmap)) {
1167		DBG_MSG("mbi->mmap_length too big: clearing "
1168		    "fastreboot_capable\n");
1169		fastreboot_capable = 0;
1170	} else {
1171		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1172		    mbi->mmap_length);
1173	}
1174
1175	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1176		if (mbi->drives_length > sizeof (saved_drives)) {
1177			DBG(mbi->drives_length);
1178			DBG_MSG("mbi->drives_length too big: clearing "
1179			    "fastreboot_capable\n");
1180			fastreboot_capable = 0;
1181		} else {
1182			bcopy((void *)(uintptr_t)mbi->drives_addr,
1183			    (void *)saved_drives, mbi->drives_length);
1184		}
1185	} else {
1186		saved_mbi.drives_length = 0;
1187		saved_mbi.drives_addr = NULL;
1188	}
1189
1190	/*
1191	 * Current file sizes.  Used by fastboot.c to figure out how much
1192	 * memory to reserve for panic reboot.
1193	 * Use the module list from the dboot-constructed xboot_info
1194	 * instead of the list referenced by the multiboot structure
1195	 * because that structure may not be addressable now.
1196	 */
1197	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1198	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1199	    i < xbi->bi_module_cnt; i++, modp++) {
1200		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1201	}
1202}
1203#endif	/* __xpv */
1204
1205/*
1206 * Import boot environment module variables as properties, applying
1207 * blacklist filter for variables we know we will not use.
1208 *
1209 * Since the environment can be relatively large, containing many variables
1210 * used only for boot loader purposes, we will use a blacklist based filter.
1211 * To keep the blacklist from growing too large, we use prefix based filtering.
1212 * This is possible because in many cases, the loader variable names are
1213 * using a structured layout.
1214 *
1215 * We will not overwrite already set properties.
1216 */
1217static struct bop_blacklist {
1218	const char *bl_name;
1219	int bl_name_len;
1220} bop_prop_blacklist[] = {
1221	{ "ISADIR", sizeof ("ISADIR") },
1222	{ "acpi", sizeof ("acpi") },
1223	{ "autoboot_delay", sizeof ("autoboot_delay") },
1224	{ "autoboot_delay", sizeof ("autoboot_delay") },
1225	{ "beansi_", sizeof ("beansi_") },
1226	{ "beastie", sizeof ("beastie") },
1227	{ "bemenu", sizeof ("bemenu") },
1228	{ "boot.", sizeof ("boot.") },
1229	{ "bootenv", sizeof ("bootenv") },
1230	{ "currdev", sizeof ("currdev") },
1231	{ "dhcp.", sizeof ("dhcp.") },
1232	{ "interpret", sizeof ("interpret") },
1233	{ "kernel", sizeof ("kernel") },
1234	{ "loaddev", sizeof ("loaddev") },
1235	{ "loader_", sizeof ("loader_") },
1236	{ "module_path", sizeof ("module_path") },
1237	{ "nfs.", sizeof ("nfs.") },
1238	{ "pcibios", sizeof ("pcibios") },
1239	{ "prompt", sizeof ("prompt") },
1240	{ "smbios", sizeof ("smbios") },
1241	{ "tem", sizeof ("tem") },
1242	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1243	{ "zfs_be", sizeof ("zfs_be") },
1244};
1245
1246/*
1247 * Match the name against prefixes in above blacklist. If the match was
1248 * found, this name is blacklisted.
1249 */
1250static boolean_t
1251name_is_blacklisted(const char *name)
1252{
1253	int i, n;
1254
1255	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1256	for (i = 0; i < n; i++) {
1257		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1258		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1259			return (B_TRUE);
1260		}
1261	}
1262	return (B_FALSE);
1263}
1264
1265static void
1266process_boot_environment(struct boot_modules *benv)
1267{
1268	char *env, *ptr, *name, *value;
1269	uint32_t size, name_len, value_len;
1270
1271	if (benv == NULL || benv->bm_type != BMT_ENV)
1272		return;
1273	ptr = env = benv->bm_addr;
1274	size = benv->bm_size;
1275	do {
1276		name = ptr;
1277		/* find '=' */
1278		while (*ptr != '=') {
1279			ptr++;
1280			if (ptr > env + size) /* Something is very wrong. */
1281				return;
1282		}
1283		name_len = ptr - name;
1284		if (sizeof (buffer) <= name_len)
1285			continue;
1286
1287		(void) strncpy(buffer, name, sizeof (buffer));
1288		buffer[name_len] = '\0';
1289		name = buffer;
1290
1291		value_len = 0;
1292		value = ++ptr;
1293		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1294			if (*ptr == '\0') {
1295				ptr++;
1296				value_len = (uintptr_t)ptr - (uintptr_t)env;
1297				break;
1298			}
1299			ptr++;
1300		}
1301
1302		/* Did we reach the end of the module? */
1303		if (value_len == 0)
1304			return;
1305
1306		if (*value == '\0')
1307			continue;
1308
1309		/* Is this property already set? */
1310		if (do_bsys_getproplen(NULL, name) >= 0)
1311			continue;
1312
1313		if (name_is_blacklisted(name) == B_TRUE)
1314			continue;
1315
1316		/* Create new property. */
1317		bsetprops(name, value);
1318
1319		/* Avoid reading past the module end. */
1320		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1321			return;
1322	} while (*ptr != '\0');
1323}
1324
1325/*
1326 * 1st pass at building the table of boot properties. This includes:
1327 * - values set on the command line: -B a=x,b=y,c=z ....
1328 * - known values we just compute (ie. from xbp)
1329 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1330 *
1331 * the grub command line looked like:
1332 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1333 *
1334 * whoami is the same as boot-file
1335 */
1336static void
1337build_boot_properties(struct xboot_info *xbp)
1338{
1339	char *name;
1340	int name_len;
1341	char *value;
1342	int value_len;
1343	struct boot_modules *bm, *rdbm, *benv = NULL;
1344	char *propbuf;
1345	int quoted = 0;
1346	int boot_arg_len;
1347	uint_t i, midx;
1348	char modid[32];
1349#ifndef __xpv
1350	static int stdout_val = 0;
1351	uchar_t boot_device;
1352	char str[3];
1353#endif
1354
1355	/*
1356	 * These have to be done first, so that kobj_mount_root() works
1357	 */
1358	DBG_MSG("Building boot properties\n");
1359	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1360	DBG((uintptr_t)propbuf);
1361	if (xbp->bi_module_cnt > 0) {
1362		bm = xbp->bi_modules;
1363		rdbm = NULL;
1364		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1365			if (bm[i].bm_type == BMT_ROOTFS) {
1366				rdbm = &bm[i];
1367				continue;
1368			}
1369			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1370				continue;
1371
1372			if (bm[i].bm_type == BMT_ENV) {
1373				if (benv == NULL)
1374					benv = &bm[i];
1375				else
1376					continue;
1377			}
1378
1379			(void) snprintf(modid, sizeof (modid),
1380			    "module-name-%u", midx);
1381			bsetprops(modid, (char *)bm[i].bm_name);
1382			(void) snprintf(modid, sizeof (modid),
1383			    "module-addr-%u", midx);
1384			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1385			(void) snprintf(modid, sizeof (modid),
1386			    "module-size-%u", midx);
1387			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1388			++midx;
1389		}
1390		if (rdbm != NULL) {
1391			bsetprop64("ramdisk_start",
1392			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1393			bsetprop64("ramdisk_end",
1394			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1395		}
1396	}
1397
1398	/*
1399	 * If there are any boot time modules or hashes present, then disable
1400	 * fast reboot.
1401	 */
1402	if (xbp->bi_module_cnt > 1) {
1403		fastreboot_disable(FBNS_BOOTMOD);
1404	}
1405
1406#ifndef __xpv
1407	/*
1408	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1409	 * since we don't currently support MB2 info and module relocation.
1410	 * Note that fast reboot will have already been disabled if multiple
1411	 * modules are present, since the current implementation assumes that
1412	 * we only have a single module, the boot_archive.
1413	 */
1414	if (xbp->bi_mb_version != 1) {
1415		fastreboot_disable(FBNS_MULTIBOOT2);
1416	}
1417#endif
1418
1419	DBG_MSG("Parsing command line for boot properties\n");
1420	value = xbp->bi_cmdline;
1421
1422	/*
1423	 * allocate memory to collect boot_args into
1424	 */
1425	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1426	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1427	boot_args[0] = 0;
1428	boot_arg_len = 0;
1429
1430#ifdef __xpv
1431	/*
1432	 * Xen puts a lot of device information in front of the kernel name
1433	 * let's grab them and make them boot properties.  The first
1434	 * string w/o an "=" in it will be the boot-file property.
1435	 */
1436	(void) strcpy(namebuf, "xpv-");
1437	for (;;) {
1438		/*
1439		 * get to next property
1440		 */
1441		while (ISSPACE(*value))
1442			++value;
1443		name = value;
1444		/*
1445		 * look for an "="
1446		 */
1447		while (*value && !ISSPACE(*value) && *value != '=') {
1448			value++;
1449		}
1450		if (*value != '=') { /* no "=" in the property */
1451			value = name;
1452			break;
1453		}
1454		name_len = value - name;
1455		value_len = 0;
1456		/*
1457		 * skip over the "="
1458		 */
1459		value++;
1460		while (value[value_len] && !ISSPACE(value[value_len])) {
1461			++value_len;
1462		}
1463		/*
1464		 * build property name with "xpv-" prefix
1465		 */
1466		if (name_len + 4 > 32) { /* skip if name too long */
1467			value += value_len;
1468			continue;
1469		}
1470		bcopy(name, &namebuf[4], name_len);
1471		name_len += 4;
1472		namebuf[name_len] = 0;
1473		bcopy(value, propbuf, value_len);
1474		propbuf[value_len] = 0;
1475		bsetprops(namebuf, propbuf);
1476
1477		/*
1478		 * xpv-root is set to the logical disk name of the xen
1479		 * VBD when booting from a disk-based filesystem.
1480		 */
1481		if (strcmp(namebuf, "xpv-root") == 0)
1482			xen_vbdroot_props(propbuf);
1483		/*
1484		 * While we're here, if we have a "xpv-nfsroot" property
1485		 * then we need to set "fstype" to "nfs" so we mount
1486		 * our root from the nfs server.  Also parse the xpv-nfsroot
1487		 * property to create the properties that nfs_mountroot will
1488		 * need to find the root and mount it.
1489		 */
1490		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1491			xen_nfsroot_props(propbuf);
1492
1493		if (strcmp(namebuf, "xpv-ip") == 0)
1494			xen_ip_props(propbuf);
1495		value += value_len;
1496	}
1497#endif
1498
1499	while (ISSPACE(*value))
1500		++value;
1501	/*
1502	 * value now points at the boot-file
1503	 */
1504	value_len = 0;
1505	while (value[value_len] && !ISSPACE(value[value_len]))
1506		++value_len;
1507	if (value_len > 0) {
1508		whoami = propbuf;
1509		bcopy(value, whoami, value_len);
1510		whoami[value_len] = 0;
1511		bsetprops("boot-file", whoami);
1512		/*
1513		 * strip leading path stuff from whoami, so running from
1514		 * PXE/miniroot makes sense.
1515		 */
1516		if (strstr(whoami, "/platform/") != NULL)
1517			whoami = strstr(whoami, "/platform/");
1518		bsetprops("whoami", whoami);
1519	}
1520
1521	/*
1522	 * Values forcibly set boot properties on the command line via -B.
1523	 * Allow use of quotes in values. Other stuff goes on kernel
1524	 * command line.
1525	 */
1526	name = value + value_len;
1527	while (*name != 0) {
1528		/*
1529		 * anything not " -B" is copied to the command line
1530		 */
1531		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1532			boot_args[boot_arg_len++] = *name;
1533			boot_args[boot_arg_len] = 0;
1534			++name;
1535			continue;
1536		}
1537
1538		/*
1539		 * skip the " -B" and following white space
1540		 */
1541		name += 3;
1542		while (ISSPACE(*name))
1543			++name;
1544		while (*name && !ISSPACE(*name)) {
1545			value = strstr(name, "=");
1546			if (value == NULL)
1547				break;
1548			name_len = value - name;
1549			++value;
1550			value_len = 0;
1551			quoted = 0;
1552			for (; ; ++value_len) {
1553				if (!value[value_len])
1554					break;
1555
1556				/*
1557				 * is this value quoted?
1558				 */
1559				if (value_len == 0 &&
1560				    (value[0] == '\'' || value[0] == '"')) {
1561					quoted = value[0];
1562					++value_len;
1563				}
1564
1565				/*
1566				 * In the quote accept any character,
1567				 * but look for ending quote.
1568				 */
1569				if (quoted) {
1570					if (value[value_len] == quoted)
1571						quoted = 0;
1572					continue;
1573				}
1574
1575				/*
1576				 * a comma or white space ends the value
1577				 */
1578				if (value[value_len] == ',' ||
1579				    ISSPACE(value[value_len]))
1580					break;
1581			}
1582
1583			if (value_len == 0) {
1584				bsetprop(name, name_len, "true", 5);
1585			} else {
1586				char *v = value;
1587				int l = value_len;
1588				if (v[0] == v[l - 1] &&
1589				    (v[0] == '\'' || v[0] == '"')) {
1590					++v;
1591					l -= 2;
1592				}
1593				bcopy(v, propbuf, l);
1594				propbuf[l] = '\0';
1595				bsetprop(name, name_len, propbuf,
1596				    l + 1);
1597			}
1598			name = value + value_len;
1599			while (*name == ',')
1600				++name;
1601		}
1602	}
1603
1604	/*
1605	 * set boot-args property
1606	 * 1275 name is bootargs, so set
1607	 * that too
1608	 */
1609	bsetprops("boot-args", boot_args);
1610	bsetprops("bootargs", boot_args);
1611
1612	process_boot_environment(benv);
1613
1614#ifndef __xpv
1615	/*
1616	 * Build boot command line for Fast Reboot
1617	 */
1618	build_fastboot_cmdline(xbp);
1619
1620	if (xbp->bi_mb_version == 1) {
1621		multiboot_info_t *mbi = xbp->bi_mb_info;
1622		int netboot;
1623		struct sol_netinfo *sip;
1624
1625		/*
1626		 * set the BIOS boot device from GRUB
1627		 */
1628		netboot = 0;
1629
1630		/*
1631		 * Save various boot information for Fast Reboot
1632		 */
1633		save_boot_info(xbp);
1634
1635		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1636			boot_device = mbi->boot_device >> 24;
1637			if (boot_device == 0x20)
1638				netboot++;
1639			str[0] = (boot_device >> 4) + '0';
1640			str[1] = (boot_device & 0xf) + '0';
1641			str[2] = 0;
1642			bsetprops("bios-boot-device", str);
1643		} else {
1644			netboot = 1;
1645		}
1646
1647		/*
1648		 * In the netboot case, drives_info is overloaded with the
1649		 * dhcp ack. This is not multiboot compliant and requires
1650		 * special pxegrub!
1651		 */
1652		if (netboot && mbi->drives_length != 0) {
1653			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1654			if (sip->sn_infotype == SN_TYPE_BOOTP)
1655				bsetprop("bootp-response",
1656				    sizeof ("bootp-response"),
1657				    (void *)(uintptr_t)mbi->drives_addr,
1658				    mbi->drives_length);
1659			else if (sip->sn_infotype == SN_TYPE_RARP)
1660				setup_rarp_props(sip);
1661		}
1662	} else {
1663		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1664		multiboot_tag_bootdev_t *bootdev = NULL;
1665		multiboot_tag_network_t *netdev = NULL;
1666
1667		if (mbi != NULL) {
1668			bootdev = dboot_multiboot2_find_tag(mbi,
1669			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1670			netdev = dboot_multiboot2_find_tag(mbi,
1671			    MULTIBOOT_TAG_TYPE_NETWORK);
1672		}
1673		if (bootdev != NULL) {
1674			DBG(bootdev->mb_biosdev);
1675			boot_device = bootdev->mb_biosdev;
1676			str[0] = (boot_device >> 4) + '0';
1677			str[1] = (boot_device & 0xf) + '0';
1678			str[2] = 0;
1679			bsetprops("bios-boot-device", str);
1680		}
1681		if (netdev != NULL) {
1682			bsetprop("bootp-response", sizeof ("bootp-response"),
1683			    (void *)(uintptr_t)netdev->mb_dhcpack,
1684			    netdev->mb_size -
1685			    sizeof (multiboot_tag_network_t));
1686		}
1687	}
1688
1689	bsetprop("stdout", strlen("stdout"),
1690	    &stdout_val, sizeof (stdout_val));
1691#endif /* __xpv */
1692
1693	/*
1694	 * more conjured up values for made up things....
1695	 */
1696#if defined(__xpv)
1697	bsetprops("mfg-name", "i86xpv");
1698	bsetprops("impl-arch-name", "i86xpv");
1699#else
1700	bsetprops("mfg-name", "i86pc");
1701	bsetprops("impl-arch-name", "i86pc");
1702#endif
1703
1704	/*
1705	 * Build firmware-provided system properties
1706	 */
1707	build_firmware_properties(xbp);
1708
1709	/*
1710	 * XXPV
1711	 *
1712	 * Find out what these are:
1713	 * - cpuid_feature_ecx_include
1714	 * - cpuid_feature_ecx_exclude
1715	 * - cpuid_feature_edx_include
1716	 * - cpuid_feature_edx_exclude
1717	 *
1718	 * Find out what these are in multiboot:
1719	 * - netdev-path
1720	 * - fstype
1721	 */
1722}
1723
1724#ifdef __xpv
1725/*
1726 * Under the Hypervisor, memory usable for DMA may be scarce. One
1727 * very likely large pool of DMA friendly memory is occupied by
1728 * the boot_archive, as it was loaded by grub into low MFNs.
1729 *
1730 * Here we free up that memory by copying the boot archive to what are
1731 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1732 */
1733#define	PFN_2GIG	0x80000
1734static void
1735relocate_boot_archive(struct xboot_info *xbp)
1736{
1737	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1738	struct boot_modules *bm = xbp->bi_modules;
1739	uintptr_t va;
1740	pfn_t va_pfn;
1741	mfn_t va_mfn;
1742	caddr_t copy;
1743	pfn_t copy_pfn;
1744	mfn_t copy_mfn;
1745	size_t	len;
1746	int slop;
1747	int total = 0;
1748	int relocated = 0;
1749	int mmu_update_return;
1750	mmu_update_t t[2];
1751	x86pte_t pte;
1752
1753	/*
1754	 * If all MFN's are below 2Gig, don't bother doing this.
1755	 */
1756	if (max_mfn < PFN_2GIG)
1757		return;
1758	if (xbp->bi_module_cnt < 1) {
1759		DBG_MSG("no boot_archive!");
1760		return;
1761	}
1762
1763	DBG_MSG("moving boot_archive to high MFN memory\n");
1764	va = (uintptr_t)bm->bm_addr;
1765	len = bm->bm_size;
1766	slop = va & MMU_PAGEOFFSET;
1767	if (slop) {
1768		va += MMU_PAGESIZE - slop;
1769		len -= MMU_PAGESIZE - slop;
1770	}
1771	len = P2ALIGN(len, MMU_PAGESIZE);
1772
1773	/*
1774	 * Go through all boot_archive pages, swapping any low MFN pages
1775	 * with memory at next_phys.
1776	 */
1777	while (len != 0) {
1778		++total;
1779		va_pfn = mmu_btop(va - ONE_GIG);
1780		va_mfn = mfn_list[va_pfn];
1781		if (mfn_list[va_pfn] < PFN_2GIG) {
1782			copy = kbm_remap_window(next_phys, 1);
1783			bcopy((void *)va, copy, MMU_PAGESIZE);
1784			copy_pfn = mmu_btop(next_phys);
1785			copy_mfn = mfn_list[copy_pfn];
1786
1787			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1788			if (HYPERVISOR_update_va_mapping(va, pte,
1789			    UVMF_INVLPG | UVMF_LOCAL))
1790				bop_panic("relocate_boot_archive():  "
1791				    "HYPERVISOR_update_va_mapping() failed");
1792
1793			mfn_list[va_pfn] = copy_mfn;
1794			mfn_list[copy_pfn] = va_mfn;
1795
1796			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1797			t[0].val = va_pfn;
1798			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1799			t[1].val = copy_pfn;
1800			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1801			    DOMID_SELF) != 0 || mmu_update_return != 2)
1802				bop_panic("relocate_boot_archive():  "
1803				    "HYPERVISOR_mmu_update() failed");
1804
1805			next_phys += MMU_PAGESIZE;
1806			++relocated;
1807		}
1808		len -= MMU_PAGESIZE;
1809		va += MMU_PAGESIZE;
1810	}
1811	DBG_MSG("Relocated pages:\n");
1812	DBG(relocated);
1813	DBG_MSG("Out of total pages:\n");
1814	DBG(total);
1815}
1816#endif /* __xpv */
1817
1818#if !defined(__xpv)
1819/*
1820 * Install a temporary IDT that lets us catch errors in the boot time code.
1821 * We shouldn't get any faults at all while this is installed, so we'll
1822 * just generate a traceback and exit.
1823 */
1824#ifdef __amd64
1825static const int bcode_sel = B64CODE_SEL;
1826#else
1827static const int bcode_sel = B32CODE_SEL;
1828#endif
1829
1830/*
1831 * simple description of a stack frame (args are 32 bit only currently)
1832 */
1833typedef struct bop_frame {
1834	struct bop_frame *old_frame;
1835	pc_t retaddr;
1836	long arg[1];
1837} bop_frame_t;
1838
1839void
1840bop_traceback(bop_frame_t *frame)
1841{
1842	pc_t pc;
1843	int cnt;
1844	char *ksym;
1845	ulong_t off;
1846#if defined(__i386)
1847	int a;
1848#endif
1849
1850	bop_printf(NULL, "Stack traceback:\n");
1851	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1852		pc = frame->retaddr;
1853		if (pc == 0)
1854			break;
1855		ksym = kobj_getsymname(pc, &off);
1856		if (ksym)
1857			bop_printf(NULL, "  %s+%lx", ksym, off);
1858		else
1859			bop_printf(NULL, "  0x%lx", pc);
1860
1861		frame = frame->old_frame;
1862		if (frame == 0) {
1863			bop_printf(NULL, "\n");
1864			break;
1865		}
1866#if defined(__i386)
1867		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1868			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1869				break;
1870			if (a == 0)
1871				bop_printf(NULL, "(");
1872			else
1873				bop_printf(NULL, ",");
1874			bop_printf(NULL, "0x%lx", frame->arg[a]);
1875		}
1876		bop_printf(NULL, ")");
1877#endif
1878		bop_printf(NULL, "\n");
1879	}
1880}
1881
1882struct trapframe {
1883	ulong_t error_code;	/* optional */
1884	ulong_t inst_ptr;
1885	ulong_t code_seg;
1886	ulong_t flags_reg;
1887#ifdef __amd64
1888	ulong_t stk_ptr;
1889	ulong_t stk_seg;
1890#endif
1891};
1892
1893void
1894bop_trap(ulong_t *tfp)
1895{
1896	struct trapframe *tf = (struct trapframe *)tfp;
1897	bop_frame_t fakeframe;
1898	static int depth = 0;
1899
1900	/*
1901	 * Check for an infinite loop of traps.
1902	 */
1903	if (++depth > 2)
1904		bop_panic("Nested trap");
1905
1906	bop_printf(NULL, "Unexpected trap\n");
1907
1908	/*
1909	 * adjust the tf for optional error_code by detecting the code selector
1910	 */
1911	if (tf->code_seg != bcode_sel)
1912		tf = (struct trapframe *)(tfp - 1);
1913	else
1914		bop_printf(NULL, "error code           0x%lx\n",
1915		    tf->error_code & 0xffffffff);
1916
1917	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1918	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1919	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1920#ifdef __amd64
1921	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1922	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1923#endif
1924
1925	/* grab %[er]bp pushed by our code from the stack */
1926	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1927	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1928	bop_printf(NULL, "Attempting stack backtrace:\n");
1929	bop_traceback(&fakeframe);
1930	bop_panic("unexpected trap in early boot");
1931}
1932
1933extern void bop_trap_handler(void);
1934
1935static gate_desc_t *bop_idt;
1936
1937static desctbr_t bop_idt_info;
1938
1939static void
1940bop_idt_init(void)
1941{
1942	int t;
1943
1944	bop_idt = (gate_desc_t *)
1945	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1946	bzero(bop_idt, MMU_PAGESIZE);
1947	for (t = 0; t < NIDT; ++t) {
1948		/*
1949		 * Note that since boot runs without a TSS, the
1950		 * double fault handler cannot use an alternate stack
1951		 * (64-bit) or a task gate (32-bit).
1952		 */
1953		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1954		    SDT_SYSIGT, TRP_KPL, 0);
1955	}
1956	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1957	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1958	wr_idtr(&bop_idt_info);
1959}
1960#endif	/* !defined(__xpv) */
1961
1962/*
1963 * This is where we enter the kernel. It dummies up the boot_ops and
1964 * boot_syscalls vectors and jumps off to _kobj_boot()
1965 */
1966void
1967_start(struct xboot_info *xbp)
1968{
1969	bootops_t *bops = &bootop;
1970	extern void _kobj_boot();
1971
1972	/*
1973	 * 1st off - initialize the console for any error messages
1974	 */
1975	xbootp = xbp;
1976#ifdef __xpv
1977	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1978	xen_info = xbp->bi_xen_start_info;
1979#endif
1980
1981#ifndef __xpv
1982	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1983	    FASTBOOT_MAGIC) {
1984		post_fastreboot = 1;
1985		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1986	}
1987#endif
1988
1989	bcons_init(xbp);
1990	have_console = 1;
1991
1992	/*
1993	 * enable debugging
1994	 */
1995	if (find_boot_prop("kbm_debug") != NULL)
1996		kbm_debug = 1;
1997
1998	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1999	DBG_MSG((char *)xbp->bi_cmdline);
2000	DBG_MSG("\n\n\n");
2001
2002	/*
2003	 * physavail is no longer used by startup
2004	 */
2005	bm.physinstalled = xbp->bi_phys_install;
2006	bm.pcimem = xbp->bi_pcimem;
2007	bm.rsvdmem = xbp->bi_rsvdmem;
2008	bm.physavail = NULL;
2009
2010	/*
2011	 * initialize the boot time allocator
2012	 */
2013	next_phys = xbp->bi_next_paddr;
2014	DBG(next_phys);
2015	next_virt = (uintptr_t)xbp->bi_next_vaddr;
2016	DBG(next_virt);
2017	DBG_MSG("Initializing boot time memory management...");
2018#ifdef __xpv
2019	{
2020		xen_platform_parameters_t p;
2021
2022		/* This call shouldn't fail, dboot already did it once. */
2023		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2024		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2025		DBG(xen_virt_start);
2026	}
2027#endif
2028	kbm_init(xbp);
2029	DBG_MSG("done\n");
2030
2031	/*
2032	 * Fill in the bootops vector
2033	 */
2034	bops->bsys_version = BO_VERSION;
2035	bops->boot_mem = &bm;
2036	bops->bsys_alloc = do_bsys_alloc;
2037	bops->bsys_free = do_bsys_free;
2038	bops->bsys_getproplen = do_bsys_getproplen;
2039	bops->bsys_getprop = do_bsys_getprop;
2040	bops->bsys_nextprop = do_bsys_nextprop;
2041	bops->bsys_printf = bop_printf;
2042	bops->bsys_doint = do_bsys_doint;
2043
2044	/*
2045	 * BOP_EALLOC() is no longer needed
2046	 */
2047	bops->bsys_ealloc = do_bsys_ealloc;
2048
2049#ifdef __xpv
2050	/*
2051	 * On domain 0 we need to free up some physical memory that is
2052	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2053	 * sitting in low MFN memory. We'll relocated the boot archive
2054	 * pages to high PFN memory.
2055	 */
2056	if (DOMAIN_IS_INITDOMAIN(xen_info))
2057		relocate_boot_archive(xbp);
2058#endif
2059
2060#ifndef __xpv
2061	/*
2062	 * Install an IDT to catch early pagefaults (shouldn't have any).
2063	 * Also needed for kmdb.
2064	 */
2065	bop_idt_init();
2066#endif
2067
2068	/*
2069	 * Start building the boot properties from the command line
2070	 */
2071	DBG_MSG("Initializing boot properties:\n");
2072	build_boot_properties(xbp);
2073
2074	if (find_boot_prop("prom_debug") || kbm_debug) {
2075		char *value;
2076
2077		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2078		boot_prop_display(value);
2079	}
2080
2081	/*
2082	 * jump into krtld...
2083	 */
2084	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2085}
2086
2087
2088/*ARGSUSED*/
2089static caddr_t
2090no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2091{
2092	panic("Attempt to bsys_alloc() too late\n");
2093	return (NULL);
2094}
2095
2096/*ARGSUSED*/
2097static void
2098no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2099{
2100	panic("Attempt to bsys_free() too late\n");
2101}
2102
2103void
2104bop_no_more_mem(void)
2105{
2106	DBG(total_bop_alloc_scratch);
2107	DBG(total_bop_alloc_kernel);
2108	bootops->bsys_alloc = no_more_alloc;
2109	bootops->bsys_free = no_more_free;
2110}
2111
2112
2113/*
2114 * Set ACPI firmware properties
2115 */
2116
2117static caddr_t
2118vmap_phys(size_t length, paddr_t pa)
2119{
2120	paddr_t	start, end;
2121	caddr_t	va;
2122	size_t	len, page;
2123
2124#ifdef __xpv
2125	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2126#endif
2127	start = P2ALIGN(pa, MMU_PAGESIZE);
2128	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2129	len = end - start;
2130	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2131	for (page = 0; page < len; page += MMU_PAGESIZE)
2132		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2133	return (va + (pa & MMU_PAGEOFFSET));
2134}
2135
2136static uint8_t
2137checksum_table(uint8_t *tp, size_t len)
2138{
2139	uint8_t sum = 0;
2140
2141	while (len-- > 0)
2142		sum += *tp++;
2143
2144	return (sum);
2145}
2146
2147static int
2148valid_rsdp(ACPI_TABLE_RSDP *rp)
2149{
2150
2151	/* validate the V1.x checksum */
2152	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2153		return (0);
2154
2155	/* If pre-ACPI 2.0, this is a valid RSDP */
2156	if (rp->Revision < 2)
2157		return (1);
2158
2159	/* validate the V2.x checksum */
2160	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2161		return (0);
2162
2163	return (1);
2164}
2165
2166/*
2167 * Scan memory range for an RSDP;
2168 * see ACPI 3.0 Spec, 5.2.5.1
2169 */
2170static ACPI_TABLE_RSDP *
2171scan_rsdp(paddr_t start, paddr_t end)
2172{
2173	ssize_t len  = end - start;
2174	caddr_t ptr;
2175
2176	ptr = vmap_phys(len, start);
2177	while (len > 0) {
2178		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2179		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2180			return ((ACPI_TABLE_RSDP *)ptr);
2181
2182		ptr += ACPI_RSDP_SCAN_STEP;
2183		len -= ACPI_RSDP_SCAN_STEP;
2184	}
2185
2186	return (NULL);
2187}
2188
2189/*
2190 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2191 */
2192static ACPI_TABLE_RSDP *
2193find_rsdp()
2194{
2195	ACPI_TABLE_RSDP *rsdp;
2196	uint64_t rsdp_val = 0;
2197	uint16_t *ebda_seg;
2198	paddr_t  ebda_addr;
2199
2200	/* check for "acpi-root-tab" property */
2201	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2202		(void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2203		if (rsdp_val != 0) {
2204			rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2205			if (rsdp != NULL) {
2206				if (kbm_debug) {
2207					bop_printf(NULL,
2208					    "Using RSDP from bootloader: "
2209					    "0x%p\n", (void *)rsdp);
2210				}
2211				return (rsdp);
2212			}
2213		}
2214	}
2215
2216	/*
2217	 * Get the EBDA segment and scan the first 1K
2218	 */
2219	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2220	    ACPI_EBDA_PTR_LOCATION);
2221	ebda_addr = *ebda_seg << 4;
2222	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2223	if (rsdp == NULL)
2224		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2225		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2226		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2227	return (rsdp);
2228}
2229
2230static ACPI_TABLE_HEADER *
2231map_fw_table(paddr_t table_addr)
2232{
2233	ACPI_TABLE_HEADER *tp;
2234	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2235
2236	/*
2237	 * Map at least a page; if the table is larger than this, remap it
2238	 */
2239	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2240	if (tp->Length > len)
2241		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2242	return (tp);
2243}
2244
2245static ACPI_TABLE_HEADER *
2246find_fw_table(char *signature)
2247{
2248	static int revision = 0;
2249	static ACPI_TABLE_XSDT *xsdt;
2250	static int len;
2251	paddr_t xsdt_addr;
2252	ACPI_TABLE_RSDP *rsdp;
2253	ACPI_TABLE_HEADER *tp;
2254	paddr_t table_addr;
2255	int	n;
2256
2257	if (strlen(signature) != ACPI_NAME_SIZE)
2258		return (NULL);
2259
2260	/*
2261	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2262	 * understand this code.  If we haven't already found the RSDT/XSDT,
2263	 * revision will be 0. Find the RSDP and check the revision
2264	 * to find out whether to use the RSDT or XSDT.  If revision is
2265	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2266	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2267	 * revision 1 and use the RSDT.
2268	 */
2269	if (revision == 0) {
2270		if ((rsdp = find_rsdp()) != NULL) {
2271			revision = rsdp->Revision;
2272			/*
2273			 * ACPI 6.0 states that current revision is 2
2274			 * from acpi_table_rsdp definition:
2275			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2276			 */
2277			if (revision > 2)
2278				revision = 2;
2279			switch (revision) {
2280			case 2:
2281				/*
2282				 * Use the XSDT unless BIOS is buggy and
2283				 * claims to be rev 2 but has a null XSDT
2284				 * address
2285				 */
2286				xsdt_addr = rsdp->XsdtPhysicalAddress;
2287				if (xsdt_addr != 0)
2288					break;
2289				/* FALLTHROUGH */
2290			case 0:
2291				/* treat RSDP rev 0 as revision 1 internally */
2292				revision = 1;
2293				/* FALLTHROUGH */
2294			case 1:
2295				/* use the RSDT for rev 0/1 */
2296				xsdt_addr = rsdp->RsdtPhysicalAddress;
2297				break;
2298			default:
2299				/* unknown revision */
2300				revision = 0;
2301				break;
2302			}
2303		}
2304		if (revision == 0)
2305			return (NULL);
2306
2307		/* cache the XSDT info */
2308		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2309		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2310		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2311	}
2312
2313	/*
2314	 * Scan the table headers looking for a signature match
2315	 */
2316	for (n = 0; n < len; n++) {
2317		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2318		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2319		    xsdt->TableOffsetEntry[n];
2320
2321		if (table_addr == 0)
2322			continue;
2323		tp = map_fw_table(table_addr);
2324		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2325			return (tp);
2326		}
2327	}
2328	return (NULL);
2329}
2330
2331static void
2332process_mcfg(ACPI_TABLE_MCFG *tp)
2333{
2334	ACPI_MCFG_ALLOCATION *cfg_baap;
2335	char *cfg_baa_endp;
2336	int64_t ecfginfo[4];
2337
2338	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2339	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2340	while ((char *)cfg_baap < cfg_baa_endp) {
2341		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2342			ecfginfo[0] = cfg_baap->Address;
2343			ecfginfo[1] = cfg_baap->PciSegment;
2344			ecfginfo[2] = cfg_baap->StartBusNumber;
2345			ecfginfo[3] = cfg_baap->EndBusNumber;
2346			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2347			    ecfginfo, sizeof (ecfginfo));
2348			break;
2349		}
2350		cfg_baap++;
2351	}
2352}
2353
2354#ifndef __xpv
2355static void
2356process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2357    uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2358{
2359	ACPI_SUBTABLE_HEADER *item, *end;
2360	uint32_t cpu_count = 0;
2361	uint32_t cpu_possible_count = 0;
2362
2363	/*
2364	 * Determine number of CPUs and keep track of "final" APIC ID
2365	 * for each CPU by walking through ACPI MADT processor list
2366	 */
2367	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2368	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2369
2370	while (item < end) {
2371		switch (item->Type) {
2372		case ACPI_MADT_TYPE_LOCAL_APIC: {
2373			ACPI_MADT_LOCAL_APIC *cpu =
2374			    (ACPI_MADT_LOCAL_APIC *) item;
2375
2376			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2377				if (cpu_apicid_array != NULL)
2378					cpu_apicid_array[cpu_count] = cpu->Id;
2379				cpu_count++;
2380			}
2381			cpu_possible_count++;
2382			break;
2383		}
2384		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2385			ACPI_MADT_LOCAL_X2APIC *cpu =
2386			    (ACPI_MADT_LOCAL_X2APIC *) item;
2387
2388			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2389				if (cpu_apicid_array != NULL)
2390					cpu_apicid_array[cpu_count] =
2391					    cpu->LocalApicId;
2392				cpu_count++;
2393			}
2394			cpu_possible_count++;
2395			break;
2396		}
2397		default:
2398			if (kbm_debug)
2399				bop_printf(NULL, "MADT type %d\n", item->Type);
2400			break;
2401		}
2402
2403		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2404	}
2405	if (cpu_countp)
2406		*cpu_countp = cpu_count;
2407	if (cpu_possible_countp)
2408		*cpu_possible_countp = cpu_possible_count;
2409}
2410
2411static void
2412process_madt(ACPI_TABLE_MADT *tp)
2413{
2414	uint32_t cpu_count = 0;
2415	uint32_t cpu_possible_count = 0;
2416	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2417
2418	if (tp != NULL) {
2419		/* count cpu's */
2420		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2421
2422		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2423		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2424		if (cpu_apicid_array == NULL)
2425			bop_panic("Not enough memory for APIC ID array");
2426
2427		/* copy IDs */
2428		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2429
2430		/*
2431		 * Make boot property for array of "final" APIC IDs for each
2432		 * CPU
2433		 */
2434		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2435		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2436	}
2437
2438	/*
2439	 * Check whether property plat-max-ncpus is already set.
2440	 */
2441	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2442		/*
2443		 * Set plat-max-ncpus to number of maximum possible CPUs given
2444		 * in MADT if it hasn't been set.
2445		 * There's no formal way to detect max possible CPUs supported
2446		 * by platform according to ACPI spec3.0b. So current CPU
2447		 * hotplug implementation expects that all possible CPUs will
2448		 * have an entry in MADT table and set plat-max-ncpus to number
2449		 * of entries in MADT.
2450		 * With introducing of ACPI4.0, Maximum System Capability Table
2451		 * (MSCT) provides maximum number of CPUs supported by platform.
2452		 * If MSCT is unavailable, fall back to old way.
2453		 */
2454		if (tp != NULL)
2455			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2456	}
2457
2458	/*
2459	 * Set boot property boot-max-ncpus to number of CPUs existing at
2460	 * boot time. boot-max-ncpus is mainly used for optimization.
2461	 */
2462	if (tp != NULL)
2463		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2464
2465	/*
2466	 * User-set boot-ncpus overrides firmware count
2467	 */
2468	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2469		return;
2470
2471	/*
2472	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2473	 * if it hasn't been set yet.
2474	 */
2475	if (tp != NULL)
2476		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2477}
2478
2479static void
2480process_srat(ACPI_TABLE_SRAT *tp)
2481{
2482	ACPI_SUBTABLE_HEADER *item, *end;
2483	int i;
2484	int proc_num, mem_num;
2485#pragma pack(1)
2486	struct {
2487		uint32_t domain;
2488		uint32_t apic_id;
2489		uint32_t sapic_id;
2490	} processor;
2491	struct {
2492		uint32_t domain;
2493		uint32_t x2apic_id;
2494	} x2apic;
2495	struct {
2496		uint32_t domain;
2497		uint64_t addr;
2498		uint64_t length;
2499		uint32_t flags;
2500	} memory;
2501#pragma pack()
2502	char prop_name[30];
2503	uint64_t maxmem = 0;
2504
2505	if (tp == NULL)
2506		return;
2507
2508	proc_num = mem_num = 0;
2509	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2510	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2511	while (item < end) {
2512		switch (item->Type) {
2513		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2514			ACPI_SRAT_CPU_AFFINITY *cpu =
2515			    (ACPI_SRAT_CPU_AFFINITY *) item;
2516
2517			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2518				break;
2519			processor.domain = cpu->ProximityDomainLo;
2520			for (i = 0; i < 3; i++)
2521				processor.domain +=
2522				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2523			processor.apic_id = cpu->ApicId;
2524			processor.sapic_id = cpu->LocalSapicEid;
2525			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2526			    proc_num);
2527			bsetprop(prop_name, strlen(prop_name), &processor,
2528			    sizeof (processor));
2529			proc_num++;
2530			break;
2531		}
2532		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2533			ACPI_SRAT_MEM_AFFINITY *mem =
2534			    (ACPI_SRAT_MEM_AFFINITY *)item;
2535
2536			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2537				break;
2538			memory.domain = mem->ProximityDomain;
2539			memory.addr = mem->BaseAddress;
2540			memory.length = mem->Length;
2541			memory.flags = mem->Flags;
2542			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2543			    mem_num);
2544			bsetprop(prop_name, strlen(prop_name), &memory,
2545			    sizeof (memory));
2546			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2547			    (memory.addr + memory.length > maxmem)) {
2548				maxmem = memory.addr + memory.length;
2549			}
2550			mem_num++;
2551			break;
2552		}
2553		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2554			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2555			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2556
2557			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2558				break;
2559			x2apic.domain = x2cpu->ProximityDomain;
2560			x2apic.x2apic_id = x2cpu->ApicId;
2561			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2562			    proc_num);
2563			bsetprop(prop_name, strlen(prop_name), &x2apic,
2564			    sizeof (x2apic));
2565			proc_num++;
2566			break;
2567		}
2568		default:
2569			if (kbm_debug)
2570				bop_printf(NULL, "SRAT type %d\n", item->Type);
2571			break;
2572		}
2573
2574		item = (ACPI_SUBTABLE_HEADER *)
2575		    (item->Length + (uintptr_t)item);
2576	}
2577
2578	/*
2579	 * The maximum physical address calculated from the SRAT table is more
2580	 * accurate than that calculated from the MSCT table.
2581	 */
2582	if (maxmem != 0) {
2583		plat_dr_physmax = btop(maxmem);
2584	}
2585}
2586
2587static void
2588process_slit(ACPI_TABLE_SLIT *tp)
2589{
2590
2591	/*
2592	 * Check the number of localities; if it's too huge, we just
2593	 * return and locality enumeration code will handle this later,
2594	 * if possible.
2595	 *
2596	 * Note that the size of the table is the square of the
2597	 * number of localities; if the number of localities exceeds
2598	 * UINT16_MAX, the table size may overflow an int when being
2599	 * passed to bsetprop() below.
2600	 */
2601	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2602		return;
2603
2604	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2605	    &tp->LocalityCount, sizeof (tp->LocalityCount));
2606	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2607	    tp->LocalityCount * tp->LocalityCount);
2608}
2609
2610static ACPI_TABLE_MSCT *
2611process_msct(ACPI_TABLE_MSCT *tp)
2612{
2613	int last_seen = 0;
2614	int proc_num = 0;
2615	ACPI_MSCT_PROXIMITY *item, *end;
2616	extern uint64_t plat_dr_options;
2617
2618	ASSERT(tp != NULL);
2619
2620	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2621	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2622	    item < end;
2623	    item = (void *)(item->Length + (uintptr_t)item)) {
2624		/*
2625		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2626		 * Revision 	1
2627		 * Length	22
2628		 */
2629		if (item->Revision != 1 || item->Length != 22) {
2630			cmn_err(CE_CONT,
2631			    "?boot: unknown proximity domain structure in MSCT "
2632			    "with Revision(%d), Length(%d).\n",
2633			    (int)item->Revision, (int)item->Length);
2634			return (NULL);
2635		} else if (item->RangeStart > item->RangeEnd) {
2636			cmn_err(CE_CONT,
2637			    "?boot: invalid proximity domain structure in MSCT "
2638			    "with RangeStart(%u), RangeEnd(%u).\n",
2639			    item->RangeStart, item->RangeEnd);
2640			return (NULL);
2641		} else if (item->RangeStart != last_seen) {
2642			/*
2643			 * Items must be organized in ascending order of the
2644			 * proximity domain enumerations.
2645			 */
2646			cmn_err(CE_CONT,
2647			    "?boot: invalid proximity domain structure in MSCT,"
2648			    " items are not orginized in ascending order.\n");
2649			return (NULL);
2650		}
2651
2652		/*
2653		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2654		 * domain.
2655		 */
2656		if (item->ProcessorCapacity != 0) {
2657			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2658			    item->ProcessorCapacity;
2659		}
2660
2661		last_seen = item->RangeEnd - item->RangeStart + 1;
2662		/*
2663		 * Break out if all proximity domains have been processed.
2664		 * Some BIOSes may have unused items at the end of MSCT table.
2665		 */
2666		if (last_seen > tp->MaxProximityDomains) {
2667			break;
2668		}
2669	}
2670	if (last_seen != tp->MaxProximityDomains + 1) {
2671		cmn_err(CE_CONT,
2672		    "?boot: invalid proximity domain structure in MSCT, "
2673		    "proximity domain count doesn't match.\n");
2674		return (NULL);
2675	}
2676
2677	/*
2678	 * Set plat-max-ncpus property if it hasn't been set yet.
2679	 */
2680	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2681		if (proc_num != 0) {
2682			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2683		}
2684	}
2685
2686	/*
2687	 * Use Maximum Physical Address from the MSCT table as upper limit for
2688	 * memory hot-adding by default. It may be overridden by value from
2689	 * the SRAT table or the "plat-dr-physmax" boot option.
2690	 */
2691	plat_dr_physmax = btop(tp->MaxAddress + 1);
2692
2693	/*
2694	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2695	 * platform.
2696	 */
2697	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2698	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2699
2700	return (tp);
2701}
2702
2703#else /* __xpv */
2704static void
2705enumerate_xen_cpus()
2706{
2707	processorid_t	id, max_id;
2708
2709	/*
2710	 * User-set boot-ncpus overrides enumeration
2711	 */
2712	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2713		return;
2714
2715	/*
2716	 * Probe every possible virtual CPU id and remember the
2717	 * highest id present; the count of CPUs is one greater
2718	 * than this.  This tacitly assumes at least cpu 0 is present.
2719	 */
2720	max_id = 0;
2721	for (id = 0; id < MAX_VIRT_CPUS; id++)
2722		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2723			max_id = id;
2724
2725	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2726
2727}
2728#endif /* __xpv */
2729
2730/*ARGSUSED*/
2731static void
2732build_firmware_properties(struct xboot_info *xbp)
2733{
2734	ACPI_TABLE_HEADER *tp = NULL;
2735
2736#ifndef __xpv
2737	if (xbp->bi_acpi_rsdp != NULL) {
2738		bsetprop64("acpi-root-tab",
2739		    (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2740	}
2741
2742	if (xbp->bi_smbios != NULL) {
2743		bsetprop64("smbios-address",
2744		    (uint64_t)(uintptr_t)xbp->bi_smbios);
2745	}
2746
2747	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2748		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2749	else
2750		msct_ptr = NULL;
2751
2752	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2753		process_madt((ACPI_TABLE_MADT *)tp);
2754
2755	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2756	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2757		process_srat(srat_ptr);
2758
2759	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2760		process_slit(slit_ptr);
2761
2762	tp = find_fw_table(ACPI_SIG_MCFG);
2763#else /* __xpv */
2764	enumerate_xen_cpus();
2765	if (DOMAIN_IS_INITDOMAIN(xen_info))
2766		tp = find_fw_table(ACPI_SIG_MCFG);
2767#endif /* __xpv */
2768	if (tp != NULL)
2769		process_mcfg((ACPI_TABLE_MCFG *)tp);
2770}
2771
2772/*
2773 * fake up a boot property for deferred early console output
2774 * this is used by both graphical boot and the (developer only)
2775 * USB serial console
2776 */
2777void *
2778defcons_init(size_t size)
2779{
2780	static char *p = NULL;
2781
2782	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2783	*p = 0;
2784	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2785	    &p, sizeof (p));
2786	return (p);
2787}
2788
2789/*ARGSUSED*/
2790int
2791boot_compinfo(int fd, struct compinfo *cbp)
2792{
2793	cbp->iscmp = 0;
2794	cbp->blksize = MAXBSIZE;
2795	return (0);
2796}
2797
2798#define	BP_MAX_STRLEN	32
2799
2800/*
2801 * Get value for given boot property
2802 */
2803int
2804bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2805{
2806	int		boot_prop_len;
2807	char		str[BP_MAX_STRLEN];
2808	u_longlong_t	value;
2809
2810	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2811	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2812	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2813	    kobj_getvalue(str, &value) == -1)
2814		return (-1);
2815
2816	if (prop_value)
2817		*prop_value = value;
2818
2819	return (0);
2820}
2821