1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 *
29 * Copyright 2018 Joyent, Inc.  All rights reserved.
30 */
31
32/*
33 * This file contains the functionality that mimics the boot operations
34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35 * The x86 kernel now does everything on its own.
36 */
37
38#include <sys/types.h>
39#include <sys/bootconf.h>
40#include <sys/bootsvcs.h>
41#include <sys/bootinfo.h>
42#include <sys/multiboot.h>
43#include <sys/multiboot2.h>
44#include <sys/multiboot2_impl.h>
45#include <sys/bootvfs.h>
46#include <sys/bootprops.h>
47#include <sys/varargs.h>
48#include <sys/param.h>
49#include <sys/machparam.h>
50#include <sys/machsystm.h>
51#include <sys/archsystm.h>
52#include <sys/boot_console.h>
53#include <sys/cmn_err.h>
54#include <sys/systm.h>
55#include <sys/promif.h>
56#include <sys/archsystm.h>
57#include <sys/x86_archext.h>
58#include <sys/kobj.h>
59#include <sys/privregs.h>
60#include <sys/sysmacros.h>
61#include <sys/ctype.h>
62#include <sys/fastboot.h>
63#ifdef __xpv
64#include <sys/hypervisor.h>
65#include <net/if.h>
66#endif
67#include <vm/kboot_mmu.h>
68#include <vm/hat_pte.h>
69#include <sys/kobj.h>
70#include <sys/kobj_lex.h>
71#include <sys/pci_cfgspace_impl.h>
72#include <sys/fastboot_impl.h>
73#include <sys/acpi/acconfig.h>
74#include <sys/acpi/acpi.h>
75
76static int have_console = 0;	/* set once primitive console is initialized */
77static char *boot_args = "";
78
79/*
80 * Debugging macros
81 */
82static uint_t kbm_debug = 0;
83#define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
84#define	DBG(x)		{ if (kbm_debug)			\
85	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
86	}
87
88#define	PUT_STRING(s) {				\
89	char *cp;				\
90	for (cp = (s); *cp; ++cp)		\
91		bcons_putchar(*cp);		\
92	}
93
94bootops_t bootop;	/* simple bootops we'll pass on to kernel */
95struct bsys_mem bm;
96
97/*
98 * Boot info from "glue" code in low memory. xbootp is used by:
99 *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
100 */
101static struct xboot_info *xbootp;
102static uintptr_t next_virt;	/* next available virtual address */
103static paddr_t next_phys;	/* next available physical address from dboot */
104static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
105
106/*
107 * buffer for vsnprintf for console I/O
108 */
109#define	BUFFERSIZE	512
110static char buffer[BUFFERSIZE];
111
112/*
113 * stuff to store/report/manipulate boot property settings.
114 */
115typedef struct bootprop {
116	struct bootprop *bp_next;
117	char *bp_name;
118	uint_t bp_vlen;
119	char *bp_value;
120} bootprop_t;
121
122static bootprop_t *bprops = NULL;
123static char *curr_page = NULL;		/* ptr to avail bprop memory */
124static int curr_space = 0;		/* amount of memory at curr_page */
125
126#ifdef __xpv
127start_info_t *xen_info;
128shared_info_t *HYPERVISOR_shared_info;
129#endif
130
131/*
132 * some allocator statistics
133 */
134static ulong_t total_bop_alloc_scratch = 0;
135static ulong_t total_bop_alloc_kernel = 0;
136
137static void build_firmware_properties(struct xboot_info *);
138
139static int early_allocation = 1;
140
141int force_fastreboot = 0;
142volatile int fastreboot_onpanic = 0;
143int post_fastreboot = 0;
144#ifdef	__xpv
145volatile int fastreboot_capable = 0;
146#else
147volatile int fastreboot_capable = 1;
148#endif
149
150/*
151 * Information saved from current boot for fast reboot.
152 * If the information size exceeds what we have allocated, fast reboot
153 * will not be supported.
154 */
155multiboot_info_t saved_mbi;
156mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159int saved_cmdline_len = 0;
160size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
161
162/*
163 * Turn off fastreboot_onpanic to avoid panic loop.
164 */
165char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
167
168/*
169 * Pointers to where System Resource Affinity Table (SRAT), System Locality
170 * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171 * are mapped into virtual memory
172 */
173ACPI_TABLE_SRAT	*srat_ptr = NULL;
174ACPI_TABLE_SLIT	*slit_ptr = NULL;
175ACPI_TABLE_MSCT	*msct_ptr = NULL;
176
177/*
178 * Arbitrary limit on number of localities we handle; if
179 * this limit is raised to more than UINT16_MAX, make sure
180 * process_slit() knows how to handle it.
181 */
182#define	SLIT_LOCALITIES_MAX	(4096)
183
184#define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
185#define	SLIT_PROPNAME		"acpi-slit"
186
187/*
188 * Allocate aligned physical memory at boot time. This allocator allocates
189 * from the highest possible addresses. This avoids exhausting memory that
190 * would be useful for DMA buffers.
191 */
192paddr_t
193do_bop_phys_alloc(uint64_t size, uint64_t align)
194{
195	paddr_t	pa = 0;
196	paddr_t	start;
197	paddr_t	end;
198	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
199
200	/*
201	 * Be careful if high memory usage is limited in startup.c
202	 * Since there are holes in the low part of the physical address
203	 * space we can treat physmem as a pfn (not just a pgcnt) and
204	 * get a conservative upper limit.
205	 */
206	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207		high_phys = pfn_to_pa(physmem);
208
209	/*
210	 * find the highest available memory in physinstalled
211	 */
212	size = P2ROUNDUP(size, align);
213	for (; ml; ml = ml->ml_next) {
214		start = P2ROUNDUP(ml->ml_address, align);
215		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
216		if (start < next_phys)
217			start = P2ROUNDUP(next_phys, align);
218		if (end > high_phys)
219			end = P2ALIGN(high_phys, align);
220
221		if (end <= start)
222			continue;
223		if (end - start < size)
224			continue;
225
226		/*
227		 * Early allocations need to use low memory, since
228		 * physmem might be further limited by bootenv.rc
229		 */
230		if (early_allocation) {
231			if (pa == 0 || start < pa)
232				pa = start;
233		} else {
234			if (end - size > pa)
235				pa = end - size;
236		}
237	}
238	if (pa != 0) {
239		if (early_allocation)
240			next_phys = pa + size;
241		else
242			high_phys = pa;
243		return (pa);
244	}
245	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
246	    ") Out of memory\n", size, align);
247	/*NOTREACHED*/
248}
249
250uintptr_t
251alloc_vaddr(size_t size, paddr_t align)
252{
253	uintptr_t rv;
254
255	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
256	rv = (uintptr_t)next_virt;
257	next_virt += size;
258	return (rv);
259}
260
261/*
262 * Allocate virtual memory. The size is always rounded up to a multiple
263 * of base pagesize.
264 */
265
266/*ARGSUSED*/
267static caddr_t
268do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
269{
270	paddr_t a = align;	/* same type as pa for masking */
271	uint_t pgsize;
272	paddr_t pa;
273	uintptr_t va;
274	ssize_t s;		/* the aligned size */
275	uint_t level;
276	uint_t is_kernel = (virthint != 0);
277
278	if (a < MMU_PAGESIZE)
279		a = MMU_PAGESIZE;
280	else if (!ISP2(a))
281		prom_panic("do_bsys_alloc() incorrect alignment");
282	size = P2ROUNDUP(size, MMU_PAGESIZE);
283
284	/*
285	 * Use the next aligned virtual address if we weren't given one.
286	 */
287	if (virthint == NULL) {
288		virthint = (caddr_t)alloc_vaddr(size, a);
289		total_bop_alloc_scratch += size;
290	} else {
291		total_bop_alloc_kernel += size;
292	}
293
294	/*
295	 * allocate the physical memory
296	 */
297	pa = do_bop_phys_alloc(size, a);
298
299	/*
300	 * Add the mappings to the page tables, try large pages first.
301	 */
302	va = (uintptr_t)virthint;
303	s = size;
304	level = 1;
305	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
306	if (xbootp->bi_use_largepage && a == pgsize) {
307		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
308		    s >= pgsize) {
309			kbm_map(va, pa, level, is_kernel);
310			va += pgsize;
311			pa += pgsize;
312			s -= pgsize;
313		}
314	}
315
316	/*
317	 * Map remaining pages use small mappings
318	 */
319	level = 0;
320	pgsize = MMU_PAGESIZE;
321	while (s > 0) {
322		kbm_map(va, pa, level, is_kernel);
323		va += pgsize;
324		pa += pgsize;
325		s -= pgsize;
326	}
327	return (virthint);
328}
329
330/*
331 * Free virtual memory - we'll just ignore these.
332 */
333/*ARGSUSED*/
334static void
335do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
336{
337	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
338	    (void *)virt, size);
339}
340
341/*
342 * Old interface
343 */
344/*ARGSUSED*/
345static caddr_t
346do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
347    int align, int flags)
348{
349	prom_panic("unsupported call to BOP_EALLOC()\n");
350	return (0);
351}
352
353
354static void
355bsetprop(char *name, int nlen, void *value, int vlen)
356{
357	uint_t size;
358	uint_t need_size;
359	bootprop_t *b;
360
361	/*
362	 * align the size to 16 byte boundary
363	 */
364	size = sizeof (bootprop_t) + nlen + 1 + vlen;
365	size = (size + 0xf) & ~0xf;
366	if (size > curr_space) {
367		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
368		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
369		curr_space = need_size;
370	}
371
372	/*
373	 * use a bootprop_t at curr_page and link into list
374	 */
375	b = (bootprop_t *)curr_page;
376	curr_page += sizeof (bootprop_t);
377	curr_space -=  sizeof (bootprop_t);
378	b->bp_next = bprops;
379	bprops = b;
380
381	/*
382	 * follow by name and ending zero byte
383	 */
384	b->bp_name = curr_page;
385	bcopy(name, curr_page, nlen);
386	curr_page += nlen;
387	*curr_page++ = 0;
388	curr_space -= nlen + 1;
389
390	/*
391	 * copy in value, but no ending zero byte
392	 */
393	b->bp_value = curr_page;
394	b->bp_vlen = vlen;
395	if (vlen > 0) {
396		bcopy(value, curr_page, vlen);
397		curr_page += vlen;
398		curr_space -= vlen;
399	}
400
401	/*
402	 * align new values of curr_page, curr_space
403	 */
404	while (curr_space & 0xf) {
405		++curr_page;
406		--curr_space;
407	}
408}
409
410static void
411bsetprops(char *name, char *value)
412{
413	bsetprop(name, strlen(name), value, strlen(value) + 1);
414}
415
416static void
417bsetprop64(char *name, uint64_t value)
418{
419	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
420}
421
422static void
423bsetpropsi(char *name, int value)
424{
425	char prop_val[32];
426
427	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
428	bsetprops(name, prop_val);
429}
430
431/*
432 * to find the size of the buffer to allocate
433 */
434/*ARGSUSED*/
435int
436do_bsys_getproplen(bootops_t *bop, const char *name)
437{
438	bootprop_t *b;
439
440	for (b = bprops; b; b = b->bp_next) {
441		if (strcmp(name, b->bp_name) != 0)
442			continue;
443		return (b->bp_vlen);
444	}
445	return (-1);
446}
447
448/*
449 * get the value associated with this name
450 */
451/*ARGSUSED*/
452int
453do_bsys_getprop(bootops_t *bop, const char *name, void *value)
454{
455	bootprop_t *b;
456
457	for (b = bprops; b; b = b->bp_next) {
458		if (strcmp(name, b->bp_name) != 0)
459			continue;
460		bcopy(b->bp_value, value, b->bp_vlen);
461		return (0);
462	}
463	return (-1);
464}
465
466/*
467 * get the name of the next property in succession from the standalone
468 */
469/*ARGSUSED*/
470static char *
471do_bsys_nextprop(bootops_t *bop, char *name)
472{
473	bootprop_t *b;
474
475	/*
476	 * A null name is a special signal for the 1st boot property
477	 */
478	if (name == NULL || strlen(name) == 0) {
479		if (bprops == NULL)
480			return (NULL);
481		return (bprops->bp_name);
482	}
483
484	for (b = bprops; b; b = b->bp_next) {
485		if (name != b->bp_name)
486			continue;
487		b = b->bp_next;
488		if (b == NULL)
489			return (NULL);
490		return (b->bp_name);
491	}
492	return (NULL);
493}
494
495/*
496 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
497 */
498static int
499parse_value(char *p, uint64_t *retval)
500{
501	int adjust = 0;
502	uint64_t tmp = 0;
503	int digit;
504	int radix = 10;
505
506	*retval = 0;
507	if (*p == '-' || *p == '~')
508		adjust = *p++;
509
510	if (*p == '0') {
511		++p;
512		if (*p == 0)
513			return (0);
514		if (*p == 'x' || *p == 'X') {
515			radix = 16;
516			++p;
517		} else {
518			radix = 8;
519			++p;
520		}
521	}
522	while (*p) {
523		if ('0' <= *p && *p <= '9')
524			digit = *p - '0';
525		else if ('a' <= *p && *p <= 'f')
526			digit = 10 + *p - 'a';
527		else if ('A' <= *p && *p <= 'F')
528			digit = 10 + *p - 'A';
529		else
530			return (-1);
531		if (digit >= radix)
532			return (-1);
533		tmp = tmp * radix + digit;
534		++p;
535	}
536	if (adjust == '-')
537		tmp = -tmp;
538	else if (adjust == '~')
539		tmp = ~tmp;
540	*retval = tmp;
541	return (0);
542}
543
544static boolean_t
545unprintable(char *value, int size)
546{
547	int i;
548
549	if (size <= 0 || value[0] == '\0')
550		return (B_TRUE);
551
552	for (i = 0; i < size; i++) {
553		if (value[i] == '\0')
554			return (i != (size - 1));
555
556		if (!isprint(value[i]))
557			return (B_TRUE);
558	}
559	return (B_FALSE);
560}
561
562/*
563 * Print out information about all boot properties.
564 * buffer is pointer to pre-allocated space to be used as temporary
565 * space for property values.
566 */
567static void
568boot_prop_display(char *buffer)
569{
570	char *name = "";
571	int i, len;
572
573	bop_printf(NULL, "\nBoot properties:\n");
574
575	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
576		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
577		(void) do_bsys_getprop(NULL, name, buffer);
578		len = do_bsys_getproplen(NULL, name);
579		bop_printf(NULL, "len=%d ", len);
580		if (!unprintable(buffer, len)) {
581			buffer[len] = 0;
582			bop_printf(NULL, "%s\n", buffer);
583			continue;
584		}
585		for (i = 0; i < len; i++) {
586			bop_printf(NULL, "%02x", buffer[i] & 0xff);
587			if (i < len - 1)
588				bop_printf(NULL, ".");
589		}
590		bop_printf(NULL, "\n");
591	}
592}
593
594/*
595 * 2nd part of building the table of boot properties. This includes:
596 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
597 *
598 * lines look like one of:
599 * ^$
600 * ^# comment till end of line
601 * setprop name 'value'
602 * setprop name value
603 * setprop name "value"
604 *
605 * we do single character I/O since this is really just looking at memory
606 */
607void
608boot_prop_finish(void)
609{
610	int fd;
611	char *line;
612	int c;
613	int bytes_read;
614	char *name;
615	int n_len;
616	char *value;
617	int v_len;
618	char *inputdev;	/* these override the command line if serial ports */
619	char *outputdev;
620	char *consoledev;
621	uint64_t lvalue;
622	int use_xencons = 0;
623
624#ifdef __xpv
625	if (!DOMAIN_IS_INITDOMAIN(xen_info))
626		use_xencons = 1;
627#endif /* __xpv */
628
629	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
630	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
631	DBG(fd);
632
633	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
634	while (fd >= 0) {
635
636		/*
637		 * get a line
638		 */
639		for (c = 0; ; ++c) {
640			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
641			if (bytes_read == 0) {
642				if (c == 0)
643					goto done;
644				break;
645			}
646			if (line[c] == '\n')
647				break;
648		}
649		line[c] = 0;
650
651		/*
652		 * ignore comment lines
653		 */
654		c = 0;
655		while (ISSPACE(line[c]))
656			++c;
657		if (line[c] == '#' || line[c] == 0)
658			continue;
659
660		/*
661		 * must have "setprop " or "setprop\t"
662		 */
663		if (strncmp(line + c, "setprop ", 8) != 0 &&
664		    strncmp(line + c, "setprop\t", 8) != 0)
665			continue;
666		c += 8;
667		while (ISSPACE(line[c]))
668			++c;
669		if (line[c] == 0)
670			continue;
671
672		/*
673		 * gather up the property name
674		 */
675		name = line + c;
676		n_len = 0;
677		while (line[c] && !ISSPACE(line[c]))
678			++n_len, ++c;
679
680		/*
681		 * gather up the value, if any
682		 */
683		value = "";
684		v_len = 0;
685		while (ISSPACE(line[c]))
686			++c;
687		if (line[c] != 0) {
688			value = line + c;
689			while (line[c] && !ISSPACE(line[c]))
690				++v_len, ++c;
691		}
692
693		if (v_len >= 2 && value[0] == value[v_len - 1] &&
694		    (value[0] == '\'' || value[0] == '"')) {
695			++value;
696			v_len -= 2;
697		}
698		name[n_len] = 0;
699		if (v_len > 0)
700			value[v_len] = 0;
701		else
702			continue;
703
704		/*
705		 * ignore "boot-file" property, it's now meaningless
706		 */
707		if (strcmp(name, "boot-file") == 0)
708			continue;
709		if (strcmp(name, "boot-args") == 0 &&
710		    strlen(boot_args) > 0)
711			continue;
712
713		/*
714		 * If a property was explicitly set on the command line
715		 * it will override a setting in bootenv.rc
716		 */
717		if (do_bsys_getproplen(NULL, name) > 0)
718			continue;
719
720		bsetprop(name, n_len, value, v_len + 1);
721	}
722done:
723	if (fd >= 0)
724		(void) BRD_CLOSE(bfs_ops, fd);
725
726	/*
727	 * Check if we have to limit the boot time allocator
728	 */
729	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
730	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
731	    parse_value(line, &lvalue) != -1) {
732		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
733			physmem = (pgcnt_t)lvalue;
734			DBG(physmem);
735		}
736	}
737	early_allocation = 0;
738
739	/*
740	 * check to see if we have to override the default value of the console
741	 */
742	if (!use_xencons) {
743		inputdev = line;
744		v_len = do_bsys_getproplen(NULL, "input-device");
745		if (v_len > 0)
746			(void) do_bsys_getprop(NULL, "input-device", inputdev);
747		else
748			v_len = 0;
749		inputdev[v_len] = 0;
750
751		outputdev = inputdev + v_len + 1;
752		v_len = do_bsys_getproplen(NULL, "output-device");
753		if (v_len > 0)
754			(void) do_bsys_getprop(NULL, "output-device",
755			    outputdev);
756		else
757			v_len = 0;
758		outputdev[v_len] = 0;
759
760		consoledev = outputdev + v_len + 1;
761		v_len = do_bsys_getproplen(NULL, "console");
762		if (v_len > 0) {
763			(void) do_bsys_getprop(NULL, "console", consoledev);
764			if (post_fastreboot &&
765			    strcmp(consoledev, "graphics") == 0) {
766				bsetprops("console", "text");
767				v_len = strlen("text");
768				bcopy("text", consoledev, v_len);
769			}
770		} else {
771			v_len = 0;
772		}
773		consoledev[v_len] = 0;
774		bcons_init2(inputdev, outputdev, consoledev);
775	} else {
776		/*
777		 * Ensure console property exists
778		 * If not create it as "hypervisor"
779		 */
780		v_len = do_bsys_getproplen(NULL, "console");
781		if (v_len < 0)
782			bsetprops("console", "hypervisor");
783		inputdev = outputdev = consoledev = "hypervisor";
784		bcons_init2(inputdev, outputdev, consoledev);
785	}
786
787	if (find_boot_prop("prom_debug") || kbm_debug)
788		boot_prop_display(line);
789}
790
791/*
792 * print formatted output
793 */
794/*PRINTFLIKE2*/
795/*ARGSUSED*/
796void
797bop_printf(bootops_t *bop, const char *fmt, ...)
798{
799	va_list	ap;
800
801	if (have_console == 0)
802		return;
803
804	va_start(ap, fmt);
805	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
806	va_end(ap);
807	PUT_STRING(buffer);
808}
809
810/*
811 * Another panic() variant; this one can be used even earlier during boot than
812 * prom_panic().
813 */
814/*PRINTFLIKE1*/
815void
816bop_panic(const char *fmt, ...)
817{
818	va_list ap;
819
820	va_start(ap, fmt);
821	bop_printf(NULL, fmt, ap);
822	va_end(ap);
823
824	bop_printf(NULL, "\nPress any key to reboot.\n");
825	(void) bcons_getchar();
826	bop_printf(NULL, "Resetting...\n");
827	pc_reset();
828}
829
830/*
831 * Do a real mode interrupt BIOS call
832 */
833typedef struct bios_regs {
834	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
835} bios_regs_t;
836typedef int (*bios_func_t)(int, bios_regs_t *);
837
838/*ARGSUSED*/
839static void
840do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
841{
842#if defined(__xpv)
843	prom_panic("unsupported call to BOP_DOINT()\n");
844#else	/* __xpv */
845	static int firsttime = 1;
846	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
847	bios_regs_t br;
848
849	/*
850	 * We're about to disable paging; we shouldn't be PCID enabled.
851	 */
852	if (getcr4() & CR4_PCIDE)
853		prom_panic("do_bsys_doint() with PCID enabled\n");
854
855	/*
856	 * The first time we do this, we have to copy the pre-packaged
857	 * low memory bios call code image into place.
858	 */
859	if (firsttime) {
860		extern char bios_image[];
861		extern uint32_t bios_size;
862
863		bcopy(bios_image, (void *)bios_func, bios_size);
864		firsttime = 0;
865	}
866
867	br.ax = rp->eax.word.ax;
868	br.bx = rp->ebx.word.bx;
869	br.cx = rp->ecx.word.cx;
870	br.dx = rp->edx.word.dx;
871	br.bp = rp->ebp.word.bp;
872	br.si = rp->esi.word.si;
873	br.di = rp->edi.word.di;
874	br.ds = rp->ds;
875	br.es = rp->es;
876
877	DBG_MSG("Doing BIOS call...");
878	DBG(br.ax);
879	DBG(br.bx);
880	DBG(br.dx);
881	rp->eflags = bios_func(intnum, &br);
882	DBG_MSG("done\n");
883
884	rp->eax.word.ax = br.ax;
885	rp->ebx.word.bx = br.bx;
886	rp->ecx.word.cx = br.cx;
887	rp->edx.word.dx = br.dx;
888	rp->ebp.word.bp = br.bp;
889	rp->esi.word.si = br.si;
890	rp->edi.word.di = br.di;
891	rp->ds = br.ds;
892	rp->es = br.es;
893#endif /* __xpv */
894}
895
896static struct boot_syscalls bop_sysp = {
897	bcons_getchar,
898	bcons_putchar,
899	bcons_ischar,
900};
901
902static char *whoami;
903
904#define	BUFLEN	64
905
906#if defined(__xpv)
907
908static char namebuf[32];
909
910static void
911xen_parse_props(char *s, char *prop_map[], int n_prop)
912{
913	char **prop_name = prop_map;
914	char *cp = s, *scp;
915
916	do {
917		scp = cp;
918		while ((*cp != NULL) && (*cp != ':'))
919			cp++;
920
921		if ((scp != cp) && (*prop_name != NULL)) {
922			*cp = NULL;
923			bsetprops(*prop_name, scp);
924		}
925
926		cp++;
927		prop_name++;
928		n_prop--;
929	} while (n_prop > 0);
930}
931
932#define	VBDPATHLEN	64
933
934/*
935 * parse the 'xpv-root' property to create properties used by
936 * ufs_mountroot.
937 */
938static void
939xen_vbdroot_props(char *s)
940{
941	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
942	const char lnamefix[] = "/dev/dsk/c0d";
943	char *pnp;
944	char *prop_p;
945	char mi;
946	short minor;
947	long addr = 0;
948
949	pnp = vbdpath + strlen(vbdpath);
950	prop_p = s + strlen(lnamefix);
951	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
952		addr = addr * 10 + *prop_p++ - '0';
953	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
954	pnp = vbdpath + strlen(vbdpath);
955	if (*prop_p == 's')
956		mi = 'a';
957	else if (*prop_p == 'p')
958		mi = 'q';
959	else
960		ASSERT(0); /* shouldn't be here */
961	prop_p++;
962	ASSERT(*prop_p != '\0');
963	if (ISDIGIT(*prop_p)) {
964		minor = *prop_p - '0';
965		prop_p++;
966		if (ISDIGIT(*prop_p)) {
967			minor = minor * 10 + *prop_p - '0';
968		}
969	} else {
970		/* malformed root path, use 0 as default */
971		minor = 0;
972	}
973	ASSERT(minor < 16); /* at most 16 partitions */
974	mi += minor;
975	*pnp++ = ':';
976	*pnp++ = mi;
977	*pnp++ = '\0';
978	bsetprops("fstype", "ufs");
979	bsetprops("bootpath", vbdpath);
980
981	DBG_MSG("VBD bootpath set to ");
982	DBG_MSG(vbdpath);
983	DBG_MSG("\n");
984}
985
986/*
987 * parse the xpv-nfsroot property to create properties used by
988 * nfs_mountroot.
989 */
990static void
991xen_nfsroot_props(char *s)
992{
993	char *prop_map[] = {
994		BP_SERVER_IP,	/* server IP address */
995		BP_SERVER_NAME,	/* server hostname */
996		BP_SERVER_PATH,	/* root path */
997	};
998	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
999
1000	bsetprop("fstype", 6, "nfs", 4);
1001
1002	xen_parse_props(s, prop_map, n_prop);
1003
1004	/*
1005	 * If a server name wasn't specified, use a default.
1006	 */
1007	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1008		bsetprops(BP_SERVER_NAME, "unknown");
1009}
1010
1011/*
1012 * Extract our IP address, etc. from the "xpv-ip" property.
1013 */
1014static void
1015xen_ip_props(char *s)
1016{
1017	char *prop_map[] = {
1018		BP_HOST_IP,		/* IP address */
1019		NULL,			/* NFS server IP address (ignored in */
1020					/* favour of xpv-nfsroot) */
1021		BP_ROUTER_IP,		/* IP gateway */
1022		BP_SUBNET_MASK,		/* IP subnet mask */
1023		"xpv-hostname",		/* hostname (ignored) */
1024		BP_NETWORK_INTERFACE,	/* interface name */
1025		"xpv-hcp",		/* host configuration protocol */
1026	};
1027	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1028	char ifname[IFNAMSIZ];
1029
1030	xen_parse_props(s, prop_map, n_prop);
1031
1032	/*
1033	 * A Linux dom0 administrator expects all interfaces to be
1034	 * called "ethX", which is not the case here.
1035	 *
1036	 * If the interface name specified is "eth0", presume that
1037	 * this is really intended to be "xnf0" (the first domU ->
1038	 * dom0 interface for this domain).
1039	 */
1040	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1041	    (strcmp("eth0", ifname) == 0)) {
1042		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1043		bop_printf(NULL,
1044		    "network interface name 'eth0' replaced with 'xnf0'\n");
1045	}
1046}
1047
1048#else	/* __xpv */
1049
1050static void
1051setup_rarp_props(struct sol_netinfo *sip)
1052{
1053	char buf[BUFLEN];	/* to hold ip/mac addrs */
1054	uint8_t *val;
1055
1056	val = (uint8_t *)&sip->sn_ciaddr;
1057	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1058	    val[0], val[1], val[2], val[3]);
1059	bsetprops(BP_HOST_IP, buf);
1060
1061	val = (uint8_t *)&sip->sn_siaddr;
1062	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1063	    val[0], val[1], val[2], val[3]);
1064	bsetprops(BP_SERVER_IP, buf);
1065
1066	if (sip->sn_giaddr != 0) {
1067		val = (uint8_t *)&sip->sn_giaddr;
1068		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1069		    val[0], val[1], val[2], val[3]);
1070		bsetprops(BP_ROUTER_IP, buf);
1071	}
1072
1073	if (sip->sn_netmask != 0) {
1074		val = (uint8_t *)&sip->sn_netmask;
1075		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1076		    val[0], val[1], val[2], val[3]);
1077		bsetprops(BP_SUBNET_MASK, buf);
1078	}
1079
1080	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1081		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1082		    sip->sn_mactype, sip->sn_maclen);
1083	} else {
1084		val = sip->sn_macaddr;
1085		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1086		    val[0], val[1], val[2], val[3], val[4], val[5]);
1087		bsetprops(BP_BOOT_MAC, buf);
1088	}
1089}
1090
1091#endif	/* __xpv */
1092
1093static void
1094build_panic_cmdline(const char *cmd, int cmdlen)
1095{
1096	int proplen;
1097	size_t arglen;
1098
1099	arglen = sizeof (fastreboot_onpanic_args);
1100	/*
1101	 * If we allready have fastreboot-onpanic set to zero,
1102	 * don't add them again.
1103	 */
1104	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1105	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1106		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1107		    fastreboot_onpanic_cmdline);
1108		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1109			arglen = 1;
1110	}
1111
1112	/*
1113	 * construct fastreboot_onpanic_cmdline
1114	 */
1115	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1116		DBG_MSG("Command line too long: clearing "
1117		    FASTREBOOT_ONPANIC "\n");
1118		fastreboot_onpanic = 0;
1119	} else {
1120		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1121		if (arglen != 1)
1122			bcopy(fastreboot_onpanic_args,
1123			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1124		else
1125			fastreboot_onpanic_cmdline[cmdlen] = 0;
1126	}
1127}
1128
1129
1130#ifndef	__xpv
1131/*
1132 * Construct boot command line for Fast Reboot. The saved_cmdline
1133 * is also reported by "eeprom bootcmd".
1134 */
1135static void
1136build_fastboot_cmdline(struct xboot_info *xbp)
1137{
1138	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1139	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1140		DBG(saved_cmdline_len);
1141		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1142		fastreboot_capable = 0;
1143	} else {
1144		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1145		    saved_cmdline_len);
1146		saved_cmdline[saved_cmdline_len - 1] = '\0';
1147		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1148	}
1149}
1150
1151/*
1152 * Save memory layout, disk drive information, unix and boot archive sizes for
1153 * Fast Reboot.
1154 */
1155static void
1156save_boot_info(struct xboot_info *xbi)
1157{
1158	multiboot_info_t *mbi = xbi->bi_mb_info;
1159	struct boot_modules *modp;
1160	int i;
1161
1162	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1163	if (mbi->mmap_length > sizeof (saved_mmap)) {
1164		DBG_MSG("mbi->mmap_length too big: clearing "
1165		    "fastreboot_capable\n");
1166		fastreboot_capable = 0;
1167	} else {
1168		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1169		    mbi->mmap_length);
1170	}
1171
1172	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1173		if (mbi->drives_length > sizeof (saved_drives)) {
1174			DBG(mbi->drives_length);
1175			DBG_MSG("mbi->drives_length too big: clearing "
1176			    "fastreboot_capable\n");
1177			fastreboot_capable = 0;
1178		} else {
1179			bcopy((void *)(uintptr_t)mbi->drives_addr,
1180			    (void *)saved_drives, mbi->drives_length);
1181		}
1182	} else {
1183		saved_mbi.drives_length = 0;
1184		saved_mbi.drives_addr = NULL;
1185	}
1186
1187	/*
1188	 * Current file sizes.  Used by fastboot.c to figure out how much
1189	 * memory to reserve for panic reboot.
1190	 * Use the module list from the dboot-constructed xboot_info
1191	 * instead of the list referenced by the multiboot structure
1192	 * because that structure may not be addressable now.
1193	 */
1194	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1195	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1196	    i < xbi->bi_module_cnt; i++, modp++) {
1197		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1198	}
1199}
1200#endif	/* __xpv */
1201
1202/*
1203 * Import boot environment module variables as properties, applying
1204 * blacklist filter for variables we know we will not use.
1205 *
1206 * Since the environment can be relatively large, containing many variables
1207 * used only for boot loader purposes, we will use a blacklist based filter.
1208 * To keep the blacklist from growing too large, we use prefix based filtering.
1209 * This is possible because in many cases, the loader variable names are
1210 * using a structured layout.
1211 *
1212 * We will not overwrite already set properties.
1213 */
1214static struct bop_blacklist {
1215	const char *bl_name;
1216	int bl_name_len;
1217} bop_prop_blacklist[] = {
1218	{ "ISADIR", sizeof ("ISADIR") },
1219	{ "acpi", sizeof ("acpi") },
1220	{ "autoboot_delay", sizeof ("autoboot_delay") },
1221	{ "autoboot_delay", sizeof ("autoboot_delay") },
1222	{ "beansi_", sizeof ("beansi_") },
1223	{ "beastie", sizeof ("beastie") },
1224	{ "bemenu", sizeof ("bemenu") },
1225	{ "boot.", sizeof ("boot.") },
1226	{ "bootenv", sizeof ("bootenv") },
1227	{ "currdev", sizeof ("currdev") },
1228	{ "dhcp.", sizeof ("dhcp.") },
1229	{ "interpret", sizeof ("interpret") },
1230	{ "kernel", sizeof ("kernel") },
1231	{ "loaddev", sizeof ("loaddev") },
1232	{ "loader_", sizeof ("loader_") },
1233	{ "module_path", sizeof ("module_path") },
1234	{ "nfs.", sizeof ("nfs.") },
1235	{ "pcibios", sizeof ("pcibios") },
1236	{ "prompt", sizeof ("prompt") },
1237	{ "smbios", sizeof ("smbios") },
1238	{ "tem", sizeof ("tem") },
1239	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1240	{ "zfs_be", sizeof ("zfs_be") },
1241};
1242
1243/*
1244 * Match the name against prefixes in above blacklist. If the match was
1245 * found, this name is blacklisted.
1246 */
1247static boolean_t
1248name_is_blacklisted(const char *name)
1249{
1250	int i, n;
1251
1252	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1253	for (i = 0; i < n; i++) {
1254		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1255		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1256			return (B_TRUE);
1257		}
1258	}
1259	return (B_FALSE);
1260}
1261
1262static void
1263process_boot_environment(struct boot_modules *benv)
1264{
1265	char *env, *ptr, *name, *value;
1266	uint32_t size, name_len, value_len;
1267
1268	if (benv == NULL || benv->bm_type != BMT_ENV)
1269		return;
1270	ptr = env = benv->bm_addr;
1271	size = benv->bm_size;
1272	do {
1273		name = ptr;
1274		/* find '=' */
1275		while (*ptr != '=') {
1276			ptr++;
1277			if (ptr > env + size) /* Something is very wrong. */
1278				return;
1279		}
1280		name_len = ptr - name;
1281		if (sizeof (buffer) <= name_len)
1282			continue;
1283
1284		(void) strncpy(buffer, name, sizeof (buffer));
1285		buffer[name_len] = '\0';
1286		name = buffer;
1287
1288		value_len = 0;
1289		value = ++ptr;
1290		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1291			if (*ptr == '\0') {
1292				ptr++;
1293				value_len = (uintptr_t)ptr - (uintptr_t)env;
1294				break;
1295			}
1296			ptr++;
1297		}
1298
1299		/* Did we reach the end of the module? */
1300		if (value_len == 0)
1301			return;
1302
1303		if (*value == '\0')
1304			continue;
1305
1306		/* Is this property already set? */
1307		if (do_bsys_getproplen(NULL, name) >= 0)
1308			continue;
1309
1310		if (name_is_blacklisted(name) == B_TRUE)
1311			continue;
1312
1313		/* Create new property. */
1314		bsetprops(name, value);
1315
1316		/* Avoid reading past the module end. */
1317		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1318			return;
1319	} while (*ptr != '\0');
1320}
1321
1322/*
1323 * 1st pass at building the table of boot properties. This includes:
1324 * - values set on the command line: -B a=x,b=y,c=z ....
1325 * - known values we just compute (ie. from xbp)
1326 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1327 *
1328 * the grub command line looked like:
1329 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1330 *
1331 * whoami is the same as boot-file
1332 */
1333static void
1334build_boot_properties(struct xboot_info *xbp)
1335{
1336	char *name;
1337	int name_len;
1338	char *value;
1339	int value_len;
1340	struct boot_modules *bm, *rdbm, *benv = NULL;
1341	char *propbuf;
1342	int quoted = 0;
1343	int boot_arg_len;
1344	uint_t i, midx;
1345	char modid[32];
1346#ifndef __xpv
1347	static int stdout_val = 0;
1348	uchar_t boot_device;
1349	char str[3];
1350#endif
1351
1352	/*
1353	 * These have to be done first, so that kobj_mount_root() works
1354	 */
1355	DBG_MSG("Building boot properties\n");
1356	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1357	DBG((uintptr_t)propbuf);
1358	if (xbp->bi_module_cnt > 0) {
1359		bm = xbp->bi_modules;
1360		rdbm = NULL;
1361		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1362			if (bm[i].bm_type == BMT_ROOTFS) {
1363				rdbm = &bm[i];
1364				continue;
1365			}
1366			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1367				continue;
1368
1369			if (bm[i].bm_type == BMT_ENV) {
1370				if (benv == NULL)
1371					benv = &bm[i];
1372				else
1373					continue;
1374			}
1375
1376			(void) snprintf(modid, sizeof (modid),
1377			    "module-name-%u", midx);
1378			bsetprops(modid, (char *)bm[i].bm_name);
1379			(void) snprintf(modid, sizeof (modid),
1380			    "module-addr-%u", midx);
1381			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1382			(void) snprintf(modid, sizeof (modid),
1383			    "module-size-%u", midx);
1384			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1385			++midx;
1386		}
1387		if (rdbm != NULL) {
1388			bsetprop64("ramdisk_start",
1389			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1390			bsetprop64("ramdisk_end",
1391			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1392		}
1393	}
1394
1395	/*
1396	 * If there are any boot time modules or hashes present, then disable
1397	 * fast reboot.
1398	 */
1399	if (xbp->bi_module_cnt > 1) {
1400		fastreboot_disable(FBNS_BOOTMOD);
1401	}
1402
1403#ifndef __xpv
1404	/*
1405	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1406	 * since we don't currently support MB2 info and module relocation.
1407	 * Note that fast reboot will have already been disabled if multiple
1408	 * modules are present, since the current implementation assumes that
1409	 * we only have a single module, the boot_archive.
1410	 */
1411	if (xbp->bi_mb_version != 1) {
1412		fastreboot_disable(FBNS_MULTIBOOT2);
1413	}
1414#endif
1415
1416	DBG_MSG("Parsing command line for boot properties\n");
1417	value = xbp->bi_cmdline;
1418
1419	/*
1420	 * allocate memory to collect boot_args into
1421	 */
1422	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1423	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1424	boot_args[0] = 0;
1425	boot_arg_len = 0;
1426
1427#ifdef __xpv
1428	/*
1429	 * Xen puts a lot of device information in front of the kernel name
1430	 * let's grab them and make them boot properties.  The first
1431	 * string w/o an "=" in it will be the boot-file property.
1432	 */
1433	(void) strcpy(namebuf, "xpv-");
1434	for (;;) {
1435		/*
1436		 * get to next property
1437		 */
1438		while (ISSPACE(*value))
1439			++value;
1440		name = value;
1441		/*
1442		 * look for an "="
1443		 */
1444		while (*value && !ISSPACE(*value) && *value != '=') {
1445			value++;
1446		}
1447		if (*value != '=') { /* no "=" in the property */
1448			value = name;
1449			break;
1450		}
1451		name_len = value - name;
1452		value_len = 0;
1453		/*
1454		 * skip over the "="
1455		 */
1456		value++;
1457		while (value[value_len] && !ISSPACE(value[value_len])) {
1458			++value_len;
1459		}
1460		/*
1461		 * build property name with "xpv-" prefix
1462		 */
1463		if (name_len + 4 > 32) { /* skip if name too long */
1464			value += value_len;
1465			continue;
1466		}
1467		bcopy(name, &namebuf[4], name_len);
1468		name_len += 4;
1469		namebuf[name_len] = 0;
1470		bcopy(value, propbuf, value_len);
1471		propbuf[value_len] = 0;
1472		bsetprops(namebuf, propbuf);
1473
1474		/*
1475		 * xpv-root is set to the logical disk name of the xen
1476		 * VBD when booting from a disk-based filesystem.
1477		 */
1478		if (strcmp(namebuf, "xpv-root") == 0)
1479			xen_vbdroot_props(propbuf);
1480		/*
1481		 * While we're here, if we have a "xpv-nfsroot" property
1482		 * then we need to set "fstype" to "nfs" so we mount
1483		 * our root from the nfs server.  Also parse the xpv-nfsroot
1484		 * property to create the properties that nfs_mountroot will
1485		 * need to find the root and mount it.
1486		 */
1487		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1488			xen_nfsroot_props(propbuf);
1489
1490		if (strcmp(namebuf, "xpv-ip") == 0)
1491			xen_ip_props(propbuf);
1492		value += value_len;
1493	}
1494#endif
1495
1496	while (ISSPACE(*value))
1497		++value;
1498	/*
1499	 * value now points at the boot-file
1500	 */
1501	value_len = 0;
1502	while (value[value_len] && !ISSPACE(value[value_len]))
1503		++value_len;
1504	if (value_len > 0) {
1505		whoami = propbuf;
1506		bcopy(value, whoami, value_len);
1507		whoami[value_len] = 0;
1508		bsetprops("boot-file", whoami);
1509		/*
1510		 * strip leading path stuff from whoami, so running from
1511		 * PXE/miniroot makes sense.
1512		 */
1513		if (strstr(whoami, "/platform/") != NULL)
1514			whoami = strstr(whoami, "/platform/");
1515		bsetprops("whoami", whoami);
1516	}
1517
1518	/*
1519	 * Values forcibly set boot properties on the command line via -B.
1520	 * Allow use of quotes in values. Other stuff goes on kernel
1521	 * command line.
1522	 */
1523	name = value + value_len;
1524	while (*name != 0) {
1525		/*
1526		 * anything not " -B" is copied to the command line
1527		 */
1528		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1529			boot_args[boot_arg_len++] = *name;
1530			boot_args[boot_arg_len] = 0;
1531			++name;
1532			continue;
1533		}
1534
1535		/*
1536		 * skip the " -B" and following white space
1537		 */
1538		name += 3;
1539		while (ISSPACE(*name))
1540			++name;
1541		while (*name && !ISSPACE(*name)) {
1542			value = strstr(name, "=");
1543			if (value == NULL)
1544				break;
1545			name_len = value - name;
1546			++value;
1547			value_len = 0;
1548			quoted = 0;
1549			for (; ; ++value_len) {
1550				if (!value[value_len])
1551					break;
1552
1553				/*
1554				 * is this value quoted?
1555				 */
1556				if (value_len == 0 &&
1557				    (value[0] == '\'' || value[0] == '"')) {
1558					quoted = value[0];
1559					++value_len;
1560				}
1561
1562				/*
1563				 * In the quote accept any character,
1564				 * but look for ending quote.
1565				 */
1566				if (quoted) {
1567					if (value[value_len] == quoted)
1568						quoted = 0;
1569					continue;
1570				}
1571
1572				/*
1573				 * a comma or white space ends the value
1574				 */
1575				if (value[value_len] == ',' ||
1576				    ISSPACE(value[value_len]))
1577					break;
1578			}
1579
1580			if (value_len == 0) {
1581				bsetprop(name, name_len, "true", 5);
1582			} else {
1583				char *v = value;
1584				int l = value_len;
1585				if (v[0] == v[l - 1] &&
1586				    (v[0] == '\'' || v[0] == '"')) {
1587					++v;
1588					l -= 2;
1589				}
1590				bcopy(v, propbuf, l);
1591				propbuf[l] = '\0';
1592				bsetprop(name, name_len, propbuf,
1593				    l + 1);
1594			}
1595			name = value + value_len;
1596			while (*name == ',')
1597				++name;
1598		}
1599	}
1600
1601	/*
1602	 * set boot-args property
1603	 * 1275 name is bootargs, so set
1604	 * that too
1605	 */
1606	bsetprops("boot-args", boot_args);
1607	bsetprops("bootargs", boot_args);
1608
1609	process_boot_environment(benv);
1610
1611#ifndef __xpv
1612	/*
1613	 * Build boot command line for Fast Reboot
1614	 */
1615	build_fastboot_cmdline(xbp);
1616
1617	if (xbp->bi_mb_version == 1) {
1618		multiboot_info_t *mbi = xbp->bi_mb_info;
1619		int netboot;
1620		struct sol_netinfo *sip;
1621
1622		/*
1623		 * set the BIOS boot device from GRUB
1624		 */
1625		netboot = 0;
1626
1627		/*
1628		 * Save various boot information for Fast Reboot
1629		 */
1630		save_boot_info(xbp);
1631
1632		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1633			boot_device = mbi->boot_device >> 24;
1634			if (boot_device == 0x20)
1635				netboot++;
1636			str[0] = (boot_device >> 4) + '0';
1637			str[1] = (boot_device & 0xf) + '0';
1638			str[2] = 0;
1639			bsetprops("bios-boot-device", str);
1640		} else {
1641			netboot = 1;
1642		}
1643
1644		/*
1645		 * In the netboot case, drives_info is overloaded with the
1646		 * dhcp ack. This is not multiboot compliant and requires
1647		 * special pxegrub!
1648		 */
1649		if (netboot && mbi->drives_length != 0) {
1650			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1651			if (sip->sn_infotype == SN_TYPE_BOOTP)
1652				bsetprop("bootp-response",
1653				    sizeof ("bootp-response"),
1654				    (void *)(uintptr_t)mbi->drives_addr,
1655				    mbi->drives_length);
1656			else if (sip->sn_infotype == SN_TYPE_RARP)
1657				setup_rarp_props(sip);
1658		}
1659	} else {
1660		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1661		multiboot_tag_bootdev_t *bootdev = NULL;
1662		multiboot_tag_network_t *netdev = NULL;
1663
1664		if (mbi != NULL) {
1665			bootdev = dboot_multiboot2_find_tag(mbi,
1666			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1667			netdev = dboot_multiboot2_find_tag(mbi,
1668			    MULTIBOOT_TAG_TYPE_NETWORK);
1669		}
1670		if (bootdev != NULL) {
1671			DBG(bootdev->mb_biosdev);
1672			boot_device = bootdev->mb_biosdev;
1673			str[0] = (boot_device >> 4) + '0';
1674			str[1] = (boot_device & 0xf) + '0';
1675			str[2] = 0;
1676			bsetprops("bios-boot-device", str);
1677		}
1678		if (netdev != NULL) {
1679			bsetprop("bootp-response", sizeof ("bootp-response"),
1680			    (void *)(uintptr_t)netdev->mb_dhcpack,
1681			    netdev->mb_size -
1682			    sizeof (multiboot_tag_network_t));
1683		}
1684	}
1685
1686	bsetprop("stdout", strlen("stdout"),
1687	    &stdout_val, sizeof (stdout_val));
1688#endif /* __xpv */
1689
1690	/*
1691	 * more conjured up values for made up things....
1692	 */
1693#if defined(__xpv)
1694	bsetprops("mfg-name", "i86xpv");
1695	bsetprops("impl-arch-name", "i86xpv");
1696#else
1697	bsetprops("mfg-name", "i86pc");
1698	bsetprops("impl-arch-name", "i86pc");
1699#endif
1700
1701	/*
1702	 * Build firmware-provided system properties
1703	 */
1704	build_firmware_properties(xbp);
1705
1706	/*
1707	 * XXPV
1708	 *
1709	 * Find out what these are:
1710	 * - cpuid_feature_ecx_include
1711	 * - cpuid_feature_ecx_exclude
1712	 * - cpuid_feature_edx_include
1713	 * - cpuid_feature_edx_exclude
1714	 *
1715	 * Find out what these are in multiboot:
1716	 * - netdev-path
1717	 * - fstype
1718	 */
1719}
1720
1721#ifdef __xpv
1722/*
1723 * Under the Hypervisor, memory usable for DMA may be scarce. One
1724 * very likely large pool of DMA friendly memory is occupied by
1725 * the boot_archive, as it was loaded by grub into low MFNs.
1726 *
1727 * Here we free up that memory by copying the boot archive to what are
1728 * likely higher MFN pages and then swapping the mfn/pfn mappings.
1729 */
1730#define	PFN_2GIG	0x80000
1731static void
1732relocate_boot_archive(struct xboot_info *xbp)
1733{
1734	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1735	struct boot_modules *bm = xbp->bi_modules;
1736	uintptr_t va;
1737	pfn_t va_pfn;
1738	mfn_t va_mfn;
1739	caddr_t copy;
1740	pfn_t copy_pfn;
1741	mfn_t copy_mfn;
1742	size_t	len;
1743	int slop;
1744	int total = 0;
1745	int relocated = 0;
1746	int mmu_update_return;
1747	mmu_update_t t[2];
1748	x86pte_t pte;
1749
1750	/*
1751	 * If all MFN's are below 2Gig, don't bother doing this.
1752	 */
1753	if (max_mfn < PFN_2GIG)
1754		return;
1755	if (xbp->bi_module_cnt < 1) {
1756		DBG_MSG("no boot_archive!");
1757		return;
1758	}
1759
1760	DBG_MSG("moving boot_archive to high MFN memory\n");
1761	va = (uintptr_t)bm->bm_addr;
1762	len = bm->bm_size;
1763	slop = va & MMU_PAGEOFFSET;
1764	if (slop) {
1765		va += MMU_PAGESIZE - slop;
1766		len -= MMU_PAGESIZE - slop;
1767	}
1768	len = P2ALIGN(len, MMU_PAGESIZE);
1769
1770	/*
1771	 * Go through all boot_archive pages, swapping any low MFN pages
1772	 * with memory at next_phys.
1773	 */
1774	while (len != 0) {
1775		++total;
1776		va_pfn = mmu_btop(va - ONE_GIG);
1777		va_mfn = mfn_list[va_pfn];
1778		if (mfn_list[va_pfn] < PFN_2GIG) {
1779			copy = kbm_remap_window(next_phys, 1);
1780			bcopy((void *)va, copy, MMU_PAGESIZE);
1781			copy_pfn = mmu_btop(next_phys);
1782			copy_mfn = mfn_list[copy_pfn];
1783
1784			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1785			if (HYPERVISOR_update_va_mapping(va, pte,
1786			    UVMF_INVLPG | UVMF_LOCAL))
1787				bop_panic("relocate_boot_archive():  "
1788				    "HYPERVISOR_update_va_mapping() failed");
1789
1790			mfn_list[va_pfn] = copy_mfn;
1791			mfn_list[copy_pfn] = va_mfn;
1792
1793			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1794			t[0].val = va_pfn;
1795			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1796			t[1].val = copy_pfn;
1797			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1798			    DOMID_SELF) != 0 || mmu_update_return != 2)
1799				bop_panic("relocate_boot_archive():  "
1800				    "HYPERVISOR_mmu_update() failed");
1801
1802			next_phys += MMU_PAGESIZE;
1803			++relocated;
1804		}
1805		len -= MMU_PAGESIZE;
1806		va += MMU_PAGESIZE;
1807	}
1808	DBG_MSG("Relocated pages:\n");
1809	DBG(relocated);
1810	DBG_MSG("Out of total pages:\n");
1811	DBG(total);
1812}
1813#endif /* __xpv */
1814
1815#if !defined(__xpv)
1816/*
1817 * simple description of a stack frame (args are 32 bit only currently)
1818 */
1819typedef struct bop_frame {
1820	struct bop_frame *old_frame;
1821	pc_t retaddr;
1822	long arg[1];
1823} bop_frame_t;
1824
1825void
1826bop_traceback(bop_frame_t *frame)
1827{
1828	pc_t pc;
1829	int cnt;
1830	char *ksym;
1831	ulong_t off;
1832
1833	bop_printf(NULL, "Stack traceback:\n");
1834	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1835		pc = frame->retaddr;
1836		if (pc == 0)
1837			break;
1838		ksym = kobj_getsymname(pc, &off);
1839		if (ksym)
1840			bop_printf(NULL, "  %s+%lx", ksym, off);
1841		else
1842			bop_printf(NULL, "  0x%lx", pc);
1843
1844		frame = frame->old_frame;
1845		if (frame == 0) {
1846			bop_printf(NULL, "\n");
1847			break;
1848		}
1849		bop_printf(NULL, "\n");
1850	}
1851}
1852
1853struct trapframe {
1854	ulong_t error_code;	/* optional */
1855	ulong_t inst_ptr;
1856	ulong_t code_seg;
1857	ulong_t flags_reg;
1858	ulong_t stk_ptr;
1859	ulong_t stk_seg;
1860};
1861
1862void
1863bop_trap(ulong_t *tfp)
1864{
1865	struct trapframe *tf = (struct trapframe *)tfp;
1866	bop_frame_t fakeframe;
1867	static int depth = 0;
1868
1869	/*
1870	 * Check for an infinite loop of traps.
1871	 */
1872	if (++depth > 2)
1873		bop_panic("Nested trap");
1874
1875	bop_printf(NULL, "Unexpected trap\n");
1876
1877	/*
1878	 * adjust the tf for optional error_code by detecting the code selector
1879	 */
1880	if (tf->code_seg != B64CODE_SEL)
1881		tf = (struct trapframe *)(tfp - 1);
1882	else
1883		bop_printf(NULL, "error code           0x%lx\n",
1884		    tf->error_code & 0xffffffff);
1885
1886	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1887	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1888	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1889	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1890	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1891
1892	/* grab %[er]bp pushed by our code from the stack */
1893	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1894	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1895	bop_printf(NULL, "Attempting stack backtrace:\n");
1896	bop_traceback(&fakeframe);
1897	bop_panic("unexpected trap in early boot");
1898}
1899
1900extern void bop_trap_handler(void);
1901
1902static gate_desc_t *bop_idt;
1903
1904static desctbr_t bop_idt_info;
1905
1906/*
1907 * Install a temporary IDT that lets us catch errors in the boot time code.
1908 * We shouldn't get any faults at all while this is installed, so we'll
1909 * just generate a traceback and exit.
1910 */
1911static void
1912bop_idt_init(void)
1913{
1914	int t;
1915
1916	bop_idt = (gate_desc_t *)
1917	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1918	bzero(bop_idt, MMU_PAGESIZE);
1919	for (t = 0; t < NIDT; ++t) {
1920		/*
1921		 * Note that since boot runs without a TSS, the
1922		 * double fault handler cannot use an alternate stack (64-bit).
1923		 */
1924		set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
1925		    SDT_SYSIGT, TRP_KPL, 0);
1926	}
1927	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1928	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1929	wr_idtr(&bop_idt_info);
1930}
1931#endif	/* !defined(__xpv) */
1932
1933/*
1934 * This is where we enter the kernel. It dummies up the boot_ops and
1935 * boot_syscalls vectors and jumps off to _kobj_boot()
1936 */
1937void
1938_start(struct xboot_info *xbp)
1939{
1940	bootops_t *bops = &bootop;
1941	extern void _kobj_boot();
1942
1943	/*
1944	 * 1st off - initialize the console for any error messages
1945	 */
1946	xbootp = xbp;
1947#ifdef __xpv
1948	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1949	xen_info = xbp->bi_xen_start_info;
1950#endif
1951
1952#ifndef __xpv
1953	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1954	    FASTBOOT_MAGIC) {
1955		post_fastreboot = 1;
1956		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1957	}
1958#endif
1959
1960	bcons_init(xbp);
1961	have_console = 1;
1962
1963	/*
1964	 * enable debugging
1965	 */
1966	if (find_boot_prop("kbm_debug") != NULL)
1967		kbm_debug = 1;
1968
1969	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1970	DBG_MSG((char *)xbp->bi_cmdline);
1971	DBG_MSG("\n\n\n");
1972
1973	/*
1974	 * physavail is no longer used by startup
1975	 */
1976	bm.physinstalled = xbp->bi_phys_install;
1977	bm.pcimem = xbp->bi_pcimem;
1978	bm.rsvdmem = xbp->bi_rsvdmem;
1979	bm.physavail = NULL;
1980
1981	/*
1982	 * initialize the boot time allocator
1983	 */
1984	next_phys = xbp->bi_next_paddr;
1985	DBG(next_phys);
1986	next_virt = (uintptr_t)xbp->bi_next_vaddr;
1987	DBG(next_virt);
1988	DBG_MSG("Initializing boot time memory management...");
1989#ifdef __xpv
1990	{
1991		xen_platform_parameters_t p;
1992
1993		/* This call shouldn't fail, dboot already did it once. */
1994		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1995		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1996		DBG(xen_virt_start);
1997	}
1998#endif
1999	kbm_init(xbp);
2000	DBG_MSG("done\n");
2001
2002	/*
2003	 * Fill in the bootops vector
2004	 */
2005	bops->bsys_version = BO_VERSION;
2006	bops->boot_mem = &bm;
2007	bops->bsys_alloc = do_bsys_alloc;
2008	bops->bsys_free = do_bsys_free;
2009	bops->bsys_getproplen = do_bsys_getproplen;
2010	bops->bsys_getprop = do_bsys_getprop;
2011	bops->bsys_nextprop = do_bsys_nextprop;
2012	bops->bsys_printf = bop_printf;
2013	bops->bsys_doint = do_bsys_doint;
2014
2015	/*
2016	 * BOP_EALLOC() is no longer needed
2017	 */
2018	bops->bsys_ealloc = do_bsys_ealloc;
2019
2020#ifdef __xpv
2021	/*
2022	 * On domain 0 we need to free up some physical memory that is
2023	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2024	 * sitting in low MFN memory. We'll relocated the boot archive
2025	 * pages to high PFN memory.
2026	 */
2027	if (DOMAIN_IS_INITDOMAIN(xen_info))
2028		relocate_boot_archive(xbp);
2029#endif
2030
2031#ifndef __xpv
2032	/*
2033	 * Install an IDT to catch early pagefaults (shouldn't have any).
2034	 * Also needed for kmdb.
2035	 */
2036	bop_idt_init();
2037#endif
2038
2039	/*
2040	 * Start building the boot properties from the command line
2041	 */
2042	DBG_MSG("Initializing boot properties:\n");
2043	build_boot_properties(xbp);
2044
2045	if (find_boot_prop("prom_debug") || kbm_debug) {
2046		char *value;
2047
2048		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2049		boot_prop_display(value);
2050	}
2051
2052	/*
2053	 * jump into krtld...
2054	 */
2055	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2056}
2057
2058
2059/*ARGSUSED*/
2060static caddr_t
2061no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2062{
2063	panic("Attempt to bsys_alloc() too late\n");
2064	return (NULL);
2065}
2066
2067/*ARGSUSED*/
2068static void
2069no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2070{
2071	panic("Attempt to bsys_free() too late\n");
2072}
2073
2074void
2075bop_no_more_mem(void)
2076{
2077	DBG(total_bop_alloc_scratch);
2078	DBG(total_bop_alloc_kernel);
2079	bootops->bsys_alloc = no_more_alloc;
2080	bootops->bsys_free = no_more_free;
2081}
2082
2083
2084/*
2085 * Set ACPI firmware properties
2086 */
2087
2088static caddr_t
2089vmap_phys(size_t length, paddr_t pa)
2090{
2091	paddr_t	start, end;
2092	caddr_t	va;
2093	size_t	len, page;
2094
2095#ifdef __xpv
2096	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2097#endif
2098	start = P2ALIGN(pa, MMU_PAGESIZE);
2099	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2100	len = end - start;
2101	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2102	for (page = 0; page < len; page += MMU_PAGESIZE)
2103		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2104	return (va + (pa & MMU_PAGEOFFSET));
2105}
2106
2107static uint8_t
2108checksum_table(uint8_t *tp, size_t len)
2109{
2110	uint8_t sum = 0;
2111
2112	while (len-- > 0)
2113		sum += *tp++;
2114
2115	return (sum);
2116}
2117
2118static int
2119valid_rsdp(ACPI_TABLE_RSDP *rp)
2120{
2121
2122	/* validate the V1.x checksum */
2123	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2124		return (0);
2125
2126	/* If pre-ACPI 2.0, this is a valid RSDP */
2127	if (rp->Revision < 2)
2128		return (1);
2129
2130	/* validate the V2.x checksum */
2131	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2132		return (0);
2133
2134	return (1);
2135}
2136
2137/*
2138 * Scan memory range for an RSDP;
2139 * see ACPI 3.0 Spec, 5.2.5.1
2140 */
2141static ACPI_TABLE_RSDP *
2142scan_rsdp(paddr_t start, paddr_t end)
2143{
2144	ssize_t len  = end - start;
2145	caddr_t ptr;
2146
2147	ptr = vmap_phys(len, start);
2148	while (len > 0) {
2149		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2150		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2151			return ((ACPI_TABLE_RSDP *)ptr);
2152
2153		ptr += ACPI_RSDP_SCAN_STEP;
2154		len -= ACPI_RSDP_SCAN_STEP;
2155	}
2156
2157	return (NULL);
2158}
2159
2160/*
2161 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2162 */
2163static ACPI_TABLE_RSDP *
2164find_rsdp()
2165{
2166	ACPI_TABLE_RSDP *rsdp;
2167	uint64_t rsdp_val = 0;
2168	uint16_t *ebda_seg;
2169	paddr_t  ebda_addr;
2170
2171	/* check for "acpi-root-tab" property */
2172	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2173		(void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2174		if (rsdp_val != 0) {
2175			rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2176			if (rsdp != NULL) {
2177				if (kbm_debug) {
2178					bop_printf(NULL,
2179					    "Using RSDP from bootloader: "
2180					    "0x%p\n", (void *)rsdp);
2181				}
2182				return (rsdp);
2183			}
2184		}
2185	}
2186
2187	/*
2188	 * Get the EBDA segment and scan the first 1K
2189	 */
2190	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2191	    ACPI_EBDA_PTR_LOCATION);
2192	ebda_addr = *ebda_seg << 4;
2193	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2194	if (rsdp == NULL)
2195		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2196		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2197		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2198	return (rsdp);
2199}
2200
2201static ACPI_TABLE_HEADER *
2202map_fw_table(paddr_t table_addr)
2203{
2204	ACPI_TABLE_HEADER *tp;
2205	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2206
2207	/*
2208	 * Map at least a page; if the table is larger than this, remap it
2209	 */
2210	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2211	if (tp->Length > len)
2212		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2213	return (tp);
2214}
2215
2216static ACPI_TABLE_HEADER *
2217find_fw_table(char *signature)
2218{
2219	static int revision = 0;
2220	static ACPI_TABLE_XSDT *xsdt;
2221	static int len;
2222	paddr_t xsdt_addr;
2223	ACPI_TABLE_RSDP *rsdp;
2224	ACPI_TABLE_HEADER *tp;
2225	paddr_t table_addr;
2226	int	n;
2227
2228	if (strlen(signature) != ACPI_NAME_SIZE)
2229		return (NULL);
2230
2231	/*
2232	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2233	 * understand this code.  If we haven't already found the RSDT/XSDT,
2234	 * revision will be 0. Find the RSDP and check the revision
2235	 * to find out whether to use the RSDT or XSDT.  If revision is
2236	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2237	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2238	 * revision 1 and use the RSDT.
2239	 */
2240	if (revision == 0) {
2241		if ((rsdp = find_rsdp()) != NULL) {
2242			revision = rsdp->Revision;
2243			/*
2244			 * ACPI 6.0 states that current revision is 2
2245			 * from acpi_table_rsdp definition:
2246			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2247			 */
2248			if (revision > 2)
2249				revision = 2;
2250			switch (revision) {
2251			case 2:
2252				/*
2253				 * Use the XSDT unless BIOS is buggy and
2254				 * claims to be rev 2 but has a null XSDT
2255				 * address
2256				 */
2257				xsdt_addr = rsdp->XsdtPhysicalAddress;
2258				if (xsdt_addr != 0)
2259					break;
2260				/* FALLTHROUGH */
2261			case 0:
2262				/* treat RSDP rev 0 as revision 1 internally */
2263				revision = 1;
2264				/* FALLTHROUGH */
2265			case 1:
2266				/* use the RSDT for rev 0/1 */
2267				xsdt_addr = rsdp->RsdtPhysicalAddress;
2268				break;
2269			default:
2270				/* unknown revision */
2271				revision = 0;
2272				break;
2273			}
2274		}
2275		if (revision == 0)
2276			return (NULL);
2277
2278		/* cache the XSDT info */
2279		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2280		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2281		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2282	}
2283
2284	/*
2285	 * Scan the table headers looking for a signature match
2286	 */
2287	for (n = 0; n < len; n++) {
2288		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2289		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2290		    xsdt->TableOffsetEntry[n];
2291
2292		if (table_addr == 0)
2293			continue;
2294		tp = map_fw_table(table_addr);
2295		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2296			return (tp);
2297		}
2298	}
2299	return (NULL);
2300}
2301
2302static void
2303process_mcfg(ACPI_TABLE_MCFG *tp)
2304{
2305	ACPI_MCFG_ALLOCATION *cfg_baap;
2306	char *cfg_baa_endp;
2307	int64_t ecfginfo[4];
2308
2309	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2310	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2311	while ((char *)cfg_baap < cfg_baa_endp) {
2312		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2313			ecfginfo[0] = cfg_baap->Address;
2314			ecfginfo[1] = cfg_baap->PciSegment;
2315			ecfginfo[2] = cfg_baap->StartBusNumber;
2316			ecfginfo[3] = cfg_baap->EndBusNumber;
2317			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2318			    ecfginfo, sizeof (ecfginfo));
2319			break;
2320		}
2321		cfg_baap++;
2322	}
2323}
2324
2325#ifndef __xpv
2326static void
2327process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2328    uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2329{
2330	ACPI_SUBTABLE_HEADER *item, *end;
2331	uint32_t cpu_count = 0;
2332	uint32_t cpu_possible_count = 0;
2333
2334	/*
2335	 * Determine number of CPUs and keep track of "final" APIC ID
2336	 * for each CPU by walking through ACPI MADT processor list
2337	 */
2338	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2339	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2340
2341	while (item < end) {
2342		switch (item->Type) {
2343		case ACPI_MADT_TYPE_LOCAL_APIC: {
2344			ACPI_MADT_LOCAL_APIC *cpu =
2345			    (ACPI_MADT_LOCAL_APIC *) item;
2346
2347			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2348				if (cpu_apicid_array != NULL)
2349					cpu_apicid_array[cpu_count] = cpu->Id;
2350				cpu_count++;
2351			}
2352			cpu_possible_count++;
2353			break;
2354		}
2355		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2356			ACPI_MADT_LOCAL_X2APIC *cpu =
2357			    (ACPI_MADT_LOCAL_X2APIC *) item;
2358
2359			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2360				if (cpu_apicid_array != NULL)
2361					cpu_apicid_array[cpu_count] =
2362					    cpu->LocalApicId;
2363				cpu_count++;
2364			}
2365			cpu_possible_count++;
2366			break;
2367		}
2368		default:
2369			if (kbm_debug)
2370				bop_printf(NULL, "MADT type %d\n", item->Type);
2371			break;
2372		}
2373
2374		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2375	}
2376	if (cpu_countp)
2377		*cpu_countp = cpu_count;
2378	if (cpu_possible_countp)
2379		*cpu_possible_countp = cpu_possible_count;
2380}
2381
2382static void
2383process_madt(ACPI_TABLE_MADT *tp)
2384{
2385	uint32_t cpu_count = 0;
2386	uint32_t cpu_possible_count = 0;
2387	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2388
2389	if (tp != NULL) {
2390		/* count cpu's */
2391		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2392
2393		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2394		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2395		if (cpu_apicid_array == NULL)
2396			bop_panic("Not enough memory for APIC ID array");
2397
2398		/* copy IDs */
2399		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2400
2401		/*
2402		 * Make boot property for array of "final" APIC IDs for each
2403		 * CPU
2404		 */
2405		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2406		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2407	}
2408
2409	/*
2410	 * Check whether property plat-max-ncpus is already set.
2411	 */
2412	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2413		/*
2414		 * Set plat-max-ncpus to number of maximum possible CPUs given
2415		 * in MADT if it hasn't been set.
2416		 * There's no formal way to detect max possible CPUs supported
2417		 * by platform according to ACPI spec3.0b. So current CPU
2418		 * hotplug implementation expects that all possible CPUs will
2419		 * have an entry in MADT table and set plat-max-ncpus to number
2420		 * of entries in MADT.
2421		 * With introducing of ACPI4.0, Maximum System Capability Table
2422		 * (MSCT) provides maximum number of CPUs supported by platform.
2423		 * If MSCT is unavailable, fall back to old way.
2424		 */
2425		if (tp != NULL)
2426			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2427	}
2428
2429	/*
2430	 * Set boot property boot-max-ncpus to number of CPUs existing at
2431	 * boot time. boot-max-ncpus is mainly used for optimization.
2432	 */
2433	if (tp != NULL)
2434		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2435
2436	/*
2437	 * User-set boot-ncpus overrides firmware count
2438	 */
2439	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2440		return;
2441
2442	/*
2443	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2444	 * if it hasn't been set yet.
2445	 */
2446	if (tp != NULL)
2447		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2448}
2449
2450static void
2451process_srat(ACPI_TABLE_SRAT *tp)
2452{
2453	ACPI_SUBTABLE_HEADER *item, *end;
2454	int i;
2455	int proc_num, mem_num;
2456#pragma pack(1)
2457	struct {
2458		uint32_t domain;
2459		uint32_t apic_id;
2460		uint32_t sapic_id;
2461	} processor;
2462	struct {
2463		uint32_t domain;
2464		uint32_t x2apic_id;
2465	} x2apic;
2466	struct {
2467		uint32_t domain;
2468		uint64_t addr;
2469		uint64_t length;
2470		uint32_t flags;
2471	} memory;
2472#pragma pack()
2473	char prop_name[30];
2474	uint64_t maxmem = 0;
2475
2476	if (tp == NULL)
2477		return;
2478
2479	proc_num = mem_num = 0;
2480	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2481	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2482	while (item < end) {
2483		switch (item->Type) {
2484		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2485			ACPI_SRAT_CPU_AFFINITY *cpu =
2486			    (ACPI_SRAT_CPU_AFFINITY *) item;
2487
2488			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2489				break;
2490			processor.domain = cpu->ProximityDomainLo;
2491			for (i = 0; i < 3; i++)
2492				processor.domain +=
2493				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2494			processor.apic_id = cpu->ApicId;
2495			processor.sapic_id = cpu->LocalSapicEid;
2496			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2497			    proc_num);
2498			bsetprop(prop_name, strlen(prop_name), &processor,
2499			    sizeof (processor));
2500			proc_num++;
2501			break;
2502		}
2503		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2504			ACPI_SRAT_MEM_AFFINITY *mem =
2505			    (ACPI_SRAT_MEM_AFFINITY *)item;
2506
2507			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2508				break;
2509			memory.domain = mem->ProximityDomain;
2510			memory.addr = mem->BaseAddress;
2511			memory.length = mem->Length;
2512			memory.flags = mem->Flags;
2513			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2514			    mem_num);
2515			bsetprop(prop_name, strlen(prop_name), &memory,
2516			    sizeof (memory));
2517			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2518			    (memory.addr + memory.length > maxmem)) {
2519				maxmem = memory.addr + memory.length;
2520			}
2521			mem_num++;
2522			break;
2523		}
2524		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2525			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2526			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2527
2528			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2529				break;
2530			x2apic.domain = x2cpu->ProximityDomain;
2531			x2apic.x2apic_id = x2cpu->ApicId;
2532			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2533			    proc_num);
2534			bsetprop(prop_name, strlen(prop_name), &x2apic,
2535			    sizeof (x2apic));
2536			proc_num++;
2537			break;
2538		}
2539		default:
2540			if (kbm_debug)
2541				bop_printf(NULL, "SRAT type %d\n", item->Type);
2542			break;
2543		}
2544
2545		item = (ACPI_SUBTABLE_HEADER *)
2546		    (item->Length + (uintptr_t)item);
2547	}
2548
2549	/*
2550	 * The maximum physical address calculated from the SRAT table is more
2551	 * accurate than that calculated from the MSCT table.
2552	 */
2553	if (maxmem != 0) {
2554		plat_dr_physmax = btop(maxmem);
2555	}
2556}
2557
2558static void
2559process_slit(ACPI_TABLE_SLIT *tp)
2560{
2561
2562	/*
2563	 * Check the number of localities; if it's too huge, we just
2564	 * return and locality enumeration code will handle this later,
2565	 * if possible.
2566	 *
2567	 * Note that the size of the table is the square of the
2568	 * number of localities; if the number of localities exceeds
2569	 * UINT16_MAX, the table size may overflow an int when being
2570	 * passed to bsetprop() below.
2571	 */
2572	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2573		return;
2574
2575	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2576	    &tp->LocalityCount, sizeof (tp->LocalityCount));
2577	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2578	    tp->LocalityCount * tp->LocalityCount);
2579}
2580
2581static ACPI_TABLE_MSCT *
2582process_msct(ACPI_TABLE_MSCT *tp)
2583{
2584	int last_seen = 0;
2585	int proc_num = 0;
2586	ACPI_MSCT_PROXIMITY *item, *end;
2587	extern uint64_t plat_dr_options;
2588
2589	ASSERT(tp != NULL);
2590
2591	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2592	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2593	    item < end;
2594	    item = (void *)(item->Length + (uintptr_t)item)) {
2595		/*
2596		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2597		 * Revision 	1
2598		 * Length	22
2599		 */
2600		if (item->Revision != 1 || item->Length != 22) {
2601			cmn_err(CE_CONT,
2602			    "?boot: unknown proximity domain structure in MSCT "
2603			    "with Revision(%d), Length(%d).\n",
2604			    (int)item->Revision, (int)item->Length);
2605			return (NULL);
2606		} else if (item->RangeStart > item->RangeEnd) {
2607			cmn_err(CE_CONT,
2608			    "?boot: invalid proximity domain structure in MSCT "
2609			    "with RangeStart(%u), RangeEnd(%u).\n",
2610			    item->RangeStart, item->RangeEnd);
2611			return (NULL);
2612		} else if (item->RangeStart != last_seen) {
2613			/*
2614			 * Items must be organized in ascending order of the
2615			 * proximity domain enumerations.
2616			 */
2617			cmn_err(CE_CONT,
2618			    "?boot: invalid proximity domain structure in MSCT,"
2619			    " items are not orginized in ascending order.\n");
2620			return (NULL);
2621		}
2622
2623		/*
2624		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2625		 * domain.
2626		 */
2627		if (item->ProcessorCapacity != 0) {
2628			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2629			    item->ProcessorCapacity;
2630		}
2631
2632		last_seen = item->RangeEnd - item->RangeStart + 1;
2633		/*
2634		 * Break out if all proximity domains have been processed.
2635		 * Some BIOSes may have unused items at the end of MSCT table.
2636		 */
2637		if (last_seen > tp->MaxProximityDomains) {
2638			break;
2639		}
2640	}
2641	if (last_seen != tp->MaxProximityDomains + 1) {
2642		cmn_err(CE_CONT,
2643		    "?boot: invalid proximity domain structure in MSCT, "
2644		    "proximity domain count doesn't match.\n");
2645		return (NULL);
2646	}
2647
2648	/*
2649	 * Set plat-max-ncpus property if it hasn't been set yet.
2650	 */
2651	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2652		if (proc_num != 0) {
2653			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2654		}
2655	}
2656
2657	/*
2658	 * Use Maximum Physical Address from the MSCT table as upper limit for
2659	 * memory hot-adding by default. It may be overridden by value from
2660	 * the SRAT table or the "plat-dr-physmax" boot option.
2661	 */
2662	plat_dr_physmax = btop(tp->MaxAddress + 1);
2663
2664	/*
2665	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2666	 * platform.
2667	 */
2668	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2669	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2670
2671	return (tp);
2672}
2673
2674#else /* __xpv */
2675static void
2676enumerate_xen_cpus()
2677{
2678	processorid_t	id, max_id;
2679
2680	/*
2681	 * User-set boot-ncpus overrides enumeration
2682	 */
2683	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2684		return;
2685
2686	/*
2687	 * Probe every possible virtual CPU id and remember the
2688	 * highest id present; the count of CPUs is one greater
2689	 * than this.  This tacitly assumes at least cpu 0 is present.
2690	 */
2691	max_id = 0;
2692	for (id = 0; id < MAX_VIRT_CPUS; id++)
2693		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2694			max_id = id;
2695
2696	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2697
2698}
2699#endif /* __xpv */
2700
2701/*ARGSUSED*/
2702static void
2703build_firmware_properties(struct xboot_info *xbp)
2704{
2705	ACPI_TABLE_HEADER *tp = NULL;
2706
2707#ifndef __xpv
2708	if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2709		bsetprops("efi-systype", "64");
2710		bsetprop64("efi-systab",
2711		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2712		if (kbm_debug)
2713			bop_printf(NULL, "64-bit UEFI detected.\n");
2714	} else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2715		bsetprops("efi-systype", "32");
2716		bsetprop64("efi-systab",
2717		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2718		if (kbm_debug)
2719			bop_printf(NULL, "32-bit UEFI detected.\n");
2720	}
2721
2722	if (xbp->bi_acpi_rsdp != NULL) {
2723		bsetprop64("acpi-root-tab",
2724		    (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2725	}
2726
2727	if (xbp->bi_smbios != NULL) {
2728		bsetprop64("smbios-address",
2729		    (uint64_t)(uintptr_t)xbp->bi_smbios);
2730	}
2731
2732	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2733		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2734	else
2735		msct_ptr = NULL;
2736
2737	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2738		process_madt((ACPI_TABLE_MADT *)tp);
2739
2740	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2741	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2742		process_srat(srat_ptr);
2743
2744	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2745		process_slit(slit_ptr);
2746
2747	tp = find_fw_table(ACPI_SIG_MCFG);
2748#else /* __xpv */
2749	enumerate_xen_cpus();
2750	if (DOMAIN_IS_INITDOMAIN(xen_info))
2751		tp = find_fw_table(ACPI_SIG_MCFG);
2752#endif /* __xpv */
2753	if (tp != NULL)
2754		process_mcfg((ACPI_TABLE_MCFG *)tp);
2755}
2756
2757/*
2758 * fake up a boot property for deferred early console output
2759 * this is used by both graphical boot and the (developer only)
2760 * USB serial console
2761 */
2762void *
2763defcons_init(size_t size)
2764{
2765	static char *p = NULL;
2766
2767	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2768	*p = 0;
2769	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2770	    &p, sizeof (p));
2771	return (p);
2772}
2773
2774/*ARGSUSED*/
2775int
2776boot_compinfo(int fd, struct compinfo *cbp)
2777{
2778	cbp->iscmp = 0;
2779	cbp->blksize = MAXBSIZE;
2780	return (0);
2781}
2782
2783#define	BP_MAX_STRLEN	32
2784
2785/*
2786 * Get value for given boot property
2787 */
2788int
2789bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2790{
2791	int		boot_prop_len;
2792	char		str[BP_MAX_STRLEN];
2793	u_longlong_t	value;
2794
2795	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2796	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2797	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2798	    kobj_getvalue(str, &value) == -1)
2799		return (-1);
2800
2801	if (prop_value)
2802		*prop_value = value;
2803
2804	return (0);
2805}
2806