1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vfs_opreg.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/vmsystm.h>
45#include <sys/atomic.h>
46#include <sys/vm.h>
47#include <vm/seg_vn.h>
48#include <vm/pvn.h>
49#include <vm/as.h>
50#include <vm/kpm.h>
51#include <vm/seg_kpm.h>
52#include <sys/mman.h>
53#include <sys/pathname.h>
54#include <sys/cmn_err.h>
55#include <sys/errno.h>
56#include <sys/unistd.h>
57#include <sys/zfs_dir.h>
58#include <sys/zfs_acl.h>
59#include <sys/zfs_ioctl.h>
60#include <sys/fs/zfs.h>
61#include <sys/dmu.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa.h>
64#include <sys/txg.h>
65#include <sys/dbuf.h>
66#include <sys/zap.h>
67#include <sys/sa.h>
68#include <sys/dirent.h>
69#include <sys/policy.h>
70#include <sys/sunddi.h>
71#include <sys/filio.h>
72#include <sys/sid.h>
73#include "fs/fs_subr.h"
74#include <sys/zfs_ctldir.h>
75#include <sys/zfs_fuid.h>
76#include <sys/zfs_sa.h>
77#include <sys/dnlc.h>
78#include <sys/zfs_rlock.h>
79#include <sys/extdirent.h>
80#include <sys/kidmap.h>
81#include <sys/cred.h>
82#include <sys/attr.h>
83
84/*
85 * Programming rules.
86 *
87 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory.  The example below illustrates the following Big Rules:
94 *
95 *  (1)	A check must be made in each zfs thread for a mounted file system.
96 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99 *	can return EIO from the calling function.
100 *
101 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 *	First, if it's the last reference, the vnode/znode
104 *	can be freed, so the zp may point to freed memory.  Second, the last
105 *	reference will call zfs_zinactive(), which may induce a lot of work --
106 *	pushing cached pages (which acquires range locks) and syncing out
107 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108 *	which could deadlock the system if you were already holding one.
109 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110 *
111 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112 *	as they can span dmu_tx_assign() calls.
113 *
114 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115 *      dmu_tx_assign().  This is critical because we don't want to block
116 *      while holding locks.
117 *
118 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
119 *	reduces lock contention and CPU usage when we must wait (note that if
120 *	throughput is constrained by the storage, nearly every transaction
121 *	must wait).
122 *
123 *      Note, in particular, that if a lock is sometimes acquired before
124 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
125 *      to use a non-blocking assign can deadlock the system.  The scenario:
126 *
127 *	Thread A has grabbed a lock before calling dmu_tx_assign().
128 *	Thread B is in an already-assigned tx, and blocks for this lock.
129 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130 *	forever, because the previous txg can't quiesce until B's tx commits.
131 *
132 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
134 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135 *	to indicate that this operation has already called dmu_tx_wait().
136 *	This will ensure that we don't retry forever, waiting a short bit
137 *	each time.
138 *
139 *  (5)	If the operation succeeded, generate the intent log entry for it
140 *	before dropping locks.  This ensures that the ordering of events
141 *	in the intent log matches the order in which they actually occurred.
142 *	During ZIL replay the zfs_log_* functions will update the sequence
143 *	number to indicate the zil transaction has replayed.
144 *
145 *  (6)	At the end of each vnode op, the DMU tx must always commit,
146 *	regardless of whether there were any errors.
147 *
148 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
149 *	to ensure that synchronous semantics are provided when necessary.
150 *
151 * In general, this is how things should be ordered in each vnode op:
152 *
153 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
154 * top:
155 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
156 *	rw_enter(...);			// grab any other locks you need
157 *	tx = dmu_tx_create(...);	// get DMU tx
158 *	dmu_tx_hold_*();		// hold each object you might modify
159 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160 *	if (error) {
161 *		rw_exit(...);		// drop locks
162 *		zfs_dirent_unlock(dl);	// unlock directory entry
163 *		VN_RELE(...);		// release held vnodes
164 *		if (error == ERESTART) {
165 *			waited = B_TRUE;
166 *			dmu_tx_wait(tx);
167 *			dmu_tx_abort(tx);
168 *			goto top;
169 *		}
170 *		dmu_tx_abort(tx);	// abort DMU tx
171 *		ZFS_EXIT(zfsvfs);	// finished in zfs
172 *		return (error);		// really out of space
173 *	}
174 *	error = do_real_work();		// do whatever this VOP does
175 *	if (error == 0)
176 *		zfs_log_*(...);		// on success, make ZIL entry
177 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
178 *	rw_exit(...);			// drop locks
179 *	zfs_dirent_unlock(dl);		// unlock directory entry
180 *	VN_RELE(...);			// release held vnodes
181 *	zil_commit(zilog, foid);	// synchronous when necessary
182 *	ZFS_EXIT(zfsvfs);		// finished in zfs
183 *	return (error);			// done, report error
184 */
185
186/* ARGSUSED */
187static int
188zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189{
190	znode_t	*zp = VTOZ(*vpp);
191	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192
193	ZFS_ENTER(zfsvfs);
194	ZFS_VERIFY_ZP(zp);
195
196	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197	    ((flag & FAPPEND) == 0)) {
198		ZFS_EXIT(zfsvfs);
199		return (SET_ERROR(EPERM));
200	}
201
202	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203	    ZTOV(zp)->v_type == VREG &&
204	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205		if (fs_vscan(*vpp, cr, 0) != 0) {
206			ZFS_EXIT(zfsvfs);
207			return (SET_ERROR(EACCES));
208		}
209	}
210
211	/* Keep a count of the synchronous opens in the znode */
212	if (flag & (FSYNC | FDSYNC))
213		atomic_inc_32(&zp->z_sync_cnt);
214
215	ZFS_EXIT(zfsvfs);
216	return (0);
217}
218
219/* ARGSUSED */
220static int
221zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222    caller_context_t *ct)
223{
224	znode_t	*zp = VTOZ(vp);
225	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226
227	/*
228	 * Clean up any locks held by this process on the vp.
229	 */
230	cleanlocks(vp, ddi_get_pid(), 0);
231	cleanshares(vp, ddi_get_pid());
232
233	ZFS_ENTER(zfsvfs);
234	ZFS_VERIFY_ZP(zp);
235
236	/* Decrement the synchronous opens in the znode */
237	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238		atomic_dec_32(&zp->z_sync_cnt);
239
240	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241	    ZTOV(zp)->v_type == VREG &&
242	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243		VERIFY(fs_vscan(vp, cr, 1) == 0);
244
245	ZFS_EXIT(zfsvfs);
246	return (0);
247}
248
249/*
250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252 */
253static int
254zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255{
256	znode_t	*zp = VTOZ(vp);
257	uint64_t noff = (uint64_t)*off; /* new offset */
258	uint64_t file_sz;
259	int error;
260	boolean_t hole;
261
262	file_sz = zp->z_size;
263	if (noff >= file_sz)  {
264		return (SET_ERROR(ENXIO));
265	}
266
267	if (cmd == _FIO_SEEK_HOLE)
268		hole = B_TRUE;
269	else
270		hole = B_FALSE;
271
272	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273
274	if (error == ESRCH)
275		return (SET_ERROR(ENXIO));
276
277	/*
278	 * We could find a hole that begins after the logical end-of-file,
279	 * because dmu_offset_next() only works on whole blocks.  If the
280	 * EOF falls mid-block, then indicate that the "virtual hole"
281	 * at the end of the file begins at the logical EOF, rather than
282	 * at the end of the last block.
283	 */
284	if (noff > file_sz) {
285		ASSERT(hole);
286		noff = file_sz;
287	}
288
289	if (noff < *off)
290		return (error);
291	*off = noff;
292	return (error);
293}
294
295/* ARGSUSED */
296static int
297zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298    int *rvalp, caller_context_t *ct)
299{
300	offset_t off;
301	offset_t ndata;
302	dmu_object_info_t doi;
303	int error;
304	zfsvfs_t *zfsvfs;
305	znode_t *zp;
306
307	switch (com) {
308	case _FIOFFS:
309	{
310		return (zfs_sync(vp->v_vfsp, 0, cred));
311
312		/*
313		 * The following two ioctls are used by bfu.  Faking out,
314		 * necessary to avoid bfu errors.
315		 */
316	}
317	case _FIOGDIO:
318	case _FIOSDIO:
319	{
320		return (0);
321	}
322
323	case _FIO_SEEK_DATA:
324	case _FIO_SEEK_HOLE:
325	{
326		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
327			return (SET_ERROR(EFAULT));
328
329		zp = VTOZ(vp);
330		zfsvfs = zp->z_zfsvfs;
331		ZFS_ENTER(zfsvfs);
332		ZFS_VERIFY_ZP(zp);
333
334		/* offset parameter is in/out */
335		error = zfs_holey(vp, com, &off);
336		ZFS_EXIT(zfsvfs);
337		if (error)
338			return (error);
339		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
340			return (SET_ERROR(EFAULT));
341		return (0);
342	}
343	case _FIO_COUNT_FILLED:
344	{
345		/*
346		 * _FIO_COUNT_FILLED adds a new ioctl command which
347		 * exposes the number of filled blocks in a
348		 * ZFS object.
349		 */
350		zp = VTOZ(vp);
351		zfsvfs = zp->z_zfsvfs;
352		ZFS_ENTER(zfsvfs);
353		ZFS_VERIFY_ZP(zp);
354
355		/*
356		 * Wait for all dirty blocks for this object
357		 * to get synced out to disk, and the DMU info
358		 * updated.
359		 */
360		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
361		if (error) {
362			ZFS_EXIT(zfsvfs);
363			return (error);
364		}
365
366		/*
367		 * Retrieve fill count from DMU object.
368		 */
369		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
370		if (error) {
371			ZFS_EXIT(zfsvfs);
372			return (error);
373		}
374
375		ndata = doi.doi_fill_count;
376
377		ZFS_EXIT(zfsvfs);
378		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
379			return (SET_ERROR(EFAULT));
380		return (0);
381	}
382	}
383	return (SET_ERROR(ENOTTY));
384}
385
386/*
387 * Utility functions to map and unmap a single physical page.  These
388 * are used to manage the mappable copies of ZFS file data, and therefore
389 * do not update ref/mod bits.
390 */
391caddr_t
392zfs_map_page(page_t *pp, enum seg_rw rw)
393{
394	if (kpm_enable)
395		return (hat_kpm_mapin(pp, 0));
396	ASSERT(rw == S_READ || rw == S_WRITE);
397	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
398	    (caddr_t)-1));
399}
400
401void
402zfs_unmap_page(page_t *pp, caddr_t addr)
403{
404	if (kpm_enable) {
405		hat_kpm_mapout(pp, 0, addr);
406	} else {
407		ppmapout(addr);
408	}
409}
410
411/*
412 * When a file is memory mapped, we must keep the IO data synchronized
413 * between the DMU cache and the memory mapped pages.  What this means:
414 *
415 * On Write:	If we find a memory mapped page, we write to *both*
416 *		the page and the dmu buffer.
417 */
418static void
419update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
420{
421	int64_t	off;
422
423	off = start & PAGEOFFSET;
424	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425		page_t *pp;
426		uint64_t nbytes = MIN(PAGESIZE - off, len);
427
428		if (pp = page_lookup(vp, start, SE_SHARED)) {
429			caddr_t va;
430
431			va = zfs_map_page(pp, S_WRITE);
432			(void) dmu_read(os, oid, start+off, nbytes, va+off,
433			    DMU_READ_PREFETCH);
434			zfs_unmap_page(pp, va);
435			page_unlock(pp);
436		}
437		len -= nbytes;
438		off = 0;
439	}
440}
441
442/*
443 * When a file is memory mapped, we must keep the IO data synchronized
444 * between the DMU cache and the memory mapped pages.  What this means:
445 *
446 * On Read:	We "read" preferentially from memory mapped pages,
447 *		else we default from the dmu buffer.
448 *
449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
450 *	 the file is memory mapped.
451 */
452static int
453mappedread(vnode_t *vp, int nbytes, uio_t *uio)
454{
455	znode_t *zp = VTOZ(vp);
456	int64_t	start, off;
457	int len = nbytes;
458	int error = 0;
459
460	start = uio->uio_loffset;
461	off = start & PAGEOFFSET;
462	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
463		page_t *pp;
464		uint64_t bytes = MIN(PAGESIZE - off, len);
465
466		if (pp = page_lookup(vp, start, SE_SHARED)) {
467			caddr_t va;
468
469			va = zfs_map_page(pp, S_READ);
470			error = uiomove(va + off, bytes, UIO_READ, uio);
471			zfs_unmap_page(pp, va);
472			page_unlock(pp);
473		} else {
474			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
475			    uio, bytes);
476		}
477		len -= bytes;
478		off = 0;
479		if (error)
480			break;
481	}
482	return (error);
483}
484
485offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
486
487/*
488 * Read bytes from specified file into supplied buffer.
489 *
490 *	IN:	vp	- vnode of file to be read from.
491 *		uio	- structure supplying read location, range info,
492 *			  and return buffer.
493 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
494 *		cr	- credentials of caller.
495 *		ct	- caller context
496 *
497 *	OUT:	uio	- updated offset and range, buffer filled.
498 *
499 *	RETURN:	0 on success, error code on failure.
500 *
501 * Side Effects:
502 *	vp - atime updated if byte count > 0
503 */
504/* ARGSUSED */
505static int
506zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
507{
508	znode_t		*zp = VTOZ(vp);
509	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
510	ssize_t		n, nbytes;
511	int		error = 0;
512	rl_t		*rl;
513	xuio_t		*xuio = NULL;
514
515	ZFS_ENTER(zfsvfs);
516	ZFS_VERIFY_ZP(zp);
517
518	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
519		ZFS_EXIT(zfsvfs);
520		return (SET_ERROR(EACCES));
521	}
522
523	/*
524	 * Validate file offset
525	 */
526	if (uio->uio_loffset < (offset_t)0) {
527		ZFS_EXIT(zfsvfs);
528		return (SET_ERROR(EINVAL));
529	}
530
531	/*
532	 * Fasttrack empty reads
533	 */
534	if (uio->uio_resid == 0) {
535		ZFS_EXIT(zfsvfs);
536		return (0);
537	}
538
539	/*
540	 * Check for mandatory locks
541	 */
542	if (MANDMODE(zp->z_mode)) {
543		if (error = chklock(vp, FREAD,
544		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
545			ZFS_EXIT(zfsvfs);
546			return (error);
547		}
548	}
549
550	/*
551	 * If we're in FRSYNC mode, sync out this znode before reading it.
552	 */
553	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
554		zil_commit(zfsvfs->z_log, zp->z_id);
555
556	/*
557	 * Lock the range against changes.
558	 */
559	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
560
561	/*
562	 * If we are reading past end-of-file we can skip
563	 * to the end; but we might still need to set atime.
564	 */
565	if (uio->uio_loffset >= zp->z_size) {
566		error = 0;
567		goto out;
568	}
569
570	ASSERT(uio->uio_loffset < zp->z_size);
571	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
572
573	if ((uio->uio_extflg == UIO_XUIO) &&
574	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
575		int nblk;
576		int blksz = zp->z_blksz;
577		uint64_t offset = uio->uio_loffset;
578
579		xuio = (xuio_t *)uio;
580		if ((ISP2(blksz))) {
581			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
582			    blksz)) / blksz;
583		} else {
584			ASSERT(offset + n <= blksz);
585			nblk = 1;
586		}
587		(void) dmu_xuio_init(xuio, nblk);
588
589		if (vn_has_cached_data(vp)) {
590			/*
591			 * For simplicity, we always allocate a full buffer
592			 * even if we only expect to read a portion of a block.
593			 */
594			while (--nblk >= 0) {
595				(void) dmu_xuio_add(xuio,
596				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
597				    blksz), 0, blksz);
598			}
599		}
600	}
601
602	while (n > 0) {
603		nbytes = MIN(n, zfs_read_chunk_size -
604		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
605
606		if (vn_has_cached_data(vp)) {
607			error = mappedread(vp, nbytes, uio);
608		} else {
609			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
610			    uio, nbytes);
611		}
612		if (error) {
613			/* convert checksum errors into IO errors */
614			if (error == ECKSUM)
615				error = SET_ERROR(EIO);
616			break;
617		}
618
619		n -= nbytes;
620	}
621out:
622	zfs_range_unlock(rl);
623
624	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
625	ZFS_EXIT(zfsvfs);
626	return (error);
627}
628
629/*
630 * Write the bytes to a file.
631 *
632 *	IN:	vp	- vnode of file to be written to.
633 *		uio	- structure supplying write location, range info,
634 *			  and data buffer.
635 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
636 *			  set if in append mode.
637 *		cr	- credentials of caller.
638 *		ct	- caller context (NFS/CIFS fem monitor only)
639 *
640 *	OUT:	uio	- updated offset and range.
641 *
642 *	RETURN:	0 on success, error code on failure.
643 *
644 * Timestamps:
645 *	vp - ctime|mtime updated if byte count > 0
646 */
647
648/* ARGSUSED */
649static int
650zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
651{
652	znode_t		*zp = VTOZ(vp);
653	rlim64_t	limit = uio->uio_llimit;
654	ssize_t		start_resid = uio->uio_resid;
655	ssize_t		tx_bytes;
656	uint64_t	end_size;
657	dmu_tx_t	*tx;
658	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
659	zilog_t		*zilog;
660	offset_t	woff;
661	ssize_t		n, nbytes;
662	rl_t		*rl;
663	int		max_blksz = zfsvfs->z_max_blksz;
664	int		error = 0;
665	arc_buf_t	*abuf;
666	iovec_t		*aiov = NULL;
667	xuio_t		*xuio = NULL;
668	int		i_iov = 0;
669	int		iovcnt = uio->uio_iovcnt;
670	iovec_t		*iovp = uio->uio_iov;
671	int		write_eof;
672	int		count = 0;
673	sa_bulk_attr_t	bulk[4];
674	uint64_t	mtime[2], ctime[2];
675
676	/*
677	 * Fasttrack empty write
678	 */
679	n = start_resid;
680	if (n == 0)
681		return (0);
682
683	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
684		limit = MAXOFFSET_T;
685
686	ZFS_ENTER(zfsvfs);
687	ZFS_VERIFY_ZP(zp);
688
689	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
690	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
691	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
692	    &zp->z_size, 8);
693	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
694	    &zp->z_pflags, 8);
695
696	/*
697	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
698	 * callers might not be able to detect properly that we are read-only,
699	 * so check it explicitly here.
700	 */
701	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
702		ZFS_EXIT(zfsvfs);
703		return (SET_ERROR(EROFS));
704	}
705
706	/*
707	 * If immutable or not appending then return EPERM
708	 */
709	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
710	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
711	    (uio->uio_loffset < zp->z_size))) {
712		ZFS_EXIT(zfsvfs);
713		return (SET_ERROR(EPERM));
714	}
715
716	zilog = zfsvfs->z_log;
717
718	/*
719	 * Validate file offset
720	 */
721	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
722	if (woff < 0) {
723		ZFS_EXIT(zfsvfs);
724		return (SET_ERROR(EINVAL));
725	}
726
727	/*
728	 * Check for mandatory locks before calling zfs_range_lock()
729	 * in order to prevent a deadlock with locks set via fcntl().
730	 */
731	if (MANDMODE((mode_t)zp->z_mode) &&
732	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
733		ZFS_EXIT(zfsvfs);
734		return (error);
735	}
736
737	/*
738	 * Pre-fault the pages to ensure slow (eg NFS) pages
739	 * don't hold up txg.
740	 * Skip this if uio contains loaned arc_buf.
741	 */
742	if ((uio->uio_extflg == UIO_XUIO) &&
743	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
744		xuio = (xuio_t *)uio;
745	else
746		uio_prefaultpages(MIN(n, max_blksz), uio);
747
748	/*
749	 * If in append mode, set the io offset pointer to eof.
750	 */
751	if (ioflag & FAPPEND) {
752		/*
753		 * Obtain an appending range lock to guarantee file append
754		 * semantics.  We reset the write offset once we have the lock.
755		 */
756		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
757		woff = rl->r_off;
758		if (rl->r_len == UINT64_MAX) {
759			/*
760			 * We overlocked the file because this write will cause
761			 * the file block size to increase.
762			 * Note that zp_size cannot change with this lock held.
763			 */
764			woff = zp->z_size;
765		}
766		uio->uio_loffset = woff;
767	} else {
768		/*
769		 * Note that if the file block size will change as a result of
770		 * this write, then this range lock will lock the entire file
771		 * so that we can re-write the block safely.
772		 */
773		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
774	}
775
776	if (woff >= limit) {
777		zfs_range_unlock(rl);
778		ZFS_EXIT(zfsvfs);
779		return (SET_ERROR(EFBIG));
780	}
781
782	if ((woff + n) > limit || woff > (limit - n))
783		n = limit - woff;
784
785	/* Will this write extend the file length? */
786	write_eof = (woff + n > zp->z_size);
787
788	end_size = MAX(zp->z_size, woff + n);
789
790	/*
791	 * Write the file in reasonable size chunks.  Each chunk is written
792	 * in a separate transaction; this keeps the intent log records small
793	 * and allows us to do more fine-grained space accounting.
794	 */
795	while (n > 0) {
796		abuf = NULL;
797		woff = uio->uio_loffset;
798		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
799		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
800			if (abuf != NULL)
801				dmu_return_arcbuf(abuf);
802			error = SET_ERROR(EDQUOT);
803			break;
804		}
805
806		if (xuio && abuf == NULL) {
807			ASSERT(i_iov < iovcnt);
808			aiov = &iovp[i_iov];
809			abuf = dmu_xuio_arcbuf(xuio, i_iov);
810			dmu_xuio_clear(xuio, i_iov);
811			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
812			    iovec_t *, aiov, arc_buf_t *, abuf);
813			ASSERT((aiov->iov_base == abuf->b_data) ||
814			    ((char *)aiov->iov_base - (char *)abuf->b_data +
815			    aiov->iov_len == arc_buf_size(abuf)));
816			i_iov++;
817		} else if (abuf == NULL && n >= max_blksz &&
818		    woff >= zp->z_size &&
819		    P2PHASE(woff, max_blksz) == 0 &&
820		    zp->z_blksz == max_blksz) {
821			/*
822			 * This write covers a full block.  "Borrow" a buffer
823			 * from the dmu so that we can fill it before we enter
824			 * a transaction.  This avoids the possibility of
825			 * holding up the transaction if the data copy hangs
826			 * up on a pagefault (e.g., from an NFS server mapping).
827			 */
828			size_t cbytes;
829
830			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
831			    max_blksz);
832			ASSERT(abuf != NULL);
833			ASSERT(arc_buf_size(abuf) == max_blksz);
834			if (error = uiocopy(abuf->b_data, max_blksz,
835			    UIO_WRITE, uio, &cbytes)) {
836				dmu_return_arcbuf(abuf);
837				break;
838			}
839			ASSERT(cbytes == max_blksz);
840		}
841
842		/*
843		 * Start a transaction.
844		 */
845		tx = dmu_tx_create(zfsvfs->z_os);
846		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
847		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
848		zfs_sa_upgrade_txholds(tx, zp);
849		error = dmu_tx_assign(tx, TXG_WAIT);
850		if (error) {
851			dmu_tx_abort(tx);
852			if (abuf != NULL)
853				dmu_return_arcbuf(abuf);
854			break;
855		}
856
857		/*
858		 * If zfs_range_lock() over-locked we grow the blocksize
859		 * and then reduce the lock range.  This will only happen
860		 * on the first iteration since zfs_range_reduce() will
861		 * shrink down r_len to the appropriate size.
862		 */
863		if (rl->r_len == UINT64_MAX) {
864			uint64_t new_blksz;
865
866			if (zp->z_blksz > max_blksz) {
867				/*
868				 * File's blocksize is already larger than the
869				 * "recordsize" property.  Only let it grow to
870				 * the next power of 2.
871				 */
872				ASSERT(!ISP2(zp->z_blksz));
873				new_blksz = MIN(end_size,
874				    1 << highbit64(zp->z_blksz));
875			} else {
876				new_blksz = MIN(end_size, max_blksz);
877			}
878			zfs_grow_blocksize(zp, new_blksz, tx);
879			zfs_range_reduce(rl, woff, n);
880		}
881
882		/*
883		 * XXX - should we really limit each write to z_max_blksz?
884		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
885		 */
886		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
887
888		if (abuf == NULL) {
889			tx_bytes = uio->uio_resid;
890			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
891			    uio, nbytes, tx);
892			tx_bytes -= uio->uio_resid;
893		} else {
894			tx_bytes = nbytes;
895			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
896			/*
897			 * If this is not a full block write, but we are
898			 * extending the file past EOF and this data starts
899			 * block-aligned, use assign_arcbuf().  Otherwise,
900			 * write via dmu_write().
901			 */
902			if (tx_bytes < max_blksz && (!write_eof ||
903			    aiov->iov_base != abuf->b_data)) {
904				ASSERT(xuio);
905				dmu_write(zfsvfs->z_os, zp->z_id, woff,
906				    aiov->iov_len, aiov->iov_base, tx);
907				dmu_return_arcbuf(abuf);
908				xuio_stat_wbuf_copied();
909			} else {
910				ASSERT(xuio || tx_bytes == max_blksz);
911				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
912				    woff, abuf, tx);
913			}
914			ASSERT(tx_bytes <= uio->uio_resid);
915			uioskip(uio, tx_bytes);
916		}
917		if (tx_bytes && vn_has_cached_data(vp)) {
918			update_pages(vp, woff,
919			    tx_bytes, zfsvfs->z_os, zp->z_id);
920		}
921
922		/*
923		 * If we made no progress, we're done.  If we made even
924		 * partial progress, update the znode and ZIL accordingly.
925		 */
926		if (tx_bytes == 0) {
927			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
928			    (void *)&zp->z_size, sizeof (uint64_t), tx);
929			dmu_tx_commit(tx);
930			ASSERT(error != 0);
931			break;
932		}
933
934		/*
935		 * Clear Set-UID/Set-GID bits on successful write if not
936		 * privileged and at least one of the excute bits is set.
937		 *
938		 * It would be nice to to this after all writes have
939		 * been done, but that would still expose the ISUID/ISGID
940		 * to another app after the partial write is committed.
941		 *
942		 * Note: we don't call zfs_fuid_map_id() here because
943		 * user 0 is not an ephemeral uid.
944		 */
945		mutex_enter(&zp->z_acl_lock);
946		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
947		    (S_IXUSR >> 6))) != 0 &&
948		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
949		    secpolicy_vnode_setid_retain(cr,
950		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
951			uint64_t newmode;
952			zp->z_mode &= ~(S_ISUID | S_ISGID);
953			newmode = zp->z_mode;
954			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
955			    (void *)&newmode, sizeof (uint64_t), tx);
956		}
957		mutex_exit(&zp->z_acl_lock);
958
959		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
960		    B_TRUE);
961
962		/*
963		 * Update the file size (zp_size) if it has changed;
964		 * account for possible concurrent updates.
965		 */
966		while ((end_size = zp->z_size) < uio->uio_loffset) {
967			(void) atomic_cas_64(&zp->z_size, end_size,
968			    uio->uio_loffset);
969			ASSERT(error == 0);
970		}
971		/*
972		 * If we are replaying and eof is non zero then force
973		 * the file size to the specified eof. Note, there's no
974		 * concurrency during replay.
975		 */
976		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
977			zp->z_size = zfsvfs->z_replay_eof;
978
979		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
980
981		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
982		dmu_tx_commit(tx);
983
984		if (error != 0)
985			break;
986		ASSERT(tx_bytes == nbytes);
987		n -= nbytes;
988
989		if (!xuio && n > 0)
990			uio_prefaultpages(MIN(n, max_blksz), uio);
991	}
992
993	zfs_range_unlock(rl);
994
995	/*
996	 * If we're in replay mode, or we made no progress, return error.
997	 * Otherwise, it's at least a partial write, so it's successful.
998	 */
999	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1000		ZFS_EXIT(zfsvfs);
1001		return (error);
1002	}
1003
1004	if (ioflag & (FSYNC | FDSYNC) ||
1005	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1006		zil_commit(zilog, zp->z_id);
1007
1008	ZFS_EXIT(zfsvfs);
1009	return (0);
1010}
1011
1012void
1013zfs_get_done(zgd_t *zgd, int error)
1014{
1015	znode_t *zp = zgd->zgd_private;
1016	objset_t *os = zp->z_zfsvfs->z_os;
1017
1018	if (zgd->zgd_db)
1019		dmu_buf_rele(zgd->zgd_db, zgd);
1020
1021	zfs_range_unlock(zgd->zgd_rl);
1022
1023	/*
1024	 * Release the vnode asynchronously as we currently have the
1025	 * txg stopped from syncing.
1026	 */
1027	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1028
1029	if (error == 0 && zgd->zgd_bp)
1030		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1031
1032	kmem_free(zgd, sizeof (zgd_t));
1033}
1034
1035#ifdef DEBUG
1036static int zil_fault_io = 0;
1037#endif
1038
1039/*
1040 * Get data to generate a TX_WRITE intent log record.
1041 */
1042int
1043zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1044{
1045	zfsvfs_t *zfsvfs = arg;
1046	objset_t *os = zfsvfs->z_os;
1047	znode_t *zp;
1048	uint64_t object = lr->lr_foid;
1049	uint64_t offset = lr->lr_offset;
1050	uint64_t size = lr->lr_length;
1051	blkptr_t *bp = &lr->lr_blkptr;
1052	dmu_buf_t *db;
1053	zgd_t *zgd;
1054	int error = 0;
1055
1056	ASSERT(zio != NULL);
1057	ASSERT(size != 0);
1058
1059	/*
1060	 * Nothing to do if the file has been removed
1061	 */
1062	if (zfs_zget(zfsvfs, object, &zp) != 0)
1063		return (SET_ERROR(ENOENT));
1064	if (zp->z_unlinked) {
1065		/*
1066		 * Release the vnode asynchronously as we currently have the
1067		 * txg stopped from syncing.
1068		 */
1069		VN_RELE_ASYNC(ZTOV(zp),
1070		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1071		return (SET_ERROR(ENOENT));
1072	}
1073
1074	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1075	zgd->zgd_zilog = zfsvfs->z_log;
1076	zgd->zgd_private = zp;
1077
1078	/*
1079	 * Write records come in two flavors: immediate and indirect.
1080	 * For small writes it's cheaper to store the data with the
1081	 * log record (immediate); for large writes it's cheaper to
1082	 * sync the data and get a pointer to it (indirect) so that
1083	 * we don't have to write the data twice.
1084	 */
1085	if (buf != NULL) { /* immediate write */
1086		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1087		/* test for truncation needs to be done while range locked */
1088		if (offset >= zp->z_size) {
1089			error = SET_ERROR(ENOENT);
1090		} else {
1091			error = dmu_read(os, object, offset, size, buf,
1092			    DMU_READ_NO_PREFETCH);
1093		}
1094		ASSERT(error == 0 || error == ENOENT);
1095	} else { /* indirect write */
1096		/*
1097		 * Have to lock the whole block to ensure when it's
1098		 * written out and it's checksum is being calculated
1099		 * that no one can change the data. We need to re-check
1100		 * blocksize after we get the lock in case it's changed!
1101		 */
1102		for (;;) {
1103			uint64_t blkoff;
1104			size = zp->z_blksz;
1105			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1106			offset -= blkoff;
1107			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1108			    RL_READER);
1109			if (zp->z_blksz == size)
1110				break;
1111			offset += blkoff;
1112			zfs_range_unlock(zgd->zgd_rl);
1113		}
1114		/* test for truncation needs to be done while range locked */
1115		if (lr->lr_offset >= zp->z_size)
1116			error = SET_ERROR(ENOENT);
1117#ifdef DEBUG
1118		if (zil_fault_io) {
1119			error = SET_ERROR(EIO);
1120			zil_fault_io = 0;
1121		}
1122#endif
1123		if (error == 0)
1124			error = dmu_buf_hold(os, object, offset, zgd, &db,
1125			    DMU_READ_NO_PREFETCH);
1126
1127		if (error == 0) {
1128			blkptr_t *obp = dmu_buf_get_blkptr(db);
1129			if (obp) {
1130				ASSERT(BP_IS_HOLE(bp));
1131				*bp = *obp;
1132			}
1133
1134			zgd->zgd_db = db;
1135			zgd->zgd_bp = bp;
1136
1137			ASSERT(db->db_offset == offset);
1138			ASSERT(db->db_size == size);
1139
1140			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141			    zfs_get_done, zgd);
1142			ASSERT(error || lr->lr_length <= zp->z_blksz);
1143
1144			/*
1145			 * On success, we need to wait for the write I/O
1146			 * initiated by dmu_sync() to complete before we can
1147			 * release this dbuf.  We will finish everything up
1148			 * in the zfs_get_done() callback.
1149			 */
1150			if (error == 0)
1151				return (0);
1152
1153			if (error == EALREADY) {
1154				lr->lr_common.lrc_txtype = TX_WRITE2;
1155				error = 0;
1156			}
1157		}
1158	}
1159
1160	zfs_get_done(zgd, error);
1161
1162	return (error);
1163}
1164
1165/*ARGSUSED*/
1166static int
1167zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168    caller_context_t *ct)
1169{
1170	znode_t *zp = VTOZ(vp);
1171	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172	int error;
1173
1174	ZFS_ENTER(zfsvfs);
1175	ZFS_VERIFY_ZP(zp);
1176
1177	if (flag & V_ACE_MASK)
1178		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179	else
1180		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1181
1182	ZFS_EXIT(zfsvfs);
1183	return (error);
1184}
1185
1186/*
1187 * If vnode is for a device return a specfs vnode instead.
1188 */
1189static int
1190specvp_check(vnode_t **vpp, cred_t *cr)
1191{
1192	int error = 0;
1193
1194	if (IS_DEVVP(*vpp)) {
1195		struct vnode *svp;
1196
1197		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198		VN_RELE(*vpp);
1199		if (svp == NULL)
1200			error = SET_ERROR(ENOSYS);
1201		*vpp = svp;
1202	}
1203	return (error);
1204}
1205
1206
1207/*
1208 * Lookup an entry in a directory, or an extended attribute directory.
1209 * If it exists, return a held vnode reference for it.
1210 *
1211 *	IN:	dvp	- vnode of directory to search.
1212 *		nm	- name of entry to lookup.
1213 *		pnp	- full pathname to lookup [UNUSED].
1214 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1215 *		rdir	- root directory vnode [UNUSED].
1216 *		cr	- credentials of caller.
1217 *		ct	- caller context
1218 *		direntflags - directory lookup flags
1219 *		realpnp - returned pathname.
1220 *
1221 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1222 *
1223 *	RETURN:	0 on success, error code on failure.
1224 *
1225 * Timestamps:
1226 *	NA
1227 */
1228/* ARGSUSED */
1229static int
1230zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231    int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1232    int *direntflags, pathname_t *realpnp)
1233{
1234	znode_t *zdp = VTOZ(dvp);
1235	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236	int	error = 0;
1237
1238	/* fast path */
1239	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1240
1241		if (dvp->v_type != VDIR) {
1242			return (SET_ERROR(ENOTDIR));
1243		} else if (zdp->z_sa_hdl == NULL) {
1244			return (SET_ERROR(EIO));
1245		}
1246
1247		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1248			error = zfs_fastaccesschk_execute(zdp, cr);
1249			if (!error) {
1250				*vpp = dvp;
1251				VN_HOLD(*vpp);
1252				return (0);
1253			}
1254			return (error);
1255		} else {
1256			vnode_t *tvp = dnlc_lookup(dvp, nm);
1257
1258			if (tvp) {
1259				error = zfs_fastaccesschk_execute(zdp, cr);
1260				if (error) {
1261					VN_RELE(tvp);
1262					return (error);
1263				}
1264				if (tvp == DNLC_NO_VNODE) {
1265					VN_RELE(tvp);
1266					return (SET_ERROR(ENOENT));
1267				} else {
1268					*vpp = tvp;
1269					return (specvp_check(vpp, cr));
1270				}
1271			}
1272		}
1273	}
1274
1275	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1276
1277	ZFS_ENTER(zfsvfs);
1278	ZFS_VERIFY_ZP(zdp);
1279
1280	*vpp = NULL;
1281
1282	if (flags & LOOKUP_XATTR) {
1283		/*
1284		 * If the xattr property is off, refuse the lookup request.
1285		 */
1286		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1287			ZFS_EXIT(zfsvfs);
1288			return (SET_ERROR(EINVAL));
1289		}
1290
1291		/*
1292		 * We don't allow recursive attributes..
1293		 * Maybe someday we will.
1294		 */
1295		if (zdp->z_pflags & ZFS_XATTR) {
1296			ZFS_EXIT(zfsvfs);
1297			return (SET_ERROR(EINVAL));
1298		}
1299
1300		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1301			ZFS_EXIT(zfsvfs);
1302			return (error);
1303		}
1304
1305		/*
1306		 * Do we have permission to get into attribute directory?
1307		 */
1308
1309		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1310		    B_FALSE, cr)) {
1311			VN_RELE(*vpp);
1312			*vpp = NULL;
1313		}
1314
1315		ZFS_EXIT(zfsvfs);
1316		return (error);
1317	}
1318
1319	if (dvp->v_type != VDIR) {
1320		ZFS_EXIT(zfsvfs);
1321		return (SET_ERROR(ENOTDIR));
1322	}
1323
1324	/*
1325	 * Check accessibility of directory.
1326	 */
1327
1328	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1329		ZFS_EXIT(zfsvfs);
1330		return (error);
1331	}
1332
1333	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1334	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1335		ZFS_EXIT(zfsvfs);
1336		return (SET_ERROR(EILSEQ));
1337	}
1338
1339	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1340	if (error == 0)
1341		error = specvp_check(vpp, cr);
1342
1343	ZFS_EXIT(zfsvfs);
1344	return (error);
1345}
1346
1347/*
1348 * Attempt to create a new entry in a directory.  If the entry
1349 * already exists, truncate the file if permissible, else return
1350 * an error.  Return the vp of the created or trunc'd file.
1351 *
1352 *	IN:	dvp	- vnode of directory to put new file entry in.
1353 *		name	- name of new file entry.
1354 *		vap	- attributes of new file.
1355 *		excl	- flag indicating exclusive or non-exclusive mode.
1356 *		mode	- mode to open file with.
1357 *		cr	- credentials of caller.
1358 *		flag	- large file flag [UNUSED].
1359 *		ct	- caller context
1360 *		vsecp	- ACL to be set
1361 *
1362 *	OUT:	vpp	- vnode of created or trunc'd entry.
1363 *
1364 *	RETURN:	0 on success, error code on failure.
1365 *
1366 * Timestamps:
1367 *	dvp - ctime|mtime updated if new entry created
1368 *	 vp - ctime|mtime always, atime if new
1369 */
1370
1371/* ARGSUSED */
1372static int
1373zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1374    int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1375    vsecattr_t *vsecp)
1376{
1377	znode_t		*zp, *dzp = VTOZ(dvp);
1378	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1379	zilog_t		*zilog;
1380	objset_t	*os;
1381	zfs_dirlock_t	*dl;
1382	dmu_tx_t	*tx;
1383	int		error;
1384	ksid_t		*ksid;
1385	uid_t		uid;
1386	gid_t		gid = crgetgid(cr);
1387	zfs_acl_ids_t   acl_ids;
1388	boolean_t	fuid_dirtied;
1389	boolean_t	have_acl = B_FALSE;
1390	boolean_t	waited = B_FALSE;
1391
1392	/*
1393	 * If we have an ephemeral id, ACL, or XVATTR then
1394	 * make sure file system is at proper version
1395	 */
1396
1397	ksid = crgetsid(cr, KSID_OWNER);
1398	if (ksid)
1399		uid = ksid_getid(ksid);
1400	else
1401		uid = crgetuid(cr);
1402
1403	if (zfsvfs->z_use_fuids == B_FALSE &&
1404	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1405	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1406		return (SET_ERROR(EINVAL));
1407
1408	ZFS_ENTER(zfsvfs);
1409	ZFS_VERIFY_ZP(dzp);
1410	os = zfsvfs->z_os;
1411	zilog = zfsvfs->z_log;
1412
1413	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1414	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1415		ZFS_EXIT(zfsvfs);
1416		return (SET_ERROR(EILSEQ));
1417	}
1418
1419	if (vap->va_mask & AT_XVATTR) {
1420		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1421		    crgetuid(cr), cr, vap->va_type)) != 0) {
1422			ZFS_EXIT(zfsvfs);
1423			return (error);
1424		}
1425	}
1426top:
1427	*vpp = NULL;
1428
1429	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1430		vap->va_mode &= ~VSVTX;
1431
1432	if (*name == '\0') {
1433		/*
1434		 * Null component name refers to the directory itself.
1435		 */
1436		VN_HOLD(dvp);
1437		zp = dzp;
1438		dl = NULL;
1439		error = 0;
1440	} else {
1441		/* possible VN_HOLD(zp) */
1442		int zflg = 0;
1443
1444		if (flag & FIGNORECASE)
1445			zflg |= ZCILOOK;
1446
1447		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1448		    NULL, NULL);
1449		if (error) {
1450			if (have_acl)
1451				zfs_acl_ids_free(&acl_ids);
1452			if (strcmp(name, "..") == 0)
1453				error = SET_ERROR(EISDIR);
1454			ZFS_EXIT(zfsvfs);
1455			return (error);
1456		}
1457	}
1458
1459	if (zp == NULL) {
1460		uint64_t txtype;
1461
1462		/*
1463		 * Create a new file object and update the directory
1464		 * to reference it.
1465		 */
1466		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1467			if (have_acl)
1468				zfs_acl_ids_free(&acl_ids);
1469			goto out;
1470		}
1471
1472		/*
1473		 * We only support the creation of regular files in
1474		 * extended attribute directories.
1475		 */
1476
1477		if ((dzp->z_pflags & ZFS_XATTR) &&
1478		    (vap->va_type != VREG)) {
1479			if (have_acl)
1480				zfs_acl_ids_free(&acl_ids);
1481			error = SET_ERROR(EINVAL);
1482			goto out;
1483		}
1484
1485		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1486		    cr, vsecp, &acl_ids)) != 0)
1487			goto out;
1488		have_acl = B_TRUE;
1489
1490		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1491			zfs_acl_ids_free(&acl_ids);
1492			error = SET_ERROR(EDQUOT);
1493			goto out;
1494		}
1495
1496		tx = dmu_tx_create(os);
1497
1498		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1499		    ZFS_SA_BASE_ATTR_SIZE);
1500
1501		fuid_dirtied = zfsvfs->z_fuid_dirty;
1502		if (fuid_dirtied)
1503			zfs_fuid_txhold(zfsvfs, tx);
1504		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1505		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1506		if (!zfsvfs->z_use_sa &&
1507		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1508			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1509			    0, acl_ids.z_aclp->z_acl_bytes);
1510		}
1511		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1512		if (error) {
1513			zfs_dirent_unlock(dl);
1514			if (error == ERESTART) {
1515				waited = B_TRUE;
1516				dmu_tx_wait(tx);
1517				dmu_tx_abort(tx);
1518				goto top;
1519			}
1520			zfs_acl_ids_free(&acl_ids);
1521			dmu_tx_abort(tx);
1522			ZFS_EXIT(zfsvfs);
1523			return (error);
1524		}
1525		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1526
1527		if (fuid_dirtied)
1528			zfs_fuid_sync(zfsvfs, tx);
1529
1530		(void) zfs_link_create(dl, zp, tx, ZNEW);
1531		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1532		if (flag & FIGNORECASE)
1533			txtype |= TX_CI;
1534		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1535		    vsecp, acl_ids.z_fuidp, vap);
1536		zfs_acl_ids_free(&acl_ids);
1537		dmu_tx_commit(tx);
1538	} else {
1539		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1540
1541		if (have_acl)
1542			zfs_acl_ids_free(&acl_ids);
1543		have_acl = B_FALSE;
1544
1545		/*
1546		 * A directory entry already exists for this name.
1547		 */
1548		/*
1549		 * Can't truncate an existing file if in exclusive mode.
1550		 */
1551		if (excl == EXCL) {
1552			error = SET_ERROR(EEXIST);
1553			goto out;
1554		}
1555		/*
1556		 * Can't open a directory for writing.
1557		 */
1558		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1559			error = SET_ERROR(EISDIR);
1560			goto out;
1561		}
1562		/*
1563		 * Verify requested access to file.
1564		 */
1565		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1566			goto out;
1567		}
1568
1569		mutex_enter(&dzp->z_lock);
1570		dzp->z_seq++;
1571		mutex_exit(&dzp->z_lock);
1572
1573		/*
1574		 * Truncate regular files if requested.
1575		 */
1576		if ((ZTOV(zp)->v_type == VREG) &&
1577		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1578			/* we can't hold any locks when calling zfs_freesp() */
1579			zfs_dirent_unlock(dl);
1580			dl = NULL;
1581			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1582			if (error == 0) {
1583				vnevent_create(ZTOV(zp), ct);
1584			}
1585		}
1586	}
1587out:
1588
1589	if (dl)
1590		zfs_dirent_unlock(dl);
1591
1592	if (error) {
1593		if (zp)
1594			VN_RELE(ZTOV(zp));
1595	} else {
1596		*vpp = ZTOV(zp);
1597		error = specvp_check(vpp, cr);
1598	}
1599
1600	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1601		zil_commit(zilog, 0);
1602
1603	ZFS_EXIT(zfsvfs);
1604	return (error);
1605}
1606
1607/*
1608 * Remove an entry from a directory.
1609 *
1610 *	IN:	dvp	- vnode of directory to remove entry from.
1611 *		name	- name of entry to remove.
1612 *		cr	- credentials of caller.
1613 *		ct	- caller context
1614 *		flags	- case flags
1615 *
1616 *	RETURN:	0 on success, error code on failure.
1617 *
1618 * Timestamps:
1619 *	dvp - ctime|mtime
1620 *	 vp - ctime (if nlink > 0)
1621 */
1622
1623uint64_t null_xattr = 0;
1624
1625/*ARGSUSED*/
1626static int
1627zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628    int flags)
1629{
1630	znode_t		*zp, *dzp = VTOZ(dvp);
1631	znode_t		*xzp;
1632	vnode_t		*vp;
1633	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1634	zilog_t		*zilog;
1635	uint64_t	acl_obj, xattr_obj;
1636	uint64_t	xattr_obj_unlinked = 0;
1637	uint64_t	obj = 0;
1638	zfs_dirlock_t	*dl;
1639	dmu_tx_t	*tx;
1640	boolean_t	may_delete_now, delete_now = FALSE;
1641	boolean_t	unlinked, toobig = FALSE;
1642	uint64_t	txtype;
1643	pathname_t	*realnmp = NULL;
1644	pathname_t	realnm;
1645	int		error;
1646	int		zflg = ZEXISTS;
1647	boolean_t	waited = B_FALSE;
1648
1649	ZFS_ENTER(zfsvfs);
1650	ZFS_VERIFY_ZP(dzp);
1651	zilog = zfsvfs->z_log;
1652
1653	if (flags & FIGNORECASE) {
1654		zflg |= ZCILOOK;
1655		pn_alloc(&realnm);
1656		realnmp = &realnm;
1657	}
1658
1659top:
1660	xattr_obj = 0;
1661	xzp = NULL;
1662	/*
1663	 * Attempt to lock directory; fail if entry doesn't exist.
1664	 */
1665	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666	    NULL, realnmp)) {
1667		if (realnmp)
1668			pn_free(realnmp);
1669		ZFS_EXIT(zfsvfs);
1670		return (error);
1671	}
1672
1673	vp = ZTOV(zp);
1674
1675	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1676		goto out;
1677	}
1678
1679	/*
1680	 * Need to use rmdir for removing directories.
1681	 */
1682	if (vp->v_type == VDIR) {
1683		error = SET_ERROR(EPERM);
1684		goto out;
1685	}
1686
1687	vnevent_remove(vp, dvp, name, ct);
1688
1689	if (realnmp)
1690		dnlc_remove(dvp, realnmp->pn_buf);
1691	else
1692		dnlc_remove(dvp, name);
1693
1694	mutex_enter(&vp->v_lock);
1695	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1696	mutex_exit(&vp->v_lock);
1697
1698	/*
1699	 * We may delete the znode now, or we may put it in the unlinked set;
1700	 * it depends on whether we're the last link, and on whether there are
1701	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1702	 * allow for either case.
1703	 */
1704	obj = zp->z_id;
1705	tx = dmu_tx_create(zfsvfs->z_os);
1706	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1707	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708	zfs_sa_upgrade_txholds(tx, zp);
1709	zfs_sa_upgrade_txholds(tx, dzp);
1710	if (may_delete_now) {
1711		toobig =
1712		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1713		/* if the file is too big, only hold_free a token amount */
1714		dmu_tx_hold_free(tx, zp->z_id, 0,
1715		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1716	}
1717
1718	/* are there any extended attributes? */
1719	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1720	    &xattr_obj, sizeof (xattr_obj));
1721	if (error == 0 && xattr_obj) {
1722		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1723		ASSERT0(error);
1724		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1725		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1726	}
1727
1728	mutex_enter(&zp->z_lock);
1729	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1730		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1731	mutex_exit(&zp->z_lock);
1732
1733	/* charge as an update -- would be nice not to charge at all */
1734	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1735
1736	/*
1737	 * Mark this transaction as typically resulting in a net free of
1738	 * space, unless object removal will be delayed indefinitely
1739	 * (due to active holds on the vnode due to the file being open).
1740	 */
1741	if (may_delete_now)
1742		dmu_tx_mark_netfree(tx);
1743
1744	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1745	if (error) {
1746		zfs_dirent_unlock(dl);
1747		VN_RELE(vp);
1748		if (xzp)
1749			VN_RELE(ZTOV(xzp));
1750		if (error == ERESTART) {
1751			waited = B_TRUE;
1752			dmu_tx_wait(tx);
1753			dmu_tx_abort(tx);
1754			goto top;
1755		}
1756		if (realnmp)
1757			pn_free(realnmp);
1758		dmu_tx_abort(tx);
1759		ZFS_EXIT(zfsvfs);
1760		return (error);
1761	}
1762
1763	/*
1764	 * Remove the directory entry.
1765	 */
1766	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1767
1768	if (error) {
1769		dmu_tx_commit(tx);
1770		goto out;
1771	}
1772
1773	if (unlinked) {
1774		/*
1775		 * Hold z_lock so that we can make sure that the ACL obj
1776		 * hasn't changed.  Could have been deleted due to
1777		 * zfs_sa_upgrade().
1778		 */
1779		mutex_enter(&zp->z_lock);
1780		mutex_enter(&vp->v_lock);
1781		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1782		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1783		delete_now = may_delete_now && !toobig &&
1784		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1785		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1786		    acl_obj;
1787		mutex_exit(&vp->v_lock);
1788	}
1789
1790	if (delete_now) {
1791		if (xattr_obj_unlinked) {
1792			ASSERT3U(xzp->z_links, ==, 2);
1793			mutex_enter(&xzp->z_lock);
1794			xzp->z_unlinked = 1;
1795			xzp->z_links = 0;
1796			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1797			    &xzp->z_links, sizeof (xzp->z_links), tx);
1798			ASSERT3U(error,  ==,  0);
1799			mutex_exit(&xzp->z_lock);
1800			zfs_unlinked_add(xzp, tx);
1801
1802			if (zp->z_is_sa)
1803				error = sa_remove(zp->z_sa_hdl,
1804				    SA_ZPL_XATTR(zfsvfs), tx);
1805			else
1806				error = sa_update(zp->z_sa_hdl,
1807				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1808				    sizeof (uint64_t), tx);
1809			ASSERT0(error);
1810		}
1811		mutex_enter(&vp->v_lock);
1812		vp->v_count--;
1813		ASSERT0(vp->v_count);
1814		mutex_exit(&vp->v_lock);
1815		mutex_exit(&zp->z_lock);
1816		zfs_znode_delete(zp, tx);
1817	} else if (unlinked) {
1818		mutex_exit(&zp->z_lock);
1819		zfs_unlinked_add(zp, tx);
1820	}
1821
1822	txtype = TX_REMOVE;
1823	if (flags & FIGNORECASE)
1824		txtype |= TX_CI;
1825	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1826
1827	dmu_tx_commit(tx);
1828out:
1829	if (realnmp)
1830		pn_free(realnmp);
1831
1832	zfs_dirent_unlock(dl);
1833
1834	if (!delete_now)
1835		VN_RELE(vp);
1836	if (xzp)
1837		VN_RELE(ZTOV(xzp));
1838
1839	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1840		zil_commit(zilog, 0);
1841
1842	ZFS_EXIT(zfsvfs);
1843	return (error);
1844}
1845
1846/*
1847 * Create a new directory and insert it into dvp using the name
1848 * provided.  Return a pointer to the inserted directory.
1849 *
1850 *	IN:	dvp	- vnode of directory to add subdir to.
1851 *		dirname	- name of new directory.
1852 *		vap	- attributes of new directory.
1853 *		cr	- credentials of caller.
1854 *		ct	- caller context
1855 *		flags	- case flags
1856 *		vsecp	- ACL to be set
1857 *
1858 *	OUT:	vpp	- vnode of created directory.
1859 *
1860 *	RETURN:	0 on success, error code on failure.
1861 *
1862 * Timestamps:
1863 *	dvp - ctime|mtime updated
1864 *	 vp - ctime|mtime|atime updated
1865 */
1866/*ARGSUSED*/
1867static int
1868zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1869    caller_context_t *ct, int flags, vsecattr_t *vsecp)
1870{
1871	znode_t		*zp, *dzp = VTOZ(dvp);
1872	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1873	zilog_t		*zilog;
1874	zfs_dirlock_t	*dl;
1875	uint64_t	txtype;
1876	dmu_tx_t	*tx;
1877	int		error;
1878	int		zf = ZNEW;
1879	ksid_t		*ksid;
1880	uid_t		uid;
1881	gid_t		gid = crgetgid(cr);
1882	zfs_acl_ids_t   acl_ids;
1883	boolean_t	fuid_dirtied;
1884	boolean_t	waited = B_FALSE;
1885
1886	ASSERT(vap->va_type == VDIR);
1887
1888	/*
1889	 * If we have an ephemeral id, ACL, or XVATTR then
1890	 * make sure file system is at proper version
1891	 */
1892
1893	ksid = crgetsid(cr, KSID_OWNER);
1894	if (ksid)
1895		uid = ksid_getid(ksid);
1896	else
1897		uid = crgetuid(cr);
1898	if (zfsvfs->z_use_fuids == B_FALSE &&
1899	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1900	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1901		return (SET_ERROR(EINVAL));
1902
1903	ZFS_ENTER(zfsvfs);
1904	ZFS_VERIFY_ZP(dzp);
1905	zilog = zfsvfs->z_log;
1906
1907	if (dzp->z_pflags & ZFS_XATTR) {
1908		ZFS_EXIT(zfsvfs);
1909		return (SET_ERROR(EINVAL));
1910	}
1911
1912	if (zfsvfs->z_utf8 && u8_validate(dirname,
1913	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1914		ZFS_EXIT(zfsvfs);
1915		return (SET_ERROR(EILSEQ));
1916	}
1917	if (flags & FIGNORECASE)
1918		zf |= ZCILOOK;
1919
1920	if (vap->va_mask & AT_XVATTR) {
1921		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1922		    crgetuid(cr), cr, vap->va_type)) != 0) {
1923			ZFS_EXIT(zfsvfs);
1924			return (error);
1925		}
1926	}
1927
1928	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1929	    vsecp, &acl_ids)) != 0) {
1930		ZFS_EXIT(zfsvfs);
1931		return (error);
1932	}
1933	/*
1934	 * First make sure the new directory doesn't exist.
1935	 *
1936	 * Existence is checked first to make sure we don't return
1937	 * EACCES instead of EEXIST which can cause some applications
1938	 * to fail.
1939	 */
1940top:
1941	*vpp = NULL;
1942
1943	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1944	    NULL, NULL)) {
1945		zfs_acl_ids_free(&acl_ids);
1946		ZFS_EXIT(zfsvfs);
1947		return (error);
1948	}
1949
1950	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1951		zfs_acl_ids_free(&acl_ids);
1952		zfs_dirent_unlock(dl);
1953		ZFS_EXIT(zfsvfs);
1954		return (error);
1955	}
1956
1957	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1958		zfs_acl_ids_free(&acl_ids);
1959		zfs_dirent_unlock(dl);
1960		ZFS_EXIT(zfsvfs);
1961		return (SET_ERROR(EDQUOT));
1962	}
1963
1964	/*
1965	 * Add a new entry to the directory.
1966	 */
1967	tx = dmu_tx_create(zfsvfs->z_os);
1968	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1969	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1970	fuid_dirtied = zfsvfs->z_fuid_dirty;
1971	if (fuid_dirtied)
1972		zfs_fuid_txhold(zfsvfs, tx);
1973	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1974		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1975		    acl_ids.z_aclp->z_acl_bytes);
1976	}
1977
1978	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1979	    ZFS_SA_BASE_ATTR_SIZE);
1980
1981	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1982	if (error) {
1983		zfs_dirent_unlock(dl);
1984		if (error == ERESTART) {
1985			waited = B_TRUE;
1986			dmu_tx_wait(tx);
1987			dmu_tx_abort(tx);
1988			goto top;
1989		}
1990		zfs_acl_ids_free(&acl_ids);
1991		dmu_tx_abort(tx);
1992		ZFS_EXIT(zfsvfs);
1993		return (error);
1994	}
1995
1996	/*
1997	 * Create new node.
1998	 */
1999	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2000
2001	if (fuid_dirtied)
2002		zfs_fuid_sync(zfsvfs, tx);
2003
2004	/*
2005	 * Now put new name in parent dir.
2006	 */
2007	(void) zfs_link_create(dl, zp, tx, ZNEW);
2008
2009	*vpp = ZTOV(zp);
2010
2011	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2012	if (flags & FIGNORECASE)
2013		txtype |= TX_CI;
2014	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2015	    acl_ids.z_fuidp, vap);
2016
2017	zfs_acl_ids_free(&acl_ids);
2018
2019	dmu_tx_commit(tx);
2020
2021	zfs_dirent_unlock(dl);
2022
2023	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2024		zil_commit(zilog, 0);
2025
2026	ZFS_EXIT(zfsvfs);
2027	return (0);
2028}
2029
2030/*
2031 * Remove a directory subdir entry.  If the current working
2032 * directory is the same as the subdir to be removed, the
2033 * remove will fail.
2034 *
2035 *	IN:	dvp	- vnode of directory to remove from.
2036 *		name	- name of directory to be removed.
2037 *		cwd	- vnode of current working directory.
2038 *		cr	- credentials of caller.
2039 *		ct	- caller context
2040 *		flags	- case flags
2041 *
2042 *	RETURN:	0 on success, error code on failure.
2043 *
2044 * Timestamps:
2045 *	dvp - ctime|mtime updated
2046 */
2047/*ARGSUSED*/
2048static int
2049zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2050    caller_context_t *ct, int flags)
2051{
2052	znode_t		*dzp = VTOZ(dvp);
2053	znode_t		*zp;
2054	vnode_t		*vp;
2055	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2056	zilog_t		*zilog;
2057	zfs_dirlock_t	*dl;
2058	dmu_tx_t	*tx;
2059	int		error;
2060	int		zflg = ZEXISTS;
2061	boolean_t	waited = B_FALSE;
2062
2063	ZFS_ENTER(zfsvfs);
2064	ZFS_VERIFY_ZP(dzp);
2065	zilog = zfsvfs->z_log;
2066
2067	if (flags & FIGNORECASE)
2068		zflg |= ZCILOOK;
2069top:
2070	zp = NULL;
2071
2072	/*
2073	 * Attempt to lock directory; fail if entry doesn't exist.
2074	 */
2075	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2076	    NULL, NULL)) {
2077		ZFS_EXIT(zfsvfs);
2078		return (error);
2079	}
2080
2081	vp = ZTOV(zp);
2082
2083	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2084		goto out;
2085	}
2086
2087	if (vp->v_type != VDIR) {
2088		error = SET_ERROR(ENOTDIR);
2089		goto out;
2090	}
2091
2092	if (vp == cwd) {
2093		error = SET_ERROR(EINVAL);
2094		goto out;
2095	}
2096
2097	vnevent_rmdir(vp, dvp, name, ct);
2098
2099	/*
2100	 * Grab a lock on the directory to make sure that noone is
2101	 * trying to add (or lookup) entries while we are removing it.
2102	 */
2103	rw_enter(&zp->z_name_lock, RW_WRITER);
2104
2105	/*
2106	 * Grab a lock on the parent pointer to make sure we play well
2107	 * with the treewalk and directory rename code.
2108	 */
2109	rw_enter(&zp->z_parent_lock, RW_WRITER);
2110
2111	tx = dmu_tx_create(zfsvfs->z_os);
2112	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2113	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2114	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2115	zfs_sa_upgrade_txholds(tx, zp);
2116	zfs_sa_upgrade_txholds(tx, dzp);
2117	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2118	if (error) {
2119		rw_exit(&zp->z_parent_lock);
2120		rw_exit(&zp->z_name_lock);
2121		zfs_dirent_unlock(dl);
2122		VN_RELE(vp);
2123		if (error == ERESTART) {
2124			waited = B_TRUE;
2125			dmu_tx_wait(tx);
2126			dmu_tx_abort(tx);
2127			goto top;
2128		}
2129		dmu_tx_abort(tx);
2130		ZFS_EXIT(zfsvfs);
2131		return (error);
2132	}
2133
2134	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2135
2136	if (error == 0) {
2137		uint64_t txtype = TX_RMDIR;
2138		if (flags & FIGNORECASE)
2139			txtype |= TX_CI;
2140		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2141	}
2142
2143	dmu_tx_commit(tx);
2144
2145	rw_exit(&zp->z_parent_lock);
2146	rw_exit(&zp->z_name_lock);
2147out:
2148	zfs_dirent_unlock(dl);
2149
2150	VN_RELE(vp);
2151
2152	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2153		zil_commit(zilog, 0);
2154
2155	ZFS_EXIT(zfsvfs);
2156	return (error);
2157}
2158
2159/*
2160 * Read as many directory entries as will fit into the provided
2161 * buffer from the given directory cursor position (specified in
2162 * the uio structure).
2163 *
2164 *	IN:	vp	- vnode of directory to read.
2165 *		uio	- structure supplying read location, range info,
2166 *			  and return buffer.
2167 *		cr	- credentials of caller.
2168 *		ct	- caller context
2169 *		flags	- case flags
2170 *
2171 *	OUT:	uio	- updated offset and range, buffer filled.
2172 *		eofp	- set to true if end-of-file detected.
2173 *
2174 *	RETURN:	0 on success, error code on failure.
2175 *
2176 * Timestamps:
2177 *	vp - atime updated
2178 *
2179 * Note that the low 4 bits of the cookie returned by zap is always zero.
2180 * This allows us to use the low range for "special" directory entries:
2181 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2182 * we use the offset 2 for the '.zfs' directory.
2183 */
2184/* ARGSUSED */
2185static int
2186zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2187    caller_context_t *ct, int flags)
2188{
2189	znode_t		*zp = VTOZ(vp);
2190	iovec_t		*iovp;
2191	edirent_t	*eodp;
2192	dirent64_t	*odp;
2193	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2194	objset_t	*os;
2195	caddr_t		outbuf;
2196	size_t		bufsize;
2197	zap_cursor_t	zc;
2198	zap_attribute_t	zap;
2199	uint_t		bytes_wanted;
2200	uint64_t	offset; /* must be unsigned; checks for < 1 */
2201	uint64_t	parent;
2202	int		local_eof;
2203	int		outcount;
2204	int		error;
2205	uint8_t		prefetch;
2206	boolean_t	check_sysattrs;
2207
2208	ZFS_ENTER(zfsvfs);
2209	ZFS_VERIFY_ZP(zp);
2210
2211	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2212	    &parent, sizeof (parent))) != 0) {
2213		ZFS_EXIT(zfsvfs);
2214		return (error);
2215	}
2216
2217	/*
2218	 * If we are not given an eof variable,
2219	 * use a local one.
2220	 */
2221	if (eofp == NULL)
2222		eofp = &local_eof;
2223
2224	/*
2225	 * Check for valid iov_len.
2226	 */
2227	if (uio->uio_iov->iov_len <= 0) {
2228		ZFS_EXIT(zfsvfs);
2229		return (SET_ERROR(EINVAL));
2230	}
2231
2232	/*
2233	 * Quit if directory has been removed (posix)
2234	 */
2235	if ((*eofp = zp->z_unlinked) != 0) {
2236		ZFS_EXIT(zfsvfs);
2237		return (0);
2238	}
2239
2240	error = 0;
2241	os = zfsvfs->z_os;
2242	offset = uio->uio_loffset;
2243	prefetch = zp->z_zn_prefetch;
2244
2245	/*
2246	 * Initialize the iterator cursor.
2247	 */
2248	if (offset <= 3) {
2249		/*
2250		 * Start iteration from the beginning of the directory.
2251		 */
2252		zap_cursor_init(&zc, os, zp->z_id);
2253	} else {
2254		/*
2255		 * The offset is a serialized cursor.
2256		 */
2257		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258	}
2259
2260	/*
2261	 * Get space to change directory entries into fs independent format.
2262	 */
2263	iovp = uio->uio_iov;
2264	bytes_wanted = iovp->iov_len;
2265	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2266		bufsize = bytes_wanted;
2267		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2268		odp = (struct dirent64 *)outbuf;
2269	} else {
2270		bufsize = bytes_wanted;
2271		outbuf = NULL;
2272		odp = (struct dirent64 *)iovp->iov_base;
2273	}
2274	eodp = (struct edirent *)odp;
2275
2276	/*
2277	 * If this VFS supports the system attribute view interface; and
2278	 * we're looking at an extended attribute directory; and we care
2279	 * about normalization conflicts on this vfs; then we must check
2280	 * for normalization conflicts with the sysattr name space.
2281	 */
2282	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2283	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2284	    (flags & V_RDDIR_ENTFLAGS);
2285
2286	/*
2287	 * Transform to file-system independent format
2288	 */
2289	outcount = 0;
2290	while (outcount < bytes_wanted) {
2291		ino64_t objnum;
2292		ushort_t reclen;
2293		off64_t *next = NULL;
2294
2295		/*
2296		 * Special case `.', `..', and `.zfs'.
2297		 */
2298		if (offset == 0) {
2299			(void) strcpy(zap.za_name, ".");
2300			zap.za_normalization_conflict = 0;
2301			objnum = zp->z_id;
2302		} else if (offset == 1) {
2303			(void) strcpy(zap.za_name, "..");
2304			zap.za_normalization_conflict = 0;
2305			objnum = parent;
2306		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2307			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2308			zap.za_normalization_conflict = 0;
2309			objnum = ZFSCTL_INO_ROOT;
2310		} else {
2311			/*
2312			 * Grab next entry.
2313			 */
2314			if (error = zap_cursor_retrieve(&zc, &zap)) {
2315				if ((*eofp = (error == ENOENT)) != 0)
2316					break;
2317				else
2318					goto update;
2319			}
2320
2321			if (zap.za_integer_length != 8 ||
2322			    zap.za_num_integers != 1) {
2323				cmn_err(CE_WARN, "zap_readdir: bad directory "
2324				    "entry, obj = %lld, offset = %lld\n",
2325				    (u_longlong_t)zp->z_id,
2326				    (u_longlong_t)offset);
2327				error = SET_ERROR(ENXIO);
2328				goto update;
2329			}
2330
2331			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2332			/*
2333			 * MacOS X can extract the object type here such as:
2334			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2335			 */
2336
2337			if (check_sysattrs && !zap.za_normalization_conflict) {
2338				zap.za_normalization_conflict =
2339				    xattr_sysattr_casechk(zap.za_name);
2340			}
2341		}
2342
2343		if (flags & V_RDDIR_ACCFILTER) {
2344			/*
2345			 * If we have no access at all, don't include
2346			 * this entry in the returned information
2347			 */
2348			znode_t	*ezp;
2349			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2350				goto skip_entry;
2351			if (!zfs_has_access(ezp, cr)) {
2352				VN_RELE(ZTOV(ezp));
2353				goto skip_entry;
2354			}
2355			VN_RELE(ZTOV(ezp));
2356		}
2357
2358		if (flags & V_RDDIR_ENTFLAGS)
2359			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2360		else
2361			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2362
2363		/*
2364		 * Will this entry fit in the buffer?
2365		 */
2366		if (outcount + reclen > bufsize) {
2367			/*
2368			 * Did we manage to fit anything in the buffer?
2369			 */
2370			if (!outcount) {
2371				error = SET_ERROR(EINVAL);
2372				goto update;
2373			}
2374			break;
2375		}
2376		if (flags & V_RDDIR_ENTFLAGS) {
2377			/*
2378			 * Add extended flag entry:
2379			 */
2380			eodp->ed_ino = objnum;
2381			eodp->ed_reclen = reclen;
2382			/* NOTE: ed_off is the offset for the *next* entry */
2383			next = &(eodp->ed_off);
2384			eodp->ed_eflags = zap.za_normalization_conflict ?
2385			    ED_CASE_CONFLICT : 0;
2386			(void) strncpy(eodp->ed_name, zap.za_name,
2387			    EDIRENT_NAMELEN(reclen));
2388			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2389		} else {
2390			/*
2391			 * Add normal entry:
2392			 */
2393			odp->d_ino = objnum;
2394			odp->d_reclen = reclen;
2395			/* NOTE: d_off is the offset for the *next* entry */
2396			next = &(odp->d_off);
2397			(void) strncpy(odp->d_name, zap.za_name,
2398			    DIRENT64_NAMELEN(reclen));
2399			odp = (dirent64_t *)((intptr_t)odp + reclen);
2400		}
2401		outcount += reclen;
2402
2403		ASSERT(outcount <= bufsize);
2404
2405		/* Prefetch znode */
2406		if (prefetch)
2407			dmu_prefetch(os, objnum, 0, 0, 0,
2408			    ZIO_PRIORITY_SYNC_READ);
2409
2410	skip_entry:
2411		/*
2412		 * Move to the next entry, fill in the previous offset.
2413		 */
2414		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2415			zap_cursor_advance(&zc);
2416			offset = zap_cursor_serialize(&zc);
2417		} else {
2418			offset += 1;
2419		}
2420		if (next)
2421			*next = offset;
2422	}
2423	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2424
2425	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2426		iovp->iov_base += outcount;
2427		iovp->iov_len -= outcount;
2428		uio->uio_resid -= outcount;
2429	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2430		/*
2431		 * Reset the pointer.
2432		 */
2433		offset = uio->uio_loffset;
2434	}
2435
2436update:
2437	zap_cursor_fini(&zc);
2438	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2439		kmem_free(outbuf, bufsize);
2440
2441	if (error == ENOENT)
2442		error = 0;
2443
2444	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2445
2446	uio->uio_loffset = offset;
2447	ZFS_EXIT(zfsvfs);
2448	return (error);
2449}
2450
2451ulong_t zfs_fsync_sync_cnt = 4;
2452
2453static int
2454zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2455{
2456	znode_t	*zp = VTOZ(vp);
2457	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2458
2459	/*
2460	 * Regardless of whether this is required for standards conformance,
2461	 * this is the logical behavior when fsync() is called on a file with
2462	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2463	 * going to be pushed out as part of the zil_commit().
2464	 */
2465	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2466	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2467		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2468
2469	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2470
2471	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2472		ZFS_ENTER(zfsvfs);
2473		ZFS_VERIFY_ZP(zp);
2474		zil_commit(zfsvfs->z_log, zp->z_id);
2475		ZFS_EXIT(zfsvfs);
2476	}
2477	return (0);
2478}
2479
2480
2481/*
2482 * Get the requested file attributes and place them in the provided
2483 * vattr structure.
2484 *
2485 *	IN:	vp	- vnode of file.
2486 *		vap	- va_mask identifies requested attributes.
2487 *			  If AT_XVATTR set, then optional attrs are requested
2488 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2489 *		cr	- credentials of caller.
2490 *		ct	- caller context
2491 *
2492 *	OUT:	vap	- attribute values.
2493 *
2494 *	RETURN:	0 (always succeeds).
2495 */
2496/* ARGSUSED */
2497static int
2498zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2499    caller_context_t *ct)
2500{
2501	znode_t *zp = VTOZ(vp);
2502	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2503	int	error = 0;
2504	uint64_t links;
2505	uint64_t mtime[2], ctime[2];
2506	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2507	xoptattr_t *xoap = NULL;
2508	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2509	sa_bulk_attr_t bulk[2];
2510	int count = 0;
2511
2512	ZFS_ENTER(zfsvfs);
2513	ZFS_VERIFY_ZP(zp);
2514
2515	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2516
2517	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2518	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2519
2520	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2521		ZFS_EXIT(zfsvfs);
2522		return (error);
2523	}
2524
2525	/*
2526	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2527	 * Also, if we are the owner don't bother, since owner should
2528	 * always be allowed to read basic attributes of file.
2529	 */
2530	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2531	    (vap->va_uid != crgetuid(cr))) {
2532		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2533		    skipaclchk, cr)) {
2534			ZFS_EXIT(zfsvfs);
2535			return (error);
2536		}
2537	}
2538
2539	/*
2540	 * Return all attributes.  It's cheaper to provide the answer
2541	 * than to determine whether we were asked the question.
2542	 */
2543
2544	mutex_enter(&zp->z_lock);
2545	vap->va_type = vp->v_type;
2546	vap->va_mode = zp->z_mode & MODEMASK;
2547	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2548	vap->va_nodeid = zp->z_id;
2549	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2550		links = zp->z_links + 1;
2551	else
2552		links = zp->z_links;
2553	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2554	vap->va_size = zp->z_size;
2555	vap->va_rdev = vp->v_rdev;
2556	vap->va_seq = zp->z_seq;
2557
2558	/*
2559	 * Add in any requested optional attributes and the create time.
2560	 * Also set the corresponding bits in the returned attribute bitmap.
2561	 */
2562	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2563		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2564			xoap->xoa_archive =
2565			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2566			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2567		}
2568
2569		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2570			xoap->xoa_readonly =
2571			    ((zp->z_pflags & ZFS_READONLY) != 0);
2572			XVA_SET_RTN(xvap, XAT_READONLY);
2573		}
2574
2575		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2576			xoap->xoa_system =
2577			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2578			XVA_SET_RTN(xvap, XAT_SYSTEM);
2579		}
2580
2581		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2582			xoap->xoa_hidden =
2583			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2584			XVA_SET_RTN(xvap, XAT_HIDDEN);
2585		}
2586
2587		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2588			xoap->xoa_nounlink =
2589			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2590			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2591		}
2592
2593		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2594			xoap->xoa_immutable =
2595			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2596			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2597		}
2598
2599		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2600			xoap->xoa_appendonly =
2601			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2602			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2603		}
2604
2605		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2606			xoap->xoa_nodump =
2607			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2608			XVA_SET_RTN(xvap, XAT_NODUMP);
2609		}
2610
2611		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2612			xoap->xoa_opaque =
2613			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2614			XVA_SET_RTN(xvap, XAT_OPAQUE);
2615		}
2616
2617		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2618			xoap->xoa_av_quarantined =
2619			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2620			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2621		}
2622
2623		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2624			xoap->xoa_av_modified =
2625			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2626			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2627		}
2628
2629		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2630		    vp->v_type == VREG) {
2631			zfs_sa_get_scanstamp(zp, xvap);
2632		}
2633
2634		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2635			uint64_t times[2];
2636
2637			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2638			    times, sizeof (times));
2639			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2640			XVA_SET_RTN(xvap, XAT_CREATETIME);
2641		}
2642
2643		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2644			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2645			XVA_SET_RTN(xvap, XAT_REPARSE);
2646		}
2647		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2648			xoap->xoa_generation = zp->z_gen;
2649			XVA_SET_RTN(xvap, XAT_GEN);
2650		}
2651
2652		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2653			xoap->xoa_offline =
2654			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2655			XVA_SET_RTN(xvap, XAT_OFFLINE);
2656		}
2657
2658		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2659			xoap->xoa_sparse =
2660			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2661			XVA_SET_RTN(xvap, XAT_SPARSE);
2662		}
2663	}
2664
2665	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2666	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2667	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2668
2669	mutex_exit(&zp->z_lock);
2670
2671	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2672
2673	if (zp->z_blksz == 0) {
2674		/*
2675		 * Block size hasn't been set; suggest maximal I/O transfers.
2676		 */
2677		vap->va_blksize = zfsvfs->z_max_blksz;
2678	}
2679
2680	ZFS_EXIT(zfsvfs);
2681	return (0);
2682}
2683
2684/*
2685 * Set the file attributes to the values contained in the
2686 * vattr structure.
2687 *
2688 *	IN:	vp	- vnode of file to be modified.
2689 *		vap	- new attribute values.
2690 *			  If AT_XVATTR set, then optional attrs are being set
2691 *		flags	- ATTR_UTIME set if non-default time values provided.
2692 *			- ATTR_NOACLCHECK (CIFS context only).
2693 *		cr	- credentials of caller.
2694 *		ct	- caller context
2695 *
2696 *	RETURN:	0 on success, error code on failure.
2697 *
2698 * Timestamps:
2699 *	vp - ctime updated, mtime updated if size changed.
2700 */
2701/* ARGSUSED */
2702static int
2703zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2704    caller_context_t *ct)
2705{
2706	znode_t		*zp = VTOZ(vp);
2707	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2708	zilog_t		*zilog;
2709	dmu_tx_t	*tx;
2710	vattr_t		oldva;
2711	xvattr_t	tmpxvattr;
2712	uint_t		mask = vap->va_mask;
2713	uint_t		saved_mask = 0;
2714	int		trim_mask = 0;
2715	uint64_t	new_mode;
2716	uint64_t	new_uid, new_gid;
2717	uint64_t	xattr_obj;
2718	uint64_t	mtime[2], ctime[2];
2719	znode_t		*attrzp;
2720	int		need_policy = FALSE;
2721	int		err, err2;
2722	zfs_fuid_info_t *fuidp = NULL;
2723	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2724	xoptattr_t	*xoap;
2725	zfs_acl_t	*aclp;
2726	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2727	boolean_t	fuid_dirtied = B_FALSE;
2728	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2729	int		count = 0, xattr_count = 0;
2730
2731	if (mask == 0)
2732		return (0);
2733
2734	if (mask & AT_NOSET)
2735		return (SET_ERROR(EINVAL));
2736
2737	ZFS_ENTER(zfsvfs);
2738	ZFS_VERIFY_ZP(zp);
2739
2740	zilog = zfsvfs->z_log;
2741
2742	/*
2743	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2744	 * that file system is at proper version level
2745	 */
2746
2747	if (zfsvfs->z_use_fuids == B_FALSE &&
2748	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2749	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2750	    (mask & AT_XVATTR))) {
2751		ZFS_EXIT(zfsvfs);
2752		return (SET_ERROR(EINVAL));
2753	}
2754
2755	if (mask & AT_SIZE && vp->v_type == VDIR) {
2756		ZFS_EXIT(zfsvfs);
2757		return (SET_ERROR(EISDIR));
2758	}
2759
2760	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2761		ZFS_EXIT(zfsvfs);
2762		return (SET_ERROR(EINVAL));
2763	}
2764
2765	/*
2766	 * If this is an xvattr_t, then get a pointer to the structure of
2767	 * optional attributes.  If this is NULL, then we have a vattr_t.
2768	 */
2769	xoap = xva_getxoptattr(xvap);
2770
2771	xva_init(&tmpxvattr);
2772
2773	/*
2774	 * Immutable files can only alter immutable bit and atime
2775	 */
2776	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2777	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2778	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2779		ZFS_EXIT(zfsvfs);
2780		return (SET_ERROR(EPERM));
2781	}
2782
2783	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2784		ZFS_EXIT(zfsvfs);
2785		return (SET_ERROR(EPERM));
2786	}
2787
2788	/*
2789	 * Verify timestamps doesn't overflow 32 bits.
2790	 * ZFS can handle large timestamps, but 32bit syscalls can't
2791	 * handle times greater than 2039.  This check should be removed
2792	 * once large timestamps are fully supported.
2793	 */
2794	if (mask & (AT_ATIME | AT_MTIME)) {
2795		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2796		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2797			ZFS_EXIT(zfsvfs);
2798			return (SET_ERROR(EOVERFLOW));
2799		}
2800	}
2801
2802top:
2803	attrzp = NULL;
2804	aclp = NULL;
2805
2806	/* Can this be moved to before the top label? */
2807	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2808		ZFS_EXIT(zfsvfs);
2809		return (SET_ERROR(EROFS));
2810	}
2811
2812	/*
2813	 * First validate permissions
2814	 */
2815
2816	if (mask & AT_SIZE) {
2817		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2818		if (err) {
2819			ZFS_EXIT(zfsvfs);
2820			return (err);
2821		}
2822		/*
2823		 * XXX - Note, we are not providing any open
2824		 * mode flags here (like FNDELAY), so we may
2825		 * block if there are locks present... this
2826		 * should be addressed in openat().
2827		 */
2828		/* XXX - would it be OK to generate a log record here? */
2829		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2830		if (err) {
2831			ZFS_EXIT(zfsvfs);
2832			return (err);
2833		}
2834
2835		if (vap->va_size == 0)
2836			vnevent_truncate(ZTOV(zp), ct);
2837	}
2838
2839	if (mask & (AT_ATIME|AT_MTIME) ||
2840	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2841	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2842	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2843	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2844	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2845	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2846	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2847		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2848		    skipaclchk, cr);
2849	}
2850
2851	if (mask & (AT_UID|AT_GID)) {
2852		int	idmask = (mask & (AT_UID|AT_GID));
2853		int	take_owner;
2854		int	take_group;
2855
2856		/*
2857		 * NOTE: even if a new mode is being set,
2858		 * we may clear S_ISUID/S_ISGID bits.
2859		 */
2860
2861		if (!(mask & AT_MODE))
2862			vap->va_mode = zp->z_mode;
2863
2864		/*
2865		 * Take ownership or chgrp to group we are a member of
2866		 */
2867
2868		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2869		take_group = (mask & AT_GID) &&
2870		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2871
2872		/*
2873		 * If both AT_UID and AT_GID are set then take_owner and
2874		 * take_group must both be set in order to allow taking
2875		 * ownership.
2876		 *
2877		 * Otherwise, send the check through secpolicy_vnode_setattr()
2878		 *
2879		 */
2880
2881		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2882		    ((idmask == AT_UID) && take_owner) ||
2883		    ((idmask == AT_GID) && take_group)) {
2884			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2885			    skipaclchk, cr) == 0) {
2886				/*
2887				 * Remove setuid/setgid for non-privileged users
2888				 */
2889				secpolicy_setid_clear(vap, cr);
2890				trim_mask = (mask & (AT_UID|AT_GID));
2891			} else {
2892				need_policy =  TRUE;
2893			}
2894		} else {
2895			need_policy =  TRUE;
2896		}
2897	}
2898
2899	mutex_enter(&zp->z_lock);
2900	oldva.va_mode = zp->z_mode;
2901	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2902	if (mask & AT_XVATTR) {
2903		/*
2904		 * Update xvattr mask to include only those attributes
2905		 * that are actually changing.
2906		 *
2907		 * the bits will be restored prior to actually setting
2908		 * the attributes so the caller thinks they were set.
2909		 */
2910		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2911			if (xoap->xoa_appendonly !=
2912			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2913				need_policy = TRUE;
2914			} else {
2915				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2916				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2917			}
2918		}
2919
2920		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2921			if (xoap->xoa_nounlink !=
2922			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2923				need_policy = TRUE;
2924			} else {
2925				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2926				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2927			}
2928		}
2929
2930		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2931			if (xoap->xoa_immutable !=
2932			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2933				need_policy = TRUE;
2934			} else {
2935				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2936				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2937			}
2938		}
2939
2940		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2941			if (xoap->xoa_nodump !=
2942			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2943				need_policy = TRUE;
2944			} else {
2945				XVA_CLR_REQ(xvap, XAT_NODUMP);
2946				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2947			}
2948		}
2949
2950		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2951			if (xoap->xoa_av_modified !=
2952			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2953				need_policy = TRUE;
2954			} else {
2955				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2956				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2957			}
2958		}
2959
2960		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2961			if ((vp->v_type != VREG &&
2962			    xoap->xoa_av_quarantined) ||
2963			    xoap->xoa_av_quarantined !=
2964			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2965				need_policy = TRUE;
2966			} else {
2967				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2968				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2969			}
2970		}
2971
2972		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2973			mutex_exit(&zp->z_lock);
2974			ZFS_EXIT(zfsvfs);
2975			return (SET_ERROR(EPERM));
2976		}
2977
2978		if (need_policy == FALSE &&
2979		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2980		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2981			need_policy = TRUE;
2982		}
2983	}
2984
2985	mutex_exit(&zp->z_lock);
2986
2987	if (mask & AT_MODE) {
2988		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2989			err = secpolicy_setid_setsticky_clear(vp, vap,
2990			    &oldva, cr);
2991			if (err) {
2992				ZFS_EXIT(zfsvfs);
2993				return (err);
2994			}
2995			trim_mask |= AT_MODE;
2996		} else {
2997			need_policy = TRUE;
2998		}
2999	}
3000
3001	if (need_policy) {
3002		/*
3003		 * If trim_mask is set then take ownership
3004		 * has been granted or write_acl is present and user
3005		 * has the ability to modify mode.  In that case remove
3006		 * UID|GID and or MODE from mask so that
3007		 * secpolicy_vnode_setattr() doesn't revoke it.
3008		 */
3009
3010		if (trim_mask) {
3011			saved_mask = vap->va_mask;
3012			vap->va_mask &= ~trim_mask;
3013		}
3014		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3015		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3016		if (err) {
3017			ZFS_EXIT(zfsvfs);
3018			return (err);
3019		}
3020
3021		if (trim_mask)
3022			vap->va_mask |= saved_mask;
3023	}
3024
3025	/*
3026	 * secpolicy_vnode_setattr, or take ownership may have
3027	 * changed va_mask
3028	 */
3029	mask = vap->va_mask;
3030
3031	if ((mask & (AT_UID | AT_GID))) {
3032		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3033		    &xattr_obj, sizeof (xattr_obj));
3034
3035		if (err == 0 && xattr_obj) {
3036			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3037			if (err)
3038				goto out2;
3039		}
3040		if (mask & AT_UID) {
3041			new_uid = zfs_fuid_create(zfsvfs,
3042			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3043			if (new_uid != zp->z_uid &&
3044			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3045				if (attrzp)
3046					VN_RELE(ZTOV(attrzp));
3047				err = SET_ERROR(EDQUOT);
3048				goto out2;
3049			}
3050		}
3051
3052		if (mask & AT_GID) {
3053			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3054			    cr, ZFS_GROUP, &fuidp);
3055			if (new_gid != zp->z_gid &&
3056			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3057				if (attrzp)
3058					VN_RELE(ZTOV(attrzp));
3059				err = SET_ERROR(EDQUOT);
3060				goto out2;
3061			}
3062		}
3063	}
3064	tx = dmu_tx_create(zfsvfs->z_os);
3065
3066	if (mask & AT_MODE) {
3067		uint64_t pmode = zp->z_mode;
3068		uint64_t acl_obj;
3069		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3070
3071		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3072		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3073			err = SET_ERROR(EPERM);
3074			goto out;
3075		}
3076
3077		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3078			goto out;
3079
3080		mutex_enter(&zp->z_lock);
3081		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3082			/*
3083			 * Are we upgrading ACL from old V0 format
3084			 * to V1 format?
3085			 */
3086			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3087			    zfs_znode_acl_version(zp) ==
3088			    ZFS_ACL_VERSION_INITIAL) {
3089				dmu_tx_hold_free(tx, acl_obj, 0,
3090				    DMU_OBJECT_END);
3091				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3092				    0, aclp->z_acl_bytes);
3093			} else {
3094				dmu_tx_hold_write(tx, acl_obj, 0,
3095				    aclp->z_acl_bytes);
3096			}
3097		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3098			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3099			    0, aclp->z_acl_bytes);
3100		}
3101		mutex_exit(&zp->z_lock);
3102		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3103	} else {
3104		if ((mask & AT_XVATTR) &&
3105		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3106			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3107		else
3108			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3109	}
3110
3111	if (attrzp) {
3112		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3113	}
3114
3115	fuid_dirtied = zfsvfs->z_fuid_dirty;
3116	if (fuid_dirtied)
3117		zfs_fuid_txhold(zfsvfs, tx);
3118
3119	zfs_sa_upgrade_txholds(tx, zp);
3120
3121	err = dmu_tx_assign(tx, TXG_WAIT);
3122	if (err)
3123		goto out;
3124
3125	count = 0;
3126	/*
3127	 * Set each attribute requested.
3128	 * We group settings according to the locks they need to acquire.
3129	 *
3130	 * Note: you cannot set ctime directly, although it will be
3131	 * updated as a side-effect of calling this function.
3132	 */
3133
3134
3135	if (mask & (AT_UID|AT_GID|AT_MODE))
3136		mutex_enter(&zp->z_acl_lock);
3137	mutex_enter(&zp->z_lock);
3138
3139	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3140	    &zp->z_pflags, sizeof (zp->z_pflags));
3141
3142	if (attrzp) {
3143		if (mask & (AT_UID|AT_GID|AT_MODE))
3144			mutex_enter(&attrzp->z_acl_lock);
3145		mutex_enter(&attrzp->z_lock);
3146		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3147		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3148		    sizeof (attrzp->z_pflags));
3149	}
3150
3151	if (mask & (AT_UID|AT_GID)) {
3152
3153		if (mask & AT_UID) {
3154			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3155			    &new_uid, sizeof (new_uid));
3156			zp->z_uid = new_uid;
3157			if (attrzp) {
3158				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3159				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3160				    sizeof (new_uid));
3161				attrzp->z_uid = new_uid;
3162			}
3163		}
3164
3165		if (mask & AT_GID) {
3166			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3167			    NULL, &new_gid, sizeof (new_gid));
3168			zp->z_gid = new_gid;
3169			if (attrzp) {
3170				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3172				    sizeof (new_gid));
3173				attrzp->z_gid = new_gid;
3174			}
3175		}
3176		if (!(mask & AT_MODE)) {
3177			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3178			    NULL, &new_mode, sizeof (new_mode));
3179			new_mode = zp->z_mode;
3180		}
3181		err = zfs_acl_chown_setattr(zp);
3182		ASSERT(err == 0);
3183		if (attrzp) {
3184			err = zfs_acl_chown_setattr(attrzp);
3185			ASSERT(err == 0);
3186		}
3187	}
3188
3189	if (mask & AT_MODE) {
3190		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3191		    &new_mode, sizeof (new_mode));
3192		zp->z_mode = new_mode;
3193		ASSERT3U((uintptr_t)aclp, !=, NULL);
3194		err = zfs_aclset_common(zp, aclp, cr, tx);
3195		ASSERT0(err);
3196		if (zp->z_acl_cached)
3197			zfs_acl_free(zp->z_acl_cached);
3198		zp->z_acl_cached = aclp;
3199		aclp = NULL;
3200	}
3201
3202
3203	if (mask & AT_ATIME) {
3204		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3205		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3206		    &zp->z_atime, sizeof (zp->z_atime));
3207	}
3208
3209	if (mask & AT_MTIME) {
3210		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3211		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3212		    mtime, sizeof (mtime));
3213	}
3214
3215	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3216	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3217		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3218		    NULL, mtime, sizeof (mtime));
3219		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3220		    &ctime, sizeof (ctime));
3221		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3222		    B_TRUE);
3223	} else if (mask != 0) {
3224		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3225		    &ctime, sizeof (ctime));
3226		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3227		    B_TRUE);
3228		if (attrzp) {
3229			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3230			    SA_ZPL_CTIME(zfsvfs), NULL,
3231			    &ctime, sizeof (ctime));
3232			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3233			    mtime, ctime, B_TRUE);
3234		}
3235	}
3236	/*
3237	 * Do this after setting timestamps to prevent timestamp
3238	 * update from toggling bit
3239	 */
3240
3241	if (xoap && (mask & AT_XVATTR)) {
3242
3243		/*
3244		 * restore trimmed off masks
3245		 * so that return masks can be set for caller.
3246		 */
3247
3248		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3249			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3250		}
3251		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3252			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3253		}
3254		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3255			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3256		}
3257		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3258			XVA_SET_REQ(xvap, XAT_NODUMP);
3259		}
3260		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3261			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3262		}
3263		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3264			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3265		}
3266
3267		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3268			ASSERT(vp->v_type == VREG);
3269
3270		zfs_xvattr_set(zp, xvap, tx);
3271	}
3272
3273	if (fuid_dirtied)
3274		zfs_fuid_sync(zfsvfs, tx);
3275
3276	if (mask != 0)
3277		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3278
3279	mutex_exit(&zp->z_lock);
3280	if (mask & (AT_UID|AT_GID|AT_MODE))
3281		mutex_exit(&zp->z_acl_lock);
3282
3283	if (attrzp) {
3284		if (mask & (AT_UID|AT_GID|AT_MODE))
3285			mutex_exit(&attrzp->z_acl_lock);
3286		mutex_exit(&attrzp->z_lock);
3287	}
3288out:
3289	if (err == 0 && attrzp) {
3290		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3291		    xattr_count, tx);
3292		ASSERT(err2 == 0);
3293	}
3294
3295	if (attrzp)
3296		VN_RELE(ZTOV(attrzp));
3297
3298	if (aclp)
3299		zfs_acl_free(aclp);
3300
3301	if (fuidp) {
3302		zfs_fuid_info_free(fuidp);
3303		fuidp = NULL;
3304	}
3305
3306	if (err) {
3307		dmu_tx_abort(tx);
3308		if (err == ERESTART)
3309			goto top;
3310	} else {
3311		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3312		dmu_tx_commit(tx);
3313	}
3314
3315out2:
3316	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3317		zil_commit(zilog, 0);
3318
3319	ZFS_EXIT(zfsvfs);
3320	return (err);
3321}
3322
3323typedef struct zfs_zlock {
3324	krwlock_t	*zl_rwlock;	/* lock we acquired */
3325	znode_t		*zl_znode;	/* znode we held */
3326	struct zfs_zlock *zl_next;	/* next in list */
3327} zfs_zlock_t;
3328
3329/*
3330 * Drop locks and release vnodes that were held by zfs_rename_lock().
3331 */
3332static void
3333zfs_rename_unlock(zfs_zlock_t **zlpp)
3334{
3335	zfs_zlock_t *zl;
3336
3337	while ((zl = *zlpp) != NULL) {
3338		if (zl->zl_znode != NULL)
3339			VN_RELE(ZTOV(zl->zl_znode));
3340		rw_exit(zl->zl_rwlock);
3341		*zlpp = zl->zl_next;
3342		kmem_free(zl, sizeof (*zl));
3343	}
3344}
3345
3346/*
3347 * Search back through the directory tree, using the ".." entries.
3348 * Lock each directory in the chain to prevent concurrent renames.
3349 * Fail any attempt to move a directory into one of its own descendants.
3350 * XXX - z_parent_lock can overlap with map or grow locks
3351 */
3352static int
3353zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3354{
3355	zfs_zlock_t	*zl;
3356	znode_t		*zp = tdzp;
3357	uint64_t	rootid = zp->z_zfsvfs->z_root;
3358	uint64_t	oidp = zp->z_id;
3359	krwlock_t	*rwlp = &szp->z_parent_lock;
3360	krw_t		rw = RW_WRITER;
3361
3362	/*
3363	 * First pass write-locks szp and compares to zp->z_id.
3364	 * Later passes read-lock zp and compare to zp->z_parent.
3365	 */
3366	do {
3367		if (!rw_tryenter(rwlp, rw)) {
3368			/*
3369			 * Another thread is renaming in this path.
3370			 * Note that if we are a WRITER, we don't have any
3371			 * parent_locks held yet.
3372			 */
3373			if (rw == RW_READER && zp->z_id > szp->z_id) {
3374				/*
3375				 * Drop our locks and restart
3376				 */
3377				zfs_rename_unlock(&zl);
3378				*zlpp = NULL;
3379				zp = tdzp;
3380				oidp = zp->z_id;
3381				rwlp = &szp->z_parent_lock;
3382				rw = RW_WRITER;
3383				continue;
3384			} else {
3385				/*
3386				 * Wait for other thread to drop its locks
3387				 */
3388				rw_enter(rwlp, rw);
3389			}
3390		}
3391
3392		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3393		zl->zl_rwlock = rwlp;
3394		zl->zl_znode = NULL;
3395		zl->zl_next = *zlpp;
3396		*zlpp = zl;
3397
3398		if (oidp == szp->z_id)		/* We're a descendant of szp */
3399			return (SET_ERROR(EINVAL));
3400
3401		if (oidp == rootid)		/* We've hit the top */
3402			return (0);
3403
3404		if (rw == RW_READER) {		/* i.e. not the first pass */
3405			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3406			if (error)
3407				return (error);
3408			zl->zl_znode = zp;
3409		}
3410		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3411		    &oidp, sizeof (oidp));
3412		rwlp = &zp->z_parent_lock;
3413		rw = RW_READER;
3414
3415	} while (zp->z_id != sdzp->z_id);
3416
3417	return (0);
3418}
3419
3420/*
3421 * Move an entry from the provided source directory to the target
3422 * directory.  Change the entry name as indicated.
3423 *
3424 *	IN:	sdvp	- Source directory containing the "old entry".
3425 *		snm	- Old entry name.
3426 *		tdvp	- Target directory to contain the "new entry".
3427 *		tnm	- New entry name.
3428 *		cr	- credentials of caller.
3429 *		ct	- caller context
3430 *		flags	- case flags
3431 *
3432 *	RETURN:	0 on success, error code on failure.
3433 *
3434 * Timestamps:
3435 *	sdvp,tdvp - ctime|mtime updated
3436 */
3437/*ARGSUSED*/
3438static int
3439zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3440    caller_context_t *ct, int flags)
3441{
3442	znode_t		*tdzp, *szp, *tzp;
3443	znode_t		*sdzp = VTOZ(sdvp);
3444	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3445	zilog_t		*zilog;
3446	vnode_t		*realvp;
3447	zfs_dirlock_t	*sdl, *tdl;
3448	dmu_tx_t	*tx;
3449	zfs_zlock_t	*zl;
3450	int		cmp, serr, terr;
3451	int		error = 0;
3452	int		zflg = 0;
3453	boolean_t	waited = B_FALSE;
3454
3455	ZFS_ENTER(zfsvfs);
3456	ZFS_VERIFY_ZP(sdzp);
3457	zilog = zfsvfs->z_log;
3458
3459	/*
3460	 * Make sure we have the real vp for the target directory.
3461	 */
3462	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3463		tdvp = realvp;
3464
3465	tdzp = VTOZ(tdvp);
3466	ZFS_VERIFY_ZP(tdzp);
3467
3468	/*
3469	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3470	 * ctldir appear to have the same v_vfsp.
3471	 */
3472	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3473		ZFS_EXIT(zfsvfs);
3474		return (SET_ERROR(EXDEV));
3475	}
3476
3477	if (zfsvfs->z_utf8 && u8_validate(tnm,
3478	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3479		ZFS_EXIT(zfsvfs);
3480		return (SET_ERROR(EILSEQ));
3481	}
3482
3483	if (flags & FIGNORECASE)
3484		zflg |= ZCILOOK;
3485
3486top:
3487	szp = NULL;
3488	tzp = NULL;
3489	zl = NULL;
3490
3491	/*
3492	 * This is to prevent the creation of links into attribute space
3493	 * by renaming a linked file into/outof an attribute directory.
3494	 * See the comment in zfs_link() for why this is considered bad.
3495	 */
3496	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3497		ZFS_EXIT(zfsvfs);
3498		return (SET_ERROR(EINVAL));
3499	}
3500
3501	/*
3502	 * Lock source and target directory entries.  To prevent deadlock,
3503	 * a lock ordering must be defined.  We lock the directory with
3504	 * the smallest object id first, or if it's a tie, the one with
3505	 * the lexically first name.
3506	 */
3507	if (sdzp->z_id < tdzp->z_id) {
3508		cmp = -1;
3509	} else if (sdzp->z_id > tdzp->z_id) {
3510		cmp = 1;
3511	} else {
3512		/*
3513		 * First compare the two name arguments without
3514		 * considering any case folding.
3515		 */
3516		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3517
3518		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3519		ASSERT(error == 0 || !zfsvfs->z_utf8);
3520		if (cmp == 0) {
3521			/*
3522			 * POSIX: "If the old argument and the new argument
3523			 * both refer to links to the same existing file,
3524			 * the rename() function shall return successfully
3525			 * and perform no other action."
3526			 */
3527			ZFS_EXIT(zfsvfs);
3528			return (0);
3529		}
3530		/*
3531		 * If the file system is case-folding, then we may
3532		 * have some more checking to do.  A case-folding file
3533		 * system is either supporting mixed case sensitivity
3534		 * access or is completely case-insensitive.  Note
3535		 * that the file system is always case preserving.
3536		 *
3537		 * In mixed sensitivity mode case sensitive behavior
3538		 * is the default.  FIGNORECASE must be used to
3539		 * explicitly request case insensitive behavior.
3540		 *
3541		 * If the source and target names provided differ only
3542		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3543		 * we will treat this as a special case in the
3544		 * case-insensitive mode: as long as the source name
3545		 * is an exact match, we will allow this to proceed as
3546		 * a name-change request.
3547		 */
3548		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3549		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3550		    flags & FIGNORECASE)) &&
3551		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3552		    &error) == 0) {
3553			/*
3554			 * case preserving rename request, require exact
3555			 * name matches
3556			 */
3557			zflg |= ZCIEXACT;
3558			zflg &= ~ZCILOOK;
3559		}
3560	}
3561
3562	/*
3563	 * If the source and destination directories are the same, we should
3564	 * grab the z_name_lock of that directory only once.
3565	 */
3566	if (sdzp == tdzp) {
3567		zflg |= ZHAVELOCK;
3568		rw_enter(&sdzp->z_name_lock, RW_READER);
3569	}
3570
3571	if (cmp < 0) {
3572		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3573		    ZEXISTS | zflg, NULL, NULL);
3574		terr = zfs_dirent_lock(&tdl,
3575		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3576	} else {
3577		terr = zfs_dirent_lock(&tdl,
3578		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3579		serr = zfs_dirent_lock(&sdl,
3580		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3581		    NULL, NULL);
3582	}
3583
3584	if (serr) {
3585		/*
3586		 * Source entry invalid or not there.
3587		 */
3588		if (!terr) {
3589			zfs_dirent_unlock(tdl);
3590			if (tzp)
3591				VN_RELE(ZTOV(tzp));
3592		}
3593
3594		if (sdzp == tdzp)
3595			rw_exit(&sdzp->z_name_lock);
3596
3597		if (strcmp(snm, "..") == 0)
3598			serr = SET_ERROR(EINVAL);
3599		ZFS_EXIT(zfsvfs);
3600		return (serr);
3601	}
3602	if (terr) {
3603		zfs_dirent_unlock(sdl);
3604		VN_RELE(ZTOV(szp));
3605
3606		if (sdzp == tdzp)
3607			rw_exit(&sdzp->z_name_lock);
3608
3609		if (strcmp(tnm, "..") == 0)
3610			terr = SET_ERROR(EINVAL);
3611		ZFS_EXIT(zfsvfs);
3612		return (terr);
3613	}
3614
3615	/*
3616	 * Must have write access at the source to remove the old entry
3617	 * and write access at the target to create the new entry.
3618	 * Note that if target and source are the same, this can be
3619	 * done in a single check.
3620	 */
3621
3622	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3623		goto out;
3624
3625	if (ZTOV(szp)->v_type == VDIR) {
3626		/*
3627		 * Check to make sure rename is valid.
3628		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3629		 */
3630		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3631			goto out;
3632	}
3633
3634	/*
3635	 * Does target exist?
3636	 */
3637	if (tzp) {
3638		/*
3639		 * Source and target must be the same type.
3640		 */
3641		if (ZTOV(szp)->v_type == VDIR) {
3642			if (ZTOV(tzp)->v_type != VDIR) {
3643				error = SET_ERROR(ENOTDIR);
3644				goto out;
3645			}
3646		} else {
3647			if (ZTOV(tzp)->v_type == VDIR) {
3648				error = SET_ERROR(EISDIR);
3649				goto out;
3650			}
3651		}
3652		/*
3653		 * POSIX dictates that when the source and target
3654		 * entries refer to the same file object, rename
3655		 * must do nothing and exit without error.
3656		 */
3657		if (szp->z_id == tzp->z_id) {
3658			error = 0;
3659			goto out;
3660		}
3661	}
3662
3663	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3664	if (tzp)
3665		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3666
3667	/*
3668	 * notify the target directory if it is not the same
3669	 * as source directory.
3670	 */
3671	if (tdvp != sdvp) {
3672		vnevent_rename_dest_dir(tdvp, ct);
3673	}
3674
3675	tx = dmu_tx_create(zfsvfs->z_os);
3676	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3677	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3678	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3679	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3680	if (sdzp != tdzp) {
3681		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3682		zfs_sa_upgrade_txholds(tx, tdzp);
3683	}
3684	if (tzp) {
3685		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3686		zfs_sa_upgrade_txholds(tx, tzp);
3687	}
3688
3689	zfs_sa_upgrade_txholds(tx, szp);
3690	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3691	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3692	if (error) {
3693		if (zl != NULL)
3694			zfs_rename_unlock(&zl);
3695		zfs_dirent_unlock(sdl);
3696		zfs_dirent_unlock(tdl);
3697
3698		if (sdzp == tdzp)
3699			rw_exit(&sdzp->z_name_lock);
3700
3701		VN_RELE(ZTOV(szp));
3702		if (tzp)
3703			VN_RELE(ZTOV(tzp));
3704		if (error == ERESTART) {
3705			waited = B_TRUE;
3706			dmu_tx_wait(tx);
3707			dmu_tx_abort(tx);
3708			goto top;
3709		}
3710		dmu_tx_abort(tx);
3711		ZFS_EXIT(zfsvfs);
3712		return (error);
3713	}
3714
3715	if (tzp)	/* Attempt to remove the existing target */
3716		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3717
3718	if (error == 0) {
3719		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3720		if (error == 0) {
3721			szp->z_pflags |= ZFS_AV_MODIFIED;
3722
3723			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3724			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3725			ASSERT0(error);
3726
3727			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3728			if (error == 0) {
3729				zfs_log_rename(zilog, tx, TX_RENAME |
3730				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3731				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3732
3733				/*
3734				 * Update path information for the target vnode
3735				 */
3736				vn_renamepath(tdvp, ZTOV(szp), tnm,
3737				    strlen(tnm));
3738			} else {
3739				/*
3740				 * At this point, we have successfully created
3741				 * the target name, but have failed to remove
3742				 * the source name.  Since the create was done
3743				 * with the ZRENAMING flag, there are
3744				 * complications; for one, the link count is
3745				 * wrong.  The easiest way to deal with this
3746				 * is to remove the newly created target, and
3747				 * return the original error.  This must
3748				 * succeed; fortunately, it is very unlikely to
3749				 * fail, since we just created it.
3750				 */
3751				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3752				    ZRENAMING, NULL), ==, 0);
3753			}
3754		}
3755	}
3756
3757	dmu_tx_commit(tx);
3758out:
3759	if (zl != NULL)
3760		zfs_rename_unlock(&zl);
3761
3762	zfs_dirent_unlock(sdl);
3763	zfs_dirent_unlock(tdl);
3764
3765	if (sdzp == tdzp)
3766		rw_exit(&sdzp->z_name_lock);
3767
3768
3769	VN_RELE(ZTOV(szp));
3770	if (tzp)
3771		VN_RELE(ZTOV(tzp));
3772
3773	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3774		zil_commit(zilog, 0);
3775
3776	ZFS_EXIT(zfsvfs);
3777	return (error);
3778}
3779
3780/*
3781 * Insert the indicated symbolic reference entry into the directory.
3782 *
3783 *	IN:	dvp	- Directory to contain new symbolic link.
3784 *		link	- Name for new symlink entry.
3785 *		vap	- Attributes of new entry.
3786 *		cr	- credentials of caller.
3787 *		ct	- caller context
3788 *		flags	- case flags
3789 *
3790 *	RETURN:	0 on success, error code on failure.
3791 *
3792 * Timestamps:
3793 *	dvp - ctime|mtime updated
3794 */
3795/*ARGSUSED*/
3796static int
3797zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3798    caller_context_t *ct, int flags)
3799{
3800	znode_t		*zp, *dzp = VTOZ(dvp);
3801	zfs_dirlock_t	*dl;
3802	dmu_tx_t	*tx;
3803	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3804	zilog_t		*zilog;
3805	uint64_t	len = strlen(link);
3806	int		error;
3807	int		zflg = ZNEW;
3808	zfs_acl_ids_t	acl_ids;
3809	boolean_t	fuid_dirtied;
3810	uint64_t	txtype = TX_SYMLINK;
3811	boolean_t	waited = B_FALSE;
3812
3813	ASSERT(vap->va_type == VLNK);
3814
3815	ZFS_ENTER(zfsvfs);
3816	ZFS_VERIFY_ZP(dzp);
3817	zilog = zfsvfs->z_log;
3818
3819	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3820	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3821		ZFS_EXIT(zfsvfs);
3822		return (SET_ERROR(EILSEQ));
3823	}
3824	if (flags & FIGNORECASE)
3825		zflg |= ZCILOOK;
3826
3827	if (len > MAXPATHLEN) {
3828		ZFS_EXIT(zfsvfs);
3829		return (SET_ERROR(ENAMETOOLONG));
3830	}
3831
3832	if ((error = zfs_acl_ids_create(dzp, 0,
3833	    vap, cr, NULL, &acl_ids)) != 0) {
3834		ZFS_EXIT(zfsvfs);
3835		return (error);
3836	}
3837top:
3838	/*
3839	 * Attempt to lock directory; fail if entry already exists.
3840	 */
3841	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3842	if (error) {
3843		zfs_acl_ids_free(&acl_ids);
3844		ZFS_EXIT(zfsvfs);
3845		return (error);
3846	}
3847
3848	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3849		zfs_acl_ids_free(&acl_ids);
3850		zfs_dirent_unlock(dl);
3851		ZFS_EXIT(zfsvfs);
3852		return (error);
3853	}
3854
3855	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3856		zfs_acl_ids_free(&acl_ids);
3857		zfs_dirent_unlock(dl);
3858		ZFS_EXIT(zfsvfs);
3859		return (SET_ERROR(EDQUOT));
3860	}
3861	tx = dmu_tx_create(zfsvfs->z_os);
3862	fuid_dirtied = zfsvfs->z_fuid_dirty;
3863	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3864	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3865	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3866	    ZFS_SA_BASE_ATTR_SIZE + len);
3867	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3868	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3869		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3870		    acl_ids.z_aclp->z_acl_bytes);
3871	}
3872	if (fuid_dirtied)
3873		zfs_fuid_txhold(zfsvfs, tx);
3874	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3875	if (error) {
3876		zfs_dirent_unlock(dl);
3877		if (error == ERESTART) {
3878			waited = B_TRUE;
3879			dmu_tx_wait(tx);
3880			dmu_tx_abort(tx);
3881			goto top;
3882		}
3883		zfs_acl_ids_free(&acl_ids);
3884		dmu_tx_abort(tx);
3885		ZFS_EXIT(zfsvfs);
3886		return (error);
3887	}
3888
3889	/*
3890	 * Create a new object for the symlink.
3891	 * for version 4 ZPL datsets the symlink will be an SA attribute
3892	 */
3893	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3894
3895	if (fuid_dirtied)
3896		zfs_fuid_sync(zfsvfs, tx);
3897
3898	mutex_enter(&zp->z_lock);
3899	if (zp->z_is_sa)
3900		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3901		    link, len, tx);
3902	else
3903		zfs_sa_symlink(zp, link, len, tx);
3904	mutex_exit(&zp->z_lock);
3905
3906	zp->z_size = len;
3907	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3908	    &zp->z_size, sizeof (zp->z_size), tx);
3909	/*
3910	 * Insert the new object into the directory.
3911	 */
3912	(void) zfs_link_create(dl, zp, tx, ZNEW);
3913
3914	if (flags & FIGNORECASE)
3915		txtype |= TX_CI;
3916	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3917
3918	zfs_acl_ids_free(&acl_ids);
3919
3920	dmu_tx_commit(tx);
3921
3922	zfs_dirent_unlock(dl);
3923
3924	VN_RELE(ZTOV(zp));
3925
3926	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3927		zil_commit(zilog, 0);
3928
3929	ZFS_EXIT(zfsvfs);
3930	return (error);
3931}
3932
3933/*
3934 * Return, in the buffer contained in the provided uio structure,
3935 * the symbolic path referred to by vp.
3936 *
3937 *	IN:	vp	- vnode of symbolic link.
3938 *		uio	- structure to contain the link path.
3939 *		cr	- credentials of caller.
3940 *		ct	- caller context
3941 *
3942 *	OUT:	uio	- structure containing the link path.
3943 *
3944 *	RETURN:	0 on success, error code on failure.
3945 *
3946 * Timestamps:
3947 *	vp - atime updated
3948 */
3949/* ARGSUSED */
3950static int
3951zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3952{
3953	znode_t		*zp = VTOZ(vp);
3954	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3955	int		error;
3956
3957	ZFS_ENTER(zfsvfs);
3958	ZFS_VERIFY_ZP(zp);
3959
3960	mutex_enter(&zp->z_lock);
3961	if (zp->z_is_sa)
3962		error = sa_lookup_uio(zp->z_sa_hdl,
3963		    SA_ZPL_SYMLINK(zfsvfs), uio);
3964	else
3965		error = zfs_sa_readlink(zp, uio);
3966	mutex_exit(&zp->z_lock);
3967
3968	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3969
3970	ZFS_EXIT(zfsvfs);
3971	return (error);
3972}
3973
3974/*
3975 * Insert a new entry into directory tdvp referencing svp.
3976 *
3977 *	IN:	tdvp	- Directory to contain new entry.
3978 *		svp	- vnode of new entry.
3979 *		name	- name of new entry.
3980 *		cr	- credentials of caller.
3981 *		ct	- caller context
3982 *
3983 *	RETURN:	0 on success, error code on failure.
3984 *
3985 * Timestamps:
3986 *	tdvp - ctime|mtime updated
3987 *	 svp - ctime updated
3988 */
3989/* ARGSUSED */
3990static int
3991zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3992    caller_context_t *ct, int flags)
3993{
3994	znode_t		*dzp = VTOZ(tdvp);
3995	znode_t		*tzp, *szp;
3996	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3997	zilog_t		*zilog;
3998	zfs_dirlock_t	*dl;
3999	dmu_tx_t	*tx;
4000	vnode_t		*realvp;
4001	int		error;
4002	int		zf = ZNEW;
4003	uint64_t	parent;
4004	uid_t		owner;
4005	boolean_t	waited = B_FALSE;
4006
4007	ASSERT(tdvp->v_type == VDIR);
4008
4009	ZFS_ENTER(zfsvfs);
4010	ZFS_VERIFY_ZP(dzp);
4011	zilog = zfsvfs->z_log;
4012
4013	if (VOP_REALVP(svp, &realvp, ct) == 0)
4014		svp = realvp;
4015
4016	/*
4017	 * POSIX dictates that we return EPERM here.
4018	 * Better choices include ENOTSUP or EISDIR.
4019	 */
4020	if (svp->v_type == VDIR) {
4021		ZFS_EXIT(zfsvfs);
4022		return (SET_ERROR(EPERM));
4023	}
4024
4025	szp = VTOZ(svp);
4026	ZFS_VERIFY_ZP(szp);
4027
4028	/*
4029	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4030	 * ctldir appear to have the same v_vfsp.
4031	 */
4032	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4033		ZFS_EXIT(zfsvfs);
4034		return (SET_ERROR(EXDEV));
4035	}
4036
4037	/* Prevent links to .zfs/shares files */
4038
4039	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4040	    &parent, sizeof (uint64_t))) != 0) {
4041		ZFS_EXIT(zfsvfs);
4042		return (error);
4043	}
4044	if (parent == zfsvfs->z_shares_dir) {
4045		ZFS_EXIT(zfsvfs);
4046		return (SET_ERROR(EPERM));
4047	}
4048
4049	if (zfsvfs->z_utf8 && u8_validate(name,
4050	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4051		ZFS_EXIT(zfsvfs);
4052		return (SET_ERROR(EILSEQ));
4053	}
4054	if (flags & FIGNORECASE)
4055		zf |= ZCILOOK;
4056
4057	/*
4058	 * We do not support links between attributes and non-attributes
4059	 * because of the potential security risk of creating links
4060	 * into "normal" file space in order to circumvent restrictions
4061	 * imposed in attribute space.
4062	 */
4063	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4064		ZFS_EXIT(zfsvfs);
4065		return (SET_ERROR(EINVAL));
4066	}
4067
4068
4069	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4070	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4071		ZFS_EXIT(zfsvfs);
4072		return (SET_ERROR(EPERM));
4073	}
4074
4075	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4076		ZFS_EXIT(zfsvfs);
4077		return (error);
4078	}
4079
4080top:
4081	/*
4082	 * Attempt to lock directory; fail if entry already exists.
4083	 */
4084	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4085	if (error) {
4086		ZFS_EXIT(zfsvfs);
4087		return (error);
4088	}
4089
4090	tx = dmu_tx_create(zfsvfs->z_os);
4091	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4092	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4093	zfs_sa_upgrade_txholds(tx, szp);
4094	zfs_sa_upgrade_txholds(tx, dzp);
4095	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4096	if (error) {
4097		zfs_dirent_unlock(dl);
4098		if (error == ERESTART) {
4099			waited = B_TRUE;
4100			dmu_tx_wait(tx);
4101			dmu_tx_abort(tx);
4102			goto top;
4103		}
4104		dmu_tx_abort(tx);
4105		ZFS_EXIT(zfsvfs);
4106		return (error);
4107	}
4108
4109	error = zfs_link_create(dl, szp, tx, 0);
4110
4111	if (error == 0) {
4112		uint64_t txtype = TX_LINK;
4113		if (flags & FIGNORECASE)
4114			txtype |= TX_CI;
4115		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4116	}
4117
4118	dmu_tx_commit(tx);
4119
4120	zfs_dirent_unlock(dl);
4121
4122	if (error == 0) {
4123		vnevent_link(svp, ct);
4124	}
4125
4126	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4127		zil_commit(zilog, 0);
4128
4129	ZFS_EXIT(zfsvfs);
4130	return (error);
4131}
4132
4133/*
4134 * zfs_null_putapage() is used when the file system has been force
4135 * unmounted. It just drops the pages.
4136 */
4137/* ARGSUSED */
4138static int
4139zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4140		size_t *lenp, int flags, cred_t *cr)
4141{
4142	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4143	return (0);
4144}
4145
4146/*
4147 * Push a page out to disk, klustering if possible.
4148 *
4149 *	IN:	vp	- file to push page to.
4150 *		pp	- page to push.
4151 *		flags	- additional flags.
4152 *		cr	- credentials of caller.
4153 *
4154 *	OUT:	offp	- start of range pushed.
4155 *		lenp	- len of range pushed.
4156 *
4157 *	RETURN:	0 on success, error code on failure.
4158 *
4159 * NOTE: callers must have locked the page to be pushed.  On
4160 * exit, the page (and all other pages in the kluster) must be
4161 * unlocked.
4162 */
4163/* ARGSUSED */
4164static int
4165zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4166		size_t *lenp, int flags, cred_t *cr)
4167{
4168	znode_t		*zp = VTOZ(vp);
4169	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4170	dmu_tx_t	*tx;
4171	u_offset_t	off, koff;
4172	size_t		len, klen;
4173	int		err;
4174
4175	off = pp->p_offset;
4176	len = PAGESIZE;
4177	/*
4178	 * If our blocksize is bigger than the page size, try to kluster
4179	 * multiple pages so that we write a full block (thus avoiding
4180	 * a read-modify-write).
4181	 */
4182	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4183		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4184		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4185		ASSERT(koff <= zp->z_size);
4186		if (koff + klen > zp->z_size)
4187			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4188		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4189	}
4190	ASSERT3U(btop(len), ==, btopr(len));
4191
4192	/*
4193	 * Can't push pages past end-of-file.
4194	 */
4195	if (off >= zp->z_size) {
4196		/* ignore all pages */
4197		err = 0;
4198		goto out;
4199	} else if (off + len > zp->z_size) {
4200		int npages = btopr(zp->z_size - off);
4201		page_t *trunc;
4202
4203		page_list_break(&pp, &trunc, npages);
4204		/* ignore pages past end of file */
4205		if (trunc)
4206			pvn_write_done(trunc, flags);
4207		len = zp->z_size - off;
4208	}
4209
4210	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4211	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4212		err = SET_ERROR(EDQUOT);
4213		goto out;
4214	}
4215	tx = dmu_tx_create(zfsvfs->z_os);
4216	dmu_tx_hold_write(tx, zp->z_id, off, len);
4217
4218	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4219	zfs_sa_upgrade_txholds(tx, zp);
4220	err = dmu_tx_assign(tx, TXG_WAIT);
4221	if (err != 0) {
4222		dmu_tx_abort(tx);
4223		goto out;
4224	}
4225
4226	if (zp->z_blksz <= PAGESIZE) {
4227		caddr_t va = zfs_map_page(pp, S_READ);
4228		ASSERT3U(len, <=, PAGESIZE);
4229		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4230		zfs_unmap_page(pp, va);
4231	} else {
4232		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4233	}
4234
4235	if (err == 0) {
4236		uint64_t mtime[2], ctime[2];
4237		sa_bulk_attr_t bulk[3];
4238		int count = 0;
4239
4240		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4241		    &mtime, 16);
4242		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4243		    &ctime, 16);
4244		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4245		    &zp->z_pflags, 8);
4246		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4247		    B_TRUE);
4248		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4249	}
4250	dmu_tx_commit(tx);
4251
4252out:
4253	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4254	if (offp)
4255		*offp = off;
4256	if (lenp)
4257		*lenp = len;
4258
4259	return (err);
4260}
4261
4262/*
4263 * Copy the portion of the file indicated from pages into the file.
4264 * The pages are stored in a page list attached to the files vnode.
4265 *
4266 *	IN:	vp	- vnode of file to push page data to.
4267 *		off	- position in file to put data.
4268 *		len	- amount of data to write.
4269 *		flags	- flags to control the operation.
4270 *		cr	- credentials of caller.
4271 *		ct	- caller context.
4272 *
4273 *	RETURN:	0 on success, error code on failure.
4274 *
4275 * Timestamps:
4276 *	vp - ctime|mtime updated
4277 */
4278/*ARGSUSED*/
4279static int
4280zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4281    caller_context_t *ct)
4282{
4283	znode_t		*zp = VTOZ(vp);
4284	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4285	page_t		*pp;
4286	size_t		io_len;
4287	u_offset_t	io_off;
4288	uint_t		blksz;
4289	rl_t		*rl;
4290	int		error = 0;
4291
4292	ZFS_ENTER(zfsvfs);
4293	ZFS_VERIFY_ZP(zp);
4294
4295	/*
4296	 * There's nothing to do if no data is cached.
4297	 */
4298	if (!vn_has_cached_data(vp)) {
4299		ZFS_EXIT(zfsvfs);
4300		return (0);
4301	}
4302
4303	/*
4304	 * Align this request to the file block size in case we kluster.
4305	 * XXX - this can result in pretty aggresive locking, which can
4306	 * impact simultanious read/write access.  One option might be
4307	 * to break up long requests (len == 0) into block-by-block
4308	 * operations to get narrower locking.
4309	 */
4310	blksz = zp->z_blksz;
4311	if (ISP2(blksz))
4312		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4313	else
4314		io_off = 0;
4315	if (len > 0 && ISP2(blksz))
4316		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4317	else
4318		io_len = 0;
4319
4320	if (io_len == 0) {
4321		/*
4322		 * Search the entire vp list for pages >= io_off.
4323		 */
4324		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4325		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4326		goto out;
4327	}
4328	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4329
4330	if (off > zp->z_size) {
4331		/* past end of file */
4332		zfs_range_unlock(rl);
4333		ZFS_EXIT(zfsvfs);
4334		return (0);
4335	}
4336
4337	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4338
4339	for (off = io_off; io_off < off + len; io_off += io_len) {
4340		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4341			pp = page_lookup(vp, io_off,
4342			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4343		} else {
4344			pp = page_lookup_nowait(vp, io_off,
4345			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4346		}
4347
4348		if (pp != NULL && pvn_getdirty(pp, flags)) {
4349			int err;
4350
4351			/*
4352			 * Found a dirty page to push
4353			 */
4354			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4355			if (err)
4356				error = err;
4357		} else {
4358			io_len = PAGESIZE;
4359		}
4360	}
4361out:
4362	zfs_range_unlock(rl);
4363	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4364		zil_commit(zfsvfs->z_log, zp->z_id);
4365	ZFS_EXIT(zfsvfs);
4366	return (error);
4367}
4368
4369/*ARGSUSED*/
4370void
4371zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4372{
4373	znode_t	*zp = VTOZ(vp);
4374	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4375	int error;
4376
4377	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4378	if (zp->z_sa_hdl == NULL) {
4379		/*
4380		 * The fs has been unmounted, or we did a
4381		 * suspend/resume and this file no longer exists.
4382		 */
4383		if (vn_has_cached_data(vp)) {
4384			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4385			    B_INVAL, cr);
4386		}
4387
4388		mutex_enter(&zp->z_lock);
4389		mutex_enter(&vp->v_lock);
4390		ASSERT(vp->v_count == 1);
4391		vp->v_count = 0;
4392		mutex_exit(&vp->v_lock);
4393		mutex_exit(&zp->z_lock);
4394		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4395		zfs_znode_free(zp);
4396		return;
4397	}
4398
4399	/*
4400	 * Attempt to push any data in the page cache.  If this fails
4401	 * we will get kicked out later in zfs_zinactive().
4402	 */
4403	if (vn_has_cached_data(vp)) {
4404		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4405		    cr);
4406	}
4407
4408	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4409		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4410
4411		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4412		zfs_sa_upgrade_txholds(tx, zp);
4413		error = dmu_tx_assign(tx, TXG_WAIT);
4414		if (error) {
4415			dmu_tx_abort(tx);
4416		} else {
4417			mutex_enter(&zp->z_lock);
4418			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4419			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4420			zp->z_atime_dirty = 0;
4421			mutex_exit(&zp->z_lock);
4422			dmu_tx_commit(tx);
4423		}
4424	}
4425
4426	zfs_zinactive(zp);
4427	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4428}
4429
4430/*
4431 * Bounds-check the seek operation.
4432 *
4433 *	IN:	vp	- vnode seeking within
4434 *		ooff	- old file offset
4435 *		noffp	- pointer to new file offset
4436 *		ct	- caller context
4437 *
4438 *	RETURN:	0 on success, EINVAL if new offset invalid.
4439 */
4440/* ARGSUSED */
4441static int
4442zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4443    caller_context_t *ct)
4444{
4445	if (vp->v_type == VDIR)
4446		return (0);
4447	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4448}
4449
4450/*
4451 * Pre-filter the generic locking function to trap attempts to place
4452 * a mandatory lock on a memory mapped file.
4453 */
4454static int
4455zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4456    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4457{
4458	znode_t *zp = VTOZ(vp);
4459	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4460
4461	ZFS_ENTER(zfsvfs);
4462	ZFS_VERIFY_ZP(zp);
4463
4464	/*
4465	 * We are following the UFS semantics with respect to mapcnt
4466	 * here: If we see that the file is mapped already, then we will
4467	 * return an error, but we don't worry about races between this
4468	 * function and zfs_map().
4469	 */
4470	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4471		ZFS_EXIT(zfsvfs);
4472		return (SET_ERROR(EAGAIN));
4473	}
4474	ZFS_EXIT(zfsvfs);
4475	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4476}
4477
4478/*
4479 * If we can't find a page in the cache, we will create a new page
4480 * and fill it with file data.  For efficiency, we may try to fill
4481 * multiple pages at once (klustering) to fill up the supplied page
4482 * list.  Note that the pages to be filled are held with an exclusive
4483 * lock to prevent access by other threads while they are being filled.
4484 */
4485static int
4486zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4487    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4488{
4489	znode_t *zp = VTOZ(vp);
4490	page_t *pp, *cur_pp;
4491	objset_t *os = zp->z_zfsvfs->z_os;
4492	u_offset_t io_off, total;
4493	size_t io_len;
4494	int err;
4495
4496	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4497		/*
4498		 * We only have a single page, don't bother klustering
4499		 */
4500		io_off = off;
4501		io_len = PAGESIZE;
4502		pp = page_create_va(vp, io_off, io_len,
4503		    PG_EXCL | PG_WAIT, seg, addr);
4504	} else {
4505		/*
4506		 * Try to find enough pages to fill the page list
4507		 */
4508		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4509		    &io_len, off, plsz, 0);
4510	}
4511	if (pp == NULL) {
4512		/*
4513		 * The page already exists, nothing to do here.
4514		 */
4515		*pl = NULL;
4516		return (0);
4517	}
4518
4519	/*
4520	 * Fill the pages in the kluster.
4521	 */
4522	cur_pp = pp;
4523	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4524		caddr_t va;
4525
4526		ASSERT3U(io_off, ==, cur_pp->p_offset);
4527		va = zfs_map_page(cur_pp, S_WRITE);
4528		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4529		    DMU_READ_PREFETCH);
4530		zfs_unmap_page(cur_pp, va);
4531		if (err) {
4532			/* On error, toss the entire kluster */
4533			pvn_read_done(pp, B_ERROR);
4534			/* convert checksum errors into IO errors */
4535			if (err == ECKSUM)
4536				err = SET_ERROR(EIO);
4537			return (err);
4538		}
4539		cur_pp = cur_pp->p_next;
4540	}
4541
4542	/*
4543	 * Fill in the page list array from the kluster starting
4544	 * from the desired offset `off'.
4545	 * NOTE: the page list will always be null terminated.
4546	 */
4547	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4548	ASSERT(pl == NULL || (*pl)->p_offset == off);
4549
4550	return (0);
4551}
4552
4553/*
4554 * Return pointers to the pages for the file region [off, off + len]
4555 * in the pl array.  If plsz is greater than len, this function may
4556 * also return page pointers from after the specified region
4557 * (i.e. the region [off, off + plsz]).  These additional pages are
4558 * only returned if they are already in the cache, or were created as
4559 * part of a klustered read.
4560 *
4561 *	IN:	vp	- vnode of file to get data from.
4562 *		off	- position in file to get data from.
4563 *		len	- amount of data to retrieve.
4564 *		plsz	- length of provided page list.
4565 *		seg	- segment to obtain pages for.
4566 *		addr	- virtual address of fault.
4567 *		rw	- mode of created pages.
4568 *		cr	- credentials of caller.
4569 *		ct	- caller context.
4570 *
4571 *	OUT:	protp	- protection mode of created pages.
4572 *		pl	- list of pages created.
4573 *
4574 *	RETURN:	0 on success, error code on failure.
4575 *
4576 * Timestamps:
4577 *	vp - atime updated
4578 */
4579/* ARGSUSED */
4580static int
4581zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4582    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4583    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4584{
4585	znode_t		*zp = VTOZ(vp);
4586	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4587	page_t		**pl0 = pl;
4588	int		err = 0;
4589
4590	/* we do our own caching, faultahead is unnecessary */
4591	if (pl == NULL)
4592		return (0);
4593	else if (len > plsz)
4594		len = plsz;
4595	else
4596		len = P2ROUNDUP(len, PAGESIZE);
4597	ASSERT(plsz >= len);
4598
4599	ZFS_ENTER(zfsvfs);
4600	ZFS_VERIFY_ZP(zp);
4601
4602	if (protp)
4603		*protp = PROT_ALL;
4604
4605	/*
4606	 * Loop through the requested range [off, off + len) looking
4607	 * for pages.  If we don't find a page, we will need to create
4608	 * a new page and fill it with data from the file.
4609	 */
4610	while (len > 0) {
4611		if (*pl = page_lookup(vp, off, SE_SHARED))
4612			*(pl+1) = NULL;
4613		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4614			goto out;
4615		while (*pl) {
4616			ASSERT3U((*pl)->p_offset, ==, off);
4617			off += PAGESIZE;
4618			addr += PAGESIZE;
4619			if (len > 0) {
4620				ASSERT3U(len, >=, PAGESIZE);
4621				len -= PAGESIZE;
4622			}
4623			ASSERT3U(plsz, >=, PAGESIZE);
4624			plsz -= PAGESIZE;
4625			pl++;
4626		}
4627	}
4628
4629	/*
4630	 * Fill out the page array with any pages already in the cache.
4631	 */
4632	while (plsz > 0 &&
4633	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4634			off += PAGESIZE;
4635			plsz -= PAGESIZE;
4636	}
4637out:
4638	if (err) {
4639		/*
4640		 * Release any pages we have previously locked.
4641		 */
4642		while (pl > pl0)
4643			page_unlock(*--pl);
4644	} else {
4645		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4646	}
4647
4648	*pl = NULL;
4649
4650	ZFS_EXIT(zfsvfs);
4651	return (err);
4652}
4653
4654/*
4655 * Request a memory map for a section of a file.  This code interacts
4656 * with common code and the VM system as follows:
4657 *
4658 * - common code calls mmap(), which ends up in smmap_common()
4659 * - this calls VOP_MAP(), which takes you into (say) zfs
4660 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4661 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4662 * - zfs_addmap() updates z_mapcnt
4663 */
4664/*ARGSUSED*/
4665static int
4666zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4667    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4668    caller_context_t *ct)
4669{
4670	znode_t *zp = VTOZ(vp);
4671	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4672	segvn_crargs_t	vn_a;
4673	int		error;
4674
4675	ZFS_ENTER(zfsvfs);
4676	ZFS_VERIFY_ZP(zp);
4677
4678	if ((prot & PROT_WRITE) && (zp->z_pflags &
4679	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4680		ZFS_EXIT(zfsvfs);
4681		return (SET_ERROR(EPERM));
4682	}
4683
4684	if ((prot & (PROT_READ | PROT_EXEC)) &&
4685	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4686		ZFS_EXIT(zfsvfs);
4687		return (SET_ERROR(EACCES));
4688	}
4689
4690	if (vp->v_flag & VNOMAP) {
4691		ZFS_EXIT(zfsvfs);
4692		return (SET_ERROR(ENOSYS));
4693	}
4694
4695	if (off < 0 || len > MAXOFFSET_T - off) {
4696		ZFS_EXIT(zfsvfs);
4697		return (SET_ERROR(ENXIO));
4698	}
4699
4700	if (vp->v_type != VREG) {
4701		ZFS_EXIT(zfsvfs);
4702		return (SET_ERROR(ENODEV));
4703	}
4704
4705	/*
4706	 * If file is locked, disallow mapping.
4707	 */
4708	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4709		ZFS_EXIT(zfsvfs);
4710		return (SET_ERROR(EAGAIN));
4711	}
4712
4713	as_rangelock(as);
4714	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4715	if (error != 0) {
4716		as_rangeunlock(as);
4717		ZFS_EXIT(zfsvfs);
4718		return (error);
4719	}
4720
4721	vn_a.vp = vp;
4722	vn_a.offset = (u_offset_t)off;
4723	vn_a.type = flags & MAP_TYPE;
4724	vn_a.prot = prot;
4725	vn_a.maxprot = maxprot;
4726	vn_a.cred = cr;
4727	vn_a.amp = NULL;
4728	vn_a.flags = flags & ~MAP_TYPE;
4729	vn_a.szc = 0;
4730	vn_a.lgrp_mem_policy_flags = 0;
4731
4732	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4733
4734	as_rangeunlock(as);
4735	ZFS_EXIT(zfsvfs);
4736	return (error);
4737}
4738
4739/* ARGSUSED */
4740static int
4741zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4742    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4743    caller_context_t *ct)
4744{
4745	uint64_t pages = btopr(len);
4746
4747	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4748	return (0);
4749}
4750
4751/*
4752 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4753 * more accurate mtime for the associated file.  Since we don't have a way of
4754 * detecting when the data was actually modified, we have to resort to
4755 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4756 * last page is pushed.  The problem occurs when the msync() call is omitted,
4757 * which by far the most common case:
4758 *
4759 *	open()
4760 *	mmap()
4761 *	<modify memory>
4762 *	munmap()
4763 *	close()
4764 *	<time lapse>
4765 *	putpage() via fsflush
4766 *
4767 * If we wait until fsflush to come along, we can have a modification time that
4768 * is some arbitrary point in the future.  In order to prevent this in the
4769 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4770 * torn down.
4771 */
4772/* ARGSUSED */
4773static int
4774zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4775    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4776    caller_context_t *ct)
4777{
4778	uint64_t pages = btopr(len);
4779
4780	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4781	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4782
4783	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4784	    vn_has_cached_data(vp))
4785		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4786
4787	return (0);
4788}
4789
4790/*
4791 * Free or allocate space in a file.  Currently, this function only
4792 * supports the `F_FREESP' command.  However, this command is somewhat
4793 * misnamed, as its functionality includes the ability to allocate as
4794 * well as free space.
4795 *
4796 *	IN:	vp	- vnode of file to free data in.
4797 *		cmd	- action to take (only F_FREESP supported).
4798 *		bfp	- section of file to free/alloc.
4799 *		flag	- current file open mode flags.
4800 *		offset	- current file offset.
4801 *		cr	- credentials of caller [UNUSED].
4802 *		ct	- caller context.
4803 *
4804 *	RETURN:	0 on success, error code on failure.
4805 *
4806 * Timestamps:
4807 *	vp - ctime|mtime updated
4808 */
4809/* ARGSUSED */
4810static int
4811zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4812    offset_t offset, cred_t *cr, caller_context_t *ct)
4813{
4814	znode_t		*zp = VTOZ(vp);
4815	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4816	uint64_t	off, len;
4817	int		error;
4818
4819	ZFS_ENTER(zfsvfs);
4820	ZFS_VERIFY_ZP(zp);
4821
4822	if (cmd != F_FREESP) {
4823		ZFS_EXIT(zfsvfs);
4824		return (SET_ERROR(EINVAL));
4825	}
4826
4827	/*
4828	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4829	 * callers might not be able to detect properly that we are read-only,
4830	 * so check it explicitly here.
4831	 */
4832	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4833		ZFS_EXIT(zfsvfs);
4834		return (SET_ERROR(EROFS));
4835	}
4836
4837	if (error = convoff(vp, bfp, 0, offset)) {
4838		ZFS_EXIT(zfsvfs);
4839		return (error);
4840	}
4841
4842	if (bfp->l_len < 0) {
4843		ZFS_EXIT(zfsvfs);
4844		return (SET_ERROR(EINVAL));
4845	}
4846
4847	off = bfp->l_start;
4848	len = bfp->l_len; /* 0 means from off to end of file */
4849
4850	error = zfs_freesp(zp, off, len, flag, TRUE);
4851
4852	if (error == 0 && off == 0 && len == 0)
4853		vnevent_truncate(ZTOV(zp), ct);
4854
4855	ZFS_EXIT(zfsvfs);
4856	return (error);
4857}
4858
4859/*ARGSUSED*/
4860static int
4861zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4862{
4863	znode_t		*zp = VTOZ(vp);
4864	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4865	uint32_t	gen;
4866	uint64_t	gen64;
4867	uint64_t	object = zp->z_id;
4868	zfid_short_t	*zfid;
4869	int		size, i, error;
4870
4871	ZFS_ENTER(zfsvfs);
4872	ZFS_VERIFY_ZP(zp);
4873
4874	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4875	    &gen64, sizeof (uint64_t))) != 0) {
4876		ZFS_EXIT(zfsvfs);
4877		return (error);
4878	}
4879
4880	gen = (uint32_t)gen64;
4881
4882	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4883	if (fidp->fid_len < size) {
4884		fidp->fid_len = size;
4885		ZFS_EXIT(zfsvfs);
4886		return (SET_ERROR(ENOSPC));
4887	}
4888
4889	zfid = (zfid_short_t *)fidp;
4890
4891	zfid->zf_len = size;
4892
4893	for (i = 0; i < sizeof (zfid->zf_object); i++)
4894		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4895
4896	/* Must have a non-zero generation number to distinguish from .zfs */
4897	if (gen == 0)
4898		gen = 1;
4899	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4900		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4901
4902	if (size == LONG_FID_LEN) {
4903		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4904		zfid_long_t	*zlfid;
4905
4906		zlfid = (zfid_long_t *)fidp;
4907
4908		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4909			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4910
4911		/* XXX - this should be the generation number for the objset */
4912		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4913			zlfid->zf_setgen[i] = 0;
4914	}
4915
4916	ZFS_EXIT(zfsvfs);
4917	return (0);
4918}
4919
4920static int
4921zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4922    caller_context_t *ct)
4923{
4924	znode_t		*zp, *xzp;
4925	zfsvfs_t	*zfsvfs;
4926	zfs_dirlock_t	*dl;
4927	int		error;
4928
4929	switch (cmd) {
4930	case _PC_LINK_MAX:
4931		*valp = ULONG_MAX;
4932		return (0);
4933
4934	case _PC_FILESIZEBITS:
4935		*valp = 64;
4936		return (0);
4937
4938	case _PC_XATTR_EXISTS:
4939		zp = VTOZ(vp);
4940		zfsvfs = zp->z_zfsvfs;
4941		ZFS_ENTER(zfsvfs);
4942		ZFS_VERIFY_ZP(zp);
4943		*valp = 0;
4944		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4945		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4946		if (error == 0) {
4947			zfs_dirent_unlock(dl);
4948			if (!zfs_dirempty(xzp))
4949				*valp = 1;
4950			VN_RELE(ZTOV(xzp));
4951		} else if (error == ENOENT) {
4952			/*
4953			 * If there aren't extended attributes, it's the
4954			 * same as having zero of them.
4955			 */
4956			error = 0;
4957		}
4958		ZFS_EXIT(zfsvfs);
4959		return (error);
4960
4961	case _PC_SATTR_ENABLED:
4962	case _PC_SATTR_EXISTS:
4963		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4964		    (vp->v_type == VREG || vp->v_type == VDIR);
4965		return (0);
4966
4967	case _PC_ACCESS_FILTERING:
4968		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4969		    vp->v_type == VDIR;
4970		return (0);
4971
4972	case _PC_ACL_ENABLED:
4973		*valp = _ACL_ACE_ENABLED;
4974		return (0);
4975
4976	case _PC_MIN_HOLE_SIZE:
4977		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4978		return (0);
4979
4980	case _PC_TIMESTAMP_RESOLUTION:
4981		/* nanosecond timestamp resolution */
4982		*valp = 1L;
4983		return (0);
4984
4985	default:
4986		return (fs_pathconf(vp, cmd, valp, cr, ct));
4987	}
4988}
4989
4990/*ARGSUSED*/
4991static int
4992zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4993    caller_context_t *ct)
4994{
4995	znode_t *zp = VTOZ(vp);
4996	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4997	int error;
4998	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4999
5000	ZFS_ENTER(zfsvfs);
5001	ZFS_VERIFY_ZP(zp);
5002	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5003	ZFS_EXIT(zfsvfs);
5004
5005	return (error);
5006}
5007
5008/*ARGSUSED*/
5009static int
5010zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5011    caller_context_t *ct)
5012{
5013	znode_t *zp = VTOZ(vp);
5014	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5015	int error;
5016	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5017	zilog_t	*zilog = zfsvfs->z_log;
5018
5019	ZFS_ENTER(zfsvfs);
5020	ZFS_VERIFY_ZP(zp);
5021
5022	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5023
5024	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5025		zil_commit(zilog, 0);
5026
5027	ZFS_EXIT(zfsvfs);
5028	return (error);
5029}
5030
5031/*
5032 * The smallest read we may consider to loan out an arcbuf.
5033 * This must be a power of 2.
5034 */
5035int zcr_blksz_min = (1 << 10);	/* 1K */
5036/*
5037 * If set to less than the file block size, allow loaning out of an
5038 * arcbuf for a partial block read.  This must be a power of 2.
5039 */
5040int zcr_blksz_max = (1 << 17);	/* 128K */
5041
5042/*ARGSUSED*/
5043static int
5044zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5045    caller_context_t *ct)
5046{
5047	znode_t	*zp = VTOZ(vp);
5048	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5049	int max_blksz = zfsvfs->z_max_blksz;
5050	uio_t *uio = &xuio->xu_uio;
5051	ssize_t size = uio->uio_resid;
5052	offset_t offset = uio->uio_loffset;
5053	int blksz;
5054	int fullblk, i;
5055	arc_buf_t *abuf;
5056	ssize_t maxsize;
5057	int preamble, postamble;
5058
5059	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5060		return (SET_ERROR(EINVAL));
5061
5062	ZFS_ENTER(zfsvfs);
5063	ZFS_VERIFY_ZP(zp);
5064	switch (ioflag) {
5065	case UIO_WRITE:
5066		/*
5067		 * Loan out an arc_buf for write if write size is bigger than
5068		 * max_blksz, and the file's block size is also max_blksz.
5069		 */
5070		blksz = max_blksz;
5071		if (size < blksz || zp->z_blksz != blksz) {
5072			ZFS_EXIT(zfsvfs);
5073			return (SET_ERROR(EINVAL));
5074		}
5075		/*
5076		 * Caller requests buffers for write before knowing where the
5077		 * write offset might be (e.g. NFS TCP write).
5078		 */
5079		if (offset == -1) {
5080			preamble = 0;
5081		} else {
5082			preamble = P2PHASE(offset, blksz);
5083			if (preamble) {
5084				preamble = blksz - preamble;
5085				size -= preamble;
5086			}
5087		}
5088
5089		postamble = P2PHASE(size, blksz);
5090		size -= postamble;
5091
5092		fullblk = size / blksz;
5093		(void) dmu_xuio_init(xuio,
5094		    (preamble != 0) + fullblk + (postamble != 0));
5095		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5096		    int, postamble, int,
5097		    (preamble != 0) + fullblk + (postamble != 0));
5098
5099		/*
5100		 * Have to fix iov base/len for partial buffers.  They
5101		 * currently represent full arc_buf's.
5102		 */
5103		if (preamble) {
5104			/* data begins in the middle of the arc_buf */
5105			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5106			    blksz);
5107			ASSERT(abuf);
5108			(void) dmu_xuio_add(xuio, abuf,
5109			    blksz - preamble, preamble);
5110		}
5111
5112		for (i = 0; i < fullblk; i++) {
5113			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5114			    blksz);
5115			ASSERT(abuf);
5116			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5117		}
5118
5119		if (postamble) {
5120			/* data ends in the middle of the arc_buf */
5121			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5122			    blksz);
5123			ASSERT(abuf);
5124			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5125		}
5126		break;
5127	case UIO_READ:
5128		/*
5129		 * Loan out an arc_buf for read if the read size is larger than
5130		 * the current file block size.  Block alignment is not
5131		 * considered.  Partial arc_buf will be loaned out for read.
5132		 */
5133		blksz = zp->z_blksz;
5134		if (blksz < zcr_blksz_min)
5135			blksz = zcr_blksz_min;
5136		if (blksz > zcr_blksz_max)
5137			blksz = zcr_blksz_max;
5138		/* avoid potential complexity of dealing with it */
5139		if (blksz > max_blksz) {
5140			ZFS_EXIT(zfsvfs);
5141			return (SET_ERROR(EINVAL));
5142		}
5143
5144		maxsize = zp->z_size - uio->uio_loffset;
5145		if (size > maxsize)
5146			size = maxsize;
5147
5148		if (size < blksz || vn_has_cached_data(vp)) {
5149			ZFS_EXIT(zfsvfs);
5150			return (SET_ERROR(EINVAL));
5151		}
5152		break;
5153	default:
5154		ZFS_EXIT(zfsvfs);
5155		return (SET_ERROR(EINVAL));
5156	}
5157
5158	uio->uio_extflg = UIO_XUIO;
5159	XUIO_XUZC_RW(xuio) = ioflag;
5160	ZFS_EXIT(zfsvfs);
5161	return (0);
5162}
5163
5164/*ARGSUSED*/
5165static int
5166zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5167{
5168	int i;
5169	arc_buf_t *abuf;
5170	int ioflag = XUIO_XUZC_RW(xuio);
5171
5172	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5173
5174	i = dmu_xuio_cnt(xuio);
5175	while (i-- > 0) {
5176		abuf = dmu_xuio_arcbuf(xuio, i);
5177		/*
5178		 * if abuf == NULL, it must be a write buffer
5179		 * that has been returned in zfs_write().
5180		 */
5181		if (abuf)
5182			dmu_return_arcbuf(abuf);
5183		ASSERT(abuf || ioflag == UIO_WRITE);
5184	}
5185
5186	dmu_xuio_fini(xuio);
5187	return (0);
5188}
5189
5190/*
5191 * Predeclare these here so that the compiler assumes that
5192 * this is an "old style" function declaration that does
5193 * not include arguments => we won't get type mismatch errors
5194 * in the initializations that follow.
5195 */
5196static int zfs_inval();
5197static int zfs_isdir();
5198
5199static int
5200zfs_inval()
5201{
5202	return (SET_ERROR(EINVAL));
5203}
5204
5205static int
5206zfs_isdir()
5207{
5208	return (SET_ERROR(EISDIR));
5209}
5210/*
5211 * Directory vnode operations template
5212 */
5213vnodeops_t *zfs_dvnodeops;
5214const fs_operation_def_t zfs_dvnodeops_template[] = {
5215	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5216	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5217	VOPNAME_READ,		{ .error = zfs_isdir },
5218	VOPNAME_WRITE,		{ .error = zfs_isdir },
5219	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5220	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5221	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5222	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5223	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5224	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5225	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5226	VOPNAME_LINK,		{ .vop_link = zfs_link },
5227	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5228	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5229	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5230	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5231	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5232	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5233	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5234	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5235	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5236	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5237	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5238	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5239	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5240	NULL,			NULL
5241};
5242
5243/*
5244 * Regular file vnode operations template
5245 */
5246vnodeops_t *zfs_fvnodeops;
5247const fs_operation_def_t zfs_fvnodeops_template[] = {
5248	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5249	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5250	VOPNAME_READ,		{ .vop_read = zfs_read },
5251	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5252	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5253	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5254	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5255	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5256	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5257	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5258	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5259	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5260	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5261	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5262	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5263	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5264	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5265	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5266	VOPNAME_MAP,		{ .vop_map = zfs_map },
5267	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5268	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5269	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5270	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5271	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5272	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5273	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5274	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5275	NULL,			NULL
5276};
5277
5278/*
5279 * Symbolic link vnode operations template
5280 */
5281vnodeops_t *zfs_symvnodeops;
5282const fs_operation_def_t zfs_symvnodeops_template[] = {
5283	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5284	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5285	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5286	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5287	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5288	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5289	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5290	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5291	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5292	NULL,			NULL
5293};
5294
5295/*
5296 * special share hidden files vnode operations template
5297 */
5298vnodeops_t *zfs_sharevnodeops;
5299const fs_operation_def_t zfs_sharevnodeops_template[] = {
5300	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5301	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5302	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5303	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5304	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5305	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5306	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5307	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5308	NULL,			NULL
5309};
5310
5311/*
5312 * Extended attribute directory vnode operations template
5313 *
5314 * This template is identical to the directory vnodes
5315 * operation template except for restricted operations:
5316 *	VOP_MKDIR()
5317 *	VOP_SYMLINK()
5318 *
5319 * Note that there are other restrictions embedded in:
5320 *	zfs_create()	- restrict type to VREG
5321 *	zfs_link()	- no links into/out of attribute space
5322 *	zfs_rename()	- no moves into/out of attribute space
5323 */
5324vnodeops_t *zfs_xdvnodeops;
5325const fs_operation_def_t zfs_xdvnodeops_template[] = {
5326	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5327	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5328	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5329	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5330	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5331	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5332	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5333	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5334	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5335	VOPNAME_LINK,		{ .vop_link = zfs_link },
5336	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5337	VOPNAME_MKDIR,		{ .error = zfs_inval },
5338	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5339	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5340	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5341	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5342	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5343	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5344	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5345	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5346	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5347	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5348	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5349	NULL,			NULL
5350};
5351
5352/*
5353 * Error vnode operations template
5354 */
5355vnodeops_t *zfs_evnodeops;
5356const fs_operation_def_t zfs_evnodeops_template[] = {
5357	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5358	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5359	NULL,			NULL
5360};
5361