1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2019 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
28 */
29
30/* Portions Copyright 2007 Jeremy Teo */
31/* Portions Copyright 2010 Robert Milkowski */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/time.h>
36#include <sys/systm.h>
37#include <sys/sysmacros.h>
38#include <sys/resource.h>
39#include <sys/vfs.h>
40#include <sys/vfs_opreg.h>
41#include <sys/vnode.h>
42#include <sys/file.h>
43#include <sys/stat.h>
44#include <sys/kmem.h>
45#include <sys/taskq.h>
46#include <sys/uio.h>
47#include <sys/vmsystm.h>
48#include <sys/atomic.h>
49#include <sys/vm.h>
50#include <vm/seg_vn.h>
51#include <vm/pvn.h>
52#include <vm/as.h>
53#include <vm/kpm.h>
54#include <vm/seg_kpm.h>
55#include <sys/mman.h>
56#include <sys/pathname.h>
57#include <sys/cmn_err.h>
58#include <sys/errno.h>
59#include <sys/unistd.h>
60#include <sys/zfs_dir.h>
61#include <sys/zfs_acl.h>
62#include <sys/zfs_ioctl.h>
63#include <sys/fs/zfs.h>
64#include <sys/dmu.h>
65#include <sys/dmu_objset.h>
66#include <sys/spa.h>
67#include <sys/txg.h>
68#include <sys/dbuf.h>
69#include <sys/zap.h>
70#include <sys/sa.h>
71#include <sys/dirent.h>
72#include <sys/policy.h>
73#include <sys/sunddi.h>
74#include <sys/filio.h>
75#include <sys/sid.h>
76#include "fs/fs_subr.h"
77#include <sys/zfs_ctldir.h>
78#include <sys/zfs_fuid.h>
79#include <sys/zfs_sa.h>
80#include <sys/dnlc.h>
81#include <sys/zfs_rlock.h>
82#include <sys/extdirent.h>
83#include <sys/kidmap.h>
84#include <sys/cred.h>
85#include <sys/attr.h>
86#include <sys/zil.h>
87#include <sys/sa_impl.h>
88#include <sys/zfs_project.h>
89
90/*
91 * Programming rules.
92 *
93 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
94 * properly lock its in-core state, create a DMU transaction, do the work,
95 * record this work in the intent log (ZIL), commit the DMU transaction,
96 * and wait for the intent log to commit if it is a synchronous operation.
97 * Moreover, the vnode ops must work in both normal and log replay context.
98 * The ordering of events is important to avoid deadlocks and references
99 * to freed memory.  The example below illustrates the following Big Rules:
100 *
101 *  (1)	A check must be made in each zfs thread for a mounted file system.
102 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
103 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
104 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
105 *	can return EIO from the calling function.
106 *
107 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
108 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
109 *	First, if it's the last reference, the vnode/znode
110 *	can be freed, so the zp may point to freed memory.  Second, the last
111 *	reference will call zfs_zinactive(), which may induce a lot of work --
112 *	pushing cached pages (which acquires range locks) and syncing out
113 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
114 *	which could deadlock the system if you were already holding one.
115 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
116 *
117 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
118 *	as they can span dmu_tx_assign() calls.
119 *
120 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
121 *      dmu_tx_assign().  This is critical because we don't want to block
122 *      while holding locks.
123 *
124 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
125 *	reduces lock contention and CPU usage when we must wait (note that if
126 *	throughput is constrained by the storage, nearly every transaction
127 *	must wait).
128 *
129 *      Note, in particular, that if a lock is sometimes acquired before
130 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
131 *      to use a non-blocking assign can deadlock the system.  The scenario:
132 *
133 *	Thread A has grabbed a lock before calling dmu_tx_assign().
134 *	Thread B is in an already-assigned tx, and blocks for this lock.
135 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
136 *	forever, because the previous txg can't quiesce until B's tx commits.
137 *
138 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
139 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
140 *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
141 *	to indicate that this operation has already called dmu_tx_wait().
142 *	This will ensure that we don't retry forever, waiting a short bit
143 *	each time.
144 *
145 *  (5)	If the operation succeeded, generate the intent log entry for it
146 *	before dropping locks.  This ensures that the ordering of events
147 *	in the intent log matches the order in which they actually occurred.
148 *	During ZIL replay the zfs_log_* functions will update the sequence
149 *	number to indicate the zil transaction has replayed.
150 *
151 *  (6)	At the end of each vnode op, the DMU tx must always commit,
152 *	regardless of whether there were any errors.
153 *
154 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
155 *	to ensure that synchronous semantics are provided when necessary.
156 *
157 * In general, this is how things should be ordered in each vnode op:
158 *
159 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
160 * top:
161 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
162 *	rw_enter(...);			// grab any other locks you need
163 *	tx = dmu_tx_create(...);	// get DMU tx
164 *	dmu_tx_hold_*();		// hold each object you might modify
165 *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
166 *	if (error) {
167 *		rw_exit(...);		// drop locks
168 *		zfs_dirent_unlock(dl);	// unlock directory entry
169 *		VN_RELE(...);		// release held vnodes
170 *		if (error == ERESTART) {
171 *			waited = B_TRUE;
172 *			dmu_tx_wait(tx);
173 *			dmu_tx_abort(tx);
174 *			goto top;
175 *		}
176 *		dmu_tx_abort(tx);	// abort DMU tx
177 *		ZFS_EXIT(zfsvfs);	// finished in zfs
178 *		return (error);		// really out of space
179 *	}
180 *	error = do_real_work();		// do whatever this VOP does
181 *	if (error == 0)
182 *		zfs_log_*(...);		// on success, make ZIL entry
183 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
184 *	rw_exit(...);			// drop locks
185 *	zfs_dirent_unlock(dl);		// unlock directory entry
186 *	VN_RELE(...);			// release held vnodes
187 *	zil_commit(zilog, foid);	// synchronous when necessary
188 *	ZFS_EXIT(zfsvfs);		// finished in zfs
189 *	return (error);			// done, report error
190 */
191
192/* ARGSUSED */
193static int
194zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
195{
196	znode_t	*zp = VTOZ(*vpp);
197	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
198
199	ZFS_ENTER(zfsvfs);
200	ZFS_VERIFY_ZP(zp);
201
202	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
203	    ((flag & FAPPEND) == 0)) {
204		ZFS_EXIT(zfsvfs);
205		return (SET_ERROR(EPERM));
206	}
207
208	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
209	    ZTOV(zp)->v_type == VREG &&
210	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
211		if (fs_vscan(*vpp, cr, 0) != 0) {
212			ZFS_EXIT(zfsvfs);
213			return (SET_ERROR(EACCES));
214		}
215	}
216
217	/* Keep a count of the synchronous opens in the znode */
218	if (flag & (FSYNC | FDSYNC))
219		atomic_inc_32(&zp->z_sync_cnt);
220
221	ZFS_EXIT(zfsvfs);
222	return (0);
223}
224
225/* ARGSUSED */
226static int
227zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
228    caller_context_t *ct)
229{
230	znode_t	*zp = VTOZ(vp);
231	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
232
233	/*
234	 * Clean up any locks held by this process on the vp.
235	 */
236	cleanlocks(vp, ddi_get_pid(), 0);
237	cleanshares(vp, ddi_get_pid());
238
239	ZFS_ENTER(zfsvfs);
240	ZFS_VERIFY_ZP(zp);
241
242	/* Decrement the synchronous opens in the znode */
243	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
244		atomic_dec_32(&zp->z_sync_cnt);
245
246	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
247	    ZTOV(zp)->v_type == VREG &&
248	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
249		VERIFY(fs_vscan(vp, cr, 1) == 0);
250
251	ZFS_EXIT(zfsvfs);
252	return (0);
253}
254
255/*
256 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
257 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
258 */
259static int
260zfs_holey(vnode_t *vp, int cmd, offset_t *off)
261{
262	znode_t	*zp = VTOZ(vp);
263	uint64_t noff = (uint64_t)*off; /* new offset */
264	uint64_t file_sz;
265	int error;
266	boolean_t hole;
267
268	file_sz = zp->z_size;
269	if (noff >= file_sz)  {
270		return (SET_ERROR(ENXIO));
271	}
272
273	if (cmd == _FIO_SEEK_HOLE)
274		hole = B_TRUE;
275	else
276		hole = B_FALSE;
277
278	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
279
280	if (error == ESRCH)
281		return (SET_ERROR(ENXIO));
282
283	/*
284	 * We could find a hole that begins after the logical end-of-file,
285	 * because dmu_offset_next() only works on whole blocks.  If the
286	 * EOF falls mid-block, then indicate that the "virtual hole"
287	 * at the end of the file begins at the logical EOF, rather than
288	 * at the end of the last block.
289	 */
290	if (noff > file_sz) {
291		ASSERT(hole);
292		noff = file_sz;
293	}
294
295	if (noff < *off)
296		return (error);
297	*off = noff;
298	return (error);
299}
300
301static int
302zfs_ioctl_getxattr(vnode_t *vp, intptr_t data, int flag, cred_t *cr,
303    caller_context_t *ct)
304{
305	zfsxattr_t fsx = { 0 };
306	znode_t *zp = VTOZ(vp);
307
308	if (zp->z_pflags & ZFS_PROJINHERIT)
309		fsx.fsx_xflags = ZFS_PROJINHERIT_FL;
310	if (zp->z_pflags & ZFS_PROJID)
311		fsx.fsx_projid = zp->z_projid;
312	if (ddi_copyout(&fsx, (void *)data, sizeof (fsx), flag))
313		return (SET_ERROR(EFAULT));
314
315	return (0);
316}
317
318static int zfs_setattr(vnode_t *, vattr_t *, int, cred_t *, caller_context_t *);
319
320static int
321zfs_ioctl_setxattr(vnode_t *vp, intptr_t data, int flags, cred_t *cr,
322    caller_context_t *ct)
323{
324	znode_t *zp = VTOZ(vp);
325	zfsxattr_t fsx;
326	xvattr_t xva;
327	xoptattr_t *xoap;
328	int err;
329
330	if (ddi_copyin((void *)data, &fsx, sizeof (fsx), flags))
331		return (SET_ERROR(EFAULT));
332
333	if (!zpl_is_valid_projid(fsx.fsx_projid))
334		return (SET_ERROR(EINVAL));
335
336	if (fsx.fsx_xflags & ~ZFS_PROJINHERIT_FL)
337		return (SET_ERROR(EOPNOTSUPP));
338
339	xva_init(&xva);
340	xoap = xva_getxoptattr(&xva);
341
342	XVA_SET_REQ(&xva, XAT_PROJINHERIT);
343	if (fsx.fsx_xflags & ZFS_PROJINHERIT_FL)
344		xoap->xoa_projinherit = B_TRUE;
345
346	XVA_SET_REQ(&xva, XAT_PROJID);
347	xoap->xoa_projid = fsx.fsx_projid;
348
349	return (zfs_setattr(vp, (vattr_t *)&xva, flags, cr, ct));
350}
351
352/* ARGSUSED */
353static int
354zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
355    int *rvalp, caller_context_t *ct)
356{
357	offset_t off;
358	offset_t ndata;
359	dmu_object_info_t doi;
360	int error;
361	zfsvfs_t *zfsvfs;
362	znode_t *zp;
363
364	switch (com) {
365	case _FIOFFS:
366	{
367		return (zfs_sync(vp->v_vfsp, 0, cred));
368
369		/*
370		 * The following two ioctls are used by bfu.  Faking out,
371		 * necessary to avoid bfu errors.
372		 */
373	}
374	case _FIOGDIO:
375	case _FIOSDIO:
376	{
377		return (0);
378	}
379
380	case _FIO_SEEK_DATA:
381	case _FIO_SEEK_HOLE:
382	{
383		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
384			return (SET_ERROR(EFAULT));
385
386		zp = VTOZ(vp);
387		zfsvfs = zp->z_zfsvfs;
388		ZFS_ENTER(zfsvfs);
389		ZFS_VERIFY_ZP(zp);
390
391		/* offset parameter is in/out */
392		error = zfs_holey(vp, com, &off);
393		ZFS_EXIT(zfsvfs);
394		if (error)
395			return (error);
396		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
397			return (SET_ERROR(EFAULT));
398		return (0);
399	}
400	case _FIO_COUNT_FILLED:
401	{
402		/*
403		 * _FIO_COUNT_FILLED adds a new ioctl command which
404		 * exposes the number of filled blocks in a
405		 * ZFS object.
406		 */
407		zp = VTOZ(vp);
408		zfsvfs = zp->z_zfsvfs;
409		ZFS_ENTER(zfsvfs);
410		ZFS_VERIFY_ZP(zp);
411
412		/*
413		 * Wait for all dirty blocks for this object
414		 * to get synced out to disk, and the DMU info
415		 * updated.
416		 */
417		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
418		if (error) {
419			ZFS_EXIT(zfsvfs);
420			return (error);
421		}
422
423		/*
424		 * Retrieve fill count from DMU object.
425		 */
426		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
427		if (error) {
428			ZFS_EXIT(zfsvfs);
429			return (error);
430		}
431
432		ndata = doi.doi_fill_count;
433
434		ZFS_EXIT(zfsvfs);
435		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
436			return (SET_ERROR(EFAULT));
437		return (0);
438	}
439	case ZFS_IOC_FSGETXATTR:
440		return (zfs_ioctl_getxattr(vp, data, flag, cred, ct));
441	case ZFS_IOC_FSSETXATTR:
442		return (zfs_ioctl_setxattr(vp, data, flag, cred, ct));
443	}
444	return (SET_ERROR(ENOTTY));
445}
446
447/*
448 * Utility functions to map and unmap a single physical page.  These
449 * are used to manage the mappable copies of ZFS file data, and therefore
450 * do not update ref/mod bits.
451 */
452caddr_t
453zfs_map_page(page_t *pp, enum seg_rw rw)
454{
455	if (kpm_enable)
456		return (hat_kpm_mapin(pp, 0));
457	ASSERT(rw == S_READ || rw == S_WRITE);
458	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
459	    (caddr_t)-1));
460}
461
462void
463zfs_unmap_page(page_t *pp, caddr_t addr)
464{
465	if (kpm_enable) {
466		hat_kpm_mapout(pp, 0, addr);
467	} else {
468		ppmapout(addr);
469	}
470}
471
472/*
473 * When a file is memory mapped, we must keep the IO data synchronized
474 * between the DMU cache and the memory mapped pages.  What this means:
475 *
476 * On Write:	If we find a memory mapped page, we write to *both*
477 *		the page and the dmu buffer.
478 */
479static void
480update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
481{
482	int64_t	off;
483
484	off = start & PAGEOFFSET;
485	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
486		page_t *pp;
487		uint64_t nbytes = MIN(PAGESIZE - off, len);
488
489		if (pp = page_lookup(vp, start, SE_SHARED)) {
490			caddr_t va;
491
492			va = zfs_map_page(pp, S_WRITE);
493			(void) dmu_read(os, oid, start+off, nbytes, va+off,
494			    DMU_READ_PREFETCH);
495			zfs_unmap_page(pp, va);
496			page_unlock(pp);
497		}
498		len -= nbytes;
499		off = 0;
500	}
501}
502
503/*
504 * When a file is memory mapped, we must keep the IO data synchronized
505 * between the DMU cache and the memory mapped pages.  What this means:
506 *
507 * On Read:	We "read" preferentially from memory mapped pages,
508 *		else we default from the dmu buffer.
509 *
510 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
511 *	 the file is memory mapped.
512 */
513static int
514mappedread(vnode_t *vp, int nbytes, uio_t *uio)
515{
516	znode_t *zp = VTOZ(vp);
517	int64_t	start, off;
518	int len = nbytes;
519	int error = 0;
520
521	start = uio->uio_loffset;
522	off = start & PAGEOFFSET;
523	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
524		page_t *pp;
525		uint64_t bytes = MIN(PAGESIZE - off, len);
526
527		if (pp = page_lookup(vp, start, SE_SHARED)) {
528			caddr_t va;
529
530			va = zfs_map_page(pp, S_READ);
531			error = uiomove(va + off, bytes, UIO_READ, uio);
532			zfs_unmap_page(pp, va);
533			page_unlock(pp);
534		} else {
535			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
536			    uio, bytes);
537		}
538		len -= bytes;
539		off = 0;
540		if (error)
541			break;
542	}
543	return (error);
544}
545
546offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
547
548/*
549 * Read bytes from specified file into supplied buffer.
550 *
551 *	IN:	vp	- vnode of file to be read from.
552 *		uio	- structure supplying read location, range info,
553 *			  and return buffer.
554 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
555 *		cr	- credentials of caller.
556 *		ct	- caller context
557 *
558 *	OUT:	uio	- updated offset and range, buffer filled.
559 *
560 *	RETURN:	0 on success, error code on failure.
561 *
562 * Side Effects:
563 *	vp - atime updated if byte count > 0
564 */
565/* ARGSUSED */
566static int
567zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
568{
569	znode_t		*zp = VTOZ(vp);
570	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
571	ssize_t		n, nbytes;
572	int		error = 0;
573	boolean_t	frsync = B_FALSE;
574	xuio_t		*xuio = NULL;
575
576	ZFS_ENTER(zfsvfs);
577	ZFS_VERIFY_ZP(zp);
578
579	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
580		ZFS_EXIT(zfsvfs);
581		return (SET_ERROR(EACCES));
582	}
583
584	/*
585	 * Validate file offset
586	 */
587	if (uio->uio_loffset < (offset_t)0) {
588		ZFS_EXIT(zfsvfs);
589		return (SET_ERROR(EINVAL));
590	}
591
592	/*
593	 * Fasttrack empty reads
594	 */
595	if (uio->uio_resid == 0) {
596		ZFS_EXIT(zfsvfs);
597		return (0);
598	}
599
600	/*
601	 * Check for mandatory locks
602	 */
603	if (MANDMODE(zp->z_mode)) {
604		if (error = chklock(vp, FREAD,
605		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
606			ZFS_EXIT(zfsvfs);
607			return (error);
608		}
609	}
610
611#ifdef FRSYNC
612	/*
613	 * If we're in FRSYNC mode, sync out this znode before reading it.
614	 * Only do this for non-snapshots.
615	 *
616	 * Some platforms do not support FRSYNC and instead map it
617	 * to FSYNC, which results in unnecessary calls to zil_commit. We
618	 * only honor FRSYNC requests on platforms which support it.
619	 */
620	frsync = !!(ioflag & FRSYNC);
621#endif
622
623	if (zfsvfs->z_log &&
624	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
625		zil_commit(zfsvfs->z_log, zp->z_id);
626
627	/*
628	 * Lock the range against changes.
629	 */
630	locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
631	    uio->uio_loffset, uio->uio_resid, RL_READER);
632
633	/*
634	 * If we are reading past end-of-file we can skip
635	 * to the end; but we might still need to set atime.
636	 */
637	if (uio->uio_loffset >= zp->z_size) {
638		error = 0;
639		goto out;
640	}
641
642	ASSERT(uio->uio_loffset < zp->z_size);
643	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
644
645	if ((uio->uio_extflg == UIO_XUIO) &&
646	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
647		int nblk;
648		int blksz = zp->z_blksz;
649		uint64_t offset = uio->uio_loffset;
650
651		xuio = (xuio_t *)uio;
652		if ((ISP2(blksz))) {
653			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
654			    blksz)) / blksz;
655		} else {
656			ASSERT(offset + n <= blksz);
657			nblk = 1;
658		}
659		(void) dmu_xuio_init(xuio, nblk);
660
661		if (vn_has_cached_data(vp)) {
662			/*
663			 * For simplicity, we always allocate a full buffer
664			 * even if we only expect to read a portion of a block.
665			 */
666			while (--nblk >= 0) {
667				(void) dmu_xuio_add(xuio,
668				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
669				    blksz), 0, blksz);
670			}
671		}
672	}
673
674	while (n > 0) {
675		nbytes = MIN(n, zfs_read_chunk_size -
676		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
677
678		if (vn_has_cached_data(vp)) {
679			error = mappedread(vp, nbytes, uio);
680		} else {
681			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
682			    uio, nbytes);
683		}
684		if (error) {
685			/* convert checksum errors into IO errors */
686			if (error == ECKSUM)
687				error = SET_ERROR(EIO);
688			break;
689		}
690
691		n -= nbytes;
692	}
693out:
694	rangelock_exit(lr);
695
696	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
697	ZFS_EXIT(zfsvfs);
698	return (error);
699}
700
701/*
702 * Write the bytes to a file.
703 *
704 *	IN:	vp	- vnode of file to be written to.
705 *		uio	- structure supplying write location, range info,
706 *			  and data buffer.
707 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
708 *			  set if in append mode.
709 *		cr	- credentials of caller.
710 *		ct	- caller context (NFS/CIFS fem monitor only)
711 *
712 *	OUT:	uio	- updated offset and range.
713 *
714 *	RETURN:	0 on success, error code on failure.
715 *
716 * Timestamps:
717 *	vp - ctime|mtime updated if byte count > 0
718 */
719
720/* ARGSUSED */
721static int
722zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
723{
724	znode_t		*zp = VTOZ(vp);
725	rlim64_t	limit = uio->uio_llimit;
726	ssize_t		start_resid = uio->uio_resid;
727	ssize_t		tx_bytes;
728	uint64_t	end_size;
729	dmu_tx_t	*tx;
730	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
731	zilog_t		*zilog;
732	offset_t	woff;
733	ssize_t		n, nbytes;
734	int		max_blksz = zfsvfs->z_max_blksz;
735	int		error = 0;
736	int		prev_error;
737	arc_buf_t	*abuf;
738	iovec_t		*aiov = NULL;
739	xuio_t		*xuio = NULL;
740	int		i_iov = 0;
741	int		iovcnt = uio->uio_iovcnt;
742	iovec_t		*iovp = uio->uio_iov;
743	int		write_eof;
744	int		count = 0;
745	sa_bulk_attr_t	bulk[4];
746	uint64_t	mtime[2], ctime[2];
747
748	/*
749	 * Fasttrack empty write
750	 */
751	n = start_resid;
752	if (n == 0)
753		return (0);
754
755	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
756		limit = MAXOFFSET_T;
757
758	ZFS_ENTER(zfsvfs);
759	ZFS_VERIFY_ZP(zp);
760
761	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
762	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
763	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
764	    &zp->z_size, 8);
765	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
766	    &zp->z_pflags, 8);
767
768	/*
769	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
770	 * callers might not be able to detect properly that we are read-only,
771	 * so check it explicitly here.
772	 */
773	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
774		ZFS_EXIT(zfsvfs);
775		return (SET_ERROR(EROFS));
776	}
777
778	/*
779	 * If immutable or not appending then return EPERM.
780	 * Intentionally allow ZFS_READONLY through here.
781	 * See zfs_zaccess_common()
782	 */
783	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
784	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
785	    (uio->uio_loffset < zp->z_size))) {
786		ZFS_EXIT(zfsvfs);
787		return (SET_ERROR(EPERM));
788	}
789
790	zilog = zfsvfs->z_log;
791
792	/*
793	 * Validate file offset
794	 */
795	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
796	if (woff < 0) {
797		ZFS_EXIT(zfsvfs);
798		return (SET_ERROR(EINVAL));
799	}
800
801	/*
802	 * Check for mandatory locks before calling rangelock_enter()
803	 * in order to prevent a deadlock with locks set via fcntl().
804	 */
805	if (MANDMODE((mode_t)zp->z_mode) &&
806	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
807		ZFS_EXIT(zfsvfs);
808		return (error);
809	}
810
811	/*
812	 * Pre-fault the pages to ensure slow (eg NFS) pages
813	 * don't hold up txg.
814	 * Skip this if uio contains loaned arc_buf.
815	 */
816	if ((uio->uio_extflg == UIO_XUIO) &&
817	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
818		xuio = (xuio_t *)uio;
819	else
820		uio_prefaultpages(MIN(n, max_blksz), uio);
821
822	/*
823	 * If in append mode, set the io offset pointer to eof.
824	 */
825	locked_range_t *lr;
826	if (ioflag & FAPPEND) {
827		/*
828		 * Obtain an appending range lock to guarantee file append
829		 * semantics.  We reset the write offset once we have the lock.
830		 */
831		lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
832		woff = lr->lr_offset;
833		if (lr->lr_length == UINT64_MAX) {
834			/*
835			 * We overlocked the file because this write will cause
836			 * the file block size to increase.
837			 * Note that zp_size cannot change with this lock held.
838			 */
839			woff = zp->z_size;
840		}
841		uio->uio_loffset = woff;
842	} else {
843		/*
844		 * Note that if the file block size will change as a result of
845		 * this write, then this range lock will lock the entire file
846		 * so that we can re-write the block safely.
847		 */
848		lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
849	}
850
851	if (woff >= limit) {
852		rangelock_exit(lr);
853		ZFS_EXIT(zfsvfs);
854		return (SET_ERROR(EFBIG));
855	}
856
857	if ((woff + n) > limit || woff > (limit - n))
858		n = limit - woff;
859
860	/* Will this write extend the file length? */
861	write_eof = (woff + n > zp->z_size);
862
863	end_size = MAX(zp->z_size, woff + n);
864
865	/*
866	 * Write the file in reasonable size chunks.  Each chunk is written
867	 * in a separate transaction; this keeps the intent log records small
868	 * and allows us to do more fine-grained space accounting.
869	 */
870	while (n > 0) {
871		woff = uio->uio_loffset;
872
873		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
874		    zp->z_uid) ||
875		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
876		    zp->z_gid) ||
877		    (zp->z_projid != ZFS_DEFAULT_PROJID &&
878		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
879		    zp->z_projid))) {
880			error = SET_ERROR(EDQUOT);
881			break;
882		}
883
884		arc_buf_t *abuf = NULL;
885		if (xuio) {
886			ASSERT(i_iov < iovcnt);
887			aiov = &iovp[i_iov];
888			abuf = dmu_xuio_arcbuf(xuio, i_iov);
889			dmu_xuio_clear(xuio, i_iov);
890			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
891			    iovec_t *, aiov, arc_buf_t *, abuf);
892			ASSERT((aiov->iov_base == abuf->b_data) ||
893			    ((char *)aiov->iov_base - (char *)abuf->b_data +
894			    aiov->iov_len == arc_buf_size(abuf)));
895			i_iov++;
896		} else if (n >= max_blksz && woff >= zp->z_size &&
897		    P2PHASE(woff, max_blksz) == 0 &&
898		    zp->z_blksz == max_blksz) {
899			/*
900			 * This write covers a full block.  "Borrow" a buffer
901			 * from the dmu so that we can fill it before we enter
902			 * a transaction.  This avoids the possibility of
903			 * holding up the transaction if the data copy hangs
904			 * up on a pagefault (e.g., from an NFS server mapping).
905			 */
906			size_t cbytes;
907
908			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
909			    max_blksz);
910			ASSERT(abuf != NULL);
911			ASSERT(arc_buf_size(abuf) == max_blksz);
912			if (error = uiocopy(abuf->b_data, max_blksz,
913			    UIO_WRITE, uio, &cbytes)) {
914				dmu_return_arcbuf(abuf);
915				break;
916			}
917			ASSERT(cbytes == max_blksz);
918		}
919
920		/*
921		 * Start a transaction.
922		 */
923		tx = dmu_tx_create(zfsvfs->z_os);
924		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
925		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
926		zfs_sa_upgrade_txholds(tx, zp);
927		error = dmu_tx_assign(tx, TXG_WAIT);
928		if (error) {
929			dmu_tx_abort(tx);
930			if (abuf != NULL)
931				dmu_return_arcbuf(abuf);
932			break;
933		}
934
935		/*
936		 * If rangelock_enter() over-locked we grow the blocksize
937		 * and then reduce the lock range.  This will only happen
938		 * on the first iteration since rangelock_reduce() will
939		 * shrink down lr_length to the appropriate size.
940		 */
941		if (lr->lr_length == UINT64_MAX) {
942			uint64_t new_blksz;
943
944			if (zp->z_blksz > max_blksz) {
945				/*
946				 * File's blocksize is already larger than the
947				 * "recordsize" property.  Only let it grow to
948				 * the next power of 2.
949				 */
950				ASSERT(!ISP2(zp->z_blksz));
951				new_blksz = MIN(end_size,
952				    1 << highbit64(zp->z_blksz));
953			} else {
954				new_blksz = MIN(end_size, max_blksz);
955			}
956			zfs_grow_blocksize(zp, new_blksz, tx);
957			rangelock_reduce(lr, woff, n);
958		}
959
960		/*
961		 * XXX - should we really limit each write to z_max_blksz?
962		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
963		 */
964		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
965
966		if (abuf == NULL) {
967			tx_bytes = uio->uio_resid;
968			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
969			    uio, nbytes, tx);
970			tx_bytes -= uio->uio_resid;
971		} else {
972			tx_bytes = nbytes;
973			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
974			/*
975			 * If this is not a full block write, but we are
976			 * extending the file past EOF and this data starts
977			 * block-aligned, use assign_arcbuf().  Otherwise,
978			 * write via dmu_write().
979			 */
980			if (tx_bytes < max_blksz && (!write_eof ||
981			    aiov->iov_base != abuf->b_data)) {
982				ASSERT(xuio);
983				dmu_write(zfsvfs->z_os, zp->z_id, woff,
984				    aiov->iov_len, aiov->iov_base, tx);
985				dmu_return_arcbuf(abuf);
986				xuio_stat_wbuf_copied();
987			} else {
988				ASSERT(xuio || tx_bytes == max_blksz);
989				dmu_assign_arcbuf_by_dbuf(
990				    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
991			}
992			ASSERT(tx_bytes <= uio->uio_resid);
993			uioskip(uio, tx_bytes);
994		}
995		if (tx_bytes && vn_has_cached_data(vp)) {
996			update_pages(vp, woff,
997			    tx_bytes, zfsvfs->z_os, zp->z_id);
998		}
999
1000		/*
1001		 * If we made no progress, we're done.  If we made even
1002		 * partial progress, update the znode and ZIL accordingly.
1003		 */
1004		if (tx_bytes == 0) {
1005			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1006			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1007			dmu_tx_commit(tx);
1008			ASSERT(error != 0);
1009			break;
1010		}
1011
1012		/*
1013		 * Clear Set-UID/Set-GID bits on successful write if not
1014		 * privileged and at least one of the excute bits is set.
1015		 *
1016		 * It would be nice to to this after all writes have
1017		 * been done, but that would still expose the ISUID/ISGID
1018		 * to another app after the partial write is committed.
1019		 *
1020		 * Note: we don't call zfs_fuid_map_id() here because
1021		 * user 0 is not an ephemeral uid.
1022		 */
1023		mutex_enter(&zp->z_acl_lock);
1024		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1025		    (S_IXUSR >> 6))) != 0 &&
1026		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1027		    secpolicy_vnode_setid_retain(cr,
1028		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1029			uint64_t newmode;
1030			zp->z_mode &= ~(S_ISUID | S_ISGID);
1031			newmode = zp->z_mode;
1032			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1033			    (void *)&newmode, sizeof (uint64_t), tx);
1034		}
1035		mutex_exit(&zp->z_acl_lock);
1036
1037		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1038		    B_TRUE);
1039
1040		/*
1041		 * Update the file size (zp_size) if it has changed;
1042		 * account for possible concurrent updates.
1043		 */
1044		while ((end_size = zp->z_size) < uio->uio_loffset) {
1045			(void) atomic_cas_64(&zp->z_size, end_size,
1046			    uio->uio_loffset);
1047		}
1048		/*
1049		 * If we are replaying and eof is non zero then force
1050		 * the file size to the specified eof. Note, there's no
1051		 * concurrency during replay.
1052		 */
1053		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1054			zp->z_size = zfsvfs->z_replay_eof;
1055
1056		/*
1057		 * Keep track of a possible pre-existing error from a partial
1058		 * write via dmu_write_uio_dbuf above.
1059		 */
1060		prev_error = error;
1061		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1062
1063		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1064		dmu_tx_commit(tx);
1065
1066		if (prev_error != 0 || error != 0)
1067			break;
1068		ASSERT(tx_bytes == nbytes);
1069		n -= nbytes;
1070
1071		if (!xuio && n > 0)
1072			uio_prefaultpages(MIN(n, max_blksz), uio);
1073	}
1074
1075	rangelock_exit(lr);
1076
1077	/*
1078	 * If we're in replay mode, or we made no progress, return error.
1079	 * Otherwise, it's at least a partial write, so it's successful.
1080	 */
1081	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1082		ZFS_EXIT(zfsvfs);
1083		return (error);
1084	}
1085
1086	if (ioflag & (FSYNC | FDSYNC) ||
1087	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1088		zil_commit(zilog, zp->z_id);
1089
1090	ZFS_EXIT(zfsvfs);
1091	return (0);
1092}
1093
1094/* ARGSUSED */
1095void
1096zfs_get_done(zgd_t *zgd, int error)
1097{
1098	znode_t *zp = zgd->zgd_private;
1099	objset_t *os = zp->z_zfsvfs->z_os;
1100
1101	if (zgd->zgd_db)
1102		dmu_buf_rele(zgd->zgd_db, zgd);
1103
1104	rangelock_exit(zgd->zgd_lr);
1105
1106	/*
1107	 * Release the vnode asynchronously as we currently have the
1108	 * txg stopped from syncing.
1109	 */
1110	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1111
1112	kmem_free(zgd, sizeof (zgd_t));
1113}
1114
1115#ifdef DEBUG
1116static int zil_fault_io = 0;
1117#endif
1118
1119/*
1120 * Get data to generate a TX_WRITE intent log record.
1121 */
1122int
1123zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1124{
1125	zfsvfs_t *zfsvfs = arg;
1126	objset_t *os = zfsvfs->z_os;
1127	znode_t *zp;
1128	uint64_t object = lr->lr_foid;
1129	uint64_t offset = lr->lr_offset;
1130	uint64_t size = lr->lr_length;
1131	dmu_buf_t *db;
1132	zgd_t *zgd;
1133	int error = 0;
1134
1135	ASSERT3P(lwb, !=, NULL);
1136	ASSERT3P(zio, !=, NULL);
1137	ASSERT3U(size, !=, 0);
1138
1139	/*
1140	 * Nothing to do if the file has been removed
1141	 */
1142	if (zfs_zget(zfsvfs, object, &zp) != 0)
1143		return (SET_ERROR(ENOENT));
1144	if (zp->z_unlinked) {
1145		/*
1146		 * Release the vnode asynchronously as we currently have the
1147		 * txg stopped from syncing.
1148		 */
1149		VN_RELE_ASYNC(ZTOV(zp),
1150		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1151		return (SET_ERROR(ENOENT));
1152	}
1153
1154	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1155	zgd->zgd_lwb = lwb;
1156	zgd->zgd_private = zp;
1157
1158	/*
1159	 * Write records come in two flavors: immediate and indirect.
1160	 * For small writes it's cheaper to store the data with the
1161	 * log record (immediate); for large writes it's cheaper to
1162	 * sync the data and get a pointer to it (indirect) so that
1163	 * we don't have to write the data twice.
1164	 */
1165	if (buf != NULL) { /* immediate write */
1166		zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1167		    offset, size, RL_READER);
1168		/* test for truncation needs to be done while range locked */
1169		if (offset >= zp->z_size) {
1170			error = SET_ERROR(ENOENT);
1171		} else {
1172			error = dmu_read(os, object, offset, size, buf,
1173			    DMU_READ_NO_PREFETCH);
1174		}
1175		ASSERT(error == 0 || error == ENOENT);
1176	} else { /* indirect write */
1177		/*
1178		 * Have to lock the whole block to ensure when it's
1179		 * written out and its checksum is being calculated
1180		 * that no one can change the data. We need to re-check
1181		 * blocksize after we get the lock in case it's changed!
1182		 */
1183		for (;;) {
1184			uint64_t blkoff;
1185			size = zp->z_blksz;
1186			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1187			offset -= blkoff;
1188			zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1189			    offset, size, RL_READER);
1190			if (zp->z_blksz == size)
1191				break;
1192			offset += blkoff;
1193			rangelock_exit(zgd->zgd_lr);
1194		}
1195		/* test for truncation needs to be done while range locked */
1196		if (lr->lr_offset >= zp->z_size)
1197			error = SET_ERROR(ENOENT);
1198#ifdef DEBUG
1199		if (zil_fault_io) {
1200			error = SET_ERROR(EIO);
1201			zil_fault_io = 0;
1202		}
1203#endif
1204		if (error == 0)
1205			error = dmu_buf_hold(os, object, offset, zgd, &db,
1206			    DMU_READ_NO_PREFETCH);
1207
1208		if (error == 0) {
1209			blkptr_t *bp = &lr->lr_blkptr;
1210
1211			zgd->zgd_db = db;
1212			zgd->zgd_bp = bp;
1213
1214			ASSERT(db->db_offset == offset);
1215			ASSERT(db->db_size == size);
1216
1217			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1218			    zfs_get_done, zgd);
1219			ASSERT(error || lr->lr_length <= size);
1220
1221			/*
1222			 * On success, we need to wait for the write I/O
1223			 * initiated by dmu_sync() to complete before we can
1224			 * release this dbuf.  We will finish everything up
1225			 * in the zfs_get_done() callback.
1226			 */
1227			if (error == 0)
1228				return (0);
1229
1230			if (error == EALREADY) {
1231				lr->lr_common.lrc_txtype = TX_WRITE2;
1232				/*
1233				 * TX_WRITE2 relies on the data previously
1234				 * written by the TX_WRITE that caused
1235				 * EALREADY.  We zero out the BP because
1236				 * it is the old, currently-on-disk BP.
1237				 */
1238				zgd->zgd_bp = NULL;
1239				BP_ZERO(bp);
1240				error = 0;
1241			}
1242		}
1243	}
1244
1245	zfs_get_done(zgd, error);
1246
1247	return (error);
1248}
1249
1250/*ARGSUSED*/
1251static int
1252zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1253    caller_context_t *ct)
1254{
1255	znode_t *zp = VTOZ(vp);
1256	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1257	int error;
1258
1259	ZFS_ENTER(zfsvfs);
1260	ZFS_VERIFY_ZP(zp);
1261
1262	if (flag & V_ACE_MASK)
1263		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1264	else
1265		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1266
1267	ZFS_EXIT(zfsvfs);
1268	return (error);
1269}
1270
1271/*
1272 * If vnode is for a device return a specfs vnode instead.
1273 */
1274static int
1275specvp_check(vnode_t **vpp, cred_t *cr)
1276{
1277	int error = 0;
1278
1279	if (IS_DEVVP(*vpp)) {
1280		struct vnode *svp;
1281
1282		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1283		VN_RELE(*vpp);
1284		if (svp == NULL)
1285			error = SET_ERROR(ENOSYS);
1286		*vpp = svp;
1287	}
1288	return (error);
1289}
1290
1291
1292/*
1293 * Lookup an entry in a directory, or an extended attribute directory.
1294 * If it exists, return a held vnode reference for it.
1295 *
1296 *	IN:	dvp	- vnode of directory to search.
1297 *		nm	- name of entry to lookup.
1298 *		pnp	- full pathname to lookup [UNUSED].
1299 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1300 *		rdir	- root directory vnode [UNUSED].
1301 *		cr	- credentials of caller.
1302 *		ct	- caller context
1303 *		direntflags - directory lookup flags
1304 *		realpnp - returned pathname.
1305 *
1306 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1307 *
1308 *	RETURN:	0 on success, error code on failure.
1309 *
1310 * Timestamps:
1311 *	NA
1312 */
1313/* ARGSUSED */
1314static int
1315zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1316    int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1317    int *direntflags, pathname_t *realpnp)
1318{
1319	znode_t *zdp = VTOZ(dvp);
1320	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1321	int	error = 0;
1322
1323	/*
1324	 * Fast path lookup, however we must skip DNLC lookup
1325	 * for case folding or normalizing lookups because the
1326	 * DNLC code only stores the passed in name.  This means
1327	 * creating 'a' and removing 'A' on a case insensitive
1328	 * file system would work, but DNLC still thinks 'a'
1329	 * exists and won't let you create it again on the next
1330	 * pass through fast path.
1331	 */
1332	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1333
1334		if (dvp->v_type != VDIR) {
1335			return (SET_ERROR(ENOTDIR));
1336		} else if (zdp->z_sa_hdl == NULL) {
1337			return (SET_ERROR(EIO));
1338		}
1339
1340		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1341			error = zfs_fastaccesschk_execute(zdp, cr);
1342			if (!error) {
1343				*vpp = dvp;
1344				VN_HOLD(*vpp);
1345				return (0);
1346			}
1347			return (error);
1348		} else if (!zdp->z_zfsvfs->z_norm &&
1349		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1350
1351			vnode_t *tvp = dnlc_lookup(dvp, nm);
1352
1353			if (tvp) {
1354				error = zfs_fastaccesschk_execute(zdp, cr);
1355				if (error) {
1356					VN_RELE(tvp);
1357					return (error);
1358				}
1359				if (tvp == DNLC_NO_VNODE) {
1360					VN_RELE(tvp);
1361					return (SET_ERROR(ENOENT));
1362				} else {
1363					*vpp = tvp;
1364					return (specvp_check(vpp, cr));
1365				}
1366			}
1367		}
1368	}
1369
1370	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1371
1372	ZFS_ENTER(zfsvfs);
1373	ZFS_VERIFY_ZP(zdp);
1374
1375	*vpp = NULL;
1376
1377	if (flags & LOOKUP_XATTR) {
1378		/*
1379		 * If the xattr property is off, refuse the lookup request.
1380		 */
1381		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1382			ZFS_EXIT(zfsvfs);
1383			return (SET_ERROR(EINVAL));
1384		}
1385
1386		/*
1387		 * We don't allow recursive attributes..
1388		 * Maybe someday we will.
1389		 */
1390		if (zdp->z_pflags & ZFS_XATTR) {
1391			ZFS_EXIT(zfsvfs);
1392			return (SET_ERROR(EINVAL));
1393		}
1394
1395		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1396			ZFS_EXIT(zfsvfs);
1397			return (error);
1398		}
1399
1400		/*
1401		 * Do we have permission to get into attribute directory?
1402		 */
1403
1404		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1405		    B_FALSE, cr)) {
1406			VN_RELE(*vpp);
1407			*vpp = NULL;
1408		}
1409
1410		ZFS_EXIT(zfsvfs);
1411		return (error);
1412	}
1413
1414	if (dvp->v_type != VDIR) {
1415		ZFS_EXIT(zfsvfs);
1416		return (SET_ERROR(ENOTDIR));
1417	}
1418
1419	/*
1420	 * Check accessibility of directory.
1421	 */
1422
1423	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1424		ZFS_EXIT(zfsvfs);
1425		return (error);
1426	}
1427
1428	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1429	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1430		ZFS_EXIT(zfsvfs);
1431		return (SET_ERROR(EILSEQ));
1432	}
1433
1434	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1435	if (error == 0)
1436		error = specvp_check(vpp, cr);
1437
1438	ZFS_EXIT(zfsvfs);
1439	return (error);
1440}
1441
1442/*
1443 * Attempt to create a new entry in a directory.  If the entry
1444 * already exists, truncate the file if permissible, else return
1445 * an error.  Return the vp of the created or trunc'd file.
1446 *
1447 *	IN:	dvp	- vnode of directory to put new file entry in.
1448 *		name	- name of new file entry.
1449 *		vap	- attributes of new file.
1450 *		excl	- flag indicating exclusive or non-exclusive mode.
1451 *		mode	- mode to open file with.
1452 *		cr	- credentials of caller.
1453 *		flag	- large file flag [UNUSED].
1454 *		ct	- caller context
1455 *		vsecp	- ACL to be set
1456 *
1457 *	OUT:	vpp	- vnode of created or trunc'd entry.
1458 *
1459 *	RETURN:	0 on success, error code on failure.
1460 *
1461 * Timestamps:
1462 *	dvp - ctime|mtime updated if new entry created
1463 *	 vp - ctime|mtime always, atime if new
1464 */
1465
1466/* ARGSUSED */
1467static int
1468zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1469    int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1470    vsecattr_t *vsecp)
1471{
1472	znode_t		*zp, *dzp = VTOZ(dvp);
1473	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1474	zilog_t		*zilog;
1475	objset_t	*os;
1476	zfs_dirlock_t	*dl;
1477	dmu_tx_t	*tx;
1478	int		error;
1479	ksid_t		*ksid;
1480	uid_t		uid;
1481	gid_t		gid = crgetgid(cr);
1482	zfs_acl_ids_t   acl_ids;
1483	boolean_t	fuid_dirtied;
1484	boolean_t	have_acl = B_FALSE;
1485	boolean_t	waited = B_FALSE;
1486
1487	/*
1488	 * If we have an ephemeral id, ACL, or XVATTR then
1489	 * make sure file system is at proper version
1490	 */
1491
1492	ksid = crgetsid(cr, KSID_OWNER);
1493	if (ksid)
1494		uid = ksid_getid(ksid);
1495	else
1496		uid = crgetuid(cr);
1497
1498	if (zfsvfs->z_use_fuids == B_FALSE &&
1499	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1500	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1501		return (SET_ERROR(EINVAL));
1502
1503	ZFS_ENTER(zfsvfs);
1504	ZFS_VERIFY_ZP(dzp);
1505	os = zfsvfs->z_os;
1506	zilog = zfsvfs->z_log;
1507
1508	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1509	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1510		ZFS_EXIT(zfsvfs);
1511		return (SET_ERROR(EILSEQ));
1512	}
1513
1514	if (vap->va_mask & AT_XVATTR) {
1515		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1516		    crgetuid(cr), cr, vap->va_type)) != 0) {
1517			ZFS_EXIT(zfsvfs);
1518			return (error);
1519		}
1520	}
1521top:
1522	*vpp = NULL;
1523
1524	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1525		vap->va_mode &= ~VSVTX;
1526
1527	if (*name == '\0') {
1528		/*
1529		 * Null component name refers to the directory itself.
1530		 */
1531		VN_HOLD(dvp);
1532		zp = dzp;
1533		dl = NULL;
1534		error = 0;
1535	} else {
1536		/* possible VN_HOLD(zp) */
1537		int zflg = 0;
1538
1539		if (flag & FIGNORECASE)
1540			zflg |= ZCILOOK;
1541
1542		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1543		    NULL, NULL);
1544		if (error) {
1545			if (have_acl)
1546				zfs_acl_ids_free(&acl_ids);
1547			if (strcmp(name, "..") == 0)
1548				error = SET_ERROR(EISDIR);
1549			ZFS_EXIT(zfsvfs);
1550			return (error);
1551		}
1552	}
1553
1554	if (zp == NULL) {
1555		uint64_t txtype;
1556		uint64_t projid = ZFS_DEFAULT_PROJID;
1557
1558		/*
1559		 * Create a new file object and update the directory
1560		 * to reference it.
1561		 */
1562		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1563			if (have_acl)
1564				zfs_acl_ids_free(&acl_ids);
1565			goto out;
1566		}
1567
1568		/*
1569		 * We only support the creation of regular files in
1570		 * extended attribute directories.
1571		 */
1572
1573		if ((dzp->z_pflags & ZFS_XATTR) &&
1574		    (vap->va_type != VREG)) {
1575			if (have_acl)
1576				zfs_acl_ids_free(&acl_ids);
1577			error = SET_ERROR(EINVAL);
1578			goto out;
1579		}
1580
1581		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1582		    cr, vsecp, &acl_ids)) != 0)
1583			goto out;
1584		have_acl = B_TRUE;
1585
1586		if (vap->va_type == VREG || vap->va_type == VDIR)
1587			projid = zfs_inherit_projid(dzp);
1588		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1589			zfs_acl_ids_free(&acl_ids);
1590			error = SET_ERROR(EDQUOT);
1591			goto out;
1592		}
1593
1594		tx = dmu_tx_create(os);
1595
1596		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1597		    ZFS_SA_BASE_ATTR_SIZE);
1598
1599		fuid_dirtied = zfsvfs->z_fuid_dirty;
1600		if (fuid_dirtied)
1601			zfs_fuid_txhold(zfsvfs, tx);
1602		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1603		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1604		if (!zfsvfs->z_use_sa &&
1605		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1606			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1607			    0, acl_ids.z_aclp->z_acl_bytes);
1608		}
1609		error = dmu_tx_assign(tx,
1610		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1611		if (error) {
1612			zfs_dirent_unlock(dl);
1613			if (error == ERESTART) {
1614				waited = B_TRUE;
1615				dmu_tx_wait(tx);
1616				dmu_tx_abort(tx);
1617				goto top;
1618			}
1619			zfs_acl_ids_free(&acl_ids);
1620			dmu_tx_abort(tx);
1621			ZFS_EXIT(zfsvfs);
1622			return (error);
1623		}
1624		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1625
1626		if (fuid_dirtied)
1627			zfs_fuid_sync(zfsvfs, tx);
1628
1629		(void) zfs_link_create(dl, zp, tx, ZNEW);
1630		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1631		if (flag & FIGNORECASE)
1632			txtype |= TX_CI;
1633		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1634		    vsecp, acl_ids.z_fuidp, vap);
1635		zfs_acl_ids_free(&acl_ids);
1636		dmu_tx_commit(tx);
1637	} else {
1638		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1639
1640		if (have_acl)
1641			zfs_acl_ids_free(&acl_ids);
1642		have_acl = B_FALSE;
1643
1644		/*
1645		 * A directory entry already exists for this name.
1646		 */
1647		/*
1648		 * Can't truncate an existing file if in exclusive mode.
1649		 */
1650		if (excl == EXCL) {
1651			error = SET_ERROR(EEXIST);
1652			goto out;
1653		}
1654		/*
1655		 * Can't open a directory for writing.
1656		 */
1657		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1658			error = SET_ERROR(EISDIR);
1659			goto out;
1660		}
1661		/*
1662		 * Verify requested access to file.
1663		 */
1664		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1665			goto out;
1666		}
1667
1668		mutex_enter(&dzp->z_lock);
1669		dzp->z_seq++;
1670		mutex_exit(&dzp->z_lock);
1671
1672		/*
1673		 * Truncate regular files if requested.
1674		 */
1675		if ((ZTOV(zp)->v_type == VREG) &&
1676		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1677			/* we can't hold any locks when calling zfs_freesp() */
1678			zfs_dirent_unlock(dl);
1679			dl = NULL;
1680			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1681			if (error == 0) {
1682				vnevent_create(ZTOV(zp), ct);
1683			}
1684		}
1685	}
1686out:
1687
1688	if (dl)
1689		zfs_dirent_unlock(dl);
1690
1691	if (error) {
1692		if (zp)
1693			VN_RELE(ZTOV(zp));
1694	} else {
1695		*vpp = ZTOV(zp);
1696		error = specvp_check(vpp, cr);
1697	}
1698
1699	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1700		zil_commit(zilog, 0);
1701
1702	ZFS_EXIT(zfsvfs);
1703	return (error);
1704}
1705
1706/*
1707 * Remove an entry from a directory.
1708 *
1709 *	IN:	dvp	- vnode of directory to remove entry from.
1710 *		name	- name of entry to remove.
1711 *		cr	- credentials of caller.
1712 *		ct	- caller context
1713 *		flags	- case flags
1714 *
1715 *	RETURN:	0 on success, error code on failure.
1716 *
1717 * Timestamps:
1718 *	dvp - ctime|mtime
1719 *	 vp - ctime (if nlink > 0)
1720 */
1721
1722uint64_t null_xattr = 0;
1723
1724/*ARGSUSED*/
1725static int
1726zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1727    int flags)
1728{
1729	znode_t		*zp, *dzp = VTOZ(dvp);
1730	znode_t		*xzp;
1731	vnode_t		*vp;
1732	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1733	zilog_t		*zilog;
1734	uint64_t	acl_obj, xattr_obj;
1735	uint64_t	xattr_obj_unlinked = 0;
1736	uint64_t	obj = 0;
1737	zfs_dirlock_t	*dl;
1738	dmu_tx_t	*tx;
1739	boolean_t	may_delete_now, delete_now = FALSE;
1740	boolean_t	unlinked, toobig = FALSE;
1741	uint64_t	txtype;
1742	pathname_t	*realnmp = NULL;
1743	pathname_t	realnm;
1744	int		error;
1745	int		zflg = ZEXISTS;
1746	boolean_t	waited = B_FALSE;
1747
1748	ZFS_ENTER(zfsvfs);
1749	ZFS_VERIFY_ZP(dzp);
1750	zilog = zfsvfs->z_log;
1751
1752	if (flags & FIGNORECASE) {
1753		zflg |= ZCILOOK;
1754		pn_alloc(&realnm);
1755		realnmp = &realnm;
1756	}
1757
1758top:
1759	xattr_obj = 0;
1760	xzp = NULL;
1761	/*
1762	 * Attempt to lock directory; fail if entry doesn't exist.
1763	 */
1764	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1765	    NULL, realnmp)) {
1766		if (realnmp)
1767			pn_free(realnmp);
1768		ZFS_EXIT(zfsvfs);
1769		return (error);
1770	}
1771
1772	vp = ZTOV(zp);
1773
1774	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1775		goto out;
1776	}
1777
1778	/*
1779	 * Need to use rmdir for removing directories.
1780	 */
1781	if (vp->v_type == VDIR) {
1782		error = SET_ERROR(EPERM);
1783		goto out;
1784	}
1785
1786	vnevent_remove(vp, dvp, name, ct);
1787
1788	if (realnmp)
1789		dnlc_remove(dvp, realnmp->pn_buf);
1790	else
1791		dnlc_remove(dvp, name);
1792
1793	mutex_enter(&vp->v_lock);
1794	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1795	mutex_exit(&vp->v_lock);
1796
1797	/*
1798	 * We may delete the znode now, or we may put it in the unlinked set;
1799	 * it depends on whether we're the last link, and on whether there are
1800	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1801	 * allow for either case.
1802	 */
1803	obj = zp->z_id;
1804	tx = dmu_tx_create(zfsvfs->z_os);
1805	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1806	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1807	zfs_sa_upgrade_txholds(tx, zp);
1808	zfs_sa_upgrade_txholds(tx, dzp);
1809	if (may_delete_now) {
1810		toobig =
1811		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1812		/* if the file is too big, only hold_free a token amount */
1813		dmu_tx_hold_free(tx, zp->z_id, 0,
1814		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1815	}
1816
1817	/* are there any extended attributes? */
1818	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1819	    &xattr_obj, sizeof (xattr_obj));
1820	if (error == 0 && xattr_obj) {
1821		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1822		ASSERT0(error);
1823		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1824		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1825	}
1826
1827	mutex_enter(&zp->z_lock);
1828	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1829		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1830	mutex_exit(&zp->z_lock);
1831
1832	/* charge as an update -- would be nice not to charge at all */
1833	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1834
1835	/*
1836	 * Mark this transaction as typically resulting in a net free of space
1837	 */
1838	dmu_tx_mark_netfree(tx);
1839
1840	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1841	if (error) {
1842		zfs_dirent_unlock(dl);
1843		VN_RELE(vp);
1844		if (xzp)
1845			VN_RELE(ZTOV(xzp));
1846		if (error == ERESTART) {
1847			waited = B_TRUE;
1848			dmu_tx_wait(tx);
1849			dmu_tx_abort(tx);
1850			goto top;
1851		}
1852		if (realnmp)
1853			pn_free(realnmp);
1854		dmu_tx_abort(tx);
1855		ZFS_EXIT(zfsvfs);
1856		return (error);
1857	}
1858
1859	/*
1860	 * Remove the directory entry.
1861	 */
1862	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1863
1864	if (error) {
1865		dmu_tx_commit(tx);
1866		goto out;
1867	}
1868
1869	if (unlinked) {
1870		/*
1871		 * Hold z_lock so that we can make sure that the ACL obj
1872		 * hasn't changed.  Could have been deleted due to
1873		 * zfs_sa_upgrade().
1874		 */
1875		mutex_enter(&zp->z_lock);
1876		mutex_enter(&vp->v_lock);
1877		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1878		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1879		delete_now = may_delete_now && !toobig &&
1880		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1881		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1882		    acl_obj;
1883		mutex_exit(&vp->v_lock);
1884	}
1885
1886	if (delete_now) {
1887		if (xattr_obj_unlinked) {
1888			ASSERT3U(xzp->z_links, ==, 2);
1889			mutex_enter(&xzp->z_lock);
1890			xzp->z_unlinked = 1;
1891			xzp->z_links = 0;
1892			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1893			    &xzp->z_links, sizeof (xzp->z_links), tx);
1894			ASSERT3U(error,  ==,  0);
1895			mutex_exit(&xzp->z_lock);
1896			zfs_unlinked_add(xzp, tx);
1897
1898			if (zp->z_is_sa)
1899				error = sa_remove(zp->z_sa_hdl,
1900				    SA_ZPL_XATTR(zfsvfs), tx);
1901			else
1902				error = sa_update(zp->z_sa_hdl,
1903				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1904				    sizeof (uint64_t), tx);
1905			ASSERT0(error);
1906		}
1907		mutex_enter(&vp->v_lock);
1908		VN_RELE_LOCKED(vp);
1909		ASSERT0(vp->v_count);
1910		mutex_exit(&vp->v_lock);
1911		mutex_exit(&zp->z_lock);
1912		zfs_znode_delete(zp, tx);
1913	} else if (unlinked) {
1914		mutex_exit(&zp->z_lock);
1915		zfs_unlinked_add(zp, tx);
1916	}
1917
1918	txtype = TX_REMOVE;
1919	if (flags & FIGNORECASE)
1920		txtype |= TX_CI;
1921	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1922
1923	dmu_tx_commit(tx);
1924out:
1925	if (realnmp)
1926		pn_free(realnmp);
1927
1928	zfs_dirent_unlock(dl);
1929
1930	if (!delete_now)
1931		VN_RELE(vp);
1932	if (xzp)
1933		VN_RELE(ZTOV(xzp));
1934
1935	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1936		zil_commit(zilog, 0);
1937
1938	ZFS_EXIT(zfsvfs);
1939	return (error);
1940}
1941
1942/*
1943 * Create a new directory and insert it into dvp using the name
1944 * provided.  Return a pointer to the inserted directory.
1945 *
1946 *	IN:	dvp	- vnode of directory to add subdir to.
1947 *		dirname	- name of new directory.
1948 *		vap	- attributes of new directory.
1949 *		cr	- credentials of caller.
1950 *		ct	- caller context
1951 *		flags	- case flags
1952 *		vsecp	- ACL to be set
1953 *
1954 *	OUT:	vpp	- vnode of created directory.
1955 *
1956 *	RETURN:	0 on success, error code on failure.
1957 *
1958 * Timestamps:
1959 *	dvp - ctime|mtime updated
1960 *	 vp - ctime|mtime|atime updated
1961 */
1962/*ARGSUSED*/
1963static int
1964zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1965    caller_context_t *ct, int flags, vsecattr_t *vsecp)
1966{
1967	znode_t		*zp, *dzp = VTOZ(dvp);
1968	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1969	zilog_t		*zilog;
1970	zfs_dirlock_t	*dl;
1971	uint64_t	txtype;
1972	dmu_tx_t	*tx;
1973	int		error;
1974	int		zf = ZNEW;
1975	ksid_t		*ksid;
1976	uid_t		uid;
1977	gid_t		gid = crgetgid(cr);
1978	zfs_acl_ids_t   acl_ids;
1979	boolean_t	fuid_dirtied;
1980	boolean_t	waited = B_FALSE;
1981
1982	ASSERT(vap->va_type == VDIR);
1983
1984	/*
1985	 * If we have an ephemeral id, ACL, or XVATTR then
1986	 * make sure file system is at proper version
1987	 */
1988
1989	ksid = crgetsid(cr, KSID_OWNER);
1990	if (ksid)
1991		uid = ksid_getid(ksid);
1992	else
1993		uid = crgetuid(cr);
1994	if (zfsvfs->z_use_fuids == B_FALSE &&
1995	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1996	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1997		return (SET_ERROR(EINVAL));
1998
1999	ZFS_ENTER(zfsvfs);
2000	ZFS_VERIFY_ZP(dzp);
2001	zilog = zfsvfs->z_log;
2002
2003	if (dzp->z_pflags & ZFS_XATTR) {
2004		ZFS_EXIT(zfsvfs);
2005		return (SET_ERROR(EINVAL));
2006	}
2007
2008	if (zfsvfs->z_utf8 && u8_validate(dirname,
2009	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2010		ZFS_EXIT(zfsvfs);
2011		return (SET_ERROR(EILSEQ));
2012	}
2013	if (flags & FIGNORECASE)
2014		zf |= ZCILOOK;
2015
2016	if (vap->va_mask & AT_XVATTR) {
2017		if ((error = secpolicy_xvattr((xvattr_t *)vap,
2018		    crgetuid(cr), cr, vap->va_type)) != 0) {
2019			ZFS_EXIT(zfsvfs);
2020			return (error);
2021		}
2022	}
2023
2024	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2025	    vsecp, &acl_ids)) != 0) {
2026		ZFS_EXIT(zfsvfs);
2027		return (error);
2028	}
2029	/*
2030	 * First make sure the new directory doesn't exist.
2031	 *
2032	 * Existence is checked first to make sure we don't return
2033	 * EACCES instead of EEXIST which can cause some applications
2034	 * to fail.
2035	 */
2036top:
2037	*vpp = NULL;
2038
2039	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2040	    NULL, NULL)) {
2041		zfs_acl_ids_free(&acl_ids);
2042		ZFS_EXIT(zfsvfs);
2043		return (error);
2044	}
2045
2046	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2047		zfs_acl_ids_free(&acl_ids);
2048		zfs_dirent_unlock(dl);
2049		ZFS_EXIT(zfsvfs);
2050		return (error);
2051	}
2052
2053	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2054		zfs_acl_ids_free(&acl_ids);
2055		zfs_dirent_unlock(dl);
2056		ZFS_EXIT(zfsvfs);
2057		return (SET_ERROR(EDQUOT));
2058	}
2059
2060	/*
2061	 * Add a new entry to the directory.
2062	 */
2063	tx = dmu_tx_create(zfsvfs->z_os);
2064	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2065	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2066	fuid_dirtied = zfsvfs->z_fuid_dirty;
2067	if (fuid_dirtied)
2068		zfs_fuid_txhold(zfsvfs, tx);
2069	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2070		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2071		    acl_ids.z_aclp->z_acl_bytes);
2072	}
2073
2074	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2075	    ZFS_SA_BASE_ATTR_SIZE);
2076
2077	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2078	if (error) {
2079		zfs_dirent_unlock(dl);
2080		if (error == ERESTART) {
2081			waited = B_TRUE;
2082			dmu_tx_wait(tx);
2083			dmu_tx_abort(tx);
2084			goto top;
2085		}
2086		zfs_acl_ids_free(&acl_ids);
2087		dmu_tx_abort(tx);
2088		ZFS_EXIT(zfsvfs);
2089		return (error);
2090	}
2091
2092	/*
2093	 * Create new node.
2094	 */
2095	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2096
2097	if (fuid_dirtied)
2098		zfs_fuid_sync(zfsvfs, tx);
2099
2100	/*
2101	 * Now put new name in parent dir.
2102	 */
2103	(void) zfs_link_create(dl, zp, tx, ZNEW);
2104
2105	*vpp = ZTOV(zp);
2106
2107	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2108	if (flags & FIGNORECASE)
2109		txtype |= TX_CI;
2110	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2111	    acl_ids.z_fuidp, vap);
2112
2113	zfs_acl_ids_free(&acl_ids);
2114
2115	dmu_tx_commit(tx);
2116
2117	zfs_dirent_unlock(dl);
2118
2119	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2120		zil_commit(zilog, 0);
2121
2122	ZFS_EXIT(zfsvfs);
2123	return (0);
2124}
2125
2126/*
2127 * Remove a directory subdir entry.  If the current working
2128 * directory is the same as the subdir to be removed, the
2129 * remove will fail.
2130 *
2131 *	IN:	dvp	- vnode of directory to remove from.
2132 *		name	- name of directory to be removed.
2133 *		cwd	- vnode of current working directory.
2134 *		cr	- credentials of caller.
2135 *		ct	- caller context
2136 *		flags	- case flags
2137 *
2138 *	RETURN:	0 on success, error code on failure.
2139 *
2140 * Timestamps:
2141 *	dvp - ctime|mtime updated
2142 */
2143/*ARGSUSED*/
2144static int
2145zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2146    caller_context_t *ct, int flags)
2147{
2148	znode_t		*dzp = VTOZ(dvp);
2149	znode_t		*zp;
2150	vnode_t		*vp;
2151	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2152	zilog_t		*zilog;
2153	zfs_dirlock_t	*dl;
2154	dmu_tx_t	*tx;
2155	int		error;
2156	int		zflg = ZEXISTS;
2157	boolean_t	waited = B_FALSE;
2158
2159	ZFS_ENTER(zfsvfs);
2160	ZFS_VERIFY_ZP(dzp);
2161	zilog = zfsvfs->z_log;
2162
2163	if (flags & FIGNORECASE)
2164		zflg |= ZCILOOK;
2165top:
2166	zp = NULL;
2167
2168	/*
2169	 * Attempt to lock directory; fail if entry doesn't exist.
2170	 */
2171	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2172	    NULL, NULL)) {
2173		ZFS_EXIT(zfsvfs);
2174		return (error);
2175	}
2176
2177	vp = ZTOV(zp);
2178
2179	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2180		goto out;
2181	}
2182
2183	if (vp->v_type != VDIR) {
2184		error = SET_ERROR(ENOTDIR);
2185		goto out;
2186	}
2187
2188	if (vp == cwd) {
2189		error = SET_ERROR(EINVAL);
2190		goto out;
2191	}
2192
2193	vnevent_rmdir(vp, dvp, name, ct);
2194
2195	/*
2196	 * Grab a lock on the directory to make sure that noone is
2197	 * trying to add (or lookup) entries while we are removing it.
2198	 */
2199	rw_enter(&zp->z_name_lock, RW_WRITER);
2200
2201	/*
2202	 * Grab a lock on the parent pointer to make sure we play well
2203	 * with the treewalk and directory rename code.
2204	 */
2205	rw_enter(&zp->z_parent_lock, RW_WRITER);
2206
2207	tx = dmu_tx_create(zfsvfs->z_os);
2208	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2209	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2210	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2211	zfs_sa_upgrade_txholds(tx, zp);
2212	zfs_sa_upgrade_txholds(tx, dzp);
2213	dmu_tx_mark_netfree(tx);
2214	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2215	if (error) {
2216		rw_exit(&zp->z_parent_lock);
2217		rw_exit(&zp->z_name_lock);
2218		zfs_dirent_unlock(dl);
2219		VN_RELE(vp);
2220		if (error == ERESTART) {
2221			waited = B_TRUE;
2222			dmu_tx_wait(tx);
2223			dmu_tx_abort(tx);
2224			goto top;
2225		}
2226		dmu_tx_abort(tx);
2227		ZFS_EXIT(zfsvfs);
2228		return (error);
2229	}
2230
2231	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2232
2233	if (error == 0) {
2234		uint64_t txtype = TX_RMDIR;
2235		if (flags & FIGNORECASE)
2236			txtype |= TX_CI;
2237		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2238	}
2239
2240	dmu_tx_commit(tx);
2241
2242	rw_exit(&zp->z_parent_lock);
2243	rw_exit(&zp->z_name_lock);
2244out:
2245	zfs_dirent_unlock(dl);
2246
2247	VN_RELE(vp);
2248
2249	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2250		zil_commit(zilog, 0);
2251
2252	ZFS_EXIT(zfsvfs);
2253	return (error);
2254}
2255
2256/*
2257 * Read as many directory entries as will fit into the provided
2258 * buffer from the given directory cursor position (specified in
2259 * the uio structure).
2260 *
2261 *	IN:	vp	- vnode of directory to read.
2262 *		uio	- structure supplying read location, range info,
2263 *			  and return buffer.
2264 *		cr	- credentials of caller.
2265 *		ct	- caller context
2266 *		flags	- case flags
2267 *
2268 *	OUT:	uio	- updated offset and range, buffer filled.
2269 *		eofp	- set to true if end-of-file detected.
2270 *
2271 *	RETURN:	0 on success, error code on failure.
2272 *
2273 * Timestamps:
2274 *	vp - atime updated
2275 *
2276 * Note that the low 4 bits of the cookie returned by zap is always zero.
2277 * This allows us to use the low range for "special" directory entries:
2278 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2279 * we use the offset 2 for the '.zfs' directory.
2280 */
2281/* ARGSUSED */
2282static int
2283zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2284    caller_context_t *ct, int flags)
2285{
2286	znode_t		*zp = VTOZ(vp);
2287	iovec_t		*iovp;
2288	edirent_t	*eodp;
2289	dirent64_t	*odp;
2290	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2291	objset_t	*os;
2292	caddr_t		outbuf;
2293	size_t		bufsize;
2294	zap_cursor_t	zc;
2295	zap_attribute_t	zap;
2296	uint_t		bytes_wanted;
2297	uint64_t	offset; /* must be unsigned; checks for < 1 */
2298	uint64_t	parent;
2299	int		local_eof;
2300	int		outcount;
2301	int		error;
2302	uint8_t		prefetch;
2303	boolean_t	check_sysattrs;
2304
2305	ZFS_ENTER(zfsvfs);
2306	ZFS_VERIFY_ZP(zp);
2307
2308	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2309	    &parent, sizeof (parent))) != 0) {
2310		ZFS_EXIT(zfsvfs);
2311		return (error);
2312	}
2313
2314	/*
2315	 * If we are not given an eof variable,
2316	 * use a local one.
2317	 */
2318	if (eofp == NULL)
2319		eofp = &local_eof;
2320
2321	/*
2322	 * Check for valid iov_len.
2323	 */
2324	if (uio->uio_iov->iov_len <= 0) {
2325		ZFS_EXIT(zfsvfs);
2326		return (SET_ERROR(EINVAL));
2327	}
2328
2329	/*
2330	 * Quit if directory has been removed (posix)
2331	 */
2332	if ((*eofp = zp->z_unlinked) != 0) {
2333		ZFS_EXIT(zfsvfs);
2334		return (0);
2335	}
2336
2337	error = 0;
2338	os = zfsvfs->z_os;
2339	offset = uio->uio_loffset;
2340	prefetch = zp->z_zn_prefetch;
2341
2342	/*
2343	 * Initialize the iterator cursor.
2344	 */
2345	if (offset <= 3) {
2346		/*
2347		 * Start iteration from the beginning of the directory.
2348		 */
2349		zap_cursor_init(&zc, os, zp->z_id);
2350	} else {
2351		/*
2352		 * The offset is a serialized cursor.
2353		 */
2354		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2355	}
2356
2357	/*
2358	 * Get space to change directory entries into fs independent format.
2359	 */
2360	iovp = uio->uio_iov;
2361	bytes_wanted = iovp->iov_len;
2362	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2363		bufsize = bytes_wanted;
2364		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2365		odp = (struct dirent64 *)outbuf;
2366	} else {
2367		bufsize = bytes_wanted;
2368		outbuf = NULL;
2369		odp = (struct dirent64 *)iovp->iov_base;
2370	}
2371	eodp = (struct edirent *)odp;
2372
2373	/*
2374	 * If this VFS supports the system attribute view interface; and
2375	 * we're looking at an extended attribute directory; and we care
2376	 * about normalization conflicts on this vfs; then we must check
2377	 * for normalization conflicts with the sysattr name space.
2378	 */
2379	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2380	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2381	    (flags & V_RDDIR_ENTFLAGS);
2382
2383	/*
2384	 * Transform to file-system independent format
2385	 */
2386	outcount = 0;
2387	while (outcount < bytes_wanted) {
2388		ino64_t objnum;
2389		ushort_t reclen;
2390		off64_t *next = NULL;
2391
2392		/*
2393		 * Special case `.', `..', and `.zfs'.
2394		 */
2395		if (offset == 0) {
2396			(void) strcpy(zap.za_name, ".");
2397			zap.za_normalization_conflict = 0;
2398			objnum = zp->z_id;
2399		} else if (offset == 1) {
2400			(void) strcpy(zap.za_name, "..");
2401			zap.za_normalization_conflict = 0;
2402			objnum = parent;
2403		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2404			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2405			zap.za_normalization_conflict = 0;
2406			objnum = ZFSCTL_INO_ROOT;
2407		} else {
2408			/*
2409			 * Grab next entry.
2410			 */
2411			if (error = zap_cursor_retrieve(&zc, &zap)) {
2412				if ((*eofp = (error == ENOENT)) != 0)
2413					break;
2414				else
2415					goto update;
2416			}
2417
2418			if (zap.za_integer_length != 8 ||
2419			    zap.za_num_integers != 1) {
2420				cmn_err(CE_WARN, "zap_readdir: bad directory "
2421				    "entry, obj = %lld, offset = %lld\n",
2422				    (u_longlong_t)zp->z_id,
2423				    (u_longlong_t)offset);
2424				error = SET_ERROR(ENXIO);
2425				goto update;
2426			}
2427
2428			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2429			/*
2430			 * MacOS X can extract the object type here such as:
2431			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2432			 */
2433
2434			if (check_sysattrs && !zap.za_normalization_conflict) {
2435				zap.za_normalization_conflict =
2436				    xattr_sysattr_casechk(zap.za_name);
2437			}
2438		}
2439
2440		if (flags & V_RDDIR_ACCFILTER) {
2441			/*
2442			 * If we have no access at all, don't include
2443			 * this entry in the returned information
2444			 */
2445			znode_t	*ezp;
2446			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2447				goto skip_entry;
2448			if (!zfs_has_access(ezp, cr)) {
2449				VN_RELE(ZTOV(ezp));
2450				goto skip_entry;
2451			}
2452			VN_RELE(ZTOV(ezp));
2453		}
2454
2455		if (flags & V_RDDIR_ENTFLAGS)
2456			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2457		else
2458			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2459
2460		/*
2461		 * Will this entry fit in the buffer?
2462		 */
2463		if (outcount + reclen > bufsize) {
2464			/*
2465			 * Did we manage to fit anything in the buffer?
2466			 */
2467			if (!outcount) {
2468				error = SET_ERROR(EINVAL);
2469				goto update;
2470			}
2471			break;
2472		}
2473		if (flags & V_RDDIR_ENTFLAGS) {
2474			/*
2475			 * Add extended flag entry:
2476			 */
2477			eodp->ed_ino = objnum;
2478			eodp->ed_reclen = reclen;
2479			/* NOTE: ed_off is the offset for the *next* entry */
2480			next = &(eodp->ed_off);
2481			eodp->ed_eflags = zap.za_normalization_conflict ?
2482			    ED_CASE_CONFLICT : 0;
2483			(void) strncpy(eodp->ed_name, zap.za_name,
2484			    EDIRENT_NAMELEN(reclen));
2485			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2486		} else {
2487			/*
2488			 * Add normal entry:
2489			 */
2490			odp->d_ino = objnum;
2491			odp->d_reclen = reclen;
2492			/* NOTE: d_off is the offset for the *next* entry */
2493			next = &(odp->d_off);
2494			(void) strncpy(odp->d_name, zap.za_name,
2495			    DIRENT64_NAMELEN(reclen));
2496			odp = (dirent64_t *)((intptr_t)odp + reclen);
2497		}
2498		outcount += reclen;
2499
2500		ASSERT(outcount <= bufsize);
2501
2502		/* Prefetch znode */
2503		if (prefetch)
2504			dmu_prefetch(os, objnum, 0, 0, 0,
2505			    ZIO_PRIORITY_SYNC_READ);
2506
2507	skip_entry:
2508		/*
2509		 * Move to the next entry, fill in the previous offset.
2510		 */
2511		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2512			zap_cursor_advance(&zc);
2513			offset = zap_cursor_serialize(&zc);
2514		} else {
2515			offset += 1;
2516		}
2517		if (next)
2518			*next = offset;
2519	}
2520	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2521
2522	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2523		iovp->iov_base += outcount;
2524		iovp->iov_len -= outcount;
2525		uio->uio_resid -= outcount;
2526	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2527		/*
2528		 * Reset the pointer.
2529		 */
2530		offset = uio->uio_loffset;
2531	}
2532
2533update:
2534	zap_cursor_fini(&zc);
2535	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2536		kmem_free(outbuf, bufsize);
2537
2538	if (error == ENOENT)
2539		error = 0;
2540
2541	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2542
2543	uio->uio_loffset = offset;
2544	ZFS_EXIT(zfsvfs);
2545	return (error);
2546}
2547
2548ulong_t zfs_fsync_sync_cnt = 4;
2549
2550static int
2551zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2552{
2553	znode_t	*zp = VTOZ(vp);
2554	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2555
2556	/*
2557	 * Regardless of whether this is required for standards conformance,
2558	 * this is the logical behavior when fsync() is called on a file with
2559	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2560	 * going to be pushed out as part of the zil_commit().
2561	 */
2562	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2563	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2564		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2565
2566	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2567
2568	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2569		ZFS_ENTER(zfsvfs);
2570		ZFS_VERIFY_ZP(zp);
2571		zil_commit(zfsvfs->z_log, zp->z_id);
2572		ZFS_EXIT(zfsvfs);
2573	}
2574	return (0);
2575}
2576
2577
2578/*
2579 * Get the requested file attributes and place them in the provided
2580 * vattr structure.
2581 *
2582 *	IN:	vp	- vnode of file.
2583 *		vap	- va_mask identifies requested attributes.
2584 *			  If AT_XVATTR set, then optional attrs are requested
2585 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2586 *		cr	- credentials of caller.
2587 *		ct	- caller context
2588 *
2589 *	OUT:	vap	- attribute values.
2590 *
2591 *	RETURN:	0 (always succeeds).
2592 */
2593/* ARGSUSED */
2594static int
2595zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2596    caller_context_t *ct)
2597{
2598	znode_t *zp = VTOZ(vp);
2599	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2600	int	error = 0;
2601	uint64_t links;
2602	uint64_t mtime[2], ctime[2];
2603	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2604	xoptattr_t *xoap = NULL;
2605	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2606	sa_bulk_attr_t bulk[2];
2607	int count = 0;
2608
2609	ZFS_ENTER(zfsvfs);
2610	ZFS_VERIFY_ZP(zp);
2611
2612	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2613
2614	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2615	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2616
2617	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2618		ZFS_EXIT(zfsvfs);
2619		return (error);
2620	}
2621
2622	/*
2623	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2624	 * Also, if we are the owner don't bother, since owner should
2625	 * always be allowed to read basic attributes of file.
2626	 */
2627	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2628	    (vap->va_uid != crgetuid(cr))) {
2629		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2630		    skipaclchk, cr)) {
2631			ZFS_EXIT(zfsvfs);
2632			return (error);
2633		}
2634	}
2635
2636	/*
2637	 * Return all attributes.  It's cheaper to provide the answer
2638	 * than to determine whether we were asked the question.
2639	 */
2640
2641	mutex_enter(&zp->z_lock);
2642	vap->va_type = vp->v_type;
2643	vap->va_mode = zp->z_mode & MODEMASK;
2644	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2645	vap->va_nodeid = zp->z_id;
2646	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2647		links = zp->z_links + 1;
2648	else
2649		links = zp->z_links;
2650	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2651	vap->va_size = zp->z_size;
2652	vap->va_rdev = vp->v_rdev;
2653	vap->va_seq = zp->z_seq;
2654
2655	/*
2656	 * Add in any requested optional attributes and the create time.
2657	 * Also set the corresponding bits in the returned attribute bitmap.
2658	 */
2659	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2660		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2661			xoap->xoa_archive =
2662			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2663			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2664		}
2665
2666		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2667			xoap->xoa_readonly =
2668			    ((zp->z_pflags & ZFS_READONLY) != 0);
2669			XVA_SET_RTN(xvap, XAT_READONLY);
2670		}
2671
2672		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2673			xoap->xoa_system =
2674			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2675			XVA_SET_RTN(xvap, XAT_SYSTEM);
2676		}
2677
2678		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2679			xoap->xoa_hidden =
2680			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2681			XVA_SET_RTN(xvap, XAT_HIDDEN);
2682		}
2683
2684		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2685			xoap->xoa_nounlink =
2686			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2687			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2688		}
2689
2690		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2691			xoap->xoa_immutable =
2692			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2693			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2694		}
2695
2696		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2697			xoap->xoa_appendonly =
2698			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2699			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2700		}
2701
2702		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2703			xoap->xoa_nodump =
2704			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2705			XVA_SET_RTN(xvap, XAT_NODUMP);
2706		}
2707
2708		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2709			xoap->xoa_opaque =
2710			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2711			XVA_SET_RTN(xvap, XAT_OPAQUE);
2712		}
2713
2714		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2715			xoap->xoa_av_quarantined =
2716			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2717			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2718		}
2719
2720		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2721			xoap->xoa_av_modified =
2722			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2723			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2724		}
2725
2726		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2727		    vp->v_type == VREG) {
2728			zfs_sa_get_scanstamp(zp, xvap);
2729		}
2730
2731		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2732			uint64_t times[2];
2733
2734			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2735			    times, sizeof (times));
2736			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2737			XVA_SET_RTN(xvap, XAT_CREATETIME);
2738		}
2739
2740		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2741			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2742			XVA_SET_RTN(xvap, XAT_REPARSE);
2743		}
2744		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2745			xoap->xoa_generation = zp->z_gen;
2746			XVA_SET_RTN(xvap, XAT_GEN);
2747		}
2748
2749		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2750			xoap->xoa_offline =
2751			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2752			XVA_SET_RTN(xvap, XAT_OFFLINE);
2753		}
2754
2755		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2756			xoap->xoa_sparse =
2757			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2758			XVA_SET_RTN(xvap, XAT_SPARSE);
2759		}
2760
2761		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2762			xoap->xoa_projinherit =
2763			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2764			XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2765		}
2766
2767		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2768			xoap->xoa_projid = zp->z_projid;
2769			XVA_SET_RTN(xvap, XAT_PROJID);
2770		}
2771	}
2772
2773	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2774	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2775	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2776
2777	mutex_exit(&zp->z_lock);
2778
2779	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2780
2781	if (zp->z_blksz == 0) {
2782		/*
2783		 * Block size hasn't been set; suggest maximal I/O transfers.
2784		 */
2785		vap->va_blksize = zfsvfs->z_max_blksz;
2786	}
2787
2788	ZFS_EXIT(zfsvfs);
2789	return (0);
2790}
2791
2792/*
2793 * For the operation of changing file's user/group/project, we need to
2794 * handle not only the main object that is assigned to the file directly,
2795 * but also the ones that are used by the file via hidden xattr directory.
2796 *
2797 * Because the xattr directory may contain many EA entries, it may be
2798 * impossible to change all of them in the same transaction as changing the
2799 * main object's user/group/project attributes. If so, we have to change them
2800 * via other multiple independent transactions one by one. It may be not a good
2801 * solution, but we have no better idea yet.
2802 */
2803static int
2804zfs_setattr_dir(znode_t *dzp)
2805{
2806	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2807	objset_t	*os = zfsvfs->z_os;
2808	zap_cursor_t	zc;
2809	zap_attribute_t	zap;
2810	zfs_dirlock_t	*dl;
2811	znode_t		*zp = NULL;
2812	dmu_tx_t	*tx = NULL;
2813	sa_bulk_attr_t	bulk[4];
2814	int		count = 0;
2815	int		err;
2816
2817	zap_cursor_init(&zc, os, dzp->z_id);
2818	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2819		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2820			err = ENXIO;
2821			break;
2822		}
2823
2824		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2825		    ZEXISTS, NULL, NULL);
2826		if (err == ENOENT)
2827			goto next;
2828		if (err)
2829			break;
2830
2831		if (zp->z_uid == dzp->z_uid &&
2832		    zp->z_gid == dzp->z_gid &&
2833		    zp->z_projid == dzp->z_projid)
2834			goto next;
2835
2836		tx = dmu_tx_create(os);
2837		if (!(zp->z_pflags & ZFS_PROJID))
2838			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2839		else
2840			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2841
2842		err = dmu_tx_assign(tx, TXG_WAIT);
2843		if (err)
2844			break;
2845
2846		mutex_enter(&dzp->z_lock);
2847
2848		if (zp->z_uid != dzp->z_uid) {
2849			zp->z_uid = dzp->z_uid;
2850			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2851			    &dzp->z_uid, sizeof (dzp->z_uid));
2852		}
2853
2854		if (zp->z_gid != dzp->z_gid) {
2855			zp->z_gid = dzp->z_gid;
2856			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2857			    &dzp->z_gid, sizeof (dzp->z_gid));
2858		}
2859
2860		if (zp->z_projid != dzp->z_projid) {
2861			if (!(zp->z_pflags & ZFS_PROJID)) {
2862				zp->z_pflags |= ZFS_PROJID;
2863				SA_ADD_BULK_ATTR(bulk, count,
2864				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2865				    sizeof (zp->z_pflags));
2866			}
2867
2868			zp->z_projid = dzp->z_projid;
2869			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2870			    NULL, &zp->z_projid, sizeof (zp->z_projid));
2871		}
2872
2873		mutex_exit(&dzp->z_lock);
2874
2875		if (likely(count > 0)) {
2876			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2877			dmu_tx_commit(tx);
2878		} else {
2879			dmu_tx_abort(tx);
2880		}
2881		tx = NULL;
2882		if (err != 0 && err != ENOENT)
2883			break;
2884
2885next:
2886		if (zp) {
2887			VN_RELE(ZTOV(zp));
2888			zp = NULL;
2889			zfs_dirent_unlock(dl);
2890		}
2891		zap_cursor_advance(&zc);
2892	}
2893
2894	if (tx)
2895		dmu_tx_abort(tx);
2896	if (zp) {
2897		VN_RELE(ZTOV(zp));
2898		zfs_dirent_unlock(dl);
2899	}
2900	zap_cursor_fini(&zc);
2901
2902	return (err == ENOENT ? 0 : err);
2903}
2904
2905/*
2906 * Set the file attributes to the values contained in the
2907 * vattr structure.
2908 *
2909 *	IN:	vp	- vnode of file to be modified.
2910 *		vap	- new attribute values.
2911 *			  If AT_XVATTR set, then optional attrs are being set
2912 *		flags	- ATTR_UTIME set if non-default time values provided.
2913 *			- ATTR_NOACLCHECK (CIFS context only).
2914 *		cr	- credentials of caller.
2915 *		ct	- caller context
2916 *
2917 *	RETURN:	0 on success, error code on failure.
2918 *
2919 * Timestamps:
2920 *	vp - ctime updated, mtime updated if size changed.
2921 */
2922/* ARGSUSED */
2923static int
2924zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2925    caller_context_t *ct)
2926{
2927	znode_t		*zp = VTOZ(vp);
2928	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2929	objset_t	*os = zfsvfs->z_os;
2930	zilog_t		*zilog;
2931	dmu_tx_t	*tx;
2932	vattr_t		oldva;
2933	xvattr_t	tmpxvattr;
2934	uint_t		mask = vap->va_mask;
2935	uint_t		saved_mask = 0;
2936	int		trim_mask = 0;
2937	uint64_t	new_mode;
2938	uint64_t	new_uid, new_gid;
2939	uint64_t	xattr_obj;
2940	uint64_t	mtime[2], ctime[2];
2941	uint64_t	projid = ZFS_INVALID_PROJID;
2942	znode_t		*attrzp;
2943	int		need_policy = FALSE;
2944	int		err, err2 = 0;
2945	zfs_fuid_info_t *fuidp = NULL;
2946	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2947	xoptattr_t	*xoap;
2948	zfs_acl_t	*aclp;
2949	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2950	boolean_t	fuid_dirtied = B_FALSE;
2951	boolean_t	handle_eadir = B_FALSE;
2952	sa_bulk_attr_t	bulk[8], xattr_bulk[8];
2953	int		count = 0, xattr_count = 0;
2954
2955	if (mask == 0)
2956		return (0);
2957
2958	if (mask & AT_NOSET)
2959		return (SET_ERROR(EINVAL));
2960
2961	ZFS_ENTER(zfsvfs);
2962	ZFS_VERIFY_ZP(zp);
2963
2964	/*
2965	 * If this is a xvattr_t, then get a pointer to the structure of
2966	 * optional attributes.  If this is NULL, then we have a vattr_t.
2967	 */
2968	xoap = xva_getxoptattr(xvap);
2969	if (xoap != NULL && (mask & AT_XVATTR)) {
2970		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2971			if (!dmu_objset_projectquota_enabled(os) ||
2972			    (vp->v_type != VREG && vp->v_type != VDIR)) {
2973				ZFS_EXIT(zfsvfs);
2974				return (SET_ERROR(ENOTSUP));
2975			}
2976
2977			projid = xoap->xoa_projid;
2978			if (unlikely(projid == ZFS_INVALID_PROJID)) {
2979				ZFS_EXIT(zfsvfs);
2980				return (SET_ERROR(EINVAL));
2981			}
2982
2983			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2984				projid = ZFS_INVALID_PROJID;
2985			else
2986				need_policy = TRUE;
2987		}
2988
2989		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2990		    (!dmu_objset_projectquota_enabled(os) ||
2991		    (vp->v_type != VREG && vp->v_type != VDIR))) {
2992				ZFS_EXIT(zfsvfs);
2993				return (SET_ERROR(ENOTSUP));
2994		}
2995	}
2996
2997	zilog = zfsvfs->z_log;
2998
2999	/*
3000	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3001	 * that file system is at proper version level
3002	 */
3003
3004	if (zfsvfs->z_use_fuids == B_FALSE &&
3005	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3006	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3007	    (mask & AT_XVATTR))) {
3008		ZFS_EXIT(zfsvfs);
3009		return (SET_ERROR(EINVAL));
3010	}
3011
3012	if (mask & AT_SIZE && vp->v_type == VDIR) {
3013		ZFS_EXIT(zfsvfs);
3014		return (SET_ERROR(EISDIR));
3015	}
3016
3017	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3018		ZFS_EXIT(zfsvfs);
3019		return (SET_ERROR(EINVAL));
3020	}
3021
3022	xva_init(&tmpxvattr);
3023
3024	/*
3025	 * Immutable files can only alter immutable bit and atime
3026	 */
3027	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3028	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3029	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3030		ZFS_EXIT(zfsvfs);
3031		return (SET_ERROR(EPERM));
3032	}
3033
3034	/*
3035	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
3036	 */
3037
3038	/*
3039	 * Verify timestamps doesn't overflow 32 bits.
3040	 * ZFS can handle large timestamps, but 32bit syscalls can't
3041	 * handle times greater than 2039.  This check should be removed
3042	 * once large timestamps are fully supported.
3043	 */
3044	if (mask & (AT_ATIME | AT_MTIME)) {
3045		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3046		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3047			ZFS_EXIT(zfsvfs);
3048			return (SET_ERROR(EOVERFLOW));
3049		}
3050	}
3051
3052top:
3053	attrzp = NULL;
3054	aclp = NULL;
3055
3056	/* Can this be moved to before the top label? */
3057	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3058		ZFS_EXIT(zfsvfs);
3059		return (SET_ERROR(EROFS));
3060	}
3061
3062	/*
3063	 * First validate permissions
3064	 */
3065
3066	if (mask & AT_SIZE) {
3067		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
3068		if (err) {
3069			ZFS_EXIT(zfsvfs);
3070			return (err);
3071		}
3072		/*
3073		 * XXX - Note, we are not providing any open
3074		 * mode flags here (like FNDELAY), so we may
3075		 * block if there are locks present... this
3076		 * should be addressed in openat().
3077		 */
3078		/* XXX - would it be OK to generate a log record here? */
3079		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3080		if (err) {
3081			ZFS_EXIT(zfsvfs);
3082			return (err);
3083		}
3084
3085		if (vap->va_size == 0)
3086			vnevent_truncate(ZTOV(zp), ct);
3087	}
3088
3089	if (mask & (AT_ATIME|AT_MTIME) ||
3090	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3091	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3092	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3093	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3094	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3095	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3096	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3097		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3098		    skipaclchk, cr);
3099	}
3100
3101	if (mask & (AT_UID|AT_GID)) {
3102		int	idmask = (mask & (AT_UID|AT_GID));
3103		int	take_owner;
3104		int	take_group;
3105
3106		/*
3107		 * NOTE: even if a new mode is being set,
3108		 * we may clear S_ISUID/S_ISGID bits.
3109		 */
3110
3111		if (!(mask & AT_MODE))
3112			vap->va_mode = zp->z_mode;
3113
3114		/*
3115		 * Take ownership or chgrp to group we are a member of
3116		 */
3117
3118		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3119		take_group = (mask & AT_GID) &&
3120		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3121
3122		/*
3123		 * If both AT_UID and AT_GID are set then take_owner and
3124		 * take_group must both be set in order to allow taking
3125		 * ownership.
3126		 *
3127		 * Otherwise, send the check through secpolicy_vnode_setattr()
3128		 *
3129		 */
3130
3131		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3132		    ((idmask == AT_UID) && take_owner) ||
3133		    ((idmask == AT_GID) && take_group)) {
3134			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3135			    skipaclchk, cr) == 0) {
3136				/*
3137				 * Remove setuid/setgid for non-privileged users
3138				 */
3139				secpolicy_setid_clear(vap, cr);
3140				trim_mask = (mask & (AT_UID|AT_GID));
3141			} else {
3142				need_policy =  TRUE;
3143			}
3144		} else {
3145			need_policy =  TRUE;
3146		}
3147	}
3148
3149	mutex_enter(&zp->z_lock);
3150	oldva.va_mode = zp->z_mode;
3151	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3152	if (mask & AT_XVATTR) {
3153		/*
3154		 * Update xvattr mask to include only those attributes
3155		 * that are actually changing.
3156		 *
3157		 * the bits will be restored prior to actually setting
3158		 * the attributes so the caller thinks they were set.
3159		 */
3160		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3161			if (xoap->xoa_appendonly !=
3162			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3163				need_policy = TRUE;
3164			} else {
3165				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3166				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3167			}
3168		}
3169
3170		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3171			if (xoap->xoa_projinherit !=
3172			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3173				need_policy = TRUE;
3174			} else {
3175				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3176				XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT);
3177			}
3178		}
3179
3180		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3181			if (xoap->xoa_nounlink !=
3182			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3183				need_policy = TRUE;
3184			} else {
3185				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3186				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3187			}
3188		}
3189
3190		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3191			if (xoap->xoa_immutable !=
3192			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3193				need_policy = TRUE;
3194			} else {
3195				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3196				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3197			}
3198		}
3199
3200		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3201			if (xoap->xoa_nodump !=
3202			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3203				need_policy = TRUE;
3204			} else {
3205				XVA_CLR_REQ(xvap, XAT_NODUMP);
3206				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3207			}
3208		}
3209
3210		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3211			if (xoap->xoa_av_modified !=
3212			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3213				need_policy = TRUE;
3214			} else {
3215				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3216				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3217			}
3218		}
3219
3220		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3221			if ((vp->v_type != VREG &&
3222			    xoap->xoa_av_quarantined) ||
3223			    xoap->xoa_av_quarantined !=
3224			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3225				need_policy = TRUE;
3226			} else {
3227				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3228				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3229			}
3230		}
3231
3232		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3233			mutex_exit(&zp->z_lock);
3234			ZFS_EXIT(zfsvfs);
3235			return (SET_ERROR(EPERM));
3236		}
3237
3238		if (need_policy == FALSE &&
3239		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3240		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3241			need_policy = TRUE;
3242		}
3243	}
3244
3245	mutex_exit(&zp->z_lock);
3246
3247	if (mask & AT_MODE) {
3248		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3249			err = secpolicy_setid_setsticky_clear(vp, vap,
3250			    &oldva, cr);
3251			if (err) {
3252				ZFS_EXIT(zfsvfs);
3253				return (err);
3254			}
3255			trim_mask |= AT_MODE;
3256		} else {
3257			need_policy = TRUE;
3258		}
3259	}
3260
3261	if (need_policy) {
3262		/*
3263		 * If trim_mask is set then take ownership
3264		 * has been granted or write_acl is present and user
3265		 * has the ability to modify mode.  In that case remove
3266		 * UID|GID and or MODE from mask so that
3267		 * secpolicy_vnode_setattr() doesn't revoke it.
3268		 */
3269
3270		if (trim_mask) {
3271			saved_mask = vap->va_mask;
3272			vap->va_mask &= ~trim_mask;
3273		}
3274		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3275		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3276		if (err) {
3277			ZFS_EXIT(zfsvfs);
3278			return (err);
3279		}
3280
3281		if (trim_mask)
3282			vap->va_mask |= saved_mask;
3283	}
3284
3285	/*
3286	 * secpolicy_vnode_setattr, or take ownership may have
3287	 * changed va_mask
3288	 */
3289	mask = vap->va_mask;
3290
3291	if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) {
3292		handle_eadir = B_TRUE;
3293		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3294		    &xattr_obj, sizeof (xattr_obj));
3295
3296		if (err == 0 && xattr_obj) {
3297			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3298			if (err)
3299				goto out2;
3300		}
3301		if (mask & AT_UID) {
3302			new_uid = zfs_fuid_create(zfsvfs,
3303			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3304			if (new_uid != zp->z_uid &&
3305			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3306			    new_uid)) {
3307				if (attrzp)
3308					VN_RELE(ZTOV(attrzp));
3309				err = SET_ERROR(EDQUOT);
3310				goto out2;
3311			}
3312		}
3313
3314		if (mask & AT_GID) {
3315			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3316			    cr, ZFS_GROUP, &fuidp);
3317			if (new_gid != zp->z_gid &&
3318			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3319			    new_gid)) {
3320				if (attrzp)
3321					VN_RELE(ZTOV(attrzp));
3322				err = SET_ERROR(EDQUOT);
3323				goto out2;
3324			}
3325		}
3326
3327		if (projid != ZFS_INVALID_PROJID &&
3328		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3329			if (attrzp)
3330				VN_RELE(ZTOV(attrzp));
3331			err = EDQUOT;
3332			goto out2;
3333		}
3334	}
3335	tx = dmu_tx_create(os);
3336
3337	if (mask & AT_MODE) {
3338		uint64_t pmode = zp->z_mode;
3339		uint64_t acl_obj;
3340		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3341
3342		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3343		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3344			err = SET_ERROR(EPERM);
3345			goto out;
3346		}
3347
3348		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3349			goto out;
3350
3351		mutex_enter(&zp->z_lock);
3352		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3353			/*
3354			 * Are we upgrading ACL from old V0 format
3355			 * to V1 format?
3356			 */
3357			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3358			    zfs_znode_acl_version(zp) ==
3359			    ZFS_ACL_VERSION_INITIAL) {
3360				dmu_tx_hold_free(tx, acl_obj, 0,
3361				    DMU_OBJECT_END);
3362				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3363				    0, aclp->z_acl_bytes);
3364			} else {
3365				dmu_tx_hold_write(tx, acl_obj, 0,
3366				    aclp->z_acl_bytes);
3367			}
3368		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3369			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3370			    0, aclp->z_acl_bytes);
3371		}
3372		mutex_exit(&zp->z_lock);
3373		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3374	} else {
3375		if (((mask & AT_XVATTR) &&
3376		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3377		    (projid != ZFS_INVALID_PROJID &&
3378		    !(zp->z_pflags & ZFS_PROJID)))
3379			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3380		else
3381			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3382	}
3383
3384	if (attrzp) {
3385		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3386	}
3387
3388	fuid_dirtied = zfsvfs->z_fuid_dirty;
3389	if (fuid_dirtied)
3390		zfs_fuid_txhold(zfsvfs, tx);
3391
3392	zfs_sa_upgrade_txholds(tx, zp);
3393
3394	err = dmu_tx_assign(tx, TXG_WAIT);
3395	if (err)
3396		goto out;
3397
3398	count = 0;
3399	/*
3400	 * Set each attribute requested.
3401	 * We group settings according to the locks they need to acquire.
3402	 *
3403	 * Note: you cannot set ctime directly, although it will be
3404	 * updated as a side-effect of calling this function.
3405	 */
3406
3407	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3408		/*
3409		 * For the existing object that is upgraded from old system,
3410		 * its on-disk layout has no slot for the project ID attribute.
3411		 * But quota accounting logic needs to access related slots by
3412		 * offset directly. So we need to adjust old objects' layout
3413		 * to make the project ID to some unified and fixed offset.
3414		 */
3415		if (attrzp)
3416			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3417		if (err == 0)
3418			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3419
3420		if (unlikely(err == EEXIST))
3421			err = 0;
3422		else if (err != 0)
3423			goto out;
3424		else
3425			projid = ZFS_INVALID_PROJID;
3426	}
3427
3428	if (mask & (AT_UID|AT_GID|AT_MODE))
3429		mutex_enter(&zp->z_acl_lock);
3430	mutex_enter(&zp->z_lock);
3431
3432	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3433	    &zp->z_pflags, sizeof (zp->z_pflags));
3434
3435	if (attrzp) {
3436		if (mask & (AT_UID|AT_GID|AT_MODE))
3437			mutex_enter(&attrzp->z_acl_lock);
3438		mutex_enter(&attrzp->z_lock);
3439		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3440		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3441		    sizeof (attrzp->z_pflags));
3442		if (projid != ZFS_INVALID_PROJID) {
3443			attrzp->z_projid = projid;
3444			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3445			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3446			    sizeof (attrzp->z_projid));
3447		}
3448	}
3449
3450	if (mask & (AT_UID|AT_GID)) {
3451
3452		if (mask & AT_UID) {
3453			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3454			    &new_uid, sizeof (new_uid));
3455			zp->z_uid = new_uid;
3456			if (attrzp) {
3457				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3458				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3459				    sizeof (new_uid));
3460				attrzp->z_uid = new_uid;
3461			}
3462		}
3463
3464		if (mask & AT_GID) {
3465			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3466			    NULL, &new_gid, sizeof (new_gid));
3467			zp->z_gid = new_gid;
3468			if (attrzp) {
3469				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3470				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3471				    sizeof (new_gid));
3472				attrzp->z_gid = new_gid;
3473			}
3474		}
3475		if (!(mask & AT_MODE)) {
3476			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3477			    NULL, &new_mode, sizeof (new_mode));
3478			new_mode = zp->z_mode;
3479		}
3480		err = zfs_acl_chown_setattr(zp);
3481		ASSERT(err == 0);
3482		if (attrzp) {
3483			err = zfs_acl_chown_setattr(attrzp);
3484			ASSERT(err == 0);
3485		}
3486	}
3487
3488	if (mask & AT_MODE) {
3489		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3490		    &new_mode, sizeof (new_mode));
3491		zp->z_mode = new_mode;
3492		ASSERT3U((uintptr_t)aclp, !=, NULL);
3493		err = zfs_aclset_common(zp, aclp, cr, tx);
3494		ASSERT0(err);
3495		if (zp->z_acl_cached)
3496			zfs_acl_free(zp->z_acl_cached);
3497		zp->z_acl_cached = aclp;
3498		aclp = NULL;
3499	}
3500
3501
3502	if (mask & AT_ATIME) {
3503		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3504		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3505		    &zp->z_atime, sizeof (zp->z_atime));
3506	}
3507
3508	if (mask & AT_MTIME) {
3509		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3510		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3511		    mtime, sizeof (mtime));
3512	}
3513
3514	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3515	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3516		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3517		    NULL, mtime, sizeof (mtime));
3518		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3519		    &ctime, sizeof (ctime));
3520		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3521		    B_TRUE);
3522	} else if (mask != 0) {
3523		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3524		    &ctime, sizeof (ctime));
3525		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3526		    B_TRUE);
3527		if (attrzp) {
3528			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3529			    SA_ZPL_CTIME(zfsvfs), NULL,
3530			    &ctime, sizeof (ctime));
3531			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3532			    mtime, ctime, B_TRUE);
3533		}
3534	}
3535
3536	if (projid != ZFS_INVALID_PROJID) {
3537		zp->z_projid = projid;
3538		SA_ADD_BULK_ATTR(bulk, count,
3539		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3540		    sizeof (zp->z_projid));
3541	}
3542
3543	/*
3544	 * Do this after setting timestamps to prevent timestamp
3545	 * update from toggling bit
3546	 */
3547
3548	if (xoap && (mask & AT_XVATTR)) {
3549
3550		/*
3551		 * restore trimmed off masks
3552		 * so that return masks can be set for caller.
3553		 */
3554
3555		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3556			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3557		}
3558		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3559			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3560		}
3561		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3562			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3563		}
3564		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3565			XVA_SET_REQ(xvap, XAT_NODUMP);
3566		}
3567		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3568			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3569		}
3570		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3571			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3572		}
3573		if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) {
3574			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3575		}
3576
3577		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3578			ASSERT(vp->v_type == VREG);
3579
3580		zfs_xvattr_set(zp, xvap, tx);
3581	}
3582
3583	if (fuid_dirtied)
3584		zfs_fuid_sync(zfsvfs, tx);
3585
3586	if (mask != 0)
3587		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3588
3589	mutex_exit(&zp->z_lock);
3590	if (mask & (AT_UID|AT_GID|AT_MODE))
3591		mutex_exit(&zp->z_acl_lock);
3592
3593	if (attrzp) {
3594		if (mask & (AT_UID|AT_GID|AT_MODE))
3595			mutex_exit(&attrzp->z_acl_lock);
3596		mutex_exit(&attrzp->z_lock);
3597	}
3598out:
3599	if (err == 0 && xattr_count > 0) {
3600		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3601		    xattr_count, tx);
3602		ASSERT(err2 == 0);
3603	}
3604
3605	if (aclp)
3606		zfs_acl_free(aclp);
3607
3608	if (fuidp) {
3609		zfs_fuid_info_free(fuidp);
3610		fuidp = NULL;
3611	}
3612
3613	if (err) {
3614		dmu_tx_abort(tx);
3615		if (attrzp)
3616			VN_RELE(ZTOV(attrzp));
3617		if (err == ERESTART)
3618			goto top;
3619	} else {
3620		if (count > 0)
3621			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3622		dmu_tx_commit(tx);
3623		if (attrzp) {
3624			if (err2 == 0 && handle_eadir)
3625				err2 = zfs_setattr_dir(attrzp);
3626			VN_RELE(ZTOV(attrzp));
3627		}
3628	}
3629
3630out2:
3631	if (os->os_sync == ZFS_SYNC_ALWAYS)
3632		zil_commit(zilog, 0);
3633
3634	ZFS_EXIT(zfsvfs);
3635	return (err);
3636}
3637
3638typedef struct zfs_zlock {
3639	krwlock_t	*zl_rwlock;	/* lock we acquired */
3640	znode_t		*zl_znode;	/* znode we held */
3641	struct zfs_zlock *zl_next;	/* next in list */
3642} zfs_zlock_t;
3643
3644/*
3645 * Drop locks and release vnodes that were held by zfs_rename_lock().
3646 */
3647static void
3648zfs_rename_unlock(zfs_zlock_t **zlpp)
3649{
3650	zfs_zlock_t *zl;
3651
3652	while ((zl = *zlpp) != NULL) {
3653		if (zl->zl_znode != NULL)
3654			VN_RELE(ZTOV(zl->zl_znode));
3655		rw_exit(zl->zl_rwlock);
3656		*zlpp = zl->zl_next;
3657		kmem_free(zl, sizeof (*zl));
3658	}
3659}
3660
3661/*
3662 * Search back through the directory tree, using the ".." entries.
3663 * Lock each directory in the chain to prevent concurrent renames.
3664 * Fail any attempt to move a directory into one of its own descendants.
3665 * XXX - z_parent_lock can overlap with map or grow locks
3666 */
3667static int
3668zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3669{
3670	zfs_zlock_t	*zl;
3671	znode_t		*zp = tdzp;
3672	uint64_t	rootid = zp->z_zfsvfs->z_root;
3673	uint64_t	oidp = zp->z_id;
3674	krwlock_t	*rwlp = &szp->z_parent_lock;
3675	krw_t		rw = RW_WRITER;
3676
3677	/*
3678	 * First pass write-locks szp and compares to zp->z_id.
3679	 * Later passes read-lock zp and compare to zp->z_parent.
3680	 */
3681	do {
3682		if (!rw_tryenter(rwlp, rw)) {
3683			/*
3684			 * Another thread is renaming in this path.
3685			 * Note that if we are a WRITER, we don't have any
3686			 * parent_locks held yet.
3687			 */
3688			if (rw == RW_READER && zp->z_id > szp->z_id) {
3689				/*
3690				 * Drop our locks and restart
3691				 */
3692				zfs_rename_unlock(&zl);
3693				*zlpp = NULL;
3694				zp = tdzp;
3695				oidp = zp->z_id;
3696				rwlp = &szp->z_parent_lock;
3697				rw = RW_WRITER;
3698				continue;
3699			} else {
3700				/*
3701				 * Wait for other thread to drop its locks
3702				 */
3703				rw_enter(rwlp, rw);
3704			}
3705		}
3706
3707		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3708		zl->zl_rwlock = rwlp;
3709		zl->zl_znode = NULL;
3710		zl->zl_next = *zlpp;
3711		*zlpp = zl;
3712
3713		if (oidp == szp->z_id)		/* We're a descendant of szp */
3714			return (SET_ERROR(EINVAL));
3715
3716		if (oidp == rootid)		/* We've hit the top */
3717			return (0);
3718
3719		if (rw == RW_READER) {		/* i.e. not the first pass */
3720			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3721			if (error)
3722				return (error);
3723			zl->zl_znode = zp;
3724		}
3725		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3726		    &oidp, sizeof (oidp));
3727		rwlp = &zp->z_parent_lock;
3728		rw = RW_READER;
3729
3730	} while (zp->z_id != sdzp->z_id);
3731
3732	return (0);
3733}
3734
3735/*
3736 * Move an entry from the provided source directory to the target
3737 * directory.  Change the entry name as indicated.
3738 *
3739 *	IN:	sdvp	- Source directory containing the "old entry".
3740 *		snm	- Old entry name.
3741 *		tdvp	- Target directory to contain the "new entry".
3742 *		tnm	- New entry name.
3743 *		cr	- credentials of caller.
3744 *		ct	- caller context
3745 *		flags	- case flags
3746 *
3747 *	RETURN:	0 on success, error code on failure.
3748 *
3749 * Timestamps:
3750 *	sdvp,tdvp - ctime|mtime updated
3751 */
3752/*ARGSUSED*/
3753static int
3754zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3755    caller_context_t *ct, int flags)
3756{
3757	znode_t		*tdzp, *szp, *tzp;
3758	znode_t		*sdzp = VTOZ(sdvp);
3759	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3760	zilog_t		*zilog;
3761	vnode_t		*realvp;
3762	zfs_dirlock_t	*sdl, *tdl;
3763	dmu_tx_t	*tx;
3764	zfs_zlock_t	*zl;
3765	int		cmp, serr, terr;
3766	int		error = 0, rm_err = 0;
3767	int		zflg = 0;
3768	boolean_t	waited = B_FALSE;
3769
3770	ZFS_ENTER(zfsvfs);
3771	ZFS_VERIFY_ZP(sdzp);
3772	zilog = zfsvfs->z_log;
3773
3774	/*
3775	 * Make sure we have the real vp for the target directory.
3776	 */
3777	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3778		tdvp = realvp;
3779
3780	tdzp = VTOZ(tdvp);
3781	ZFS_VERIFY_ZP(tdzp);
3782
3783	/*
3784	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3785	 * ctldir appear to have the same v_vfsp.
3786	 */
3787	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3788		ZFS_EXIT(zfsvfs);
3789		return (SET_ERROR(EXDEV));
3790	}
3791
3792	if (zfsvfs->z_utf8 && u8_validate(tnm,
3793	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3794		ZFS_EXIT(zfsvfs);
3795		return (SET_ERROR(EILSEQ));
3796	}
3797
3798	if (flags & FIGNORECASE)
3799		zflg |= ZCILOOK;
3800
3801top:
3802	szp = NULL;
3803	tzp = NULL;
3804	zl = NULL;
3805
3806	/*
3807	 * This is to prevent the creation of links into attribute space
3808	 * by renaming a linked file into/outof an attribute directory.
3809	 * See the comment in zfs_link() for why this is considered bad.
3810	 */
3811	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3812		ZFS_EXIT(zfsvfs);
3813		return (SET_ERROR(EINVAL));
3814	}
3815
3816	/*
3817	 * Lock source and target directory entries.  To prevent deadlock,
3818	 * a lock ordering must be defined.  We lock the directory with
3819	 * the smallest object id first, or if it's a tie, the one with
3820	 * the lexically first name.
3821	 */
3822	if (sdzp->z_id < tdzp->z_id) {
3823		cmp = -1;
3824	} else if (sdzp->z_id > tdzp->z_id) {
3825		cmp = 1;
3826	} else {
3827		/*
3828		 * First compare the two name arguments without
3829		 * considering any case folding.
3830		 */
3831		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3832
3833		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3834		ASSERT(error == 0 || !zfsvfs->z_utf8);
3835		if (cmp == 0) {
3836			/*
3837			 * POSIX: "If the old argument and the new argument
3838			 * both refer to links to the same existing file,
3839			 * the rename() function shall return successfully
3840			 * and perform no other action."
3841			 */
3842			ZFS_EXIT(zfsvfs);
3843			return (0);
3844		}
3845		/*
3846		 * If the file system is case-folding, then we may
3847		 * have some more checking to do.  A case-folding file
3848		 * system is either supporting mixed case sensitivity
3849		 * access or is completely case-insensitive.  Note
3850		 * that the file system is always case preserving.
3851		 *
3852		 * In mixed sensitivity mode case sensitive behavior
3853		 * is the default.  FIGNORECASE must be used to
3854		 * explicitly request case insensitive behavior.
3855		 *
3856		 * If the source and target names provided differ only
3857		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3858		 * we will treat this as a special case in the
3859		 * case-insensitive mode: as long as the source name
3860		 * is an exact match, we will allow this to proceed as
3861		 * a name-change request.
3862		 */
3863		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3864		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3865		    flags & FIGNORECASE)) &&
3866		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3867		    &error) == 0) {
3868			/*
3869			 * case preserving rename request, require exact
3870			 * name matches
3871			 */
3872			zflg |= ZCIEXACT;
3873			zflg &= ~ZCILOOK;
3874		}
3875	}
3876
3877	/*
3878	 * If the source and destination directories are the same, we should
3879	 * grab the z_name_lock of that directory only once.
3880	 */
3881	if (sdzp == tdzp) {
3882		zflg |= ZHAVELOCK;
3883		rw_enter(&sdzp->z_name_lock, RW_READER);
3884	}
3885
3886	if (cmp < 0) {
3887		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3888		    ZEXISTS | zflg, NULL, NULL);
3889		terr = zfs_dirent_lock(&tdl,
3890		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3891	} else {
3892		terr = zfs_dirent_lock(&tdl,
3893		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3894		serr = zfs_dirent_lock(&sdl,
3895		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3896		    NULL, NULL);
3897	}
3898
3899	if (serr) {
3900		/*
3901		 * Source entry invalid or not there.
3902		 */
3903		if (!terr) {
3904			zfs_dirent_unlock(tdl);
3905			if (tzp)
3906				VN_RELE(ZTOV(tzp));
3907		}
3908
3909		if (sdzp == tdzp)
3910			rw_exit(&sdzp->z_name_lock);
3911
3912		if (strcmp(snm, "..") == 0)
3913			serr = SET_ERROR(EINVAL);
3914		ZFS_EXIT(zfsvfs);
3915		return (serr);
3916	}
3917	if (terr) {
3918		zfs_dirent_unlock(sdl);
3919		VN_RELE(ZTOV(szp));
3920
3921		if (sdzp == tdzp)
3922			rw_exit(&sdzp->z_name_lock);
3923
3924		if (strcmp(tnm, "..") == 0)
3925			terr = SET_ERROR(EINVAL);
3926		ZFS_EXIT(zfsvfs);
3927		return (terr);
3928	}
3929
3930	/*
3931	 * If we are using project inheritance, it means if the directory has
3932	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3933	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3934	 * such case, we only allow renames into our tree when the project
3935	 * IDs are the same.
3936	 */
3937	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3938	    tdzp->z_projid != szp->z_projid) {
3939		error = SET_ERROR(EXDEV);
3940		goto out;
3941	}
3942
3943	/*
3944	 * Must have write access at the source to remove the old entry
3945	 * and write access at the target to create the new entry.
3946	 * Note that if target and source are the same, this can be
3947	 * done in a single check.
3948	 */
3949
3950	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3951		goto out;
3952
3953	if (ZTOV(szp)->v_type == VDIR) {
3954		/*
3955		 * Check to make sure rename is valid.
3956		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3957		 */
3958		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3959			goto out;
3960	}
3961
3962	/*
3963	 * Does target exist?
3964	 */
3965	if (tzp) {
3966		/*
3967		 * Source and target must be the same type.
3968		 */
3969		if (ZTOV(szp)->v_type == VDIR) {
3970			if (ZTOV(tzp)->v_type != VDIR) {
3971				error = SET_ERROR(ENOTDIR);
3972				goto out;
3973			}
3974		} else {
3975			if (ZTOV(tzp)->v_type == VDIR) {
3976				error = SET_ERROR(EISDIR);
3977				goto out;
3978			}
3979		}
3980		/*
3981		 * POSIX dictates that when the source and target
3982		 * entries refer to the same file object, rename
3983		 * must do nothing and exit without error.
3984		 */
3985		if (szp->z_id == tzp->z_id) {
3986			error = 0;
3987			goto out;
3988		}
3989	}
3990
3991	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3992	if (tzp)
3993		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3994
3995	/*
3996	 * notify the target directory if it is not the same
3997	 * as source directory.
3998	 */
3999	if (tdvp != sdvp) {
4000		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
4001	}
4002
4003	tx = dmu_tx_create(zfsvfs->z_os);
4004	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4005	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
4006	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
4007	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
4008	if (sdzp != tdzp) {
4009		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
4010		zfs_sa_upgrade_txholds(tx, tdzp);
4011	}
4012	if (tzp) {
4013		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
4014		zfs_sa_upgrade_txholds(tx, tzp);
4015	}
4016
4017	zfs_sa_upgrade_txholds(tx, szp);
4018	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4019	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4020	if (error) {
4021		if (zl != NULL)
4022			zfs_rename_unlock(&zl);
4023		zfs_dirent_unlock(sdl);
4024		zfs_dirent_unlock(tdl);
4025
4026		if (sdzp == tdzp)
4027			rw_exit(&sdzp->z_name_lock);
4028
4029		VN_RELE(ZTOV(szp));
4030		if (tzp)
4031			VN_RELE(ZTOV(tzp));
4032		if (error == ERESTART) {
4033			waited = B_TRUE;
4034			dmu_tx_wait(tx);
4035			dmu_tx_abort(tx);
4036			goto top;
4037		}
4038		dmu_tx_abort(tx);
4039		ZFS_EXIT(zfsvfs);
4040		return (error);
4041	}
4042
4043	if (tzp)	/* Attempt to remove the existing target */
4044		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4045
4046	if (error == 0) {
4047		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4048		if (error == 0) {
4049			szp->z_pflags |= ZFS_AV_MODIFIED;
4050			if (tdzp->z_pflags & ZFS_PROJINHERIT)
4051				szp->z_pflags |= ZFS_PROJINHERIT;
4052
4053			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4054			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4055			ASSERT0(error);
4056
4057			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4058			if (error == 0) {
4059				zfs_log_rename(zilog, tx, TX_RENAME |
4060				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4061				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4062
4063				/*
4064				 * Update path information for the target vnode
4065				 */
4066				vn_renamepath(tdvp, ZTOV(szp), tnm,
4067				    strlen(tnm));
4068			} else {
4069				/*
4070				 * At this point, we have successfully created
4071				 * the target name, but have failed to remove
4072				 * the source name.  Since the create was done
4073				 * with the ZRENAMING flag, there are
4074				 * complications; for one, the link count is
4075				 * wrong.  The easiest way to deal with this
4076				 * is to remove the newly created target, and
4077				 * return the original error.  This must
4078				 * succeed; fortunately, it is very unlikely to
4079				 * fail, since we just created it.
4080				 */
4081				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4082				    ZRENAMING, NULL), ==, 0);
4083			}
4084		}
4085	}
4086
4087	dmu_tx_commit(tx);
4088
4089	if (tzp && rm_err == 0)
4090		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
4091
4092	if (error == 0) {
4093		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
4094		/* notify the target dir if it is not the same as source dir */
4095		if (tdvp != sdvp)
4096			vnevent_rename_dest_dir(tdvp, ct);
4097	}
4098out:
4099	if (zl != NULL)
4100		zfs_rename_unlock(&zl);
4101
4102	zfs_dirent_unlock(sdl);
4103	zfs_dirent_unlock(tdl);
4104
4105	if (sdzp == tdzp)
4106		rw_exit(&sdzp->z_name_lock);
4107
4108
4109	VN_RELE(ZTOV(szp));
4110	if (tzp)
4111		VN_RELE(ZTOV(tzp));
4112
4113	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4114		zil_commit(zilog, 0);
4115
4116	ZFS_EXIT(zfsvfs);
4117	return (error);
4118}
4119
4120/*
4121 * Insert the indicated symbolic reference entry into the directory.
4122 *
4123 *	IN:	dvp	- Directory to contain new symbolic link.
4124 *		link	- Name for new symlink entry.
4125 *		vap	- Attributes of new entry.
4126 *		cr	- credentials of caller.
4127 *		ct	- caller context
4128 *		flags	- case flags
4129 *
4130 *	RETURN:	0 on success, error code on failure.
4131 *
4132 * Timestamps:
4133 *	dvp - ctime|mtime updated
4134 */
4135/*ARGSUSED*/
4136static int
4137zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
4138    caller_context_t *ct, int flags)
4139{
4140	znode_t		*zp, *dzp = VTOZ(dvp);
4141	zfs_dirlock_t	*dl;
4142	dmu_tx_t	*tx;
4143	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4144	zilog_t		*zilog;
4145	uint64_t	len = strlen(link);
4146	int		error;
4147	int		zflg = ZNEW;
4148	zfs_acl_ids_t	acl_ids;
4149	boolean_t	fuid_dirtied;
4150	uint64_t	txtype = TX_SYMLINK;
4151	boolean_t	waited = B_FALSE;
4152
4153	ASSERT(vap->va_type == VLNK);
4154
4155	ZFS_ENTER(zfsvfs);
4156	ZFS_VERIFY_ZP(dzp);
4157	zilog = zfsvfs->z_log;
4158
4159	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4160	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4161		ZFS_EXIT(zfsvfs);
4162		return (SET_ERROR(EILSEQ));
4163	}
4164	if (flags & FIGNORECASE)
4165		zflg |= ZCILOOK;
4166
4167	if (len > MAXPATHLEN) {
4168		ZFS_EXIT(zfsvfs);
4169		return (SET_ERROR(ENAMETOOLONG));
4170	}
4171
4172	if ((error = zfs_acl_ids_create(dzp, 0,
4173	    vap, cr, NULL, &acl_ids)) != 0) {
4174		ZFS_EXIT(zfsvfs);
4175		return (error);
4176	}
4177top:
4178	/*
4179	 * Attempt to lock directory; fail if entry already exists.
4180	 */
4181	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4182	if (error) {
4183		zfs_acl_ids_free(&acl_ids);
4184		ZFS_EXIT(zfsvfs);
4185		return (error);
4186	}
4187
4188	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4189		zfs_acl_ids_free(&acl_ids);
4190		zfs_dirent_unlock(dl);
4191		ZFS_EXIT(zfsvfs);
4192		return (error);
4193	}
4194
4195	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4196		zfs_acl_ids_free(&acl_ids);
4197		zfs_dirent_unlock(dl);
4198		ZFS_EXIT(zfsvfs);
4199		return (SET_ERROR(EDQUOT));
4200	}
4201	tx = dmu_tx_create(zfsvfs->z_os);
4202	fuid_dirtied = zfsvfs->z_fuid_dirty;
4203	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4204	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4205	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4206	    ZFS_SA_BASE_ATTR_SIZE + len);
4207	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4208	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4209		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4210		    acl_ids.z_aclp->z_acl_bytes);
4211	}
4212	if (fuid_dirtied)
4213		zfs_fuid_txhold(zfsvfs, tx);
4214	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4215	if (error) {
4216		zfs_dirent_unlock(dl);
4217		if (error == ERESTART) {
4218			waited = B_TRUE;
4219			dmu_tx_wait(tx);
4220			dmu_tx_abort(tx);
4221			goto top;
4222		}
4223		zfs_acl_ids_free(&acl_ids);
4224		dmu_tx_abort(tx);
4225		ZFS_EXIT(zfsvfs);
4226		return (error);
4227	}
4228
4229	/*
4230	 * Create a new object for the symlink.
4231	 * for version 4 ZPL datsets the symlink will be an SA attribute
4232	 */
4233	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4234
4235	if (fuid_dirtied)
4236		zfs_fuid_sync(zfsvfs, tx);
4237
4238	mutex_enter(&zp->z_lock);
4239	if (zp->z_is_sa)
4240		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4241		    link, len, tx);
4242	else
4243		zfs_sa_symlink(zp, link, len, tx);
4244	mutex_exit(&zp->z_lock);
4245
4246	zp->z_size = len;
4247	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4248	    &zp->z_size, sizeof (zp->z_size), tx);
4249	/*
4250	 * Insert the new object into the directory.
4251	 */
4252	(void) zfs_link_create(dl, zp, tx, ZNEW);
4253
4254	if (flags & FIGNORECASE)
4255		txtype |= TX_CI;
4256	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4257
4258	zfs_acl_ids_free(&acl_ids);
4259
4260	dmu_tx_commit(tx);
4261
4262	zfs_dirent_unlock(dl);
4263
4264	VN_RELE(ZTOV(zp));
4265
4266	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4267		zil_commit(zilog, 0);
4268
4269	ZFS_EXIT(zfsvfs);
4270	return (error);
4271}
4272
4273/*
4274 * Return, in the buffer contained in the provided uio structure,
4275 * the symbolic path referred to by vp.
4276 *
4277 *	IN:	vp	- vnode of symbolic link.
4278 *		uio	- structure to contain the link path.
4279 *		cr	- credentials of caller.
4280 *		ct	- caller context
4281 *
4282 *	OUT:	uio	- structure containing the link path.
4283 *
4284 *	RETURN:	0 on success, error code on failure.
4285 *
4286 * Timestamps:
4287 *	vp - atime updated
4288 */
4289/* ARGSUSED */
4290static int
4291zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4292{
4293	znode_t		*zp = VTOZ(vp);
4294	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4295	int		error;
4296
4297	ZFS_ENTER(zfsvfs);
4298	ZFS_VERIFY_ZP(zp);
4299
4300	mutex_enter(&zp->z_lock);
4301	if (zp->z_is_sa)
4302		error = sa_lookup_uio(zp->z_sa_hdl,
4303		    SA_ZPL_SYMLINK(zfsvfs), uio);
4304	else
4305		error = zfs_sa_readlink(zp, uio);
4306	mutex_exit(&zp->z_lock);
4307
4308	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4309
4310	ZFS_EXIT(zfsvfs);
4311	return (error);
4312}
4313
4314/*
4315 * Insert a new entry into directory tdvp referencing svp.
4316 *
4317 *	IN:	tdvp	- Directory to contain new entry.
4318 *		svp	- vnode of new entry.
4319 *		name	- name of new entry.
4320 *		cr	- credentials of caller.
4321 *		ct	- caller context
4322 *
4323 *	RETURN:	0 on success, error code on failure.
4324 *
4325 * Timestamps:
4326 *	tdvp - ctime|mtime updated
4327 *	 svp - ctime updated
4328 */
4329/* ARGSUSED */
4330static int
4331zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4332    caller_context_t *ct, int flags)
4333{
4334	znode_t		*dzp = VTOZ(tdvp);
4335	znode_t		*tzp, *szp;
4336	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4337	zilog_t		*zilog;
4338	zfs_dirlock_t	*dl;
4339	dmu_tx_t	*tx;
4340	vnode_t		*realvp;
4341	int		error;
4342	int		zf = ZNEW;
4343	uint64_t	parent;
4344	uid_t		owner;
4345	boolean_t	waited = B_FALSE;
4346
4347	ASSERT(tdvp->v_type == VDIR);
4348
4349	ZFS_ENTER(zfsvfs);
4350	ZFS_VERIFY_ZP(dzp);
4351	zilog = zfsvfs->z_log;
4352
4353	if (VOP_REALVP(svp, &realvp, ct) == 0)
4354		svp = realvp;
4355
4356	/*
4357	 * POSIX dictates that we return EPERM here.
4358	 * Better choices include ENOTSUP or EISDIR.
4359	 */
4360	if (svp->v_type == VDIR) {
4361		ZFS_EXIT(zfsvfs);
4362		return (SET_ERROR(EPERM));
4363	}
4364
4365	szp = VTOZ(svp);
4366	ZFS_VERIFY_ZP(szp);
4367
4368	/*
4369	 * If we are using project inheritance, it means if the directory has
4370	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4371	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4372	 * such case, we only allow hard link creation in our tree when the
4373	 * project IDs are the same.
4374	 */
4375	if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4376		ZFS_EXIT(zfsvfs);
4377		return (SET_ERROR(EXDEV));
4378	}
4379
4380	/*
4381	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4382	 * ctldir appear to have the same v_vfsp.
4383	 */
4384	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4385		ZFS_EXIT(zfsvfs);
4386		return (SET_ERROR(EXDEV));
4387	}
4388
4389	/* Prevent links to .zfs/shares files */
4390
4391	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4392	    &parent, sizeof (uint64_t))) != 0) {
4393		ZFS_EXIT(zfsvfs);
4394		return (error);
4395	}
4396	if (parent == zfsvfs->z_shares_dir) {
4397		ZFS_EXIT(zfsvfs);
4398		return (SET_ERROR(EPERM));
4399	}
4400
4401	if (zfsvfs->z_utf8 && u8_validate(name,
4402	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4403		ZFS_EXIT(zfsvfs);
4404		return (SET_ERROR(EILSEQ));
4405	}
4406	if (flags & FIGNORECASE)
4407		zf |= ZCILOOK;
4408
4409	/*
4410	 * We do not support links between attributes and non-attributes
4411	 * because of the potential security risk of creating links
4412	 * into "normal" file space in order to circumvent restrictions
4413	 * imposed in attribute space.
4414	 */
4415	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4416		ZFS_EXIT(zfsvfs);
4417		return (SET_ERROR(EINVAL));
4418	}
4419
4420
4421	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4422	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4423		ZFS_EXIT(zfsvfs);
4424		return (SET_ERROR(EPERM));
4425	}
4426
4427	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4428		ZFS_EXIT(zfsvfs);
4429		return (error);
4430	}
4431
4432top:
4433	/*
4434	 * Attempt to lock directory; fail if entry already exists.
4435	 */
4436	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4437	if (error) {
4438		ZFS_EXIT(zfsvfs);
4439		return (error);
4440	}
4441
4442	tx = dmu_tx_create(zfsvfs->z_os);
4443	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4444	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4445	zfs_sa_upgrade_txholds(tx, szp);
4446	zfs_sa_upgrade_txholds(tx, dzp);
4447	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4448	if (error) {
4449		zfs_dirent_unlock(dl);
4450		if (error == ERESTART) {
4451			waited = B_TRUE;
4452			dmu_tx_wait(tx);
4453			dmu_tx_abort(tx);
4454			goto top;
4455		}
4456		dmu_tx_abort(tx);
4457		ZFS_EXIT(zfsvfs);
4458		return (error);
4459	}
4460
4461	error = zfs_link_create(dl, szp, tx, 0);
4462
4463	if (error == 0) {
4464		uint64_t txtype = TX_LINK;
4465		if (flags & FIGNORECASE)
4466			txtype |= TX_CI;
4467		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4468	}
4469
4470	dmu_tx_commit(tx);
4471
4472	zfs_dirent_unlock(dl);
4473
4474	if (error == 0) {
4475		vnevent_link(svp, ct);
4476	}
4477
4478	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4479		zil_commit(zilog, 0);
4480
4481	ZFS_EXIT(zfsvfs);
4482	return (error);
4483}
4484
4485/*
4486 * zfs_null_putapage() is used when the file system has been force
4487 * unmounted. It just drops the pages.
4488 */
4489/* ARGSUSED */
4490static int
4491zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4492    size_t *lenp, int flags, cred_t *cr)
4493{
4494	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4495	return (0);
4496}
4497
4498/*
4499 * Push a page out to disk, klustering if possible.
4500 *
4501 *	IN:	vp	- file to push page to.
4502 *		pp	- page to push.
4503 *		flags	- additional flags.
4504 *		cr	- credentials of caller.
4505 *
4506 *	OUT:	offp	- start of range pushed.
4507 *		lenp	- len of range pushed.
4508 *
4509 *	RETURN:	0 on success, error code on failure.
4510 *
4511 * NOTE: callers must have locked the page to be pushed.  On
4512 * exit, the page (and all other pages in the kluster) must be
4513 * unlocked.
4514 */
4515/* ARGSUSED */
4516static int
4517zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4518    size_t *lenp, int flags, cred_t *cr)
4519{
4520	znode_t		*zp = VTOZ(vp);
4521	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4522	dmu_tx_t	*tx;
4523	u_offset_t	off, koff;
4524	size_t		len, klen;
4525	int		err;
4526
4527	off = pp->p_offset;
4528	len = PAGESIZE;
4529	/*
4530	 * If our blocksize is bigger than the page size, try to kluster
4531	 * multiple pages so that we write a full block (thus avoiding
4532	 * a read-modify-write).
4533	 */
4534	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4535		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4536		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4537		ASSERT(koff <= zp->z_size);
4538		if (koff + klen > zp->z_size)
4539			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4540		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4541	}
4542	ASSERT3U(btop(len), ==, btopr(len));
4543
4544	/*
4545	 * Can't push pages past end-of-file.
4546	 */
4547	if (off >= zp->z_size) {
4548		/* ignore all pages */
4549		err = 0;
4550		goto out;
4551	} else if (off + len > zp->z_size) {
4552		int npages = btopr(zp->z_size - off);
4553		page_t *trunc;
4554
4555		page_list_break(&pp, &trunc, npages);
4556		/* ignore pages past end of file */
4557		if (trunc)
4558			pvn_write_done(trunc, flags);
4559		len = zp->z_size - off;
4560	}
4561
4562	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) ||
4563	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid)) {
4564		err = SET_ERROR(EDQUOT);
4565		goto out;
4566	}
4567	tx = dmu_tx_create(zfsvfs->z_os);
4568	dmu_tx_hold_write(tx, zp->z_id, off, len);
4569
4570	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4571	zfs_sa_upgrade_txholds(tx, zp);
4572	err = dmu_tx_assign(tx, TXG_WAIT);
4573	if (err != 0) {
4574		dmu_tx_abort(tx);
4575		goto out;
4576	}
4577
4578	if (zp->z_blksz <= PAGESIZE) {
4579		caddr_t va = zfs_map_page(pp, S_READ);
4580		ASSERT3U(len, <=, PAGESIZE);
4581		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4582		zfs_unmap_page(pp, va);
4583	} else {
4584		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4585	}
4586
4587	if (err == 0) {
4588		uint64_t mtime[2], ctime[2];
4589		sa_bulk_attr_t bulk[3];
4590		int count = 0;
4591
4592		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4593		    &mtime, 16);
4594		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4595		    &ctime, 16);
4596		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4597		    &zp->z_pflags, 8);
4598		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4599		    B_TRUE);
4600		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4601		ASSERT0(err);
4602		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4603	}
4604	dmu_tx_commit(tx);
4605
4606out:
4607	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4608	if (offp)
4609		*offp = off;
4610	if (lenp)
4611		*lenp = len;
4612
4613	return (err);
4614}
4615
4616/*
4617 * Copy the portion of the file indicated from pages into the file.
4618 * The pages are stored in a page list attached to the files vnode.
4619 *
4620 *	IN:	vp	- vnode of file to push page data to.
4621 *		off	- position in file to put data.
4622 *		len	- amount of data to write.
4623 *		flags	- flags to control the operation.
4624 *		cr	- credentials of caller.
4625 *		ct	- caller context.
4626 *
4627 *	RETURN:	0 on success, error code on failure.
4628 *
4629 * Timestamps:
4630 *	vp - ctime|mtime updated
4631 */
4632/*ARGSUSED*/
4633static int
4634zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4635    caller_context_t *ct)
4636{
4637	znode_t		*zp = VTOZ(vp);
4638	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4639	page_t		*pp;
4640	size_t		io_len;
4641	u_offset_t	io_off;
4642	uint_t		blksz;
4643	locked_range_t	*lr;
4644	int		error = 0;
4645
4646	ZFS_ENTER(zfsvfs);
4647	ZFS_VERIFY_ZP(zp);
4648
4649	/*
4650	 * There's nothing to do if no data is cached.
4651	 */
4652	if (!vn_has_cached_data(vp)) {
4653		ZFS_EXIT(zfsvfs);
4654		return (0);
4655	}
4656
4657	/*
4658	 * Align this request to the file block size in case we kluster.
4659	 * XXX - this can result in pretty aggresive locking, which can
4660	 * impact simultanious read/write access.  One option might be
4661	 * to break up long requests (len == 0) into block-by-block
4662	 * operations to get narrower locking.
4663	 */
4664	blksz = zp->z_blksz;
4665	if (ISP2(blksz))
4666		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4667	else
4668		io_off = 0;
4669	if (len > 0 && ISP2(blksz))
4670		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4671	else
4672		io_len = 0;
4673
4674	if (io_len == 0) {
4675		/*
4676		 * Search the entire vp list for pages >= io_off.
4677		 */
4678		lr = rangelock_enter(&zp->z_rangelock,
4679		    io_off, UINT64_MAX, RL_WRITER);
4680		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4681		goto out;
4682	}
4683	lr = rangelock_enter(&zp->z_rangelock, io_off, io_len, RL_WRITER);
4684
4685	if (off > zp->z_size) {
4686		/* past end of file */
4687		rangelock_exit(lr);
4688		ZFS_EXIT(zfsvfs);
4689		return (0);
4690	}
4691
4692	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4693
4694	for (off = io_off; io_off < off + len; io_off += io_len) {
4695		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4696			pp = page_lookup(vp, io_off,
4697			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4698		} else {
4699			pp = page_lookup_nowait(vp, io_off,
4700			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4701		}
4702
4703		if (pp != NULL && pvn_getdirty(pp, flags)) {
4704			int err;
4705
4706			/*
4707			 * Found a dirty page to push
4708			 */
4709			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4710			if (err)
4711				error = err;
4712		} else {
4713			io_len = PAGESIZE;
4714		}
4715	}
4716out:
4717	rangelock_exit(lr);
4718	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4719		zil_commit(zfsvfs->z_log, zp->z_id);
4720	ZFS_EXIT(zfsvfs);
4721	return (error);
4722}
4723
4724/*ARGSUSED*/
4725void
4726zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4727{
4728	znode_t	*zp = VTOZ(vp);
4729	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4730	int error;
4731
4732	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4733	if (zp->z_sa_hdl == NULL) {
4734		/*
4735		 * The fs has been unmounted, or we did a
4736		 * suspend/resume and this file no longer exists.
4737		 */
4738		if (vn_has_cached_data(vp)) {
4739			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4740			    B_INVAL, cr);
4741		}
4742
4743		mutex_enter(&zp->z_lock);
4744		mutex_enter(&vp->v_lock);
4745		ASSERT(vp->v_count == 1);
4746		VN_RELE_LOCKED(vp);
4747		mutex_exit(&vp->v_lock);
4748		mutex_exit(&zp->z_lock);
4749		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4750		zfs_znode_free(zp);
4751		return;
4752	}
4753
4754	/*
4755	 * Attempt to push any data in the page cache.  If this fails
4756	 * we will get kicked out later in zfs_zinactive().
4757	 */
4758	if (vn_has_cached_data(vp)) {
4759		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4760		    cr);
4761	}
4762
4763	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4764		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4765
4766		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4767		zfs_sa_upgrade_txholds(tx, zp);
4768		error = dmu_tx_assign(tx, TXG_WAIT);
4769		if (error) {
4770			dmu_tx_abort(tx);
4771		} else {
4772			mutex_enter(&zp->z_lock);
4773			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4774			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4775			zp->z_atime_dirty = 0;
4776			mutex_exit(&zp->z_lock);
4777			dmu_tx_commit(tx);
4778		}
4779	}
4780
4781	zfs_zinactive(zp);
4782	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4783}
4784
4785/*
4786 * Bounds-check the seek operation.
4787 *
4788 *	IN:	vp	- vnode seeking within
4789 *		ooff	- old file offset
4790 *		noffp	- pointer to new file offset
4791 *		ct	- caller context
4792 *
4793 *	RETURN:	0 on success, EINVAL if new offset invalid.
4794 */
4795/* ARGSUSED */
4796static int
4797zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4798    caller_context_t *ct)
4799{
4800	if (vp->v_type == VDIR)
4801		return (0);
4802	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4803}
4804
4805/*
4806 * Pre-filter the generic locking function to trap attempts to place
4807 * a mandatory lock on a memory mapped file.
4808 */
4809static int
4810zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4811    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4812{
4813	znode_t *zp = VTOZ(vp);
4814	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4815
4816	ZFS_ENTER(zfsvfs);
4817	ZFS_VERIFY_ZP(zp);
4818
4819	/*
4820	 * We are following the UFS semantics with respect to mapcnt
4821	 * here: If we see that the file is mapped already, then we will
4822	 * return an error, but we don't worry about races between this
4823	 * function and zfs_map().
4824	 */
4825	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4826		ZFS_EXIT(zfsvfs);
4827		return (SET_ERROR(EAGAIN));
4828	}
4829	ZFS_EXIT(zfsvfs);
4830	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4831}
4832
4833/*
4834 * If we can't find a page in the cache, we will create a new page
4835 * and fill it with file data.  For efficiency, we may try to fill
4836 * multiple pages at once (klustering) to fill up the supplied page
4837 * list.  Note that the pages to be filled are held with an exclusive
4838 * lock to prevent access by other threads while they are being filled.
4839 */
4840static int
4841zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4842    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4843{
4844	znode_t *zp = VTOZ(vp);
4845	page_t *pp, *cur_pp;
4846	objset_t *os = zp->z_zfsvfs->z_os;
4847	u_offset_t io_off, total;
4848	size_t io_len;
4849	int err;
4850
4851	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4852		/*
4853		 * We only have a single page, don't bother klustering
4854		 */
4855		io_off = off;
4856		io_len = PAGESIZE;
4857		pp = page_create_va(vp, io_off, io_len,
4858		    PG_EXCL | PG_WAIT, seg, addr);
4859	} else {
4860		/*
4861		 * Try to find enough pages to fill the page list
4862		 */
4863		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4864		    &io_len, off, plsz, 0);
4865	}
4866	if (pp == NULL) {
4867		/*
4868		 * The page already exists, nothing to do here.
4869		 */
4870		*pl = NULL;
4871		return (0);
4872	}
4873
4874	/*
4875	 * Fill the pages in the kluster.
4876	 */
4877	cur_pp = pp;
4878	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4879		caddr_t va;
4880
4881		ASSERT3U(io_off, ==, cur_pp->p_offset);
4882		va = zfs_map_page(cur_pp, S_WRITE);
4883		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4884		    DMU_READ_PREFETCH);
4885		zfs_unmap_page(cur_pp, va);
4886		if (err) {
4887			/* On error, toss the entire kluster */
4888			pvn_read_done(pp, B_ERROR);
4889			/* convert checksum errors into IO errors */
4890			if (err == ECKSUM)
4891				err = SET_ERROR(EIO);
4892			return (err);
4893		}
4894		cur_pp = cur_pp->p_next;
4895	}
4896
4897	/*
4898	 * Fill in the page list array from the kluster starting
4899	 * from the desired offset `off'.
4900	 * NOTE: the page list will always be null terminated.
4901	 */
4902	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4903	ASSERT(pl == NULL || (*pl)->p_offset == off);
4904
4905	return (0);
4906}
4907
4908/*
4909 * Return pointers to the pages for the file region [off, off + len]
4910 * in the pl array.  If plsz is greater than len, this function may
4911 * also return page pointers from after the specified region
4912 * (i.e. the region [off, off + plsz]).  These additional pages are
4913 * only returned if they are already in the cache, or were created as
4914 * part of a klustered read.
4915 *
4916 *	IN:	vp	- vnode of file to get data from.
4917 *		off	- position in file to get data from.
4918 *		len	- amount of data to retrieve.
4919 *		plsz	- length of provided page list.
4920 *		seg	- segment to obtain pages for.
4921 *		addr	- virtual address of fault.
4922 *		rw	- mode of created pages.
4923 *		cr	- credentials of caller.
4924 *		ct	- caller context.
4925 *
4926 *	OUT:	protp	- protection mode of created pages.
4927 *		pl	- list of pages created.
4928 *
4929 *	RETURN:	0 on success, error code on failure.
4930 *
4931 * Timestamps:
4932 *	vp - atime updated
4933 */
4934/* ARGSUSED */
4935static int
4936zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4937    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4938    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4939{
4940	znode_t		*zp = VTOZ(vp);
4941	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4942	page_t		**pl0 = pl;
4943	int		err = 0;
4944
4945	/* we do our own caching, faultahead is unnecessary */
4946	if (pl == NULL)
4947		return (0);
4948	else if (len > plsz)
4949		len = plsz;
4950	else
4951		len = P2ROUNDUP(len, PAGESIZE);
4952	ASSERT(plsz >= len);
4953
4954	ZFS_ENTER(zfsvfs);
4955	ZFS_VERIFY_ZP(zp);
4956
4957	if (protp)
4958		*protp = PROT_ALL;
4959
4960	/*
4961	 * Loop through the requested range [off, off + len) looking
4962	 * for pages.  If we don't find a page, we will need to create
4963	 * a new page and fill it with data from the file.
4964	 */
4965	while (len > 0) {
4966		if (*pl = page_lookup(vp, off, SE_SHARED))
4967			*(pl+1) = NULL;
4968		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4969			goto out;
4970		while (*pl) {
4971			ASSERT3U((*pl)->p_offset, ==, off);
4972			off += PAGESIZE;
4973			addr += PAGESIZE;
4974			if (len > 0) {
4975				ASSERT3U(len, >=, PAGESIZE);
4976				len -= PAGESIZE;
4977			}
4978			ASSERT3U(plsz, >=, PAGESIZE);
4979			plsz -= PAGESIZE;
4980			pl++;
4981		}
4982	}
4983
4984	/*
4985	 * Fill out the page array with any pages already in the cache.
4986	 */
4987	while (plsz > 0 &&
4988	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4989			off += PAGESIZE;
4990			plsz -= PAGESIZE;
4991	}
4992out:
4993	if (err) {
4994		/*
4995		 * Release any pages we have previously locked.
4996		 */
4997		while (pl > pl0)
4998			page_unlock(*--pl);
4999	} else {
5000		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5001	}
5002
5003	*pl = NULL;
5004
5005	ZFS_EXIT(zfsvfs);
5006	return (err);
5007}
5008
5009/*
5010 * Request a memory map for a section of a file.  This code interacts
5011 * with common code and the VM system as follows:
5012 *
5013 * - common code calls mmap(), which ends up in smmap_common()
5014 * - this calls VOP_MAP(), which takes you into (say) zfs
5015 * - zfs_map() calls as_map(), passing segvn_create() as the callback
5016 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
5017 * - zfs_addmap() updates z_mapcnt
5018 */
5019/*ARGSUSED*/
5020static int
5021zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5022    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5023    caller_context_t *ct)
5024{
5025	znode_t *zp = VTOZ(vp);
5026	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5027	segvn_crargs_t	vn_a;
5028	int		error;
5029
5030	ZFS_ENTER(zfsvfs);
5031	ZFS_VERIFY_ZP(zp);
5032
5033	/*
5034	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
5035	 */
5036
5037	if ((prot & PROT_WRITE) && (zp->z_pflags &
5038	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
5039		ZFS_EXIT(zfsvfs);
5040		return (SET_ERROR(EPERM));
5041	}
5042
5043	if ((prot & (PROT_READ | PROT_EXEC)) &&
5044	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
5045		ZFS_EXIT(zfsvfs);
5046		return (SET_ERROR(EACCES));
5047	}
5048
5049	if (vp->v_flag & VNOMAP) {
5050		ZFS_EXIT(zfsvfs);
5051		return (SET_ERROR(ENOSYS));
5052	}
5053
5054	if (off < 0 || len > MAXOFFSET_T - off) {
5055		ZFS_EXIT(zfsvfs);
5056		return (SET_ERROR(ENXIO));
5057	}
5058
5059	if (vp->v_type != VREG) {
5060		ZFS_EXIT(zfsvfs);
5061		return (SET_ERROR(ENODEV));
5062	}
5063
5064	/*
5065	 * If file is locked, disallow mapping.
5066	 */
5067	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5068		ZFS_EXIT(zfsvfs);
5069		return (SET_ERROR(EAGAIN));
5070	}
5071
5072	as_rangelock(as);
5073	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5074	if (error != 0) {
5075		as_rangeunlock(as);
5076		ZFS_EXIT(zfsvfs);
5077		return (error);
5078	}
5079
5080	vn_a.vp = vp;
5081	vn_a.offset = (u_offset_t)off;
5082	vn_a.type = flags & MAP_TYPE;
5083	vn_a.prot = prot;
5084	vn_a.maxprot = maxprot;
5085	vn_a.cred = cr;
5086	vn_a.amp = NULL;
5087	vn_a.flags = flags & ~MAP_TYPE;
5088	vn_a.szc = 0;
5089	vn_a.lgrp_mem_policy_flags = 0;
5090
5091	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5092
5093	as_rangeunlock(as);
5094	ZFS_EXIT(zfsvfs);
5095	return (error);
5096}
5097
5098/* ARGSUSED */
5099static int
5100zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5101    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5102    caller_context_t *ct)
5103{
5104	uint64_t pages = btopr(len);
5105
5106	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5107	return (0);
5108}
5109
5110/*
5111 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5112 * more accurate mtime for the associated file.  Since we don't have a way of
5113 * detecting when the data was actually modified, we have to resort to
5114 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5115 * last page is pushed.  The problem occurs when the msync() call is omitted,
5116 * which by far the most common case:
5117 *
5118 *	open()
5119 *	mmap()
5120 *	<modify memory>
5121 *	munmap()
5122 *	close()
5123 *	<time lapse>
5124 *	putpage() via fsflush
5125 *
5126 * If we wait until fsflush to come along, we can have a modification time that
5127 * is some arbitrary point in the future.  In order to prevent this in the
5128 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5129 * torn down.
5130 */
5131/* ARGSUSED */
5132static int
5133zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5134    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5135    caller_context_t *ct)
5136{
5137	uint64_t pages = btopr(len);
5138
5139	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5140	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5141
5142	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5143	    vn_has_cached_data(vp))
5144		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5145
5146	return (0);
5147}
5148
5149/*
5150 * Free or allocate space in a file.  Currently, this function only
5151 * supports the `F_FREESP' command.  However, this command is somewhat
5152 * misnamed, as its functionality includes the ability to allocate as
5153 * well as free space.
5154 *
5155 *	IN:	vp	- vnode of file to free data in.
5156 *		cmd	- action to take (only F_FREESP supported).
5157 *		bfp	- section of file to free/alloc.
5158 *		flag	- current file open mode flags.
5159 *		offset	- current file offset.
5160 *		cr	- credentials of caller [UNUSED].
5161 *		ct	- caller context.
5162 *
5163 *	RETURN:	0 on success, error code on failure.
5164 *
5165 * Timestamps:
5166 *	vp - ctime|mtime updated
5167 */
5168/* ARGSUSED */
5169static int
5170zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5171    offset_t offset, cred_t *cr, caller_context_t *ct)
5172{
5173	znode_t		*zp = VTOZ(vp);
5174	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5175	uint64_t	off, len;
5176	int		error;
5177
5178	ZFS_ENTER(zfsvfs);
5179	ZFS_VERIFY_ZP(zp);
5180
5181	if (cmd != F_FREESP) {
5182		ZFS_EXIT(zfsvfs);
5183		return (SET_ERROR(EINVAL));
5184	}
5185
5186	/*
5187	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
5188	 * callers might not be able to detect properly that we are read-only,
5189	 * so check it explicitly here.
5190	 */
5191	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
5192		ZFS_EXIT(zfsvfs);
5193		return (SET_ERROR(EROFS));
5194	}
5195
5196	if (error = convoff(vp, bfp, 0, offset)) {
5197		ZFS_EXIT(zfsvfs);
5198		return (error);
5199	}
5200
5201	if (bfp->l_len < 0) {
5202		ZFS_EXIT(zfsvfs);
5203		return (SET_ERROR(EINVAL));
5204	}
5205
5206	off = bfp->l_start;
5207	len = bfp->l_len; /* 0 means from off to end of file */
5208
5209	error = zfs_freesp(zp, off, len, flag, TRUE);
5210
5211	if (error == 0 && off == 0 && len == 0)
5212		vnevent_truncate(ZTOV(zp), ct);
5213
5214	ZFS_EXIT(zfsvfs);
5215	return (error);
5216}
5217
5218/*ARGSUSED*/
5219static int
5220zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5221{
5222	znode_t		*zp = VTOZ(vp);
5223	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5224	uint32_t	gen;
5225	uint64_t	gen64;
5226	uint64_t	object = zp->z_id;
5227	zfid_short_t	*zfid;
5228	int		size, i, error;
5229
5230	ZFS_ENTER(zfsvfs);
5231	ZFS_VERIFY_ZP(zp);
5232
5233	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5234	    &gen64, sizeof (uint64_t))) != 0) {
5235		ZFS_EXIT(zfsvfs);
5236		return (error);
5237	}
5238
5239	gen = (uint32_t)gen64;
5240
5241	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5242	if (fidp->fid_len < size) {
5243		fidp->fid_len = size;
5244		ZFS_EXIT(zfsvfs);
5245		return (SET_ERROR(ENOSPC));
5246	}
5247
5248	zfid = (zfid_short_t *)fidp;
5249
5250	zfid->zf_len = size;
5251
5252	for (i = 0; i < sizeof (zfid->zf_object); i++)
5253		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5254
5255	/* Must have a non-zero generation number to distinguish from .zfs */
5256	if (gen == 0)
5257		gen = 1;
5258	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5259		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5260
5261	if (size == LONG_FID_LEN) {
5262		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5263		zfid_long_t	*zlfid;
5264
5265		zlfid = (zfid_long_t *)fidp;
5266
5267		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5268			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5269
5270		/* XXX - this should be the generation number for the objset */
5271		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5272			zlfid->zf_setgen[i] = 0;
5273	}
5274
5275	ZFS_EXIT(zfsvfs);
5276	return (0);
5277}
5278
5279static int
5280zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5281    caller_context_t *ct)
5282{
5283	znode_t		*zp, *xzp;
5284	zfsvfs_t	*zfsvfs;
5285	zfs_dirlock_t	*dl;
5286	int		error;
5287
5288	switch (cmd) {
5289	case _PC_LINK_MAX:
5290		*valp = ULONG_MAX;
5291		return (0);
5292
5293	case _PC_FILESIZEBITS:
5294		*valp = 64;
5295		return (0);
5296
5297	case _PC_XATTR_EXISTS:
5298		zp = VTOZ(vp);
5299		zfsvfs = zp->z_zfsvfs;
5300		ZFS_ENTER(zfsvfs);
5301		ZFS_VERIFY_ZP(zp);
5302		*valp = 0;
5303		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5304		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5305		if (error == 0) {
5306			zfs_dirent_unlock(dl);
5307			if (!zfs_dirempty(xzp))
5308				*valp = 1;
5309			VN_RELE(ZTOV(xzp));
5310		} else if (error == ENOENT) {
5311			/*
5312			 * If there aren't extended attributes, it's the
5313			 * same as having zero of them.
5314			 */
5315			error = 0;
5316		}
5317		ZFS_EXIT(zfsvfs);
5318		return (error);
5319
5320	case _PC_SATTR_ENABLED:
5321	case _PC_SATTR_EXISTS:
5322		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5323		    (vp->v_type == VREG || vp->v_type == VDIR);
5324		return (0);
5325
5326	case _PC_ACCESS_FILTERING:
5327		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5328		    vp->v_type == VDIR;
5329		return (0);
5330
5331	case _PC_ACL_ENABLED:
5332		*valp = _ACL_ACE_ENABLED;
5333		return (0);
5334
5335	case _PC_MIN_HOLE_SIZE:
5336		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5337		return (0);
5338
5339	case _PC_TIMESTAMP_RESOLUTION:
5340		/* nanosecond timestamp resolution */
5341		*valp = 1L;
5342		return (0);
5343
5344	default:
5345		return (fs_pathconf(vp, cmd, valp, cr, ct));
5346	}
5347}
5348
5349/*ARGSUSED*/
5350static int
5351zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5352    caller_context_t *ct)
5353{
5354	znode_t *zp = VTOZ(vp);
5355	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5356	int error;
5357	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5358
5359	ZFS_ENTER(zfsvfs);
5360	ZFS_VERIFY_ZP(zp);
5361	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5362	ZFS_EXIT(zfsvfs);
5363
5364	return (error);
5365}
5366
5367/*ARGSUSED*/
5368static int
5369zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5370    caller_context_t *ct)
5371{
5372	znode_t *zp = VTOZ(vp);
5373	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5374	int error;
5375	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5376	zilog_t	*zilog = zfsvfs->z_log;
5377
5378	ZFS_ENTER(zfsvfs);
5379	ZFS_VERIFY_ZP(zp);
5380
5381	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5382
5383	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5384		zil_commit(zilog, 0);
5385
5386	ZFS_EXIT(zfsvfs);
5387	return (error);
5388}
5389
5390/*
5391 * The smallest read we may consider to loan out an arcbuf.
5392 * This must be a power of 2.
5393 */
5394int zcr_blksz_min = (1 << 10);	/* 1K */
5395/*
5396 * If set to less than the file block size, allow loaning out of an
5397 * arcbuf for a partial block read.  This must be a power of 2.
5398 */
5399int zcr_blksz_max = (1 << 17);	/* 128K */
5400
5401/*ARGSUSED*/
5402static int
5403zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5404    caller_context_t *ct)
5405{
5406	znode_t	*zp = VTOZ(vp);
5407	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5408	int max_blksz = zfsvfs->z_max_blksz;
5409	uio_t *uio = &xuio->xu_uio;
5410	ssize_t size = uio->uio_resid;
5411	offset_t offset = uio->uio_loffset;
5412	int blksz;
5413	int fullblk, i;
5414	arc_buf_t *abuf;
5415	ssize_t maxsize;
5416	int preamble, postamble;
5417
5418	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5419		return (SET_ERROR(EINVAL));
5420
5421	ZFS_ENTER(zfsvfs);
5422	ZFS_VERIFY_ZP(zp);
5423	switch (ioflag) {
5424	case UIO_WRITE:
5425		/*
5426		 * Loan out an arc_buf for write if write size is bigger than
5427		 * max_blksz, and the file's block size is also max_blksz.
5428		 */
5429		blksz = max_blksz;
5430		if (size < blksz || zp->z_blksz != blksz) {
5431			ZFS_EXIT(zfsvfs);
5432			return (SET_ERROR(EINVAL));
5433		}
5434		/*
5435		 * Caller requests buffers for write before knowing where the
5436		 * write offset might be (e.g. NFS TCP write).
5437		 */
5438		if (offset == -1) {
5439			preamble = 0;
5440		} else {
5441			preamble = P2PHASE(offset, blksz);
5442			if (preamble) {
5443				preamble = blksz - preamble;
5444				size -= preamble;
5445			}
5446		}
5447
5448		postamble = P2PHASE(size, blksz);
5449		size -= postamble;
5450
5451		fullblk = size / blksz;
5452		(void) dmu_xuio_init(xuio,
5453		    (preamble != 0) + fullblk + (postamble != 0));
5454		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5455		    int, postamble, int,
5456		    (preamble != 0) + fullblk + (postamble != 0));
5457
5458		/*
5459		 * Have to fix iov base/len for partial buffers.  They
5460		 * currently represent full arc_buf's.
5461		 */
5462		if (preamble) {
5463			/* data begins in the middle of the arc_buf */
5464			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5465			    blksz);
5466			ASSERT(abuf);
5467			(void) dmu_xuio_add(xuio, abuf,
5468			    blksz - preamble, preamble);
5469		}
5470
5471		for (i = 0; i < fullblk; i++) {
5472			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5473			    blksz);
5474			ASSERT(abuf);
5475			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5476		}
5477
5478		if (postamble) {
5479			/* data ends in the middle of the arc_buf */
5480			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5481			    blksz);
5482			ASSERT(abuf);
5483			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5484		}
5485		break;
5486	case UIO_READ:
5487		/*
5488		 * Loan out an arc_buf for read if the read size is larger than
5489		 * the current file block size.  Block alignment is not
5490		 * considered.  Partial arc_buf will be loaned out for read.
5491		 */
5492		blksz = zp->z_blksz;
5493		if (blksz < zcr_blksz_min)
5494			blksz = zcr_blksz_min;
5495		if (blksz > zcr_blksz_max)
5496			blksz = zcr_blksz_max;
5497		/* avoid potential complexity of dealing with it */
5498		if (blksz > max_blksz) {
5499			ZFS_EXIT(zfsvfs);
5500			return (SET_ERROR(EINVAL));
5501		}
5502
5503		maxsize = zp->z_size - uio->uio_loffset;
5504		if (size > maxsize)
5505			size = maxsize;
5506
5507		if (size < blksz || vn_has_cached_data(vp)) {
5508			ZFS_EXIT(zfsvfs);
5509			return (SET_ERROR(EINVAL));
5510		}
5511		break;
5512	default:
5513		ZFS_EXIT(zfsvfs);
5514		return (SET_ERROR(EINVAL));
5515	}
5516
5517	uio->uio_extflg = UIO_XUIO;
5518	XUIO_XUZC_RW(xuio) = ioflag;
5519	ZFS_EXIT(zfsvfs);
5520	return (0);
5521}
5522
5523/*ARGSUSED*/
5524static int
5525zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5526{
5527	int i;
5528	arc_buf_t *abuf;
5529	int ioflag = XUIO_XUZC_RW(xuio);
5530
5531	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5532
5533	i = dmu_xuio_cnt(xuio);
5534	while (i-- > 0) {
5535		abuf = dmu_xuio_arcbuf(xuio, i);
5536		/*
5537		 * if abuf == NULL, it must be a write buffer
5538		 * that has been returned in zfs_write().
5539		 */
5540		if (abuf)
5541			dmu_return_arcbuf(abuf);
5542		ASSERT(abuf || ioflag == UIO_WRITE);
5543	}
5544
5545	dmu_xuio_fini(xuio);
5546	return (0);
5547}
5548
5549/*
5550 * Predeclare these here so that the compiler assumes that
5551 * this is an "old style" function declaration that does
5552 * not include arguments => we won't get type mismatch errors
5553 * in the initializations that follow.
5554 */
5555static int zfs_inval();
5556static int zfs_isdir();
5557
5558static int
5559zfs_inval()
5560{
5561	return (SET_ERROR(EINVAL));
5562}
5563
5564static int
5565zfs_isdir()
5566{
5567	return (SET_ERROR(EISDIR));
5568}
5569/*
5570 * Directory vnode operations template
5571 */
5572vnodeops_t *zfs_dvnodeops;
5573const fs_operation_def_t zfs_dvnodeops_template[] = {
5574	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5575	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5576	VOPNAME_READ,		{ .error = zfs_isdir },
5577	VOPNAME_WRITE,		{ .error = zfs_isdir },
5578	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5579	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5580	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5581	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5582	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5583	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5584	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5585	VOPNAME_LINK,		{ .vop_link = zfs_link },
5586	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5587	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5588	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5589	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5590	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5591	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5592	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5593	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5594	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5595	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5596	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5597	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5598	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5599	NULL,			NULL
5600};
5601
5602/*
5603 * Regular file vnode operations template
5604 */
5605vnodeops_t *zfs_fvnodeops;
5606const fs_operation_def_t zfs_fvnodeops_template[] = {
5607	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5608	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5609	VOPNAME_READ,		{ .vop_read = zfs_read },
5610	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5611	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5612	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5613	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5614	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5615	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5616	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5617	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5618	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5619	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5620	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5621	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5622	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5623	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5624	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5625	VOPNAME_MAP,		{ .vop_map = zfs_map },
5626	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5627	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5628	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5629	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5630	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5631	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5632	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5633	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5634	NULL,			NULL
5635};
5636
5637/*
5638 * Symbolic link vnode operations template
5639 */
5640vnodeops_t *zfs_symvnodeops;
5641const fs_operation_def_t zfs_symvnodeops_template[] = {
5642	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5643	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5644	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5645	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5646	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5647	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5648	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5649	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5650	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5651	NULL,			NULL
5652};
5653
5654/*
5655 * special share hidden files vnode operations template
5656 */
5657vnodeops_t *zfs_sharevnodeops;
5658const fs_operation_def_t zfs_sharevnodeops_template[] = {
5659	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5660	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5661	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5662	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5663	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5664	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5665	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5666	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5667	NULL,			NULL
5668};
5669
5670/*
5671 * Extended attribute directory vnode operations template
5672 *
5673 * This template is identical to the directory vnodes
5674 * operation template except for restricted operations:
5675 *	VOP_MKDIR()
5676 *	VOP_SYMLINK()
5677 *
5678 * Note that there are other restrictions embedded in:
5679 *	zfs_create()	- restrict type to VREG
5680 *	zfs_link()	- no links into/out of attribute space
5681 *	zfs_rename()	- no moves into/out of attribute space
5682 */
5683vnodeops_t *zfs_xdvnodeops;
5684const fs_operation_def_t zfs_xdvnodeops_template[] = {
5685	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5686	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5687	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5688	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5689	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5690	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5691	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5692	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5693	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5694	VOPNAME_LINK,		{ .vop_link = zfs_link },
5695	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5696	VOPNAME_MKDIR,		{ .error = zfs_inval },
5697	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5698	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5699	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5700	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5701	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5702	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5703	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5704	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5705	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5706	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5707	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5708	NULL,			NULL
5709};
5710
5711/*
5712 * Error vnode operations template
5713 */
5714vnodeops_t *zfs_evnodeops;
5715const fs_operation_def_t zfs_evnodeops_template[] = {
5716	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5717	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5718	NULL,			NULL
5719};
5720