1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
28 */
29
30/* Portions Copyright 2007 Jeremy Teo */
31/* Portions Copyright 2010 Robert Milkowski */
32
33#include <sys/types.h>
34#include <sys/param.h>
35#include <sys/time.h>
36#include <sys/systm.h>
37#include <sys/sysmacros.h>
38#include <sys/resource.h>
39#include <sys/vfs.h>
40#include <sys/vfs_opreg.h>
41#include <sys/vnode.h>
42#include <sys/file.h>
43#include <sys/stat.h>
44#include <sys/kmem.h>
45#include <sys/taskq.h>
46#include <sys/uio.h>
47#include <sys/vmsystm.h>
48#include <sys/atomic.h>
49#include <sys/vm.h>
50#include <vm/seg_vn.h>
51#include <vm/pvn.h>
52#include <vm/as.h>
53#include <vm/kpm.h>
54#include <vm/seg_kpm.h>
55#include <sys/mman.h>
56#include <sys/pathname.h>
57#include <sys/cmn_err.h>
58#include <sys/errno.h>
59#include <sys/unistd.h>
60#include <sys/zfs_dir.h>
61#include <sys/zfs_acl.h>
62#include <sys/zfs_ioctl.h>
63#include <sys/fs/zfs.h>
64#include <sys/dmu.h>
65#include <sys/dmu_objset.h>
66#include <sys/spa.h>
67#include <sys/txg.h>
68#include <sys/dbuf.h>
69#include <sys/zap.h>
70#include <sys/sa.h>
71#include <sys/dirent.h>
72#include <sys/policy.h>
73#include <sys/sunddi.h>
74#include <sys/filio.h>
75#include <sys/sid.h>
76#include "fs/fs_subr.h"
77#include <sys/zfs_ctldir.h>
78#include <sys/zfs_fuid.h>
79#include <sys/zfs_sa.h>
80#include <sys/dnlc.h>
81#include <sys/zfs_rlock.h>
82#include <sys/extdirent.h>
83#include <sys/kidmap.h>
84#include <sys/cred.h>
85#include <sys/attr.h>
86#include <sys/zil.h>
87
88/*
89 * Programming rules.
90 *
91 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
92 * properly lock its in-core state, create a DMU transaction, do the work,
93 * record this work in the intent log (ZIL), commit the DMU transaction,
94 * and wait for the intent log to commit if it is a synchronous operation.
95 * Moreover, the vnode ops must work in both normal and log replay context.
96 * The ordering of events is important to avoid deadlocks and references
97 * to freed memory.  The example below illustrates the following Big Rules:
98 *
99 *  (1)	A check must be made in each zfs thread for a mounted file system.
100 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
101 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
102 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
103 *	can return EIO from the calling function.
104 *
105 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
106 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
107 *	First, if it's the last reference, the vnode/znode
108 *	can be freed, so the zp may point to freed memory.  Second, the last
109 *	reference will call zfs_zinactive(), which may induce a lot of work --
110 *	pushing cached pages (which acquires range locks) and syncing out
111 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
112 *	which could deadlock the system if you were already holding one.
113 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
114 *
115 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
116 *	as they can span dmu_tx_assign() calls.
117 *
118 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
119 *      dmu_tx_assign().  This is critical because we don't want to block
120 *      while holding locks.
121 *
122 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
123 *	reduces lock contention and CPU usage when we must wait (note that if
124 *	throughput is constrained by the storage, nearly every transaction
125 *	must wait).
126 *
127 *      Note, in particular, that if a lock is sometimes acquired before
128 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
129 *      to use a non-blocking assign can deadlock the system.  The scenario:
130 *
131 *	Thread A has grabbed a lock before calling dmu_tx_assign().
132 *	Thread B is in an already-assigned tx, and blocks for this lock.
133 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
134 *	forever, because the previous txg can't quiesce until B's tx commits.
135 *
136 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
137 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
138 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
139 *	to indicate that this operation has already called dmu_tx_wait().
140 *	This will ensure that we don't retry forever, waiting a short bit
141 *	each time.
142 *
143 *  (5)	If the operation succeeded, generate the intent log entry for it
144 *	before dropping locks.  This ensures that the ordering of events
145 *	in the intent log matches the order in which they actually occurred.
146 *	During ZIL replay the zfs_log_* functions will update the sequence
147 *	number to indicate the zil transaction has replayed.
148 *
149 *  (6)	At the end of each vnode op, the DMU tx must always commit,
150 *	regardless of whether there were any errors.
151 *
152 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
153 *	to ensure that synchronous semantics are provided when necessary.
154 *
155 * In general, this is how things should be ordered in each vnode op:
156 *
157 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
158 * top:
159 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
160 *	rw_enter(...);			// grab any other locks you need
161 *	tx = dmu_tx_create(...);	// get DMU tx
162 *	dmu_tx_hold_*();		// hold each object you might modify
163 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
164 *	if (error) {
165 *		rw_exit(...);		// drop locks
166 *		zfs_dirent_unlock(dl);	// unlock directory entry
167 *		VN_RELE(...);		// release held vnodes
168 *		if (error == ERESTART) {
169 *			waited = B_TRUE;
170 *			dmu_tx_wait(tx);
171 *			dmu_tx_abort(tx);
172 *			goto top;
173 *		}
174 *		dmu_tx_abort(tx);	// abort DMU tx
175 *		ZFS_EXIT(zfsvfs);	// finished in zfs
176 *		return (error);		// really out of space
177 *	}
178 *	error = do_real_work();		// do whatever this VOP does
179 *	if (error == 0)
180 *		zfs_log_*(...);		// on success, make ZIL entry
181 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
182 *	rw_exit(...);			// drop locks
183 *	zfs_dirent_unlock(dl);		// unlock directory entry
184 *	VN_RELE(...);			// release held vnodes
185 *	zil_commit(zilog, foid);	// synchronous when necessary
186 *	ZFS_EXIT(zfsvfs);		// finished in zfs
187 *	return (error);			// done, report error
188 */
189
190/* ARGSUSED */
191static int
192zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
193{
194	znode_t	*zp = VTOZ(*vpp);
195	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
196
197	ZFS_ENTER(zfsvfs);
198	ZFS_VERIFY_ZP(zp);
199
200	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
201	    ((flag & FAPPEND) == 0)) {
202		ZFS_EXIT(zfsvfs);
203		return (SET_ERROR(EPERM));
204	}
205
206	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
207	    ZTOV(zp)->v_type == VREG &&
208	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
209		if (fs_vscan(*vpp, cr, 0) != 0) {
210			ZFS_EXIT(zfsvfs);
211			return (SET_ERROR(EACCES));
212		}
213	}
214
215	/* Keep a count of the synchronous opens in the znode */
216	if (flag & (FSYNC | FDSYNC))
217		atomic_inc_32(&zp->z_sync_cnt);
218
219	ZFS_EXIT(zfsvfs);
220	return (0);
221}
222
223/* ARGSUSED */
224static int
225zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
226    caller_context_t *ct)
227{
228	znode_t	*zp = VTOZ(vp);
229	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
230
231	/*
232	 * Clean up any locks held by this process on the vp.
233	 */
234	cleanlocks(vp, ddi_get_pid(), 0);
235	cleanshares(vp, ddi_get_pid());
236
237	ZFS_ENTER(zfsvfs);
238	ZFS_VERIFY_ZP(zp);
239
240	/* Decrement the synchronous opens in the znode */
241	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
242		atomic_dec_32(&zp->z_sync_cnt);
243
244	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
245	    ZTOV(zp)->v_type == VREG &&
246	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
247		VERIFY(fs_vscan(vp, cr, 1) == 0);
248
249	ZFS_EXIT(zfsvfs);
250	return (0);
251}
252
253/*
254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
256 */
257static int
258zfs_holey(vnode_t *vp, int cmd, offset_t *off)
259{
260	znode_t	*zp = VTOZ(vp);
261	uint64_t noff = (uint64_t)*off; /* new offset */
262	uint64_t file_sz;
263	int error;
264	boolean_t hole;
265
266	file_sz = zp->z_size;
267	if (noff >= file_sz)  {
268		return (SET_ERROR(ENXIO));
269	}
270
271	if (cmd == _FIO_SEEK_HOLE)
272		hole = B_TRUE;
273	else
274		hole = B_FALSE;
275
276	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
277
278	if (error == ESRCH)
279		return (SET_ERROR(ENXIO));
280
281	/*
282	 * We could find a hole that begins after the logical end-of-file,
283	 * because dmu_offset_next() only works on whole blocks.  If the
284	 * EOF falls mid-block, then indicate that the "virtual hole"
285	 * at the end of the file begins at the logical EOF, rather than
286	 * at the end of the last block.
287	 */
288	if (noff > file_sz) {
289		ASSERT(hole);
290		noff = file_sz;
291	}
292
293	if (noff < *off)
294		return (error);
295	*off = noff;
296	return (error);
297}
298
299/* ARGSUSED */
300static int
301zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
302    int *rvalp, caller_context_t *ct)
303{
304	offset_t off;
305	offset_t ndata;
306	dmu_object_info_t doi;
307	int error;
308	zfsvfs_t *zfsvfs;
309	znode_t *zp;
310
311	switch (com) {
312	case _FIOFFS:
313	{
314		return (zfs_sync(vp->v_vfsp, 0, cred));
315
316		/*
317		 * The following two ioctls are used by bfu.  Faking out,
318		 * necessary to avoid bfu errors.
319		 */
320	}
321	case _FIOGDIO:
322	case _FIOSDIO:
323	{
324		return (0);
325	}
326
327	case _FIO_SEEK_DATA:
328	case _FIO_SEEK_HOLE:
329	{
330		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
331			return (SET_ERROR(EFAULT));
332
333		zp = VTOZ(vp);
334		zfsvfs = zp->z_zfsvfs;
335		ZFS_ENTER(zfsvfs);
336		ZFS_VERIFY_ZP(zp);
337
338		/* offset parameter is in/out */
339		error = zfs_holey(vp, com, &off);
340		ZFS_EXIT(zfsvfs);
341		if (error)
342			return (error);
343		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
344			return (SET_ERROR(EFAULT));
345		return (0);
346	}
347	case _FIO_COUNT_FILLED:
348	{
349		/*
350		 * _FIO_COUNT_FILLED adds a new ioctl command which
351		 * exposes the number of filled blocks in a
352		 * ZFS object.
353		 */
354		zp = VTOZ(vp);
355		zfsvfs = zp->z_zfsvfs;
356		ZFS_ENTER(zfsvfs);
357		ZFS_VERIFY_ZP(zp);
358
359		/*
360		 * Wait for all dirty blocks for this object
361		 * to get synced out to disk, and the DMU info
362		 * updated.
363		 */
364		error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
365		if (error) {
366			ZFS_EXIT(zfsvfs);
367			return (error);
368		}
369
370		/*
371		 * Retrieve fill count from DMU object.
372		 */
373		error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
374		if (error) {
375			ZFS_EXIT(zfsvfs);
376			return (error);
377		}
378
379		ndata = doi.doi_fill_count;
380
381		ZFS_EXIT(zfsvfs);
382		if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
383			return (SET_ERROR(EFAULT));
384		return (0);
385	}
386	}
387	return (SET_ERROR(ENOTTY));
388}
389
390/*
391 * Utility functions to map and unmap a single physical page.  These
392 * are used to manage the mappable copies of ZFS file data, and therefore
393 * do not update ref/mod bits.
394 */
395caddr_t
396zfs_map_page(page_t *pp, enum seg_rw rw)
397{
398	if (kpm_enable)
399		return (hat_kpm_mapin(pp, 0));
400	ASSERT(rw == S_READ || rw == S_WRITE);
401	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
402	    (caddr_t)-1));
403}
404
405void
406zfs_unmap_page(page_t *pp, caddr_t addr)
407{
408	if (kpm_enable) {
409		hat_kpm_mapout(pp, 0, addr);
410	} else {
411		ppmapout(addr);
412	}
413}
414
415/*
416 * When a file is memory mapped, we must keep the IO data synchronized
417 * between the DMU cache and the memory mapped pages.  What this means:
418 *
419 * On Write:	If we find a memory mapped page, we write to *both*
420 *		the page and the dmu buffer.
421 */
422static void
423update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
424{
425	int64_t	off;
426
427	off = start & PAGEOFFSET;
428	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
429		page_t *pp;
430		uint64_t nbytes = MIN(PAGESIZE - off, len);
431
432		if (pp = page_lookup(vp, start, SE_SHARED)) {
433			caddr_t va;
434
435			va = zfs_map_page(pp, S_WRITE);
436			(void) dmu_read(os, oid, start+off, nbytes, va+off,
437			    DMU_READ_PREFETCH);
438			zfs_unmap_page(pp, va);
439			page_unlock(pp);
440		}
441		len -= nbytes;
442		off = 0;
443	}
444}
445
446/*
447 * When a file is memory mapped, we must keep the IO data synchronized
448 * between the DMU cache and the memory mapped pages.  What this means:
449 *
450 * On Read:	We "read" preferentially from memory mapped pages,
451 *		else we default from the dmu buffer.
452 *
453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
454 *	 the file is memory mapped.
455 */
456static int
457mappedread(vnode_t *vp, int nbytes, uio_t *uio)
458{
459	znode_t *zp = VTOZ(vp);
460	int64_t	start, off;
461	int len = nbytes;
462	int error = 0;
463
464	start = uio->uio_loffset;
465	off = start & PAGEOFFSET;
466	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
467		page_t *pp;
468		uint64_t bytes = MIN(PAGESIZE - off, len);
469
470		if (pp = page_lookup(vp, start, SE_SHARED)) {
471			caddr_t va;
472
473			va = zfs_map_page(pp, S_READ);
474			error = uiomove(va + off, bytes, UIO_READ, uio);
475			zfs_unmap_page(pp, va);
476			page_unlock(pp);
477		} else {
478			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
479			    uio, bytes);
480		}
481		len -= bytes;
482		off = 0;
483		if (error)
484			break;
485	}
486	return (error);
487}
488
489offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
490
491/*
492 * Read bytes from specified file into supplied buffer.
493 *
494 *	IN:	vp	- vnode of file to be read from.
495 *		uio	- structure supplying read location, range info,
496 *			  and return buffer.
497 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
498 *		cr	- credentials of caller.
499 *		ct	- caller context
500 *
501 *	OUT:	uio	- updated offset and range, buffer filled.
502 *
503 *	RETURN:	0 on success, error code on failure.
504 *
505 * Side Effects:
506 *	vp - atime updated if byte count > 0
507 */
508/* ARGSUSED */
509static int
510zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
511{
512	znode_t		*zp = VTOZ(vp);
513	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
514	ssize_t		n, nbytes;
515	int		error = 0;
516	rl_t		*rl;
517	xuio_t		*xuio = NULL;
518
519	ZFS_ENTER(zfsvfs);
520	ZFS_VERIFY_ZP(zp);
521
522	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
523		ZFS_EXIT(zfsvfs);
524		return (SET_ERROR(EACCES));
525	}
526
527	/*
528	 * Validate file offset
529	 */
530	if (uio->uio_loffset < (offset_t)0) {
531		ZFS_EXIT(zfsvfs);
532		return (SET_ERROR(EINVAL));
533	}
534
535	/*
536	 * Fasttrack empty reads
537	 */
538	if (uio->uio_resid == 0) {
539		ZFS_EXIT(zfsvfs);
540		return (0);
541	}
542
543	/*
544	 * Check for mandatory locks
545	 */
546	if (MANDMODE(zp->z_mode)) {
547		if (error = chklock(vp, FREAD,
548		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
549			ZFS_EXIT(zfsvfs);
550			return (error);
551		}
552	}
553
554	/*
555	 * If we're in FRSYNC mode, sync out this znode before reading it.
556	 */
557	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
558		zil_commit(zfsvfs->z_log, zp->z_id);
559
560	/*
561	 * Lock the range against changes.
562	 */
563	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
564
565	/*
566	 * If we are reading past end-of-file we can skip
567	 * to the end; but we might still need to set atime.
568	 */
569	if (uio->uio_loffset >= zp->z_size) {
570		error = 0;
571		goto out;
572	}
573
574	ASSERT(uio->uio_loffset < zp->z_size);
575	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
576
577	if ((uio->uio_extflg == UIO_XUIO) &&
578	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
579		int nblk;
580		int blksz = zp->z_blksz;
581		uint64_t offset = uio->uio_loffset;
582
583		xuio = (xuio_t *)uio;
584		if ((ISP2(blksz))) {
585			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
586			    blksz)) / blksz;
587		} else {
588			ASSERT(offset + n <= blksz);
589			nblk = 1;
590		}
591		(void) dmu_xuio_init(xuio, nblk);
592
593		if (vn_has_cached_data(vp)) {
594			/*
595			 * For simplicity, we always allocate a full buffer
596			 * even if we only expect to read a portion of a block.
597			 */
598			while (--nblk >= 0) {
599				(void) dmu_xuio_add(xuio,
600				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
601				    blksz), 0, blksz);
602			}
603		}
604	}
605
606	while (n > 0) {
607		nbytes = MIN(n, zfs_read_chunk_size -
608		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
609
610		if (vn_has_cached_data(vp)) {
611			error = mappedread(vp, nbytes, uio);
612		} else {
613			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
614			    uio, nbytes);
615		}
616		if (error) {
617			/* convert checksum errors into IO errors */
618			if (error == ECKSUM)
619				error = SET_ERROR(EIO);
620			break;
621		}
622
623		n -= nbytes;
624	}
625out:
626	zfs_range_unlock(rl);
627
628	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
629	ZFS_EXIT(zfsvfs);
630	return (error);
631}
632
633/*
634 * Write the bytes to a file.
635 *
636 *	IN:	vp	- vnode of file to be written to.
637 *		uio	- structure supplying write location, range info,
638 *			  and data buffer.
639 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
640 *			  set if in append mode.
641 *		cr	- credentials of caller.
642 *		ct	- caller context (NFS/CIFS fem monitor only)
643 *
644 *	OUT:	uio	- updated offset and range.
645 *
646 *	RETURN:	0 on success, error code on failure.
647 *
648 * Timestamps:
649 *	vp - ctime|mtime updated if byte count > 0
650 */
651
652/* ARGSUSED */
653static int
654zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
655{
656	znode_t		*zp = VTOZ(vp);
657	rlim64_t	limit = uio->uio_llimit;
658	ssize_t		start_resid = uio->uio_resid;
659	ssize_t		tx_bytes;
660	uint64_t	end_size;
661	dmu_tx_t	*tx;
662	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
663	zilog_t		*zilog;
664	offset_t	woff;
665	ssize_t		n, nbytes;
666	rl_t		*rl;
667	int		max_blksz = zfsvfs->z_max_blksz;
668	int		error = 0;
669	arc_buf_t	*abuf;
670	iovec_t		*aiov = NULL;
671	xuio_t		*xuio = NULL;
672	int		i_iov = 0;
673	int		iovcnt = uio->uio_iovcnt;
674	iovec_t		*iovp = uio->uio_iov;
675	int		write_eof;
676	int		count = 0;
677	sa_bulk_attr_t	bulk[4];
678	uint64_t	mtime[2], ctime[2];
679
680	/*
681	 * Fasttrack empty write
682	 */
683	n = start_resid;
684	if (n == 0)
685		return (0);
686
687	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
688		limit = MAXOFFSET_T;
689
690	ZFS_ENTER(zfsvfs);
691	ZFS_VERIFY_ZP(zp);
692
693	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
694	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
695	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
696	    &zp->z_size, 8);
697	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
698	    &zp->z_pflags, 8);
699
700	/*
701	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
702	 * callers might not be able to detect properly that we are read-only,
703	 * so check it explicitly here.
704	 */
705	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
706		ZFS_EXIT(zfsvfs);
707		return (SET_ERROR(EROFS));
708	}
709
710	/*
711	 * If immutable or not appending then return EPERM.
712	 * Intentionally allow ZFS_READONLY through here.
713	 * See zfs_zaccess_common()
714	 */
715	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
716	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
717	    (uio->uio_loffset < zp->z_size))) {
718		ZFS_EXIT(zfsvfs);
719		return (SET_ERROR(EPERM));
720	}
721
722	zilog = zfsvfs->z_log;
723
724	/*
725	 * Validate file offset
726	 */
727	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
728	if (woff < 0) {
729		ZFS_EXIT(zfsvfs);
730		return (SET_ERROR(EINVAL));
731	}
732
733	/*
734	 * Check for mandatory locks before calling zfs_range_lock()
735	 * in order to prevent a deadlock with locks set via fcntl().
736	 */
737	if (MANDMODE((mode_t)zp->z_mode) &&
738	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
739		ZFS_EXIT(zfsvfs);
740		return (error);
741	}
742
743	/*
744	 * Pre-fault the pages to ensure slow (eg NFS) pages
745	 * don't hold up txg.
746	 * Skip this if uio contains loaned arc_buf.
747	 */
748	if ((uio->uio_extflg == UIO_XUIO) &&
749	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
750		xuio = (xuio_t *)uio;
751	else
752		uio_prefaultpages(MIN(n, max_blksz), uio);
753
754	/*
755	 * If in append mode, set the io offset pointer to eof.
756	 */
757	if (ioflag & FAPPEND) {
758		/*
759		 * Obtain an appending range lock to guarantee file append
760		 * semantics.  We reset the write offset once we have the lock.
761		 */
762		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
763		woff = rl->r_off;
764		if (rl->r_len == UINT64_MAX) {
765			/*
766			 * We overlocked the file because this write will cause
767			 * the file block size to increase.
768			 * Note that zp_size cannot change with this lock held.
769			 */
770			woff = zp->z_size;
771		}
772		uio->uio_loffset = woff;
773	} else {
774		/*
775		 * Note that if the file block size will change as a result of
776		 * this write, then this range lock will lock the entire file
777		 * so that we can re-write the block safely.
778		 */
779		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
780	}
781
782	if (woff >= limit) {
783		zfs_range_unlock(rl);
784		ZFS_EXIT(zfsvfs);
785		return (SET_ERROR(EFBIG));
786	}
787
788	if ((woff + n) > limit || woff > (limit - n))
789		n = limit - woff;
790
791	/* Will this write extend the file length? */
792	write_eof = (woff + n > zp->z_size);
793
794	end_size = MAX(zp->z_size, woff + n);
795
796	/*
797	 * Write the file in reasonable size chunks.  Each chunk is written
798	 * in a separate transaction; this keeps the intent log records small
799	 * and allows us to do more fine-grained space accounting.
800	 */
801	while (n > 0) {
802		abuf = NULL;
803		woff = uio->uio_loffset;
804		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
805		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
806			if (abuf != NULL)
807				dmu_return_arcbuf(abuf);
808			error = SET_ERROR(EDQUOT);
809			break;
810		}
811
812		if (xuio && abuf == NULL) {
813			ASSERT(i_iov < iovcnt);
814			aiov = &iovp[i_iov];
815			abuf = dmu_xuio_arcbuf(xuio, i_iov);
816			dmu_xuio_clear(xuio, i_iov);
817			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
818			    iovec_t *, aiov, arc_buf_t *, abuf);
819			ASSERT((aiov->iov_base == abuf->b_data) ||
820			    ((char *)aiov->iov_base - (char *)abuf->b_data +
821			    aiov->iov_len == arc_buf_size(abuf)));
822			i_iov++;
823		} else if (abuf == NULL && n >= max_blksz &&
824		    woff >= zp->z_size &&
825		    P2PHASE(woff, max_blksz) == 0 &&
826		    zp->z_blksz == max_blksz) {
827			/*
828			 * This write covers a full block.  "Borrow" a buffer
829			 * from the dmu so that we can fill it before we enter
830			 * a transaction.  This avoids the possibility of
831			 * holding up the transaction if the data copy hangs
832			 * up on a pagefault (e.g., from an NFS server mapping).
833			 */
834			size_t cbytes;
835
836			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
837			    max_blksz);
838			ASSERT(abuf != NULL);
839			ASSERT(arc_buf_size(abuf) == max_blksz);
840			if (error = uiocopy(abuf->b_data, max_blksz,
841			    UIO_WRITE, uio, &cbytes)) {
842				dmu_return_arcbuf(abuf);
843				break;
844			}
845			ASSERT(cbytes == max_blksz);
846		}
847
848		/*
849		 * Start a transaction.
850		 */
851		tx = dmu_tx_create(zfsvfs->z_os);
852		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
853		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
854		zfs_sa_upgrade_txholds(tx, zp);
855		error = dmu_tx_assign(tx, TXG_WAIT);
856		if (error) {
857			dmu_tx_abort(tx);
858			if (abuf != NULL)
859				dmu_return_arcbuf(abuf);
860			break;
861		}
862
863		/*
864		 * If zfs_range_lock() over-locked we grow the blocksize
865		 * and then reduce the lock range.  This will only happen
866		 * on the first iteration since zfs_range_reduce() will
867		 * shrink down r_len to the appropriate size.
868		 */
869		if (rl->r_len == UINT64_MAX) {
870			uint64_t new_blksz;
871
872			if (zp->z_blksz > max_blksz) {
873				/*
874				 * File's blocksize is already larger than the
875				 * "recordsize" property.  Only let it grow to
876				 * the next power of 2.
877				 */
878				ASSERT(!ISP2(zp->z_blksz));
879				new_blksz = MIN(end_size,
880				    1 << highbit64(zp->z_blksz));
881			} else {
882				new_blksz = MIN(end_size, max_blksz);
883			}
884			zfs_grow_blocksize(zp, new_blksz, tx);
885			zfs_range_reduce(rl, woff, n);
886		}
887
888		/*
889		 * XXX - should we really limit each write to z_max_blksz?
890		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
891		 */
892		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
893
894		if (abuf == NULL) {
895			tx_bytes = uio->uio_resid;
896			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
897			    uio, nbytes, tx);
898			tx_bytes -= uio->uio_resid;
899		} else {
900			tx_bytes = nbytes;
901			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
902			/*
903			 * If this is not a full block write, but we are
904			 * extending the file past EOF and this data starts
905			 * block-aligned, use assign_arcbuf().  Otherwise,
906			 * write via dmu_write().
907			 */
908			if (tx_bytes < max_blksz && (!write_eof ||
909			    aiov->iov_base != abuf->b_data)) {
910				ASSERT(xuio);
911				dmu_write(zfsvfs->z_os, zp->z_id, woff,
912				    aiov->iov_len, aiov->iov_base, tx);
913				dmu_return_arcbuf(abuf);
914				xuio_stat_wbuf_copied();
915			} else {
916				ASSERT(xuio || tx_bytes == max_blksz);
917				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
918				    woff, abuf, tx);
919			}
920			ASSERT(tx_bytes <= uio->uio_resid);
921			uioskip(uio, tx_bytes);
922		}
923		if (tx_bytes && vn_has_cached_data(vp)) {
924			update_pages(vp, woff,
925			    tx_bytes, zfsvfs->z_os, zp->z_id);
926		}
927
928		/*
929		 * If we made no progress, we're done.  If we made even
930		 * partial progress, update the znode and ZIL accordingly.
931		 */
932		if (tx_bytes == 0) {
933			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
934			    (void *)&zp->z_size, sizeof (uint64_t), tx);
935			dmu_tx_commit(tx);
936			ASSERT(error != 0);
937			break;
938		}
939
940		/*
941		 * Clear Set-UID/Set-GID bits on successful write if not
942		 * privileged and at least one of the excute bits is set.
943		 *
944		 * It would be nice to to this after all writes have
945		 * been done, but that would still expose the ISUID/ISGID
946		 * to another app after the partial write is committed.
947		 *
948		 * Note: we don't call zfs_fuid_map_id() here because
949		 * user 0 is not an ephemeral uid.
950		 */
951		mutex_enter(&zp->z_acl_lock);
952		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
953		    (S_IXUSR >> 6))) != 0 &&
954		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
955		    secpolicy_vnode_setid_retain(cr,
956		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
957			uint64_t newmode;
958			zp->z_mode &= ~(S_ISUID | S_ISGID);
959			newmode = zp->z_mode;
960			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
961			    (void *)&newmode, sizeof (uint64_t), tx);
962		}
963		mutex_exit(&zp->z_acl_lock);
964
965		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
966		    B_TRUE);
967
968		/*
969		 * Update the file size (zp_size) if it has changed;
970		 * account for possible concurrent updates.
971		 */
972		while ((end_size = zp->z_size) < uio->uio_loffset) {
973			(void) atomic_cas_64(&zp->z_size, end_size,
974			    uio->uio_loffset);
975			ASSERT(error == 0);
976		}
977		/*
978		 * If we are replaying and eof is non zero then force
979		 * the file size to the specified eof. Note, there's no
980		 * concurrency during replay.
981		 */
982		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
983			zp->z_size = zfsvfs->z_replay_eof;
984
985		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
986
987		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
988		dmu_tx_commit(tx);
989
990		if (error != 0)
991			break;
992		ASSERT(tx_bytes == nbytes);
993		n -= nbytes;
994
995		if (!xuio && n > 0)
996			uio_prefaultpages(MIN(n, max_blksz), uio);
997	}
998
999	zfs_range_unlock(rl);
1000
1001	/*
1002	 * If we're in replay mode, or we made no progress, return error.
1003	 * Otherwise, it's at least a partial write, so it's successful.
1004	 */
1005	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1006		ZFS_EXIT(zfsvfs);
1007		return (error);
1008	}
1009
1010	if (ioflag & (FSYNC | FDSYNC) ||
1011	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1012		zil_commit(zilog, zp->z_id);
1013
1014	ZFS_EXIT(zfsvfs);
1015	return (0);
1016}
1017
1018void
1019zfs_get_done(zgd_t *zgd, int error)
1020{
1021	znode_t *zp = zgd->zgd_private;
1022	objset_t *os = zp->z_zfsvfs->z_os;
1023
1024	if (zgd->zgd_db)
1025		dmu_buf_rele(zgd->zgd_db, zgd);
1026
1027	zfs_range_unlock(zgd->zgd_rl);
1028
1029	/*
1030	 * Release the vnode asynchronously as we currently have the
1031	 * txg stopped from syncing.
1032	 */
1033	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1034
1035	if (error == 0 && zgd->zgd_bp)
1036		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1037
1038	kmem_free(zgd, sizeof (zgd_t));
1039}
1040
1041#ifdef DEBUG
1042static int zil_fault_io = 0;
1043#endif
1044
1045/*
1046 * Get data to generate a TX_WRITE intent log record.
1047 */
1048int
1049zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1050{
1051	zfsvfs_t *zfsvfs = arg;
1052	objset_t *os = zfsvfs->z_os;
1053	znode_t *zp;
1054	uint64_t object = lr->lr_foid;
1055	uint64_t offset = lr->lr_offset;
1056	uint64_t size = lr->lr_length;
1057	dmu_buf_t *db;
1058	zgd_t *zgd;
1059	int error = 0;
1060
1061	ASSERT3P(lwb, !=, NULL);
1062	ASSERT3P(zio, !=, NULL);
1063	ASSERT3U(size, !=, 0);
1064
1065	/*
1066	 * Nothing to do if the file has been removed
1067	 */
1068	if (zfs_zget(zfsvfs, object, &zp) != 0)
1069		return (SET_ERROR(ENOENT));
1070	if (zp->z_unlinked) {
1071		/*
1072		 * Release the vnode asynchronously as we currently have the
1073		 * txg stopped from syncing.
1074		 */
1075		VN_RELE_ASYNC(ZTOV(zp),
1076		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1077		return (SET_ERROR(ENOENT));
1078	}
1079
1080	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1081	zgd->zgd_lwb = lwb;
1082	zgd->zgd_private = zp;
1083
1084	/*
1085	 * Write records come in two flavors: immediate and indirect.
1086	 * For small writes it's cheaper to store the data with the
1087	 * log record (immediate); for large writes it's cheaper to
1088	 * sync the data and get a pointer to it (indirect) so that
1089	 * we don't have to write the data twice.
1090	 */
1091	if (buf != NULL) { /* immediate write */
1092		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1093		/* test for truncation needs to be done while range locked */
1094		if (offset >= zp->z_size) {
1095			error = SET_ERROR(ENOENT);
1096		} else {
1097			error = dmu_read(os, object, offset, size, buf,
1098			    DMU_READ_NO_PREFETCH);
1099		}
1100		ASSERT(error == 0 || error == ENOENT);
1101	} else { /* indirect write */
1102		/*
1103		 * Have to lock the whole block to ensure when it's
1104		 * written out and its checksum is being calculated
1105		 * that no one can change the data. We need to re-check
1106		 * blocksize after we get the lock in case it's changed!
1107		 */
1108		for (;;) {
1109			uint64_t blkoff;
1110			size = zp->z_blksz;
1111			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1112			offset -= blkoff;
1113			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1114			    RL_READER);
1115			if (zp->z_blksz == size)
1116				break;
1117			offset += blkoff;
1118			zfs_range_unlock(zgd->zgd_rl);
1119		}
1120		/* test for truncation needs to be done while range locked */
1121		if (lr->lr_offset >= zp->z_size)
1122			error = SET_ERROR(ENOENT);
1123#ifdef DEBUG
1124		if (zil_fault_io) {
1125			error = SET_ERROR(EIO);
1126			zil_fault_io = 0;
1127		}
1128#endif
1129		if (error == 0)
1130			error = dmu_buf_hold(os, object, offset, zgd, &db,
1131			    DMU_READ_NO_PREFETCH);
1132
1133		if (error == 0) {
1134			blkptr_t *bp = &lr->lr_blkptr;
1135
1136			zgd->zgd_db = db;
1137			zgd->zgd_bp = bp;
1138
1139			ASSERT(db->db_offset == offset);
1140			ASSERT(db->db_size == size);
1141
1142			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143			    zfs_get_done, zgd);
1144			ASSERT(error || lr->lr_length <= size);
1145
1146			/*
1147			 * On success, we need to wait for the write I/O
1148			 * initiated by dmu_sync() to complete before we can
1149			 * release this dbuf.  We will finish everything up
1150			 * in the zfs_get_done() callback.
1151			 */
1152			if (error == 0)
1153				return (0);
1154
1155			if (error == EALREADY) {
1156				lr->lr_common.lrc_txtype = TX_WRITE2;
1157				error = 0;
1158			}
1159		}
1160	}
1161
1162	zfs_get_done(zgd, error);
1163
1164	return (error);
1165}
1166
1167/*ARGSUSED*/
1168static int
1169zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170    caller_context_t *ct)
1171{
1172	znode_t *zp = VTOZ(vp);
1173	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174	int error;
1175
1176	ZFS_ENTER(zfsvfs);
1177	ZFS_VERIFY_ZP(zp);
1178
1179	if (flag & V_ACE_MASK)
1180		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181	else
1182		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183
1184	ZFS_EXIT(zfsvfs);
1185	return (error);
1186}
1187
1188/*
1189 * If vnode is for a device return a specfs vnode instead.
1190 */
1191static int
1192specvp_check(vnode_t **vpp, cred_t *cr)
1193{
1194	int error = 0;
1195
1196	if (IS_DEVVP(*vpp)) {
1197		struct vnode *svp;
1198
1199		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200		VN_RELE(*vpp);
1201		if (svp == NULL)
1202			error = SET_ERROR(ENOSYS);
1203		*vpp = svp;
1204	}
1205	return (error);
1206}
1207
1208
1209/*
1210 * Lookup an entry in a directory, or an extended attribute directory.
1211 * If it exists, return a held vnode reference for it.
1212 *
1213 *	IN:	dvp	- vnode of directory to search.
1214 *		nm	- name of entry to lookup.
1215 *		pnp	- full pathname to lookup [UNUSED].
1216 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1217 *		rdir	- root directory vnode [UNUSED].
1218 *		cr	- credentials of caller.
1219 *		ct	- caller context
1220 *		direntflags - directory lookup flags
1221 *		realpnp - returned pathname.
1222 *
1223 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1224 *
1225 *	RETURN:	0 on success, error code on failure.
1226 *
1227 * Timestamps:
1228 *	NA
1229 */
1230/* ARGSUSED */
1231static int
1232zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233    int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1234    int *direntflags, pathname_t *realpnp)
1235{
1236	znode_t *zdp = VTOZ(dvp);
1237	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238	int	error = 0;
1239
1240	/*
1241	 * Fast path lookup, however we must skip DNLC lookup
1242	 * for case folding or normalizing lookups because the
1243	 * DNLC code only stores the passed in name.  This means
1244	 * creating 'a' and removing 'A' on a case insensitive
1245	 * file system would work, but DNLC still thinks 'a'
1246	 * exists and won't let you create it again on the next
1247	 * pass through fast path.
1248	 */
1249	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1250
1251		if (dvp->v_type != VDIR) {
1252			return (SET_ERROR(ENOTDIR));
1253		} else if (zdp->z_sa_hdl == NULL) {
1254			return (SET_ERROR(EIO));
1255		}
1256
1257		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1258			error = zfs_fastaccesschk_execute(zdp, cr);
1259			if (!error) {
1260				*vpp = dvp;
1261				VN_HOLD(*vpp);
1262				return (0);
1263			}
1264			return (error);
1265		} else if (!zdp->z_zfsvfs->z_norm &&
1266		    (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1267
1268			vnode_t *tvp = dnlc_lookup(dvp, nm);
1269
1270			if (tvp) {
1271				error = zfs_fastaccesschk_execute(zdp, cr);
1272				if (error) {
1273					VN_RELE(tvp);
1274					return (error);
1275				}
1276				if (tvp == DNLC_NO_VNODE) {
1277					VN_RELE(tvp);
1278					return (SET_ERROR(ENOENT));
1279				} else {
1280					*vpp = tvp;
1281					return (specvp_check(vpp, cr));
1282				}
1283			}
1284		}
1285	}
1286
1287	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1288
1289	ZFS_ENTER(zfsvfs);
1290	ZFS_VERIFY_ZP(zdp);
1291
1292	*vpp = NULL;
1293
1294	if (flags & LOOKUP_XATTR) {
1295		/*
1296		 * If the xattr property is off, refuse the lookup request.
1297		 */
1298		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1299			ZFS_EXIT(zfsvfs);
1300			return (SET_ERROR(EINVAL));
1301		}
1302
1303		/*
1304		 * We don't allow recursive attributes..
1305		 * Maybe someday we will.
1306		 */
1307		if (zdp->z_pflags & ZFS_XATTR) {
1308			ZFS_EXIT(zfsvfs);
1309			return (SET_ERROR(EINVAL));
1310		}
1311
1312		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1313			ZFS_EXIT(zfsvfs);
1314			return (error);
1315		}
1316
1317		/*
1318		 * Do we have permission to get into attribute directory?
1319		 */
1320
1321		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1322		    B_FALSE, cr)) {
1323			VN_RELE(*vpp);
1324			*vpp = NULL;
1325		}
1326
1327		ZFS_EXIT(zfsvfs);
1328		return (error);
1329	}
1330
1331	if (dvp->v_type != VDIR) {
1332		ZFS_EXIT(zfsvfs);
1333		return (SET_ERROR(ENOTDIR));
1334	}
1335
1336	/*
1337	 * Check accessibility of directory.
1338	 */
1339
1340	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1341		ZFS_EXIT(zfsvfs);
1342		return (error);
1343	}
1344
1345	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1346	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1347		ZFS_EXIT(zfsvfs);
1348		return (SET_ERROR(EILSEQ));
1349	}
1350
1351	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1352	if (error == 0)
1353		error = specvp_check(vpp, cr);
1354
1355	ZFS_EXIT(zfsvfs);
1356	return (error);
1357}
1358
1359/*
1360 * Attempt to create a new entry in a directory.  If the entry
1361 * already exists, truncate the file if permissible, else return
1362 * an error.  Return the vp of the created or trunc'd file.
1363 *
1364 *	IN:	dvp	- vnode of directory to put new file entry in.
1365 *		name	- name of new file entry.
1366 *		vap	- attributes of new file.
1367 *		excl	- flag indicating exclusive or non-exclusive mode.
1368 *		mode	- mode to open file with.
1369 *		cr	- credentials of caller.
1370 *		flag	- large file flag [UNUSED].
1371 *		ct	- caller context
1372 *		vsecp	- ACL to be set
1373 *
1374 *	OUT:	vpp	- vnode of created or trunc'd entry.
1375 *
1376 *	RETURN:	0 on success, error code on failure.
1377 *
1378 * Timestamps:
1379 *	dvp - ctime|mtime updated if new entry created
1380 *	 vp - ctime|mtime always, atime if new
1381 */
1382
1383/* ARGSUSED */
1384static int
1385zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1386    int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1387    vsecattr_t *vsecp)
1388{
1389	znode_t		*zp, *dzp = VTOZ(dvp);
1390	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1391	zilog_t		*zilog;
1392	objset_t	*os;
1393	zfs_dirlock_t	*dl;
1394	dmu_tx_t	*tx;
1395	int		error;
1396	ksid_t		*ksid;
1397	uid_t		uid;
1398	gid_t		gid = crgetgid(cr);
1399	zfs_acl_ids_t   acl_ids;
1400	boolean_t	fuid_dirtied;
1401	boolean_t	have_acl = B_FALSE;
1402	boolean_t	waited = B_FALSE;
1403
1404	/*
1405	 * If we have an ephemeral id, ACL, or XVATTR then
1406	 * make sure file system is at proper version
1407	 */
1408
1409	ksid = crgetsid(cr, KSID_OWNER);
1410	if (ksid)
1411		uid = ksid_getid(ksid);
1412	else
1413		uid = crgetuid(cr);
1414
1415	if (zfsvfs->z_use_fuids == B_FALSE &&
1416	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1417	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1418		return (SET_ERROR(EINVAL));
1419
1420	ZFS_ENTER(zfsvfs);
1421	ZFS_VERIFY_ZP(dzp);
1422	os = zfsvfs->z_os;
1423	zilog = zfsvfs->z_log;
1424
1425	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1426	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1427		ZFS_EXIT(zfsvfs);
1428		return (SET_ERROR(EILSEQ));
1429	}
1430
1431	if (vap->va_mask & AT_XVATTR) {
1432		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1433		    crgetuid(cr), cr, vap->va_type)) != 0) {
1434			ZFS_EXIT(zfsvfs);
1435			return (error);
1436		}
1437	}
1438top:
1439	*vpp = NULL;
1440
1441	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1442		vap->va_mode &= ~VSVTX;
1443
1444	if (*name == '\0') {
1445		/*
1446		 * Null component name refers to the directory itself.
1447		 */
1448		VN_HOLD(dvp);
1449		zp = dzp;
1450		dl = NULL;
1451		error = 0;
1452	} else {
1453		/* possible VN_HOLD(zp) */
1454		int zflg = 0;
1455
1456		if (flag & FIGNORECASE)
1457			zflg |= ZCILOOK;
1458
1459		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1460		    NULL, NULL);
1461		if (error) {
1462			if (have_acl)
1463				zfs_acl_ids_free(&acl_ids);
1464			if (strcmp(name, "..") == 0)
1465				error = SET_ERROR(EISDIR);
1466			ZFS_EXIT(zfsvfs);
1467			return (error);
1468		}
1469	}
1470
1471	if (zp == NULL) {
1472		uint64_t txtype;
1473
1474		/*
1475		 * Create a new file object and update the directory
1476		 * to reference it.
1477		 */
1478		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1479			if (have_acl)
1480				zfs_acl_ids_free(&acl_ids);
1481			goto out;
1482		}
1483
1484		/*
1485		 * We only support the creation of regular files in
1486		 * extended attribute directories.
1487		 */
1488
1489		if ((dzp->z_pflags & ZFS_XATTR) &&
1490		    (vap->va_type != VREG)) {
1491			if (have_acl)
1492				zfs_acl_ids_free(&acl_ids);
1493			error = SET_ERROR(EINVAL);
1494			goto out;
1495		}
1496
1497		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1498		    cr, vsecp, &acl_ids)) != 0)
1499			goto out;
1500		have_acl = B_TRUE;
1501
1502		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1503			zfs_acl_ids_free(&acl_ids);
1504			error = SET_ERROR(EDQUOT);
1505			goto out;
1506		}
1507
1508		tx = dmu_tx_create(os);
1509
1510		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1511		    ZFS_SA_BASE_ATTR_SIZE);
1512
1513		fuid_dirtied = zfsvfs->z_fuid_dirty;
1514		if (fuid_dirtied)
1515			zfs_fuid_txhold(zfsvfs, tx);
1516		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1517		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1518		if (!zfsvfs->z_use_sa &&
1519		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1520			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1521			    0, acl_ids.z_aclp->z_acl_bytes);
1522		}
1523		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1524		if (error) {
1525			zfs_dirent_unlock(dl);
1526			if (error == ERESTART) {
1527				waited = B_TRUE;
1528				dmu_tx_wait(tx);
1529				dmu_tx_abort(tx);
1530				goto top;
1531			}
1532			zfs_acl_ids_free(&acl_ids);
1533			dmu_tx_abort(tx);
1534			ZFS_EXIT(zfsvfs);
1535			return (error);
1536		}
1537		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1538
1539		if (fuid_dirtied)
1540			zfs_fuid_sync(zfsvfs, tx);
1541
1542		(void) zfs_link_create(dl, zp, tx, ZNEW);
1543		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1544		if (flag & FIGNORECASE)
1545			txtype |= TX_CI;
1546		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1547		    vsecp, acl_ids.z_fuidp, vap);
1548		zfs_acl_ids_free(&acl_ids);
1549		dmu_tx_commit(tx);
1550	} else {
1551		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1552
1553		if (have_acl)
1554			zfs_acl_ids_free(&acl_ids);
1555		have_acl = B_FALSE;
1556
1557		/*
1558		 * A directory entry already exists for this name.
1559		 */
1560		/*
1561		 * Can't truncate an existing file if in exclusive mode.
1562		 */
1563		if (excl == EXCL) {
1564			error = SET_ERROR(EEXIST);
1565			goto out;
1566		}
1567		/*
1568		 * Can't open a directory for writing.
1569		 */
1570		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1571			error = SET_ERROR(EISDIR);
1572			goto out;
1573		}
1574		/*
1575		 * Verify requested access to file.
1576		 */
1577		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1578			goto out;
1579		}
1580
1581		mutex_enter(&dzp->z_lock);
1582		dzp->z_seq++;
1583		mutex_exit(&dzp->z_lock);
1584
1585		/*
1586		 * Truncate regular files if requested.
1587		 */
1588		if ((ZTOV(zp)->v_type == VREG) &&
1589		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1590			/* we can't hold any locks when calling zfs_freesp() */
1591			zfs_dirent_unlock(dl);
1592			dl = NULL;
1593			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1594			if (error == 0) {
1595				vnevent_create(ZTOV(zp), ct);
1596			}
1597		}
1598	}
1599out:
1600
1601	if (dl)
1602		zfs_dirent_unlock(dl);
1603
1604	if (error) {
1605		if (zp)
1606			VN_RELE(ZTOV(zp));
1607	} else {
1608		*vpp = ZTOV(zp);
1609		error = specvp_check(vpp, cr);
1610	}
1611
1612	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1613		zil_commit(zilog, 0);
1614
1615	ZFS_EXIT(zfsvfs);
1616	return (error);
1617}
1618
1619/*
1620 * Remove an entry from a directory.
1621 *
1622 *	IN:	dvp	- vnode of directory to remove entry from.
1623 *		name	- name of entry to remove.
1624 *		cr	- credentials of caller.
1625 *		ct	- caller context
1626 *		flags	- case flags
1627 *
1628 *	RETURN:	0 on success, error code on failure.
1629 *
1630 * Timestamps:
1631 *	dvp - ctime|mtime
1632 *	 vp - ctime (if nlink > 0)
1633 */
1634
1635uint64_t null_xattr = 0;
1636
1637/*ARGSUSED*/
1638static int
1639zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1640    int flags)
1641{
1642	znode_t		*zp, *dzp = VTOZ(dvp);
1643	znode_t		*xzp;
1644	vnode_t		*vp;
1645	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1646	zilog_t		*zilog;
1647	uint64_t	acl_obj, xattr_obj;
1648	uint64_t	xattr_obj_unlinked = 0;
1649	uint64_t	obj = 0;
1650	zfs_dirlock_t	*dl;
1651	dmu_tx_t	*tx;
1652	boolean_t	may_delete_now, delete_now = FALSE;
1653	boolean_t	unlinked, toobig = FALSE;
1654	uint64_t	txtype;
1655	pathname_t	*realnmp = NULL;
1656	pathname_t	realnm;
1657	int		error;
1658	int		zflg = ZEXISTS;
1659	boolean_t	waited = B_FALSE;
1660
1661	ZFS_ENTER(zfsvfs);
1662	ZFS_VERIFY_ZP(dzp);
1663	zilog = zfsvfs->z_log;
1664
1665	if (flags & FIGNORECASE) {
1666		zflg |= ZCILOOK;
1667		pn_alloc(&realnm);
1668		realnmp = &realnm;
1669	}
1670
1671top:
1672	xattr_obj = 0;
1673	xzp = NULL;
1674	/*
1675	 * Attempt to lock directory; fail if entry doesn't exist.
1676	 */
1677	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1678	    NULL, realnmp)) {
1679		if (realnmp)
1680			pn_free(realnmp);
1681		ZFS_EXIT(zfsvfs);
1682		return (error);
1683	}
1684
1685	vp = ZTOV(zp);
1686
1687	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1688		goto out;
1689	}
1690
1691	/*
1692	 * Need to use rmdir for removing directories.
1693	 */
1694	if (vp->v_type == VDIR) {
1695		error = SET_ERROR(EPERM);
1696		goto out;
1697	}
1698
1699	vnevent_remove(vp, dvp, name, ct);
1700
1701	if (realnmp)
1702		dnlc_remove(dvp, realnmp->pn_buf);
1703	else
1704		dnlc_remove(dvp, name);
1705
1706	mutex_enter(&vp->v_lock);
1707	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1708	mutex_exit(&vp->v_lock);
1709
1710	/*
1711	 * We may delete the znode now, or we may put it in the unlinked set;
1712	 * it depends on whether we're the last link, and on whether there are
1713	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1714	 * allow for either case.
1715	 */
1716	obj = zp->z_id;
1717	tx = dmu_tx_create(zfsvfs->z_os);
1718	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1719	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1720	zfs_sa_upgrade_txholds(tx, zp);
1721	zfs_sa_upgrade_txholds(tx, dzp);
1722	if (may_delete_now) {
1723		toobig =
1724		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1725		/* if the file is too big, only hold_free a token amount */
1726		dmu_tx_hold_free(tx, zp->z_id, 0,
1727		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1728	}
1729
1730	/* are there any extended attributes? */
1731	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1732	    &xattr_obj, sizeof (xattr_obj));
1733	if (error == 0 && xattr_obj) {
1734		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1735		ASSERT0(error);
1736		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1737		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1738	}
1739
1740	mutex_enter(&zp->z_lock);
1741	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1742		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1743	mutex_exit(&zp->z_lock);
1744
1745	/* charge as an update -- would be nice not to charge at all */
1746	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1747
1748	/*
1749	 * Mark this transaction as typically resulting in a net free of space
1750	 */
1751	dmu_tx_mark_netfree(tx);
1752
1753	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1754	if (error) {
1755		zfs_dirent_unlock(dl);
1756		VN_RELE(vp);
1757		if (xzp)
1758			VN_RELE(ZTOV(xzp));
1759		if (error == ERESTART) {
1760			waited = B_TRUE;
1761			dmu_tx_wait(tx);
1762			dmu_tx_abort(tx);
1763			goto top;
1764		}
1765		if (realnmp)
1766			pn_free(realnmp);
1767		dmu_tx_abort(tx);
1768		ZFS_EXIT(zfsvfs);
1769		return (error);
1770	}
1771
1772	/*
1773	 * Remove the directory entry.
1774	 */
1775	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1776
1777	if (error) {
1778		dmu_tx_commit(tx);
1779		goto out;
1780	}
1781
1782	if (unlinked) {
1783		/*
1784		 * Hold z_lock so that we can make sure that the ACL obj
1785		 * hasn't changed.  Could have been deleted due to
1786		 * zfs_sa_upgrade().
1787		 */
1788		mutex_enter(&zp->z_lock);
1789		mutex_enter(&vp->v_lock);
1790		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1791		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1792		delete_now = may_delete_now && !toobig &&
1793		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1794		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1795		    acl_obj;
1796		mutex_exit(&vp->v_lock);
1797	}
1798
1799	if (delete_now) {
1800		if (xattr_obj_unlinked) {
1801			ASSERT3U(xzp->z_links, ==, 2);
1802			mutex_enter(&xzp->z_lock);
1803			xzp->z_unlinked = 1;
1804			xzp->z_links = 0;
1805			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1806			    &xzp->z_links, sizeof (xzp->z_links), tx);
1807			ASSERT3U(error,  ==,  0);
1808			mutex_exit(&xzp->z_lock);
1809			zfs_unlinked_add(xzp, tx);
1810
1811			if (zp->z_is_sa)
1812				error = sa_remove(zp->z_sa_hdl,
1813				    SA_ZPL_XATTR(zfsvfs), tx);
1814			else
1815				error = sa_update(zp->z_sa_hdl,
1816				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1817				    sizeof (uint64_t), tx);
1818			ASSERT0(error);
1819		}
1820		mutex_enter(&vp->v_lock);
1821		VN_RELE_LOCKED(vp);
1822		ASSERT0(vp->v_count);
1823		mutex_exit(&vp->v_lock);
1824		mutex_exit(&zp->z_lock);
1825		zfs_znode_delete(zp, tx);
1826	} else if (unlinked) {
1827		mutex_exit(&zp->z_lock);
1828		zfs_unlinked_add(zp, tx);
1829	}
1830
1831	txtype = TX_REMOVE;
1832	if (flags & FIGNORECASE)
1833		txtype |= TX_CI;
1834	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1835
1836	dmu_tx_commit(tx);
1837out:
1838	if (realnmp)
1839		pn_free(realnmp);
1840
1841	zfs_dirent_unlock(dl);
1842
1843	if (!delete_now)
1844		VN_RELE(vp);
1845	if (xzp)
1846		VN_RELE(ZTOV(xzp));
1847
1848	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1849		zil_commit(zilog, 0);
1850
1851	ZFS_EXIT(zfsvfs);
1852	return (error);
1853}
1854
1855/*
1856 * Create a new directory and insert it into dvp using the name
1857 * provided.  Return a pointer to the inserted directory.
1858 *
1859 *	IN:	dvp	- vnode of directory to add subdir to.
1860 *		dirname	- name of new directory.
1861 *		vap	- attributes of new directory.
1862 *		cr	- credentials of caller.
1863 *		ct	- caller context
1864 *		flags	- case flags
1865 *		vsecp	- ACL to be set
1866 *
1867 *	OUT:	vpp	- vnode of created directory.
1868 *
1869 *	RETURN:	0 on success, error code on failure.
1870 *
1871 * Timestamps:
1872 *	dvp - ctime|mtime updated
1873 *	 vp - ctime|mtime|atime updated
1874 */
1875/*ARGSUSED*/
1876static int
1877zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1878    caller_context_t *ct, int flags, vsecattr_t *vsecp)
1879{
1880	znode_t		*zp, *dzp = VTOZ(dvp);
1881	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1882	zilog_t		*zilog;
1883	zfs_dirlock_t	*dl;
1884	uint64_t	txtype;
1885	dmu_tx_t	*tx;
1886	int		error;
1887	int		zf = ZNEW;
1888	ksid_t		*ksid;
1889	uid_t		uid;
1890	gid_t		gid = crgetgid(cr);
1891	zfs_acl_ids_t   acl_ids;
1892	boolean_t	fuid_dirtied;
1893	boolean_t	waited = B_FALSE;
1894
1895	ASSERT(vap->va_type == VDIR);
1896
1897	/*
1898	 * If we have an ephemeral id, ACL, or XVATTR then
1899	 * make sure file system is at proper version
1900	 */
1901
1902	ksid = crgetsid(cr, KSID_OWNER);
1903	if (ksid)
1904		uid = ksid_getid(ksid);
1905	else
1906		uid = crgetuid(cr);
1907	if (zfsvfs->z_use_fuids == B_FALSE &&
1908	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1909	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1910		return (SET_ERROR(EINVAL));
1911
1912	ZFS_ENTER(zfsvfs);
1913	ZFS_VERIFY_ZP(dzp);
1914	zilog = zfsvfs->z_log;
1915
1916	if (dzp->z_pflags & ZFS_XATTR) {
1917		ZFS_EXIT(zfsvfs);
1918		return (SET_ERROR(EINVAL));
1919	}
1920
1921	if (zfsvfs->z_utf8 && u8_validate(dirname,
1922	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1923		ZFS_EXIT(zfsvfs);
1924		return (SET_ERROR(EILSEQ));
1925	}
1926	if (flags & FIGNORECASE)
1927		zf |= ZCILOOK;
1928
1929	if (vap->va_mask & AT_XVATTR) {
1930		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1931		    crgetuid(cr), cr, vap->va_type)) != 0) {
1932			ZFS_EXIT(zfsvfs);
1933			return (error);
1934		}
1935	}
1936
1937	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1938	    vsecp, &acl_ids)) != 0) {
1939		ZFS_EXIT(zfsvfs);
1940		return (error);
1941	}
1942	/*
1943	 * First make sure the new directory doesn't exist.
1944	 *
1945	 * Existence is checked first to make sure we don't return
1946	 * EACCES instead of EEXIST which can cause some applications
1947	 * to fail.
1948	 */
1949top:
1950	*vpp = NULL;
1951
1952	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1953	    NULL, NULL)) {
1954		zfs_acl_ids_free(&acl_ids);
1955		ZFS_EXIT(zfsvfs);
1956		return (error);
1957	}
1958
1959	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1960		zfs_acl_ids_free(&acl_ids);
1961		zfs_dirent_unlock(dl);
1962		ZFS_EXIT(zfsvfs);
1963		return (error);
1964	}
1965
1966	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1967		zfs_acl_ids_free(&acl_ids);
1968		zfs_dirent_unlock(dl);
1969		ZFS_EXIT(zfsvfs);
1970		return (SET_ERROR(EDQUOT));
1971	}
1972
1973	/*
1974	 * Add a new entry to the directory.
1975	 */
1976	tx = dmu_tx_create(zfsvfs->z_os);
1977	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1978	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1979	fuid_dirtied = zfsvfs->z_fuid_dirty;
1980	if (fuid_dirtied)
1981		zfs_fuid_txhold(zfsvfs, tx);
1982	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1983		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1984		    acl_ids.z_aclp->z_acl_bytes);
1985	}
1986
1987	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1988	    ZFS_SA_BASE_ATTR_SIZE);
1989
1990	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1991	if (error) {
1992		zfs_dirent_unlock(dl);
1993		if (error == ERESTART) {
1994			waited = B_TRUE;
1995			dmu_tx_wait(tx);
1996			dmu_tx_abort(tx);
1997			goto top;
1998		}
1999		zfs_acl_ids_free(&acl_ids);
2000		dmu_tx_abort(tx);
2001		ZFS_EXIT(zfsvfs);
2002		return (error);
2003	}
2004
2005	/*
2006	 * Create new node.
2007	 */
2008	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2009
2010	if (fuid_dirtied)
2011		zfs_fuid_sync(zfsvfs, tx);
2012
2013	/*
2014	 * Now put new name in parent dir.
2015	 */
2016	(void) zfs_link_create(dl, zp, tx, ZNEW);
2017
2018	*vpp = ZTOV(zp);
2019
2020	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2021	if (flags & FIGNORECASE)
2022		txtype |= TX_CI;
2023	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2024	    acl_ids.z_fuidp, vap);
2025
2026	zfs_acl_ids_free(&acl_ids);
2027
2028	dmu_tx_commit(tx);
2029
2030	zfs_dirent_unlock(dl);
2031
2032	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2033		zil_commit(zilog, 0);
2034
2035	ZFS_EXIT(zfsvfs);
2036	return (0);
2037}
2038
2039/*
2040 * Remove a directory subdir entry.  If the current working
2041 * directory is the same as the subdir to be removed, the
2042 * remove will fail.
2043 *
2044 *	IN:	dvp	- vnode of directory to remove from.
2045 *		name	- name of directory to be removed.
2046 *		cwd	- vnode of current working directory.
2047 *		cr	- credentials of caller.
2048 *		ct	- caller context
2049 *		flags	- case flags
2050 *
2051 *	RETURN:	0 on success, error code on failure.
2052 *
2053 * Timestamps:
2054 *	dvp - ctime|mtime updated
2055 */
2056/*ARGSUSED*/
2057static int
2058zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2059    caller_context_t *ct, int flags)
2060{
2061	znode_t		*dzp = VTOZ(dvp);
2062	znode_t		*zp;
2063	vnode_t		*vp;
2064	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2065	zilog_t		*zilog;
2066	zfs_dirlock_t	*dl;
2067	dmu_tx_t	*tx;
2068	int		error;
2069	int		zflg = ZEXISTS;
2070	boolean_t	waited = B_FALSE;
2071
2072	ZFS_ENTER(zfsvfs);
2073	ZFS_VERIFY_ZP(dzp);
2074	zilog = zfsvfs->z_log;
2075
2076	if (flags & FIGNORECASE)
2077		zflg |= ZCILOOK;
2078top:
2079	zp = NULL;
2080
2081	/*
2082	 * Attempt to lock directory; fail if entry doesn't exist.
2083	 */
2084	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2085	    NULL, NULL)) {
2086		ZFS_EXIT(zfsvfs);
2087		return (error);
2088	}
2089
2090	vp = ZTOV(zp);
2091
2092	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2093		goto out;
2094	}
2095
2096	if (vp->v_type != VDIR) {
2097		error = SET_ERROR(ENOTDIR);
2098		goto out;
2099	}
2100
2101	if (vp == cwd) {
2102		error = SET_ERROR(EINVAL);
2103		goto out;
2104	}
2105
2106	vnevent_rmdir(vp, dvp, name, ct);
2107
2108	/*
2109	 * Grab a lock on the directory to make sure that noone is
2110	 * trying to add (or lookup) entries while we are removing it.
2111	 */
2112	rw_enter(&zp->z_name_lock, RW_WRITER);
2113
2114	/*
2115	 * Grab a lock on the parent pointer to make sure we play well
2116	 * with the treewalk and directory rename code.
2117	 */
2118	rw_enter(&zp->z_parent_lock, RW_WRITER);
2119
2120	tx = dmu_tx_create(zfsvfs->z_os);
2121	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2122	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2123	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2124	zfs_sa_upgrade_txholds(tx, zp);
2125	zfs_sa_upgrade_txholds(tx, dzp);
2126	dmu_tx_mark_netfree(tx);
2127	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2128	if (error) {
2129		rw_exit(&zp->z_parent_lock);
2130		rw_exit(&zp->z_name_lock);
2131		zfs_dirent_unlock(dl);
2132		VN_RELE(vp);
2133		if (error == ERESTART) {
2134			waited = B_TRUE;
2135			dmu_tx_wait(tx);
2136			dmu_tx_abort(tx);
2137			goto top;
2138		}
2139		dmu_tx_abort(tx);
2140		ZFS_EXIT(zfsvfs);
2141		return (error);
2142	}
2143
2144	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2145
2146	if (error == 0) {
2147		uint64_t txtype = TX_RMDIR;
2148		if (flags & FIGNORECASE)
2149			txtype |= TX_CI;
2150		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2151	}
2152
2153	dmu_tx_commit(tx);
2154
2155	rw_exit(&zp->z_parent_lock);
2156	rw_exit(&zp->z_name_lock);
2157out:
2158	zfs_dirent_unlock(dl);
2159
2160	VN_RELE(vp);
2161
2162	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2163		zil_commit(zilog, 0);
2164
2165	ZFS_EXIT(zfsvfs);
2166	return (error);
2167}
2168
2169/*
2170 * Read as many directory entries as will fit into the provided
2171 * buffer from the given directory cursor position (specified in
2172 * the uio structure).
2173 *
2174 *	IN:	vp	- vnode of directory to read.
2175 *		uio	- structure supplying read location, range info,
2176 *			  and return buffer.
2177 *		cr	- credentials of caller.
2178 *		ct	- caller context
2179 *		flags	- case flags
2180 *
2181 *	OUT:	uio	- updated offset and range, buffer filled.
2182 *		eofp	- set to true if end-of-file detected.
2183 *
2184 *	RETURN:	0 on success, error code on failure.
2185 *
2186 * Timestamps:
2187 *	vp - atime updated
2188 *
2189 * Note that the low 4 bits of the cookie returned by zap is always zero.
2190 * This allows us to use the low range for "special" directory entries:
2191 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2192 * we use the offset 2 for the '.zfs' directory.
2193 */
2194/* ARGSUSED */
2195static int
2196zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2197    caller_context_t *ct, int flags)
2198{
2199	znode_t		*zp = VTOZ(vp);
2200	iovec_t		*iovp;
2201	edirent_t	*eodp;
2202	dirent64_t	*odp;
2203	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2204	objset_t	*os;
2205	caddr_t		outbuf;
2206	size_t		bufsize;
2207	zap_cursor_t	zc;
2208	zap_attribute_t	zap;
2209	uint_t		bytes_wanted;
2210	uint64_t	offset; /* must be unsigned; checks for < 1 */
2211	uint64_t	parent;
2212	int		local_eof;
2213	int		outcount;
2214	int		error;
2215	uint8_t		prefetch;
2216	boolean_t	check_sysattrs;
2217
2218	ZFS_ENTER(zfsvfs);
2219	ZFS_VERIFY_ZP(zp);
2220
2221	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2222	    &parent, sizeof (parent))) != 0) {
2223		ZFS_EXIT(zfsvfs);
2224		return (error);
2225	}
2226
2227	/*
2228	 * If we are not given an eof variable,
2229	 * use a local one.
2230	 */
2231	if (eofp == NULL)
2232		eofp = &local_eof;
2233
2234	/*
2235	 * Check for valid iov_len.
2236	 */
2237	if (uio->uio_iov->iov_len <= 0) {
2238		ZFS_EXIT(zfsvfs);
2239		return (SET_ERROR(EINVAL));
2240	}
2241
2242	/*
2243	 * Quit if directory has been removed (posix)
2244	 */
2245	if ((*eofp = zp->z_unlinked) != 0) {
2246		ZFS_EXIT(zfsvfs);
2247		return (0);
2248	}
2249
2250	error = 0;
2251	os = zfsvfs->z_os;
2252	offset = uio->uio_loffset;
2253	prefetch = zp->z_zn_prefetch;
2254
2255	/*
2256	 * Initialize the iterator cursor.
2257	 */
2258	if (offset <= 3) {
2259		/*
2260		 * Start iteration from the beginning of the directory.
2261		 */
2262		zap_cursor_init(&zc, os, zp->z_id);
2263	} else {
2264		/*
2265		 * The offset is a serialized cursor.
2266		 */
2267		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2268	}
2269
2270	/*
2271	 * Get space to change directory entries into fs independent format.
2272	 */
2273	iovp = uio->uio_iov;
2274	bytes_wanted = iovp->iov_len;
2275	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2276		bufsize = bytes_wanted;
2277		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2278		odp = (struct dirent64 *)outbuf;
2279	} else {
2280		bufsize = bytes_wanted;
2281		outbuf = NULL;
2282		odp = (struct dirent64 *)iovp->iov_base;
2283	}
2284	eodp = (struct edirent *)odp;
2285
2286	/*
2287	 * If this VFS supports the system attribute view interface; and
2288	 * we're looking at an extended attribute directory; and we care
2289	 * about normalization conflicts on this vfs; then we must check
2290	 * for normalization conflicts with the sysattr name space.
2291	 */
2292	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2293	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2294	    (flags & V_RDDIR_ENTFLAGS);
2295
2296	/*
2297	 * Transform to file-system independent format
2298	 */
2299	outcount = 0;
2300	while (outcount < bytes_wanted) {
2301		ino64_t objnum;
2302		ushort_t reclen;
2303		off64_t *next = NULL;
2304
2305		/*
2306		 * Special case `.', `..', and `.zfs'.
2307		 */
2308		if (offset == 0) {
2309			(void) strcpy(zap.za_name, ".");
2310			zap.za_normalization_conflict = 0;
2311			objnum = zp->z_id;
2312		} else if (offset == 1) {
2313			(void) strcpy(zap.za_name, "..");
2314			zap.za_normalization_conflict = 0;
2315			objnum = parent;
2316		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2317			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2318			zap.za_normalization_conflict = 0;
2319			objnum = ZFSCTL_INO_ROOT;
2320		} else {
2321			/*
2322			 * Grab next entry.
2323			 */
2324			if (error = zap_cursor_retrieve(&zc, &zap)) {
2325				if ((*eofp = (error == ENOENT)) != 0)
2326					break;
2327				else
2328					goto update;
2329			}
2330
2331			if (zap.za_integer_length != 8 ||
2332			    zap.za_num_integers != 1) {
2333				cmn_err(CE_WARN, "zap_readdir: bad directory "
2334				    "entry, obj = %lld, offset = %lld\n",
2335				    (u_longlong_t)zp->z_id,
2336				    (u_longlong_t)offset);
2337				error = SET_ERROR(ENXIO);
2338				goto update;
2339			}
2340
2341			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2342			/*
2343			 * MacOS X can extract the object type here such as:
2344			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2345			 */
2346
2347			if (check_sysattrs && !zap.za_normalization_conflict) {
2348				zap.za_normalization_conflict =
2349				    xattr_sysattr_casechk(zap.za_name);
2350			}
2351		}
2352
2353		if (flags & V_RDDIR_ACCFILTER) {
2354			/*
2355			 * If we have no access at all, don't include
2356			 * this entry in the returned information
2357			 */
2358			znode_t	*ezp;
2359			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2360				goto skip_entry;
2361			if (!zfs_has_access(ezp, cr)) {
2362				VN_RELE(ZTOV(ezp));
2363				goto skip_entry;
2364			}
2365			VN_RELE(ZTOV(ezp));
2366		}
2367
2368		if (flags & V_RDDIR_ENTFLAGS)
2369			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2370		else
2371			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2372
2373		/*
2374		 * Will this entry fit in the buffer?
2375		 */
2376		if (outcount + reclen > bufsize) {
2377			/*
2378			 * Did we manage to fit anything in the buffer?
2379			 */
2380			if (!outcount) {
2381				error = SET_ERROR(EINVAL);
2382				goto update;
2383			}
2384			break;
2385		}
2386		if (flags & V_RDDIR_ENTFLAGS) {
2387			/*
2388			 * Add extended flag entry:
2389			 */
2390			eodp->ed_ino = objnum;
2391			eodp->ed_reclen = reclen;
2392			/* NOTE: ed_off is the offset for the *next* entry */
2393			next = &(eodp->ed_off);
2394			eodp->ed_eflags = zap.za_normalization_conflict ?
2395			    ED_CASE_CONFLICT : 0;
2396			(void) strncpy(eodp->ed_name, zap.za_name,
2397			    EDIRENT_NAMELEN(reclen));
2398			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2399		} else {
2400			/*
2401			 * Add normal entry:
2402			 */
2403			odp->d_ino = objnum;
2404			odp->d_reclen = reclen;
2405			/* NOTE: d_off is the offset for the *next* entry */
2406			next = &(odp->d_off);
2407			(void) strncpy(odp->d_name, zap.za_name,
2408			    DIRENT64_NAMELEN(reclen));
2409			odp = (dirent64_t *)((intptr_t)odp + reclen);
2410		}
2411		outcount += reclen;
2412
2413		ASSERT(outcount <= bufsize);
2414
2415		/* Prefetch znode */
2416		if (prefetch)
2417			dmu_prefetch(os, objnum, 0, 0, 0,
2418			    ZIO_PRIORITY_SYNC_READ);
2419
2420	skip_entry:
2421		/*
2422		 * Move to the next entry, fill in the previous offset.
2423		 */
2424		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2425			zap_cursor_advance(&zc);
2426			offset = zap_cursor_serialize(&zc);
2427		} else {
2428			offset += 1;
2429		}
2430		if (next)
2431			*next = offset;
2432	}
2433	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2434
2435	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2436		iovp->iov_base += outcount;
2437		iovp->iov_len -= outcount;
2438		uio->uio_resid -= outcount;
2439	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2440		/*
2441		 * Reset the pointer.
2442		 */
2443		offset = uio->uio_loffset;
2444	}
2445
2446update:
2447	zap_cursor_fini(&zc);
2448	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2449		kmem_free(outbuf, bufsize);
2450
2451	if (error == ENOENT)
2452		error = 0;
2453
2454	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2455
2456	uio->uio_loffset = offset;
2457	ZFS_EXIT(zfsvfs);
2458	return (error);
2459}
2460
2461ulong_t zfs_fsync_sync_cnt = 4;
2462
2463static int
2464zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2465{
2466	znode_t	*zp = VTOZ(vp);
2467	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2468
2469	/*
2470	 * Regardless of whether this is required for standards conformance,
2471	 * this is the logical behavior when fsync() is called on a file with
2472	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2473	 * going to be pushed out as part of the zil_commit().
2474	 */
2475	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2476	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2477		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2478
2479	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2480
2481	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2482		ZFS_ENTER(zfsvfs);
2483		ZFS_VERIFY_ZP(zp);
2484		zil_commit(zfsvfs->z_log, zp->z_id);
2485		ZFS_EXIT(zfsvfs);
2486	}
2487	return (0);
2488}
2489
2490
2491/*
2492 * Get the requested file attributes and place them in the provided
2493 * vattr structure.
2494 *
2495 *	IN:	vp	- vnode of file.
2496 *		vap	- va_mask identifies requested attributes.
2497 *			  If AT_XVATTR set, then optional attrs are requested
2498 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2499 *		cr	- credentials of caller.
2500 *		ct	- caller context
2501 *
2502 *	OUT:	vap	- attribute values.
2503 *
2504 *	RETURN:	0 (always succeeds).
2505 */
2506/* ARGSUSED */
2507static int
2508zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2509    caller_context_t *ct)
2510{
2511	znode_t *zp = VTOZ(vp);
2512	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2513	int	error = 0;
2514	uint64_t links;
2515	uint64_t mtime[2], ctime[2];
2516	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2517	xoptattr_t *xoap = NULL;
2518	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2519	sa_bulk_attr_t bulk[2];
2520	int count = 0;
2521
2522	ZFS_ENTER(zfsvfs);
2523	ZFS_VERIFY_ZP(zp);
2524
2525	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2526
2527	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2528	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2529
2530	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2531		ZFS_EXIT(zfsvfs);
2532		return (error);
2533	}
2534
2535	/*
2536	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2537	 * Also, if we are the owner don't bother, since owner should
2538	 * always be allowed to read basic attributes of file.
2539	 */
2540	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2541	    (vap->va_uid != crgetuid(cr))) {
2542		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2543		    skipaclchk, cr)) {
2544			ZFS_EXIT(zfsvfs);
2545			return (error);
2546		}
2547	}
2548
2549	/*
2550	 * Return all attributes.  It's cheaper to provide the answer
2551	 * than to determine whether we were asked the question.
2552	 */
2553
2554	mutex_enter(&zp->z_lock);
2555	vap->va_type = vp->v_type;
2556	vap->va_mode = zp->z_mode & MODEMASK;
2557	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2558	vap->va_nodeid = zp->z_id;
2559	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2560		links = zp->z_links + 1;
2561	else
2562		links = zp->z_links;
2563	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2564	vap->va_size = zp->z_size;
2565	vap->va_rdev = vp->v_rdev;
2566	vap->va_seq = zp->z_seq;
2567
2568	/*
2569	 * Add in any requested optional attributes and the create time.
2570	 * Also set the corresponding bits in the returned attribute bitmap.
2571	 */
2572	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2573		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2574			xoap->xoa_archive =
2575			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2576			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2577		}
2578
2579		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2580			xoap->xoa_readonly =
2581			    ((zp->z_pflags & ZFS_READONLY) != 0);
2582			XVA_SET_RTN(xvap, XAT_READONLY);
2583		}
2584
2585		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2586			xoap->xoa_system =
2587			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2588			XVA_SET_RTN(xvap, XAT_SYSTEM);
2589		}
2590
2591		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2592			xoap->xoa_hidden =
2593			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2594			XVA_SET_RTN(xvap, XAT_HIDDEN);
2595		}
2596
2597		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2598			xoap->xoa_nounlink =
2599			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2600			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2601		}
2602
2603		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2604			xoap->xoa_immutable =
2605			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2606			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2607		}
2608
2609		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2610			xoap->xoa_appendonly =
2611			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2612			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2613		}
2614
2615		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2616			xoap->xoa_nodump =
2617			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2618			XVA_SET_RTN(xvap, XAT_NODUMP);
2619		}
2620
2621		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2622			xoap->xoa_opaque =
2623			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2624			XVA_SET_RTN(xvap, XAT_OPAQUE);
2625		}
2626
2627		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2628			xoap->xoa_av_quarantined =
2629			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2630			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2631		}
2632
2633		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2634			xoap->xoa_av_modified =
2635			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2636			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2637		}
2638
2639		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2640		    vp->v_type == VREG) {
2641			zfs_sa_get_scanstamp(zp, xvap);
2642		}
2643
2644		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2645			uint64_t times[2];
2646
2647			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2648			    times, sizeof (times));
2649			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2650			XVA_SET_RTN(xvap, XAT_CREATETIME);
2651		}
2652
2653		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2654			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2655			XVA_SET_RTN(xvap, XAT_REPARSE);
2656		}
2657		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2658			xoap->xoa_generation = zp->z_gen;
2659			XVA_SET_RTN(xvap, XAT_GEN);
2660		}
2661
2662		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2663			xoap->xoa_offline =
2664			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2665			XVA_SET_RTN(xvap, XAT_OFFLINE);
2666		}
2667
2668		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2669			xoap->xoa_sparse =
2670			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2671			XVA_SET_RTN(xvap, XAT_SPARSE);
2672		}
2673	}
2674
2675	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2676	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2677	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2678
2679	mutex_exit(&zp->z_lock);
2680
2681	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2682
2683	if (zp->z_blksz == 0) {
2684		/*
2685		 * Block size hasn't been set; suggest maximal I/O transfers.
2686		 */
2687		vap->va_blksize = zfsvfs->z_max_blksz;
2688	}
2689
2690	ZFS_EXIT(zfsvfs);
2691	return (0);
2692}
2693
2694/*
2695 * Set the file attributes to the values contained in the
2696 * vattr structure.
2697 *
2698 *	IN:	vp	- vnode of file to be modified.
2699 *		vap	- new attribute values.
2700 *			  If AT_XVATTR set, then optional attrs are being set
2701 *		flags	- ATTR_UTIME set if non-default time values provided.
2702 *			- ATTR_NOACLCHECK (CIFS context only).
2703 *		cr	- credentials of caller.
2704 *		ct	- caller context
2705 *
2706 *	RETURN:	0 on success, error code on failure.
2707 *
2708 * Timestamps:
2709 *	vp - ctime updated, mtime updated if size changed.
2710 */
2711/* ARGSUSED */
2712static int
2713zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2714    caller_context_t *ct)
2715{
2716	znode_t		*zp = VTOZ(vp);
2717	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2718	zilog_t		*zilog;
2719	dmu_tx_t	*tx;
2720	vattr_t		oldva;
2721	xvattr_t	tmpxvattr;
2722	uint_t		mask = vap->va_mask;
2723	uint_t		saved_mask = 0;
2724	int		trim_mask = 0;
2725	uint64_t	new_mode;
2726	uint64_t	new_uid, new_gid;
2727	uint64_t	xattr_obj;
2728	uint64_t	mtime[2], ctime[2];
2729	znode_t		*attrzp;
2730	int		need_policy = FALSE;
2731	int		err, err2;
2732	zfs_fuid_info_t *fuidp = NULL;
2733	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2734	xoptattr_t	*xoap;
2735	zfs_acl_t	*aclp;
2736	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2737	boolean_t	fuid_dirtied = B_FALSE;
2738	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2739	int		count = 0, xattr_count = 0;
2740
2741	if (mask == 0)
2742		return (0);
2743
2744	if (mask & AT_NOSET)
2745		return (SET_ERROR(EINVAL));
2746
2747	ZFS_ENTER(zfsvfs);
2748	ZFS_VERIFY_ZP(zp);
2749
2750	zilog = zfsvfs->z_log;
2751
2752	/*
2753	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2754	 * that file system is at proper version level
2755	 */
2756
2757	if (zfsvfs->z_use_fuids == B_FALSE &&
2758	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2759	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2760	    (mask & AT_XVATTR))) {
2761		ZFS_EXIT(zfsvfs);
2762		return (SET_ERROR(EINVAL));
2763	}
2764
2765	if (mask & AT_SIZE && vp->v_type == VDIR) {
2766		ZFS_EXIT(zfsvfs);
2767		return (SET_ERROR(EISDIR));
2768	}
2769
2770	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2771		ZFS_EXIT(zfsvfs);
2772		return (SET_ERROR(EINVAL));
2773	}
2774
2775	/*
2776	 * If this is an xvattr_t, then get a pointer to the structure of
2777	 * optional attributes.  If this is NULL, then we have a vattr_t.
2778	 */
2779	xoap = xva_getxoptattr(xvap);
2780
2781	xva_init(&tmpxvattr);
2782
2783	/*
2784	 * Immutable files can only alter immutable bit and atime
2785	 */
2786	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2787	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2788	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2789		ZFS_EXIT(zfsvfs);
2790		return (SET_ERROR(EPERM));
2791	}
2792
2793	/*
2794	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2795	 */
2796
2797	/*
2798	 * Verify timestamps doesn't overflow 32 bits.
2799	 * ZFS can handle large timestamps, but 32bit syscalls can't
2800	 * handle times greater than 2039.  This check should be removed
2801	 * once large timestamps are fully supported.
2802	 */
2803	if (mask & (AT_ATIME | AT_MTIME)) {
2804		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2805		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2806			ZFS_EXIT(zfsvfs);
2807			return (SET_ERROR(EOVERFLOW));
2808		}
2809	}
2810
2811top:
2812	attrzp = NULL;
2813	aclp = NULL;
2814
2815	/* Can this be moved to before the top label? */
2816	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2817		ZFS_EXIT(zfsvfs);
2818		return (SET_ERROR(EROFS));
2819	}
2820
2821	/*
2822	 * First validate permissions
2823	 */
2824
2825	if (mask & AT_SIZE) {
2826		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2827		if (err) {
2828			ZFS_EXIT(zfsvfs);
2829			return (err);
2830		}
2831		/*
2832		 * XXX - Note, we are not providing any open
2833		 * mode flags here (like FNDELAY), so we may
2834		 * block if there are locks present... this
2835		 * should be addressed in openat().
2836		 */
2837		/* XXX - would it be OK to generate a log record here? */
2838		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2839		if (err) {
2840			ZFS_EXIT(zfsvfs);
2841			return (err);
2842		}
2843
2844		if (vap->va_size == 0)
2845			vnevent_truncate(ZTOV(zp), ct);
2846	}
2847
2848	if (mask & (AT_ATIME|AT_MTIME) ||
2849	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2850	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2851	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2852	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2853	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2854	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2855	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2856		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2857		    skipaclchk, cr);
2858	}
2859
2860	if (mask & (AT_UID|AT_GID)) {
2861		int	idmask = (mask & (AT_UID|AT_GID));
2862		int	take_owner;
2863		int	take_group;
2864
2865		/*
2866		 * NOTE: even if a new mode is being set,
2867		 * we may clear S_ISUID/S_ISGID bits.
2868		 */
2869
2870		if (!(mask & AT_MODE))
2871			vap->va_mode = zp->z_mode;
2872
2873		/*
2874		 * Take ownership or chgrp to group we are a member of
2875		 */
2876
2877		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2878		take_group = (mask & AT_GID) &&
2879		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2880
2881		/*
2882		 * If both AT_UID and AT_GID are set then take_owner and
2883		 * take_group must both be set in order to allow taking
2884		 * ownership.
2885		 *
2886		 * Otherwise, send the check through secpolicy_vnode_setattr()
2887		 *
2888		 */
2889
2890		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2891		    ((idmask == AT_UID) && take_owner) ||
2892		    ((idmask == AT_GID) && take_group)) {
2893			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2894			    skipaclchk, cr) == 0) {
2895				/*
2896				 * Remove setuid/setgid for non-privileged users
2897				 */
2898				secpolicy_setid_clear(vap, cr);
2899				trim_mask = (mask & (AT_UID|AT_GID));
2900			} else {
2901				need_policy =  TRUE;
2902			}
2903		} else {
2904			need_policy =  TRUE;
2905		}
2906	}
2907
2908	mutex_enter(&zp->z_lock);
2909	oldva.va_mode = zp->z_mode;
2910	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2911	if (mask & AT_XVATTR) {
2912		/*
2913		 * Update xvattr mask to include only those attributes
2914		 * that are actually changing.
2915		 *
2916		 * the bits will be restored prior to actually setting
2917		 * the attributes so the caller thinks they were set.
2918		 */
2919		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2920			if (xoap->xoa_appendonly !=
2921			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2922				need_policy = TRUE;
2923			} else {
2924				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2925				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2926			}
2927		}
2928
2929		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2930			if (xoap->xoa_nounlink !=
2931			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2932				need_policy = TRUE;
2933			} else {
2934				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2935				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2936			}
2937		}
2938
2939		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2940			if (xoap->xoa_immutable !=
2941			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2942				need_policy = TRUE;
2943			} else {
2944				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2945				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2946			}
2947		}
2948
2949		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2950			if (xoap->xoa_nodump !=
2951			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2952				need_policy = TRUE;
2953			} else {
2954				XVA_CLR_REQ(xvap, XAT_NODUMP);
2955				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2956			}
2957		}
2958
2959		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2960			if (xoap->xoa_av_modified !=
2961			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2962				need_policy = TRUE;
2963			} else {
2964				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2965				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2966			}
2967		}
2968
2969		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2970			if ((vp->v_type != VREG &&
2971			    xoap->xoa_av_quarantined) ||
2972			    xoap->xoa_av_quarantined !=
2973			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2974				need_policy = TRUE;
2975			} else {
2976				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2977				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2978			}
2979		}
2980
2981		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2982			mutex_exit(&zp->z_lock);
2983			ZFS_EXIT(zfsvfs);
2984			return (SET_ERROR(EPERM));
2985		}
2986
2987		if (need_policy == FALSE &&
2988		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2989		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2990			need_policy = TRUE;
2991		}
2992	}
2993
2994	mutex_exit(&zp->z_lock);
2995
2996	if (mask & AT_MODE) {
2997		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2998			err = secpolicy_setid_setsticky_clear(vp, vap,
2999			    &oldva, cr);
3000			if (err) {
3001				ZFS_EXIT(zfsvfs);
3002				return (err);
3003			}
3004			trim_mask |= AT_MODE;
3005		} else {
3006			need_policy = TRUE;
3007		}
3008	}
3009
3010	if (need_policy) {
3011		/*
3012		 * If trim_mask is set then take ownership
3013		 * has been granted or write_acl is present and user
3014		 * has the ability to modify mode.  In that case remove
3015		 * UID|GID and or MODE from mask so that
3016		 * secpolicy_vnode_setattr() doesn't revoke it.
3017		 */
3018
3019		if (trim_mask) {
3020			saved_mask = vap->va_mask;
3021			vap->va_mask &= ~trim_mask;
3022		}
3023		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3024		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3025		if (err) {
3026			ZFS_EXIT(zfsvfs);
3027			return (err);
3028		}
3029
3030		if (trim_mask)
3031			vap->va_mask |= saved_mask;
3032	}
3033
3034	/*
3035	 * secpolicy_vnode_setattr, or take ownership may have
3036	 * changed va_mask
3037	 */
3038	mask = vap->va_mask;
3039
3040	if ((mask & (AT_UID | AT_GID))) {
3041		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3042		    &xattr_obj, sizeof (xattr_obj));
3043
3044		if (err == 0 && xattr_obj) {
3045			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3046			if (err)
3047				goto out2;
3048		}
3049		if (mask & AT_UID) {
3050			new_uid = zfs_fuid_create(zfsvfs,
3051			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3052			if (new_uid != zp->z_uid &&
3053			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3054				if (attrzp)
3055					VN_RELE(ZTOV(attrzp));
3056				err = SET_ERROR(EDQUOT);
3057				goto out2;
3058			}
3059		}
3060
3061		if (mask & AT_GID) {
3062			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3063			    cr, ZFS_GROUP, &fuidp);
3064			if (new_gid != zp->z_gid &&
3065			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3066				if (attrzp)
3067					VN_RELE(ZTOV(attrzp));
3068				err = SET_ERROR(EDQUOT);
3069				goto out2;
3070			}
3071		}
3072	}
3073	tx = dmu_tx_create(zfsvfs->z_os);
3074
3075	if (mask & AT_MODE) {
3076		uint64_t pmode = zp->z_mode;
3077		uint64_t acl_obj;
3078		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3079
3080		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3081		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3082			err = SET_ERROR(EPERM);
3083			goto out;
3084		}
3085
3086		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3087			goto out;
3088
3089		mutex_enter(&zp->z_lock);
3090		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3091			/*
3092			 * Are we upgrading ACL from old V0 format
3093			 * to V1 format?
3094			 */
3095			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3096			    zfs_znode_acl_version(zp) ==
3097			    ZFS_ACL_VERSION_INITIAL) {
3098				dmu_tx_hold_free(tx, acl_obj, 0,
3099				    DMU_OBJECT_END);
3100				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3101				    0, aclp->z_acl_bytes);
3102			} else {
3103				dmu_tx_hold_write(tx, acl_obj, 0,
3104				    aclp->z_acl_bytes);
3105			}
3106		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3107			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3108			    0, aclp->z_acl_bytes);
3109		}
3110		mutex_exit(&zp->z_lock);
3111		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3112	} else {
3113		if ((mask & AT_XVATTR) &&
3114		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3115			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3116		else
3117			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3118	}
3119
3120	if (attrzp) {
3121		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3122	}
3123
3124	fuid_dirtied = zfsvfs->z_fuid_dirty;
3125	if (fuid_dirtied)
3126		zfs_fuid_txhold(zfsvfs, tx);
3127
3128	zfs_sa_upgrade_txholds(tx, zp);
3129
3130	err = dmu_tx_assign(tx, TXG_WAIT);
3131	if (err)
3132		goto out;
3133
3134	count = 0;
3135	/*
3136	 * Set each attribute requested.
3137	 * We group settings according to the locks they need to acquire.
3138	 *
3139	 * Note: you cannot set ctime directly, although it will be
3140	 * updated as a side-effect of calling this function.
3141	 */
3142
3143
3144	if (mask & (AT_UID|AT_GID|AT_MODE))
3145		mutex_enter(&zp->z_acl_lock);
3146	mutex_enter(&zp->z_lock);
3147
3148	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3149	    &zp->z_pflags, sizeof (zp->z_pflags));
3150
3151	if (attrzp) {
3152		if (mask & (AT_UID|AT_GID|AT_MODE))
3153			mutex_enter(&attrzp->z_acl_lock);
3154		mutex_enter(&attrzp->z_lock);
3155		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3156		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3157		    sizeof (attrzp->z_pflags));
3158	}
3159
3160	if (mask & (AT_UID|AT_GID)) {
3161
3162		if (mask & AT_UID) {
3163			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3164			    &new_uid, sizeof (new_uid));
3165			zp->z_uid = new_uid;
3166			if (attrzp) {
3167				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3168				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3169				    sizeof (new_uid));
3170				attrzp->z_uid = new_uid;
3171			}
3172		}
3173
3174		if (mask & AT_GID) {
3175			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3176			    NULL, &new_gid, sizeof (new_gid));
3177			zp->z_gid = new_gid;
3178			if (attrzp) {
3179				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3180				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3181				    sizeof (new_gid));
3182				attrzp->z_gid = new_gid;
3183			}
3184		}
3185		if (!(mask & AT_MODE)) {
3186			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3187			    NULL, &new_mode, sizeof (new_mode));
3188			new_mode = zp->z_mode;
3189		}
3190		err = zfs_acl_chown_setattr(zp);
3191		ASSERT(err == 0);
3192		if (attrzp) {
3193			err = zfs_acl_chown_setattr(attrzp);
3194			ASSERT(err == 0);
3195		}
3196	}
3197
3198	if (mask & AT_MODE) {
3199		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3200		    &new_mode, sizeof (new_mode));
3201		zp->z_mode = new_mode;
3202		ASSERT3U((uintptr_t)aclp, !=, NULL);
3203		err = zfs_aclset_common(zp, aclp, cr, tx);
3204		ASSERT0(err);
3205		if (zp->z_acl_cached)
3206			zfs_acl_free(zp->z_acl_cached);
3207		zp->z_acl_cached = aclp;
3208		aclp = NULL;
3209	}
3210
3211
3212	if (mask & AT_ATIME) {
3213		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3214		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3215		    &zp->z_atime, sizeof (zp->z_atime));
3216	}
3217
3218	if (mask & AT_MTIME) {
3219		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3220		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3221		    mtime, sizeof (mtime));
3222	}
3223
3224	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3225	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3226		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3227		    NULL, mtime, sizeof (mtime));
3228		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3229		    &ctime, sizeof (ctime));
3230		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3231		    B_TRUE);
3232	} else if (mask != 0) {
3233		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3234		    &ctime, sizeof (ctime));
3235		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3236		    B_TRUE);
3237		if (attrzp) {
3238			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3239			    SA_ZPL_CTIME(zfsvfs), NULL,
3240			    &ctime, sizeof (ctime));
3241			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3242			    mtime, ctime, B_TRUE);
3243		}
3244	}
3245	/*
3246	 * Do this after setting timestamps to prevent timestamp
3247	 * update from toggling bit
3248	 */
3249
3250	if (xoap && (mask & AT_XVATTR)) {
3251
3252		/*
3253		 * restore trimmed off masks
3254		 * so that return masks can be set for caller.
3255		 */
3256
3257		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3258			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3259		}
3260		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3261			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3262		}
3263		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3264			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3265		}
3266		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3267			XVA_SET_REQ(xvap, XAT_NODUMP);
3268		}
3269		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3270			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3271		}
3272		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3273			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3274		}
3275
3276		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3277			ASSERT(vp->v_type == VREG);
3278
3279		zfs_xvattr_set(zp, xvap, tx);
3280	}
3281
3282	if (fuid_dirtied)
3283		zfs_fuid_sync(zfsvfs, tx);
3284
3285	if (mask != 0)
3286		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3287
3288	mutex_exit(&zp->z_lock);
3289	if (mask & (AT_UID|AT_GID|AT_MODE))
3290		mutex_exit(&zp->z_acl_lock);
3291
3292	if (attrzp) {
3293		if (mask & (AT_UID|AT_GID|AT_MODE))
3294			mutex_exit(&attrzp->z_acl_lock);
3295		mutex_exit(&attrzp->z_lock);
3296	}
3297out:
3298	if (err == 0 && attrzp) {
3299		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3300		    xattr_count, tx);
3301		ASSERT(err2 == 0);
3302	}
3303
3304	if (attrzp)
3305		VN_RELE(ZTOV(attrzp));
3306
3307	if (aclp)
3308		zfs_acl_free(aclp);
3309
3310	if (fuidp) {
3311		zfs_fuid_info_free(fuidp);
3312		fuidp = NULL;
3313	}
3314
3315	if (err) {
3316		dmu_tx_abort(tx);
3317		if (err == ERESTART)
3318			goto top;
3319	} else {
3320		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3321		dmu_tx_commit(tx);
3322	}
3323
3324out2:
3325	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3326		zil_commit(zilog, 0);
3327
3328	ZFS_EXIT(zfsvfs);
3329	return (err);
3330}
3331
3332typedef struct zfs_zlock {
3333	krwlock_t	*zl_rwlock;	/* lock we acquired */
3334	znode_t		*zl_znode;	/* znode we held */
3335	struct zfs_zlock *zl_next;	/* next in list */
3336} zfs_zlock_t;
3337
3338/*
3339 * Drop locks and release vnodes that were held by zfs_rename_lock().
3340 */
3341static void
3342zfs_rename_unlock(zfs_zlock_t **zlpp)
3343{
3344	zfs_zlock_t *zl;
3345
3346	while ((zl = *zlpp) != NULL) {
3347		if (zl->zl_znode != NULL)
3348			VN_RELE(ZTOV(zl->zl_znode));
3349		rw_exit(zl->zl_rwlock);
3350		*zlpp = zl->zl_next;
3351		kmem_free(zl, sizeof (*zl));
3352	}
3353}
3354
3355/*
3356 * Search back through the directory tree, using the ".." entries.
3357 * Lock each directory in the chain to prevent concurrent renames.
3358 * Fail any attempt to move a directory into one of its own descendants.
3359 * XXX - z_parent_lock can overlap with map or grow locks
3360 */
3361static int
3362zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3363{
3364	zfs_zlock_t	*zl;
3365	znode_t		*zp = tdzp;
3366	uint64_t	rootid = zp->z_zfsvfs->z_root;
3367	uint64_t	oidp = zp->z_id;
3368	krwlock_t	*rwlp = &szp->z_parent_lock;
3369	krw_t		rw = RW_WRITER;
3370
3371	/*
3372	 * First pass write-locks szp and compares to zp->z_id.
3373	 * Later passes read-lock zp and compare to zp->z_parent.
3374	 */
3375	do {
3376		if (!rw_tryenter(rwlp, rw)) {
3377			/*
3378			 * Another thread is renaming in this path.
3379			 * Note that if we are a WRITER, we don't have any
3380			 * parent_locks held yet.
3381			 */
3382			if (rw == RW_READER && zp->z_id > szp->z_id) {
3383				/*
3384				 * Drop our locks and restart
3385				 */
3386				zfs_rename_unlock(&zl);
3387				*zlpp = NULL;
3388				zp = tdzp;
3389				oidp = zp->z_id;
3390				rwlp = &szp->z_parent_lock;
3391				rw = RW_WRITER;
3392				continue;
3393			} else {
3394				/*
3395				 * Wait for other thread to drop its locks
3396				 */
3397				rw_enter(rwlp, rw);
3398			}
3399		}
3400
3401		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3402		zl->zl_rwlock = rwlp;
3403		zl->zl_znode = NULL;
3404		zl->zl_next = *zlpp;
3405		*zlpp = zl;
3406
3407		if (oidp == szp->z_id)		/* We're a descendant of szp */
3408			return (SET_ERROR(EINVAL));
3409
3410		if (oidp == rootid)		/* We've hit the top */
3411			return (0);
3412
3413		if (rw == RW_READER) {		/* i.e. not the first pass */
3414			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3415			if (error)
3416				return (error);
3417			zl->zl_znode = zp;
3418		}
3419		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3420		    &oidp, sizeof (oidp));
3421		rwlp = &zp->z_parent_lock;
3422		rw = RW_READER;
3423
3424	} while (zp->z_id != sdzp->z_id);
3425
3426	return (0);
3427}
3428
3429/*
3430 * Move an entry from the provided source directory to the target
3431 * directory.  Change the entry name as indicated.
3432 *
3433 *	IN:	sdvp	- Source directory containing the "old entry".
3434 *		snm	- Old entry name.
3435 *		tdvp	- Target directory to contain the "new entry".
3436 *		tnm	- New entry name.
3437 *		cr	- credentials of caller.
3438 *		ct	- caller context
3439 *		flags	- case flags
3440 *
3441 *	RETURN:	0 on success, error code on failure.
3442 *
3443 * Timestamps:
3444 *	sdvp,tdvp - ctime|mtime updated
3445 */
3446/*ARGSUSED*/
3447static int
3448zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3449    caller_context_t *ct, int flags)
3450{
3451	znode_t		*tdzp, *szp, *tzp;
3452	znode_t		*sdzp = VTOZ(sdvp);
3453	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3454	zilog_t		*zilog;
3455	vnode_t		*realvp;
3456	zfs_dirlock_t	*sdl, *tdl;
3457	dmu_tx_t	*tx;
3458	zfs_zlock_t	*zl;
3459	int		cmp, serr, terr;
3460	int		error = 0, rm_err = 0;
3461	int		zflg = 0;
3462	boolean_t	waited = B_FALSE;
3463
3464	ZFS_ENTER(zfsvfs);
3465	ZFS_VERIFY_ZP(sdzp);
3466	zilog = zfsvfs->z_log;
3467
3468	/*
3469	 * Make sure we have the real vp for the target directory.
3470	 */
3471	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3472		tdvp = realvp;
3473
3474	tdzp = VTOZ(tdvp);
3475	ZFS_VERIFY_ZP(tdzp);
3476
3477	/*
3478	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3479	 * ctldir appear to have the same v_vfsp.
3480	 */
3481	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3482		ZFS_EXIT(zfsvfs);
3483		return (SET_ERROR(EXDEV));
3484	}
3485
3486	if (zfsvfs->z_utf8 && u8_validate(tnm,
3487	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3488		ZFS_EXIT(zfsvfs);
3489		return (SET_ERROR(EILSEQ));
3490	}
3491
3492	if (flags & FIGNORECASE)
3493		zflg |= ZCILOOK;
3494
3495top:
3496	szp = NULL;
3497	tzp = NULL;
3498	zl = NULL;
3499
3500	/*
3501	 * This is to prevent the creation of links into attribute space
3502	 * by renaming a linked file into/outof an attribute directory.
3503	 * See the comment in zfs_link() for why this is considered bad.
3504	 */
3505	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3506		ZFS_EXIT(zfsvfs);
3507		return (SET_ERROR(EINVAL));
3508	}
3509
3510	/*
3511	 * Lock source and target directory entries.  To prevent deadlock,
3512	 * a lock ordering must be defined.  We lock the directory with
3513	 * the smallest object id first, or if it's a tie, the one with
3514	 * the lexically first name.
3515	 */
3516	if (sdzp->z_id < tdzp->z_id) {
3517		cmp = -1;
3518	} else if (sdzp->z_id > tdzp->z_id) {
3519		cmp = 1;
3520	} else {
3521		/*
3522		 * First compare the two name arguments without
3523		 * considering any case folding.
3524		 */
3525		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3526
3527		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3528		ASSERT(error == 0 || !zfsvfs->z_utf8);
3529		if (cmp == 0) {
3530			/*
3531			 * POSIX: "If the old argument and the new argument
3532			 * both refer to links to the same existing file,
3533			 * the rename() function shall return successfully
3534			 * and perform no other action."
3535			 */
3536			ZFS_EXIT(zfsvfs);
3537			return (0);
3538		}
3539		/*
3540		 * If the file system is case-folding, then we may
3541		 * have some more checking to do.  A case-folding file
3542		 * system is either supporting mixed case sensitivity
3543		 * access or is completely case-insensitive.  Note
3544		 * that the file system is always case preserving.
3545		 *
3546		 * In mixed sensitivity mode case sensitive behavior
3547		 * is the default.  FIGNORECASE must be used to
3548		 * explicitly request case insensitive behavior.
3549		 *
3550		 * If the source and target names provided differ only
3551		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3552		 * we will treat this as a special case in the
3553		 * case-insensitive mode: as long as the source name
3554		 * is an exact match, we will allow this to proceed as
3555		 * a name-change request.
3556		 */
3557		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3558		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3559		    flags & FIGNORECASE)) &&
3560		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3561		    &error) == 0) {
3562			/*
3563			 * case preserving rename request, require exact
3564			 * name matches
3565			 */
3566			zflg |= ZCIEXACT;
3567			zflg &= ~ZCILOOK;
3568		}
3569	}
3570
3571	/*
3572	 * If the source and destination directories are the same, we should
3573	 * grab the z_name_lock of that directory only once.
3574	 */
3575	if (sdzp == tdzp) {
3576		zflg |= ZHAVELOCK;
3577		rw_enter(&sdzp->z_name_lock, RW_READER);
3578	}
3579
3580	if (cmp < 0) {
3581		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3582		    ZEXISTS | zflg, NULL, NULL);
3583		terr = zfs_dirent_lock(&tdl,
3584		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3585	} else {
3586		terr = zfs_dirent_lock(&tdl,
3587		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3588		serr = zfs_dirent_lock(&sdl,
3589		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3590		    NULL, NULL);
3591	}
3592
3593	if (serr) {
3594		/*
3595		 * Source entry invalid or not there.
3596		 */
3597		if (!terr) {
3598			zfs_dirent_unlock(tdl);
3599			if (tzp)
3600				VN_RELE(ZTOV(tzp));
3601		}
3602
3603		if (sdzp == tdzp)
3604			rw_exit(&sdzp->z_name_lock);
3605
3606		if (strcmp(snm, "..") == 0)
3607			serr = SET_ERROR(EINVAL);
3608		ZFS_EXIT(zfsvfs);
3609		return (serr);
3610	}
3611	if (terr) {
3612		zfs_dirent_unlock(sdl);
3613		VN_RELE(ZTOV(szp));
3614
3615		if (sdzp == tdzp)
3616			rw_exit(&sdzp->z_name_lock);
3617
3618		if (strcmp(tnm, "..") == 0)
3619			terr = SET_ERROR(EINVAL);
3620		ZFS_EXIT(zfsvfs);
3621		return (terr);
3622	}
3623
3624	/*
3625	 * Must have write access at the source to remove the old entry
3626	 * and write access at the target to create the new entry.
3627	 * Note that if target and source are the same, this can be
3628	 * done in a single check.
3629	 */
3630
3631	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3632		goto out;
3633
3634	if (ZTOV(szp)->v_type == VDIR) {
3635		/*
3636		 * Check to make sure rename is valid.
3637		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3638		 */
3639		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3640			goto out;
3641	}
3642
3643	/*
3644	 * Does target exist?
3645	 */
3646	if (tzp) {
3647		/*
3648		 * Source and target must be the same type.
3649		 */
3650		if (ZTOV(szp)->v_type == VDIR) {
3651			if (ZTOV(tzp)->v_type != VDIR) {
3652				error = SET_ERROR(ENOTDIR);
3653				goto out;
3654			}
3655		} else {
3656			if (ZTOV(tzp)->v_type == VDIR) {
3657				error = SET_ERROR(EISDIR);
3658				goto out;
3659			}
3660		}
3661		/*
3662		 * POSIX dictates that when the source and target
3663		 * entries refer to the same file object, rename
3664		 * must do nothing and exit without error.
3665		 */
3666		if (szp->z_id == tzp->z_id) {
3667			error = 0;
3668			goto out;
3669		}
3670	}
3671
3672	vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3673	if (tzp)
3674		vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3675
3676	/*
3677	 * notify the target directory if it is not the same
3678	 * as source directory.
3679	 */
3680	if (tdvp != sdvp) {
3681		vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3682	}
3683
3684	tx = dmu_tx_create(zfsvfs->z_os);
3685	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3686	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3687	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3688	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3689	if (sdzp != tdzp) {
3690		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3691		zfs_sa_upgrade_txholds(tx, tdzp);
3692	}
3693	if (tzp) {
3694		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3695		zfs_sa_upgrade_txholds(tx, tzp);
3696	}
3697
3698	zfs_sa_upgrade_txholds(tx, szp);
3699	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3700	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3701	if (error) {
3702		if (zl != NULL)
3703			zfs_rename_unlock(&zl);
3704		zfs_dirent_unlock(sdl);
3705		zfs_dirent_unlock(tdl);
3706
3707		if (sdzp == tdzp)
3708			rw_exit(&sdzp->z_name_lock);
3709
3710		VN_RELE(ZTOV(szp));
3711		if (tzp)
3712			VN_RELE(ZTOV(tzp));
3713		if (error == ERESTART) {
3714			waited = B_TRUE;
3715			dmu_tx_wait(tx);
3716			dmu_tx_abort(tx);
3717			goto top;
3718		}
3719		dmu_tx_abort(tx);
3720		ZFS_EXIT(zfsvfs);
3721		return (error);
3722	}
3723
3724	if (tzp)	/* Attempt to remove the existing target */
3725		error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3726
3727	if (error == 0) {
3728		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3729		if (error == 0) {
3730			szp->z_pflags |= ZFS_AV_MODIFIED;
3731
3732			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3733			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3734			ASSERT0(error);
3735
3736			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3737			if (error == 0) {
3738				zfs_log_rename(zilog, tx, TX_RENAME |
3739				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3740				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3741
3742				/*
3743				 * Update path information for the target vnode
3744				 */
3745				vn_renamepath(tdvp, ZTOV(szp), tnm,
3746				    strlen(tnm));
3747			} else {
3748				/*
3749				 * At this point, we have successfully created
3750				 * the target name, but have failed to remove
3751				 * the source name.  Since the create was done
3752				 * with the ZRENAMING flag, there are
3753				 * complications; for one, the link count is
3754				 * wrong.  The easiest way to deal with this
3755				 * is to remove the newly created target, and
3756				 * return the original error.  This must
3757				 * succeed; fortunately, it is very unlikely to
3758				 * fail, since we just created it.
3759				 */
3760				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3761				    ZRENAMING, NULL), ==, 0);
3762			}
3763		}
3764	}
3765
3766	dmu_tx_commit(tx);
3767
3768	if (tzp && rm_err == 0)
3769		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3770
3771	if (error == 0) {
3772		vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3773		/* notify the target dir if it is not the same as source dir */
3774		if (tdvp != sdvp)
3775			vnevent_rename_dest_dir(tdvp, ct);
3776	}
3777out:
3778	if (zl != NULL)
3779		zfs_rename_unlock(&zl);
3780
3781	zfs_dirent_unlock(sdl);
3782	zfs_dirent_unlock(tdl);
3783
3784	if (sdzp == tdzp)
3785		rw_exit(&sdzp->z_name_lock);
3786
3787
3788	VN_RELE(ZTOV(szp));
3789	if (tzp)
3790		VN_RELE(ZTOV(tzp));
3791
3792	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3793		zil_commit(zilog, 0);
3794
3795	ZFS_EXIT(zfsvfs);
3796	return (error);
3797}
3798
3799/*
3800 * Insert the indicated symbolic reference entry into the directory.
3801 *
3802 *	IN:	dvp	- Directory to contain new symbolic link.
3803 *		link	- Name for new symlink entry.
3804 *		vap	- Attributes of new entry.
3805 *		cr	- credentials of caller.
3806 *		ct	- caller context
3807 *		flags	- case flags
3808 *
3809 *	RETURN:	0 on success, error code on failure.
3810 *
3811 * Timestamps:
3812 *	dvp - ctime|mtime updated
3813 */
3814/*ARGSUSED*/
3815static int
3816zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3817    caller_context_t *ct, int flags)
3818{
3819	znode_t		*zp, *dzp = VTOZ(dvp);
3820	zfs_dirlock_t	*dl;
3821	dmu_tx_t	*tx;
3822	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3823	zilog_t		*zilog;
3824	uint64_t	len = strlen(link);
3825	int		error;
3826	int		zflg = ZNEW;
3827	zfs_acl_ids_t	acl_ids;
3828	boolean_t	fuid_dirtied;
3829	uint64_t	txtype = TX_SYMLINK;
3830	boolean_t	waited = B_FALSE;
3831
3832	ASSERT(vap->va_type == VLNK);
3833
3834	ZFS_ENTER(zfsvfs);
3835	ZFS_VERIFY_ZP(dzp);
3836	zilog = zfsvfs->z_log;
3837
3838	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3839	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3840		ZFS_EXIT(zfsvfs);
3841		return (SET_ERROR(EILSEQ));
3842	}
3843	if (flags & FIGNORECASE)
3844		zflg |= ZCILOOK;
3845
3846	if (len > MAXPATHLEN) {
3847		ZFS_EXIT(zfsvfs);
3848		return (SET_ERROR(ENAMETOOLONG));
3849	}
3850
3851	if ((error = zfs_acl_ids_create(dzp, 0,
3852	    vap, cr, NULL, &acl_ids)) != 0) {
3853		ZFS_EXIT(zfsvfs);
3854		return (error);
3855	}
3856top:
3857	/*
3858	 * Attempt to lock directory; fail if entry already exists.
3859	 */
3860	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3861	if (error) {
3862		zfs_acl_ids_free(&acl_ids);
3863		ZFS_EXIT(zfsvfs);
3864		return (error);
3865	}
3866
3867	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3868		zfs_acl_ids_free(&acl_ids);
3869		zfs_dirent_unlock(dl);
3870		ZFS_EXIT(zfsvfs);
3871		return (error);
3872	}
3873
3874	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3875		zfs_acl_ids_free(&acl_ids);
3876		zfs_dirent_unlock(dl);
3877		ZFS_EXIT(zfsvfs);
3878		return (SET_ERROR(EDQUOT));
3879	}
3880	tx = dmu_tx_create(zfsvfs->z_os);
3881	fuid_dirtied = zfsvfs->z_fuid_dirty;
3882	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3883	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3884	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3885	    ZFS_SA_BASE_ATTR_SIZE + len);
3886	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3887	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3888		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3889		    acl_ids.z_aclp->z_acl_bytes);
3890	}
3891	if (fuid_dirtied)
3892		zfs_fuid_txhold(zfsvfs, tx);
3893	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3894	if (error) {
3895		zfs_dirent_unlock(dl);
3896		if (error == ERESTART) {
3897			waited = B_TRUE;
3898			dmu_tx_wait(tx);
3899			dmu_tx_abort(tx);
3900			goto top;
3901		}
3902		zfs_acl_ids_free(&acl_ids);
3903		dmu_tx_abort(tx);
3904		ZFS_EXIT(zfsvfs);
3905		return (error);
3906	}
3907
3908	/*
3909	 * Create a new object for the symlink.
3910	 * for version 4 ZPL datsets the symlink will be an SA attribute
3911	 */
3912	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3913
3914	if (fuid_dirtied)
3915		zfs_fuid_sync(zfsvfs, tx);
3916
3917	mutex_enter(&zp->z_lock);
3918	if (zp->z_is_sa)
3919		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3920		    link, len, tx);
3921	else
3922		zfs_sa_symlink(zp, link, len, tx);
3923	mutex_exit(&zp->z_lock);
3924
3925	zp->z_size = len;
3926	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3927	    &zp->z_size, sizeof (zp->z_size), tx);
3928	/*
3929	 * Insert the new object into the directory.
3930	 */
3931	(void) zfs_link_create(dl, zp, tx, ZNEW);
3932
3933	if (flags & FIGNORECASE)
3934		txtype |= TX_CI;
3935	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3936
3937	zfs_acl_ids_free(&acl_ids);
3938
3939	dmu_tx_commit(tx);
3940
3941	zfs_dirent_unlock(dl);
3942
3943	VN_RELE(ZTOV(zp));
3944
3945	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3946		zil_commit(zilog, 0);
3947
3948	ZFS_EXIT(zfsvfs);
3949	return (error);
3950}
3951
3952/*
3953 * Return, in the buffer contained in the provided uio structure,
3954 * the symbolic path referred to by vp.
3955 *
3956 *	IN:	vp	- vnode of symbolic link.
3957 *		uio	- structure to contain the link path.
3958 *		cr	- credentials of caller.
3959 *		ct	- caller context
3960 *
3961 *	OUT:	uio	- structure containing the link path.
3962 *
3963 *	RETURN:	0 on success, error code on failure.
3964 *
3965 * Timestamps:
3966 *	vp - atime updated
3967 */
3968/* ARGSUSED */
3969static int
3970zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3971{
3972	znode_t		*zp = VTOZ(vp);
3973	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3974	int		error;
3975
3976	ZFS_ENTER(zfsvfs);
3977	ZFS_VERIFY_ZP(zp);
3978
3979	mutex_enter(&zp->z_lock);
3980	if (zp->z_is_sa)
3981		error = sa_lookup_uio(zp->z_sa_hdl,
3982		    SA_ZPL_SYMLINK(zfsvfs), uio);
3983	else
3984		error = zfs_sa_readlink(zp, uio);
3985	mutex_exit(&zp->z_lock);
3986
3987	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3988
3989	ZFS_EXIT(zfsvfs);
3990	return (error);
3991}
3992
3993/*
3994 * Insert a new entry into directory tdvp referencing svp.
3995 *
3996 *	IN:	tdvp	- Directory to contain new entry.
3997 *		svp	- vnode of new entry.
3998 *		name	- name of new entry.
3999 *		cr	- credentials of caller.
4000 *		ct	- caller context
4001 *
4002 *	RETURN:	0 on success, error code on failure.
4003 *
4004 * Timestamps:
4005 *	tdvp - ctime|mtime updated
4006 *	 svp - ctime updated
4007 */
4008/* ARGSUSED */
4009static int
4010zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4011    caller_context_t *ct, int flags)
4012{
4013	znode_t		*dzp = VTOZ(tdvp);
4014	znode_t		*tzp, *szp;
4015	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4016	zilog_t		*zilog;
4017	zfs_dirlock_t	*dl;
4018	dmu_tx_t	*tx;
4019	vnode_t		*realvp;
4020	int		error;
4021	int		zf = ZNEW;
4022	uint64_t	parent;
4023	uid_t		owner;
4024	boolean_t	waited = B_FALSE;
4025
4026	ASSERT(tdvp->v_type == VDIR);
4027
4028	ZFS_ENTER(zfsvfs);
4029	ZFS_VERIFY_ZP(dzp);
4030	zilog = zfsvfs->z_log;
4031
4032	if (VOP_REALVP(svp, &realvp, ct) == 0)
4033		svp = realvp;
4034
4035	/*
4036	 * POSIX dictates that we return EPERM here.
4037	 * Better choices include ENOTSUP or EISDIR.
4038	 */
4039	if (svp->v_type == VDIR) {
4040		ZFS_EXIT(zfsvfs);
4041		return (SET_ERROR(EPERM));
4042	}
4043
4044	szp = VTOZ(svp);
4045	ZFS_VERIFY_ZP(szp);
4046
4047	/*
4048	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4049	 * ctldir appear to have the same v_vfsp.
4050	 */
4051	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4052		ZFS_EXIT(zfsvfs);
4053		return (SET_ERROR(EXDEV));
4054	}
4055
4056	/* Prevent links to .zfs/shares files */
4057
4058	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4059	    &parent, sizeof (uint64_t))) != 0) {
4060		ZFS_EXIT(zfsvfs);
4061		return (error);
4062	}
4063	if (parent == zfsvfs->z_shares_dir) {
4064		ZFS_EXIT(zfsvfs);
4065		return (SET_ERROR(EPERM));
4066	}
4067
4068	if (zfsvfs->z_utf8 && u8_validate(name,
4069	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4070		ZFS_EXIT(zfsvfs);
4071		return (SET_ERROR(EILSEQ));
4072	}
4073	if (flags & FIGNORECASE)
4074		zf |= ZCILOOK;
4075
4076	/*
4077	 * We do not support links between attributes and non-attributes
4078	 * because of the potential security risk of creating links
4079	 * into "normal" file space in order to circumvent restrictions
4080	 * imposed in attribute space.
4081	 */
4082	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4083		ZFS_EXIT(zfsvfs);
4084		return (SET_ERROR(EINVAL));
4085	}
4086
4087
4088	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4089	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4090		ZFS_EXIT(zfsvfs);
4091		return (SET_ERROR(EPERM));
4092	}
4093
4094	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4095		ZFS_EXIT(zfsvfs);
4096		return (error);
4097	}
4098
4099top:
4100	/*
4101	 * Attempt to lock directory; fail if entry already exists.
4102	 */
4103	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4104	if (error) {
4105		ZFS_EXIT(zfsvfs);
4106		return (error);
4107	}
4108
4109	tx = dmu_tx_create(zfsvfs->z_os);
4110	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4111	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4112	zfs_sa_upgrade_txholds(tx, szp);
4113	zfs_sa_upgrade_txholds(tx, dzp);
4114	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4115	if (error) {
4116		zfs_dirent_unlock(dl);
4117		if (error == ERESTART) {
4118			waited = B_TRUE;
4119			dmu_tx_wait(tx);
4120			dmu_tx_abort(tx);
4121			goto top;
4122		}
4123		dmu_tx_abort(tx);
4124		ZFS_EXIT(zfsvfs);
4125		return (error);
4126	}
4127
4128	error = zfs_link_create(dl, szp, tx, 0);
4129
4130	if (error == 0) {
4131		uint64_t txtype = TX_LINK;
4132		if (flags & FIGNORECASE)
4133			txtype |= TX_CI;
4134		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4135	}
4136
4137	dmu_tx_commit(tx);
4138
4139	zfs_dirent_unlock(dl);
4140
4141	if (error == 0) {
4142		vnevent_link(svp, ct);
4143	}
4144
4145	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4146		zil_commit(zilog, 0);
4147
4148	ZFS_EXIT(zfsvfs);
4149	return (error);
4150}
4151
4152/*
4153 * zfs_null_putapage() is used when the file system has been force
4154 * unmounted. It just drops the pages.
4155 */
4156/* ARGSUSED */
4157static int
4158zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4159    size_t *lenp, int flags, cred_t *cr)
4160{
4161	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4162	return (0);
4163}
4164
4165/*
4166 * Push a page out to disk, klustering if possible.
4167 *
4168 *	IN:	vp	- file to push page to.
4169 *		pp	- page to push.
4170 *		flags	- additional flags.
4171 *		cr	- credentials of caller.
4172 *
4173 *	OUT:	offp	- start of range pushed.
4174 *		lenp	- len of range pushed.
4175 *
4176 *	RETURN:	0 on success, error code on failure.
4177 *
4178 * NOTE: callers must have locked the page to be pushed.  On
4179 * exit, the page (and all other pages in the kluster) must be
4180 * unlocked.
4181 */
4182/* ARGSUSED */
4183static int
4184zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4185    size_t *lenp, int flags, cred_t *cr)
4186{
4187	znode_t		*zp = VTOZ(vp);
4188	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4189	dmu_tx_t	*tx;
4190	u_offset_t	off, koff;
4191	size_t		len, klen;
4192	int		err;
4193
4194	off = pp->p_offset;
4195	len = PAGESIZE;
4196	/*
4197	 * If our blocksize is bigger than the page size, try to kluster
4198	 * multiple pages so that we write a full block (thus avoiding
4199	 * a read-modify-write).
4200	 */
4201	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4202		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4203		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4204		ASSERT(koff <= zp->z_size);
4205		if (koff + klen > zp->z_size)
4206			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4207		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4208	}
4209	ASSERT3U(btop(len), ==, btopr(len));
4210
4211	/*
4212	 * Can't push pages past end-of-file.
4213	 */
4214	if (off >= zp->z_size) {
4215		/* ignore all pages */
4216		err = 0;
4217		goto out;
4218	} else if (off + len > zp->z_size) {
4219		int npages = btopr(zp->z_size - off);
4220		page_t *trunc;
4221
4222		page_list_break(&pp, &trunc, npages);
4223		/* ignore pages past end of file */
4224		if (trunc)
4225			pvn_write_done(trunc, flags);
4226		len = zp->z_size - off;
4227	}
4228
4229	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4230	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4231		err = SET_ERROR(EDQUOT);
4232		goto out;
4233	}
4234	tx = dmu_tx_create(zfsvfs->z_os);
4235	dmu_tx_hold_write(tx, zp->z_id, off, len);
4236
4237	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4238	zfs_sa_upgrade_txholds(tx, zp);
4239	err = dmu_tx_assign(tx, TXG_WAIT);
4240	if (err != 0) {
4241		dmu_tx_abort(tx);
4242		goto out;
4243	}
4244
4245	if (zp->z_blksz <= PAGESIZE) {
4246		caddr_t va = zfs_map_page(pp, S_READ);
4247		ASSERT3U(len, <=, PAGESIZE);
4248		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4249		zfs_unmap_page(pp, va);
4250	} else {
4251		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4252	}
4253
4254	if (err == 0) {
4255		uint64_t mtime[2], ctime[2];
4256		sa_bulk_attr_t bulk[3];
4257		int count = 0;
4258
4259		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4260		    &mtime, 16);
4261		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4262		    &ctime, 16);
4263		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4264		    &zp->z_pflags, 8);
4265		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4266		    B_TRUE);
4267		err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4268		ASSERT0(err);
4269		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4270	}
4271	dmu_tx_commit(tx);
4272
4273out:
4274	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4275	if (offp)
4276		*offp = off;
4277	if (lenp)
4278		*lenp = len;
4279
4280	return (err);
4281}
4282
4283/*
4284 * Copy the portion of the file indicated from pages into the file.
4285 * The pages are stored in a page list attached to the files vnode.
4286 *
4287 *	IN:	vp	- vnode of file to push page data to.
4288 *		off	- position in file to put data.
4289 *		len	- amount of data to write.
4290 *		flags	- flags to control the operation.
4291 *		cr	- credentials of caller.
4292 *		ct	- caller context.
4293 *
4294 *	RETURN:	0 on success, error code on failure.
4295 *
4296 * Timestamps:
4297 *	vp - ctime|mtime updated
4298 */
4299/*ARGSUSED*/
4300static int
4301zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4302    caller_context_t *ct)
4303{
4304	znode_t		*zp = VTOZ(vp);
4305	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4306	page_t		*pp;
4307	size_t		io_len;
4308	u_offset_t	io_off;
4309	uint_t		blksz;
4310	rl_t		*rl;
4311	int		error = 0;
4312
4313	ZFS_ENTER(zfsvfs);
4314	ZFS_VERIFY_ZP(zp);
4315
4316	/*
4317	 * There's nothing to do if no data is cached.
4318	 */
4319	if (!vn_has_cached_data(vp)) {
4320		ZFS_EXIT(zfsvfs);
4321		return (0);
4322	}
4323
4324	/*
4325	 * Align this request to the file block size in case we kluster.
4326	 * XXX - this can result in pretty aggresive locking, which can
4327	 * impact simultanious read/write access.  One option might be
4328	 * to break up long requests (len == 0) into block-by-block
4329	 * operations to get narrower locking.
4330	 */
4331	blksz = zp->z_blksz;
4332	if (ISP2(blksz))
4333		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4334	else
4335		io_off = 0;
4336	if (len > 0 && ISP2(blksz))
4337		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4338	else
4339		io_len = 0;
4340
4341	if (io_len == 0) {
4342		/*
4343		 * Search the entire vp list for pages >= io_off.
4344		 */
4345		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4346		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4347		goto out;
4348	}
4349	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4350
4351	if (off > zp->z_size) {
4352		/* past end of file */
4353		zfs_range_unlock(rl);
4354		ZFS_EXIT(zfsvfs);
4355		return (0);
4356	}
4357
4358	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4359
4360	for (off = io_off; io_off < off + len; io_off += io_len) {
4361		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4362			pp = page_lookup(vp, io_off,
4363			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4364		} else {
4365			pp = page_lookup_nowait(vp, io_off,
4366			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4367		}
4368
4369		if (pp != NULL && pvn_getdirty(pp, flags)) {
4370			int err;
4371
4372			/*
4373			 * Found a dirty page to push
4374			 */
4375			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4376			if (err)
4377				error = err;
4378		} else {
4379			io_len = PAGESIZE;
4380		}
4381	}
4382out:
4383	zfs_range_unlock(rl);
4384	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4385		zil_commit(zfsvfs->z_log, zp->z_id);
4386	ZFS_EXIT(zfsvfs);
4387	return (error);
4388}
4389
4390/*ARGSUSED*/
4391void
4392zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4393{
4394	znode_t	*zp = VTOZ(vp);
4395	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4396	int error;
4397
4398	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4399	if (zp->z_sa_hdl == NULL) {
4400		/*
4401		 * The fs has been unmounted, or we did a
4402		 * suspend/resume and this file no longer exists.
4403		 */
4404		if (vn_has_cached_data(vp)) {
4405			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4406			    B_INVAL, cr);
4407		}
4408
4409		mutex_enter(&zp->z_lock);
4410		mutex_enter(&vp->v_lock);
4411		ASSERT(vp->v_count == 1);
4412		VN_RELE_LOCKED(vp);
4413		mutex_exit(&vp->v_lock);
4414		mutex_exit(&zp->z_lock);
4415		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4416		zfs_znode_free(zp);
4417		return;
4418	}
4419
4420	/*
4421	 * Attempt to push any data in the page cache.  If this fails
4422	 * we will get kicked out later in zfs_zinactive().
4423	 */
4424	if (vn_has_cached_data(vp)) {
4425		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4426		    cr);
4427	}
4428
4429	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4430		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4431
4432		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4433		zfs_sa_upgrade_txholds(tx, zp);
4434		error = dmu_tx_assign(tx, TXG_WAIT);
4435		if (error) {
4436			dmu_tx_abort(tx);
4437		} else {
4438			mutex_enter(&zp->z_lock);
4439			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4440			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4441			zp->z_atime_dirty = 0;
4442			mutex_exit(&zp->z_lock);
4443			dmu_tx_commit(tx);
4444		}
4445	}
4446
4447	zfs_zinactive(zp);
4448	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4449}
4450
4451/*
4452 * Bounds-check the seek operation.
4453 *
4454 *	IN:	vp	- vnode seeking within
4455 *		ooff	- old file offset
4456 *		noffp	- pointer to new file offset
4457 *		ct	- caller context
4458 *
4459 *	RETURN:	0 on success, EINVAL if new offset invalid.
4460 */
4461/* ARGSUSED */
4462static int
4463zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4464    caller_context_t *ct)
4465{
4466	if (vp->v_type == VDIR)
4467		return (0);
4468	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4469}
4470
4471/*
4472 * Pre-filter the generic locking function to trap attempts to place
4473 * a mandatory lock on a memory mapped file.
4474 */
4475static int
4476zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4477    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4478{
4479	znode_t *zp = VTOZ(vp);
4480	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4481
4482	ZFS_ENTER(zfsvfs);
4483	ZFS_VERIFY_ZP(zp);
4484
4485	/*
4486	 * We are following the UFS semantics with respect to mapcnt
4487	 * here: If we see that the file is mapped already, then we will
4488	 * return an error, but we don't worry about races between this
4489	 * function and zfs_map().
4490	 */
4491	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4492		ZFS_EXIT(zfsvfs);
4493		return (SET_ERROR(EAGAIN));
4494	}
4495	ZFS_EXIT(zfsvfs);
4496	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4497}
4498
4499/*
4500 * If we can't find a page in the cache, we will create a new page
4501 * and fill it with file data.  For efficiency, we may try to fill
4502 * multiple pages at once (klustering) to fill up the supplied page
4503 * list.  Note that the pages to be filled are held with an exclusive
4504 * lock to prevent access by other threads while they are being filled.
4505 */
4506static int
4507zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4508    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4509{
4510	znode_t *zp = VTOZ(vp);
4511	page_t *pp, *cur_pp;
4512	objset_t *os = zp->z_zfsvfs->z_os;
4513	u_offset_t io_off, total;
4514	size_t io_len;
4515	int err;
4516
4517	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4518		/*
4519		 * We only have a single page, don't bother klustering
4520		 */
4521		io_off = off;
4522		io_len = PAGESIZE;
4523		pp = page_create_va(vp, io_off, io_len,
4524		    PG_EXCL | PG_WAIT, seg, addr);
4525	} else {
4526		/*
4527		 * Try to find enough pages to fill the page list
4528		 */
4529		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4530		    &io_len, off, plsz, 0);
4531	}
4532	if (pp == NULL) {
4533		/*
4534		 * The page already exists, nothing to do here.
4535		 */
4536		*pl = NULL;
4537		return (0);
4538	}
4539
4540	/*
4541	 * Fill the pages in the kluster.
4542	 */
4543	cur_pp = pp;
4544	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4545		caddr_t va;
4546
4547		ASSERT3U(io_off, ==, cur_pp->p_offset);
4548		va = zfs_map_page(cur_pp, S_WRITE);
4549		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4550		    DMU_READ_PREFETCH);
4551		zfs_unmap_page(cur_pp, va);
4552		if (err) {
4553			/* On error, toss the entire kluster */
4554			pvn_read_done(pp, B_ERROR);
4555			/* convert checksum errors into IO errors */
4556			if (err == ECKSUM)
4557				err = SET_ERROR(EIO);
4558			return (err);
4559		}
4560		cur_pp = cur_pp->p_next;
4561	}
4562
4563	/*
4564	 * Fill in the page list array from the kluster starting
4565	 * from the desired offset `off'.
4566	 * NOTE: the page list will always be null terminated.
4567	 */
4568	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4569	ASSERT(pl == NULL || (*pl)->p_offset == off);
4570
4571	return (0);
4572}
4573
4574/*
4575 * Return pointers to the pages for the file region [off, off + len]
4576 * in the pl array.  If plsz is greater than len, this function may
4577 * also return page pointers from after the specified region
4578 * (i.e. the region [off, off + plsz]).  These additional pages are
4579 * only returned if they are already in the cache, or were created as
4580 * part of a klustered read.
4581 *
4582 *	IN:	vp	- vnode of file to get data from.
4583 *		off	- position in file to get data from.
4584 *		len	- amount of data to retrieve.
4585 *		plsz	- length of provided page list.
4586 *		seg	- segment to obtain pages for.
4587 *		addr	- virtual address of fault.
4588 *		rw	- mode of created pages.
4589 *		cr	- credentials of caller.
4590 *		ct	- caller context.
4591 *
4592 *	OUT:	protp	- protection mode of created pages.
4593 *		pl	- list of pages created.
4594 *
4595 *	RETURN:	0 on success, error code on failure.
4596 *
4597 * Timestamps:
4598 *	vp - atime updated
4599 */
4600/* ARGSUSED */
4601static int
4602zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4603    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4604    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4605{
4606	znode_t		*zp = VTOZ(vp);
4607	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4608	page_t		**pl0 = pl;
4609	int		err = 0;
4610
4611	/* we do our own caching, faultahead is unnecessary */
4612	if (pl == NULL)
4613		return (0);
4614	else if (len > plsz)
4615		len = plsz;
4616	else
4617		len = P2ROUNDUP(len, PAGESIZE);
4618	ASSERT(plsz >= len);
4619
4620	ZFS_ENTER(zfsvfs);
4621	ZFS_VERIFY_ZP(zp);
4622
4623	if (protp)
4624		*protp = PROT_ALL;
4625
4626	/*
4627	 * Loop through the requested range [off, off + len) looking
4628	 * for pages.  If we don't find a page, we will need to create
4629	 * a new page and fill it with data from the file.
4630	 */
4631	while (len > 0) {
4632		if (*pl = page_lookup(vp, off, SE_SHARED))
4633			*(pl+1) = NULL;
4634		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4635			goto out;
4636		while (*pl) {
4637			ASSERT3U((*pl)->p_offset, ==, off);
4638			off += PAGESIZE;
4639			addr += PAGESIZE;
4640			if (len > 0) {
4641				ASSERT3U(len, >=, PAGESIZE);
4642				len -= PAGESIZE;
4643			}
4644			ASSERT3U(plsz, >=, PAGESIZE);
4645			plsz -= PAGESIZE;
4646			pl++;
4647		}
4648	}
4649
4650	/*
4651	 * Fill out the page array with any pages already in the cache.
4652	 */
4653	while (plsz > 0 &&
4654	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4655			off += PAGESIZE;
4656			plsz -= PAGESIZE;
4657	}
4658out:
4659	if (err) {
4660		/*
4661		 * Release any pages we have previously locked.
4662		 */
4663		while (pl > pl0)
4664			page_unlock(*--pl);
4665	} else {
4666		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4667	}
4668
4669	*pl = NULL;
4670
4671	ZFS_EXIT(zfsvfs);
4672	return (err);
4673}
4674
4675/*
4676 * Request a memory map for a section of a file.  This code interacts
4677 * with common code and the VM system as follows:
4678 *
4679 * - common code calls mmap(), which ends up in smmap_common()
4680 * - this calls VOP_MAP(), which takes you into (say) zfs
4681 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4682 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4683 * - zfs_addmap() updates z_mapcnt
4684 */
4685/*ARGSUSED*/
4686static int
4687zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4688    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4689    caller_context_t *ct)
4690{
4691	znode_t *zp = VTOZ(vp);
4692	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4693	segvn_crargs_t	vn_a;
4694	int		error;
4695
4696	ZFS_ENTER(zfsvfs);
4697	ZFS_VERIFY_ZP(zp);
4698
4699	/*
4700	 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4701	 */
4702
4703	if ((prot & PROT_WRITE) && (zp->z_pflags &
4704	    (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4705		ZFS_EXIT(zfsvfs);
4706		return (SET_ERROR(EPERM));
4707	}
4708
4709	if ((prot & (PROT_READ | PROT_EXEC)) &&
4710	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4711		ZFS_EXIT(zfsvfs);
4712		return (SET_ERROR(EACCES));
4713	}
4714
4715	if (vp->v_flag & VNOMAP) {
4716		ZFS_EXIT(zfsvfs);
4717		return (SET_ERROR(ENOSYS));
4718	}
4719
4720	if (off < 0 || len > MAXOFFSET_T - off) {
4721		ZFS_EXIT(zfsvfs);
4722		return (SET_ERROR(ENXIO));
4723	}
4724
4725	if (vp->v_type != VREG) {
4726		ZFS_EXIT(zfsvfs);
4727		return (SET_ERROR(ENODEV));
4728	}
4729
4730	/*
4731	 * If file is locked, disallow mapping.
4732	 */
4733	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4734		ZFS_EXIT(zfsvfs);
4735		return (SET_ERROR(EAGAIN));
4736	}
4737
4738	as_rangelock(as);
4739	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4740	if (error != 0) {
4741		as_rangeunlock(as);
4742		ZFS_EXIT(zfsvfs);
4743		return (error);
4744	}
4745
4746	vn_a.vp = vp;
4747	vn_a.offset = (u_offset_t)off;
4748	vn_a.type = flags & MAP_TYPE;
4749	vn_a.prot = prot;
4750	vn_a.maxprot = maxprot;
4751	vn_a.cred = cr;
4752	vn_a.amp = NULL;
4753	vn_a.flags = flags & ~MAP_TYPE;
4754	vn_a.szc = 0;
4755	vn_a.lgrp_mem_policy_flags = 0;
4756
4757	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4758
4759	as_rangeunlock(as);
4760	ZFS_EXIT(zfsvfs);
4761	return (error);
4762}
4763
4764/* ARGSUSED */
4765static int
4766zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4767    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4768    caller_context_t *ct)
4769{
4770	uint64_t pages = btopr(len);
4771
4772	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4773	return (0);
4774}
4775
4776/*
4777 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4778 * more accurate mtime for the associated file.  Since we don't have a way of
4779 * detecting when the data was actually modified, we have to resort to
4780 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4781 * last page is pushed.  The problem occurs when the msync() call is omitted,
4782 * which by far the most common case:
4783 *
4784 *	open()
4785 *	mmap()
4786 *	<modify memory>
4787 *	munmap()
4788 *	close()
4789 *	<time lapse>
4790 *	putpage() via fsflush
4791 *
4792 * If we wait until fsflush to come along, we can have a modification time that
4793 * is some arbitrary point in the future.  In order to prevent this in the
4794 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4795 * torn down.
4796 */
4797/* ARGSUSED */
4798static int
4799zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4800    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4801    caller_context_t *ct)
4802{
4803	uint64_t pages = btopr(len);
4804
4805	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4806	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4807
4808	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4809	    vn_has_cached_data(vp))
4810		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4811
4812	return (0);
4813}
4814
4815/*
4816 * Free or allocate space in a file.  Currently, this function only
4817 * supports the `F_FREESP' command.  However, this command is somewhat
4818 * misnamed, as its functionality includes the ability to allocate as
4819 * well as free space.
4820 *
4821 *	IN:	vp	- vnode of file to free data in.
4822 *		cmd	- action to take (only F_FREESP supported).
4823 *		bfp	- section of file to free/alloc.
4824 *		flag	- current file open mode flags.
4825 *		offset	- current file offset.
4826 *		cr	- credentials of caller [UNUSED].
4827 *		ct	- caller context.
4828 *
4829 *	RETURN:	0 on success, error code on failure.
4830 *
4831 * Timestamps:
4832 *	vp - ctime|mtime updated
4833 */
4834/* ARGSUSED */
4835static int
4836zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4837    offset_t offset, cred_t *cr, caller_context_t *ct)
4838{
4839	znode_t		*zp = VTOZ(vp);
4840	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4841	uint64_t	off, len;
4842	int		error;
4843
4844	ZFS_ENTER(zfsvfs);
4845	ZFS_VERIFY_ZP(zp);
4846
4847	if (cmd != F_FREESP) {
4848		ZFS_EXIT(zfsvfs);
4849		return (SET_ERROR(EINVAL));
4850	}
4851
4852	/*
4853	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4854	 * callers might not be able to detect properly that we are read-only,
4855	 * so check it explicitly here.
4856	 */
4857	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4858		ZFS_EXIT(zfsvfs);
4859		return (SET_ERROR(EROFS));
4860	}
4861
4862	if (error = convoff(vp, bfp, 0, offset)) {
4863		ZFS_EXIT(zfsvfs);
4864		return (error);
4865	}
4866
4867	if (bfp->l_len < 0) {
4868		ZFS_EXIT(zfsvfs);
4869		return (SET_ERROR(EINVAL));
4870	}
4871
4872	off = bfp->l_start;
4873	len = bfp->l_len; /* 0 means from off to end of file */
4874
4875	error = zfs_freesp(zp, off, len, flag, TRUE);
4876
4877	if (error == 0 && off == 0 && len == 0)
4878		vnevent_truncate(ZTOV(zp), ct);
4879
4880	ZFS_EXIT(zfsvfs);
4881	return (error);
4882}
4883
4884/*ARGSUSED*/
4885static int
4886zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4887{
4888	znode_t		*zp = VTOZ(vp);
4889	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4890	uint32_t	gen;
4891	uint64_t	gen64;
4892	uint64_t	object = zp->z_id;
4893	zfid_short_t	*zfid;
4894	int		size, i, error;
4895
4896	ZFS_ENTER(zfsvfs);
4897	ZFS_VERIFY_ZP(zp);
4898
4899	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4900	    &gen64, sizeof (uint64_t))) != 0) {
4901		ZFS_EXIT(zfsvfs);
4902		return (error);
4903	}
4904
4905	gen = (uint32_t)gen64;
4906
4907	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4908	if (fidp->fid_len < size) {
4909		fidp->fid_len = size;
4910		ZFS_EXIT(zfsvfs);
4911		return (SET_ERROR(ENOSPC));
4912	}
4913
4914	zfid = (zfid_short_t *)fidp;
4915
4916	zfid->zf_len = size;
4917
4918	for (i = 0; i < sizeof (zfid->zf_object); i++)
4919		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4920
4921	/* Must have a non-zero generation number to distinguish from .zfs */
4922	if (gen == 0)
4923		gen = 1;
4924	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4925		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4926
4927	if (size == LONG_FID_LEN) {
4928		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4929		zfid_long_t	*zlfid;
4930
4931		zlfid = (zfid_long_t *)fidp;
4932
4933		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4934			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4935
4936		/* XXX - this should be the generation number for the objset */
4937		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4938			zlfid->zf_setgen[i] = 0;
4939	}
4940
4941	ZFS_EXIT(zfsvfs);
4942	return (0);
4943}
4944
4945static int
4946zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4947    caller_context_t *ct)
4948{
4949	znode_t		*zp, *xzp;
4950	zfsvfs_t	*zfsvfs;
4951	zfs_dirlock_t	*dl;
4952	int		error;
4953
4954	switch (cmd) {
4955	case _PC_LINK_MAX:
4956		*valp = ULONG_MAX;
4957		return (0);
4958
4959	case _PC_FILESIZEBITS:
4960		*valp = 64;
4961		return (0);
4962
4963	case _PC_XATTR_EXISTS:
4964		zp = VTOZ(vp);
4965		zfsvfs = zp->z_zfsvfs;
4966		ZFS_ENTER(zfsvfs);
4967		ZFS_VERIFY_ZP(zp);
4968		*valp = 0;
4969		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4970		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4971		if (error == 0) {
4972			zfs_dirent_unlock(dl);
4973			if (!zfs_dirempty(xzp))
4974				*valp = 1;
4975			VN_RELE(ZTOV(xzp));
4976		} else if (error == ENOENT) {
4977			/*
4978			 * If there aren't extended attributes, it's the
4979			 * same as having zero of them.
4980			 */
4981			error = 0;
4982		}
4983		ZFS_EXIT(zfsvfs);
4984		return (error);
4985
4986	case _PC_SATTR_ENABLED:
4987	case _PC_SATTR_EXISTS:
4988		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4989		    (vp->v_type == VREG || vp->v_type == VDIR);
4990		return (0);
4991
4992	case _PC_ACCESS_FILTERING:
4993		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4994		    vp->v_type == VDIR;
4995		return (0);
4996
4997	case _PC_ACL_ENABLED:
4998		*valp = _ACL_ACE_ENABLED;
4999		return (0);
5000
5001	case _PC_MIN_HOLE_SIZE:
5002		*valp = (ulong_t)SPA_MINBLOCKSIZE;
5003		return (0);
5004
5005	case _PC_TIMESTAMP_RESOLUTION:
5006		/* nanosecond timestamp resolution */
5007		*valp = 1L;
5008		return (0);
5009
5010	default:
5011		return (fs_pathconf(vp, cmd, valp, cr, ct));
5012	}
5013}
5014
5015/*ARGSUSED*/
5016static int
5017zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5018    caller_context_t *ct)
5019{
5020	znode_t *zp = VTOZ(vp);
5021	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5022	int error;
5023	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5024
5025	ZFS_ENTER(zfsvfs);
5026	ZFS_VERIFY_ZP(zp);
5027	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5028	ZFS_EXIT(zfsvfs);
5029
5030	return (error);
5031}
5032
5033/*ARGSUSED*/
5034static int
5035zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5036    caller_context_t *ct)
5037{
5038	znode_t *zp = VTOZ(vp);
5039	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5040	int error;
5041	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5042	zilog_t	*zilog = zfsvfs->z_log;
5043
5044	ZFS_ENTER(zfsvfs);
5045	ZFS_VERIFY_ZP(zp);
5046
5047	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5048
5049	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5050		zil_commit(zilog, 0);
5051
5052	ZFS_EXIT(zfsvfs);
5053	return (error);
5054}
5055
5056/*
5057 * The smallest read we may consider to loan out an arcbuf.
5058 * This must be a power of 2.
5059 */
5060int zcr_blksz_min = (1 << 10);	/* 1K */
5061/*
5062 * If set to less than the file block size, allow loaning out of an
5063 * arcbuf for a partial block read.  This must be a power of 2.
5064 */
5065int zcr_blksz_max = (1 << 17);	/* 128K */
5066
5067/*ARGSUSED*/
5068static int
5069zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5070    caller_context_t *ct)
5071{
5072	znode_t	*zp = VTOZ(vp);
5073	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5074	int max_blksz = zfsvfs->z_max_blksz;
5075	uio_t *uio = &xuio->xu_uio;
5076	ssize_t size = uio->uio_resid;
5077	offset_t offset = uio->uio_loffset;
5078	int blksz;
5079	int fullblk, i;
5080	arc_buf_t *abuf;
5081	ssize_t maxsize;
5082	int preamble, postamble;
5083
5084	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5085		return (SET_ERROR(EINVAL));
5086
5087	ZFS_ENTER(zfsvfs);
5088	ZFS_VERIFY_ZP(zp);
5089	switch (ioflag) {
5090	case UIO_WRITE:
5091		/*
5092		 * Loan out an arc_buf for write if write size is bigger than
5093		 * max_blksz, and the file's block size is also max_blksz.
5094		 */
5095		blksz = max_blksz;
5096		if (size < blksz || zp->z_blksz != blksz) {
5097			ZFS_EXIT(zfsvfs);
5098			return (SET_ERROR(EINVAL));
5099		}
5100		/*
5101		 * Caller requests buffers for write before knowing where the
5102		 * write offset might be (e.g. NFS TCP write).
5103		 */
5104		if (offset == -1) {
5105			preamble = 0;
5106		} else {
5107			preamble = P2PHASE(offset, blksz);
5108			if (preamble) {
5109				preamble = blksz - preamble;
5110				size -= preamble;
5111			}
5112		}
5113
5114		postamble = P2PHASE(size, blksz);
5115		size -= postamble;
5116
5117		fullblk = size / blksz;
5118		(void) dmu_xuio_init(xuio,
5119		    (preamble != 0) + fullblk + (postamble != 0));
5120		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5121		    int, postamble, int,
5122		    (preamble != 0) + fullblk + (postamble != 0));
5123
5124		/*
5125		 * Have to fix iov base/len for partial buffers.  They
5126		 * currently represent full arc_buf's.
5127		 */
5128		if (preamble) {
5129			/* data begins in the middle of the arc_buf */
5130			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5131			    blksz);
5132			ASSERT(abuf);
5133			(void) dmu_xuio_add(xuio, abuf,
5134			    blksz - preamble, preamble);
5135		}
5136
5137		for (i = 0; i < fullblk; i++) {
5138			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5139			    blksz);
5140			ASSERT(abuf);
5141			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5142		}
5143
5144		if (postamble) {
5145			/* data ends in the middle of the arc_buf */
5146			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5147			    blksz);
5148			ASSERT(abuf);
5149			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5150		}
5151		break;
5152	case UIO_READ:
5153		/*
5154		 * Loan out an arc_buf for read if the read size is larger than
5155		 * the current file block size.  Block alignment is not
5156		 * considered.  Partial arc_buf will be loaned out for read.
5157		 */
5158		blksz = zp->z_blksz;
5159		if (blksz < zcr_blksz_min)
5160			blksz = zcr_blksz_min;
5161		if (blksz > zcr_blksz_max)
5162			blksz = zcr_blksz_max;
5163		/* avoid potential complexity of dealing with it */
5164		if (blksz > max_blksz) {
5165			ZFS_EXIT(zfsvfs);
5166			return (SET_ERROR(EINVAL));
5167		}
5168
5169		maxsize = zp->z_size - uio->uio_loffset;
5170		if (size > maxsize)
5171			size = maxsize;
5172
5173		if (size < blksz || vn_has_cached_data(vp)) {
5174			ZFS_EXIT(zfsvfs);
5175			return (SET_ERROR(EINVAL));
5176		}
5177		break;
5178	default:
5179		ZFS_EXIT(zfsvfs);
5180		return (SET_ERROR(EINVAL));
5181	}
5182
5183	uio->uio_extflg = UIO_XUIO;
5184	XUIO_XUZC_RW(xuio) = ioflag;
5185	ZFS_EXIT(zfsvfs);
5186	return (0);
5187}
5188
5189/*ARGSUSED*/
5190static int
5191zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5192{
5193	int i;
5194	arc_buf_t *abuf;
5195	int ioflag = XUIO_XUZC_RW(xuio);
5196
5197	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5198
5199	i = dmu_xuio_cnt(xuio);
5200	while (i-- > 0) {
5201		abuf = dmu_xuio_arcbuf(xuio, i);
5202		/*
5203		 * if abuf == NULL, it must be a write buffer
5204		 * that has been returned in zfs_write().
5205		 */
5206		if (abuf)
5207			dmu_return_arcbuf(abuf);
5208		ASSERT(abuf || ioflag == UIO_WRITE);
5209	}
5210
5211	dmu_xuio_fini(xuio);
5212	return (0);
5213}
5214
5215/*
5216 * Predeclare these here so that the compiler assumes that
5217 * this is an "old style" function declaration that does
5218 * not include arguments => we won't get type mismatch errors
5219 * in the initializations that follow.
5220 */
5221static int zfs_inval();
5222static int zfs_isdir();
5223
5224static int
5225zfs_inval()
5226{
5227	return (SET_ERROR(EINVAL));
5228}
5229
5230static int
5231zfs_isdir()
5232{
5233	return (SET_ERROR(EISDIR));
5234}
5235/*
5236 * Directory vnode operations template
5237 */
5238vnodeops_t *zfs_dvnodeops;
5239const fs_operation_def_t zfs_dvnodeops_template[] = {
5240	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5241	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5242	VOPNAME_READ,		{ .error = zfs_isdir },
5243	VOPNAME_WRITE,		{ .error = zfs_isdir },
5244	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5245	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5246	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5247	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5248	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5249	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5250	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5251	VOPNAME_LINK,		{ .vop_link = zfs_link },
5252	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5253	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5254	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5255	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5256	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5257	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5258	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5259	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5260	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5261	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5262	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5263	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5264	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5265	NULL,			NULL
5266};
5267
5268/*
5269 * Regular file vnode operations template
5270 */
5271vnodeops_t *zfs_fvnodeops;
5272const fs_operation_def_t zfs_fvnodeops_template[] = {
5273	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5274	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5275	VOPNAME_READ,		{ .vop_read = zfs_read },
5276	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5277	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5278	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5279	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5280	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5281	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5282	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5283	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5284	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5285	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5286	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5287	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5288	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5289	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5290	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5291	VOPNAME_MAP,		{ .vop_map = zfs_map },
5292	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5293	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5294	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5295	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5296	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5297	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5298	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5299	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5300	NULL,			NULL
5301};
5302
5303/*
5304 * Symbolic link vnode operations template
5305 */
5306vnodeops_t *zfs_symvnodeops;
5307const fs_operation_def_t zfs_symvnodeops_template[] = {
5308	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5309	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5310	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5311	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5312	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5313	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5314	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5315	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5316	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5317	NULL,			NULL
5318};
5319
5320/*
5321 * special share hidden files vnode operations template
5322 */
5323vnodeops_t *zfs_sharevnodeops;
5324const fs_operation_def_t zfs_sharevnodeops_template[] = {
5325	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5326	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5327	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5328	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5329	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5330	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5331	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5332	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5333	NULL,			NULL
5334};
5335
5336/*
5337 * Extended attribute directory vnode operations template
5338 *
5339 * This template is identical to the directory vnodes
5340 * operation template except for restricted operations:
5341 *	VOP_MKDIR()
5342 *	VOP_SYMLINK()
5343 *
5344 * Note that there are other restrictions embedded in:
5345 *	zfs_create()	- restrict type to VREG
5346 *	zfs_link()	- no links into/out of attribute space
5347 *	zfs_rename()	- no moves into/out of attribute space
5348 */
5349vnodeops_t *zfs_xdvnodeops;
5350const fs_operation_def_t zfs_xdvnodeops_template[] = {
5351	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5352	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5353	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5354	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5355	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5356	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5357	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5358	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5359	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5360	VOPNAME_LINK,		{ .vop_link = zfs_link },
5361	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5362	VOPNAME_MKDIR,		{ .error = zfs_inval },
5363	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5364	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5365	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5366	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5367	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5368	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5369	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5370	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5371	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5372	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5373	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5374	NULL,			NULL
5375};
5376
5377/*
5378 * Error vnode operations template
5379 */
5380vnodeops_t *zfs_evnodeops;
5381const fs_operation_def_t zfs_evnodeops_template[] = {
5382	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5383	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5384	NULL,			NULL
5385};
5386