xref: /illumos-gate/usr/src/cmd/lockstat/lockstat.c (revision ef150c2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <stdio.h>
27 #include <stddef.h>
28 #include <stdlib.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <strings.h>
32 #include <ctype.h>
33 #include <fcntl.h>
34 #include <unistd.h>
35 #include <errno.h>
36 #include <limits.h>
37 #include <sys/types.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/wait.h>
41 #include <dtrace.h>
42 #include <sys/lockstat.h>
43 #include <alloca.h>
44 #include <signal.h>
45 #include <assert.h>
46 
47 #define	LOCKSTAT_OPTSTR	"x:bths:n:d:i:l:f:e:ckwWgCHEATID:RpPo:V"
48 
49 #define	LS_MAX_STACK_DEPTH	50
50 #define	LS_MAX_EVENTS		64
51 
52 typedef struct lsrec {
53 	struct lsrec	*ls_next;	/* next in hash chain */
54 	uintptr_t	ls_lock;	/* lock address */
55 	uintptr_t	ls_caller;	/* caller address */
56 	uint32_t	ls_count;	/* cumulative event count */
57 	uint32_t	ls_event;	/* type of event */
58 	uintptr_t	ls_refcnt;	/* cumulative reference count */
59 	uint64_t	ls_time;	/* cumulative event duration */
60 	uint32_t	ls_hist[64];	/* log2(duration) histogram */
61 	uintptr_t	ls_stack[LS_MAX_STACK_DEPTH];
62 } lsrec_t;
63 
64 typedef struct lsdata {
65 	struct lsrec	*lsd_next;	/* next available */
66 	int		lsd_count;	/* number of records */
67 } lsdata_t;
68 
69 /*
70  * Definitions for the types of experiments which can be run.  They are
71  * listed in increasing order of memory cost and processing time cost.
72  * The numerical value of each type is the number of bytes needed per record.
73  */
74 #define	LS_BASIC	offsetof(lsrec_t, ls_time)
75 #define	LS_TIME		offsetof(lsrec_t, ls_hist[0])
76 #define	LS_HIST		offsetof(lsrec_t, ls_stack[0])
77 #define	LS_STACK(depth)	offsetof(lsrec_t, ls_stack[depth])
78 
79 static void report_stats(FILE *, lsrec_t **, size_t, uint64_t, uint64_t);
80 static void report_trace(FILE *, lsrec_t **);
81 
82 extern int symtab_init(void);
83 extern char *addr_to_sym(uintptr_t, uintptr_t *, size_t *);
84 extern uintptr_t sym_to_addr(char *name);
85 extern size_t sym_size(char *name);
86 extern char *strtok_r(char *, const char *, char **);
87 
88 #define	DEFAULT_NRECS	10000
89 #define	DEFAULT_HZ	97
90 #define	MAX_HZ		1000
91 #define	MIN_AGGSIZE	(16 * 1024)
92 #define	MAX_AGGSIZE	(32 * 1024 * 1024)
93 
94 static int g_stkdepth;
95 static int g_topn = INT_MAX;
96 static hrtime_t g_elapsed;
97 static int g_rates = 0;
98 static int g_pflag = 0;
99 static int g_Pflag = 0;
100 static int g_wflag = 0;
101 static int g_Wflag = 0;
102 static int g_cflag = 0;
103 static int g_kflag = 0;
104 static int g_gflag = 0;
105 static int g_Vflag = 0;
106 static int g_tracing = 0;
107 static size_t g_recsize;
108 static size_t g_nrecs;
109 static int g_nrecs_used;
110 static uchar_t g_enabled[LS_MAX_EVENTS];
111 static hrtime_t g_min_duration[LS_MAX_EVENTS];
112 static dtrace_hdl_t *g_dtp;
113 static char *g_predicate;
114 static char *g_ipredicate;
115 static char *g_prog;
116 static int g_proglen;
117 static int g_dropped;
118 
119 typedef struct ls_event_info {
120 	char	ev_type;
121 	char	ev_lhdr[20];
122 	char	ev_desc[80];
123 	char	ev_units[10];
124 	char	ev_name[DTRACE_NAMELEN];
125 	char	*ev_predicate;
126 	char	*ev_acquire;
127 } ls_event_info_t;
128 
129 static ls_event_info_t g_event_info[LS_MAX_EVENTS] = {
130 	{ 'C',	"Lock",	"Adaptive mutex spin",			"nsec",
131 	    "lockstat:::adaptive-spin" },
132 	{ 'C',	"Lock",	"Adaptive mutex block",			"nsec",
133 	    "lockstat:::adaptive-block" },
134 	{ 'C',	"Lock",	"Spin lock spin",			"nsec",
135 	    "lockstat:::spin-spin" },
136 	{ 'C',	"Lock",	"Thread lock spin",			"nsec",
137 	    "lockstat:::thread-spin" },
138 	{ 'C',	"Lock",	"R/W writer blocked by writer",		"nsec",
139 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 1" },
140 	{ 'C',	"Lock",	"R/W writer blocked by readers",	"nsec",
141 	    "lockstat:::rw-block", "arg2 == 0 && arg3 == 0 && arg4" },
142 	{ 'C',	"Lock",	"R/W reader blocked by writer",		"nsec",
143 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 1" },
144 	{ 'C',	"Lock",	"R/W reader blocked by write wanted",	"nsec",
145 	    "lockstat:::rw-block", "arg2 != 0 && arg3 == 0 && arg4" },
146 	{ 'C',	"Lock",	"Unknown event (type 8)",		"units"	},
147 	{ 'C',	"Lock",	"Unknown event (type 9)",		"units"	},
148 	{ 'C',	"Lock",	"Unknown event (type 10)",		"units"	},
149 	{ 'C',	"Lock",	"Unknown event (type 11)",		"units"	},
150 	{ 'C',	"Lock",	"Unknown event (type 12)",		"units"	},
151 	{ 'C',	"Lock",	"Unknown event (type 13)",		"units"	},
152 	{ 'C',	"Lock",	"Unknown event (type 14)",		"units"	},
153 	{ 'C',	"Lock",	"Unknown event (type 15)",		"units"	},
154 	{ 'C',	"Lock",	"Unknown event (type 16)",		"units"	},
155 	{ 'C',	"Lock",	"Unknown event (type 17)",		"units"	},
156 	{ 'C',	"Lock",	"Unknown event (type 18)",		"units"	},
157 	{ 'C',	"Lock",	"Unknown event (type 19)",		"units"	},
158 	{ 'C',	"Lock",	"Unknown event (type 20)",		"units"	},
159 	{ 'C',	"Lock",	"Unknown event (type 21)",		"units"	},
160 	{ 'C',	"Lock",	"Unknown event (type 22)",		"units"	},
161 	{ 'C',	"Lock",	"Unknown event (type 23)",		"units"	},
162 	{ 'C',	"Lock",	"Unknown event (type 24)",		"units"	},
163 	{ 'C',	"Lock",	"Unknown event (type 25)",		"units"	},
164 	{ 'C',	"Lock",	"Unknown event (type 26)",		"units"	},
165 	{ 'C',	"Lock",	"Unknown event (type 27)",		"units"	},
166 	{ 'C',	"Lock",	"Unknown event (type 28)",		"units"	},
167 	{ 'C',	"Lock",	"Unknown event (type 29)",		"units"	},
168 	{ 'C',	"Lock",	"Unknown event (type 30)",		"units"	},
169 	{ 'C',	"Lock",	"Unknown event (type 31)",		"units"	},
170 	{ 'H',	"Lock",	"Adaptive mutex hold",			"nsec",
171 	    "lockstat:::adaptive-release", NULL,
172 	    "lockstat:::adaptive-acquire" },
173 	{ 'H',	"Lock",	"Spin lock hold",			"nsec",
174 	    "lockstat:::spin-release", NULL,
175 	    "lockstat:::spin-acquire" },
176 	{ 'H',	"Lock",	"R/W writer hold",			"nsec",
177 	    "lockstat:::rw-release", "arg1 == 0",
178 	    "lockstat:::rw-acquire" },
179 	{ 'H',	"Lock",	"R/W reader hold",			"nsec",
180 	    "lockstat:::rw-release", "arg1 != 0",
181 	    "lockstat:::rw-acquire" },
182 	{ 'H',	"Lock",	"Unknown event (type 36)",		"units"	},
183 	{ 'H',	"Lock",	"Unknown event (type 37)",		"units"	},
184 	{ 'H',	"Lock",	"Unknown event (type 38)",		"units"	},
185 	{ 'H',	"Lock",	"Unknown event (type 39)",		"units"	},
186 	{ 'H',	"Lock",	"Unknown event (type 40)",		"units"	},
187 	{ 'H',	"Lock",	"Unknown event (type 41)",		"units"	},
188 	{ 'H',	"Lock",	"Unknown event (type 42)",		"units"	},
189 	{ 'H',	"Lock",	"Unknown event (type 43)",		"units"	},
190 	{ 'H',	"Lock",	"Unknown event (type 44)",		"units"	},
191 	{ 'H',	"Lock",	"Unknown event (type 45)",		"units"	},
192 	{ 'H',	"Lock",	"Unknown event (type 46)",		"units"	},
193 	{ 'H',	"Lock",	"Unknown event (type 47)",		"units"	},
194 	{ 'H',	"Lock",	"Unknown event (type 48)",		"units"	},
195 	{ 'H',	"Lock",	"Unknown event (type 49)",		"units"	},
196 	{ 'H',	"Lock",	"Unknown event (type 50)",		"units"	},
197 	{ 'H',	"Lock",	"Unknown event (type 51)",		"units"	},
198 	{ 'H',	"Lock",	"Unknown event (type 52)",		"units"	},
199 	{ 'H',	"Lock",	"Unknown event (type 53)",		"units"	},
200 	{ 'H',	"Lock",	"Unknown event (type 54)",		"units"	},
201 	{ 'H',	"Lock",	"Unknown event (type 55)",		"units"	},
202 	{ 'I',	"CPU+PIL", "Profiling interrupt",		"nsec",
203 	    "profile:::profile-97", NULL },
204 	{ 'I',	"Lock",	"Unknown event (type 57)",		"units"	},
205 	{ 'I',	"Lock",	"Unknown event (type 58)",		"units"	},
206 	{ 'I',	"Lock",	"Unknown event (type 59)",		"units"	},
207 	{ 'E',	"Lock",	"Recursive lock entry detected",	"(N/A)",
208 	    "lockstat:::rw-release", NULL, "lockstat:::rw-acquire" },
209 	{ 'E',	"Lock",	"Lockstat enter failure",		"(N/A)"	},
210 	{ 'E',	"Lock",	"Lockstat exit failure",		"nsec"	},
211 	{ 'E',	"Lock",	"Lockstat record failure",		"(N/A)"	},
212 };
213 
214 static void
fail(int do_perror,const char * message,...)215 fail(int do_perror, const char *message, ...)
216 {
217 	va_list args;
218 	int save_errno = errno;
219 
220 	va_start(args, message);
221 	(void) fprintf(stderr, "lockstat: ");
222 	(void) vfprintf(stderr, message, args);
223 	va_end(args);
224 	if (do_perror)
225 		(void) fprintf(stderr, ": %s", strerror(save_errno));
226 	(void) fprintf(stderr, "\n");
227 	exit(2);
228 }
229 
230 static void
dfail(const char * message,...)231 dfail(const char *message, ...)
232 {
233 	va_list args;
234 
235 	va_start(args, message);
236 	(void) fprintf(stderr, "lockstat: ");
237 	(void) vfprintf(stderr, message, args);
238 	va_end(args);
239 	(void) fprintf(stderr, ": %s\n",
240 	    dtrace_errmsg(g_dtp, dtrace_errno(g_dtp)));
241 
242 	exit(2);
243 }
244 
245 static void
show_events(char event_type,char * desc)246 show_events(char event_type, char *desc)
247 {
248 	int i, first = -1, last;
249 
250 	for (i = 0; i < LS_MAX_EVENTS; i++) {
251 		ls_event_info_t *evp = &g_event_info[i];
252 		if (evp->ev_type != event_type ||
253 		    strncmp(evp->ev_desc, "Unknown event", 13) == 0)
254 			continue;
255 		if (first == -1)
256 			first = i;
257 		last = i;
258 	}
259 
260 	(void) fprintf(stderr,
261 	    "\n%s events (lockstat -%c or lockstat -e %d-%d):\n\n",
262 	    desc, event_type, first, last);
263 
264 	for (i = first; i <= last; i++)
265 		(void) fprintf(stderr,
266 		    "%4d = %s\n", i, g_event_info[i].ev_desc);
267 }
268 
269 static void
usage(void)270 usage(void)
271 {
272 	(void) fprintf(stderr,
273 	    "Usage: lockstat [options] command [args]\n"
274 	    "\nEvent selection options:\n\n"
275 	    "  -C              watch contention events [on by default]\n"
276 	    "  -E              watch error events [off by default]\n"
277 	    "  -H              watch hold events [off by default]\n"
278 	    "  -I              watch interrupt events [off by default]\n"
279 	    "  -A              watch all lock events [equivalent to -CH]\n"
280 	    "  -e event_list   only watch the specified events (shown below);\n"
281 	    "                  <event_list> is a comma-separated list of\n"
282 	    "                  events or ranges of events, e.g. 1,4-7,35\n"
283 	    "  -i rate         interrupt rate for -I [default: %d Hz]\n"
284 	    "\nData gathering options:\n\n"
285 	    "  -b              basic statistics (lock, caller, event count)\n"
286 	    "  -t              timing for all events [default]\n"
287 	    "  -h              histograms for event times\n"
288 	    "  -s depth        stack traces <depth> deep\n"
289 	    "  -x opt[=val]    enable or modify DTrace options\n"
290 	    "\nData filtering options:\n\n"
291 	    "  -n nrecords     maximum number of data records [default: %d]\n"
292 	    "  -l lock[,size]  only watch <lock>, which can be specified as a\n"
293 	    "                  symbolic name or hex address; <size> defaults\n"
294 	    "                  to the ELF symbol size if available, 1 if not\n"
295 	    "  -f func[,size]  only watch events generated by <func>\n"
296 	    "  -d duration     only watch events longer than <duration>\n"
297 	    "  -T              trace (rather than sample) events\n"
298 	    "\nData reporting options:\n\n"
299 	    "  -c              coalesce lock data for arrays like pse_mutex[]\n"
300 	    "  -k              coalesce PCs within functions\n"
301 	    "  -g              show total events generated by function\n"
302 	    "  -w              wherever: don't distinguish events by caller\n"
303 	    "  -W              whichever: don't distinguish events by lock\n"
304 	    "  -R              display rates rather than counts\n"
305 	    "  -p              parsable output format (awk(1)-friendly)\n"
306 	    "  -P              sort lock data by (count * avg_time) product\n"
307 	    "  -D n            only display top <n> events of each type\n"
308 	    "  -o filename     send output to <filename>\n",
309 	    DEFAULT_HZ, DEFAULT_NRECS);
310 
311 	show_events('C', "Contention");
312 	show_events('H', "Hold-time");
313 	show_events('I', "Interrupt");
314 	show_events('E', "Error");
315 	(void) fprintf(stderr, "\n");
316 
317 	exit(1);
318 }
319 
320 static int
lockcmp(lsrec_t * a,lsrec_t * b)321 lockcmp(lsrec_t *a, lsrec_t *b)
322 {
323 	int i;
324 
325 	if (a->ls_event < b->ls_event)
326 		return (-1);
327 	if (a->ls_event > b->ls_event)
328 		return (1);
329 
330 	for (i = g_stkdepth - 1; i >= 0; i--) {
331 		if (a->ls_stack[i] < b->ls_stack[i])
332 			return (-1);
333 		if (a->ls_stack[i] > b->ls_stack[i])
334 			return (1);
335 	}
336 
337 	if (a->ls_caller < b->ls_caller)
338 		return (-1);
339 	if (a->ls_caller > b->ls_caller)
340 		return (1);
341 
342 	if (a->ls_lock < b->ls_lock)
343 		return (-1);
344 	if (a->ls_lock > b->ls_lock)
345 		return (1);
346 
347 	return (0);
348 }
349 
350 static int
countcmp(lsrec_t * a,lsrec_t * b)351 countcmp(lsrec_t *a, lsrec_t *b)
352 {
353 	if (a->ls_event < b->ls_event)
354 		return (-1);
355 	if (a->ls_event > b->ls_event)
356 		return (1);
357 
358 	return (b->ls_count - a->ls_count);
359 }
360 
361 static int
timecmp(lsrec_t * a,lsrec_t * b)362 timecmp(lsrec_t *a, lsrec_t *b)
363 {
364 	if (a->ls_event < b->ls_event)
365 		return (-1);
366 	if (a->ls_event > b->ls_event)
367 		return (1);
368 
369 	if (a->ls_time < b->ls_time)
370 		return (1);
371 	if (a->ls_time > b->ls_time)
372 		return (-1);
373 
374 	return (0);
375 }
376 
377 static int
lockcmp_anywhere(lsrec_t * a,lsrec_t * b)378 lockcmp_anywhere(lsrec_t *a, lsrec_t *b)
379 {
380 	if (a->ls_event < b->ls_event)
381 		return (-1);
382 	if (a->ls_event > b->ls_event)
383 		return (1);
384 
385 	if (a->ls_lock < b->ls_lock)
386 		return (-1);
387 	if (a->ls_lock > b->ls_lock)
388 		return (1);
389 
390 	return (0);
391 }
392 
393 static int
lock_and_count_cmp_anywhere(lsrec_t * a,lsrec_t * b)394 lock_and_count_cmp_anywhere(lsrec_t *a, lsrec_t *b)
395 {
396 	if (a->ls_event < b->ls_event)
397 		return (-1);
398 	if (a->ls_event > b->ls_event)
399 		return (1);
400 
401 	if (a->ls_lock < b->ls_lock)
402 		return (-1);
403 	if (a->ls_lock > b->ls_lock)
404 		return (1);
405 
406 	return (b->ls_count - a->ls_count);
407 }
408 
409 static int
sitecmp_anylock(lsrec_t * a,lsrec_t * b)410 sitecmp_anylock(lsrec_t *a, lsrec_t *b)
411 {
412 	int i;
413 
414 	if (a->ls_event < b->ls_event)
415 		return (-1);
416 	if (a->ls_event > b->ls_event)
417 		return (1);
418 
419 	for (i = g_stkdepth - 1; i >= 0; i--) {
420 		if (a->ls_stack[i] < b->ls_stack[i])
421 			return (-1);
422 		if (a->ls_stack[i] > b->ls_stack[i])
423 			return (1);
424 	}
425 
426 	if (a->ls_caller < b->ls_caller)
427 		return (-1);
428 	if (a->ls_caller > b->ls_caller)
429 		return (1);
430 
431 	return (0);
432 }
433 
434 static int
site_and_count_cmp_anylock(lsrec_t * a,lsrec_t * b)435 site_and_count_cmp_anylock(lsrec_t *a, lsrec_t *b)
436 {
437 	int i;
438 
439 	if (a->ls_event < b->ls_event)
440 		return (-1);
441 	if (a->ls_event > b->ls_event)
442 		return (1);
443 
444 	for (i = g_stkdepth - 1; i >= 0; i--) {
445 		if (a->ls_stack[i] < b->ls_stack[i])
446 			return (-1);
447 		if (a->ls_stack[i] > b->ls_stack[i])
448 			return (1);
449 	}
450 
451 	if (a->ls_caller < b->ls_caller)
452 		return (-1);
453 	if (a->ls_caller > b->ls_caller)
454 		return (1);
455 
456 	return (b->ls_count - a->ls_count);
457 }
458 
459 static void
mergesort(int (* cmp)(lsrec_t *,lsrec_t *),lsrec_t ** a,lsrec_t ** b,int n)460 mergesort(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **a, lsrec_t **b, int n)
461 {
462 	int m = n / 2;
463 	int i, j;
464 
465 	if (m > 1)
466 		mergesort(cmp, a, b, m);
467 	if (n - m > 1)
468 		mergesort(cmp, a + m, b + m, n - m);
469 	for (i = m; i > 0; i--)
470 		b[i - 1] = a[i - 1];
471 	for (j = m - 1; j < n - 1; j++)
472 		b[n + m - j - 2] = a[j + 1];
473 	while (i < j)
474 		*a++ = cmp(b[i], b[j]) < 0 ? b[i++] : b[j--];
475 	*a = b[i];
476 }
477 
478 static void
coalesce(int (* cmp)(lsrec_t *,lsrec_t *),lsrec_t ** lock,int n)479 coalesce(int (*cmp)(lsrec_t *, lsrec_t *), lsrec_t **lock, int n)
480 {
481 	int i, j;
482 	lsrec_t *target, *current;
483 
484 	target = lock[0];
485 
486 	for (i = 1; i < n; i++) {
487 		current = lock[i];
488 		if (cmp(current, target) != 0) {
489 			target = current;
490 			continue;
491 		}
492 		current->ls_event = LS_MAX_EVENTS;
493 		target->ls_count += current->ls_count;
494 		target->ls_refcnt += current->ls_refcnt;
495 		if (g_recsize < LS_TIME)
496 			continue;
497 		target->ls_time += current->ls_time;
498 		if (g_recsize < LS_HIST)
499 			continue;
500 		for (j = 0; j < 64; j++)
501 			target->ls_hist[j] += current->ls_hist[j];
502 	}
503 }
504 
505 static void
coalesce_symbol(uintptr_t * addrp)506 coalesce_symbol(uintptr_t *addrp)
507 {
508 	uintptr_t symoff;
509 	size_t symsize;
510 
511 	if (addr_to_sym(*addrp, &symoff, &symsize) != NULL && symoff < symsize)
512 		*addrp -= symoff;
513 }
514 
515 static void
predicate_add(char ** pred,char * what,char * cmp,uintptr_t value)516 predicate_add(char **pred, char *what, char *cmp, uintptr_t value)
517 {
518 	char *new;
519 	int len, newlen;
520 
521 	if (what == NULL)
522 		return;
523 
524 	if (*pred == NULL) {
525 		*pred = malloc(1);
526 		*pred[0] = '\0';
527 	}
528 
529 	len = strlen(*pred);
530 	newlen = len + strlen(what) + 32 + strlen("( && )");
531 	new = malloc(newlen);
532 
533 	if (*pred[0] != '\0') {
534 		if (cmp != NULL) {
535 			(void) sprintf(new, "(%s) && (%s %s 0x%p)",
536 			    *pred, what, cmp, (void *)value);
537 		} else {
538 			(void) sprintf(new, "(%s) && (%s)", *pred, what);
539 		}
540 	} else {
541 		if (cmp != NULL) {
542 			(void) sprintf(new, "%s %s 0x%p",
543 			    what, cmp, (void *)value);
544 		} else {
545 			(void) sprintf(new, "%s", what);
546 		}
547 	}
548 
549 	free(*pred);
550 	*pred = new;
551 }
552 
553 static void
predicate_destroy(char ** pred)554 predicate_destroy(char **pred)
555 {
556 	free(*pred);
557 	*pred = NULL;
558 }
559 
560 static void
filter_add(char ** filt,char * what,uintptr_t base,uintptr_t size)561 filter_add(char **filt, char *what, uintptr_t base, uintptr_t size)
562 {
563 	char buf[256], *c = buf, *new;
564 	int len, newlen;
565 
566 	if (*filt == NULL) {
567 		*filt = malloc(1);
568 		*filt[0] = '\0';
569 	}
570 
571 	(void) sprintf(c, "%s(%s >= 0x%p && %s < 0x%p)", *filt[0] != '\0' ?
572 	    " || " : "", what, (void *)base, what, (void *)(base + size));
573 
574 	newlen = (len = strlen(*filt) + 1) + strlen(c);
575 	new = malloc(newlen);
576 	bcopy(*filt, new, len);
577 	(void) strcat(new, c);
578 	free(*filt);
579 	*filt = new;
580 }
581 
582 static void
filter_destroy(char ** filt)583 filter_destroy(char **filt)
584 {
585 	free(*filt);
586 	*filt = NULL;
587 }
588 
589 static void
dprog_add(const char * fmt,...)590 dprog_add(const char *fmt, ...)
591 {
592 	va_list args;
593 	int size, offs;
594 	char c;
595 
596 	va_start(args, fmt);
597 	size = vsnprintf(&c, 1, fmt, args) + 1;
598 
599 	if (g_proglen == 0) {
600 		offs = 0;
601 	} else {
602 		offs = g_proglen - 1;
603 	}
604 
605 	g_proglen = offs + size;
606 
607 	if ((g_prog = realloc(g_prog, g_proglen)) == NULL)
608 		fail(1, "failed to reallocate program text");
609 
610 	(void) vsnprintf(&g_prog[offs], size, fmt, args);
611 }
612 
613 /*
614  * This function may read like an open sewer, but keep in mind that programs
615  * that generate other programs are rarely pretty.  If one has the unenviable
616  * task of maintaining or -- worse -- extending this code, use the -V option
617  * to examine the D program as generated by this function.
618  */
619 static void
dprog_addevent(int event)620 dprog_addevent(int event)
621 {
622 	ls_event_info_t *info = &g_event_info[event];
623 	char *pred = NULL;
624 	char stack[20];
625 	const char *arg0, *caller;
626 	char *arg1 = "arg1";
627 	char buf[80];
628 	hrtime_t dur;
629 	int depth;
630 
631 	if (info->ev_name[0] == '\0')
632 		return;
633 
634 	if (info->ev_type == 'I') {
635 		/*
636 		 * For interrupt events, arg0 (normally the lock pointer) is
637 		 * the CPU address plus the current pil, and arg1 (normally
638 		 * the number of nanoseconds) is the number of nanoseconds
639 		 * late -- and it's stored in arg2.
640 		 */
641 		arg0 = "(uintptr_t)curthread->t_cpu + \n"
642 		    "\t    curthread->t_cpu->cpu_profile_pil";
643 		caller = "(uintptr_t)arg0";
644 		arg1 = "arg2";
645 	} else {
646 		arg0 = "(uintptr_t)arg0";
647 		caller = "caller";
648 	}
649 
650 	if (g_recsize > LS_HIST) {
651 		for (depth = 0; g_recsize > LS_STACK(depth); depth++)
652 			continue;
653 
654 		if (g_tracing) {
655 			(void) sprintf(stack, "\tstack(%d);\n", depth);
656 		} else {
657 			(void) sprintf(stack, ", stack(%d)", depth);
658 		}
659 	} else {
660 		(void) sprintf(stack, "");
661 	}
662 
663 	if (info->ev_acquire != NULL) {
664 		/*
665 		 * If this is a hold event, we need to generate an additional
666 		 * clause for the acquire; the clause for the release will be
667 		 * generated with the aggregating statement, below.
668 		 */
669 		dprog_add("%s\n", info->ev_acquire);
670 		predicate_add(&pred, info->ev_predicate, NULL, 0);
671 		predicate_add(&pred, g_predicate, NULL, 0);
672 		if (pred != NULL)
673 			dprog_add("/%s/\n", pred);
674 
675 		dprog_add("{\n");
676 		(void) sprintf(buf, "self->ev%d[(uintptr_t)arg0]", event);
677 
678 		if (info->ev_type == 'H') {
679 			dprog_add("\t%s = timestamp;\n", buf);
680 		} else {
681 			/*
682 			 * If this isn't a hold event, it's the recursive
683 			 * error event.  For this, we simply bump the
684 			 * thread-local, per-lock count.
685 			 */
686 			dprog_add("\t%s++;\n", buf);
687 		}
688 
689 		dprog_add("}\n\n");
690 		predicate_destroy(&pred);
691 		pred = NULL;
692 
693 		if (info->ev_type == 'E') {
694 			/*
695 			 * If this is the recursive lock error event, we need
696 			 * to generate an additional clause to decrement the
697 			 * thread-local, per-lock count.  This assures that we
698 			 * only execute the aggregating clause if we have
699 			 * recursive entry.
700 			 */
701 			dprog_add("%s\n", info->ev_name);
702 			dprog_add("/%s/\n{\n\t%s--;\n}\n\n", buf, buf);
703 		}
704 
705 		predicate_add(&pred, buf, NULL, 0);
706 
707 		if (info->ev_type == 'H') {
708 			(void) sprintf(buf, "timestamp -\n\t    "
709 			    "self->ev%d[(uintptr_t)arg0]", event);
710 		}
711 
712 		arg1 = buf;
713 	} else {
714 		predicate_add(&pred, info->ev_predicate, NULL, 0);
715 		if (info->ev_type != 'I')
716 			predicate_add(&pred, g_predicate, NULL, 0);
717 		else
718 			predicate_add(&pred, g_ipredicate, NULL, 0);
719 	}
720 
721 	if ((dur = g_min_duration[event]) != 0)
722 		predicate_add(&pred, arg1, ">=", dur);
723 
724 	dprog_add("%s\n", info->ev_name);
725 
726 	if (pred != NULL)
727 		dprog_add("/%s/\n", pred);
728 	predicate_destroy(&pred);
729 
730 	dprog_add("{\n");
731 
732 	if (g_tracing) {
733 		dprog_add("\ttrace(%dULL);\n", event);
734 		dprog_add("\ttrace(%s);\n", arg0);
735 		dprog_add("\ttrace(%s);\n", caller);
736 		dprog_add(stack);
737 	} else {
738 		/*
739 		 * The ordering here is important:  when we process the
740 		 * aggregate, we count on the fact that @avg appears before
741 		 * @hist in program order to assure that @avg is assigned the
742 		 * first aggregation variable ID and @hist assigned the
743 		 * second; see the comment in process_aggregate() for details.
744 		 */
745 		dprog_add("\t@avg[%dULL, %s, %s%s] = avg(%s);\n",
746 		    event, arg0, caller, stack, arg1);
747 
748 		if (g_recsize >= LS_HIST) {
749 			dprog_add("\t@hist[%dULL, %s, %s%s] = quantize"
750 			    "(%s);\n", event, arg0, caller, stack, arg1);
751 		}
752 	}
753 
754 	if (info->ev_acquire != NULL)
755 		dprog_add("\tself->ev%d[arg0] = 0;\n", event);
756 
757 	dprog_add("}\n\n");
758 }
759 
760 static void
dprog_compile()761 dprog_compile()
762 {
763 	dtrace_prog_t *prog;
764 	dtrace_proginfo_t info;
765 
766 	if (g_Vflag) {
767 		(void) fprintf(stderr, "lockstat: vvvv D program vvvv\n");
768 		(void) fputs(g_prog, stderr);
769 		(void) fprintf(stderr, "lockstat: ^^^^ D program ^^^^\n");
770 	}
771 
772 	if ((prog = dtrace_program_strcompile(g_dtp, g_prog,
773 	    DTRACE_PROBESPEC_NAME, 0, 0, NULL)) == NULL)
774 		dfail("failed to compile program");
775 
776 	if (dtrace_program_exec(g_dtp, prog, &info) == -1)
777 		dfail("failed to enable probes");
778 
779 	if (dtrace_go(g_dtp) != 0)
780 		dfail("couldn't start tracing");
781 }
782 
783 static void
status_fire(int signal __unused)784 status_fire(int signal __unused)
785 {
786 }
787 
788 static void
status_init(void)789 status_init(void)
790 {
791 	dtrace_optval_t val, status, agg;
792 	struct sigaction act;
793 	struct itimerspec ts;
794 	struct sigevent ev;
795 	timer_t tid;
796 
797 	if (dtrace_getopt(g_dtp, "statusrate", &status) == -1)
798 		dfail("failed to get 'statusrate'");
799 
800 	if (dtrace_getopt(g_dtp, "aggrate", &agg) == -1)
801 		dfail("failed to get 'statusrate'");
802 
803 	/*
804 	 * We would want to awaken at a rate that is the GCD of the statusrate
805 	 * and the aggrate -- but that seems a bit absurd.  Instead, we'll
806 	 * simply awaken at a rate that is the more frequent of the two, which
807 	 * assures that we're never later than the interval implied by the
808 	 * more frequent rate.
809 	 */
810 	val = status < agg ? status : agg;
811 
812 	(void) sigemptyset(&act.sa_mask);
813 	act.sa_flags = 0;
814 	act.sa_handler = status_fire;
815 	(void) sigaction(SIGUSR1, &act, NULL);
816 
817 	ev.sigev_notify = SIGEV_SIGNAL;
818 	ev.sigev_signo = SIGUSR1;
819 
820 	if (timer_create(CLOCK_REALTIME, &ev, &tid) == -1)
821 		dfail("cannot create CLOCK_REALTIME timer");
822 
823 	ts.it_value.tv_sec = val / NANOSEC;
824 	ts.it_value.tv_nsec = val % NANOSEC;
825 	ts.it_interval = ts.it_value;
826 
827 	if (timer_settime(tid, TIMER_RELTIME, &ts, NULL) == -1)
828 		dfail("cannot set time on CLOCK_REALTIME timer");
829 }
830 
831 static void
status_check(void)832 status_check(void)
833 {
834 	if (!g_tracing && dtrace_aggregate_snap(g_dtp) != 0)
835 		dfail("failed to snap aggregate");
836 
837 	if (dtrace_status(g_dtp) == -1)
838 		dfail("dtrace_status()");
839 }
840 
841 static void
lsrec_fill(lsrec_t * lsrec,const dtrace_recdesc_t * rec,int nrecs,caddr_t data)842 lsrec_fill(lsrec_t *lsrec, const dtrace_recdesc_t *rec, int nrecs, caddr_t data)
843 {
844 	bzero(lsrec, g_recsize);
845 	lsrec->ls_count = 1;
846 
847 	if ((g_recsize > LS_HIST && nrecs < 4) || (nrecs < 3))
848 		fail(0, "truncated DTrace record");
849 
850 	if (rec->dtrd_size != sizeof (uint64_t))
851 		fail(0, "bad event size in first record");
852 
853 	/* LINTED - alignment */
854 	lsrec->ls_event = (uint32_t)*((uint64_t *)(data + rec->dtrd_offset));
855 	rec++;
856 
857 	if (rec->dtrd_size != sizeof (uintptr_t))
858 		fail(0, "bad lock address size in second record");
859 
860 	/* LINTED - alignment */
861 	lsrec->ls_lock = *((uintptr_t *)(data + rec->dtrd_offset));
862 	rec++;
863 
864 	if (rec->dtrd_size != sizeof (uintptr_t))
865 		fail(0, "bad caller size in third record");
866 
867 	/* LINTED - alignment */
868 	lsrec->ls_caller = *((uintptr_t *)(data + rec->dtrd_offset));
869 	rec++;
870 
871 	if (g_recsize > LS_HIST) {
872 		int frames, i;
873 		pc_t *stack;
874 
875 		frames = rec->dtrd_size / sizeof (pc_t);
876 		/* LINTED - alignment */
877 		stack = (pc_t *)(data + rec->dtrd_offset);
878 
879 		for (i = 1; i < frames; i++)
880 			lsrec->ls_stack[i - 1] = stack[i];
881 	}
882 }
883 
884 /*ARGSUSED*/
885 static int
count_aggregate(const dtrace_aggdata_t * agg,void * arg)886 count_aggregate(const dtrace_aggdata_t *agg, void *arg)
887 {
888 	*((size_t *)arg) += 1;
889 
890 	return (DTRACE_AGGWALK_NEXT);
891 }
892 
893 static int
process_aggregate(const dtrace_aggdata_t * agg,void * arg)894 process_aggregate(const dtrace_aggdata_t *agg, void *arg)
895 {
896 	const dtrace_aggdesc_t *aggdesc = agg->dtada_desc;
897 	caddr_t data = agg->dtada_data;
898 	lsdata_t *lsdata = arg;
899 	lsrec_t *lsrec = lsdata->lsd_next;
900 	const dtrace_recdesc_t *rec;
901 	uint64_t *avg, *quantized;
902 	int i, j;
903 
904 	assert(lsdata->lsd_count < g_nrecs);
905 
906 	/*
907 	 * Aggregation variable IDs are guaranteed to be generated in program
908 	 * order, and they are guaranteed to start from DTRACE_AGGVARIDNONE
909 	 * plus one.  As "avg" appears before "hist" in program order, we know
910 	 * that "avg" will be allocated the first aggregation variable ID, and
911 	 * "hist" will be allocated the second aggregation variable ID -- and
912 	 * we therefore use the aggregation variable ID to differentiate the
913 	 * cases.
914 	 */
915 	if (aggdesc->dtagd_varid > DTRACE_AGGVARIDNONE + 1) {
916 		/*
917 		 * If this is the histogram entry.  We'll copy the quantized
918 		 * data into lc_hist, and jump over the rest.
919 		 */
920 		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
921 
922 		if (aggdesc->dtagd_varid != DTRACE_AGGVARIDNONE + 2)
923 			fail(0, "bad variable ID in aggregation record");
924 
925 		if (rec->dtrd_size !=
926 		    DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
927 			fail(0, "bad quantize size in aggregation record");
928 
929 		/* LINTED - alignment */
930 		quantized = (uint64_t *)(data + rec->dtrd_offset);
931 
932 		for (i = DTRACE_QUANTIZE_ZEROBUCKET, j = 0;
933 		    i < DTRACE_QUANTIZE_NBUCKETS; i++, j++)
934 			lsrec->ls_hist[j] = quantized[i];
935 
936 		goto out;
937 	}
938 
939 	lsrec_fill(lsrec, &aggdesc->dtagd_rec[1],
940 	    aggdesc->dtagd_nrecs - 1, data);
941 
942 	rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
943 
944 	if (rec->dtrd_size != 2 * sizeof (uint64_t))
945 		fail(0, "bad avg size in aggregation record");
946 
947 	/* LINTED - alignment */
948 	avg = (uint64_t *)(data + rec->dtrd_offset);
949 	lsrec->ls_count = (uint32_t)avg[0];
950 	lsrec->ls_time = (uintptr_t)avg[1];
951 
952 	if (g_recsize >= LS_HIST)
953 		return (DTRACE_AGGWALK_NEXT);
954 
955 out:
956 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
957 	lsdata->lsd_count++;
958 
959 	return (DTRACE_AGGWALK_NEXT);
960 }
961 
962 static int
process_trace(const dtrace_probedata_t * pdata,void * arg)963 process_trace(const dtrace_probedata_t *pdata, void *arg)
964 {
965 	lsdata_t *lsdata = arg;
966 	lsrec_t *lsrec = lsdata->lsd_next;
967 	dtrace_eprobedesc_t *edesc = pdata->dtpda_edesc;
968 	caddr_t data = pdata->dtpda_data;
969 
970 	if (lsdata->lsd_count >= g_nrecs)
971 		return (DTRACE_CONSUME_NEXT);
972 
973 	lsrec_fill(lsrec, edesc->dtepd_rec, edesc->dtepd_nrecs, data);
974 
975 	lsdata->lsd_next = (lsrec_t *)((uintptr_t)lsrec + g_recsize);
976 	lsdata->lsd_count++;
977 
978 	return (DTRACE_CONSUME_NEXT);
979 }
980 
981 static int
process_data(FILE * out,char * data)982 process_data(FILE *out, char *data)
983 {
984 	lsdata_t lsdata;
985 
986 	/* LINTED - alignment */
987 	lsdata.lsd_next = (lsrec_t *)data;
988 	lsdata.lsd_count = 0;
989 
990 	if (g_tracing) {
991 		if (dtrace_consume(g_dtp, out,
992 		    process_trace, NULL, &lsdata) != 0)
993 			dfail("failed to consume buffer");
994 
995 		return (lsdata.lsd_count);
996 	}
997 
998 	if (dtrace_aggregate_walk_keyvarsorted(g_dtp,
999 	    process_aggregate, &lsdata) != 0)
1000 		dfail("failed to walk aggregate");
1001 
1002 	return (lsdata.lsd_count);
1003 }
1004 
1005 /*ARGSUSED*/
1006 static int
drophandler(const dtrace_dropdata_t * data,void * arg)1007 drophandler(const dtrace_dropdata_t *data, void *arg)
1008 {
1009 	g_dropped++;
1010 	(void) fprintf(stderr, "lockstat: warning: %s", data->dtdda_msg);
1011 	return (DTRACE_HANDLE_OK);
1012 }
1013 
1014 int
main(int argc,char ** argv)1015 main(int argc, char **argv)
1016 {
1017 	char *data_buf;
1018 	lsrec_t *lsp, **current, **first, **sort_buf, **merge_buf;
1019 	FILE *out = stdout;
1020 	int c;
1021 	pid_t child;
1022 	int status;
1023 	int i, j;
1024 	hrtime_t duration;
1025 	char *addrp, *offp, *sizep, *evp, *lastp, *p;
1026 	uintptr_t addr;
1027 	size_t size, off;
1028 	int events_specified = 0;
1029 	int exec_errno = 0;
1030 	uint32_t event;
1031 	char *filt = NULL, *ifilt = NULL;
1032 	static uint64_t ev_count[LS_MAX_EVENTS + 1];
1033 	static uint64_t ev_time[LS_MAX_EVENTS + 1];
1034 	dtrace_optval_t aggsize;
1035 	char aggstr[10];
1036 	long ncpus;
1037 	int dynvar = 0;
1038 	int err;
1039 
1040 	if ((g_dtp = dtrace_open(DTRACE_VERSION, 0, &err)) == NULL) {
1041 		fail(0, "cannot open dtrace library: %s",
1042 		    dtrace_errmsg(NULL, err));
1043 	}
1044 
1045 	if (dtrace_handle_drop(g_dtp, &drophandler, NULL) == -1)
1046 		dfail("couldn't establish drop handler");
1047 
1048 	if (symtab_init() == -1)
1049 		fail(1, "can't load kernel symbols");
1050 
1051 	g_nrecs = DEFAULT_NRECS;
1052 
1053 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) {
1054 		switch (c) {
1055 		case 'b':
1056 			g_recsize = LS_BASIC;
1057 			break;
1058 
1059 		case 't':
1060 			g_recsize = LS_TIME;
1061 			break;
1062 
1063 		case 'h':
1064 			g_recsize = LS_HIST;
1065 			break;
1066 
1067 		case 's':
1068 			if (!isdigit(optarg[0]))
1069 				usage();
1070 			g_stkdepth = atoi(optarg);
1071 			if (g_stkdepth > LS_MAX_STACK_DEPTH)
1072 				fail(0, "max stack depth is %d",
1073 				    LS_MAX_STACK_DEPTH);
1074 			g_recsize = LS_STACK(g_stkdepth);
1075 			break;
1076 
1077 		case 'n':
1078 			if (!isdigit(optarg[0]))
1079 				usage();
1080 			g_nrecs = atoi(optarg);
1081 			break;
1082 
1083 		case 'd':
1084 			if (!isdigit(optarg[0]))
1085 				usage();
1086 			duration = atoll(optarg);
1087 
1088 			/*
1089 			 * XXX -- durations really should be per event
1090 			 * since the units are different, but it's hard
1091 			 * to express this nicely in the interface.
1092 			 * Not clear yet what the cleanest solution is.
1093 			 */
1094 			for (i = 0; i < LS_MAX_EVENTS; i++)
1095 				if (g_event_info[i].ev_type != 'E')
1096 					g_min_duration[i] = duration;
1097 
1098 			break;
1099 
1100 		case 'i':
1101 			if (!isdigit(optarg[0]))
1102 				usage();
1103 			i = atoi(optarg);
1104 			if (i <= 0)
1105 				usage();
1106 			if (i > MAX_HZ)
1107 				fail(0, "max interrupt rate is %d Hz", MAX_HZ);
1108 
1109 			for (j = 0; j < LS_MAX_EVENTS; j++)
1110 				if (strcmp(g_event_info[j].ev_desc,
1111 				    "Profiling interrupt") == 0)
1112 					break;
1113 
1114 			(void) sprintf(g_event_info[j].ev_name,
1115 			    "profile:::profile-%d", i);
1116 			break;
1117 
1118 		case 'l':
1119 		case 'f':
1120 			addrp = strtok(optarg, ",");
1121 			sizep = strtok(NULL, ",");
1122 			addrp = strtok(optarg, ",+");
1123 			offp = strtok(NULL, ",");
1124 
1125 			size = sizep ? strtoul(sizep, NULL, 0) : 1;
1126 			off = offp ? strtoul(offp, NULL, 0) : 0;
1127 
1128 			if (addrp[0] == '0') {
1129 				addr = strtoul(addrp, NULL, 16) + off;
1130 			} else {
1131 				addr = sym_to_addr(addrp) + off;
1132 				if (sizep == NULL)
1133 					size = sym_size(addrp) - off;
1134 				if (addr - off == 0)
1135 					fail(0, "symbol '%s' not found", addrp);
1136 				if (size == 0)
1137 					size = 1;
1138 			}
1139 
1140 
1141 			if (c == 'l') {
1142 				filter_add(&filt, "arg0", addr, size);
1143 			} else {
1144 				filter_add(&filt, "caller", addr, size);
1145 				filter_add(&ifilt, "arg0", addr, size);
1146 			}
1147 			break;
1148 
1149 		case 'e':
1150 			evp = strtok_r(optarg, ",", &lastp);
1151 			while (evp) {
1152 				int ev1, ev2;
1153 				char *evp2;
1154 
1155 				(void) strtok(evp, "-");
1156 				evp2 = strtok(NULL, "-");
1157 				ev1 = atoi(evp);
1158 				ev2 = evp2 ? atoi(evp2) : ev1;
1159 				if ((uint_t)ev1 >= LS_MAX_EVENTS ||
1160 				    (uint_t)ev2 >= LS_MAX_EVENTS || ev1 > ev2)
1161 					fail(0, "-e events out of range");
1162 				for (i = ev1; i <= ev2; i++)
1163 					g_enabled[i] = 1;
1164 				evp = strtok_r(NULL, ",", &lastp);
1165 			}
1166 			events_specified = 1;
1167 			break;
1168 
1169 		case 'c':
1170 			g_cflag = 1;
1171 			break;
1172 
1173 		case 'k':
1174 			g_kflag = 1;
1175 			break;
1176 
1177 		case 'w':
1178 			g_wflag = 1;
1179 			break;
1180 
1181 		case 'W':
1182 			g_Wflag = 1;
1183 			break;
1184 
1185 		case 'g':
1186 			g_gflag = 1;
1187 			break;
1188 
1189 		case 'C':
1190 		case 'E':
1191 		case 'H':
1192 		case 'I':
1193 			for (i = 0; i < LS_MAX_EVENTS; i++)
1194 				if (g_event_info[i].ev_type == c)
1195 					g_enabled[i] = 1;
1196 			events_specified = 1;
1197 			break;
1198 
1199 		case 'A':
1200 			for (i = 0; i < LS_MAX_EVENTS; i++)
1201 				if (strchr("CH", g_event_info[i].ev_type))
1202 					g_enabled[i] = 1;
1203 			events_specified = 1;
1204 			break;
1205 
1206 		case 'T':
1207 			g_tracing = 1;
1208 			break;
1209 
1210 		case 'D':
1211 			if (!isdigit(optarg[0]))
1212 				usage();
1213 			g_topn = atoi(optarg);
1214 			break;
1215 
1216 		case 'R':
1217 			g_rates = 1;
1218 			break;
1219 
1220 		case 'p':
1221 			g_pflag = 1;
1222 			break;
1223 
1224 		case 'P':
1225 			g_Pflag = 1;
1226 			break;
1227 
1228 		case 'o':
1229 			if ((out = fopen(optarg, "w")) == NULL)
1230 				fail(1, "error opening file");
1231 			break;
1232 
1233 		case 'V':
1234 			g_Vflag = 1;
1235 			break;
1236 
1237 		default:
1238 			if (strchr(LOCKSTAT_OPTSTR, c) == NULL)
1239 				usage();
1240 		}
1241 	}
1242 
1243 	if (filt != NULL) {
1244 		predicate_add(&g_predicate, filt, NULL, 0);
1245 		filter_destroy(&filt);
1246 	}
1247 
1248 	if (ifilt != NULL) {
1249 		predicate_add(&g_ipredicate, ifilt, NULL, 0);
1250 		filter_destroy(&ifilt);
1251 	}
1252 
1253 	if (g_recsize == 0) {
1254 		if (g_gflag) {
1255 			g_stkdepth = LS_MAX_STACK_DEPTH;
1256 			g_recsize = LS_STACK(g_stkdepth);
1257 		} else {
1258 			g_recsize = LS_TIME;
1259 		}
1260 	}
1261 
1262 	if (g_gflag && g_recsize <= LS_STACK(0))
1263 		fail(0, "'-g' requires at least '-s 1' data gathering");
1264 
1265 	/*
1266 	 * Make sure the alignment is reasonable
1267 	 */
1268 	g_recsize = -(-g_recsize & -sizeof (uint64_t));
1269 
1270 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1271 		/*
1272 		 * If no events were specified, enable -C.
1273 		 */
1274 		if (!events_specified && g_event_info[i].ev_type == 'C')
1275 			g_enabled[i] = 1;
1276 	}
1277 
1278 	for (i = 0; i < LS_MAX_EVENTS; i++) {
1279 		if (!g_enabled[i])
1280 			continue;
1281 
1282 		if (g_event_info[i].ev_acquire != NULL) {
1283 			/*
1284 			 * If we've enabled a hold event, we must explicitly
1285 			 * allocate dynamic variable space.
1286 			 */
1287 			dynvar = 1;
1288 		}
1289 
1290 		dprog_addevent(i);
1291 	}
1292 
1293 	/*
1294 	 * Make sure there are remaining arguments to specify a child command
1295 	 * to execute.
1296 	 */
1297 	if (argc <= optind)
1298 		usage();
1299 
1300 	if ((ncpus = sysconf(_SC_NPROCESSORS_ONLN)) == -1)
1301 		dfail("couldn't determine number of online CPUs");
1302 
1303 	/*
1304 	 * By default, we set our data buffer size to be the number of records
1305 	 * multiplied by the size of the record, doubled to account for some
1306 	 * DTrace slop and divided by the number of CPUs.  We silently clamp
1307 	 * the aggregation size at both a minimum and a maximum to prevent
1308 	 * absurdly low or high values.
1309 	 */
1310 	if ((aggsize = (g_nrecs * g_recsize * 2) / ncpus) < MIN_AGGSIZE)
1311 		aggsize = MIN_AGGSIZE;
1312 
1313 	if (aggsize > MAX_AGGSIZE)
1314 		aggsize = MAX_AGGSIZE;
1315 
1316 	(void) sprintf(aggstr, "%lld", (long long)aggsize);
1317 
1318 	if (!g_tracing) {
1319 		if (dtrace_setopt(g_dtp, "bufsize", "4k") == -1)
1320 			dfail("failed to set 'bufsize'");
1321 
1322 		if (dtrace_setopt(g_dtp, "aggsize", aggstr) == -1)
1323 			dfail("failed to set 'aggsize'");
1324 
1325 		if (dynvar) {
1326 			/*
1327 			 * If we're using dynamic variables, we set our
1328 			 * dynamic variable size to be one megabyte per CPU,
1329 			 * with a hard-limit of 32 megabytes.  This may still
1330 			 * be too small in some cases, but it can be tuned
1331 			 * manually via -x if need be.
1332 			 */
1333 			(void) sprintf(aggstr, "%ldm", ncpus < 32 ? ncpus : 32);
1334 
1335 			if (dtrace_setopt(g_dtp, "dynvarsize", aggstr) == -1)
1336 				dfail("failed to set 'dynvarsize'");
1337 		}
1338 	} else {
1339 		if (dtrace_setopt(g_dtp, "bufsize", aggstr) == -1)
1340 			dfail("failed to set 'bufsize'");
1341 	}
1342 
1343 	if (dtrace_setopt(g_dtp, "statusrate", "10sec") == -1)
1344 		dfail("failed to set 'statusrate'");
1345 
1346 	optind = 1;
1347 	while ((c = getopt(argc, argv, LOCKSTAT_OPTSTR)) != EOF) {
1348 		switch (c) {
1349 		case 'x':
1350 			if ((p = strchr(optarg, '=')) != NULL)
1351 				*p++ = '\0';
1352 
1353 			if (dtrace_setopt(g_dtp, optarg, p) != 0)
1354 				dfail("failed to set -x %s", optarg);
1355 			break;
1356 		}
1357 	}
1358 
1359 	argc -= optind;
1360 	argv += optind;
1361 
1362 	dprog_compile();
1363 	status_init();
1364 
1365 	g_elapsed = -gethrtime();
1366 
1367 	/*
1368 	 * Spawn the specified command and wait for it to complete.
1369 	 */
1370 	child = fork();
1371 	if (child == -1)
1372 		fail(1, "cannot fork");
1373 	if (child == 0) {
1374 		(void) dtrace_close(g_dtp);
1375 		(void) execvp(argv[0], &argv[0]);
1376 		exec_errno = errno;
1377 		exit(127);
1378 	}
1379 
1380 	while (waitpid(child, &status, WEXITED) != child)
1381 		status_check();
1382 
1383 	g_elapsed += gethrtime();
1384 
1385 	if (WIFEXITED(status)) {
1386 		if (WEXITSTATUS(status) != 0) {
1387 			if (exec_errno != 0) {
1388 				errno = exec_errno;
1389 				fail(1, "could not execute %s", argv[0]);
1390 			}
1391 			(void) fprintf(stderr,
1392 			    "lockstat: warning: %s exited with code %d\n",
1393 			    argv[0], WEXITSTATUS(status));
1394 		}
1395 	} else {
1396 		(void) fprintf(stderr,
1397 		    "lockstat: warning: %s died on signal %d\n",
1398 		    argv[0], WTERMSIG(status));
1399 	}
1400 
1401 	if (dtrace_stop(g_dtp) == -1)
1402 		dfail("failed to stop dtrace");
1403 
1404 	/*
1405 	 * Before we read out the results, we need to allocate our buffer.
1406 	 * If we're tracing, then we'll just use the precalculated size.  If
1407 	 * we're not, then we'll take a snapshot of the aggregate, and walk
1408 	 * it to count the number of records.
1409 	 */
1410 	if (!g_tracing) {
1411 		if (dtrace_aggregate_snap(g_dtp) != 0)
1412 			dfail("failed to snap aggregate");
1413 
1414 		g_nrecs = 0;
1415 
1416 		if (dtrace_aggregate_walk(g_dtp,
1417 		    count_aggregate, &g_nrecs) != 0)
1418 			dfail("failed to walk aggregate");
1419 	}
1420 
1421 	if ((data_buf = memalign(sizeof (uint64_t),
1422 	    (g_nrecs + 1) * g_recsize)) == NULL)
1423 		fail(1, "Memory allocation failed");
1424 
1425 	/*
1426 	 * Read out the DTrace data.
1427 	 */
1428 	g_nrecs_used = process_data(out, data_buf);
1429 
1430 	if (g_nrecs_used > g_nrecs || g_dropped)
1431 		(void) fprintf(stderr, "lockstat: warning: "
1432 		    "ran out of data records (use -n for more)\n");
1433 
1434 	/* LINTED - alignment */
1435 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1436 	    /* LINTED - alignment */
1437 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1438 		ev_count[lsp->ls_event] += lsp->ls_count;
1439 		ev_time[lsp->ls_event] += lsp->ls_time;
1440 	}
1441 
1442 	/*
1443 	 * If -g was specified, convert stacks into individual records.
1444 	 */
1445 	if (g_gflag) {
1446 		lsrec_t *newlsp, *oldlsp;
1447 
1448 		newlsp = memalign(sizeof (uint64_t),
1449 		    g_nrecs_used * LS_TIME * (g_stkdepth + 1));
1450 		if (newlsp == NULL)
1451 			fail(1, "Cannot allocate space for -g processing");
1452 		lsp = newlsp;
1453 		/* LINTED - alignment */
1454 		for (i = 0, oldlsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1455 		    /* LINTED - alignment */
1456 		    oldlsp = (lsrec_t *)((char *)oldlsp + g_recsize)) {
1457 			int fr;
1458 			int caller_in_stack = 0;
1459 
1460 			if (oldlsp->ls_count == 0)
1461 				continue;
1462 
1463 			for (fr = 0; fr < g_stkdepth; fr++) {
1464 				if (oldlsp->ls_stack[fr] == 0)
1465 					break;
1466 				if (oldlsp->ls_stack[fr] == oldlsp->ls_caller)
1467 					caller_in_stack = 1;
1468 				bcopy(oldlsp, lsp, LS_TIME);
1469 				lsp->ls_caller = oldlsp->ls_stack[fr];
1470 				/* LINTED - alignment */
1471 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1472 			}
1473 			if (!caller_in_stack) {
1474 				bcopy(oldlsp, lsp, LS_TIME);
1475 				/* LINTED - alignment */
1476 				lsp = (lsrec_t *)((char *)lsp + LS_TIME);
1477 			}
1478 		}
1479 		g_nrecs = g_nrecs_used =
1480 		    ((uintptr_t)lsp - (uintptr_t)newlsp) / LS_TIME;
1481 		g_recsize = LS_TIME;
1482 		g_stkdepth = 0;
1483 		free(data_buf);
1484 		data_buf = (char *)newlsp;
1485 	}
1486 
1487 	if ((sort_buf = calloc(2 * (g_nrecs + 1),
1488 	    sizeof (void *))) == NULL)
1489 		fail(1, "Sort buffer allocation failed");
1490 	merge_buf = sort_buf + (g_nrecs + 1);
1491 
1492 	/*
1493 	 * Build the sort buffer, discarding zero-count records along the way.
1494 	 */
1495 	/* LINTED - alignment */
1496 	for (i = 0, lsp = (lsrec_t *)data_buf; i < g_nrecs_used; i++,
1497 	    /* LINTED - alignment */
1498 	    lsp = (lsrec_t *)((char *)lsp + g_recsize)) {
1499 		if (lsp->ls_count == 0)
1500 			lsp->ls_event = LS_MAX_EVENTS;
1501 		sort_buf[i] = lsp;
1502 	}
1503 
1504 	if (g_nrecs_used == 0)
1505 		exit(0);
1506 
1507 	/*
1508 	 * Add a sentinel after the last record
1509 	 */
1510 	sort_buf[i] = lsp;
1511 	lsp->ls_event = LS_MAX_EVENTS;
1512 
1513 	if (g_tracing) {
1514 		report_trace(out, sort_buf);
1515 		return (0);
1516 	}
1517 
1518 	/*
1519 	 * Application of -g may have resulted in multiple records
1520 	 * with the same signature; coalesce them.
1521 	 */
1522 	if (g_gflag) {
1523 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1524 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1525 	}
1526 
1527 	/*
1528 	 * Coalesce locks within the same symbol if -c option specified.
1529 	 * Coalesce PCs within the same function if -k option specified.
1530 	 */
1531 	if (g_cflag || g_kflag) {
1532 		for (i = 0; i < g_nrecs_used; i++) {
1533 			int fr;
1534 			lsp = sort_buf[i];
1535 			if (g_cflag)
1536 				coalesce_symbol(&lsp->ls_lock);
1537 			if (g_kflag) {
1538 				for (fr = 0; fr < g_stkdepth; fr++)
1539 					coalesce_symbol(&lsp->ls_stack[fr]);
1540 				coalesce_symbol(&lsp->ls_caller);
1541 			}
1542 		}
1543 		mergesort(lockcmp, sort_buf, merge_buf, g_nrecs_used);
1544 		coalesce(lockcmp, sort_buf, g_nrecs_used);
1545 	}
1546 
1547 	/*
1548 	 * Coalesce callers if -w option specified
1549 	 */
1550 	if (g_wflag) {
1551 		mergesort(lock_and_count_cmp_anywhere,
1552 		    sort_buf, merge_buf, g_nrecs_used);
1553 		coalesce(lockcmp_anywhere, sort_buf, g_nrecs_used);
1554 	}
1555 
1556 	/*
1557 	 * Coalesce locks if -W option specified
1558 	 */
1559 	if (g_Wflag) {
1560 		mergesort(site_and_count_cmp_anylock,
1561 		    sort_buf, merge_buf, g_nrecs_used);
1562 		coalesce(sitecmp_anylock, sort_buf, g_nrecs_used);
1563 	}
1564 
1565 	/*
1566 	 * Sort data by contention count (ls_count) or total time (ls_time),
1567 	 * depending on g_Pflag.  Override g_Pflag if time wasn't measured.
1568 	 */
1569 	if (g_recsize < LS_TIME)
1570 		g_Pflag = 0;
1571 
1572 	if (g_Pflag)
1573 		mergesort(timecmp, sort_buf, merge_buf, g_nrecs_used);
1574 	else
1575 		mergesort(countcmp, sort_buf, merge_buf, g_nrecs_used);
1576 
1577 	/*
1578 	 * Display data by event type
1579 	 */
1580 	first = &sort_buf[0];
1581 	while ((event = (*first)->ls_event) < LS_MAX_EVENTS) {
1582 		current = first;
1583 		while ((lsp = *current)->ls_event == event)
1584 			current++;
1585 		report_stats(out, first, current - first, ev_count[event],
1586 		    ev_time[event]);
1587 		first = current;
1588 	}
1589 
1590 	return (0);
1591 }
1592 
1593 static char *
format_symbol(char * buf,uintptr_t addr,int show_size)1594 format_symbol(char *buf, uintptr_t addr, int show_size)
1595 {
1596 	uintptr_t symoff;
1597 	char *symname;
1598 	size_t symsize;
1599 
1600 	symname = addr_to_sym(addr, &symoff, &symsize);
1601 
1602 	if (show_size && symoff == 0)
1603 		(void) sprintf(buf, "%s[%ld]", symname, (long)symsize);
1604 	else if (symoff == 0)
1605 		(void) sprintf(buf, "%s", symname);
1606 	else if (symoff < 16 && bcmp(symname, "cpu[", 4) == 0)	/* CPU+PIL */
1607 		(void) sprintf(buf, "%s+%ld", symname, (long)symoff);
1608 	else if (symoff <= symsize || (symoff < 256 && addr != symoff))
1609 		(void) sprintf(buf, "%s+0x%llx", symname,
1610 		    (unsigned long long)symoff);
1611 	else
1612 		(void) sprintf(buf, "0x%llx", (unsigned long long)addr);
1613 	return (buf);
1614 }
1615 
1616 static void
report_stats(FILE * out,lsrec_t ** sort_buf,size_t nrecs,uint64_t total_count,uint64_t total_time)1617 report_stats(FILE *out, lsrec_t **sort_buf, size_t nrecs, uint64_t total_count,
1618     uint64_t total_time)
1619 {
1620 	uint32_t event = sort_buf[0]->ls_event;
1621 	lsrec_t *lsp;
1622 	double ptotal = 0.0;
1623 	double percent;
1624 	int i, j, fr;
1625 	int displayed;
1626 	int first_bin, last_bin, max_bin_count, total_bin_count;
1627 	int rectype;
1628 	char buf[256];
1629 	char lhdr[80], chdr[80];
1630 
1631 	rectype = g_recsize;
1632 
1633 	if (g_topn == 0) {
1634 		(void) fprintf(out, "%20llu %s\n",
1635 		    g_rates == 0 ? total_count :
1636 		    ((unsigned long long)total_count * NANOSEC) / g_elapsed,
1637 		    g_event_info[event].ev_desc);
1638 		return;
1639 	}
1640 
1641 	(void) sprintf(lhdr, "%s%s",
1642 	    g_Wflag ? "Hottest " : "", g_event_info[event].ev_lhdr);
1643 	(void) sprintf(chdr, "%s%s",
1644 	    g_wflag ? "Hottest " : "", "Caller");
1645 
1646 	if (!g_pflag)
1647 		(void) fprintf(out,
1648 		    "\n%s: %.0f events in %.3f seconds (%.0f events/sec)\n\n",
1649 		    g_event_info[event].ev_desc, (double)total_count,
1650 		    (double)g_elapsed / NANOSEC,
1651 		    (double)total_count * NANOSEC / g_elapsed);
1652 
1653 	if (!g_pflag && rectype < LS_HIST) {
1654 		(void) sprintf(buf, "%s", g_event_info[event].ev_units);
1655 		(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1656 		    g_rates ? "ops/s" : "Count",
1657 		    g_gflag ? "genr" : "indv",
1658 		    "cuml", "rcnt", rectype >= LS_TIME ? buf : "", lhdr, chdr);
1659 		(void) fprintf(out, "---------------------------------"
1660 		    "----------------------------------------------\n");
1661 	}
1662 
1663 	displayed = 0;
1664 	for (i = 0; i < nrecs; i++) {
1665 		lsp = sort_buf[i];
1666 
1667 		if (displayed++ >= g_topn)
1668 			break;
1669 
1670 		if (g_pflag) {
1671 			int j;
1672 
1673 			(void) fprintf(out, "%u %u",
1674 			    lsp->ls_event, lsp->ls_count);
1675 			(void) fprintf(out, " %s",
1676 			    format_symbol(buf, lsp->ls_lock, g_cflag));
1677 			(void) fprintf(out, " %s",
1678 			    format_symbol(buf, lsp->ls_caller, 0));
1679 			(void) fprintf(out, " %f",
1680 			    (double)lsp->ls_refcnt / lsp->ls_count);
1681 			if (rectype >= LS_TIME)
1682 				(void) fprintf(out, " %llu",
1683 				    (unsigned long long)lsp->ls_time);
1684 			if (rectype >= LS_HIST) {
1685 				for (j = 0; j < 64; j++)
1686 					(void) fprintf(out, " %u",
1687 					    lsp->ls_hist[j]);
1688 			}
1689 			for (j = 0; j < LS_MAX_STACK_DEPTH; j++) {
1690 				if (rectype <= LS_STACK(j) ||
1691 				    lsp->ls_stack[j] == 0)
1692 					break;
1693 				(void) fprintf(out, " %s",
1694 				    format_symbol(buf, lsp->ls_stack[j], 0));
1695 			}
1696 			(void) fprintf(out, "\n");
1697 			continue;
1698 		}
1699 
1700 		if (rectype >= LS_HIST) {
1701 			(void) fprintf(out, "---------------------------------"
1702 			    "----------------------------------------------\n");
1703 			(void) sprintf(buf, "%s",
1704 			    g_event_info[event].ev_units);
1705 			(void) fprintf(out, "%5s %4s %4s %4s %8s %-22s %-24s\n",
1706 			    g_rates ? "ops/s" : "Count",
1707 			    g_gflag ? "genr" : "indv",
1708 			    "cuml", "rcnt", buf, lhdr, chdr);
1709 		}
1710 
1711 		if (g_Pflag && total_time != 0)
1712 			percent = (lsp->ls_time * 100.00) / total_time;
1713 		else
1714 			percent = (lsp->ls_count * 100.00) / total_count;
1715 
1716 		ptotal += percent;
1717 
1718 		if (rectype >= LS_TIME)
1719 			(void) sprintf(buf, "%llu",
1720 			    (unsigned long long)(lsp->ls_time / lsp->ls_count));
1721 		else
1722 			buf[0] = '\0';
1723 
1724 		(void) fprintf(out, "%5llu ",
1725 		    g_rates == 0 ? lsp->ls_count :
1726 		    ((uint64_t)lsp->ls_count * NANOSEC) / g_elapsed);
1727 
1728 		(void) fprintf(out, "%3.0f%% ", percent);
1729 
1730 		if (g_gflag)
1731 			(void) fprintf(out, "---- ");
1732 		else
1733 			(void) fprintf(out, "%3.0f%% ", ptotal);
1734 
1735 		(void) fprintf(out, "%4.2f %8s ",
1736 		    (double)lsp->ls_refcnt / lsp->ls_count, buf);
1737 
1738 		(void) fprintf(out, "%-22s ",
1739 		    format_symbol(buf, lsp->ls_lock, g_cflag));
1740 
1741 		(void) fprintf(out, "%-24s\n",
1742 		    format_symbol(buf, lsp->ls_caller, 0));
1743 
1744 		if (rectype < LS_HIST)
1745 			continue;
1746 
1747 		(void) fprintf(out, "\n");
1748 		(void) fprintf(out, "%10s %31s %-9s %-24s\n",
1749 		    g_event_info[event].ev_units,
1750 		    "------ Time Distribution ------",
1751 		    g_rates ? "ops/s" : "count",
1752 		    rectype > LS_STACK(0) ? "Stack" : "");
1753 
1754 		first_bin = 0;
1755 		while (lsp->ls_hist[first_bin] == 0)
1756 			first_bin++;
1757 
1758 		last_bin = 63;
1759 		while (lsp->ls_hist[last_bin] == 0)
1760 			last_bin--;
1761 
1762 		max_bin_count = 0;
1763 		total_bin_count = 0;
1764 		for (j = first_bin; j <= last_bin; j++) {
1765 			total_bin_count += lsp->ls_hist[j];
1766 			if (lsp->ls_hist[j] > max_bin_count)
1767 				max_bin_count = lsp->ls_hist[j];
1768 		}
1769 
1770 		/*
1771 		 * If we went a few frames below the caller, ignore them
1772 		 */
1773 		for (fr = 3; fr > 0; fr--)
1774 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1775 				break;
1776 
1777 		for (j = first_bin; j <= last_bin; j++) {
1778 			uint_t depth = (lsp->ls_hist[j] * 30) / total_bin_count;
1779 			(void) fprintf(out, "%10llu |%s%s %-9u ",
1780 			    1ULL << j,
1781 			    "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" + 30 - depth,
1782 			    "                              " + depth,
1783 			    g_rates == 0 ? lsp->ls_hist[j] :
1784 			    (uint_t)(((uint64_t)lsp->ls_hist[j] * NANOSEC) /
1785 			    g_elapsed));
1786 			if (rectype <= LS_STACK(fr) || lsp->ls_stack[fr] == 0) {
1787 				(void) fprintf(out, "\n");
1788 				continue;
1789 			}
1790 			(void) fprintf(out, "%-24s\n",
1791 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1792 			fr++;
1793 		}
1794 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1795 			(void) fprintf(out, "%15s %-36s %-24s\n", "", "",
1796 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1797 			fr++;
1798 		}
1799 	}
1800 
1801 	if (!g_pflag)
1802 		(void) fprintf(out, "---------------------------------"
1803 		    "----------------------------------------------\n");
1804 
1805 	(void) fflush(out);
1806 }
1807 
1808 static void
report_trace(FILE * out,lsrec_t ** sort_buf)1809 report_trace(FILE *out, lsrec_t **sort_buf)
1810 {
1811 	lsrec_t *lsp;
1812 	int i, fr;
1813 	int rectype;
1814 	char buf[256], buf2[256];
1815 
1816 	rectype = g_recsize;
1817 
1818 	if (!g_pflag) {
1819 		(void) fprintf(out, "%5s  %7s  %11s  %-24s  %-24s\n",
1820 		    "Event", "Time", "Owner", "Lock", "Caller");
1821 		(void) fprintf(out, "---------------------------------"
1822 		    "----------------------------------------------\n");
1823 	}
1824 
1825 	for (i = 0; i < g_nrecs_used; i++) {
1826 
1827 		lsp = sort_buf[i];
1828 
1829 		if (lsp->ls_event >= LS_MAX_EVENTS || lsp->ls_count == 0)
1830 			continue;
1831 
1832 		(void) fprintf(out, "%2d  %10llu  %11p  %-24s  %-24s\n",
1833 		    lsp->ls_event, (unsigned long long)lsp->ls_time,
1834 		    (void *)lsp->ls_next,
1835 		    format_symbol(buf, lsp->ls_lock, 0),
1836 		    format_symbol(buf2, lsp->ls_caller, 0));
1837 
1838 		if (rectype <= LS_STACK(0))
1839 			continue;
1840 
1841 		/*
1842 		 * If we went a few frames below the caller, ignore them
1843 		 */
1844 		for (fr = 3; fr > 0; fr--)
1845 			if (lsp->ls_stack[fr] == lsp->ls_caller)
1846 				break;
1847 
1848 		while (rectype > LS_STACK(fr) && lsp->ls_stack[fr] != 0) {
1849 			(void) fprintf(out, "%53s  %-24s\n", "",
1850 			    format_symbol(buf, lsp->ls_stack[fr], 0));
1851 			fr++;
1852 		}
1853 		(void) fprintf(out, "\n");
1854 	}
1855 
1856 	(void) fflush(out);
1857 }
1858