xref: /illumos-gate/usr/src/uts/sun4v/os/error.c (revision db874c57)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/machsystm.h>
31 #include <sys/cpuvar.h>
32 #include <sys/async.h>
33 #include <sys/ontrap.h>
34 #include <sys/ddifm.h>
35 #include <sys/hypervisor_api.h>
36 #include <sys/errorq.h>
37 #include <sys/promif.h>
38 #include <sys/prom_plat.h>
39 #include <sys/x_call.h>
40 #include <sys/error.h>
41 #include <sys/fm/util.h>
42 #include <sys/ivintr.h>
43 
44 #define	MAX_CE_FLTS		10
45 #define	MAX_ASYNC_FLTS		6
46 
47 errorq_t *ue_queue;			/* queue of uncorrectable errors */
48 errorq_t *ce_queue;			/* queue of correctable errors */
49 
50 /*
51  * Being used by memory test driver.
52  * ce_verbose_memory - covers CEs in DIMMs
53  * ce_verbose_other - covers "others" (ecache, IO, etc.)
54  *
55  * If the value is 0, nothing is logged.
56  * If the value is 1, the error is logged to the log file, but not console.
57  * If the value is 2, the error is logged to the log file and console.
58  */
59 int	ce_verbose_memory = 1;
60 int	ce_verbose_other = 1;
61 
62 int	ce_show_data = 0;
63 int	ce_debug = 0;
64 int	ue_debug = 0;
65 int	reset_debug = 0;
66 
67 /*
68  * Tunables for controlling the handling of asynchronous faults (AFTs). Setting
69  * these to non-default values on a non-DEBUG kernel is NOT supported.
70  */
71 int	aft_verbose = 0;	/* log AFT messages > 1 to log only */
72 int	aft_panic = 0;		/* panic (not reboot) on fatal usermode AFLT */
73 int	aft_testfatal = 0;	/* force all AFTs to panic immediately */
74 
75 /*
76  * Used for vbsc hostshutdown (power-off buton)
77  */
78 int	err_shutdown_triggered = 0;	/* only once */
79 uint_t	err_shutdown_inum = 0;		/* used to pull the trigger */
80 
81 /*
82  * Defined in bus_func.c but initialised in error_init
83  */
84 extern kmutex_t bfd_lock;
85 
86 static uint32_t rq_overflow_count = 0;		/* counter for rq overflow */
87 
88 static void cpu_queue_one_event(errh_async_flt_t *);
89 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t);
90 static void errh_page_retire(errh_async_flt_t *, uchar_t);
91 static int errh_error_protected(struct regs *, struct async_flt *, int *);
92 static void errh_rq_full(struct async_flt *);
93 static void ue_drain(void *, struct async_flt *, errorq_elem_t *);
94 static void ce_drain(void *, struct async_flt *, errorq_elem_t *);
95 
96 /*ARGSUSED*/
97 void
98 process_resumable_error(struct regs *rp, uint32_t head_offset,
99     uint32_t tail_offset)
100 {
101 	struct machcpu *mcpup;
102 	struct async_flt *aflt;
103 	errh_async_flt_t errh_flt;
104 	errh_er_t *head_va;
105 
106 	mcpup = &(CPU->cpu_m);
107 
108 	while (head_offset != tail_offset) {
109 		/* kernel buffer starts right after the resumable queue */
110 		head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset +
111 		    CPU_RQ_SIZE);
112 		/* Copy the error report to local buffer */
113 		bzero(&errh_flt, sizeof (errh_async_flt_t));
114 		bcopy((char *)head_va, &(errh_flt.errh_er),
115 		    sizeof (errh_er_t));
116 
117 		/* Increment the queue head */
118 		head_offset += Q_ENTRY_SIZE;
119 		/* Wrap around */
120 		head_offset &= (CPU_RQ_SIZE - 1);
121 
122 		/* set error handle to zero so it can hold new error report */
123 		head_va->ehdl = 0;
124 
125 		switch (errh_flt.errh_er.desc) {
126 		case ERRH_DESC_UCOR_RE:
127 			break;
128 
129 		case ERRH_DESC_WARN_RE:
130 			/*
131 			 * Power-off requested, but handle it one time only.
132 			 */
133 			if (!err_shutdown_triggered) {
134 				setsoftint(err_shutdown_inum);
135 				++err_shutdown_triggered;
136 			}
137 			continue;
138 
139 		default:
140 			cmn_err(CE_WARN, "Error Descriptor 0x%llx "
141 			    " invalid in resumable error handler",
142 			    (long long) errh_flt.errh_er.desc);
143 			continue;
144 		}
145 
146 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
147 		aflt->flt_id = gethrtime();
148 		aflt->flt_bus_id = getprocessorid();
149 		aflt->flt_class = CPU_FAULT;
150 		aflt->flt_prot = AFLT_PROT_NONE;
151 		aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK)
152 		    >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV);
153 
154 		if (errh_flt.errh_er.attr & ERRH_ATTR_CPU)
155 			/* If it is an error on other cpu */
156 			aflt->flt_panic = 1;
157 		else
158 			aflt->flt_panic = 0;
159 
160 		/*
161 		 * Handle resumable queue full case.
162 		 */
163 		if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) {
164 			(void) errh_rq_full(aflt);
165 		}
166 
167 		/*
168 		 * Queue the error on ce or ue queue depend on flt_panic.
169 		 * Even if flt_panic is set, the code still keep processing
170 		 * the rest element on rq until the panic starts.
171 		 */
172 		(void) cpu_queue_one_event(&errh_flt);
173 
174 		/*
175 		 * Panic here if aflt->flt_panic has been set.
176 		 * Enqueued errors will be logged as part of the panic flow.
177 		 */
178 		if (aflt->flt_panic) {
179 			fm_panic("Unrecoverable error on another CPU");
180 		}
181 	}
182 }
183 
184 void
185 process_nonresumable_error(struct regs *rp, uint64_t tl,
186     uint32_t head_offset, uint32_t tail_offset)
187 {
188 	struct machcpu *mcpup;
189 	struct async_flt *aflt;
190 	errh_async_flt_t errh_flt;
191 	errh_er_t *head_va;
192 	int trampolined = 0;
193 	int expected = DDI_FM_ERR_UNEXPECTED;
194 	uint64_t exec_mode;
195 
196 	mcpup = &(CPU->cpu_m);
197 
198 	while (head_offset != tail_offset) {
199 		/* kernel buffer starts right after the nonresumable queue */
200 		head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset +
201 		    CPU_NRQ_SIZE);
202 
203 		/* Copy the error report to local buffer */
204 		bzero(&errh_flt, sizeof (errh_async_flt_t));
205 
206 		bcopy((char *)head_va, &(errh_flt.errh_er),
207 		    sizeof (errh_er_t));
208 
209 		/* Increment the queue head */
210 		head_offset += Q_ENTRY_SIZE;
211 		/* Wrap around */
212 		head_offset &= (CPU_NRQ_SIZE - 1);
213 
214 		/* set error handle to zero so it can hold new error report */
215 		head_va->ehdl = 0;
216 
217 		aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt);
218 
219 		trampolined = 0;
220 
221 		if (errh_flt.errh_er.attr & ERRH_ATTR_PIO)
222 			aflt->flt_class = BUS_FAULT;
223 		else
224 			aflt->flt_class = CPU_FAULT;
225 
226 		aflt->flt_id = gethrtime();
227 		aflt->flt_bus_id = getprocessorid();
228 		aflt->flt_pc = (caddr_t)rp->r_pc;
229 		exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK)
230 		    >> ERRH_MODE_SHIFT;
231 		aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV ||
232 		    exec_mode == ERRH_MODE_UNKNOWN);
233 		aflt->flt_tl = (uchar_t)tl;
234 		aflt->flt_prot = AFLT_PROT_NONE;
235 		aflt->flt_panic = ((aflt->flt_tl != 0) ||
236 		    (aft_testfatal != 0));
237 
238 		switch (errh_flt.errh_er.desc) {
239 		case ERRH_DESC_PR_NRE:
240 			/*
241 			 * Fall through, precise fault also need to check
242 			 * to see if it was protected.
243 			 */
244 
245 		case ERRH_DESC_DEF_NRE:
246 			/*
247 			 * If the trap occurred in privileged mode at TL=0,
248 			 * we need to check to see if we were executing
249 			 * in kernel under on_trap() or t_lofault
250 			 * protection. If so, modify the saved registers
251 			 * so that we return from the trap to the
252 			 * appropriate trampoline routine.
253 			 */
254 			if (aflt->flt_priv == 1 && aflt->flt_tl == 0)
255 				trampolined =
256 				    errh_error_protected(rp, aflt, &expected);
257 
258 			if (!aflt->flt_priv || aflt->flt_prot ==
259 			    AFLT_PROT_COPY) {
260 				aflt->flt_panic |= aft_panic;
261 			} else if (!trampolined &&
262 			    aflt->flt_class != BUS_FAULT) {
263 				aflt->flt_panic = 1;
264 			}
265 
266 			/*
267 			 * If PIO error, we need to query the bus nexus
268 			 * for fatal errors.
269 			 */
270 			if (aflt->flt_class == BUS_FAULT) {
271 				aflt->flt_addr = errh_flt.errh_er.ra;
272 				errh_cpu_run_bus_error_handlers(aflt,
273 				    expected);
274 			}
275 
276 			break;
277 
278 		default:
279 			cmn_err(CE_WARN, "Error Descriptor 0x%llx "
280 			    " invalid in nonresumable error handler",
281 			    (long long) errh_flt.errh_er.desc);
282 			continue;
283 		}
284 
285 		/*
286 		 * Queue the error report for further processing. If
287 		 * flt_panic is set, code still process other errors
288 		 * in the queue until the panic routine stops the
289 		 * kernel.
290 		 */
291 		(void) cpu_queue_one_event(&errh_flt);
292 
293 		/*
294 		 * Panic here if aflt->flt_panic has been set.
295 		 * Enqueued errors will be logged as part of the panic flow.
296 		 */
297 		if (aflt->flt_panic) {
298 			fm_panic("Unrecoverable hardware error");
299 		}
300 
301 		/*
302 		 * Call page_retire() to handle memory errors.
303 		 */
304 		if (errh_flt.errh_er.attr & ERRH_ATTR_MEM)
305 			errh_page_retire(&errh_flt, PR_UE);
306 
307 		/*
308 		 * If we queued an error and the it was in user mode or
309 		 * protected by t_lofault,
310 		 * set AST flag so the queue will be drained before
311 		 * returning to user mode.
312 		 */
313 		if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
314 			int pcb_flag = 0;
315 
316 			if (aflt->flt_class == CPU_FAULT)
317 				pcb_flag |= ASYNC_HWERR;
318 			else if (aflt->flt_class == BUS_FAULT)
319 				pcb_flag |= ASYNC_BERR;
320 
321 			ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
322 			aston(curthread);
323 		}
324 	}
325 }
326 
327 /*
328  * For PIO errors, this routine calls nexus driver's error
329  * callback routines. If the callback routine returns fatal, and
330  * we are in kernel or unknow mode without any error protection,
331  * we need to turn on the panic flag.
332  */
333 void
334 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
335 {
336 	int status;
337 	ddi_fm_error_t de;
338 
339 	bzero(&de, sizeof (ddi_fm_error_t));
340 
341 	de.fme_version = DDI_FME_VERSION;
342 	de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
343 	de.fme_flag = expected;
344 	de.fme_bus_specific = (void *)aflt->flt_addr;
345 	status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
346 
347 	/*
348 	 * If error is protected, it will jump to proper routine
349 	 * to handle the handle; if it is in user level, we just
350 	 * kill the user process; if the driver thinks the error is
351 	 * not fatal, we can drive on. If none of above are true,
352 	 * we panic
353 	 */
354 	if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) &&
355 	    (status == DDI_FM_FATAL))
356 		aflt->flt_panic = 1;
357 }
358 
359 /*
360  * This routine checks to see if we are under any error protection when
361  * the error happens. If we are under error protection, we unwind to
362  * the protection and indicate fault.
363  */
364 static int
365 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected)
366 {
367 	int trampolined = 0;
368 	ddi_acc_hdl_t *hp;
369 
370 	if (curthread->t_ontrap != NULL) {
371 		on_trap_data_t *otp = curthread->t_ontrap;
372 
373 		if (otp->ot_prot & OT_DATA_EC) {
374 			aflt->flt_prot = AFLT_PROT_EC;
375 			otp->ot_trap |= OT_DATA_EC;
376 			rp->r_pc = otp->ot_trampoline;
377 			rp->r_npc = rp->r_pc +4;
378 			trampolined = 1;
379 		}
380 
381 		if (otp->ot_prot & OT_DATA_ACCESS) {
382 			aflt->flt_prot = AFLT_PROT_ACCESS;
383 			otp->ot_trap |= OT_DATA_ACCESS;
384 			rp->r_pc = otp->ot_trampoline;
385 			rp->r_npc = rp->r_pc + 4;
386 			trampolined = 1;
387 			/*
388 			 * for peek and caut_gets
389 			 * errors are expected
390 			 */
391 			hp = (ddi_acc_hdl_t *)otp->ot_handle;
392 			if (!hp)
393 				*expected = DDI_FM_ERR_PEEK;
394 			else if (hp->ah_acc.devacc_attr_access ==
395 			    DDI_CAUTIOUS_ACC)
396 				*expected = DDI_FM_ERR_EXPECTED;
397 		}
398 	} else if (curthread->t_lofault) {
399 		aflt->flt_prot = AFLT_PROT_COPY;
400 		rp->r_g1 = EFAULT;
401 		rp->r_pc = curthread->t_lofault;
402 		rp->r_npc = rp->r_pc + 4;
403 		trampolined = 1;
404 	}
405 
406 	return (trampolined);
407 }
408 
409 /*
410  * Queue one event.
411  */
412 static void
413 cpu_queue_one_event(errh_async_flt_t *errh_fltp)
414 {
415 	struct async_flt *aflt = (struct async_flt *)errh_fltp;
416 	errorq_t *eqp;
417 
418 	if (aflt->flt_panic)
419 		eqp = ue_queue;
420 	else
421 		eqp = ce_queue;
422 
423 	errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t),
424 	    aflt->flt_panic);
425 }
426 
427 /*
428  * The cpu_async_log_err() function is called by the ce/ue_drain() function to
429  * handle logging for CPU events that are dequeued.  As such, it can be invoked
430  * from softint context, from AST processing in the trap() flow, or from the
431  * panic flow.  We decode the CPU-specific data, and log appropriate messages.
432  */
433 void
434 cpu_async_log_err(void *flt)
435 {
436 	errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt;
437 	errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er;
438 
439 	switch (errh_erp->desc) {
440 	case ERRH_DESC_UCOR_RE:
441 		if (errh_erp->attr & ERRH_ATTR_MEM) {
442 			/*
443 			 * Turn on the PR_UE flag. The page will be
444 			 * scrubbed when it is freed.
445 			 */
446 			errh_page_retire(errh_fltp, PR_UE);
447 		}
448 
449 		break;
450 
451 	case ERRH_DESC_PR_NRE:
452 	case ERRH_DESC_DEF_NRE:
453 		if (errh_erp->attr & ERRH_ATTR_MEM) {
454 			/*
455 			 * For non-resumable memory error, retire
456 			 * the page here.
457 			 */
458 			errh_page_retire(errh_fltp, PR_UE);
459 
460 			/*
461 			 * If we are going to panic, scrub the page first
462 			 */
463 			if (errh_fltp->cmn_asyncflt.flt_panic)
464 				mem_scrub(errh_fltp->errh_er.ra,
465 				    errh_fltp->errh_er.sz);
466 		}
467 		break;
468 
469 	default:
470 		break;
471 	}
472 }
473 
474 /*
475  * Called from ce_drain().
476  */
477 void
478 cpu_ce_log_err(struct async_flt *aflt)
479 {
480 	switch (aflt->flt_class) {
481 	case CPU_FAULT:
482 		cpu_async_log_err(aflt);
483 		break;
484 
485 	case BUS_FAULT:
486 		cpu_async_log_err(aflt);
487 		break;
488 
489 	default:
490 		break;
491 	}
492 }
493 
494 /*
495  * Called from ue_drain().
496  */
497 void
498 cpu_ue_log_err(struct async_flt *aflt)
499 {
500 	switch (aflt->flt_class) {
501 	case CPU_FAULT:
502 		cpu_async_log_err(aflt);
503 		break;
504 
505 	case BUS_FAULT:
506 		cpu_async_log_err(aflt);
507 		break;
508 
509 	default:
510 		break;
511 	}
512 }
513 
514 /*
515  * Turn on flag on the error memory region.
516  */
517 static void
518 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag)
519 {
520 	uint64_t flt_real_addr_start = errh_fltp->errh_er.ra;
521 	uint64_t flt_real_addr_end = flt_real_addr_start +
522 	    errh_fltp->errh_er.sz - 1;
523 	int64_t current_addr;
524 
525 	if (errh_fltp->errh_er.sz == 0)
526 		return;
527 
528 	for (current_addr = flt_real_addr_start;
529 	    current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) {
530 		(void) page_retire(current_addr, flag);
531 	}
532 }
533 
534 void
535 mem_scrub(uint64_t paddr, uint64_t len)
536 {
537 	uint64_t pa, length, scrubbed_len;
538 
539 	pa = paddr;
540 	length = len;
541 	scrubbed_len = 0;
542 
543 	while (length > 0) {
544 		if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK)
545 			break;
546 
547 		pa += scrubbed_len;
548 		length -= scrubbed_len;
549 	}
550 }
551 
552 void
553 mem_sync(caddr_t va, size_t len)
554 {
555 	uint64_t pa, length, flushed;
556 
557 	pa = va_to_pa((caddr_t)va);
558 
559 	if (pa == (uint64_t)-1)
560 		return;
561 
562 	length = len;
563 	flushed = 0;
564 
565 	while (length > 0) {
566 		if (hv_mem_sync(pa, length, &flushed) != H_EOK)
567 			break;
568 
569 		pa += flushed;
570 		length -= flushed;
571 	}
572 }
573 
574 /*
575  * If resumable queue is full, we need to check if any cpu is in
576  * error state. If not, we drive on. If yes, we need to panic. The
577  * hypervisor call hv_cpu_state() is being used for checking the
578  * cpu state.
579  */
580 static void
581 errh_rq_full(struct async_flt *afltp)
582 {
583 	processorid_t who;
584 	uint64_t cpu_state;
585 	uint64_t retval;
586 
587 	for (who = 0; who < NCPU; who++)
588 		if (CPU_IN_SET(cpu_ready_set, who)) {
589 			retval = hv_cpu_state(who, &cpu_state);
590 			if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) {
591 				afltp->flt_panic = 1;
592 				break;
593 			}
594 		}
595 }
596 
597 /*
598  * Return processor specific async error structure
599  * size used.
600  */
601 int
602 cpu_aflt_size(void)
603 {
604 	return (sizeof (errh_async_flt_t));
605 }
606 
607 #define	SZ_TO_ETRS_SHIFT	6
608 
609 /*
610  * Message print out when resumable queue is overflown
611  */
612 /*ARGSUSED*/
613 void
614 rq_overflow(struct regs *rp, uint64_t head_offset,
615     uint64_t tail_offset)
616 {
617 	rq_overflow_count++;
618 }
619 
620 /*
621  * Handler to process a fatal error.  This routine can be called from a
622  * softint, called from trap()'s AST handling, or called from the panic flow.
623  */
624 /*ARGSUSED*/
625 static void
626 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
627 {
628 	cpu_ue_log_err(aflt);
629 }
630 
631 /*
632  * Handler to process a correctable error.  This routine can be called from a
633  * softint.  We just call the CPU module's logging routine.
634  */
635 /*ARGSUSED*/
636 static void
637 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep)
638 {
639 	cpu_ce_log_err(aflt);
640 }
641 
642 /*
643  * Handler to process vbsc hostshutdown (power-off button).
644  */
645 static int
646 err_shutdown_softintr()
647 {
648 	cmn_err(CE_WARN, "Power-off requested, system will now shutdown.");
649 	do_shutdown();
650 
651 	/*
652 	 * just in case do_shutdown() fails
653 	 */
654 	(void) timeout((void(*)(void *))power_down, NULL, 100 * hz);
655 	return (DDI_INTR_CLAIMED);
656 }
657 
658 /*
659  * Allocate error queue sizes based on max_ncpus.  max_ncpus is set just
660  * after ncpunode has been determined.  ncpus is set in start_other_cpus
661  * which is called after error_init() but may change dynamically.
662  */
663 void
664 error_init(void)
665 {
666 	char tmp_name[MAXSYSNAME];
667 	pnode_t node;
668 	size_t size = cpu_aflt_size();
669 
670 	/*
671 	 * Initialize the correctable and uncorrectable error queues.
672 	 */
673 	ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL,
674 	    MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL);
675 
676 	ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL,
677 	    MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0);
678 
679 	if (ue_queue == NULL || ce_queue == NULL)
680 		panic("failed to create required system error queue");
681 
682 	/*
683 	 * Setup interrupt handler for power-off button.
684 	 */
685 	err_shutdown_inum = add_softintr(PIL_9,
686 	    (softintrfunc)err_shutdown_softintr, NULL);
687 
688 	/*
689 	 * Initialize the busfunc list mutex.  This must be a PIL_15 spin lock
690 	 * because we will need to acquire it from cpu_async_error().
691 	 */
692 	mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15);
693 
694 	node = prom_rootnode();
695 	if ((node == OBP_NONODE) || (node == OBP_BADNODE)) {
696 		cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node);
697 		return;
698 	}
699 
700 	if (((size = prom_getproplen(node, "reset-reason")) != -1) &&
701 	    (size <= MAXSYSNAME) &&
702 	    (prom_getprop(node, "reset-reason", tmp_name) != -1)) {
703 		if (reset_debug) {
704 			cmn_err(CE_CONT, "System booting after %s\n", tmp_name);
705 		} else if (strncmp(tmp_name, "FATAL", 5) == 0) {
706 			cmn_err(CE_CONT,
707 			    "System booting after fatal error %s\n", tmp_name);
708 		}
709 	}
710 }
711 
712 /*
713  * Nonresumable queue is full, panic here
714  */
715 /*ARGSUSED*/
716 void
717 nrq_overflow(struct regs *rp)
718 {
719 	fm_panic("Nonresumable queue full");
720 }
721