xref: /illumos-gate/usr/src/uts/intel/os/archdep.c (revision 957246c9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved	*/
27 /*
28  * Copyright (c) 2018, Joyent, Inc.
29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/vmparam.h>
35 #include <sys/systm.h>
36 #include <sys/signal.h>
37 #include <sys/stack.h>
38 #include <sys/regset.h>
39 #include <sys/privregs.h>
40 #include <sys/frame.h>
41 #include <sys/proc.h>
42 #include <sys/psw.h>
43 #include <sys/siginfo.h>
44 #include <sys/cpuvar.h>
45 #include <sys/asm_linkage.h>
46 #include <sys/kmem.h>
47 #include <sys/errno.h>
48 #include <sys/bootconf.h>
49 #include <sys/archsystm.h>
50 #include <sys/debug.h>
51 #include <sys/elf.h>
52 #include <sys/spl.h>
53 #include <sys/time.h>
54 #include <sys/atomic.h>
55 #include <sys/sysmacros.h>
56 #include <sys/cmn_err.h>
57 #include <sys/modctl.h>
58 #include <sys/kobj.h>
59 #include <sys/panic.h>
60 #include <sys/reboot.h>
61 #include <sys/time.h>
62 #include <sys/fp.h>
63 #include <sys/x86_archext.h>
64 #include <sys/auxv.h>
65 #include <sys/auxv_386.h>
66 #include <sys/dtrace.h>
67 #include <sys/brand.h>
68 #include <sys/machbrand.h>
69 #include <sys/cmn_err.h>
70 
71 /*
72  * Map an fnsave-formatted save area into an fxsave-formatted save area.
73  *
74  * Most fields are the same width, content and semantics.  However
75  * the tag word is compressed.
76  */
77 static void
78 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
79 {
80 	uint_t i, tagbits;
81 
82 	fx->fx_fcw = fn->f_fcw;
83 	fx->fx_fsw = fn->f_fsw;
84 
85 	/*
86 	 * copy element by element (because of holes)
87 	 */
88 	for (i = 0; i < 8; i++)
89 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
90 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
91 
92 	/*
93 	 * synthesize compressed tag bits
94 	 */
95 	fx->fx_fctw = 0;
96 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
97 		if ((tagbits & 3) != 3)
98 			fx->fx_fctw |= (1 << i);
99 
100 	fx->fx_fop = fn->f_fop;
101 
102 	fx->fx_rip = (uint64_t)fn->f_eip;
103 	fx->fx_rdp = (uint64_t)fn->f_dp;
104 }
105 
106 /*
107  * Map from an fxsave-format save area to an fnsave-format save area.
108  */
109 static void
110 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
111 {
112 	uint_t i, top, tagbits;
113 
114 	fn->f_fcw = fx->fx_fcw;
115 	fn->__f_ign0 = 0;
116 	fn->f_fsw = fx->fx_fsw;
117 	fn->__f_ign1 = 0;
118 
119 	top = (fx->fx_fsw & FPS_TOP) >> 11;
120 
121 	/*
122 	 * copy element by element (because of holes)
123 	 */
124 	for (i = 0; i < 8; i++)
125 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
126 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
127 
128 	/*
129 	 * synthesize uncompressed tag bits
130 	 */
131 	fn->f_ftw = 0;
132 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
133 		uint_t ibit, expo;
134 		const uint16_t *fpp;
135 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
136 
137 		if ((tagbits & 1) == 0) {
138 			fn->f_ftw |= 3 << (i << 1);	/* empty */
139 			continue;
140 		}
141 
142 		/*
143 		 * (tags refer to *physical* registers)
144 		 */
145 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
146 		ibit = fpp[3] >> 15;
147 		expo = fpp[4] & 0x7fff;
148 
149 		if (ibit && expo != 0 && expo != 0x7fff)
150 			continue;			/* valid fp number */
151 
152 		if (bcmp(fpp, &zero, sizeof (zero)))
153 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
154 		else
155 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
156 	}
157 
158 	fn->f_fop = fx->fx_fop;
159 
160 	fn->__f_ign2 = 0;
161 	fn->f_eip = (uint32_t)fx->fx_rip;
162 	fn->f_cs = U32CS_SEL;
163 	fn->f_dp = (uint32_t)fx->fx_rdp;
164 	fn->f_ds = UDS_SEL;
165 	fn->__f_ign3 = 0;
166 }
167 
168 /*
169  * Map from an fpregset_t into an fxsave-format save area
170  */
171 static void
172 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
173 {
174 	bcopy(fp, fx, sizeof (*fx));
175 	/*
176 	 * avoid useless #gp exceptions - mask reserved bits
177 	 */
178 	fx->fx_mxcsr &= sse_mxcsr_mask;
179 }
180 
181 /*
182  * Map from an fxsave-format save area into a fpregset_t
183  */
184 static void
185 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
186 {
187 	bcopy(fx, fp, sizeof (*fx));
188 }
189 
190 #if defined(_SYSCALL32_IMPL)
191 static void
192 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
193 {
194 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
195 
196 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
197 	/*
198 	 * avoid useless #gp exceptions - mask reserved bits
199 	 */
200 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
201 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
202 }
203 
204 static void
205 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
206 {
207 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
208 
209 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
210 	fc->mxcsr = fx->fx_mxcsr;
211 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
212 }
213 
214 static void
215 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
216 {
217 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
218 	dst->fp_reg_set.fpchip_state.status =
219 	    src->fp_reg_set.fpchip_state.status;
220 	dst->fp_reg_set.fpchip_state.xstatus =
221 	    src->fp_reg_set.fpchip_state.xstatus;
222 }
223 
224 static void
225 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
226 {
227 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
228 	dst->fp_reg_set.fpchip_state.status =
229 	    src->fp_reg_set.fpchip_state.status;
230 	dst->fp_reg_set.fpchip_state.xstatus =
231 	    src->fp_reg_set.fpchip_state.xstatus;
232 }
233 #endif
234 
235 /*
236  * Set floating-point registers from a native fpregset_t.
237  */
238 void
239 setfpregs(klwp_t *lwp, fpregset_t *fp)
240 {
241 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
242 
243 	if (fpu->fpu_flags & FPU_EN) {
244 		if (!(fpu->fpu_flags & FPU_VALID)) {
245 			/*
246 			 * FPU context is still active, release the
247 			 * ownership.
248 			 */
249 			fp_free(fpu);
250 		}
251 	}
252 	/*
253 	 * Else: if we are trying to change the FPU state of a thread which
254 	 * hasn't yet initialized floating point, store the state in
255 	 * the pcb and indicate that the state is valid.  When the
256 	 * thread enables floating point, it will use this state instead
257 	 * of the default state.
258 	 */
259 
260 	switch (fp_save_mech) {
261 	case FP_FXSAVE:
262 		fpregset_to_fxsave(fp, fpu->fpu_regs.kfpu_u.kfpu_fx);
263 		fpu->fpu_regs.kfpu_xstatus =
264 		    fp->fp_reg_set.fpchip_state.xstatus;
265 		break;
266 
267 	case FP_XSAVE:
268 		fpregset_to_fxsave(fp,
269 		    &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave);
270 		fpu->fpu_regs.kfpu_xstatus =
271 		    fp->fp_reg_set.fpchip_state.xstatus;
272 		fpu->fpu_regs.kfpu_u.kfpu_xs->xs_header.xsh_xstate_bv |=
273 		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
274 		break;
275 	default:
276 		panic("Invalid fp_save_mech");
277 		/*NOTREACHED*/
278 	}
279 
280 	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
281 	fpu->fpu_flags |= FPU_VALID;
282 	PCB_SET_UPDATE_FPU(&lwp->lwp_pcb);
283 }
284 
285 /*
286  * Get floating-point registers into a native fpregset_t.
287  */
288 void
289 getfpregs(klwp_t *lwp, fpregset_t *fp)
290 {
291 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
292 
293 	kpreempt_disable();
294 	if (fpu->fpu_flags & FPU_EN) {
295 		/*
296 		 * If we have FPU hw and the thread's pcb doesn't have
297 		 * a valid FPU state then get the state from the hw.
298 		 */
299 		if (fpu_exists && ttolwp(curthread) == lwp &&
300 		    !(fpu->fpu_flags & FPU_VALID))
301 			fp_save(fpu); /* get the current FPU state */
302 	}
303 
304 	/*
305 	 * There are 3 possible cases we have to be aware of here:
306 	 *
307 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
308 	 *
309 	 * 2. FPU is not enabled, and there have been no intervening /proc
310 	 *    modifications.  Return initial FPU state.
311 	 *
312 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
313 	 *    FPU state is stored in the current LWP.
314 	 */
315 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
316 		/*
317 		 * Cases 1 and 3.
318 		 */
319 		switch (fp_save_mech) {
320 		case FP_FXSAVE:
321 			fxsave_to_fpregset(fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
322 			fp->fp_reg_set.fpchip_state.xstatus =
323 			    fpu->fpu_regs.kfpu_xstatus;
324 			break;
325 		case FP_XSAVE:
326 			fxsave_to_fpregset(
327 			    &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave, fp);
328 			fp->fp_reg_set.fpchip_state.xstatus =
329 			    fpu->fpu_regs.kfpu_xstatus;
330 			break;
331 		default:
332 			panic("Invalid fp_save_mech");
333 			/*NOTREACHED*/
334 		}
335 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
336 	} else {
337 		/*
338 		 * Case 2.
339 		 */
340 		switch (fp_save_mech) {
341 		case FP_FXSAVE:
342 		case FP_XSAVE:
343 			/*
344 			 * For now, we don't have any AVX specific field in ABI.
345 			 * If we add any in the future, we need to initial them
346 			 * as well.
347 			 */
348 			fxsave_to_fpregset(&sse_initial, fp);
349 			fp->fp_reg_set.fpchip_state.xstatus =
350 			    fpu->fpu_regs.kfpu_xstatus;
351 			break;
352 		default:
353 			panic("Invalid fp_save_mech");
354 			/*NOTREACHED*/
355 		}
356 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
357 	}
358 	kpreempt_enable();
359 }
360 
361 #if defined(_SYSCALL32_IMPL)
362 
363 /*
364  * Set floating-point registers from an fpregset32_t.
365  */
366 void
367 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
368 {
369 	fpregset_t fpregs;
370 
371 	fpregset_32ton(fp, &fpregs);
372 	setfpregs(lwp, &fpregs);
373 }
374 
375 /*
376  * Get floating-point registers into an fpregset32_t.
377  */
378 void
379 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
380 {
381 	fpregset_t fpregs;
382 
383 	getfpregs(lwp, &fpregs);
384 	fpregset_nto32(&fpregs, fp);
385 }
386 
387 #endif	/* _SYSCALL32_IMPL */
388 
389 /*
390  * Return the general registers
391  */
392 void
393 getgregs(klwp_t *lwp, gregset_t grp)
394 {
395 	struct regs *rp = lwptoregs(lwp);
396 	struct pcb *pcb = &lwp->lwp_pcb;
397 	int thisthread = lwptot(lwp) == curthread;
398 
399 	grp[REG_RDI] = rp->r_rdi;
400 	grp[REG_RSI] = rp->r_rsi;
401 	grp[REG_RDX] = rp->r_rdx;
402 	grp[REG_RCX] = rp->r_rcx;
403 	grp[REG_R8] = rp->r_r8;
404 	grp[REG_R9] = rp->r_r9;
405 	grp[REG_RAX] = rp->r_rax;
406 	grp[REG_RBX] = rp->r_rbx;
407 	grp[REG_RBP] = rp->r_rbp;
408 	grp[REG_R10] = rp->r_r10;
409 	grp[REG_R11] = rp->r_r11;
410 	grp[REG_R12] = rp->r_r12;
411 	grp[REG_R13] = rp->r_r13;
412 	grp[REG_R14] = rp->r_r14;
413 	grp[REG_R15] = rp->r_r15;
414 	grp[REG_FSBASE] = pcb->pcb_fsbase;
415 	grp[REG_GSBASE] = pcb->pcb_gsbase;
416 	if (thisthread)
417 		kpreempt_disable();
418 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
419 		grp[REG_DS] = pcb->pcb_ds;
420 		grp[REG_ES] = pcb->pcb_es;
421 		grp[REG_FS] = pcb->pcb_fs;
422 		grp[REG_GS] = pcb->pcb_gs;
423 	} else {
424 		grp[REG_DS] = rp->r_ds;
425 		grp[REG_ES] = rp->r_es;
426 		grp[REG_FS] = rp->r_fs;
427 		grp[REG_GS] = rp->r_gs;
428 	}
429 	if (thisthread)
430 		kpreempt_enable();
431 	grp[REG_TRAPNO] = rp->r_trapno;
432 	grp[REG_ERR] = rp->r_err;
433 	grp[REG_RIP] = rp->r_rip;
434 	grp[REG_CS] = rp->r_cs;
435 	grp[REG_SS] = rp->r_ss;
436 	grp[REG_RFL] = rp->r_rfl;
437 	grp[REG_RSP] = rp->r_rsp;
438 }
439 
440 #if defined(_SYSCALL32_IMPL)
441 
442 void
443 getgregs32(klwp_t *lwp, gregset32_t grp)
444 {
445 	struct regs *rp = lwptoregs(lwp);
446 	struct pcb *pcb = &lwp->lwp_pcb;
447 	int thisthread = lwptot(lwp) == curthread;
448 
449 	if (thisthread)
450 		kpreempt_disable();
451 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
452 		grp[GS] = (uint16_t)pcb->pcb_gs;
453 		grp[FS] = (uint16_t)pcb->pcb_fs;
454 		grp[DS] = (uint16_t)pcb->pcb_ds;
455 		grp[ES] = (uint16_t)pcb->pcb_es;
456 	} else {
457 		grp[GS] = (uint16_t)rp->r_gs;
458 		grp[FS] = (uint16_t)rp->r_fs;
459 		grp[DS] = (uint16_t)rp->r_ds;
460 		grp[ES] = (uint16_t)rp->r_es;
461 	}
462 	if (thisthread)
463 		kpreempt_enable();
464 	grp[EDI] = (greg32_t)rp->r_rdi;
465 	grp[ESI] = (greg32_t)rp->r_rsi;
466 	grp[EBP] = (greg32_t)rp->r_rbp;
467 	grp[ESP] = 0;
468 	grp[EBX] = (greg32_t)rp->r_rbx;
469 	grp[EDX] = (greg32_t)rp->r_rdx;
470 	grp[ECX] = (greg32_t)rp->r_rcx;
471 	grp[EAX] = (greg32_t)rp->r_rax;
472 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
473 	grp[ERR] = (greg32_t)rp->r_err;
474 	grp[EIP] = (greg32_t)rp->r_rip;
475 	grp[CS] = (uint16_t)rp->r_cs;
476 	grp[EFL] = (greg32_t)rp->r_rfl;
477 	grp[UESP] = (greg32_t)rp->r_rsp;
478 	grp[SS] = (uint16_t)rp->r_ss;
479 }
480 
481 void
482 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
483 {
484 	mcontext_t *dmc = &dst->uc_mcontext;
485 	const mcontext32_t *smc = &src->uc_mcontext;
486 
487 	bzero(dst, sizeof (*dst));
488 	dst->uc_flags = src->uc_flags;
489 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
490 
491 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
492 
493 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
494 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
495 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
496 
497 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
498 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
499 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
500 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
501 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
502 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
503 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
504 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
505 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
506 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
507 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
508 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
509 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
510 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
511 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
512 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
513 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
514 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
515 
516 	/*
517 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
518 	 * otherwise there is no guarantee that anything in fpregs is valid.
519 	 */
520 	if (src->uc_flags & UC_FPU)
521 		fpregset_32ton(&src->uc_mcontext.fpregs,
522 		    &dst->uc_mcontext.fpregs);
523 }
524 
525 #endif	/* _SYSCALL32_IMPL */
526 
527 /*
528  * Return the user-level PC.
529  * If in a system call, return the address of the syscall trap.
530  */
531 greg_t
532 getuserpc()
533 {
534 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
535 	uint32_t insn;
536 
537 	if (curthread->t_sysnum == 0)
538 		return (upc);
539 
540 	/*
541 	 * We might've gotten here from sysenter (0xf 0x34),
542 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
543 	 *
544 	 * Go peek at the binary to figure it out..
545 	 */
546 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
547 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
548 		return (upc - 2);
549 	return (upc - 7);
550 }
551 
552 /*
553  * Protect segment registers from non-user privilege levels and GDT selectors
554  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
555  * selector is non-null and not USER_CS/USER_DS, we make sure that the
556  * TI bit is set to point into the LDT and that the RPL is set to 3.
557  *
558  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
559  * also explicitly zero the top 16 bits since they may be coming from the
560  * user's address space via setcontext(2) or /proc.
561  *
562  * Note about null selector. When running on the hypervisor if we allow a
563  * process to set its %cs to null selector with RPL of 0 the hypervisor will
564  * crash the domain. If running on bare metal we would get a #gp fault and
565  * be able to kill the process and continue on. Therefore we make sure to
566  * force RPL to SEL_UPL even for null selector when setting %cs.
567  */
568 
569 #if defined(IS_CS) || defined(IS_NOT_CS)
570 #error	"IS_CS and IS_NOT_CS already defined"
571 #endif
572 
573 #define	IS_CS		1
574 #define	IS_NOT_CS	0
575 
576 /*ARGSUSED*/
577 static greg_t
578 fix_segreg(greg_t sr, int iscs, model_t datamodel)
579 {
580 	switch (sr &= 0xffff) {
581 
582 	case 0:
583 		if (iscs == IS_CS)
584 			return (0 | SEL_UPL);
585 		else
586 			return (0);
587 
588 	/*
589 	 * If lwp attempts to switch data model then force their
590 	 * code selector to be null selector.
591 	 */
592 	case U32CS_SEL:
593 		if (datamodel == DATAMODEL_NATIVE)
594 			return (0 | SEL_UPL);
595 		else
596 			return (sr);
597 
598 	case UCS_SEL:
599 		if (datamodel == DATAMODEL_ILP32)
600 			return (0 | SEL_UPL);
601 	/*FALLTHROUGH*/
602 	case UDS_SEL:
603 	case LWPFS_SEL:
604 	case LWPGS_SEL:
605 	case SEL_UPL:
606 		return (sr);
607 	default:
608 		break;
609 	}
610 
611 	/*
612 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
613 	 * default do not have an LDT, so that any attempt to use an invalid
614 	 * selector will reference the (non-existant) LDT, and cause a #gp
615 	 * fault for the process.
616 	 *
617 	 * 64-bit processes get the null gdt selector since they
618 	 * are not allowed to have a private LDT.
619 	 */
620 	if (datamodel == DATAMODEL_ILP32) {
621 		return (sr | SEL_TI_LDT | SEL_UPL);
622 	} else {
623 		if (iscs == IS_CS)
624 			return (0 | SEL_UPL);
625 		else
626 			return (0);
627 	}
628 
629 }
630 
631 /*
632  * Set general registers.
633  */
634 void
635 setgregs(klwp_t *lwp, gregset_t grp)
636 {
637 	struct regs *rp = lwptoregs(lwp);
638 	model_t	datamodel = lwp_getdatamodel(lwp);
639 
640 	struct pcb *pcb = &lwp->lwp_pcb;
641 	int thisthread = lwptot(lwp) == curthread;
642 
643 	if (datamodel == DATAMODEL_NATIVE) {
644 		if (thisthread)
645 			(void) save_syscall_args();	/* copy the args */
646 
647 		rp->r_rdi = grp[REG_RDI];
648 		rp->r_rsi = grp[REG_RSI];
649 		rp->r_rdx = grp[REG_RDX];
650 		rp->r_rcx = grp[REG_RCX];
651 		rp->r_r8 = grp[REG_R8];
652 		rp->r_r9 = grp[REG_R9];
653 		rp->r_rax = grp[REG_RAX];
654 		rp->r_rbx = grp[REG_RBX];
655 		rp->r_rbp = grp[REG_RBP];
656 		rp->r_r10 = grp[REG_R10];
657 		rp->r_r11 = grp[REG_R11];
658 		rp->r_r12 = grp[REG_R12];
659 		rp->r_r13 = grp[REG_R13];
660 		rp->r_r14 = grp[REG_R14];
661 		rp->r_r15 = grp[REG_R15];
662 		rp->r_trapno = grp[REG_TRAPNO];
663 		rp->r_err = grp[REG_ERR];
664 		rp->r_rip = grp[REG_RIP];
665 		/*
666 		 * Setting %cs or %ss to anything else is quietly but
667 		 * quite definitely forbidden!
668 		 */
669 		rp->r_cs = UCS_SEL;
670 		rp->r_ss = UDS_SEL;
671 		rp->r_rsp = grp[REG_RSP];
672 
673 		if (thisthread)
674 			kpreempt_disable();
675 
676 		pcb->pcb_ds = UDS_SEL;
677 		pcb->pcb_es = UDS_SEL;
678 
679 		/*
680 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
681 		 * values directly, but only if they're using the segment
682 		 * selectors that allow that semantic.
683 		 *
684 		 * (32-bit processes must use lwp_set_private().)
685 		 */
686 		pcb->pcb_fsbase = grp[REG_FSBASE];
687 		pcb->pcb_gsbase = grp[REG_GSBASE];
688 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
689 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
690 
691 		/*
692 		 * Ensure that we go out via update_sregs
693 		 */
694 		PCB_SET_UPDATE_SEGS(pcb);
695 		lwptot(lwp)->t_post_sys = 1;
696 		if (thisthread)
697 			kpreempt_enable();
698 #if defined(_SYSCALL32_IMPL)
699 	} else {
700 		rp->r_rdi = (uint32_t)grp[REG_RDI];
701 		rp->r_rsi = (uint32_t)grp[REG_RSI];
702 		rp->r_rdx = (uint32_t)grp[REG_RDX];
703 		rp->r_rcx = (uint32_t)grp[REG_RCX];
704 		rp->r_rax = (uint32_t)grp[REG_RAX];
705 		rp->r_rbx = (uint32_t)grp[REG_RBX];
706 		rp->r_rbp = (uint32_t)grp[REG_RBP];
707 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
708 		rp->r_err = (uint32_t)grp[REG_ERR];
709 		rp->r_rip = (uint32_t)grp[REG_RIP];
710 
711 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
712 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
713 
714 		rp->r_rsp = (uint32_t)grp[REG_RSP];
715 
716 		if (thisthread)
717 			kpreempt_disable();
718 
719 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
720 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
721 
722 		/*
723 		 * (See fsbase/gsbase commentary above)
724 		 */
725 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
726 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
727 
728 		/*
729 		 * Ensure that we go out via update_sregs
730 		 */
731 		PCB_SET_UPDATE_SEGS(pcb);
732 		lwptot(lwp)->t_post_sys = 1;
733 		if (thisthread)
734 			kpreempt_enable();
735 #endif
736 	}
737 
738 	/*
739 	 * Only certain bits of the flags register can be modified.
740 	 */
741 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
742 	    (grp[REG_RFL] & PSL_USERMASK);
743 }
744 
745 /*
746  * Determine whether eip is likely to have an interrupt frame
747  * on the stack.  We do this by comparing the address to the
748  * range of addresses spanned by several well-known routines.
749  */
750 extern void _interrupt();
751 extern void _allsyscalls();
752 extern void _cmntrap();
753 extern void fakesoftint();
754 
755 extern size_t _interrupt_size;
756 extern size_t _allsyscalls_size;
757 extern size_t _cmntrap_size;
758 extern size_t _fakesoftint_size;
759 
760 /*
761  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
762  * Returns MIN(current stack depth, pcstack_limit).
763  */
764 int
765 getpcstack(pc_t *pcstack, int pcstack_limit)
766 {
767 	struct frame *fp = (struct frame *)getfp();
768 	struct frame *nextfp, *minfp, *stacktop;
769 	int depth = 0;
770 	int on_intr;
771 	uintptr_t pc;
772 
773 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
774 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
775 	else
776 		stacktop = (struct frame *)curthread->t_stk;
777 	minfp = fp;
778 
779 	pc = ((struct regs *)fp)->r_pc;
780 
781 	while (depth < pcstack_limit) {
782 		nextfp = (struct frame *)fp->fr_savfp;
783 		pc = fp->fr_savpc;
784 		if (nextfp <= minfp || nextfp >= stacktop) {
785 			if (on_intr) {
786 				/*
787 				 * Hop from interrupt stack to thread stack.
788 				 */
789 				stacktop = (struct frame *)curthread->t_stk;
790 				minfp = (struct frame *)curthread->t_stkbase;
791 				on_intr = 0;
792 				continue;
793 			}
794 			break;
795 		}
796 		pcstack[depth++] = (pc_t)pc;
797 		fp = nextfp;
798 		minfp = fp;
799 	}
800 	return (depth);
801 }
802 
803 /*
804  * The following ELF header fields are defined as processor-specific
805  * in the V8 ABI:
806  *
807  *	e_ident[EI_DATA]	encoding of the processor-specific
808  *				data in the object file
809  *	e_machine		processor identification
810  *	e_flags			processor-specific flags associated
811  *				with the file
812  */
813 
814 /*
815  * The value of at_flags reflects a platform's cpu module support.
816  * at_flags is used to check for allowing a binary to execute and
817  * is passed as the value of the AT_FLAGS auxiliary vector.
818  */
819 int at_flags = 0;
820 
821 /*
822  * Check the processor-specific fields of an ELF header.
823  *
824  * returns 1 if the fields are valid, 0 otherwise
825  */
826 /*ARGSUSED2*/
827 int
828 elfheadcheck(
829 	unsigned char e_data,
830 	Elf32_Half e_machine,
831 	Elf32_Word e_flags)
832 {
833 	if (e_data != ELFDATA2LSB)
834 		return (0);
835 	if (e_machine == EM_AMD64)
836 		return (1);
837 	return (e_machine == EM_386);
838 }
839 
840 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
841 uint_t auxv_hwcap_include_2 = 0;	/* second word */
842 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
843 uint_t auxv_hwcap_exclude_2 = 0;	/* second word */
844 #if defined(_SYSCALL32_IMPL)
845 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
846 uint_t auxv_hwcap32_include_2 = 0;	/* ditto for 32-bit apps */
847 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
848 uint_t auxv_hwcap32_exclude_2 = 0;	/* ditto for 32-bit apps */
849 #endif
850 
851 /*
852  * Gather information about the processor and place it into auxv_hwcap
853  * so that it can be exported to the linker via the aux vector.
854  *
855  * We use this seemingly complicated mechanism so that we can ensure
856  * that /etc/system can be used to override what the system can or
857  * cannot discover for itself.
858  */
859 void
860 bind_hwcap(void)
861 {
862 	uint_t cpu_hwcap_flags[2];
863 	cpuid_pass4(NULL, cpu_hwcap_flags);
864 
865 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
866 	    ~auxv_hwcap_exclude;
867 	auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
868 	    ~auxv_hwcap_exclude_2;
869 
870 	/*
871 	 * On AMD processors, sysenter just doesn't work at all
872 	 * when the kernel is in long mode.  On IA-32e processors
873 	 * it does, but there's no real point in all the alternate
874 	 * mechanism when syscall works on both.
875 	 *
876 	 * Besides, the kernel's sysenter handler is expecting a
877 	 * 32-bit lwp ...
878 	 */
879 	auxv_hwcap &= ~AV_386_SEP;
880 
881 	if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
882 	    auxv_hwcap_exclude_2) {
883 		/*
884 		 * The below assignment is regrettably required to get lint
885 		 * to accept the validity of our format string.  The format
886 		 * string is in fact valid, but whatever intelligence in lint
887 		 * understands the cmn_err()-specific %b appears to have an
888 		 * off-by-one error:  it (mistakenly) complains about bit
889 		 * number 32 (even though this is explicitly permitted).
890 		 * Normally, one would will away such warnings with a "LINTED"
891 		 * directive, but for reasons unclear and unknown, lint
892 		 * refuses to be assuaged in this case.  Fortunately, lint
893 		 * doesn't pretend to have solved the Halting Problem --
894 		 * and as soon as the format string is programmatic, it
895 		 * knows enough to shut up.
896 		 */
897 		char *fmt = "?user ABI extensions: %b\n";
898 		cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
899 		fmt = "?user ABI extensions (word 2): %b\n";
900 		cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
901 	}
902 
903 #if defined(_SYSCALL32_IMPL)
904 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
905 	    ~auxv_hwcap32_exclude;
906 	auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
907 	    ~auxv_hwcap32_exclude_2;
908 
909 	/*
910 	 * If this is an amd64 architecture machine from Intel, then
911 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
912 	 *
913 	 * Sigh.
914 	 */
915 	if (!cpuid_syscall32_insn(NULL))
916 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
917 
918 	/*
919 	 * 32-bit processes can -always- use the lahf/sahf instructions
920 	 */
921 	auxv_hwcap32 |= AV_386_AHF;
922 
923 	/*
924 	 * 32-bit processes can -never- use fsgsbase instructions.
925 	 */
926 	auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
927 
928 	if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
929 	    auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
930 		/*
931 		 * See the block comment in the cmn_err() of auxv_hwcap, above.
932 		 */
933 		char *fmt = "?32-bit user ABI extensions: %b\n";
934 		cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
935 		fmt = "?32-bit user ABI extensions (word 2): %b\n";
936 		cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
937 	}
938 #endif
939 }
940 
941 /*
942  *	sync_icache() - this is called
943  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
944  *	this is a nop.
945  */
946 /* ARGSUSED */
947 void
948 sync_icache(caddr_t addr, uint_t len)
949 {
950 	/* Do nothing for now */
951 }
952 
953 /*ARGSUSED*/
954 void
955 sync_data_memory(caddr_t va, size_t len)
956 {
957 	/* Not implemented for this platform */
958 }
959 
960 int
961 __ipltospl(int ipl)
962 {
963 	return (ipltospl(ipl));
964 }
965 
966 /*
967  * The panic code invokes panic_saveregs() to record the contents of a
968  * regs structure into the specified panic_data structure for debuggers.
969  */
970 void
971 panic_saveregs(panic_data_t *pdp, struct regs *rp)
972 {
973 	panic_nv_t *pnv = PANICNVGET(pdp);
974 
975 	struct cregs	creg;
976 
977 	getcregs(&creg);
978 
979 	PANICNVADD(pnv, "rdi", rp->r_rdi);
980 	PANICNVADD(pnv, "rsi", rp->r_rsi);
981 	PANICNVADD(pnv, "rdx", rp->r_rdx);
982 	PANICNVADD(pnv, "rcx", rp->r_rcx);
983 	PANICNVADD(pnv, "r8", rp->r_r8);
984 	PANICNVADD(pnv, "r9", rp->r_r9);
985 	PANICNVADD(pnv, "rax", rp->r_rax);
986 	PANICNVADD(pnv, "rbx", rp->r_rbx);
987 	PANICNVADD(pnv, "rbp", rp->r_rbp);
988 	PANICNVADD(pnv, "r10", rp->r_r10);
989 	PANICNVADD(pnv, "r11", rp->r_r11);
990 	PANICNVADD(pnv, "r12", rp->r_r12);
991 	PANICNVADD(pnv, "r13", rp->r_r13);
992 	PANICNVADD(pnv, "r14", rp->r_r14);
993 	PANICNVADD(pnv, "r15", rp->r_r15);
994 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
995 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
996 	PANICNVADD(pnv, "ds", rp->r_ds);
997 	PANICNVADD(pnv, "es", rp->r_es);
998 	PANICNVADD(pnv, "fs", rp->r_fs);
999 	PANICNVADD(pnv, "gs", rp->r_gs);
1000 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1001 	PANICNVADD(pnv, "err", rp->r_err);
1002 	PANICNVADD(pnv, "rip", rp->r_rip);
1003 	PANICNVADD(pnv, "cs", rp->r_cs);
1004 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1005 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1006 	PANICNVADD(pnv, "ss", rp->r_ss);
1007 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1008 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1009 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1010 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1011 
1012 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1013 	PANICNVADD(pnv, "task", creg.cr_task);
1014 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1015 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1016 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1017 	if (creg.cr_cr4)
1018 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1019 
1020 	PANICNVSET(pdp, pnv);
1021 }
1022 
1023 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1024 
1025 
1026 /*
1027  * Print a stack backtrace using the specified frame pointer.  We delay two
1028  * seconds before continuing, unless this is the panic traceback.
1029  * If we are in the process of panicking, we also attempt to write the
1030  * stack backtrace to a staticly assigned buffer, to allow the panic
1031  * code to find it and write it in to uncompressed pages within the
1032  * system crash dump.
1033  * Note that the frame for the starting stack pointer value is omitted because
1034  * the corresponding %eip is not known.
1035  */
1036 
1037 extern char *dump_stack_scratch;
1038 
1039 
1040 void
1041 traceback(caddr_t fpreg)
1042 {
1043 	struct frame	*fp = (struct frame *)fpreg;
1044 	struct frame	*nextfp;
1045 	uintptr_t	pc, nextpc;
1046 	ulong_t		off;
1047 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1048 	uint_t	  offset = 0;
1049 	uint_t	  next_offset = 0;
1050 	char	    stack_buffer[1024];
1051 
1052 	if (!panicstr)
1053 		printf("traceback: %%fp = %p\n", (void *)fp);
1054 
1055 	if (panicstr && !dump_stack_scratch) {
1056 		printf("Warning - stack not written to the dump buffer\n");
1057 	}
1058 
1059 	fp = (struct frame *)plat_traceback(fpreg);
1060 	if ((uintptr_t)fp < KERNELBASE)
1061 		goto out;
1062 
1063 	pc = fp->fr_savpc;
1064 	fp = (struct frame *)fp->fr_savfp;
1065 
1066 	while ((uintptr_t)fp >= KERNELBASE) {
1067 		/*
1068 		 * XX64 Until port is complete tolerate 8-byte aligned
1069 		 * frame pointers but flag with a warning so they can
1070 		 * be fixed.
1071 		 */
1072 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1073 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1074 				printf("  >> warning! 8-byte"
1075 				    " aligned %%fp = %p\n", (void *)fp);
1076 			} else {
1077 				printf(
1078 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1079 				break;
1080 			}
1081 		}
1082 
1083 		args[0] = '\0';
1084 		nextpc = (uintptr_t)fp->fr_savpc;
1085 		nextfp = (struct frame *)fp->fr_savfp;
1086 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1087 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1088 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1089 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1090 			    "%s:%s+%lx (%s) | ",
1091 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1092 		} else {
1093 			printf("%016lx %lx (%s)\n",
1094 			    (uintptr_t)fp, pc, args);
1095 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1096 			    "%lx (%s) | ", pc, args);
1097 		}
1098 
1099 		if (panicstr && dump_stack_scratch) {
1100 			next_offset = offset + strlen(stack_buffer);
1101 			if (next_offset < STACK_BUF_SIZE) {
1102 				bcopy(stack_buffer, dump_stack_scratch + offset,
1103 				    strlen(stack_buffer));
1104 				offset = next_offset;
1105 			} else {
1106 				/*
1107 				 * In attempting to save the panic stack
1108 				 * to the dumpbuf we have overflowed that area.
1109 				 * Print a warning and continue to printf the
1110 				 * stack to the msgbuf
1111 				 */
1112 				printf("Warning: stack in the dump buffer"
1113 				    " may be incomplete\n");
1114 				offset = next_offset;
1115 			}
1116 		}
1117 
1118 		pc = nextpc;
1119 		fp = nextfp;
1120 	}
1121 out:
1122 	if (!panicstr) {
1123 		printf("end of traceback\n");
1124 		DELAY(2 * MICROSEC);
1125 	} else if (dump_stack_scratch) {
1126 		dump_stack_scratch[offset] = '\0';
1127 	}
1128 }
1129 
1130 
1131 /*
1132  * Generate a stack backtrace from a saved register set.
1133  */
1134 void
1135 traceregs(struct regs *rp)
1136 {
1137 	traceback((caddr_t)rp->r_fp);
1138 }
1139 
1140 void
1141 exec_set_sp(size_t stksize)
1142 {
1143 	klwp_t *lwp = ttolwp(curthread);
1144 
1145 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1146 }
1147 
1148 hrtime_t
1149 gethrtime_waitfree(void)
1150 {
1151 	return (dtrace_gethrtime());
1152 }
1153 
1154 hrtime_t
1155 gethrtime(void)
1156 {
1157 	return (gethrtimef());
1158 }
1159 
1160 hrtime_t
1161 gethrtime_unscaled(void)
1162 {
1163 	return (gethrtimeunscaledf());
1164 }
1165 
1166 void
1167 scalehrtime(hrtime_t *hrt)
1168 {
1169 	scalehrtimef(hrt);
1170 }
1171 
1172 uint64_t
1173 unscalehrtime(hrtime_t nsecs)
1174 {
1175 	return (unscalehrtimef(nsecs));
1176 }
1177 
1178 void
1179 gethrestime(timespec_t *tp)
1180 {
1181 	gethrestimef(tp);
1182 }
1183 
1184 /*
1185  * Part of the implementation of hres_tick(); this routine is
1186  * easier in C than assembler .. called with the hres_lock held.
1187  *
1188  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1189  */
1190 
1191 #include <sys/time.h>
1192 #include <sys/machlock.h>
1193 
1194 extern int one_sec;
1195 extern int max_hres_adj;
1196 
1197 void
1198 __adj_hrestime(void)
1199 {
1200 	long long adj;
1201 
1202 	if (hrestime_adj == 0)
1203 		adj = 0;
1204 	else if (hrestime_adj > 0) {
1205 		if (hrestime_adj < max_hres_adj)
1206 			adj = hrestime_adj;
1207 		else
1208 			adj = max_hres_adj;
1209 	} else {
1210 		if (hrestime_adj < -max_hres_adj)
1211 			adj = -max_hres_adj;
1212 		else
1213 			adj = hrestime_adj;
1214 	}
1215 
1216 	timedelta -= adj;
1217 	hrestime_adj = timedelta;
1218 	hrestime.tv_nsec += adj;
1219 
1220 	while (hrestime.tv_nsec >= NANOSEC) {
1221 		one_sec++;
1222 		hrestime.tv_sec++;
1223 		hrestime.tv_nsec -= NANOSEC;
1224 	}
1225 }
1226 
1227 /*
1228  * Wrapper functions to maintain backwards compability
1229  */
1230 int
1231 xcopyin(const void *uaddr, void *kaddr, size_t count)
1232 {
1233 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1234 }
1235 
1236 int
1237 xcopyout(const void *kaddr, void *uaddr, size_t count)
1238 {
1239 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1240 }
1241