xref: /illumos-gate/usr/src/uts/intel/os/archdep.c (revision 56726c7e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved	*/
27 /*
28  * Copyright (c) 2018, Joyent, Inc.
29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
30  * Copyright 2022 Oxide Computer Company
31  */
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/vmparam.h>
36 #include <sys/systm.h>
37 #include <sys/signal.h>
38 #include <sys/stack.h>
39 #include <sys/regset.h>
40 #include <sys/privregs.h>
41 #include <sys/frame.h>
42 #include <sys/proc.h>
43 #include <sys/psw.h>
44 #include <sys/siginfo.h>
45 #include <sys/cpuvar.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/bootconf.h>
50 #include <sys/archsystm.h>
51 #include <sys/debug.h>
52 #include <sys/elf.h>
53 #include <sys/spl.h>
54 #include <sys/time.h>
55 #include <sys/atomic.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cmn_err.h>
58 #include <sys/modctl.h>
59 #include <sys/kobj.h>
60 #include <sys/panic.h>
61 #include <sys/reboot.h>
62 #include <sys/time.h>
63 #include <sys/fp.h>
64 #include <sys/x86_archext.h>
65 #include <sys/auxv.h>
66 #include <sys/auxv_386.h>
67 #include <sys/dtrace.h>
68 #include <sys/brand.h>
69 #include <sys/machbrand.h>
70 #include <sys/cmn_err.h>
71 
72 /*
73  * Map an fnsave-formatted save area into an fxsave-formatted save area.
74  *
75  * Most fields are the same width, content and semantics.  However
76  * the tag word is compressed.
77  */
78 static void
79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
80 {
81 	uint_t i, tagbits;
82 
83 	fx->fx_fcw = fn->f_fcw;
84 	fx->fx_fsw = fn->f_fsw;
85 
86 	/*
87 	 * copy element by element (because of holes)
88 	 */
89 	for (i = 0; i < 8; i++)
90 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
91 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
92 
93 	/*
94 	 * synthesize compressed tag bits
95 	 */
96 	fx->fx_fctw = 0;
97 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
98 		if ((tagbits & 3) != 3)
99 			fx->fx_fctw |= (1 << i);
100 
101 	fx->fx_fop = fn->f_fop;
102 
103 	fx->fx_rip = (uint64_t)fn->f_eip;
104 	fx->fx_rdp = (uint64_t)fn->f_dp;
105 }
106 
107 /*
108  * Map from an fxsave-format save area to an fnsave-format save area.
109  */
110 static void
111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
112 {
113 	uint_t i, top, tagbits;
114 
115 	fn->f_fcw = fx->fx_fcw;
116 	fn->__f_ign0 = 0;
117 	fn->f_fsw = fx->fx_fsw;
118 	fn->__f_ign1 = 0;
119 
120 	top = (fx->fx_fsw & FPS_TOP) >> 11;
121 
122 	/*
123 	 * copy element by element (because of holes)
124 	 */
125 	for (i = 0; i < 8; i++)
126 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
127 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
128 
129 	/*
130 	 * synthesize uncompressed tag bits
131 	 */
132 	fn->f_ftw = 0;
133 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
134 		uint_t ibit, expo;
135 		const uint16_t *fpp;
136 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
137 
138 		if ((tagbits & 1) == 0) {
139 			fn->f_ftw |= 3 << (i << 1);	/* empty */
140 			continue;
141 		}
142 
143 		/*
144 		 * (tags refer to *physical* registers)
145 		 */
146 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
147 		ibit = fpp[3] >> 15;
148 		expo = fpp[4] & 0x7fff;
149 
150 		if (ibit && expo != 0 && expo != 0x7fff)
151 			continue;			/* valid fp number */
152 
153 		if (bcmp(fpp, &zero, sizeof (zero)))
154 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
155 		else
156 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
157 	}
158 
159 	fn->f_fop = fx->fx_fop;
160 
161 	fn->__f_ign2 = 0;
162 	fn->f_eip = (uint32_t)fx->fx_rip;
163 	fn->f_cs = U32CS_SEL;
164 	fn->f_dp = (uint32_t)fx->fx_rdp;
165 	fn->f_ds = UDS_SEL;
166 	fn->__f_ign3 = 0;
167 }
168 
169 /*
170  * Map from an fpregset_t into an fxsave-format save area
171  */
172 static void
173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
174 {
175 	bcopy(fp, fx, sizeof (*fx));
176 	/*
177 	 * avoid useless #gp exceptions - mask reserved bits
178 	 */
179 	fx->fx_mxcsr &= sse_mxcsr_mask;
180 }
181 
182 /*
183  * Map from an fxsave-format save area into a fpregset_t
184  */
185 static void
186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
187 {
188 	bcopy(fx, fp, sizeof (*fx));
189 }
190 
191 #if defined(_SYSCALL32_IMPL)
192 static void
193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
194 {
195 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
196 
197 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
198 	/*
199 	 * avoid useless #gp exceptions - mask reserved bits
200 	 */
201 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
202 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
203 }
204 
205 static void
206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
207 {
208 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
209 
210 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
211 	fc->mxcsr = fx->fx_mxcsr;
212 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
213 }
214 
215 static void
216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
217 {
218 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
219 	dst->fp_reg_set.fpchip_state.status =
220 	    src->fp_reg_set.fpchip_state.status;
221 	dst->fp_reg_set.fpchip_state.xstatus =
222 	    src->fp_reg_set.fpchip_state.xstatus;
223 }
224 
225 static void
226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
227 {
228 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
229 	dst->fp_reg_set.fpchip_state.status =
230 	    src->fp_reg_set.fpchip_state.status;
231 	dst->fp_reg_set.fpchip_state.xstatus =
232 	    src->fp_reg_set.fpchip_state.xstatus;
233 }
234 #endif
235 
236 /*
237  * Set floating-point registers from a native fpregset_t.
238  */
239 void
240 setfpregs(klwp_t *lwp, fpregset_t *fp)
241 {
242 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
243 
244 	if (fpu->fpu_flags & FPU_EN) {
245 		if (!(fpu->fpu_flags & FPU_VALID)) {
246 			/*
247 			 * FPU context is still active, release the
248 			 * ownership.
249 			 */
250 			fp_free(fpu);
251 		}
252 	}
253 	/*
254 	 * Else: if we are trying to change the FPU state of a thread which
255 	 * hasn't yet initialized floating point, store the state in
256 	 * the pcb and indicate that the state is valid.  When the
257 	 * thread enables floating point, it will use this state instead
258 	 * of the default state.
259 	 */
260 
261 	switch (fp_save_mech) {
262 	case FP_FXSAVE:
263 		fpregset_to_fxsave(fp, fpu->fpu_regs.kfpu_u.kfpu_fx);
264 		fpu->fpu_regs.kfpu_xstatus =
265 		    fp->fp_reg_set.fpchip_state.xstatus;
266 		break;
267 
268 	case FP_XSAVE:
269 		fpregset_to_fxsave(fp,
270 		    &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave);
271 		fpu->fpu_regs.kfpu_xstatus =
272 		    fp->fp_reg_set.fpchip_state.xstatus;
273 		fpu->fpu_regs.kfpu_u.kfpu_xs->xs_header.xsh_xstate_bv |=
274 		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
275 		break;
276 	default:
277 		panic("Invalid fp_save_mech");
278 		/*NOTREACHED*/
279 	}
280 
281 	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
282 	fpu->fpu_flags |= FPU_VALID;
283 	PCB_SET_UPDATE_FPU(&lwp->lwp_pcb);
284 }
285 
286 /*
287  * Get floating-point registers into a native fpregset_t.
288  */
289 void
290 getfpregs(klwp_t *lwp, fpregset_t *fp)
291 {
292 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
293 
294 	kpreempt_disable();
295 	if (fpu->fpu_flags & FPU_EN) {
296 		/*
297 		 * If we have FPU hw and the thread's pcb doesn't have
298 		 * a valid FPU state then get the state from the hw.
299 		 */
300 		if (fpu_exists && ttolwp(curthread) == lwp &&
301 		    !(fpu->fpu_flags & FPU_VALID))
302 			fp_save(fpu); /* get the current FPU state */
303 	}
304 
305 	/*
306 	 * There are 3 possible cases we have to be aware of here:
307 	 *
308 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
309 	 *
310 	 * 2. FPU is not enabled, and there have been no intervening /proc
311 	 *    modifications.  Return initial FPU state.
312 	 *
313 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
314 	 *    FPU state is stored in the current LWP.
315 	 */
316 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
317 		/*
318 		 * Cases 1 and 3.
319 		 */
320 		switch (fp_save_mech) {
321 		case FP_FXSAVE:
322 			fxsave_to_fpregset(fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
323 			fp->fp_reg_set.fpchip_state.xstatus =
324 			    fpu->fpu_regs.kfpu_xstatus;
325 			break;
326 		case FP_XSAVE:
327 			fxsave_to_fpregset(
328 			    &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave, fp);
329 			fp->fp_reg_set.fpchip_state.xstatus =
330 			    fpu->fpu_regs.kfpu_xstatus;
331 			break;
332 		default:
333 			panic("Invalid fp_save_mech");
334 			/*NOTREACHED*/
335 		}
336 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
337 	} else {
338 		/*
339 		 * Case 2.
340 		 */
341 		switch (fp_save_mech) {
342 		case FP_FXSAVE:
343 		case FP_XSAVE:
344 			/*
345 			 * For now, we don't have any AVX specific field in ABI.
346 			 * If we add any in the future, we need to initial them
347 			 * as well.
348 			 */
349 			fxsave_to_fpregset(&sse_initial, fp);
350 			fp->fp_reg_set.fpchip_state.xstatus =
351 			    fpu->fpu_regs.kfpu_xstatus;
352 			break;
353 		default:
354 			panic("Invalid fp_save_mech");
355 			/*NOTREACHED*/
356 		}
357 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
358 	}
359 	kpreempt_enable();
360 }
361 
362 #if defined(_SYSCALL32_IMPL)
363 
364 /*
365  * Set floating-point registers from an fpregset32_t.
366  */
367 void
368 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
369 {
370 	fpregset_t fpregs;
371 
372 	fpregset_32ton(fp, &fpregs);
373 	setfpregs(lwp, &fpregs);
374 }
375 
376 /*
377  * Get floating-point registers into an fpregset32_t.
378  */
379 void
380 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
381 {
382 	fpregset_t fpregs;
383 
384 	getfpregs(lwp, &fpregs);
385 	fpregset_nto32(&fpregs, fp);
386 }
387 
388 #endif	/* _SYSCALL32_IMPL */
389 
390 /*
391  * Return the general registers
392  */
393 void
394 getgregs(klwp_t *lwp, gregset_t grp)
395 {
396 	struct regs *rp = lwptoregs(lwp);
397 	struct pcb *pcb = &lwp->lwp_pcb;
398 	int thisthread = lwptot(lwp) == curthread;
399 
400 	grp[REG_RDI] = rp->r_rdi;
401 	grp[REG_RSI] = rp->r_rsi;
402 	grp[REG_RDX] = rp->r_rdx;
403 	grp[REG_RCX] = rp->r_rcx;
404 	grp[REG_R8] = rp->r_r8;
405 	grp[REG_R9] = rp->r_r9;
406 	grp[REG_RAX] = rp->r_rax;
407 	grp[REG_RBX] = rp->r_rbx;
408 	grp[REG_RBP] = rp->r_rbp;
409 	grp[REG_R10] = rp->r_r10;
410 	grp[REG_R11] = rp->r_r11;
411 	grp[REG_R12] = rp->r_r12;
412 	grp[REG_R13] = rp->r_r13;
413 	grp[REG_R14] = rp->r_r14;
414 	grp[REG_R15] = rp->r_r15;
415 	grp[REG_FSBASE] = pcb->pcb_fsbase;
416 	grp[REG_GSBASE] = pcb->pcb_gsbase;
417 	if (thisthread)
418 		kpreempt_disable();
419 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
420 		grp[REG_DS] = pcb->pcb_ds;
421 		grp[REG_ES] = pcb->pcb_es;
422 		grp[REG_FS] = pcb->pcb_fs;
423 		grp[REG_GS] = pcb->pcb_gs;
424 	} else {
425 		grp[REG_DS] = rp->r_ds;
426 		grp[REG_ES] = rp->r_es;
427 		grp[REG_FS] = rp->r_fs;
428 		grp[REG_GS] = rp->r_gs;
429 	}
430 	if (thisthread)
431 		kpreempt_enable();
432 	grp[REG_TRAPNO] = rp->r_trapno;
433 	grp[REG_ERR] = rp->r_err;
434 	grp[REG_RIP] = rp->r_rip;
435 	grp[REG_CS] = rp->r_cs;
436 	grp[REG_SS] = rp->r_ss;
437 	grp[REG_RFL] = rp->r_rfl;
438 	grp[REG_RSP] = rp->r_rsp;
439 }
440 
441 #if defined(_SYSCALL32_IMPL)
442 
443 void
444 getgregs32(klwp_t *lwp, gregset32_t grp)
445 {
446 	struct regs *rp = lwptoregs(lwp);
447 	struct pcb *pcb = &lwp->lwp_pcb;
448 	int thisthread = lwptot(lwp) == curthread;
449 
450 	if (thisthread)
451 		kpreempt_disable();
452 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
453 		grp[GS] = (uint16_t)pcb->pcb_gs;
454 		grp[FS] = (uint16_t)pcb->pcb_fs;
455 		grp[DS] = (uint16_t)pcb->pcb_ds;
456 		grp[ES] = (uint16_t)pcb->pcb_es;
457 	} else {
458 		grp[GS] = (uint16_t)rp->r_gs;
459 		grp[FS] = (uint16_t)rp->r_fs;
460 		grp[DS] = (uint16_t)rp->r_ds;
461 		grp[ES] = (uint16_t)rp->r_es;
462 	}
463 	if (thisthread)
464 		kpreempt_enable();
465 	grp[EDI] = (greg32_t)rp->r_rdi;
466 	grp[ESI] = (greg32_t)rp->r_rsi;
467 	grp[EBP] = (greg32_t)rp->r_rbp;
468 	grp[ESP] = 0;
469 	grp[EBX] = (greg32_t)rp->r_rbx;
470 	grp[EDX] = (greg32_t)rp->r_rdx;
471 	grp[ECX] = (greg32_t)rp->r_rcx;
472 	grp[EAX] = (greg32_t)rp->r_rax;
473 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
474 	grp[ERR] = (greg32_t)rp->r_err;
475 	grp[EIP] = (greg32_t)rp->r_rip;
476 	grp[CS] = (uint16_t)rp->r_cs;
477 	grp[EFL] = (greg32_t)rp->r_rfl;
478 	grp[UESP] = (greg32_t)rp->r_rsp;
479 	grp[SS] = (uint16_t)rp->r_ss;
480 }
481 
482 void
483 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
484 {
485 	mcontext_t *dmc = &dst->uc_mcontext;
486 	const mcontext32_t *smc = &src->uc_mcontext;
487 
488 	bzero(dst, sizeof (*dst));
489 	dst->uc_flags = src->uc_flags;
490 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
491 
492 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
493 
494 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
495 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
496 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
497 
498 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
499 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
500 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
501 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
502 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
503 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
504 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
505 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
506 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
507 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
508 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
509 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
510 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
511 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
512 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
513 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
514 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
515 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
516 
517 	/*
518 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
519 	 * otherwise there is no guarantee that anything in fpregs is valid.
520 	 */
521 	if (src->uc_flags & UC_FPU)
522 		fpregset_32ton(&src->uc_mcontext.fpregs,
523 		    &dst->uc_mcontext.fpregs);
524 }
525 
526 #endif	/* _SYSCALL32_IMPL */
527 
528 /*
529  * Return the user-level PC.
530  * If in a system call, return the address of the syscall trap.
531  */
532 greg_t
533 getuserpc()
534 {
535 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
536 	uint32_t insn;
537 
538 	if (curthread->t_sysnum == 0)
539 		return (upc);
540 
541 	/*
542 	 * We might've gotten here from sysenter (0xf 0x34),
543 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
544 	 *
545 	 * Go peek at the binary to figure it out..
546 	 */
547 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
548 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
549 		return (upc - 2);
550 	return (upc - 7);
551 }
552 
553 /*
554  * Protect segment registers from non-user privilege levels and GDT selectors
555  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
556  * selector is non-null and not USER_CS/USER_DS, we make sure that the
557  * TI bit is set to point into the LDT and that the RPL is set to 3.
558  *
559  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
560  * also explicitly zero the top 16 bits since they may be coming from the
561  * user's address space via setcontext(2) or /proc.
562  *
563  * Note about null selector. When running on the hypervisor if we allow a
564  * process to set its %cs to null selector with RPL of 0 the hypervisor will
565  * crash the domain. If running on bare metal we would get a #gp fault and
566  * be able to kill the process and continue on. Therefore we make sure to
567  * force RPL to SEL_UPL even for null selector when setting %cs.
568  */
569 
570 #if defined(IS_CS) || defined(IS_NOT_CS)
571 #error	"IS_CS and IS_NOT_CS already defined"
572 #endif
573 
574 #define	IS_CS		1
575 #define	IS_NOT_CS	0
576 
577 /*ARGSUSED*/
578 static greg_t
579 fix_segreg(greg_t sr, int iscs, model_t datamodel)
580 {
581 	switch (sr &= 0xffff) {
582 
583 	case 0:
584 		if (iscs == IS_CS)
585 			return (0 | SEL_UPL);
586 		else
587 			return (0);
588 
589 	/*
590 	 * If lwp attempts to switch data model then force their
591 	 * code selector to be null selector.
592 	 */
593 	case U32CS_SEL:
594 		if (datamodel == DATAMODEL_NATIVE)
595 			return (0 | SEL_UPL);
596 		else
597 			return (sr);
598 
599 	case UCS_SEL:
600 		if (datamodel == DATAMODEL_ILP32)
601 			return (0 | SEL_UPL);
602 	/*FALLTHROUGH*/
603 	case UDS_SEL:
604 	case LWPFS_SEL:
605 	case LWPGS_SEL:
606 	case SEL_UPL:
607 		return (sr);
608 	default:
609 		break;
610 	}
611 
612 	/*
613 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
614 	 * default do not have an LDT, so that any attempt to use an invalid
615 	 * selector will reference the (non-existant) LDT, and cause a #gp
616 	 * fault for the process.
617 	 *
618 	 * 64-bit processes get the null gdt selector since they
619 	 * are not allowed to have a private LDT.
620 	 */
621 	if (datamodel == DATAMODEL_ILP32) {
622 		return (sr | SEL_TI_LDT | SEL_UPL);
623 	} else {
624 		if (iscs == IS_CS)
625 			return (0 | SEL_UPL);
626 		else
627 			return (0);
628 	}
629 
630 }
631 
632 /*
633  * Set general registers.
634  */
635 void
636 setgregs(klwp_t *lwp, gregset_t grp)
637 {
638 	struct regs *rp = lwptoregs(lwp);
639 	model_t	datamodel = lwp_getdatamodel(lwp);
640 
641 	struct pcb *pcb = &lwp->lwp_pcb;
642 	int thisthread = lwptot(lwp) == curthread;
643 
644 	if (datamodel == DATAMODEL_NATIVE) {
645 		if (thisthread)
646 			(void) save_syscall_args();	/* copy the args */
647 
648 		rp->r_rdi = grp[REG_RDI];
649 		rp->r_rsi = grp[REG_RSI];
650 		rp->r_rdx = grp[REG_RDX];
651 		rp->r_rcx = grp[REG_RCX];
652 		rp->r_r8 = grp[REG_R8];
653 		rp->r_r9 = grp[REG_R9];
654 		rp->r_rax = grp[REG_RAX];
655 		rp->r_rbx = grp[REG_RBX];
656 		rp->r_rbp = grp[REG_RBP];
657 		rp->r_r10 = grp[REG_R10];
658 		rp->r_r11 = grp[REG_R11];
659 		rp->r_r12 = grp[REG_R12];
660 		rp->r_r13 = grp[REG_R13];
661 		rp->r_r14 = grp[REG_R14];
662 		rp->r_r15 = grp[REG_R15];
663 		rp->r_trapno = grp[REG_TRAPNO];
664 		rp->r_err = grp[REG_ERR];
665 		rp->r_rip = grp[REG_RIP];
666 		/*
667 		 * Setting %cs or %ss to anything else is quietly but
668 		 * quite definitely forbidden!
669 		 */
670 		rp->r_cs = UCS_SEL;
671 		rp->r_ss = UDS_SEL;
672 		rp->r_rsp = grp[REG_RSP];
673 
674 		if (thisthread)
675 			kpreempt_disable();
676 
677 		pcb->pcb_ds = UDS_SEL;
678 		pcb->pcb_es = UDS_SEL;
679 
680 		/*
681 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
682 		 * values directly, but only if they're using the segment
683 		 * selectors that allow that semantic.
684 		 *
685 		 * (32-bit processes must use lwp_set_private().)
686 		 */
687 		pcb->pcb_fsbase = grp[REG_FSBASE];
688 		pcb->pcb_gsbase = grp[REG_GSBASE];
689 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
690 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
691 
692 		/*
693 		 * Ensure that we go out via update_sregs
694 		 */
695 		PCB_SET_UPDATE_SEGS(pcb);
696 		lwptot(lwp)->t_post_sys = 1;
697 		if (thisthread)
698 			kpreempt_enable();
699 #if defined(_SYSCALL32_IMPL)
700 	} else {
701 		rp->r_rdi = (uint32_t)grp[REG_RDI];
702 		rp->r_rsi = (uint32_t)grp[REG_RSI];
703 		rp->r_rdx = (uint32_t)grp[REG_RDX];
704 		rp->r_rcx = (uint32_t)grp[REG_RCX];
705 		rp->r_rax = (uint32_t)grp[REG_RAX];
706 		rp->r_rbx = (uint32_t)grp[REG_RBX];
707 		rp->r_rbp = (uint32_t)grp[REG_RBP];
708 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
709 		rp->r_err = (uint32_t)grp[REG_ERR];
710 		rp->r_rip = (uint32_t)grp[REG_RIP];
711 
712 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
713 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
714 
715 		rp->r_rsp = (uint32_t)grp[REG_RSP];
716 
717 		if (thisthread)
718 			kpreempt_disable();
719 
720 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
721 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
722 
723 		/*
724 		 * (See fsbase/gsbase commentary above)
725 		 */
726 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
727 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
728 
729 		/*
730 		 * Ensure that we go out via update_sregs
731 		 */
732 		PCB_SET_UPDATE_SEGS(pcb);
733 		lwptot(lwp)->t_post_sys = 1;
734 		if (thisthread)
735 			kpreempt_enable();
736 #endif
737 	}
738 
739 	/*
740 	 * Only certain bits of the flags register can be modified.
741 	 */
742 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
743 	    (grp[REG_RFL] & PSL_USERMASK);
744 }
745 
746 /*
747  * Determine whether eip is likely to have an interrupt frame
748  * on the stack.  We do this by comparing the address to the
749  * range of addresses spanned by several well-known routines.
750  */
751 extern void _interrupt();
752 extern void _allsyscalls();
753 extern void _cmntrap();
754 extern void fakesoftint();
755 
756 extern size_t _interrupt_size;
757 extern size_t _allsyscalls_size;
758 extern size_t _cmntrap_size;
759 extern size_t _fakesoftint_size;
760 
761 /*
762  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
763  * Returns MIN(current stack depth, pcstack_limit).
764  */
765 int
766 getpcstack(pc_t *pcstack, int pcstack_limit)
767 {
768 	struct frame *fp = (struct frame *)getfp();
769 	struct frame *nextfp, *minfp, *stacktop;
770 	int depth = 0;
771 	int on_intr;
772 	uintptr_t pc;
773 
774 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
775 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
776 	else
777 		stacktop = (struct frame *)curthread->t_stk;
778 	minfp = fp;
779 
780 	pc = ((struct regs *)fp)->r_pc;
781 
782 	while (depth < pcstack_limit) {
783 		nextfp = (struct frame *)fp->fr_savfp;
784 		pc = fp->fr_savpc;
785 		if (nextfp <= minfp || nextfp >= stacktop) {
786 			if (on_intr) {
787 				/*
788 				 * Hop from interrupt stack to thread stack.
789 				 */
790 				stacktop = (struct frame *)curthread->t_stk;
791 				minfp = (struct frame *)curthread->t_stkbase;
792 				on_intr = 0;
793 				continue;
794 			}
795 			break;
796 		}
797 		pcstack[depth++] = (pc_t)pc;
798 		fp = nextfp;
799 		minfp = fp;
800 	}
801 	return (depth);
802 }
803 
804 /*
805  * The following ELF header fields are defined as processor-specific
806  * in the V8 ABI:
807  *
808  *	e_ident[EI_DATA]	encoding of the processor-specific
809  *				data in the object file
810  *	e_machine		processor identification
811  *	e_flags			processor-specific flags associated
812  *				with the file
813  */
814 
815 /*
816  * The value of at_flags reflects a platform's cpu module support.
817  * at_flags is used to check for allowing a binary to execute and
818  * is passed as the value of the AT_FLAGS auxiliary vector.
819  */
820 int at_flags = 0;
821 
822 /*
823  * Check the processor-specific fields of an ELF header.
824  *
825  * returns 1 if the fields are valid, 0 otherwise
826  */
827 /*ARGSUSED2*/
828 int
829 elfheadcheck(
830 	unsigned char e_data,
831 	Elf32_Half e_machine,
832 	Elf32_Word e_flags)
833 {
834 	if (e_data != ELFDATA2LSB)
835 		return (0);
836 	if (e_machine == EM_AMD64)
837 		return (1);
838 	return (e_machine == EM_386);
839 }
840 
841 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
842 uint_t auxv_hwcap_include_2 = 0;	/* second word */
843 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
844 uint_t auxv_hwcap_exclude_2 = 0;	/* second word */
845 #if defined(_SYSCALL32_IMPL)
846 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
847 uint_t auxv_hwcap32_include_2 = 0;	/* ditto for 32-bit apps */
848 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
849 uint_t auxv_hwcap32_exclude_2 = 0;	/* ditto for 32-bit apps */
850 #endif
851 
852 /*
853  * Gather information about the processor and place it into auxv_hwcap
854  * so that it can be exported to the linker via the aux vector.
855  *
856  * We use this seemingly complicated mechanism so that we can ensure
857  * that /etc/system can be used to override what the system can or
858  * cannot discover for itself. Due to a lack of use, this has not
859  * been extended to the 3rd word.
860  */
861 void
862 bind_hwcap(void)
863 {
864 	uint_t cpu_hwcap_flags[3];
865 	cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags);
866 
867 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
868 	    ~auxv_hwcap_exclude;
869 	auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
870 	    ~auxv_hwcap_exclude_2;
871 	auxv_hwcap_3 = cpu_hwcap_flags[2];
872 
873 	/*
874 	 * On AMD processors, sysenter just doesn't work at all
875 	 * when the kernel is in long mode.  On IA-32e processors
876 	 * it does, but there's no real point in all the alternate
877 	 * mechanism when syscall works on both.
878 	 *
879 	 * Besides, the kernel's sysenter handler is expecting a
880 	 * 32-bit lwp ...
881 	 */
882 	auxv_hwcap &= ~AV_386_SEP;
883 
884 	if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
885 	    auxv_hwcap_exclude_2) {
886 		/*
887 		 * The below assignment is regrettably required to get lint
888 		 * to accept the validity of our format string.  The format
889 		 * string is in fact valid, but whatever intelligence in lint
890 		 * understands the cmn_err()-specific %b appears to have an
891 		 * off-by-one error:  it (mistakenly) complains about bit
892 		 * number 32 (even though this is explicitly permitted).
893 		 * Normally, one would will away such warnings with a "LINTED"
894 		 * directive, but for reasons unclear and unknown, lint
895 		 * refuses to be assuaged in this case.  Fortunately, lint
896 		 * doesn't pretend to have solved the Halting Problem --
897 		 * and as soon as the format string is programmatic, it
898 		 * knows enough to shut up.
899 		 */
900 		char *fmt = "?user ABI extensions: %b\n";
901 		cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
902 		fmt = "?user ABI extensions (word 2): %b\n";
903 		cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
904 		fmt = "?user ABI extensions (word 2): %b\n";
905 		cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3);
906 	}
907 
908 #if defined(_SYSCALL32_IMPL)
909 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
910 	    ~auxv_hwcap32_exclude;
911 	auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
912 	    ~auxv_hwcap32_exclude_2;
913 	auxv_hwcap32_3 = auxv_hwcap_3;
914 
915 	/*
916 	 * If this is an amd64 architecture machine from Intel, then
917 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
918 	 *
919 	 * Sigh.
920 	 */
921 	if (!cpuid_syscall32_insn(NULL))
922 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
923 
924 	/*
925 	 * 32-bit processes can -always- use the lahf/sahf instructions
926 	 */
927 	auxv_hwcap32 |= AV_386_AHF;
928 
929 	/*
930 	 * 32-bit processes can -never- use fsgsbase instructions.
931 	 */
932 	auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
933 
934 	if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
935 	    auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
936 		/*
937 		 * See the block comment in the cmn_err() of auxv_hwcap, above.
938 		 */
939 		char *fmt = "?32-bit user ABI extensions: %b\n";
940 		cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
941 		fmt = "?32-bit user ABI extensions (word 2): %b\n";
942 		cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
943 		fmt = "?32-bit user ABI extensions (word 3): %b\n";
944 		cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3);
945 	}
946 #endif
947 }
948 
949 /*
950  *	sync_icache() - this is called
951  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
952  *	this is a nop.
953  */
954 /* ARGSUSED */
955 void
956 sync_icache(caddr_t addr, uint_t len)
957 {
958 	/* Do nothing for now */
959 }
960 
961 /*ARGSUSED*/
962 void
963 sync_data_memory(caddr_t va, size_t len)
964 {
965 	/* Not implemented for this platform */
966 }
967 
968 int
969 __ipltospl(int ipl)
970 {
971 	return (ipltospl(ipl));
972 }
973 
974 /*
975  * The panic code invokes panic_saveregs() to record the contents of a
976  * regs structure into the specified panic_data structure for debuggers.
977  */
978 void
979 panic_saveregs(panic_data_t *pdp, struct regs *rp)
980 {
981 	panic_nv_t *pnv = PANICNVGET(pdp);
982 
983 	struct cregs	creg;
984 
985 	getcregs(&creg);
986 
987 	PANICNVADD(pnv, "rdi", rp->r_rdi);
988 	PANICNVADD(pnv, "rsi", rp->r_rsi);
989 	PANICNVADD(pnv, "rdx", rp->r_rdx);
990 	PANICNVADD(pnv, "rcx", rp->r_rcx);
991 	PANICNVADD(pnv, "r8", rp->r_r8);
992 	PANICNVADD(pnv, "r9", rp->r_r9);
993 	PANICNVADD(pnv, "rax", rp->r_rax);
994 	PANICNVADD(pnv, "rbx", rp->r_rbx);
995 	PANICNVADD(pnv, "rbp", rp->r_rbp);
996 	PANICNVADD(pnv, "r10", rp->r_r10);
997 	PANICNVADD(pnv, "r11", rp->r_r11);
998 	PANICNVADD(pnv, "r12", rp->r_r12);
999 	PANICNVADD(pnv, "r13", rp->r_r13);
1000 	PANICNVADD(pnv, "r14", rp->r_r14);
1001 	PANICNVADD(pnv, "r15", rp->r_r15);
1002 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1003 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1004 	PANICNVADD(pnv, "ds", rp->r_ds);
1005 	PANICNVADD(pnv, "es", rp->r_es);
1006 	PANICNVADD(pnv, "fs", rp->r_fs);
1007 	PANICNVADD(pnv, "gs", rp->r_gs);
1008 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1009 	PANICNVADD(pnv, "err", rp->r_err);
1010 	PANICNVADD(pnv, "rip", rp->r_rip);
1011 	PANICNVADD(pnv, "cs", rp->r_cs);
1012 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1013 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1014 	PANICNVADD(pnv, "ss", rp->r_ss);
1015 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1016 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1017 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1018 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1019 
1020 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1021 	PANICNVADD(pnv, "task", creg.cr_task);
1022 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1023 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1024 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1025 	if (creg.cr_cr4)
1026 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1027 
1028 	PANICNVSET(pdp, pnv);
1029 }
1030 
1031 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1032 
1033 
1034 /*
1035  * Print a stack backtrace using the specified frame pointer.  We delay two
1036  * seconds before continuing, unless this is the panic traceback.
1037  * If we are in the process of panicking, we also attempt to write the
1038  * stack backtrace to a staticly assigned buffer, to allow the panic
1039  * code to find it and write it in to uncompressed pages within the
1040  * system crash dump.
1041  * Note that the frame for the starting stack pointer value is omitted because
1042  * the corresponding %eip is not known.
1043  */
1044 
1045 extern char *dump_stack_scratch;
1046 
1047 
1048 void
1049 traceback(caddr_t fpreg)
1050 {
1051 	struct frame	*fp = (struct frame *)fpreg;
1052 	struct frame	*nextfp;
1053 	uintptr_t	pc, nextpc;
1054 	ulong_t		off;
1055 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1056 	uint_t	  offset = 0;
1057 	uint_t	  next_offset = 0;
1058 	char	    stack_buffer[1024];
1059 
1060 	if (!panicstr)
1061 		printf("traceback: %%fp = %p\n", (void *)fp);
1062 
1063 	if (panicstr && !dump_stack_scratch) {
1064 		printf("Warning - stack not written to the dump buffer\n");
1065 	}
1066 
1067 	fp = (struct frame *)plat_traceback(fpreg);
1068 	if ((uintptr_t)fp < KERNELBASE)
1069 		goto out;
1070 
1071 	pc = fp->fr_savpc;
1072 	fp = (struct frame *)fp->fr_savfp;
1073 
1074 	while ((uintptr_t)fp >= KERNELBASE) {
1075 		/*
1076 		 * XX64 Until port is complete tolerate 8-byte aligned
1077 		 * frame pointers but flag with a warning so they can
1078 		 * be fixed.
1079 		 */
1080 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1081 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1082 				printf("  >> warning! 8-byte"
1083 				    " aligned %%fp = %p\n", (void *)fp);
1084 			} else {
1085 				printf(
1086 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1087 				break;
1088 			}
1089 		}
1090 
1091 		args[0] = '\0';
1092 		nextpc = (uintptr_t)fp->fr_savpc;
1093 		nextfp = (struct frame *)fp->fr_savfp;
1094 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1095 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1096 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1097 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1098 			    "%s:%s+%lx (%s) | ",
1099 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1100 		} else {
1101 			printf("%016lx %lx (%s)\n",
1102 			    (uintptr_t)fp, pc, args);
1103 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1104 			    "%lx (%s) | ", pc, args);
1105 		}
1106 
1107 		if (panicstr && dump_stack_scratch) {
1108 			next_offset = offset + strlen(stack_buffer);
1109 			if (next_offset < STACK_BUF_SIZE) {
1110 				bcopy(stack_buffer, dump_stack_scratch + offset,
1111 				    strlen(stack_buffer));
1112 				offset = next_offset;
1113 			} else {
1114 				/*
1115 				 * In attempting to save the panic stack
1116 				 * to the dumpbuf we have overflowed that area.
1117 				 * Print a warning and continue to printf the
1118 				 * stack to the msgbuf
1119 				 */
1120 				printf("Warning: stack in the dump buffer"
1121 				    " may be incomplete\n");
1122 				offset = next_offset;
1123 			}
1124 		}
1125 
1126 		pc = nextpc;
1127 		fp = nextfp;
1128 	}
1129 out:
1130 	if (!panicstr) {
1131 		printf("end of traceback\n");
1132 		DELAY(2 * MICROSEC);
1133 	} else if (dump_stack_scratch) {
1134 		dump_stack_scratch[offset] = '\0';
1135 	}
1136 }
1137 
1138 
1139 /*
1140  * Generate a stack backtrace from a saved register set.
1141  */
1142 void
1143 traceregs(struct regs *rp)
1144 {
1145 	traceback((caddr_t)rp->r_fp);
1146 }
1147 
1148 void
1149 exec_set_sp(size_t stksize)
1150 {
1151 	klwp_t *lwp = ttolwp(curthread);
1152 
1153 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1154 }
1155 
1156 hrtime_t
1157 gethrtime_waitfree(void)
1158 {
1159 	return (dtrace_gethrtime());
1160 }
1161 
1162 hrtime_t
1163 gethrtime(void)
1164 {
1165 	return (gethrtimef());
1166 }
1167 
1168 hrtime_t
1169 gethrtime_unscaled(void)
1170 {
1171 	return (gethrtimeunscaledf());
1172 }
1173 
1174 void
1175 scalehrtime(hrtime_t *hrt)
1176 {
1177 	scalehrtimef(hrt);
1178 }
1179 
1180 uint64_t
1181 unscalehrtime(hrtime_t nsecs)
1182 {
1183 	return (unscalehrtimef(nsecs));
1184 }
1185 
1186 void
1187 gethrestime(timespec_t *tp)
1188 {
1189 	gethrestimef(tp);
1190 }
1191 
1192 /*
1193  * Part of the implementation of hres_tick(); this routine is
1194  * easier in C than assembler .. called with the hres_lock held.
1195  *
1196  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1197  */
1198 
1199 #include <sys/time.h>
1200 #include <sys/machlock.h>
1201 
1202 extern int one_sec;
1203 extern int max_hres_adj;
1204 
1205 void
1206 __adj_hrestime(void)
1207 {
1208 	long long adj;
1209 
1210 	if (hrestime_adj == 0)
1211 		adj = 0;
1212 	else if (hrestime_adj > 0) {
1213 		if (hrestime_adj < max_hres_adj)
1214 			adj = hrestime_adj;
1215 		else
1216 			adj = max_hres_adj;
1217 	} else {
1218 		if (hrestime_adj < -max_hres_adj)
1219 			adj = -max_hres_adj;
1220 		else
1221 			adj = hrestime_adj;
1222 	}
1223 
1224 	timedelta -= adj;
1225 	hrestime_adj = timedelta;
1226 	hrestime.tv_nsec += adj;
1227 
1228 	while (hrestime.tv_nsec >= NANOSEC) {
1229 		one_sec++;
1230 		hrestime.tv_sec++;
1231 		hrestime.tv_nsec -= NANOSEC;
1232 	}
1233 }
1234 
1235 /*
1236  * Wrapper functions to maintain backwards compability
1237  */
1238 int
1239 xcopyin(const void *uaddr, void *kaddr, size_t count)
1240 {
1241 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1242 }
1243 
1244 int
1245 xcopyout(const void *kaddr, void *uaddr, size_t count)
1246 {
1247 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1248 }
1249