xref: /illumos-gate/usr/src/uts/intel/io/vmm/intel/vmx.c (revision 83b49c54)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 /*
32  * This file and its contents are supplied under the terms of the
33  * Common Development and Distribution License ("CDDL"), version 1.0.
34  * You may only use this file in accordance with the terms of version
35  * 1.0 of the CDDL.
36  *
37  * A full copy of the text of the CDDL should have accompanied this
38  * source.  A copy of the CDDL is also available via the Internet at
39  * http://www.illumos.org/license/CDDL.
40  *
41  * Copyright 2015 Pluribus Networks Inc.
42  * Copyright 2018 Joyent, Inc.
43  * Copyright 2022 Oxide Computer Company
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/pcpu.h>
54 #include <sys/proc.h>
55 #include <sys/sysctl.h>
56 
57 #include <sys/x86_archext.h>
58 #include <sys/smp_impldefs.h>
59 #include <sys/smt.h>
60 #include <sys/hma.h>
61 #include <sys/trap.h>
62 #include <sys/archsystm.h>
63 
64 #include <machine/psl.h>
65 #include <machine/cpufunc.h>
66 #include <machine/md_var.h>
67 #include <machine/reg.h>
68 #include <machine/segments.h>
69 #include <machine/specialreg.h>
70 #include <machine/vmparam.h>
71 #include <sys/vmm_vm.h>
72 #include <sys/vmm_kernel.h>
73 
74 #include <machine/vmm.h>
75 #include <machine/vmm_dev.h>
76 #include <sys/vmm_instruction_emul.h>
77 #include "vmm_lapic.h"
78 #include "vmm_host.h"
79 #include "vmm_ioport.h"
80 #include "vmm_ktr.h"
81 #include "vmm_stat.h"
82 #include "vatpic.h"
83 #include "vlapic.h"
84 #include "vlapic_priv.h"
85 
86 #include "vmcs.h"
87 #include "vmx.h"
88 #include "vmx_msr.h"
89 #include "x86.h"
90 #include "vmx_controls.h"
91 
92 #define	PINBASED_CTLS_ONE_SETTING					\
93 	(PINBASED_EXTINT_EXITING	|				\
94 	PINBASED_NMI_EXITING		|				\
95 	PINBASED_VIRTUAL_NMI)
96 #define	PINBASED_CTLS_ZERO_SETTING	0
97 
98 #define	PROCBASED_CTLS_WINDOW_SETTING					\
99 	(PROCBASED_INT_WINDOW_EXITING	|				\
100 	PROCBASED_NMI_WINDOW_EXITING)
101 
102 /* We consider TSC offset a necessity for unsynched TSC handling */
103 #define	PROCBASED_CTLS_ONE_SETTING					\
104 	(PROCBASED_SECONDARY_CONTROLS	|				\
105 	PROCBASED_TSC_OFFSET		|				\
106 	PROCBASED_MWAIT_EXITING		|				\
107 	PROCBASED_MONITOR_EXITING	|				\
108 	PROCBASED_IO_EXITING		|				\
109 	PROCBASED_MSR_BITMAPS		|				\
110 	PROCBASED_CTLS_WINDOW_SETTING	|				\
111 	PROCBASED_CR8_LOAD_EXITING	|				\
112 	PROCBASED_CR8_STORE_EXITING)
113 
114 #define	PROCBASED_CTLS_ZERO_SETTING	\
115 	(PROCBASED_CR3_LOAD_EXITING |	\
116 	PROCBASED_CR3_STORE_EXITING |	\
117 	PROCBASED_IO_BITMAPS)
118 
119 /*
120  * EPT and Unrestricted Guest are considered necessities.  The latter is not a
121  * requirement on FreeBSD, where grub2-bhyve is used to load guests directly
122  * without a bootrom starting in real mode.
123  */
124 #define	PROCBASED_CTLS2_ONE_SETTING		\
125 	(PROCBASED2_ENABLE_EPT |		\
126 	PROCBASED2_UNRESTRICTED_GUEST)
127 #define	PROCBASED_CTLS2_ZERO_SETTING	0
128 
129 #define	VM_EXIT_CTLS_ONE_SETTING					\
130 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
131 	VM_EXIT_HOST_LMA			|			\
132 	VM_EXIT_LOAD_PAT			|			\
133 	VM_EXIT_SAVE_EFER			|			\
134 	VM_EXIT_LOAD_EFER			|			\
135 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
136 
137 #define	VM_EXIT_CTLS_ZERO_SETTING	0
138 
139 #define	VM_ENTRY_CTLS_ONE_SETTING					\
140 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
141 	VM_ENTRY_LOAD_EFER)
142 
143 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
144 	(VM_ENTRY_INTO_SMM			|			\
145 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
146 
147 /*
148  * Cover the EPT capabilities used by bhyve at present:
149  * - 4-level page walks
150  * - write-back memory type
151  * - INVEPT operations (all types)
152  * - INVVPID operations (single-context only)
153  */
154 #define	EPT_CAPS_REQUIRED			\
155 	(IA32_VMX_EPT_VPID_PWL4 |		\
156 	IA32_VMX_EPT_VPID_TYPE_WB |		\
157 	IA32_VMX_EPT_VPID_INVEPT |		\
158 	IA32_VMX_EPT_VPID_INVEPT_SINGLE |	\
159 	IA32_VMX_EPT_VPID_INVEPT_ALL |		\
160 	IA32_VMX_EPT_VPID_INVVPID |		\
161 	IA32_VMX_EPT_VPID_INVVPID_SINGLE)
162 
163 #define	HANDLED		1
164 #define	UNHANDLED	0
165 
166 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
167 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
168 
169 SYSCTL_DECL(_hw_vmm);
170 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
171     NULL);
172 
173 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
174 static uint32_t exit_ctls, entry_ctls;
175 
176 static uint64_t cr0_ones_mask, cr0_zeros_mask;
177 
178 static uint64_t cr4_ones_mask, cr4_zeros_mask;
179 
180 static int vmx_initialized;
181 
182 /* Do not flush RSB upon vmexit */
183 static int no_flush_rsb;
184 
185 /*
186  * Optional capabilities
187  */
188 
189 /* HLT triggers a VM-exit */
190 static int cap_halt_exit;
191 
192 /* PAUSE triggers a VM-exit */
193 static int cap_pause_exit;
194 
195 /* Monitor trap flag */
196 static int cap_monitor_trap;
197 
198 /* Guests are allowed to use INVPCID */
199 static int cap_invpcid;
200 
201 /* Extra capabilities (VMX_CAP_*) beyond the minimum */
202 static enum vmx_caps vmx_capabilities;
203 
204 /* APICv posted interrupt vector */
205 static int pirvec = -1;
206 
207 static uint_t vpid_alloc_failed;
208 
209 int guest_l1d_flush;
210 int guest_l1d_flush_sw;
211 
212 /* MSR save region is composed of an array of 'struct msr_entry' */
213 struct msr_entry {
214 	uint32_t	index;
215 	uint32_t	reserved;
216 	uint64_t	val;
217 };
218 
219 static struct msr_entry msr_load_list[1] __aligned(16);
220 
221 /*
222  * The definitions of SDT probes for VMX.
223  */
224 
225 /* BEGIN CSTYLED */
226 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
227     "struct vmx *", "int", "struct vm_exit *");
228 
229 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
230     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
231 
232 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
233     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
234 
235 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
236     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
237 
238 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
239     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
240 
241 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
242     "struct vmx *", "int", "struct vm_exit *");
243 
244 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
245     "struct vmx *", "int", "struct vm_exit *");
246 
247 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
248     "struct vmx *", "int", "struct vm_exit *");
249 
250 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
251     "struct vmx *", "int", "struct vm_exit *");
252 
253 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
254     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
255 
256 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
257     "struct vmx *", "int", "struct vm_exit *");
258 
259 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
260     "struct vmx *", "int", "struct vm_exit *");
261 
262 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
263     "struct vmx *", "int", "struct vm_exit *");
264 
265 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
266     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
267 
268 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
269     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
270 
271 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
272     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
273 
274 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
275     "struct vmx *", "int", "struct vm_exit *");
276 
277 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
278     "struct vmx *", "int", "struct vm_exit *");
279 
280 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
281     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
282 
283 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
284     "struct vmx *", "int", "struct vm_exit *");
285 
286 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
287     "struct vmx *", "int", "struct vm_exit *");
288 
289 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
290     "struct vmx *", "int", "struct vm_exit *");
291 
292 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
293     "struct vmx *", "int", "struct vm_exit *");
294 
295 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
296     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
297 
298 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
299     "struct vmx *", "int", "struct vm_exit *", "int");
300 /* END CSTYLED */
301 
302 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
303 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
304 static void vmx_apply_tsc_adjust(struct vmx *, int);
305 static void vmx_apicv_sync_tmr(struct vlapic *vlapic);
306 static void vmx_tpr_shadow_enter(struct vlapic *vlapic);
307 static void vmx_tpr_shadow_exit(struct vlapic *vlapic);
308 
309 static void
310 vmx_allow_x2apic_msrs(struct vmx *vmx, int vcpuid)
311 {
312 	/*
313 	 * Allow readonly access to the following x2APIC MSRs from the guest.
314 	 */
315 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ID);
316 	guest_msr_ro(vmx, vcpuid, MSR_APIC_VERSION);
317 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LDR);
318 	guest_msr_ro(vmx, vcpuid, MSR_APIC_SVR);
319 
320 	for (uint_t i = 0; i < 8; i++) {
321 		guest_msr_ro(vmx, vcpuid, MSR_APIC_ISR0 + i);
322 		guest_msr_ro(vmx, vcpuid, MSR_APIC_TMR0 + i);
323 		guest_msr_ro(vmx, vcpuid, MSR_APIC_IRR0 + i);
324 	}
325 
326 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ESR);
327 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_TIMER);
328 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_THERMAL);
329 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_PCINT);
330 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT0);
331 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT1);
332 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_ERROR);
333 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR_TIMER);
334 	guest_msr_ro(vmx, vcpuid, MSR_APIC_DCR_TIMER);
335 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR);
336 
337 	/*
338 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
339 	 *
340 	 * These registers get special treatment described in the section
341 	 * "Virtualizing MSR-Based APIC Accesses".
342 	 */
343 	guest_msr_rw(vmx, vcpuid, MSR_APIC_TPR);
344 	guest_msr_rw(vmx, vcpuid, MSR_APIC_EOI);
345 	guest_msr_rw(vmx, vcpuid, MSR_APIC_SELF_IPI);
346 }
347 
348 static ulong_t
349 vmx_fix_cr0(ulong_t cr0)
350 {
351 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
352 }
353 
354 /*
355  * Given a live (VMCS-active) cr0 value, and its shadow counterpart, calculate
356  * the value observable from the guest.
357  */
358 static ulong_t
359 vmx_unshadow_cr0(uint64_t cr0, uint64_t shadow)
360 {
361 	return ((cr0 & ~cr0_ones_mask) |
362 	    (shadow & (cr0_zeros_mask | cr0_ones_mask)));
363 }
364 
365 static ulong_t
366 vmx_fix_cr4(ulong_t cr4)
367 {
368 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
369 }
370 
371 /*
372  * Given a live (VMCS-active) cr4 value, and its shadow counterpart, calculate
373  * the value observable from the guest.
374  */
375 static ulong_t
376 vmx_unshadow_cr4(uint64_t cr4, uint64_t shadow)
377 {
378 	return ((cr4 & ~cr4_ones_mask) |
379 	    (shadow & (cr4_zeros_mask | cr4_ones_mask)));
380 }
381 
382 static void
383 vpid_free(int vpid)
384 {
385 	if (vpid < 0 || vpid > 0xffff)
386 		panic("vpid_free: invalid vpid %d", vpid);
387 
388 	/*
389 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
390 	 * the unit number allocator.
391 	 */
392 
393 	if (vpid > VM_MAXCPU)
394 		hma_vmx_vpid_free((uint16_t)vpid);
395 }
396 
397 static void
398 vpid_alloc(uint16_t *vpid, int num)
399 {
400 	int i, x;
401 
402 	if (num <= 0 || num > VM_MAXCPU)
403 		panic("invalid number of vpids requested: %d", num);
404 
405 	/*
406 	 * If the "enable vpid" execution control is not enabled then the
407 	 * VPID is required to be 0 for all vcpus.
408 	 */
409 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
410 		for (i = 0; i < num; i++)
411 			vpid[i] = 0;
412 		return;
413 	}
414 
415 	/*
416 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
417 	 */
418 	for (i = 0; i < num; i++) {
419 		uint16_t tmp;
420 
421 		tmp = hma_vmx_vpid_alloc();
422 		x = (tmp == 0) ? -1 : tmp;
423 
424 		if (x == -1)
425 			break;
426 		else
427 			vpid[i] = x;
428 	}
429 
430 	if (i < num) {
431 		atomic_add_int(&vpid_alloc_failed, 1);
432 
433 		/*
434 		 * If the unit number allocator does not have enough unique
435 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
436 		 *
437 		 * These VPIDs are not be unique across VMs but this does not
438 		 * affect correctness because the combined mappings are also
439 		 * tagged with the EP4TA which is unique for each VM.
440 		 *
441 		 * It is still sub-optimal because the invvpid will invalidate
442 		 * combined mappings for a particular VPID across all EP4TAs.
443 		 */
444 		while (i-- > 0)
445 			vpid_free(vpid[i]);
446 
447 		for (i = 0; i < num; i++)
448 			vpid[i] = i + 1;
449 	}
450 }
451 
452 static int
453 vmx_cleanup(void)
454 {
455 	/* This is taken care of by the hma registration */
456 	return (0);
457 }
458 
459 static void
460 vmx_restore(void)
461 {
462 	/* No-op on illumos */
463 }
464 
465 static int
466 vmx_init(void)
467 {
468 	int error;
469 	uint64_t fixed0, fixed1;
470 	uint32_t tmp;
471 	enum vmx_caps avail_caps = VMX_CAP_NONE;
472 
473 	/* Check support for primary processor-based VM-execution controls */
474 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
475 	    MSR_VMX_TRUE_PROCBASED_CTLS,
476 	    PROCBASED_CTLS_ONE_SETTING,
477 	    PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
478 	if (error) {
479 		printf("vmx_init: processor does not support desired primary "
480 		    "processor-based controls\n");
481 		return (error);
482 	}
483 
484 	/* Clear the processor-based ctl bits that are set on demand */
485 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
486 
487 	/* Check support for secondary processor-based VM-execution controls */
488 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
489 	    MSR_VMX_PROCBASED_CTLS2,
490 	    PROCBASED_CTLS2_ONE_SETTING,
491 	    PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
492 	if (error) {
493 		printf("vmx_init: processor does not support desired secondary "
494 		    "processor-based controls\n");
495 		return (error);
496 	}
497 
498 	/* Check support for VPID */
499 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
500 	    MSR_VMX_PROCBASED_CTLS2,
501 	    PROCBASED2_ENABLE_VPID,
502 	    0, &tmp);
503 	if (error == 0)
504 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
505 
506 	/* Check support for pin-based VM-execution controls */
507 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
508 	    MSR_VMX_TRUE_PINBASED_CTLS,
509 	    PINBASED_CTLS_ONE_SETTING,
510 	    PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
511 	if (error) {
512 		printf("vmx_init: processor does not support desired "
513 		    "pin-based controls\n");
514 		return (error);
515 	}
516 
517 	/* Check support for VM-exit controls */
518 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
519 	    VM_EXIT_CTLS_ONE_SETTING,
520 	    VM_EXIT_CTLS_ZERO_SETTING,
521 	    &exit_ctls);
522 	if (error) {
523 		printf("vmx_init: processor does not support desired "
524 		    "exit controls\n");
525 		return (error);
526 	}
527 
528 	/* Check support for VM-entry controls */
529 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
530 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
531 	    &entry_ctls);
532 	if (error) {
533 		printf("vmx_init: processor does not support desired "
534 		    "entry controls\n");
535 		return (error);
536 	}
537 
538 	/*
539 	 * Check support for optional features by testing them
540 	 * as individual bits
541 	 */
542 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
543 	    MSR_VMX_TRUE_PROCBASED_CTLS,
544 	    PROCBASED_HLT_EXITING, 0,
545 	    &tmp) == 0);
546 
547 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
548 	    MSR_VMX_PROCBASED_CTLS,
549 	    PROCBASED_MTF, 0,
550 	    &tmp) == 0);
551 
552 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
553 	    MSR_VMX_TRUE_PROCBASED_CTLS,
554 	    PROCBASED_PAUSE_EXITING, 0,
555 	    &tmp) == 0);
556 
557 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
558 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
559 	    &tmp) == 0);
560 
561 	/*
562 	 * Check for APIC virtualization capabilities:
563 	 * - TPR shadowing
564 	 * - Full APICv (with or without x2APIC support)
565 	 * - Posted interrupt handling
566 	 */
567 	if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS,
568 	    PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0) {
569 		avail_caps |= VMX_CAP_TPR_SHADOW;
570 
571 		const uint32_t apicv_bits =
572 		    PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
573 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
574 		    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
575 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY;
576 		if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
577 		    MSR_VMX_PROCBASED_CTLS2, apicv_bits, 0, &tmp) == 0) {
578 			avail_caps |= VMX_CAP_APICV;
579 
580 			/*
581 			 * It may make sense in the future to differentiate
582 			 * hardware (or software) configurations with APICv but
583 			 * no support for accelerating x2APIC mode.
584 			 */
585 			avail_caps |= VMX_CAP_APICV_X2APIC;
586 
587 			error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
588 			    MSR_VMX_TRUE_PINBASED_CTLS,
589 			    PINBASED_POSTED_INTERRUPT, 0, &tmp);
590 			if (error == 0) {
591 				/*
592 				 * If the PSM-provided interfaces for requesting
593 				 * and using a PIR IPI vector are present, use
594 				 * them for posted interrupts.
595 				 */
596 				if (psm_get_pir_ipivect != NULL &&
597 				    psm_send_pir_ipi != NULL) {
598 					pirvec = psm_get_pir_ipivect();
599 					avail_caps |= VMX_CAP_APICV_PIR;
600 				}
601 			}
602 		}
603 	}
604 
605 	/*
606 	 * Check for necessary EPT capabilities
607 	 *
608 	 * TODO: Properly handle when IA32_VMX_EPT_VPID_HW_AD is missing and the
609 	 * hypervisor intends to utilize dirty page tracking.
610 	 */
611 	uint64_t ept_caps = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
612 	if ((ept_caps & EPT_CAPS_REQUIRED) != EPT_CAPS_REQUIRED) {
613 		cmn_err(CE_WARN, "!Inadequate EPT capabilities: %lx", ept_caps);
614 		return (EINVAL);
615 	}
616 
617 #ifdef __FreeBSD__
618 	guest_l1d_flush = (cpu_ia32_arch_caps &
619 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
620 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
621 
622 	/*
623 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
624 	 * available.  Otherwise fall back to the software flush
625 	 * method which loads enough data from the kernel text to
626 	 * flush existing L1D content, both on VMX entry and on NMI
627 	 * return.
628 	 */
629 	if (guest_l1d_flush) {
630 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
631 			guest_l1d_flush_sw = 1;
632 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
633 			    &guest_l1d_flush_sw);
634 		}
635 		if (guest_l1d_flush_sw) {
636 			if (nmi_flush_l1d_sw <= 1)
637 				nmi_flush_l1d_sw = 1;
638 		} else {
639 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
640 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
641 		}
642 	}
643 #else
644 	/* L1D flushing is taken care of by smt_acquire() and friends */
645 	guest_l1d_flush = 0;
646 #endif /* __FreeBSD__ */
647 
648 	/*
649 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
650 	 */
651 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
652 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
653 	cr0_ones_mask = fixed0 & fixed1;
654 	cr0_zeros_mask = ~fixed0 & ~fixed1;
655 
656 	/*
657 	 * Since Unrestricted Guest was already verified present, CR0_PE and
658 	 * CR0_PG are allowed to be set to zero in VMX non-root operation
659 	 */
660 	cr0_ones_mask &= ~(CR0_PG | CR0_PE);
661 
662 	/*
663 	 * Do not allow the guest to set CR0_NW or CR0_CD.
664 	 */
665 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
666 
667 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
668 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
669 	cr4_ones_mask = fixed0 & fixed1;
670 	cr4_zeros_mask = ~fixed0 & ~fixed1;
671 
672 	vmx_msr_init();
673 
674 	vmx_capabilities = avail_caps;
675 	vmx_initialized = 1;
676 
677 	return (0);
678 }
679 
680 static void
681 vmx_trigger_hostintr(int vector)
682 {
683 	VERIFY(vector >= 32 && vector <= 255);
684 	vmx_call_isr(vector - 32);
685 }
686 
687 static void *
688 vmx_vminit(struct vm *vm)
689 {
690 	uint16_t vpid[VM_MAXCPU];
691 	int i, error, datasel;
692 	struct vmx *vmx;
693 	uint32_t exc_bitmap;
694 	uint16_t maxcpus;
695 	uint32_t proc_ctls, proc2_ctls, pin_ctls;
696 	uint64_t apic_access_pa = UINT64_MAX;
697 
698 	vmx = malloc(sizeof (struct vmx), M_VMX, M_WAITOK | M_ZERO);
699 	if ((uintptr_t)vmx & PAGE_MASK) {
700 		panic("malloc of struct vmx not aligned on %d byte boundary",
701 		    PAGE_SIZE);
702 	}
703 	vmx->vm = vm;
704 
705 	vmx->eptp = vmspace_table_root(vm_get_vmspace(vm));
706 
707 	/*
708 	 * Clean up EP4TA-tagged guest-physical and combined mappings
709 	 *
710 	 * VMX transitions are not required to invalidate any guest physical
711 	 * mappings. So, it may be possible for stale guest physical mappings
712 	 * to be present in the processor TLBs.
713 	 *
714 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
715 	 */
716 	hma_vmx_invept_allcpus((uintptr_t)vmx->eptp);
717 
718 	vmx_msr_bitmap_initialize(vmx);
719 
720 	vpid_alloc(vpid, VM_MAXCPU);
721 
722 	/* Grab the established defaults */
723 	proc_ctls = procbased_ctls;
724 	proc2_ctls = procbased_ctls2;
725 	pin_ctls = pinbased_ctls;
726 	/* For now, default to the available capabilities */
727 	vmx->vmx_caps = vmx_capabilities;
728 
729 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
730 		proc_ctls |= PROCBASED_USE_TPR_SHADOW;
731 		proc_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
732 		proc_ctls &= ~PROCBASED_CR8_STORE_EXITING;
733 	}
734 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
735 		ASSERT(vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW));
736 
737 		proc2_ctls |= (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
738 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
739 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
740 
741 		/*
742 		 * Allocate a page of memory to back the APIC access address for
743 		 * when APICv features are in use.  Guest MMIO accesses should
744 		 * never actually reach this page, but rather be intercepted.
745 		 */
746 		vmx->apic_access_page = kmem_zalloc(PAGESIZE, KM_SLEEP);
747 		VERIFY3U((uintptr_t)vmx->apic_access_page & PAGEOFFSET, ==, 0);
748 		apic_access_pa = vtophys(vmx->apic_access_page);
749 
750 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
751 		    apic_access_pa);
752 		/* XXX this should really return an error to the caller */
753 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
754 	}
755 	if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
756 		ASSERT(vmx_cap_en(vmx, VMX_CAP_APICV));
757 
758 		pin_ctls |= PINBASED_POSTED_INTERRUPT;
759 	}
760 
761 	maxcpus = vm_get_maxcpus(vm);
762 	datasel = vmm_get_host_datasel();
763 	for (i = 0; i < maxcpus; i++) {
764 		/*
765 		 * Cache physical address lookups for various components which
766 		 * may be required inside the critical_enter() section implied
767 		 * by VMPTRLD() below.
768 		 */
769 		vm_paddr_t msr_bitmap_pa = vtophys(vmx->msr_bitmap[i]);
770 		vm_paddr_t apic_page_pa = vtophys(&vmx->apic_page[i]);
771 		vm_paddr_t pir_desc_pa = vtophys(&vmx->pir_desc[i]);
772 
773 		vmx->vmcs_pa[i] = (uintptr_t)vtophys(&vmx->vmcs[i]);
774 		vmcs_initialize(&vmx->vmcs[i], vmx->vmcs_pa[i]);
775 
776 		vmx_msr_guest_init(vmx, i);
777 
778 		vmcs_load(vmx->vmcs_pa[i]);
779 
780 		vmcs_write(VMCS_HOST_IA32_PAT, vmm_get_host_pat());
781 		vmcs_write(VMCS_HOST_IA32_EFER, vmm_get_host_efer());
782 
783 		/* Load the control registers */
784 		vmcs_write(VMCS_HOST_CR0, vmm_get_host_cr0());
785 		vmcs_write(VMCS_HOST_CR4, vmm_get_host_cr4() | CR4_VMXE);
786 
787 		/* Load the segment selectors */
788 		vmcs_write(VMCS_HOST_CS_SELECTOR, vmm_get_host_codesel());
789 
790 		vmcs_write(VMCS_HOST_ES_SELECTOR, datasel);
791 		vmcs_write(VMCS_HOST_SS_SELECTOR, datasel);
792 		vmcs_write(VMCS_HOST_DS_SELECTOR, datasel);
793 
794 		vmcs_write(VMCS_HOST_FS_SELECTOR, vmm_get_host_fssel());
795 		vmcs_write(VMCS_HOST_GS_SELECTOR, vmm_get_host_gssel());
796 		vmcs_write(VMCS_HOST_TR_SELECTOR, vmm_get_host_tsssel());
797 
798 		/*
799 		 * Configure host sysenter MSRs to be restored on VM exit.
800 		 * The thread-specific MSR_INTC_SEP_ESP value is loaded in
801 		 * vmx_run.
802 		 */
803 		vmcs_write(VMCS_HOST_IA32_SYSENTER_CS, KCS_SEL);
804 		vmcs_write(VMCS_HOST_IA32_SYSENTER_EIP,
805 		    rdmsr(MSR_SYSENTER_EIP_MSR));
806 
807 		/* instruction pointer */
808 		if (no_flush_rsb) {
809 			vmcs_write(VMCS_HOST_RIP, (uint64_t)vmx_exit_guest);
810 		} else {
811 			vmcs_write(VMCS_HOST_RIP,
812 			    (uint64_t)vmx_exit_guest_flush_rsb);
813 		}
814 
815 		/* link pointer */
816 		vmcs_write(VMCS_LINK_POINTER, ~0);
817 
818 		vmcs_write(VMCS_EPTP, vmx->eptp);
819 		vmcs_write(VMCS_PIN_BASED_CTLS, pin_ctls);
820 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
821 		vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc2_ctls);
822 		vmcs_write(VMCS_EXIT_CTLS, exit_ctls);
823 		vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
824 		vmcs_write(VMCS_MSR_BITMAP, msr_bitmap_pa);
825 		vmcs_write(VMCS_VPID, vpid[i]);
826 
827 		if (guest_l1d_flush && !guest_l1d_flush_sw) {
828 			vmcs_write(VMCS_ENTRY_MSR_LOAD,
829 			    vtophys(&msr_load_list[0]));
830 			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
831 			    nitems(msr_load_list));
832 			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
833 			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
834 		}
835 
836 		/* exception bitmap */
837 		if (vcpu_trace_exceptions(vm, i))
838 			exc_bitmap = 0xffffffff;
839 		else
840 			exc_bitmap = 1 << IDT_MC;
841 		vmcs_write(VMCS_EXCEPTION_BITMAP, exc_bitmap);
842 
843 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
844 		vmcs_write(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
845 
846 		if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
847 			vmcs_write(VMCS_VIRTUAL_APIC, apic_page_pa);
848 		}
849 
850 		if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
851 			vmcs_write(VMCS_APIC_ACCESS, apic_access_pa);
852 			vmcs_write(VMCS_EOI_EXIT0, 0);
853 			vmcs_write(VMCS_EOI_EXIT1, 0);
854 			vmcs_write(VMCS_EOI_EXIT2, 0);
855 			vmcs_write(VMCS_EOI_EXIT3, 0);
856 		}
857 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
858 			vmcs_write(VMCS_PIR_VECTOR, pirvec);
859 			vmcs_write(VMCS_PIR_DESC, pir_desc_pa);
860 		}
861 
862 		/*
863 		 * Set up the CR0/4 masks and configure the read shadow state
864 		 * to the power-on register value from the Intel Sys Arch.
865 		 *  CR0 - 0x60000010
866 		 *  CR4 - 0
867 		 */
868 		vmcs_write(VMCS_CR0_MASK, cr0_ones_mask | cr0_zeros_mask);
869 		vmcs_write(VMCS_CR0_SHADOW, 0x60000010);
870 		vmcs_write(VMCS_CR4_MASK, cr4_ones_mask | cr4_zeros_mask);
871 		vmcs_write(VMCS_CR4_SHADOW, 0);
872 
873 		vmcs_clear(vmx->vmcs_pa[i]);
874 
875 		vmx->cap[i].set = 0;
876 		vmx->cap[i].proc_ctls = proc_ctls;
877 		vmx->cap[i].proc_ctls2 = proc2_ctls;
878 		vmx->cap[i].exc_bitmap = exc_bitmap;
879 
880 		vmx->state[i].nextrip = ~0;
881 		vmx->state[i].lastcpu = NOCPU;
882 		vmx->state[i].vpid = vpid[i];
883 	}
884 
885 	return (vmx);
886 }
887 
888 static int
889 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
890 {
891 	int handled;
892 
893 	handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
894 	    (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
895 	    (uint64_t *)&vmxctx->guest_rdx);
896 	return (handled);
897 }
898 
899 static __inline void
900 vmx_run_trace(struct vmx *vmx, int vcpu)
901 {
902 #ifdef KTR
903 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %lx", vmcs_guest_rip());
904 #endif
905 }
906 
907 static __inline void
908 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
909 {
910 #ifdef KTR
911 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
912 #endif
913 }
914 
915 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
916 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
917 
918 #define	INVVPID_TYPE_ADDRESS		0UL
919 #define	INVVPID_TYPE_SINGLE_CONTEXT	1UL
920 #define	INVVPID_TYPE_ALL_CONTEXTS	2UL
921 
922 struct invvpid_desc {
923 	uint16_t	vpid;
924 	uint16_t	_res1;
925 	uint32_t	_res2;
926 	uint64_t	linear_addr;
927 };
928 CTASSERT(sizeof (struct invvpid_desc) == 16);
929 
930 static __inline void
931 invvpid(uint64_t type, struct invvpid_desc desc)
932 {
933 	int error;
934 
935 	DTRACE_PROBE3(vmx__invvpid, uint64_t, type, uint16_t, desc.vpid,
936 	    uint64_t, desc.linear_addr);
937 
938 	__asm __volatile("invvpid %[desc], %[type];"
939 	    VMX_SET_ERROR_CODE_ASM
940 	    : [error] "=r" (error)
941 	    : [desc] "m" (desc), [type] "r" (type)
942 	    : "memory");
943 
944 	if (error) {
945 		panic("invvpid error %d", error);
946 	}
947 }
948 
949 /*
950  * Invalidate guest mappings identified by its VPID from the TLB.
951  *
952  * This is effectively a flush of the guest TLB, removing only "combined
953  * mappings" (to use the VMX parlance).  Actions which modify the EPT structures
954  * for the instance (such as unmapping GPAs) would require an 'invept' flush.
955  */
956 static void
957 vmx_invvpid(struct vmx *vmx, int vcpu, int running)
958 {
959 	struct vmxstate *vmxstate;
960 	struct vmspace *vms;
961 
962 	vmxstate = &vmx->state[vcpu];
963 	if (vmxstate->vpid == 0) {
964 		return;
965 	}
966 
967 	if (!running) {
968 		/*
969 		 * Set the 'lastcpu' to an invalid host cpu.
970 		 *
971 		 * This will invalidate TLB entries tagged with the vcpu's
972 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
973 		 */
974 		vmxstate->lastcpu = NOCPU;
975 		return;
976 	}
977 
978 	/*
979 	 * Invalidate all mappings tagged with 'vpid'
980 	 *
981 	 * This is done when a vCPU moves between host CPUs, where there may be
982 	 * stale TLB entries for this VPID on the target, or if emulated actions
983 	 * in the guest CPU have incurred an explicit TLB flush.
984 	 */
985 	vms = vm_get_vmspace(vmx->vm);
986 	if (vmspace_table_gen(vms) == vmx->eptgen[curcpu]) {
987 		struct invvpid_desc invvpid_desc = {
988 			.vpid = vmxstate->vpid,
989 			.linear_addr = 0,
990 			._res1 = 0,
991 			._res2 = 0,
992 		};
993 
994 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
995 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
996 	} else {
997 		/*
998 		 * The INVVPID can be skipped if an INVEPT is going to be
999 		 * performed before entering the guest.  The INVEPT will
1000 		 * invalidate combined mappings for the EP4TA associated with
1001 		 * this guest, in all VPIDs.
1002 		 */
1003 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1004 	}
1005 }
1006 
1007 static __inline void
1008 invept(uint64_t type, uint64_t eptp)
1009 {
1010 	int error;
1011 	struct invept_desc {
1012 		uint64_t eptp;
1013 		uint64_t _resv;
1014 	} desc = { eptp, 0 };
1015 
1016 	DTRACE_PROBE2(vmx__invept, uint64_t, type, uint64_t, eptp);
1017 
1018 	__asm __volatile("invept %[desc], %[type];"
1019 	    VMX_SET_ERROR_CODE_ASM
1020 	    : [error] "=r" (error)
1021 	    : [desc] "m" (desc), [type] "r" (type)
1022 	    : "memory");
1023 
1024 	if (error != 0) {
1025 		panic("invvpid error %d", error);
1026 	}
1027 }
1028 
1029 static void
1030 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
1031 {
1032 	struct vmxstate *vmxstate;
1033 
1034 	/*
1035 	 * Regardless of whether the VM appears to have migrated between CPUs,
1036 	 * save the host sysenter stack pointer.  As it points to the kernel
1037 	 * stack of each thread, the correct value must be maintained for every
1038 	 * trip into the critical section.
1039 	 */
1040 	vmcs_write(VMCS_HOST_IA32_SYSENTER_ESP, rdmsr(MSR_SYSENTER_ESP_MSR));
1041 
1042 	/*
1043 	 * Perform any needed TSC_OFFSET adjustment based on TSC_MSR writes or
1044 	 * migration between host CPUs with differing TSC values.
1045 	 */
1046 	vmx_apply_tsc_adjust(vmx, vcpu);
1047 
1048 	vmxstate = &vmx->state[vcpu];
1049 	if (vmxstate->lastcpu == curcpu)
1050 		return;
1051 
1052 	vmxstate->lastcpu = curcpu;
1053 
1054 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1055 
1056 	/* Load the per-CPU IDT address */
1057 	vmcs_write(VMCS_HOST_IDTR_BASE, vmm_get_host_idtrbase());
1058 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1059 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1060 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1061 	vmx_invvpid(vmx, vcpu, 1);
1062 }
1063 
1064 /*
1065  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1066  */
1067 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1068 
1069 static __inline void
1070 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1071 {
1072 
1073 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1074 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1075 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1076 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1077 	}
1078 }
1079 
1080 static __inline void
1081 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1082 {
1083 
1084 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1085 	    ("intr_window_exiting not set: %x", vmx->cap[vcpu].proc_ctls));
1086 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1087 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1088 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1089 }
1090 
1091 static __inline bool
1092 vmx_nmi_window_exiting(struct vmx *vmx, int vcpu)
1093 {
1094 	return ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0);
1095 }
1096 
1097 static __inline void
1098 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1099 {
1100 	if (!vmx_nmi_window_exiting(vmx, vcpu)) {
1101 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1102 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1103 	}
1104 }
1105 
1106 static __inline void
1107 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1108 {
1109 	ASSERT(vmx_nmi_window_exiting(vmx, vcpu));
1110 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1111 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1112 }
1113 
1114 /*
1115  * Set the TSC adjustment, taking into account the offsets measured between
1116  * host physical CPUs.  This is required even if the guest has not set a TSC
1117  * offset since vCPUs inherit the TSC offset of whatever physical CPU it has
1118  * migrated onto.  Without this mitigation, un-synched host TSCs will convey
1119  * the appearance of TSC time-travel to the guest as its vCPUs migrate.
1120  */
1121 static void
1122 vmx_apply_tsc_adjust(struct vmx *vmx, int vcpu)
1123 {
1124 	const uint64_t offset = vcpu_tsc_offset(vmx->vm, vcpu, true);
1125 
1126 	ASSERT(vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET);
1127 
1128 	if (vmx->tsc_offset_active[vcpu] != offset) {
1129 		vmcs_write(VMCS_TSC_OFFSET, offset);
1130 		vmx->tsc_offset_active[vcpu] = offset;
1131 	}
1132 }
1133 
1134 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1135 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1136 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1137 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1138 
1139 static void
1140 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1141 {
1142 	ASSERT0(vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & NMI_BLOCKING);
1143 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1144 
1145 	/*
1146 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1147 	 * or the VMCS entry check will fail.
1148 	 */
1149 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1150 	    IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID);
1151 
1152 	/* Clear the request */
1153 	vm_nmi_clear(vmx->vm, vcpu);
1154 }
1155 
1156 /*
1157  * Inject exceptions, NMIs, and ExtINTs.
1158  *
1159  * The logic behind these are complicated and may involve mutex contention, so
1160  * the injection is performed without the protection of host CPU interrupts
1161  * being disabled.  This means a racing notification could be "lost",
1162  * necessitating a later call to vmx_inject_recheck() to close that window
1163  * of opportunity.
1164  */
1165 static enum event_inject_state
1166 vmx_inject_events(struct vmx *vmx, int vcpu, uint64_t rip)
1167 {
1168 	uint64_t entryinfo;
1169 	uint32_t gi, info;
1170 	int vector;
1171 	enum event_inject_state state;
1172 
1173 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1174 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1175 	state = EIS_CAN_INJECT;
1176 
1177 	/* Clear any interrupt blocking if the guest %rip has changed */
1178 	if (vmx->state[vcpu].nextrip != rip && (gi & HWINTR_BLOCKING) != 0) {
1179 		gi &= ~HWINTR_BLOCKING;
1180 		vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1181 	}
1182 
1183 	/*
1184 	 * It could be that an interrupt is already pending for injection from
1185 	 * the VMCS.  This would be the case if the vCPU exited for conditions
1186 	 * such as an AST before a vm-entry delivered the injection.
1187 	 */
1188 	if ((info & VMCS_INTR_VALID) != 0) {
1189 		return (EIS_EV_EXISTING | EIS_REQ_EXIT);
1190 	}
1191 
1192 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1193 		ASSERT(entryinfo & VMCS_INTR_VALID);
1194 
1195 		info = entryinfo;
1196 		vector = info & 0xff;
1197 		if (vector == IDT_BP || vector == IDT_OF) {
1198 			/*
1199 			 * VT-x requires #BP and #OF to be injected as software
1200 			 * exceptions.
1201 			 */
1202 			info &= ~VMCS_INTR_T_MASK;
1203 			info |= VMCS_INTR_T_SWEXCEPTION;
1204 		}
1205 
1206 		if (info & VMCS_INTR_DEL_ERRCODE) {
1207 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1208 		}
1209 
1210 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1211 		state = EIS_EV_INJECTED;
1212 	}
1213 
1214 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1215 		/*
1216 		 * If there are no conditions blocking NMI injection then inject
1217 		 * it directly here otherwise enable "NMI window exiting" to
1218 		 * inject it as soon as we can.
1219 		 *
1220 		 * According to the Intel manual, some CPUs do not allow NMI
1221 		 * injection when STI_BLOCKING is active.  That check is
1222 		 * enforced here, regardless of CPU capability.  If running on a
1223 		 * CPU without such a restriction it will immediately exit and
1224 		 * the NMI will be injected in the "NMI window exiting" handler.
1225 		 */
1226 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1227 			if (state == EIS_CAN_INJECT) {
1228 				vmx_inject_nmi(vmx, vcpu);
1229 				state = EIS_EV_INJECTED;
1230 			} else {
1231 				return (state | EIS_REQ_EXIT);
1232 			}
1233 		} else {
1234 			vmx_set_nmi_window_exiting(vmx, vcpu);
1235 		}
1236 	}
1237 
1238 	if (vm_extint_pending(vmx->vm, vcpu)) {
1239 		if (state != EIS_CAN_INJECT) {
1240 			return (state | EIS_REQ_EXIT);
1241 		}
1242 		if ((gi & HWINTR_BLOCKING) != 0 ||
1243 		    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1244 			return (EIS_GI_BLOCK);
1245 		}
1246 
1247 		/* Ask the legacy pic for a vector to inject */
1248 		vatpic_pending_intr(vmx->vm, &vector);
1249 
1250 		/*
1251 		 * From the Intel SDM, Volume 3, Section "Maskable
1252 		 * Hardware Interrupts":
1253 		 * - maskable interrupt vectors [0,255] can be delivered
1254 		 *   through the INTR pin.
1255 		 */
1256 		KASSERT(vector >= 0 && vector <= 255,
1257 		    ("invalid vector %d from INTR", vector));
1258 
1259 		/* Inject the interrupt */
1260 		vmcs_write(VMCS_ENTRY_INTR_INFO,
1261 		    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1262 
1263 		vm_extint_clear(vmx->vm, vcpu);
1264 		vatpic_intr_accepted(vmx->vm, vector);
1265 		state = EIS_EV_INJECTED;
1266 	}
1267 
1268 	return (state);
1269 }
1270 
1271 /*
1272  * Inject any interrupts pending on the vLAPIC.
1273  *
1274  * This is done with host CPU interrupts disabled so notification IPIs, either
1275  * from the standard vCPU notification or APICv posted interrupts, will be
1276  * queued on the host APIC and recognized when entering VMX context.
1277  */
1278 static enum event_inject_state
1279 vmx_inject_vlapic(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1280 {
1281 	int vector;
1282 
1283 	if (!vlapic_pending_intr(vlapic, &vector)) {
1284 		return (EIS_CAN_INJECT);
1285 	}
1286 
1287 	/*
1288 	 * From the Intel SDM, Volume 3, Section "Maskable
1289 	 * Hardware Interrupts":
1290 	 * - maskable interrupt vectors [16,255] can be delivered
1291 	 *   through the local APIC.
1292 	 */
1293 	KASSERT(vector >= 16 && vector <= 255,
1294 	    ("invalid vector %d from local APIC", vector));
1295 
1296 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
1297 		uint16_t status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
1298 		uint16_t status_new = (status_old & 0xff00) | vector;
1299 
1300 		/*
1301 		 * The APICv state will have been synced into the vLAPIC
1302 		 * as part of vlapic_pending_intr().  Prepare the VMCS
1303 		 * for the to-be-injected pending interrupt.
1304 		 */
1305 		if (status_new > status_old) {
1306 			vmcs_write(VMCS_GUEST_INTR_STATUS, status_new);
1307 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid,
1308 			    "vmx_inject_interrupts: guest_intr_status "
1309 			    "changed from 0x%04x to 0x%04x",
1310 			    status_old, status_new);
1311 		}
1312 
1313 		/*
1314 		 * Ensure VMCS state regarding EOI traps is kept in sync
1315 		 * with the TMRs in the vlapic.
1316 		 */
1317 		vmx_apicv_sync_tmr(vlapic);
1318 
1319 		/*
1320 		 * The rest of the injection process for injecting the
1321 		 * interrupt(s) is handled by APICv. It does not preclude other
1322 		 * event injection from occurring.
1323 		 */
1324 		return (EIS_CAN_INJECT);
1325 	}
1326 
1327 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1328 
1329 	/* Does guest interruptability block injection? */
1330 	if ((vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & HWINTR_BLOCKING) != 0 ||
1331 	    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1332 		return (EIS_GI_BLOCK);
1333 	}
1334 
1335 	/* Inject the interrupt */
1336 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1337 	    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1338 
1339 	/* Update the Local APIC ISR */
1340 	vlapic_intr_accepted(vlapic, vector);
1341 
1342 	return (EIS_EV_INJECTED);
1343 }
1344 
1345 /*
1346  * Re-check for events to be injected.
1347  *
1348  * Once host CPU interrupts are disabled, check for the presence of any events
1349  * which require injection processing.  If an exit is required upon injection,
1350  * or once the guest becomes interruptable, that will be configured too.
1351  */
1352 static bool
1353 vmx_inject_recheck(struct vmx *vmx, int vcpu, enum event_inject_state state)
1354 {
1355 	if (state == EIS_CAN_INJECT) {
1356 		if (vm_nmi_pending(vmx->vm, vcpu) &&
1357 		    !vmx_nmi_window_exiting(vmx, vcpu)) {
1358 			/* queued NMI not blocked by NMI-window-exiting */
1359 			return (true);
1360 		}
1361 		if (vm_extint_pending(vmx->vm, vcpu)) {
1362 			/* queued ExtINT not blocked by existing injection */
1363 			return (true);
1364 		}
1365 	} else {
1366 		if ((state & EIS_REQ_EXIT) != 0) {
1367 			/*
1368 			 * Use a self-IPI to force an immediate exit after
1369 			 * event injection has occurred.
1370 			 */
1371 			poke_cpu(CPU->cpu_id);
1372 		} else {
1373 			/*
1374 			 * If any event is being injected, an exit immediately
1375 			 * upon becoming interruptable again will allow pending
1376 			 * or newly queued events to be injected in a timely
1377 			 * manner.
1378 			 */
1379 			vmx_set_int_window_exiting(vmx, vcpu);
1380 		}
1381 	}
1382 	return (false);
1383 }
1384 
1385 /*
1386  * If the Virtual NMIs execution control is '1' then the logical processor
1387  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1388  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1389  * virtual-NMI blocking.
1390  *
1391  * This unblocking occurs even if the IRET causes a fault. In this case the
1392  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1393  */
1394 static void
1395 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1396 {
1397 	uint32_t gi;
1398 
1399 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1400 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1401 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1402 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1403 }
1404 
1405 static void
1406 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1407 {
1408 	uint32_t gi;
1409 
1410 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1411 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1412 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1413 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1414 }
1415 
1416 static void
1417 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1418 {
1419 	uint32_t gi;
1420 
1421 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1422 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1423 	    ("NMI blocking is not in effect %x", gi));
1424 }
1425 
1426 static int
1427 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1428 {
1429 	struct vmxctx *vmxctx;
1430 	uint64_t xcrval;
1431 	const struct xsave_limits *limits;
1432 
1433 	vmxctx = &vmx->ctx[vcpu];
1434 	limits = vmm_get_xsave_limits();
1435 
1436 	/*
1437 	 * Note that the processor raises a GP# fault on its own if
1438 	 * xsetbv is executed for CPL != 0, so we do not have to
1439 	 * emulate that fault here.
1440 	 */
1441 
1442 	/* Only xcr0 is supported. */
1443 	if (vmxctx->guest_rcx != 0) {
1444 		vm_inject_gp(vmx->vm, vcpu);
1445 		return (HANDLED);
1446 	}
1447 
1448 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1449 	if (!limits->xsave_enabled ||
1450 	    !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1451 		vm_inject_ud(vmx->vm, vcpu);
1452 		return (HANDLED);
1453 	}
1454 
1455 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1456 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1457 		vm_inject_gp(vmx->vm, vcpu);
1458 		return (HANDLED);
1459 	}
1460 
1461 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1462 		vm_inject_gp(vmx->vm, vcpu);
1463 		return (HANDLED);
1464 	}
1465 
1466 	/* AVX (YMM_Hi128) requires SSE. */
1467 	if (xcrval & XFEATURE_ENABLED_AVX &&
1468 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1469 		vm_inject_gp(vmx->vm, vcpu);
1470 		return (HANDLED);
1471 	}
1472 
1473 	/*
1474 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1475 	 * ZMM_Hi256, and Hi16_ZMM.
1476 	 */
1477 	if (xcrval & XFEATURE_AVX512 &&
1478 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1479 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1480 		vm_inject_gp(vmx->vm, vcpu);
1481 		return (HANDLED);
1482 	}
1483 
1484 	/*
1485 	 * Intel MPX requires both bound register state flags to be
1486 	 * set.
1487 	 */
1488 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1489 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1490 		vm_inject_gp(vmx->vm, vcpu);
1491 		return (HANDLED);
1492 	}
1493 
1494 	/*
1495 	 * This runs "inside" vmrun() with the guest's FPU state, so
1496 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1497 	 * host's.
1498 	 */
1499 	load_xcr(0, xcrval);
1500 	return (HANDLED);
1501 }
1502 
1503 static uint64_t
1504 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1505 {
1506 	const struct vmxctx *vmxctx;
1507 
1508 	vmxctx = &vmx->ctx[vcpu];
1509 
1510 	switch (ident) {
1511 	case 0:
1512 		return (vmxctx->guest_rax);
1513 	case 1:
1514 		return (vmxctx->guest_rcx);
1515 	case 2:
1516 		return (vmxctx->guest_rdx);
1517 	case 3:
1518 		return (vmxctx->guest_rbx);
1519 	case 4:
1520 		return (vmcs_read(VMCS_GUEST_RSP));
1521 	case 5:
1522 		return (vmxctx->guest_rbp);
1523 	case 6:
1524 		return (vmxctx->guest_rsi);
1525 	case 7:
1526 		return (vmxctx->guest_rdi);
1527 	case 8:
1528 		return (vmxctx->guest_r8);
1529 	case 9:
1530 		return (vmxctx->guest_r9);
1531 	case 10:
1532 		return (vmxctx->guest_r10);
1533 	case 11:
1534 		return (vmxctx->guest_r11);
1535 	case 12:
1536 		return (vmxctx->guest_r12);
1537 	case 13:
1538 		return (vmxctx->guest_r13);
1539 	case 14:
1540 		return (vmxctx->guest_r14);
1541 	case 15:
1542 		return (vmxctx->guest_r15);
1543 	default:
1544 		panic("invalid vmx register %d", ident);
1545 	}
1546 }
1547 
1548 static void
1549 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1550 {
1551 	struct vmxctx *vmxctx;
1552 
1553 	vmxctx = &vmx->ctx[vcpu];
1554 
1555 	switch (ident) {
1556 	case 0:
1557 		vmxctx->guest_rax = regval;
1558 		break;
1559 	case 1:
1560 		vmxctx->guest_rcx = regval;
1561 		break;
1562 	case 2:
1563 		vmxctx->guest_rdx = regval;
1564 		break;
1565 	case 3:
1566 		vmxctx->guest_rbx = regval;
1567 		break;
1568 	case 4:
1569 		vmcs_write(VMCS_GUEST_RSP, regval);
1570 		break;
1571 	case 5:
1572 		vmxctx->guest_rbp = regval;
1573 		break;
1574 	case 6:
1575 		vmxctx->guest_rsi = regval;
1576 		break;
1577 	case 7:
1578 		vmxctx->guest_rdi = regval;
1579 		break;
1580 	case 8:
1581 		vmxctx->guest_r8 = regval;
1582 		break;
1583 	case 9:
1584 		vmxctx->guest_r9 = regval;
1585 		break;
1586 	case 10:
1587 		vmxctx->guest_r10 = regval;
1588 		break;
1589 	case 11:
1590 		vmxctx->guest_r11 = regval;
1591 		break;
1592 	case 12:
1593 		vmxctx->guest_r12 = regval;
1594 		break;
1595 	case 13:
1596 		vmxctx->guest_r13 = regval;
1597 		break;
1598 	case 14:
1599 		vmxctx->guest_r14 = regval;
1600 		break;
1601 	case 15:
1602 		vmxctx->guest_r15 = regval;
1603 		break;
1604 	default:
1605 		panic("invalid vmx register %d", ident);
1606 	}
1607 }
1608 
1609 static int
1610 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1611 {
1612 	uint64_t crval, regval;
1613 
1614 	/* We only handle mov to %cr0 at this time */
1615 	if ((exitqual & 0xf0) != 0x00)
1616 		return (UNHANDLED);
1617 
1618 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1619 
1620 	vmcs_write(VMCS_CR0_SHADOW, regval);
1621 
1622 	crval = regval | cr0_ones_mask;
1623 	crval &= ~cr0_zeros_mask;
1624 
1625 	const uint64_t old = vmcs_read(VMCS_GUEST_CR0);
1626 	const uint64_t diff = crval ^ old;
1627 	/* Flush the TLB if the paging or write-protect bits are changing */
1628 	if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) {
1629 		vmx_invvpid(vmx, vcpu, 1);
1630 	}
1631 
1632 	vmcs_write(VMCS_GUEST_CR0, crval);
1633 
1634 	if (regval & CR0_PG) {
1635 		uint64_t efer, entry_ctls;
1636 
1637 		/*
1638 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1639 		 * the "IA-32e mode guest" bit in VM-entry control must be
1640 		 * equal.
1641 		 */
1642 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1643 		if (efer & EFER_LME) {
1644 			efer |= EFER_LMA;
1645 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1646 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1647 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1648 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1649 		}
1650 	}
1651 
1652 	return (HANDLED);
1653 }
1654 
1655 static int
1656 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1657 {
1658 	uint64_t crval, regval;
1659 
1660 	/* We only handle mov to %cr4 at this time */
1661 	if ((exitqual & 0xf0) != 0x00)
1662 		return (UNHANDLED);
1663 
1664 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1665 
1666 	vmcs_write(VMCS_CR4_SHADOW, regval);
1667 
1668 	crval = regval | cr4_ones_mask;
1669 	crval &= ~cr4_zeros_mask;
1670 	vmcs_write(VMCS_GUEST_CR4, crval);
1671 
1672 	return (HANDLED);
1673 }
1674 
1675 static int
1676 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1677 {
1678 	struct vlapic *vlapic;
1679 	uint64_t cr8;
1680 	int regnum;
1681 
1682 	/* We only handle mov %cr8 to/from a register at this time. */
1683 	if ((exitqual & 0xe0) != 0x00) {
1684 		return (UNHANDLED);
1685 	}
1686 
1687 	vlapic = vm_lapic(vmx->vm, vcpu);
1688 	regnum = (exitqual >> 8) & 0xf;
1689 	if (exitqual & 0x10) {
1690 		cr8 = vlapic_get_cr8(vlapic);
1691 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1692 	} else {
1693 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1694 		vlapic_set_cr8(vlapic, cr8);
1695 	}
1696 
1697 	return (HANDLED);
1698 }
1699 
1700 /*
1701  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1702  */
1703 static int
1704 vmx_cpl(void)
1705 {
1706 	uint32_t ssar;
1707 
1708 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1709 	return ((ssar >> 5) & 0x3);
1710 }
1711 
1712 static enum vm_cpu_mode
1713 vmx_cpu_mode(void)
1714 {
1715 	uint32_t csar;
1716 
1717 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1718 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1719 		if (csar & 0x2000)
1720 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1721 		else
1722 			return (CPU_MODE_COMPATIBILITY);
1723 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1724 		return (CPU_MODE_PROTECTED);
1725 	} else {
1726 		return (CPU_MODE_REAL);
1727 	}
1728 }
1729 
1730 static enum vm_paging_mode
1731 vmx_paging_mode(void)
1732 {
1733 
1734 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1735 		return (PAGING_MODE_FLAT);
1736 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1737 		return (PAGING_MODE_32);
1738 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1739 		return (PAGING_MODE_64);
1740 	else
1741 		return (PAGING_MODE_PAE);
1742 }
1743 
1744 static void
1745 vmx_paging_info(struct vm_guest_paging *paging)
1746 {
1747 	paging->cr3 = vmcs_guest_cr3();
1748 	paging->cpl = vmx_cpl();
1749 	paging->cpu_mode = vmx_cpu_mode();
1750 	paging->paging_mode = vmx_paging_mode();
1751 }
1752 
1753 static void
1754 vmexit_mmio_emul(struct vm_exit *vmexit, struct vie *vie, uint64_t gpa,
1755     uint64_t gla)
1756 {
1757 	struct vm_guest_paging paging;
1758 	uint32_t csar;
1759 
1760 	vmexit->exitcode = VM_EXITCODE_MMIO_EMUL;
1761 	vmexit->inst_length = 0;
1762 	vmexit->u.mmio_emul.gpa = gpa;
1763 	vmexit->u.mmio_emul.gla = gla;
1764 	vmx_paging_info(&paging);
1765 
1766 	switch (paging.cpu_mode) {
1767 	case CPU_MODE_REAL:
1768 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1769 		vmexit->u.mmio_emul.cs_d = 0;
1770 		break;
1771 	case CPU_MODE_PROTECTED:
1772 	case CPU_MODE_COMPATIBILITY:
1773 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1774 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1775 		vmexit->u.mmio_emul.cs_d = SEG_DESC_DEF32(csar);
1776 		break;
1777 	default:
1778 		vmexit->u.mmio_emul.cs_base = 0;
1779 		vmexit->u.mmio_emul.cs_d = 0;
1780 		break;
1781 	}
1782 
1783 	vie_init_mmio(vie, NULL, 0, &paging, gpa);
1784 }
1785 
1786 static void
1787 vmexit_inout(struct vm_exit *vmexit, struct vie *vie, uint64_t qual,
1788     uint32_t eax)
1789 {
1790 	struct vm_guest_paging paging;
1791 	struct vm_inout *inout;
1792 
1793 	inout = &vmexit->u.inout;
1794 
1795 	inout->bytes = (qual & 0x7) + 1;
1796 	inout->flags = 0;
1797 	inout->flags |= (qual & 0x8) ? INOUT_IN : 0;
1798 	inout->flags |= (qual & 0x10) ? INOUT_STR : 0;
1799 	inout->flags |= (qual & 0x20) ? INOUT_REP : 0;
1800 	inout->port = (uint16_t)(qual >> 16);
1801 	inout->eax = eax;
1802 	if (inout->flags & INOUT_STR) {
1803 		uint64_t inst_info;
1804 
1805 		inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
1806 
1807 		/*
1808 		 * According to the SDM, bits 9:7 encode the address size of the
1809 		 * ins/outs operation, but only values 0/1/2 are expected,
1810 		 * corresponding to 16/32/64 bit sizes.
1811 		 */
1812 		inout->addrsize = 2 << BITX(inst_info, 9, 7);
1813 		VERIFY(inout->addrsize == 2 || inout->addrsize == 4 ||
1814 		    inout->addrsize == 8);
1815 
1816 		if (inout->flags & INOUT_IN) {
1817 			/*
1818 			 * The bits describing the segment in INSTRUCTION_INFO
1819 			 * are not defined for ins, leaving it to system
1820 			 * software to assume %es (encoded as 0)
1821 			 */
1822 			inout->segment = 0;
1823 		} else {
1824 			/*
1825 			 * Bits 15-17 encode the segment for OUTS.
1826 			 * This value follows the standard x86 segment order.
1827 			 */
1828 			inout->segment = (inst_info >> 15) & 0x7;
1829 		}
1830 	}
1831 
1832 	vmexit->exitcode = VM_EXITCODE_INOUT;
1833 	vmx_paging_info(&paging);
1834 	vie_init_inout(vie, inout, vmexit->inst_length, &paging);
1835 
1836 	/* The in/out emulation will handle advancing %rip */
1837 	vmexit->inst_length = 0;
1838 }
1839 
1840 static int
1841 ept_fault_type(uint64_t ept_qual)
1842 {
1843 	int fault_type;
1844 
1845 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1846 		fault_type = PROT_WRITE;
1847 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1848 		fault_type = PROT_EXEC;
1849 	else
1850 		fault_type = PROT_READ;
1851 
1852 	return (fault_type);
1853 }
1854 
1855 static bool
1856 ept_emulation_fault(uint64_t ept_qual)
1857 {
1858 	int read, write;
1859 
1860 	/* EPT fault on an instruction fetch doesn't make sense here */
1861 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1862 		return (false);
1863 
1864 	/* EPT fault must be a read fault or a write fault */
1865 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1866 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1867 	if ((read | write) == 0)
1868 		return (false);
1869 
1870 	/*
1871 	 * The EPT violation must have been caused by accessing a
1872 	 * guest-physical address that is a translation of a guest-linear
1873 	 * address.
1874 	 */
1875 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1876 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1877 		return (false);
1878 	}
1879 
1880 	return (true);
1881 }
1882 
1883 static __inline int
1884 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1885 {
1886 	uint32_t proc_ctls2;
1887 
1888 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1889 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1890 }
1891 
1892 static __inline int
1893 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1894 {
1895 	uint32_t proc_ctls2;
1896 
1897 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1898 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1899 }
1900 
1901 static int
1902 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1903     uint64_t qual)
1904 {
1905 	const uint_t offset = APIC_WRITE_OFFSET(qual);
1906 
1907 	if (!apic_access_virtualization(vmx, vcpuid)) {
1908 		/*
1909 		 * In general there should not be any APIC write VM-exits
1910 		 * unless APIC-access virtualization is enabled.
1911 		 *
1912 		 * However self-IPI virtualization can legitimately trigger
1913 		 * an APIC-write VM-exit so treat it specially.
1914 		 */
1915 		if (x2apic_virtualization(vmx, vcpuid) &&
1916 		    offset == APIC_OFFSET_SELF_IPI) {
1917 			const uint32_t *apic_regs =
1918 			    (uint32_t *)(vlapic->apic_page);
1919 			const uint32_t vector =
1920 			    apic_regs[APIC_OFFSET_SELF_IPI / 4];
1921 
1922 			vlapic_self_ipi_handler(vlapic, vector);
1923 			return (HANDLED);
1924 		} else
1925 			return (UNHANDLED);
1926 	}
1927 
1928 	switch (offset) {
1929 	case APIC_OFFSET_ID:
1930 		vlapic_id_write_handler(vlapic);
1931 		break;
1932 	case APIC_OFFSET_LDR:
1933 		vlapic_ldr_write_handler(vlapic);
1934 		break;
1935 	case APIC_OFFSET_DFR:
1936 		vlapic_dfr_write_handler(vlapic);
1937 		break;
1938 	case APIC_OFFSET_SVR:
1939 		vlapic_svr_write_handler(vlapic);
1940 		break;
1941 	case APIC_OFFSET_ESR:
1942 		vlapic_esr_write_handler(vlapic);
1943 		break;
1944 	case APIC_OFFSET_ICR_LOW:
1945 		vlapic_icrlo_write_handler(vlapic);
1946 		break;
1947 	case APIC_OFFSET_CMCI_LVT:
1948 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1949 		vlapic_lvt_write_handler(vlapic, offset);
1950 		break;
1951 	case APIC_OFFSET_TIMER_ICR:
1952 		vlapic_icrtmr_write_handler(vlapic);
1953 		break;
1954 	case APIC_OFFSET_TIMER_DCR:
1955 		vlapic_dcr_write_handler(vlapic);
1956 		break;
1957 	default:
1958 		return (UNHANDLED);
1959 	}
1960 	return (HANDLED);
1961 }
1962 
1963 static bool
1964 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1965 {
1966 
1967 	if (apic_access_virtualization(vmx, vcpuid) &&
1968 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1969 		return (true);
1970 	else
1971 		return (false);
1972 }
1973 
1974 static int
1975 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1976 {
1977 	uint64_t qual;
1978 	int access_type, offset, allowed;
1979 	struct vie *vie;
1980 
1981 	if (!apic_access_virtualization(vmx, vcpuid))
1982 		return (UNHANDLED);
1983 
1984 	qual = vmexit->u.vmx.exit_qualification;
1985 	access_type = APIC_ACCESS_TYPE(qual);
1986 	offset = APIC_ACCESS_OFFSET(qual);
1987 
1988 	allowed = 0;
1989 	if (access_type == 0) {
1990 		/*
1991 		 * Read data access to the following registers is expected.
1992 		 */
1993 		switch (offset) {
1994 		case APIC_OFFSET_APR:
1995 		case APIC_OFFSET_PPR:
1996 		case APIC_OFFSET_RRR:
1997 		case APIC_OFFSET_CMCI_LVT:
1998 		case APIC_OFFSET_TIMER_CCR:
1999 			allowed = 1;
2000 			break;
2001 		default:
2002 			break;
2003 		}
2004 	} else if (access_type == 1) {
2005 		/*
2006 		 * Write data access to the following registers is expected.
2007 		 */
2008 		switch (offset) {
2009 		case APIC_OFFSET_VER:
2010 		case APIC_OFFSET_APR:
2011 		case APIC_OFFSET_PPR:
2012 		case APIC_OFFSET_RRR:
2013 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2014 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2015 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2016 		case APIC_OFFSET_CMCI_LVT:
2017 		case APIC_OFFSET_TIMER_CCR:
2018 			allowed = 1;
2019 			break;
2020 		default:
2021 			break;
2022 		}
2023 	}
2024 
2025 	if (allowed) {
2026 		vie = vm_vie_ctx(vmx->vm, vcpuid);
2027 		vmexit_mmio_emul(vmexit, vie, DEFAULT_APIC_BASE + offset,
2028 		    VIE_INVALID_GLA);
2029 	}
2030 
2031 	/*
2032 	 * Regardless of whether the APIC-access is allowed this handler
2033 	 * always returns UNHANDLED:
2034 	 * - if the access is allowed then it is handled by emulating the
2035 	 *   instruction that caused the VM-exit (outside the critical section)
2036 	 * - if the access is not allowed then it will be converted to an
2037 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2038 	 */
2039 	return (UNHANDLED);
2040 }
2041 
2042 static enum task_switch_reason
2043 vmx_task_switch_reason(uint64_t qual)
2044 {
2045 	int reason;
2046 
2047 	reason = (qual >> 30) & 0x3;
2048 	switch (reason) {
2049 	case 0:
2050 		return (TSR_CALL);
2051 	case 1:
2052 		return (TSR_IRET);
2053 	case 2:
2054 		return (TSR_JMP);
2055 	case 3:
2056 		return (TSR_IDT_GATE);
2057 	default:
2058 		panic("%s: invalid reason %d", __func__, reason);
2059 	}
2060 }
2061 
2062 static int
2063 vmx_handle_msr(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit,
2064     bool is_wrmsr)
2065 {
2066 	struct vmxctx *vmxctx = &vmx->ctx[vcpuid];
2067 	const uint32_t ecx = vmxctx->guest_rcx;
2068 	vm_msr_result_t res;
2069 	uint64_t val = 0;
2070 
2071 	if (is_wrmsr) {
2072 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_WRMSR, 1);
2073 		val = vmxctx->guest_rdx << 32 | (uint32_t)vmxctx->guest_rax;
2074 
2075 		if (vlapic_owned_msr(ecx)) {
2076 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2077 
2078 			res = vlapic_wrmsr(vlapic, ecx, val);
2079 		} else {
2080 			res = vmx_wrmsr(vmx, vcpuid, ecx, val);
2081 		}
2082 	} else {
2083 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_RDMSR, 1);
2084 
2085 		if (vlapic_owned_msr(ecx)) {
2086 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2087 
2088 			res = vlapic_rdmsr(vlapic, ecx, &val);
2089 		} else {
2090 			res = vmx_rdmsr(vmx, vcpuid, ecx, &val);
2091 		}
2092 	}
2093 
2094 	switch (res) {
2095 	case VMR_OK:
2096 		/* Store rdmsr result in the appropriate registers */
2097 		if (!is_wrmsr) {
2098 			vmxctx->guest_rax = (uint32_t)val;
2099 			vmxctx->guest_rdx = val >> 32;
2100 		}
2101 		return (HANDLED);
2102 	case VMR_GP:
2103 		vm_inject_gp(vmx->vm, vcpuid);
2104 		return (HANDLED);
2105 	case VMR_UNHANLDED:
2106 		vmexit->exitcode = is_wrmsr ?
2107 		    VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR;
2108 		vmexit->u.msr.code = ecx;
2109 		vmexit->u.msr.wval = val;
2110 		return (UNHANDLED);
2111 	default:
2112 		panic("unexpected msr result %u\n", res);
2113 	}
2114 }
2115 
2116 static int
2117 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2118 {
2119 	int error, errcode, errcode_valid, handled;
2120 	struct vmxctx *vmxctx;
2121 	struct vie *vie;
2122 	struct vlapic *vlapic;
2123 	struct vm_task_switch *ts;
2124 	uint32_t idtvec_info, idtvec_err, intr_info;
2125 	uint32_t intr_type, intr_vec, reason;
2126 	uint64_t exitintinfo, qual, gpa;
2127 
2128 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2129 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2130 
2131 	handled = UNHANDLED;
2132 	vmxctx = &vmx->ctx[vcpu];
2133 
2134 	qual = vmexit->u.vmx.exit_qualification;
2135 	reason = vmexit->u.vmx.exit_reason;
2136 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2137 
2138 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2139 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2140 
2141 	/*
2142 	 * VM-entry failures during or after loading guest state.
2143 	 *
2144 	 * These VM-exits are uncommon but must be handled specially
2145 	 * as most VM-exit fields are not populated as usual.
2146 	 */
2147 	if (reason == EXIT_REASON_MCE_DURING_ENTRY) {
2148 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2149 		vmm_call_trap(T_MCE);
2150 		return (1);
2151 	}
2152 
2153 	/*
2154 	 * VM exits that can be triggered during event delivery need to
2155 	 * be handled specially by re-injecting the event if the IDT
2156 	 * vectoring information field's valid bit is set.
2157 	 *
2158 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2159 	 * for details.
2160 	 */
2161 	idtvec_info = vmcs_idt_vectoring_info();
2162 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2163 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2164 		exitintinfo = idtvec_info;
2165 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2166 			idtvec_err = vmcs_idt_vectoring_err();
2167 			exitintinfo |= (uint64_t)idtvec_err << 32;
2168 		}
2169 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2170 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2171 		    __func__, error));
2172 
2173 		/*
2174 		 * If 'virtual NMIs' are being used and the VM-exit
2175 		 * happened while injecting an NMI during the previous
2176 		 * VM-entry, then clear "blocking by NMI" in the
2177 		 * Guest Interruptibility-State so the NMI can be
2178 		 * reinjected on the subsequent VM-entry.
2179 		 *
2180 		 * However, if the NMI was being delivered through a task
2181 		 * gate, then the new task must start execution with NMIs
2182 		 * blocked so don't clear NMI blocking in this case.
2183 		 */
2184 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2185 		if (intr_type == VMCS_INTR_T_NMI) {
2186 			if (reason != EXIT_REASON_TASK_SWITCH)
2187 				vmx_clear_nmi_blocking(vmx, vcpu);
2188 			else
2189 				vmx_assert_nmi_blocking(vmx, vcpu);
2190 		}
2191 
2192 		/*
2193 		 * Update VM-entry instruction length if the event being
2194 		 * delivered was a software interrupt or software exception.
2195 		 */
2196 		if (intr_type == VMCS_INTR_T_SWINTR ||
2197 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2198 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2199 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2200 		}
2201 	}
2202 
2203 	switch (reason) {
2204 	case EXIT_REASON_TRIPLE_FAULT:
2205 		(void) vm_suspend(vmx->vm, VM_SUSPEND_TRIPLEFAULT);
2206 		handled = HANDLED;
2207 		break;
2208 	case EXIT_REASON_TASK_SWITCH:
2209 		ts = &vmexit->u.task_switch;
2210 		ts->tsssel = qual & 0xffff;
2211 		ts->reason = vmx_task_switch_reason(qual);
2212 		ts->ext = 0;
2213 		ts->errcode_valid = 0;
2214 		vmx_paging_info(&ts->paging);
2215 		/*
2216 		 * If the task switch was due to a CALL, JMP, IRET, software
2217 		 * interrupt (INT n) or software exception (INT3, INTO),
2218 		 * then the saved %rip references the instruction that caused
2219 		 * the task switch. The instruction length field in the VMCS
2220 		 * is valid in this case.
2221 		 *
2222 		 * In all other cases (e.g., NMI, hardware exception) the
2223 		 * saved %rip is one that would have been saved in the old TSS
2224 		 * had the task switch completed normally so the instruction
2225 		 * length field is not needed in this case and is explicitly
2226 		 * set to 0.
2227 		 */
2228 		if (ts->reason == TSR_IDT_GATE) {
2229 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2230 			    ("invalid idtvec_info %x for IDT task switch",
2231 			    idtvec_info));
2232 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2233 			if (intr_type != VMCS_INTR_T_SWINTR &&
2234 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2235 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2236 				/* Task switch triggered by external event */
2237 				ts->ext = 1;
2238 				vmexit->inst_length = 0;
2239 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2240 					ts->errcode_valid = 1;
2241 					ts->errcode = vmcs_idt_vectoring_err();
2242 				}
2243 			}
2244 		}
2245 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2246 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2247 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2248 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2249 		    ts->ext ? "external" : "internal",
2250 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2251 		break;
2252 	case EXIT_REASON_CR_ACCESS:
2253 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2254 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2255 		switch (qual & 0xf) {
2256 		case 0:
2257 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2258 			break;
2259 		case 4:
2260 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2261 			break;
2262 		case 8:
2263 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2264 			break;
2265 		}
2266 		break;
2267 	case EXIT_REASON_RDMSR:
2268 	case EXIT_REASON_WRMSR:
2269 		handled = vmx_handle_msr(vmx, vcpu, vmexit,
2270 		    reason == EXIT_REASON_WRMSR);
2271 		break;
2272 	case EXIT_REASON_HLT:
2273 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2274 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2275 		vmexit->exitcode = VM_EXITCODE_HLT;
2276 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2277 		break;
2278 	case EXIT_REASON_MTF:
2279 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2280 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2281 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2282 		vmexit->inst_length = 0;
2283 		break;
2284 	case EXIT_REASON_PAUSE:
2285 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2286 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2287 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2288 		break;
2289 	case EXIT_REASON_INTR_WINDOW:
2290 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2291 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2292 		vmx_clear_int_window_exiting(vmx, vcpu);
2293 		return (1);
2294 	case EXIT_REASON_EXT_INTR:
2295 		/*
2296 		 * External interrupts serve only to cause VM exits and allow
2297 		 * the host interrupt handler to run.
2298 		 *
2299 		 * If this external interrupt triggers a virtual interrupt
2300 		 * to a VM, then that state will be recorded by the
2301 		 * host interrupt handler in the VM's softc. We will inject
2302 		 * this virtual interrupt during the subsequent VM enter.
2303 		 */
2304 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2305 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2306 		    vmx, vcpu, vmexit, intr_info);
2307 
2308 		/*
2309 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2310 		 * This appears to be a bug in VMware Fusion?
2311 		 */
2312 		if (!(intr_info & VMCS_INTR_VALID))
2313 			return (1);
2314 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2315 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2316 		    ("VM exit interruption info invalid: %x", intr_info));
2317 		vmx_trigger_hostintr(intr_info & 0xff);
2318 
2319 		/*
2320 		 * This is special. We want to treat this as an 'handled'
2321 		 * VM-exit but not increment the instruction pointer.
2322 		 */
2323 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2324 		return (1);
2325 	case EXIT_REASON_NMI_WINDOW:
2326 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2327 		/* Exit to allow the pending virtual NMI to be injected */
2328 		if (vm_nmi_pending(vmx->vm, vcpu))
2329 			vmx_inject_nmi(vmx, vcpu);
2330 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2331 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2332 		return (1);
2333 	case EXIT_REASON_INOUT:
2334 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2335 		vie = vm_vie_ctx(vmx->vm, vcpu);
2336 		vmexit_inout(vmexit, vie, qual, (uint32_t)vmxctx->guest_rax);
2337 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2338 		break;
2339 	case EXIT_REASON_CPUID:
2340 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2341 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2342 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2343 		break;
2344 	case EXIT_REASON_EXCEPTION:
2345 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2346 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2347 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2348 		    ("VM exit interruption info invalid: %x", intr_info));
2349 
2350 		intr_vec = intr_info & 0xff;
2351 		intr_type = intr_info & VMCS_INTR_T_MASK;
2352 
2353 		/*
2354 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2355 		 * fault encountered during the execution of IRET then we must
2356 		 * restore the state of "virtual-NMI blocking" before resuming
2357 		 * the guest.
2358 		 *
2359 		 * See "Resuming Guest Software after Handling an Exception".
2360 		 * See "Information for VM Exits Due to Vectored Events".
2361 		 */
2362 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2363 		    (intr_vec != IDT_DF) &&
2364 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2365 			vmx_restore_nmi_blocking(vmx, vcpu);
2366 
2367 		/*
2368 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2369 		 */
2370 		if (intr_type == VMCS_INTR_T_NMI)
2371 			return (1);
2372 
2373 		/*
2374 		 * Call the machine check handler by hand. Also don't reflect
2375 		 * the machine check back into the guest.
2376 		 */
2377 		if (intr_vec == IDT_MC) {
2378 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2379 			vmm_call_trap(T_MCE);
2380 			return (1);
2381 		}
2382 
2383 		/*
2384 		 * If the hypervisor has requested user exits for
2385 		 * debug exceptions, bounce them out to userland.
2386 		 */
2387 		if (intr_type == VMCS_INTR_T_SWEXCEPTION &&
2388 		    intr_vec == IDT_BP &&
2389 		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2390 			vmexit->exitcode = VM_EXITCODE_BPT;
2391 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2392 			vmexit->inst_length = 0;
2393 			break;
2394 		}
2395 
2396 		if (intr_vec == IDT_PF) {
2397 			vmxctx->guest_cr2 = qual;
2398 		}
2399 
2400 		/*
2401 		 * Software exceptions exhibit trap-like behavior. This in
2402 		 * turn requires populating the VM-entry instruction length
2403 		 * so that the %rip in the trap frame is past the INT3/INTO
2404 		 * instruction.
2405 		 */
2406 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2407 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2408 
2409 		/* Reflect all other exceptions back into the guest */
2410 		errcode_valid = errcode = 0;
2411 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2412 			errcode_valid = 1;
2413 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2414 		}
2415 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%x into "
2416 		    "the guest", intr_vec, errcode);
2417 		SDT_PROBE5(vmm, vmx, exit, exception,
2418 		    vmx, vcpu, vmexit, intr_vec, errcode);
2419 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2420 		    errcode_valid, errcode, 0);
2421 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2422 		    __func__, error));
2423 		return (1);
2424 
2425 	case EXIT_REASON_EPT_FAULT:
2426 		/*
2427 		 * If 'gpa' lies within the address space allocated to
2428 		 * memory then this must be a nested page fault otherwise
2429 		 * this must be an instruction that accesses MMIO space.
2430 		 */
2431 		gpa = vmcs_gpa();
2432 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2433 		    apic_access_fault(vmx, vcpu, gpa)) {
2434 			vmexit->exitcode = VM_EXITCODE_PAGING;
2435 			vmexit->inst_length = 0;
2436 			vmexit->u.paging.gpa = gpa;
2437 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2438 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2439 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2440 			    vmx, vcpu, vmexit, gpa, qual);
2441 		} else if (ept_emulation_fault(qual)) {
2442 			vie = vm_vie_ctx(vmx->vm, vcpu);
2443 			vmexit_mmio_emul(vmexit, vie, gpa, vmcs_gla());
2444 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MMIO_EMUL, 1);
2445 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2446 			    vmx, vcpu, vmexit, gpa);
2447 		}
2448 		/*
2449 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2450 		 * EPT fault during the execution of IRET then we must restore
2451 		 * the state of "virtual-NMI blocking" before resuming.
2452 		 *
2453 		 * See description of "NMI unblocking due to IRET" in
2454 		 * "Exit Qualification for EPT Violations".
2455 		 */
2456 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2457 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2458 			vmx_restore_nmi_blocking(vmx, vcpu);
2459 		break;
2460 	case EXIT_REASON_VIRTUALIZED_EOI:
2461 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2462 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2463 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2464 		vmexit->inst_length = 0;	/* trap-like */
2465 		break;
2466 	case EXIT_REASON_APIC_ACCESS:
2467 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2468 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2469 		break;
2470 	case EXIT_REASON_APIC_WRITE:
2471 		/*
2472 		 * APIC-write VM exit is trap-like so the %rip is already
2473 		 * pointing to the next instruction.
2474 		 */
2475 		vmexit->inst_length = 0;
2476 		vlapic = vm_lapic(vmx->vm, vcpu);
2477 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2478 		    vmx, vcpu, vmexit, vlapic);
2479 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2480 		break;
2481 	case EXIT_REASON_XSETBV:
2482 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2483 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2484 		break;
2485 	case EXIT_REASON_MONITOR:
2486 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2487 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2488 		break;
2489 	case EXIT_REASON_MWAIT:
2490 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2491 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2492 		break;
2493 	case EXIT_REASON_TPR:
2494 		vlapic = vm_lapic(vmx->vm, vcpu);
2495 		vlapic_sync_tpr(vlapic);
2496 		vmexit->inst_length = 0;
2497 		handled = HANDLED;
2498 		break;
2499 	case EXIT_REASON_VMCALL:
2500 	case EXIT_REASON_VMCLEAR:
2501 	case EXIT_REASON_VMLAUNCH:
2502 	case EXIT_REASON_VMPTRLD:
2503 	case EXIT_REASON_VMPTRST:
2504 	case EXIT_REASON_VMREAD:
2505 	case EXIT_REASON_VMRESUME:
2506 	case EXIT_REASON_VMWRITE:
2507 	case EXIT_REASON_VMXOFF:
2508 	case EXIT_REASON_VMXON:
2509 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2510 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2511 		break;
2512 	default:
2513 		SDT_PROBE4(vmm, vmx, exit, unknown,
2514 		    vmx, vcpu, vmexit, reason);
2515 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2516 		break;
2517 	}
2518 
2519 	if (handled) {
2520 		/*
2521 		 * It is possible that control is returned to userland
2522 		 * even though we were able to handle the VM exit in the
2523 		 * kernel.
2524 		 *
2525 		 * In such a case we want to make sure that the userland
2526 		 * restarts guest execution at the instruction *after*
2527 		 * the one we just processed. Therefore we update the
2528 		 * guest rip in the VMCS and in 'vmexit'.
2529 		 */
2530 		vmexit->rip += vmexit->inst_length;
2531 		vmexit->inst_length = 0;
2532 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2533 	} else {
2534 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2535 			/*
2536 			 * If this VM exit was not claimed by anybody then
2537 			 * treat it as a generic VMX exit.
2538 			 */
2539 			vmexit->exitcode = VM_EXITCODE_VMX;
2540 			vmexit->u.vmx.status = VM_SUCCESS;
2541 			vmexit->u.vmx.inst_type = 0;
2542 			vmexit->u.vmx.inst_error = 0;
2543 		} else {
2544 			/*
2545 			 * The exitcode and collateral have been populated.
2546 			 * The VM exit will be processed further in userland.
2547 			 */
2548 		}
2549 	}
2550 
2551 	SDT_PROBE4(vmm, vmx, exit, return,
2552 	    vmx, vcpu, vmexit, handled);
2553 	return (handled);
2554 }
2555 
2556 static void
2557 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2558 {
2559 
2560 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2561 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2562 	    vmxctx->inst_fail_status));
2563 
2564 	vmexit->inst_length = 0;
2565 	vmexit->exitcode = VM_EXITCODE_VMX;
2566 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2567 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2568 	vmexit->u.vmx.exit_reason = ~0;
2569 	vmexit->u.vmx.exit_qualification = ~0;
2570 
2571 	switch (rc) {
2572 	case VMX_VMRESUME_ERROR:
2573 	case VMX_VMLAUNCH_ERROR:
2574 	case VMX_INVEPT_ERROR:
2575 	case VMX_VMWRITE_ERROR:
2576 		vmexit->u.vmx.inst_type = rc;
2577 		break;
2578 	default:
2579 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2580 	}
2581 }
2582 
2583 /*
2584  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2585  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2586  * sufficient to simply vector to the NMI handler via a software interrupt.
2587  * However, this must be done before maskable interrupts are enabled
2588  * otherwise the "iret" issued by an interrupt handler will incorrectly
2589  * clear NMI blocking.
2590  */
2591 static __inline void
2592 vmx_exit_handle_possible_nmi(struct vm_exit *vmexit)
2593 {
2594 	ASSERT(!interrupts_enabled());
2595 
2596 	if (vmexit->u.vmx.exit_reason == EXIT_REASON_EXCEPTION) {
2597 		uint32_t intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2598 		ASSERT(intr_info & VMCS_INTR_VALID);
2599 
2600 		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2601 			ASSERT3U(intr_info & 0xff, ==, IDT_NMI);
2602 			vmm_call_trap(T_NMIFLT);
2603 		}
2604 	}
2605 }
2606 
2607 static __inline void
2608 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2609 {
2610 	uint64_t rflags;
2611 
2612 	/* Save host control debug registers. */
2613 	vmxctx->host_dr7 = rdr7();
2614 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2615 
2616 	/*
2617 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2618 	 * exceptions in the host based on the guest DRx values.  The
2619 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2620 	 */
2621 	load_dr7(0);
2622 	wrmsr(MSR_DEBUGCTLMSR, 0);
2623 
2624 	/*
2625 	 * Disable single stepping the kernel to avoid corrupting the
2626 	 * guest DR6.  A debugger might still be able to corrupt the
2627 	 * guest DR6 by setting a breakpoint after this point and then
2628 	 * single stepping.
2629 	 */
2630 	rflags = read_rflags();
2631 	vmxctx->host_tf = rflags & PSL_T;
2632 	write_rflags(rflags & ~PSL_T);
2633 
2634 	/* Save host debug registers. */
2635 	vmxctx->host_dr0 = rdr0();
2636 	vmxctx->host_dr1 = rdr1();
2637 	vmxctx->host_dr2 = rdr2();
2638 	vmxctx->host_dr3 = rdr3();
2639 	vmxctx->host_dr6 = rdr6();
2640 
2641 	/* Restore guest debug registers. */
2642 	load_dr0(vmxctx->guest_dr0);
2643 	load_dr1(vmxctx->guest_dr1);
2644 	load_dr2(vmxctx->guest_dr2);
2645 	load_dr3(vmxctx->guest_dr3);
2646 	load_dr6(vmxctx->guest_dr6);
2647 }
2648 
2649 static __inline void
2650 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2651 {
2652 
2653 	/* Save guest debug registers. */
2654 	vmxctx->guest_dr0 = rdr0();
2655 	vmxctx->guest_dr1 = rdr1();
2656 	vmxctx->guest_dr2 = rdr2();
2657 	vmxctx->guest_dr3 = rdr3();
2658 	vmxctx->guest_dr6 = rdr6();
2659 
2660 	/*
2661 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2662 	 * PSL_T last.
2663 	 */
2664 	load_dr0(vmxctx->host_dr0);
2665 	load_dr1(vmxctx->host_dr1);
2666 	load_dr2(vmxctx->host_dr2);
2667 	load_dr3(vmxctx->host_dr3);
2668 	load_dr6(vmxctx->host_dr6);
2669 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2670 	load_dr7(vmxctx->host_dr7);
2671 	write_rflags(read_rflags() | vmxctx->host_tf);
2672 }
2673 
2674 static int
2675 vmx_run(void *arg, int vcpu, uint64_t rip)
2676 {
2677 	int rc, handled, launched;
2678 	struct vmx *vmx;
2679 	struct vm *vm;
2680 	struct vmxctx *vmxctx;
2681 	uintptr_t vmcs_pa;
2682 	struct vm_exit *vmexit;
2683 	struct vlapic *vlapic;
2684 	uint32_t exit_reason;
2685 	bool tpr_shadow_active;
2686 	vm_client_t *vmc;
2687 
2688 	vmx = arg;
2689 	vm = vmx->vm;
2690 	vmcs_pa = vmx->vmcs_pa[vcpu];
2691 	vmxctx = &vmx->ctx[vcpu];
2692 	vlapic = vm_lapic(vm, vcpu);
2693 	vmexit = vm_exitinfo(vm, vcpu);
2694 	vmc = vm_get_vmclient(vm, vcpu);
2695 	launched = 0;
2696 	tpr_shadow_active = vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW) &&
2697 	    !vmx_cap_en(vmx, VMX_CAP_APICV) &&
2698 	    (vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0;
2699 
2700 	vmx_msr_guest_enter(vmx, vcpu);
2701 
2702 	vmcs_load(vmcs_pa);
2703 
2704 	VERIFY(vmx->vmcs_state[vcpu] == VS_NONE && curthread->t_preempt != 0);
2705 	vmx->vmcs_state[vcpu] = VS_LOADED;
2706 
2707 	/*
2708 	 * XXX
2709 	 * We do this every time because we may setup the virtual machine
2710 	 * from a different process than the one that actually runs it.
2711 	 *
2712 	 * If the life of a virtual machine was spent entirely in the context
2713 	 * of a single process we could do this once in vmx_vminit().
2714 	 */
2715 	vmcs_write(VMCS_HOST_CR3, rcr3());
2716 
2717 	vmcs_write(VMCS_GUEST_RIP, rip);
2718 	vmx_set_pcpu_defaults(vmx, vcpu);
2719 	do {
2720 		enum event_inject_state inject_state;
2721 		uint64_t eptgen;
2722 
2723 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2724 		    "%lx/%lx", __func__, vmcs_guest_rip(), rip));
2725 
2726 		handled = UNHANDLED;
2727 
2728 		/*
2729 		 * Perform initial event/exception/interrupt injection before
2730 		 * host CPU interrupts are disabled.
2731 		 */
2732 		inject_state = vmx_inject_events(vmx, vcpu, rip);
2733 
2734 		/*
2735 		 * Interrupts are disabled from this point on until the
2736 		 * guest starts executing. This is done for the following
2737 		 * reasons:
2738 		 *
2739 		 * If an AST is asserted on this thread after the check below,
2740 		 * then the IPI_AST notification will not be lost, because it
2741 		 * will cause a VM exit due to external interrupt as soon as
2742 		 * the guest state is loaded.
2743 		 *
2744 		 * A posted interrupt after vmx_inject_vlapic() will not be
2745 		 * "lost" because it will be held pending in the host APIC
2746 		 * because interrupts are disabled. The pending interrupt will
2747 		 * be recognized as soon as the guest state is loaded.
2748 		 *
2749 		 * The same reasoning applies to the IPI generated by vmspace
2750 		 * invalidation.
2751 		 */
2752 		disable_intr();
2753 
2754 		/*
2755 		 * If not precluded by existing events, inject any interrupt
2756 		 * pending on the vLAPIC.  As a lock-less operation, it is safe
2757 		 * (and prudent) to perform with host CPU interrupts disabled.
2758 		 */
2759 		if (inject_state == EIS_CAN_INJECT) {
2760 			inject_state = vmx_inject_vlapic(vmx, vcpu, vlapic);
2761 		}
2762 
2763 		/*
2764 		 * Check for vCPU bail-out conditions.  This must be done after
2765 		 * vmx_inject_events() to detect a triple-fault condition.
2766 		 */
2767 		if (vcpu_entry_bailout_checks(vmx->vm, vcpu, rip)) {
2768 			enable_intr();
2769 			break;
2770 		}
2771 
2772 		if (vcpu_run_state_pending(vm, vcpu)) {
2773 			enable_intr();
2774 			vm_exit_run_state(vmx->vm, vcpu, rip);
2775 			break;
2776 		}
2777 
2778 		/*
2779 		 * If subsequent activity queued events which require injection
2780 		 * handling, take another lap to handle them.
2781 		 */
2782 		if (vmx_inject_recheck(vmx, vcpu, inject_state)) {
2783 			enable_intr();
2784 			handled = HANDLED;
2785 			continue;
2786 		}
2787 
2788 		if ((rc = smt_acquire()) != 1) {
2789 			enable_intr();
2790 			vmexit->rip = rip;
2791 			vmexit->inst_length = 0;
2792 			if (rc == -1) {
2793 				vmexit->exitcode = VM_EXITCODE_HT;
2794 			} else {
2795 				vmexit->exitcode = VM_EXITCODE_BOGUS;
2796 				handled = HANDLED;
2797 			}
2798 			break;
2799 		}
2800 
2801 		/*
2802 		 * If this thread has gone off-cpu due to mutex operations
2803 		 * during vmx_run, the VMCS will have been unloaded, forcing a
2804 		 * re-VMLAUNCH as opposed to VMRESUME.
2805 		 */
2806 		launched = (vmx->vmcs_state[vcpu] & VS_LAUNCHED) != 0;
2807 		/*
2808 		 * Restoration of the GDT limit is taken care of by
2809 		 * vmx_savectx().  Since the maximum practical index for the
2810 		 * IDT is 255, restoring its limits from the post-VMX-exit
2811 		 * default of 0xffff is not a concern.
2812 		 *
2813 		 * Only 64-bit hypervisor callers are allowed, which forgoes
2814 		 * the need to restore any LDT descriptor.  Toss an error to
2815 		 * anyone attempting to break that rule.
2816 		 */
2817 		if (curproc->p_model != DATAMODEL_LP64) {
2818 			smt_release();
2819 			enable_intr();
2820 			bzero(vmexit, sizeof (*vmexit));
2821 			vmexit->rip = rip;
2822 			vmexit->exitcode = VM_EXITCODE_VMX;
2823 			vmexit->u.vmx.status = VM_FAIL_INVALID;
2824 			handled = UNHANDLED;
2825 			break;
2826 		}
2827 
2828 		if (tpr_shadow_active) {
2829 			vmx_tpr_shadow_enter(vlapic);
2830 		}
2831 
2832 		/*
2833 		 * Indicate activation of vmspace (EPT) table just prior to VMX
2834 		 * entry, checking for the necessity of an invept invalidation.
2835 		 */
2836 		eptgen = vmc_table_enter(vmc);
2837 		if (vmx->eptgen[curcpu] != eptgen) {
2838 			/*
2839 			 * VMspace generation does not match what was previously
2840 			 * used on this host CPU, so all mappings associated
2841 			 * with this EP4TA must be invalidated.
2842 			 */
2843 			invept(1, vmx->eptp);
2844 			vmx->eptgen[curcpu] = eptgen;
2845 		}
2846 
2847 		vmx_run_trace(vmx, vcpu);
2848 		vcpu_ustate_change(vm, vcpu, VU_RUN);
2849 		vmx_dr_enter_guest(vmxctx);
2850 
2851 		/* Perform VMX entry */
2852 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2853 
2854 		vmx_dr_leave_guest(vmxctx);
2855 		vcpu_ustate_change(vm, vcpu, VU_EMU_KERN);
2856 
2857 		vmx->vmcs_state[vcpu] |= VS_LAUNCHED;
2858 		smt_release();
2859 
2860 		if (tpr_shadow_active) {
2861 			vmx_tpr_shadow_exit(vlapic);
2862 		}
2863 
2864 		/* Collect some information for VM exit processing */
2865 		vmexit->rip = rip = vmcs_guest_rip();
2866 		vmexit->inst_length = vmexit_instruction_length();
2867 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2868 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2869 		/* Update 'nextrip' */
2870 		vmx->state[vcpu].nextrip = rip;
2871 
2872 		if (rc == VMX_GUEST_VMEXIT) {
2873 			vmx_exit_handle_possible_nmi(vmexit);
2874 		}
2875 		enable_intr();
2876 		vmc_table_exit(vmc);
2877 
2878 		if (rc == VMX_GUEST_VMEXIT) {
2879 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2880 		} else {
2881 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2882 		}
2883 		DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, rip,
2884 		    uint32_t, exit_reason);
2885 		rip = vmexit->rip;
2886 	} while (handled);
2887 
2888 	/* If a VM exit has been handled then the exitcode must be BOGUS */
2889 	if (handled && vmexit->exitcode != VM_EXITCODE_BOGUS) {
2890 		panic("Non-BOGUS exitcode (%d) unexpected for handled VM exit",
2891 		    vmexit->exitcode);
2892 	}
2893 
2894 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2895 	    vmexit->exitcode);
2896 
2897 	vmcs_clear(vmcs_pa);
2898 	vmx_msr_guest_exit(vmx, vcpu);
2899 
2900 	VERIFY(vmx->vmcs_state != VS_NONE && curthread->t_preempt != 0);
2901 	vmx->vmcs_state[vcpu] = VS_NONE;
2902 
2903 	return (0);
2904 }
2905 
2906 static void
2907 vmx_vmcleanup(void *arg)
2908 {
2909 	int i;
2910 	struct vmx *vmx = arg;
2911 	uint16_t maxcpus;
2912 
2913 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
2914 		(void) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2915 		kmem_free(vmx->apic_access_page, PAGESIZE);
2916 	} else {
2917 		VERIFY3P(vmx->apic_access_page, ==, NULL);
2918 	}
2919 
2920 	vmx_msr_bitmap_destroy(vmx);
2921 
2922 	maxcpus = vm_get_maxcpus(vmx->vm);
2923 	for (i = 0; i < maxcpus; i++)
2924 		vpid_free(vmx->state[i].vpid);
2925 
2926 	free(vmx, M_VMX);
2927 }
2928 
2929 static uint64_t *
2930 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2931 {
2932 	switch (reg) {
2933 	case VM_REG_GUEST_RAX:
2934 		return (&vmxctx->guest_rax);
2935 	case VM_REG_GUEST_RBX:
2936 		return (&vmxctx->guest_rbx);
2937 	case VM_REG_GUEST_RCX:
2938 		return (&vmxctx->guest_rcx);
2939 	case VM_REG_GUEST_RDX:
2940 		return (&vmxctx->guest_rdx);
2941 	case VM_REG_GUEST_RSI:
2942 		return (&vmxctx->guest_rsi);
2943 	case VM_REG_GUEST_RDI:
2944 		return (&vmxctx->guest_rdi);
2945 	case VM_REG_GUEST_RBP:
2946 		return (&vmxctx->guest_rbp);
2947 	case VM_REG_GUEST_R8:
2948 		return (&vmxctx->guest_r8);
2949 	case VM_REG_GUEST_R9:
2950 		return (&vmxctx->guest_r9);
2951 	case VM_REG_GUEST_R10:
2952 		return (&vmxctx->guest_r10);
2953 	case VM_REG_GUEST_R11:
2954 		return (&vmxctx->guest_r11);
2955 	case VM_REG_GUEST_R12:
2956 		return (&vmxctx->guest_r12);
2957 	case VM_REG_GUEST_R13:
2958 		return (&vmxctx->guest_r13);
2959 	case VM_REG_GUEST_R14:
2960 		return (&vmxctx->guest_r14);
2961 	case VM_REG_GUEST_R15:
2962 		return (&vmxctx->guest_r15);
2963 	case VM_REG_GUEST_CR2:
2964 		return (&vmxctx->guest_cr2);
2965 	case VM_REG_GUEST_DR0:
2966 		return (&vmxctx->guest_dr0);
2967 	case VM_REG_GUEST_DR1:
2968 		return (&vmxctx->guest_dr1);
2969 	case VM_REG_GUEST_DR2:
2970 		return (&vmxctx->guest_dr2);
2971 	case VM_REG_GUEST_DR3:
2972 		return (&vmxctx->guest_dr3);
2973 	case VM_REG_GUEST_DR6:
2974 		return (&vmxctx->guest_dr6);
2975 	default:
2976 		break;
2977 	}
2978 	return (NULL);
2979 }
2980 
2981 static int
2982 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2983 {
2984 	int running, hostcpu, err;
2985 	struct vmx *vmx = arg;
2986 	uint64_t *regp;
2987 
2988 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2989 	if (running && hostcpu != curcpu)
2990 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2991 
2992 	/* VMCS access not required for ctx reads */
2993 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
2994 		*retval = *regp;
2995 		return (0);
2996 	}
2997 
2998 	if (!running) {
2999 		vmcs_load(vmx->vmcs_pa[vcpu]);
3000 	}
3001 
3002 	err = 0;
3003 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3004 		uint64_t gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3005 		*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3006 	} else {
3007 		uint32_t encoding;
3008 
3009 		encoding = vmcs_field_encoding(reg);
3010 		switch (encoding) {
3011 		case VMCS_GUEST_CR0:
3012 			/* Take the shadow bits into account */
3013 			*retval = vmx_unshadow_cr0(vmcs_read(encoding),
3014 			    vmcs_read(VMCS_CR0_SHADOW));
3015 			break;
3016 		case VMCS_GUEST_CR4:
3017 			/* Take the shadow bits into account */
3018 			*retval = vmx_unshadow_cr4(vmcs_read(encoding),
3019 			    vmcs_read(VMCS_CR4_SHADOW));
3020 			break;
3021 		case VMCS_INVALID_ENCODING:
3022 			err = EINVAL;
3023 			break;
3024 		default:
3025 			*retval = vmcs_read(encoding);
3026 			break;
3027 		}
3028 	}
3029 
3030 	if (!running) {
3031 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3032 	}
3033 
3034 	return (err);
3035 }
3036 
3037 static int
3038 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3039 {
3040 	int running, hostcpu, error;
3041 	struct vmx *vmx = arg;
3042 	uint64_t *regp;
3043 
3044 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3045 	if (running && hostcpu != curcpu)
3046 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3047 
3048 	/* VMCS access not required for ctx writes */
3049 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3050 		*regp = val;
3051 		return (0);
3052 	}
3053 
3054 	if (!running) {
3055 		vmcs_load(vmx->vmcs_pa[vcpu]);
3056 	}
3057 
3058 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3059 		if (val != 0) {
3060 			/*
3061 			 * Forcing the vcpu into an interrupt shadow is not
3062 			 * presently supported.
3063 			 */
3064 			error = EINVAL;
3065 		} else {
3066 			uint64_t gi;
3067 
3068 			gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3069 			gi &= ~HWINTR_BLOCKING;
3070 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
3071 			error = 0;
3072 		}
3073 	} else {
3074 		uint32_t encoding;
3075 
3076 		error = 0;
3077 		encoding = vmcs_field_encoding(reg);
3078 		switch (encoding) {
3079 		case VMCS_GUEST_IA32_EFER:
3080 			/*
3081 			 * If the "load EFER" VM-entry control is 1 then the
3082 			 * value of EFER.LMA must be identical to "IA-32e mode
3083 			 * guest" bit in the VM-entry control.
3084 			 */
3085 			if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0) {
3086 				uint64_t ctls;
3087 
3088 				ctls = vmcs_read(VMCS_ENTRY_CTLS);
3089 				if (val & EFER_LMA) {
3090 					ctls |= VM_ENTRY_GUEST_LMA;
3091 				} else {
3092 					ctls &= ~VM_ENTRY_GUEST_LMA;
3093 				}
3094 				vmcs_write(VMCS_ENTRY_CTLS, ctls);
3095 			}
3096 			vmcs_write(encoding, val);
3097 			break;
3098 		case VMCS_GUEST_CR0:
3099 			/*
3100 			 * The guest is not allowed to modify certain bits in
3101 			 * %cr0 and %cr4.  To maintain the illusion of full
3102 			 * control, they have shadow versions which contain the
3103 			 * guest-perceived (via reads from the register) values
3104 			 * as opposed to the guest-effective values.
3105 			 *
3106 			 * This is detailed in the SDM: Vol. 3 Ch. 24.6.6.
3107 			 */
3108 			vmcs_write(VMCS_CR0_SHADOW, val);
3109 			vmcs_write(encoding, vmx_fix_cr0(val));
3110 			break;
3111 		case VMCS_GUEST_CR4:
3112 			/* See above for detail on %cr4 shadowing */
3113 			vmcs_write(VMCS_CR4_SHADOW, val);
3114 			vmcs_write(encoding, vmx_fix_cr4(val));
3115 			break;
3116 		case VMCS_GUEST_CR3:
3117 			vmcs_write(encoding, val);
3118 			/*
3119 			 * Invalidate the guest vcpu's TLB mappings to emulate
3120 			 * the behavior of updating %cr3.
3121 			 *
3122 			 * XXX the processor retains global mappings when %cr3
3123 			 * is updated but vmx_invvpid() does not.
3124 			 */
3125 			vmx_invvpid(vmx, vcpu, running);
3126 			break;
3127 		case VMCS_INVALID_ENCODING:
3128 			error = EINVAL;
3129 			break;
3130 		default:
3131 			vmcs_write(encoding, val);
3132 			break;
3133 		}
3134 	}
3135 
3136 	if (!running) {
3137 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3138 	}
3139 
3140 	return (error);
3141 }
3142 
3143 static int
3144 vmx_getdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3145 {
3146 	int hostcpu, running;
3147 	struct vmx *vmx = arg;
3148 	uint32_t base, limit, access;
3149 
3150 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3151 	if (running && hostcpu != curcpu)
3152 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3153 
3154 	if (!running) {
3155 		vmcs_load(vmx->vmcs_pa[vcpu]);
3156 	}
3157 
3158 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3159 	desc->base = vmcs_read(base);
3160 	desc->limit = vmcs_read(limit);
3161 	if (access != VMCS_INVALID_ENCODING) {
3162 		desc->access = vmcs_read(access);
3163 	} else {
3164 		desc->access = 0;
3165 	}
3166 
3167 	if (!running) {
3168 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3169 	}
3170 	return (0);
3171 }
3172 
3173 static int
3174 vmx_setdesc(void *arg, int vcpu, int seg, const struct seg_desc *desc)
3175 {
3176 	int hostcpu, running;
3177 	struct vmx *vmx = arg;
3178 	uint32_t base, limit, access;
3179 
3180 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3181 	if (running && hostcpu != curcpu)
3182 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3183 
3184 	if (!running) {
3185 		vmcs_load(vmx->vmcs_pa[vcpu]);
3186 	}
3187 
3188 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3189 	vmcs_write(base, desc->base);
3190 	vmcs_write(limit, desc->limit);
3191 	if (access != VMCS_INVALID_ENCODING) {
3192 		vmcs_write(access, desc->access);
3193 	}
3194 
3195 	if (!running) {
3196 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3197 	}
3198 	return (0);
3199 }
3200 
3201 static int
3202 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3203 {
3204 	struct vmx *vmx = arg;
3205 	int vcap;
3206 	int ret;
3207 
3208 	ret = ENOENT;
3209 
3210 	vcap = vmx->cap[vcpu].set;
3211 
3212 	switch (type) {
3213 	case VM_CAP_HALT_EXIT:
3214 		if (cap_halt_exit)
3215 			ret = 0;
3216 		break;
3217 	case VM_CAP_PAUSE_EXIT:
3218 		if (cap_pause_exit)
3219 			ret = 0;
3220 		break;
3221 	case VM_CAP_MTRAP_EXIT:
3222 		if (cap_monitor_trap)
3223 			ret = 0;
3224 		break;
3225 	case VM_CAP_ENABLE_INVPCID:
3226 		if (cap_invpcid)
3227 			ret = 0;
3228 		break;
3229 	case VM_CAP_BPT_EXIT:
3230 		ret = 0;
3231 		break;
3232 	default:
3233 		break;
3234 	}
3235 
3236 	if (ret == 0)
3237 		*retval = (vcap & (1 << type)) ? 1 : 0;
3238 
3239 	return (ret);
3240 }
3241 
3242 static int
3243 vmx_setcap(void *arg, int vcpu, int type, int val)
3244 {
3245 	struct vmx *vmx = arg;
3246 	uint32_t baseval, reg, flag;
3247 	uint32_t *pptr;
3248 	int error;
3249 
3250 	error = ENOENT;
3251 	pptr = NULL;
3252 
3253 	switch (type) {
3254 	case VM_CAP_HALT_EXIT:
3255 		if (cap_halt_exit) {
3256 			error = 0;
3257 			pptr = &vmx->cap[vcpu].proc_ctls;
3258 			baseval = *pptr;
3259 			flag = PROCBASED_HLT_EXITING;
3260 			reg = VMCS_PRI_PROC_BASED_CTLS;
3261 		}
3262 		break;
3263 	case VM_CAP_MTRAP_EXIT:
3264 		if (cap_monitor_trap) {
3265 			error = 0;
3266 			pptr = &vmx->cap[vcpu].proc_ctls;
3267 			baseval = *pptr;
3268 			flag = PROCBASED_MTF;
3269 			reg = VMCS_PRI_PROC_BASED_CTLS;
3270 		}
3271 		break;
3272 	case VM_CAP_PAUSE_EXIT:
3273 		if (cap_pause_exit) {
3274 			error = 0;
3275 			pptr = &vmx->cap[vcpu].proc_ctls;
3276 			baseval = *pptr;
3277 			flag = PROCBASED_PAUSE_EXITING;
3278 			reg = VMCS_PRI_PROC_BASED_CTLS;
3279 		}
3280 		break;
3281 	case VM_CAP_ENABLE_INVPCID:
3282 		if (cap_invpcid) {
3283 			error = 0;
3284 			pptr = &vmx->cap[vcpu].proc_ctls2;
3285 			baseval = *pptr;
3286 			flag = PROCBASED2_ENABLE_INVPCID;
3287 			reg = VMCS_SEC_PROC_BASED_CTLS;
3288 		}
3289 		break;
3290 	case VM_CAP_BPT_EXIT:
3291 		error = 0;
3292 
3293 		/* Don't change the bitmap if we are tracing all exceptions. */
3294 		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3295 			pptr = &vmx->cap[vcpu].exc_bitmap;
3296 			baseval = *pptr;
3297 			flag = (1 << IDT_BP);
3298 			reg = VMCS_EXCEPTION_BITMAP;
3299 		}
3300 		break;
3301 	default:
3302 		break;
3303 	}
3304 
3305 	if (error != 0) {
3306 		return (error);
3307 	}
3308 
3309 	if (pptr != NULL) {
3310 		if (val) {
3311 			baseval |= flag;
3312 		} else {
3313 			baseval &= ~flag;
3314 		}
3315 		vmcs_load(vmx->vmcs_pa[vcpu]);
3316 		vmcs_write(reg, baseval);
3317 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3318 
3319 		/*
3320 		 * Update optional stored flags, and record
3321 		 * setting
3322 		 */
3323 		*pptr = baseval;
3324 	}
3325 
3326 	if (val) {
3327 		vmx->cap[vcpu].set |= (1 << type);
3328 	} else {
3329 		vmx->cap[vcpu].set &= ~(1 << type);
3330 	}
3331 
3332 	return (0);
3333 }
3334 
3335 struct vlapic_vtx {
3336 	struct vlapic	vlapic;
3337 
3338 	/* Align to the nearest cacheline */
3339 	uint8_t		_pad[64 - (sizeof (struct vlapic) % 64)];
3340 
3341 	/* TMR handling state for posted interrupts */
3342 	uint32_t	tmr_active[8];
3343 	uint32_t	pending_level[8];
3344 	uint32_t	pending_edge[8];
3345 
3346 	struct pir_desc	*pir_desc;
3347 	struct vmx	*vmx;
3348 	uint_t	pending_prio;
3349 	boolean_t	tmr_sync;
3350 };
3351 
3352 CTASSERT((offsetof(struct vlapic_vtx, tmr_active) & 63) == 0);
3353 
3354 #define	VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3355 
3356 static vcpu_notify_t
3357 vmx_apicv_set_ready(struct vlapic *vlapic, int vector, bool level)
3358 {
3359 	struct vlapic_vtx *vlapic_vtx;
3360 	struct pir_desc *pir_desc;
3361 	uint32_t mask, tmrval;
3362 	int idx;
3363 	vcpu_notify_t notify = VCPU_NOTIFY_NONE;
3364 
3365 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3366 	pir_desc = vlapic_vtx->pir_desc;
3367 	idx = vector / 32;
3368 	mask = 1UL << (vector % 32);
3369 
3370 	/*
3371 	 * If the currently asserted TMRs do not match the state requested by
3372 	 * the incoming interrupt, an exit will be required to reconcile those
3373 	 * bits in the APIC page.  This will keep the vLAPIC behavior in line
3374 	 * with the architecturally defined expectations.
3375 	 *
3376 	 * If actors of mixed types (edge and level) are racing against the same
3377 	 * vector (toggling its TMR bit back and forth), the results could
3378 	 * inconsistent.  Such circumstances are considered a rare edge case and
3379 	 * are never expected to be found in the wild.
3380 	 */
3381 	tmrval = atomic_load_acq_int(&vlapic_vtx->tmr_active[idx]);
3382 	if (!level) {
3383 		if ((tmrval & mask) != 0) {
3384 			/* Edge-triggered interrupt needs TMR de-asserted */
3385 			atomic_set_int(&vlapic_vtx->pending_edge[idx], mask);
3386 			atomic_store_rel_long(&pir_desc->pending, 1);
3387 			return (VCPU_NOTIFY_EXIT);
3388 		}
3389 	} else {
3390 		if ((tmrval & mask) == 0) {
3391 			/* Level-triggered interrupt needs TMR asserted */
3392 			atomic_set_int(&vlapic_vtx->pending_level[idx], mask);
3393 			atomic_store_rel_long(&pir_desc->pending, 1);
3394 			return (VCPU_NOTIFY_EXIT);
3395 		}
3396 	}
3397 
3398 	/*
3399 	 * If the interrupt request does not require manipulation of the TMRs
3400 	 * for delivery, set it in PIR descriptor.  It cannot be inserted into
3401 	 * the APIC page while the vCPU might be running.
3402 	 */
3403 	atomic_set_int(&pir_desc->pir[idx], mask);
3404 
3405 	/*
3406 	 * A notification is required whenever the 'pending' bit makes a
3407 	 * transition from 0->1.
3408 	 *
3409 	 * Even if the 'pending' bit is already asserted, notification about
3410 	 * the incoming interrupt may still be necessary.  For example, if a
3411 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3412 	 * the 0->1 'pending' transition with a notification, but the vCPU
3413 	 * would ignore the interrupt for the time being.  The same vCPU would
3414 	 * need to then be notified if a high-priority interrupt arrived which
3415 	 * satisfied the PPR.
3416 	 *
3417 	 * The priorities of interrupts injected while 'pending' is asserted
3418 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3419 	 * to-be-injected interrupt exceed the priorities already present, the
3420 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3421 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3422 	 */
3423 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3424 		notify = VCPU_NOTIFY_APIC;
3425 		vlapic_vtx->pending_prio = 0;
3426 	} else {
3427 		const uint_t old_prio = vlapic_vtx->pending_prio;
3428 		const uint_t prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3429 
3430 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3431 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3432 			notify = VCPU_NOTIFY_APIC;
3433 		}
3434 	}
3435 
3436 	return (notify);
3437 }
3438 
3439 static void
3440 vmx_apicv_accepted(struct vlapic *vlapic, int vector)
3441 {
3442 	/*
3443 	 * When APICv is enabled for an instance, the traditional interrupt
3444 	 * injection method (populating ENTRY_INTR_INFO in the VMCS) is not
3445 	 * used and the CPU does the heavy lifting of virtual interrupt
3446 	 * delivery.  For that reason vmx_intr_accepted() should never be called
3447 	 * when APICv is enabled.
3448 	 */
3449 	panic("vmx_intr_accepted: not expected to be called");
3450 }
3451 
3452 static void
3453 vmx_apicv_sync_tmr(struct vlapic *vlapic)
3454 {
3455 	struct vlapic_vtx *vlapic_vtx;
3456 	const uint32_t *tmrs;
3457 
3458 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3459 	tmrs = &vlapic_vtx->tmr_active[0];
3460 
3461 	if (!vlapic_vtx->tmr_sync) {
3462 		return;
3463 	}
3464 
3465 	vmcs_write(VMCS_EOI_EXIT0, ((uint64_t)tmrs[1] << 32) | tmrs[0]);
3466 	vmcs_write(VMCS_EOI_EXIT1, ((uint64_t)tmrs[3] << 32) | tmrs[2]);
3467 	vmcs_write(VMCS_EOI_EXIT2, ((uint64_t)tmrs[5] << 32) | tmrs[4]);
3468 	vmcs_write(VMCS_EOI_EXIT3, ((uint64_t)tmrs[7] << 32) | tmrs[6]);
3469 	vlapic_vtx->tmr_sync = B_FALSE;
3470 }
3471 
3472 static void
3473 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3474 {
3475 	struct vmx *vmx;
3476 	uint32_t proc_ctls;
3477 	int vcpuid;
3478 
3479 	vcpuid = vlapic->vcpuid;
3480 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3481 
3482 	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3483 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3484 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3485 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3486 	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3487 
3488 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3489 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3490 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3491 }
3492 
3493 static void
3494 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3495 {
3496 	struct vmx *vmx;
3497 	uint32_t proc_ctls2;
3498 	int vcpuid;
3499 
3500 	vcpuid = vlapic->vcpuid;
3501 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3502 
3503 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3504 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3505 	    ("%s: invalid proc_ctls2 %x", __func__, proc_ctls2));
3506 
3507 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3508 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3509 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3510 
3511 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3512 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3513 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3514 
3515 	vmx_allow_x2apic_msrs(vmx, vcpuid);
3516 }
3517 
3518 static void
3519 vmx_apicv_notify(struct vlapic *vlapic, int hostcpu)
3520 {
3521 	psm_send_pir_ipi(hostcpu);
3522 }
3523 
3524 static void
3525 vmx_apicv_sync(struct vlapic *vlapic)
3526 {
3527 	struct vlapic_vtx *vlapic_vtx;
3528 	struct pir_desc *pir_desc;
3529 	struct LAPIC *lapic;
3530 	uint_t i;
3531 
3532 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3533 	pir_desc = vlapic_vtx->pir_desc;
3534 	lapic = vlapic->apic_page;
3535 
3536 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3537 		return;
3538 	}
3539 
3540 	vlapic_vtx->pending_prio = 0;
3541 
3542 	/* Make sure the invalid (0-15) vectors are not set */
3543 	ASSERT0(vlapic_vtx->pending_level[0] & 0xffff);
3544 	ASSERT0(vlapic_vtx->pending_edge[0] & 0xffff);
3545 	ASSERT0(pir_desc->pir[0] & 0xffff);
3546 
3547 	for (i = 0; i <= 7; i++) {
3548 		uint32_t *tmrp = &lapic->tmr0 + (i * 4);
3549 		uint32_t *irrp = &lapic->irr0 + (i * 4);
3550 
3551 		const uint32_t pending_level =
3552 		    atomic_readandclear_int(&vlapic_vtx->pending_level[i]);
3553 		const uint32_t pending_edge =
3554 		    atomic_readandclear_int(&vlapic_vtx->pending_edge[i]);
3555 		const uint32_t pending_inject =
3556 		    atomic_readandclear_int(&pir_desc->pir[i]);
3557 
3558 		if (pending_level != 0) {
3559 			/*
3560 			 * Level-triggered interrupts assert their corresponding
3561 			 * bit in the TMR when queued in IRR.
3562 			 */
3563 			*tmrp |= pending_level;
3564 			*irrp |= pending_level;
3565 		}
3566 		if (pending_edge != 0) {
3567 			/*
3568 			 * When queuing an edge-triggered interrupt in IRR, the
3569 			 * corresponding bit in the TMR is cleared.
3570 			 */
3571 			*tmrp &= ~pending_edge;
3572 			*irrp |= pending_edge;
3573 		}
3574 		if (pending_inject != 0) {
3575 			/*
3576 			 * Interrupts which do not require a change to the TMR
3577 			 * (because it already matches the necessary state) can
3578 			 * simply be queued in IRR.
3579 			 */
3580 			*irrp |= pending_inject;
3581 		}
3582 
3583 		if (*tmrp != vlapic_vtx->tmr_active[i]) {
3584 			/* Check if VMX EOI triggers require updating. */
3585 			vlapic_vtx->tmr_active[i] = *tmrp;
3586 			vlapic_vtx->tmr_sync = B_TRUE;
3587 		}
3588 	}
3589 }
3590 
3591 static void
3592 vmx_tpr_shadow_enter(struct vlapic *vlapic)
3593 {
3594 	/*
3595 	 * When TPR shadowing is enabled, VMX will initiate a guest exit if its
3596 	 * TPR falls below a threshold priority.  That threshold is set to the
3597 	 * current TPR priority, since guest interrupt status should be
3598 	 * re-evaluated if its TPR is set lower.
3599 	 */
3600 	vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3601 }
3602 
3603 static void
3604 vmx_tpr_shadow_exit(struct vlapic *vlapic)
3605 {
3606 	/*
3607 	 * Unlike full APICv, where changes to the TPR are reflected in the PPR,
3608 	 * with TPR shadowing, that duty is relegated to the VMM.  Upon exit,
3609 	 * the PPR is updated to reflect any change in the TPR here.
3610 	 */
3611 	vlapic_sync_tpr(vlapic);
3612 }
3613 
3614 static struct vlapic *
3615 vmx_vlapic_init(void *arg, int vcpuid)
3616 {
3617 	struct vmx *vmx;
3618 	struct vlapic *vlapic;
3619 	struct vlapic_vtx *vlapic_vtx;
3620 
3621 	vmx = arg;
3622 
3623 	vlapic = malloc(sizeof (struct vlapic_vtx), M_VLAPIC,
3624 	    M_WAITOK | M_ZERO);
3625 	vlapic->vm = vmx->vm;
3626 	vlapic->vcpuid = vcpuid;
3627 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3628 
3629 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3630 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3631 	vlapic_vtx->vmx = vmx;
3632 
3633 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
3634 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3635 	}
3636 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
3637 		vlapic->ops.set_intr_ready = vmx_apicv_set_ready;
3638 		vlapic->ops.sync_state = vmx_apicv_sync;
3639 		vlapic->ops.intr_accepted = vmx_apicv_accepted;
3640 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3641 
3642 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
3643 			vlapic->ops.post_intr = vmx_apicv_notify;
3644 		}
3645 	}
3646 
3647 	vlapic_init(vlapic);
3648 
3649 	return (vlapic);
3650 }
3651 
3652 static void
3653 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3654 {
3655 
3656 	vlapic_cleanup(vlapic);
3657 	free(vlapic, M_VLAPIC);
3658 }
3659 
3660 static void
3661 vmx_savectx(void *arg, int vcpu)
3662 {
3663 	struct vmx *vmx = arg;
3664 
3665 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3666 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3667 		vmx_msr_guest_exit(vmx, vcpu);
3668 		/*
3669 		 * Having VMCLEARed the VMCS, it can no longer be re-entered
3670 		 * with VMRESUME, but must be VMLAUNCHed again.
3671 		 */
3672 		vmx->vmcs_state[vcpu] &= ~VS_LAUNCHED;
3673 	}
3674 
3675 	reset_gdtr_limit();
3676 }
3677 
3678 static void
3679 vmx_restorectx(void *arg, int vcpu)
3680 {
3681 	struct vmx *vmx = arg;
3682 
3683 	ASSERT0(vmx->vmcs_state[vcpu] & VS_LAUNCHED);
3684 
3685 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3686 		vmx_msr_guest_enter(vmx, vcpu);
3687 		vmcs_load(vmx->vmcs_pa[vcpu]);
3688 	}
3689 }
3690 
3691 struct vmm_ops vmm_ops_intel = {
3692 	.init		= vmx_init,
3693 	.cleanup	= vmx_cleanup,
3694 	.resume		= vmx_restore,
3695 
3696 	.vminit		= vmx_vminit,
3697 	.vmrun		= vmx_run,
3698 	.vmcleanup	= vmx_vmcleanup,
3699 	.vmgetreg	= vmx_getreg,
3700 	.vmsetreg	= vmx_setreg,
3701 	.vmgetdesc	= vmx_getdesc,
3702 	.vmsetdesc	= vmx_setdesc,
3703 	.vmgetcap	= vmx_getcap,
3704 	.vmsetcap	= vmx_setcap,
3705 	.vlapic_init	= vmx_vlapic_init,
3706 	.vlapic_cleanup	= vmx_vlapic_cleanup,
3707 
3708 	.vmsavectx	= vmx_savectx,
3709 	.vmrestorectx	= vmx_restorectx,
3710 };
3711 
3712 /* Side-effect free HW validation derived from checks in vmx_init. */
3713 int
3714 vmx_x86_supported(const char **msg)
3715 {
3716 	int error;
3717 	uint32_t tmp;
3718 
3719 	ASSERT(msg != NULL);
3720 
3721 	/* Check support for primary processor-based VM-execution controls */
3722 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
3723 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING,
3724 	    PROCBASED_CTLS_ZERO_SETTING, &tmp);
3725 	if (error) {
3726 		*msg = "processor does not support desired primary "
3727 		    "processor-based controls";
3728 		return (error);
3729 	}
3730 
3731 	/* Check support for secondary processor-based VM-execution controls */
3732 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
3733 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING,
3734 	    PROCBASED_CTLS2_ZERO_SETTING, &tmp);
3735 	if (error) {
3736 		*msg = "processor does not support desired secondary "
3737 		    "processor-based controls";
3738 		return (error);
3739 	}
3740 
3741 	/* Check support for pin-based VM-execution controls */
3742 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
3743 	    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING,
3744 	    PINBASED_CTLS_ZERO_SETTING, &tmp);
3745 	if (error) {
3746 		*msg = "processor does not support desired pin-based controls";
3747 		return (error);
3748 	}
3749 
3750 	/* Check support for VM-exit controls */
3751 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
3752 	    VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &tmp);
3753 	if (error) {
3754 		*msg = "processor does not support desired exit controls";
3755 		return (error);
3756 	}
3757 
3758 	/* Check support for VM-entry controls */
3759 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
3760 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &tmp);
3761 	if (error) {
3762 		*msg = "processor does not support desired entry controls";
3763 		return (error);
3764 	}
3765 
3766 	/* Unrestricted guest is nominally optional, but not for us. */
3767 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
3768 	    PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp);
3769 	if (error) {
3770 		*msg = "processor does not support desired unrestricted guest "
3771 		    "controls";
3772 		return (error);
3773 	}
3774 
3775 	return (0);
3776 }
3777