xref: /illumos-gate/usr/src/uts/intel/io/vmm/intel/vmx.c (revision 8130f8e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 /*
32  * This file and its contents are supplied under the terms of the
33  * Common Development and Distribution License ("CDDL"), version 1.0.
34  * You may only use this file in accordance with the terms of version
35  * 1.0 of the CDDL.
36  *
37  * A full copy of the text of the CDDL should have accompanied this
38  * source.  A copy of the CDDL is also available via the Internet at
39  * http://www.illumos.org/license/CDDL.
40  *
41  * Copyright 2015 Pluribus Networks Inc.
42  * Copyright 2018 Joyent, Inc.
43  * Copyright 2022 Oxide Computer Company
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/kernel.h>
52 #include <sys/kmem.h>
53 #include <sys/pcpu.h>
54 #include <sys/proc.h>
55 #include <sys/sysctl.h>
56 
57 #include <sys/x86_archext.h>
58 #include <sys/smp_impldefs.h>
59 #include <sys/smt.h>
60 #include <sys/hma.h>
61 #include <sys/trap.h>
62 #include <sys/archsystm.h>
63 
64 #include <machine/psl.h>
65 #include <machine/cpufunc.h>
66 #include <machine/md_var.h>
67 #include <machine/reg.h>
68 #include <machine/segments.h>
69 #include <machine/specialreg.h>
70 #include <machine/vmparam.h>
71 #include <sys/vmm_vm.h>
72 #include <sys/vmm_kernel.h>
73 
74 #include <machine/vmm.h>
75 #include <machine/vmm_dev.h>
76 #include <sys/vmm_instruction_emul.h>
77 #include "vmm_lapic.h"
78 #include "vmm_host.h"
79 #include "vmm_ioport.h"
80 #include "vmm_stat.h"
81 #include "vatpic.h"
82 #include "vlapic.h"
83 #include "vlapic_priv.h"
84 
85 #include "vmcs.h"
86 #include "vmx.h"
87 #include "vmx_msr.h"
88 #include "x86.h"
89 #include "vmx_controls.h"
90 
91 #define	PINBASED_CTLS_ONE_SETTING					\
92 	(PINBASED_EXTINT_EXITING	|				\
93 	PINBASED_NMI_EXITING		|				\
94 	PINBASED_VIRTUAL_NMI)
95 #define	PINBASED_CTLS_ZERO_SETTING	0
96 
97 #define	PROCBASED_CTLS_WINDOW_SETTING					\
98 	(PROCBASED_INT_WINDOW_EXITING	|				\
99 	PROCBASED_NMI_WINDOW_EXITING)
100 
101 /* We consider TSC offset a necessity for unsynched TSC handling */
102 #define	PROCBASED_CTLS_ONE_SETTING					\
103 	(PROCBASED_SECONDARY_CONTROLS	|				\
104 	PROCBASED_TSC_OFFSET		|				\
105 	PROCBASED_MWAIT_EXITING		|				\
106 	PROCBASED_MONITOR_EXITING	|				\
107 	PROCBASED_IO_EXITING		|				\
108 	PROCBASED_MSR_BITMAPS		|				\
109 	PROCBASED_CTLS_WINDOW_SETTING	|				\
110 	PROCBASED_CR8_LOAD_EXITING	|				\
111 	PROCBASED_CR8_STORE_EXITING)
112 
113 #define	PROCBASED_CTLS_ZERO_SETTING	\
114 	(PROCBASED_CR3_LOAD_EXITING |	\
115 	PROCBASED_CR3_STORE_EXITING |	\
116 	PROCBASED_IO_BITMAPS)
117 
118 /*
119  * EPT and Unrestricted Guest are considered necessities.  The latter is not a
120  * requirement on FreeBSD, where grub2-bhyve is used to load guests directly
121  * without a bootrom starting in real mode.
122  */
123 #define	PROCBASED_CTLS2_ONE_SETTING		\
124 	(PROCBASED2_ENABLE_EPT |		\
125 	PROCBASED2_UNRESTRICTED_GUEST)
126 #define	PROCBASED_CTLS2_ZERO_SETTING	0
127 
128 #define	VM_EXIT_CTLS_ONE_SETTING					\
129 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
130 	VM_EXIT_HOST_LMA			|			\
131 	VM_EXIT_LOAD_PAT			|			\
132 	VM_EXIT_SAVE_EFER			|			\
133 	VM_EXIT_LOAD_EFER			|			\
134 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
135 
136 #define	VM_EXIT_CTLS_ZERO_SETTING	0
137 
138 #define	VM_ENTRY_CTLS_ONE_SETTING					\
139 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
140 	VM_ENTRY_LOAD_EFER)
141 
142 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
143 	(VM_ENTRY_INTO_SMM			|			\
144 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
145 
146 /*
147  * Cover the EPT capabilities used by bhyve at present:
148  * - 4-level page walks
149  * - write-back memory type
150  * - INVEPT operations (all types)
151  * - INVVPID operations (single-context only)
152  */
153 #define	EPT_CAPS_REQUIRED			\
154 	(IA32_VMX_EPT_VPID_PWL4 |		\
155 	IA32_VMX_EPT_VPID_TYPE_WB |		\
156 	IA32_VMX_EPT_VPID_INVEPT |		\
157 	IA32_VMX_EPT_VPID_INVEPT_SINGLE |	\
158 	IA32_VMX_EPT_VPID_INVEPT_ALL |		\
159 	IA32_VMX_EPT_VPID_INVVPID |		\
160 	IA32_VMX_EPT_VPID_INVVPID_SINGLE)
161 
162 #define	HANDLED		1
163 #define	UNHANDLED	0
164 
165 SYSCTL_DECL(_hw_vmm);
166 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
167     NULL);
168 
169 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
170 static uint32_t exit_ctls, entry_ctls;
171 
172 static uint64_t cr0_ones_mask, cr0_zeros_mask;
173 
174 static uint64_t cr4_ones_mask, cr4_zeros_mask;
175 
176 static int vmx_initialized;
177 
178 /* Do not flush RSB upon vmexit */
179 static int no_flush_rsb;
180 
181 /*
182  * Optional capabilities
183  */
184 
185 /* HLT triggers a VM-exit */
186 static int cap_halt_exit;
187 
188 /* PAUSE triggers a VM-exit */
189 static int cap_pause_exit;
190 
191 /* Monitor trap flag */
192 static int cap_monitor_trap;
193 
194 /* Guests are allowed to use INVPCID */
195 static int cap_invpcid;
196 
197 /* Extra capabilities (VMX_CAP_*) beyond the minimum */
198 static enum vmx_caps vmx_capabilities;
199 
200 /* APICv posted interrupt vector */
201 static int pirvec = -1;
202 
203 static uint_t vpid_alloc_failed;
204 
205 int guest_l1d_flush;
206 int guest_l1d_flush_sw;
207 
208 /* MSR save region is composed of an array of 'struct msr_entry' */
209 struct msr_entry {
210 	uint32_t	index;
211 	uint32_t	reserved;
212 	uint64_t	val;
213 };
214 
215 static struct msr_entry msr_load_list[1] __aligned(16);
216 
217 /*
218  * The definitions of SDT probes for VMX.
219  */
220 
221 /* BEGIN CSTYLED */
222 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
223     "struct vmx *", "int", "struct vm_exit *");
224 
225 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
226     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
227 
228 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
229     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
230 
231 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
232     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
233 
234 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
235     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
236 
237 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
238     "struct vmx *", "int", "struct vm_exit *");
239 
240 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
241     "struct vmx *", "int", "struct vm_exit *");
242 
243 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
244     "struct vmx *", "int", "struct vm_exit *");
245 
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
247     "struct vmx *", "int", "struct vm_exit *");
248 
249 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
250     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
251 
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
253     "struct vmx *", "int", "struct vm_exit *");
254 
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
256     "struct vmx *", "int", "struct vm_exit *");
257 
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
259     "struct vmx *", "int", "struct vm_exit *");
260 
261 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
262     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
263 
264 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
265     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
266 
267 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
268     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
269 
270 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
271     "struct vmx *", "int", "struct vm_exit *");
272 
273 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
274     "struct vmx *", "int", "struct vm_exit *");
275 
276 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
277     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
278 
279 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
280     "struct vmx *", "int", "struct vm_exit *");
281 
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
283     "struct vmx *", "int", "struct vm_exit *");
284 
285 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
286     "struct vmx *", "int", "struct vm_exit *");
287 
288 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
289     "struct vmx *", "int", "struct vm_exit *");
290 
291 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
292     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
293 
294 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
295     "struct vmx *", "int", "struct vm_exit *", "int");
296 /* END CSTYLED */
297 
298 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
299 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
300 static void vmx_apply_tsc_adjust(struct vmx *, int);
301 static void vmx_apicv_sync_tmr(struct vlapic *vlapic);
302 static void vmx_tpr_shadow_enter(struct vlapic *vlapic);
303 static void vmx_tpr_shadow_exit(struct vlapic *vlapic);
304 
305 static void
306 vmx_allow_x2apic_msrs(struct vmx *vmx, int vcpuid)
307 {
308 	/*
309 	 * Allow readonly access to the following x2APIC MSRs from the guest.
310 	 */
311 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ID);
312 	guest_msr_ro(vmx, vcpuid, MSR_APIC_VERSION);
313 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LDR);
314 	guest_msr_ro(vmx, vcpuid, MSR_APIC_SVR);
315 
316 	for (uint_t i = 0; i < 8; i++) {
317 		guest_msr_ro(vmx, vcpuid, MSR_APIC_ISR0 + i);
318 		guest_msr_ro(vmx, vcpuid, MSR_APIC_TMR0 + i);
319 		guest_msr_ro(vmx, vcpuid, MSR_APIC_IRR0 + i);
320 	}
321 
322 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ESR);
323 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_TIMER);
324 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_THERMAL);
325 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_PCINT);
326 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT0);
327 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT1);
328 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_ERROR);
329 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR_TIMER);
330 	guest_msr_ro(vmx, vcpuid, MSR_APIC_DCR_TIMER);
331 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR);
332 
333 	/*
334 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
335 	 *
336 	 * These registers get special treatment described in the section
337 	 * "Virtualizing MSR-Based APIC Accesses".
338 	 */
339 	guest_msr_rw(vmx, vcpuid, MSR_APIC_TPR);
340 	guest_msr_rw(vmx, vcpuid, MSR_APIC_EOI);
341 	guest_msr_rw(vmx, vcpuid, MSR_APIC_SELF_IPI);
342 }
343 
344 static ulong_t
345 vmx_fix_cr0(ulong_t cr0)
346 {
347 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
348 }
349 
350 /*
351  * Given a live (VMCS-active) cr0 value, and its shadow counterpart, calculate
352  * the value observable from the guest.
353  */
354 static ulong_t
355 vmx_unshadow_cr0(uint64_t cr0, uint64_t shadow)
356 {
357 	return ((cr0 & ~cr0_ones_mask) |
358 	    (shadow & (cr0_zeros_mask | cr0_ones_mask)));
359 }
360 
361 static ulong_t
362 vmx_fix_cr4(ulong_t cr4)
363 {
364 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
365 }
366 
367 /*
368  * Given a live (VMCS-active) cr4 value, and its shadow counterpart, calculate
369  * the value observable from the guest.
370  */
371 static ulong_t
372 vmx_unshadow_cr4(uint64_t cr4, uint64_t shadow)
373 {
374 	return ((cr4 & ~cr4_ones_mask) |
375 	    (shadow & (cr4_zeros_mask | cr4_ones_mask)));
376 }
377 
378 static void
379 vpid_free(int vpid)
380 {
381 	if (vpid < 0 || vpid > 0xffff)
382 		panic("vpid_free: invalid vpid %d", vpid);
383 
384 	/*
385 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
386 	 * the unit number allocator.
387 	 */
388 
389 	if (vpid > VM_MAXCPU)
390 		hma_vmx_vpid_free((uint16_t)vpid);
391 }
392 
393 static void
394 vpid_alloc(uint16_t *vpid, int num)
395 {
396 	int i, x;
397 
398 	if (num <= 0 || num > VM_MAXCPU)
399 		panic("invalid number of vpids requested: %d", num);
400 
401 	/*
402 	 * If the "enable vpid" execution control is not enabled then the
403 	 * VPID is required to be 0 for all vcpus.
404 	 */
405 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
406 		for (i = 0; i < num; i++)
407 			vpid[i] = 0;
408 		return;
409 	}
410 
411 	/*
412 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
413 	 */
414 	for (i = 0; i < num; i++) {
415 		uint16_t tmp;
416 
417 		tmp = hma_vmx_vpid_alloc();
418 		x = (tmp == 0) ? -1 : tmp;
419 
420 		if (x == -1)
421 			break;
422 		else
423 			vpid[i] = x;
424 	}
425 
426 	if (i < num) {
427 		atomic_add_int(&vpid_alloc_failed, 1);
428 
429 		/*
430 		 * If the unit number allocator does not have enough unique
431 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
432 		 *
433 		 * These VPIDs are not be unique across VMs but this does not
434 		 * affect correctness because the combined mappings are also
435 		 * tagged with the EP4TA which is unique for each VM.
436 		 *
437 		 * It is still sub-optimal because the invvpid will invalidate
438 		 * combined mappings for a particular VPID across all EP4TAs.
439 		 */
440 		while (i-- > 0)
441 			vpid_free(vpid[i]);
442 
443 		for (i = 0; i < num; i++)
444 			vpid[i] = i + 1;
445 	}
446 }
447 
448 static int
449 vmx_cleanup(void)
450 {
451 	/* This is taken care of by the hma registration */
452 	return (0);
453 }
454 
455 static void
456 vmx_restore(void)
457 {
458 	/* No-op on illumos */
459 }
460 
461 static int
462 vmx_init(void)
463 {
464 	int error;
465 	uint64_t fixed0, fixed1;
466 	uint32_t tmp;
467 	enum vmx_caps avail_caps = VMX_CAP_NONE;
468 
469 	/* Check support for primary processor-based VM-execution controls */
470 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
471 	    MSR_VMX_TRUE_PROCBASED_CTLS,
472 	    PROCBASED_CTLS_ONE_SETTING,
473 	    PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
474 	if (error) {
475 		printf("vmx_init: processor does not support desired primary "
476 		    "processor-based controls\n");
477 		return (error);
478 	}
479 
480 	/* Clear the processor-based ctl bits that are set on demand */
481 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
482 
483 	/* Check support for secondary processor-based VM-execution controls */
484 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
485 	    MSR_VMX_PROCBASED_CTLS2,
486 	    PROCBASED_CTLS2_ONE_SETTING,
487 	    PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
488 	if (error) {
489 		printf("vmx_init: processor does not support desired secondary "
490 		    "processor-based controls\n");
491 		return (error);
492 	}
493 
494 	/* Check support for VPID */
495 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
496 	    MSR_VMX_PROCBASED_CTLS2,
497 	    PROCBASED2_ENABLE_VPID,
498 	    0, &tmp);
499 	if (error == 0)
500 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
501 
502 	/* Check support for pin-based VM-execution controls */
503 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
504 	    MSR_VMX_TRUE_PINBASED_CTLS,
505 	    PINBASED_CTLS_ONE_SETTING,
506 	    PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
507 	if (error) {
508 		printf("vmx_init: processor does not support desired "
509 		    "pin-based controls\n");
510 		return (error);
511 	}
512 
513 	/* Check support for VM-exit controls */
514 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
515 	    VM_EXIT_CTLS_ONE_SETTING,
516 	    VM_EXIT_CTLS_ZERO_SETTING,
517 	    &exit_ctls);
518 	if (error) {
519 		printf("vmx_init: processor does not support desired "
520 		    "exit controls\n");
521 		return (error);
522 	}
523 
524 	/* Check support for VM-entry controls */
525 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
526 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
527 	    &entry_ctls);
528 	if (error) {
529 		printf("vmx_init: processor does not support desired "
530 		    "entry controls\n");
531 		return (error);
532 	}
533 
534 	/*
535 	 * Check support for optional features by testing them
536 	 * as individual bits
537 	 */
538 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
539 	    MSR_VMX_TRUE_PROCBASED_CTLS,
540 	    PROCBASED_HLT_EXITING, 0,
541 	    &tmp) == 0);
542 
543 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
544 	    MSR_VMX_PROCBASED_CTLS,
545 	    PROCBASED_MTF, 0,
546 	    &tmp) == 0);
547 
548 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
549 	    MSR_VMX_TRUE_PROCBASED_CTLS,
550 	    PROCBASED_PAUSE_EXITING, 0,
551 	    &tmp) == 0);
552 
553 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
554 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
555 	    &tmp) == 0);
556 
557 	/*
558 	 * Check for APIC virtualization capabilities:
559 	 * - TPR shadowing
560 	 * - Full APICv (with or without x2APIC support)
561 	 * - Posted interrupt handling
562 	 */
563 	if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS,
564 	    PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0) {
565 		avail_caps |= VMX_CAP_TPR_SHADOW;
566 
567 		const uint32_t apicv_bits =
568 		    PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
569 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
570 		    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
571 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY;
572 		if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
573 		    MSR_VMX_PROCBASED_CTLS2, apicv_bits, 0, &tmp) == 0) {
574 			avail_caps |= VMX_CAP_APICV;
575 
576 			/*
577 			 * It may make sense in the future to differentiate
578 			 * hardware (or software) configurations with APICv but
579 			 * no support for accelerating x2APIC mode.
580 			 */
581 			avail_caps |= VMX_CAP_APICV_X2APIC;
582 
583 			error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
584 			    MSR_VMX_TRUE_PINBASED_CTLS,
585 			    PINBASED_POSTED_INTERRUPT, 0, &tmp);
586 			if (error == 0) {
587 				/*
588 				 * If the PSM-provided interfaces for requesting
589 				 * and using a PIR IPI vector are present, use
590 				 * them for posted interrupts.
591 				 */
592 				if (psm_get_pir_ipivect != NULL &&
593 				    psm_send_pir_ipi != NULL) {
594 					pirvec = psm_get_pir_ipivect();
595 					avail_caps |= VMX_CAP_APICV_PIR;
596 				}
597 			}
598 		}
599 	}
600 
601 	/*
602 	 * Check for necessary EPT capabilities
603 	 *
604 	 * TODO: Properly handle when IA32_VMX_EPT_VPID_HW_AD is missing and the
605 	 * hypervisor intends to utilize dirty page tracking.
606 	 */
607 	uint64_t ept_caps = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
608 	if ((ept_caps & EPT_CAPS_REQUIRED) != EPT_CAPS_REQUIRED) {
609 		cmn_err(CE_WARN, "!Inadequate EPT capabilities: %lx", ept_caps);
610 		return (EINVAL);
611 	}
612 
613 #ifdef __FreeBSD__
614 	guest_l1d_flush = (cpu_ia32_arch_caps &
615 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
616 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
617 
618 	/*
619 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
620 	 * available.  Otherwise fall back to the software flush
621 	 * method which loads enough data from the kernel text to
622 	 * flush existing L1D content, both on VMX entry and on NMI
623 	 * return.
624 	 */
625 	if (guest_l1d_flush) {
626 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
627 			guest_l1d_flush_sw = 1;
628 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
629 			    &guest_l1d_flush_sw);
630 		}
631 		if (guest_l1d_flush_sw) {
632 			if (nmi_flush_l1d_sw <= 1)
633 				nmi_flush_l1d_sw = 1;
634 		} else {
635 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
636 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
637 		}
638 	}
639 #else
640 	/* L1D flushing is taken care of by smt_acquire() and friends */
641 	guest_l1d_flush = 0;
642 #endif /* __FreeBSD__ */
643 
644 	/*
645 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
646 	 */
647 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
648 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
649 	cr0_ones_mask = fixed0 & fixed1;
650 	cr0_zeros_mask = ~fixed0 & ~fixed1;
651 
652 	/*
653 	 * Since Unrestricted Guest was already verified present, CR0_PE and
654 	 * CR0_PG are allowed to be set to zero in VMX non-root operation
655 	 */
656 	cr0_ones_mask &= ~(CR0_PG | CR0_PE);
657 
658 	/*
659 	 * Do not allow the guest to set CR0_NW or CR0_CD.
660 	 */
661 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
662 
663 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
664 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
665 	cr4_ones_mask = fixed0 & fixed1;
666 	cr4_zeros_mask = ~fixed0 & ~fixed1;
667 
668 	vmx_msr_init();
669 
670 	vmx_capabilities = avail_caps;
671 	vmx_initialized = 1;
672 
673 	return (0);
674 }
675 
676 static void
677 vmx_trigger_hostintr(int vector)
678 {
679 	VERIFY(vector >= 32 && vector <= 255);
680 	vmx_call_isr(vector - 32);
681 }
682 
683 static void *
684 vmx_vminit(struct vm *vm)
685 {
686 	uint16_t vpid[VM_MAXCPU];
687 	int i, error, datasel;
688 	struct vmx *vmx;
689 	uint32_t exc_bitmap;
690 	uint16_t maxcpus;
691 	uint32_t proc_ctls, proc2_ctls, pin_ctls;
692 	uint64_t apic_access_pa = UINT64_MAX;
693 
694 	vmx = kmem_zalloc(sizeof (struct vmx), KM_SLEEP);
695 	VERIFY3U((uintptr_t)vmx & PAGE_MASK, ==, 0);
696 
697 	vmx->vm = vm;
698 	vmx->eptp = vmspace_table_root(vm_get_vmspace(vm));
699 
700 	/*
701 	 * Clean up EP4TA-tagged guest-physical and combined mappings
702 	 *
703 	 * VMX transitions are not required to invalidate any guest physical
704 	 * mappings. So, it may be possible for stale guest physical mappings
705 	 * to be present in the processor TLBs.
706 	 *
707 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
708 	 */
709 	hma_vmx_invept_allcpus((uintptr_t)vmx->eptp);
710 
711 	vmx_msr_bitmap_initialize(vmx);
712 
713 	vpid_alloc(vpid, VM_MAXCPU);
714 
715 	/* Grab the established defaults */
716 	proc_ctls = procbased_ctls;
717 	proc2_ctls = procbased_ctls2;
718 	pin_ctls = pinbased_ctls;
719 	/* For now, default to the available capabilities */
720 	vmx->vmx_caps = vmx_capabilities;
721 
722 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
723 		proc_ctls |= PROCBASED_USE_TPR_SHADOW;
724 		proc_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
725 		proc_ctls &= ~PROCBASED_CR8_STORE_EXITING;
726 	}
727 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
728 		ASSERT(vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW));
729 
730 		proc2_ctls |= (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
731 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
732 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
733 
734 		/*
735 		 * Allocate a page of memory to back the APIC access address for
736 		 * when APICv features are in use.  Guest MMIO accesses should
737 		 * never actually reach this page, but rather be intercepted.
738 		 */
739 		vmx->apic_access_page = kmem_zalloc(PAGESIZE, KM_SLEEP);
740 		VERIFY3U((uintptr_t)vmx->apic_access_page & PAGEOFFSET, ==, 0);
741 		apic_access_pa = vtophys(vmx->apic_access_page);
742 
743 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
744 		    apic_access_pa);
745 		/* XXX this should really return an error to the caller */
746 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
747 	}
748 	if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
749 		ASSERT(vmx_cap_en(vmx, VMX_CAP_APICV));
750 
751 		pin_ctls |= PINBASED_POSTED_INTERRUPT;
752 	}
753 
754 	maxcpus = vm_get_maxcpus(vm);
755 	datasel = vmm_get_host_datasel();
756 	for (i = 0; i < maxcpus; i++) {
757 		/*
758 		 * Cache physical address lookups for various components which
759 		 * may be required inside the critical_enter() section implied
760 		 * by VMPTRLD() below.
761 		 */
762 		vm_paddr_t msr_bitmap_pa = vtophys(vmx->msr_bitmap[i]);
763 		vm_paddr_t apic_page_pa = vtophys(&vmx->apic_page[i]);
764 		vm_paddr_t pir_desc_pa = vtophys(&vmx->pir_desc[i]);
765 
766 		vmx->vmcs_pa[i] = (uintptr_t)vtophys(&vmx->vmcs[i]);
767 		vmcs_initialize(&vmx->vmcs[i], vmx->vmcs_pa[i]);
768 
769 		vmx_msr_guest_init(vmx, i);
770 
771 		vmcs_load(vmx->vmcs_pa[i]);
772 
773 		vmcs_write(VMCS_HOST_IA32_PAT, vmm_get_host_pat());
774 		vmcs_write(VMCS_HOST_IA32_EFER, vmm_get_host_efer());
775 
776 		/* Load the control registers */
777 		vmcs_write(VMCS_HOST_CR0, vmm_get_host_cr0());
778 		vmcs_write(VMCS_HOST_CR4, vmm_get_host_cr4() | CR4_VMXE);
779 
780 		/* Load the segment selectors */
781 		vmcs_write(VMCS_HOST_CS_SELECTOR, vmm_get_host_codesel());
782 
783 		vmcs_write(VMCS_HOST_ES_SELECTOR, datasel);
784 		vmcs_write(VMCS_HOST_SS_SELECTOR, datasel);
785 		vmcs_write(VMCS_HOST_DS_SELECTOR, datasel);
786 
787 		vmcs_write(VMCS_HOST_FS_SELECTOR, vmm_get_host_fssel());
788 		vmcs_write(VMCS_HOST_GS_SELECTOR, vmm_get_host_gssel());
789 		vmcs_write(VMCS_HOST_TR_SELECTOR, vmm_get_host_tsssel());
790 
791 		/*
792 		 * Configure host sysenter MSRs to be restored on VM exit.
793 		 * The thread-specific MSR_INTC_SEP_ESP value is loaded in
794 		 * vmx_run.
795 		 */
796 		vmcs_write(VMCS_HOST_IA32_SYSENTER_CS, KCS_SEL);
797 		vmcs_write(VMCS_HOST_IA32_SYSENTER_EIP,
798 		    rdmsr(MSR_SYSENTER_EIP_MSR));
799 
800 		/* instruction pointer */
801 		if (no_flush_rsb) {
802 			vmcs_write(VMCS_HOST_RIP, (uint64_t)vmx_exit_guest);
803 		} else {
804 			vmcs_write(VMCS_HOST_RIP,
805 			    (uint64_t)vmx_exit_guest_flush_rsb);
806 		}
807 
808 		/* link pointer */
809 		vmcs_write(VMCS_LINK_POINTER, ~0);
810 
811 		vmcs_write(VMCS_EPTP, vmx->eptp);
812 		vmcs_write(VMCS_PIN_BASED_CTLS, pin_ctls);
813 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
814 		vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc2_ctls);
815 		vmcs_write(VMCS_EXIT_CTLS, exit_ctls);
816 		vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
817 		vmcs_write(VMCS_MSR_BITMAP, msr_bitmap_pa);
818 		vmcs_write(VMCS_VPID, vpid[i]);
819 
820 		if (guest_l1d_flush && !guest_l1d_flush_sw) {
821 			vmcs_write(VMCS_ENTRY_MSR_LOAD,
822 			    vtophys(&msr_load_list[0]));
823 			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
824 			    nitems(msr_load_list));
825 			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
826 			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
827 		}
828 
829 		/* exception bitmap */
830 		if (vcpu_trace_exceptions(vm, i))
831 			exc_bitmap = 0xffffffff;
832 		else
833 			exc_bitmap = 1 << IDT_MC;
834 		vmcs_write(VMCS_EXCEPTION_BITMAP, exc_bitmap);
835 
836 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
837 		vmcs_write(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
838 
839 		if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
840 			vmcs_write(VMCS_VIRTUAL_APIC, apic_page_pa);
841 		}
842 
843 		if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
844 			vmcs_write(VMCS_APIC_ACCESS, apic_access_pa);
845 			vmcs_write(VMCS_EOI_EXIT0, 0);
846 			vmcs_write(VMCS_EOI_EXIT1, 0);
847 			vmcs_write(VMCS_EOI_EXIT2, 0);
848 			vmcs_write(VMCS_EOI_EXIT3, 0);
849 		}
850 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
851 			vmcs_write(VMCS_PIR_VECTOR, pirvec);
852 			vmcs_write(VMCS_PIR_DESC, pir_desc_pa);
853 		}
854 
855 		/*
856 		 * Set up the CR0/4 masks and configure the read shadow state
857 		 * to the power-on register value from the Intel Sys Arch.
858 		 *  CR0 - 0x60000010
859 		 *  CR4 - 0
860 		 */
861 		vmcs_write(VMCS_CR0_MASK, cr0_ones_mask | cr0_zeros_mask);
862 		vmcs_write(VMCS_CR0_SHADOW, 0x60000010);
863 		vmcs_write(VMCS_CR4_MASK, cr4_ones_mask | cr4_zeros_mask);
864 		vmcs_write(VMCS_CR4_SHADOW, 0);
865 
866 		vmcs_clear(vmx->vmcs_pa[i]);
867 
868 		vmx->cap[i].set = 0;
869 		vmx->cap[i].proc_ctls = proc_ctls;
870 		vmx->cap[i].proc_ctls2 = proc2_ctls;
871 		vmx->cap[i].exc_bitmap = exc_bitmap;
872 
873 		vmx->state[i].nextrip = ~0;
874 		vmx->state[i].lastcpu = NOCPU;
875 		vmx->state[i].vpid = vpid[i];
876 	}
877 
878 	return (vmx);
879 }
880 
881 static int
882 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
883 {
884 	int handled;
885 
886 	handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
887 	    (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
888 	    (uint64_t *)&vmxctx->guest_rdx);
889 	return (handled);
890 }
891 
892 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
893 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
894 
895 #define	INVVPID_TYPE_ADDRESS		0UL
896 #define	INVVPID_TYPE_SINGLE_CONTEXT	1UL
897 #define	INVVPID_TYPE_ALL_CONTEXTS	2UL
898 
899 struct invvpid_desc {
900 	uint16_t	vpid;
901 	uint16_t	_res1;
902 	uint32_t	_res2;
903 	uint64_t	linear_addr;
904 };
905 CTASSERT(sizeof (struct invvpid_desc) == 16);
906 
907 static __inline void
908 invvpid(uint64_t type, struct invvpid_desc desc)
909 {
910 	int error;
911 
912 	DTRACE_PROBE3(vmx__invvpid, uint64_t, type, uint16_t, desc.vpid,
913 	    uint64_t, desc.linear_addr);
914 
915 	__asm __volatile("invvpid %[desc], %[type];"
916 	    VMX_SET_ERROR_CODE_ASM
917 	    : [error] "=r" (error)
918 	    : [desc] "m" (desc), [type] "r" (type)
919 	    : "memory");
920 
921 	if (error) {
922 		panic("invvpid error %d", error);
923 	}
924 }
925 
926 /*
927  * Invalidate guest mappings identified by its VPID from the TLB.
928  *
929  * This is effectively a flush of the guest TLB, removing only "combined
930  * mappings" (to use the VMX parlance).  Actions which modify the EPT structures
931  * for the instance (such as unmapping GPAs) would require an 'invept' flush.
932  */
933 static void
934 vmx_invvpid(struct vmx *vmx, int vcpu, int running)
935 {
936 	struct vmxstate *vmxstate;
937 	struct vmspace *vms;
938 
939 	vmxstate = &vmx->state[vcpu];
940 	if (vmxstate->vpid == 0) {
941 		return;
942 	}
943 
944 	if (!running) {
945 		/*
946 		 * Set the 'lastcpu' to an invalid host cpu.
947 		 *
948 		 * This will invalidate TLB entries tagged with the vcpu's
949 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
950 		 */
951 		vmxstate->lastcpu = NOCPU;
952 		return;
953 	}
954 
955 	/*
956 	 * Invalidate all mappings tagged with 'vpid'
957 	 *
958 	 * This is done when a vCPU moves between host CPUs, where there may be
959 	 * stale TLB entries for this VPID on the target, or if emulated actions
960 	 * in the guest CPU have incurred an explicit TLB flush.
961 	 */
962 	vms = vm_get_vmspace(vmx->vm);
963 	if (vmspace_table_gen(vms) == vmx->eptgen[curcpu]) {
964 		struct invvpid_desc invvpid_desc = {
965 			.vpid = vmxstate->vpid,
966 			.linear_addr = 0,
967 			._res1 = 0,
968 			._res2 = 0,
969 		};
970 
971 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
972 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
973 	} else {
974 		/*
975 		 * The INVVPID can be skipped if an INVEPT is going to be
976 		 * performed before entering the guest.  The INVEPT will
977 		 * invalidate combined mappings for the EP4TA associated with
978 		 * this guest, in all VPIDs.
979 		 */
980 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
981 	}
982 }
983 
984 static __inline void
985 invept(uint64_t type, uint64_t eptp)
986 {
987 	int error;
988 	struct invept_desc {
989 		uint64_t eptp;
990 		uint64_t _resv;
991 	} desc = { eptp, 0 };
992 
993 	DTRACE_PROBE2(vmx__invept, uint64_t, type, uint64_t, eptp);
994 
995 	__asm __volatile("invept %[desc], %[type];"
996 	    VMX_SET_ERROR_CODE_ASM
997 	    : [error] "=r" (error)
998 	    : [desc] "m" (desc), [type] "r" (type)
999 	    : "memory");
1000 
1001 	if (error != 0) {
1002 		panic("invvpid error %d", error);
1003 	}
1004 }
1005 
1006 static void
1007 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
1008 {
1009 	struct vmxstate *vmxstate;
1010 
1011 	/*
1012 	 * Regardless of whether the VM appears to have migrated between CPUs,
1013 	 * save the host sysenter stack pointer.  As it points to the kernel
1014 	 * stack of each thread, the correct value must be maintained for every
1015 	 * trip into the critical section.
1016 	 */
1017 	vmcs_write(VMCS_HOST_IA32_SYSENTER_ESP, rdmsr(MSR_SYSENTER_ESP_MSR));
1018 
1019 	/*
1020 	 * Perform any needed TSC_OFFSET adjustment based on TSC_MSR writes or
1021 	 * migration between host CPUs with differing TSC values.
1022 	 */
1023 	vmx_apply_tsc_adjust(vmx, vcpu);
1024 
1025 	vmxstate = &vmx->state[vcpu];
1026 	if (vmxstate->lastcpu == curcpu)
1027 		return;
1028 
1029 	vmxstate->lastcpu = curcpu;
1030 
1031 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1032 
1033 	/* Load the per-CPU IDT address */
1034 	vmcs_write(VMCS_HOST_IDTR_BASE, vmm_get_host_idtrbase());
1035 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1036 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1037 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1038 	vmx_invvpid(vmx, vcpu, 1);
1039 }
1040 
1041 /*
1042  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1043  */
1044 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1045 
1046 static __inline void
1047 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1048 {
1049 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1050 		/* Enable interrupt window exiting */
1051 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1052 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1053 	}
1054 }
1055 
1056 static __inline void
1057 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1058 {
1059 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1060 	    ("intr_window_exiting not set: %x", vmx->cap[vcpu].proc_ctls));
1061 
1062 	/* Disable interrupt window exiting */
1063 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1064 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1065 }
1066 
1067 static __inline bool
1068 vmx_nmi_window_exiting(struct vmx *vmx, int vcpu)
1069 {
1070 	return ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0);
1071 }
1072 
1073 static __inline void
1074 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1075 {
1076 	if (!vmx_nmi_window_exiting(vmx, vcpu)) {
1077 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1078 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1079 	}
1080 }
1081 
1082 static __inline void
1083 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1084 {
1085 	ASSERT(vmx_nmi_window_exiting(vmx, vcpu));
1086 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1087 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1088 }
1089 
1090 /*
1091  * Set the TSC adjustment, taking into account the offsets measured between
1092  * host physical CPUs.  This is required even if the guest has not set a TSC
1093  * offset since vCPUs inherit the TSC offset of whatever physical CPU it has
1094  * migrated onto.  Without this mitigation, un-synched host TSCs will convey
1095  * the appearance of TSC time-travel to the guest as its vCPUs migrate.
1096  */
1097 static void
1098 vmx_apply_tsc_adjust(struct vmx *vmx, int vcpu)
1099 {
1100 	const uint64_t offset = vcpu_tsc_offset(vmx->vm, vcpu, true);
1101 
1102 	ASSERT(vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET);
1103 
1104 	if (vmx->tsc_offset_active[vcpu] != offset) {
1105 		vmcs_write(VMCS_TSC_OFFSET, offset);
1106 		vmx->tsc_offset_active[vcpu] = offset;
1107 	}
1108 }
1109 
1110 CTASSERT(VMCS_INTR_T_HWINTR		== VM_INTINFO_HWINTR);
1111 CTASSERT(VMCS_INTR_T_NMI		== VM_INTINFO_NMI);
1112 CTASSERT(VMCS_INTR_T_HWEXCEPTION	== VM_INTINFO_HWEXCP);
1113 CTASSERT(VMCS_INTR_T_SWINTR		== VM_INTINFO_SWINTR);
1114 CTASSERT(VMCS_INTR_T_PRIV_SWEXCEPTION	== VM_INTINFO_RESV5);
1115 CTASSERT(VMCS_INTR_T_SWEXCEPTION	== VM_INTINFO_RESV6);
1116 CTASSERT(VMCS_IDT_VEC_ERRCODE_VALID	== VM_INTINFO_DEL_ERRCODE);
1117 CTASSERT(VMCS_INTR_T_MASK		== VM_INTINFO_MASK_TYPE);
1118 
1119 static uint64_t
1120 vmx_idtvec_to_intinfo(uint32_t info)
1121 {
1122 	ASSERT(info & VMCS_IDT_VEC_VALID);
1123 
1124 	const uint32_t type = info & VMCS_INTR_T_MASK;
1125 	const uint8_t vec = info & 0xff;
1126 
1127 	switch (type) {
1128 	case VMCS_INTR_T_HWINTR:
1129 	case VMCS_INTR_T_NMI:
1130 	case VMCS_INTR_T_HWEXCEPTION:
1131 	case VMCS_INTR_T_SWINTR:
1132 	case VMCS_INTR_T_PRIV_SWEXCEPTION:
1133 	case VMCS_INTR_T_SWEXCEPTION:
1134 		break;
1135 	default:
1136 		panic("unexpected event type 0x%03x", type);
1137 	}
1138 
1139 	uint64_t intinfo = VM_INTINFO_VALID | type | vec;
1140 	if (info & VMCS_IDT_VEC_ERRCODE_VALID) {
1141 		const uint32_t errcode = vmcs_read(VMCS_IDT_VECTORING_ERROR);
1142 		intinfo |= (uint64_t)errcode << 32;
1143 	}
1144 
1145 	return (intinfo);
1146 }
1147 
1148 static void
1149 vmx_inject_intinfo(uint64_t info)
1150 {
1151 	ASSERT(VM_INTINFO_PENDING(info));
1152 	ASSERT0(info & VM_INTINFO_MASK_RSVD);
1153 
1154 	/*
1155 	 * The bhyve format matches that of the VMCS, which is ensured by the
1156 	 * CTASSERTs above.
1157 	 */
1158 	uint32_t inject = info;
1159 	switch (VM_INTINFO_VECTOR(info)) {
1160 	case IDT_BP:
1161 	case IDT_OF:
1162 		/*
1163 		 * VT-x requires #BP and #OF to be injected as software
1164 		 * exceptions.
1165 		 */
1166 		inject &= ~VMCS_INTR_T_MASK;
1167 		inject |= VMCS_INTR_T_SWEXCEPTION;
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 
1173 	if (VM_INTINFO_HAS_ERRCODE(info)) {
1174 		vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1175 		    VM_INTINFO_ERRCODE(info));
1176 	}
1177 	vmcs_write(VMCS_ENTRY_INTR_INFO, inject);
1178 }
1179 
1180 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1181 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1182 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1183 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1184 
1185 static void
1186 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1187 {
1188 	ASSERT0(vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & NMI_BLOCKING);
1189 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1190 
1191 	/*
1192 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1193 	 * or the VMCS entry check will fail.
1194 	 */
1195 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1196 	    IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID);
1197 
1198 	/* Clear the request */
1199 	vm_nmi_clear(vmx->vm, vcpu);
1200 }
1201 
1202 /*
1203  * Inject exceptions, NMIs, and ExtINTs.
1204  *
1205  * The logic behind these are complicated and may involve mutex contention, so
1206  * the injection is performed without the protection of host CPU interrupts
1207  * being disabled.  This means a racing notification could be "lost",
1208  * necessitating a later call to vmx_inject_recheck() to close that window
1209  * of opportunity.
1210  */
1211 static enum event_inject_state
1212 vmx_inject_events(struct vmx *vmx, int vcpu, uint64_t rip)
1213 {
1214 	uint64_t entryinfo;
1215 	uint32_t gi, info;
1216 	int vector;
1217 	enum event_inject_state state;
1218 
1219 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1220 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1221 	state = EIS_CAN_INJECT;
1222 
1223 	/* Clear any interrupt blocking if the guest %rip has changed */
1224 	if (vmx->state[vcpu].nextrip != rip && (gi & HWINTR_BLOCKING) != 0) {
1225 		gi &= ~HWINTR_BLOCKING;
1226 		vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1227 	}
1228 
1229 	/*
1230 	 * It could be that an interrupt is already pending for injection from
1231 	 * the VMCS.  This would be the case if the vCPU exited for conditions
1232 	 * such as an AST before a vm-entry delivered the injection.
1233 	 */
1234 	if ((info & VMCS_INTR_VALID) != 0) {
1235 		return (EIS_EV_EXISTING | EIS_REQ_EXIT);
1236 	}
1237 
1238 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1239 		vmx_inject_intinfo(entryinfo);
1240 		state = EIS_EV_INJECTED;
1241 	}
1242 
1243 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1244 		/*
1245 		 * If there are no conditions blocking NMI injection then inject
1246 		 * it directly here otherwise enable "NMI window exiting" to
1247 		 * inject it as soon as we can.
1248 		 *
1249 		 * According to the Intel manual, some CPUs do not allow NMI
1250 		 * injection when STI_BLOCKING is active.  That check is
1251 		 * enforced here, regardless of CPU capability.  If running on a
1252 		 * CPU without such a restriction it will immediately exit and
1253 		 * the NMI will be injected in the "NMI window exiting" handler.
1254 		 */
1255 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1256 			if (state == EIS_CAN_INJECT) {
1257 				vmx_inject_nmi(vmx, vcpu);
1258 				state = EIS_EV_INJECTED;
1259 			} else {
1260 				return (state | EIS_REQ_EXIT);
1261 			}
1262 		} else {
1263 			vmx_set_nmi_window_exiting(vmx, vcpu);
1264 		}
1265 	}
1266 
1267 	if (vm_extint_pending(vmx->vm, vcpu)) {
1268 		if (state != EIS_CAN_INJECT) {
1269 			return (state | EIS_REQ_EXIT);
1270 		}
1271 		if ((gi & HWINTR_BLOCKING) != 0 ||
1272 		    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1273 			return (EIS_GI_BLOCK);
1274 		}
1275 
1276 		/* Ask the legacy pic for a vector to inject */
1277 		vatpic_pending_intr(vmx->vm, &vector);
1278 
1279 		/*
1280 		 * From the Intel SDM, Volume 3, Section "Maskable
1281 		 * Hardware Interrupts":
1282 		 * - maskable interrupt vectors [0,255] can be delivered
1283 		 *   through the INTR pin.
1284 		 */
1285 		KASSERT(vector >= 0 && vector <= 255,
1286 		    ("invalid vector %d from INTR", vector));
1287 
1288 		/* Inject the interrupt */
1289 		vmcs_write(VMCS_ENTRY_INTR_INFO,
1290 		    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1291 
1292 		vm_extint_clear(vmx->vm, vcpu);
1293 		vatpic_intr_accepted(vmx->vm, vector);
1294 		state = EIS_EV_INJECTED;
1295 	}
1296 
1297 	return (state);
1298 }
1299 
1300 /*
1301  * Inject any interrupts pending on the vLAPIC.
1302  *
1303  * This is done with host CPU interrupts disabled so notification IPIs, either
1304  * from the standard vCPU notification or APICv posted interrupts, will be
1305  * queued on the host APIC and recognized when entering VMX context.
1306  */
1307 static enum event_inject_state
1308 vmx_inject_vlapic(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1309 {
1310 	int vector;
1311 
1312 	if (!vlapic_pending_intr(vlapic, &vector)) {
1313 		return (EIS_CAN_INJECT);
1314 	}
1315 
1316 	/*
1317 	 * From the Intel SDM, Volume 3, Section "Maskable
1318 	 * Hardware Interrupts":
1319 	 * - maskable interrupt vectors [16,255] can be delivered
1320 	 *   through the local APIC.
1321 	 */
1322 	KASSERT(vector >= 16 && vector <= 255,
1323 	    ("invalid vector %d from local APIC", vector));
1324 
1325 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
1326 		uint16_t status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
1327 		uint16_t status_new = (status_old & 0xff00) | vector;
1328 
1329 		/*
1330 		 * The APICv state will have been synced into the vLAPIC
1331 		 * as part of vlapic_pending_intr().  Prepare the VMCS
1332 		 * for the to-be-injected pending interrupt.
1333 		 */
1334 		if (status_new > status_old) {
1335 			vmcs_write(VMCS_GUEST_INTR_STATUS, status_new);
1336 		}
1337 
1338 		/*
1339 		 * Ensure VMCS state regarding EOI traps is kept in sync
1340 		 * with the TMRs in the vlapic.
1341 		 */
1342 		vmx_apicv_sync_tmr(vlapic);
1343 
1344 		/*
1345 		 * The rest of the injection process for injecting the
1346 		 * interrupt(s) is handled by APICv. It does not preclude other
1347 		 * event injection from occurring.
1348 		 */
1349 		return (EIS_CAN_INJECT);
1350 	}
1351 
1352 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1353 
1354 	/* Does guest interruptability block injection? */
1355 	if ((vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & HWINTR_BLOCKING) != 0 ||
1356 	    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1357 		return (EIS_GI_BLOCK);
1358 	}
1359 
1360 	/* Inject the interrupt */
1361 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1362 	    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1363 
1364 	/* Update the Local APIC ISR */
1365 	vlapic_intr_accepted(vlapic, vector);
1366 
1367 	return (EIS_EV_INJECTED);
1368 }
1369 
1370 /*
1371  * Re-check for events to be injected.
1372  *
1373  * Once host CPU interrupts are disabled, check for the presence of any events
1374  * which require injection processing.  If an exit is required upon injection,
1375  * or once the guest becomes interruptable, that will be configured too.
1376  */
1377 static bool
1378 vmx_inject_recheck(struct vmx *vmx, int vcpu, enum event_inject_state state)
1379 {
1380 	if (state == EIS_CAN_INJECT) {
1381 		if (vm_nmi_pending(vmx->vm, vcpu) &&
1382 		    !vmx_nmi_window_exiting(vmx, vcpu)) {
1383 			/* queued NMI not blocked by NMI-window-exiting */
1384 			return (true);
1385 		}
1386 		if (vm_extint_pending(vmx->vm, vcpu)) {
1387 			/* queued ExtINT not blocked by existing injection */
1388 			return (true);
1389 		}
1390 	} else {
1391 		if ((state & EIS_REQ_EXIT) != 0) {
1392 			/*
1393 			 * Use a self-IPI to force an immediate exit after
1394 			 * event injection has occurred.
1395 			 */
1396 			poke_cpu(CPU->cpu_id);
1397 		} else {
1398 			/*
1399 			 * If any event is being injected, an exit immediately
1400 			 * upon becoming interruptable again will allow pending
1401 			 * or newly queued events to be injected in a timely
1402 			 * manner.
1403 			 */
1404 			vmx_set_int_window_exiting(vmx, vcpu);
1405 		}
1406 	}
1407 	return (false);
1408 }
1409 
1410 /*
1411  * If the Virtual NMIs execution control is '1' then the logical processor
1412  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1413  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1414  * virtual-NMI blocking.
1415  *
1416  * This unblocking occurs even if the IRET causes a fault. In this case the
1417  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1418  */
1419 static void
1420 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1421 {
1422 	uint32_t gi;
1423 
1424 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1425 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1426 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1427 }
1428 
1429 static void
1430 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1431 {
1432 	uint32_t gi;
1433 
1434 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1435 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1436 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1437 }
1438 
1439 static void
1440 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1441 {
1442 	uint32_t gi;
1443 
1444 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1445 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1446 	    ("NMI blocking is not in effect %x", gi));
1447 }
1448 
1449 static int
1450 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1451 {
1452 	struct vmxctx *vmxctx;
1453 	uint64_t xcrval;
1454 	const struct xsave_limits *limits;
1455 
1456 	vmxctx = &vmx->ctx[vcpu];
1457 	limits = vmm_get_xsave_limits();
1458 
1459 	/*
1460 	 * Note that the processor raises a GP# fault on its own if
1461 	 * xsetbv is executed for CPL != 0, so we do not have to
1462 	 * emulate that fault here.
1463 	 */
1464 
1465 	/* Only xcr0 is supported. */
1466 	if (vmxctx->guest_rcx != 0) {
1467 		vm_inject_gp(vmx->vm, vcpu);
1468 		return (HANDLED);
1469 	}
1470 
1471 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1472 	if (!limits->xsave_enabled ||
1473 	    !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1474 		vm_inject_ud(vmx->vm, vcpu);
1475 		return (HANDLED);
1476 	}
1477 
1478 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1479 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1480 		vm_inject_gp(vmx->vm, vcpu);
1481 		return (HANDLED);
1482 	}
1483 
1484 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1485 		vm_inject_gp(vmx->vm, vcpu);
1486 		return (HANDLED);
1487 	}
1488 
1489 	/* AVX (YMM_Hi128) requires SSE. */
1490 	if (xcrval & XFEATURE_ENABLED_AVX &&
1491 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1492 		vm_inject_gp(vmx->vm, vcpu);
1493 		return (HANDLED);
1494 	}
1495 
1496 	/*
1497 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1498 	 * ZMM_Hi256, and Hi16_ZMM.
1499 	 */
1500 	if (xcrval & XFEATURE_AVX512 &&
1501 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1502 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1503 		vm_inject_gp(vmx->vm, vcpu);
1504 		return (HANDLED);
1505 	}
1506 
1507 	/*
1508 	 * Intel MPX requires both bound register state flags to be
1509 	 * set.
1510 	 */
1511 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1512 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1513 		vm_inject_gp(vmx->vm, vcpu);
1514 		return (HANDLED);
1515 	}
1516 
1517 	/*
1518 	 * This runs "inside" vmrun() with the guest's FPU state, so
1519 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1520 	 * host's.
1521 	 */
1522 	load_xcr(0, xcrval);
1523 	return (HANDLED);
1524 }
1525 
1526 static uint64_t
1527 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1528 {
1529 	const struct vmxctx *vmxctx;
1530 
1531 	vmxctx = &vmx->ctx[vcpu];
1532 
1533 	switch (ident) {
1534 	case 0:
1535 		return (vmxctx->guest_rax);
1536 	case 1:
1537 		return (vmxctx->guest_rcx);
1538 	case 2:
1539 		return (vmxctx->guest_rdx);
1540 	case 3:
1541 		return (vmxctx->guest_rbx);
1542 	case 4:
1543 		return (vmcs_read(VMCS_GUEST_RSP));
1544 	case 5:
1545 		return (vmxctx->guest_rbp);
1546 	case 6:
1547 		return (vmxctx->guest_rsi);
1548 	case 7:
1549 		return (vmxctx->guest_rdi);
1550 	case 8:
1551 		return (vmxctx->guest_r8);
1552 	case 9:
1553 		return (vmxctx->guest_r9);
1554 	case 10:
1555 		return (vmxctx->guest_r10);
1556 	case 11:
1557 		return (vmxctx->guest_r11);
1558 	case 12:
1559 		return (vmxctx->guest_r12);
1560 	case 13:
1561 		return (vmxctx->guest_r13);
1562 	case 14:
1563 		return (vmxctx->guest_r14);
1564 	case 15:
1565 		return (vmxctx->guest_r15);
1566 	default:
1567 		panic("invalid vmx register %d", ident);
1568 	}
1569 }
1570 
1571 static void
1572 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1573 {
1574 	struct vmxctx *vmxctx;
1575 
1576 	vmxctx = &vmx->ctx[vcpu];
1577 
1578 	switch (ident) {
1579 	case 0:
1580 		vmxctx->guest_rax = regval;
1581 		break;
1582 	case 1:
1583 		vmxctx->guest_rcx = regval;
1584 		break;
1585 	case 2:
1586 		vmxctx->guest_rdx = regval;
1587 		break;
1588 	case 3:
1589 		vmxctx->guest_rbx = regval;
1590 		break;
1591 	case 4:
1592 		vmcs_write(VMCS_GUEST_RSP, regval);
1593 		break;
1594 	case 5:
1595 		vmxctx->guest_rbp = regval;
1596 		break;
1597 	case 6:
1598 		vmxctx->guest_rsi = regval;
1599 		break;
1600 	case 7:
1601 		vmxctx->guest_rdi = regval;
1602 		break;
1603 	case 8:
1604 		vmxctx->guest_r8 = regval;
1605 		break;
1606 	case 9:
1607 		vmxctx->guest_r9 = regval;
1608 		break;
1609 	case 10:
1610 		vmxctx->guest_r10 = regval;
1611 		break;
1612 	case 11:
1613 		vmxctx->guest_r11 = regval;
1614 		break;
1615 	case 12:
1616 		vmxctx->guest_r12 = regval;
1617 		break;
1618 	case 13:
1619 		vmxctx->guest_r13 = regval;
1620 		break;
1621 	case 14:
1622 		vmxctx->guest_r14 = regval;
1623 		break;
1624 	case 15:
1625 		vmxctx->guest_r15 = regval;
1626 		break;
1627 	default:
1628 		panic("invalid vmx register %d", ident);
1629 	}
1630 }
1631 
1632 static int
1633 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1634 {
1635 	uint64_t crval, regval;
1636 
1637 	/* We only handle mov to %cr0 at this time */
1638 	if ((exitqual & 0xf0) != 0x00)
1639 		return (UNHANDLED);
1640 
1641 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1642 
1643 	vmcs_write(VMCS_CR0_SHADOW, regval);
1644 
1645 	crval = regval | cr0_ones_mask;
1646 	crval &= ~cr0_zeros_mask;
1647 
1648 	const uint64_t old = vmcs_read(VMCS_GUEST_CR0);
1649 	const uint64_t diff = crval ^ old;
1650 	/* Flush the TLB if the paging or write-protect bits are changing */
1651 	if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) {
1652 		vmx_invvpid(vmx, vcpu, 1);
1653 	}
1654 
1655 	vmcs_write(VMCS_GUEST_CR0, crval);
1656 
1657 	if (regval & CR0_PG) {
1658 		uint64_t efer, entry_ctls;
1659 
1660 		/*
1661 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1662 		 * the "IA-32e mode guest" bit in VM-entry control must be
1663 		 * equal.
1664 		 */
1665 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1666 		if (efer & EFER_LME) {
1667 			efer |= EFER_LMA;
1668 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1669 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1670 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1671 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1672 		}
1673 	}
1674 
1675 	return (HANDLED);
1676 }
1677 
1678 static int
1679 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1680 {
1681 	uint64_t crval, regval;
1682 
1683 	/* We only handle mov to %cr4 at this time */
1684 	if ((exitqual & 0xf0) != 0x00)
1685 		return (UNHANDLED);
1686 
1687 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1688 
1689 	vmcs_write(VMCS_CR4_SHADOW, regval);
1690 
1691 	crval = regval | cr4_ones_mask;
1692 	crval &= ~cr4_zeros_mask;
1693 	vmcs_write(VMCS_GUEST_CR4, crval);
1694 
1695 	return (HANDLED);
1696 }
1697 
1698 static int
1699 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1700 {
1701 	struct vlapic *vlapic;
1702 	uint64_t cr8;
1703 	int regnum;
1704 
1705 	/* We only handle mov %cr8 to/from a register at this time. */
1706 	if ((exitqual & 0xe0) != 0x00) {
1707 		return (UNHANDLED);
1708 	}
1709 
1710 	vlapic = vm_lapic(vmx->vm, vcpu);
1711 	regnum = (exitqual >> 8) & 0xf;
1712 	if (exitqual & 0x10) {
1713 		cr8 = vlapic_get_cr8(vlapic);
1714 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1715 	} else {
1716 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1717 		vlapic_set_cr8(vlapic, cr8);
1718 	}
1719 
1720 	return (HANDLED);
1721 }
1722 
1723 /*
1724  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1725  */
1726 static int
1727 vmx_cpl(void)
1728 {
1729 	uint32_t ssar;
1730 
1731 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1732 	return ((ssar >> 5) & 0x3);
1733 }
1734 
1735 static enum vm_cpu_mode
1736 vmx_cpu_mode(void)
1737 {
1738 	uint32_t csar;
1739 
1740 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1741 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1742 		if (csar & 0x2000)
1743 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1744 		else
1745 			return (CPU_MODE_COMPATIBILITY);
1746 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1747 		return (CPU_MODE_PROTECTED);
1748 	} else {
1749 		return (CPU_MODE_REAL);
1750 	}
1751 }
1752 
1753 static enum vm_paging_mode
1754 vmx_paging_mode(void)
1755 {
1756 
1757 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1758 		return (PAGING_MODE_FLAT);
1759 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1760 		return (PAGING_MODE_32);
1761 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1762 		return (PAGING_MODE_64);
1763 	else
1764 		return (PAGING_MODE_PAE);
1765 }
1766 
1767 static void
1768 vmx_paging_info(struct vm_guest_paging *paging)
1769 {
1770 	paging->cr3 = vmcs_read(VMCS_GUEST_CR3);
1771 	paging->cpl = vmx_cpl();
1772 	paging->cpu_mode = vmx_cpu_mode();
1773 	paging->paging_mode = vmx_paging_mode();
1774 }
1775 
1776 static void
1777 vmexit_mmio_emul(struct vm_exit *vmexit, struct vie *vie, uint64_t gpa,
1778     uint64_t gla)
1779 {
1780 	struct vm_guest_paging paging;
1781 	uint32_t csar;
1782 
1783 	vmexit->exitcode = VM_EXITCODE_MMIO_EMUL;
1784 	vmexit->inst_length = 0;
1785 	vmexit->u.mmio_emul.gpa = gpa;
1786 	vmexit->u.mmio_emul.gla = gla;
1787 	vmx_paging_info(&paging);
1788 
1789 	switch (paging.cpu_mode) {
1790 	case CPU_MODE_REAL:
1791 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1792 		vmexit->u.mmio_emul.cs_d = 0;
1793 		break;
1794 	case CPU_MODE_PROTECTED:
1795 	case CPU_MODE_COMPATIBILITY:
1796 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1797 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1798 		vmexit->u.mmio_emul.cs_d = SEG_DESC_DEF32(csar);
1799 		break;
1800 	default:
1801 		vmexit->u.mmio_emul.cs_base = 0;
1802 		vmexit->u.mmio_emul.cs_d = 0;
1803 		break;
1804 	}
1805 
1806 	vie_init_mmio(vie, NULL, 0, &paging, gpa);
1807 }
1808 
1809 static void
1810 vmexit_inout(struct vm_exit *vmexit, struct vie *vie, uint64_t qual,
1811     uint32_t eax)
1812 {
1813 	struct vm_guest_paging paging;
1814 	struct vm_inout *inout;
1815 
1816 	inout = &vmexit->u.inout;
1817 
1818 	inout->bytes = (qual & 0x7) + 1;
1819 	inout->flags = 0;
1820 	inout->flags |= (qual & 0x8) ? INOUT_IN : 0;
1821 	inout->flags |= (qual & 0x10) ? INOUT_STR : 0;
1822 	inout->flags |= (qual & 0x20) ? INOUT_REP : 0;
1823 	inout->port = (uint16_t)(qual >> 16);
1824 	inout->eax = eax;
1825 	if (inout->flags & INOUT_STR) {
1826 		uint64_t inst_info;
1827 
1828 		inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
1829 
1830 		/*
1831 		 * According to the SDM, bits 9:7 encode the address size of the
1832 		 * ins/outs operation, but only values 0/1/2 are expected,
1833 		 * corresponding to 16/32/64 bit sizes.
1834 		 */
1835 		inout->addrsize = 2 << BITX(inst_info, 9, 7);
1836 		VERIFY(inout->addrsize == 2 || inout->addrsize == 4 ||
1837 		    inout->addrsize == 8);
1838 
1839 		if (inout->flags & INOUT_IN) {
1840 			/*
1841 			 * The bits describing the segment in INSTRUCTION_INFO
1842 			 * are not defined for ins, leaving it to system
1843 			 * software to assume %es (encoded as 0)
1844 			 */
1845 			inout->segment = 0;
1846 		} else {
1847 			/*
1848 			 * Bits 15-17 encode the segment for OUTS.
1849 			 * This value follows the standard x86 segment order.
1850 			 */
1851 			inout->segment = (inst_info >> 15) & 0x7;
1852 		}
1853 	}
1854 
1855 	vmexit->exitcode = VM_EXITCODE_INOUT;
1856 	vmx_paging_info(&paging);
1857 	vie_init_inout(vie, inout, vmexit->inst_length, &paging);
1858 
1859 	/* The in/out emulation will handle advancing %rip */
1860 	vmexit->inst_length = 0;
1861 }
1862 
1863 static int
1864 ept_fault_type(uint64_t ept_qual)
1865 {
1866 	int fault_type;
1867 
1868 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1869 		fault_type = PROT_WRITE;
1870 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1871 		fault_type = PROT_EXEC;
1872 	else
1873 		fault_type = PROT_READ;
1874 
1875 	return (fault_type);
1876 }
1877 
1878 static bool
1879 ept_emulation_fault(uint64_t ept_qual)
1880 {
1881 	int read, write;
1882 
1883 	/* EPT fault on an instruction fetch doesn't make sense here */
1884 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1885 		return (false);
1886 
1887 	/* EPT fault must be a read fault or a write fault */
1888 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1889 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1890 	if ((read | write) == 0)
1891 		return (false);
1892 
1893 	/*
1894 	 * The EPT violation must have been caused by accessing a
1895 	 * guest-physical address that is a translation of a guest-linear
1896 	 * address.
1897 	 */
1898 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1899 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1900 		return (false);
1901 	}
1902 
1903 	return (true);
1904 }
1905 
1906 static __inline int
1907 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1908 {
1909 	uint32_t proc_ctls2;
1910 
1911 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1912 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1913 }
1914 
1915 static __inline int
1916 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1917 {
1918 	uint32_t proc_ctls2;
1919 
1920 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1921 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1922 }
1923 
1924 static int
1925 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1926     uint64_t qual)
1927 {
1928 	const uint_t offset = APIC_WRITE_OFFSET(qual);
1929 
1930 	if (!apic_access_virtualization(vmx, vcpuid)) {
1931 		/*
1932 		 * In general there should not be any APIC write VM-exits
1933 		 * unless APIC-access virtualization is enabled.
1934 		 *
1935 		 * However self-IPI virtualization can legitimately trigger
1936 		 * an APIC-write VM-exit so treat it specially.
1937 		 */
1938 		if (x2apic_virtualization(vmx, vcpuid) &&
1939 		    offset == APIC_OFFSET_SELF_IPI) {
1940 			const uint32_t *apic_regs =
1941 			    (uint32_t *)(vlapic->apic_page);
1942 			const uint32_t vector =
1943 			    apic_regs[APIC_OFFSET_SELF_IPI / 4];
1944 
1945 			vlapic_self_ipi_handler(vlapic, vector);
1946 			return (HANDLED);
1947 		} else
1948 			return (UNHANDLED);
1949 	}
1950 
1951 	switch (offset) {
1952 	case APIC_OFFSET_ID:
1953 		vlapic_id_write_handler(vlapic);
1954 		break;
1955 	case APIC_OFFSET_LDR:
1956 		vlapic_ldr_write_handler(vlapic);
1957 		break;
1958 	case APIC_OFFSET_DFR:
1959 		vlapic_dfr_write_handler(vlapic);
1960 		break;
1961 	case APIC_OFFSET_SVR:
1962 		vlapic_svr_write_handler(vlapic);
1963 		break;
1964 	case APIC_OFFSET_ESR:
1965 		vlapic_esr_write_handler(vlapic);
1966 		break;
1967 	case APIC_OFFSET_ICR_LOW:
1968 		vlapic_icrlo_write_handler(vlapic);
1969 		break;
1970 	case APIC_OFFSET_CMCI_LVT:
1971 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1972 		vlapic_lvt_write_handler(vlapic, offset);
1973 		break;
1974 	case APIC_OFFSET_TIMER_ICR:
1975 		vlapic_icrtmr_write_handler(vlapic);
1976 		break;
1977 	case APIC_OFFSET_TIMER_DCR:
1978 		vlapic_dcr_write_handler(vlapic);
1979 		break;
1980 	default:
1981 		return (UNHANDLED);
1982 	}
1983 	return (HANDLED);
1984 }
1985 
1986 static bool
1987 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1988 {
1989 
1990 	if (apic_access_virtualization(vmx, vcpuid) &&
1991 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1992 		return (true);
1993 	else
1994 		return (false);
1995 }
1996 
1997 static int
1998 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1999 {
2000 	uint64_t qual;
2001 	int access_type, offset, allowed;
2002 	struct vie *vie;
2003 
2004 	if (!apic_access_virtualization(vmx, vcpuid))
2005 		return (UNHANDLED);
2006 
2007 	qual = vmexit->u.vmx.exit_qualification;
2008 	access_type = APIC_ACCESS_TYPE(qual);
2009 	offset = APIC_ACCESS_OFFSET(qual);
2010 
2011 	allowed = 0;
2012 	if (access_type == 0) {
2013 		/*
2014 		 * Read data access to the following registers is expected.
2015 		 */
2016 		switch (offset) {
2017 		case APIC_OFFSET_APR:
2018 		case APIC_OFFSET_PPR:
2019 		case APIC_OFFSET_RRR:
2020 		case APIC_OFFSET_CMCI_LVT:
2021 		case APIC_OFFSET_TIMER_CCR:
2022 			allowed = 1;
2023 			break;
2024 		default:
2025 			break;
2026 		}
2027 	} else if (access_type == 1) {
2028 		/*
2029 		 * Write data access to the following registers is expected.
2030 		 */
2031 		switch (offset) {
2032 		case APIC_OFFSET_VER:
2033 		case APIC_OFFSET_APR:
2034 		case APIC_OFFSET_PPR:
2035 		case APIC_OFFSET_RRR:
2036 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2037 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2038 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2039 		case APIC_OFFSET_CMCI_LVT:
2040 		case APIC_OFFSET_TIMER_CCR:
2041 			allowed = 1;
2042 			break;
2043 		default:
2044 			break;
2045 		}
2046 	}
2047 
2048 	if (allowed) {
2049 		vie = vm_vie_ctx(vmx->vm, vcpuid);
2050 		vmexit_mmio_emul(vmexit, vie, DEFAULT_APIC_BASE + offset,
2051 		    VIE_INVALID_GLA);
2052 	}
2053 
2054 	/*
2055 	 * Regardless of whether the APIC-access is allowed this handler
2056 	 * always returns UNHANDLED:
2057 	 * - if the access is allowed then it is handled by emulating the
2058 	 *   instruction that caused the VM-exit (outside the critical section)
2059 	 * - if the access is not allowed then it will be converted to an
2060 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2061 	 */
2062 	return (UNHANDLED);
2063 }
2064 
2065 static enum task_switch_reason
2066 vmx_task_switch_reason(uint64_t qual)
2067 {
2068 	int reason;
2069 
2070 	reason = (qual >> 30) & 0x3;
2071 	switch (reason) {
2072 	case 0:
2073 		return (TSR_CALL);
2074 	case 1:
2075 		return (TSR_IRET);
2076 	case 2:
2077 		return (TSR_JMP);
2078 	case 3:
2079 		return (TSR_IDT_GATE);
2080 	default:
2081 		panic("%s: invalid reason %d", __func__, reason);
2082 	}
2083 }
2084 
2085 static int
2086 vmx_handle_msr(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit,
2087     bool is_wrmsr)
2088 {
2089 	struct vmxctx *vmxctx = &vmx->ctx[vcpuid];
2090 	const uint32_t ecx = vmxctx->guest_rcx;
2091 	vm_msr_result_t res;
2092 	uint64_t val = 0;
2093 
2094 	if (is_wrmsr) {
2095 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_WRMSR, 1);
2096 		val = vmxctx->guest_rdx << 32 | (uint32_t)vmxctx->guest_rax;
2097 
2098 		if (vlapic_owned_msr(ecx)) {
2099 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2100 
2101 			res = vlapic_wrmsr(vlapic, ecx, val);
2102 		} else {
2103 			res = vmx_wrmsr(vmx, vcpuid, ecx, val);
2104 		}
2105 	} else {
2106 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_RDMSR, 1);
2107 
2108 		if (vlapic_owned_msr(ecx)) {
2109 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2110 
2111 			res = vlapic_rdmsr(vlapic, ecx, &val);
2112 		} else {
2113 			res = vmx_rdmsr(vmx, vcpuid, ecx, &val);
2114 		}
2115 	}
2116 
2117 	switch (res) {
2118 	case VMR_OK:
2119 		/* Store rdmsr result in the appropriate registers */
2120 		if (!is_wrmsr) {
2121 			vmxctx->guest_rax = (uint32_t)val;
2122 			vmxctx->guest_rdx = val >> 32;
2123 		}
2124 		return (HANDLED);
2125 	case VMR_GP:
2126 		vm_inject_gp(vmx->vm, vcpuid);
2127 		return (HANDLED);
2128 	case VMR_UNHANLDED:
2129 		vmexit->exitcode = is_wrmsr ?
2130 		    VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR;
2131 		vmexit->u.msr.code = ecx;
2132 		vmexit->u.msr.wval = val;
2133 		return (UNHANDLED);
2134 	default:
2135 		panic("unexpected msr result %u\n", res);
2136 	}
2137 }
2138 
2139 static int
2140 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2141 {
2142 	int error, errcode, errcode_valid, handled;
2143 	struct vmxctx *vmxctx;
2144 	struct vie *vie;
2145 	struct vlapic *vlapic;
2146 	struct vm_task_switch *ts;
2147 	uint32_t idtvec_info, intr_info;
2148 	uint32_t intr_type, intr_vec, reason;
2149 	uint64_t qual, gpa;
2150 
2151 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2152 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2153 
2154 	handled = UNHANDLED;
2155 	vmxctx = &vmx->ctx[vcpu];
2156 
2157 	qual = vmexit->u.vmx.exit_qualification;
2158 	reason = vmexit->u.vmx.exit_reason;
2159 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2160 
2161 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2162 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2163 
2164 	/*
2165 	 * VM-entry failures during or after loading guest state.
2166 	 *
2167 	 * These VM-exits are uncommon but must be handled specially
2168 	 * as most VM-exit fields are not populated as usual.
2169 	 */
2170 	if (reason == EXIT_REASON_MCE_DURING_ENTRY) {
2171 		vmm_call_trap(T_MCE);
2172 		return (1);
2173 	}
2174 
2175 	/*
2176 	 * VM exits that can be triggered during event delivery need to
2177 	 * be handled specially by re-injecting the event if the IDT
2178 	 * vectoring information field's valid bit is set.
2179 	 *
2180 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2181 	 * for details.
2182 	 */
2183 	idtvec_info = vmcs_read(VMCS_IDT_VECTORING_INFO);
2184 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2185 		/* Record exit intinfo */
2186 		VERIFY0(vm_exit_intinfo(vmx->vm, vcpu,
2187 		    vmx_idtvec_to_intinfo(idtvec_info)));
2188 
2189 		/*
2190 		 * If 'virtual NMIs' are being used and the VM-exit
2191 		 * happened while injecting an NMI during the previous
2192 		 * VM-entry, then clear "blocking by NMI" in the
2193 		 * Guest Interruptibility-State so the NMI can be
2194 		 * reinjected on the subsequent VM-entry.
2195 		 *
2196 		 * However, if the NMI was being delivered through a task
2197 		 * gate, then the new task must start execution with NMIs
2198 		 * blocked so don't clear NMI blocking in this case.
2199 		 */
2200 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2201 		if (intr_type == VMCS_INTR_T_NMI) {
2202 			if (reason != EXIT_REASON_TASK_SWITCH)
2203 				vmx_clear_nmi_blocking(vmx, vcpu);
2204 			else
2205 				vmx_assert_nmi_blocking(vmx, vcpu);
2206 		}
2207 
2208 		/*
2209 		 * Update VM-entry instruction length if the event being
2210 		 * delivered was a software interrupt or software exception.
2211 		 */
2212 		if (intr_type == VMCS_INTR_T_SWINTR ||
2213 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2214 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2215 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2216 		}
2217 	}
2218 
2219 	switch (reason) {
2220 	case EXIT_REASON_TRIPLE_FAULT:
2221 		(void) vm_suspend(vmx->vm, VM_SUSPEND_TRIPLEFAULT);
2222 		handled = HANDLED;
2223 		break;
2224 	case EXIT_REASON_TASK_SWITCH:
2225 		ts = &vmexit->u.task_switch;
2226 		ts->tsssel = qual & 0xffff;
2227 		ts->reason = vmx_task_switch_reason(qual);
2228 		ts->ext = 0;
2229 		ts->errcode_valid = 0;
2230 		vmx_paging_info(&ts->paging);
2231 		/*
2232 		 * If the task switch was due to a CALL, JMP, IRET, software
2233 		 * interrupt (INT n) or software exception (INT3, INTO),
2234 		 * then the saved %rip references the instruction that caused
2235 		 * the task switch. The instruction length field in the VMCS
2236 		 * is valid in this case.
2237 		 *
2238 		 * In all other cases (e.g., NMI, hardware exception) the
2239 		 * saved %rip is one that would have been saved in the old TSS
2240 		 * had the task switch completed normally so the instruction
2241 		 * length field is not needed in this case and is explicitly
2242 		 * set to 0.
2243 		 */
2244 		if (ts->reason == TSR_IDT_GATE) {
2245 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2246 			    ("invalid idtvec_info %x for IDT task switch",
2247 			    idtvec_info));
2248 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2249 			if (intr_type != VMCS_INTR_T_SWINTR &&
2250 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2251 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2252 				/* Task switch triggered by external event */
2253 				ts->ext = 1;
2254 				vmexit->inst_length = 0;
2255 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2256 					ts->errcode_valid = 1;
2257 					ts->errcode =
2258 					    vmcs_read(VMCS_IDT_VECTORING_ERROR);
2259 				}
2260 			}
2261 		}
2262 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2263 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2264 		break;
2265 	case EXIT_REASON_CR_ACCESS:
2266 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2267 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2268 		switch (qual & 0xf) {
2269 		case 0:
2270 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2271 			break;
2272 		case 4:
2273 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2274 			break;
2275 		case 8:
2276 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2277 			break;
2278 		}
2279 		break;
2280 	case EXIT_REASON_RDMSR:
2281 	case EXIT_REASON_WRMSR:
2282 		handled = vmx_handle_msr(vmx, vcpu, vmexit,
2283 		    reason == EXIT_REASON_WRMSR);
2284 		break;
2285 	case EXIT_REASON_HLT:
2286 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2287 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2288 		vmexit->exitcode = VM_EXITCODE_HLT;
2289 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2290 		break;
2291 	case EXIT_REASON_MTF:
2292 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2293 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2294 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2295 		vmexit->inst_length = 0;
2296 		break;
2297 	case EXIT_REASON_PAUSE:
2298 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2299 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2300 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2301 		break;
2302 	case EXIT_REASON_INTR_WINDOW:
2303 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2304 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2305 		vmx_clear_int_window_exiting(vmx, vcpu);
2306 		return (1);
2307 	case EXIT_REASON_EXT_INTR:
2308 		/*
2309 		 * External interrupts serve only to cause VM exits and allow
2310 		 * the host interrupt handler to run.
2311 		 *
2312 		 * If this external interrupt triggers a virtual interrupt
2313 		 * to a VM, then that state will be recorded by the
2314 		 * host interrupt handler in the VM's softc. We will inject
2315 		 * this virtual interrupt during the subsequent VM enter.
2316 		 */
2317 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2318 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2319 		    vmx, vcpu, vmexit, intr_info);
2320 
2321 		/*
2322 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2323 		 * This appears to be a bug in VMware Fusion?
2324 		 */
2325 		if (!(intr_info & VMCS_INTR_VALID))
2326 			return (1);
2327 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2328 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2329 		    ("VM exit interruption info invalid: %x", intr_info));
2330 		vmx_trigger_hostintr(intr_info & 0xff);
2331 
2332 		/*
2333 		 * This is special. We want to treat this as an 'handled'
2334 		 * VM-exit but not increment the instruction pointer.
2335 		 */
2336 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2337 		return (1);
2338 	case EXIT_REASON_NMI_WINDOW:
2339 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2340 		/* Exit to allow the pending virtual NMI to be injected */
2341 		if (vm_nmi_pending(vmx->vm, vcpu))
2342 			vmx_inject_nmi(vmx, vcpu);
2343 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2344 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2345 		return (1);
2346 	case EXIT_REASON_INOUT:
2347 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2348 		vie = vm_vie_ctx(vmx->vm, vcpu);
2349 		vmexit_inout(vmexit, vie, qual, (uint32_t)vmxctx->guest_rax);
2350 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2351 		break;
2352 	case EXIT_REASON_CPUID:
2353 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2354 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2355 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2356 		break;
2357 	case EXIT_REASON_EXCEPTION:
2358 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2359 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2360 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2361 		    ("VM exit interruption info invalid: %x", intr_info));
2362 
2363 		intr_vec = intr_info & 0xff;
2364 		intr_type = intr_info & VMCS_INTR_T_MASK;
2365 
2366 		/*
2367 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2368 		 * fault encountered during the execution of IRET then we must
2369 		 * restore the state of "virtual-NMI blocking" before resuming
2370 		 * the guest.
2371 		 *
2372 		 * See "Resuming Guest Software after Handling an Exception".
2373 		 * See "Information for VM Exits Due to Vectored Events".
2374 		 */
2375 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2376 		    (intr_vec != IDT_DF) &&
2377 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2378 			vmx_restore_nmi_blocking(vmx, vcpu);
2379 
2380 		/*
2381 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2382 		 */
2383 		if (intr_type == VMCS_INTR_T_NMI)
2384 			return (1);
2385 
2386 		/*
2387 		 * Call the machine check handler by hand. Also don't reflect
2388 		 * the machine check back into the guest.
2389 		 */
2390 		if (intr_vec == IDT_MC) {
2391 			vmm_call_trap(T_MCE);
2392 			return (1);
2393 		}
2394 
2395 		/*
2396 		 * If the hypervisor has requested user exits for
2397 		 * debug exceptions, bounce them out to userland.
2398 		 */
2399 		if (intr_type == VMCS_INTR_T_SWEXCEPTION &&
2400 		    intr_vec == IDT_BP &&
2401 		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2402 			vmexit->exitcode = VM_EXITCODE_BPT;
2403 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2404 			vmexit->inst_length = 0;
2405 			break;
2406 		}
2407 
2408 		if (intr_vec == IDT_PF) {
2409 			vmxctx->guest_cr2 = qual;
2410 		}
2411 
2412 		/*
2413 		 * Software exceptions exhibit trap-like behavior. This in
2414 		 * turn requires populating the VM-entry instruction length
2415 		 * so that the %rip in the trap frame is past the INT3/INTO
2416 		 * instruction.
2417 		 */
2418 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2419 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2420 
2421 		/* Reflect all other exceptions back into the guest */
2422 		errcode_valid = errcode = 0;
2423 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2424 			errcode_valid = 1;
2425 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2426 		}
2427 		SDT_PROBE5(vmm, vmx, exit, exception,
2428 		    vmx, vcpu, vmexit, intr_vec, errcode);
2429 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2430 		    errcode_valid, errcode, 0);
2431 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2432 		    __func__, error));
2433 		return (1);
2434 
2435 	case EXIT_REASON_EPT_FAULT:
2436 		/*
2437 		 * If 'gpa' lies within the address space allocated to
2438 		 * memory then this must be a nested page fault otherwise
2439 		 * this must be an instruction that accesses MMIO space.
2440 		 */
2441 		gpa = vmcs_read(VMCS_GUEST_PHYSICAL_ADDRESS);
2442 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2443 		    apic_access_fault(vmx, vcpu, gpa)) {
2444 			vmexit->exitcode = VM_EXITCODE_PAGING;
2445 			vmexit->inst_length = 0;
2446 			vmexit->u.paging.gpa = gpa;
2447 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2448 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2449 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2450 			    vmx, vcpu, vmexit, gpa, qual);
2451 		} else if (ept_emulation_fault(qual)) {
2452 			vie = vm_vie_ctx(vmx->vm, vcpu);
2453 			vmexit_mmio_emul(vmexit, vie, gpa,
2454 			    vmcs_read(VMCS_GUEST_LINEAR_ADDRESS));
2455 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MMIO_EMUL, 1);
2456 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2457 			    vmx, vcpu, vmexit, gpa);
2458 		}
2459 		/*
2460 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2461 		 * EPT fault during the execution of IRET then we must restore
2462 		 * the state of "virtual-NMI blocking" before resuming.
2463 		 *
2464 		 * See description of "NMI unblocking due to IRET" in
2465 		 * "Exit Qualification for EPT Violations".
2466 		 */
2467 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2468 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2469 			vmx_restore_nmi_blocking(vmx, vcpu);
2470 		break;
2471 	case EXIT_REASON_VIRTUALIZED_EOI:
2472 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2473 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2474 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2475 		vmexit->inst_length = 0;	/* trap-like */
2476 		break;
2477 	case EXIT_REASON_APIC_ACCESS:
2478 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2479 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2480 		break;
2481 	case EXIT_REASON_APIC_WRITE:
2482 		/*
2483 		 * APIC-write VM exit is trap-like so the %rip is already
2484 		 * pointing to the next instruction.
2485 		 */
2486 		vmexit->inst_length = 0;
2487 		vlapic = vm_lapic(vmx->vm, vcpu);
2488 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2489 		    vmx, vcpu, vmexit, vlapic);
2490 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2491 		break;
2492 	case EXIT_REASON_XSETBV:
2493 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2494 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2495 		break;
2496 	case EXIT_REASON_MONITOR:
2497 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2498 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2499 		break;
2500 	case EXIT_REASON_MWAIT:
2501 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2502 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2503 		break;
2504 	case EXIT_REASON_TPR:
2505 		vlapic = vm_lapic(vmx->vm, vcpu);
2506 		vlapic_sync_tpr(vlapic);
2507 		vmexit->inst_length = 0;
2508 		handled = HANDLED;
2509 		break;
2510 	case EXIT_REASON_VMCALL:
2511 	case EXIT_REASON_VMCLEAR:
2512 	case EXIT_REASON_VMLAUNCH:
2513 	case EXIT_REASON_VMPTRLD:
2514 	case EXIT_REASON_VMPTRST:
2515 	case EXIT_REASON_VMREAD:
2516 	case EXIT_REASON_VMRESUME:
2517 	case EXIT_REASON_VMWRITE:
2518 	case EXIT_REASON_VMXOFF:
2519 	case EXIT_REASON_VMXON:
2520 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2521 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2522 		break;
2523 	default:
2524 		SDT_PROBE4(vmm, vmx, exit, unknown,
2525 		    vmx, vcpu, vmexit, reason);
2526 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2527 		break;
2528 	}
2529 
2530 	if (handled) {
2531 		/*
2532 		 * It is possible that control is returned to userland
2533 		 * even though we were able to handle the VM exit in the
2534 		 * kernel.
2535 		 *
2536 		 * In such a case we want to make sure that the userland
2537 		 * restarts guest execution at the instruction *after*
2538 		 * the one we just processed. Therefore we update the
2539 		 * guest rip in the VMCS and in 'vmexit'.
2540 		 */
2541 		vmexit->rip += vmexit->inst_length;
2542 		vmexit->inst_length = 0;
2543 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2544 	} else {
2545 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2546 			/*
2547 			 * If this VM exit was not claimed by anybody then
2548 			 * treat it as a generic VMX exit.
2549 			 */
2550 			vmexit->exitcode = VM_EXITCODE_VMX;
2551 			vmexit->u.vmx.status = VM_SUCCESS;
2552 			vmexit->u.vmx.inst_type = 0;
2553 			vmexit->u.vmx.inst_error = 0;
2554 		} else {
2555 			/*
2556 			 * The exitcode and collateral have been populated.
2557 			 * The VM exit will be processed further in userland.
2558 			 */
2559 		}
2560 	}
2561 
2562 	SDT_PROBE4(vmm, vmx, exit, return,
2563 	    vmx, vcpu, vmexit, handled);
2564 	return (handled);
2565 }
2566 
2567 static void
2568 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2569 {
2570 
2571 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2572 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2573 	    vmxctx->inst_fail_status));
2574 
2575 	vmexit->inst_length = 0;
2576 	vmexit->exitcode = VM_EXITCODE_VMX;
2577 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2578 	vmexit->u.vmx.inst_error = vmcs_read(VMCS_INSTRUCTION_ERROR);
2579 	vmexit->u.vmx.exit_reason = ~0;
2580 	vmexit->u.vmx.exit_qualification = ~0;
2581 
2582 	switch (rc) {
2583 	case VMX_VMRESUME_ERROR:
2584 	case VMX_VMLAUNCH_ERROR:
2585 	case VMX_INVEPT_ERROR:
2586 	case VMX_VMWRITE_ERROR:
2587 		vmexit->u.vmx.inst_type = rc;
2588 		break;
2589 	default:
2590 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2591 	}
2592 }
2593 
2594 /*
2595  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2596  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2597  * sufficient to simply vector to the NMI handler via a software interrupt.
2598  * However, this must be done before maskable interrupts are enabled
2599  * otherwise the "iret" issued by an interrupt handler will incorrectly
2600  * clear NMI blocking.
2601  */
2602 static __inline void
2603 vmx_exit_handle_possible_nmi(struct vm_exit *vmexit)
2604 {
2605 	ASSERT(!interrupts_enabled());
2606 
2607 	if (vmexit->u.vmx.exit_reason == EXIT_REASON_EXCEPTION) {
2608 		uint32_t intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2609 		ASSERT(intr_info & VMCS_INTR_VALID);
2610 
2611 		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2612 			ASSERT3U(intr_info & 0xff, ==, IDT_NMI);
2613 			vmm_call_trap(T_NMIFLT);
2614 		}
2615 	}
2616 }
2617 
2618 static __inline void
2619 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2620 {
2621 	uint64_t rflags;
2622 
2623 	/* Save host control debug registers. */
2624 	vmxctx->host_dr7 = rdr7();
2625 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2626 
2627 	/*
2628 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2629 	 * exceptions in the host based on the guest DRx values.  The
2630 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2631 	 */
2632 	load_dr7(0);
2633 	wrmsr(MSR_DEBUGCTLMSR, 0);
2634 
2635 	/*
2636 	 * Disable single stepping the kernel to avoid corrupting the
2637 	 * guest DR6.  A debugger might still be able to corrupt the
2638 	 * guest DR6 by setting a breakpoint after this point and then
2639 	 * single stepping.
2640 	 */
2641 	rflags = read_rflags();
2642 	vmxctx->host_tf = rflags & PSL_T;
2643 	write_rflags(rflags & ~PSL_T);
2644 
2645 	/* Save host debug registers. */
2646 	vmxctx->host_dr0 = rdr0();
2647 	vmxctx->host_dr1 = rdr1();
2648 	vmxctx->host_dr2 = rdr2();
2649 	vmxctx->host_dr3 = rdr3();
2650 	vmxctx->host_dr6 = rdr6();
2651 
2652 	/* Restore guest debug registers. */
2653 	load_dr0(vmxctx->guest_dr0);
2654 	load_dr1(vmxctx->guest_dr1);
2655 	load_dr2(vmxctx->guest_dr2);
2656 	load_dr3(vmxctx->guest_dr3);
2657 	load_dr6(vmxctx->guest_dr6);
2658 }
2659 
2660 static __inline void
2661 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2662 {
2663 
2664 	/* Save guest debug registers. */
2665 	vmxctx->guest_dr0 = rdr0();
2666 	vmxctx->guest_dr1 = rdr1();
2667 	vmxctx->guest_dr2 = rdr2();
2668 	vmxctx->guest_dr3 = rdr3();
2669 	vmxctx->guest_dr6 = rdr6();
2670 
2671 	/*
2672 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2673 	 * PSL_T last.
2674 	 */
2675 	load_dr0(vmxctx->host_dr0);
2676 	load_dr1(vmxctx->host_dr1);
2677 	load_dr2(vmxctx->host_dr2);
2678 	load_dr3(vmxctx->host_dr3);
2679 	load_dr6(vmxctx->host_dr6);
2680 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2681 	load_dr7(vmxctx->host_dr7);
2682 	write_rflags(read_rflags() | vmxctx->host_tf);
2683 }
2684 
2685 static int
2686 vmx_run(void *arg, int vcpu, uint64_t rip)
2687 {
2688 	int rc, handled, launched;
2689 	struct vmx *vmx;
2690 	struct vm *vm;
2691 	struct vmxctx *vmxctx;
2692 	uintptr_t vmcs_pa;
2693 	struct vm_exit *vmexit;
2694 	struct vlapic *vlapic;
2695 	uint32_t exit_reason;
2696 	bool tpr_shadow_active;
2697 	vm_client_t *vmc;
2698 
2699 	vmx = arg;
2700 	vm = vmx->vm;
2701 	vmcs_pa = vmx->vmcs_pa[vcpu];
2702 	vmxctx = &vmx->ctx[vcpu];
2703 	vlapic = vm_lapic(vm, vcpu);
2704 	vmexit = vm_exitinfo(vm, vcpu);
2705 	vmc = vm_get_vmclient(vm, vcpu);
2706 	launched = 0;
2707 	tpr_shadow_active = vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW) &&
2708 	    !vmx_cap_en(vmx, VMX_CAP_APICV) &&
2709 	    (vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0;
2710 
2711 	vmx_msr_guest_enter(vmx, vcpu);
2712 
2713 	vmcs_load(vmcs_pa);
2714 
2715 	VERIFY(vmx->vmcs_state[vcpu] == VS_NONE && curthread->t_preempt != 0);
2716 	vmx->vmcs_state[vcpu] = VS_LOADED;
2717 
2718 	/*
2719 	 * XXX
2720 	 * We do this every time because we may setup the virtual machine
2721 	 * from a different process than the one that actually runs it.
2722 	 *
2723 	 * If the life of a virtual machine was spent entirely in the context
2724 	 * of a single process we could do this once in vmx_vminit().
2725 	 */
2726 	vmcs_write(VMCS_HOST_CR3, rcr3());
2727 
2728 	vmcs_write(VMCS_GUEST_RIP, rip);
2729 	vmx_set_pcpu_defaults(vmx, vcpu);
2730 	do {
2731 		enum event_inject_state inject_state;
2732 		uint64_t eptgen;
2733 
2734 		ASSERT3U(vmcs_read(VMCS_GUEST_RIP), ==, rip);
2735 
2736 		handled = UNHANDLED;
2737 
2738 		/*
2739 		 * Perform initial event/exception/interrupt injection before
2740 		 * host CPU interrupts are disabled.
2741 		 */
2742 		inject_state = vmx_inject_events(vmx, vcpu, rip);
2743 
2744 		/*
2745 		 * Interrupts are disabled from this point on until the
2746 		 * guest starts executing. This is done for the following
2747 		 * reasons:
2748 		 *
2749 		 * If an AST is asserted on this thread after the check below,
2750 		 * then the IPI_AST notification will not be lost, because it
2751 		 * will cause a VM exit due to external interrupt as soon as
2752 		 * the guest state is loaded.
2753 		 *
2754 		 * A posted interrupt after vmx_inject_vlapic() will not be
2755 		 * "lost" because it will be held pending in the host APIC
2756 		 * because interrupts are disabled. The pending interrupt will
2757 		 * be recognized as soon as the guest state is loaded.
2758 		 *
2759 		 * The same reasoning applies to the IPI generated by vmspace
2760 		 * invalidation.
2761 		 */
2762 		disable_intr();
2763 
2764 		/*
2765 		 * If not precluded by existing events, inject any interrupt
2766 		 * pending on the vLAPIC.  As a lock-less operation, it is safe
2767 		 * (and prudent) to perform with host CPU interrupts disabled.
2768 		 */
2769 		if (inject_state == EIS_CAN_INJECT) {
2770 			inject_state = vmx_inject_vlapic(vmx, vcpu, vlapic);
2771 		}
2772 
2773 		/*
2774 		 * Check for vCPU bail-out conditions.  This must be done after
2775 		 * vmx_inject_events() to detect a triple-fault condition.
2776 		 */
2777 		if (vcpu_entry_bailout_checks(vmx->vm, vcpu, rip)) {
2778 			enable_intr();
2779 			break;
2780 		}
2781 
2782 		if (vcpu_run_state_pending(vm, vcpu)) {
2783 			enable_intr();
2784 			vm_exit_run_state(vmx->vm, vcpu, rip);
2785 			break;
2786 		}
2787 
2788 		/*
2789 		 * If subsequent activity queued events which require injection
2790 		 * handling, take another lap to handle them.
2791 		 */
2792 		if (vmx_inject_recheck(vmx, vcpu, inject_state)) {
2793 			enable_intr();
2794 			handled = HANDLED;
2795 			continue;
2796 		}
2797 
2798 		if ((rc = smt_acquire()) != 1) {
2799 			enable_intr();
2800 			vmexit->rip = rip;
2801 			vmexit->inst_length = 0;
2802 			if (rc == -1) {
2803 				vmexit->exitcode = VM_EXITCODE_HT;
2804 			} else {
2805 				vmexit->exitcode = VM_EXITCODE_BOGUS;
2806 				handled = HANDLED;
2807 			}
2808 			break;
2809 		}
2810 
2811 		/*
2812 		 * If this thread has gone off-cpu due to mutex operations
2813 		 * during vmx_run, the VMCS will have been unloaded, forcing a
2814 		 * re-VMLAUNCH as opposed to VMRESUME.
2815 		 */
2816 		launched = (vmx->vmcs_state[vcpu] & VS_LAUNCHED) != 0;
2817 		/*
2818 		 * Restoration of the GDT limit is taken care of by
2819 		 * vmx_savectx().  Since the maximum practical index for the
2820 		 * IDT is 255, restoring its limits from the post-VMX-exit
2821 		 * default of 0xffff is not a concern.
2822 		 *
2823 		 * Only 64-bit hypervisor callers are allowed, which forgoes
2824 		 * the need to restore any LDT descriptor.  Toss an error to
2825 		 * anyone attempting to break that rule.
2826 		 */
2827 		if (curproc->p_model != DATAMODEL_LP64) {
2828 			smt_release();
2829 			enable_intr();
2830 			bzero(vmexit, sizeof (*vmexit));
2831 			vmexit->rip = rip;
2832 			vmexit->exitcode = VM_EXITCODE_VMX;
2833 			vmexit->u.vmx.status = VM_FAIL_INVALID;
2834 			handled = UNHANDLED;
2835 			break;
2836 		}
2837 
2838 		if (tpr_shadow_active) {
2839 			vmx_tpr_shadow_enter(vlapic);
2840 		}
2841 
2842 		/*
2843 		 * Indicate activation of vmspace (EPT) table just prior to VMX
2844 		 * entry, checking for the necessity of an invept invalidation.
2845 		 */
2846 		eptgen = vmc_table_enter(vmc);
2847 		if (vmx->eptgen[curcpu] != eptgen) {
2848 			/*
2849 			 * VMspace generation does not match what was previously
2850 			 * used on this host CPU, so all mappings associated
2851 			 * with this EP4TA must be invalidated.
2852 			 */
2853 			invept(1, vmx->eptp);
2854 			vmx->eptgen[curcpu] = eptgen;
2855 		}
2856 
2857 		vcpu_ustate_change(vm, vcpu, VU_RUN);
2858 		vmx_dr_enter_guest(vmxctx);
2859 
2860 		/* Perform VMX entry */
2861 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2862 
2863 		vmx_dr_leave_guest(vmxctx);
2864 		vcpu_ustate_change(vm, vcpu, VU_EMU_KERN);
2865 
2866 		vmx->vmcs_state[vcpu] |= VS_LAUNCHED;
2867 		smt_release();
2868 
2869 		if (tpr_shadow_active) {
2870 			vmx_tpr_shadow_exit(vlapic);
2871 		}
2872 
2873 		/* Collect some information for VM exit processing */
2874 		vmexit->rip = rip = vmcs_read(VMCS_GUEST_RIP);
2875 		vmexit->inst_length = vmcs_read(VMCS_EXIT_INSTRUCTION_LENGTH);
2876 		vmexit->u.vmx.exit_reason = exit_reason =
2877 		    (vmcs_read(VMCS_EXIT_REASON) & BASIC_EXIT_REASON_MASK);
2878 		vmexit->u.vmx.exit_qualification =
2879 		    vmcs_read(VMCS_EXIT_QUALIFICATION);
2880 		/* Update 'nextrip' */
2881 		vmx->state[vcpu].nextrip = rip;
2882 
2883 		if (rc == VMX_GUEST_VMEXIT) {
2884 			vmx_exit_handle_possible_nmi(vmexit);
2885 		}
2886 		enable_intr();
2887 		vmc_table_exit(vmc);
2888 
2889 		if (rc == VMX_GUEST_VMEXIT) {
2890 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2891 		} else {
2892 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2893 		}
2894 		DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, rip,
2895 		    uint32_t, exit_reason);
2896 		rip = vmexit->rip;
2897 	} while (handled);
2898 
2899 	/* If a VM exit has been handled then the exitcode must be BOGUS */
2900 	if (handled && vmexit->exitcode != VM_EXITCODE_BOGUS) {
2901 		panic("Non-BOGUS exitcode (%d) unexpected for handled VM exit",
2902 		    vmexit->exitcode);
2903 	}
2904 
2905 	vmcs_clear(vmcs_pa);
2906 	vmx_msr_guest_exit(vmx, vcpu);
2907 
2908 	VERIFY(vmx->vmcs_state != VS_NONE && curthread->t_preempt != 0);
2909 	vmx->vmcs_state[vcpu] = VS_NONE;
2910 
2911 	return (0);
2912 }
2913 
2914 static void
2915 vmx_vmcleanup(void *arg)
2916 {
2917 	int i;
2918 	struct vmx *vmx = arg;
2919 	uint16_t maxcpus;
2920 
2921 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
2922 		(void) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2923 		kmem_free(vmx->apic_access_page, PAGESIZE);
2924 	} else {
2925 		VERIFY3P(vmx->apic_access_page, ==, NULL);
2926 	}
2927 
2928 	vmx_msr_bitmap_destroy(vmx);
2929 
2930 	maxcpus = vm_get_maxcpus(vmx->vm);
2931 	for (i = 0; i < maxcpus; i++)
2932 		vpid_free(vmx->state[i].vpid);
2933 
2934 	kmem_free(vmx, sizeof (*vmx));
2935 }
2936 
2937 static uint64_t *
2938 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2939 {
2940 	switch (reg) {
2941 	case VM_REG_GUEST_RAX:
2942 		return (&vmxctx->guest_rax);
2943 	case VM_REG_GUEST_RBX:
2944 		return (&vmxctx->guest_rbx);
2945 	case VM_REG_GUEST_RCX:
2946 		return (&vmxctx->guest_rcx);
2947 	case VM_REG_GUEST_RDX:
2948 		return (&vmxctx->guest_rdx);
2949 	case VM_REG_GUEST_RSI:
2950 		return (&vmxctx->guest_rsi);
2951 	case VM_REG_GUEST_RDI:
2952 		return (&vmxctx->guest_rdi);
2953 	case VM_REG_GUEST_RBP:
2954 		return (&vmxctx->guest_rbp);
2955 	case VM_REG_GUEST_R8:
2956 		return (&vmxctx->guest_r8);
2957 	case VM_REG_GUEST_R9:
2958 		return (&vmxctx->guest_r9);
2959 	case VM_REG_GUEST_R10:
2960 		return (&vmxctx->guest_r10);
2961 	case VM_REG_GUEST_R11:
2962 		return (&vmxctx->guest_r11);
2963 	case VM_REG_GUEST_R12:
2964 		return (&vmxctx->guest_r12);
2965 	case VM_REG_GUEST_R13:
2966 		return (&vmxctx->guest_r13);
2967 	case VM_REG_GUEST_R14:
2968 		return (&vmxctx->guest_r14);
2969 	case VM_REG_GUEST_R15:
2970 		return (&vmxctx->guest_r15);
2971 	case VM_REG_GUEST_CR2:
2972 		return (&vmxctx->guest_cr2);
2973 	case VM_REG_GUEST_DR0:
2974 		return (&vmxctx->guest_dr0);
2975 	case VM_REG_GUEST_DR1:
2976 		return (&vmxctx->guest_dr1);
2977 	case VM_REG_GUEST_DR2:
2978 		return (&vmxctx->guest_dr2);
2979 	case VM_REG_GUEST_DR3:
2980 		return (&vmxctx->guest_dr3);
2981 	case VM_REG_GUEST_DR6:
2982 		return (&vmxctx->guest_dr6);
2983 	default:
2984 		break;
2985 	}
2986 	return (NULL);
2987 }
2988 
2989 static int
2990 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2991 {
2992 	int running, hostcpu, err;
2993 	struct vmx *vmx = arg;
2994 	uint64_t *regp;
2995 
2996 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2997 	if (running && hostcpu != curcpu)
2998 		panic("vmx_getreg: %d is running", vcpu);
2999 
3000 	/* VMCS access not required for ctx reads */
3001 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3002 		*retval = *regp;
3003 		return (0);
3004 	}
3005 
3006 	if (!running) {
3007 		vmcs_load(vmx->vmcs_pa[vcpu]);
3008 	}
3009 
3010 	err = 0;
3011 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3012 		uint64_t gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3013 		*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3014 	} else {
3015 		uint32_t encoding;
3016 
3017 		encoding = vmcs_field_encoding(reg);
3018 		switch (encoding) {
3019 		case VMCS_GUEST_CR0:
3020 			/* Take the shadow bits into account */
3021 			*retval = vmx_unshadow_cr0(vmcs_read(encoding),
3022 			    vmcs_read(VMCS_CR0_SHADOW));
3023 			break;
3024 		case VMCS_GUEST_CR4:
3025 			/* Take the shadow bits into account */
3026 			*retval = vmx_unshadow_cr4(vmcs_read(encoding),
3027 			    vmcs_read(VMCS_CR4_SHADOW));
3028 			break;
3029 		case VMCS_INVALID_ENCODING:
3030 			err = EINVAL;
3031 			break;
3032 		default:
3033 			*retval = vmcs_read(encoding);
3034 			break;
3035 		}
3036 	}
3037 
3038 	if (!running) {
3039 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3040 	}
3041 
3042 	return (err);
3043 }
3044 
3045 static int
3046 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3047 {
3048 	int running, hostcpu, error;
3049 	struct vmx *vmx = arg;
3050 	uint64_t *regp;
3051 
3052 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3053 	if (running && hostcpu != curcpu)
3054 		panic("vmx_setreg: %d is running", vcpu);
3055 
3056 	/* VMCS access not required for ctx writes */
3057 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3058 		*regp = val;
3059 		return (0);
3060 	}
3061 
3062 	if (!running) {
3063 		vmcs_load(vmx->vmcs_pa[vcpu]);
3064 	}
3065 
3066 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3067 		if (val != 0) {
3068 			/*
3069 			 * Forcing the vcpu into an interrupt shadow is not
3070 			 * presently supported.
3071 			 */
3072 			error = EINVAL;
3073 		} else {
3074 			uint64_t gi;
3075 
3076 			gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3077 			gi &= ~HWINTR_BLOCKING;
3078 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
3079 			error = 0;
3080 		}
3081 	} else {
3082 		uint32_t encoding;
3083 
3084 		error = 0;
3085 		encoding = vmcs_field_encoding(reg);
3086 		switch (encoding) {
3087 		case VMCS_GUEST_IA32_EFER:
3088 			/*
3089 			 * If the "load EFER" VM-entry control is 1 then the
3090 			 * value of EFER.LMA must be identical to "IA-32e mode
3091 			 * guest" bit in the VM-entry control.
3092 			 */
3093 			if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0) {
3094 				uint64_t ctls;
3095 
3096 				ctls = vmcs_read(VMCS_ENTRY_CTLS);
3097 				if (val & EFER_LMA) {
3098 					ctls |= VM_ENTRY_GUEST_LMA;
3099 				} else {
3100 					ctls &= ~VM_ENTRY_GUEST_LMA;
3101 				}
3102 				vmcs_write(VMCS_ENTRY_CTLS, ctls);
3103 			}
3104 			vmcs_write(encoding, val);
3105 			break;
3106 		case VMCS_GUEST_CR0:
3107 			/*
3108 			 * The guest is not allowed to modify certain bits in
3109 			 * %cr0 and %cr4.  To maintain the illusion of full
3110 			 * control, they have shadow versions which contain the
3111 			 * guest-perceived (via reads from the register) values
3112 			 * as opposed to the guest-effective values.
3113 			 *
3114 			 * This is detailed in the SDM: Vol. 3 Ch. 24.6.6.
3115 			 */
3116 			vmcs_write(VMCS_CR0_SHADOW, val);
3117 			vmcs_write(encoding, vmx_fix_cr0(val));
3118 			break;
3119 		case VMCS_GUEST_CR4:
3120 			/* See above for detail on %cr4 shadowing */
3121 			vmcs_write(VMCS_CR4_SHADOW, val);
3122 			vmcs_write(encoding, vmx_fix_cr4(val));
3123 			break;
3124 		case VMCS_GUEST_CR3:
3125 			vmcs_write(encoding, val);
3126 			/*
3127 			 * Invalidate the guest vcpu's TLB mappings to emulate
3128 			 * the behavior of updating %cr3.
3129 			 *
3130 			 * XXX the processor retains global mappings when %cr3
3131 			 * is updated but vmx_invvpid() does not.
3132 			 */
3133 			vmx_invvpid(vmx, vcpu, running);
3134 			break;
3135 		case VMCS_INVALID_ENCODING:
3136 			error = EINVAL;
3137 			break;
3138 		default:
3139 			vmcs_write(encoding, val);
3140 			break;
3141 		}
3142 	}
3143 
3144 	if (!running) {
3145 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3146 	}
3147 
3148 	return (error);
3149 }
3150 
3151 static int
3152 vmx_getdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3153 {
3154 	int hostcpu, running;
3155 	struct vmx *vmx = arg;
3156 	uint32_t base, limit, access;
3157 
3158 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3159 	if (running && hostcpu != curcpu)
3160 		panic("vmx_getdesc: %d is running", vcpu);
3161 
3162 	if (!running) {
3163 		vmcs_load(vmx->vmcs_pa[vcpu]);
3164 	}
3165 
3166 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3167 	desc->base = vmcs_read(base);
3168 	desc->limit = vmcs_read(limit);
3169 	if (access != VMCS_INVALID_ENCODING) {
3170 		desc->access = vmcs_read(access);
3171 	} else {
3172 		desc->access = 0;
3173 	}
3174 
3175 	if (!running) {
3176 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3177 	}
3178 	return (0);
3179 }
3180 
3181 static int
3182 vmx_setdesc(void *arg, int vcpu, int seg, const struct seg_desc *desc)
3183 {
3184 	int hostcpu, running;
3185 	struct vmx *vmx = arg;
3186 	uint32_t base, limit, access;
3187 
3188 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3189 	if (running && hostcpu != curcpu)
3190 		panic("vmx_setdesc: %d is running", vcpu);
3191 
3192 	if (!running) {
3193 		vmcs_load(vmx->vmcs_pa[vcpu]);
3194 	}
3195 
3196 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3197 	vmcs_write(base, desc->base);
3198 	vmcs_write(limit, desc->limit);
3199 	if (access != VMCS_INVALID_ENCODING) {
3200 		vmcs_write(access, desc->access);
3201 	}
3202 
3203 	if (!running) {
3204 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3205 	}
3206 	return (0);
3207 }
3208 
3209 static int
3210 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3211 {
3212 	struct vmx *vmx = arg;
3213 	int vcap;
3214 	int ret;
3215 
3216 	ret = ENOENT;
3217 
3218 	vcap = vmx->cap[vcpu].set;
3219 
3220 	switch (type) {
3221 	case VM_CAP_HALT_EXIT:
3222 		if (cap_halt_exit)
3223 			ret = 0;
3224 		break;
3225 	case VM_CAP_PAUSE_EXIT:
3226 		if (cap_pause_exit)
3227 			ret = 0;
3228 		break;
3229 	case VM_CAP_MTRAP_EXIT:
3230 		if (cap_monitor_trap)
3231 			ret = 0;
3232 		break;
3233 	case VM_CAP_ENABLE_INVPCID:
3234 		if (cap_invpcid)
3235 			ret = 0;
3236 		break;
3237 	case VM_CAP_BPT_EXIT:
3238 		ret = 0;
3239 		break;
3240 	default:
3241 		break;
3242 	}
3243 
3244 	if (ret == 0)
3245 		*retval = (vcap & (1 << type)) ? 1 : 0;
3246 
3247 	return (ret);
3248 }
3249 
3250 static int
3251 vmx_setcap(void *arg, int vcpu, int type, int val)
3252 {
3253 	struct vmx *vmx = arg;
3254 	uint32_t baseval, reg, flag;
3255 	uint32_t *pptr;
3256 	int error;
3257 
3258 	error = ENOENT;
3259 	pptr = NULL;
3260 
3261 	switch (type) {
3262 	case VM_CAP_HALT_EXIT:
3263 		if (cap_halt_exit) {
3264 			error = 0;
3265 			pptr = &vmx->cap[vcpu].proc_ctls;
3266 			baseval = *pptr;
3267 			flag = PROCBASED_HLT_EXITING;
3268 			reg = VMCS_PRI_PROC_BASED_CTLS;
3269 		}
3270 		break;
3271 	case VM_CAP_MTRAP_EXIT:
3272 		if (cap_monitor_trap) {
3273 			error = 0;
3274 			pptr = &vmx->cap[vcpu].proc_ctls;
3275 			baseval = *pptr;
3276 			flag = PROCBASED_MTF;
3277 			reg = VMCS_PRI_PROC_BASED_CTLS;
3278 		}
3279 		break;
3280 	case VM_CAP_PAUSE_EXIT:
3281 		if (cap_pause_exit) {
3282 			error = 0;
3283 			pptr = &vmx->cap[vcpu].proc_ctls;
3284 			baseval = *pptr;
3285 			flag = PROCBASED_PAUSE_EXITING;
3286 			reg = VMCS_PRI_PROC_BASED_CTLS;
3287 		}
3288 		break;
3289 	case VM_CAP_ENABLE_INVPCID:
3290 		if (cap_invpcid) {
3291 			error = 0;
3292 			pptr = &vmx->cap[vcpu].proc_ctls2;
3293 			baseval = *pptr;
3294 			flag = PROCBASED2_ENABLE_INVPCID;
3295 			reg = VMCS_SEC_PROC_BASED_CTLS;
3296 		}
3297 		break;
3298 	case VM_CAP_BPT_EXIT:
3299 		error = 0;
3300 
3301 		/* Don't change the bitmap if we are tracing all exceptions. */
3302 		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3303 			pptr = &vmx->cap[vcpu].exc_bitmap;
3304 			baseval = *pptr;
3305 			flag = (1 << IDT_BP);
3306 			reg = VMCS_EXCEPTION_BITMAP;
3307 		}
3308 		break;
3309 	default:
3310 		break;
3311 	}
3312 
3313 	if (error != 0) {
3314 		return (error);
3315 	}
3316 
3317 	if (pptr != NULL) {
3318 		if (val) {
3319 			baseval |= flag;
3320 		} else {
3321 			baseval &= ~flag;
3322 		}
3323 		vmcs_load(vmx->vmcs_pa[vcpu]);
3324 		vmcs_write(reg, baseval);
3325 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3326 
3327 		/*
3328 		 * Update optional stored flags, and record
3329 		 * setting
3330 		 */
3331 		*pptr = baseval;
3332 	}
3333 
3334 	if (val) {
3335 		vmx->cap[vcpu].set |= (1 << type);
3336 	} else {
3337 		vmx->cap[vcpu].set &= ~(1 << type);
3338 	}
3339 
3340 	return (0);
3341 }
3342 
3343 struct vlapic_vtx {
3344 	struct vlapic	vlapic;
3345 
3346 	/* Align to the nearest cacheline */
3347 	uint8_t		_pad[64 - (sizeof (struct vlapic) % 64)];
3348 
3349 	/* TMR handling state for posted interrupts */
3350 	uint32_t	tmr_active[8];
3351 	uint32_t	pending_level[8];
3352 	uint32_t	pending_edge[8];
3353 
3354 	struct pir_desc	*pir_desc;
3355 	struct vmx	*vmx;
3356 	uint_t	pending_prio;
3357 	boolean_t	tmr_sync;
3358 };
3359 
3360 CTASSERT((offsetof(struct vlapic_vtx, tmr_active) & 63) == 0);
3361 
3362 #define	VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3363 
3364 static vcpu_notify_t
3365 vmx_apicv_set_ready(struct vlapic *vlapic, int vector, bool level)
3366 {
3367 	struct vlapic_vtx *vlapic_vtx;
3368 	struct pir_desc *pir_desc;
3369 	uint32_t mask, tmrval;
3370 	int idx;
3371 	vcpu_notify_t notify = VCPU_NOTIFY_NONE;
3372 
3373 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3374 	pir_desc = vlapic_vtx->pir_desc;
3375 	idx = vector / 32;
3376 	mask = 1UL << (vector % 32);
3377 
3378 	/*
3379 	 * If the currently asserted TMRs do not match the state requested by
3380 	 * the incoming interrupt, an exit will be required to reconcile those
3381 	 * bits in the APIC page.  This will keep the vLAPIC behavior in line
3382 	 * with the architecturally defined expectations.
3383 	 *
3384 	 * If actors of mixed types (edge and level) are racing against the same
3385 	 * vector (toggling its TMR bit back and forth), the results could
3386 	 * inconsistent.  Such circumstances are considered a rare edge case and
3387 	 * are never expected to be found in the wild.
3388 	 */
3389 	tmrval = atomic_load_acq_int(&vlapic_vtx->tmr_active[idx]);
3390 	if (!level) {
3391 		if ((tmrval & mask) != 0) {
3392 			/* Edge-triggered interrupt needs TMR de-asserted */
3393 			atomic_set_int(&vlapic_vtx->pending_edge[idx], mask);
3394 			atomic_store_rel_long(&pir_desc->pending, 1);
3395 			return (VCPU_NOTIFY_EXIT);
3396 		}
3397 	} else {
3398 		if ((tmrval & mask) == 0) {
3399 			/* Level-triggered interrupt needs TMR asserted */
3400 			atomic_set_int(&vlapic_vtx->pending_level[idx], mask);
3401 			atomic_store_rel_long(&pir_desc->pending, 1);
3402 			return (VCPU_NOTIFY_EXIT);
3403 		}
3404 	}
3405 
3406 	/*
3407 	 * If the interrupt request does not require manipulation of the TMRs
3408 	 * for delivery, set it in PIR descriptor.  It cannot be inserted into
3409 	 * the APIC page while the vCPU might be running.
3410 	 */
3411 	atomic_set_int(&pir_desc->pir[idx], mask);
3412 
3413 	/*
3414 	 * A notification is required whenever the 'pending' bit makes a
3415 	 * transition from 0->1.
3416 	 *
3417 	 * Even if the 'pending' bit is already asserted, notification about
3418 	 * the incoming interrupt may still be necessary.  For example, if a
3419 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3420 	 * the 0->1 'pending' transition with a notification, but the vCPU
3421 	 * would ignore the interrupt for the time being.  The same vCPU would
3422 	 * need to then be notified if a high-priority interrupt arrived which
3423 	 * satisfied the PPR.
3424 	 *
3425 	 * The priorities of interrupts injected while 'pending' is asserted
3426 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3427 	 * to-be-injected interrupt exceed the priorities already present, the
3428 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3429 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3430 	 */
3431 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3432 		notify = VCPU_NOTIFY_APIC;
3433 		vlapic_vtx->pending_prio = 0;
3434 	} else {
3435 		const uint_t old_prio = vlapic_vtx->pending_prio;
3436 		const uint_t prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3437 
3438 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3439 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3440 			notify = VCPU_NOTIFY_APIC;
3441 		}
3442 	}
3443 
3444 	return (notify);
3445 }
3446 
3447 static void
3448 vmx_apicv_accepted(struct vlapic *vlapic, int vector)
3449 {
3450 	/*
3451 	 * When APICv is enabled for an instance, the traditional interrupt
3452 	 * injection method (populating ENTRY_INTR_INFO in the VMCS) is not
3453 	 * used and the CPU does the heavy lifting of virtual interrupt
3454 	 * delivery.  For that reason vmx_intr_accepted() should never be called
3455 	 * when APICv is enabled.
3456 	 */
3457 	panic("vmx_intr_accepted: not expected to be called");
3458 }
3459 
3460 static void
3461 vmx_apicv_sync_tmr(struct vlapic *vlapic)
3462 {
3463 	struct vlapic_vtx *vlapic_vtx;
3464 	const uint32_t *tmrs;
3465 
3466 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3467 	tmrs = &vlapic_vtx->tmr_active[0];
3468 
3469 	if (!vlapic_vtx->tmr_sync) {
3470 		return;
3471 	}
3472 
3473 	vmcs_write(VMCS_EOI_EXIT0, ((uint64_t)tmrs[1] << 32) | tmrs[0]);
3474 	vmcs_write(VMCS_EOI_EXIT1, ((uint64_t)tmrs[3] << 32) | tmrs[2]);
3475 	vmcs_write(VMCS_EOI_EXIT2, ((uint64_t)tmrs[5] << 32) | tmrs[4]);
3476 	vmcs_write(VMCS_EOI_EXIT3, ((uint64_t)tmrs[7] << 32) | tmrs[6]);
3477 	vlapic_vtx->tmr_sync = B_FALSE;
3478 }
3479 
3480 static void
3481 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3482 {
3483 	struct vmx *vmx;
3484 	uint32_t proc_ctls;
3485 	int vcpuid;
3486 
3487 	vcpuid = vlapic->vcpuid;
3488 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3489 
3490 	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3491 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3492 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3493 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3494 	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3495 
3496 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3497 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3498 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3499 }
3500 
3501 static void
3502 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3503 {
3504 	struct vmx *vmx;
3505 	uint32_t proc_ctls2;
3506 	int vcpuid;
3507 
3508 	vcpuid = vlapic->vcpuid;
3509 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3510 
3511 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3512 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3513 	    ("%s: invalid proc_ctls2 %x", __func__, proc_ctls2));
3514 
3515 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3516 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3517 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3518 
3519 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3520 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3521 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3522 
3523 	vmx_allow_x2apic_msrs(vmx, vcpuid);
3524 }
3525 
3526 static void
3527 vmx_apicv_notify(struct vlapic *vlapic, int hostcpu)
3528 {
3529 	psm_send_pir_ipi(hostcpu);
3530 }
3531 
3532 static void
3533 vmx_apicv_sync(struct vlapic *vlapic)
3534 {
3535 	struct vlapic_vtx *vlapic_vtx;
3536 	struct pir_desc *pir_desc;
3537 	struct LAPIC *lapic;
3538 	uint_t i;
3539 
3540 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3541 	pir_desc = vlapic_vtx->pir_desc;
3542 	lapic = vlapic->apic_page;
3543 
3544 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3545 		return;
3546 	}
3547 
3548 	vlapic_vtx->pending_prio = 0;
3549 
3550 	/* Make sure the invalid (0-15) vectors are not set */
3551 	ASSERT0(vlapic_vtx->pending_level[0] & 0xffff);
3552 	ASSERT0(vlapic_vtx->pending_edge[0] & 0xffff);
3553 	ASSERT0(pir_desc->pir[0] & 0xffff);
3554 
3555 	for (i = 0; i <= 7; i++) {
3556 		uint32_t *tmrp = &lapic->tmr0 + (i * 4);
3557 		uint32_t *irrp = &lapic->irr0 + (i * 4);
3558 
3559 		const uint32_t pending_level =
3560 		    atomic_readandclear_int(&vlapic_vtx->pending_level[i]);
3561 		const uint32_t pending_edge =
3562 		    atomic_readandclear_int(&vlapic_vtx->pending_edge[i]);
3563 		const uint32_t pending_inject =
3564 		    atomic_readandclear_int(&pir_desc->pir[i]);
3565 
3566 		if (pending_level != 0) {
3567 			/*
3568 			 * Level-triggered interrupts assert their corresponding
3569 			 * bit in the TMR when queued in IRR.
3570 			 */
3571 			*tmrp |= pending_level;
3572 			*irrp |= pending_level;
3573 		}
3574 		if (pending_edge != 0) {
3575 			/*
3576 			 * When queuing an edge-triggered interrupt in IRR, the
3577 			 * corresponding bit in the TMR is cleared.
3578 			 */
3579 			*tmrp &= ~pending_edge;
3580 			*irrp |= pending_edge;
3581 		}
3582 		if (pending_inject != 0) {
3583 			/*
3584 			 * Interrupts which do not require a change to the TMR
3585 			 * (because it already matches the necessary state) can
3586 			 * simply be queued in IRR.
3587 			 */
3588 			*irrp |= pending_inject;
3589 		}
3590 
3591 		if (*tmrp != vlapic_vtx->tmr_active[i]) {
3592 			/* Check if VMX EOI triggers require updating. */
3593 			vlapic_vtx->tmr_active[i] = *tmrp;
3594 			vlapic_vtx->tmr_sync = B_TRUE;
3595 		}
3596 	}
3597 }
3598 
3599 static void
3600 vmx_tpr_shadow_enter(struct vlapic *vlapic)
3601 {
3602 	/*
3603 	 * When TPR shadowing is enabled, VMX will initiate a guest exit if its
3604 	 * TPR falls below a threshold priority.  That threshold is set to the
3605 	 * current TPR priority, since guest interrupt status should be
3606 	 * re-evaluated if its TPR is set lower.
3607 	 */
3608 	vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3609 }
3610 
3611 static void
3612 vmx_tpr_shadow_exit(struct vlapic *vlapic)
3613 {
3614 	/*
3615 	 * Unlike full APICv, where changes to the TPR are reflected in the PPR,
3616 	 * with TPR shadowing, that duty is relegated to the VMM.  Upon exit,
3617 	 * the PPR is updated to reflect any change in the TPR here.
3618 	 */
3619 	vlapic_sync_tpr(vlapic);
3620 }
3621 
3622 static struct vlapic *
3623 vmx_vlapic_init(void *arg, int vcpuid)
3624 {
3625 	struct vmx *vmx = arg;
3626 	struct vlapic_vtx *vlapic_vtx;
3627 	struct vlapic *vlapic;
3628 
3629 	vlapic_vtx = kmem_zalloc(sizeof (struct vlapic_vtx), KM_SLEEP);
3630 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3631 	vlapic_vtx->vmx = vmx;
3632 
3633 	vlapic = &vlapic_vtx->vlapic;
3634 	vlapic->vm = vmx->vm;
3635 	vlapic->vcpuid = vcpuid;
3636 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3637 
3638 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
3639 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3640 	}
3641 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
3642 		vlapic->ops.set_intr_ready = vmx_apicv_set_ready;
3643 		vlapic->ops.sync_state = vmx_apicv_sync;
3644 		vlapic->ops.intr_accepted = vmx_apicv_accepted;
3645 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3646 
3647 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
3648 			vlapic->ops.post_intr = vmx_apicv_notify;
3649 		}
3650 	}
3651 
3652 	vlapic_init(vlapic);
3653 
3654 	return (vlapic);
3655 }
3656 
3657 static void
3658 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3659 {
3660 	vlapic_cleanup(vlapic);
3661 	kmem_free(vlapic, sizeof (struct vlapic_vtx));
3662 }
3663 
3664 static void
3665 vmx_savectx(void *arg, int vcpu)
3666 {
3667 	struct vmx *vmx = arg;
3668 
3669 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3670 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3671 		vmx_msr_guest_exit(vmx, vcpu);
3672 		/*
3673 		 * Having VMCLEARed the VMCS, it can no longer be re-entered
3674 		 * with VMRESUME, but must be VMLAUNCHed again.
3675 		 */
3676 		vmx->vmcs_state[vcpu] &= ~VS_LAUNCHED;
3677 	}
3678 
3679 	reset_gdtr_limit();
3680 }
3681 
3682 static void
3683 vmx_restorectx(void *arg, int vcpu)
3684 {
3685 	struct vmx *vmx = arg;
3686 
3687 	ASSERT0(vmx->vmcs_state[vcpu] & VS_LAUNCHED);
3688 
3689 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3690 		vmx_msr_guest_enter(vmx, vcpu);
3691 		vmcs_load(vmx->vmcs_pa[vcpu]);
3692 	}
3693 }
3694 
3695 struct vmm_ops vmm_ops_intel = {
3696 	.init		= vmx_init,
3697 	.cleanup	= vmx_cleanup,
3698 	.resume		= vmx_restore,
3699 
3700 	.vminit		= vmx_vminit,
3701 	.vmrun		= vmx_run,
3702 	.vmcleanup	= vmx_vmcleanup,
3703 	.vmgetreg	= vmx_getreg,
3704 	.vmsetreg	= vmx_setreg,
3705 	.vmgetdesc	= vmx_getdesc,
3706 	.vmsetdesc	= vmx_setdesc,
3707 	.vmgetcap	= vmx_getcap,
3708 	.vmsetcap	= vmx_setcap,
3709 	.vlapic_init	= vmx_vlapic_init,
3710 	.vlapic_cleanup	= vmx_vlapic_cleanup,
3711 
3712 	.vmsavectx	= vmx_savectx,
3713 	.vmrestorectx	= vmx_restorectx,
3714 };
3715 
3716 /* Side-effect free HW validation derived from checks in vmx_init. */
3717 int
3718 vmx_x86_supported(const char **msg)
3719 {
3720 	int error;
3721 	uint32_t tmp;
3722 
3723 	ASSERT(msg != NULL);
3724 
3725 	/* Check support for primary processor-based VM-execution controls */
3726 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
3727 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING,
3728 	    PROCBASED_CTLS_ZERO_SETTING, &tmp);
3729 	if (error) {
3730 		*msg = "processor does not support desired primary "
3731 		    "processor-based controls";
3732 		return (error);
3733 	}
3734 
3735 	/* Check support for secondary processor-based VM-execution controls */
3736 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
3737 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING,
3738 	    PROCBASED_CTLS2_ZERO_SETTING, &tmp);
3739 	if (error) {
3740 		*msg = "processor does not support desired secondary "
3741 		    "processor-based controls";
3742 		return (error);
3743 	}
3744 
3745 	/* Check support for pin-based VM-execution controls */
3746 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
3747 	    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING,
3748 	    PINBASED_CTLS_ZERO_SETTING, &tmp);
3749 	if (error) {
3750 		*msg = "processor does not support desired pin-based controls";
3751 		return (error);
3752 	}
3753 
3754 	/* Check support for VM-exit controls */
3755 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
3756 	    VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &tmp);
3757 	if (error) {
3758 		*msg = "processor does not support desired exit controls";
3759 		return (error);
3760 	}
3761 
3762 	/* Check support for VM-entry controls */
3763 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
3764 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &tmp);
3765 	if (error) {
3766 		*msg = "processor does not support desired entry controls";
3767 		return (error);
3768 	}
3769 
3770 	/* Unrestricted guest is nominally optional, but not for us. */
3771 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
3772 	    PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp);
3773 	if (error) {
3774 		*msg = "processor does not support desired unrestricted guest "
3775 		    "controls";
3776 		return (error);
3777 	}
3778 
3779 	return (0);
3780 }
3781