xref: /illumos-gate/usr/src/uts/intel/io/vmm/intel/vmx.c (revision 2699b94c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 /*
32  * This file and its contents are supplied under the terms of the
33  * Common Development and Distribution License ("CDDL"), version 1.0.
34  * You may only use this file in accordance with the terms of version
35  * 1.0 of the CDDL.
36  *
37  * A full copy of the text of the CDDL should have accompanied this
38  * source.  A copy of the CDDL is also available via the Internet at
39  * http://www.illumos.org/license/CDDL.
40  *
41  * Copyright 2015 Pluribus Networks Inc.
42  * Copyright 2018 Joyent, Inc.
43  * Copyright 2020 Oxide Computer Company
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/smp.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/pcpu.h>
55 #include <sys/proc.h>
56 #include <sys/sysctl.h>
57 
58 #ifndef __FreeBSD__
59 #include <sys/x86_archext.h>
60 #include <sys/smp_impldefs.h>
61 #include <sys/smt.h>
62 #include <sys/hma.h>
63 #include <sys/trap.h>
64 #endif
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 
69 #include <machine/psl.h>
70 #include <machine/cpufunc.h>
71 #include <machine/md_var.h>
72 #include <machine/reg.h>
73 #include <machine/segments.h>
74 #include <machine/smp.h>
75 #include <machine/specialreg.h>
76 #include <machine/vmparam.h>
77 
78 #include <machine/vmm.h>
79 #include <machine/vmm_dev.h>
80 #include <sys/vmm_instruction_emul.h>
81 #include "vmm_lapic.h"
82 #include "vmm_host.h"
83 #include "vmm_ioport.h"
84 #include "vmm_ktr.h"
85 #include "vmm_stat.h"
86 #include "vatpic.h"
87 #include "vlapic.h"
88 #include "vlapic_priv.h"
89 
90 #include "ept.h"
91 #include "vmcs.h"
92 #include "vmx.h"
93 #include "vmx_msr.h"
94 #include "x86.h"
95 #include "vmx_controls.h"
96 
97 #define	PINBASED_CTLS_ONE_SETTING					\
98 	(PINBASED_EXTINT_EXITING	|				\
99 	PINBASED_NMI_EXITING		|				\
100 	PINBASED_VIRTUAL_NMI)
101 #define	PINBASED_CTLS_ZERO_SETTING	0
102 
103 #define	PROCBASED_CTLS_WINDOW_SETTING					\
104 	(PROCBASED_INT_WINDOW_EXITING	|				\
105 	PROCBASED_NMI_WINDOW_EXITING)
106 
107 #ifdef __FreeBSD__
108 #define	PROCBASED_CTLS_ONE_SETTING					\
109 	(PROCBASED_SECONDARY_CONTROLS	|				\
110 	PROCBASED_MWAIT_EXITING		|				\
111 	PROCBASED_MONITOR_EXITING	|				\
112 	PROCBASED_IO_EXITING		|				\
113 	PROCBASED_MSR_BITMAPS		|				\
114 	PROCBASED_CTLS_WINDOW_SETTING	|				\
115 	PROCBASED_CR8_LOAD_EXITING	|				\
116 	PROCBASED_CR8_STORE_EXITING)
117 #else
118 /* We consider TSC offset a necessity for unsynched TSC handling */
119 #define	PROCBASED_CTLS_ONE_SETTING					\
120 	(PROCBASED_SECONDARY_CONTROLS	|				\
121 	PROCBASED_TSC_OFFSET		|				\
122 	PROCBASED_MWAIT_EXITING		|				\
123 	PROCBASED_MONITOR_EXITING	|				\
124 	PROCBASED_IO_EXITING		|				\
125 	PROCBASED_MSR_BITMAPS		|				\
126 	PROCBASED_CTLS_WINDOW_SETTING	|				\
127 	PROCBASED_CR8_LOAD_EXITING	|				\
128 	PROCBASED_CR8_STORE_EXITING)
129 #endif /* __FreeBSD__ */
130 
131 #define	PROCBASED_CTLS_ZERO_SETTING	\
132 	(PROCBASED_CR3_LOAD_EXITING |	\
133 	PROCBASED_CR3_STORE_EXITING |	\
134 	PROCBASED_IO_BITMAPS)
135 
136 /*
137  * EPT and Unrestricted Guest are considered necessities.  The latter is not a
138  * requirement on FreeBSD, where grub2-bhyve is used to load guests directly
139  * without a bootrom starting in real mode.
140  */
141 #define	PROCBASED_CTLS2_ONE_SETTING		\
142 	(PROCBASED2_ENABLE_EPT |		\
143 	PROCBASED2_UNRESTRICTED_GUEST)
144 #define	PROCBASED_CTLS2_ZERO_SETTING	0
145 
146 #define	VM_EXIT_CTLS_ONE_SETTING					\
147 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
148 	VM_EXIT_HOST_LMA			|			\
149 	VM_EXIT_LOAD_PAT			|			\
150 	VM_EXIT_SAVE_EFER			|			\
151 	VM_EXIT_LOAD_EFER			|			\
152 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
153 
154 #define	VM_EXIT_CTLS_ZERO_SETTING	0
155 
156 #define	VM_ENTRY_CTLS_ONE_SETTING					\
157 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
158 	VM_ENTRY_LOAD_EFER)
159 
160 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
161 	(VM_ENTRY_INTO_SMM			|			\
162 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
163 
164 #define	HANDLED		1
165 #define	UNHANDLED	0
166 
167 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
168 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
169 
170 SYSCTL_DECL(_hw_vmm);
171 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
172     NULL);
173 
174 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
175 static uint32_t exit_ctls, entry_ctls;
176 
177 static uint64_t cr0_ones_mask, cr0_zeros_mask;
178 
179 static uint64_t cr4_ones_mask, cr4_zeros_mask;
180 
181 static int vmx_initialized;
182 
183 /* Do not flush RSB upon vmexit */
184 static int no_flush_rsb;
185 
186 /*
187  * Optional capabilities
188  */
189 #ifdef __FreeBSD__
190 SYSCTL_DECL(_hw_vmm_vmx);
191 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
192     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
193     NULL);
194 #endif
195 
196 /* HLT triggers a VM-exit */
197 static int cap_halt_exit;
198 
199 /* PAUSE triggers a VM-exit */
200 static int cap_pause_exit;
201 
202 /* Monitor trap flag */
203 static int cap_monitor_trap;
204 
205 /* Guests are allowed to use INVPCID */
206 static int cap_invpcid;
207 
208 /* Extra capabilities (VMX_CAP_*) beyond the minimum */
209 static enum vmx_caps vmx_capabilities;
210 
211 /* APICv posted interrupt vector */
212 static int pirvec = -1;
213 
214 #ifdef __FreeBSD__
215 static struct unrhdr *vpid_unr;
216 #endif /* __FreeBSD__ */
217 static uint_t vpid_alloc_failed;
218 
219 int guest_l1d_flush;
220 int guest_l1d_flush_sw;
221 
222 /* MSR save region is composed of an array of 'struct msr_entry' */
223 struct msr_entry {
224 	uint32_t	index;
225 	uint32_t	reserved;
226 	uint64_t	val;
227 };
228 
229 static struct msr_entry msr_load_list[1] __aligned(16);
230 
231 /*
232  * The definitions of SDT probes for VMX.
233  */
234 
235 /* BEGIN CSTYLED */
236 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
237     "struct vmx *", "int", "struct vm_exit *");
238 
239 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
240     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
241 
242 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
243     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
244 
245 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
246     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
247 
248 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
249     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
250 
251 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
252     "struct vmx *", "int", "struct vm_exit *");
253 
254 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
255     "struct vmx *", "int", "struct vm_exit *");
256 
257 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
258     "struct vmx *", "int", "struct vm_exit *");
259 
260 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
261     "struct vmx *", "int", "struct vm_exit *");
262 
263 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
264     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
265 
266 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
267     "struct vmx *", "int", "struct vm_exit *");
268 
269 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
270     "struct vmx *", "int", "struct vm_exit *");
271 
272 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
273     "struct vmx *", "int", "struct vm_exit *");
274 
275 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
276     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
277 
278 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
279     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
280 
281 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
282     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
283 
284 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
285     "struct vmx *", "int", "struct vm_exit *");
286 
287 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
288     "struct vmx *", "int", "struct vm_exit *");
289 
290 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
291     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
292 
293 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
294     "struct vmx *", "int", "struct vm_exit *");
295 
296 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
297     "struct vmx *", "int", "struct vm_exit *");
298 
299 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
300     "struct vmx *", "int", "struct vm_exit *");
301 
302 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
303     "struct vmx *", "int", "struct vm_exit *");
304 
305 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
306     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
307 
308 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
309     "struct vmx *", "int", "struct vm_exit *", "int");
310 /* END CSTYLED */
311 
312 /*
313  * Use the last page below 4GB as the APIC access address. This address is
314  * occupied by the boot firmware so it is guaranteed that it will not conflict
315  * with a page in system memory.
316  */
317 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
318 
319 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
320 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
321 static void vmx_apply_tsc_adjust(struct vmx *, int);
322 static void vmx_apicv_sync_tmr(struct vlapic *vlapic);
323 static void vmx_tpr_shadow_enter(struct vlapic *vlapic);
324 static void vmx_tpr_shadow_exit(struct vlapic *vlapic);
325 
326 static int
327 vmx_allow_x2apic_msrs(struct vmx *vmx)
328 {
329 	int i, error;
330 
331 	error = 0;
332 
333 	/*
334 	 * Allow readonly access to the following x2APIC MSRs from the guest.
335 	 */
336 	error += guest_msr_ro(vmx, MSR_APIC_ID);
337 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
338 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
339 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
340 
341 	for (i = 0; i < 8; i++)
342 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
343 
344 	for (i = 0; i < 8; i++)
345 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
346 
347 	for (i = 0; i < 8; i++)
348 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
349 
350 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
351 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
352 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
353 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
354 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
355 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
356 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
357 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
358 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
359 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
360 
361 	/*
362 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
363 	 *
364 	 * These registers get special treatment described in the section
365 	 * "Virtualizing MSR-Based APIC Accesses".
366 	 */
367 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
368 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
369 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
370 
371 	return (error);
372 }
373 
374 static ulong_t
375 vmx_fix_cr0(ulong_t cr0)
376 {
377 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
378 }
379 
380 static ulong_t
381 vmx_fix_cr4(ulong_t cr4)
382 {
383 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
384 }
385 
386 static void
387 vpid_free(int vpid)
388 {
389 	if (vpid < 0 || vpid > 0xffff)
390 		panic("vpid_free: invalid vpid %d", vpid);
391 
392 	/*
393 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
394 	 * the unit number allocator.
395 	 */
396 
397 	if (vpid > VM_MAXCPU)
398 #ifdef __FreeBSD__
399 		free_unr(vpid_unr, vpid);
400 #else
401 		hma_vmx_vpid_free((uint16_t)vpid);
402 #endif
403 }
404 
405 static void
406 vpid_alloc(uint16_t *vpid, int num)
407 {
408 	int i, x;
409 
410 	if (num <= 0 || num > VM_MAXCPU)
411 		panic("invalid number of vpids requested: %d", num);
412 
413 	/*
414 	 * If the "enable vpid" execution control is not enabled then the
415 	 * VPID is required to be 0 for all vcpus.
416 	 */
417 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
418 		for (i = 0; i < num; i++)
419 			vpid[i] = 0;
420 		return;
421 	}
422 
423 	/*
424 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
425 	 */
426 	for (i = 0; i < num; i++) {
427 #ifdef __FreeBSD__
428 		x = alloc_unr(vpid_unr);
429 #else
430 		uint16_t tmp;
431 
432 		tmp = hma_vmx_vpid_alloc();
433 		x = (tmp == 0) ? -1 : tmp;
434 #endif
435 		if (x == -1)
436 			break;
437 		else
438 			vpid[i] = x;
439 	}
440 
441 	if (i < num) {
442 		atomic_add_int(&vpid_alloc_failed, 1);
443 
444 		/*
445 		 * If the unit number allocator does not have enough unique
446 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
447 		 *
448 		 * These VPIDs are not be unique across VMs but this does not
449 		 * affect correctness because the combined mappings are also
450 		 * tagged with the EP4TA which is unique for each VM.
451 		 *
452 		 * It is still sub-optimal because the invvpid will invalidate
453 		 * combined mappings for a particular VPID across all EP4TAs.
454 		 */
455 		while (i-- > 0)
456 			vpid_free(vpid[i]);
457 
458 		for (i = 0; i < num; i++)
459 			vpid[i] = i + 1;
460 	}
461 }
462 
463 static int
464 vmx_cleanup(void)
465 {
466 	/* This is taken care of by the hma registration */
467 	return (0);
468 }
469 
470 static void
471 vmx_restore(void)
472 {
473 	/* No-op on illumos */
474 }
475 
476 static int
477 vmx_init(int ipinum)
478 {
479 	int error;
480 	uint64_t fixed0, fixed1;
481 	uint32_t tmp;
482 	enum vmx_caps avail_caps = VMX_CAP_NONE;
483 
484 	/* Check support for primary processor-based VM-execution controls */
485 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
486 	    MSR_VMX_TRUE_PROCBASED_CTLS,
487 	    PROCBASED_CTLS_ONE_SETTING,
488 	    PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
489 	if (error) {
490 		printf("vmx_init: processor does not support desired primary "
491 		    "processor-based controls\n");
492 		return (error);
493 	}
494 
495 	/* Clear the processor-based ctl bits that are set on demand */
496 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
497 
498 	/* Check support for secondary processor-based VM-execution controls */
499 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
500 	    MSR_VMX_PROCBASED_CTLS2,
501 	    PROCBASED_CTLS2_ONE_SETTING,
502 	    PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
503 	if (error) {
504 		printf("vmx_init: processor does not support desired secondary "
505 		    "processor-based controls\n");
506 		return (error);
507 	}
508 
509 	/* Check support for VPID */
510 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
511 	    MSR_VMX_PROCBASED_CTLS2,
512 	    PROCBASED2_ENABLE_VPID,
513 	    0, &tmp);
514 	if (error == 0)
515 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
516 
517 	/* Check support for pin-based VM-execution controls */
518 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
519 	    MSR_VMX_TRUE_PINBASED_CTLS,
520 	    PINBASED_CTLS_ONE_SETTING,
521 	    PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
522 	if (error) {
523 		printf("vmx_init: processor does not support desired "
524 		    "pin-based controls\n");
525 		return (error);
526 	}
527 
528 	/* Check support for VM-exit controls */
529 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
530 	    VM_EXIT_CTLS_ONE_SETTING,
531 	    VM_EXIT_CTLS_ZERO_SETTING,
532 	    &exit_ctls);
533 	if (error) {
534 		printf("vmx_init: processor does not support desired "
535 		    "exit controls\n");
536 		return (error);
537 	}
538 
539 	/* Check support for VM-entry controls */
540 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
541 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
542 	    &entry_ctls);
543 	if (error) {
544 		printf("vmx_init: processor does not support desired "
545 		    "entry controls\n");
546 		return (error);
547 	}
548 
549 	/*
550 	 * Check support for optional features by testing them
551 	 * as individual bits
552 	 */
553 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
554 	    MSR_VMX_TRUE_PROCBASED_CTLS,
555 	    PROCBASED_HLT_EXITING, 0,
556 	    &tmp) == 0);
557 
558 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
559 	    MSR_VMX_PROCBASED_CTLS,
560 	    PROCBASED_MTF, 0,
561 	    &tmp) == 0);
562 
563 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
564 	    MSR_VMX_TRUE_PROCBASED_CTLS,
565 	    PROCBASED_PAUSE_EXITING, 0,
566 	    &tmp) == 0);
567 
568 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
569 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
570 	    &tmp) == 0);
571 
572 	/*
573 	 * Check for APIC virtualization capabilities:
574 	 * - TPR shadowing
575 	 * - Full APICv (with or without x2APIC support)
576 	 * - Posted interrupt handling
577 	 */
578 	if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS,
579 	    PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0) {
580 		avail_caps |= VMX_CAP_TPR_SHADOW;
581 
582 		const uint32_t apicv_bits =
583 		    PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
584 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
585 		    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
586 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY;
587 		if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
588 		    MSR_VMX_PROCBASED_CTLS2, apicv_bits, 0, &tmp) == 0) {
589 			avail_caps |= VMX_CAP_APICV;
590 
591 			/*
592 			 * It may make sense in the future to differentiate
593 			 * hardware (or software) configurations with APICv but
594 			 * no support for accelerating x2APIC mode.
595 			 */
596 			avail_caps |= VMX_CAP_APICV_X2APIC;
597 
598 			error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
599 			    MSR_VMX_TRUE_PINBASED_CTLS,
600 			    PINBASED_POSTED_INTERRUPT, 0, &tmp);
601 			if (error == 0) {
602 				/*
603 				 * If the PSM-provided interfaces for requesting
604 				 * and using a PIR IPI vector are present, use
605 				 * them for posted interrupts.
606 				 */
607 				if (psm_get_pir_ipivect != NULL &&
608 				    psm_send_pir_ipi != NULL) {
609 					pirvec = psm_get_pir_ipivect();
610 					avail_caps |= VMX_CAP_APICV_PIR;
611 				}
612 			}
613 		}
614 	}
615 
616 	/* Initialize EPT */
617 	error = ept_init(ipinum);
618 	if (error) {
619 		printf("vmx_init: ept initialization failed (%d)\n", error);
620 		return (error);
621 	}
622 
623 #ifdef __FreeBSD__
624 	guest_l1d_flush = (cpu_ia32_arch_caps &
625 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
626 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
627 
628 	/*
629 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
630 	 * available.  Otherwise fall back to the software flush
631 	 * method which loads enough data from the kernel text to
632 	 * flush existing L1D content, both on VMX entry and on NMI
633 	 * return.
634 	 */
635 	if (guest_l1d_flush) {
636 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
637 			guest_l1d_flush_sw = 1;
638 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
639 			    &guest_l1d_flush_sw);
640 		}
641 		if (guest_l1d_flush_sw) {
642 			if (nmi_flush_l1d_sw <= 1)
643 				nmi_flush_l1d_sw = 1;
644 		} else {
645 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
646 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
647 		}
648 	}
649 #else
650 	/* L1D flushing is taken care of by smt_acquire() and friends */
651 	guest_l1d_flush = 0;
652 #endif /* __FreeBSD__ */
653 
654 	/*
655 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
656 	 */
657 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
658 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
659 	cr0_ones_mask = fixed0 & fixed1;
660 	cr0_zeros_mask = ~fixed0 & ~fixed1;
661 
662 	/*
663 	 * Since Unrestricted Guest was already verified present, CR0_PE and
664 	 * CR0_PG are allowed to be set to zero in VMX non-root operation
665 	 */
666 	cr0_ones_mask &= ~(CR0_PG | CR0_PE);
667 
668 	/*
669 	 * Do not allow the guest to set CR0_NW or CR0_CD.
670 	 */
671 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
672 
673 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
674 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
675 	cr4_ones_mask = fixed0 & fixed1;
676 	cr4_zeros_mask = ~fixed0 & ~fixed1;
677 
678 	vmx_msr_init();
679 
680 	vmx_capabilities = avail_caps;
681 	vmx_initialized = 1;
682 
683 	return (0);
684 }
685 
686 static void
687 vmx_trigger_hostintr(int vector)
688 {
689 #ifdef __FreeBSD__
690 	uintptr_t func;
691 	struct gate_descriptor *gd;
692 
693 	gd = &idt[vector];
694 
695 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
696 	    "invalid vector %d", vector));
697 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
698 	    vector));
699 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
700 	    "has invalid type %d", vector, gd->gd_type));
701 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
702 	    "has invalid dpl %d", vector, gd->gd_dpl));
703 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
704 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
705 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
706 	    "IST %d", vector, gd->gd_ist));
707 
708 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
709 	vmx_call_isr(func);
710 #else
711 	VERIFY(vector >= 32 && vector <= 255);
712 	vmx_call_isr(vector - 32);
713 #endif /* __FreeBSD__ */
714 }
715 
716 static void *
717 vmx_vminit(struct vm *vm, pmap_t pmap)
718 {
719 	uint16_t vpid[VM_MAXCPU];
720 	int i, error, datasel;
721 	struct vmx *vmx;
722 	uint32_t exc_bitmap;
723 	uint16_t maxcpus;
724 	uint32_t proc_ctls, proc2_ctls, pin_ctls;
725 
726 	vmx = malloc(sizeof (struct vmx), M_VMX, M_WAITOK | M_ZERO);
727 	if ((uintptr_t)vmx & PAGE_MASK) {
728 		panic("malloc of struct vmx not aligned on %d byte boundary",
729 		    PAGE_SIZE);
730 	}
731 	vmx->vm = vm;
732 
733 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
734 
735 	/*
736 	 * Clean up EPTP-tagged guest physical and combined mappings
737 	 *
738 	 * VMX transitions are not required to invalidate any guest physical
739 	 * mappings. So, it may be possible for stale guest physical mappings
740 	 * to be present in the processor TLBs.
741 	 *
742 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
743 	 */
744 	ept_invalidate_mappings(vmx->eptp);
745 
746 	msr_bitmap_initialize(vmx->msr_bitmap);
747 
748 	/*
749 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
750 	 * The guest FSBASE and GSBASE are saved and restored during
751 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
752 	 * always restored from the vmcs host state area on vm-exit.
753 	 *
754 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
755 	 * how they are saved/restored so can be directly accessed by the
756 	 * guest.
757 	 *
758 	 * MSR_EFER is saved and restored in the guest VMCS area on a
759 	 * VM exit and entry respectively. It is also restored from the
760 	 * host VMCS area on a VM exit.
761 	 *
762 	 * The TSC MSR is exposed read-only. Writes are disallowed as
763 	 * that will impact the host TSC.  If the guest does a write
764 	 * the "use TSC offsetting" execution control is enabled and the
765 	 * difference between the host TSC and the guest TSC is written
766 	 * into the TSC offset in the VMCS.
767 	 */
768 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
769 	    guest_msr_rw(vmx, MSR_FSBASE) ||
770 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
771 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
772 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
773 	    guest_msr_rw(vmx, MSR_EFER) ||
774 	    guest_msr_ro(vmx, MSR_TSC))
775 		panic("vmx_vminit: error setting guest msr access");
776 
777 	vpid_alloc(vpid, VM_MAXCPU);
778 
779 	/* Grab the established defaults */
780 	proc_ctls = procbased_ctls;
781 	proc2_ctls = procbased_ctls2;
782 	pin_ctls = pinbased_ctls;
783 	/* For now, default to the available capabilities */
784 	vmx->vmx_caps = vmx_capabilities;
785 
786 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
787 		proc_ctls |= PROCBASED_USE_TPR_SHADOW;
788 		proc_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
789 		proc_ctls &= ~PROCBASED_CR8_STORE_EXITING;
790 	}
791 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
792 		ASSERT(vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW));
793 
794 		proc2_ctls |= (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
795 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
796 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
797 
798 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
799 		    APIC_ACCESS_ADDRESS);
800 		/* XXX this should really return an error to the caller */
801 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
802 	}
803 	if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
804 		ASSERT(vmx_cap_en(vmx, VMX_CAP_APICV));
805 
806 		pin_ctls |= PINBASED_POSTED_INTERRUPT;
807 	}
808 
809 	maxcpus = vm_get_maxcpus(vm);
810 	datasel = vmm_get_host_datasel();
811 	for (i = 0; i < maxcpus; i++) {
812 		/*
813 		 * Cache physical address lookups for various components which
814 		 * may be required inside the critical_enter() section implied
815 		 * by VMPTRLD() below.
816 		 */
817 		vm_paddr_t msr_bitmap_pa = vtophys(vmx->msr_bitmap);
818 		vm_paddr_t apic_page_pa = vtophys(&vmx->apic_page[i]);
819 		vm_paddr_t pir_desc_pa = vtophys(&vmx->pir_desc[i]);
820 
821 		vmx->vmcs_pa[i] = (uintptr_t)vtophys(&vmx->vmcs[i]);
822 		vmcs_initialize(&vmx->vmcs[i], vmx->vmcs_pa[i]);
823 
824 		vmx_msr_guest_init(vmx, i);
825 
826 		vmcs_load(vmx->vmcs_pa[i]);
827 
828 		vmcs_write(VMCS_HOST_IA32_PAT, vmm_get_host_pat());
829 		vmcs_write(VMCS_HOST_IA32_EFER, vmm_get_host_efer());
830 
831 		/* Load the control registers */
832 		vmcs_write(VMCS_HOST_CR0, vmm_get_host_cr0());
833 		vmcs_write(VMCS_HOST_CR4, vmm_get_host_cr4() | CR4_VMXE);
834 
835 		/* Load the segment selectors */
836 		vmcs_write(VMCS_HOST_CS_SELECTOR, vmm_get_host_codesel());
837 
838 		vmcs_write(VMCS_HOST_ES_SELECTOR, datasel);
839 		vmcs_write(VMCS_HOST_SS_SELECTOR, datasel);
840 		vmcs_write(VMCS_HOST_DS_SELECTOR, datasel);
841 
842 		vmcs_write(VMCS_HOST_FS_SELECTOR, vmm_get_host_fssel());
843 		vmcs_write(VMCS_HOST_GS_SELECTOR, vmm_get_host_gssel());
844 		vmcs_write(VMCS_HOST_TR_SELECTOR, vmm_get_host_tsssel());
845 
846 		/*
847 		 * Configure host sysenter MSRs to be restored on VM exit.
848 		 * The thread-specific MSR_INTC_SEP_ESP value is loaded in
849 		 * vmx_run.
850 		 */
851 		vmcs_write(VMCS_HOST_IA32_SYSENTER_CS, KCS_SEL);
852 		vmcs_write(VMCS_HOST_IA32_SYSENTER_EIP,
853 		    rdmsr(MSR_SYSENTER_EIP_MSR));
854 
855 		/* instruction pointer */
856 		if (no_flush_rsb) {
857 			vmcs_write(VMCS_HOST_RIP, (uint64_t)vmx_exit_guest);
858 		} else {
859 			vmcs_write(VMCS_HOST_RIP,
860 			    (uint64_t)vmx_exit_guest_flush_rsb);
861 		}
862 
863 		/* link pointer */
864 		vmcs_write(VMCS_LINK_POINTER, ~0);
865 
866 		vmcs_write(VMCS_EPTP, vmx->eptp);
867 		vmcs_write(VMCS_PIN_BASED_CTLS, pin_ctls);
868 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
869 		vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc2_ctls);
870 		vmcs_write(VMCS_EXIT_CTLS, exit_ctls);
871 		vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
872 		vmcs_write(VMCS_MSR_BITMAP, msr_bitmap_pa);
873 		vmcs_write(VMCS_VPID, vpid[i]);
874 
875 		if (guest_l1d_flush && !guest_l1d_flush_sw) {
876 			vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
877 			    (vm_offset_t)&msr_load_list[0]));
878 			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
879 			    nitems(msr_load_list));
880 			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
881 			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
882 		}
883 
884 		/* exception bitmap */
885 		if (vcpu_trace_exceptions(vm, i))
886 			exc_bitmap = 0xffffffff;
887 		else
888 			exc_bitmap = 1 << IDT_MC;
889 		vmcs_write(VMCS_EXCEPTION_BITMAP, exc_bitmap);
890 
891 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
892 		vmcs_write(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
893 
894 		if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
895 			vmcs_write(VMCS_VIRTUAL_APIC, apic_page_pa);
896 		}
897 
898 		if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
899 			vmcs_write(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
900 			vmcs_write(VMCS_EOI_EXIT0, 0);
901 			vmcs_write(VMCS_EOI_EXIT1, 0);
902 			vmcs_write(VMCS_EOI_EXIT2, 0);
903 			vmcs_write(VMCS_EOI_EXIT3, 0);
904 		}
905 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
906 			vmcs_write(VMCS_PIR_VECTOR, pirvec);
907 			vmcs_write(VMCS_PIR_DESC, pir_desc_pa);
908 		}
909 
910 		/*
911 		 * Set up the CR0/4 masks and configure the read shadow state
912 		 * to the power-on register value from the Intel Sys Arch.
913 		 *  CR0 - 0x60000010
914 		 *  CR4 - 0
915 		 */
916 		vmcs_write(VMCS_CR0_MASK, cr0_ones_mask | cr0_zeros_mask);
917 		vmcs_write(VMCS_CR0_SHADOW, 0x60000010);
918 		vmcs_write(VMCS_CR4_MASK, cr4_ones_mask | cr4_zeros_mask);
919 		vmcs_write(VMCS_CR4_SHADOW, 0);
920 
921 		vmcs_clear(vmx->vmcs_pa[i]);
922 
923 		vmx->cap[i].set = 0;
924 		vmx->cap[i].proc_ctls = proc_ctls;
925 		vmx->cap[i].proc_ctls2 = proc2_ctls;
926 		vmx->cap[i].exc_bitmap = exc_bitmap;
927 
928 		vmx->state[i].nextrip = ~0;
929 		vmx->state[i].lastcpu = NOCPU;
930 		vmx->state[i].vpid = vpid[i];
931 
932 
933 		vmx->ctx[i].pmap = pmap;
934 	}
935 
936 	return (vmx);
937 }
938 
939 static int
940 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
941 {
942 #ifdef __FreeBSD__
943 	int handled, func;
944 
945 	func = vmxctx->guest_rax;
946 #else
947 	int handled;
948 #endif
949 
950 	handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
951 	    (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
952 	    (uint64_t *)&vmxctx->guest_rdx);
953 	return (handled);
954 }
955 
956 static __inline void
957 vmx_run_trace(struct vmx *vmx, int vcpu)
958 {
959 #ifdef KTR
960 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %lx", vmcs_guest_rip());
961 #endif
962 }
963 
964 static __inline void
965 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
966 {
967 #ifdef KTR
968 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
969 #endif
970 }
971 
972 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
973 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
974 
975 #define	INVVPID_TYPE_ADDRESS		0UL
976 #define	INVVPID_TYPE_SINGLE_CONTEXT	1UL
977 #define	INVVPID_TYPE_ALL_CONTEXTS	2UL
978 
979 struct invvpid_desc {
980 	uint16_t	vpid;
981 	uint16_t	_res1;
982 	uint32_t	_res2;
983 	uint64_t	linear_addr;
984 };
985 CTASSERT(sizeof (struct invvpid_desc) == 16);
986 
987 static __inline void
988 invvpid(uint64_t type, struct invvpid_desc desc)
989 {
990 	int error;
991 
992 	__asm __volatile("invvpid %[desc], %[type];"
993 	    VMX_SET_ERROR_CODE_ASM
994 	    : [error] "=r" (error)
995 	    : [desc] "m" (desc), [type] "r" (type)
996 	    : "memory");
997 
998 	if (error)
999 		panic("invvpid error %d", error);
1000 }
1001 
1002 /*
1003  * Invalidate guest mappings identified by its vpid from the TLB.
1004  */
1005 static __inline void
1006 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1007 {
1008 	struct vmxstate *vmxstate;
1009 	struct invvpid_desc invvpid_desc;
1010 
1011 	vmxstate = &vmx->state[vcpu];
1012 	if (vmxstate->vpid == 0)
1013 		return;
1014 
1015 	if (!running) {
1016 		/*
1017 		 * Set the 'lastcpu' to an invalid host cpu.
1018 		 *
1019 		 * This will invalidate TLB entries tagged with the vcpu's
1020 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1021 		 */
1022 		vmxstate->lastcpu = NOCPU;
1023 		return;
1024 	}
1025 
1026 #ifdef __FreeBSD__
1027 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1028 	    "critical section", __func__, vcpu));
1029 #endif
1030 
1031 	/*
1032 	 * Invalidate all mappings tagged with 'vpid'
1033 	 *
1034 	 * We do this because this vcpu was executing on a different host
1035 	 * cpu when it last ran. We do not track whether it invalidated
1036 	 * mappings associated with its 'vpid' during that run. So we must
1037 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1038 	 * stale and invalidate them.
1039 	 *
1040 	 * Note that we incur this penalty only when the scheduler chooses to
1041 	 * move the thread associated with this vcpu between host cpus.
1042 	 *
1043 	 * Note also that this will invalidate mappings tagged with 'vpid'
1044 	 * for "all" EP4TAs.
1045 	 */
1046 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1047 		invvpid_desc._res1 = 0;
1048 		invvpid_desc._res2 = 0;
1049 		invvpid_desc.vpid = vmxstate->vpid;
1050 		invvpid_desc.linear_addr = 0;
1051 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1052 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1053 	} else {
1054 		/*
1055 		 * The invvpid can be skipped if an invept is going to
1056 		 * be performed before entering the guest. The invept
1057 		 * will invalidate combined mappings tagged with
1058 		 * 'vmx->eptp' for all vpids.
1059 		 */
1060 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1061 	}
1062 }
1063 
1064 static void
1065 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1066 {
1067 	struct vmxstate *vmxstate;
1068 
1069 	/*
1070 	 * Regardless of whether the VM appears to have migrated between CPUs,
1071 	 * save the host sysenter stack pointer.  As it points to the kernel
1072 	 * stack of each thread, the correct value must be maintained for every
1073 	 * trip into the critical section.
1074 	 */
1075 	vmcs_write(VMCS_HOST_IA32_SYSENTER_ESP, rdmsr(MSR_SYSENTER_ESP_MSR));
1076 
1077 	/*
1078 	 * Perform any needed TSC_OFFSET adjustment based on TSC_MSR writes or
1079 	 * migration between host CPUs with differing TSC values.
1080 	 */
1081 	vmx_apply_tsc_adjust(vmx, vcpu);
1082 
1083 	vmxstate = &vmx->state[vcpu];
1084 	if (vmxstate->lastcpu == curcpu)
1085 		return;
1086 
1087 	vmxstate->lastcpu = curcpu;
1088 
1089 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1090 
1091 	/* Load the per-CPU IDT address */
1092 	vmcs_write(VMCS_HOST_IDTR_BASE, vmm_get_host_idtrbase());
1093 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1094 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1095 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1096 	vmx_invvpid(vmx, vcpu, pmap, 1);
1097 }
1098 
1099 /*
1100  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1101  */
1102 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1103 
1104 static __inline void
1105 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1106 {
1107 
1108 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1109 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1110 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1111 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1112 	}
1113 }
1114 
1115 static __inline void
1116 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1117 {
1118 
1119 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1120 	    ("intr_window_exiting not set: %x", vmx->cap[vcpu].proc_ctls));
1121 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1122 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1123 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1124 }
1125 
1126 static __inline bool
1127 vmx_nmi_window_exiting(struct vmx *vmx, int vcpu)
1128 {
1129 	return ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0);
1130 }
1131 
1132 static __inline void
1133 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1134 {
1135 	if (!vmx_nmi_window_exiting(vmx, vcpu)) {
1136 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1137 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1138 	}
1139 }
1140 
1141 static __inline void
1142 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1143 {
1144 	ASSERT(vmx_nmi_window_exiting(vmx, vcpu));
1145 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1146 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1147 }
1148 
1149 /*
1150  * Set the TSC adjustment, taking into account the offsets measured between
1151  * host physical CPUs.  This is required even if the guest has not set a TSC
1152  * offset since vCPUs inherit the TSC offset of whatever physical CPU it has
1153  * migrated onto.  Without this mitigation, un-synched host TSCs will convey
1154  * the appearance of TSC time-travel to the guest as its vCPUs migrate.
1155  */
1156 static void
1157 vmx_apply_tsc_adjust(struct vmx *vmx, int vcpu)
1158 {
1159 	extern hrtime_t tsc_gethrtime_tick_delta(void);
1160 	const uint64_t target_offset = (vcpu_tsc_offset(vmx->vm, vcpu) +
1161 	    (uint64_t)tsc_gethrtime_tick_delta());
1162 
1163 	ASSERT(vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET);
1164 
1165 	if (vmx->tsc_offset_active[vcpu] != target_offset) {
1166 		vmcs_write(VMCS_TSC_OFFSET, target_offset);
1167 		vmx->tsc_offset_active[vcpu] = target_offset;
1168 	}
1169 }
1170 
1171 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1172 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1173 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1174 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1175 
1176 static void
1177 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1178 {
1179 	ASSERT0(vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & NMI_BLOCKING);
1180 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1181 
1182 	/*
1183 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1184 	 * or the VMCS entry check will fail.
1185 	 */
1186 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1187 	    IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID);
1188 
1189 	/* Clear the request */
1190 	vm_nmi_clear(vmx->vm, vcpu);
1191 }
1192 
1193 /*
1194  * Inject exceptions, NMIs, and ExtINTs.
1195  *
1196  * The logic behind these are complicated and may involve mutex contention, so
1197  * the injection is performed without the protection of host CPU interrupts
1198  * being disabled.  This means a racing notification could be "lost",
1199  * necessitating a later call to vmx_inject_recheck() to close that window
1200  * of opportunity.
1201  */
1202 static enum event_inject_state
1203 vmx_inject_events(struct vmx *vmx, int vcpu, uint64_t rip)
1204 {
1205 	uint64_t entryinfo;
1206 	uint32_t gi, info;
1207 	int vector;
1208 	enum event_inject_state state;
1209 
1210 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1211 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1212 	state = EIS_CAN_INJECT;
1213 
1214 	/* Clear any interrupt blocking if the guest %rip has changed */
1215 	if (vmx->state[vcpu].nextrip != rip && (gi & HWINTR_BLOCKING) != 0) {
1216 		gi &= ~HWINTR_BLOCKING;
1217 		vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1218 	}
1219 
1220 	/*
1221 	 * It could be that an interrupt is already pending for injection from
1222 	 * the VMCS.  This would be the case if the vCPU exited for conditions
1223 	 * such as an AST before a vm-entry delivered the injection.
1224 	 */
1225 	if ((info & VMCS_INTR_VALID) != 0) {
1226 		return (EIS_EV_EXISTING | EIS_REQ_EXIT);
1227 	}
1228 
1229 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1230 		ASSERT(entryinfo & VMCS_INTR_VALID);
1231 
1232 		info = entryinfo;
1233 		vector = info & 0xff;
1234 		if (vector == IDT_BP || vector == IDT_OF) {
1235 			/*
1236 			 * VT-x requires #BP and #OF to be injected as software
1237 			 * exceptions.
1238 			 */
1239 			info &= ~VMCS_INTR_T_MASK;
1240 			info |= VMCS_INTR_T_SWEXCEPTION;
1241 		}
1242 
1243 		if (info & VMCS_INTR_DEL_ERRCODE) {
1244 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1245 		}
1246 
1247 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1248 		state = EIS_EV_INJECTED;
1249 	}
1250 
1251 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1252 		/*
1253 		 * If there are no conditions blocking NMI injection then inject
1254 		 * it directly here otherwise enable "NMI window exiting" to
1255 		 * inject it as soon as we can.
1256 		 *
1257 		 * According to the Intel manual, some CPUs do not allow NMI
1258 		 * injection when STI_BLOCKING is active.  That check is
1259 		 * enforced here, regardless of CPU capability.  If running on a
1260 		 * CPU without such a restriction it will immediately exit and
1261 		 * the NMI will be injected in the "NMI window exiting" handler.
1262 		 */
1263 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1264 			if (state == EIS_CAN_INJECT) {
1265 				vmx_inject_nmi(vmx, vcpu);
1266 				state = EIS_EV_INJECTED;
1267 			} else {
1268 				return (state | EIS_REQ_EXIT);
1269 			}
1270 		} else {
1271 			vmx_set_nmi_window_exiting(vmx, vcpu);
1272 		}
1273 	}
1274 
1275 	if (vm_extint_pending(vmx->vm, vcpu)) {
1276 		if (state != EIS_CAN_INJECT) {
1277 			return (state | EIS_REQ_EXIT);
1278 		}
1279 		if ((gi & HWINTR_BLOCKING) != 0 ||
1280 		    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1281 			return (EIS_GI_BLOCK);
1282 		}
1283 
1284 		/* Ask the legacy pic for a vector to inject */
1285 		vatpic_pending_intr(vmx->vm, &vector);
1286 
1287 		/*
1288 		 * From the Intel SDM, Volume 3, Section "Maskable
1289 		 * Hardware Interrupts":
1290 		 * - maskable interrupt vectors [0,255] can be delivered
1291 		 *   through the INTR pin.
1292 		 */
1293 		KASSERT(vector >= 0 && vector <= 255,
1294 		    ("invalid vector %d from INTR", vector));
1295 
1296 		/* Inject the interrupt */
1297 		vmcs_write(VMCS_ENTRY_INTR_INFO,
1298 		    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1299 
1300 		vm_extint_clear(vmx->vm, vcpu);
1301 		vatpic_intr_accepted(vmx->vm, vector);
1302 		state = EIS_EV_INJECTED;
1303 	}
1304 
1305 	return (state);
1306 }
1307 
1308 /*
1309  * Inject any interrupts pending on the vLAPIC.
1310  *
1311  * This is done with host CPU interrupts disabled so notification IPIs, either
1312  * from the standard vCPU notification or APICv posted interrupts, will be
1313  * queued on the host APIC and recognized when entering VMX context.
1314  */
1315 static enum event_inject_state
1316 vmx_inject_vlapic(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1317 {
1318 	int vector;
1319 
1320 	if (!vlapic_pending_intr(vlapic, &vector)) {
1321 		return (EIS_CAN_INJECT);
1322 	}
1323 
1324 	/*
1325 	 * From the Intel SDM, Volume 3, Section "Maskable
1326 	 * Hardware Interrupts":
1327 	 * - maskable interrupt vectors [16,255] can be delivered
1328 	 *   through the local APIC.
1329 	 */
1330 	KASSERT(vector >= 16 && vector <= 255,
1331 	    ("invalid vector %d from local APIC", vector));
1332 
1333 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
1334 		uint16_t status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
1335 		uint16_t status_new = (status_old & 0xff00) | vector;
1336 
1337 		/*
1338 		 * The APICv state will have been synced into the vLAPIC
1339 		 * as part of vlapic_pending_intr().  Prepare the VMCS
1340 		 * for the to-be-injected pending interrupt.
1341 		 */
1342 		if (status_new > status_old) {
1343 			vmcs_write(VMCS_GUEST_INTR_STATUS, status_new);
1344 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid,
1345 			    "vmx_inject_interrupts: guest_intr_status "
1346 			    "changed from 0x%04x to 0x%04x",
1347 			    status_old, status_new);
1348 		}
1349 
1350 		/*
1351 		 * Ensure VMCS state regarding EOI traps is kept in sync
1352 		 * with the TMRs in the vlapic.
1353 		 */
1354 		vmx_apicv_sync_tmr(vlapic);
1355 
1356 		/*
1357 		 * The rest of the injection process for injecting the
1358 		 * interrupt(s) is handled by APICv. It does not preclude other
1359 		 * event injection from occurring.
1360 		 */
1361 		return (EIS_CAN_INJECT);
1362 	}
1363 
1364 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1365 
1366 	/* Does guest interruptability block injection? */
1367 	if ((vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & HWINTR_BLOCKING) != 0 ||
1368 	    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1369 		return (EIS_GI_BLOCK);
1370 	}
1371 
1372 	/* Inject the interrupt */
1373 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1374 	    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1375 
1376 	/* Update the Local APIC ISR */
1377 	vlapic_intr_accepted(vlapic, vector);
1378 
1379 	return (EIS_EV_INJECTED);
1380 }
1381 
1382 /*
1383  * Re-check for events to be injected.
1384  *
1385  * Once host CPU interrupts are disabled, check for the presence of any events
1386  * which require injection processing.  If an exit is required upon injection,
1387  * or once the guest becomes interruptable, that will be configured too.
1388  */
1389 static bool
1390 vmx_inject_recheck(struct vmx *vmx, int vcpu, enum event_inject_state state)
1391 {
1392 	if (state == EIS_CAN_INJECT) {
1393 		if (vm_nmi_pending(vmx->vm, vcpu) &&
1394 		    !vmx_nmi_window_exiting(vmx, vcpu)) {
1395 			/* queued NMI not blocked by NMI-window-exiting */
1396 			return (true);
1397 		}
1398 		if (vm_extint_pending(vmx->vm, vcpu)) {
1399 			/* queued ExtINT not blocked by existing injection */
1400 			return (true);
1401 		}
1402 	} else {
1403 		if ((state & EIS_REQ_EXIT) != 0) {
1404 			/*
1405 			 * Use a self-IPI to force an immediate exit after
1406 			 * event injection has occurred.
1407 			 */
1408 			poke_cpu(CPU->cpu_id);
1409 		} else {
1410 			/*
1411 			 * If any event is being injected, an exit immediately
1412 			 * upon becoming interruptable again will allow pending
1413 			 * or newly queued events to be injected in a timely
1414 			 * manner.
1415 			 */
1416 			vmx_set_int_window_exiting(vmx, vcpu);
1417 		}
1418 	}
1419 	return (false);
1420 }
1421 
1422 /*
1423  * If the Virtual NMIs execution control is '1' then the logical processor
1424  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1425  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1426  * virtual-NMI blocking.
1427  *
1428  * This unblocking occurs even if the IRET causes a fault. In this case the
1429  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1430  */
1431 static void
1432 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1433 {
1434 	uint32_t gi;
1435 
1436 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1437 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1438 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1439 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1440 }
1441 
1442 static void
1443 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1444 {
1445 	uint32_t gi;
1446 
1447 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1448 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1449 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1450 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1451 }
1452 
1453 static void
1454 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1455 {
1456 	uint32_t gi;
1457 
1458 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1459 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1460 	    ("NMI blocking is not in effect %x", gi));
1461 }
1462 
1463 static int
1464 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1465 {
1466 	struct vmxctx *vmxctx;
1467 	uint64_t xcrval;
1468 	const struct xsave_limits *limits;
1469 
1470 	vmxctx = &vmx->ctx[vcpu];
1471 	limits = vmm_get_xsave_limits();
1472 
1473 	/*
1474 	 * Note that the processor raises a GP# fault on its own if
1475 	 * xsetbv is executed for CPL != 0, so we do not have to
1476 	 * emulate that fault here.
1477 	 */
1478 
1479 	/* Only xcr0 is supported. */
1480 	if (vmxctx->guest_rcx != 0) {
1481 		vm_inject_gp(vmx->vm, vcpu);
1482 		return (HANDLED);
1483 	}
1484 
1485 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1486 	if (!limits->xsave_enabled ||
1487 	    !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1488 		vm_inject_ud(vmx->vm, vcpu);
1489 		return (HANDLED);
1490 	}
1491 
1492 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1493 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1494 		vm_inject_gp(vmx->vm, vcpu);
1495 		return (HANDLED);
1496 	}
1497 
1498 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1499 		vm_inject_gp(vmx->vm, vcpu);
1500 		return (HANDLED);
1501 	}
1502 
1503 	/* AVX (YMM_Hi128) requires SSE. */
1504 	if (xcrval & XFEATURE_ENABLED_AVX &&
1505 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1506 		vm_inject_gp(vmx->vm, vcpu);
1507 		return (HANDLED);
1508 	}
1509 
1510 	/*
1511 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1512 	 * ZMM_Hi256, and Hi16_ZMM.
1513 	 */
1514 	if (xcrval & XFEATURE_AVX512 &&
1515 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1516 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1517 		vm_inject_gp(vmx->vm, vcpu);
1518 		return (HANDLED);
1519 	}
1520 
1521 	/*
1522 	 * Intel MPX requires both bound register state flags to be
1523 	 * set.
1524 	 */
1525 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1526 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1527 		vm_inject_gp(vmx->vm, vcpu);
1528 		return (HANDLED);
1529 	}
1530 
1531 	/*
1532 	 * This runs "inside" vmrun() with the guest's FPU state, so
1533 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1534 	 * host's.
1535 	 */
1536 	load_xcr(0, xcrval);
1537 	return (HANDLED);
1538 }
1539 
1540 static uint64_t
1541 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1542 {
1543 	const struct vmxctx *vmxctx;
1544 
1545 	vmxctx = &vmx->ctx[vcpu];
1546 
1547 	switch (ident) {
1548 	case 0:
1549 		return (vmxctx->guest_rax);
1550 	case 1:
1551 		return (vmxctx->guest_rcx);
1552 	case 2:
1553 		return (vmxctx->guest_rdx);
1554 	case 3:
1555 		return (vmxctx->guest_rbx);
1556 	case 4:
1557 		return (vmcs_read(VMCS_GUEST_RSP));
1558 	case 5:
1559 		return (vmxctx->guest_rbp);
1560 	case 6:
1561 		return (vmxctx->guest_rsi);
1562 	case 7:
1563 		return (vmxctx->guest_rdi);
1564 	case 8:
1565 		return (vmxctx->guest_r8);
1566 	case 9:
1567 		return (vmxctx->guest_r9);
1568 	case 10:
1569 		return (vmxctx->guest_r10);
1570 	case 11:
1571 		return (vmxctx->guest_r11);
1572 	case 12:
1573 		return (vmxctx->guest_r12);
1574 	case 13:
1575 		return (vmxctx->guest_r13);
1576 	case 14:
1577 		return (vmxctx->guest_r14);
1578 	case 15:
1579 		return (vmxctx->guest_r15);
1580 	default:
1581 		panic("invalid vmx register %d", ident);
1582 	}
1583 }
1584 
1585 static void
1586 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1587 {
1588 	struct vmxctx *vmxctx;
1589 
1590 	vmxctx = &vmx->ctx[vcpu];
1591 
1592 	switch (ident) {
1593 	case 0:
1594 		vmxctx->guest_rax = regval;
1595 		break;
1596 	case 1:
1597 		vmxctx->guest_rcx = regval;
1598 		break;
1599 	case 2:
1600 		vmxctx->guest_rdx = regval;
1601 		break;
1602 	case 3:
1603 		vmxctx->guest_rbx = regval;
1604 		break;
1605 	case 4:
1606 		vmcs_write(VMCS_GUEST_RSP, regval);
1607 		break;
1608 	case 5:
1609 		vmxctx->guest_rbp = regval;
1610 		break;
1611 	case 6:
1612 		vmxctx->guest_rsi = regval;
1613 		break;
1614 	case 7:
1615 		vmxctx->guest_rdi = regval;
1616 		break;
1617 	case 8:
1618 		vmxctx->guest_r8 = regval;
1619 		break;
1620 	case 9:
1621 		vmxctx->guest_r9 = regval;
1622 		break;
1623 	case 10:
1624 		vmxctx->guest_r10 = regval;
1625 		break;
1626 	case 11:
1627 		vmxctx->guest_r11 = regval;
1628 		break;
1629 	case 12:
1630 		vmxctx->guest_r12 = regval;
1631 		break;
1632 	case 13:
1633 		vmxctx->guest_r13 = regval;
1634 		break;
1635 	case 14:
1636 		vmxctx->guest_r14 = regval;
1637 		break;
1638 	case 15:
1639 		vmxctx->guest_r15 = regval;
1640 		break;
1641 	default:
1642 		panic("invalid vmx register %d", ident);
1643 	}
1644 }
1645 
1646 static int
1647 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1648 {
1649 	uint64_t crval, regval;
1650 
1651 	/* We only handle mov to %cr0 at this time */
1652 	if ((exitqual & 0xf0) != 0x00)
1653 		return (UNHANDLED);
1654 
1655 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1656 
1657 	vmcs_write(VMCS_CR0_SHADOW, regval);
1658 
1659 	crval = regval | cr0_ones_mask;
1660 	crval &= ~cr0_zeros_mask;
1661 	vmcs_write(VMCS_GUEST_CR0, crval);
1662 
1663 	if (regval & CR0_PG) {
1664 		uint64_t efer, entry_ctls;
1665 
1666 		/*
1667 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1668 		 * the "IA-32e mode guest" bit in VM-entry control must be
1669 		 * equal.
1670 		 */
1671 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1672 		if (efer & EFER_LME) {
1673 			efer |= EFER_LMA;
1674 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1675 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1676 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1677 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1678 		}
1679 	}
1680 
1681 	return (HANDLED);
1682 }
1683 
1684 static int
1685 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1686 {
1687 	uint64_t crval, regval;
1688 
1689 	/* We only handle mov to %cr4 at this time */
1690 	if ((exitqual & 0xf0) != 0x00)
1691 		return (UNHANDLED);
1692 
1693 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1694 
1695 	vmcs_write(VMCS_CR4_SHADOW, regval);
1696 
1697 	crval = regval | cr4_ones_mask;
1698 	crval &= ~cr4_zeros_mask;
1699 	vmcs_write(VMCS_GUEST_CR4, crval);
1700 
1701 	return (HANDLED);
1702 }
1703 
1704 static int
1705 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1706 {
1707 	struct vlapic *vlapic;
1708 	uint64_t cr8;
1709 	int regnum;
1710 
1711 	/* We only handle mov %cr8 to/from a register at this time. */
1712 	if ((exitqual & 0xe0) != 0x00) {
1713 		return (UNHANDLED);
1714 	}
1715 
1716 	vlapic = vm_lapic(vmx->vm, vcpu);
1717 	regnum = (exitqual >> 8) & 0xf;
1718 	if (exitqual & 0x10) {
1719 		cr8 = vlapic_get_cr8(vlapic);
1720 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1721 	} else {
1722 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1723 		vlapic_set_cr8(vlapic, cr8);
1724 	}
1725 
1726 	return (HANDLED);
1727 }
1728 
1729 /*
1730  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1731  */
1732 static int
1733 vmx_cpl(void)
1734 {
1735 	uint32_t ssar;
1736 
1737 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1738 	return ((ssar >> 5) & 0x3);
1739 }
1740 
1741 static enum vm_cpu_mode
1742 vmx_cpu_mode(void)
1743 {
1744 	uint32_t csar;
1745 
1746 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1747 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1748 		if (csar & 0x2000)
1749 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1750 		else
1751 			return (CPU_MODE_COMPATIBILITY);
1752 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1753 		return (CPU_MODE_PROTECTED);
1754 	} else {
1755 		return (CPU_MODE_REAL);
1756 	}
1757 }
1758 
1759 static enum vm_paging_mode
1760 vmx_paging_mode(void)
1761 {
1762 
1763 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1764 		return (PAGING_MODE_FLAT);
1765 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1766 		return (PAGING_MODE_32);
1767 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1768 		return (PAGING_MODE_64);
1769 	else
1770 		return (PAGING_MODE_PAE);
1771 }
1772 
1773 static void
1774 vmx_paging_info(struct vm_guest_paging *paging)
1775 {
1776 	paging->cr3 = vmcs_guest_cr3();
1777 	paging->cpl = vmx_cpl();
1778 	paging->cpu_mode = vmx_cpu_mode();
1779 	paging->paging_mode = vmx_paging_mode();
1780 }
1781 
1782 static void
1783 vmexit_mmio_emul(struct vm_exit *vmexit, struct vie *vie, uint64_t gpa,
1784     uint64_t gla)
1785 {
1786 	struct vm_guest_paging paging;
1787 	uint32_t csar;
1788 
1789 	vmexit->exitcode = VM_EXITCODE_MMIO_EMUL;
1790 	vmexit->inst_length = 0;
1791 	vmexit->u.mmio_emul.gpa = gpa;
1792 	vmexit->u.mmio_emul.gla = gla;
1793 	vmx_paging_info(&paging);
1794 
1795 	switch (paging.cpu_mode) {
1796 	case CPU_MODE_REAL:
1797 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1798 		vmexit->u.mmio_emul.cs_d = 0;
1799 		break;
1800 	case CPU_MODE_PROTECTED:
1801 	case CPU_MODE_COMPATIBILITY:
1802 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1803 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1804 		vmexit->u.mmio_emul.cs_d = SEG_DESC_DEF32(csar);
1805 		break;
1806 	default:
1807 		vmexit->u.mmio_emul.cs_base = 0;
1808 		vmexit->u.mmio_emul.cs_d = 0;
1809 		break;
1810 	}
1811 
1812 	vie_init_mmio(vie, NULL, 0, &paging, gpa);
1813 }
1814 
1815 static void
1816 vmexit_inout(struct vm_exit *vmexit, struct vie *vie, uint64_t qual,
1817     uint32_t eax)
1818 {
1819 	struct vm_guest_paging paging;
1820 	struct vm_inout *inout;
1821 
1822 	inout = &vmexit->u.inout;
1823 
1824 	inout->bytes = (qual & 0x7) + 1;
1825 	inout->flags = 0;
1826 	inout->flags |= (qual & 0x8) ? INOUT_IN : 0;
1827 	inout->flags |= (qual & 0x10) ? INOUT_STR : 0;
1828 	inout->flags |= (qual & 0x20) ? INOUT_REP : 0;
1829 	inout->port = (uint16_t)(qual >> 16);
1830 	inout->eax = eax;
1831 	if (inout->flags & INOUT_STR) {
1832 		uint64_t inst_info;
1833 
1834 		inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
1835 
1836 		/*
1837 		 * According to the SDM, bits 9:7 encode the address size of the
1838 		 * ins/outs operation, but only values 0/1/2 are expected,
1839 		 * corresponding to 16/32/64 bit sizes.
1840 		 */
1841 		inout->addrsize = 2 << BITX(inst_info, 9, 7);
1842 		VERIFY(inout->addrsize == 2 || inout->addrsize == 4 ||
1843 		    inout->addrsize == 8);
1844 
1845 		if (inout->flags & INOUT_IN) {
1846 			/*
1847 			 * The bits describing the segment in INSTRUCTION_INFO
1848 			 * are not defined for ins, leaving it to system
1849 			 * software to assume %es (encoded as 0)
1850 			 */
1851 			inout->segment = 0;
1852 		} else {
1853 			/*
1854 			 * Bits 15-17 encode the segment for OUTS.
1855 			 * This value follows the standard x86 segment order.
1856 			 */
1857 			inout->segment = (inst_info >> 15) & 0x7;
1858 		}
1859 	}
1860 
1861 	vmexit->exitcode = VM_EXITCODE_INOUT;
1862 	vmx_paging_info(&paging);
1863 	vie_init_inout(vie, inout, vmexit->inst_length, &paging);
1864 
1865 	/* The in/out emulation will handle advancing %rip */
1866 	vmexit->inst_length = 0;
1867 }
1868 
1869 static int
1870 ept_fault_type(uint64_t ept_qual)
1871 {
1872 	int fault_type;
1873 
1874 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1875 		fault_type = VM_PROT_WRITE;
1876 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1877 		fault_type = VM_PROT_EXECUTE;
1878 	else
1879 		fault_type = VM_PROT_READ;
1880 
1881 	return (fault_type);
1882 }
1883 
1884 static bool
1885 ept_emulation_fault(uint64_t ept_qual)
1886 {
1887 	int read, write;
1888 
1889 	/* EPT fault on an instruction fetch doesn't make sense here */
1890 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1891 		return (false);
1892 
1893 	/* EPT fault must be a read fault or a write fault */
1894 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1895 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1896 	if ((read | write) == 0)
1897 		return (false);
1898 
1899 	/*
1900 	 * The EPT violation must have been caused by accessing a
1901 	 * guest-physical address that is a translation of a guest-linear
1902 	 * address.
1903 	 */
1904 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1905 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1906 		return (false);
1907 	}
1908 
1909 	return (true);
1910 }
1911 
1912 static __inline int
1913 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1914 {
1915 	uint32_t proc_ctls2;
1916 
1917 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1918 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1919 }
1920 
1921 static __inline int
1922 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1923 {
1924 	uint32_t proc_ctls2;
1925 
1926 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1927 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1928 }
1929 
1930 static int
1931 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1932     uint64_t qual)
1933 {
1934 	int handled, offset;
1935 	uint32_t *apic_regs, vector;
1936 
1937 	handled = HANDLED;
1938 	offset = APIC_WRITE_OFFSET(qual);
1939 
1940 	if (!apic_access_virtualization(vmx, vcpuid)) {
1941 		/*
1942 		 * In general there should not be any APIC write VM-exits
1943 		 * unless APIC-access virtualization is enabled.
1944 		 *
1945 		 * However self-IPI virtualization can legitimately trigger
1946 		 * an APIC-write VM-exit so treat it specially.
1947 		 */
1948 		if (x2apic_virtualization(vmx, vcpuid) &&
1949 		    offset == APIC_OFFSET_SELF_IPI) {
1950 			apic_regs = (uint32_t *)(vlapic->apic_page);
1951 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1952 			vlapic_self_ipi_handler(vlapic, vector);
1953 			return (HANDLED);
1954 		} else
1955 			return (UNHANDLED);
1956 	}
1957 
1958 	switch (offset) {
1959 	case APIC_OFFSET_ID:
1960 		vlapic_id_write_handler(vlapic);
1961 		break;
1962 	case APIC_OFFSET_LDR:
1963 		vlapic_ldr_write_handler(vlapic);
1964 		break;
1965 	case APIC_OFFSET_DFR:
1966 		vlapic_dfr_write_handler(vlapic);
1967 		break;
1968 	case APIC_OFFSET_SVR:
1969 		vlapic_svr_write_handler(vlapic);
1970 		break;
1971 	case APIC_OFFSET_ESR:
1972 		vlapic_esr_write_handler(vlapic);
1973 		break;
1974 	case APIC_OFFSET_ICR_LOW:
1975 		if (vlapic_icrlo_write_handler(vlapic) != 0) {
1976 			handled = UNHANDLED;
1977 		}
1978 		break;
1979 	case APIC_OFFSET_CMCI_LVT:
1980 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1981 		vlapic_lvt_write_handler(vlapic, offset);
1982 		break;
1983 	case APIC_OFFSET_TIMER_ICR:
1984 		vlapic_icrtmr_write_handler(vlapic);
1985 		break;
1986 	case APIC_OFFSET_TIMER_DCR:
1987 		vlapic_dcr_write_handler(vlapic);
1988 		break;
1989 	default:
1990 		handled = UNHANDLED;
1991 		break;
1992 	}
1993 	return (handled);
1994 }
1995 
1996 static bool
1997 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1998 {
1999 
2000 	if (apic_access_virtualization(vmx, vcpuid) &&
2001 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2002 		return (true);
2003 	else
2004 		return (false);
2005 }
2006 
2007 static int
2008 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2009 {
2010 	uint64_t qual;
2011 	int access_type, offset, allowed;
2012 	struct vie *vie;
2013 
2014 	if (!apic_access_virtualization(vmx, vcpuid))
2015 		return (UNHANDLED);
2016 
2017 	qual = vmexit->u.vmx.exit_qualification;
2018 	access_type = APIC_ACCESS_TYPE(qual);
2019 	offset = APIC_ACCESS_OFFSET(qual);
2020 
2021 	allowed = 0;
2022 	if (access_type == 0) {
2023 		/*
2024 		 * Read data access to the following registers is expected.
2025 		 */
2026 		switch (offset) {
2027 		case APIC_OFFSET_APR:
2028 		case APIC_OFFSET_PPR:
2029 		case APIC_OFFSET_RRR:
2030 		case APIC_OFFSET_CMCI_LVT:
2031 		case APIC_OFFSET_TIMER_CCR:
2032 			allowed = 1;
2033 			break;
2034 		default:
2035 			break;
2036 		}
2037 	} else if (access_type == 1) {
2038 		/*
2039 		 * Write data access to the following registers is expected.
2040 		 */
2041 		switch (offset) {
2042 		case APIC_OFFSET_VER:
2043 		case APIC_OFFSET_APR:
2044 		case APIC_OFFSET_PPR:
2045 		case APIC_OFFSET_RRR:
2046 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2047 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2048 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2049 		case APIC_OFFSET_CMCI_LVT:
2050 		case APIC_OFFSET_TIMER_CCR:
2051 			allowed = 1;
2052 			break;
2053 		default:
2054 			break;
2055 		}
2056 	}
2057 
2058 	if (allowed) {
2059 		vie = vm_vie_ctx(vmx->vm, vcpuid);
2060 		vmexit_mmio_emul(vmexit, vie, DEFAULT_APIC_BASE + offset,
2061 		    VIE_INVALID_GLA);
2062 	}
2063 
2064 	/*
2065 	 * Regardless of whether the APIC-access is allowed this handler
2066 	 * always returns UNHANDLED:
2067 	 * - if the access is allowed then it is handled by emulating the
2068 	 *   instruction that caused the VM-exit (outside the critical section)
2069 	 * - if the access is not allowed then it will be converted to an
2070 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2071 	 */
2072 	return (UNHANDLED);
2073 }
2074 
2075 static enum task_switch_reason
2076 vmx_task_switch_reason(uint64_t qual)
2077 {
2078 	int reason;
2079 
2080 	reason = (qual >> 30) & 0x3;
2081 	switch (reason) {
2082 	case 0:
2083 		return (TSR_CALL);
2084 	case 1:
2085 		return (TSR_IRET);
2086 	case 2:
2087 		return (TSR_JMP);
2088 	case 3:
2089 		return (TSR_IDT_GATE);
2090 	default:
2091 		panic("%s: invalid reason %d", __func__, reason);
2092 	}
2093 }
2094 
2095 static int
2096 emulate_wrmsr(struct vmx *vmx, int vcpuid, uint_t num, uint64_t val)
2097 {
2098 	int error;
2099 
2100 	if (lapic_msr(num))
2101 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val);
2102 	else
2103 		error = vmx_wrmsr(vmx, vcpuid, num, val);
2104 
2105 	return (error);
2106 }
2107 
2108 static int
2109 emulate_rdmsr(struct vmx *vmx, int vcpuid, uint_t num)
2110 {
2111 	uint64_t result;
2112 	int error;
2113 
2114 	if (lapic_msr(num))
2115 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result);
2116 	else
2117 		error = vmx_rdmsr(vmx, vcpuid, num, &result);
2118 
2119 	if (error == 0) {
2120 		vmx->ctx[vcpuid].guest_rax = (uint32_t)result;
2121 		vmx->ctx[vcpuid].guest_rdx = result >> 32;
2122 	}
2123 
2124 	return (error);
2125 }
2126 
2127 #ifndef __FreeBSD__
2128 #define	__predict_false(x)	(x)
2129 #endif
2130 
2131 static int
2132 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2133 {
2134 	int error, errcode, errcode_valid, handled;
2135 	struct vmxctx *vmxctx;
2136 	struct vie *vie;
2137 	struct vlapic *vlapic;
2138 	struct vm_task_switch *ts;
2139 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info;
2140 	uint32_t intr_type, intr_vec, reason;
2141 	uint64_t exitintinfo, qual, gpa;
2142 
2143 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2144 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2145 
2146 	handled = UNHANDLED;
2147 	vmxctx = &vmx->ctx[vcpu];
2148 
2149 	qual = vmexit->u.vmx.exit_qualification;
2150 	reason = vmexit->u.vmx.exit_reason;
2151 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2152 
2153 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2154 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2155 
2156 	/*
2157 	 * VM-entry failures during or after loading guest state.
2158 	 *
2159 	 * These VM-exits are uncommon but must be handled specially
2160 	 * as most VM-exit fields are not populated as usual.
2161 	 */
2162 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2163 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2164 #ifdef __FreeBSD__
2165 		__asm __volatile("int $18");
2166 #else
2167 		vmm_call_trap(T_MCE);
2168 #endif
2169 		return (1);
2170 	}
2171 
2172 	/*
2173 	 * VM exits that can be triggered during event delivery need to
2174 	 * be handled specially by re-injecting the event if the IDT
2175 	 * vectoring information field's valid bit is set.
2176 	 *
2177 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2178 	 * for details.
2179 	 */
2180 	idtvec_info = vmcs_idt_vectoring_info();
2181 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2182 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2183 		exitintinfo = idtvec_info;
2184 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2185 			idtvec_err = vmcs_idt_vectoring_err();
2186 			exitintinfo |= (uint64_t)idtvec_err << 32;
2187 		}
2188 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2189 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2190 		    __func__, error));
2191 
2192 		/*
2193 		 * If 'virtual NMIs' are being used and the VM-exit
2194 		 * happened while injecting an NMI during the previous
2195 		 * VM-entry, then clear "blocking by NMI" in the
2196 		 * Guest Interruptibility-State so the NMI can be
2197 		 * reinjected on the subsequent VM-entry.
2198 		 *
2199 		 * However, if the NMI was being delivered through a task
2200 		 * gate, then the new task must start execution with NMIs
2201 		 * blocked so don't clear NMI blocking in this case.
2202 		 */
2203 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2204 		if (intr_type == VMCS_INTR_T_NMI) {
2205 			if (reason != EXIT_REASON_TASK_SWITCH)
2206 				vmx_clear_nmi_blocking(vmx, vcpu);
2207 			else
2208 				vmx_assert_nmi_blocking(vmx, vcpu);
2209 		}
2210 
2211 		/*
2212 		 * Update VM-entry instruction length if the event being
2213 		 * delivered was a software interrupt or software exception.
2214 		 */
2215 		if (intr_type == VMCS_INTR_T_SWINTR ||
2216 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2217 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2218 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2219 		}
2220 	}
2221 
2222 	switch (reason) {
2223 	case EXIT_REASON_TASK_SWITCH:
2224 		ts = &vmexit->u.task_switch;
2225 		ts->tsssel = qual & 0xffff;
2226 		ts->reason = vmx_task_switch_reason(qual);
2227 		ts->ext = 0;
2228 		ts->errcode_valid = 0;
2229 		vmx_paging_info(&ts->paging);
2230 		/*
2231 		 * If the task switch was due to a CALL, JMP, IRET, software
2232 		 * interrupt (INT n) or software exception (INT3, INTO),
2233 		 * then the saved %rip references the instruction that caused
2234 		 * the task switch. The instruction length field in the VMCS
2235 		 * is valid in this case.
2236 		 *
2237 		 * In all other cases (e.g., NMI, hardware exception) the
2238 		 * saved %rip is one that would have been saved in the old TSS
2239 		 * had the task switch completed normally so the instruction
2240 		 * length field is not needed in this case and is explicitly
2241 		 * set to 0.
2242 		 */
2243 		if (ts->reason == TSR_IDT_GATE) {
2244 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2245 			    ("invalid idtvec_info %x for IDT task switch",
2246 			    idtvec_info));
2247 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2248 			if (intr_type != VMCS_INTR_T_SWINTR &&
2249 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2250 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2251 				/* Task switch triggered by external event */
2252 				ts->ext = 1;
2253 				vmexit->inst_length = 0;
2254 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2255 					ts->errcode_valid = 1;
2256 					ts->errcode = vmcs_idt_vectoring_err();
2257 				}
2258 			}
2259 		}
2260 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2261 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2262 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2263 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2264 		    ts->ext ? "external" : "internal",
2265 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2266 		break;
2267 	case EXIT_REASON_CR_ACCESS:
2268 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2269 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2270 		switch (qual & 0xf) {
2271 		case 0:
2272 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2273 			break;
2274 		case 4:
2275 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2276 			break;
2277 		case 8:
2278 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2279 			break;
2280 		}
2281 		break;
2282 	case EXIT_REASON_RDMSR:
2283 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2284 		ecx = vmxctx->guest_rcx;
2285 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2286 		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2287 		error = emulate_rdmsr(vmx, vcpu, ecx);
2288 		if (error == 0) {
2289 			handled = HANDLED;
2290 		} else if (error > 0) {
2291 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2292 			vmexit->u.msr.code = ecx;
2293 		} else {
2294 			/* Return to userspace with a valid exitcode */
2295 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2296 			    ("emulate_rdmsr retu with bogus exitcode"));
2297 		}
2298 		break;
2299 	case EXIT_REASON_WRMSR:
2300 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2301 		eax = vmxctx->guest_rax;
2302 		ecx = vmxctx->guest_rcx;
2303 		edx = vmxctx->guest_rdx;
2304 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2305 		    ecx, (uint64_t)edx << 32 | eax);
2306 		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2307 		    (uint64_t)edx << 32 | eax);
2308 		error = emulate_wrmsr(vmx, vcpu, ecx,
2309 		    (uint64_t)edx << 32 | eax);
2310 		if (error == 0) {
2311 			handled = HANDLED;
2312 		} else if (error > 0) {
2313 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2314 			vmexit->u.msr.code = ecx;
2315 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2316 		} else {
2317 			/* Return to userspace with a valid exitcode */
2318 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2319 			    ("emulate_wrmsr retu with bogus exitcode"));
2320 		}
2321 		break;
2322 	case EXIT_REASON_HLT:
2323 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2324 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2325 		vmexit->exitcode = VM_EXITCODE_HLT;
2326 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2327 		break;
2328 	case EXIT_REASON_MTF:
2329 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2330 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2331 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2332 		vmexit->inst_length = 0;
2333 		break;
2334 	case EXIT_REASON_PAUSE:
2335 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2336 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2337 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2338 		break;
2339 	case EXIT_REASON_INTR_WINDOW:
2340 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2341 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2342 		vmx_clear_int_window_exiting(vmx, vcpu);
2343 		return (1);
2344 	case EXIT_REASON_EXT_INTR:
2345 		/*
2346 		 * External interrupts serve only to cause VM exits and allow
2347 		 * the host interrupt handler to run.
2348 		 *
2349 		 * If this external interrupt triggers a virtual interrupt
2350 		 * to a VM, then that state will be recorded by the
2351 		 * host interrupt handler in the VM's softc. We will inject
2352 		 * this virtual interrupt during the subsequent VM enter.
2353 		 */
2354 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2355 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2356 		    vmx, vcpu, vmexit, intr_info);
2357 
2358 		/*
2359 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2360 		 * This appears to be a bug in VMware Fusion?
2361 		 */
2362 		if (!(intr_info & VMCS_INTR_VALID))
2363 			return (1);
2364 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2365 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2366 		    ("VM exit interruption info invalid: %x", intr_info));
2367 		vmx_trigger_hostintr(intr_info & 0xff);
2368 
2369 		/*
2370 		 * This is special. We want to treat this as an 'handled'
2371 		 * VM-exit but not increment the instruction pointer.
2372 		 */
2373 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2374 		return (1);
2375 	case EXIT_REASON_NMI_WINDOW:
2376 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2377 		/* Exit to allow the pending virtual NMI to be injected */
2378 		if (vm_nmi_pending(vmx->vm, vcpu))
2379 			vmx_inject_nmi(vmx, vcpu);
2380 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2381 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2382 		return (1);
2383 	case EXIT_REASON_INOUT:
2384 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2385 		vie = vm_vie_ctx(vmx->vm, vcpu);
2386 		vmexit_inout(vmexit, vie, qual, (uint32_t)vmxctx->guest_rax);
2387 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2388 		break;
2389 	case EXIT_REASON_CPUID:
2390 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2391 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2392 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2393 		break;
2394 	case EXIT_REASON_EXCEPTION:
2395 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2396 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2397 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2398 		    ("VM exit interruption info invalid: %x", intr_info));
2399 
2400 		intr_vec = intr_info & 0xff;
2401 		intr_type = intr_info & VMCS_INTR_T_MASK;
2402 
2403 		/*
2404 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2405 		 * fault encountered during the execution of IRET then we must
2406 		 * restore the state of "virtual-NMI blocking" before resuming
2407 		 * the guest.
2408 		 *
2409 		 * See "Resuming Guest Software after Handling an Exception".
2410 		 * See "Information for VM Exits Due to Vectored Events".
2411 		 */
2412 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2413 		    (intr_vec != IDT_DF) &&
2414 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2415 			vmx_restore_nmi_blocking(vmx, vcpu);
2416 
2417 		/*
2418 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2419 		 */
2420 		if (intr_type == VMCS_INTR_T_NMI)
2421 			return (1);
2422 
2423 		/*
2424 		 * Call the machine check handler by hand. Also don't reflect
2425 		 * the machine check back into the guest.
2426 		 */
2427 		if (intr_vec == IDT_MC) {
2428 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2429 #ifdef __FreeBSD__
2430 			__asm __volatile("int $18");
2431 #else
2432 			vmm_call_trap(T_MCE);
2433 #endif
2434 			return (1);
2435 		}
2436 
2437 		/*
2438 		 * If the hypervisor has requested user exits for
2439 		 * debug exceptions, bounce them out to userland.
2440 		 */
2441 		if (intr_type == VMCS_INTR_T_SWEXCEPTION &&
2442 		    intr_vec == IDT_BP &&
2443 		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2444 			vmexit->exitcode = VM_EXITCODE_BPT;
2445 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2446 			vmexit->inst_length = 0;
2447 			break;
2448 		}
2449 
2450 		if (intr_vec == IDT_PF) {
2451 			vmxctx->guest_cr2 = qual;
2452 		}
2453 
2454 		/*
2455 		 * Software exceptions exhibit trap-like behavior. This in
2456 		 * turn requires populating the VM-entry instruction length
2457 		 * so that the %rip in the trap frame is past the INT3/INTO
2458 		 * instruction.
2459 		 */
2460 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2461 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2462 
2463 		/* Reflect all other exceptions back into the guest */
2464 		errcode_valid = errcode = 0;
2465 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2466 			errcode_valid = 1;
2467 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2468 		}
2469 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%x into "
2470 		    "the guest", intr_vec, errcode);
2471 		SDT_PROBE5(vmm, vmx, exit, exception,
2472 		    vmx, vcpu, vmexit, intr_vec, errcode);
2473 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2474 		    errcode_valid, errcode, 0);
2475 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2476 		    __func__, error));
2477 		return (1);
2478 
2479 	case EXIT_REASON_EPT_FAULT:
2480 		/*
2481 		 * If 'gpa' lies within the address space allocated to
2482 		 * memory then this must be a nested page fault otherwise
2483 		 * this must be an instruction that accesses MMIO space.
2484 		 */
2485 		gpa = vmcs_gpa();
2486 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2487 		    apic_access_fault(vmx, vcpu, gpa)) {
2488 			vmexit->exitcode = VM_EXITCODE_PAGING;
2489 			vmexit->inst_length = 0;
2490 			vmexit->u.paging.gpa = gpa;
2491 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2492 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2493 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2494 			    vmx, vcpu, vmexit, gpa, qual);
2495 		} else if (ept_emulation_fault(qual)) {
2496 			vie = vm_vie_ctx(vmx->vm, vcpu);
2497 			vmexit_mmio_emul(vmexit, vie, gpa, vmcs_gla());
2498 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MMIO_EMUL, 1);
2499 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2500 			    vmx, vcpu, vmexit, gpa);
2501 		}
2502 		/*
2503 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2504 		 * EPT fault during the execution of IRET then we must restore
2505 		 * the state of "virtual-NMI blocking" before resuming.
2506 		 *
2507 		 * See description of "NMI unblocking due to IRET" in
2508 		 * "Exit Qualification for EPT Violations".
2509 		 */
2510 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2511 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2512 			vmx_restore_nmi_blocking(vmx, vcpu);
2513 		break;
2514 	case EXIT_REASON_VIRTUALIZED_EOI:
2515 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2516 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2517 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2518 		vmexit->inst_length = 0;	/* trap-like */
2519 		break;
2520 	case EXIT_REASON_APIC_ACCESS:
2521 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2522 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2523 		break;
2524 	case EXIT_REASON_APIC_WRITE:
2525 		/*
2526 		 * APIC-write VM exit is trap-like so the %rip is already
2527 		 * pointing to the next instruction.
2528 		 */
2529 		vmexit->inst_length = 0;
2530 		vlapic = vm_lapic(vmx->vm, vcpu);
2531 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2532 		    vmx, vcpu, vmexit, vlapic);
2533 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2534 		break;
2535 	case EXIT_REASON_XSETBV:
2536 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2537 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2538 		break;
2539 	case EXIT_REASON_MONITOR:
2540 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2541 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2542 		break;
2543 	case EXIT_REASON_MWAIT:
2544 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2545 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2546 		break;
2547 	case EXIT_REASON_TPR:
2548 		vlapic = vm_lapic(vmx->vm, vcpu);
2549 		vlapic_sync_tpr(vlapic);
2550 		vmexit->inst_length = 0;
2551 		handled = HANDLED;
2552 		break;
2553 	case EXIT_REASON_VMCALL:
2554 	case EXIT_REASON_VMCLEAR:
2555 	case EXIT_REASON_VMLAUNCH:
2556 	case EXIT_REASON_VMPTRLD:
2557 	case EXIT_REASON_VMPTRST:
2558 	case EXIT_REASON_VMREAD:
2559 	case EXIT_REASON_VMRESUME:
2560 	case EXIT_REASON_VMWRITE:
2561 	case EXIT_REASON_VMXOFF:
2562 	case EXIT_REASON_VMXON:
2563 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2564 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2565 		break;
2566 	default:
2567 		SDT_PROBE4(vmm, vmx, exit, unknown,
2568 		    vmx, vcpu, vmexit, reason);
2569 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2570 		break;
2571 	}
2572 
2573 	if (handled) {
2574 		/*
2575 		 * It is possible that control is returned to userland
2576 		 * even though we were able to handle the VM exit in the
2577 		 * kernel.
2578 		 *
2579 		 * In such a case we want to make sure that the userland
2580 		 * restarts guest execution at the instruction *after*
2581 		 * the one we just processed. Therefore we update the
2582 		 * guest rip in the VMCS and in 'vmexit'.
2583 		 */
2584 		vmexit->rip += vmexit->inst_length;
2585 		vmexit->inst_length = 0;
2586 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2587 	} else {
2588 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2589 			/*
2590 			 * If this VM exit was not claimed by anybody then
2591 			 * treat it as a generic VMX exit.
2592 			 */
2593 			vmexit->exitcode = VM_EXITCODE_VMX;
2594 			vmexit->u.vmx.status = VM_SUCCESS;
2595 			vmexit->u.vmx.inst_type = 0;
2596 			vmexit->u.vmx.inst_error = 0;
2597 		} else {
2598 			/*
2599 			 * The exitcode and collateral have been populated.
2600 			 * The VM exit will be processed further in userland.
2601 			 */
2602 		}
2603 	}
2604 
2605 	SDT_PROBE4(vmm, vmx, exit, return,
2606 	    vmx, vcpu, vmexit, handled);
2607 	return (handled);
2608 }
2609 
2610 static void
2611 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2612 {
2613 
2614 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2615 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2616 	    vmxctx->inst_fail_status));
2617 
2618 	vmexit->inst_length = 0;
2619 	vmexit->exitcode = VM_EXITCODE_VMX;
2620 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2621 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2622 	vmexit->u.vmx.exit_reason = ~0;
2623 	vmexit->u.vmx.exit_qualification = ~0;
2624 
2625 	switch (rc) {
2626 	case VMX_VMRESUME_ERROR:
2627 	case VMX_VMLAUNCH_ERROR:
2628 	case VMX_INVEPT_ERROR:
2629 #ifndef __FreeBSD__
2630 	case VMX_VMWRITE_ERROR:
2631 #endif
2632 		vmexit->u.vmx.inst_type = rc;
2633 		break;
2634 	default:
2635 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2636 	}
2637 }
2638 
2639 /*
2640  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2641  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2642  * sufficient to simply vector to the NMI handler via a software interrupt.
2643  * However, this must be done before maskable interrupts are enabled
2644  * otherwise the "iret" issued by an interrupt handler will incorrectly
2645  * clear NMI blocking.
2646  */
2647 static __inline void
2648 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2649 {
2650 	uint32_t intr_info;
2651 
2652 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2653 
2654 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2655 		return;
2656 
2657 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2658 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2659 	    ("VM exit interruption info invalid: %x", intr_info));
2660 
2661 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2662 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2663 		    "to NMI has invalid vector: %x", intr_info));
2664 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2665 #ifdef __FreeBSD__
2666 		__asm __volatile("int $2");
2667 #else
2668 		vmm_call_trap(T_NMIFLT);
2669 #endif
2670 	}
2671 }
2672 
2673 static __inline void
2674 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2675 {
2676 	uint64_t rflags;
2677 
2678 	/* Save host control debug registers. */
2679 	vmxctx->host_dr7 = rdr7();
2680 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2681 
2682 	/*
2683 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2684 	 * exceptions in the host based on the guest DRx values.  The
2685 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2686 	 */
2687 	load_dr7(0);
2688 	wrmsr(MSR_DEBUGCTLMSR, 0);
2689 
2690 	/*
2691 	 * Disable single stepping the kernel to avoid corrupting the
2692 	 * guest DR6.  A debugger might still be able to corrupt the
2693 	 * guest DR6 by setting a breakpoint after this point and then
2694 	 * single stepping.
2695 	 */
2696 	rflags = read_rflags();
2697 	vmxctx->host_tf = rflags & PSL_T;
2698 	write_rflags(rflags & ~PSL_T);
2699 
2700 	/* Save host debug registers. */
2701 	vmxctx->host_dr0 = rdr0();
2702 	vmxctx->host_dr1 = rdr1();
2703 	vmxctx->host_dr2 = rdr2();
2704 	vmxctx->host_dr3 = rdr3();
2705 	vmxctx->host_dr6 = rdr6();
2706 
2707 	/* Restore guest debug registers. */
2708 	load_dr0(vmxctx->guest_dr0);
2709 	load_dr1(vmxctx->guest_dr1);
2710 	load_dr2(vmxctx->guest_dr2);
2711 	load_dr3(vmxctx->guest_dr3);
2712 	load_dr6(vmxctx->guest_dr6);
2713 }
2714 
2715 static __inline void
2716 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2717 {
2718 
2719 	/* Save guest debug registers. */
2720 	vmxctx->guest_dr0 = rdr0();
2721 	vmxctx->guest_dr1 = rdr1();
2722 	vmxctx->guest_dr2 = rdr2();
2723 	vmxctx->guest_dr3 = rdr3();
2724 	vmxctx->guest_dr6 = rdr6();
2725 
2726 	/*
2727 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2728 	 * PSL_T last.
2729 	 */
2730 	load_dr0(vmxctx->host_dr0);
2731 	load_dr1(vmxctx->host_dr1);
2732 	load_dr2(vmxctx->host_dr2);
2733 	load_dr3(vmxctx->host_dr3);
2734 	load_dr6(vmxctx->host_dr6);
2735 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2736 	load_dr7(vmxctx->host_dr7);
2737 	write_rflags(read_rflags() | vmxctx->host_tf);
2738 }
2739 
2740 static int
2741 vmx_run(void *arg, int vcpu, uint64_t rip, pmap_t pmap,
2742     struct vm_eventinfo *evinfo)
2743 {
2744 	int rc, handled, launched;
2745 	struct vmx *vmx;
2746 	struct vm *vm;
2747 	struct vmxctx *vmxctx;
2748 	uintptr_t vmcs_pa;
2749 	struct vm_exit *vmexit;
2750 	struct vlapic *vlapic;
2751 	uint32_t exit_reason;
2752 #ifdef __FreeBSD__
2753 	struct region_descriptor gdtr, idtr;
2754 	uint16_t ldt_sel;
2755 #endif
2756 	bool tpr_shadow_active;
2757 
2758 	vmx = arg;
2759 	vm = vmx->vm;
2760 	vmcs_pa = vmx->vmcs_pa[vcpu];
2761 	vmxctx = &vmx->ctx[vcpu];
2762 	vlapic = vm_lapic(vm, vcpu);
2763 	vmexit = vm_exitinfo(vm, vcpu);
2764 	launched = 0;
2765 	tpr_shadow_active = vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW) &&
2766 	    !vmx_cap_en(vmx, VMX_CAP_APICV) &&
2767 	    (vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0;
2768 
2769 	KASSERT(vmxctx->pmap == pmap,
2770 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2771 
2772 	vmx_msr_guest_enter(vmx, vcpu);
2773 
2774 	vmcs_load(vmcs_pa);
2775 
2776 #ifndef __FreeBSD__
2777 	VERIFY(vmx->vmcs_state[vcpu] == VS_NONE && curthread->t_preempt != 0);
2778 	vmx->vmcs_state[vcpu] = VS_LOADED;
2779 #endif
2780 
2781 	/*
2782 	 * XXX
2783 	 * We do this every time because we may setup the virtual machine
2784 	 * from a different process than the one that actually runs it.
2785 	 *
2786 	 * If the life of a virtual machine was spent entirely in the context
2787 	 * of a single process we could do this once in vmx_vminit().
2788 	 */
2789 	vmcs_write(VMCS_HOST_CR3, rcr3());
2790 
2791 	vmcs_write(VMCS_GUEST_RIP, rip);
2792 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2793 	do {
2794 		enum event_inject_state inject_state;
2795 
2796 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2797 		    "%lx/%lx", __func__, vmcs_guest_rip(), rip));
2798 
2799 		handled = UNHANDLED;
2800 
2801 		/*
2802 		 * Perform initial event/exception/interrupt injection before
2803 		 * host CPU interrupts are disabled.
2804 		 */
2805 		inject_state = vmx_inject_events(vmx, vcpu, rip);
2806 
2807 		/*
2808 		 * Interrupts are disabled from this point on until the
2809 		 * guest starts executing. This is done for the following
2810 		 * reasons:
2811 		 *
2812 		 * If an AST is asserted on this thread after the check below,
2813 		 * then the IPI_AST notification will not be lost, because it
2814 		 * will cause a VM exit due to external interrupt as soon as
2815 		 * the guest state is loaded.
2816 		 *
2817 		 * A posted interrupt after vmx_inject_vlapic() will not be
2818 		 * "lost" because it will be held pending in the host APIC
2819 		 * because interrupts are disabled. The pending interrupt will
2820 		 * be recognized as soon as the guest state is loaded.
2821 		 *
2822 		 * The same reasoning applies to the IPI generated by
2823 		 * pmap_invalidate_ept().
2824 		 */
2825 		disable_intr();
2826 
2827 		/*
2828 		 * If not precluded by existing events, inject any interrupt
2829 		 * pending on the vLAPIC.  As a lock-less operation, it is safe
2830 		 * (and prudent) to perform with host CPU interrupts disabled.
2831 		 */
2832 		if (inject_state == EIS_CAN_INJECT) {
2833 			inject_state = vmx_inject_vlapic(vmx, vcpu, vlapic);
2834 		}
2835 
2836 		/*
2837 		 * Check for vcpu suspension after injecting events because
2838 		 * vmx_inject_events() can suspend the vcpu due to a
2839 		 * triple fault.
2840 		 */
2841 		if (vcpu_suspended(evinfo)) {
2842 			enable_intr();
2843 			vm_exit_suspended(vmx->vm, vcpu, rip);
2844 			break;
2845 		}
2846 
2847 		if (vcpu_runblocked(evinfo)) {
2848 			enable_intr();
2849 			vm_exit_runblock(vmx->vm, vcpu, rip);
2850 			break;
2851 		}
2852 
2853 		if (vcpu_reqidle(evinfo)) {
2854 			enable_intr();
2855 			vm_exit_reqidle(vmx->vm, vcpu, rip);
2856 			break;
2857 		}
2858 
2859 		if (vcpu_should_yield(vm, vcpu)) {
2860 			enable_intr();
2861 			vm_exit_astpending(vmx->vm, vcpu, rip);
2862 			vmx_astpending_trace(vmx, vcpu, rip);
2863 			handled = HANDLED;
2864 			break;
2865 		}
2866 
2867 		if (vcpu_debugged(vm, vcpu)) {
2868 			enable_intr();
2869 			vm_exit_debug(vmx->vm, vcpu, rip);
2870 			break;
2871 		}
2872 
2873 		/*
2874 		 * If subsequent activity queued events which require injection
2875 		 * handling, take another lap to handle them.
2876 		 */
2877 		if (vmx_inject_recheck(vmx, vcpu, inject_state)) {
2878 			enable_intr();
2879 			handled = HANDLED;
2880 			continue;
2881 		}
2882 
2883 #ifndef __FreeBSD__
2884 		if ((rc = smt_acquire()) != 1) {
2885 			enable_intr();
2886 			vmexit->rip = rip;
2887 			vmexit->inst_length = 0;
2888 			if (rc == -1) {
2889 				vmexit->exitcode = VM_EXITCODE_HT;
2890 			} else {
2891 				vmexit->exitcode = VM_EXITCODE_BOGUS;
2892 				handled = HANDLED;
2893 			}
2894 			break;
2895 		}
2896 
2897 		/*
2898 		 * If this thread has gone off-cpu due to mutex operations
2899 		 * during vmx_run, the VMCS will have been unloaded, forcing a
2900 		 * re-VMLAUNCH as opposed to VMRESUME.
2901 		 */
2902 		launched = (vmx->vmcs_state[vcpu] & VS_LAUNCHED) != 0;
2903 		/*
2904 		 * Restoration of the GDT limit is taken care of by
2905 		 * vmx_savectx().  Since the maximum practical index for the
2906 		 * IDT is 255, restoring its limits from the post-VMX-exit
2907 		 * default of 0xffff is not a concern.
2908 		 *
2909 		 * Only 64-bit hypervisor callers are allowed, which forgoes
2910 		 * the need to restore any LDT descriptor.  Toss an error to
2911 		 * anyone attempting to break that rule.
2912 		 */
2913 		if (curproc->p_model != DATAMODEL_LP64) {
2914 			smt_release();
2915 			enable_intr();
2916 			bzero(vmexit, sizeof (*vmexit));
2917 			vmexit->rip = rip;
2918 			vmexit->exitcode = VM_EXITCODE_VMX;
2919 			vmexit->u.vmx.status = VM_FAIL_INVALID;
2920 			handled = UNHANDLED;
2921 			break;
2922 		}
2923 #else
2924 		/*
2925 		 * VM exits restore the base address but not the
2926 		 * limits of GDTR and IDTR.  The VMCS only stores the
2927 		 * base address, so VM exits set the limits to 0xffff.
2928 		 * Save and restore the full GDTR and IDTR to restore
2929 		 * the limits.
2930 		 *
2931 		 * The VMCS does not save the LDTR at all, and VM
2932 		 * exits clear LDTR as if a NULL selector were loaded.
2933 		 * The userspace hypervisor probably doesn't use a
2934 		 * LDT, but save and restore it to be safe.
2935 		 */
2936 		sgdt(&gdtr);
2937 		sidt(&idtr);
2938 		ldt_sel = sldt();
2939 #endif
2940 
2941 		if (tpr_shadow_active) {
2942 			vmx_tpr_shadow_enter(vlapic);
2943 		}
2944 
2945 		vmx_run_trace(vmx, vcpu);
2946 		vmx_dr_enter_guest(vmxctx);
2947 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2948 		vmx_dr_leave_guest(vmxctx);
2949 
2950 #ifndef	__FreeBSD__
2951 		vmx->vmcs_state[vcpu] |= VS_LAUNCHED;
2952 		smt_release();
2953 #else
2954 		bare_lgdt(&gdtr);
2955 		lidt(&idtr);
2956 		lldt(ldt_sel);
2957 #endif
2958 
2959 		if (tpr_shadow_active) {
2960 			vmx_tpr_shadow_exit(vlapic);
2961 		}
2962 
2963 		/* Collect some information for VM exit processing */
2964 		vmexit->rip = rip = vmcs_guest_rip();
2965 		vmexit->inst_length = vmexit_instruction_length();
2966 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2967 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2968 
2969 		/* Update 'nextrip' */
2970 		vmx->state[vcpu].nextrip = rip;
2971 
2972 		if (rc == VMX_GUEST_VMEXIT) {
2973 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2974 			enable_intr();
2975 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2976 		} else {
2977 			enable_intr();
2978 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2979 		}
2980 #ifdef	__FreeBSD__
2981 		launched = 1;
2982 #endif
2983 		DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, rip,
2984 		    uint32_t, exit_reason);
2985 		rip = vmexit->rip;
2986 	} while (handled);
2987 
2988 	/*
2989 	 * If a VM exit has been handled then the exitcode must be BOGUS
2990 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2991 	 */
2992 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2993 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2994 		panic("Mismatch between handled (%d) and exitcode (%d)",
2995 		    handled, vmexit->exitcode);
2996 	}
2997 
2998 	if (!handled)
2999 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3000 
3001 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3002 	    vmexit->exitcode);
3003 
3004 	vmcs_clear(vmcs_pa);
3005 	vmx_msr_guest_exit(vmx, vcpu);
3006 
3007 #ifndef __FreeBSD__
3008 	VERIFY(vmx->vmcs_state != VS_NONE && curthread->t_preempt != 0);
3009 	vmx->vmcs_state[vcpu] = VS_NONE;
3010 #endif
3011 
3012 	return (0);
3013 }
3014 
3015 static void
3016 vmx_vmcleanup(void *arg)
3017 {
3018 	int i;
3019 	struct vmx *vmx = arg;
3020 	uint16_t maxcpus;
3021 
3022 	if (apic_access_virtualization(vmx, 0))
3023 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3024 
3025 	maxcpus = vm_get_maxcpus(vmx->vm);
3026 	for (i = 0; i < maxcpus; i++)
3027 		vpid_free(vmx->state[i].vpid);
3028 
3029 	free(vmx, M_VMX);
3030 }
3031 
3032 static uint64_t *
3033 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3034 {
3035 	switch (reg) {
3036 	case VM_REG_GUEST_RAX:
3037 		return (&vmxctx->guest_rax);
3038 	case VM_REG_GUEST_RBX:
3039 		return (&vmxctx->guest_rbx);
3040 	case VM_REG_GUEST_RCX:
3041 		return (&vmxctx->guest_rcx);
3042 	case VM_REG_GUEST_RDX:
3043 		return (&vmxctx->guest_rdx);
3044 	case VM_REG_GUEST_RSI:
3045 		return (&vmxctx->guest_rsi);
3046 	case VM_REG_GUEST_RDI:
3047 		return (&vmxctx->guest_rdi);
3048 	case VM_REG_GUEST_RBP:
3049 		return (&vmxctx->guest_rbp);
3050 	case VM_REG_GUEST_R8:
3051 		return (&vmxctx->guest_r8);
3052 	case VM_REG_GUEST_R9:
3053 		return (&vmxctx->guest_r9);
3054 	case VM_REG_GUEST_R10:
3055 		return (&vmxctx->guest_r10);
3056 	case VM_REG_GUEST_R11:
3057 		return (&vmxctx->guest_r11);
3058 	case VM_REG_GUEST_R12:
3059 		return (&vmxctx->guest_r12);
3060 	case VM_REG_GUEST_R13:
3061 		return (&vmxctx->guest_r13);
3062 	case VM_REG_GUEST_R14:
3063 		return (&vmxctx->guest_r14);
3064 	case VM_REG_GUEST_R15:
3065 		return (&vmxctx->guest_r15);
3066 	case VM_REG_GUEST_CR2:
3067 		return (&vmxctx->guest_cr2);
3068 	case VM_REG_GUEST_DR0:
3069 		return (&vmxctx->guest_dr0);
3070 	case VM_REG_GUEST_DR1:
3071 		return (&vmxctx->guest_dr1);
3072 	case VM_REG_GUEST_DR2:
3073 		return (&vmxctx->guest_dr2);
3074 	case VM_REG_GUEST_DR3:
3075 		return (&vmxctx->guest_dr3);
3076 	case VM_REG_GUEST_DR6:
3077 		return (&vmxctx->guest_dr6);
3078 	default:
3079 		break;
3080 	}
3081 	return (NULL);
3082 }
3083 
3084 static int
3085 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3086 {
3087 	int running, hostcpu, err;
3088 	struct vmx *vmx = arg;
3089 	uint64_t *regp;
3090 
3091 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3092 	if (running && hostcpu != curcpu)
3093 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3094 
3095 	/* VMCS access not required for ctx reads */
3096 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3097 		*retval = *regp;
3098 		return (0);
3099 	}
3100 
3101 	if (!running) {
3102 		vmcs_load(vmx->vmcs_pa[vcpu]);
3103 	}
3104 
3105 	err = EINVAL;
3106 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3107 		uint64_t gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3108 		*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3109 		err = 0;
3110 	} else {
3111 		uint32_t encoding;
3112 
3113 		encoding = vmcs_field_encoding(reg);
3114 		if (encoding != VMCS_INVALID_ENCODING) {
3115 			*retval = vmcs_read(encoding);
3116 			err = 0;
3117 		}
3118 	}
3119 
3120 	if (!running) {
3121 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3122 	}
3123 
3124 	return (err);
3125 }
3126 
3127 static int
3128 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3129 {
3130 	int running, hostcpu, error;
3131 	struct vmx *vmx = arg;
3132 	uint64_t *regp;
3133 
3134 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3135 	if (running && hostcpu != curcpu)
3136 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3137 
3138 	/* VMCS access not required for ctx writes */
3139 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3140 		*regp = val;
3141 		return (0);
3142 	}
3143 
3144 	if (!running) {
3145 		vmcs_load(vmx->vmcs_pa[vcpu]);
3146 	}
3147 
3148 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3149 		if (val != 0) {
3150 			/*
3151 			 * Forcing the vcpu into an interrupt shadow is not
3152 			 * presently supported.
3153 			 */
3154 			error = EINVAL;
3155 		} else {
3156 			uint64_t gi;
3157 
3158 			gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3159 			gi &= ~HWINTR_BLOCKING;
3160 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
3161 			error = 0;
3162 		}
3163 	} else {
3164 		uint32_t encoding;
3165 
3166 		error = 0;
3167 		encoding = vmcs_field_encoding(reg);
3168 		switch (encoding) {
3169 		case VMCS_GUEST_IA32_EFER:
3170 			/*
3171 			 * If the "load EFER" VM-entry control is 1 then the
3172 			 * value of EFER.LMA must be identical to "IA-32e mode
3173 			 * guest" bit in the VM-entry control.
3174 			 */
3175 			if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0) {
3176 				uint64_t ctls;
3177 
3178 				ctls = vmcs_read(VMCS_ENTRY_CTLS);
3179 				if (val & EFER_LMA) {
3180 					ctls |= VM_ENTRY_GUEST_LMA;
3181 				} else {
3182 					ctls &= ~VM_ENTRY_GUEST_LMA;
3183 				}
3184 				vmcs_write(VMCS_ENTRY_CTLS, ctls);
3185 			}
3186 			vmcs_write(encoding, val);
3187 			break;
3188 		case VMCS_GUEST_CR0:
3189 			/*
3190 			 * The guest is not allowed to modify certain bits in
3191 			 * %cr0 and %cr4.  To maintain the illusion of full
3192 			 * control, they have shadow versions which contain the
3193 			 * guest-perceived (via reads from the register) values
3194 			 * as opposed to the guest-effective values.
3195 			 *
3196 			 * This is detailed in the SDM: Vol. 3 Ch. 24.6.6.
3197 			 */
3198 			vmcs_write(VMCS_CR0_SHADOW, val);
3199 			vmcs_write(encoding, vmx_fix_cr0(val));
3200 			break;
3201 		case VMCS_GUEST_CR4:
3202 			/* See above for detail on %cr4 shadowing */
3203 			vmcs_write(VMCS_CR4_SHADOW, val);
3204 			vmcs_write(encoding, vmx_fix_cr4(val));
3205 			break;
3206 		case VMCS_GUEST_CR3:
3207 			vmcs_write(encoding, val);
3208 			/*
3209 			 * Invalidate the guest vcpu's TLB mappings to emulate
3210 			 * the behavior of updating %cr3.
3211 			 *
3212 			 * XXX the processor retains global mappings when %cr3
3213 			 * is updated but vmx_invvpid() does not.
3214 			 */
3215 			vmx_invvpid(vmx, vcpu, vmx->ctx[vcpu].pmap, running);
3216 			break;
3217 		case VMCS_INVALID_ENCODING:
3218 			error = EINVAL;
3219 			break;
3220 		default:
3221 			vmcs_write(encoding, val);
3222 			break;
3223 		}
3224 	}
3225 
3226 	if (!running) {
3227 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3228 	}
3229 
3230 	return (error);
3231 }
3232 
3233 static int
3234 vmx_getdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3235 {
3236 	int hostcpu, running;
3237 	struct vmx *vmx = arg;
3238 	uint32_t base, limit, access;
3239 
3240 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3241 	if (running && hostcpu != curcpu)
3242 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3243 
3244 	if (!running) {
3245 		vmcs_load(vmx->vmcs_pa[vcpu]);
3246 	}
3247 
3248 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3249 	desc->base = vmcs_read(base);
3250 	desc->limit = vmcs_read(limit);
3251 	if (access != VMCS_INVALID_ENCODING) {
3252 		desc->access = vmcs_read(access);
3253 	} else {
3254 		desc->access = 0;
3255 	}
3256 
3257 	if (!running) {
3258 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3259 	}
3260 	return (0);
3261 }
3262 
3263 static int
3264 vmx_setdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3265 {
3266 	int hostcpu, running;
3267 	struct vmx *vmx = arg;
3268 	uint32_t base, limit, access;
3269 
3270 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3271 	if (running && hostcpu != curcpu)
3272 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3273 
3274 	if (!running) {
3275 		vmcs_load(vmx->vmcs_pa[vcpu]);
3276 	}
3277 
3278 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3279 	vmcs_write(base, desc->base);
3280 	vmcs_write(limit, desc->limit);
3281 	if (access != VMCS_INVALID_ENCODING) {
3282 		vmcs_write(access, desc->access);
3283 	}
3284 
3285 	if (!running) {
3286 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3287 	}
3288 	return (0);
3289 }
3290 
3291 static int
3292 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3293 {
3294 	struct vmx *vmx = arg;
3295 	int vcap;
3296 	int ret;
3297 
3298 	ret = ENOENT;
3299 
3300 	vcap = vmx->cap[vcpu].set;
3301 
3302 	switch (type) {
3303 	case VM_CAP_HALT_EXIT:
3304 		if (cap_halt_exit)
3305 			ret = 0;
3306 		break;
3307 	case VM_CAP_PAUSE_EXIT:
3308 		if (cap_pause_exit)
3309 			ret = 0;
3310 		break;
3311 	case VM_CAP_MTRAP_EXIT:
3312 		if (cap_monitor_trap)
3313 			ret = 0;
3314 		break;
3315 	case VM_CAP_ENABLE_INVPCID:
3316 		if (cap_invpcid)
3317 			ret = 0;
3318 		break;
3319 	case VM_CAP_BPT_EXIT:
3320 		ret = 0;
3321 		break;
3322 	default:
3323 		break;
3324 	}
3325 
3326 	if (ret == 0)
3327 		*retval = (vcap & (1 << type)) ? 1 : 0;
3328 
3329 	return (ret);
3330 }
3331 
3332 static int
3333 vmx_setcap(void *arg, int vcpu, int type, int val)
3334 {
3335 	struct vmx *vmx = arg;
3336 	uint32_t baseval, reg, flag;
3337 	uint32_t *pptr;
3338 	int error;
3339 
3340 	error = ENOENT;
3341 	pptr = NULL;
3342 
3343 	switch (type) {
3344 	case VM_CAP_HALT_EXIT:
3345 		if (cap_halt_exit) {
3346 			error = 0;
3347 			pptr = &vmx->cap[vcpu].proc_ctls;
3348 			baseval = *pptr;
3349 			flag = PROCBASED_HLT_EXITING;
3350 			reg = VMCS_PRI_PROC_BASED_CTLS;
3351 		}
3352 		break;
3353 	case VM_CAP_MTRAP_EXIT:
3354 		if (cap_monitor_trap) {
3355 			error = 0;
3356 			pptr = &vmx->cap[vcpu].proc_ctls;
3357 			baseval = *pptr;
3358 			flag = PROCBASED_MTF;
3359 			reg = VMCS_PRI_PROC_BASED_CTLS;
3360 		}
3361 		break;
3362 	case VM_CAP_PAUSE_EXIT:
3363 		if (cap_pause_exit) {
3364 			error = 0;
3365 			pptr = &vmx->cap[vcpu].proc_ctls;
3366 			baseval = *pptr;
3367 			flag = PROCBASED_PAUSE_EXITING;
3368 			reg = VMCS_PRI_PROC_BASED_CTLS;
3369 		}
3370 		break;
3371 	case VM_CAP_ENABLE_INVPCID:
3372 		if (cap_invpcid) {
3373 			error = 0;
3374 			pptr = &vmx->cap[vcpu].proc_ctls2;
3375 			baseval = *pptr;
3376 			flag = PROCBASED2_ENABLE_INVPCID;
3377 			reg = VMCS_SEC_PROC_BASED_CTLS;
3378 		}
3379 		break;
3380 	case VM_CAP_BPT_EXIT:
3381 		error = 0;
3382 
3383 		/* Don't change the bitmap if we are tracing all exceptions. */
3384 		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3385 			pptr = &vmx->cap[vcpu].exc_bitmap;
3386 			baseval = *pptr;
3387 			flag = (1 << IDT_BP);
3388 			reg = VMCS_EXCEPTION_BITMAP;
3389 		}
3390 		break;
3391 	default:
3392 		break;
3393 	}
3394 
3395 	if (error != 0) {
3396 		return (error);
3397 	}
3398 
3399 	if (pptr != NULL) {
3400 		if (val) {
3401 			baseval |= flag;
3402 		} else {
3403 			baseval &= ~flag;
3404 		}
3405 		vmcs_load(vmx->vmcs_pa[vcpu]);
3406 		vmcs_write(reg, baseval);
3407 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3408 
3409 		/*
3410 		 * Update optional stored flags, and record
3411 		 * setting
3412 		 */
3413 		*pptr = baseval;
3414 	}
3415 
3416 	if (val) {
3417 		vmx->cap[vcpu].set |= (1 << type);
3418 	} else {
3419 		vmx->cap[vcpu].set &= ~(1 << type);
3420 	}
3421 
3422 	return (0);
3423 }
3424 
3425 struct vlapic_vtx {
3426 	struct vlapic	vlapic;
3427 
3428 	/* Align to the nearest cacheline */
3429 	uint8_t		_pad[64 - (sizeof (struct vlapic) % 64)];
3430 
3431 	/* TMR handling state for posted interrupts */
3432 	uint32_t	tmr_active[8];
3433 	uint32_t	pending_level[8];
3434 	uint32_t	pending_edge[8];
3435 
3436 	struct pir_desc	*pir_desc;
3437 	struct vmx	*vmx;
3438 	uint_t	pending_prio;
3439 	boolean_t	tmr_sync;
3440 };
3441 
3442 CTASSERT((offsetof(struct vlapic_vtx, tmr_active) & 63) == 0);
3443 
3444 #define	VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3445 
3446 static vcpu_notify_t
3447 vmx_apicv_set_ready(struct vlapic *vlapic, int vector, bool level)
3448 {
3449 	struct vlapic_vtx *vlapic_vtx;
3450 	struct pir_desc *pir_desc;
3451 	uint32_t mask, tmrval;
3452 	int idx;
3453 	vcpu_notify_t notify = VCPU_NOTIFY_NONE;
3454 
3455 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3456 	pir_desc = vlapic_vtx->pir_desc;
3457 	idx = vector / 32;
3458 	mask = 1UL << (vector % 32);
3459 
3460 	/*
3461 	 * If the currently asserted TMRs do not match the state requested by
3462 	 * the incoming interrupt, an exit will be required to reconcile those
3463 	 * bits in the APIC page.  This will keep the vLAPIC behavior in line
3464 	 * with the architecturally defined expectations.
3465 	 *
3466 	 * If actors of mixed types (edge and level) are racing against the same
3467 	 * vector (toggling its TMR bit back and forth), the results could
3468 	 * inconsistent.  Such circumstances are considered a rare edge case and
3469 	 * are never expected to be found in the wild.
3470 	 */
3471 	tmrval = atomic_load_acq_int(&vlapic_vtx->tmr_active[idx]);
3472 	if (!level) {
3473 		if ((tmrval & mask) != 0) {
3474 			/* Edge-triggered interrupt needs TMR de-asserted */
3475 			atomic_set_int(&vlapic_vtx->pending_edge[idx], mask);
3476 			atomic_store_rel_long(&pir_desc->pending, 1);
3477 			return (VCPU_NOTIFY_EXIT);
3478 		}
3479 	} else {
3480 		if ((tmrval & mask) == 0) {
3481 			/* Level-triggered interrupt needs TMR asserted */
3482 			atomic_set_int(&vlapic_vtx->pending_level[idx], mask);
3483 			atomic_store_rel_long(&pir_desc->pending, 1);
3484 			return (VCPU_NOTIFY_EXIT);
3485 		}
3486 	}
3487 
3488 	/*
3489 	 * If the interrupt request does not require manipulation of the TMRs
3490 	 * for delivery, set it in PIR descriptor.  It cannot be inserted into
3491 	 * the APIC page while the vCPU might be running.
3492 	 */
3493 	atomic_set_int(&pir_desc->pir[idx], mask);
3494 
3495 	/*
3496 	 * A notification is required whenever the 'pending' bit makes a
3497 	 * transition from 0->1.
3498 	 *
3499 	 * Even if the 'pending' bit is already asserted, notification about
3500 	 * the incoming interrupt may still be necessary.  For example, if a
3501 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3502 	 * the 0->1 'pending' transition with a notification, but the vCPU
3503 	 * would ignore the interrupt for the time being.  The same vCPU would
3504 	 * need to then be notified if a high-priority interrupt arrived which
3505 	 * satisfied the PPR.
3506 	 *
3507 	 * The priorities of interrupts injected while 'pending' is asserted
3508 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3509 	 * to-be-injected interrupt exceed the priorities already present, the
3510 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3511 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3512 	 */
3513 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3514 		notify = VCPU_NOTIFY_APIC;
3515 		vlapic_vtx->pending_prio = 0;
3516 	} else {
3517 		const uint_t old_prio = vlapic_vtx->pending_prio;
3518 		const uint_t prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3519 
3520 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3521 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3522 			notify = VCPU_NOTIFY_APIC;
3523 		}
3524 	}
3525 
3526 	return (notify);
3527 }
3528 
3529 static void
3530 vmx_apicv_accepted(struct vlapic *vlapic, int vector)
3531 {
3532 	/*
3533 	 * When APICv is enabled for an instance, the traditional interrupt
3534 	 * injection method (populating ENTRY_INTR_INFO in the VMCS) is not
3535 	 * used and the CPU does the heavy lifting of virtual interrupt
3536 	 * delivery.  For that reason vmx_intr_accepted() should never be called
3537 	 * when APICv is enabled.
3538 	 */
3539 	panic("vmx_intr_accepted: not expected to be called");
3540 }
3541 
3542 static void
3543 vmx_apicv_sync_tmr(struct vlapic *vlapic)
3544 {
3545 	struct vlapic_vtx *vlapic_vtx;
3546 	const uint32_t *tmrs;
3547 
3548 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3549 	tmrs = &vlapic_vtx->tmr_active[0];
3550 
3551 	if (!vlapic_vtx->tmr_sync) {
3552 		return;
3553 	}
3554 
3555 	vmcs_write(VMCS_EOI_EXIT0, ((uint64_t)tmrs[1] << 32) | tmrs[0]);
3556 	vmcs_write(VMCS_EOI_EXIT1, ((uint64_t)tmrs[3] << 32) | tmrs[2]);
3557 	vmcs_write(VMCS_EOI_EXIT2, ((uint64_t)tmrs[5] << 32) | tmrs[4]);
3558 	vmcs_write(VMCS_EOI_EXIT3, ((uint64_t)tmrs[7] << 32) | tmrs[6]);
3559 	vlapic_vtx->tmr_sync = B_FALSE;
3560 }
3561 
3562 static void
3563 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3564 {
3565 	struct vmx *vmx;
3566 	uint32_t proc_ctls;
3567 	int vcpuid;
3568 
3569 	vcpuid = vlapic->vcpuid;
3570 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3571 
3572 	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3573 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3574 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3575 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3576 	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3577 
3578 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3579 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3580 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3581 }
3582 
3583 static void
3584 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3585 {
3586 	struct vmx *vmx;
3587 	uint32_t proc_ctls2;
3588 	int vcpuid, error;
3589 
3590 	vcpuid = vlapic->vcpuid;
3591 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3592 
3593 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3594 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3595 	    ("%s: invalid proc_ctls2 %x", __func__, proc_ctls2));
3596 
3597 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3598 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3599 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3600 
3601 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3602 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3603 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3604 
3605 	if (vlapic->vcpuid == 0) {
3606 		/*
3607 		 * The nested page table mappings are shared by all vcpus
3608 		 * so unmap the APIC access page just once.
3609 		 */
3610 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3611 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3612 		    __func__, error));
3613 
3614 		/*
3615 		 * The MSR bitmap is shared by all vcpus so modify it only
3616 		 * once in the context of vcpu 0.
3617 		 */
3618 		error = vmx_allow_x2apic_msrs(vmx);
3619 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3620 		    __func__, error));
3621 	}
3622 }
3623 
3624 static void
3625 vmx_apicv_notify(struct vlapic *vlapic, int hostcpu)
3626 {
3627 	psm_send_pir_ipi(hostcpu);
3628 }
3629 
3630 static void
3631 vmx_apicv_sync(struct vlapic *vlapic)
3632 {
3633 	struct vlapic_vtx *vlapic_vtx;
3634 	struct pir_desc *pir_desc;
3635 	struct LAPIC *lapic;
3636 	uint_t i;
3637 
3638 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3639 	pir_desc = vlapic_vtx->pir_desc;
3640 	lapic = vlapic->apic_page;
3641 
3642 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3643 		return;
3644 	}
3645 
3646 	vlapic_vtx->pending_prio = 0;
3647 
3648 	/* Make sure the invalid (0-15) vectors are not set */
3649 	ASSERT0(vlapic_vtx->pending_level[0] & 0xffff);
3650 	ASSERT0(vlapic_vtx->pending_edge[0] & 0xffff);
3651 	ASSERT0(pir_desc->pir[0] & 0xffff);
3652 
3653 	for (i = 0; i <= 7; i++) {
3654 		uint32_t *tmrp = &lapic->tmr0 + (i * 4);
3655 		uint32_t *irrp = &lapic->irr0 + (i * 4);
3656 
3657 		const uint32_t pending_level =
3658 		    atomic_readandclear_int(&vlapic_vtx->pending_level[i]);
3659 		const uint32_t pending_edge =
3660 		    atomic_readandclear_int(&vlapic_vtx->pending_edge[i]);
3661 		const uint32_t pending_inject =
3662 		    atomic_readandclear_int(&pir_desc->pir[i]);
3663 
3664 		if (pending_level != 0) {
3665 			/*
3666 			 * Level-triggered interrupts assert their corresponding
3667 			 * bit in the TMR when queued in IRR.
3668 			 */
3669 			*tmrp |= pending_level;
3670 			*irrp |= pending_level;
3671 		}
3672 		if (pending_edge != 0) {
3673 			/*
3674 			 * When queuing an edge-triggered interrupt in IRR, the
3675 			 * corresponding bit in the TMR is cleared.
3676 			 */
3677 			*tmrp &= ~pending_edge;
3678 			*irrp |= pending_edge;
3679 		}
3680 		if (pending_inject != 0) {
3681 			/*
3682 			 * Interrupts which do not require a change to the TMR
3683 			 * (because it already matches the necessary state) can
3684 			 * simply be queued in IRR.
3685 			 */
3686 			*irrp |= pending_inject;
3687 		}
3688 
3689 		if (*tmrp != vlapic_vtx->tmr_active[i]) {
3690 			/* Check if VMX EOI triggers require updating. */
3691 			vlapic_vtx->tmr_active[i] = *tmrp;
3692 			vlapic_vtx->tmr_sync = B_TRUE;
3693 		}
3694 	}
3695 }
3696 
3697 static void
3698 vmx_tpr_shadow_enter(struct vlapic *vlapic)
3699 {
3700 	/*
3701 	 * When TPR shadowing is enabled, VMX will initiate a guest exit if its
3702 	 * TPR falls below a threshold priority.  That threshold is set to the
3703 	 * current TPR priority, since guest interrupt status should be
3704 	 * re-evaluated if its TPR is set lower.
3705 	 */
3706 	vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3707 }
3708 
3709 static void
3710 vmx_tpr_shadow_exit(struct vlapic *vlapic)
3711 {
3712 	/*
3713 	 * Unlike full APICv, where changes to the TPR are reflected in the PPR,
3714 	 * with TPR shadowing, that duty is relegated to the VMM.  Upon exit,
3715 	 * the PPR is updated to reflect any change in the TPR here.
3716 	 */
3717 	vlapic_sync_tpr(vlapic);
3718 }
3719 
3720 static struct vlapic *
3721 vmx_vlapic_init(void *arg, int vcpuid)
3722 {
3723 	struct vmx *vmx;
3724 	struct vlapic *vlapic;
3725 	struct vlapic_vtx *vlapic_vtx;
3726 
3727 	vmx = arg;
3728 
3729 	vlapic = malloc(sizeof (struct vlapic_vtx), M_VLAPIC,
3730 	    M_WAITOK | M_ZERO);
3731 	vlapic->vm = vmx->vm;
3732 	vlapic->vcpuid = vcpuid;
3733 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3734 
3735 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3736 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3737 	vlapic_vtx->vmx = vmx;
3738 
3739 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
3740 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3741 	}
3742 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
3743 		vlapic->ops.set_intr_ready = vmx_apicv_set_ready;
3744 		vlapic->ops.sync_state = vmx_apicv_sync;
3745 		vlapic->ops.intr_accepted = vmx_apicv_accepted;
3746 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3747 
3748 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
3749 			vlapic->ops.post_intr = vmx_apicv_notify;
3750 		}
3751 	}
3752 
3753 	vlapic_init(vlapic);
3754 
3755 	return (vlapic);
3756 }
3757 
3758 static void
3759 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3760 {
3761 
3762 	vlapic_cleanup(vlapic);
3763 	free(vlapic, M_VLAPIC);
3764 }
3765 
3766 #ifndef __FreeBSD__
3767 static void
3768 vmx_savectx(void *arg, int vcpu)
3769 {
3770 	struct vmx *vmx = arg;
3771 
3772 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3773 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3774 		vmx_msr_guest_exit(vmx, vcpu);
3775 		/*
3776 		 * Having VMCLEARed the VMCS, it can no longer be re-entered
3777 		 * with VMRESUME, but must be VMLAUNCHed again.
3778 		 */
3779 		vmx->vmcs_state[vcpu] &= ~VS_LAUNCHED;
3780 	}
3781 
3782 	reset_gdtr_limit();
3783 }
3784 
3785 static void
3786 vmx_restorectx(void *arg, int vcpu)
3787 {
3788 	struct vmx *vmx = arg;
3789 
3790 	ASSERT0(vmx->vmcs_state[vcpu] & VS_LAUNCHED);
3791 
3792 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3793 		vmx_msr_guest_enter(vmx, vcpu);
3794 		vmcs_load(vmx->vmcs_pa[vcpu]);
3795 	}
3796 }
3797 #endif /* __FreeBSD__ */
3798 
3799 struct vmm_ops vmm_ops_intel = {
3800 	.init		= vmx_init,
3801 	.cleanup	= vmx_cleanup,
3802 	.resume		= vmx_restore,
3803 	.vminit		= vmx_vminit,
3804 	.vmrun		= vmx_run,
3805 	.vmcleanup	= vmx_vmcleanup,
3806 	.vmgetreg	= vmx_getreg,
3807 	.vmsetreg	= vmx_setreg,
3808 	.vmgetdesc	= vmx_getdesc,
3809 	.vmsetdesc	= vmx_setdesc,
3810 	.vmgetcap	= vmx_getcap,
3811 	.vmsetcap	= vmx_setcap,
3812 	.vmspace_alloc	= ept_vmspace_alloc,
3813 	.vmspace_free	= ept_vmspace_free,
3814 	.vlapic_init	= vmx_vlapic_init,
3815 	.vlapic_cleanup	= vmx_vlapic_cleanup,
3816 
3817 #ifndef __FreeBSD__
3818 	.vmsavectx	= vmx_savectx,
3819 	.vmrestorectx	= vmx_restorectx,
3820 #endif
3821 };
3822 
3823 #ifndef __FreeBSD__
3824 /* Side-effect free HW validation derived from checks in vmx_init. */
3825 int
3826 vmx_x86_supported(const char **msg)
3827 {
3828 	int error;
3829 	uint32_t tmp;
3830 
3831 	ASSERT(msg != NULL);
3832 
3833 	/* Check support for primary processor-based VM-execution controls */
3834 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
3835 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING,
3836 	    PROCBASED_CTLS_ZERO_SETTING, &tmp);
3837 	if (error) {
3838 		*msg = "processor does not support desired primary "
3839 		    "processor-based controls";
3840 		return (error);
3841 	}
3842 
3843 	/* Check support for secondary processor-based VM-execution controls */
3844 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
3845 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING,
3846 	    PROCBASED_CTLS2_ZERO_SETTING, &tmp);
3847 	if (error) {
3848 		*msg = "processor does not support desired secondary "
3849 		    "processor-based controls";
3850 		return (error);
3851 	}
3852 
3853 	/* Check support for pin-based VM-execution controls */
3854 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
3855 	    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING,
3856 	    PINBASED_CTLS_ZERO_SETTING, &tmp);
3857 	if (error) {
3858 		*msg = "processor does not support desired pin-based controls";
3859 		return (error);
3860 	}
3861 
3862 	/* Check support for VM-exit controls */
3863 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
3864 	    VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &tmp);
3865 	if (error) {
3866 		*msg = "processor does not support desired exit controls";
3867 		return (error);
3868 	}
3869 
3870 	/* Check support for VM-entry controls */
3871 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
3872 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &tmp);
3873 	if (error) {
3874 		*msg = "processor does not support desired entry controls";
3875 		return (error);
3876 	}
3877 
3878 	/* Unrestricted guest is nominally optional, but not for us. */
3879 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
3880 	    PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp);
3881 	if (error) {
3882 		*msg = "processor does not support desired unrestricted guest "
3883 		    "controls";
3884 		return (error);
3885 	}
3886 
3887 	return (0);
3888 }
3889 #endif
3890