1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 
29 /*
30  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
31  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
32  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
33  * PSMI 1.5 extensions are supported in Solaris Nevada.
34  * PSMI 1.6 extensions are supported in Solaris Nevada.
35  * PSMI 1.7 extensions are supported in Solaris Nevada.
36  */
37 #define	PSMI_1_7
38 
39 #include <sys/processor.h>
40 #include <sys/time.h>
41 #include <sys/psm.h>
42 #include <sys/smp_impldefs.h>
43 #include <sys/cram.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/psm_common.h>
47 #include <sys/apic.h>
48 #include <sys/apic_common.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>
61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/rm_platter.h>
65 #include <sys/privregs.h>
66 #include <sys/cyclic.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/sunndi.h>
70 
71 
72 /*
73  *      Local Function Prototypes
74  */
75 static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
76 static void apic_xlate_vector_free_timeout_handler(void *arg);
77 static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
78     int new_bind_cpu, int apicindex, int intin_no, int which_irq,
79     struct ioapic_reprogram_data *drep);
80 static int apic_setup_irq_table(dev_info_t *dip, int irqno,
81     struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
82     int type);
83 static void apic_try_deferred_reprogram(int ipl, int vect);
84 static void delete_defer_repro_ent(int which_irq);
85 static void apic_ioapic_wait_pending_clear(int ioapicindex,
86     int intin_no);
87 
88 extern int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
89     int ipin, int *pci_irqp, iflag_t *intr_flagp);
90 extern int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
91     int child_ipin, struct apic_io_intr **intrp);
92 extern uchar_t acpi_find_ioapic(int irq);
93 extern struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
94 extern int apic_find_bus_id(int bustype);
95 extern int apic_find_intin(uchar_t ioapic, uchar_t intin);
96 extern void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
97 
98 extern	int apic_sci_vect;
99 extern	iflag_t apic_sci_flags;
100 extern	int	apic_intr_policy;
101 extern	char *psm_name;
102 
103 /*
104  * number of bits per byte, from <sys/param.h>
105  */
106 #define	UCHAR_MAX	((1 << NBBY) - 1)
107 
108 /* Max wait time (in repetitions) for flags to clear in an RDT entry. */
109 extern int apic_max_reps_clear_pending;
110 
111 /* The irq # is implicit in the array index: */
112 struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
113 /*
114  * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
115  * is indexed by IRQ number, NOT by vector number.
116  */
117 
118 extern	int	apic_int_busy_mark;
119 extern	int	apic_int_free_mark;
120 extern	int	apic_diff_for_redistribution;
121 extern	int	apic_sample_factor_redistribution;
122 extern	int	apic_redist_cpu_skip;
123 extern	int	apic_num_imbalance;
124 extern	int	apic_num_rebind;
125 
126 /* timeout for xlate_vector, mark_vector */
127 int	apic_revector_timeout = 16 * 10000; /* 160 millisec */
128 
129 extern int	apic_defconf;
130 extern int	apic_irq_translate;
131 
132 extern int	apic_use_acpi_madt_only;	/* 1=ONLY use MADT from ACPI */
133 
134 extern	uchar_t	apic_io_vectbase[MAX_IO_APIC];
135 
136 extern	boolean_t ioapic_mask_workaround[MAX_IO_APIC];
137 
138 /*
139  * First available slot to be used as IRQ index into the apic_irq_table
140  * for those interrupts (like MSI/X) that don't have a physical IRQ.
141  */
142 extern int apic_first_avail_irq;
143 
144 /*
145  * apic_defer_reprogram_lock ensures that only one processor is handling
146  * deferred interrupt programming at *_intr_exit time.
147  */
148 static	lock_t	apic_defer_reprogram_lock;
149 
150 /*
151  * The current number of deferred reprogrammings outstanding
152  */
153 uint_t	apic_reprogram_outstanding = 0;
154 
155 #ifdef DEBUG
156 /*
157  * Counters that keep track of deferred reprogramming stats
158  */
159 uint_t	apic_intr_deferrals = 0;
160 uint_t	apic_intr_deliver_timeouts = 0;
161 uint_t	apic_last_ditch_reprogram_failures = 0;
162 uint_t	apic_deferred_setup_failures = 0;
163 uint_t	apic_defer_repro_total_retries = 0;
164 uint_t	apic_defer_repro_successes = 0;
165 uint_t	apic_deferred_spurious_enters = 0;
166 #endif
167 
168 extern	int	apic_io_max;
169 extern	struct apic_io_intr *apic_io_intrp;
170 
171 uchar_t	apic_vector_to_irq[APIC_MAX_VECTOR+1];
172 
173 extern	uint32_t	eisa_level_intr_mask;
174 	/* At least MSB will be set if EISA bus */
175 
176 extern	int	apic_pci_bus_total;
177 extern	uchar_t	apic_single_pci_busid;
178 
179 /*
180  * Following declarations are for revectoring; used when ISRs at different
181  * IPLs share an irq.
182  */
183 static	lock_t	apic_revector_lock;
184 int	apic_revector_pending = 0;
185 static	uchar_t	*apic_oldvec_to_newvec;
186 static	uchar_t	*apic_newvec_to_oldvec;
187 
188 /* ACPI Interrupt Source Override Structure ptr */
189 ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop;
190 extern	int acpi_iso_cnt;
191 
192 /*
193  * Auto-configuration routines
194  */
195 
196 /*
197  * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
198  * are also set to NULL. vector->irq is set to a value which cannot map
199  * to a real irq to show that it is free.
200  */
201 void
202 apic_init_common(void)
203 {
204 	int	i, j, indx;
205 	int	*iptr;
206 
207 	/*
208 	 * Initialize apic_ipls from apic_vectortoipl.  This array is
209 	 * used in apic_intr_enter to determine the IPL to use for the
210 	 * corresponding vector.  On some systems, due to hardware errata
211 	 * and interrupt sharing, the IPL may not correspond to the IPL listed
212 	 * in apic_vectortoipl (see apic_addspl and apic_delspl).
213 	 */
214 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
215 		indx = i * APIC_VECTOR_PER_IPL;
216 
217 		for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
218 			apic_ipls[indx] = apic_vectortoipl[i];
219 	}
220 
221 	/* cpu 0 is always up (for now) */
222 	apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
223 
224 	iptr = (int *)&apic_irq_table[0];
225 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
226 		apic_level_intr[i] = 0;
227 		*iptr++ = NULL;
228 		apic_vector_to_irq[i] = APIC_RESV_IRQ;
229 
230 		/* These *must* be initted to B_TRUE! */
231 		apic_reprogram_info[i].done = B_TRUE;
232 		apic_reprogram_info[i].irqp = NULL;
233 		apic_reprogram_info[i].tries = 0;
234 		apic_reprogram_info[i].bindcpu = 0;
235 	}
236 
237 	/*
238 	 * Allocate a dummy irq table entry for the reserved entry.
239 	 * This takes care of the race between removing an irq and
240 	 * clock detecting a CPU in that irq during interrupt load
241 	 * sampling.
242 	 */
243 	apic_irq_table[APIC_RESV_IRQ] =
244 	    kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
245 
246 	mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
247 }
248 
249 void
250 ioapic_init_intr(int mask_apic)
251 {
252 	int ioapic_ix;
253 	struct intrspec ispec;
254 	apic_irq_t *irqptr;
255 	int i, j;
256 	ulong_t iflag;
257 
258 	LOCK_INIT_CLEAR(&apic_revector_lock);
259 	LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
260 
261 	/* mask interrupt vectors */
262 	for (j = 0; j < apic_io_max && mask_apic; j++) {
263 		int intin_max;
264 
265 		ioapic_ix = j;
266 		/* Bits 23-16 define the maximum redirection entries */
267 		intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
268 		    & 0xff;
269 		for (i = 0; i <= intin_max; i++)
270 			ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
271 	}
272 
273 	/*
274 	 * Hack alert: deal with ACPI SCI interrupt chicken/egg here
275 	 */
276 	if (apic_sci_vect > 0) {
277 		/*
278 		 * acpica has already done add_avintr(); we just
279 		 * to finish the job by mimicing translate_irq()
280 		 *
281 		 * Fake up an intrspec and setup the tables
282 		 */
283 		ispec.intrspec_vec = apic_sci_vect;
284 		ispec.intrspec_pri = SCI_IPL;
285 
286 		if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
287 		    &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
288 			cmn_err(CE_WARN, "!apic: SCI setup failed");
289 			return;
290 		}
291 		irqptr = apic_irq_table[apic_sci_vect];
292 
293 		iflag = intr_clear();
294 		lock_set(&apic_ioapic_lock);
295 
296 		/* Program I/O APIC */
297 		(void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
298 
299 		lock_clear(&apic_ioapic_lock);
300 		intr_restore(iflag);
301 
302 		irqptr->airq_share++;
303 	}
304 }
305 
306 /*
307  * Add mask bits to disable interrupt vector from happening
308  * at or above IPL. In addition, it should remove mask bits
309  * to enable interrupt vectors below the given IPL.
310  *
311  * Both add and delspl are complicated by the fact that different interrupts
312  * may share IRQs. This can happen in two ways.
313  * 1. The same H/W line is shared by more than 1 device
314  * 1a. with interrupts at different IPLs
315  * 1b. with interrupts at same IPL
316  * 2. We ran out of vectors at a given IPL and started sharing vectors.
317  * 1b and 2 should be handled gracefully, except for the fact some ISRs
318  * will get called often when no interrupt is pending for the device.
319  * For 1a, we handle it at the higher IPL.
320  */
321 /*ARGSUSED*/
322 int
323 apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
324 {
325 	uchar_t vector;
326 	ulong_t iflag;
327 	apic_irq_t *irqptr, *irqheadptr;
328 	int irqindex;
329 
330 	ASSERT(max_ipl <= UCHAR_MAX);
331 	irqindex = IRQINDEX(irqno);
332 
333 	if ((irqindex == -1) || (!apic_irq_table[irqindex]))
334 		return (PSM_FAILURE);
335 
336 	mutex_enter(&airq_mutex);
337 	irqptr = irqheadptr = apic_irq_table[irqindex];
338 
339 	DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
340 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
341 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
342 
343 	while (irqptr) {
344 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
345 			break;
346 		irqptr = irqptr->airq_next;
347 	}
348 	irqptr->airq_share++;
349 
350 	mutex_exit(&airq_mutex);
351 
352 	/* return if it is not hardware interrupt */
353 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
354 		return (PSM_SUCCESS);
355 
356 	/* Or if there are more interupts at a higher IPL */
357 	if (ipl != max_ipl)
358 		return (PSM_SUCCESS);
359 
360 	/*
361 	 * if apic_picinit() has not been called yet, just return.
362 	 * At the end of apic_picinit(), we will call setup_io_intr().
363 	 */
364 
365 	if (!apic_picinit_called)
366 		return (PSM_SUCCESS);
367 
368 	/*
369 	 * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
370 	 * return failure.
371 	 */
372 	if (irqptr->airq_ipl != max_ipl &&
373 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
374 
375 		vector = apic_allocate_vector(max_ipl, irqindex, 1);
376 		if (vector == 0) {
377 			irqptr->airq_share--;
378 			return (PSM_FAILURE);
379 		}
380 		irqptr = irqheadptr;
381 		apic_mark_vector(irqptr->airq_vector, vector);
382 		while (irqptr) {
383 			irqptr->airq_vector = vector;
384 			irqptr->airq_ipl = (uchar_t)max_ipl;
385 			/*
386 			 * reprogram irq being added and every one else
387 			 * who is not in the UNINIT state
388 			 */
389 			if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
390 			    irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
391 				apic_record_rdt_entry(irqptr, irqindex);
392 
393 				iflag = intr_clear();
394 				lock_set(&apic_ioapic_lock);
395 
396 				(void) apic_setup_io_intr(irqptr, irqindex,
397 				    B_FALSE);
398 
399 				lock_clear(&apic_ioapic_lock);
400 				intr_restore(iflag);
401 			}
402 			irqptr = irqptr->airq_next;
403 		}
404 		return (PSM_SUCCESS);
405 
406 	} else if (irqptr->airq_ipl != max_ipl &&
407 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
408 		/*
409 		 * We cannot upgrade the vector, but we can change
410 		 * the IPL that this vector induces.
411 		 *
412 		 * Note that we subtract APIC_BASE_VECT from the vector
413 		 * here because this array is used in apic_intr_enter
414 		 * (no need to add APIC_BASE_VECT in that hot code
415 		 * path since we can do it in the rarely-executed path
416 		 * here).
417 		 */
418 		apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
419 		    (uchar_t)max_ipl;
420 
421 		irqptr = irqheadptr;
422 		while (irqptr) {
423 			irqptr->airq_ipl = (uchar_t)max_ipl;
424 			irqptr = irqptr->airq_next;
425 		}
426 
427 		return (PSM_SUCCESS);
428 	}
429 
430 	ASSERT(irqptr);
431 
432 	iflag = intr_clear();
433 	lock_set(&apic_ioapic_lock);
434 
435 	(void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
436 
437 	lock_clear(&apic_ioapic_lock);
438 	intr_restore(iflag);
439 
440 	return (PSM_SUCCESS);
441 }
442 
443 /*
444  * Recompute mask bits for the given interrupt vector.
445  * If there is no interrupt servicing routine for this
446  * vector, this function should disable interrupt vector
447  * from happening at all IPLs. If there are still
448  * handlers using the given vector, this function should
449  * disable the given vector from happening below the lowest
450  * IPL of the remaining hadlers.
451  */
452 /*ARGSUSED*/
453 int
454 apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
455 {
456 	uchar_t vector;
457 	uint32_t bind_cpu;
458 	int intin, irqindex;
459 	int ioapic_ix;
460 	apic_irq_t	*irqptr, *preirqptr, *irqheadptr, *irqp;
461 	ulong_t iflag;
462 
463 	mutex_enter(&airq_mutex);
464 	irqindex = IRQINDEX(irqno);
465 	irqptr = preirqptr = irqheadptr = apic_irq_table[irqindex];
466 
467 	DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
468 	    "vector=0x%x\n", (void *)irqptr->airq_dip,
469 	    irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
470 
471 	while (irqptr) {
472 		if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
473 			break;
474 		preirqptr = irqptr;
475 		irqptr = irqptr->airq_next;
476 	}
477 	ASSERT(irqptr);
478 
479 	irqptr->airq_share--;
480 
481 	mutex_exit(&airq_mutex);
482 
483 	/*
484 	 * If there are more interrupts at a higher IPL, we don't need
485 	 * to disable anything.
486 	 */
487 	if (ipl < max_ipl)
488 		return (PSM_SUCCESS);
489 
490 	/* return if it is not hardware interrupt */
491 	if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
492 		return (PSM_SUCCESS);
493 
494 	if (!apic_picinit_called) {
495 		/*
496 		 * Clear irq_struct. If two devices shared an intpt
497 		 * line & 1 unloaded before picinit, we are hosed. But, then
498 		 * we hope the machine survive.
499 		 */
500 		irqptr->airq_mps_intr_index = FREE_INDEX;
501 		irqptr->airq_temp_cpu = IRQ_UNINIT;
502 		apic_free_vector(irqptr->airq_vector);
503 		return (PSM_SUCCESS);
504 	}
505 	/*
506 	 * Downgrade vector to new max_ipl if needed. If we cannot allocate,
507 	 * use old IPL. Not very elegant, but it should work.
508 	 */
509 	if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
510 	    !ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
511 		apic_irq_t	*irqp;
512 		if (vector = apic_allocate_vector(max_ipl, irqno, 1)) {
513 			apic_mark_vector(irqheadptr->airq_vector, vector);
514 			irqp = irqheadptr;
515 			while (irqp) {
516 				irqp->airq_vector = vector;
517 				irqp->airq_ipl = (uchar_t)max_ipl;
518 				if (irqp->airq_temp_cpu != IRQ_UNINIT) {
519 					apic_record_rdt_entry(irqp, irqindex);
520 
521 					iflag = intr_clear();
522 					lock_set(&apic_ioapic_lock);
523 
524 					(void) apic_setup_io_intr(irqp,
525 					    irqindex, B_FALSE);
526 
527 					lock_clear(&apic_ioapic_lock);
528 					intr_restore(iflag);
529 				}
530 				irqp = irqp->airq_next;
531 			}
532 		}
533 
534 	} else if (irqptr->airq_ipl != max_ipl &&
535 	    max_ipl != PSM_INVALID_IPL &&
536 	    ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
537 
538 	/*
539 	 * We cannot downgrade the IPL of the vector below the vector's
540 	 * hardware priority. If we did, it would be possible for a
541 	 * higher-priority hardware vector to interrupt a CPU running at an IPL
542 	 * lower than the hardware priority of the interrupting vector (but
543 	 * higher than the soft IPL of this IRQ). When this happens, we would
544 	 * then try to drop the IPL BELOW what it was (effectively dropping
545 	 * below base_spl) which would be potentially catastrophic.
546 	 *
547 	 * (e.g. Suppose the hardware vector associated with this IRQ is 0x40
548 	 * (hardware IPL of 4).  Further assume that the old IPL of this IRQ
549 	 * was 4, but the new IPL is 1.  If we forced vector 0x40 to result in
550 	 * an IPL of 1, it would be possible for the processor to be executing
551 	 * at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
552 	 * the currently-executing ISR.  When apic_intr_enter consults
553 	 * apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
554 	 * so even though the processor was running at IPL 4, an IPL 1
555 	 * interrupt will have interrupted it, which must not happen)).
556 	 *
557 	 * Effectively, this means that the hardware priority corresponding to
558 	 * the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
559 	 * hardware priority.
560 	 *
561 	 * (In the above example, then, after removal of the IPL 4 device's
562 	 * interrupt handler, the new IPL will continue to be 4 because the
563 	 * hardware priority that IPL 1 implies is lower than the hardware
564 	 * priority of the vector used.)
565 	 */
566 		/* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
567 		const int apic_ipls_index = irqptr->airq_vector -
568 		    APIC_BASE_VECT;
569 		const int vect_inherent_hwpri = irqptr->airq_vector >>
570 		    APIC_IPL_SHIFT;
571 
572 		/*
573 		 * If there are still devices using this IRQ, determine the
574 		 * new ipl to use.
575 		 */
576 		if (irqptr->airq_share) {
577 			int vect_desired_hwpri, hwpri;
578 
579 			ASSERT(max_ipl < MAXIPL);
580 			vect_desired_hwpri = apic_ipltopri[max_ipl] >>
581 			    APIC_IPL_SHIFT;
582 
583 			/*
584 			 * If the desired IPL's hardware priority is lower
585 			 * than that of the vector, use the hardware priority
586 			 * of the vector to determine the new IPL.
587 			 */
588 			hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
589 			    vect_inherent_hwpri : vect_desired_hwpri;
590 
591 			/*
592 			 * Now, to get the right index for apic_vectortoipl,
593 			 * we need to subtract APIC_BASE_VECT from the
594 			 * hardware-vector-equivalent (in hwpri).  Since hwpri
595 			 * is already shifted, we shift APIC_BASE_VECT before
596 			 * doing the subtraction.
597 			 */
598 			hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
599 
600 			ASSERT(hwpri >= 0);
601 			ASSERT(hwpri < MAXIPL);
602 			max_ipl = apic_vectortoipl[hwpri];
603 			apic_ipls[apic_ipls_index] = max_ipl;
604 
605 			irqp = irqheadptr;
606 			while (irqp) {
607 				irqp->airq_ipl = (uchar_t)max_ipl;
608 				irqp = irqp->airq_next;
609 			}
610 		} else {
611 			/*
612 			 * No more devices on this IRQ, so reset this vector's
613 			 * element in apic_ipls to the original IPL for this
614 			 * vector
615 			 */
616 			apic_ipls[apic_ipls_index] =
617 			    apic_vectortoipl[vect_inherent_hwpri];
618 		}
619 	}
620 
621 	/*
622 	 * If there are still active interrupts, we are done.
623 	 */
624 	if (irqptr->airq_share)
625 		return (PSM_SUCCESS);
626 
627 	iflag = intr_clear();
628 	lock_set(&apic_ioapic_lock);
629 
630 	if (irqptr->airq_mps_intr_index == MSI_INDEX) {
631 		/*
632 		 * Disable the MSI vector
633 		 * Make sure we only disable on the last
634 		 * of the multi-MSI support
635 		 */
636 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
637 			apic_pci_msi_disable_mode(irqptr->airq_dip,
638 			    DDI_INTR_TYPE_MSI);
639 		}
640 	} else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
641 		/*
642 		 * Disable the MSI-X vector
643 		 * needs to clear its mask and addr/data for each MSI-X
644 		 */
645 		apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
646 		    irqptr->airq_origirq);
647 		/*
648 		 * Make sure we only disable on the last MSI-X
649 		 */
650 		if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
651 			apic_pci_msi_disable_mode(irqptr->airq_dip,
652 			    DDI_INTR_TYPE_MSIX);
653 		}
654 	} else {
655 		/*
656 		 * The assumption here is that this is safe, even for
657 		 * systems with IOAPICs that suffer from the hardware
658 		 * erratum because all devices have been quiesced before
659 		 * they unregister their interrupt handlers.  If that
660 		 * assumption turns out to be false, this mask operation
661 		 * can induce the same erratum result we're trying to
662 		 * avoid.
663 		 */
664 		ioapic_ix = irqptr->airq_ioapicindex;
665 		intin = irqptr->airq_intin_no;
666 		ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
667 	}
668 
669 	/*
670 	 * This irq entry is the only one in the chain.
671 	 */
672 	if (irqheadptr->airq_next == NULL) {
673 		ASSERT(irqheadptr == irqptr);
674 		bind_cpu = irqptr->airq_temp_cpu;
675 		if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
676 		    ((uint32_t)bind_cpu != IRQ_UNINIT)) {
677 			ASSERT(apic_cpu_in_range(bind_cpu));
678 			if (bind_cpu & IRQ_USER_BOUND) {
679 				/* If hardbound, temp_cpu == cpu */
680 				bind_cpu &= ~IRQ_USER_BOUND;
681 				apic_cpus[bind_cpu].aci_bound--;
682 			} else
683 				apic_cpus[bind_cpu].aci_temp_bound--;
684 		}
685 		irqptr->airq_temp_cpu = IRQ_UNINIT;
686 		irqptr->airq_mps_intr_index = FREE_INDEX;
687 		lock_clear(&apic_ioapic_lock);
688 		intr_restore(iflag);
689 		apic_free_vector(irqptr->airq_vector);
690 		return (PSM_SUCCESS);
691 	}
692 
693 	/*
694 	 * If we get here, we are sharing the vector and there are more than
695 	 * one active irq entries in the chain.
696 	 */
697 	lock_clear(&apic_ioapic_lock);
698 	intr_restore(iflag);
699 
700 	mutex_enter(&airq_mutex);
701 	/* Remove the irq entry from the chain */
702 	if (irqptr == irqheadptr) { /* The irq entry is at the head */
703 		apic_irq_table[irqindex] = irqptr->airq_next;
704 	} else {
705 		preirqptr->airq_next = irqptr->airq_next;
706 	}
707 	/* Free the irq entry */
708 	kmem_free(irqptr, sizeof (apic_irq_t));
709 	mutex_exit(&airq_mutex);
710 
711 	return (PSM_SUCCESS);
712 }
713 
714 /*
715  * apic_introp_xlate() replaces apic_translate_irq() and is
716  * called only from apic_intr_ops().  With the new ADII framework,
717  * the priority can no longer be retrieved through i_ddi_get_intrspec().
718  * It has to be passed in from the caller.
719  *
720  * Return value:
721  *      Success: irqno for the given device
722  *      Failure: -1
723  */
724 int
725 apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
726 {
727 	char dev_type[16];
728 	int dev_len, pci_irq, newirq, bustype, devid, busid, i;
729 	int irqno = ispec->intrspec_vec;
730 	ddi_acc_handle_t cfg_handle;
731 	uchar_t ipin;
732 	struct apic_io_intr *intrp;
733 	iflag_t intr_flag;
734 	ACPI_SUBTABLE_HEADER	*hp;
735 	ACPI_MADT_INTERRUPT_OVERRIDE *isop;
736 	apic_irq_t *airqp;
737 	int parent_is_pci_or_pciex = 0;
738 	int child_is_pciex = 0;
739 
740 	DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
741 	    "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
742 	    irqno));
743 
744 	dev_len = sizeof (dev_type);
745 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
746 	    DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
747 	    &dev_len) == DDI_PROP_SUCCESS) {
748 		if ((strcmp(dev_type, "pci") == 0) ||
749 		    (strcmp(dev_type, "pciex") == 0))
750 			parent_is_pci_or_pciex = 1;
751 	}
752 
753 	if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
754 	    DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
755 	    &dev_len) == DDI_PROP_SUCCESS) {
756 		if (strstr(dev_type, "pciex"))
757 			child_is_pciex = 1;
758 	}
759 
760 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
761 		if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
762 			airqp->airq_iflag.bustype =
763 			    child_is_pciex ? BUS_PCIE : BUS_PCI;
764 			return (apic_vector_to_irq[airqp->airq_vector]);
765 		}
766 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
767 		    NULL, type));
768 	}
769 
770 	bustype = 0;
771 
772 	/* check if we have already translated this irq */
773 	mutex_enter(&airq_mutex);
774 	newirq = apic_min_device_irq;
775 	for (; newirq <= apic_max_device_irq; newirq++) {
776 		airqp = apic_irq_table[newirq];
777 		while (airqp) {
778 			if ((airqp->airq_dip == dip) &&
779 			    (airqp->airq_origirq == irqno) &&
780 			    (airqp->airq_mps_intr_index != FREE_INDEX)) {
781 
782 				mutex_exit(&airq_mutex);
783 				return (VIRTIRQ(newirq, airqp->airq_share_id));
784 			}
785 			airqp = airqp->airq_next;
786 		}
787 	}
788 	mutex_exit(&airq_mutex);
789 
790 	if (apic_defconf)
791 		goto defconf;
792 
793 	if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
794 		goto nonpci;
795 
796 	if (parent_is_pci_or_pciex) {
797 		/* pci device */
798 		if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
799 			goto nonpci;
800 		if (busid == 0 && apic_pci_bus_total == 1)
801 			busid = (int)apic_single_pci_busid;
802 
803 		if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
804 			return (-1);
805 		ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
806 		pci_config_teardown(&cfg_handle);
807 		if (apic_enable_acpi && !apic_use_acpi_madt_only) {
808 			if (apic_acpi_translate_pci_irq(dip, busid, devid,
809 			    ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
810 				return (-1);
811 
812 			intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
813 			return (apic_setup_irq_table(dip, pci_irq, NULL, ispec,
814 			    &intr_flag, type));
815 		} else {
816 			pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
817 			if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
818 			    == NULL) {
819 				if ((pci_irq = apic_handle_pci_pci_bridge(dip,
820 				    devid, ipin, &intrp)) == -1)
821 					return (-1);
822 			}
823 			return (apic_setup_irq_table(dip, pci_irq, intrp, ispec,
824 			    NULL, type));
825 		}
826 	} else if (strcmp(dev_type, "isa") == 0)
827 		bustype = BUS_ISA;
828 	else if (strcmp(dev_type, "eisa") == 0)
829 		bustype = BUS_EISA;
830 
831 nonpci:
832 	if (apic_enable_acpi && !apic_use_acpi_madt_only) {
833 		/* search iso entries first */
834 		if (acpi_iso_cnt != 0) {
835 			hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
836 			i = 0;
837 			while (i < acpi_iso_cnt) {
838 				if (hp->Type ==
839 				    ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
840 					isop =
841 					    (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
842 					if (isop->Bus == 0 &&
843 					    isop->SourceIrq == irqno) {
844 						newirq = isop->GlobalIrq;
845 						intr_flag.intr_po =
846 						    isop->IntiFlags &
847 						    ACPI_MADT_POLARITY_MASK;
848 						intr_flag.intr_el =
849 						    (isop->IntiFlags &
850 						    ACPI_MADT_TRIGGER_MASK)
851 						    >> 2;
852 						intr_flag.bustype = BUS_ISA;
853 
854 						return (apic_setup_irq_table(
855 						    dip, newirq, NULL, ispec,
856 						    &intr_flag, type));
857 
858 					}
859 					i++;
860 				}
861 				hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
862 				    hp->Length);
863 			}
864 		}
865 		intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
866 		intr_flag.intr_el = INTR_EL_EDGE;
867 		intr_flag.bustype = BUS_ISA;
868 		return (apic_setup_irq_table(dip, irqno, NULL, ispec,
869 		    &intr_flag, type));
870 	} else {
871 		if (bustype == 0)	/* not initialized */
872 			bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
873 		for (i = 0; i < 2; i++) {
874 			if (((busid = apic_find_bus_id(bustype)) != -1) &&
875 			    ((intrp = apic_find_io_intr_w_busid(irqno, busid))
876 			    != NULL)) {
877 				if ((newirq = apic_setup_irq_table(dip, irqno,
878 				    intrp, ispec, NULL, type)) != -1) {
879 					return (newirq);
880 				}
881 				goto defconf;
882 			}
883 			bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
884 		}
885 	}
886 
887 /* MPS default configuration */
888 defconf:
889 	newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
890 	if (newirq == -1)
891 		return (-1);
892 	ASSERT(IRQINDEX(newirq) == irqno);
893 	ASSERT(apic_irq_table[irqno]);
894 	return (newirq);
895 }
896 
897 /*
898  * Attempt to share vector with someone else
899  */
900 static int
901 apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
902 	uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
903 {
904 #ifdef DEBUG
905 	apic_irq_t *tmpirqp = NULL;
906 #endif /* DEBUG */
907 	apic_irq_t *irqptr, dummyirq;
908 	int	newirq, chosen_irq = -1, share = 127;
909 	int	lowest, highest, i;
910 	uchar_t	share_id;
911 
912 	DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
913 	    "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
914 
915 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
916 	lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
917 
918 	if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
919 		lowest -= APIC_VECTOR_PER_IPL;
920 	dummyirq.airq_mps_intr_index = intr_index;
921 	dummyirq.airq_ioapicindex = ioapicindex;
922 	dummyirq.airq_intin_no = ipin;
923 	if (intr_flagp)
924 		dummyirq.airq_iflag = *intr_flagp;
925 	apic_record_rdt_entry(&dummyirq, irqno);
926 	for (i = lowest; i <= highest; i++) {
927 		newirq = apic_vector_to_irq[i];
928 		if (newirq == APIC_RESV_IRQ)
929 			continue;
930 		irqptr = apic_irq_table[newirq];
931 
932 		if ((dummyirq.airq_rdt_entry & 0xFF00) !=
933 		    (irqptr->airq_rdt_entry & 0xFF00))
934 			/* not compatible */
935 			continue;
936 
937 		if (irqptr->airq_share < share) {
938 			share = irqptr->airq_share;
939 			chosen_irq = newirq;
940 		}
941 	}
942 	if (chosen_irq != -1) {
943 		/*
944 		 * Assign a share id which is free or which is larger
945 		 * than the largest one.
946 		 */
947 		share_id = 1;
948 		mutex_enter(&airq_mutex);
949 		irqptr = apic_irq_table[chosen_irq];
950 		while (irqptr) {
951 			if (irqptr->airq_mps_intr_index == FREE_INDEX) {
952 				share_id = irqptr->airq_share_id;
953 				break;
954 			}
955 			if (share_id <= irqptr->airq_share_id)
956 				share_id = irqptr->airq_share_id + 1;
957 #ifdef DEBUG
958 			tmpirqp = irqptr;
959 #endif /* DEBUG */
960 			irqptr = irqptr->airq_next;
961 		}
962 		if (!irqptr) {
963 			irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
964 			irqptr->airq_temp_cpu = IRQ_UNINIT;
965 			irqptr->airq_next =
966 			    apic_irq_table[chosen_irq]->airq_next;
967 			apic_irq_table[chosen_irq]->airq_next = irqptr;
968 #ifdef	DEBUG
969 			tmpirqp = apic_irq_table[chosen_irq];
970 #endif /* DEBUG */
971 		}
972 		irqptr->airq_mps_intr_index = intr_index;
973 		irqptr->airq_ioapicindex = ioapicindex;
974 		irqptr->airq_intin_no = ipin;
975 		if (intr_flagp)
976 			irqptr->airq_iflag = *intr_flagp;
977 		irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
978 		irqptr->airq_share_id = share_id;
979 		apic_record_rdt_entry(irqptr, irqno);
980 		*irqptrp = irqptr;
981 #ifdef	DEBUG
982 		/* shuffle the pointers to test apic_delspl path */
983 		if (tmpirqp) {
984 			tmpirqp->airq_next = irqptr->airq_next;
985 			irqptr->airq_next = apic_irq_table[chosen_irq];
986 			apic_irq_table[chosen_irq] = irqptr;
987 		}
988 #endif /* DEBUG */
989 		mutex_exit(&airq_mutex);
990 		return (VIRTIRQ(chosen_irq, share_id));
991 	}
992 	return (-1);
993 }
994 
995 /*
996  * Allocate/Initialize the apic_irq_table[] entry for given irqno. If the entry
997  * is used already, we will try to allocate a new irqno.
998  *
999  * Return value:
1000  *	Success: irqno
1001  *	Failure: -1
1002  */
1003 static int
1004 apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
1005     struct intrspec *ispec, iflag_t *intr_flagp, int type)
1006 {
1007 	int origirq = ispec->intrspec_vec;
1008 	uchar_t ipl = ispec->intrspec_pri;
1009 	int	newirq, intr_index;
1010 	uchar_t	ipin, ioapic, ioapicindex, vector;
1011 	apic_irq_t *irqptr;
1012 	major_t	major;
1013 	dev_info_t	*sdip;
1014 
1015 	DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
1016 	    "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
1017 
1018 	ASSERT(ispec != NULL);
1019 
1020 	major =  (dip != NULL) ? ddi_driver_major(dip) : 0;
1021 
1022 	if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
1023 		/* MSI/X doesn't need to setup ioapic stuffs */
1024 		ioapicindex = 0xff;
1025 		ioapic = 0xff;
1026 		ipin = (uchar_t)0xff;
1027 		intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
1028 		    MSIX_INDEX;
1029 		mutex_enter(&airq_mutex);
1030 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
1031 			mutex_exit(&airq_mutex);
1032 			/* need an irq for MSI/X to index into autovect[] */
1033 			cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
1034 			    ddi_get_name(dip), ddi_get_instance(dip));
1035 			return (-1);
1036 		}
1037 		mutex_exit(&airq_mutex);
1038 
1039 	} else if (intrp != NULL) {
1040 		intr_index = (int)(intrp - apic_io_intrp);
1041 		ioapic = intrp->intr_destid;
1042 		ipin = intrp->intr_destintin;
1043 		/* Find ioapicindex. If destid was ALL, we will exit with 0. */
1044 		for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
1045 			if (apic_io_id[ioapicindex] == ioapic)
1046 				break;
1047 		ASSERT((ioapic == apic_io_id[ioapicindex]) ||
1048 		    (ioapic == INTR_ALL_APIC));
1049 
1050 		/* check whether this intin# has been used by another irqno */
1051 		if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
1052 			return (newirq);
1053 		}
1054 
1055 	} else if (intr_flagp != NULL) {
1056 		/* ACPI case */
1057 		intr_index = ACPI_INDEX;
1058 		ioapicindex = acpi_find_ioapic(irqno);
1059 		ASSERT(ioapicindex != 0xFF);
1060 		ioapic = apic_io_id[ioapicindex];
1061 		ipin = irqno - apic_io_vectbase[ioapicindex];
1062 		if (apic_irq_table[irqno] &&
1063 		    apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
1064 			ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
1065 			    apic_irq_table[irqno]->airq_ioapicindex ==
1066 			    ioapicindex);
1067 			return (irqno);
1068 		}
1069 
1070 	} else {
1071 		/* default configuration */
1072 		ioapicindex = 0;
1073 		ioapic = apic_io_id[ioapicindex];
1074 		ipin = (uchar_t)irqno;
1075 		intr_index = DEFAULT_INDEX;
1076 	}
1077 
1078 	if (ispec == NULL) {
1079 		APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n",
1080 		    irqno));
1081 	} else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
1082 		if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
1083 		    ipl, ioapicindex, ipin, &irqptr)) != -1) {
1084 			irqptr->airq_ipl = ipl;
1085 			irqptr->airq_origirq = (uchar_t)origirq;
1086 			irqptr->airq_dip = dip;
1087 			irqptr->airq_major = major;
1088 			sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
1089 			/* This is OK to do really */
1090 			if (sdip == NULL) {
1091 				cmn_err(CE_WARN, "Sharing vectors: %s"
1092 				    " instance %d and SCI",
1093 				    ddi_get_name(dip), ddi_get_instance(dip));
1094 			} else {
1095 				cmn_err(CE_WARN, "Sharing vectors: %s"
1096 				    " instance %d and %s instance %d",
1097 				    ddi_get_name(sdip), ddi_get_instance(sdip),
1098 				    ddi_get_name(dip), ddi_get_instance(dip));
1099 			}
1100 			return (newirq);
1101 		}
1102 		/* try high priority allocation now  that share has failed */
1103 		if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
1104 			cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
1105 			    ddi_get_name(dip), ddi_get_instance(dip));
1106 			return (-1);
1107 		}
1108 	}
1109 
1110 	mutex_enter(&airq_mutex);
1111 	if (apic_irq_table[irqno] == NULL) {
1112 		irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
1113 		irqptr->airq_temp_cpu = IRQ_UNINIT;
1114 		apic_irq_table[irqno] = irqptr;
1115 	} else {
1116 		irqptr = apic_irq_table[irqno];
1117 		if (irqptr->airq_mps_intr_index != FREE_INDEX) {
1118 			/*
1119 			 * The slot is used by another irqno, so allocate
1120 			 * a free irqno for this interrupt
1121 			 */
1122 			newirq = apic_allocate_irq(apic_first_avail_irq);
1123 			if (newirq == -1) {
1124 				mutex_exit(&airq_mutex);
1125 				return (-1);
1126 			}
1127 			irqno = newirq;
1128 			irqptr = apic_irq_table[irqno];
1129 			if (irqptr == NULL) {
1130 				irqptr = kmem_zalloc(sizeof (apic_irq_t),
1131 				    KM_SLEEP);
1132 				irqptr->airq_temp_cpu = IRQ_UNINIT;
1133 				apic_irq_table[irqno] = irqptr;
1134 			}
1135 			vector = apic_modify_vector(vector, newirq);
1136 		}
1137 	}
1138 	apic_max_device_irq = max(irqno, apic_max_device_irq);
1139 	apic_min_device_irq = min(irqno, apic_min_device_irq);
1140 	mutex_exit(&airq_mutex);
1141 	irqptr->airq_ioapicindex = ioapicindex;
1142 	irqptr->airq_intin_no = ipin;
1143 	irqptr->airq_ipl = ipl;
1144 	irqptr->airq_vector = vector;
1145 	irqptr->airq_origirq = (uchar_t)origirq;
1146 	irqptr->airq_share_id = 0;
1147 	irqptr->airq_mps_intr_index = (short)intr_index;
1148 	irqptr->airq_dip = dip;
1149 	irqptr->airq_major = major;
1150 	irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
1151 	if (intr_flagp)
1152 		irqptr->airq_iflag = *intr_flagp;
1153 
1154 	if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
1155 		/* setup I/O APIC entry for non-MSI/X interrupts */
1156 		apic_record_rdt_entry(irqptr, irqno);
1157 	}
1158 	return (irqno);
1159 }
1160 
1161 /*
1162  * return the cpu to which this intr should be bound.
1163  * Check properties or any other mechanism to see if user wants it
1164  * bound to a specific CPU. If so, return the cpu id with high bit set.
1165  * If not, use the policy to choose a cpu and return the id.
1166  */
1167 uint32_t
1168 apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
1169 {
1170 	int	instance, instno, prop_len, bind_cpu, count;
1171 	uint_t	i, rc;
1172 	uint32_t cpu;
1173 	major_t	major;
1174 	char	*name, *drv_name, *prop_val, *cptr;
1175 	char	prop_name[32];
1176 	ulong_t iflag;
1177 
1178 
1179 	if (apic_intr_policy == INTR_LOWEST_PRIORITY)
1180 		return (IRQ_UNBOUND);
1181 
1182 	if (apic_nproc == 1)
1183 		return (0);
1184 
1185 	drv_name = NULL;
1186 	rc = DDI_PROP_NOT_FOUND;
1187 	major = (major_t)-1;
1188 	if (dip != NULL) {
1189 		name = ddi_get_name(dip);
1190 		major = ddi_name_to_major(name);
1191 		drv_name = ddi_major_to_name(major);
1192 		instance = ddi_get_instance(dip);
1193 		if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
1194 			i = apic_min_device_irq;
1195 			for (; i <= apic_max_device_irq; i++) {
1196 
1197 				if ((i == irq) || (apic_irq_table[i] == NULL) ||
1198 				    (apic_irq_table[i]->airq_mps_intr_index
1199 				    == FREE_INDEX))
1200 					continue;
1201 
1202 				if ((apic_irq_table[i]->airq_major == major) &&
1203 				    (!(apic_irq_table[i]->airq_cpu &
1204 				    IRQ_USER_BOUND))) {
1205 
1206 					cpu = apic_irq_table[i]->airq_cpu;
1207 
1208 					cmn_err(CE_CONT,
1209 					    "!%s: %s (%s) instance #%d "
1210 					    "irq 0x%x vector 0x%x ioapic 0x%x "
1211 					    "intin 0x%x is bound to cpu %d\n",
1212 					    psm_name,
1213 					    name, drv_name, instance, irq,
1214 					    apic_irq_table[irq]->airq_vector,
1215 					    ioapicid, intin, cpu);
1216 					return (cpu);
1217 				}
1218 			}
1219 		}
1220 		/*
1221 		 * search for "drvname"_intpt_bind_cpus property first, the
1222 		 * syntax of the property should be "a[,b,c,...]" where
1223 		 * instance 0 binds to cpu a, instance 1 binds to cpu b,
1224 		 * instance 3 binds to cpu c...
1225 		 * ddi_getlongprop() will search /option first, then /
1226 		 * if "drvname"_intpt_bind_cpus doesn't exist, then find
1227 		 * intpt_bind_cpus property.  The syntax is the same, and
1228 		 * it applies to all the devices if its "drvname" specific
1229 		 * property doesn't exist
1230 		 */
1231 		(void) strcpy(prop_name, drv_name);
1232 		(void) strcat(prop_name, "_intpt_bind_cpus");
1233 		rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
1234 		    (caddr_t)&prop_val, &prop_len);
1235 		if (rc != DDI_PROP_SUCCESS) {
1236 			rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
1237 			    "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
1238 		}
1239 	}
1240 	if (rc == DDI_PROP_SUCCESS) {
1241 		for (i = count = 0; i < (prop_len - 1); i++)
1242 			if (prop_val[i] == ',')
1243 				count++;
1244 		if (prop_val[i-1] != ',')
1245 			count++;
1246 		/*
1247 		 * if somehow the binding instances defined in the
1248 		 * property are not enough for this instno., then
1249 		 * reuse the pattern for the next instance until
1250 		 * it reaches the requested instno
1251 		 */
1252 		instno = instance % count;
1253 		i = 0;
1254 		cptr = prop_val;
1255 		while (i < instno)
1256 			if (*cptr++ == ',')
1257 				i++;
1258 		bind_cpu = stoi(&cptr);
1259 		kmem_free(prop_val, prop_len);
1260 		/* if specific CPU is bogus, then default to next cpu */
1261 		if (!apic_cpu_in_range(bind_cpu)) {
1262 			cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
1263 			    psm_name, prop_name, prop_val, bind_cpu);
1264 			rc = DDI_PROP_NOT_FOUND;
1265 		} else {
1266 			/* indicate that we are bound at user request */
1267 			bind_cpu |= IRQ_USER_BOUND;
1268 		}
1269 		/*
1270 		 * no need to check apic_cpus[].aci_status, if specific CPU is
1271 		 * not up, then post_cpu_start will handle it.
1272 		 */
1273 	}
1274 	if (rc != DDI_PROP_SUCCESS) {
1275 		iflag = intr_clear();
1276 		lock_set(&apic_ioapic_lock);
1277 		bind_cpu = apic_get_next_bind_cpu();
1278 		lock_clear(&apic_ioapic_lock);
1279 		intr_restore(iflag);
1280 	}
1281 
1282 	if (drv_name != NULL)
1283 		cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
1284 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1285 		    psm_name, name, drv_name, instance, irq,
1286 		    apic_irq_table[irq]->airq_vector, ioapicid, intin,
1287 		    bind_cpu & ~IRQ_USER_BOUND);
1288 	else
1289 		cmn_err(CE_CONT, "!%s: irq 0x%x "
1290 		    "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
1291 		    psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
1292 		    intin, bind_cpu & ~IRQ_USER_BOUND);
1293 
1294 	return ((uint32_t)bind_cpu);
1295 }
1296 
1297 /*
1298  * Mark vector as being in the process of being deleted. Interrupts
1299  * may still come in on some CPU. The moment an interrupt comes with
1300  * the new vector, we know we can free the old one. Called only from
1301  * addspl and delspl with interrupts disabled. Because an interrupt
1302  * can be shared, but no interrupt from either device may come in,
1303  * we also use a timeout mechanism, which we arbitrarily set to
1304  * apic_revector_timeout microseconds.
1305  */
1306 static void
1307 apic_mark_vector(uchar_t oldvector, uchar_t newvector)
1308 {
1309 	ulong_t iflag;
1310 
1311 	iflag = intr_clear();
1312 	lock_set(&apic_revector_lock);
1313 	if (!apic_oldvec_to_newvec) {
1314 		apic_oldvec_to_newvec =
1315 		    kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
1316 		    KM_NOSLEEP);
1317 
1318 		if (!apic_oldvec_to_newvec) {
1319 			/*
1320 			 * This failure is not catastrophic.
1321 			 * But, the oldvec will never be freed.
1322 			 */
1323 			apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
1324 			lock_clear(&apic_revector_lock);
1325 			intr_restore(iflag);
1326 			return;
1327 		}
1328 		apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
1329 	}
1330 
1331 	/* See if we already did this for drivers which do double addintrs */
1332 	if (apic_oldvec_to_newvec[oldvector] != newvector) {
1333 		apic_oldvec_to_newvec[oldvector] = newvector;
1334 		apic_newvec_to_oldvec[newvector] = oldvector;
1335 		apic_revector_pending++;
1336 	}
1337 	lock_clear(&apic_revector_lock);
1338 	intr_restore(iflag);
1339 	(void) timeout(apic_xlate_vector_free_timeout_handler,
1340 	    (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
1341 }
1342 
1343 /*
1344  * xlate_vector is called from intr_enter if revector_pending is set.
1345  * It will xlate it if needed and mark the old vector as free.
1346  */
1347 uchar_t
1348 apic_xlate_vector(uchar_t vector)
1349 {
1350 	uchar_t	newvector, oldvector = 0;
1351 
1352 	lock_set(&apic_revector_lock);
1353 	/* Do we really need to do this ? */
1354 	if (!apic_revector_pending) {
1355 		lock_clear(&apic_revector_lock);
1356 		return (vector);
1357 	}
1358 	if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
1359 		oldvector = vector;
1360 	else {
1361 		/*
1362 		 * The incoming vector is new . See if a stale entry is
1363 		 * remaining
1364 		 */
1365 		if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
1366 			newvector = vector;
1367 	}
1368 
1369 	if (oldvector) {
1370 		apic_revector_pending--;
1371 		apic_oldvec_to_newvec[oldvector] = 0;
1372 		apic_newvec_to_oldvec[newvector] = 0;
1373 		apic_free_vector(oldvector);
1374 		lock_clear(&apic_revector_lock);
1375 		/* There could have been more than one reprogramming! */
1376 		return (apic_xlate_vector(newvector));
1377 	}
1378 	lock_clear(&apic_revector_lock);
1379 	return (vector);
1380 }
1381 
1382 void
1383 apic_xlate_vector_free_timeout_handler(void *arg)
1384 {
1385 	ulong_t iflag;
1386 	uchar_t oldvector, newvector;
1387 
1388 	oldvector = (uchar_t)(uintptr_t)arg;
1389 	iflag = intr_clear();
1390 	lock_set(&apic_revector_lock);
1391 	if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
1392 		apic_free_vector(oldvector);
1393 		apic_oldvec_to_newvec[oldvector] = 0;
1394 		apic_newvec_to_oldvec[newvector] = 0;
1395 		apic_revector_pending--;
1396 	}
1397 
1398 	lock_clear(&apic_revector_lock);
1399 	intr_restore(iflag);
1400 }
1401 
1402 /*
1403  * Bind interrupt corresponding to irq_ptr to bind_cpu.
1404  * Must be called with interrupts disabled and apic_ioapic_lock held
1405  */
1406 int
1407 apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
1408     struct ioapic_reprogram_data *drep)
1409 {
1410 	int			ioapicindex, intin_no;
1411 	uint32_t		airq_temp_cpu;
1412 	apic_cpus_info_t	*cpu_infop;
1413 	uint32_t		rdt_entry;
1414 	int			which_irq;
1415 	ioapic_rdt_t		irdt;
1416 
1417 	which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
1418 
1419 	intin_no = irq_ptr->airq_intin_no;
1420 	ioapicindex = irq_ptr->airq_ioapicindex;
1421 	airq_temp_cpu = irq_ptr->airq_temp_cpu;
1422 	if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
1423 		if (airq_temp_cpu & IRQ_USER_BOUND)
1424 			/* Mask off high bit so it can be used as array index */
1425 			airq_temp_cpu &= ~IRQ_USER_BOUND;
1426 
1427 		ASSERT(apic_cpu_in_range(airq_temp_cpu));
1428 	}
1429 
1430 	/*
1431 	 * Can't bind to a CPU that's not accepting interrupts:
1432 	 */
1433 	cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
1434 	if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
1435 		return (1);
1436 
1437 	/*
1438 	 * If we are about to change the interrupt vector for this interrupt,
1439 	 * and this interrupt is level-triggered, attached to an IOAPIC,
1440 	 * has been delivered to a CPU and that CPU has not handled it
1441 	 * yet, we cannot reprogram the IOAPIC now.
1442 	 */
1443 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1444 
1445 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
1446 		    intin_no);
1447 
1448 		if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
1449 		    apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
1450 		    bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
1451 
1452 			return (0);
1453 		}
1454 
1455 		/*
1456 		 * NOTE: We do not unmask the RDT here, as an interrupt MAY
1457 		 * still come in before we have a chance to reprogram it below.
1458 		 * The reprogramming below will simultaneously change and
1459 		 * unmask the RDT entry.
1460 		 */
1461 
1462 		if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
1463 			irdt.ir_lo =  AV_LDEST | AV_LOPRI |
1464 			    irq_ptr->airq_rdt_entry;
1465 
1466 			WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1467 			    AV_TOALL);
1468 
1469 			if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
1470 			    IRQ_UNBOUND)
1471 				apic_cpus[airq_temp_cpu].aci_temp_bound--;
1472 
1473 			/*
1474 			 * Write the vector, trigger, and polarity portion of
1475 			 * the RDT
1476 			 */
1477 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1478 			    irdt.ir_lo);
1479 
1480 			irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
1481 			return (0);
1482 		}
1483 	}
1484 
1485 	if (bind_cpu & IRQ_USER_BOUND) {
1486 		cpu_infop->aci_bound++;
1487 	} else {
1488 		cpu_infop->aci_temp_bound++;
1489 	}
1490 	ASSERT(apic_cpu_in_range(bind_cpu));
1491 
1492 	if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
1493 		apic_cpus[airq_temp_cpu].aci_temp_bound--;
1494 	}
1495 	if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
1496 
1497 		irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
1498 		irdt.ir_hi = cpu_infop->aci_local_id;
1499 
1500 		/* Write the RDT entry -- bind to a specific CPU: */
1501 		WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
1502 		    irdt.ir_hi << APIC_ID_BIT_OFFSET);
1503 
1504 		/* Write the vector, trigger, and polarity portion of the RDT */
1505 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
1506 		    irdt.ir_lo);
1507 
1508 	} else {
1509 		int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
1510 		    DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
1511 		if (type == DDI_INTR_TYPE_MSI) {
1512 			if (irq_ptr->airq_ioapicindex ==
1513 			    irq_ptr->airq_origirq) {
1514 				/* first one */
1515 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1516 				    "apic_pci_msi_enable_vector\n"));
1517 				apic_pci_msi_enable_vector(irq_ptr,
1518 				    type, which_irq, irq_ptr->airq_vector,
1519 				    irq_ptr->airq_intin_no,
1520 				    cpu_infop->aci_local_id);
1521 			}
1522 			if ((irq_ptr->airq_ioapicindex +
1523 			    irq_ptr->airq_intin_no - 1) ==
1524 			    irq_ptr->airq_origirq) { /* last one */
1525 				DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
1526 				    "apic_pci_msi_enable_mode\n"));
1527 				apic_pci_msi_enable_mode(irq_ptr->airq_dip,
1528 				    type, which_irq);
1529 			}
1530 		} else { /* MSI-X */
1531 			apic_pci_msi_enable_vector(irq_ptr, type,
1532 			    irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
1533 			    cpu_infop->aci_local_id);
1534 			apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
1535 			    irq_ptr->airq_origirq);
1536 		}
1537 	}
1538 	irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
1539 	apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
1540 	return (0);
1541 }
1542 
1543 static void
1544 apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
1545 {
1546 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
1547 	    & AV_REMOTE_IRR) != 0) {
1548 		/*
1549 		 * Trying to clear the bit through normal
1550 		 * channels has failed.  So as a last-ditch
1551 		 * effort, try to set the trigger mode to
1552 		 * edge, then to level.  This has been
1553 		 * observed to work on many systems.
1554 		 */
1555 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1556 		    intin_no,
1557 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1558 		    intin_no) & ~AV_LEVEL);
1559 
1560 		WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1561 		    intin_no,
1562 		    READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1563 		    intin_no) | AV_LEVEL);
1564 
1565 		/*
1566 		 * If the bit's STILL set, this interrupt may
1567 		 * be hosed.
1568 		 */
1569 		if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1570 		    intin_no) & AV_REMOTE_IRR) != 0) {
1571 
1572 			prom_printf("%s: Remote IRR still "
1573 			    "not clear for IOAPIC %d intin %d.\n"
1574 			    "\tInterrupts to this pin may cease "
1575 			    "functioning.\n", psm_name, ioapic_ix,
1576 			    intin_no);
1577 #ifdef DEBUG
1578 			apic_last_ditch_reprogram_failures++;
1579 #endif
1580 		}
1581 	}
1582 }
1583 
1584 /*
1585  * This function is protected by apic_ioapic_lock coupled with the
1586  * fact that interrupts are disabled.
1587  */
1588 static void
1589 delete_defer_repro_ent(int which_irq)
1590 {
1591 	ASSERT(which_irq >= 0);
1592 	ASSERT(which_irq <= 255);
1593 	ASSERT(LOCK_HELD(&apic_ioapic_lock));
1594 
1595 	if (apic_reprogram_info[which_irq].done)
1596 		return;
1597 
1598 	apic_reprogram_info[which_irq].done = B_TRUE;
1599 
1600 #ifdef DEBUG
1601 	apic_defer_repro_total_retries +=
1602 	    apic_reprogram_info[which_irq].tries;
1603 
1604 	apic_defer_repro_successes++;
1605 #endif
1606 
1607 	if (--apic_reprogram_outstanding == 0) {
1608 
1609 		setlvlx = psm_intr_exit_fn();
1610 	}
1611 }
1612 
1613 
1614 /*
1615  * Interrupts must be disabled during this function to prevent
1616  * self-deadlock.  Interrupts are disabled because this function
1617  * is called from apic_check_stuck_interrupt(), which is called
1618  * from apic_rebind(), which requires its caller to disable interrupts.
1619  */
1620 static void
1621 add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
1622 {
1623 	ASSERT(which_irq >= 0);
1624 	ASSERT(which_irq <= 255);
1625 	ASSERT(!interrupts_enabled());
1626 
1627 	/*
1628 	 * On the off-chance that there's already a deferred
1629 	 * reprogramming on this irq, check, and if so, just update the
1630 	 * CPU and irq pointer to which the interrupt is targeted, then return.
1631 	 */
1632 	if (!apic_reprogram_info[which_irq].done) {
1633 		apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1634 		apic_reprogram_info[which_irq].irqp = irq_ptr;
1635 		return;
1636 	}
1637 
1638 	apic_reprogram_info[which_irq].irqp = irq_ptr;
1639 	apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
1640 	apic_reprogram_info[which_irq].tries = 0;
1641 	/*
1642 	 * This must be the last thing set, since we're not
1643 	 * grabbing any locks, apic_try_deferred_reprogram() will
1644 	 * make its decision about using this entry iff done
1645 	 * is false.
1646 	 */
1647 	apic_reprogram_info[which_irq].done = B_FALSE;
1648 
1649 	/*
1650 	 * If there were previously no deferred reprogrammings, change
1651 	 * setlvlx to call apic_try_deferred_reprogram()
1652 	 */
1653 	if (++apic_reprogram_outstanding == 1) {
1654 
1655 		setlvlx = apic_try_deferred_reprogram;
1656 	}
1657 }
1658 
1659 static void
1660 apic_try_deferred_reprogram(int prev_ipl, int irq)
1661 {
1662 	int reproirq;
1663 	ulong_t iflag;
1664 	struct ioapic_reprogram_data *drep;
1665 
1666 	(*psm_intr_exit_fn())(prev_ipl, irq);
1667 
1668 	if (!lock_try(&apic_defer_reprogram_lock)) {
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * Acquire the apic_ioapic_lock so that any other operations that
1674 	 * may affect the apic_reprogram_info state are serialized.
1675 	 * It's still possible for the last deferred reprogramming to clear
1676 	 * between the time we entered this function and the time we get to
1677 	 * the for loop below.  In that case, *setlvlx will have been set
1678 	 * back to *_intr_exit and drep will be NULL. (There's no way to
1679 	 * stop that from happening -- we would need to grab a lock before
1680 	 * calling *setlvlx, which is neither realistic nor prudent).
1681 	 */
1682 	iflag = intr_clear();
1683 	lock_set(&apic_ioapic_lock);
1684 
1685 	/*
1686 	 * For each deferred RDT entry, try to reprogram it now.  Note that
1687 	 * there is no lock acquisition to read apic_reprogram_info because
1688 	 * '.done' is set only after the other fields in the structure are set.
1689 	 */
1690 
1691 	drep = NULL;
1692 	for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
1693 		if (apic_reprogram_info[reproirq].done == B_FALSE) {
1694 			drep = &apic_reprogram_info[reproirq];
1695 			break;
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Either we found a deferred action to perform, or
1701 	 * we entered this function spuriously, after *setlvlx
1702 	 * was restored to point to *_intr_exit.  Any other
1703 	 * permutation is invalid.
1704 	 */
1705 	ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
1706 
1707 	/*
1708 	 * Though we can't really do anything about errors
1709 	 * at this point, keep track of them for reporting.
1710 	 * Note that it is very possible for apic_setup_io_intr
1711 	 * to re-register this very timeout if the Remote IRR bit
1712 	 * has not yet cleared.
1713 	 */
1714 
1715 #ifdef DEBUG
1716 	if (drep != NULL) {
1717 		if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
1718 			apic_deferred_setup_failures++;
1719 		}
1720 	} else {
1721 		apic_deferred_spurious_enters++;
1722 	}
1723 #else
1724 	if (drep != NULL)
1725 		(void) apic_setup_io_intr(drep, reproirq, B_TRUE);
1726 #endif
1727 
1728 	lock_clear(&apic_ioapic_lock);
1729 	intr_restore(iflag);
1730 
1731 	lock_clear(&apic_defer_reprogram_lock);
1732 }
1733 
1734 static void
1735 apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
1736 {
1737 	int waited;
1738 
1739 	/*
1740 	 * Wait for the delivery pending bit to clear.
1741 	 */
1742 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1743 	    (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
1744 
1745 		/*
1746 		 * If we're still waiting on the delivery of this interrupt,
1747 		 * continue to wait here until it is delivered (this should be
1748 		 * a very small amount of time, but include a timeout just in
1749 		 * case).
1750 		 */
1751 		for (waited = 0; waited < apic_max_reps_clear_pending;
1752 		    waited++) {
1753 			if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1754 			    intin_no) & AV_PENDING) == 0) {
1755 				break;
1756 			}
1757 		}
1758 	}
1759 }
1760 
1761 
1762 /*
1763  * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
1764  * bit set.  Calls functions that modify the function that setlvlx points to,
1765  * so that the reprogramming can be retried very shortly.
1766  *
1767  * This function will mask the RDT entry if the interrupt is level-triggered.
1768  * (The caller is responsible for unmasking the RDT entry.)
1769  *
1770  * Returns non-zero if the caller should defer IOAPIC reprogramming.
1771  */
1772 static int
1773 apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
1774     int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
1775     struct ioapic_reprogram_data *drep)
1776 {
1777 	int32_t			rdt_entry;
1778 	int			waited;
1779 	int			reps = 0;
1780 
1781 	/*
1782 	 * Wait for the delivery pending bit to clear.
1783 	 */
1784 	do {
1785 		++reps;
1786 
1787 		apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
1788 
1789 		/*
1790 		 * Mask the RDT entry, but only if it's a level-triggered
1791 		 * interrupt
1792 		 */
1793 		rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1794 		    intin_no);
1795 		if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
1796 
1797 			/* Mask it */
1798 			WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1799 			    AV_MASK | rdt_entry);
1800 		}
1801 
1802 		if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
1803 			/*
1804 			 * If there was a race and an interrupt was injected
1805 			 * just before we masked, check for that case here.
1806 			 * Then, unmask the RDT entry and try again.  If we're
1807 			 * on our last try, don't unmask (because we want the
1808 			 * RDT entry to remain masked for the rest of the
1809 			 * function).
1810 			 */
1811 			rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1812 			    intin_no);
1813 			if ((rdt_entry & AV_PENDING) &&
1814 			    (reps < apic_max_reps_clear_pending)) {
1815 				/* Unmask it */
1816 				WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1817 				    intin_no, rdt_entry & ~AV_MASK);
1818 			}
1819 		}
1820 
1821 	} while ((rdt_entry & AV_PENDING) &&
1822 	    (reps < apic_max_reps_clear_pending));
1823 
1824 #ifdef DEBUG
1825 		if (rdt_entry & AV_PENDING)
1826 			apic_intr_deliver_timeouts++;
1827 #endif
1828 
1829 	/*
1830 	 * If the remote IRR bit is set, then the interrupt has been sent
1831 	 * to a CPU for processing.  We have no choice but to wait for
1832 	 * that CPU to process the interrupt, at which point the remote IRR
1833 	 * bit will be cleared.
1834 	 */
1835 	if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
1836 	    (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
1837 
1838 		/*
1839 		 * If the CPU that this RDT is bound to is NOT the current
1840 		 * CPU, wait until that CPU handles the interrupt and ACKs
1841 		 * it.  If this interrupt is not bound to any CPU (that is,
1842 		 * if it's bound to the logical destination of "anyone"), it
1843 		 * may have been delivered to the current CPU so handle that
1844 		 * case by deferring the reprogramming (below).
1845 		 */
1846 		if ((old_bind_cpu != IRQ_UNBOUND) &&
1847 		    (old_bind_cpu != IRQ_UNINIT) &&
1848 		    (old_bind_cpu != psm_get_cpu_id())) {
1849 			for (waited = 0; waited < apic_max_reps_clear_pending;
1850 			    waited++) {
1851 				if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1852 				    intin_no) & AV_REMOTE_IRR) == 0) {
1853 
1854 					delete_defer_repro_ent(which_irq);
1855 
1856 					/* Remote IRR has cleared! */
1857 					return (0);
1858 				}
1859 			}
1860 		}
1861 
1862 		/*
1863 		 * If we waited and the Remote IRR bit is still not cleared,
1864 		 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1865 		 * times for this interrupt, try the last-ditch workaround:
1866 		 */
1867 		if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
1868 
1869 			apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
1870 
1871 			/* Mark this one as reprogrammed: */
1872 			delete_defer_repro_ent(which_irq);
1873 
1874 			return (0);
1875 		} else {
1876 #ifdef DEBUG
1877 			apic_intr_deferrals++;
1878 #endif
1879 
1880 			/*
1881 			 * If waiting for the Remote IRR bit (above) didn't
1882 			 * allow it to clear, defer the reprogramming.
1883 			 * Add a new deferred-programming entry if the
1884 			 * caller passed a NULL one (and update the existing one
1885 			 * in case anything changed).
1886 			 */
1887 			add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
1888 			if (drep)
1889 				drep->tries++;
1890 
1891 			/* Inform caller to defer IOAPIC programming: */
1892 			return (1);
1893 		}
1894 
1895 	}
1896 
1897 	/* Remote IRR is clear */
1898 	delete_defer_repro_ent(which_irq);
1899 
1900 	return (0);
1901 }
1902 
1903 /*
1904  * Called to migrate all interrupts at an irq to another cpu.
1905  * Must be called with interrupts disabled and apic_ioapic_lock held
1906  */
1907 int
1908 apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
1909 {
1910 	apic_irq_t	*irqptr = irq_ptr;
1911 	int		retval = 0;
1912 
1913 	while (irqptr) {
1914 		if (irqptr->airq_temp_cpu != IRQ_UNINIT)
1915 			retval |= apic_rebind(irqptr, bind_cpu, NULL);
1916 		irqptr = irqptr->airq_next;
1917 	}
1918 
1919 	return (retval);
1920 }
1921 
1922 /*
1923  * apic_intr_redistribute does all the messy computations for identifying
1924  * which interrupt to move to which CPU. Currently we do just one interrupt
1925  * at a time. This reduces the time we spent doing all this within clock
1926  * interrupt. When it is done in idle, we could do more than 1.
1927  * First we find the most busy and the most free CPU (time in ISR only)
1928  * skipping those CPUs that has been identified as being ineligible (cpu_skip)
1929  * Then we look for IRQs which are closest to the difference between the
1930  * most busy CPU and the average ISR load. We try to find one whose load
1931  * is less than difference.If none exists, then we chose one larger than the
1932  * difference, provided it does not make the most idle CPU worse than the
1933  * most busy one. In the end, we clear all the busy fields for CPUs. For
1934  * IRQs, they are cleared as they are scanned.
1935  */
1936 void
1937 apic_intr_redistribute(void)
1938 {
1939 	int busiest_cpu, most_free_cpu;
1940 	int cpu_free, cpu_busy, max_busy, min_busy;
1941 	int min_free, diff;
1942 	int average_busy, cpus_online;
1943 	int i, busy;
1944 	ulong_t iflag;
1945 	apic_cpus_info_t *cpu_infop;
1946 	apic_irq_t *min_busy_irq = NULL;
1947 	apic_irq_t *max_busy_irq = NULL;
1948 
1949 	busiest_cpu = most_free_cpu = -1;
1950 	cpu_free = cpu_busy = max_busy = average_busy = 0;
1951 	min_free = apic_sample_factor_redistribution;
1952 	cpus_online = 0;
1953 	/*
1954 	 * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
1955 	 * without ioapic_lock. That is OK as we are just doing statistical
1956 	 * sampling anyway and any inaccuracy now will get corrected next time
1957 	 * The call to rebind which actually changes things will make sure
1958 	 * we are consistent.
1959 	 */
1960 	for (i = 0; i < apic_nproc; i++) {
1961 		if (apic_cpu_in_range(i) &&
1962 		    !(apic_redist_cpu_skip & (1 << i)) &&
1963 		    (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
1964 
1965 			cpu_infop = &apic_cpus[i];
1966 			/*
1967 			 * If no unbound interrupts or only 1 total on this
1968 			 * CPU, skip
1969 			 */
1970 			if (!cpu_infop->aci_temp_bound ||
1971 			    (cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
1972 			    == 1) {
1973 				apic_redist_cpu_skip |= 1 << i;
1974 				continue;
1975 			}
1976 
1977 			busy = cpu_infop->aci_busy;
1978 			average_busy += busy;
1979 			cpus_online++;
1980 			if (max_busy < busy) {
1981 				max_busy = busy;
1982 				busiest_cpu = i;
1983 			}
1984 			if (min_free > busy) {
1985 				min_free = busy;
1986 				most_free_cpu = i;
1987 			}
1988 			if (busy > apic_int_busy_mark) {
1989 				cpu_busy |= 1 << i;
1990 			} else {
1991 				if (busy < apic_int_free_mark)
1992 					cpu_free |= 1 << i;
1993 			}
1994 		}
1995 	}
1996 	if ((cpu_busy && cpu_free) ||
1997 	    (max_busy >= (min_free + apic_diff_for_redistribution))) {
1998 
1999 		apic_num_imbalance++;
2000 #ifdef	DEBUG
2001 		if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2002 			prom_printf(
2003 			    "redistribute busy=%x free=%x max=%x min=%x",
2004 			    cpu_busy, cpu_free, max_busy, min_free);
2005 		}
2006 #endif /* DEBUG */
2007 
2008 
2009 		average_busy /= cpus_online;
2010 
2011 		diff = max_busy - average_busy;
2012 		min_busy = max_busy; /* start with the max possible value */
2013 		max_busy = 0;
2014 		min_busy_irq = max_busy_irq = NULL;
2015 		i = apic_min_device_irq;
2016 		for (; i <= apic_max_device_irq; i++) {
2017 			apic_irq_t *irq_ptr;
2018 			/* Change to linked list per CPU ? */
2019 			if ((irq_ptr = apic_irq_table[i]) == NULL)
2020 				continue;
2021 			/* Check for irq_busy & decide which one to move */
2022 			/* Also zero them for next round */
2023 			if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
2024 			    irq_ptr->airq_busy) {
2025 				if (irq_ptr->airq_busy < diff) {
2026 					/*
2027 					 * Check for least busy CPU,
2028 					 * best fit or what ?
2029 					 */
2030 					if (max_busy < irq_ptr->airq_busy) {
2031 						/*
2032 						 * Most busy within the
2033 						 * required differential
2034 						 */
2035 						max_busy = irq_ptr->airq_busy;
2036 						max_busy_irq = irq_ptr;
2037 					}
2038 				} else {
2039 					if (min_busy > irq_ptr->airq_busy) {
2040 						/*
2041 						 * least busy, but more than
2042 						 * the reqd diff
2043 						 */
2044 						if (min_busy <
2045 						    (diff + average_busy -
2046 						    min_free)) {
2047 							/*
2048 							 * Making sure new cpu
2049 							 * will not end up
2050 							 * worse
2051 							 */
2052 							min_busy =
2053 							    irq_ptr->airq_busy;
2054 
2055 							min_busy_irq = irq_ptr;
2056 						}
2057 					}
2058 				}
2059 			}
2060 			irq_ptr->airq_busy = 0;
2061 		}
2062 
2063 		if (max_busy_irq != NULL) {
2064 #ifdef	DEBUG
2065 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2066 				prom_printf("rebinding %x to %x",
2067 				    max_busy_irq->airq_vector, most_free_cpu);
2068 			}
2069 #endif /* DEBUG */
2070 			iflag = intr_clear();
2071 			if (lock_try(&apic_ioapic_lock)) {
2072 				if (apic_rebind_all(max_busy_irq,
2073 				    most_free_cpu) == 0) {
2074 					/* Make change permenant */
2075 					max_busy_irq->airq_cpu =
2076 					    (uint32_t)most_free_cpu;
2077 				}
2078 				lock_clear(&apic_ioapic_lock);
2079 			}
2080 			intr_restore(iflag);
2081 
2082 		} else if (min_busy_irq != NULL) {
2083 #ifdef	DEBUG
2084 			if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
2085 				prom_printf("rebinding %x to %x",
2086 				    min_busy_irq->airq_vector, most_free_cpu);
2087 			}
2088 #endif /* DEBUG */
2089 
2090 			iflag = intr_clear();
2091 			if (lock_try(&apic_ioapic_lock)) {
2092 				if (apic_rebind_all(min_busy_irq,
2093 				    most_free_cpu) == 0) {
2094 					/* Make change permenant */
2095 					min_busy_irq->airq_cpu =
2096 					    (uint32_t)most_free_cpu;
2097 				}
2098 				lock_clear(&apic_ioapic_lock);
2099 			}
2100 			intr_restore(iflag);
2101 
2102 		} else {
2103 			if (cpu_busy != (1 << busiest_cpu)) {
2104 				apic_redist_cpu_skip |= 1 << busiest_cpu;
2105 				/*
2106 				 * We leave cpu_skip set so that next time we
2107 				 * can choose another cpu
2108 				 */
2109 			}
2110 		}
2111 		apic_num_rebind++;
2112 	} else {
2113 		/*
2114 		 * found nothing. Could be that we skipped over valid CPUs
2115 		 * or we have balanced everything. If we had a variable
2116 		 * ticks_for_redistribution, it could be increased here.
2117 		 * apic_int_busy, int_free etc would also need to be
2118 		 * changed.
2119 		 */
2120 		if (apic_redist_cpu_skip)
2121 			apic_redist_cpu_skip = 0;
2122 	}
2123 	for (i = 0; i < apic_nproc; i++) {
2124 		if (apic_cpu_in_range(i)) {
2125 			apic_cpus[i].aci_busy = 0;
2126 		}
2127 	}
2128 }
2129 
2130 void
2131 apic_cleanup_busy(void)
2132 {
2133 	int i;
2134 	apic_irq_t *irq_ptr;
2135 
2136 	for (i = 0; i < apic_nproc; i++) {
2137 		if (apic_cpu_in_range(i)) {
2138 			apic_cpus[i].aci_busy = 0;
2139 		}
2140 	}
2141 
2142 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
2143 		if ((irq_ptr = apic_irq_table[i]) != NULL)
2144 			irq_ptr->airq_busy = 0;
2145 	}
2146 }
2147 
2148 int
2149 apic_ioapic_method_probe()
2150 {
2151 	return (PSM_SUCCESS);
2152 }
2153