xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 5797d5dd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - physical page management.
41  */
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/errno.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/vm.h>
51 #include <sys/vtrace.h>
52 #include <sys/swap.h>
53 #include <sys/cmn_err.h>
54 #include <sys/tuneable.h>
55 #include <sys/sysmacros.h>
56 #include <sys/cpuvar.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/tnf_probe.h>
60 #include <sys/condvar_impl.h>
61 #include <sys/mem_config.h>
62 #include <sys/mem_cage.h>
63 #include <sys/kmem.h>
64 #include <sys/atomic.h>
65 #include <sys/strlog.h>
66 #include <sys/mman.h>
67 #include <sys/ontrap.h>
68 #include <sys/lgrp.h>
69 #include <sys/vfs.h>
70 
71 #include <vm/hat.h>
72 #include <vm/anon.h>
73 #include <vm/page.h>
74 #include <vm/seg.h>
75 #include <vm/pvn.h>
76 #include <vm/seg_kmem.h>
77 #include <vm/vm_dep.h>
78 #include <sys/vm_usage.h>
79 #include <fs/fs_subr.h>
80 #include <sys/ddi.h>
81 #include <sys/modctl.h>
82 
83 static int nopageage = 0;
84 
85 static pgcnt_t max_page_get;	/* max page_get request size in pages */
86 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
87 
88 /*
89  * freemem_lock protects all freemem variables:
90  * availrmem. Also this lock protects the globals which track the
91  * availrmem changes for accurate kernel footprint calculation.
92  * See below for an explanation of these
93  * globals.
94  */
95 kmutex_t freemem_lock;
96 pgcnt_t availrmem;
97 pgcnt_t availrmem_initial;
98 
99 /*
100  * These globals track availrmem changes to get a more accurate
101  * estimate of tke kernel size. Historically pp_kernel is used for
102  * kernel size and is based on availrmem. But availrmem is adjusted for
103  * locked pages in the system not just for kernel locked pages.
104  * These new counters will track the pages locked through segvn and
105  * by explicit user locking.
106  *
107  * pages_locked : How many pages are locked because of user specified
108  * locking through mlock or plock.
109  *
110  * pages_useclaim,pages_claimed : These two variables track the
111  * claim adjustments because of the protection changes on a segvn segment.
112  *
113  * All these globals are protected by the same lock which protects availrmem.
114  */
115 pgcnt_t pages_locked = 0;
116 pgcnt_t pages_useclaim = 0;
117 pgcnt_t pages_claimed = 0;
118 
119 
120 /*
121  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
122  */
123 static kmutex_t	new_freemem_lock;
124 static uint_t	freemem_wait;	/* someone waiting for freemem */
125 static kcondvar_t freemem_cv;
126 
127 /*
128  * The logical page free list is maintained as two lists, the 'free'
129  * and the 'cache' lists.
130  * The free list contains those pages that should be reused first.
131  *
132  * The implementation of the lists is machine dependent.
133  * page_get_freelist(), page_get_cachelist(),
134  * page_list_sub(), and page_list_add()
135  * form the interface to the machine dependent implementation.
136  *
137  * Pages with p_free set are on the cache list.
138  * Pages with p_free and p_age set are on the free list,
139  *
140  * A page may be locked while on either list.
141  */
142 
143 /*
144  * free list accounting stuff.
145  *
146  *
147  * Spread out the value for the number of pages on the
148  * page free and page cache lists.  If there is just one
149  * value, then it must be under just one lock.
150  * The lock contention and cache traffic are a real bother.
151  *
152  * When we acquire and then drop a single pcf lock
153  * we can start in the middle of the array of pcf structures.
154  * If we acquire more than one pcf lock at a time, we need to
155  * start at the front to avoid deadlocking.
156  *
157  * pcf_count holds the number of pages in each pool.
158  *
159  * pcf_block is set when page_create_get_something() has asked the
160  * PSM page freelist and page cachelist routines without specifying
161  * a color and nothing came back.  This is used to block anything
162  * else from moving pages from one list to the other while the
163  * lists are searched again.  If a page is freeed while pcf_block is
164  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
165  * of clearning pcf_block, doing the wakeups, etc.
166  */
167 
168 #define	MAX_PCF_FANOUT NCPU
169 static uint_t pcf_fanout = 1; /* Will get changed at boot time */
170 static uint_t pcf_fanout_mask = 0;
171 
172 struct pcf {
173 	kmutex_t	pcf_lock;	/* protects the structure */
174 	uint_t		pcf_count;	/* page count */
175 	uint_t		pcf_wait;	/* number of waiters */
176 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
177 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
178 	uint_t		pcf_fill[10];	/* to line up on the caches */
179 };
180 
181 /*
182  * PCF_INDEX hash needs to be dynamic (every so often the hash changes where
183  * it will hash the cpu to).  This is done to prevent a drain condition
184  * from happening.  This drain condition will occur when pcf_count decrement
185  * occurs on cpu A and the increment of pcf_count always occurs on cpu B.  An
186  * example of this shows up with device interrupts.  The dma buffer is allocated
187  * by the cpu requesting the IO thus the pcf_count is decremented based on that.
188  * When the memory is returned by the interrupt thread, the pcf_count will be
189  * incremented based on the cpu servicing the interrupt.
190  */
191 static struct pcf pcf[MAX_PCF_FANOUT];
192 #define	PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
193 	(randtick() >> 24)) & (pcf_fanout_mask))
194 
195 static int pcf_decrement_bucket(pgcnt_t);
196 static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
197 
198 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
199 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
200 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
201 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
202 
203 #ifdef VM_STATS
204 
205 /*
206  * No locks, but so what, they are only statistics.
207  */
208 
209 static struct page_tcnt {
210 	int	pc_free_cache;		/* free's into cache list */
211 	int	pc_free_dontneed;	/* free's with dontneed */
212 	int	pc_free_pageout;	/* free's from pageout */
213 	int	pc_free_free;		/* free's into free list */
214 	int	pc_free_pages;		/* free's into large page free list */
215 	int	pc_destroy_pages;	/* large page destroy's */
216 	int	pc_get_cache;		/* get's from cache list */
217 	int	pc_get_free;		/* get's from free list */
218 	int	pc_reclaim;		/* reclaim's */
219 	int	pc_abortfree;		/* abort's of free pages */
220 	int	pc_find_hit;		/* find's that find page */
221 	int	pc_find_miss;		/* find's that don't find page */
222 	int	pc_destroy_free;	/* # of free pages destroyed */
223 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
224 	int	pc_find_hashlen[PC_HASH_CNT+1];
225 	int	pc_addclaim_pages;
226 	int	pc_subclaim_pages;
227 	int	pc_free_replacement_page[2];
228 	int	pc_try_demote_pages[6];
229 	int	pc_demote_pages[2];
230 } pagecnt;
231 
232 uint_t	hashin_count;
233 uint_t	hashin_not_held;
234 uint_t	hashin_already;
235 
236 uint_t	hashout_count;
237 uint_t	hashout_not_held;
238 
239 uint_t	page_create_count;
240 uint_t	page_create_not_enough;
241 uint_t	page_create_not_enough_again;
242 uint_t	page_create_zero;
243 uint_t	page_create_hashout;
244 uint_t	page_create_page_lock_failed;
245 uint_t	page_create_trylock_failed;
246 uint_t	page_create_found_one;
247 uint_t	page_create_hashin_failed;
248 uint_t	page_create_dropped_phm;
249 
250 uint_t	page_create_new;
251 uint_t	page_create_exists;
252 uint_t	page_create_putbacks;
253 uint_t	page_create_overshoot;
254 
255 uint_t	page_reclaim_zero;
256 uint_t	page_reclaim_zero_locked;
257 
258 uint_t	page_rename_exists;
259 uint_t	page_rename_count;
260 
261 uint_t	page_lookup_cnt[20];
262 uint_t	page_lookup_nowait_cnt[10];
263 uint_t	page_find_cnt;
264 uint_t	page_exists_cnt;
265 uint_t	page_exists_forreal_cnt;
266 uint_t	page_lookup_dev_cnt;
267 uint_t	get_cachelist_cnt;
268 uint_t	page_create_cnt[10];
269 uint_t	alloc_pages[9];
270 uint_t	page_exphcontg[19];
271 uint_t  page_create_large_cnt[10];
272 
273 /*
274  * Collects statistics.
275  */
276 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
277 	uint_t	mylen = 0; \
278 			\
279 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
280 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
281 			break; \
282 	} \
283 	if ((pp) != NULL) \
284 		pagecnt.pc_find_hit++; \
285 	else \
286 		pagecnt.pc_find_miss++; \
287 	if (mylen > PC_HASH_CNT) \
288 		mylen = PC_HASH_CNT; \
289 	pagecnt.pc_find_hashlen[mylen]++; \
290 }
291 
292 #else	/* VM_STATS */
293 
294 /*
295  * Don't collect statistics
296  */
297 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
298 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
299 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
300 			break; \
301 	} \
302 }
303 
304 #endif	/* VM_STATS */
305 
306 
307 
308 #ifdef DEBUG
309 #define	MEMSEG_SEARCH_STATS
310 #endif
311 
312 #ifdef MEMSEG_SEARCH_STATS
313 struct memseg_stats {
314     uint_t nsearch;
315     uint_t nlastwon;
316     uint_t nhashwon;
317     uint_t nnotfound;
318 } memseg_stats;
319 
320 #define	MEMSEG_STAT_INCR(v) \
321 	atomic_add_32(&memseg_stats.v, 1)
322 #else
323 #define	MEMSEG_STAT_INCR(x)
324 #endif
325 
326 struct memseg *memsegs;		/* list of memory segments */
327 
328 /*
329  * /etc/system tunable to control large page allocation hueristic.
330  *
331  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
332  * for large page allocation requests.  If a large page is not readily
333  * avaliable on the local freelists we will go through additional effort
334  * to create a large page, potentially moving smaller pages around to coalesce
335  * larger pages in the local lgroup.
336  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
337  * are not readily available in the local lgroup.
338  */
339 enum lpap {
340 	LPAP_DEFAULT,	/* default large page allocation policy */
341 	LPAP_LOCAL	/* local large page allocation policy */
342 };
343 
344 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
345 
346 static void page_init_mem_config(void);
347 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
348 static void page_do_hashout(page_t *);
349 static void page_capture_init();
350 int page_capture_take_action(page_t *, uint_t, void *);
351 
352 static void page_demote_vp_pages(page_t *);
353 
354 
355 void
356 pcf_init(void)
357 
358 {
359 	if (boot_ncpus != -1) {
360 		pcf_fanout = boot_ncpus;
361 	} else {
362 		pcf_fanout = max_ncpus;
363 	}
364 #ifdef sun4v
365 	/*
366 	 * Force at least 4 buckets if possible for sun4v.
367 	 */
368 	pcf_fanout = MAX(pcf_fanout, 4);
369 #endif /* sun4v */
370 
371 	/*
372 	 * Round up to the nearest power of 2.
373 	 */
374 	pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
375 	if (!ISP2(pcf_fanout)) {
376 		pcf_fanout = 1 << highbit(pcf_fanout);
377 
378 		if (pcf_fanout > MAX_PCF_FANOUT) {
379 			pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
380 		}
381 	}
382 	pcf_fanout_mask = pcf_fanout - 1;
383 }
384 
385 /*
386  * vm subsystem related initialization
387  */
388 void
389 vm_init(void)
390 {
391 	boolean_t callb_vm_cpr(void *, int);
392 
393 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
394 	page_init_mem_config();
395 	page_retire_init();
396 	vm_usage_init();
397 	page_capture_init();
398 }
399 
400 /*
401  * This function is called at startup and when memory is added or deleted.
402  */
403 void
404 init_pages_pp_maximum()
405 {
406 	static pgcnt_t p_min;
407 	static pgcnt_t pages_pp_maximum_startup;
408 	static pgcnt_t avrmem_delta;
409 	static int init_done;
410 	static int user_set;	/* true if set in /etc/system */
411 
412 	if (init_done == 0) {
413 
414 		/* If the user specified a value, save it */
415 		if (pages_pp_maximum != 0) {
416 			user_set = 1;
417 			pages_pp_maximum_startup = pages_pp_maximum;
418 		}
419 
420 		/*
421 		 * Setting of pages_pp_maximum is based first time
422 		 * on the value of availrmem just after the start-up
423 		 * allocations. To preserve this relationship at run
424 		 * time, use a delta from availrmem_initial.
425 		 */
426 		ASSERT(availrmem_initial >= availrmem);
427 		avrmem_delta = availrmem_initial - availrmem;
428 
429 		/* The allowable floor of pages_pp_maximum */
430 		p_min = tune.t_minarmem + 100;
431 
432 		/* Make sure we don't come through here again. */
433 		init_done = 1;
434 	}
435 	/*
436 	 * Determine pages_pp_maximum, the number of currently available
437 	 * pages (availrmem) that can't be `locked'. If not set by
438 	 * the user, we set it to 4% of the currently available memory
439 	 * plus 4MB.
440 	 * But we also insist that it be greater than tune.t_minarmem;
441 	 * otherwise a process could lock down a lot of memory, get swapped
442 	 * out, and never have enough to get swapped back in.
443 	 */
444 	if (user_set)
445 		pages_pp_maximum = pages_pp_maximum_startup;
446 	else
447 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
448 		    + btop(4 * 1024 * 1024);
449 
450 	if (pages_pp_maximum <= p_min) {
451 		pages_pp_maximum = p_min;
452 	}
453 }
454 
455 void
456 set_max_page_get(pgcnt_t target_total_pages)
457 {
458 	max_page_get = target_total_pages / 2;
459 }
460 
461 static pgcnt_t pending_delete;
462 
463 /*ARGSUSED*/
464 static void
465 page_mem_config_post_add(
466 	void *arg,
467 	pgcnt_t delta_pages)
468 {
469 	set_max_page_get(total_pages - pending_delete);
470 	init_pages_pp_maximum();
471 }
472 
473 /*ARGSUSED*/
474 static int
475 page_mem_config_pre_del(
476 	void *arg,
477 	pgcnt_t delta_pages)
478 {
479 	pgcnt_t nv;
480 
481 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
482 	set_max_page_get(total_pages - nv);
483 	return (0);
484 }
485 
486 /*ARGSUSED*/
487 static void
488 page_mem_config_post_del(
489 	void *arg,
490 	pgcnt_t delta_pages,
491 	int cancelled)
492 {
493 	pgcnt_t nv;
494 
495 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
496 	set_max_page_get(total_pages - nv);
497 	if (!cancelled)
498 		init_pages_pp_maximum();
499 }
500 
501 static kphysm_setup_vector_t page_mem_config_vec = {
502 	KPHYSM_SETUP_VECTOR_VERSION,
503 	page_mem_config_post_add,
504 	page_mem_config_pre_del,
505 	page_mem_config_post_del,
506 };
507 
508 static void
509 page_init_mem_config(void)
510 {
511 	int ret;
512 
513 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
514 	ASSERT(ret == 0);
515 }
516 
517 /*
518  * Evenly spread out the PCF counters for large free pages
519  */
520 static void
521 page_free_large_ctr(pgcnt_t npages)
522 {
523 	static struct pcf	*p = pcf;
524 	pgcnt_t			lump;
525 
526 	freemem += npages;
527 
528 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
529 
530 	while (npages > 0) {
531 
532 		ASSERT(!p->pcf_block);
533 
534 		if (lump < npages) {
535 			p->pcf_count += (uint_t)lump;
536 			npages -= lump;
537 		} else {
538 			p->pcf_count += (uint_t)npages;
539 			npages = 0;
540 		}
541 
542 		ASSERT(!p->pcf_wait);
543 
544 		if (++p > &pcf[pcf_fanout - 1])
545 			p = pcf;
546 	}
547 
548 	ASSERT(npages == 0);
549 }
550 
551 /*
552  * Add a physical chunk of memory to the system free lists during startup.
553  * Platform specific startup() allocates the memory for the page structs.
554  *
555  * num	- number of page structures
556  * base - page number (pfn) to be associated with the first page.
557  *
558  * Since we are doing this during startup (ie. single threaded), we will
559  * use shortcut routines to avoid any locking overhead while putting all
560  * these pages on the freelists.
561  *
562  * NOTE: Any changes performed to page_free(), must also be performed to
563  *	 add_physmem() since this is how we initialize all page_t's at
564  *	 boot time.
565  */
566 void
567 add_physmem(
568 	page_t	*pp,
569 	pgcnt_t	num,
570 	pfn_t	pnum)
571 {
572 	page_t	*root = NULL;
573 	uint_t	szc = page_num_pagesizes() - 1;
574 	pgcnt_t	large = page_get_pagecnt(szc);
575 	pgcnt_t	cnt = 0;
576 
577 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
578 	    "add_physmem:pp %p num %lu", pp, num);
579 
580 	/*
581 	 * Arbitrarily limit the max page_get request
582 	 * to 1/2 of the page structs we have.
583 	 */
584 	total_pages += num;
585 	set_max_page_get(total_pages);
586 
587 	PLCNT_MODIFY_MAX(pnum, (long)num);
588 
589 	/*
590 	 * The physical space for the pages array
591 	 * representing ram pages has already been
592 	 * allocated.  Here we initialize each lock
593 	 * in the page structure, and put each on
594 	 * the free list
595 	 */
596 	for (; num; pp++, pnum++, num--) {
597 
598 		/*
599 		 * this needs to fill in the page number
600 		 * and do any other arch specific initialization
601 		 */
602 		add_physmem_cb(pp, pnum);
603 
604 		pp->p_lckcnt = 0;
605 		pp->p_cowcnt = 0;
606 		pp->p_slckcnt = 0;
607 
608 		/*
609 		 * Initialize the page lock as unlocked, since nobody
610 		 * can see or access this page yet.
611 		 */
612 		pp->p_selock = 0;
613 
614 		/*
615 		 * Initialize IO lock
616 		 */
617 		page_iolock_init(pp);
618 
619 		/*
620 		 * initialize other fields in the page_t
621 		 */
622 		PP_SETFREE(pp);
623 		page_clr_all_props(pp, 0);
624 		PP_SETAGED(pp);
625 		pp->p_offset = (u_offset_t)-1;
626 		pp->p_next = pp;
627 		pp->p_prev = pp;
628 
629 		/*
630 		 * Simple case: System doesn't support large pages.
631 		 */
632 		if (szc == 0) {
633 			pp->p_szc = 0;
634 			page_free_at_startup(pp);
635 			continue;
636 		}
637 
638 		/*
639 		 * Handle unaligned pages, we collect them up onto
640 		 * the root page until we have a full large page.
641 		 */
642 		if (!IS_P2ALIGNED(pnum, large)) {
643 
644 			/*
645 			 * If not in a large page,
646 			 * just free as small page.
647 			 */
648 			if (root == NULL) {
649 				pp->p_szc = 0;
650 				page_free_at_startup(pp);
651 				continue;
652 			}
653 
654 			/*
655 			 * Link a constituent page into the large page.
656 			 */
657 			pp->p_szc = szc;
658 			page_list_concat(&root, &pp);
659 
660 			/*
661 			 * When large page is fully formed, free it.
662 			 */
663 			if (++cnt == large) {
664 				page_free_large_ctr(cnt);
665 				page_list_add_pages(root, PG_LIST_ISINIT);
666 				root = NULL;
667 				cnt = 0;
668 			}
669 			continue;
670 		}
671 
672 		/*
673 		 * At this point we have a page number which
674 		 * is aligned. We assert that we aren't already
675 		 * in a different large page.
676 		 */
677 		ASSERT(IS_P2ALIGNED(pnum, large));
678 		ASSERT(root == NULL && cnt == 0);
679 
680 		/*
681 		 * If insufficient number of pages left to form
682 		 * a large page, just free the small page.
683 		 */
684 		if (num < large) {
685 			pp->p_szc = 0;
686 			page_free_at_startup(pp);
687 			continue;
688 		}
689 
690 		/*
691 		 * Otherwise start a new large page.
692 		 */
693 		pp->p_szc = szc;
694 		cnt++;
695 		root = pp;
696 	}
697 	ASSERT(root == NULL && cnt == 0);
698 }
699 
700 /*
701  * Find a page representing the specified [vp, offset].
702  * If we find the page but it is intransit coming in,
703  * it will have an "exclusive" lock and we wait for
704  * the i/o to complete.  A page found on the free list
705  * is always reclaimed and then locked.  On success, the page
706  * is locked, its data is valid and it isn't on the free
707  * list, while a NULL is returned if the page doesn't exist.
708  */
709 page_t *
710 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
711 {
712 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
713 }
714 
715 /*
716  * Find a page representing the specified [vp, offset].
717  * We either return the one we found or, if passed in,
718  * create one with identity of [vp, offset] of the
719  * pre-allocated page. If we find existing page but it is
720  * intransit coming in, it will have an "exclusive" lock
721  * and we wait for the i/o to complete.  A page found on
722  * the free list is always reclaimed and then locked.
723  * On success, the page is locked, its data is valid and
724  * it isn't on the free list, while a NULL is returned
725  * if the page doesn't exist and newpp is NULL;
726  */
727 page_t *
728 page_lookup_create(
729 	vnode_t *vp,
730 	u_offset_t off,
731 	se_t se,
732 	page_t *newpp,
733 	spgcnt_t *nrelocp,
734 	int flags)
735 {
736 	page_t		*pp;
737 	kmutex_t	*phm;
738 	ulong_t		index;
739 	uint_t		hash_locked;
740 	uint_t		es;
741 
742 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
743 	VM_STAT_ADD(page_lookup_cnt[0]);
744 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
745 
746 	/*
747 	 * Acquire the appropriate page hash lock since
748 	 * we have to search the hash list.  Pages that
749 	 * hash to this list can't change identity while
750 	 * this lock is held.
751 	 */
752 	hash_locked = 0;
753 	index = PAGE_HASH_FUNC(vp, off);
754 	phm = NULL;
755 top:
756 	PAGE_HASH_SEARCH(index, pp, vp, off);
757 	if (pp != NULL) {
758 		VM_STAT_ADD(page_lookup_cnt[1]);
759 		es = (newpp != NULL) ? 1 : 0;
760 		es |= flags;
761 		if (!hash_locked) {
762 			VM_STAT_ADD(page_lookup_cnt[2]);
763 			if (!page_try_reclaim_lock(pp, se, es)) {
764 				/*
765 				 * On a miss, acquire the phm.  Then
766 				 * next time, page_lock() will be called,
767 				 * causing a wait if the page is busy.
768 				 * just looping with page_trylock() would
769 				 * get pretty boring.
770 				 */
771 				VM_STAT_ADD(page_lookup_cnt[3]);
772 				phm = PAGE_HASH_MUTEX(index);
773 				mutex_enter(phm);
774 				hash_locked = 1;
775 				goto top;
776 			}
777 		} else {
778 			VM_STAT_ADD(page_lookup_cnt[4]);
779 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
780 				VM_STAT_ADD(page_lookup_cnt[5]);
781 				goto top;
782 			}
783 		}
784 
785 		/*
786 		 * Since `pp' is locked it can not change identity now.
787 		 * Reconfirm we locked the correct page.
788 		 *
789 		 * Both the p_vnode and p_offset *must* be cast volatile
790 		 * to force a reload of their values: The PAGE_HASH_SEARCH
791 		 * macro will have stuffed p_vnode and p_offset into
792 		 * registers before calling page_trylock(); another thread,
793 		 * actually holding the hash lock, could have changed the
794 		 * page's identity in memory, but our registers would not
795 		 * be changed, fooling the reconfirmation.  If the hash
796 		 * lock was held during the search, the casting would
797 		 * not be needed.
798 		 */
799 		VM_STAT_ADD(page_lookup_cnt[6]);
800 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
801 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
802 			VM_STAT_ADD(page_lookup_cnt[7]);
803 			if (hash_locked) {
804 				panic("page_lookup_create: lost page %p",
805 				    (void *)pp);
806 				/*NOTREACHED*/
807 			}
808 			page_unlock(pp);
809 			phm = PAGE_HASH_MUTEX(index);
810 			mutex_enter(phm);
811 			hash_locked = 1;
812 			goto top;
813 		}
814 
815 		/*
816 		 * If page_trylock() was called, then pp may still be on
817 		 * the cachelist (can't be on the free list, it would not
818 		 * have been found in the search).  If it is on the
819 		 * cachelist it must be pulled now. To pull the page from
820 		 * the cachelist, it must be exclusively locked.
821 		 *
822 		 * The other big difference between page_trylock() and
823 		 * page_lock(), is that page_lock() will pull the
824 		 * page from whatever free list (the cache list in this
825 		 * case) the page is on.  If page_trylock() was used
826 		 * above, then we have to do the reclaim ourselves.
827 		 */
828 		if ((!hash_locked) && (PP_ISFREE(pp))) {
829 			ASSERT(PP_ISAGED(pp) == 0);
830 			VM_STAT_ADD(page_lookup_cnt[8]);
831 
832 			/*
833 			 * page_relcaim will insure that we
834 			 * have this page exclusively
835 			 */
836 
837 			if (!page_reclaim(pp, NULL)) {
838 				/*
839 				 * Page_reclaim dropped whatever lock
840 				 * we held.
841 				 */
842 				VM_STAT_ADD(page_lookup_cnt[9]);
843 				phm = PAGE_HASH_MUTEX(index);
844 				mutex_enter(phm);
845 				hash_locked = 1;
846 				goto top;
847 			} else if (se == SE_SHARED && newpp == NULL) {
848 				VM_STAT_ADD(page_lookup_cnt[10]);
849 				page_downgrade(pp);
850 			}
851 		}
852 
853 		if (hash_locked) {
854 			mutex_exit(phm);
855 		}
856 
857 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
858 		    PAGE_EXCL(pp) && nrelocp != NULL) {
859 			ASSERT(nrelocp != NULL);
860 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
861 			    NULL);
862 			if (*nrelocp > 0) {
863 				VM_STAT_COND_ADD(*nrelocp == 1,
864 				    page_lookup_cnt[11]);
865 				VM_STAT_COND_ADD(*nrelocp > 1,
866 				    page_lookup_cnt[12]);
867 				pp = newpp;
868 				se = SE_EXCL;
869 			} else {
870 				if (se == SE_SHARED) {
871 					page_downgrade(pp);
872 				}
873 				VM_STAT_ADD(page_lookup_cnt[13]);
874 			}
875 		} else if (newpp != NULL && nrelocp != NULL) {
876 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
877 				page_downgrade(pp);
878 			}
879 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
880 			    page_lookup_cnt[14]);
881 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
882 			    page_lookup_cnt[15]);
883 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
884 			    page_lookup_cnt[16]);
885 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
886 			se = SE_EXCL;
887 		}
888 	} else if (!hash_locked) {
889 		VM_STAT_ADD(page_lookup_cnt[17]);
890 		phm = PAGE_HASH_MUTEX(index);
891 		mutex_enter(phm);
892 		hash_locked = 1;
893 		goto top;
894 	} else if (newpp != NULL) {
895 		/*
896 		 * If we have a preallocated page then
897 		 * insert it now and basically behave like
898 		 * page_create.
899 		 */
900 		VM_STAT_ADD(page_lookup_cnt[18]);
901 		/*
902 		 * Since we hold the page hash mutex and
903 		 * just searched for this page, page_hashin
904 		 * had better not fail.  If it does, that
905 		 * means some thread did not follow the
906 		 * page hash mutex rules.  Panic now and
907 		 * get it over with.  As usual, go down
908 		 * holding all the locks.
909 		 */
910 		ASSERT(MUTEX_HELD(phm));
911 		if (!page_hashin(newpp, vp, off, phm)) {
912 			ASSERT(MUTEX_HELD(phm));
913 			panic("page_lookup_create: hashin failed %p %p %llx %p",
914 			    (void *)newpp, (void *)vp, off, (void *)phm);
915 			/*NOTREACHED*/
916 		}
917 		ASSERT(MUTEX_HELD(phm));
918 		mutex_exit(phm);
919 		phm = NULL;
920 		page_set_props(newpp, P_REF);
921 		page_io_lock(newpp);
922 		pp = newpp;
923 		se = SE_EXCL;
924 	} else {
925 		VM_STAT_ADD(page_lookup_cnt[19]);
926 		mutex_exit(phm);
927 	}
928 
929 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
930 
931 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
932 
933 	return (pp);
934 }
935 
936 /*
937  * Search the hash list for the page representing the
938  * specified [vp, offset] and return it locked.  Skip
939  * free pages and pages that cannot be locked as requested.
940  * Used while attempting to kluster pages.
941  */
942 page_t *
943 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
944 {
945 	page_t		*pp;
946 	kmutex_t	*phm;
947 	ulong_t		index;
948 	uint_t		locked;
949 
950 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
951 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
952 
953 	index = PAGE_HASH_FUNC(vp, off);
954 	PAGE_HASH_SEARCH(index, pp, vp, off);
955 	locked = 0;
956 	if (pp == NULL) {
957 top:
958 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
959 		locked = 1;
960 		phm = PAGE_HASH_MUTEX(index);
961 		mutex_enter(phm);
962 		PAGE_HASH_SEARCH(index, pp, vp, off);
963 	}
964 
965 	if (pp == NULL || PP_ISFREE(pp)) {
966 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
967 		pp = NULL;
968 	} else {
969 		if (!page_trylock(pp, se)) {
970 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
971 			pp = NULL;
972 		} else {
973 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
974 			/*
975 			 * See the comment in page_lookup()
976 			 */
977 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
978 			    ((u_offset_t)(pp->p_offset) != off)) {
979 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
980 				if (locked) {
981 					panic("page_lookup_nowait %p",
982 					    (void *)pp);
983 					/*NOTREACHED*/
984 				}
985 				page_unlock(pp);
986 				goto top;
987 			}
988 			if (PP_ISFREE(pp)) {
989 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
990 				page_unlock(pp);
991 				pp = NULL;
992 			}
993 		}
994 	}
995 	if (locked) {
996 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
997 		mutex_exit(phm);
998 	}
999 
1000 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
1001 
1002 	return (pp);
1003 }
1004 
1005 /*
1006  * Search the hash list for a page with the specified [vp, off]
1007  * that is known to exist and is already locked.  This routine
1008  * is typically used by segment SOFTUNLOCK routines.
1009  */
1010 page_t *
1011 page_find(vnode_t *vp, u_offset_t off)
1012 {
1013 	page_t		*pp;
1014 	kmutex_t	*phm;
1015 	ulong_t		index;
1016 
1017 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1018 	VM_STAT_ADD(page_find_cnt);
1019 
1020 	index = PAGE_HASH_FUNC(vp, off);
1021 	phm = PAGE_HASH_MUTEX(index);
1022 
1023 	mutex_enter(phm);
1024 	PAGE_HASH_SEARCH(index, pp, vp, off);
1025 	mutex_exit(phm);
1026 
1027 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
1028 	return (pp);
1029 }
1030 
1031 /*
1032  * Determine whether a page with the specified [vp, off]
1033  * currently exists in the system.  Obviously this should
1034  * only be considered as a hint since nothing prevents the
1035  * page from disappearing or appearing immediately after
1036  * the return from this routine. Subsequently, we don't
1037  * even bother to lock the list.
1038  */
1039 page_t *
1040 page_exists(vnode_t *vp, u_offset_t off)
1041 {
1042 	page_t	*pp;
1043 	ulong_t		index;
1044 
1045 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1046 	VM_STAT_ADD(page_exists_cnt);
1047 
1048 	index = PAGE_HASH_FUNC(vp, off);
1049 	PAGE_HASH_SEARCH(index, pp, vp, off);
1050 
1051 	return (pp);
1052 }
1053 
1054 /*
1055  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1056  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1057  * with these pages locked SHARED. If necessary reclaim pages from
1058  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1059  *
1060  * If we fail to lock pages still return 1 if pages exist and contiguous.
1061  * But in this case return value is just a hint. ppa array won't be filled.
1062  * Caller should initialize ppa[0] as NULL to distinguish return value.
1063  *
1064  * Returns 0 if pages don't exist or not physically contiguous.
1065  *
1066  * This routine doesn't work for anonymous(swapfs) pages.
1067  */
1068 int
1069 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1070 {
1071 	pgcnt_t pages;
1072 	pfn_t pfn;
1073 	page_t *rootpp;
1074 	pgcnt_t i;
1075 	pgcnt_t j;
1076 	u_offset_t save_off = off;
1077 	ulong_t index;
1078 	kmutex_t *phm;
1079 	page_t *pp;
1080 	uint_t pszc;
1081 	int loopcnt = 0;
1082 
1083 	ASSERT(szc != 0);
1084 	ASSERT(vp != NULL);
1085 	ASSERT(!IS_SWAPFSVP(vp));
1086 	ASSERT(!VN_ISKAS(vp));
1087 
1088 again:
1089 	if (++loopcnt > 3) {
1090 		VM_STAT_ADD(page_exphcontg[0]);
1091 		return (0);
1092 	}
1093 
1094 	index = PAGE_HASH_FUNC(vp, off);
1095 	phm = PAGE_HASH_MUTEX(index);
1096 
1097 	mutex_enter(phm);
1098 	PAGE_HASH_SEARCH(index, pp, vp, off);
1099 	mutex_exit(phm);
1100 
1101 	VM_STAT_ADD(page_exphcontg[1]);
1102 
1103 	if (pp == NULL) {
1104 		VM_STAT_ADD(page_exphcontg[2]);
1105 		return (0);
1106 	}
1107 
1108 	pages = page_get_pagecnt(szc);
1109 	rootpp = pp;
1110 	pfn = rootpp->p_pagenum;
1111 
1112 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1113 		VM_STAT_ADD(page_exphcontg[3]);
1114 		if (!page_trylock(pp, SE_SHARED)) {
1115 			VM_STAT_ADD(page_exphcontg[4]);
1116 			return (1);
1117 		}
1118 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1119 		    pp->p_offset != off) {
1120 			VM_STAT_ADD(page_exphcontg[5]);
1121 			page_unlock(pp);
1122 			off = save_off;
1123 			goto again;
1124 		}
1125 		/*
1126 		 * szc was non zero and vnode and offset matched after we
1127 		 * locked the page it means it can't become free on us.
1128 		 */
1129 		ASSERT(!PP_ISFREE(pp));
1130 		if (!IS_P2ALIGNED(pfn, pages)) {
1131 			page_unlock(pp);
1132 			return (0);
1133 		}
1134 		ppa[0] = pp;
1135 		pp++;
1136 		off += PAGESIZE;
1137 		pfn++;
1138 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1139 			if (!page_trylock(pp, SE_SHARED)) {
1140 				VM_STAT_ADD(page_exphcontg[6]);
1141 				pp--;
1142 				while (i-- > 0) {
1143 					page_unlock(pp);
1144 					pp--;
1145 				}
1146 				ppa[0] = NULL;
1147 				return (1);
1148 			}
1149 			if (pp->p_szc != pszc) {
1150 				VM_STAT_ADD(page_exphcontg[7]);
1151 				page_unlock(pp);
1152 				pp--;
1153 				while (i-- > 0) {
1154 					page_unlock(pp);
1155 					pp--;
1156 				}
1157 				ppa[0] = NULL;
1158 				off = save_off;
1159 				goto again;
1160 			}
1161 			/*
1162 			 * szc the same as for previous already locked pages
1163 			 * with right identity. Since this page had correct
1164 			 * szc after we locked it can't get freed or destroyed
1165 			 * and therefore must have the expected identity.
1166 			 */
1167 			ASSERT(!PP_ISFREE(pp));
1168 			if (pp->p_vnode != vp ||
1169 			    pp->p_offset != off) {
1170 				panic("page_exists_physcontig: "
1171 				    "large page identity doesn't match");
1172 			}
1173 			ppa[i] = pp;
1174 			ASSERT(pp->p_pagenum == pfn);
1175 		}
1176 		VM_STAT_ADD(page_exphcontg[8]);
1177 		ppa[pages] = NULL;
1178 		return (1);
1179 	} else if (pszc >= szc) {
1180 		VM_STAT_ADD(page_exphcontg[9]);
1181 		if (!IS_P2ALIGNED(pfn, pages)) {
1182 			return (0);
1183 		}
1184 		return (1);
1185 	}
1186 
1187 	if (!IS_P2ALIGNED(pfn, pages)) {
1188 		VM_STAT_ADD(page_exphcontg[10]);
1189 		return (0);
1190 	}
1191 
1192 	if (page_numtomemseg_nolock(pfn) !=
1193 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1194 		VM_STAT_ADD(page_exphcontg[11]);
1195 		return (0);
1196 	}
1197 
1198 	/*
1199 	 * We loop up 4 times across pages to promote page size.
1200 	 * We're extra cautious to promote page size atomically with respect
1201 	 * to everybody else.  But we can probably optimize into 1 loop if
1202 	 * this becomes an issue.
1203 	 */
1204 
1205 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1206 		ASSERT(pp->p_pagenum == pfn);
1207 		if (!page_trylock(pp, SE_EXCL)) {
1208 			VM_STAT_ADD(page_exphcontg[12]);
1209 			break;
1210 		}
1211 		if (pp->p_vnode != vp ||
1212 		    pp->p_offset != off) {
1213 			VM_STAT_ADD(page_exphcontg[13]);
1214 			page_unlock(pp);
1215 			break;
1216 		}
1217 		if (pp->p_szc >= szc) {
1218 			ASSERT(i == 0);
1219 			page_unlock(pp);
1220 			off = save_off;
1221 			goto again;
1222 		}
1223 	}
1224 
1225 	if (i != pages) {
1226 		VM_STAT_ADD(page_exphcontg[14]);
1227 		--pp;
1228 		while (i-- > 0) {
1229 			page_unlock(pp);
1230 			--pp;
1231 		}
1232 		return (0);
1233 	}
1234 
1235 	pp = rootpp;
1236 	for (i = 0; i < pages; i++, pp++) {
1237 		if (PP_ISFREE(pp)) {
1238 			VM_STAT_ADD(page_exphcontg[15]);
1239 			ASSERT(!PP_ISAGED(pp));
1240 			ASSERT(pp->p_szc == 0);
1241 			if (!page_reclaim(pp, NULL)) {
1242 				break;
1243 			}
1244 		} else {
1245 			ASSERT(pp->p_szc < szc);
1246 			VM_STAT_ADD(page_exphcontg[16]);
1247 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1248 		}
1249 	}
1250 	if (i < pages) {
1251 		VM_STAT_ADD(page_exphcontg[17]);
1252 		/*
1253 		 * page_reclaim failed because we were out of memory.
1254 		 * drop the rest of the locks and return because this page
1255 		 * must be already reallocated anyway.
1256 		 */
1257 		pp = rootpp;
1258 		for (j = 0; j < pages; j++, pp++) {
1259 			if (j != i) {
1260 				page_unlock(pp);
1261 			}
1262 		}
1263 		return (0);
1264 	}
1265 
1266 	off = save_off;
1267 	pp = rootpp;
1268 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1269 		ASSERT(PAGE_EXCL(pp));
1270 		ASSERT(!PP_ISFREE(pp));
1271 		ASSERT(!hat_page_is_mapped(pp));
1272 		ASSERT(pp->p_vnode == vp);
1273 		ASSERT(pp->p_offset == off);
1274 		pp->p_szc = szc;
1275 	}
1276 	pp = rootpp;
1277 	for (i = 0; i < pages; i++, pp++) {
1278 		if (ppa == NULL) {
1279 			page_unlock(pp);
1280 		} else {
1281 			ppa[i] = pp;
1282 			page_downgrade(ppa[i]);
1283 		}
1284 	}
1285 	if (ppa != NULL) {
1286 		ppa[pages] = NULL;
1287 	}
1288 	VM_STAT_ADD(page_exphcontg[18]);
1289 	ASSERT(vp->v_pages != NULL);
1290 	return (1);
1291 }
1292 
1293 /*
1294  * Determine whether a page with the specified [vp, off]
1295  * currently exists in the system and if so return its
1296  * size code. Obviously this should only be considered as
1297  * a hint since nothing prevents the page from disappearing
1298  * or appearing immediately after the return from this routine.
1299  */
1300 int
1301 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1302 {
1303 	page_t		*pp;
1304 	kmutex_t	*phm;
1305 	ulong_t		index;
1306 	int		rc = 0;
1307 
1308 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1309 	ASSERT(szc != NULL);
1310 	VM_STAT_ADD(page_exists_forreal_cnt);
1311 
1312 	index = PAGE_HASH_FUNC(vp, off);
1313 	phm = PAGE_HASH_MUTEX(index);
1314 
1315 	mutex_enter(phm);
1316 	PAGE_HASH_SEARCH(index, pp, vp, off);
1317 	if (pp != NULL) {
1318 		*szc = pp->p_szc;
1319 		rc = 1;
1320 	}
1321 	mutex_exit(phm);
1322 	return (rc);
1323 }
1324 
1325 /* wakeup threads waiting for pages in page_create_get_something() */
1326 void
1327 wakeup_pcgs(void)
1328 {
1329 	if (!CV_HAS_WAITERS(&pcgs_cv))
1330 		return;
1331 	cv_broadcast(&pcgs_cv);
1332 }
1333 
1334 /*
1335  * 'freemem' is used all over the kernel as an indication of how many
1336  * pages are free (either on the cache list or on the free page list)
1337  * in the system.  In very few places is a really accurate 'freemem'
1338  * needed.  To avoid contention of the lock protecting a the
1339  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1340  * sets freemem to the total of all NCPU buckets.  It is called from
1341  * clock() on each TICK.
1342  */
1343 void
1344 set_freemem()
1345 {
1346 	struct pcf	*p;
1347 	ulong_t		t;
1348 	uint_t		i;
1349 
1350 	t = 0;
1351 	p = pcf;
1352 	for (i = 0;  i < pcf_fanout; i++) {
1353 		t += p->pcf_count;
1354 		p++;
1355 	}
1356 	freemem = t;
1357 
1358 	/*
1359 	 * Don't worry about grabbing mutex.  It's not that
1360 	 * critical if we miss a tick or two.  This is
1361 	 * where we wakeup possible delayers in
1362 	 * page_create_get_something().
1363 	 */
1364 	wakeup_pcgs();
1365 }
1366 
1367 ulong_t
1368 get_freemem()
1369 {
1370 	struct pcf	*p;
1371 	ulong_t		t;
1372 	uint_t		i;
1373 
1374 	t = 0;
1375 	p = pcf;
1376 	for (i = 0; i < pcf_fanout; i++) {
1377 		t += p->pcf_count;
1378 		p++;
1379 	}
1380 	/*
1381 	 * We just calculated it, might as well set it.
1382 	 */
1383 	freemem = t;
1384 	return (t);
1385 }
1386 
1387 /*
1388  * Acquire all of the page cache & free (pcf) locks.
1389  */
1390 void
1391 pcf_acquire_all()
1392 {
1393 	struct pcf	*p;
1394 	uint_t		i;
1395 
1396 	p = pcf;
1397 	for (i = 0; i < pcf_fanout; i++) {
1398 		mutex_enter(&p->pcf_lock);
1399 		p++;
1400 	}
1401 }
1402 
1403 /*
1404  * Release all the pcf_locks.
1405  */
1406 void
1407 pcf_release_all()
1408 {
1409 	struct pcf	*p;
1410 	uint_t		i;
1411 
1412 	p = pcf;
1413 	for (i = 0; i < pcf_fanout; i++) {
1414 		mutex_exit(&p->pcf_lock);
1415 		p++;
1416 	}
1417 }
1418 
1419 /*
1420  * Inform the VM system that we need some pages freed up.
1421  * Calls must be symmetric, e.g.:
1422  *
1423  *	page_needfree(100);
1424  *	wait a bit;
1425  *	page_needfree(-100);
1426  */
1427 void
1428 page_needfree(spgcnt_t npages)
1429 {
1430 	mutex_enter(&new_freemem_lock);
1431 	needfree += npages;
1432 	mutex_exit(&new_freemem_lock);
1433 }
1434 
1435 /*
1436  * Throttle for page_create(): try to prevent freemem from dropping
1437  * below throttlefree.  We can't provide a 100% guarantee because
1438  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1439  * nibble away at the freelist.  However, we can block all PG_WAIT
1440  * allocations until memory becomes available.  The motivation is
1441  * that several things can fall apart when there's no free memory:
1442  *
1443  * (1) If pageout() needs memory to push a page, the system deadlocks.
1444  *
1445  * (2) By (broken) specification, timeout(9F) can neither fail nor
1446  *     block, so it has no choice but to panic the system if it
1447  *     cannot allocate a callout structure.
1448  *
1449  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1450  *     it panics if it cannot allocate a callback structure.
1451  *
1452  * (4) Untold numbers of third-party drivers have not yet been hardened
1453  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1454  *     success and panic the system with a data fault on failure.
1455  *     (The long-term solution to this particular problem is to ship
1456  *     hostile fault-injecting DEBUG kernels with the DDK.)
1457  *
1458  * It is theoretically impossible to guarantee success of non-blocking
1459  * allocations, but in practice, this throttle is very hard to break.
1460  */
1461 static int
1462 page_create_throttle(pgcnt_t npages, int flags)
1463 {
1464 	ulong_t	fm;
1465 	uint_t	i;
1466 	pgcnt_t tf;	/* effective value of throttlefree */
1467 
1468 	/*
1469 	 * Never deny pages when:
1470 	 * - it's a thread that cannot block [NOMEMWAIT()]
1471 	 * - the allocation cannot block and must not fail
1472 	 * - the allocation cannot block and is pageout dispensated
1473 	 */
1474 	if (NOMEMWAIT() ||
1475 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1476 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1477 		return (1);
1478 
1479 	/*
1480 	 * If the allocation can't block, we look favorably upon it
1481 	 * unless we're below pageout_reserve.  In that case we fail
1482 	 * the allocation because we want to make sure there are a few
1483 	 * pages available for pageout.
1484 	 */
1485 	if ((flags & PG_WAIT) == 0)
1486 		return (freemem >= npages + pageout_reserve);
1487 
1488 	/* Calculate the effective throttlefree value */
1489 	tf = throttlefree -
1490 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1491 
1492 	cv_signal(&proc_pageout->p_cv);
1493 
1494 	for (;;) {
1495 		fm = 0;
1496 		pcf_acquire_all();
1497 		mutex_enter(&new_freemem_lock);
1498 		for (i = 0; i < pcf_fanout; i++) {
1499 			fm += pcf[i].pcf_count;
1500 			pcf[i].pcf_wait++;
1501 			mutex_exit(&pcf[i].pcf_lock);
1502 		}
1503 		freemem = fm;
1504 		if (freemem >= npages + tf) {
1505 			mutex_exit(&new_freemem_lock);
1506 			break;
1507 		}
1508 		needfree += npages;
1509 		freemem_wait++;
1510 		cv_wait(&freemem_cv, &new_freemem_lock);
1511 		freemem_wait--;
1512 		needfree -= npages;
1513 		mutex_exit(&new_freemem_lock);
1514 	}
1515 	return (1);
1516 }
1517 
1518 /*
1519  * page_create_wait() is called to either coalesce pages from the
1520  * different pcf buckets or to wait because there simply are not
1521  * enough pages to satisfy the caller's request.
1522  *
1523  * Sadly, this is called from platform/vm/vm_machdep.c
1524  */
1525 int
1526 page_create_wait(pgcnt_t npages, uint_t flags)
1527 {
1528 	pgcnt_t		total;
1529 	uint_t		i;
1530 	struct pcf	*p;
1531 
1532 	/*
1533 	 * Wait until there are enough free pages to satisfy our
1534 	 * entire request.
1535 	 * We set needfree += npages before prodding pageout, to make sure
1536 	 * it does real work when npages > lotsfree > freemem.
1537 	 */
1538 	VM_STAT_ADD(page_create_not_enough);
1539 
1540 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1541 checkagain:
1542 	if ((flags & PG_NORELOC) &&
1543 	    kcage_freemem < kcage_throttlefree + npages)
1544 		(void) kcage_create_throttle(npages, flags);
1545 
1546 	if (freemem < npages + throttlefree)
1547 		if (!page_create_throttle(npages, flags))
1548 			return (0);
1549 
1550 	if (pcf_decrement_bucket(npages) ||
1551 	    pcf_decrement_multiple(&total, npages, 0))
1552 		return (1);
1553 
1554 	/*
1555 	 * All of the pcf locks are held, there are not enough pages
1556 	 * to satisfy the request (npages < total).
1557 	 * Be sure to acquire the new_freemem_lock before dropping
1558 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1559 	 * The order is always pcf_lock then new_freemem_lock.
1560 	 *
1561 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1562 	 *
1563 	 * If the caller does not want to wait, return now.
1564 	 * Else turn the pageout daemon loose to find something
1565 	 * and wait till it does.
1566 	 *
1567 	 */
1568 	freemem = total;
1569 
1570 	if ((flags & PG_WAIT) == 0) {
1571 		pcf_release_all();
1572 
1573 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1574 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1575 		return (0);
1576 	}
1577 
1578 	ASSERT(proc_pageout != NULL);
1579 	cv_signal(&proc_pageout->p_cv);
1580 
1581 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1582 	    "page_create_sleep_start: freemem %ld needfree %ld",
1583 	    freemem, needfree);
1584 
1585 	/*
1586 	 * We are going to wait.
1587 	 * We currently hold all of the pcf_locks,
1588 	 * get the new_freemem_lock (it protects freemem_wait),
1589 	 * before dropping the pcf_locks.
1590 	 */
1591 	mutex_enter(&new_freemem_lock);
1592 
1593 	p = pcf;
1594 	for (i = 0; i < pcf_fanout; i++) {
1595 		p->pcf_wait++;
1596 		mutex_exit(&p->pcf_lock);
1597 		p++;
1598 	}
1599 
1600 	needfree += npages;
1601 	freemem_wait++;
1602 
1603 	cv_wait(&freemem_cv, &new_freemem_lock);
1604 
1605 	freemem_wait--;
1606 	needfree -= npages;
1607 
1608 	mutex_exit(&new_freemem_lock);
1609 
1610 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1611 	    "page_create_sleep_end: freemem %ld needfree %ld",
1612 	    freemem, needfree);
1613 
1614 	VM_STAT_ADD(page_create_not_enough_again);
1615 	goto checkagain;
1616 }
1617 /*
1618  * A routine to do the opposite of page_create_wait().
1619  */
1620 void
1621 page_create_putback(spgcnt_t npages)
1622 {
1623 	struct pcf	*p;
1624 	pgcnt_t		lump;
1625 	uint_t		*which;
1626 
1627 	/*
1628 	 * When a contiguous lump is broken up, we have to
1629 	 * deal with lots of pages (min 64) so lets spread
1630 	 * the wealth around.
1631 	 */
1632 	lump = roundup(npages, pcf_fanout) / pcf_fanout;
1633 	freemem += npages;
1634 
1635 	for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
1636 		which = &p->pcf_count;
1637 
1638 		mutex_enter(&p->pcf_lock);
1639 
1640 		if (p->pcf_block) {
1641 			which = &p->pcf_reserve;
1642 		}
1643 
1644 		if (lump < npages) {
1645 			*which += (uint_t)lump;
1646 			npages -= lump;
1647 		} else {
1648 			*which += (uint_t)npages;
1649 			npages = 0;
1650 		}
1651 
1652 		if (p->pcf_wait) {
1653 			mutex_enter(&new_freemem_lock);
1654 			/*
1655 			 * Check to see if some other thread
1656 			 * is actually waiting.  Another bucket
1657 			 * may have woken it up by now.  If there
1658 			 * are no waiters, then set our pcf_wait
1659 			 * count to zero to avoid coming in here
1660 			 * next time.
1661 			 */
1662 			if (freemem_wait) {
1663 				if (npages > 1) {
1664 					cv_broadcast(&freemem_cv);
1665 				} else {
1666 					cv_signal(&freemem_cv);
1667 				}
1668 				p->pcf_wait--;
1669 			} else {
1670 				p->pcf_wait = 0;
1671 			}
1672 			mutex_exit(&new_freemem_lock);
1673 		}
1674 		mutex_exit(&p->pcf_lock);
1675 	}
1676 	ASSERT(npages == 0);
1677 }
1678 
1679 /*
1680  * A helper routine for page_create_get_something.
1681  * The indenting got to deep down there.
1682  * Unblock the pcf counters.  Any pages freed after
1683  * pcf_block got set are moved to pcf_count and
1684  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1685  */
1686 static void
1687 pcgs_unblock(void)
1688 {
1689 	int		i;
1690 	struct pcf	*p;
1691 
1692 	/* Update freemem while we're here. */
1693 	freemem = 0;
1694 	p = pcf;
1695 	for (i = 0; i < pcf_fanout; i++) {
1696 		mutex_enter(&p->pcf_lock);
1697 		ASSERT(p->pcf_count == 0);
1698 		p->pcf_count = p->pcf_reserve;
1699 		p->pcf_block = 0;
1700 		freemem += p->pcf_count;
1701 		if (p->pcf_wait) {
1702 			mutex_enter(&new_freemem_lock);
1703 			if (freemem_wait) {
1704 				if (p->pcf_reserve > 1) {
1705 					cv_broadcast(&freemem_cv);
1706 					p->pcf_wait = 0;
1707 				} else {
1708 					cv_signal(&freemem_cv);
1709 					p->pcf_wait--;
1710 				}
1711 			} else {
1712 				p->pcf_wait = 0;
1713 			}
1714 			mutex_exit(&new_freemem_lock);
1715 		}
1716 		p->pcf_reserve = 0;
1717 		mutex_exit(&p->pcf_lock);
1718 		p++;
1719 	}
1720 }
1721 
1722 /*
1723  * Called from page_create_va() when both the cache and free lists
1724  * have been checked once.
1725  *
1726  * Either returns a page or panics since the accounting was done
1727  * way before we got here.
1728  *
1729  * We don't come here often, so leave the accounting on permanently.
1730  */
1731 
1732 #define	MAX_PCGS	100
1733 
1734 #ifdef	DEBUG
1735 #define	PCGS_TRIES	100
1736 #else	/* DEBUG */
1737 #define	PCGS_TRIES	10
1738 #endif	/* DEBUG */
1739 
1740 #ifdef	VM_STATS
1741 uint_t	pcgs_counts[PCGS_TRIES];
1742 uint_t	pcgs_too_many;
1743 uint_t	pcgs_entered;
1744 uint_t	pcgs_entered_noreloc;
1745 uint_t	pcgs_locked;
1746 uint_t	pcgs_cagelocked;
1747 #endif	/* VM_STATS */
1748 
1749 static page_t *
1750 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1751     caddr_t vaddr, uint_t flags)
1752 {
1753 	uint_t		count;
1754 	page_t		*pp;
1755 	uint_t		locked, i;
1756 	struct	pcf	*p;
1757 	lgrp_t		*lgrp;
1758 	int		cagelocked = 0;
1759 
1760 	VM_STAT_ADD(pcgs_entered);
1761 
1762 	/*
1763 	 * Tap any reserve freelists: if we fail now, we'll die
1764 	 * since the page(s) we're looking for have already been
1765 	 * accounted for.
1766 	 */
1767 	flags |= PG_PANIC;
1768 
1769 	if ((flags & PG_NORELOC) != 0) {
1770 		VM_STAT_ADD(pcgs_entered_noreloc);
1771 		/*
1772 		 * Requests for free pages from critical threads
1773 		 * such as pageout still won't throttle here, but
1774 		 * we must try again, to give the cageout thread
1775 		 * another chance to catch up. Since we already
1776 		 * accounted for the pages, we had better get them
1777 		 * this time.
1778 		 *
1779 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1780 		 * to serialize access to the freelists. This implements a
1781 		 * turnstile-type synchornization to avoid starvation of
1782 		 * critical requests for PG_NORELOC memory by non-critical
1783 		 * threads: all non-critical threads must acquire a 'ticket'
1784 		 * before passing through, which entails making sure
1785 		 * kcage_freemem won't fall below minfree prior to grabbing
1786 		 * pages from the freelists.
1787 		 */
1788 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1789 			mutex_enter(&pcgs_cagelock);
1790 			cagelocked = 1;
1791 			VM_STAT_ADD(pcgs_cagelocked);
1792 		}
1793 	}
1794 
1795 	/*
1796 	 * Time to get serious.
1797 	 * We failed to get a `correctly colored' page from both the
1798 	 * free and cache lists.
1799 	 * We escalate in stage.
1800 	 *
1801 	 * First try both lists without worring about color.
1802 	 *
1803 	 * Then, grab all page accounting locks (ie. pcf[]) and
1804 	 * steal any pages that they have and set the pcf_block flag to
1805 	 * stop deletions from the lists.  This will help because
1806 	 * a page can get added to the free list while we are looking
1807 	 * at the cache list, then another page could be added to the cache
1808 	 * list allowing the page on the free list to be removed as we
1809 	 * move from looking at the cache list to the free list. This
1810 	 * could happen over and over. We would never find the page
1811 	 * we have accounted for.
1812 	 *
1813 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1814 	 * They are not tracked separately in the pcf bins, so it is
1815 	 * impossible to know when doing pcf accounting if the available
1816 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1817 	 * it is quite easy to end up here even if the global (relocatable)
1818 	 * page pool has plenty of free pages but the noreloc pool is empty.
1819 	 *
1820 	 * When the noreloc pool is empty (or low), additional noreloc pages
1821 	 * are created by converting pages from the global page pool. This
1822 	 * process will stall during pcf accounting if the pcf bins are
1823 	 * already locked. Such is the case when a noreloc allocation is
1824 	 * looping here in page_create_get_something waiting for more noreloc
1825 	 * pages to appear.
1826 	 *
1827 	 * Short of adding a new field to the pcf bins to accurately track
1828 	 * the number of free noreloc pages, we instead do not grab the
1829 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1830 	 * allocating a noreloc page. This allows noreloc allocations to
1831 	 * loop without blocking global page pool allocations.
1832 	 *
1833 	 * NOTE: the behaviour of page_create_get_something has not changed
1834 	 * for the case of global page pool allocations.
1835 	 */
1836 
1837 	flags &= ~PG_MATCH_COLOR;
1838 	locked = 0;
1839 #if defined(__i386) || defined(__amd64)
1840 	flags = page_create_update_flags_x86(flags);
1841 #endif
1842 
1843 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1844 
1845 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1846 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1847 		    flags, lgrp);
1848 		if (pp == NULL) {
1849 			pp = page_get_cachelist(vp, off, seg, vaddr,
1850 			    flags, lgrp);
1851 		}
1852 		if (pp == NULL) {
1853 			/*
1854 			 * Serialize.  Don't fight with other pcgs().
1855 			 */
1856 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1857 				mutex_enter(&pcgs_lock);
1858 				VM_STAT_ADD(pcgs_locked);
1859 				locked = 1;
1860 				p = pcf;
1861 				for (i = 0; i < pcf_fanout; i++) {
1862 					mutex_enter(&p->pcf_lock);
1863 					ASSERT(p->pcf_block == 0);
1864 					p->pcf_block = 1;
1865 					p->pcf_reserve = p->pcf_count;
1866 					p->pcf_count = 0;
1867 					mutex_exit(&p->pcf_lock);
1868 					p++;
1869 				}
1870 				freemem = 0;
1871 			}
1872 
1873 			if (count) {
1874 				/*
1875 				 * Since page_free() puts pages on
1876 				 * a list then accounts for it, we
1877 				 * just have to wait for page_free()
1878 				 * to unlock any page it was working
1879 				 * with. The page_lock()-page_reclaim()
1880 				 * path falls in the same boat.
1881 				 *
1882 				 * We don't need to check on the
1883 				 * PG_WAIT flag, we have already
1884 				 * accounted for the page we are
1885 				 * looking for in page_create_va().
1886 				 *
1887 				 * We just wait a moment to let any
1888 				 * locked pages on the lists free up,
1889 				 * then continue around and try again.
1890 				 *
1891 				 * Will be awakened by set_freemem().
1892 				 */
1893 				mutex_enter(&pcgs_wait_lock);
1894 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1895 				mutex_exit(&pcgs_wait_lock);
1896 			}
1897 		} else {
1898 #ifdef VM_STATS
1899 			if (count >= PCGS_TRIES) {
1900 				VM_STAT_ADD(pcgs_too_many);
1901 			} else {
1902 				VM_STAT_ADD(pcgs_counts[count]);
1903 			}
1904 #endif
1905 			if (locked) {
1906 				pcgs_unblock();
1907 				mutex_exit(&pcgs_lock);
1908 			}
1909 			if (cagelocked)
1910 				mutex_exit(&pcgs_cagelock);
1911 			return (pp);
1912 		}
1913 	}
1914 	/*
1915 	 * we go down holding the pcf locks.
1916 	 */
1917 	panic("no %spage found %d",
1918 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1919 	/*NOTREACHED*/
1920 }
1921 
1922 /*
1923  * Create enough pages for "bytes" worth of data starting at
1924  * "off" in "vp".
1925  *
1926  *	Where flag must be one of:
1927  *
1928  *		PG_EXCL:	Exclusive create (fail if any page already
1929  *				exists in the page cache) which does not
1930  *				wait for memory to become available.
1931  *
1932  *		PG_WAIT:	Non-exclusive create which can wait for
1933  *				memory to become available.
1934  *
1935  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1936  *				(Not Supported)
1937  *
1938  * A doubly linked list of pages is returned to the caller.  Each page
1939  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1940  * lock.
1941  *
1942  * Unable to change the parameters to page_create() in a minor release,
1943  * we renamed page_create() to page_create_va(), changed all known calls
1944  * from page_create() to page_create_va(), and created this wrapper.
1945  *
1946  * Upon a major release, we should break compatibility by deleting this
1947  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1948  *
1949  * NOTE: There is a copy of this interface as page_create_io() in
1950  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1951  *	 there.
1952  */
1953 page_t *
1954 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1955 {
1956 	caddr_t random_vaddr;
1957 	struct seg kseg;
1958 
1959 #ifdef DEBUG
1960 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1961 	    (void *)caller());
1962 #endif
1963 
1964 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1965 	    (uintptr_t)(off >> PAGESHIFT));
1966 	kseg.s_as = &kas;
1967 
1968 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1969 }
1970 
1971 #ifdef DEBUG
1972 uint32_t pg_alloc_pgs_mtbf = 0;
1973 #endif
1974 
1975 /*
1976  * Used for large page support. It will attempt to allocate
1977  * a large page(s) off the freelist.
1978  *
1979  * Returns non zero on failure.
1980  */
1981 int
1982 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1983     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
1984 {
1985 	pgcnt_t		npgs, curnpgs, totpgs;
1986 	size_t		pgsz;
1987 	page_t		*pplist = NULL, *pp;
1988 	int		err = 0;
1989 	lgrp_t		*lgrp;
1990 
1991 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1992 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
1993 
1994 	/*
1995 	 * Check if system heavily prefers local large pages over remote
1996 	 * on systems with multiple lgroups.
1997 	 */
1998 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
1999 		pgflags = PG_LOCAL;
2000 	}
2001 
2002 	VM_STAT_ADD(alloc_pages[0]);
2003 
2004 #ifdef DEBUG
2005 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2006 		return (ENOMEM);
2007 	}
2008 #endif
2009 
2010 	/*
2011 	 * One must be NULL but not both.
2012 	 * And one must be non NULL but not both.
2013 	 */
2014 	ASSERT(basepp != NULL || ppa != NULL);
2015 	ASSERT(basepp == NULL || ppa == NULL);
2016 
2017 #if defined(__i386) || defined(__amd64)
2018 	while (page_chk_freelist(szc) == 0) {
2019 		VM_STAT_ADD(alloc_pages[8]);
2020 		if (anypgsz == 0 || --szc == 0)
2021 			return (ENOMEM);
2022 	}
2023 #endif
2024 
2025 	pgsz = page_get_pagesize(szc);
2026 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2027 
2028 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2029 
2030 	(void) page_create_wait(npgs, PG_WAIT);
2031 
2032 	while (npgs && szc) {
2033 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2034 		if (pgflags == PG_LOCAL) {
2035 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2036 			    pgflags, lgrp);
2037 			if (pp == NULL) {
2038 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2039 				    0, lgrp);
2040 			}
2041 		} else {
2042 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2043 			    0, lgrp);
2044 		}
2045 		if (pp != NULL) {
2046 			VM_STAT_ADD(alloc_pages[1]);
2047 			page_list_concat(&pplist, &pp);
2048 			ASSERT(npgs >= curnpgs);
2049 			npgs -= curnpgs;
2050 		} else if (anypgsz) {
2051 			VM_STAT_ADD(alloc_pages[2]);
2052 			szc--;
2053 			pgsz = page_get_pagesize(szc);
2054 			curnpgs = pgsz >> PAGESHIFT;
2055 		} else {
2056 			VM_STAT_ADD(alloc_pages[3]);
2057 			ASSERT(npgs == totpgs);
2058 			page_create_putback(npgs);
2059 			return (ENOMEM);
2060 		}
2061 	}
2062 	if (szc == 0) {
2063 		VM_STAT_ADD(alloc_pages[4]);
2064 		ASSERT(npgs != 0);
2065 		page_create_putback(npgs);
2066 		err = ENOMEM;
2067 	} else if (basepp != NULL) {
2068 		ASSERT(npgs == 0);
2069 		ASSERT(ppa == NULL);
2070 		*basepp = pplist;
2071 	}
2072 
2073 	npgs = totpgs - npgs;
2074 	pp = pplist;
2075 
2076 	/*
2077 	 * Clear the free and age bits. Also if we were passed in a ppa then
2078 	 * fill it in with all the constituent pages from the large page. But
2079 	 * if we failed to allocate all the pages just free what we got.
2080 	 */
2081 	while (npgs != 0) {
2082 		ASSERT(PP_ISFREE(pp));
2083 		ASSERT(PP_ISAGED(pp));
2084 		if (ppa != NULL || err != 0) {
2085 			if (err == 0) {
2086 				VM_STAT_ADD(alloc_pages[5]);
2087 				PP_CLRFREE(pp);
2088 				PP_CLRAGED(pp);
2089 				page_sub(&pplist, pp);
2090 				*ppa++ = pp;
2091 				npgs--;
2092 			} else {
2093 				VM_STAT_ADD(alloc_pages[6]);
2094 				ASSERT(pp->p_szc != 0);
2095 				curnpgs = page_get_pagecnt(pp->p_szc);
2096 				page_list_break(&pp, &pplist, curnpgs);
2097 				page_list_add_pages(pp, 0);
2098 				page_create_putback(curnpgs);
2099 				ASSERT(npgs >= curnpgs);
2100 				npgs -= curnpgs;
2101 			}
2102 			pp = pplist;
2103 		} else {
2104 			VM_STAT_ADD(alloc_pages[7]);
2105 			PP_CLRFREE(pp);
2106 			PP_CLRAGED(pp);
2107 			pp = pp->p_next;
2108 			npgs--;
2109 		}
2110 	}
2111 	return (err);
2112 }
2113 
2114 /*
2115  * Get a single large page off of the freelists, and set it up for use.
2116  * Number of bytes requested must be a supported page size.
2117  *
2118  * Note that this call may fail even if there is sufficient
2119  * memory available or PG_WAIT is set, so the caller must
2120  * be willing to fallback on page_create_va(), block and retry,
2121  * or fail the requester.
2122  */
2123 page_t *
2124 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2125     struct seg *seg, caddr_t vaddr, void *arg)
2126 {
2127 	pgcnt_t		npages;
2128 	page_t		*pp;
2129 	page_t		*rootpp;
2130 	lgrp_t		*lgrp;
2131 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2132 
2133 	ASSERT(vp != NULL);
2134 
2135 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2136 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2137 	/* but no others */
2138 
2139 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2140 
2141 	npages = btop(bytes);
2142 
2143 	if (!kcage_on || panicstr) {
2144 		/*
2145 		 * Cage is OFF, or we are single threaded in
2146 		 * panic, so make everything a RELOC request.
2147 		 */
2148 		flags &= ~PG_NORELOC;
2149 	}
2150 
2151 	/*
2152 	 * Make sure there's adequate physical memory available.
2153 	 * Note: PG_WAIT is ignored here.
2154 	 */
2155 	if (freemem <= throttlefree + npages) {
2156 		VM_STAT_ADD(page_create_large_cnt[1]);
2157 		return (NULL);
2158 	}
2159 
2160 	/*
2161 	 * If cage is on, dampen draw from cage when available
2162 	 * cage space is low.
2163 	 */
2164 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2165 	    kcage_freemem < kcage_throttlefree + npages) {
2166 
2167 		/*
2168 		 * The cage is on, the caller wants PG_NORELOC
2169 		 * pages and available cage memory is very low.
2170 		 * Call kcage_create_throttle() to attempt to
2171 		 * control demand on the cage.
2172 		 */
2173 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2174 			VM_STAT_ADD(page_create_large_cnt[2]);
2175 			return (NULL);
2176 		}
2177 	}
2178 
2179 	if (!pcf_decrement_bucket(npages) &&
2180 	    !pcf_decrement_multiple(NULL, npages, 1)) {
2181 		VM_STAT_ADD(page_create_large_cnt[4]);
2182 		return (NULL);
2183 	}
2184 
2185 	/*
2186 	 * This is where this function behaves fundamentally differently
2187 	 * than page_create_va(); since we're intending to map the page
2188 	 * with a single TTE, we have to get it as a physically contiguous
2189 	 * hardware pagesize chunk.  If we can't, we fail.
2190 	 */
2191 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2192 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2193 		lgrp = lgrp_table[*lgrpid];
2194 	else
2195 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2196 
2197 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2198 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2199 		page_create_putback(npages);
2200 		VM_STAT_ADD(page_create_large_cnt[5]);
2201 		return (NULL);
2202 	}
2203 
2204 	/*
2205 	 * if we got the page with the wrong mtype give it back this is a
2206 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2207 	 * inside "if" and the workaround becomes just a nop
2208 	 */
2209 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2210 		page_list_add_pages(rootpp, 0);
2211 		page_create_putback(npages);
2212 		VM_STAT_ADD(page_create_large_cnt[6]);
2213 		return (NULL);
2214 	}
2215 
2216 	/*
2217 	 * If satisfying this request has left us with too little
2218 	 * memory, start the wheels turning to get some back.  The
2219 	 * first clause of the test prevents waking up the pageout
2220 	 * daemon in situations where it would decide that there's
2221 	 * nothing to do.
2222 	 */
2223 	if (nscan < desscan && freemem < minfree) {
2224 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2225 		    "pageout_cv_signal:freemem %ld", freemem);
2226 		cv_signal(&proc_pageout->p_cv);
2227 	}
2228 
2229 	pp = rootpp;
2230 	while (npages--) {
2231 		ASSERT(PAGE_EXCL(pp));
2232 		ASSERT(pp->p_vnode == NULL);
2233 		ASSERT(!hat_page_is_mapped(pp));
2234 		PP_CLRFREE(pp);
2235 		PP_CLRAGED(pp);
2236 		if (!page_hashin(pp, vp, off, NULL))
2237 			panic("page_create_large: hashin failed: page %p",
2238 			    (void *)pp);
2239 		page_io_lock(pp);
2240 		off += PAGESIZE;
2241 		pp = pp->p_next;
2242 	}
2243 
2244 	VM_STAT_ADD(page_create_large_cnt[0]);
2245 	return (rootpp);
2246 }
2247 
2248 page_t *
2249 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2250     struct seg *seg, caddr_t vaddr)
2251 {
2252 	page_t		*plist = NULL;
2253 	pgcnt_t		npages;
2254 	pgcnt_t		found_on_free = 0;
2255 	pgcnt_t		pages_req;
2256 	page_t		*npp = NULL;
2257 	struct pcf	*p;
2258 	lgrp_t		*lgrp;
2259 
2260 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2261 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2262 	    vp, off, bytes, flags);
2263 
2264 	ASSERT(bytes != 0 && vp != NULL);
2265 
2266 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2267 		panic("page_create: invalid flags");
2268 		/*NOTREACHED*/
2269 	}
2270 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2271 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2272 	    /* but no others */
2273 
2274 	pages_req = npages = btopr(bytes);
2275 	/*
2276 	 * Try to see whether request is too large to *ever* be
2277 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2278 	 * decide to limit maximum size requests to max_page_get.
2279 	 */
2280 	if (npages >= max_page_get) {
2281 		if ((flags & PG_WAIT) == 0) {
2282 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2283 			    "page_create_toobig:vp %p off %llx npages "
2284 			    "%lu max_page_get %lu",
2285 			    vp, off, npages, max_page_get);
2286 			return (NULL);
2287 		} else {
2288 			cmn_err(CE_WARN,
2289 			    "Request for too much kernel memory "
2290 			    "(%lu bytes), will hang forever", bytes);
2291 			for (;;)
2292 				delay(1000000000);
2293 		}
2294 	}
2295 
2296 	if (!kcage_on || panicstr) {
2297 		/*
2298 		 * Cage is OFF, or we are single threaded in
2299 		 * panic, so make everything a RELOC request.
2300 		 */
2301 		flags &= ~PG_NORELOC;
2302 	}
2303 
2304 	if (freemem <= throttlefree + npages)
2305 		if (!page_create_throttle(npages, flags))
2306 			return (NULL);
2307 
2308 	/*
2309 	 * If cage is on, dampen draw from cage when available
2310 	 * cage space is low.
2311 	 */
2312 	if ((flags & PG_NORELOC) &&
2313 	    kcage_freemem < kcage_throttlefree + npages) {
2314 
2315 		/*
2316 		 * The cage is on, the caller wants PG_NORELOC
2317 		 * pages and available cage memory is very low.
2318 		 * Call kcage_create_throttle() to attempt to
2319 		 * control demand on the cage.
2320 		 */
2321 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2322 			return (NULL);
2323 	}
2324 
2325 	VM_STAT_ADD(page_create_cnt[0]);
2326 
2327 	if (!pcf_decrement_bucket(npages)) {
2328 		/*
2329 		 * Have to look harder.  If npages is greater than
2330 		 * one, then we might have to coalesce the counters.
2331 		 *
2332 		 * Go wait.  We come back having accounted
2333 		 * for the memory.
2334 		 */
2335 		VM_STAT_ADD(page_create_cnt[1]);
2336 		if (!page_create_wait(npages, flags)) {
2337 			VM_STAT_ADD(page_create_cnt[2]);
2338 			return (NULL);
2339 		}
2340 	}
2341 
2342 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2343 	    "page_create_success:vp %p off %llx", vp, off);
2344 
2345 	/*
2346 	 * If satisfying this request has left us with too little
2347 	 * memory, start the wheels turning to get some back.  The
2348 	 * first clause of the test prevents waking up the pageout
2349 	 * daemon in situations where it would decide that there's
2350 	 * nothing to do.
2351 	 */
2352 	if (nscan < desscan && freemem < minfree) {
2353 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2354 		    "pageout_cv_signal:freemem %ld", freemem);
2355 		cv_signal(&proc_pageout->p_cv);
2356 	}
2357 
2358 	/*
2359 	 * Loop around collecting the requested number of pages.
2360 	 * Most of the time, we have to `create' a new page. With
2361 	 * this in mind, pull the page off the free list before
2362 	 * getting the hash lock.  This will minimize the hash
2363 	 * lock hold time, nesting, and the like.  If it turns
2364 	 * out we don't need the page, we put it back at the end.
2365 	 */
2366 	while (npages--) {
2367 		page_t		*pp;
2368 		kmutex_t	*phm = NULL;
2369 		ulong_t		index;
2370 
2371 		index = PAGE_HASH_FUNC(vp, off);
2372 top:
2373 		ASSERT(phm == NULL);
2374 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2375 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2376 
2377 		if (npp == NULL) {
2378 			/*
2379 			 * Try to get a page from the freelist (ie,
2380 			 * a page with no [vp, off] tag).  If that
2381 			 * fails, use the cachelist.
2382 			 *
2383 			 * During the first attempt at both the free
2384 			 * and cache lists we try for the correct color.
2385 			 */
2386 			/*
2387 			 * XXXX-how do we deal with virtual indexed
2388 			 * caches and and colors?
2389 			 */
2390 			VM_STAT_ADD(page_create_cnt[4]);
2391 			/*
2392 			 * Get lgroup to allocate next page of shared memory
2393 			 * from and use it to specify where to allocate
2394 			 * the physical memory
2395 			 */
2396 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2397 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2398 			    flags | PG_MATCH_COLOR, lgrp);
2399 			if (npp == NULL) {
2400 				npp = page_get_cachelist(vp, off, seg,
2401 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2402 				if (npp == NULL) {
2403 					npp = page_create_get_something(vp,
2404 					    off, seg, vaddr,
2405 					    flags & ~PG_MATCH_COLOR);
2406 				}
2407 
2408 				if (PP_ISAGED(npp) == 0) {
2409 					/*
2410 					 * Since this page came from the
2411 					 * cachelist, we must destroy the
2412 					 * old vnode association.
2413 					 */
2414 					page_hashout(npp, NULL);
2415 				}
2416 			}
2417 		}
2418 
2419 		/*
2420 		 * We own this page!
2421 		 */
2422 		ASSERT(PAGE_EXCL(npp));
2423 		ASSERT(npp->p_vnode == NULL);
2424 		ASSERT(!hat_page_is_mapped(npp));
2425 		PP_CLRFREE(npp);
2426 		PP_CLRAGED(npp);
2427 
2428 		/*
2429 		 * Here we have a page in our hot little mits and are
2430 		 * just waiting to stuff it on the appropriate lists.
2431 		 * Get the mutex and check to see if it really does
2432 		 * not exist.
2433 		 */
2434 		phm = PAGE_HASH_MUTEX(index);
2435 		mutex_enter(phm);
2436 		PAGE_HASH_SEARCH(index, pp, vp, off);
2437 		if (pp == NULL) {
2438 			VM_STAT_ADD(page_create_new);
2439 			pp = npp;
2440 			npp = NULL;
2441 			if (!page_hashin(pp, vp, off, phm)) {
2442 				/*
2443 				 * Since we hold the page hash mutex and
2444 				 * just searched for this page, page_hashin
2445 				 * had better not fail.  If it does, that
2446 				 * means somethread did not follow the
2447 				 * page hash mutex rules.  Panic now and
2448 				 * get it over with.  As usual, go down
2449 				 * holding all the locks.
2450 				 */
2451 				ASSERT(MUTEX_HELD(phm));
2452 				panic("page_create: "
2453 				    "hashin failed %p %p %llx %p",
2454 				    (void *)pp, (void *)vp, off, (void *)phm);
2455 				/*NOTREACHED*/
2456 			}
2457 			ASSERT(MUTEX_HELD(phm));
2458 			mutex_exit(phm);
2459 			phm = NULL;
2460 
2461 			/*
2462 			 * Hat layer locking need not be done to set
2463 			 * the following bits since the page is not hashed
2464 			 * and was on the free list (i.e., had no mappings).
2465 			 *
2466 			 * Set the reference bit to protect
2467 			 * against immediate pageout
2468 			 *
2469 			 * XXXmh modify freelist code to set reference
2470 			 * bit so we don't have to do it here.
2471 			 */
2472 			page_set_props(pp, P_REF);
2473 			found_on_free++;
2474 		} else {
2475 			VM_STAT_ADD(page_create_exists);
2476 			if (flags & PG_EXCL) {
2477 				/*
2478 				 * Found an existing page, and the caller
2479 				 * wanted all new pages.  Undo all of the work
2480 				 * we have done.
2481 				 */
2482 				mutex_exit(phm);
2483 				phm = NULL;
2484 				while (plist != NULL) {
2485 					pp = plist;
2486 					page_sub(&plist, pp);
2487 					page_io_unlock(pp);
2488 					/* large pages should not end up here */
2489 					ASSERT(pp->p_szc == 0);
2490 					/*LINTED: constant in conditional ctx*/
2491 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2492 				}
2493 				VM_STAT_ADD(page_create_found_one);
2494 				goto fail;
2495 			}
2496 			ASSERT(flags & PG_WAIT);
2497 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2498 				/*
2499 				 * Start all over again if we blocked trying
2500 				 * to lock the page.
2501 				 */
2502 				mutex_exit(phm);
2503 				VM_STAT_ADD(page_create_page_lock_failed);
2504 				phm = NULL;
2505 				goto top;
2506 			}
2507 			mutex_exit(phm);
2508 			phm = NULL;
2509 
2510 			if (PP_ISFREE(pp)) {
2511 				ASSERT(PP_ISAGED(pp) == 0);
2512 				VM_STAT_ADD(pagecnt.pc_get_cache);
2513 				page_list_sub(pp, PG_CACHE_LIST);
2514 				PP_CLRFREE(pp);
2515 				found_on_free++;
2516 			}
2517 		}
2518 
2519 		/*
2520 		 * Got a page!  It is locked.  Acquire the i/o
2521 		 * lock since we are going to use the p_next and
2522 		 * p_prev fields to link the requested pages together.
2523 		 */
2524 		page_io_lock(pp);
2525 		page_add(&plist, pp);
2526 		plist = plist->p_next;
2527 		off += PAGESIZE;
2528 		vaddr += PAGESIZE;
2529 	}
2530 
2531 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2532 fail:
2533 	if (npp != NULL) {
2534 		/*
2535 		 * Did not need this page after all.
2536 		 * Put it back on the free list.
2537 		 */
2538 		VM_STAT_ADD(page_create_putbacks);
2539 		PP_SETFREE(npp);
2540 		PP_SETAGED(npp);
2541 		npp->p_offset = (u_offset_t)-1;
2542 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2543 		page_unlock(npp);
2544 
2545 	}
2546 
2547 	ASSERT(pages_req >= found_on_free);
2548 
2549 	{
2550 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2551 
2552 		if (overshoot) {
2553 			VM_STAT_ADD(page_create_overshoot);
2554 			p = &pcf[PCF_INDEX()];
2555 			mutex_enter(&p->pcf_lock);
2556 			if (p->pcf_block) {
2557 				p->pcf_reserve += overshoot;
2558 			} else {
2559 				p->pcf_count += overshoot;
2560 				if (p->pcf_wait) {
2561 					mutex_enter(&new_freemem_lock);
2562 					if (freemem_wait) {
2563 						cv_signal(&freemem_cv);
2564 						p->pcf_wait--;
2565 					} else {
2566 						p->pcf_wait = 0;
2567 					}
2568 					mutex_exit(&new_freemem_lock);
2569 				}
2570 			}
2571 			mutex_exit(&p->pcf_lock);
2572 			/* freemem is approximate, so this test OK */
2573 			if (!p->pcf_block)
2574 				freemem += overshoot;
2575 		}
2576 	}
2577 
2578 	return (plist);
2579 }
2580 
2581 /*
2582  * One or more constituent pages of this large page has been marked
2583  * toxic. Simply demote the large page to PAGESIZE pages and let
2584  * page_free() handle it. This routine should only be called by
2585  * large page free routines (page_free_pages() and page_destroy_pages().
2586  * All pages are locked SE_EXCL and have already been marked free.
2587  */
2588 static void
2589 page_free_toxic_pages(page_t *rootpp)
2590 {
2591 	page_t	*tpp;
2592 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2593 	uint_t	szc = rootpp->p_szc;
2594 
2595 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2596 		ASSERT(tpp->p_szc == szc);
2597 		ASSERT((PAGE_EXCL(tpp) &&
2598 		    !page_iolock_assert(tpp)) || panicstr);
2599 		tpp->p_szc = 0;
2600 	}
2601 
2602 	while (rootpp != NULL) {
2603 		tpp = rootpp;
2604 		page_sub(&rootpp, tpp);
2605 		ASSERT(PP_ISFREE(tpp));
2606 		PP_CLRFREE(tpp);
2607 		page_free(tpp, 1);
2608 	}
2609 }
2610 
2611 /*
2612  * Put page on the "free" list.
2613  * The free list is really two lists maintained by
2614  * the PSM of whatever machine we happen to be on.
2615  */
2616 void
2617 page_free(page_t *pp, int dontneed)
2618 {
2619 	struct pcf	*p;
2620 	uint_t		pcf_index;
2621 
2622 	ASSERT((PAGE_EXCL(pp) &&
2623 	    !page_iolock_assert(pp)) || panicstr);
2624 
2625 	if (PP_ISFREE(pp)) {
2626 		panic("page_free: page %p is free", (void *)pp);
2627 	}
2628 
2629 	if (pp->p_szc != 0) {
2630 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2631 		    PP_ISKAS(pp)) {
2632 			panic("page_free: anon or kernel "
2633 			    "or no vnode large page %p", (void *)pp);
2634 		}
2635 		page_demote_vp_pages(pp);
2636 		ASSERT(pp->p_szc == 0);
2637 	}
2638 
2639 	/*
2640 	 * The page_struct_lock need not be acquired to examine these
2641 	 * fields since the page has an "exclusive" lock.
2642 	 */
2643 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2644 	    pp->p_slckcnt != 0) {
2645 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2646 		    "slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
2647 		    pp->p_cowcnt, pp->p_slckcnt);
2648 		/*NOTREACHED*/
2649 	}
2650 
2651 	ASSERT(!hat_page_getshare(pp));
2652 
2653 	PP_SETFREE(pp);
2654 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2655 	    !hat_ismod(pp));
2656 	page_clr_all_props(pp, 0);
2657 	ASSERT(!hat_page_getshare(pp));
2658 
2659 	/*
2660 	 * Now we add the page to the head of the free list.
2661 	 * But if this page is associated with a paged vnode
2662 	 * then we adjust the head forward so that the page is
2663 	 * effectively at the end of the list.
2664 	 */
2665 	if (pp->p_vnode == NULL) {
2666 		/*
2667 		 * Page has no identity, put it on the free list.
2668 		 */
2669 		PP_SETAGED(pp);
2670 		pp->p_offset = (u_offset_t)-1;
2671 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2672 		VM_STAT_ADD(pagecnt.pc_free_free);
2673 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2674 		    "page_free_free:pp %p", pp);
2675 	} else {
2676 		PP_CLRAGED(pp);
2677 
2678 		if (!dontneed || nopageage) {
2679 			/* move it to the tail of the list */
2680 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2681 
2682 			VM_STAT_ADD(pagecnt.pc_free_cache);
2683 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2684 			    "page_free_cache_tail:pp %p", pp);
2685 		} else {
2686 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2687 
2688 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2689 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2690 			    "page_free_cache_head:pp %p", pp);
2691 		}
2692 	}
2693 	page_unlock(pp);
2694 
2695 	/*
2696 	 * Now do the `freemem' accounting.
2697 	 */
2698 	pcf_index = PCF_INDEX();
2699 	p = &pcf[pcf_index];
2700 
2701 	mutex_enter(&p->pcf_lock);
2702 	if (p->pcf_block) {
2703 		p->pcf_reserve += 1;
2704 	} else {
2705 		p->pcf_count += 1;
2706 		if (p->pcf_wait) {
2707 			mutex_enter(&new_freemem_lock);
2708 			/*
2709 			 * Check to see if some other thread
2710 			 * is actually waiting.  Another bucket
2711 			 * may have woken it up by now.  If there
2712 			 * are no waiters, then set our pcf_wait
2713 			 * count to zero to avoid coming in here
2714 			 * next time.  Also, since only one page
2715 			 * was put on the free list, just wake
2716 			 * up one waiter.
2717 			 */
2718 			if (freemem_wait) {
2719 				cv_signal(&freemem_cv);
2720 				p->pcf_wait--;
2721 			} else {
2722 				p->pcf_wait = 0;
2723 			}
2724 			mutex_exit(&new_freemem_lock);
2725 		}
2726 	}
2727 	mutex_exit(&p->pcf_lock);
2728 
2729 	/* freemem is approximate, so this test OK */
2730 	if (!p->pcf_block)
2731 		freemem += 1;
2732 }
2733 
2734 /*
2735  * Put page on the "free" list during intial startup.
2736  * This happens during initial single threaded execution.
2737  */
2738 void
2739 page_free_at_startup(page_t *pp)
2740 {
2741 	struct pcf	*p;
2742 	uint_t		pcf_index;
2743 
2744 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2745 	VM_STAT_ADD(pagecnt.pc_free_free);
2746 
2747 	/*
2748 	 * Now do the `freemem' accounting.
2749 	 */
2750 	pcf_index = PCF_INDEX();
2751 	p = &pcf[pcf_index];
2752 
2753 	ASSERT(p->pcf_block == 0);
2754 	ASSERT(p->pcf_wait == 0);
2755 	p->pcf_count += 1;
2756 
2757 	/* freemem is approximate, so this is OK */
2758 	freemem += 1;
2759 }
2760 
2761 void
2762 page_free_pages(page_t *pp)
2763 {
2764 	page_t	*tpp, *rootpp = NULL;
2765 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2766 	pgcnt_t	i;
2767 	uint_t	szc = pp->p_szc;
2768 
2769 	VM_STAT_ADD(pagecnt.pc_free_pages);
2770 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2771 	    "page_free_free:pp %p", pp);
2772 
2773 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2774 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2775 		panic("page_free_pages: not root page %p", (void *)pp);
2776 		/*NOTREACHED*/
2777 	}
2778 
2779 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2780 		ASSERT((PAGE_EXCL(tpp) &&
2781 		    !page_iolock_assert(tpp)) || panicstr);
2782 		if (PP_ISFREE(tpp)) {
2783 			panic("page_free_pages: page %p is free", (void *)tpp);
2784 			/*NOTREACHED*/
2785 		}
2786 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2787 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2788 			panic("page_free_pages %p", (void *)tpp);
2789 			/*NOTREACHED*/
2790 		}
2791 
2792 		ASSERT(!hat_page_getshare(tpp));
2793 		ASSERT(tpp->p_vnode == NULL);
2794 		ASSERT(tpp->p_szc == szc);
2795 
2796 		PP_SETFREE(tpp);
2797 		page_clr_all_props(tpp, 0);
2798 		PP_SETAGED(tpp);
2799 		tpp->p_offset = (u_offset_t)-1;
2800 		ASSERT(tpp->p_next == tpp);
2801 		ASSERT(tpp->p_prev == tpp);
2802 		page_list_concat(&rootpp, &tpp);
2803 	}
2804 	ASSERT(rootpp == pp);
2805 
2806 	page_list_add_pages(rootpp, 0);
2807 	page_create_putback(pgcnt);
2808 }
2809 
2810 int free_pages = 1;
2811 
2812 /*
2813  * This routine attempts to return pages to the cachelist via page_release().
2814  * It does not *have* to be successful in all cases, since the pageout scanner
2815  * will catch any pages it misses.  It does need to be fast and not introduce
2816  * too much overhead.
2817  *
2818  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2819  * don't lock and retry.  This is ok, since the page scanner will eventually
2820  * find any page we miss in free_vp_pages().
2821  */
2822 void
2823 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2824 {
2825 	page_t *pp;
2826 	u_offset_t eoff;
2827 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2828 
2829 	eoff = off + len;
2830 
2831 	if (free_pages == 0)
2832 		return;
2833 	if (swap_in_range(vp, off, len))
2834 		return;
2835 
2836 	for (; off < eoff; off += PAGESIZE) {
2837 
2838 		/*
2839 		 * find the page using a fast, but inexact search. It'll be OK
2840 		 * if a few pages slip through the cracks here.
2841 		 */
2842 		pp = page_exists(vp, off);
2843 
2844 		/*
2845 		 * If we didn't find the page (it may not exist), the page
2846 		 * is free, looks still in use (shared), or we can't lock it,
2847 		 * just give up.
2848 		 */
2849 		if (pp == NULL ||
2850 		    PP_ISFREE(pp) ||
2851 		    page_share_cnt(pp) > 0 ||
2852 		    !page_trylock(pp, SE_EXCL))
2853 			continue;
2854 
2855 		/*
2856 		 * Once we have locked pp, verify that it's still the
2857 		 * correct page and not already free
2858 		 */
2859 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2860 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2861 			page_unlock(pp);
2862 			continue;
2863 		}
2864 
2865 		/*
2866 		 * try to release the page...
2867 		 */
2868 		(void) page_release(pp, 1);
2869 	}
2870 }
2871 
2872 /*
2873  * Reclaim the given page from the free list.
2874  * If pp is part of a large pages, only the given constituent page is reclaimed
2875  * and the large page it belonged to will be demoted.  This can only happen
2876  * if the page is not on the cachelist.
2877  *
2878  * Returns 1 on success or 0 on failure.
2879  *
2880  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2881  * If `lock' is non-null, it will be dropped and re-acquired if
2882  * the routine must wait while freemem is 0.
2883  *
2884  * As it turns out, boot_getpages() does this.  It picks a page,
2885  * based on where OBP mapped in some address, gets its pfn, searches
2886  * the memsegs, locks the page, then pulls it off the free list!
2887  */
2888 int
2889 page_reclaim(page_t *pp, kmutex_t *lock)
2890 {
2891 	struct pcf	*p;
2892 	struct cpu	*cpup;
2893 	int		enough;
2894 	uint_t		i;
2895 
2896 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
2897 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
2898 
2899 	/*
2900 	 * If `freemem' is 0, we cannot reclaim this page from the
2901 	 * freelist, so release every lock we might hold: the page,
2902 	 * and the `lock' before blocking.
2903 	 *
2904 	 * The only way `freemem' can become 0 while there are pages
2905 	 * marked free (have their p->p_free bit set) is when the
2906 	 * system is low on memory and doing a page_create().  In
2907 	 * order to guarantee that once page_create() starts acquiring
2908 	 * pages it will be able to get all that it needs since `freemem'
2909 	 * was decreased by the requested amount.  So, we need to release
2910 	 * this page, and let page_create() have it.
2911 	 *
2912 	 * Since `freemem' being zero is not supposed to happen, just
2913 	 * use the usual hash stuff as a starting point.  If that bucket
2914 	 * is empty, then assume the worst, and start at the beginning
2915 	 * of the pcf array.  If we always start at the beginning
2916 	 * when acquiring more than one pcf lock, there won't be any
2917 	 * deadlock problems.
2918 	 */
2919 
2920 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
2921 
2922 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
2923 		pcf_acquire_all();
2924 		goto page_reclaim_nomem;
2925 	}
2926 
2927 	enough = pcf_decrement_bucket(1);
2928 
2929 	if (!enough) {
2930 		VM_STAT_ADD(page_reclaim_zero);
2931 		/*
2932 		 * Check again. Its possible that some other thread
2933 		 * could have been right behind us, and added one
2934 		 * to a list somewhere.  Acquire each of the pcf locks
2935 		 * until we find a page.
2936 		 */
2937 		p = pcf;
2938 		for (i = 0; i < pcf_fanout; i++) {
2939 			mutex_enter(&p->pcf_lock);
2940 			if (p->pcf_count >= 1) {
2941 				p->pcf_count -= 1;
2942 				/*
2943 				 * freemem is not protected by any lock. Thus,
2944 				 * we cannot have any assertion containing
2945 				 * freemem here.
2946 				 */
2947 				freemem -= 1;
2948 				enough = 1;
2949 				break;
2950 			}
2951 			p++;
2952 		}
2953 
2954 		if (!enough) {
2955 page_reclaim_nomem:
2956 			/*
2957 			 * We really can't have page `pp'.
2958 			 * Time for the no-memory dance with
2959 			 * page_free().  This is just like
2960 			 * page_create_wait().  Plus the added
2961 			 * attraction of releasing whatever mutex
2962 			 * we held when we were called with in `lock'.
2963 			 * Page_unlock() will wakeup any thread
2964 			 * waiting around for this page.
2965 			 */
2966 			if (lock) {
2967 				VM_STAT_ADD(page_reclaim_zero_locked);
2968 				mutex_exit(lock);
2969 			}
2970 			page_unlock(pp);
2971 
2972 			/*
2973 			 * get this before we drop all the pcf locks.
2974 			 */
2975 			mutex_enter(&new_freemem_lock);
2976 
2977 			p = pcf;
2978 			for (i = 0; i < pcf_fanout; i++) {
2979 				p->pcf_wait++;
2980 				mutex_exit(&p->pcf_lock);
2981 				p++;
2982 			}
2983 
2984 			freemem_wait++;
2985 			cv_wait(&freemem_cv, &new_freemem_lock);
2986 			freemem_wait--;
2987 
2988 			mutex_exit(&new_freemem_lock);
2989 
2990 			if (lock) {
2991 				mutex_enter(lock);
2992 			}
2993 			return (0);
2994 		}
2995 
2996 		/*
2997 		 * The pcf accounting has been done,
2998 		 * though none of the pcf_wait flags have been set,
2999 		 * drop the locks and continue on.
3000 		 */
3001 		while (p >= pcf) {
3002 			mutex_exit(&p->pcf_lock);
3003 			p--;
3004 		}
3005 	}
3006 
3007 
3008 	VM_STAT_ADD(pagecnt.pc_reclaim);
3009 
3010 	/*
3011 	 * page_list_sub will handle the case where pp is a large page.
3012 	 * It's possible that the page was promoted while on the freelist
3013 	 */
3014 	if (PP_ISAGED(pp)) {
3015 		page_list_sub(pp, PG_FREE_LIST);
3016 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3017 		    "page_reclaim_free:pp %p", pp);
3018 	} else {
3019 		page_list_sub(pp, PG_CACHE_LIST);
3020 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3021 		    "page_reclaim_cache:pp %p", pp);
3022 	}
3023 
3024 	/*
3025 	 * clear the p_free & p_age bits since this page is no longer
3026 	 * on the free list.  Notice that there was a brief time where
3027 	 * a page is marked as free, but is not on the list.
3028 	 *
3029 	 * Set the reference bit to protect against immediate pageout.
3030 	 */
3031 	PP_CLRFREE(pp);
3032 	PP_CLRAGED(pp);
3033 	page_set_props(pp, P_REF);
3034 
3035 	CPU_STATS_ENTER_K();
3036 	cpup = CPU;	/* get cpup now that CPU cannot change */
3037 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3038 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3039 	CPU_STATS_EXIT_K();
3040 	ASSERT(pp->p_szc == 0);
3041 
3042 	return (1);
3043 }
3044 
3045 /*
3046  * Destroy identity of the page and put it back on
3047  * the page free list.  Assumes that the caller has
3048  * acquired the "exclusive" lock on the page.
3049  */
3050 void
3051 page_destroy(page_t *pp, int dontfree)
3052 {
3053 	ASSERT((PAGE_EXCL(pp) &&
3054 	    !page_iolock_assert(pp)) || panicstr);
3055 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3056 
3057 	if (pp->p_szc != 0) {
3058 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3059 		    PP_ISKAS(pp)) {
3060 			panic("page_destroy: anon or kernel or no vnode "
3061 			    "large page %p", (void *)pp);
3062 		}
3063 		page_demote_vp_pages(pp);
3064 		ASSERT(pp->p_szc == 0);
3065 	}
3066 
3067 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3068 
3069 	/*
3070 	 * Unload translations, if any, then hash out the
3071 	 * page to erase its identity.
3072 	 */
3073 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3074 	page_hashout(pp, NULL);
3075 
3076 	if (!dontfree) {
3077 		/*
3078 		 * Acquire the "freemem_lock" for availrmem.
3079 		 * The page_struct_lock need not be acquired for lckcnt
3080 		 * and cowcnt since the page has an "exclusive" lock.
3081 		 * We are doing a modified version of page_pp_unlock here.
3082 		 */
3083 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3084 			mutex_enter(&freemem_lock);
3085 			if (pp->p_lckcnt != 0) {
3086 				availrmem++;
3087 				pages_locked--;
3088 				pp->p_lckcnt = 0;
3089 			}
3090 			if (pp->p_cowcnt != 0) {
3091 				availrmem += pp->p_cowcnt;
3092 				pages_locked -= pp->p_cowcnt;
3093 				pp->p_cowcnt = 0;
3094 			}
3095 			mutex_exit(&freemem_lock);
3096 		}
3097 		/*
3098 		 * Put the page on the "free" list.
3099 		 */
3100 		page_free(pp, 0);
3101 	}
3102 }
3103 
3104 void
3105 page_destroy_pages(page_t *pp)
3106 {
3107 
3108 	page_t	*tpp, *rootpp = NULL;
3109 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3110 	pgcnt_t	i, pglcks = 0;
3111 	uint_t	szc = pp->p_szc;
3112 
3113 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3114 
3115 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3116 
3117 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3118 
3119 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3120 		panic("page_destroy_pages: not root page %p", (void *)pp);
3121 		/*NOTREACHED*/
3122 	}
3123 
3124 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3125 		ASSERT((PAGE_EXCL(tpp) &&
3126 		    !page_iolock_assert(tpp)) || panicstr);
3127 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3128 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3129 		page_hashout(tpp, NULL);
3130 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3131 		if (tpp->p_lckcnt != 0) {
3132 			pglcks++;
3133 			tpp->p_lckcnt = 0;
3134 		} else if (tpp->p_cowcnt != 0) {
3135 			pglcks += tpp->p_cowcnt;
3136 			tpp->p_cowcnt = 0;
3137 		}
3138 		ASSERT(!hat_page_getshare(tpp));
3139 		ASSERT(tpp->p_vnode == NULL);
3140 		ASSERT(tpp->p_szc == szc);
3141 
3142 		PP_SETFREE(tpp);
3143 		page_clr_all_props(tpp, 0);
3144 		PP_SETAGED(tpp);
3145 		ASSERT(tpp->p_next == tpp);
3146 		ASSERT(tpp->p_prev == tpp);
3147 		page_list_concat(&rootpp, &tpp);
3148 	}
3149 
3150 	ASSERT(rootpp == pp);
3151 	if (pglcks != 0) {
3152 		mutex_enter(&freemem_lock);
3153 		availrmem += pglcks;
3154 		mutex_exit(&freemem_lock);
3155 	}
3156 
3157 	page_list_add_pages(rootpp, 0);
3158 	page_create_putback(pgcnt);
3159 }
3160 
3161 /*
3162  * Similar to page_destroy(), but destroys pages which are
3163  * locked and known to be on the page free list.  Since
3164  * the page is known to be free and locked, no one can access
3165  * it.
3166  *
3167  * Also, the number of free pages does not change.
3168  */
3169 void
3170 page_destroy_free(page_t *pp)
3171 {
3172 	ASSERT(PAGE_EXCL(pp));
3173 	ASSERT(PP_ISFREE(pp));
3174 	ASSERT(pp->p_vnode);
3175 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3176 	ASSERT(!hat_page_is_mapped(pp));
3177 	ASSERT(PP_ISAGED(pp) == 0);
3178 	ASSERT(pp->p_szc == 0);
3179 
3180 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3181 	page_list_sub(pp, PG_CACHE_LIST);
3182 
3183 	page_hashout(pp, NULL);
3184 	ASSERT(pp->p_vnode == NULL);
3185 	ASSERT(pp->p_offset == (u_offset_t)-1);
3186 	ASSERT(pp->p_hash == NULL);
3187 
3188 	PP_SETAGED(pp);
3189 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3190 	page_unlock(pp);
3191 
3192 	mutex_enter(&new_freemem_lock);
3193 	if (freemem_wait) {
3194 		cv_signal(&freemem_cv);
3195 	}
3196 	mutex_exit(&new_freemem_lock);
3197 }
3198 
3199 /*
3200  * Rename the page "opp" to have an identity specified
3201  * by [vp, off].  If a page already exists with this name
3202  * it is locked and destroyed.  Note that the page's
3203  * translations are not unloaded during the rename.
3204  *
3205  * This routine is used by the anon layer to "steal" the
3206  * original page and is not unlike destroying a page and
3207  * creating a new page using the same page frame.
3208  *
3209  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3210  * caller 2 tries to rename B to A.
3211  */
3212 void
3213 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3214 {
3215 	page_t		*pp;
3216 	int		olckcnt = 0;
3217 	int		ocowcnt = 0;
3218 	kmutex_t	*phm;
3219 	ulong_t		index;
3220 
3221 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3222 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3223 	ASSERT(PP_ISFREE(opp) == 0);
3224 
3225 	VM_STAT_ADD(page_rename_count);
3226 
3227 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3228 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3229 
3230 	/*
3231 	 * CacheFS may call page_rename for a large NFS page
3232 	 * when both CacheFS and NFS mount points are used
3233 	 * by applications. Demote this large page before
3234 	 * renaming it, to ensure that there are no "partial"
3235 	 * large pages left lying around.
3236 	 */
3237 	if (opp->p_szc != 0) {
3238 		vnode_t *ovp = opp->p_vnode;
3239 		ASSERT(ovp != NULL);
3240 		ASSERT(!IS_SWAPFSVP(ovp));
3241 		ASSERT(!VN_ISKAS(ovp));
3242 		page_demote_vp_pages(opp);
3243 		ASSERT(opp->p_szc == 0);
3244 	}
3245 
3246 	page_hashout(opp, NULL);
3247 	PP_CLRAGED(opp);
3248 
3249 	/*
3250 	 * Acquire the appropriate page hash lock, since
3251 	 * we're going to rename the page.
3252 	 */
3253 	index = PAGE_HASH_FUNC(vp, off);
3254 	phm = PAGE_HASH_MUTEX(index);
3255 	mutex_enter(phm);
3256 top:
3257 	/*
3258 	 * Look for an existing page with this name and destroy it if found.
3259 	 * By holding the page hash lock all the way to the page_hashin()
3260 	 * call, we are assured that no page can be created with this
3261 	 * identity.  In the case when the phm lock is dropped to undo any
3262 	 * hat layer mappings, the existing page is held with an "exclusive"
3263 	 * lock, again preventing another page from being created with
3264 	 * this identity.
3265 	 */
3266 	PAGE_HASH_SEARCH(index, pp, vp, off);
3267 	if (pp != NULL) {
3268 		VM_STAT_ADD(page_rename_exists);
3269 
3270 		/*
3271 		 * As it turns out, this is one of only two places where
3272 		 * page_lock() needs to hold the passed in lock in the
3273 		 * successful case.  In all of the others, the lock could
3274 		 * be dropped as soon as the attempt is made to lock
3275 		 * the page.  It is tempting to add yet another arguement,
3276 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3277 		 */
3278 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3279 			/*
3280 			 * Went to sleep because the page could not
3281 			 * be locked.  We were woken up when the page
3282 			 * was unlocked, or when the page was destroyed.
3283 			 * In either case, `phm' was dropped while we
3284 			 * slept.  Hence we should not just roar through
3285 			 * this loop.
3286 			 */
3287 			goto top;
3288 		}
3289 
3290 		/*
3291 		 * If an existing page is a large page, then demote
3292 		 * it to ensure that no "partial" large pages are
3293 		 * "created" after page_rename. An existing page
3294 		 * can be a CacheFS page, and can't belong to swapfs.
3295 		 */
3296 		if (hat_page_is_mapped(pp)) {
3297 			/*
3298 			 * Unload translations.  Since we hold the
3299 			 * exclusive lock on this page, the page
3300 			 * can not be changed while we drop phm.
3301 			 * This is also not a lock protocol violation,
3302 			 * but rather the proper way to do things.
3303 			 */
3304 			mutex_exit(phm);
3305 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3306 			if (pp->p_szc != 0) {
3307 				ASSERT(!IS_SWAPFSVP(vp));
3308 				ASSERT(!VN_ISKAS(vp));
3309 				page_demote_vp_pages(pp);
3310 				ASSERT(pp->p_szc == 0);
3311 			}
3312 			mutex_enter(phm);
3313 		} else if (pp->p_szc != 0) {
3314 			ASSERT(!IS_SWAPFSVP(vp));
3315 			ASSERT(!VN_ISKAS(vp));
3316 			mutex_exit(phm);
3317 			page_demote_vp_pages(pp);
3318 			ASSERT(pp->p_szc == 0);
3319 			mutex_enter(phm);
3320 		}
3321 		page_hashout(pp, phm);
3322 	}
3323 	/*
3324 	 * Hash in the page with the new identity.
3325 	 */
3326 	if (!page_hashin(opp, vp, off, phm)) {
3327 		/*
3328 		 * We were holding phm while we searched for [vp, off]
3329 		 * and only dropped phm if we found and locked a page.
3330 		 * If we can't create this page now, then some thing
3331 		 * is really broken.
3332 		 */
3333 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3334 		/*NOTREACHED*/
3335 	}
3336 
3337 	ASSERT(MUTEX_HELD(phm));
3338 	mutex_exit(phm);
3339 
3340 	/*
3341 	 * Now that we have dropped phm, lets get around to finishing up
3342 	 * with pp.
3343 	 */
3344 	if (pp != NULL) {
3345 		ASSERT(!hat_page_is_mapped(pp));
3346 		/* for now large pages should not end up here */
3347 		ASSERT(pp->p_szc == 0);
3348 		/*
3349 		 * Save the locks for transfer to the new page and then
3350 		 * clear them so page_free doesn't think they're important.
3351 		 * The page_struct_lock need not be acquired for lckcnt and
3352 		 * cowcnt since the page has an "exclusive" lock.
3353 		 */
3354 		olckcnt = pp->p_lckcnt;
3355 		ocowcnt = pp->p_cowcnt;
3356 		pp->p_lckcnt = pp->p_cowcnt = 0;
3357 
3358 		/*
3359 		 * Put the page on the "free" list after we drop
3360 		 * the lock.  The less work under the lock the better.
3361 		 */
3362 		/*LINTED: constant in conditional context*/
3363 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3364 	}
3365 
3366 	/*
3367 	 * Transfer the lock count from the old page (if any).
3368 	 * The page_struct_lock need not be acquired for lckcnt and
3369 	 * cowcnt since the page has an "exclusive" lock.
3370 	 */
3371 	opp->p_lckcnt += olckcnt;
3372 	opp->p_cowcnt += ocowcnt;
3373 }
3374 
3375 /*
3376  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3377  *
3378  * Pages are normally inserted at the start of a vnode's v_pages list.
3379  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3380  * This can happen when a modified page is relocated for DR.
3381  *
3382  * Returns 1 on success and 0 on failure.
3383  */
3384 static int
3385 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3386 {
3387 	page_t		**listp;
3388 	page_t		*tp;
3389 	ulong_t		index;
3390 
3391 	ASSERT(PAGE_EXCL(pp));
3392 	ASSERT(vp != NULL);
3393 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3394 
3395 	/*
3396 	 * Be sure to set these up before the page is inserted on the hash
3397 	 * list.  As soon as the page is placed on the list some other
3398 	 * thread might get confused and wonder how this page could
3399 	 * possibly hash to this list.
3400 	 */
3401 	pp->p_vnode = vp;
3402 	pp->p_offset = offset;
3403 
3404 	/*
3405 	 * record if this page is on a swap vnode
3406 	 */
3407 	if ((vp->v_flag & VISSWAP) != 0)
3408 		PP_SETSWAP(pp);
3409 
3410 	index = PAGE_HASH_FUNC(vp, offset);
3411 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3412 	listp = &page_hash[index];
3413 
3414 	/*
3415 	 * If this page is already hashed in, fail this attempt to add it.
3416 	 */
3417 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3418 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3419 			pp->p_vnode = NULL;
3420 			pp->p_offset = (u_offset_t)(-1);
3421 			return (0);
3422 		}
3423 	}
3424 	pp->p_hash = *listp;
3425 	*listp = pp;
3426 
3427 	/*
3428 	 * Add the page to the vnode's list of pages
3429 	 */
3430 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3431 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3432 	else
3433 		listp = &vp->v_pages;
3434 
3435 	page_vpadd(listp, pp);
3436 
3437 	return (1);
3438 }
3439 
3440 /*
3441  * Add page `pp' to both the hash and vp chains for [vp, offset].
3442  *
3443  * Returns 1 on success and 0 on failure.
3444  * If hold is passed in, it is not dropped.
3445  */
3446 int
3447 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3448 {
3449 	kmutex_t	*phm = NULL;
3450 	kmutex_t	*vphm;
3451 	int		rc;
3452 
3453 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3454 	ASSERT(pp->p_fsdata == 0 || panicstr);
3455 
3456 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3457 	    "page_hashin:pp %p vp %p offset %llx",
3458 	    pp, vp, offset);
3459 
3460 	VM_STAT_ADD(hashin_count);
3461 
3462 	if (hold != NULL)
3463 		phm = hold;
3464 	else {
3465 		VM_STAT_ADD(hashin_not_held);
3466 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3467 		mutex_enter(phm);
3468 	}
3469 
3470 	vphm = page_vnode_mutex(vp);
3471 	mutex_enter(vphm);
3472 	rc = page_do_hashin(pp, vp, offset);
3473 	mutex_exit(vphm);
3474 	if (hold == NULL)
3475 		mutex_exit(phm);
3476 	if (rc == 0)
3477 		VM_STAT_ADD(hashin_already);
3478 	return (rc);
3479 }
3480 
3481 /*
3482  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3483  * All mutexes must be held
3484  */
3485 static void
3486 page_do_hashout(page_t *pp)
3487 {
3488 	page_t	**hpp;
3489 	page_t	*hp;
3490 	vnode_t	*vp = pp->p_vnode;
3491 
3492 	ASSERT(vp != NULL);
3493 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3494 
3495 	/*
3496 	 * First, take pp off of its hash chain.
3497 	 */
3498 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3499 
3500 	for (;;) {
3501 		hp = *hpp;
3502 		if (hp == pp)
3503 			break;
3504 		if (hp == NULL) {
3505 			panic("page_do_hashout");
3506 			/*NOTREACHED*/
3507 		}
3508 		hpp = &hp->p_hash;
3509 	}
3510 	*hpp = pp->p_hash;
3511 
3512 	/*
3513 	 * Now remove it from its associated vnode.
3514 	 */
3515 	if (vp->v_pages)
3516 		page_vpsub(&vp->v_pages, pp);
3517 
3518 	pp->p_hash = NULL;
3519 	page_clr_all_props(pp, 1);
3520 	PP_CLRSWAP(pp);
3521 	pp->p_vnode = NULL;
3522 	pp->p_offset = (u_offset_t)-1;
3523 	pp->p_fsdata = 0;
3524 }
3525 
3526 /*
3527  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3528  *
3529  * When `phm' is non-NULL it contains the address of the mutex protecting the
3530  * hash list pp is on.  It is not dropped.
3531  */
3532 void
3533 page_hashout(page_t *pp, kmutex_t *phm)
3534 {
3535 	vnode_t		*vp;
3536 	ulong_t		index;
3537 	kmutex_t	*nphm;
3538 	kmutex_t	*vphm;
3539 	kmutex_t	*sep;
3540 
3541 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3542 	ASSERT(pp->p_vnode != NULL);
3543 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3544 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3545 
3546 	vp = pp->p_vnode;
3547 
3548 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3549 	    "page_hashout:pp %p vp %p", pp, vp);
3550 
3551 	/* Kernel probe */
3552 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3553 	    tnf_opaque, vnode, vp,
3554 	    tnf_offset, offset, pp->p_offset);
3555 
3556 	/*
3557 	 *
3558 	 */
3559 	VM_STAT_ADD(hashout_count);
3560 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3561 	if (phm == NULL) {
3562 		VM_STAT_ADD(hashout_not_held);
3563 		nphm = PAGE_HASH_MUTEX(index);
3564 		mutex_enter(nphm);
3565 	}
3566 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3567 
3568 
3569 	/*
3570 	 * grab page vnode mutex and remove it...
3571 	 */
3572 	vphm = page_vnode_mutex(vp);
3573 	mutex_enter(vphm);
3574 
3575 	page_do_hashout(pp);
3576 
3577 	mutex_exit(vphm);
3578 	if (phm == NULL)
3579 		mutex_exit(nphm);
3580 
3581 	/*
3582 	 * Wake up processes waiting for this page.  The page's
3583 	 * identity has been changed, and is probably not the
3584 	 * desired page any longer.
3585 	 */
3586 	sep = page_se_mutex(pp);
3587 	mutex_enter(sep);
3588 	pp->p_selock &= ~SE_EWANTED;
3589 	if (CV_HAS_WAITERS(&pp->p_cv))
3590 		cv_broadcast(&pp->p_cv);
3591 	mutex_exit(sep);
3592 }
3593 
3594 /*
3595  * Add the page to the front of a linked list of pages
3596  * using the p_next & p_prev pointers for the list.
3597  * The caller is responsible for protecting the list pointers.
3598  */
3599 void
3600 page_add(page_t **ppp, page_t *pp)
3601 {
3602 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3603 
3604 	page_add_common(ppp, pp);
3605 }
3606 
3607 
3608 
3609 /*
3610  *  Common code for page_add() and mach_page_add()
3611  */
3612 void
3613 page_add_common(page_t **ppp, page_t *pp)
3614 {
3615 	if (*ppp == NULL) {
3616 		pp->p_next = pp->p_prev = pp;
3617 	} else {
3618 		pp->p_next = *ppp;
3619 		pp->p_prev = (*ppp)->p_prev;
3620 		(*ppp)->p_prev = pp;
3621 		pp->p_prev->p_next = pp;
3622 	}
3623 	*ppp = pp;
3624 }
3625 
3626 
3627 /*
3628  * Remove this page from a linked list of pages
3629  * using the p_next & p_prev pointers for the list.
3630  *
3631  * The caller is responsible for protecting the list pointers.
3632  */
3633 void
3634 page_sub(page_t **ppp, page_t *pp)
3635 {
3636 	ASSERT((PP_ISFREE(pp)) ? 1 :
3637 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3638 
3639 	if (*ppp == NULL || pp == NULL) {
3640 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3641 		    (void *)pp, (void *)(*ppp));
3642 		/*NOTREACHED*/
3643 	}
3644 
3645 	page_sub_common(ppp, pp);
3646 }
3647 
3648 
3649 /*
3650  *  Common code for page_sub() and mach_page_sub()
3651  */
3652 void
3653 page_sub_common(page_t **ppp, page_t *pp)
3654 {
3655 	if (*ppp == pp)
3656 		*ppp = pp->p_next;		/* go to next page */
3657 
3658 	if (*ppp == pp)
3659 		*ppp = NULL;			/* page list is gone */
3660 	else {
3661 		pp->p_prev->p_next = pp->p_next;
3662 		pp->p_next->p_prev = pp->p_prev;
3663 	}
3664 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3665 }
3666 
3667 
3668 /*
3669  * Break page list cppp into two lists with npages in the first list.
3670  * The tail is returned in nppp.
3671  */
3672 void
3673 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3674 {
3675 	page_t *s1pp = *oppp;
3676 	page_t *s2pp;
3677 	page_t *e1pp, *e2pp;
3678 	long n = 0;
3679 
3680 	if (s1pp == NULL) {
3681 		*nppp = NULL;
3682 		return;
3683 	}
3684 	if (npages == 0) {
3685 		*nppp = s1pp;
3686 		*oppp = NULL;
3687 		return;
3688 	}
3689 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3690 		s2pp = s2pp->p_next;
3691 	}
3692 	/* Fix head and tail of new lists */
3693 	e1pp = s2pp->p_prev;
3694 	e2pp = s1pp->p_prev;
3695 	s1pp->p_prev = e1pp;
3696 	e1pp->p_next = s1pp;
3697 	s2pp->p_prev = e2pp;
3698 	e2pp->p_next = s2pp;
3699 
3700 	/* second list empty */
3701 	if (s2pp == s1pp) {
3702 		*oppp = s1pp;
3703 		*nppp = NULL;
3704 	} else {
3705 		*oppp = s1pp;
3706 		*nppp = s2pp;
3707 	}
3708 }
3709 
3710 /*
3711  * Concatenate page list nppp onto the end of list ppp.
3712  */
3713 void
3714 page_list_concat(page_t **ppp, page_t **nppp)
3715 {
3716 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3717 
3718 	if (*nppp == NULL) {
3719 		return;
3720 	}
3721 	if (*ppp == NULL) {
3722 		*ppp = *nppp;
3723 		return;
3724 	}
3725 	s1pp = *ppp;
3726 	e1pp =  s1pp->p_prev;
3727 	s2pp = *nppp;
3728 	e2pp = s2pp->p_prev;
3729 	s1pp->p_prev = e2pp;
3730 	e2pp->p_next = s1pp;
3731 	e1pp->p_next = s2pp;
3732 	s2pp->p_prev = e1pp;
3733 }
3734 
3735 /*
3736  * return the next page in the page list
3737  */
3738 page_t *
3739 page_list_next(page_t *pp)
3740 {
3741 	return (pp->p_next);
3742 }
3743 
3744 
3745 /*
3746  * Add the page to the front of the linked list of pages
3747  * using p_vpnext/p_vpprev pointers for the list.
3748  *
3749  * The caller is responsible for protecting the lists.
3750  */
3751 void
3752 page_vpadd(page_t **ppp, page_t *pp)
3753 {
3754 	if (*ppp == NULL) {
3755 		pp->p_vpnext = pp->p_vpprev = pp;
3756 	} else {
3757 		pp->p_vpnext = *ppp;
3758 		pp->p_vpprev = (*ppp)->p_vpprev;
3759 		(*ppp)->p_vpprev = pp;
3760 		pp->p_vpprev->p_vpnext = pp;
3761 	}
3762 	*ppp = pp;
3763 }
3764 
3765 /*
3766  * Remove this page from the linked list of pages
3767  * using p_vpnext/p_vpprev pointers for the list.
3768  *
3769  * The caller is responsible for protecting the lists.
3770  */
3771 void
3772 page_vpsub(page_t **ppp, page_t *pp)
3773 {
3774 	if (*ppp == NULL || pp == NULL) {
3775 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3776 		    (void *)pp, (void *)(*ppp));
3777 		/*NOTREACHED*/
3778 	}
3779 
3780 	if (*ppp == pp)
3781 		*ppp = pp->p_vpnext;		/* go to next page */
3782 
3783 	if (*ppp == pp)
3784 		*ppp = NULL;			/* page list is gone */
3785 	else {
3786 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3787 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3788 	}
3789 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3790 }
3791 
3792 /*
3793  * Lock a physical page into memory "long term".  Used to support "lock
3794  * in memory" functions.  Accepts the page to be locked, and a cow variable
3795  * to indicate whether a the lock will travel to the new page during
3796  * a potential copy-on-write.
3797  */
3798 int
3799 page_pp_lock(
3800 	page_t *pp,			/* page to be locked */
3801 	int cow,			/* cow lock */
3802 	int kernel)			/* must succeed -- ignore checking */
3803 {
3804 	int r = 0;			/* result -- assume failure */
3805 
3806 	ASSERT(PAGE_LOCKED(pp));
3807 
3808 	page_struct_lock(pp);
3809 	/*
3810 	 * Acquire the "freemem_lock" for availrmem.
3811 	 */
3812 	if (cow) {
3813 		mutex_enter(&freemem_lock);
3814 		if ((availrmem > pages_pp_maximum) &&
3815 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3816 			availrmem--;
3817 			pages_locked++;
3818 			mutex_exit(&freemem_lock);
3819 			r = 1;
3820 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3821 				cmn_err(CE_WARN,
3822 				    "COW lock limit reached on pfn 0x%lx",
3823 				    page_pptonum(pp));
3824 			}
3825 		} else
3826 			mutex_exit(&freemem_lock);
3827 	} else {
3828 		if (pp->p_lckcnt) {
3829 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3830 				r = 1;
3831 				if (++pp->p_lckcnt ==
3832 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3833 					cmn_err(CE_WARN, "Page lock limit "
3834 					    "reached on pfn 0x%lx",
3835 					    page_pptonum(pp));
3836 				}
3837 			}
3838 		} else {
3839 			if (kernel) {
3840 				/* availrmem accounting done by caller */
3841 				++pp->p_lckcnt;
3842 				r = 1;
3843 			} else {
3844 				mutex_enter(&freemem_lock);
3845 				if (availrmem > pages_pp_maximum) {
3846 					availrmem--;
3847 					pages_locked++;
3848 					++pp->p_lckcnt;
3849 					r = 1;
3850 				}
3851 				mutex_exit(&freemem_lock);
3852 			}
3853 		}
3854 	}
3855 	page_struct_unlock(pp);
3856 	return (r);
3857 }
3858 
3859 /*
3860  * Decommit a lock on a physical page frame.  Account for cow locks if
3861  * appropriate.
3862  */
3863 void
3864 page_pp_unlock(
3865 	page_t *pp,			/* page to be unlocked */
3866 	int cow,			/* expect cow lock */
3867 	int kernel)			/* this was a kernel lock */
3868 {
3869 	ASSERT(PAGE_LOCKED(pp));
3870 
3871 	page_struct_lock(pp);
3872 	/*
3873 	 * Acquire the "freemem_lock" for availrmem.
3874 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3875 	 * could be called to unlock even if nothing is locked. This could
3876 	 * happen if locked file pages were truncated (removing the lock)
3877 	 * and the file was grown again and new pages faulted in; the new
3878 	 * pages are unlocked but the segment still thinks they're locked.
3879 	 */
3880 	if (cow) {
3881 		if (pp->p_cowcnt) {
3882 			mutex_enter(&freemem_lock);
3883 			pp->p_cowcnt--;
3884 			availrmem++;
3885 			pages_locked--;
3886 			mutex_exit(&freemem_lock);
3887 		}
3888 	} else {
3889 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
3890 			if (!kernel) {
3891 				mutex_enter(&freemem_lock);
3892 				availrmem++;
3893 				pages_locked--;
3894 				mutex_exit(&freemem_lock);
3895 			}
3896 		}
3897 	}
3898 	page_struct_unlock(pp);
3899 }
3900 
3901 /*
3902  * This routine reserves availrmem for npages;
3903  * 	flags: KM_NOSLEEP or KM_SLEEP
3904  * 	returns 1 on success or 0 on failure
3905  */
3906 int
3907 page_resv(pgcnt_t npages, uint_t flags)
3908 {
3909 	mutex_enter(&freemem_lock);
3910 	while (availrmem < tune.t_minarmem + npages) {
3911 		if (flags & KM_NOSLEEP) {
3912 			mutex_exit(&freemem_lock);
3913 			return (0);
3914 		}
3915 		mutex_exit(&freemem_lock);
3916 		page_needfree(npages);
3917 		kmem_reap();
3918 		delay(hz >> 2);
3919 		page_needfree(-(spgcnt_t)npages);
3920 		mutex_enter(&freemem_lock);
3921 	}
3922 	availrmem -= npages;
3923 	mutex_exit(&freemem_lock);
3924 	return (1);
3925 }
3926 
3927 /*
3928  * This routine unreserves availrmem for npages;
3929  */
3930 void
3931 page_unresv(pgcnt_t npages)
3932 {
3933 	mutex_enter(&freemem_lock);
3934 	availrmem += npages;
3935 	mutex_exit(&freemem_lock);
3936 }
3937 
3938 /*
3939  * See Statement at the beginning of segvn_lockop() regarding
3940  * the way we handle cowcnts and lckcnts.
3941  *
3942  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
3943  * that breaks COW has PROT_WRITE.
3944  *
3945  * Note that, we may also break COW in case we are softlocking
3946  * on read access during physio;
3947  * in this softlock case, the vpage may not have PROT_WRITE.
3948  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
3949  * if the vpage doesn't have PROT_WRITE.
3950  *
3951  * This routine is never called if we are stealing a page
3952  * in anon_private.
3953  *
3954  * The caller subtracted from availrmem for read only mapping.
3955  * if lckcnt is 1 increment availrmem.
3956  */
3957 void
3958 page_pp_useclaim(
3959 	page_t *opp,		/* original page frame losing lock */
3960 	page_t *npp,		/* new page frame gaining lock */
3961 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
3962 {
3963 	int payback = 0;
3964 
3965 	ASSERT(PAGE_LOCKED(opp));
3966 	ASSERT(PAGE_LOCKED(npp));
3967 
3968 	page_struct_lock(opp);
3969 
3970 	ASSERT(npp->p_cowcnt == 0);
3971 	ASSERT(npp->p_lckcnt == 0);
3972 
3973 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
3974 	if ((write_perm && opp->p_cowcnt != 0) ||
3975 	    (!write_perm && opp->p_lckcnt != 0)) {
3976 
3977 		if (write_perm) {
3978 			npp->p_cowcnt++;
3979 			ASSERT(opp->p_cowcnt != 0);
3980 			opp->p_cowcnt--;
3981 		} else {
3982 
3983 			ASSERT(opp->p_lckcnt != 0);
3984 
3985 			/*
3986 			 * We didn't need availrmem decremented if p_lckcnt on
3987 			 * original page is 1. Here, we are unlocking
3988 			 * read-only copy belonging to original page and
3989 			 * are locking a copy belonging to new page.
3990 			 */
3991 			if (opp->p_lckcnt == 1)
3992 				payback = 1;
3993 
3994 			npp->p_lckcnt++;
3995 			opp->p_lckcnt--;
3996 		}
3997 	}
3998 	if (payback) {
3999 		mutex_enter(&freemem_lock);
4000 		availrmem++;
4001 		pages_useclaim--;
4002 		mutex_exit(&freemem_lock);
4003 	}
4004 	page_struct_unlock(opp);
4005 }
4006 
4007 /*
4008  * Simple claim adjust functions -- used to support changes in
4009  * claims due to changes in access permissions.  Used by segvn_setprot().
4010  */
4011 int
4012 page_addclaim(page_t *pp)
4013 {
4014 	int r = 0;			/* result */
4015 
4016 	ASSERT(PAGE_LOCKED(pp));
4017 
4018 	page_struct_lock(pp);
4019 	ASSERT(pp->p_lckcnt != 0);
4020 
4021 	if (pp->p_lckcnt == 1) {
4022 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4023 			--pp->p_lckcnt;
4024 			r = 1;
4025 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4026 				cmn_err(CE_WARN,
4027 				    "COW lock limit reached on pfn 0x%lx",
4028 				    page_pptonum(pp));
4029 			}
4030 		}
4031 	} else {
4032 		mutex_enter(&freemem_lock);
4033 		if ((availrmem > pages_pp_maximum) &&
4034 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4035 			--availrmem;
4036 			++pages_claimed;
4037 			mutex_exit(&freemem_lock);
4038 			--pp->p_lckcnt;
4039 			r = 1;
4040 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4041 				cmn_err(CE_WARN,
4042 				    "COW lock limit reached on pfn 0x%lx",
4043 				    page_pptonum(pp));
4044 			}
4045 		} else
4046 			mutex_exit(&freemem_lock);
4047 	}
4048 	page_struct_unlock(pp);
4049 	return (r);
4050 }
4051 
4052 int
4053 page_subclaim(page_t *pp)
4054 {
4055 	int r = 0;
4056 
4057 	ASSERT(PAGE_LOCKED(pp));
4058 
4059 	page_struct_lock(pp);
4060 	ASSERT(pp->p_cowcnt != 0);
4061 
4062 	if (pp->p_lckcnt) {
4063 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4064 			r = 1;
4065 			/*
4066 			 * for availrmem
4067 			 */
4068 			mutex_enter(&freemem_lock);
4069 			availrmem++;
4070 			pages_claimed--;
4071 			mutex_exit(&freemem_lock);
4072 
4073 			pp->p_cowcnt--;
4074 
4075 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4076 				cmn_err(CE_WARN,
4077 				    "Page lock limit reached on pfn 0x%lx",
4078 				    page_pptonum(pp));
4079 			}
4080 		}
4081 	} else {
4082 		r = 1;
4083 		pp->p_cowcnt--;
4084 		pp->p_lckcnt++;
4085 	}
4086 	page_struct_unlock(pp);
4087 	return (r);
4088 }
4089 
4090 int
4091 page_addclaim_pages(page_t  **ppa)
4092 {
4093 
4094 	pgcnt_t	lckpgs = 0, pg_idx;
4095 
4096 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4097 
4098 	mutex_enter(&page_llock);
4099 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4100 
4101 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4102 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4103 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4104 			mutex_exit(&page_llock);
4105 			return (0);
4106 		}
4107 		if (ppa[pg_idx]->p_lckcnt > 1)
4108 			lckpgs++;
4109 	}
4110 
4111 	if (lckpgs != 0) {
4112 		mutex_enter(&freemem_lock);
4113 		if (availrmem >= pages_pp_maximum + lckpgs) {
4114 			availrmem -= lckpgs;
4115 			pages_claimed += lckpgs;
4116 		} else {
4117 			mutex_exit(&freemem_lock);
4118 			mutex_exit(&page_llock);
4119 			return (0);
4120 		}
4121 		mutex_exit(&freemem_lock);
4122 	}
4123 
4124 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4125 		ppa[pg_idx]->p_lckcnt--;
4126 		ppa[pg_idx]->p_cowcnt++;
4127 	}
4128 	mutex_exit(&page_llock);
4129 	return (1);
4130 }
4131 
4132 int
4133 page_subclaim_pages(page_t  **ppa)
4134 {
4135 	pgcnt_t	ulckpgs = 0, pg_idx;
4136 
4137 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4138 
4139 	mutex_enter(&page_llock);
4140 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4141 
4142 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4143 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4144 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4145 			mutex_exit(&page_llock);
4146 			return (0);
4147 		}
4148 		if (ppa[pg_idx]->p_lckcnt != 0)
4149 			ulckpgs++;
4150 	}
4151 
4152 	if (ulckpgs != 0) {
4153 		mutex_enter(&freemem_lock);
4154 		availrmem += ulckpgs;
4155 		pages_claimed -= ulckpgs;
4156 		mutex_exit(&freemem_lock);
4157 	}
4158 
4159 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4160 		ppa[pg_idx]->p_cowcnt--;
4161 		ppa[pg_idx]->p_lckcnt++;
4162 
4163 	}
4164 	mutex_exit(&page_llock);
4165 	return (1);
4166 }
4167 
4168 page_t *
4169 page_numtopp(pfn_t pfnum, se_t se)
4170 {
4171 	page_t *pp;
4172 
4173 retry:
4174 	pp = page_numtopp_nolock(pfnum);
4175 	if (pp == NULL) {
4176 		return ((page_t *)NULL);
4177 	}
4178 
4179 	/*
4180 	 * Acquire the appropriate lock on the page.
4181 	 */
4182 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4183 		if (page_pptonum(pp) != pfnum)
4184 			goto retry;
4185 		continue;
4186 	}
4187 
4188 	if (page_pptonum(pp) != pfnum) {
4189 		page_unlock(pp);
4190 		goto retry;
4191 	}
4192 
4193 	return (pp);
4194 }
4195 
4196 page_t *
4197 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4198 {
4199 	page_t *pp;
4200 
4201 retry:
4202 	pp = page_numtopp_nolock(pfnum);
4203 	if (pp == NULL) {
4204 		return ((page_t *)NULL);
4205 	}
4206 
4207 	/*
4208 	 * Acquire the appropriate lock on the page.
4209 	 */
4210 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4211 		if (page_pptonum(pp) != pfnum)
4212 			goto retry;
4213 		continue;
4214 	}
4215 
4216 	if (page_pptonum(pp) != pfnum) {
4217 		page_unlock(pp);
4218 		goto retry;
4219 	}
4220 
4221 	return (pp);
4222 }
4223 
4224 /*
4225  * This routine is like page_numtopp, but will only return page structs
4226  * for pages which are ok for loading into hardware using the page struct.
4227  */
4228 page_t *
4229 page_numtopp_nowait(pfn_t pfnum, se_t se)
4230 {
4231 	page_t *pp;
4232 
4233 retry:
4234 	pp = page_numtopp_nolock(pfnum);
4235 	if (pp == NULL) {
4236 		return ((page_t *)NULL);
4237 	}
4238 
4239 	/*
4240 	 * Try to acquire the appropriate lock on the page.
4241 	 */
4242 	if (PP_ISFREE(pp))
4243 		pp = NULL;
4244 	else {
4245 		if (!page_trylock(pp, se))
4246 			pp = NULL;
4247 		else {
4248 			if (page_pptonum(pp) != pfnum) {
4249 				page_unlock(pp);
4250 				goto retry;
4251 			}
4252 			if (PP_ISFREE(pp)) {
4253 				page_unlock(pp);
4254 				pp = NULL;
4255 			}
4256 		}
4257 	}
4258 	return (pp);
4259 }
4260 
4261 /*
4262  * Returns a count of dirty pages that are in the process
4263  * of being written out.  If 'cleanit' is set, try to push the page.
4264  */
4265 pgcnt_t
4266 page_busy(int cleanit)
4267 {
4268 	page_t *page0 = page_first();
4269 	page_t *pp = page0;
4270 	pgcnt_t nppbusy = 0;
4271 	u_offset_t off;
4272 
4273 	do {
4274 		vnode_t *vp = pp->p_vnode;
4275 
4276 		/*
4277 		 * A page is a candidate for syncing if it is:
4278 		 *
4279 		 * (a)	On neither the freelist nor the cachelist
4280 		 * (b)	Hashed onto a vnode
4281 		 * (c)	Not a kernel page
4282 		 * (d)	Dirty
4283 		 * (e)	Not part of a swapfile
4284 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4285 		 *	v_vfsp pointer.
4286 		 * (g)	Backed by a filesystem which doesn't have a
4287 		 *	stubbed-out sync operation
4288 		 */
4289 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4290 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4291 		    vfs_can_sync(vp->v_vfsp)) {
4292 			nppbusy++;
4293 			vfs_syncprogress();
4294 
4295 			if (!cleanit)
4296 				continue;
4297 			if (!page_trylock(pp, SE_EXCL))
4298 				continue;
4299 
4300 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4301 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4302 			    !(hat_pagesync(pp,
4303 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4304 				page_unlock(pp);
4305 				continue;
4306 			}
4307 			off = pp->p_offset;
4308 			VN_HOLD(vp);
4309 			page_unlock(pp);
4310 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4311 			    B_ASYNC | B_FREE, kcred, NULL);
4312 			VN_RELE(vp);
4313 		}
4314 	} while ((pp = page_next(pp)) != page0);
4315 
4316 	return (nppbusy);
4317 }
4318 
4319 void page_invalidate_pages(void);
4320 
4321 /*
4322  * callback handler to vm sub-system
4323  *
4324  * callers make sure no recursive entries to this func.
4325  */
4326 /*ARGSUSED*/
4327 boolean_t
4328 callb_vm_cpr(void *arg, int code)
4329 {
4330 	if (code == CB_CODE_CPR_CHKPT)
4331 		page_invalidate_pages();
4332 	return (B_TRUE);
4333 }
4334 
4335 /*
4336  * Invalidate all pages of the system.
4337  * It shouldn't be called until all user page activities are all stopped.
4338  */
4339 void
4340 page_invalidate_pages()
4341 {
4342 	page_t *pp;
4343 	page_t *page0;
4344 	pgcnt_t nbusypages;
4345 	int retry = 0;
4346 	const int MAXRETRIES = 4;
4347 #if defined(__sparc)
4348 	extern struct vnode prom_ppages;
4349 #endif /* __sparc */
4350 
4351 top:
4352 	/*
4353 	 * Flush dirty pages and destroy the clean ones.
4354 	 */
4355 	nbusypages = 0;
4356 
4357 	pp = page0 = page_first();
4358 	do {
4359 		struct vnode	*vp;
4360 		u_offset_t	offset;
4361 		int		mod;
4362 
4363 		/*
4364 		 * skip the page if it has no vnode or the page associated
4365 		 * with the kernel vnode or prom allocated kernel mem.
4366 		 */
4367 #if defined(__sparc)
4368 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) ||
4369 		    vp == &prom_ppages)
4370 #else /* x86 doesn't have prom or prom_ppage */
4371 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4372 #endif /* __sparc */
4373 			continue;
4374 
4375 		/*
4376 		 * skip the page which is already free invalidated.
4377 		 */
4378 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4379 			continue;
4380 
4381 		/*
4382 		 * skip pages that are already locked or can't be "exclusively"
4383 		 * locked or are already free.  After we lock the page, check
4384 		 * the free and age bits again to be sure it's not destroyed
4385 		 * yet.
4386 		 * To achieve max. parallelization, we use page_trylock instead
4387 		 * of page_lock so that we don't get block on individual pages
4388 		 * while we have thousands of other pages to process.
4389 		 */
4390 		if (!page_trylock(pp, SE_EXCL)) {
4391 			nbusypages++;
4392 			continue;
4393 		} else if (PP_ISFREE(pp)) {
4394 			if (!PP_ISAGED(pp)) {
4395 				page_destroy_free(pp);
4396 			} else {
4397 				page_unlock(pp);
4398 			}
4399 			continue;
4400 		}
4401 		/*
4402 		 * Is this page involved in some I/O? shared?
4403 		 *
4404 		 * The page_struct_lock need not be acquired to
4405 		 * examine these fields since the page has an
4406 		 * "exclusive" lock.
4407 		 */
4408 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4409 			page_unlock(pp);
4410 			continue;
4411 		}
4412 
4413 		if (vp->v_type == VCHR) {
4414 			panic("vp->v_type == VCHR");
4415 			/*NOTREACHED*/
4416 		}
4417 
4418 		if (!page_try_demote_pages(pp)) {
4419 			page_unlock(pp);
4420 			continue;
4421 		}
4422 
4423 		/*
4424 		 * Check the modified bit. Leave the bits alone in hardware
4425 		 * (they will be modified if we do the putpage).
4426 		 */
4427 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4428 		    & P_MOD);
4429 		if (mod) {
4430 			offset = pp->p_offset;
4431 			/*
4432 			 * Hold the vnode before releasing the page lock
4433 			 * to prevent it from being freed and re-used by
4434 			 * some other thread.
4435 			 */
4436 			VN_HOLD(vp);
4437 			page_unlock(pp);
4438 			/*
4439 			 * No error return is checked here. Callers such as
4440 			 * cpr deals with the dirty pages at the dump time
4441 			 * if this putpage fails.
4442 			 */
4443 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4444 			    kcred, NULL);
4445 			VN_RELE(vp);
4446 		} else {
4447 			/*LINTED: constant in conditional context*/
4448 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
4449 		}
4450 	} while ((pp = page_next(pp)) != page0);
4451 	if (nbusypages && retry++ < MAXRETRIES) {
4452 		delay(1);
4453 		goto top;
4454 	}
4455 }
4456 
4457 /*
4458  * Replace the page "old" with the page "new" on the page hash and vnode lists
4459  *
4460  * the replacement must be done in place, ie the equivalent sequence:
4461  *
4462  *	vp = old->p_vnode;
4463  *	off = old->p_offset;
4464  *	page_do_hashout(old)
4465  *	page_do_hashin(new, vp, off)
4466  *
4467  * doesn't work, since
4468  *  1) if old is the only page on the vnode, the v_pages list has a window
4469  *     where it looks empty. This will break file system assumptions.
4470  * and
4471  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4472  */
4473 static void
4474 page_do_relocate_hash(page_t *new, page_t *old)
4475 {
4476 	page_t	**hash_list;
4477 	vnode_t	*vp = old->p_vnode;
4478 	kmutex_t *sep;
4479 
4480 	ASSERT(PAGE_EXCL(old));
4481 	ASSERT(PAGE_EXCL(new));
4482 	ASSERT(vp != NULL);
4483 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4484 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4485 
4486 	/*
4487 	 * First find old page on the page hash list
4488 	 */
4489 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4490 
4491 	for (;;) {
4492 		if (*hash_list == old)
4493 			break;
4494 		if (*hash_list == NULL) {
4495 			panic("page_do_hashout");
4496 			/*NOTREACHED*/
4497 		}
4498 		hash_list = &(*hash_list)->p_hash;
4499 	}
4500 
4501 	/*
4502 	 * update new and replace old with new on the page hash list
4503 	 */
4504 	new->p_vnode = old->p_vnode;
4505 	new->p_offset = old->p_offset;
4506 	new->p_hash = old->p_hash;
4507 	*hash_list = new;
4508 
4509 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4510 		PP_SETSWAP(new);
4511 
4512 	/*
4513 	 * replace old with new on the vnode's page list
4514 	 */
4515 	if (old->p_vpnext == old) {
4516 		new->p_vpnext = new;
4517 		new->p_vpprev = new;
4518 	} else {
4519 		new->p_vpnext = old->p_vpnext;
4520 		new->p_vpprev = old->p_vpprev;
4521 		new->p_vpnext->p_vpprev = new;
4522 		new->p_vpprev->p_vpnext = new;
4523 	}
4524 	if (vp->v_pages == old)
4525 		vp->v_pages = new;
4526 
4527 	/*
4528 	 * clear out the old page
4529 	 */
4530 	old->p_hash = NULL;
4531 	old->p_vpnext = NULL;
4532 	old->p_vpprev = NULL;
4533 	old->p_vnode = NULL;
4534 	PP_CLRSWAP(old);
4535 	old->p_offset = (u_offset_t)-1;
4536 	page_clr_all_props(old, 1);
4537 
4538 	/*
4539 	 * Wake up processes waiting for this page.  The page's
4540 	 * identity has been changed, and is probably not the
4541 	 * desired page any longer.
4542 	 */
4543 	sep = page_se_mutex(old);
4544 	mutex_enter(sep);
4545 	old->p_selock &= ~SE_EWANTED;
4546 	if (CV_HAS_WAITERS(&old->p_cv))
4547 		cv_broadcast(&old->p_cv);
4548 	mutex_exit(sep);
4549 }
4550 
4551 /*
4552  * This function moves the identity of page "pp_old" to page "pp_new".
4553  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4554  * and need not be hashed out from anywhere.
4555  */
4556 void
4557 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4558 {
4559 	vnode_t *vp = pp_old->p_vnode;
4560 	u_offset_t off = pp_old->p_offset;
4561 	kmutex_t *phm, *vphm;
4562 
4563 	/*
4564 	 * Rehash two pages
4565 	 */
4566 	ASSERT(PAGE_EXCL(pp_old));
4567 	ASSERT(PAGE_EXCL(pp_new));
4568 	ASSERT(vp != NULL);
4569 	ASSERT(pp_new->p_vnode == NULL);
4570 
4571 	/*
4572 	 * hashout then hashin while holding the mutexes
4573 	 */
4574 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4575 	mutex_enter(phm);
4576 	vphm = page_vnode_mutex(vp);
4577 	mutex_enter(vphm);
4578 
4579 	page_do_relocate_hash(pp_new, pp_old);
4580 
4581 	/* The following comment preserved from page_flip(). */
4582 	pp_new->p_fsdata = pp_old->p_fsdata;
4583 	pp_old->p_fsdata = 0;
4584 	mutex_exit(vphm);
4585 	mutex_exit(phm);
4586 
4587 	/*
4588 	 * The page_struct_lock need not be acquired for lckcnt and
4589 	 * cowcnt since the page has an "exclusive" lock.
4590 	 */
4591 	ASSERT(pp_new->p_lckcnt == 0);
4592 	ASSERT(pp_new->p_cowcnt == 0);
4593 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4594 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4595 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4596 
4597 }
4598 
4599 /*
4600  * Helper routine used to lock all remaining members of a
4601  * large page. The caller is responsible for passing in a locked
4602  * pp. If pp is a large page, then it succeeds in locking all the
4603  * remaining constituent pages or it returns with only the
4604  * original page locked.
4605  *
4606  * Returns 1 on success, 0 on failure.
4607  *
4608  * If success is returned this routine guarantees p_szc for all constituent
4609  * pages of a large page pp belongs to can't change. To achieve this we
4610  * recheck szc of pp after locking all constituent pages and retry if szc
4611  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4612  * lock on one of constituent pages it can't be running after all constituent
4613  * pages are locked.  hat_page_demote() with a lock on a constituent page
4614  * outside of this large page (i.e. pp belonged to a larger large page) is
4615  * already done with all constituent pages of pp since the root's p_szc is
4616  * changed last. Therefore no need to synchronize with hat_page_demote() that
4617  * locked a constituent page outside of pp's current large page.
4618  */
4619 #ifdef DEBUG
4620 uint32_t gpg_trylock_mtbf = 0;
4621 #endif
4622 
4623 int
4624 group_page_trylock(page_t *pp, se_t se)
4625 {
4626 	page_t  *tpp;
4627 	pgcnt_t	npgs, i, j;
4628 	uint_t pszc = pp->p_szc;
4629 
4630 #ifdef DEBUG
4631 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4632 		return (0);
4633 	}
4634 #endif
4635 
4636 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4637 		return (0);
4638 	}
4639 
4640 retry:
4641 	ASSERT(PAGE_LOCKED_SE(pp, se));
4642 	ASSERT(!PP_ISFREE(pp));
4643 	if (pszc == 0) {
4644 		return (1);
4645 	}
4646 	npgs = page_get_pagecnt(pszc);
4647 	tpp = pp + 1;
4648 	for (i = 1; i < npgs; i++, tpp++) {
4649 		if (!page_trylock(tpp, se)) {
4650 			tpp = pp + 1;
4651 			for (j = 1; j < i; j++, tpp++) {
4652 				page_unlock(tpp);
4653 			}
4654 			return (0);
4655 		}
4656 	}
4657 	if (pp->p_szc != pszc) {
4658 		ASSERT(pp->p_szc < pszc);
4659 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4660 		    !IS_SWAPFSVP(pp->p_vnode));
4661 		tpp = pp + 1;
4662 		for (i = 1; i < npgs; i++, tpp++) {
4663 			page_unlock(tpp);
4664 		}
4665 		pszc = pp->p_szc;
4666 		goto retry;
4667 	}
4668 	return (1);
4669 }
4670 
4671 void
4672 group_page_unlock(page_t *pp)
4673 {
4674 	page_t *tpp;
4675 	pgcnt_t	npgs, i;
4676 
4677 	ASSERT(PAGE_LOCKED(pp));
4678 	ASSERT(!PP_ISFREE(pp));
4679 	ASSERT(pp == PP_PAGEROOT(pp));
4680 	npgs = page_get_pagecnt(pp->p_szc);
4681 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4682 		page_unlock(tpp);
4683 	}
4684 }
4685 
4686 /*
4687  * returns
4688  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4689  * ERANGE	: this is not a base page
4690  * EBUSY	: failure to get locks on the page/pages
4691  * ENOMEM	: failure to obtain replacement pages
4692  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4693  * EIO		: An error occurred while trying to copy the page data
4694  *
4695  * Return with all constituent members of target and replacement
4696  * SE_EXCL locked. It is the callers responsibility to drop the
4697  * locks.
4698  */
4699 int
4700 do_page_relocate(
4701 	page_t **target,
4702 	page_t **replacement,
4703 	int grouplock,
4704 	spgcnt_t *nrelocp,
4705 	lgrp_t *lgrp)
4706 {
4707 	page_t *first_repl;
4708 	page_t *repl;
4709 	page_t *targ;
4710 	page_t *pl = NULL;
4711 	uint_t ppattr;
4712 	pfn_t   pfn, repl_pfn;
4713 	uint_t	szc;
4714 	spgcnt_t npgs, i;
4715 	int repl_contig = 0;
4716 	uint_t flags = 0;
4717 	spgcnt_t dofree = 0;
4718 
4719 	*nrelocp = 0;
4720 
4721 #if defined(__sparc)
4722 	/*
4723 	 * We need to wait till OBP has completed
4724 	 * its boot-time handoff of its resources to the kernel
4725 	 * before we allow page relocation
4726 	 */
4727 	if (page_relocate_ready == 0) {
4728 		return (EAGAIN);
4729 	}
4730 #endif
4731 
4732 	/*
4733 	 * If this is not a base page,
4734 	 * just return with 0x0 pages relocated.
4735 	 */
4736 	targ = *target;
4737 	ASSERT(PAGE_EXCL(targ));
4738 	ASSERT(!PP_ISFREE(targ));
4739 	szc = targ->p_szc;
4740 	ASSERT(szc < mmu_page_sizes);
4741 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4742 	pfn = targ->p_pagenum;
4743 	if (pfn != PFN_BASE(pfn, szc)) {
4744 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4745 		return (ERANGE);
4746 	}
4747 
4748 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4749 		repl_pfn = repl->p_pagenum;
4750 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4751 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4752 			return (ERANGE);
4753 		}
4754 		repl_contig = 1;
4755 	}
4756 
4757 	/*
4758 	 * We must lock all members of this large page or we cannot
4759 	 * relocate any part of it.
4760 	 */
4761 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4762 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4763 		return (EBUSY);
4764 	}
4765 
4766 	/*
4767 	 * reread szc it could have been decreased before
4768 	 * group_page_trylock() was done.
4769 	 */
4770 	szc = targ->p_szc;
4771 	ASSERT(szc < mmu_page_sizes);
4772 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4773 	ASSERT(pfn == PFN_BASE(pfn, szc));
4774 
4775 	npgs = page_get_pagecnt(targ->p_szc);
4776 
4777 	if (repl == NULL) {
4778 		dofree = npgs;		/* Size of target page in MMU pages */
4779 		if (!page_create_wait(dofree, 0)) {
4780 			if (grouplock != 0) {
4781 				group_page_unlock(targ);
4782 			}
4783 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4784 			return (ENOMEM);
4785 		}
4786 
4787 		/*
4788 		 * seg kmem pages require that the target and replacement
4789 		 * page be the same pagesize.
4790 		 */
4791 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4792 		repl = page_get_replacement_page(targ, lgrp, flags);
4793 		if (repl == NULL) {
4794 			if (grouplock != 0) {
4795 				group_page_unlock(targ);
4796 			}
4797 			page_create_putback(dofree);
4798 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4799 			return (ENOMEM);
4800 		}
4801 	}
4802 #ifdef DEBUG
4803 	else {
4804 		ASSERT(PAGE_LOCKED(repl));
4805 	}
4806 #endif /* DEBUG */
4807 
4808 #if defined(__sparc)
4809 	/*
4810 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4811 	 */
4812 	if (VN_ISKAS(targ->p_vnode)) {
4813 		*replacement = repl;
4814 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4815 			if (grouplock != 0) {
4816 				group_page_unlock(targ);
4817 			}
4818 			if (dofree) {
4819 				*replacement = NULL;
4820 				page_free_replacement_page(repl);
4821 				page_create_putback(dofree);
4822 			}
4823 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4824 			return (EAGAIN);
4825 		}
4826 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4827 		return (0);
4828 	}
4829 #else
4830 #if defined(lint)
4831 	dofree = dofree;
4832 #endif
4833 #endif
4834 
4835 	first_repl = repl;
4836 
4837 	for (i = 0; i < npgs; i++) {
4838 		ASSERT(PAGE_EXCL(targ));
4839 		ASSERT(targ->p_slckcnt == 0);
4840 		ASSERT(repl->p_slckcnt == 0);
4841 
4842 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4843 
4844 		ASSERT(hat_page_getshare(targ) == 0);
4845 		ASSERT(!PP_ISFREE(targ));
4846 		ASSERT(targ->p_pagenum == (pfn + i));
4847 		ASSERT(repl_contig == 0 ||
4848 		    repl->p_pagenum == (repl_pfn + i));
4849 
4850 		/*
4851 		 * Copy the page contents and attributes then
4852 		 * relocate the page in the page hash.
4853 		 */
4854 		if (ppcopy(targ, repl) == 0) {
4855 			targ = *target;
4856 			repl = first_repl;
4857 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4858 			if (grouplock != 0) {
4859 				group_page_unlock(targ);
4860 			}
4861 			if (dofree) {
4862 				*replacement = NULL;
4863 				page_free_replacement_page(repl);
4864 				page_create_putback(dofree);
4865 			}
4866 			return (EIO);
4867 		}
4868 
4869 		targ++;
4870 		if (repl_contig != 0) {
4871 			repl++;
4872 		} else {
4873 			repl = repl->p_next;
4874 		}
4875 	}
4876 
4877 	repl = first_repl;
4878 	targ = *target;
4879 
4880 	for (i = 0; i < npgs; i++) {
4881 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
4882 		page_clr_all_props(repl, 0);
4883 		page_set_props(repl, ppattr);
4884 		page_relocate_hash(repl, targ);
4885 
4886 		ASSERT(hat_page_getshare(targ) == 0);
4887 		ASSERT(hat_page_getshare(repl) == 0);
4888 		/*
4889 		 * Now clear the props on targ, after the
4890 		 * page_relocate_hash(), they no longer
4891 		 * have any meaning.
4892 		 */
4893 		page_clr_all_props(targ, 0);
4894 		ASSERT(targ->p_next == targ);
4895 		ASSERT(targ->p_prev == targ);
4896 		page_list_concat(&pl, &targ);
4897 
4898 		targ++;
4899 		if (repl_contig != 0) {
4900 			repl++;
4901 		} else {
4902 			repl = repl->p_next;
4903 		}
4904 	}
4905 	/* assert that we have come full circle with repl */
4906 	ASSERT(repl_contig == 1 || first_repl == repl);
4907 
4908 	*target = pl;
4909 	if (*replacement == NULL) {
4910 		ASSERT(first_repl == repl);
4911 		*replacement = repl;
4912 	}
4913 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4914 	*nrelocp = npgs;
4915 	return (0);
4916 }
4917 /*
4918  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
4919  */
4920 int
4921 page_relocate(
4922 	page_t **target,
4923 	page_t **replacement,
4924 	int grouplock,
4925 	int freetarget,
4926 	spgcnt_t *nrelocp,
4927 	lgrp_t *lgrp)
4928 {
4929 	spgcnt_t ret;
4930 
4931 	/* do_page_relocate returns 0 on success or errno value */
4932 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
4933 
4934 	if (ret != 0 || freetarget == 0) {
4935 		return (ret);
4936 	}
4937 	if (*nrelocp == 1) {
4938 		ASSERT(*target != NULL);
4939 		page_free(*target, 1);
4940 	} else {
4941 		page_t *tpp = *target;
4942 		uint_t szc = tpp->p_szc;
4943 		pgcnt_t npgs = page_get_pagecnt(szc);
4944 		ASSERT(npgs > 1);
4945 		ASSERT(szc != 0);
4946 		do {
4947 			ASSERT(PAGE_EXCL(tpp));
4948 			ASSERT(!hat_page_is_mapped(tpp));
4949 			ASSERT(tpp->p_szc == szc);
4950 			PP_SETFREE(tpp);
4951 			PP_SETAGED(tpp);
4952 			npgs--;
4953 		} while ((tpp = tpp->p_next) != *target);
4954 		ASSERT(npgs == 0);
4955 		page_list_add_pages(*target, 0);
4956 		npgs = page_get_pagecnt(szc);
4957 		page_create_putback(npgs);
4958 	}
4959 	return (ret);
4960 }
4961 
4962 /*
4963  * it is up to the caller to deal with pcf accounting.
4964  */
4965 void
4966 page_free_replacement_page(page_t *pplist)
4967 {
4968 	page_t *pp;
4969 
4970 	while (pplist != NULL) {
4971 		/*
4972 		 * pp_targ is a linked list.
4973 		 */
4974 		pp = pplist;
4975 		if (pp->p_szc == 0) {
4976 			page_sub(&pplist, pp);
4977 			page_clr_all_props(pp, 0);
4978 			PP_SETFREE(pp);
4979 			PP_SETAGED(pp);
4980 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
4981 			page_unlock(pp);
4982 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
4983 		} else {
4984 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
4985 			page_t *tpp;
4986 			page_list_break(&pp, &pplist, curnpgs);
4987 			tpp = pp;
4988 			do {
4989 				ASSERT(PAGE_EXCL(tpp));
4990 				ASSERT(!hat_page_is_mapped(tpp));
4991 				page_clr_all_props(tpp, 0);
4992 				PP_SETFREE(tpp);
4993 				PP_SETAGED(tpp);
4994 			} while ((tpp = tpp->p_next) != pp);
4995 			page_list_add_pages(pp, 0);
4996 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
4997 		}
4998 	}
4999 }
5000 
5001 /*
5002  * Relocate target to non-relocatable replacement page.
5003  */
5004 int
5005 page_relocate_cage(page_t **target, page_t **replacement)
5006 {
5007 	page_t *tpp, *rpp;
5008 	spgcnt_t pgcnt, npgs;
5009 	int result;
5010 
5011 	tpp = *target;
5012 
5013 	ASSERT(PAGE_EXCL(tpp));
5014 	ASSERT(tpp->p_szc == 0);
5015 
5016 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5017 
5018 	do {
5019 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5020 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5021 		if (rpp == NULL) {
5022 			page_create_putback(pgcnt);
5023 			kcage_cageout_wakeup();
5024 		}
5025 	} while (rpp == NULL);
5026 
5027 	ASSERT(PP_ISNORELOC(rpp));
5028 
5029 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5030 
5031 	if (result == 0) {
5032 		*replacement = rpp;
5033 		if (pgcnt != npgs)
5034 			panic("page_relocate_cage: partial relocation");
5035 	}
5036 
5037 	return (result);
5038 }
5039 
5040 /*
5041  * Release the page lock on a page, place on cachelist
5042  * tail if no longer mapped. Caller can let us know if
5043  * the page is known to be clean.
5044  */
5045 int
5046 page_release(page_t *pp, int checkmod)
5047 {
5048 	int status;
5049 
5050 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5051 	    (pp->p_vnode != NULL));
5052 
5053 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5054 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5055 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5056 	    !hat_page_is_mapped(pp)) {
5057 
5058 		/*
5059 		 * If page is modified, unlock it
5060 		 *
5061 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5062 		 * (1) We found that this page doesn't have any mappings
5063 		 *	_after_ holding SE_EXCL and
5064 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5065 		 */
5066 		if (checkmod && hat_ismod(pp)) {
5067 			page_unlock(pp);
5068 			status = PGREL_MOD;
5069 		} else {
5070 			/*LINTED: constant in conditional context*/
5071 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5072 			status = PGREL_CLEAN;
5073 		}
5074 	} else {
5075 		page_unlock(pp);
5076 		status = PGREL_NOTREL;
5077 	}
5078 	return (status);
5079 }
5080 
5081 /*
5082  * Given a constituent page, try to demote the large page on the freelist.
5083  *
5084  * Returns nonzero if the page could be demoted successfully. Returns with
5085  * the constituent page still locked.
5086  */
5087 int
5088 page_try_demote_free_pages(page_t *pp)
5089 {
5090 	page_t *rootpp = pp;
5091 	pfn_t	pfn = page_pptonum(pp);
5092 	spgcnt_t npgs;
5093 	uint_t	szc = pp->p_szc;
5094 
5095 	ASSERT(PP_ISFREE(pp));
5096 	ASSERT(PAGE_EXCL(pp));
5097 
5098 	/*
5099 	 * Adjust rootpp and lock it, if `pp' is not the base
5100 	 * constituent page.
5101 	 */
5102 	npgs = page_get_pagecnt(pp->p_szc);
5103 	if (npgs == 1) {
5104 		return (0);
5105 	}
5106 
5107 	if (!IS_P2ALIGNED(pfn, npgs)) {
5108 		pfn = P2ALIGN(pfn, npgs);
5109 		rootpp = page_numtopp_nolock(pfn);
5110 	}
5111 
5112 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5113 		return (0);
5114 	}
5115 
5116 	if (rootpp->p_szc != szc) {
5117 		if (pp != rootpp)
5118 			page_unlock(rootpp);
5119 		return (0);
5120 	}
5121 
5122 	page_demote_free_pages(rootpp);
5123 
5124 	if (pp != rootpp)
5125 		page_unlock(rootpp);
5126 
5127 	ASSERT(PP_ISFREE(pp));
5128 	ASSERT(PAGE_EXCL(pp));
5129 	return (1);
5130 }
5131 
5132 /*
5133  * Given a constituent page, try to demote the large page.
5134  *
5135  * Returns nonzero if the page could be demoted successfully. Returns with
5136  * the constituent page still locked.
5137  */
5138 int
5139 page_try_demote_pages(page_t *pp)
5140 {
5141 	page_t *tpp, *rootpp = pp;
5142 	pfn_t	pfn = page_pptonum(pp);
5143 	spgcnt_t i, npgs;
5144 	uint_t	szc = pp->p_szc;
5145 	vnode_t *vp = pp->p_vnode;
5146 
5147 	ASSERT(PAGE_EXCL(pp));
5148 
5149 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5150 
5151 	if (pp->p_szc == 0) {
5152 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5153 		return (1);
5154 	}
5155 
5156 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5157 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5158 		page_demote_vp_pages(pp);
5159 		ASSERT(pp->p_szc == 0);
5160 		return (1);
5161 	}
5162 
5163 	/*
5164 	 * Adjust rootpp if passed in is not the base
5165 	 * constituent page.
5166 	 */
5167 	npgs = page_get_pagecnt(pp->p_szc);
5168 	ASSERT(npgs > 1);
5169 	if (!IS_P2ALIGNED(pfn, npgs)) {
5170 		pfn = P2ALIGN(pfn, npgs);
5171 		rootpp = page_numtopp_nolock(pfn);
5172 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5173 		ASSERT(rootpp->p_vnode != NULL);
5174 		ASSERT(rootpp->p_szc == szc);
5175 	}
5176 
5177 	/*
5178 	 * We can't demote kernel pages since we can't hat_unload()
5179 	 * the mappings.
5180 	 */
5181 	if (VN_ISKAS(rootpp->p_vnode))
5182 		return (0);
5183 
5184 	/*
5185 	 * Attempt to lock all constituent pages except the page passed
5186 	 * in since it's already locked.
5187 	 */
5188 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5189 		ASSERT(!PP_ISFREE(tpp));
5190 		ASSERT(tpp->p_vnode != NULL);
5191 
5192 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5193 			break;
5194 		ASSERT(tpp->p_szc == rootpp->p_szc);
5195 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5196 	}
5197 
5198 	/*
5199 	 * If we failed to lock them all then unlock what we have
5200 	 * locked so far and bail.
5201 	 */
5202 	if (i < npgs) {
5203 		tpp = rootpp;
5204 		while (i-- > 0) {
5205 			if (tpp != pp)
5206 				page_unlock(tpp);
5207 			tpp++;
5208 		}
5209 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5210 		return (0);
5211 	}
5212 
5213 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5214 		ASSERT(PAGE_EXCL(tpp));
5215 		ASSERT(tpp->p_slckcnt == 0);
5216 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5217 		tpp->p_szc = 0;
5218 	}
5219 
5220 	/*
5221 	 * Unlock all pages except the page passed in.
5222 	 */
5223 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5224 		ASSERT(!hat_page_is_mapped(tpp));
5225 		if (tpp != pp)
5226 			page_unlock(tpp);
5227 	}
5228 
5229 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5230 	return (1);
5231 }
5232 
5233 /*
5234  * Called by page_free() and page_destroy() to demote the page size code
5235  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5236  * p_szc on free list, neither can we just clear p_szc of a single page_t
5237  * within a large page since it will break other code that relies on p_szc
5238  * being the same for all page_t's of a large page). Anonymous pages should
5239  * never end up here because anon_map_getpages() cannot deal with p_szc
5240  * changes after a single constituent page is locked.  While anonymous or
5241  * kernel large pages are demoted or freed the entire large page at a time
5242  * with all constituent pages locked EXCL for the file system pages we
5243  * have to be able to demote a large page (i.e. decrease all constituent pages
5244  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5245  * we can easily deal with anonymous page demotion the entire large page at a
5246  * time is that those operation originate at address space level and concern
5247  * the entire large page region with actual demotion only done when pages are
5248  * not shared with any other processes (therefore we can always get EXCL lock
5249  * on all anonymous constituent pages after clearing segment page
5250  * cache). However file system pages can be truncated or invalidated at a
5251  * PAGESIZE level from the file system side and end up in page_free() or
5252  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5253  * and therefore pageout should be able to demote a large page by EXCL locking
5254  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5255  * rely on being able to lock EXCL all constituent pages.
5256  *
5257  * To prevent szc changes on file system pages one has to lock all constituent
5258  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5259  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5260  * prevent szc changes is hat layer that uses its own page level mlist
5261  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5262  * taken. Therefore we need to change szc under hat level locks if we only
5263  * have an EXCL lock on a single constituent page and hat still references any
5264  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5265  * hat_pageunload() all constituent pages without having EXCL locks on all of
5266  * constituent pages). We use hat_page_demote() call to safely demote szc of
5267  * all constituent pages under hat locks when we only have an EXCL lock on one
5268  * of constituent pages.
5269  *
5270  * This routine calls page_szc_lock() before calling hat_page_demote() to
5271  * allow segvn in one special case not to lock all constituent pages SHARED
5272  * before calling hat_memload_array() that relies on p_szc not changing even
5273  * before hat level mlist lock is taken.  In that case segvn uses
5274  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5275  *
5276  * Anonymous or kernel page demotion still has to lock all pages exclusively
5277  * and do hat_pageunload() on all constituent pages before demoting the page
5278  * therefore there's no need for anonymous or kernel page demotion to use
5279  * hat_page_demote() mechanism.
5280  *
5281  * hat_page_demote() removes all large mappings that map pp and then decreases
5282  * p_szc starting from the last constituent page of the large page. By working
5283  * from the tail of a large page in pfn decreasing order allows one looking at
5284  * the root page to know that hat_page_demote() is done for root's szc area.
5285  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5286  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5287  * that started on this page when it had szc > 1 is done for this szc 1 area.
5288  *
5289  * We are guaranteed that all constituent pages of pp's large page belong to
5290  * the same vnode with the consecutive offsets increasing in the direction of
5291  * the pfn i.e. the identity of constituent pages can't change until their
5292  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5293  * large mappings to pp even though we don't lock any constituent page except
5294  * pp (i.e. we won't unload e.g. kernel locked page).
5295  */
5296 static void
5297 page_demote_vp_pages(page_t *pp)
5298 {
5299 	kmutex_t *mtx;
5300 
5301 	ASSERT(PAGE_EXCL(pp));
5302 	ASSERT(!PP_ISFREE(pp));
5303 	ASSERT(pp->p_vnode != NULL);
5304 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5305 	ASSERT(!PP_ISKAS(pp));
5306 
5307 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5308 
5309 	mtx = page_szc_lock(pp);
5310 	if (mtx != NULL) {
5311 		hat_page_demote(pp);
5312 		mutex_exit(mtx);
5313 	}
5314 	ASSERT(pp->p_szc == 0);
5315 }
5316 
5317 /*
5318  * Mark any existing pages for migration in the given range
5319  */
5320 void
5321 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5322     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5323     u_offset_t vnoff, int rflag)
5324 {
5325 	struct anon	*ap;
5326 	vnode_t		*curvp;
5327 	lgrp_t		*from;
5328 	pgcnt_t		i;
5329 	pgcnt_t		nlocked;
5330 	u_offset_t	off;
5331 	pfn_t		pfn;
5332 	size_t		pgsz;
5333 	size_t		segpgsz;
5334 	pgcnt_t		pages;
5335 	uint_t		pszc;
5336 	page_t		**ppa;
5337 	pgcnt_t		ppa_nentries;
5338 	page_t		*pp;
5339 	caddr_t		va;
5340 	ulong_t		an_idx;
5341 	anon_sync_obj_t	cookie;
5342 
5343 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5344 
5345 	/*
5346 	 * Don't do anything if don't need to do lgroup optimizations
5347 	 * on this system
5348 	 */
5349 	if (!lgrp_optimizations())
5350 		return;
5351 
5352 	/*
5353 	 * Align address and length to (potentially large) page boundary
5354 	 */
5355 	segpgsz = page_get_pagesize(seg->s_szc);
5356 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5357 	if (rflag)
5358 		len = P2ROUNDUP(len, segpgsz);
5359 
5360 	/*
5361 	 * Allocate page array to accommodate largest page size
5362 	 */
5363 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5364 	ppa_nentries = btop(pgsz);
5365 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5366 
5367 	/*
5368 	 * Do one (large) page at a time
5369 	 */
5370 	va = addr;
5371 	while (va < addr + len) {
5372 		/*
5373 		 * Lookup (root) page for vnode and offset corresponding to
5374 		 * this virtual address
5375 		 * Try anonmap first since there may be copy-on-write
5376 		 * pages, but initialize vnode pointer and offset using
5377 		 * vnode arguments just in case there isn't an amp.
5378 		 */
5379 		curvp = vp;
5380 		off = vnoff + va - seg->s_base;
5381 		if (amp) {
5382 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5383 			an_idx = anon_index + seg_page(seg, va);
5384 			anon_array_enter(amp, an_idx, &cookie);
5385 			ap = anon_get_ptr(amp->ahp, an_idx);
5386 			if (ap)
5387 				swap_xlate(ap, &curvp, &off);
5388 			anon_array_exit(&cookie);
5389 			ANON_LOCK_EXIT(&amp->a_rwlock);
5390 		}
5391 
5392 		pp = NULL;
5393 		if (curvp)
5394 			pp = page_lookup(curvp, off, SE_SHARED);
5395 
5396 		/*
5397 		 * If there isn't a page at this virtual address,
5398 		 * skip to next page
5399 		 */
5400 		if (pp == NULL) {
5401 			va += PAGESIZE;
5402 			continue;
5403 		}
5404 
5405 		/*
5406 		 * Figure out which lgroup this page is in for kstats
5407 		 */
5408 		pfn = page_pptonum(pp);
5409 		from = lgrp_pfn_to_lgrp(pfn);
5410 
5411 		/*
5412 		 * Get page size, and round up and skip to next page boundary
5413 		 * if unaligned address
5414 		 */
5415 		pszc = pp->p_szc;
5416 		pgsz = page_get_pagesize(pszc);
5417 		pages = btop(pgsz);
5418 		if (!IS_P2ALIGNED(va, pgsz) ||
5419 		    !IS_P2ALIGNED(pfn, pages) ||
5420 		    pgsz > segpgsz) {
5421 			pgsz = MIN(pgsz, segpgsz);
5422 			page_unlock(pp);
5423 			i = btop(P2END((uintptr_t)va, pgsz) -
5424 			    (uintptr_t)va);
5425 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5426 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5427 			continue;
5428 		}
5429 
5430 		/*
5431 		 * Upgrade to exclusive lock on page
5432 		 */
5433 		if (!page_tryupgrade(pp)) {
5434 			page_unlock(pp);
5435 			va += pgsz;
5436 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5437 			    btop(pgsz));
5438 			continue;
5439 		}
5440 
5441 		/*
5442 		 * Remember pages locked exclusively and how many
5443 		 */
5444 		ppa[0] = pp;
5445 		nlocked = 1;
5446 
5447 		/*
5448 		 * Lock constituent pages if this is large page
5449 		 */
5450 		if (pages > 1) {
5451 			/*
5452 			 * Lock all constituents except root page, since it
5453 			 * should be locked already.
5454 			 */
5455 			for (i = 1; i < pages; i++) {
5456 				pp++;
5457 				if (!page_trylock(pp, SE_EXCL)) {
5458 					break;
5459 				}
5460 				if (PP_ISFREE(pp) ||
5461 				    pp->p_szc != pszc) {
5462 					/*
5463 					 * hat_page_demote() raced in with us.
5464 					 */
5465 					ASSERT(!IS_SWAPFSVP(curvp));
5466 					page_unlock(pp);
5467 					break;
5468 				}
5469 				ppa[nlocked] = pp;
5470 				nlocked++;
5471 			}
5472 		}
5473 
5474 		/*
5475 		 * If all constituent pages couldn't be locked,
5476 		 * unlock pages locked so far and skip to next page.
5477 		 */
5478 		if (nlocked != pages) {
5479 			for (i = 0; i < nlocked; i++)
5480 				page_unlock(ppa[i]);
5481 			va += pgsz;
5482 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5483 			    btop(pgsz));
5484 			continue;
5485 		}
5486 
5487 		/*
5488 		 * hat_page_demote() can no longer happen
5489 		 * since last cons page had the right p_szc after
5490 		 * all cons pages were locked. all cons pages
5491 		 * should now have the same p_szc.
5492 		 */
5493 
5494 		/*
5495 		 * All constituent pages locked successfully, so mark
5496 		 * large page for migration and unload the mappings of
5497 		 * constituent pages, so a fault will occur on any part of the
5498 		 * large page
5499 		 */
5500 		PP_SETMIGRATE(ppa[0]);
5501 		for (i = 0; i < nlocked; i++) {
5502 			pp = ppa[i];
5503 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5504 			ASSERT(hat_page_getshare(pp) == 0);
5505 			page_unlock(pp);
5506 		}
5507 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5508 
5509 		va += pgsz;
5510 	}
5511 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5512 }
5513 
5514 /*
5515  * Migrate any pages that have been marked for migration in the given range
5516  */
5517 void
5518 page_migrate(
5519 	struct seg	*seg,
5520 	caddr_t		addr,
5521 	page_t		**ppa,
5522 	pgcnt_t		npages)
5523 {
5524 	lgrp_t		*from;
5525 	lgrp_t		*to;
5526 	page_t		*newpp;
5527 	page_t		*pp;
5528 	pfn_t		pfn;
5529 	size_t		pgsz;
5530 	spgcnt_t	page_cnt;
5531 	spgcnt_t	i;
5532 	uint_t		pszc;
5533 
5534 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5535 
5536 	while (npages > 0) {
5537 		pp = *ppa;
5538 		pszc = pp->p_szc;
5539 		pgsz = page_get_pagesize(pszc);
5540 		page_cnt = btop(pgsz);
5541 
5542 		/*
5543 		 * Check to see whether this page is marked for migration
5544 		 *
5545 		 * Assume that root page of large page is marked for
5546 		 * migration and none of the other constituent pages
5547 		 * are marked.  This really simplifies clearing the
5548 		 * migrate bit by not having to clear it from each
5549 		 * constituent page.
5550 		 *
5551 		 * note we don't want to relocate an entire large page if
5552 		 * someone is only using one subpage.
5553 		 */
5554 		if (npages < page_cnt)
5555 			break;
5556 
5557 		/*
5558 		 * Is it marked for migration?
5559 		 */
5560 		if (!PP_ISMIGRATE(pp))
5561 			goto next;
5562 
5563 		/*
5564 		 * Determine lgroups that page is being migrated between
5565 		 */
5566 		pfn = page_pptonum(pp);
5567 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5568 			break;
5569 		}
5570 		from = lgrp_pfn_to_lgrp(pfn);
5571 		to = lgrp_mem_choose(seg, addr, pgsz);
5572 
5573 		/*
5574 		 * Need to get exclusive lock's to migrate
5575 		 */
5576 		for (i = 0; i < page_cnt; i++) {
5577 			ASSERT(PAGE_LOCKED(ppa[i]));
5578 			if (page_pptonum(ppa[i]) != pfn + i ||
5579 			    ppa[i]->p_szc != pszc) {
5580 				break;
5581 			}
5582 			if (!page_tryupgrade(ppa[i])) {
5583 				lgrp_stat_add(from->lgrp_id,
5584 				    LGRP_PM_FAIL_LOCK_PGS,
5585 				    page_cnt);
5586 				break;
5587 			}
5588 
5589 			/*
5590 			 * Check to see whether we are trying to migrate
5591 			 * page to lgroup where it is allocated already.
5592 			 * If so, clear the migrate bit and skip to next
5593 			 * page.
5594 			 */
5595 			if (i == 0 && to == from) {
5596 				PP_CLRMIGRATE(ppa[0]);
5597 				page_downgrade(ppa[0]);
5598 				goto next;
5599 			}
5600 		}
5601 
5602 		/*
5603 		 * If all constituent pages couldn't be locked,
5604 		 * unlock pages locked so far and skip to next page.
5605 		 */
5606 		if (i != page_cnt) {
5607 			while (--i != -1) {
5608 				page_downgrade(ppa[i]);
5609 			}
5610 			goto next;
5611 		}
5612 
5613 		(void) page_create_wait(page_cnt, PG_WAIT);
5614 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5615 		if (newpp == NULL) {
5616 			page_create_putback(page_cnt);
5617 			for (i = 0; i < page_cnt; i++) {
5618 				page_downgrade(ppa[i]);
5619 			}
5620 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5621 			    page_cnt);
5622 			goto next;
5623 		}
5624 		ASSERT(newpp->p_szc == pszc);
5625 		/*
5626 		 * Clear migrate bit and relocate page
5627 		 */
5628 		PP_CLRMIGRATE(pp);
5629 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5630 			panic("page_migrate: page_relocate failed");
5631 		}
5632 		ASSERT(page_cnt * PAGESIZE == pgsz);
5633 
5634 		/*
5635 		 * Keep stats for number of pages migrated from and to
5636 		 * each lgroup
5637 		 */
5638 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5639 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5640 		/*
5641 		 * update the page_t array we were passed in and
5642 		 * unlink constituent pages of a large page.
5643 		 */
5644 		for (i = 0; i < page_cnt; ++i, ++pp) {
5645 			ASSERT(PAGE_EXCL(newpp));
5646 			ASSERT(newpp->p_szc == pszc);
5647 			ppa[i] = newpp;
5648 			pp = newpp;
5649 			page_sub(&newpp, pp);
5650 			page_downgrade(pp);
5651 		}
5652 		ASSERT(newpp == NULL);
5653 next:
5654 		addr += pgsz;
5655 		ppa += page_cnt;
5656 		npages -= page_cnt;
5657 	}
5658 }
5659 
5660 ulong_t mem_waiters 	= 0;
5661 ulong_t	max_count 	= 20;
5662 #define	MAX_DELAY	0x1ff
5663 
5664 /*
5665  * Check if enough memory is available to proceed.
5666  * Depending on system configuration and how much memory is
5667  * reserved for swap we need to check against two variables.
5668  * e.g. on systems with little physical swap availrmem can be
5669  * more reliable indicator of how much memory is available.
5670  * On systems with large phys swap freemem can be better indicator.
5671  * If freemem drops below threshold level don't return an error
5672  * immediately but wake up pageout to free memory and block.
5673  * This is done number of times. If pageout is not able to free
5674  * memory within certain time return an error.
5675  * The same applies for availrmem but kmem_reap is used to
5676  * free memory.
5677  */
5678 int
5679 page_mem_avail(pgcnt_t npages)
5680 {
5681 	ulong_t count;
5682 
5683 #if defined(__i386)
5684 	if (freemem > desfree + npages &&
5685 	    availrmem > swapfs_reserve + npages &&
5686 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5687 	    npages)
5688 		return (1);
5689 #else
5690 	if (freemem > desfree + npages &&
5691 	    availrmem > swapfs_reserve + npages)
5692 		return (1);
5693 #endif
5694 
5695 	count = max_count;
5696 	atomic_add_long(&mem_waiters, 1);
5697 
5698 	while (freemem < desfree + npages && --count) {
5699 		cv_signal(&proc_pageout->p_cv);
5700 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5701 			atomic_add_long(&mem_waiters, -1);
5702 			return (0);
5703 		}
5704 	}
5705 	if (count == 0) {
5706 		atomic_add_long(&mem_waiters, -1);
5707 		return (0);
5708 	}
5709 
5710 	count = max_count;
5711 	while (availrmem < swapfs_reserve + npages && --count) {
5712 		kmem_reap();
5713 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5714 			atomic_add_long(&mem_waiters, -1);
5715 			return (0);
5716 		}
5717 	}
5718 	atomic_add_long(&mem_waiters, -1);
5719 	if (count == 0)
5720 		return (0);
5721 
5722 #if defined(__i386)
5723 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5724 	    tune.t_minarmem + npages)
5725 		return (0);
5726 #endif
5727 	return (1);
5728 }
5729 
5730 #define	MAX_CNT	60	/* max num of iterations */
5731 /*
5732  * Reclaim/reserve availrmem for npages.
5733  * If there is not enough memory start reaping seg, kmem caches.
5734  * Start pageout scanner (via page_needfree()).
5735  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5736  * Note: There is no guarantee that any availrmem will be freed as
5737  * this memory typically is locked (kernel heap) or reserved for swap.
5738  * Also due to memory fragmentation kmem allocator may not be able
5739  * to free any memory (single user allocated buffer will prevent
5740  * freeing slab or a page).
5741  */
5742 int
5743 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5744 {
5745 	int	i = 0;
5746 	int	ret = 0;
5747 	pgcnt_t	deficit;
5748 	pgcnt_t old_availrmem;
5749 
5750 	mutex_enter(&freemem_lock);
5751 	old_availrmem = availrmem - 1;
5752 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5753 	    (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5754 		old_availrmem = availrmem;
5755 		deficit = tune.t_minarmem + npages + epages - availrmem;
5756 		mutex_exit(&freemem_lock);
5757 		page_needfree(deficit);
5758 		kmem_reap();
5759 		delay(hz);
5760 		page_needfree(-(spgcnt_t)deficit);
5761 		mutex_enter(&freemem_lock);
5762 	}
5763 
5764 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5765 		availrmem -= npages;
5766 		ret = 1;
5767 	}
5768 
5769 	mutex_exit(&freemem_lock);
5770 
5771 	return (ret);
5772 }
5773 
5774 /*
5775  * Search the memory segments to locate the desired page.  Within a
5776  * segment, pages increase linearly with one page structure per
5777  * physical page frame (size PAGESIZE).  The search begins
5778  * with the segment that was accessed last, to take advantage of locality.
5779  * If the hint misses, we start from the beginning of the sorted memseg list
5780  */
5781 
5782 
5783 /*
5784  * Some data structures for pfn to pp lookup.
5785  */
5786 ulong_t mhash_per_slot;
5787 struct memseg *memseg_hash[N_MEM_SLOTS];
5788 
5789 page_t *
5790 page_numtopp_nolock(pfn_t pfnum)
5791 {
5792 	struct memseg *seg;
5793 	page_t *pp;
5794 	vm_cpu_data_t *vc;
5795 
5796 	/*
5797 	 * We need to disable kernel preemption while referencing the
5798 	 * cpu_vm_data field in order to prevent us from being switched to
5799 	 * another cpu and trying to reference it after it has been freed.
5800 	 * This will keep us on cpu and prevent it from being removed while
5801 	 * we are still on it.
5802 	 */
5803 	kpreempt_disable();
5804 	vc = CPU->cpu_vm_data;
5805 	ASSERT(vc != NULL);
5806 
5807 	MEMSEG_STAT_INCR(nsearch);
5808 
5809 	/* Try last winner first */
5810 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5811 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5812 		MEMSEG_STAT_INCR(nlastwon);
5813 		pp = seg->pages + (pfnum - seg->pages_base);
5814 		if (pp->p_pagenum == pfnum) {
5815 			kpreempt_enable();
5816 			return ((page_t *)pp);
5817 		}
5818 	}
5819 
5820 	/* Else Try hash */
5821 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5822 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5823 		MEMSEG_STAT_INCR(nhashwon);
5824 		vc->vc_pnum_memseg = seg;
5825 		pp = seg->pages + (pfnum - seg->pages_base);
5826 		if (pp->p_pagenum == pfnum) {
5827 			kpreempt_enable();
5828 			return ((page_t *)pp);
5829 		}
5830 	}
5831 
5832 	/* Else Brute force */
5833 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5834 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5835 			vc->vc_pnum_memseg = seg;
5836 			pp = seg->pages + (pfnum - seg->pages_base);
5837 			kpreempt_enable();
5838 			return ((page_t *)pp);
5839 		}
5840 	}
5841 	vc->vc_pnum_memseg = NULL;
5842 	kpreempt_enable();
5843 	MEMSEG_STAT_INCR(nnotfound);
5844 	return ((page_t *)NULL);
5845 
5846 }
5847 
5848 struct memseg *
5849 page_numtomemseg_nolock(pfn_t pfnum)
5850 {
5851 	struct memseg *seg;
5852 	page_t *pp;
5853 
5854 	/* Try hash */
5855 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5856 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5857 		pp = seg->pages + (pfnum - seg->pages_base);
5858 		if (pp->p_pagenum == pfnum)
5859 			return (seg);
5860 	}
5861 
5862 	/* Else Brute force */
5863 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5864 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5865 			return (seg);
5866 		}
5867 	}
5868 	return ((struct memseg *)NULL);
5869 }
5870 
5871 /*
5872  * Given a page and a count return the page struct that is
5873  * n structs away from the current one in the global page
5874  * list.
5875  *
5876  * This function wraps to the first page upon
5877  * reaching the end of the memseg list.
5878  */
5879 page_t *
5880 page_nextn(page_t *pp, ulong_t n)
5881 {
5882 	struct memseg *seg;
5883 	page_t *ppn;
5884 	vm_cpu_data_t *vc;
5885 
5886 	/*
5887 	 * We need to disable kernel preemption while referencing the
5888 	 * cpu_vm_data field in order to prevent us from being switched to
5889 	 * another cpu and trying to reference it after it has been freed.
5890 	 * This will keep us on cpu and prevent it from being removed while
5891 	 * we are still on it.
5892 	 */
5893 	kpreempt_disable();
5894 	vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5895 
5896 	ASSERT(vc != NULL);
5897 
5898 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5899 	    (seg->pages_base == seg->pages_end) ||
5900 	    !(pp >= seg->pages && pp < seg->epages)) {
5901 
5902 		for (seg = memsegs; seg; seg = seg->next) {
5903 			if (pp >= seg->pages && pp < seg->epages)
5904 				break;
5905 		}
5906 
5907 		if (seg == NULL) {
5908 			/* Memory delete got in, return something valid. */
5909 			/* TODO: fix me. */
5910 			seg = memsegs;
5911 			pp = seg->pages;
5912 		}
5913 	}
5914 
5915 	/* check for wraparound - possible if n is large */
5916 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
5917 		n -= seg->epages - pp;
5918 		seg = seg->next;
5919 		if (seg == NULL)
5920 			seg = memsegs;
5921 		pp = seg->pages;
5922 	}
5923 	vc->vc_pnext_memseg = seg;
5924 	kpreempt_enable();
5925 	return (ppn);
5926 }
5927 
5928 /*
5929  * Initialize for a loop using page_next_scan_large().
5930  */
5931 page_t *
5932 page_next_scan_init(void **cookie)
5933 {
5934 	ASSERT(cookie != NULL);
5935 	*cookie = (void *)memsegs;
5936 	return ((page_t *)memsegs->pages);
5937 }
5938 
5939 /*
5940  * Return the next page in a scan of page_t's, assuming we want
5941  * to skip over sub-pages within larger page sizes.
5942  *
5943  * The cookie is used to keep track of the current memseg.
5944  */
5945 page_t *
5946 page_next_scan_large(
5947 	page_t		*pp,
5948 	ulong_t		*n,
5949 	void		**cookie)
5950 {
5951 	struct memseg	*seg = (struct memseg *)*cookie;
5952 	page_t		*new_pp;
5953 	ulong_t		cnt;
5954 	pfn_t		pfn;
5955 
5956 
5957 	/*
5958 	 * get the count of page_t's to skip based on the page size
5959 	 */
5960 	ASSERT(pp != NULL);
5961 	if (pp->p_szc == 0) {
5962 		cnt = 1;
5963 	} else {
5964 		pfn = page_pptonum(pp);
5965 		cnt = page_get_pagecnt(pp->p_szc);
5966 		cnt -= pfn & (cnt - 1);
5967 	}
5968 	*n += cnt;
5969 	new_pp = pp + cnt;
5970 
5971 	/*
5972 	 * Catch if we went past the end of the current memory segment. If so,
5973 	 * just move to the next segment with pages.
5974 	 */
5975 	if (new_pp >= seg->epages) {
5976 		do {
5977 			seg = seg->next;
5978 			if (seg == NULL)
5979 				seg = memsegs;
5980 		} while (seg->pages == seg->epages);
5981 		new_pp = seg->pages;
5982 		*cookie = (void *)seg;
5983 	}
5984 
5985 	return (new_pp);
5986 }
5987 
5988 
5989 /*
5990  * Returns next page in list. Note: this function wraps
5991  * to the first page in the list upon reaching the end
5992  * of the list. Callers should be aware of this fact.
5993  */
5994 
5995 /* We should change this be a #define */
5996 
5997 page_t *
5998 page_next(page_t *pp)
5999 {
6000 	return (page_nextn(pp, 1));
6001 }
6002 
6003 page_t *
6004 page_first()
6005 {
6006 	return ((page_t *)memsegs->pages);
6007 }
6008 
6009 
6010 /*
6011  * This routine is called at boot with the initial memory configuration
6012  * and when memory is added or removed.
6013  */
6014 void
6015 build_pfn_hash()
6016 {
6017 	pfn_t cur;
6018 	pgcnt_t index;
6019 	struct memseg *pseg;
6020 	int	i;
6021 
6022 	/*
6023 	 * Clear memseg_hash array.
6024 	 * Since memory add/delete is designed to operate concurrently
6025 	 * with normal operation, the hash rebuild must be able to run
6026 	 * concurrently with page_numtopp_nolock(). To support this
6027 	 * functionality, assignments to memseg_hash array members must
6028 	 * be done atomically.
6029 	 *
6030 	 * NOTE: bzero() does not currently guarantee this for kernel
6031 	 * threads, and cannot be used here.
6032 	 */
6033 	for (i = 0; i < N_MEM_SLOTS; i++)
6034 		memseg_hash[i] = NULL;
6035 
6036 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6037 
6038 	/*
6039 	 * Physmax is the last valid pfn.
6040 	 */
6041 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6042 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6043 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6044 		cur = pseg->pages_base;
6045 		do {
6046 			if (index >= N_MEM_SLOTS)
6047 				index = MEMSEG_PFN_HASH(cur);
6048 
6049 			if (memseg_hash[index] == NULL ||
6050 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6051 				memseg_hash[index] = pseg;
6052 				hat_kpm_mseghash_update(index, pseg);
6053 			}
6054 			cur += mhash_per_slot;
6055 			index++;
6056 		} while (cur < pseg->pages_end);
6057 	}
6058 }
6059 
6060 /*
6061  * Return the pagenum for the pp
6062  */
6063 pfn_t
6064 page_pptonum(page_t *pp)
6065 {
6066 	return (pp->p_pagenum);
6067 }
6068 
6069 /*
6070  * interface to the referenced and modified etc bits
6071  * in the PSM part of the page struct
6072  * when no locking is desired.
6073  */
6074 void
6075 page_set_props(page_t *pp, uint_t flags)
6076 {
6077 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6078 	pp->p_nrm |= (uchar_t)flags;
6079 }
6080 
6081 extern void mach_sync_icache_pp(page_t *);
6082 #pragma weak mach_sync_icache_pp
6083 
6084 /*
6085  * Flush I-cache if the page is being reassigned.  The hashout flag is
6086  * set when a page has been removed from a hash chain (i.e. vnode
6087  * pages). If the page stays on the hash chain there is a chance it
6088  * will be re-used, therefore there is no need to flush the
6089  * I-cache. However, if the page is being removed from a hash chain
6090  * then the page can be used for any new purpose, and the I-cache must
6091  * be flushed.
6092  */
6093 /* ARGSUSED */
6094 void
6095 page_clr_all_props(page_t *pp, int hashout)
6096 {
6097 	if (&mach_sync_icache_pp != NULL && hashout) {
6098 		mach_sync_icache_pp(pp);
6099 	}
6100 	pp->p_nrm = 0;
6101 }
6102 
6103 /*
6104  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6105  */
6106 int
6107 page_clear_lck_cow(page_t *pp, int adjust)
6108 {
6109 	int	f_amount;
6110 
6111 	ASSERT(PAGE_EXCL(pp));
6112 
6113 	/*
6114 	 * The page_struct_lock need not be acquired here since
6115 	 * we require the caller hold the page exclusively locked.
6116 	 */
6117 	f_amount = 0;
6118 	if (pp->p_lckcnt) {
6119 		f_amount = 1;
6120 		pp->p_lckcnt = 0;
6121 	}
6122 	if (pp->p_cowcnt) {
6123 		f_amount += pp->p_cowcnt;
6124 		pp->p_cowcnt = 0;
6125 	}
6126 
6127 	if (adjust && f_amount) {
6128 		mutex_enter(&freemem_lock);
6129 		availrmem += f_amount;
6130 		mutex_exit(&freemem_lock);
6131 	}
6132 
6133 	return (f_amount);
6134 }
6135 
6136 /*
6137  * The following functions is called from free_vp_pages()
6138  * for an inexact estimate of a newly free'd page...
6139  */
6140 ulong_t
6141 page_share_cnt(page_t *pp)
6142 {
6143 	return (hat_page_getshare(pp));
6144 }
6145 
6146 int
6147 page_isshared(page_t *pp)
6148 {
6149 	return (hat_page_checkshare(pp, 1));
6150 }
6151 
6152 int
6153 page_isfree(page_t *pp)
6154 {
6155 	return (PP_ISFREE(pp));
6156 }
6157 
6158 int
6159 page_isref(page_t *pp)
6160 {
6161 	return (hat_page_getattr(pp, P_REF));
6162 }
6163 
6164 int
6165 page_ismod(page_t *pp)
6166 {
6167 	return (hat_page_getattr(pp, P_MOD));
6168 }
6169 
6170 /*
6171  * The following code all currently relates to the page capture logic:
6172  *
6173  * This logic is used for cases where there is a desire to claim a certain
6174  * physical page in the system for the caller.  As it may not be possible
6175  * to capture the page immediately, the p_toxic bits are used in the page
6176  * structure to indicate that someone wants to capture this page.  When the
6177  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6178  * the page will be made.  If it is successful, the original callers callback
6179  * will be called with the page to do with it what they please.
6180  *
6181  * There is also an async thread which wakes up to attempt to capture
6182  * pages occasionally which have the capture bit set.  All of the pages which
6183  * need to be captured asynchronously have been inserted into the
6184  * page_capture_hash and thus this thread walks that hash list.  Items in the
6185  * hash have an expiration time so this thread handles that as well by removing
6186  * the item from the hash if it has expired.
6187  *
6188  * Some important things to note are:
6189  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6190  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6191  *   to set and clear this bit, and while the lock is held is the only time
6192  *   you can add or remove an entry from the hash.
6193  * - the PR_CAPTURE bit can only be set and cleared while holding the
6194  *   page_capture_hash_head.pchh_mutex
6195  * - the t_flag field of the thread struct is used with the T_CAPTURING
6196  *   flag to prevent recursion while dealing with large pages.
6197  * - pages which need to be retired never expire on the page_capture_hash.
6198  */
6199 
6200 static void page_capture_thread(void);
6201 static kthread_t *pc_thread_id;
6202 kcondvar_t pc_cv;
6203 static kmutex_t pc_thread_mutex;
6204 static clock_t pc_thread_shortwait;
6205 static clock_t pc_thread_longwait;
6206 static int pc_thread_retry;
6207 
6208 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6209 
6210 /* Note that this is a circular linked list */
6211 typedef struct page_capture_hash_bucket {
6212 	page_t *pp;
6213 	uint_t szc;
6214 	uint_t flags;
6215 	clock_t expires;	/* lbolt at which this request expires. */
6216 	void *datap;		/* Cached data passed in for callback */
6217 	struct page_capture_hash_bucket *next;
6218 	struct page_capture_hash_bucket *prev;
6219 } page_capture_hash_bucket_t;
6220 
6221 /*
6222  * Each hash bucket will have it's own mutex and two lists which are:
6223  * active (0):	represents requests which have not been processed by
6224  *		the page_capture async thread yet.
6225  * walked (1):	represents requests which have been processed by the
6226  *		page_capture async thread within it's given walk of this bucket.
6227  *
6228  * These are all needed so that we can synchronize all async page_capture
6229  * events.  When the async thread moves to a new bucket, it will append the
6230  * walked list to the active list and walk each item one at a time, moving it
6231  * from the active list to the walked list.  Thus if there is an async request
6232  * outstanding for a given page, it will always be in one of the two lists.
6233  * New requests will always be added to the active list.
6234  * If we were not able to capture a page before the request expired, we'd free
6235  * up the request structure which would indicate to page_capture that there is
6236  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6237  * possible.
6238  */
6239 typedef struct page_capture_hash_head {
6240 	kmutex_t pchh_mutex;
6241 	uint_t num_pages;
6242 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6243 } page_capture_hash_head_t;
6244 
6245 #ifdef DEBUG
6246 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6247 #else
6248 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6249 #endif
6250 
6251 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6252 
6253 /* for now use a very simple hash based upon the size of a page struct */
6254 #define	PAGE_CAPTURE_HASH(pp)	\
6255 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6256 
6257 extern pgcnt_t swapfs_minfree;
6258 
6259 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6260 
6261 /*
6262  * a callback function is required for page capture requests.
6263  */
6264 void
6265 page_capture_register_callback(uint_t index, clock_t duration,
6266     int (*cb_func)(page_t *, void *, uint_t))
6267 {
6268 	ASSERT(pc_cb[index].cb_active == 0);
6269 	ASSERT(cb_func != NULL);
6270 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6271 	pc_cb[index].duration = duration;
6272 	pc_cb[index].cb_func = cb_func;
6273 	pc_cb[index].cb_active = 1;
6274 	rw_exit(&pc_cb[index].cb_rwlock);
6275 }
6276 
6277 void
6278 page_capture_unregister_callback(uint_t index)
6279 {
6280 	int i, j;
6281 	struct page_capture_hash_bucket *bp1;
6282 	struct page_capture_hash_bucket *bp2;
6283 	struct page_capture_hash_bucket *head = NULL;
6284 	uint_t flags = (1 << index);
6285 
6286 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6287 	ASSERT(pc_cb[index].cb_active == 1);
6288 	pc_cb[index].duration = 0;	/* Paranoia */
6289 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6290 	pc_cb[index].cb_active = 0;
6291 	rw_exit(&pc_cb[index].cb_rwlock);
6292 
6293 	/*
6294 	 * Just move all the entries to a private list which we can walk
6295 	 * through without the need to hold any locks.
6296 	 * No more requests can get added to the hash lists for this consumer
6297 	 * as the cb_active field for the callback has been cleared.
6298 	 */
6299 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6300 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6301 		for (j = 0; j < 2; j++) {
6302 			bp1 = page_capture_hash[i].lists[j].next;
6303 			/* walk through all but first (sentinel) element */
6304 			while (bp1 != &page_capture_hash[i].lists[j]) {
6305 				bp2 = bp1;
6306 				if (bp2->flags & flags) {
6307 					bp1 = bp2->next;
6308 					bp1->prev = bp2->prev;
6309 					bp2->prev->next = bp1;
6310 					bp2->next = head;
6311 					head = bp2;
6312 					/*
6313 					 * Clear the PR_CAPTURE bit as we
6314 					 * hold appropriate locks here.
6315 					 */
6316 					page_clrtoxic(head->pp, PR_CAPTURE);
6317 					page_capture_hash[i].num_pages--;
6318 					continue;
6319 				}
6320 				bp1 = bp1->next;
6321 			}
6322 		}
6323 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6324 	}
6325 
6326 	while (head != NULL) {
6327 		bp1 = head;
6328 		head = head->next;
6329 		kmem_free(bp1, sizeof (*bp1));
6330 	}
6331 }
6332 
6333 
6334 /*
6335  * Find pp in the active list and move it to the walked list if it
6336  * exists.
6337  * Note that most often pp should be at the front of the active list
6338  * as it is currently used and thus there is no other sort of optimization
6339  * being done here as this is a linked list data structure.
6340  * Returns 1 on successful move or 0 if page could not be found.
6341  */
6342 static int
6343 page_capture_move_to_walked(page_t *pp)
6344 {
6345 	page_capture_hash_bucket_t *bp;
6346 	int index;
6347 
6348 	index = PAGE_CAPTURE_HASH(pp);
6349 
6350 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6351 	bp = page_capture_hash[index].lists[0].next;
6352 	while (bp != &page_capture_hash[index].lists[0]) {
6353 		if (bp->pp == pp) {
6354 			/* Remove from old list */
6355 			bp->next->prev = bp->prev;
6356 			bp->prev->next = bp->next;
6357 
6358 			/* Add to new list */
6359 			bp->next = page_capture_hash[index].lists[1].next;
6360 			bp->prev = &page_capture_hash[index].lists[1];
6361 			page_capture_hash[index].lists[1].next = bp;
6362 			bp->next->prev = bp;
6363 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6364 
6365 			return (1);
6366 		}
6367 		bp = bp->next;
6368 	}
6369 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6370 	return (0);
6371 }
6372 
6373 /*
6374  * Add a new entry to the page capture hash.  The only case where a new
6375  * entry is not added is when the page capture consumer is no longer registered.
6376  * In this case, we'll silently not add the page to the hash.  We know that
6377  * page retire will always be registered for the case where we are currently
6378  * unretiring a page and thus there are no conflicts.
6379  */
6380 static void
6381 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6382 {
6383 	page_capture_hash_bucket_t *bp1;
6384 	page_capture_hash_bucket_t *bp2;
6385 	int index;
6386 	int cb_index;
6387 	int i;
6388 #ifdef DEBUG
6389 	page_capture_hash_bucket_t *tp1;
6390 	int l;
6391 #endif
6392 
6393 	ASSERT(!(flags & CAPTURE_ASYNC));
6394 
6395 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6396 
6397 	bp1->pp = pp;
6398 	bp1->szc = szc;
6399 	bp1->flags = flags;
6400 	bp1->datap = datap;
6401 
6402 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6403 		if ((flags >> cb_index) & 1) {
6404 			break;
6405 		}
6406 	}
6407 
6408 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6409 
6410 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6411 	if (pc_cb[cb_index].cb_active) {
6412 		if (pc_cb[cb_index].duration == -1) {
6413 			bp1->expires = (clock_t)-1;
6414 		} else {
6415 			bp1->expires = lbolt + pc_cb[cb_index].duration;
6416 		}
6417 	} else {
6418 		/* There's no callback registered so don't add to the hash */
6419 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6420 		kmem_free(bp1, sizeof (*bp1));
6421 		return;
6422 	}
6423 
6424 	index = PAGE_CAPTURE_HASH(pp);
6425 
6426 	/*
6427 	 * Only allow capture flag to be modified under this mutex.
6428 	 * Prevents multiple entries for same page getting added.
6429 	 */
6430 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6431 
6432 	/*
6433 	 * if not already on the hash, set capture bit and add to the hash
6434 	 */
6435 	if (!(pp->p_toxic & PR_CAPTURE)) {
6436 #ifdef DEBUG
6437 		/* Check for duplicate entries */
6438 		for (l = 0; l < 2; l++) {
6439 			tp1 = page_capture_hash[index].lists[l].next;
6440 			while (tp1 != &page_capture_hash[index].lists[l]) {
6441 				if (tp1->pp == pp) {
6442 					panic("page pp 0x%p already on hash "
6443 					    "at 0x%p\n",
6444 					    (void *)pp, (void *)tp1);
6445 				}
6446 				tp1 = tp1->next;
6447 			}
6448 		}
6449 
6450 #endif
6451 		page_settoxic(pp, PR_CAPTURE);
6452 		bp1->next = page_capture_hash[index].lists[0].next;
6453 		bp1->prev = &page_capture_hash[index].lists[0];
6454 		bp1->next->prev = bp1;
6455 		page_capture_hash[index].lists[0].next = bp1;
6456 		page_capture_hash[index].num_pages++;
6457 		if (flags & CAPTURE_RETIRE) {
6458 			page_retire_incr_pend_count(datap);
6459 		}
6460 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6461 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6462 		cv_signal(&pc_cv);
6463 		return;
6464 	}
6465 
6466 	/*
6467 	 * A page retire request will replace any other request.
6468 	 * A second physmem request which is for a different process than
6469 	 * the currently registered one will be dropped as there is
6470 	 * no way to hold the private data for both calls.
6471 	 * In the future, once there are more callers, this will have to
6472 	 * be worked out better as there needs to be private storage for
6473 	 * at least each type of caller (maybe have datap be an array of
6474 	 * *void's so that we can index based upon callers index).
6475 	 */
6476 
6477 	/* walk hash list to update expire time */
6478 	for (i = 0; i < 2; i++) {
6479 		bp2 = page_capture_hash[index].lists[i].next;
6480 		while (bp2 != &page_capture_hash[index].lists[i]) {
6481 			if (bp2->pp == pp) {
6482 				if (flags & CAPTURE_RETIRE) {
6483 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6484 						page_retire_incr_pend_count(
6485 						    datap);
6486 						bp2->flags = flags;
6487 						bp2->expires = bp1->expires;
6488 						bp2->datap = datap;
6489 					}
6490 				} else {
6491 					ASSERT(flags & CAPTURE_PHYSMEM);
6492 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6493 					    (datap == bp2->datap)) {
6494 						bp2->expires = bp1->expires;
6495 					}
6496 				}
6497 				mutex_exit(&page_capture_hash[index].
6498 				    pchh_mutex);
6499 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6500 				kmem_free(bp1, sizeof (*bp1));
6501 				return;
6502 			}
6503 			bp2 = bp2->next;
6504 		}
6505 	}
6506 
6507 	/*
6508 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6509 	 * and thus it either has to be set or not set and can't change
6510 	 * while holding the mutex above.
6511 	 */
6512 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
6513 	    (void *)pp);
6514 }
6515 
6516 /*
6517  * We have a page in our hands, lets try and make it ours by turning
6518  * it into a clean page like it had just come off the freelists.
6519  *
6520  * Returns 0 on success, with the page still EXCL locked.
6521  * On failure, the page will be unlocked, and returns EAGAIN
6522  */
6523 static int
6524 page_capture_clean_page(page_t *pp)
6525 {
6526 	page_t *newpp;
6527 	int skip_unlock = 0;
6528 	spgcnt_t count;
6529 	page_t *tpp;
6530 	int ret = 0;
6531 	int extra;
6532 
6533 	ASSERT(PAGE_EXCL(pp));
6534 	ASSERT(!PP_RETIRED(pp));
6535 	ASSERT(curthread->t_flag & T_CAPTURING);
6536 
6537 	if (PP_ISFREE(pp)) {
6538 		if (!page_reclaim(pp, NULL)) {
6539 			skip_unlock = 1;
6540 			ret = EAGAIN;
6541 			goto cleanup;
6542 		}
6543 		ASSERT(pp->p_szc == 0);
6544 		if (pp->p_vnode != NULL) {
6545 			/*
6546 			 * Since this page came from the
6547 			 * cachelist, we must destroy the
6548 			 * old vnode association.
6549 			 */
6550 			page_hashout(pp, NULL);
6551 		}
6552 		goto cleanup;
6553 	}
6554 
6555 	/*
6556 	 * If we know page_relocate will fail, skip it
6557 	 * It could still fail due to a UE on another page but we
6558 	 * can't do anything about that.
6559 	 */
6560 	if (pp->p_toxic & PR_UE) {
6561 		goto skip_relocate;
6562 	}
6563 
6564 	/*
6565 	 * It's possible that pages can not have a vnode as fsflush comes
6566 	 * through and cleans up these pages.  It's ugly but that's how it is.
6567 	 */
6568 	if (pp->p_vnode == NULL) {
6569 		goto skip_relocate;
6570 	}
6571 
6572 	/*
6573 	 * Page was not free, so lets try to relocate it.
6574 	 * page_relocate only works with root pages, so if this is not a root
6575 	 * page, we need to demote it to try and relocate it.
6576 	 * Unfortunately this is the best we can do right now.
6577 	 */
6578 	newpp = NULL;
6579 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6580 		if (page_try_demote_pages(pp) == 0) {
6581 			ret = EAGAIN;
6582 			goto cleanup;
6583 		}
6584 	}
6585 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6586 	if (ret == 0) {
6587 		page_t *npp;
6588 		/* unlock the new page(s) */
6589 		while (count-- > 0) {
6590 			ASSERT(newpp != NULL);
6591 			npp = newpp;
6592 			page_sub(&newpp, npp);
6593 			page_unlock(npp);
6594 		}
6595 		ASSERT(newpp == NULL);
6596 		/*
6597 		 * Check to see if the page we have is too large.
6598 		 * If so, demote it freeing up the extra pages.
6599 		 */
6600 		if (pp->p_szc > 0) {
6601 			/* For now demote extra pages to szc == 0 */
6602 			extra = page_get_pagecnt(pp->p_szc) - 1;
6603 			while (extra > 0) {
6604 				tpp = pp->p_next;
6605 				page_sub(&pp, tpp);
6606 				tpp->p_szc = 0;
6607 				page_free(tpp, 1);
6608 				extra--;
6609 			}
6610 			/* Make sure to set our page to szc 0 as well */
6611 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6612 			pp->p_szc = 0;
6613 		}
6614 		goto cleanup;
6615 	} else if (ret == EIO) {
6616 		ret = EAGAIN;
6617 		goto cleanup;
6618 	} else {
6619 		/*
6620 		 * Need to reset return type as we failed to relocate the page
6621 		 * but that does not mean that some of the next steps will not
6622 		 * work.
6623 		 */
6624 		ret = 0;
6625 	}
6626 
6627 skip_relocate:
6628 
6629 	if (pp->p_szc > 0) {
6630 		if (page_try_demote_pages(pp) == 0) {
6631 			ret = EAGAIN;
6632 			goto cleanup;
6633 		}
6634 	}
6635 
6636 	ASSERT(pp->p_szc == 0);
6637 
6638 	if (hat_ismod(pp)) {
6639 		ret = EAGAIN;
6640 		goto cleanup;
6641 	}
6642 	if (PP_ISKAS(pp)) {
6643 		ret = EAGAIN;
6644 		goto cleanup;
6645 	}
6646 	if (pp->p_lckcnt || pp->p_cowcnt) {
6647 		ret = EAGAIN;
6648 		goto cleanup;
6649 	}
6650 
6651 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6652 	ASSERT(!hat_page_is_mapped(pp));
6653 
6654 	if (hat_ismod(pp)) {
6655 		/*
6656 		 * This is a semi-odd case as the page is now modified but not
6657 		 * mapped as we just unloaded the mappings above.
6658 		 */
6659 		ret = EAGAIN;
6660 		goto cleanup;
6661 	}
6662 	if (pp->p_vnode != NULL) {
6663 		page_hashout(pp, NULL);
6664 	}
6665 
6666 	/*
6667 	 * At this point, the page should be in a clean state and
6668 	 * we can do whatever we want with it.
6669 	 */
6670 
6671 cleanup:
6672 	if (ret != 0) {
6673 		if (!skip_unlock) {
6674 			page_unlock(pp);
6675 		}
6676 	} else {
6677 		ASSERT(pp->p_szc == 0);
6678 		ASSERT(PAGE_EXCL(pp));
6679 
6680 		pp->p_next = pp;
6681 		pp->p_prev = pp;
6682 	}
6683 	return (ret);
6684 }
6685 
6686 /*
6687  * Various callers of page_trycapture() can have different restrictions upon
6688  * what memory they have access to.
6689  * Returns 0 on success, with the following error codes on failure:
6690  *      EPERM - The requested page is long term locked, and thus repeated
6691  *              requests to capture this page will likely fail.
6692  *      ENOMEM - There was not enough free memory in the system to safely
6693  *              map the requested page.
6694  *      ENOENT - The requested page was inside the kernel cage, and the
6695  *              PHYSMEM_CAGE flag was not set.
6696  */
6697 int
6698 page_capture_pre_checks(page_t *pp, uint_t flags)
6699 {
6700 #if defined(__sparc)
6701 	extern struct vnode prom_ppages;
6702 #endif /* __sparc */
6703 
6704 	ASSERT(pp != NULL);
6705 
6706 #if defined(__sparc)
6707 	if (pp->p_vnode == &prom_ppages) {
6708 		return (EPERM);
6709 	}
6710 
6711 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6712 	    (flags & CAPTURE_PHYSMEM)) {
6713 		return (ENOENT);
6714 	}
6715 
6716 	if (PP_ISNORELOCKERNEL(pp)) {
6717 		return (EPERM);
6718 	}
6719 #else
6720 	if (PP_ISKAS(pp)) {
6721 		return (EPERM);
6722 	}
6723 #endif /* __sparc */
6724 
6725 	/* only physmem currently has the restrictions checked below */
6726 	if (!(flags & CAPTURE_PHYSMEM)) {
6727 		return (0);
6728 	}
6729 
6730 	if (availrmem < swapfs_minfree) {
6731 		/*
6732 		 * We won't try to capture this page as we are
6733 		 * running low on memory.
6734 		 */
6735 		return (ENOMEM);
6736 	}
6737 	return (0);
6738 }
6739 
6740 /*
6741  * Once we have a page in our mits, go ahead and complete the capture
6742  * operation.
6743  * Returns 1 on failure where page is no longer needed
6744  * Returns 0 on success
6745  * Returns -1 if there was a transient failure.
6746  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6747  */
6748 int
6749 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6750 {
6751 	int cb_index;
6752 	int ret = 0;
6753 	page_capture_hash_bucket_t *bp1;
6754 	page_capture_hash_bucket_t *bp2;
6755 	int index;
6756 	int found = 0;
6757 	int i;
6758 
6759 	ASSERT(PAGE_EXCL(pp));
6760 	ASSERT(curthread->t_flag & T_CAPTURING);
6761 
6762 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6763 		if ((flags >> cb_index) & 1) {
6764 			break;
6765 		}
6766 	}
6767 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6768 
6769 	/*
6770 	 * Remove the entry from the page_capture hash, but don't free it yet
6771 	 * as we may need to put it back.
6772 	 * Since we own the page at this point in time, we should find it
6773 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6774 	 * that the page_capture_async() thread decided that this request
6775 	 * had expired, in which case we just continue on.
6776 	 */
6777 	if (flags & CAPTURE_ASYNC) {
6778 
6779 		index = PAGE_CAPTURE_HASH(pp);
6780 
6781 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6782 		for (i = 0; i < 2 && !found; i++) {
6783 			bp1 = page_capture_hash[index].lists[i].next;
6784 			while (bp1 != &page_capture_hash[index].lists[i]) {
6785 				if (bp1->pp == pp) {
6786 					bp1->next->prev = bp1->prev;
6787 					bp1->prev->next = bp1->next;
6788 					page_capture_hash[index].num_pages--;
6789 					page_clrtoxic(pp, PR_CAPTURE);
6790 					found = 1;
6791 					break;
6792 				}
6793 				bp1 = bp1->next;
6794 			}
6795 		}
6796 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6797 	}
6798 
6799 	/* Synchronize with the unregister func. */
6800 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6801 	if (!pc_cb[cb_index].cb_active) {
6802 		page_free(pp, 1);
6803 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6804 		if (found) {
6805 			kmem_free(bp1, sizeof (*bp1));
6806 		}
6807 		return (1);
6808 	}
6809 
6810 	/*
6811 	 * We need to remove the entry from the page capture hash and turn off
6812 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6813 	 * the entry here, and then based upon the return value, cleanup
6814 	 * appropriately or re-add it to the hash, making sure that someone else
6815 	 * hasn't already done so.
6816 	 * It should be rare for the callback to fail and thus it's ok for
6817 	 * the failure path to be a bit complicated as the success path is
6818 	 * cleaner and the locking rules are easier to follow.
6819 	 */
6820 
6821 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6822 
6823 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6824 
6825 	/*
6826 	 * If this was an ASYNC request, we need to cleanup the hash if the
6827 	 * callback was successful or if the request was no longer valid.
6828 	 * For non-ASYNC requests, we return failure to map and the caller
6829 	 * will take care of adding the request to the hash.
6830 	 * Note also that the callback itself is responsible for the page
6831 	 * at this point in time in terms of locking ...  The most common
6832 	 * case for the failure path should just be a page_free.
6833 	 */
6834 	if (ret >= 0) {
6835 		if (found) {
6836 			if (bp1->flags & CAPTURE_RETIRE) {
6837 				page_retire_decr_pend_count(datap);
6838 			}
6839 			kmem_free(bp1, sizeof (*bp1));
6840 		}
6841 		return (ret);
6842 	}
6843 	if (!found) {
6844 		return (ret);
6845 	}
6846 
6847 	ASSERT(flags & CAPTURE_ASYNC);
6848 
6849 	/*
6850 	 * Check for expiration time first as we can just free it up if it's
6851 	 * expired.
6852 	 */
6853 	if (lbolt > bp1->expires && bp1->expires != -1) {
6854 		kmem_free(bp1, sizeof (*bp1));
6855 		return (ret);
6856 	}
6857 
6858 	/*
6859 	 * The callback failed and there used to be an entry in the hash for
6860 	 * this page, so we need to add it back to the hash.
6861 	 */
6862 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6863 	if (!(pp->p_toxic & PR_CAPTURE)) {
6864 		/* just add bp1 back to head of walked list */
6865 		page_settoxic(pp, PR_CAPTURE);
6866 		bp1->next = page_capture_hash[index].lists[1].next;
6867 		bp1->prev = &page_capture_hash[index].lists[1];
6868 		bp1->next->prev = bp1;
6869 		page_capture_hash[index].lists[1].next = bp1;
6870 		page_capture_hash[index].num_pages++;
6871 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6872 		return (ret);
6873 	}
6874 
6875 	/*
6876 	 * Otherwise there was a new capture request added to list
6877 	 * Need to make sure that our original data is represented if
6878 	 * appropriate.
6879 	 */
6880 	for (i = 0; i < 2; i++) {
6881 		bp2 = page_capture_hash[index].lists[i].next;
6882 		while (bp2 != &page_capture_hash[index].lists[i]) {
6883 			if (bp2->pp == pp) {
6884 				if (bp1->flags & CAPTURE_RETIRE) {
6885 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6886 						bp2->szc = bp1->szc;
6887 						bp2->flags = bp1->flags;
6888 						bp2->expires = bp1->expires;
6889 						bp2->datap = bp1->datap;
6890 					}
6891 				} else {
6892 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6893 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6894 						bp2->szc = bp1->szc;
6895 						bp2->flags = bp1->flags;
6896 						bp2->expires = bp1->expires;
6897 						bp2->datap = bp1->datap;
6898 					}
6899 				}
6900 				mutex_exit(&page_capture_hash[index].
6901 				    pchh_mutex);
6902 				kmem_free(bp1, sizeof (*bp1));
6903 				return (ret);
6904 			}
6905 			bp2 = bp2->next;
6906 		}
6907 	}
6908 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
6909 	/*NOTREACHED*/
6910 }
6911 
6912 /*
6913  * Try to capture the given page for the caller specified in the flags
6914  * parameter.  The page will either be captured and handed over to the
6915  * appropriate callback, or will be queued up in the page capture hash
6916  * to be captured asynchronously.
6917  * If the current request is due to an async capture, the page must be
6918  * exclusively locked before calling this function.
6919  * Currently szc must be 0 but in the future this should be expandable to
6920  * other page sizes.
6921  * Returns 0 on success, with the following error codes on failure:
6922  *      EPERM - The requested page is long term locked, and thus repeated
6923  *              requests to capture this page will likely fail.
6924  *      ENOMEM - There was not enough free memory in the system to safely
6925  *              map the requested page.
6926  *      ENOENT - The requested page was inside the kernel cage, and the
6927  *              CAPTURE_GET_CAGE flag was not set.
6928  *	EAGAIN - The requested page could not be capturead at this point in
6929  *		time but future requests will likely work.
6930  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
6931  *		was not set.
6932  */
6933 int
6934 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
6935 {
6936 	int ret;
6937 	int cb_index;
6938 
6939 	if (flags & CAPTURE_ASYNC) {
6940 		ASSERT(PAGE_EXCL(pp));
6941 		goto async;
6942 	}
6943 
6944 	/* Make sure there's enough availrmem ... */
6945 	ret = page_capture_pre_checks(pp, flags);
6946 	if (ret != 0) {
6947 		return (ret);
6948 	}
6949 
6950 	if (!page_trylock(pp, SE_EXCL)) {
6951 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6952 			if ((flags >> cb_index) & 1) {
6953 				break;
6954 			}
6955 		}
6956 		ASSERT(cb_index < PC_NUM_CALLBACKS);
6957 		ret = EAGAIN;
6958 		/* Special case for retired pages */
6959 		if (PP_RETIRED(pp)) {
6960 			if (flags & CAPTURE_GET_RETIRED) {
6961 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
6962 					/*
6963 					 * Need to set capture bit and add to
6964 					 * hash so that the page will be
6965 					 * retired when freed.
6966 					 */
6967 					page_capture_add_hash(pp, szc,
6968 					    CAPTURE_RETIRE, NULL);
6969 					ret = 0;
6970 					goto own_page;
6971 				}
6972 			} else {
6973 				return (EBUSY);
6974 			}
6975 		}
6976 		page_capture_add_hash(pp, szc, flags, datap);
6977 		return (ret);
6978 	}
6979 
6980 async:
6981 	ASSERT(PAGE_EXCL(pp));
6982 
6983 	/* Need to check for physmem async requests that availrmem is sane */
6984 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
6985 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
6986 	    (availrmem < swapfs_minfree)) {
6987 		page_unlock(pp);
6988 		return (ENOMEM);
6989 	}
6990 
6991 	ret = page_capture_clean_page(pp);
6992 
6993 	if (ret != 0) {
6994 		/* We failed to get the page, so lets add it to the hash */
6995 		if (!(flags & CAPTURE_ASYNC)) {
6996 			page_capture_add_hash(pp, szc, flags, datap);
6997 		}
6998 		return (ret);
6999 	}
7000 
7001 own_page:
7002 	ASSERT(PAGE_EXCL(pp));
7003 	ASSERT(pp->p_szc == 0);
7004 
7005 	/* Call the callback */
7006 	ret = page_capture_take_action(pp, flags, datap);
7007 
7008 	if (ret == 0) {
7009 		return (0);
7010 	}
7011 
7012 	/*
7013 	 * Note that in the failure cases from page_capture_take_action, the
7014 	 * EXCL lock will have already been dropped.
7015 	 */
7016 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7017 		page_capture_add_hash(pp, szc, flags, datap);
7018 	}
7019 	return (EAGAIN);
7020 }
7021 
7022 int
7023 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7024 {
7025 	int ret;
7026 
7027 	curthread->t_flag |= T_CAPTURING;
7028 	ret = page_itrycapture(pp, szc, flags, datap);
7029 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7030 	return (ret);
7031 }
7032 
7033 /*
7034  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7035  * gets called to try and capture the page.
7036  */
7037 void
7038 page_unlock_capture(page_t *pp)
7039 {
7040 	page_capture_hash_bucket_t *bp;
7041 	int index;
7042 	int i;
7043 	uint_t szc;
7044 	uint_t flags = 0;
7045 	void *datap;
7046 	kmutex_t *mp;
7047 	extern vnode_t retired_pages;
7048 
7049 	/*
7050 	 * We need to protect against a possible deadlock here where we own
7051 	 * the vnode page hash mutex and want to acquire it again as there
7052 	 * are locations in the code, where we unlock a page while holding
7053 	 * the mutex which can lead to the page being captured and eventually
7054 	 * end up here.  As we may be hashing out the old page and hashing into
7055 	 * the retire vnode, we need to make sure we don't own them.
7056 	 * Other callbacks who do hash operations also need to make sure that
7057 	 * before they hashin to a vnode that they do not currently own the
7058 	 * vphm mutex otherwise there will be a panic.
7059 	 */
7060 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7061 		page_unlock_nocapture(pp);
7062 		return;
7063 	}
7064 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7065 		page_unlock_nocapture(pp);
7066 		return;
7067 	}
7068 
7069 	index = PAGE_CAPTURE_HASH(pp);
7070 
7071 	mp = &page_capture_hash[index].pchh_mutex;
7072 	mutex_enter(mp);
7073 	for (i = 0; i < 2; i++) {
7074 		bp = page_capture_hash[index].lists[i].next;
7075 		while (bp != &page_capture_hash[index].lists[i]) {
7076 			if (bp->pp == pp) {
7077 				szc = bp->szc;
7078 				flags = bp->flags | CAPTURE_ASYNC;
7079 				datap = bp->datap;
7080 				mutex_exit(mp);
7081 				(void) page_trycapture(pp, szc, flags, datap);
7082 				return;
7083 			}
7084 			bp = bp->next;
7085 		}
7086 	}
7087 
7088 	/* Failed to find page in hash so clear flags and unlock it. */
7089 	page_clrtoxic(pp, PR_CAPTURE);
7090 	page_unlock(pp);
7091 
7092 	mutex_exit(mp);
7093 }
7094 
7095 void
7096 page_capture_init()
7097 {
7098 	int i;
7099 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7100 		page_capture_hash[i].lists[0].next =
7101 		    &page_capture_hash[i].lists[0];
7102 		page_capture_hash[i].lists[0].prev =
7103 		    &page_capture_hash[i].lists[0];
7104 		page_capture_hash[i].lists[1].next =
7105 		    &page_capture_hash[i].lists[1];
7106 		page_capture_hash[i].lists[1].prev =
7107 		    &page_capture_hash[i].lists[1];
7108 	}
7109 
7110 	pc_thread_shortwait = 23 * hz;
7111 	pc_thread_longwait = 1201 * hz;
7112 	pc_thread_retry = 3;
7113 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7114 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7115 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7116 	    TS_RUN, minclsyspri);
7117 }
7118 
7119 /*
7120  * It is necessary to scrub any failing pages prior to reboot in order to
7121  * prevent a latent error trap from occurring on the next boot.
7122  */
7123 void
7124 page_retire_mdboot()
7125 {
7126 	page_t *pp;
7127 	int i, j;
7128 	page_capture_hash_bucket_t *bp;
7129 
7130 	/* walk lists looking for pages to scrub */
7131 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7132 		if (page_capture_hash[i].num_pages == 0)
7133 			continue;
7134 
7135 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7136 
7137 		for (j = 0; j < 2; j++) {
7138 			bp = page_capture_hash[i].lists[j].next;
7139 			while (bp != &page_capture_hash[i].lists[j]) {
7140 				pp = bp->pp;
7141 				if (PP_TOXIC(pp)) {
7142 					if (page_trylock(pp, SE_EXCL)) {
7143 						PP_CLRFREE(pp);
7144 						pagescrub(pp, 0, PAGESIZE);
7145 						page_unlock(pp);
7146 					}
7147 				}
7148 				bp = bp->next;
7149 			}
7150 		}
7151 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7152 	}
7153 }
7154 
7155 /*
7156  * Walk the page_capture_hash trying to capture pages and also cleanup old
7157  * entries which have expired.
7158  */
7159 void
7160 page_capture_async()
7161 {
7162 	page_t *pp;
7163 	int i;
7164 	int ret;
7165 	page_capture_hash_bucket_t *bp1, *bp2;
7166 	uint_t szc;
7167 	uint_t flags;
7168 	void *datap;
7169 
7170 	/* If there are outstanding pages to be captured, get to work */
7171 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7172 		if (page_capture_hash[i].num_pages == 0)
7173 			continue;
7174 		/* Append list 1 to list 0 and then walk through list 0 */
7175 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7176 		bp1 = &page_capture_hash[i].lists[1];
7177 		bp2 = bp1->next;
7178 		if (bp1 != bp2) {
7179 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7180 			bp2->prev = &page_capture_hash[i].lists[0];
7181 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7182 			page_capture_hash[i].lists[0].next = bp2;
7183 			bp1->next = bp1;
7184 			bp1->prev = bp1;
7185 		}
7186 
7187 		/* list[1] will be empty now */
7188 
7189 		bp1 = page_capture_hash[i].lists[0].next;
7190 		while (bp1 != &page_capture_hash[i].lists[0]) {
7191 			/* Check expiration time */
7192 			if ((lbolt > bp1->expires && bp1->expires != -1) ||
7193 			    page_deleted(bp1->pp)) {
7194 				page_capture_hash[i].lists[0].next = bp1->next;
7195 				bp1->next->prev =
7196 				    &page_capture_hash[i].lists[0];
7197 				page_capture_hash[i].num_pages--;
7198 
7199 				/*
7200 				 * We can safely remove the PR_CAPTURE bit
7201 				 * without holding the EXCL lock on the page
7202 				 * as the PR_CAPTURE bit requres that the
7203 				 * page_capture_hash[].pchh_mutex be held
7204 				 * to modify it.
7205 				 */
7206 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7207 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7208 				kmem_free(bp1, sizeof (*bp1));
7209 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7210 				bp1 = page_capture_hash[i].lists[0].next;
7211 				continue;
7212 			}
7213 			pp = bp1->pp;
7214 			szc = bp1->szc;
7215 			flags = bp1->flags;
7216 			datap = bp1->datap;
7217 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7218 			if (page_trylock(pp, SE_EXCL)) {
7219 				ret = page_trycapture(pp, szc,
7220 				    flags | CAPTURE_ASYNC, datap);
7221 			} else {
7222 				ret = 1;	/* move to walked hash */
7223 			}
7224 
7225 			if (ret != 0) {
7226 				/* Move to walked hash */
7227 				(void) page_capture_move_to_walked(pp);
7228 			}
7229 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7230 			bp1 = page_capture_hash[i].lists[0].next;
7231 		}
7232 
7233 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7234 	}
7235 }
7236 
7237 /*
7238  * This function is called by the page_capture_thread, and is needed in
7239  * in order to initiate aio cleanup, so that pages used in aio
7240  * will be unlocked and subsequently retired by page_capture_thread.
7241  */
7242 static int
7243 do_aio_cleanup(void)
7244 {
7245 	proc_t *procp;
7246 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7247 	int cleaned = 0;
7248 
7249 	if (modload("sys", "kaio") == -1) {
7250 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7251 		return (0);
7252 	}
7253 	/*
7254 	 * We use the aio_cleanup_dr_delete_memory function to
7255 	 * initiate the actual clean up; this function will wake
7256 	 * up the per-process aio_cleanup_thread.
7257 	 */
7258 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7259 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7260 	if (aio_cleanup_dr_delete_memory == NULL) {
7261 		cmn_err(CE_WARN,
7262 	    "aio_cleanup_dr_delete_memory not found in kaio");
7263 		return (0);
7264 	}
7265 	mutex_enter(&pidlock);
7266 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7267 		mutex_enter(&procp->p_lock);
7268 		if (procp->p_aio != NULL) {
7269 			/* cleanup proc's outstanding kaio */
7270 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7271 		}
7272 		mutex_exit(&procp->p_lock);
7273 	}
7274 	mutex_exit(&pidlock);
7275 	return (cleaned);
7276 }
7277 
7278 /*
7279  * helper function for page_capture_thread
7280  */
7281 static void
7282 page_capture_handle_outstanding(void)
7283 {
7284 	int ntry;
7285 
7286 	/* Reap pages before attempting capture pages */
7287 	kmem_reap();
7288 
7289 	if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
7290 	    hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
7291 		/*
7292 		 * Note: Purging only for platforms that support
7293 		 * ISM hat_pageunload() - mainly SPARC. On x86/x64
7294 		 * platforms ISM pages SE_SHARED locked until destroyed.
7295 		 */
7296 
7297 		/* disable and purge seg_pcache */
7298 		(void) seg_p_disable();
7299 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7300 			if (!page_retire_pend_count())
7301 				break;
7302 			if (do_aio_cleanup()) {
7303 				/*
7304 				 * allow the apps cleanup threads
7305 				 * to run
7306 				 */
7307 				delay(pc_thread_shortwait);
7308 			}
7309 			page_capture_async();
7310 		}
7311 		/* reenable seg_pcache */
7312 		seg_p_enable();
7313 
7314 		/* completed what can be done.  break out */
7315 		return;
7316 	}
7317 
7318 	/*
7319 	 * For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
7320 	 * and then attempt to capture.
7321 	 */
7322 	seg_preap();
7323 	page_capture_async();
7324 }
7325 
7326 /*
7327  * The page_capture_thread loops forever, looking to see if there are
7328  * pages still waiting to be captured.
7329  */
7330 static void
7331 page_capture_thread(void)
7332 {
7333 	callb_cpr_t c;
7334 	int outstanding;
7335 	int i;
7336 
7337 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7338 
7339 	mutex_enter(&pc_thread_mutex);
7340 	for (;;) {
7341 		outstanding = 0;
7342 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++)
7343 			outstanding += page_capture_hash[i].num_pages;
7344 		if (outstanding) {
7345 			page_capture_handle_outstanding();
7346 			CALLB_CPR_SAFE_BEGIN(&c);
7347 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7348 			    lbolt + pc_thread_shortwait);
7349 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7350 		} else {
7351 			CALLB_CPR_SAFE_BEGIN(&c);
7352 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7353 			    lbolt + pc_thread_longwait);
7354 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7355 		}
7356 	}
7357 	/*NOTREACHED*/
7358 }
7359 /*
7360  * Attempt to locate a bucket that has enough pages to satisfy the request.
7361  * The initial check is done without the lock to avoid unneeded contention.
7362  * The function returns 1 if enough pages were found, else 0 if it could not
7363  * find enough pages in a bucket.
7364  */
7365 static int
7366 pcf_decrement_bucket(pgcnt_t npages)
7367 {
7368 	struct pcf	*p;
7369 	struct pcf	*q;
7370 	int i;
7371 
7372 	p = &pcf[PCF_INDEX()];
7373 	q = &pcf[pcf_fanout];
7374 	for (i = 0; i < pcf_fanout; i++) {
7375 		if (p->pcf_count > npages) {
7376 			/*
7377 			 * a good one to try.
7378 			 */
7379 			mutex_enter(&p->pcf_lock);
7380 			if (p->pcf_count > npages) {
7381 				p->pcf_count -= (uint_t)npages;
7382 				/*
7383 				 * freemem is not protected by any lock.
7384 				 * Thus, we cannot have any assertion
7385 				 * containing freemem here.
7386 				 */
7387 				freemem -= npages;
7388 				mutex_exit(&p->pcf_lock);
7389 				return (1);
7390 			}
7391 			mutex_exit(&p->pcf_lock);
7392 		}
7393 		p++;
7394 		if (p >= q) {
7395 			p = pcf;
7396 		}
7397 	}
7398 	return (0);
7399 }
7400 
7401 /*
7402  * Arguments:
7403  *	pcftotal_ret:	If the value is not NULL and we have walked all the
7404  *			buckets but did not find enough pages then it will
7405  *			be set to the total number of pages in all the pcf
7406  *			buckets.
7407  *	npages:		Is the number of pages we have been requested to
7408  *			find.
7409  *	unlock:		If set to 0 we will leave the buckets locked if the
7410  *			requested number of pages are not found.
7411  *
7412  * Go and try to satisfy the page request  from any number of buckets.
7413  * This can be a very expensive operation as we have to lock the buckets
7414  * we are checking (and keep them locked), starting at bucket 0.
7415  *
7416  * The function returns 1 if enough pages were found, else 0 if it could not
7417  * find enough pages in the buckets.
7418  *
7419  */
7420 static int
7421 pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
7422 {
7423 	struct pcf	*p;
7424 	pgcnt_t pcftotal;
7425 	int i;
7426 
7427 	p = pcf;
7428 	/* try to collect pages from several pcf bins */
7429 	for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
7430 		mutex_enter(&p->pcf_lock);
7431 		pcftotal += p->pcf_count;
7432 		if (pcftotal >= npages) {
7433 			/*
7434 			 * Wow!  There are enough pages laying around
7435 			 * to satisfy the request.  Do the accounting,
7436 			 * drop the locks we acquired, and go back.
7437 			 *
7438 			 * freemem is not protected by any lock. So,
7439 			 * we cannot have any assertion containing
7440 			 * freemem.
7441 			 */
7442 			freemem -= npages;
7443 			while (p >= pcf) {
7444 				if (p->pcf_count <= npages) {
7445 					npages -= p->pcf_count;
7446 					p->pcf_count = 0;
7447 				} else {
7448 					p->pcf_count -= (uint_t)npages;
7449 					npages = 0;
7450 				}
7451 				mutex_exit(&p->pcf_lock);
7452 				p--;
7453 			}
7454 			ASSERT(npages == 0);
7455 			return (1);
7456 		}
7457 		p++;
7458 	}
7459 	if (unlock) {
7460 		/* failed to collect pages - release the locks */
7461 		while (--p >= pcf) {
7462 			mutex_exit(&p->pcf_lock);
7463 		}
7464 	}
7465 	if (pcftotal_ret != NULL)
7466 		*pcftotal_ret = pcftotal;
7467 	return (0);
7468 }
7469