1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
24  * Copyright 2016 Joyent, Inc.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  */
27 
28 #ifndef _SYS_DDI_IMPLDEFS_H
29 #define	_SYS_DDI_IMPLDEFS_H
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/t_lock.h>
34 #include <sys/ddipropdefs.h>
35 #include <sys/devops.h>
36 #include <sys/autoconf.h>
37 #include <sys/mutex.h>
38 #include <vm/page.h>
39 #include <sys/dacf_impl.h>
40 #include <sys/ndifm.h>
41 #include <sys/epm.h>
42 #include <sys/ddidmareq.h>
43 #include <sys/ddi_intr.h>
44 #include <sys/ddi_hp.h>
45 #include <sys/ddi_hp_impl.h>
46 #include <sys/ddi_isa.h>
47 #include <sys/id_space.h>
48 #include <sys/modhash.h>
49 #include <sys/bitset.h>
50 
51 #ifdef	__cplusplus
52 extern "C" {
53 #endif
54 
55 /*
56  * The device id implementation has been switched to be based on properties.
57  * For compatibility with di_devid libdevinfo interface the following
58  * must be defined:
59  */
60 #define	DEVID_COMPATIBILITY	((ddi_devid_t)-1)
61 
62 /*
63  * Definitions for node class.
64  * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
65  * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
66  */
67 typedef enum {
68 	DDI_NC_PROM = 0,
69 	DDI_NC_PSEUDO
70 } ddi_node_class_t;
71 
72 /*
73  * Definitions for generic callback mechanism.
74  */
75 typedef enum {
76 	DDI_CB_INTR_ADD,		/* More available interrupts */
77 	DDI_CB_INTR_REMOVE		/* Fewer available interrupts */
78 } ddi_cb_action_t;
79 
80 typedef enum {
81 	DDI_CB_FLAG_INTR = 0x1		/* Driver is IRM aware */
82 } ddi_cb_flags_t;
83 
84 #define	DDI_CB_FLAG_VALID(f)	((f) & DDI_CB_FLAG_INTR)
85 
86 typedef int	(*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
87 		    void *cbarg, void *arg1, void *arg2);
88 
89 typedef struct ddi_cb {
90 	uint64_t	cb_flags;
91 	dev_info_t	*cb_dip;
92 	ddi_cb_func_t	cb_func;
93 	void		*cb_arg1;
94 	void		*cb_arg2;
95 } ddi_cb_t;
96 
97 /*
98  * dev_info:	The main device information structure this is intended to be
99  *		opaque to drivers and drivers should use ddi functions to
100  *		access *all* driver accessible fields.
101  *
102  * devi_parent_data includes property lists (interrupts, registers, etc.)
103  * devi_driver_data includes whatever the driver wants to place there.
104  */
105 struct devinfo_audit;
106 
107 typedef struct devi_port {
108 	union {
109 		struct {
110 			uint32_t type;
111 			uint32_t pad;
112 		} port;
113 		uint64_t type64;
114 	} info;
115 	void	*priv_p;
116 } devi_port_t;
117 
118 typedef struct devi_bus_priv {
119 	devi_port_t port_up;
120 	devi_port_t port_down;
121 } devi_bus_priv_t;
122 
123 #if defined(__x86)
124 struct iommulib_unit;
125 typedef struct iommulib_unit *iommulib_handle_t;
126 struct iommulib_nex;
127 typedef struct iommulib_nex *iommulib_nexhandle_t;
128 #endif
129 
130 typedef uint8_t	ndi_flavor_t;
131 struct ddi_hp_cn_handle;
132 
133 struct in_node;
134 
135 struct dev_info  {
136 
137 	struct dev_info *devi_parent;	/* my parent node in tree	*/
138 	struct dev_info *devi_child;	/* my child list head		*/
139 	struct dev_info *devi_sibling;	/* next element on my level	*/
140 
141 	char	*devi_binding_name;	/* name used to bind driver:	*/
142 					/* shared storage, points to	*/
143 					/* devi_node_name, devi_compat_names */
144 					/* or devi_rebinding_name	*/
145 
146 	char	*devi_addr;		/* address part of name		*/
147 
148 	int	devi_nodeid;		/* device nodeid		*/
149 	int	devi_instance;		/* device instance number	*/
150 
151 	struct dev_ops *devi_ops;	/* driver operations		*/
152 
153 	void	*devi_parent_data;	/* parent private data		*/
154 	void	*devi_driver_data;	/* driver private data		*/
155 
156 	ddi_prop_t *devi_drv_prop_ptr;	/* head of driver prop list */
157 	ddi_prop_t *devi_sys_prop_ptr;	/* head of system prop list */
158 
159 	struct ddi_minor_data *devi_minor;	/* head of minor list */
160 	struct dev_info *devi_next;	/* Next instance of this device */
161 	kmutex_t devi_lock;		/* Protects per-devinfo data */
162 
163 	/* logical parents for busop primitives */
164 
165 	struct dev_info *devi_bus_map_fault;	/* bus_map_fault parent	 */
166 	void		*devi_obsolete;		/* obsolete placeholder */
167 	struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
168 	struct dev_info *devi_bus_dma_freehdl;  /* bus_dma_freehdl parent */
169 	struct dev_info *devi_bus_dma_bindhdl;  /* bus_dma_bindhdl parent */
170 	struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
171 	struct dev_info *devi_bus_dma_flush;    /* bus_dma_flush parent	 */
172 	struct dev_info *devi_bus_dma_win;	/* bus_dma_win parent	 */
173 	struct dev_info *devi_bus_dma_ctl;	/* bus_dma_ctl parent	 */
174 	struct dev_info	*devi_bus_ctl;		/* bus_ctl parent	 */
175 
176 	ddi_prop_t *devi_hw_prop_ptr;		/* head of hw prop list */
177 
178 	char	*devi_node_name;		/* The 'name' of the node */
179 	char	*devi_compat_names;		/* A list of driver names */
180 	size_t	devi_compat_length;		/* Size of compat_names */
181 
182 	int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
183 	    ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
184 	    uint_t *);
185 	int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
186 	    ddi_dma_handle_t);
187 
188 	char		*devi_devid_str;	/* registered device id */
189 
190 	/*
191 	 * power management entries
192 	 * components exist even if the device is not currently power managed
193 	 */
194 	struct pm_info *devi_pm_info;		/* 0 => dev not power managed */
195 	uint_t		devi_pm_flags;		/* pm flags */
196 	int		devi_pm_num_components;	/* number of components */
197 	size_t		devi_pm_comp_size;	/* size of devi_components */
198 	struct pm_component *devi_pm_components; /* array of pm components */
199 	struct dev_info *devi_pm_ppm;		/* ppm attached to this one */
200 	void		*devi_pm_ppm_private;	/* for use by ppm driver */
201 	int		devi_pm_dev_thresh;	/* "device" threshold */
202 	uint_t		devi_pm_kidsupcnt;	/* # of kids powered up */
203 	struct pm_scan	*devi_pm_scan;		/* pm scan info */
204 	uint_t		devi_pm_noinvolpm;	/* # of descendents no-invol */
205 	uint_t		devi_pm_volpmd;		/* # of voluntarily pm'ed */
206 	kmutex_t	devi_pm_lock;		/* pm lock for state */
207 	kmutex_t	devi_pm_busy_lock;	/* for component busy count */
208 
209 	uint_t		devi_state;		/* device/bus state flags */
210 						/* see below for definitions */
211 	kcondvar_t	devi_cv;		/* cv */
212 	int		devi_ref;		/* reference count */
213 
214 	dacf_rsrvlist_t *devi_dacf_tasks;	/* dacf reservation queue */
215 
216 	ddi_node_class_t devi_node_class;	/* Node class */
217 	int		devi_node_attributes;	/* Node attributes: See below */
218 
219 	char		*devi_device_class;
220 
221 	/*
222 	 * New mpxio kernel hooks entries
223 	 */
224 	int		devi_mdi_component;	/* mpxio component type */
225 	void		*devi_mdi_client;	/* mpxio client information */
226 	void		*devi_mdi_xhci;		/* vhci/phci info */
227 
228 	ddi_prop_list_t	*devi_global_prop_list;	/* driver global properties */
229 	major_t		devi_major;		/* driver major number */
230 	ddi_node_state_t devi_node_state;	/* state of node */
231 	uint_t		devi_flags;		/* configuration flags */
232 	int		devi_circular;		/* for recursive operations */
233 	void		*devi_busy_thread;	/* thread operating on node */
234 	void		*devi_taskq;		/* hotplug taskq */
235 
236 	/* device driver statistical and audit info */
237 	struct devinfo_audit *devi_audit;		/* last state change */
238 
239 	/*
240 	 * FMA support for resource caches and error handlers
241 	 */
242 	struct i_ddi_fmhdl	*devi_fmhdl;
243 
244 	uint_t		devi_cpr_flags;
245 
246 	/* Owned by DDI interrupt framework */
247 	devinfo_intr_t	*devi_intr_p;
248 
249 	void		*devi_nex_pm;		/* nexus PM private */
250 
251 	char		*devi_addr_buf;		/* buffer for devi_addr */
252 
253 	char		*devi_rebinding_name;	/* binding_name of rebind */
254 
255 	/* For device contracts that have this dip's minor node as resource */
256 	kmutex_t	devi_ct_lock;		/* contract lock */
257 	kcondvar_t	devi_ct_cv;		/* contract cv */
258 	int		devi_ct_count;		/* # of outstanding responses */
259 	int		devi_ct_neg;		/* neg. occurred on dip */
260 	list_t		devi_ct;
261 
262 	/* owned by bus framework */
263 	devi_bus_priv_t	devi_bus;		/* bus private data */
264 
265 	/* Declarations of the pure dynamic properties to snapshot */
266 	struct i_ddi_prop_dyn	*devi_prop_dyn_driver;	/* prop_op */
267 	struct i_ddi_prop_dyn	*devi_prop_dyn_parent;	/* bus_prop_op */
268 
269 #if defined(__x86)
270 	/* For x86 (Intel and AMD) IOMMU support */
271 	void		*devi_iommu;
272 	iommulib_handle_t	devi_iommulib_handle;
273 	iommulib_nexhandle_t	devi_iommulib_nex_handle;
274 #endif
275 
276 	/* Generic callback mechanism */
277 	ddi_cb_t	*devi_cb_p;
278 
279 	/* ndi 'flavors' */
280 	ndi_flavor_t	devi_flavor;		/* flavor assigned by parent */
281 	ndi_flavor_t	devi_flavorv_n;		/* number of child-flavors */
282 	void		**devi_flavorv;		/* child-flavor specific data */
283 
284 	/* Owned by hotplug framework */
285 	struct ddi_hp_cn_handle *devi_hp_hdlp;   /* hotplug handle list */
286 
287 	struct in_node  *devi_in_node; /* pointer to devinfo node's in_node_t */
288 
289 	/* detach event data */
290 	char	*devi_ev_path;
291 	int	devi_ev_instance;
292 
293 	/*
294 	 * Unbind callback data.
295 	 */
296 	kmutex_t	devi_unbind_lock;
297 	list_t		devi_unbind_cbs;
298 };
299 
300 #define	DEVI(dev_info_type)	((struct dev_info *)(dev_info_type))
301 
302 /*
303  * NB: The 'name' field, for compatibility with old code (both existing
304  * device drivers and userland code), is now defined as the name used
305  * to bind the node to a device driver, and not the device node name.
306  * If the device node name does not define a binding to a device driver,
307  * and the framework uses a different algorithm to create the binding to
308  * the driver, the node name and binding name will be different.
309  *
310  * Note that this implies that the node name plus instance number does
311  * NOT create a unique driver id; only the binding name plus instance
312  * number creates a unique driver id.
313  *
314  * New code should not use 'devi_name'; use 'devi_binding_name' or
315  * 'devi_node_name' and/or the routines that access those fields.
316  */
317 
318 #define	devi_name devi_binding_name
319 
320 /*
321  * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
322  * around to allow legacy drivers to to compile.
323  */
324 #define	DDI_CF1(devi)		(DEVI(devi)->devi_addr != NULL)
325 #define	DDI_CF2(devi)		(DEVI(devi)->devi_ops != NULL)
326 #define	DDI_DRV_UNLOADED(devi)	(DEVI(devi)->devi_ops == &mod_nodev_ops)
327 
328 /*
329  * The device state flags (devi_state) contains information regarding
330  * the state of the device (Online/Offline/Down).  For bus nexus
331  * devices, the device state also contains state information regarding
332  * the state of the bus represented by this nexus node.
333  *
334  * Device state information is stored in bits [0-7], bus state in bits
335  * [8-15].
336  *
337  * NOTE: all devi_state updates should be protected by devi_lock.
338  */
339 #define	DEVI_DEVICE_OFFLINE	0x00000001
340 #define	DEVI_DEVICE_DOWN	0x00000002
341 #define	DEVI_DEVICE_DEGRADED	0x00000004
342 #define	DEVI_DEVICE_REMOVED	0x00000008 /* hardware removed */
343 
344 #define	DEVI_BUS_QUIESCED	0x00000100
345 #define	DEVI_BUS_DOWN		0x00000200
346 #define	DEVI_NDI_CONFIG		0x00000400 /* perform config when attaching */
347 
348 #define	DEVI_S_ATTACHING	0x00010000
349 #define	DEVI_S_DETACHING	0x00020000
350 #define	DEVI_S_ONLINING		0x00040000
351 #define	DEVI_S_OFFLINING	0x00080000
352 
353 #define	DEVI_S_INVOKING_DACF	0x00100000 /* busy invoking a dacf task */
354 
355 #define	DEVI_S_UNBOUND		0x00200000
356 #define	DEVI_S_REPORT		0x08000000 /* report status change */
357 
358 #define	DEVI_S_EVADD		0x10000000 /* state of devfs event */
359 #define	DEVI_S_EVREMOVE		0x20000000 /* state of devfs event */
360 #define	DEVI_S_NEED_RESET	0x40000000 /* devo_reset should be called */
361 
362 /*
363  * Device state macros.
364  * o All SET/CLR/DONE users must protect context with devi_lock.
365  * o DEVI_SET_DEVICE_ONLINE users must do their own DEVI_SET_REPORT.
366  * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
367  * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
368  */
369 #define	DEVI_IS_DEVICE_OFFLINE(dip)					\
370 	((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
371 
372 #define	DEVI_SET_DEVICE_ONLINE(dip)	{				\
373 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
374 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
375 		mutex_exit(&DEVI(dip)->devi_lock);			\
376 		e_ddi_undegrade_finalize(dip);				\
377 		mutex_enter(&DEVI(dip)->devi_lock);			\
378 	}								\
379 	/* setting ONLINE clears DOWN, DEGRADED, OFFLINE */		\
380 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN |			\
381 	    DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE);		\
382 	}
383 
384 #define	DEVI_SET_DEVICE_OFFLINE(dip)	{				\
385 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
386 	DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT);	\
387 	}
388 
389 #define	DEVI_IS_DEVICE_DOWN(dip)					\
390 	((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
391 
392 #define	DEVI_SET_DEVICE_DOWN(dip)	{				\
393 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
394 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
395 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT);	\
396 	}
397 
398 #define	DEVI_IS_DEVICE_DEGRADED(dip)					\
399 	((DEVI(dip)->devi_state &					\
400 	    (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
401 
402 #define	DEVI_SET_DEVICE_DEGRADED(dip)	{				\
403 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
404 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
405 	mutex_exit(&DEVI(dip)->devi_lock);				\
406 	e_ddi_degrade_finalize(dip);					\
407 	mutex_enter(&DEVI(dip)->devi_lock);				\
408 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
409 	}
410 
411 #define	DEVI_SET_DEVICE_UP(dip)		{				\
412 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
413 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
414 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
415 		mutex_exit(&DEVI(dip)->devi_lock);			\
416 		e_ddi_undegrade_finalize(dip);				\
417 		mutex_enter(&DEVI(dip)->devi_lock);			\
418 	}								\
419 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
420 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
421 	}
422 
423 /* Device removal and insertion */
424 #define	DEVI_IS_DEVICE_REMOVED(dip)					\
425 	((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
426 
427 #define	DEVI_SET_DEVICE_REMOVED(dip)	{				\
428 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
429 	DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT;	\
430 	}
431 
432 #define	DEVI_SET_DEVICE_REINSERTED(dip)	{				\
433 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
434 	DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED;			\
435 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
436 	}
437 
438 /* Bus state change macros */
439 #define	DEVI_IS_BUS_QUIESCED(dip)					\
440 	((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
441 
442 #define	DEVI_SET_BUS_ACTIVE(dip)	{				\
443 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
444 	DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED;			\
445 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
446 	}
447 
448 #define	DEVI_SET_BUS_QUIESCE(dip)	{				\
449 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
450 	DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT);	\
451 	}
452 
453 #define	DEVI_IS_BUS_DOWN(dip)						\
454 	((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
455 
456 #define	DEVI_SET_BUS_UP(dip)		{				\
457 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
458 	DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN;			\
459 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
460 	}
461 
462 #define	DEVI_SET_BUS_DOWN(dip)		{				\
463 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
464 	DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT);	\
465 	}
466 
467 /* Status change report needed */
468 #define	DEVI_NEED_REPORT(dip)						\
469 	((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
470 
471 #define	DEVI_SET_REPORT(dip)		{				\
472 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
473 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
474 	}
475 
476 #define	DEVI_REPORT_DONE(dip)		{				\
477 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
478 	DEVI(dip)->devi_state &= ~DEVI_S_REPORT;			\
479 	}
480 
481 /* Do an NDI_CONFIG for its children */
482 #define	DEVI_NEED_NDI_CONFIG(dip)					\
483 	((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
484 
485 #define	DEVI_SET_NDI_CONFIG(dip)	{				\
486 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
487 	DEVI(dip)->devi_state |= DEVI_NDI_CONFIG;			\
488 	}
489 
490 #define	DEVI_CLR_NDI_CONFIG(dip)	{				\
491 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
492 	DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG;			\
493 	}
494 
495 /* Attaching or detaching state */
496 #define	DEVI_IS_ATTACHING(dip)						\
497 	((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
498 
499 #define	DEVI_SET_ATTACHING(dip)		{				\
500 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
501 	DEVI(dip)->devi_state |= DEVI_S_ATTACHING;			\
502 	}
503 
504 #define	DEVI_CLR_ATTACHING(dip)		{				\
505 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
506 	DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING;			\
507 	}
508 
509 #define	DEVI_IS_DETACHING(dip)						\
510 	((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
511 
512 #define	DEVI_SET_DETACHING(dip)		{				\
513 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
514 	DEVI(dip)->devi_state |= DEVI_S_DETACHING;			\
515 	}
516 
517 #define	DEVI_CLR_DETACHING(dip)		{				\
518 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
519 	DEVI(dip)->devi_state &= ~DEVI_S_DETACHING;			\
520 	}
521 
522 /* Onlining or offlining state */
523 #define	DEVI_IS_ONLINING(dip)						\
524 	((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
525 
526 #define	DEVI_SET_ONLINING(dip)		{				\
527 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
528 	DEVI(dip)->devi_state |= DEVI_S_ONLINING;			\
529 	}
530 
531 #define	DEVI_CLR_ONLINING(dip)		{				\
532 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
533 	DEVI(dip)->devi_state &= ~DEVI_S_ONLINING;			\
534 	}
535 
536 #define	DEVI_IS_OFFLINING(dip)						\
537 	((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
538 
539 #define	DEVI_SET_OFFLINING(dip)		{				\
540 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
541 	DEVI(dip)->devi_state |= DEVI_S_OFFLINING;			\
542 	}
543 
544 #define	DEVI_CLR_OFFLINING(dip)		{				\
545 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
546 	DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING;			\
547 	}
548 
549 #define	DEVI_IS_IN_RECONFIG(dip)					\
550 	(DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
551 
552 /* Busy invoking a dacf task against this node */
553 #define	DEVI_IS_INVOKING_DACF(dip)					\
554 	((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
555 
556 #define	DEVI_SET_INVOKING_DACF(dip)	{				\
557 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
558 	DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF;			\
559 	}
560 
561 #define	DEVI_CLR_INVOKING_DACF(dip)	{				\
562 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
563 	DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF;			\
564 	}
565 
566 /* Events for add/remove */
567 #define	DEVI_EVADD(dip)							\
568 	((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
569 
570 #define	DEVI_SET_EVADD(dip)		{				\
571 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
572 	DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE;			\
573 	DEVI(dip)->devi_state |= DEVI_S_EVADD;				\
574 	}
575 
576 #define	DEVI_EVREMOVE(dip)						\
577 	((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
578 
579 #define	DEVI_SET_EVREMOVE(dip)		{				\
580 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
581 	DEVI(dip)->devi_state &= ~DEVI_S_EVADD;				\
582 	DEVI(dip)->devi_state |= DEVI_S_EVREMOVE;			\
583 	}
584 
585 #define	DEVI_SET_EVUNINIT(dip)		{				\
586 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
587 	DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE);	\
588 	}
589 
590 /* Need to call the devo_reset entry point for this device at shutdown */
591 #define	DEVI_NEED_RESET(dip)						\
592 	((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
593 
594 #define	DEVI_SET_NEED_RESET(dip)	{				\
595 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
596 	DEVI(dip)->devi_state |= DEVI_S_NEED_RESET;			\
597 	}
598 
599 #define	DEVI_CLR_NEED_RESET(dip)	{				\
600 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
601 	DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET;			\
602 	}
603 
604 /*
605  * devi_flags bits
606  *
607  * NOTE: all devi_state updates should be protected by devi_lock.
608  */
609 #define	DEVI_BUSY		0x00000001 /* busy configuring children */
610 #define	DEVI_MADE_CHILDREN	0x00000002 /* children made from specs */
611 #define	DEVI_ATTACHED_CHILDREN	0x00000004 /* attached all existing children */
612 #define	DEVI_BRANCH_HELD	0x00000008 /* branch rooted at this dip held */
613 #define	DEVI_NO_BIND		0x00000010 /* prevent driver binding */
614 #define	DEVI_CACHED_DEVID	0x00000020 /* devid cached in devid cache */
615 #define	DEVI_PHCI_SIGNALS_VHCI	0x00000040 /* pHCI ndi_devi_exit signals vHCI */
616 #define	DEVI_REBIND		0x00000080 /* post initchild driver rebind */
617 #define	DEVI_RETIRED		0x00000100 /* device is retired */
618 #define	DEVI_RETIRING		0x00000200 /* being evaluated for retire */
619 #define	DEVI_R_CONSTRAINT	0x00000400 /* constraints have been applied  */
620 #define	DEVI_R_BLOCKED		0x00000800 /* constraints block retire  */
621 #define	DEVI_CT_NOP		0x00001000 /* NOP contract event occurred */
622 #define	DEVI_PCI_DEVICE		0x00002000 /* dip is PCI */
623 
624 #define	DEVI_BUSY_CHANGING(dip)	(DEVI(dip)->devi_flags & DEVI_BUSY)
625 #define	DEVI_BUSY_OWNED(dip)	(DEVI_BUSY_CHANGING(dip) &&	\
626 	((DEVI(dip))->devi_busy_thread == curthread))
627 
628 #define	DEVI_IS_PCI(dip)	(DEVI(dip)->devi_flags & DEVI_PCI_DEVICE)
629 #define	DEVI_SET_PCI(dip)	(DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE))
630 
631 char	*i_ddi_devi_class(dev_info_t *);
632 int	i_ddi_set_devi_class(dev_info_t *, const char *, int);
633 
634 /*
635  * This structure represents one piece of bus space occupied by a given
636  * device. It is used in an array for devices with multiple address windows.
637  */
638 struct regspec {
639 	uint_t regspec_bustype;		/* cookie for bus type it's on */
640 	uint_t regspec_addr;		/* address of reg relative to bus */
641 	uint_t regspec_size;		/* size of this register set */
642 };
643 
644 /*
645  * This is a version of the above structure that works for 64-bit mappings and
646  * doesn't rely on overloading of fields as is done on SPARC. Eventually the
647  * struct regspec should be replaced with this.
648  */
649 struct regspec64 {
650 	uint64_t regspec_bustype;	/* cookie for bus type it's on */
651 	uint64_t regspec_addr;		/* address of reg relative to bus */
652 	uint64_t regspec_size;		/* size of this register set */
653 };
654 
655 /*
656  * This structure represents one piece of nexus bus space.
657  * It is used in an array for nexi with multiple bus spaces
658  * to define the childs offsets in the parents bus space.
659  */
660 struct rangespec {
661 	uint_t rng_cbustype;		/* Child's address, hi order */
662 	uint_t rng_coffset;		/* Child's address, lo order */
663 	uint_t rng_bustype;		/* Parent's address, hi order */
664 	uint_t rng_offset;		/* Parent's address, lo order */
665 	uint_t rng_size;		/* size of space for this entry */
666 };
667 
668 #ifdef _KERNEL
669 
670 typedef enum {
671 	DDI_PRE = 0,
672 	DDI_POST = 1
673 } ddi_pre_post_t;
674 
675 /*
676  * This structure represents notification of a child attach event
677  * These could both be the same if attach/detach commands were in the
678  * same name space.
679  * Note that the target dip is passed as an arg already.
680  */
681 struct attachspec {
682 	ddi_attach_cmd_t cmd;	/* type of event */
683 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
684 	dev_info_t	*pdip;	/* parent of attaching node */
685 	int		result;	/* result of attach op (post command only) */
686 };
687 
688 /*
689  * This structure represents notification of a child detach event
690  * Note that the target dip is passed as an arg already.
691  */
692 struct detachspec {
693 	ddi_detach_cmd_t cmd;	/* type of event */
694 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
695 	dev_info_t	*pdip;	/* parent of detaching node */
696 	int		result;	/* result of detach op (post command only) */
697 };
698 
699 #endif /* _KERNEL */
700 
701 typedef enum {
702 	DDM_MINOR = 0,
703 	DDM_ALIAS,
704 	DDM_DEFAULT,
705 	DDM_INTERNAL_PATH
706 } ddi_minor_type;
707 
708 /* implementation flags for driver specified device access control */
709 #define	DM_NO_FSPERM	0x1
710 
711 struct devplcy;
712 
713 struct ddi_minor {
714 	char		*name;		/* name of node */
715 	dev_t		dev;		/* device number */
716 	int		spec_type;	/* block or char */
717 	int		flags;		/* access flags */
718 	const char	*node_type;	/* block, byte, serial, network */
719 	struct devplcy	*node_priv;	/* privilege for this minor */
720 	mode_t		priv_mode;	/* default apparent privilege mode */
721 };
722 
723 /*
724  * devi_node_attributes contains node attributes private to the
725  * ddi implementation. As a consumer, do not use these bit definitions
726  * directly, use the ndi functions that check for the existence of the
727  * specific node attributes.
728  *
729  * DDI_PERSISTENT indicates a 'persistent' node; one that is not
730  * automatically freed by the framework if the driver is unloaded
731  * or the driver fails to attach to this node.
732  *
733  * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
734  * by the framework and should be auto-freed if the node is removed.
735  *
736  * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
737  * must be set by ndi_devi_config_vhci() routine only.
738  *
739  * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots
740  * or in /devices.
741  *
742  * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug.
743  */
744 #define	DDI_PERSISTENT			0x01
745 #define	DDI_AUTO_ASSIGNED_NODEID	0x02
746 #define	DDI_VHCI_NODE			0x04
747 #define	DDI_HIDDEN_NODE			0x08
748 #define	DDI_HOTPLUG_NODE		0x10
749 
750 #define	DEVI_VHCI_NODE(dip)						\
751 	(DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
752 
753 /*
754  * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
755  * It then gets attached to the devinfo node as a property.
756  */
757 struct ddi_minor_data {
758 	struct ddi_minor_data *next;	/* next one in the chain */
759 	dev_info_t	*dip;		/* pointer to devinfo node */
760 	ddi_minor_type	type;		/* Following data type */
761 	struct ddi_minor d_minor;	/* Actual minor node data */
762 };
763 
764 #define	ddm_name	d_minor.name
765 #define	ddm_dev		d_minor.dev
766 #define	ddm_flags	d_minor.flags
767 #define	ddm_spec_type	d_minor.spec_type
768 #define	ddm_node_type	d_minor.node_type
769 #define	ddm_node_priv	d_minor.node_priv
770 #define	ddm_priv_mode	d_minor.priv_mode
771 
772 /*
773  * parent private data structure contains register, interrupt, property
774  * and range information.
775  */
776 struct ddi_parent_private_data {
777 	int par_nreg;			/* number of regs */
778 	struct regspec *par_reg;	/* array of regs */
779 	int par_nintr;			/* number of interrupts */
780 	struct intrspec *par_intr;	/* array of possible interrupts */
781 	int par_nrng;			/* number of ranges */
782 	struct rangespec *par_rng;	/* array of ranges */
783 };
784 #define	DEVI_PD(d)	\
785 	((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
786 
787 #define	sparc_pd_getnreg(dev)		(DEVI_PD(dev)->par_nreg)
788 #define	sparc_pd_getnintr(dev)		(DEVI_PD(dev)->par_nintr)
789 #define	sparc_pd_getnrng(dev)		(DEVI_PD(dev)->par_nrng)
790 #define	sparc_pd_getreg(dev, n)		(&DEVI_PD(dev)->par_reg[(n)])
791 #define	sparc_pd_getintr(dev, n)	(&DEVI_PD(dev)->par_intr[(n)])
792 #define	sparc_pd_getrng(dev, n)		(&DEVI_PD(dev)->par_rng[(n)])
793 
794 #ifdef _KERNEL
795 /*
796  * This data structure is private to the indexed soft state allocator.
797  */
798 typedef struct i_ddi_soft_state {
799 	void		**array;	/* the array of pointers */
800 	kmutex_t	lock;		/* serialize access to this struct */
801 	size_t		size;		/* how many bytes per state struct */
802 	size_t		n_items;	/* how many structs herein */
803 	struct i_ddi_soft_state *next;	/* 'dirty' elements */
804 } i_ddi_soft_state;
805 
806 /*
807  * This data structure is private to the stringhashed soft state allocator.
808  */
809 typedef struct i_ddi_soft_state_bystr {
810 	size_t		ss_size;	/* how many bytes per state struct */
811 	mod_hash_t	*ss_mod_hash;	/* hash implementation */
812 } i_ddi_soft_state_bystr;
813 
814 /*
815  * This data structure is private to the ddi_strid_* implementation
816  */
817 typedef struct i_ddi_strid {
818 	size_t		strid_chunksz;
819 	size_t		strid_spacesz;
820 	id_space_t	*strid_space;
821 	mod_hash_t	*strid_byid;
822 	mod_hash_t	*strid_bystr;
823 } i_ddi_strid;
824 #endif /* _KERNEL */
825 
826 /*
827  * Solaris DDI DMA implementation structure and function definitions.
828  *
829  * Note: no callers of DDI functions must depend upon data structures
830  * declared below. They are not guaranteed to remain constant.
831  */
832 
833 /*
834  * Implementation DMA mapping structure.
835  *
836  * The publicly visible ddi_dma_req structure is filled
837  * in by a caller that wishes to map a memory object
838  * for DMA. Internal to this implementation of the public
839  * DDI DMA functions this request structure is put together
840  * with bus nexus specific functions that have additional
841  * information and constraints as to how to go about doing
842  * the requested mapping function
843  *
844  * In this implementation, some of the information from the
845  * original requester is retained throughout the lifetime
846  * of the I/O mapping being active.
847  */
848 
849 /*
850  * This is the implementation specific description
851  * of how we've mapped an object for DMA.
852  */
853 #if defined(__sparc)
854 typedef struct ddi_dma_impl {
855 	/*
856 	 * DMA mapping information
857 	 */
858 	ulong_t	dmai_mapping;	/* mapping cookie */
859 
860 	/*
861 	 * Size of the current mapping, in bytes.
862 	 *
863 	 * Note that this is distinct from the size of the object being mapped
864 	 * for DVMA. We might have only a portion of the object mapped at any
865 	 * given point in time.
866 	 */
867 	uint_t	dmai_size;
868 
869 	/*
870 	 * Offset, in bytes, into object that is currently mapped.
871 	 */
872 	off_t	dmai_offset;
873 
874 	/*
875 	 * Information gathered from the original DMA mapping
876 	 * request and saved for the lifetime of the mapping.
877 	 */
878 	uint_t		dmai_minxfer;
879 	uint_t		dmai_burstsizes;
880 	uint_t		dmai_ndvmapages;
881 	uint_t		dmai_pool;	/* cached DVMA space */
882 	uint_t		dmai_rflags;	/* requester's flags + ours */
883 	uint_t		dmai_inuse;	/* active handle? */
884 	uint_t		dmai_nwin;
885 	uint_t		dmai_winsize;
886 	uint_t		dmai_ncookies;
887 	uint_t		dmai_curcookie;
888 	caddr_t		dmai_nexus_private;
889 	void		*dmai_iopte;
890 	uint_t		*dmai_sbi;
891 	void		*dmai_minfo;	/* random mapping information */
892 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
893 	ddi_dma_obj_t	dmai_object;	/* requester's object */
894 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
895 	ddi_dma_cookie_t *dmai_cookie;	/* pointer to first DMA cookie */
896 
897 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
898 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
899 	int		dmai_fault;
900 	ndi_err_t	dmai_error;
901 
902 } ddi_dma_impl_t;
903 
904 #elif defined(__x86)
905 
906 /*
907  * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
908  * implementation specific state is in dmai_private.
909  */
910 typedef struct ddi_dma_impl {
911 	ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
912 	uint_t		dmai_ncookies;
913 	uint_t		dmai_curcookie;
914 	void		*dmai_private;
915 
916 	/*
917 	 * Information gathered from the original dma mapping
918 	 * request and saved for the lifetime of the mapping.
919 	 */
920 	uint_t		dmai_minxfer;
921 	uint_t		dmai_burstsizes;
922 	uint_t		dmai_rflags;	/* requester's flags + ours */
923 	int		dmai_nwin;
924 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
925 
926 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
927 
928 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
929 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
930 	int		dmai_fault;
931 	ndi_err_t	dmai_error;
932 } ddi_dma_impl_t;
933 
934 #else
935 #error "struct ddi_dma_impl not defined for this architecture"
936 #endif  /* defined(__sparc) */
937 
938 /*
939  * For now DMA segments share state with the DMA handle
940  */
941 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
942 
943 /*
944  * These flags use reserved bits from the dma request flags.
945  *
946  * A note about the DMP_NOSYNC flags: the root nexus will
947  * set these as it sees best. If an intermediate nexus
948  * actually needs these operations, then during the unwind
949  * from the call to ddi_dma_bind, the nexus driver *must*
950  * clear the appropriate flag(s). This is because, as an
951  * optimization, ddi_dma_sync(9F) looks at these flags before
952  * deciding to spend the time going back up the tree.
953  */
954 
955 #define	_DMCM1	DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
956 #define	_DMCM2	DDI_DMA_CONSISTENT|DMP_VMEREQ
957 #define	DMP_DDIFLAGS	(_DMCM1|_DMCM2)
958 #define	DMP_SHADOW	0x20
959 #define	DMP_LKIOPB	0x40
960 #define	DMP_LKSYSV	0x80
961 #define	DMP_IOCACHE	0x100
962 #define	DMP_USEHAT	0x200
963 #define	DMP_PHYSADDR	0x400
964 #define	DMP_INVALID	0x800
965 #define	DMP_NOLIMIT	0x1000
966 #define	DMP_VMEREQ	0x10000000
967 #define	DMP_BYPASSNEXUS	0x20000000
968 #define	DMP_NODEVSYNC	0x40000000
969 #define	DMP_NOCPUSYNC	0x80000000
970 #define	DMP_NOSYNC	(DMP_NODEVSYNC|DMP_NOCPUSYNC)
971 
972 /*
973  * In order to complete a device to device mapping that
974  * has percolated as high as an IU nexus (gone that high
975  * because the DMA request is a VADDR type), we define
976  * structure to use with the DDI_CTLOPS_DMAPMAPC request
977  * that re-traverses the request tree to finish the
978  * DMA 'mapping' for a device.
979  */
980 struct dma_phys_mapc {
981 	struct ddi_dma_req *dma_req;	/* original request */
982 	ddi_dma_impl_t *mp;		/* current handle, or none */
983 	int nptes;			/* number of ptes */
984 	void *ptes;			/* ptes already read */
985 };
986 
987 #define	MAXCALLBACK		20
988 
989 /*
990  * Callback definitions
991  */
992 struct ddi_callback {
993 	struct ddi_callback	*c_nfree;
994 	struct ddi_callback	*c_nlist;
995 	int			(*c_call)();
996 	int			c_count;
997 	caddr_t			c_arg;
998 	size_t			c_size;
999 };
1000 
1001 /*
1002  * Pure dynamic property declaration. A pure dynamic property is a property
1003  * for which a driver's prop_op(9E) implementation will return a value on
1004  * demand, but the property name does not exist on a property list (global,
1005  * driver, system, or hardware) - the person asking for the value must know
1006  * the name and type information.
1007  *
1008  * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
1009  * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
1010  * allows a driver to define an array of the name/type information of its
1011  * dynamic properties. When a driver declares its dynamic properties in a
1012  * i_ddi_prop_dyn_t array, and registers that array using
1013  * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
1014  * to represent the properties in a snapshot - calling the driver's
1015  * prop_op(9E) to obtain values.
1016  *
1017  * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
1018  *
1019  * A pure dynamic property name associated with a minor_node/dev_t should be
1020  * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate.  The
1021  * driver's prop_op(9E) entry point will be called for all
1022  * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
1023  * where not all minor_node/dev_t combinations support the same named
1024  * properties, it is the responsibility of the prop_op(9E) implementation to
1025  * sort out what combinations are appropriate.
1026  *
1027  * A pure dynamic property of a devinfo node should be defined with a
1028  * dp_spec_type of 0.
1029  *
1030  * NB: Public DDI property interfaces no longer support pure dynamic
1031  * properties, but they are still still used.  A prime example is the cmlb
1032  * implementation of size(9P) properties. Using pure dynamic properties
1033  * reduces the space required to maintain per-partition information. Since
1034  * there are no public interfaces to create pure dynamic properties,
1035  * the i_ddi_prop_dyn_t mechanism should remain private.
1036  */
1037 typedef struct i_ddi_prop_dyn {
1038 	char	*dp_name;		/* name of dynamic property */
1039 	int	dp_type;		/* DDI_PROP_TYPE_ of property */
1040 	int	dp_spec_type;		/* 0, S_IFCHR, S_IFBLK */
1041 } i_ddi_prop_dyn_t;
1042 void			i_ddi_prop_dyn_driver_set(dev_info_t *,
1043 			    i_ddi_prop_dyn_t *);
1044 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_driver_get(dev_info_t *);
1045 void			i_ddi_prop_dyn_parent_set(dev_info_t *,
1046 			    i_ddi_prop_dyn_t *);
1047 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_parent_get(dev_info_t *);
1048 void			i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
1049 			    i_ddi_prop_dyn_t *);
1050 
1051 /*
1052  * Device id - Internal definition.
1053  */
1054 #define	DEVID_MAGIC_MSB		0x69
1055 #define	DEVID_MAGIC_LSB		0x64
1056 #define	DEVID_REV_MSB		0x00
1057 #define	DEVID_REV_LSB		0x01
1058 #define	DEVID_HINT_SIZE		4
1059 
1060 typedef struct impl_devid {
1061 	uchar_t	did_magic_hi;			/* device id magic # (msb) */
1062 	uchar_t	did_magic_lo;			/* device id magic # (lsb) */
1063 	uchar_t	did_rev_hi;			/* device id revision # (msb) */
1064 	uchar_t	did_rev_lo;			/* device id revision # (lsb) */
1065 	uchar_t	did_type_hi;			/* device id type (msb) */
1066 	uchar_t	did_type_lo;			/* device id type (lsb) */
1067 	uchar_t	did_len_hi;			/* length of devid data (msb) */
1068 	uchar_t	did_len_lo;			/* length of devid data (lsb) */
1069 	char	did_driver[DEVID_HINT_SIZE];	/* driver name - HINT */
1070 	char	did_id[1];			/* start of device id data */
1071 } impl_devid_t;
1072 
1073 #define	DEVID_GETTYPE(devid)		((ushort_t) \
1074 					    (((devid)->did_type_hi << NBBY) + \
1075 					    (devid)->did_type_lo))
1076 
1077 #define	DEVID_FORMTYPE(devid, type)	(devid)->did_type_hi = hibyte((type)); \
1078 					(devid)->did_type_lo = lobyte((type));
1079 
1080 #define	DEVID_GETLEN(devid)		((ushort_t) \
1081 					    (((devid)->did_len_hi << NBBY) + \
1082 					    (devid)->did_len_lo))
1083 
1084 #define	DEVID_FORMLEN(devid, len)	(devid)->did_len_hi = hibyte((len)); \
1085 					(devid)->did_len_lo = lobyte((len));
1086 
1087 /*
1088  * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1089  * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1090  * This proposal would encode the binary devid into a string consisting
1091  * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1092  * (<id_length> is rederived from the length of the string
1093  * representation of the <id>):
1094  *
1095  *	<magic>		->"id"
1096  *
1097  *	<rev>		->"%d"	// "0" -> type of DEVID_NONE  "id0"
1098  *				// NOTE: PSARC/1995/352 <revision> is "1".
1099  *				// NOTE: support limited to 10 revisions
1100  *				//	in current implementation
1101  *
1102  *	<driver_hint>	->"%s"	// "sd"/"ssd"
1103  *				// NOTE: driver names limited to 4
1104  *				//	characters for <revision> "1"
1105  *
1106  *	<type>		->'w' |	// DEVID_SCSI3_WWN	<hex_id>
1107  *			'W' |	// DEVID_SCSI3_WWN	<ascii_id>
1108  *			't' |	// DEVID_SCSI3_VPD_T10	<hex_id>
1109  *			'T' |	// DEVID_SCSI3_VPD_T10	<ascii_id>
1110  *			'x' |	// DEVID_SCSI3_VPD_EUI	<hex_id>
1111  *			'X' |	// DEVID_SCSI3_VPD_EUI	<ascii_id>
1112  *			'n' |	// DEVID_SCSI3_VPD_NAA	<hex_id>
1113  *			'N' |	// DEVID_SCSI3_VPD_NAA	<ascii_id>
1114  *			's' |	// DEVID_SCSI_SERIAL	<hex_id>
1115  *			'S' |	// DEVID_SCSI_SERIAL	<ascii_id>
1116  *			'f' |	// DEVID_FAB		<hex_id>
1117  *			'F' |	// DEVID_FAB		<ascii_id>
1118  *			'e' |	// DEVID_ENCAP		<hex_id>
1119  *			'E' |	// DEVID_ENCAP		<ascii_id>
1120  *			'a' |	// DEVID_ATA_SERIAL	<hex_id>
1121  *			'A' |	// DEVID_ATA_SERIAL	<ascii_id>
1122  *			'u' |	// unknown		<hex_id>
1123  *			'U'	// unknown		<ascii_id>
1124  *				// NOTE:lower case -> <hex_id>
1125  *				//	upper case -> <ascii_id>
1126  *				// NOTE:this covers all types currently
1127  *				//	defined for <revision> 1.
1128  *				// NOTE:a <type> can be added
1129  *				//	without changing the <revision>.
1130  *
1131  *	<id>		-> <ascii_id> |	// <type> is upper case
1132  *			<hex_id>	// <type> is lower case
1133  *
1134  *	<ascii_id>	// only if all bytes of binary <id> field
1135  *			// are in the set:
1136  *			//	[A-Z][a-z][0-9]+-.= and space and 0x00
1137  *			// the encoded form is:
1138  *			//	[A-Z][a-z][0-9]+-.= and _ and ~
1139  *			//	NOTE: ' ' <=> '_', 0x00 <=> '~'
1140  *			// these sets are chosen to avoid shell
1141  *			// and conflicts with DDI node names.
1142  *
1143  *	<hex_id>	// if not <ascii_id>; each byte of binary
1144  *			// <id> maps a to 2 digit ascii hex
1145  *			// representation in the string.
1146  *
1147  * This encoding provides a meaningful correlation between the /devices
1148  * path and the devid string where possible.
1149  *
1150  *   Fibre:
1151  *	sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1152  *	id1,ssd@w20000020370bb488:c,raw
1153  *
1154  *   Copper:
1155  *	sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1156  *	id1,sd@SIBM_____1XY210__________:c
1157  */
1158 /* determine if a byte of an id meets ASCII representation requirements */
1159 #define	DEVID_IDBYTE_ISASCII(b)		(				\
1160 	(((b) >= 'a') && ((b) <= 'z')) ||				\
1161 	(((b) >= 'A') && ((b) <= 'Z')) ||				\
1162 	(((b) >= '0') && ((b) <= '9')) ||				\
1163 	(b == '+') || (b == '-') || (b == '.') || (b == '=') ||		\
1164 	(b == ' ') || (b == 0x00))
1165 
1166 /* set type to lower case to indicate that the did_id field is ascii */
1167 #define	DEVID_TYPE_SETASCII(c)	(c - 0x20)	/* 'a' -> 'A' */
1168 
1169 /* determine from type if did_id field is binary or ascii */
1170 #define	DEVID_TYPE_ISASCII(c)	(((c) >= 'A') && ((c) <= 'Z'))
1171 
1172 /* convert type field from binary to ascii */
1173 #define	DEVID_TYPE_BINTOASCII(b)	(				\
1174 	((b) == DEVID_SCSI3_WWN)	? 'w' :				\
1175 	((b) == DEVID_SCSI3_VPD_T10)	? 't' :				\
1176 	((b) == DEVID_SCSI3_VPD_EUI)	? 'x' :				\
1177 	((b) == DEVID_SCSI3_VPD_NAA)	? 'n' :				\
1178 	((b) == DEVID_SCSI_SERIAL)	? 's' :				\
1179 	((b) == DEVID_FAB)		? 'f' :				\
1180 	((b) == DEVID_ENCAP)		? 'e' :				\
1181 	((b) == DEVID_ATA_SERIAL)	? 'a' :				\
1182 	'u')						/* unknown */
1183 
1184 /* convert type field from ascii to binary */
1185 #define	DEVID_TYPE_ASCIITOBIN(c)	(				\
1186 	(((c) == 'w') || ((c) == 'W'))	? DEVID_SCSI3_WWN :		\
1187 	(((c) == 't') || ((c) == 'T'))	? DEVID_SCSI3_VPD_T10 :		\
1188 	(((c) == 'x') || ((c) == 'X'))	? DEVID_SCSI3_VPD_EUI :		\
1189 	(((c) == 'n') || ((c) == 'N'))	? DEVID_SCSI3_VPD_NAA :		\
1190 	(((c) == 's') || ((c) == 'S'))	? DEVID_SCSI_SERIAL :		\
1191 	(((c) == 'f') || ((c) == 'F'))	? DEVID_FAB :			\
1192 	(((c) == 'e') || ((c) == 'E'))	? DEVID_ENCAP :			\
1193 	(((c) == 'a') || ((c) == 'A'))	? DEVID_ATA_SERIAL :		\
1194 	DEVID_MAXTYPE +1)				/* unknown */
1195 
1196 /* determine if the type should be forced to hex encoding (non-ascii) */
1197 #define	DEVID_TYPE_BIN_FORCEHEX(b) (	\
1198 	((b) == DEVID_SCSI3_WWN) ||	\
1199 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1200 	((b) == DEVID_SCSI3_VPD_NAA) ||	\
1201 	((b) == DEVID_FAB))
1202 
1203 /* determine if the type is from a scsi3 vpd */
1204 #define	IS_DEVID_SCSI3_VPD_TYPE(b) (	\
1205 	((b) == DEVID_SCSI3_VPD_T10) ||	\
1206 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1207 	((b) == DEVID_SCSI3_VPD_NAA))
1208 
1209 /* convert rev field from binary to ascii (only supports 10 revs) */
1210 #define	DEVID_REV_BINTOASCII(b) (b + '0')
1211 
1212 /* convert rev field from ascii to binary (only supports 10 revs) */
1213 #define	DEVID_REV_ASCIITOBIN(c) (c - '0')
1214 
1215 /* name of devid property */
1216 #define	DEVID_PROP_NAME	"devid"
1217 
1218 /*
1219  * prop_name used by pci_{save,restore}_config_regs()
1220  */
1221 #define	SAVED_CONFIG_REGS "pci-config-regs"
1222 #define	SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1223 #define	SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1224 
1225 typedef struct pci_config_header_state {
1226 	uint16_t	chs_command;
1227 	uint8_t		chs_cache_line_size;
1228 	uint8_t		chs_latency_timer;
1229 	uint8_t		chs_header_type;
1230 	uint8_t		chs_sec_latency_timer;
1231 	uint8_t		chs_bridge_control;
1232 	uint32_t	chs_base0;
1233 	uint32_t	chs_base1;
1234 	uint32_t	chs_base2;
1235 	uint32_t	chs_base3;
1236 	uint32_t	chs_base4;
1237 	uint32_t	chs_base5;
1238 } pci_config_header_state_t;
1239 
1240 #ifdef _KERNEL
1241 
1242 typedef struct pci_cap_save_desc {
1243 	uint16_t	cap_offset;
1244 	uint16_t	cap_id;
1245 	uint32_t	cap_nregs;
1246 } pci_cap_save_desc_t;
1247 
1248 typedef struct pci_cap_entry {
1249 	uint16_t		cap_id;
1250 	uint16_t		cap_reg;
1251 	uint16_t		cap_mask;
1252 	uint32_t		cap_ndwords;
1253 	uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1254 	    uint32_t *regbuf, uint32_t ndwords);
1255 } pci_cap_entry_t;
1256 
1257 #endif /* _KERNEL */
1258 
1259 #ifdef	__cplusplus
1260 }
1261 #endif
1262 
1263 #endif	/* _SYS_DDI_IMPLDEFS_H */
1264