1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static rctl_qty_t 1490 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1491 { 1492 ASSERT(MUTEX_HELD(&p->p_lock)); 1493 return (p->p_zone->zone_shmmax); 1494 } 1495 1496 /*ARGSUSED*/ 1497 static int 1498 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1499 rctl_qty_t incr, uint_t flags) 1500 { 1501 rctl_qty_t v; 1502 ASSERT(MUTEX_HELD(&p->p_lock)); 1503 ASSERT(e->rcep_t == RCENTITY_ZONE); 1504 v = e->rcep_p.zone->zone_shmmax + incr; 1505 if (v > rval->rcv_value) 1506 return (1); 1507 return (0); 1508 } 1509 1510 static rctl_ops_t zone_shmmax_ops = { 1511 rcop_no_action, 1512 zone_shmmax_usage, 1513 rcop_no_set, 1514 zone_shmmax_test 1515 }; 1516 1517 /*ARGSUSED*/ 1518 static rctl_qty_t 1519 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1520 { 1521 ASSERT(MUTEX_HELD(&p->p_lock)); 1522 return (p->p_zone->zone_ipc.ipcq_shmmni); 1523 } 1524 1525 /*ARGSUSED*/ 1526 static int 1527 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1528 rctl_qty_t incr, uint_t flags) 1529 { 1530 rctl_qty_t v; 1531 ASSERT(MUTEX_HELD(&p->p_lock)); 1532 ASSERT(e->rcep_t == RCENTITY_ZONE); 1533 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1534 if (v > rval->rcv_value) 1535 return (1); 1536 return (0); 1537 } 1538 1539 static rctl_ops_t zone_shmmni_ops = { 1540 rcop_no_action, 1541 zone_shmmni_usage, 1542 rcop_no_set, 1543 zone_shmmni_test 1544 }; 1545 1546 /*ARGSUSED*/ 1547 static rctl_qty_t 1548 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1549 { 1550 ASSERT(MUTEX_HELD(&p->p_lock)); 1551 return (p->p_zone->zone_ipc.ipcq_semmni); 1552 } 1553 1554 /*ARGSUSED*/ 1555 static int 1556 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1557 rctl_qty_t incr, uint_t flags) 1558 { 1559 rctl_qty_t v; 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1563 if (v > rval->rcv_value) 1564 return (1); 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_semmni_ops = { 1569 rcop_no_action, 1570 zone_semmni_usage, 1571 rcop_no_set, 1572 zone_semmni_test 1573 }; 1574 1575 /*ARGSUSED*/ 1576 static rctl_qty_t 1577 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1578 { 1579 ASSERT(MUTEX_HELD(&p->p_lock)); 1580 return (p->p_zone->zone_ipc.ipcq_msgmni); 1581 } 1582 1583 /*ARGSUSED*/ 1584 static int 1585 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1586 rctl_qty_t incr, uint_t flags) 1587 { 1588 rctl_qty_t v; 1589 ASSERT(MUTEX_HELD(&p->p_lock)); 1590 ASSERT(e->rcep_t == RCENTITY_ZONE); 1591 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1592 if (v > rval->rcv_value) 1593 return (1); 1594 return (0); 1595 } 1596 1597 static rctl_ops_t zone_msgmni_ops = { 1598 rcop_no_action, 1599 zone_msgmni_usage, 1600 rcop_no_set, 1601 zone_msgmni_test 1602 }; 1603 1604 /*ARGSUSED*/ 1605 static rctl_qty_t 1606 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1607 { 1608 rctl_qty_t q; 1609 ASSERT(MUTEX_HELD(&p->p_lock)); 1610 mutex_enter(&p->p_zone->zone_mem_lock); 1611 q = p->p_zone->zone_locked_mem; 1612 mutex_exit(&p->p_zone->zone_mem_lock); 1613 return (q); 1614 } 1615 1616 /*ARGSUSED*/ 1617 static int 1618 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1619 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1620 { 1621 rctl_qty_t q; 1622 zone_t *z; 1623 1624 z = e->rcep_p.zone; 1625 ASSERT(MUTEX_HELD(&p->p_lock)); 1626 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1627 q = z->zone_locked_mem; 1628 if (q + incr > rcntl->rcv_value) 1629 return (1); 1630 return (0); 1631 } 1632 1633 /*ARGSUSED*/ 1634 static int 1635 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1636 rctl_qty_t nv) 1637 { 1638 ASSERT(MUTEX_HELD(&p->p_lock)); 1639 ASSERT(e->rcep_t == RCENTITY_ZONE); 1640 if (e->rcep_p.zone == NULL) 1641 return (0); 1642 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1643 return (0); 1644 } 1645 1646 static rctl_ops_t zone_locked_mem_ops = { 1647 rcop_no_action, 1648 zone_locked_mem_usage, 1649 zone_locked_mem_set, 1650 zone_locked_mem_test 1651 }; 1652 1653 /*ARGSUSED*/ 1654 static rctl_qty_t 1655 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1656 { 1657 rctl_qty_t q; 1658 zone_t *z = p->p_zone; 1659 1660 ASSERT(MUTEX_HELD(&p->p_lock)); 1661 mutex_enter(&z->zone_mem_lock); 1662 q = z->zone_max_swap; 1663 mutex_exit(&z->zone_mem_lock); 1664 return (q); 1665 } 1666 1667 /*ARGSUSED*/ 1668 static int 1669 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1670 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1671 { 1672 rctl_qty_t q; 1673 zone_t *z; 1674 1675 z = e->rcep_p.zone; 1676 ASSERT(MUTEX_HELD(&p->p_lock)); 1677 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1678 q = z->zone_max_swap; 1679 if (q + incr > rcntl->rcv_value) 1680 return (1); 1681 return (0); 1682 } 1683 1684 /*ARGSUSED*/ 1685 static int 1686 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1687 rctl_qty_t nv) 1688 { 1689 ASSERT(MUTEX_HELD(&p->p_lock)); 1690 ASSERT(e->rcep_t == RCENTITY_ZONE); 1691 if (e->rcep_p.zone == NULL) 1692 return (0); 1693 e->rcep_p.zone->zone_max_swap_ctl = nv; 1694 return (0); 1695 } 1696 1697 static rctl_ops_t zone_max_swap_ops = { 1698 rcop_no_action, 1699 zone_max_swap_usage, 1700 zone_max_swap_set, 1701 zone_max_swap_test 1702 }; 1703 1704 /*ARGSUSED*/ 1705 static rctl_qty_t 1706 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1707 { 1708 rctl_qty_t q; 1709 zone_t *z = p->p_zone; 1710 1711 ASSERT(MUTEX_HELD(&p->p_lock)); 1712 mutex_enter(&z->zone_rctl_lock); 1713 q = z->zone_max_lofi; 1714 mutex_exit(&z->zone_rctl_lock); 1715 return (q); 1716 } 1717 1718 /*ARGSUSED*/ 1719 static int 1720 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1721 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1722 { 1723 rctl_qty_t q; 1724 zone_t *z; 1725 1726 z = e->rcep_p.zone; 1727 ASSERT(MUTEX_HELD(&p->p_lock)); 1728 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1729 q = z->zone_max_lofi; 1730 if (q + incr > rcntl->rcv_value) 1731 return (1); 1732 return (0); 1733 } 1734 1735 /*ARGSUSED*/ 1736 static int 1737 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1738 rctl_qty_t nv) 1739 { 1740 ASSERT(MUTEX_HELD(&p->p_lock)); 1741 ASSERT(e->rcep_t == RCENTITY_ZONE); 1742 if (e->rcep_p.zone == NULL) 1743 return (0); 1744 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1745 return (0); 1746 } 1747 1748 static rctl_ops_t zone_max_lofi_ops = { 1749 rcop_no_action, 1750 zone_max_lofi_usage, 1751 zone_max_lofi_set, 1752 zone_max_lofi_test 1753 }; 1754 1755 /* 1756 * Helper function to brand the zone with a unique ID. 1757 */ 1758 static void 1759 zone_uniqid(zone_t *zone) 1760 { 1761 static uint64_t uniqid = 0; 1762 1763 ASSERT(MUTEX_HELD(&zonehash_lock)); 1764 zone->zone_uniqid = uniqid++; 1765 } 1766 1767 /* 1768 * Returns a held pointer to the "kcred" for the specified zone. 1769 */ 1770 struct cred * 1771 zone_get_kcred(zoneid_t zoneid) 1772 { 1773 zone_t *zone; 1774 cred_t *cr; 1775 1776 if ((zone = zone_find_by_id(zoneid)) == NULL) 1777 return (NULL); 1778 cr = zone->zone_kcred; 1779 crhold(cr); 1780 zone_rele(zone); 1781 return (cr); 1782 } 1783 1784 static int 1785 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1794 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1795 return (0); 1796 } 1797 1798 static int 1799 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1800 { 1801 zone_t *zone = ksp->ks_private; 1802 zone_kstat_t *zk = ksp->ks_data; 1803 1804 if (rw == KSTAT_WRITE) 1805 return (EACCES); 1806 1807 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1808 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1809 return (0); 1810 } 1811 1812 static int 1813 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1814 { 1815 zone_t *zone = ksp->ks_private; 1816 zone_kstat_t *zk = ksp->ks_data; 1817 1818 if (rw == KSTAT_WRITE) 1819 return (EACCES); 1820 1821 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1822 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1823 return (0); 1824 } 1825 1826 static kstat_t * 1827 zone_kstat_create_common(zone_t *zone, char *name, 1828 int (*updatefunc) (kstat_t *, int)) 1829 { 1830 kstat_t *ksp; 1831 zone_kstat_t *zk; 1832 1833 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1834 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1835 KSTAT_FLAG_VIRTUAL); 1836 1837 if (ksp == NULL) 1838 return (NULL); 1839 1840 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1841 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1842 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1843 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1844 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1845 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1846 ksp->ks_update = updatefunc; 1847 ksp->ks_private = zone; 1848 kstat_install(ksp); 1849 return (ksp); 1850 } 1851 1852 1853 static int 1854 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1855 { 1856 zone_t *zone = ksp->ks_private; 1857 zone_mcap_kstat_t *zmp = ksp->ks_data; 1858 1859 if (rw == KSTAT_WRITE) 1860 return (EACCES); 1861 1862 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1863 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1864 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1865 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1866 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1867 1868 return (0); 1869 } 1870 1871 static kstat_t * 1872 zone_mcap_kstat_create(zone_t *zone) 1873 { 1874 kstat_t *ksp; 1875 zone_mcap_kstat_t *zmp; 1876 1877 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1878 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1879 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1880 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1881 return (NULL); 1882 1883 if (zone->zone_id != GLOBAL_ZONEID) 1884 kstat_zone_add(ksp, GLOBAL_ZONEID); 1885 1886 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1887 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1888 ksp->ks_lock = &zone->zone_mcap_lock; 1889 zone->zone_mcap_stats = zmp; 1890 1891 /* The kstat "name" field is not large enough for a full zonename */ 1892 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1893 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1894 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1895 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1896 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1899 KSTAT_DATA_UINT64); 1900 1901 ksp->ks_update = zone_mcap_kstat_update; 1902 ksp->ks_private = zone; 1903 1904 kstat_install(ksp); 1905 return (ksp); 1906 } 1907 1908 static int 1909 zone_misc_kstat_update(kstat_t *ksp, int rw) 1910 { 1911 zone_t *zone = ksp->ks_private; 1912 zone_misc_kstat_t *zmp = ksp->ks_data; 1913 hrtime_t tmp; 1914 1915 if (rw == KSTAT_WRITE) 1916 return (EACCES); 1917 1918 tmp = zone->zone_utime; 1919 scalehrtime(&tmp); 1920 zmp->zm_utime.value.ui64 = tmp; 1921 tmp = zone->zone_stime; 1922 scalehrtime(&tmp); 1923 zmp->zm_stime.value.ui64 = tmp; 1924 tmp = zone->zone_wtime; 1925 scalehrtime(&tmp); 1926 zmp->zm_wtime.value.ui64 = tmp; 1927 1928 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1929 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1930 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1931 1932 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1933 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1934 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1935 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1936 1937 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1938 1939 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1940 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1941 1942 return (0); 1943 } 1944 1945 static kstat_t * 1946 zone_misc_kstat_create(zone_t *zone) 1947 { 1948 kstat_t *ksp; 1949 zone_misc_kstat_t *zmp; 1950 1951 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1952 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1953 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1954 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1955 return (NULL); 1956 1957 if (zone->zone_id != GLOBAL_ZONEID) 1958 kstat_zone_add(ksp, GLOBAL_ZONEID); 1959 1960 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1961 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1962 ksp->ks_lock = &zone->zone_misc_lock; 1963 zone->zone_misc_stats = zmp; 1964 1965 /* The kstat "name" field is not large enough for a full zonename */ 1966 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1967 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1968 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1969 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1970 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1971 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1972 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1973 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1974 KSTAT_DATA_UINT32); 1975 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1976 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1977 KSTAT_DATA_UINT32); 1978 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1979 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1981 KSTAT_DATA_UINT32); 1982 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1983 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1984 1985 ksp->ks_update = zone_misc_kstat_update; 1986 ksp->ks_private = zone; 1987 1988 kstat_install(ksp); 1989 return (ksp); 1990 } 1991 1992 static void 1993 zone_kstat_create(zone_t *zone) 1994 { 1995 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1996 "lockedmem", zone_lockedmem_kstat_update); 1997 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1998 "swapresv", zone_swapresv_kstat_update); 1999 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2000 "nprocs", zone_nprocs_kstat_update); 2001 2002 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2003 zone->zone_mcap_stats = kmem_zalloc( 2004 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2005 } 2006 2007 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2008 zone->zone_misc_stats = kmem_zalloc( 2009 sizeof (zone_misc_kstat_t), KM_SLEEP); 2010 } 2011 } 2012 2013 static void 2014 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2015 { 2016 void *data; 2017 2018 if (*pkstat != NULL) { 2019 data = (*pkstat)->ks_data; 2020 kstat_delete(*pkstat); 2021 kmem_free(data, datasz); 2022 *pkstat = NULL; 2023 } 2024 } 2025 2026 static void 2027 zone_kstat_delete(zone_t *zone) 2028 { 2029 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2030 sizeof (zone_kstat_t)); 2031 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2032 sizeof (zone_kstat_t)); 2033 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2034 sizeof (zone_kstat_t)); 2035 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2036 sizeof (zone_mcap_kstat_t)); 2037 zone_kstat_delete_common(&zone->zone_misc_ksp, 2038 sizeof (zone_misc_kstat_t)); 2039 } 2040 2041 /* 2042 * Called very early on in boot to initialize the ZSD list so that 2043 * zone_key_create() can be called before zone_init(). It also initializes 2044 * portions of zone0 which may be used before zone_init() is called. The 2045 * variable "global_zone" will be set when zone0 is fully initialized by 2046 * zone_init(). 2047 */ 2048 void 2049 zone_zsd_init(void) 2050 { 2051 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2052 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2053 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2054 offsetof(struct zsd_entry, zsd_linkage)); 2055 list_create(&zone_active, sizeof (zone_t), 2056 offsetof(zone_t, zone_linkage)); 2057 list_create(&zone_deathrow, sizeof (zone_t), 2058 offsetof(zone_t, zone_linkage)); 2059 2060 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2061 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2062 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2063 zone0.zone_shares = 1; 2064 zone0.zone_nlwps = 0; 2065 zone0.zone_nlwps_ctl = INT_MAX; 2066 zone0.zone_nprocs = 0; 2067 zone0.zone_nprocs_ctl = INT_MAX; 2068 zone0.zone_locked_mem = 0; 2069 zone0.zone_locked_mem_ctl = UINT64_MAX; 2070 ASSERT(zone0.zone_max_swap == 0); 2071 zone0.zone_max_swap_ctl = UINT64_MAX; 2072 zone0.zone_max_lofi = 0; 2073 zone0.zone_max_lofi_ctl = UINT64_MAX; 2074 zone0.zone_shmmax = 0; 2075 zone0.zone_ipc.ipcq_shmmni = 0; 2076 zone0.zone_ipc.ipcq_semmni = 0; 2077 zone0.zone_ipc.ipcq_msgmni = 0; 2078 zone0.zone_name = GLOBAL_ZONENAME; 2079 zone0.zone_nodename = utsname.nodename; 2080 zone0.zone_domain = srpc_domain; 2081 zone0.zone_hostid = HW_INVALID_HOSTID; 2082 zone0.zone_fs_allowed = NULL; 2083 psecflags_default(&zone0.zone_secflags); 2084 zone0.zone_ref = 1; 2085 zone0.zone_id = GLOBAL_ZONEID; 2086 zone0.zone_status = ZONE_IS_RUNNING; 2087 zone0.zone_rootpath = "/"; 2088 zone0.zone_rootpathlen = 2; 2089 zone0.zone_psetid = ZONE_PS_INVAL; 2090 zone0.zone_ncpus = 0; 2091 zone0.zone_ncpus_online = 0; 2092 zone0.zone_proc_initpid = 1; 2093 zone0.zone_initname = initname; 2094 zone0.zone_lockedmem_kstat = NULL; 2095 zone0.zone_swapresv_kstat = NULL; 2096 zone0.zone_nprocs_kstat = NULL; 2097 2098 zone0.zone_stime = 0; 2099 zone0.zone_utime = 0; 2100 zone0.zone_wtime = 0; 2101 2102 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2103 offsetof(zone_ref_t, zref_linkage)); 2104 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2105 offsetof(struct zsd_entry, zsd_linkage)); 2106 list_insert_head(&zone_active, &zone0); 2107 2108 /* 2109 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2110 * to anything meaningful. It is assigned to be 'rootdir' in 2111 * vfs_mountroot(). 2112 */ 2113 zone0.zone_rootvp = NULL; 2114 zone0.zone_vfslist = NULL; 2115 zone0.zone_bootargs = initargs; 2116 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2117 /* 2118 * The global zone has all privileges 2119 */ 2120 priv_fillset(zone0.zone_privset); 2121 /* 2122 * Add p0 to the global zone 2123 */ 2124 zone0.zone_zsched = &p0; 2125 p0.p_zone = &zone0; 2126 } 2127 2128 /* 2129 * Compute a hash value based on the contents of the label and the DOI. The 2130 * hash algorithm is somewhat arbitrary, but is based on the observation that 2131 * humans will likely pick labels that differ by amounts that work out to be 2132 * multiples of the number of hash chains, and thus stirring in some primes 2133 * should help. 2134 */ 2135 static uint_t 2136 hash_bylabel(void *hdata, mod_hash_key_t key) 2137 { 2138 const ts_label_t *lab = (ts_label_t *)key; 2139 const uint32_t *up, *ue; 2140 uint_t hash; 2141 int i; 2142 2143 _NOTE(ARGUNUSED(hdata)); 2144 2145 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2146 /* we depend on alignment of label, but not representation */ 2147 up = (const uint32_t *)&lab->tsl_label; 2148 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2149 i = 1; 2150 while (up < ue) { 2151 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2152 hash += *up + (*up << ((i % 16) + 1)); 2153 up++; 2154 i++; 2155 } 2156 return (hash); 2157 } 2158 2159 /* 2160 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2161 * equal). This may need to be changed if less than / greater than is ever 2162 * needed. 2163 */ 2164 static int 2165 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2166 { 2167 ts_label_t *lab1 = (ts_label_t *)key1; 2168 ts_label_t *lab2 = (ts_label_t *)key2; 2169 2170 return (label_equal(lab1, lab2) ? 0 : 1); 2171 } 2172 2173 /* 2174 * Called by main() to initialize the zones framework. 2175 */ 2176 void 2177 zone_init(void) 2178 { 2179 rctl_dict_entry_t *rde; 2180 rctl_val_t *dval; 2181 rctl_set_t *set; 2182 rctl_alloc_gp_t *gp; 2183 rctl_entity_p_t e; 2184 int res; 2185 2186 ASSERT(curproc == &p0); 2187 2188 /* 2189 * Create ID space for zone IDs. ID 0 is reserved for the 2190 * global zone. 2191 */ 2192 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2193 2194 /* 2195 * Initialize generic zone resource controls, if any. 2196 */ 2197 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2198 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2199 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2200 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2201 2202 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2203 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2204 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2205 RCTL_GLOBAL_INFINITE, 2206 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2207 2208 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2209 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2210 INT_MAX, INT_MAX, &zone_lwps_ops); 2211 2212 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2214 INT_MAX, INT_MAX, &zone_procs_ops); 2215 2216 /* 2217 * System V IPC resource controls 2218 */ 2219 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2220 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2221 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2222 2223 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2226 2227 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2230 2231 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2233 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2234 2235 /* 2236 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2237 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2238 */ 2239 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2240 bzero(dval, sizeof (rctl_val_t)); 2241 dval->rcv_value = 1; 2242 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2243 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2244 dval->rcv_action_recip_pid = -1; 2245 2246 rde = rctl_dict_lookup("zone.cpu-shares"); 2247 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2248 2249 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2250 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2251 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2252 &zone_locked_mem_ops); 2253 2254 rc_zone_max_swap = rctl_register("zone.max-swap", 2255 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2256 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2257 &zone_max_swap_ops); 2258 2259 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2260 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2261 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2262 &zone_max_lofi_ops); 2263 2264 /* 2265 * Initialize the ``global zone''. 2266 */ 2267 set = rctl_set_create(); 2268 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2269 mutex_enter(&p0.p_lock); 2270 e.rcep_p.zone = &zone0; 2271 e.rcep_t = RCENTITY_ZONE; 2272 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2273 gp); 2274 2275 zone0.zone_nlwps = p0.p_lwpcnt; 2276 zone0.zone_nprocs = 1; 2277 zone0.zone_ntasks = 1; 2278 mutex_exit(&p0.p_lock); 2279 zone0.zone_restart_init = B_TRUE; 2280 zone0.zone_brand = &native_brand; 2281 rctl_prealloc_destroy(gp); 2282 /* 2283 * pool_default hasn't been initialized yet, so we let pool_init() 2284 * take care of making sure the global zone is in the default pool. 2285 */ 2286 2287 /* 2288 * Initialize global zone kstats 2289 */ 2290 zone_kstat_create(&zone0); 2291 2292 /* 2293 * Initialize zone label. 2294 * mlp are initialized when tnzonecfg is loaded. 2295 */ 2296 zone0.zone_slabel = l_admin_low; 2297 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2298 label_hold(l_admin_low); 2299 2300 /* 2301 * Initialise the lock for the database structure used by mntfs. 2302 */ 2303 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2304 2305 mutex_enter(&zonehash_lock); 2306 zone_uniqid(&zone0); 2307 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2308 2309 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2310 mod_hash_null_valdtor); 2311 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2312 zone_hash_size, mod_hash_null_valdtor); 2313 /* 2314 * maintain zonehashbylabel only for labeled systems 2315 */ 2316 if (is_system_labeled()) 2317 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2318 zone_hash_size, mod_hash_null_keydtor, 2319 mod_hash_null_valdtor, hash_bylabel, NULL, 2320 hash_labelkey_cmp, KM_SLEEP); 2321 zonecount = 1; 2322 2323 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2324 (mod_hash_val_t)&zone0); 2325 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2326 (mod_hash_val_t)&zone0); 2327 if (is_system_labeled()) { 2328 zone0.zone_flags |= ZF_HASHED_LABEL; 2329 (void) mod_hash_insert(zonehashbylabel, 2330 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2331 } 2332 mutex_exit(&zonehash_lock); 2333 2334 /* 2335 * We avoid setting zone_kcred until now, since kcred is initialized 2336 * sometime after zone_zsd_init() and before zone_init(). 2337 */ 2338 zone0.zone_kcred = kcred; 2339 /* 2340 * The global zone is fully initialized (except for zone_rootvp which 2341 * will be set when the root filesystem is mounted). 2342 */ 2343 global_zone = &zone0; 2344 2345 /* 2346 * Setup an event channel to send zone status change notifications on 2347 */ 2348 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2349 EVCH_CREAT); 2350 2351 if (res) 2352 panic("Sysevent_evc_bind failed during zone setup.\n"); 2353 2354 } 2355 2356 static void 2357 zone_free(zone_t *zone) 2358 { 2359 ASSERT(zone != global_zone); 2360 ASSERT(zone->zone_ntasks == 0); 2361 ASSERT(zone->zone_nlwps == 0); 2362 ASSERT(zone->zone_nprocs == 0); 2363 ASSERT(zone->zone_cred_ref == 0); 2364 ASSERT(zone->zone_kcred == NULL); 2365 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2366 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2367 ASSERT(list_is_empty(&zone->zone_ref_list)); 2368 2369 /* 2370 * Remove any zone caps. 2371 */ 2372 cpucaps_zone_remove(zone); 2373 2374 ASSERT(zone->zone_cpucap == NULL); 2375 2376 /* remove from deathrow list */ 2377 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2378 ASSERT(zone->zone_ref == 0); 2379 mutex_enter(&zone_deathrow_lock); 2380 list_remove(&zone_deathrow, zone); 2381 mutex_exit(&zone_deathrow_lock); 2382 } 2383 2384 list_destroy(&zone->zone_ref_list); 2385 zone_free_zsd(zone); 2386 zone_free_datasets(zone); 2387 list_destroy(&zone->zone_dl_list); 2388 2389 if (zone->zone_rootvp != NULL) 2390 VN_RELE(zone->zone_rootvp); 2391 if (zone->zone_rootpath) 2392 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2393 if (zone->zone_name != NULL) 2394 kmem_free(zone->zone_name, ZONENAME_MAX); 2395 if (zone->zone_slabel != NULL) 2396 label_rele(zone->zone_slabel); 2397 if (zone->zone_nodename != NULL) 2398 kmem_free(zone->zone_nodename, _SYS_NMLN); 2399 if (zone->zone_domain != NULL) 2400 kmem_free(zone->zone_domain, _SYS_NMLN); 2401 if (zone->zone_privset != NULL) 2402 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2403 if (zone->zone_rctls != NULL) 2404 rctl_set_free(zone->zone_rctls); 2405 if (zone->zone_bootargs != NULL) 2406 strfree(zone->zone_bootargs); 2407 if (zone->zone_initname != NULL) 2408 strfree(zone->zone_initname); 2409 if (zone->zone_fs_allowed != NULL) 2410 strfree(zone->zone_fs_allowed); 2411 if (zone->zone_pfexecd != NULL) 2412 klpd_freelist(&zone->zone_pfexecd); 2413 id_free(zoneid_space, zone->zone_id); 2414 mutex_destroy(&zone->zone_lock); 2415 cv_destroy(&zone->zone_cv); 2416 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2417 rw_destroy(&zone->zone_mntfs_db_lock); 2418 kmem_free(zone, sizeof (zone_t)); 2419 } 2420 2421 /* 2422 * See block comment at the top of this file for information about zone 2423 * status values. 2424 */ 2425 /* 2426 * Convenience function for setting zone status. 2427 */ 2428 static void 2429 zone_status_set(zone_t *zone, zone_status_t status) 2430 { 2431 2432 nvlist_t *nvl = NULL; 2433 ASSERT(MUTEX_HELD(&zone_status_lock)); 2434 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2435 status >= zone_status_get(zone)); 2436 2437 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2438 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2439 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2440 zone_status_table[status]) || 2441 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2442 zone_status_table[zone->zone_status]) || 2443 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2444 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2445 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2446 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2447 #ifdef DEBUG 2448 (void) printf( 2449 "Failed to allocate and send zone state change event.\n"); 2450 #endif 2451 } 2452 nvlist_free(nvl); 2453 2454 zone->zone_status = status; 2455 2456 cv_broadcast(&zone->zone_cv); 2457 } 2458 2459 /* 2460 * Public function to retrieve the zone status. The zone status may 2461 * change after it is retrieved. 2462 */ 2463 zone_status_t 2464 zone_status_get(zone_t *zone) 2465 { 2466 return (zone->zone_status); 2467 } 2468 2469 static int 2470 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2471 { 2472 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2473 int err = 0; 2474 2475 ASSERT(zone != global_zone); 2476 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2477 goto done; /* EFAULT or ENAMETOOLONG */ 2478 2479 if (zone->zone_bootargs != NULL) 2480 strfree(zone->zone_bootargs); 2481 2482 zone->zone_bootargs = strdup(buf); 2483 2484 done: 2485 kmem_free(buf, BOOTARGS_MAX); 2486 return (err); 2487 } 2488 2489 static int 2490 zone_set_brand(zone_t *zone, const char *brand) 2491 { 2492 struct brand_attr *attrp; 2493 brand_t *bp; 2494 2495 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2496 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2497 kmem_free(attrp, sizeof (struct brand_attr)); 2498 return (EFAULT); 2499 } 2500 2501 bp = brand_register_zone(attrp); 2502 kmem_free(attrp, sizeof (struct brand_attr)); 2503 if (bp == NULL) 2504 return (EINVAL); 2505 2506 /* 2507 * This is the only place where a zone can change it's brand. 2508 * We already need to hold zone_status_lock to check the zone 2509 * status, so we'll just use that lock to serialize zone 2510 * branding requests as well. 2511 */ 2512 mutex_enter(&zone_status_lock); 2513 2514 /* Re-Branding is not allowed and the zone can't be booted yet */ 2515 if ((ZONE_IS_BRANDED(zone)) || 2516 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2517 mutex_exit(&zone_status_lock); 2518 brand_unregister_zone(bp); 2519 return (EINVAL); 2520 } 2521 2522 /* set up the brand specific data */ 2523 zone->zone_brand = bp; 2524 ZBROP(zone)->b_init_brand_data(zone); 2525 2526 mutex_exit(&zone_status_lock); 2527 return (0); 2528 } 2529 2530 static int 2531 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2532 { 2533 int err = 0; 2534 psecflags_t psf; 2535 2536 ASSERT(zone != global_zone); 2537 2538 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2539 return (err); 2540 2541 if (zone_status_get(zone) > ZONE_IS_READY) 2542 return (EINVAL); 2543 2544 if (!psecflags_validate(&psf)) 2545 return (EINVAL); 2546 2547 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2548 2549 /* Set security flags on the zone's zsched */ 2550 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2551 sizeof (zone->zone_zsched->p_secflags)); 2552 2553 return (0); 2554 } 2555 2556 static int 2557 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2558 { 2559 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2560 int err = 0; 2561 2562 ASSERT(zone != global_zone); 2563 if ((err = copyinstr(zone_fs_allowed, buf, 2564 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2565 goto done; 2566 2567 if (zone->zone_fs_allowed != NULL) 2568 strfree(zone->zone_fs_allowed); 2569 2570 zone->zone_fs_allowed = strdup(buf); 2571 2572 done: 2573 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2574 return (err); 2575 } 2576 2577 static int 2578 zone_set_initname(zone_t *zone, const char *zone_initname) 2579 { 2580 char initname[INITNAME_SZ]; 2581 size_t len; 2582 int err = 0; 2583 2584 ASSERT(zone != global_zone); 2585 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2586 return (err); /* EFAULT or ENAMETOOLONG */ 2587 2588 if (zone->zone_initname != NULL) 2589 strfree(zone->zone_initname); 2590 2591 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2592 (void) strcpy(zone->zone_initname, initname); 2593 return (0); 2594 } 2595 2596 static int 2597 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2598 { 2599 uint64_t mcap; 2600 int err = 0; 2601 2602 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2603 zone->zone_phys_mcap = mcap; 2604 2605 return (err); 2606 } 2607 2608 static int 2609 zone_set_sched_class(zone_t *zone, const char *new_class) 2610 { 2611 char sched_class[PC_CLNMSZ]; 2612 id_t classid; 2613 int err; 2614 2615 ASSERT(zone != global_zone); 2616 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2617 return (err); /* EFAULT or ENAMETOOLONG */ 2618 2619 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2620 return (set_errno(EINVAL)); 2621 zone->zone_defaultcid = classid; 2622 ASSERT(zone->zone_defaultcid > 0 && 2623 zone->zone_defaultcid < loaded_classes); 2624 2625 return (0); 2626 } 2627 2628 /* 2629 * Block indefinitely waiting for (zone_status >= status) 2630 */ 2631 void 2632 zone_status_wait(zone_t *zone, zone_status_t status) 2633 { 2634 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2635 2636 mutex_enter(&zone_status_lock); 2637 while (zone->zone_status < status) { 2638 cv_wait(&zone->zone_cv, &zone_status_lock); 2639 } 2640 mutex_exit(&zone_status_lock); 2641 } 2642 2643 /* 2644 * Private CPR-safe version of zone_status_wait(). 2645 */ 2646 static void 2647 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2648 { 2649 callb_cpr_t cprinfo; 2650 2651 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2652 2653 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2654 str); 2655 mutex_enter(&zone_status_lock); 2656 while (zone->zone_status < status) { 2657 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2658 cv_wait(&zone->zone_cv, &zone_status_lock); 2659 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2660 } 2661 /* 2662 * zone_status_lock is implicitly released by the following. 2663 */ 2664 CALLB_CPR_EXIT(&cprinfo); 2665 } 2666 2667 /* 2668 * Block until zone enters requested state or signal is received. Return (0) 2669 * if signaled, non-zero otherwise. 2670 */ 2671 int 2672 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2673 { 2674 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2675 2676 mutex_enter(&zone_status_lock); 2677 while (zone->zone_status < status) { 2678 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2679 mutex_exit(&zone_status_lock); 2680 return (0); 2681 } 2682 } 2683 mutex_exit(&zone_status_lock); 2684 return (1); 2685 } 2686 2687 /* 2688 * Block until the zone enters the requested state or the timeout expires, 2689 * whichever happens first. Return (-1) if operation timed out, time remaining 2690 * otherwise. 2691 */ 2692 clock_t 2693 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2694 { 2695 clock_t timeleft = 0; 2696 2697 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2698 2699 mutex_enter(&zone_status_lock); 2700 while (zone->zone_status < status && timeleft != -1) { 2701 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2702 } 2703 mutex_exit(&zone_status_lock); 2704 return (timeleft); 2705 } 2706 2707 /* 2708 * Block until the zone enters the requested state, the current process is 2709 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2710 * operation timed out, 0 if signaled, time remaining otherwise. 2711 */ 2712 clock_t 2713 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2714 { 2715 clock_t timeleft = tim - ddi_get_lbolt(); 2716 2717 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2718 2719 mutex_enter(&zone_status_lock); 2720 while (zone->zone_status < status) { 2721 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2722 tim); 2723 if (timeleft <= 0) 2724 break; 2725 } 2726 mutex_exit(&zone_status_lock); 2727 return (timeleft); 2728 } 2729 2730 /* 2731 * Zones have two reference counts: one for references from credential 2732 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2733 * This is so we can allow a zone to be rebooted while there are still 2734 * outstanding cred references, since certain drivers cache dblks (which 2735 * implicitly results in cached creds). We wait for zone_ref to drop to 2736 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2737 * later freed when the zone_cred_ref drops to 0, though nothing other 2738 * than the zone id and privilege set should be accessed once the zone 2739 * is "dead". 2740 * 2741 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2742 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2743 * to 0. This can be useful to flush out other sources of cached creds 2744 * that may be less innocuous than the driver case. 2745 * 2746 * Zones also provide a tracked reference counting mechanism in which zone 2747 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2748 * debuggers determine the sources of leaked zone references. See 2749 * zone_hold_ref() and zone_rele_ref() below for more information. 2750 */ 2751 2752 int zone_wait_for_cred = 0; 2753 2754 static void 2755 zone_hold_locked(zone_t *z) 2756 { 2757 ASSERT(MUTEX_HELD(&z->zone_lock)); 2758 z->zone_ref++; 2759 ASSERT(z->zone_ref != 0); 2760 } 2761 2762 /* 2763 * Increment the specified zone's reference count. The zone's zone_t structure 2764 * will not be freed as long as the zone's reference count is nonzero. 2765 * Decrement the zone's reference count via zone_rele(). 2766 * 2767 * NOTE: This function should only be used to hold zones for short periods of 2768 * time. Use zone_hold_ref() if the zone must be held for a long time. 2769 */ 2770 void 2771 zone_hold(zone_t *z) 2772 { 2773 mutex_enter(&z->zone_lock); 2774 zone_hold_locked(z); 2775 mutex_exit(&z->zone_lock); 2776 } 2777 2778 /* 2779 * If the non-cred ref count drops to 1 and either the cred ref count 2780 * is 0 or we aren't waiting for cred references, the zone is ready to 2781 * be destroyed. 2782 */ 2783 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2784 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2785 2786 /* 2787 * Common zone reference release function invoked by zone_rele() and 2788 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2789 * zone's subsystem-specific reference counters are not affected by the 2790 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2791 * removed from the specified zone's reference list. ref must be non-NULL iff 2792 * subsys is not ZONE_REF_NUM_SUBSYS. 2793 */ 2794 static void 2795 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2796 { 2797 boolean_t wakeup; 2798 2799 mutex_enter(&z->zone_lock); 2800 ASSERT(z->zone_ref != 0); 2801 z->zone_ref--; 2802 if (subsys != ZONE_REF_NUM_SUBSYS) { 2803 ASSERT(z->zone_subsys_ref[subsys] != 0); 2804 z->zone_subsys_ref[subsys]--; 2805 list_remove(&z->zone_ref_list, ref); 2806 } 2807 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2808 /* no more refs, free the structure */ 2809 mutex_exit(&z->zone_lock); 2810 zone_free(z); 2811 return; 2812 } 2813 /* signal zone_destroy so the zone can finish halting */ 2814 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2815 mutex_exit(&z->zone_lock); 2816 2817 if (wakeup) { 2818 /* 2819 * Grabbing zonehash_lock here effectively synchronizes with 2820 * zone_destroy() to avoid missed signals. 2821 */ 2822 mutex_enter(&zonehash_lock); 2823 cv_broadcast(&zone_destroy_cv); 2824 mutex_exit(&zonehash_lock); 2825 } 2826 } 2827 2828 /* 2829 * Decrement the specified zone's reference count. The specified zone will 2830 * cease to exist after this function returns if the reference count drops to 2831 * zero. This function should be paired with zone_hold(). 2832 */ 2833 void 2834 zone_rele(zone_t *z) 2835 { 2836 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2837 } 2838 2839 /* 2840 * Initialize a zone reference structure. This function must be invoked for 2841 * a reference structure before the structure is passed to zone_hold_ref(). 2842 */ 2843 void 2844 zone_init_ref(zone_ref_t *ref) 2845 { 2846 ref->zref_zone = NULL; 2847 list_link_init(&ref->zref_linkage); 2848 } 2849 2850 /* 2851 * Acquire a reference to zone z. The caller must specify the 2852 * zone_ref_subsys_t constant associated with its subsystem. The specified 2853 * zone_ref_t structure will represent a reference to the specified zone. Use 2854 * zone_rele_ref() to release the reference. 2855 * 2856 * The referenced zone_t structure will not be freed as long as the zone_t's 2857 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2858 * references. 2859 * 2860 * NOTE: The zone_ref_t structure must be initialized before it is used. 2861 * See zone_init_ref() above. 2862 */ 2863 void 2864 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2865 { 2866 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2867 2868 /* 2869 * Prevent consumers from reusing a reference structure before 2870 * releasing it. 2871 */ 2872 VERIFY(ref->zref_zone == NULL); 2873 2874 ref->zref_zone = z; 2875 mutex_enter(&z->zone_lock); 2876 zone_hold_locked(z); 2877 z->zone_subsys_ref[subsys]++; 2878 ASSERT(z->zone_subsys_ref[subsys] != 0); 2879 list_insert_head(&z->zone_ref_list, ref); 2880 mutex_exit(&z->zone_lock); 2881 } 2882 2883 /* 2884 * Release the zone reference represented by the specified zone_ref_t. 2885 * The reference is invalid after it's released; however, the zone_ref_t 2886 * structure can be reused without having to invoke zone_init_ref(). 2887 * subsys should be the same value that was passed to zone_hold_ref() 2888 * when the reference was acquired. 2889 */ 2890 void 2891 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2892 { 2893 zone_rele_common(ref->zref_zone, ref, subsys); 2894 2895 /* 2896 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2897 * when consumers dereference the reference. This helps us catch 2898 * consumers who use released references. Furthermore, this lets 2899 * consumers reuse the zone_ref_t structure without having to 2900 * invoke zone_init_ref(). 2901 */ 2902 ref->zref_zone = NULL; 2903 } 2904 2905 void 2906 zone_cred_hold(zone_t *z) 2907 { 2908 mutex_enter(&z->zone_lock); 2909 z->zone_cred_ref++; 2910 ASSERT(z->zone_cred_ref != 0); 2911 mutex_exit(&z->zone_lock); 2912 } 2913 2914 void 2915 zone_cred_rele(zone_t *z) 2916 { 2917 boolean_t wakeup; 2918 2919 mutex_enter(&z->zone_lock); 2920 ASSERT(z->zone_cred_ref != 0); 2921 z->zone_cred_ref--; 2922 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2923 /* no more refs, free the structure */ 2924 mutex_exit(&z->zone_lock); 2925 zone_free(z); 2926 return; 2927 } 2928 /* 2929 * If zone_destroy is waiting for the cred references to drain 2930 * out, and they have, signal it. 2931 */ 2932 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2933 zone_status_get(z) >= ZONE_IS_DEAD); 2934 mutex_exit(&z->zone_lock); 2935 2936 if (wakeup) { 2937 /* 2938 * Grabbing zonehash_lock here effectively synchronizes with 2939 * zone_destroy() to avoid missed signals. 2940 */ 2941 mutex_enter(&zonehash_lock); 2942 cv_broadcast(&zone_destroy_cv); 2943 mutex_exit(&zonehash_lock); 2944 } 2945 } 2946 2947 void 2948 zone_task_hold(zone_t *z) 2949 { 2950 mutex_enter(&z->zone_lock); 2951 z->zone_ntasks++; 2952 ASSERT(z->zone_ntasks != 0); 2953 mutex_exit(&z->zone_lock); 2954 } 2955 2956 void 2957 zone_task_rele(zone_t *zone) 2958 { 2959 uint_t refcnt; 2960 2961 mutex_enter(&zone->zone_lock); 2962 ASSERT(zone->zone_ntasks != 0); 2963 refcnt = --zone->zone_ntasks; 2964 if (refcnt > 1) { /* Common case */ 2965 mutex_exit(&zone->zone_lock); 2966 return; 2967 } 2968 zone_hold_locked(zone); /* so we can use the zone_t later */ 2969 mutex_exit(&zone->zone_lock); 2970 if (refcnt == 1) { 2971 /* 2972 * See if the zone is shutting down. 2973 */ 2974 mutex_enter(&zone_status_lock); 2975 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2976 goto out; 2977 } 2978 2979 /* 2980 * Make sure the ntasks didn't change since we 2981 * dropped zone_lock. 2982 */ 2983 mutex_enter(&zone->zone_lock); 2984 if (refcnt != zone->zone_ntasks) { 2985 mutex_exit(&zone->zone_lock); 2986 goto out; 2987 } 2988 mutex_exit(&zone->zone_lock); 2989 2990 /* 2991 * No more user processes in the zone. The zone is empty. 2992 */ 2993 zone_status_set(zone, ZONE_IS_EMPTY); 2994 goto out; 2995 } 2996 2997 ASSERT(refcnt == 0); 2998 /* 2999 * zsched has exited; the zone is dead. 3000 */ 3001 zone->zone_zsched = NULL; /* paranoia */ 3002 mutex_enter(&zone_status_lock); 3003 zone_status_set(zone, ZONE_IS_DEAD); 3004 out: 3005 mutex_exit(&zone_status_lock); 3006 zone_rele(zone); 3007 } 3008 3009 zoneid_t 3010 getzoneid(void) 3011 { 3012 return (curproc->p_zone->zone_id); 3013 } 3014 3015 /* 3016 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3017 * check the validity of a zone's state. 3018 */ 3019 static zone_t * 3020 zone_find_all_by_id(zoneid_t zoneid) 3021 { 3022 mod_hash_val_t hv; 3023 zone_t *zone = NULL; 3024 3025 ASSERT(MUTEX_HELD(&zonehash_lock)); 3026 3027 if (mod_hash_find(zonehashbyid, 3028 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3029 zone = (zone_t *)hv; 3030 return (zone); 3031 } 3032 3033 static zone_t * 3034 zone_find_all_by_label(const ts_label_t *label) 3035 { 3036 mod_hash_val_t hv; 3037 zone_t *zone = NULL; 3038 3039 ASSERT(MUTEX_HELD(&zonehash_lock)); 3040 3041 /* 3042 * zonehashbylabel is not maintained for unlabeled systems 3043 */ 3044 if (!is_system_labeled()) 3045 return (NULL); 3046 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3047 zone = (zone_t *)hv; 3048 return (zone); 3049 } 3050 3051 static zone_t * 3052 zone_find_all_by_name(char *name) 3053 { 3054 mod_hash_val_t hv; 3055 zone_t *zone = NULL; 3056 3057 ASSERT(MUTEX_HELD(&zonehash_lock)); 3058 3059 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3060 zone = (zone_t *)hv; 3061 return (zone); 3062 } 3063 3064 /* 3065 * Public interface for looking up a zone by zoneid. Only returns the zone if 3066 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3067 * Caller must call zone_rele() once it is done with the zone. 3068 * 3069 * The zone may begin the zone_destroy() sequence immediately after this 3070 * function returns, but may be safely used until zone_rele() is called. 3071 */ 3072 zone_t * 3073 zone_find_by_id(zoneid_t zoneid) 3074 { 3075 zone_t *zone; 3076 zone_status_t status; 3077 3078 mutex_enter(&zonehash_lock); 3079 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3080 mutex_exit(&zonehash_lock); 3081 return (NULL); 3082 } 3083 status = zone_status_get(zone); 3084 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3085 /* 3086 * For all practical purposes the zone doesn't exist. 3087 */ 3088 mutex_exit(&zonehash_lock); 3089 return (NULL); 3090 } 3091 zone_hold(zone); 3092 mutex_exit(&zonehash_lock); 3093 return (zone); 3094 } 3095 3096 /* 3097 * Similar to zone_find_by_id, but using zone label as the key. 3098 */ 3099 zone_t * 3100 zone_find_by_label(const ts_label_t *label) 3101 { 3102 zone_t *zone; 3103 zone_status_t status; 3104 3105 mutex_enter(&zonehash_lock); 3106 if ((zone = zone_find_all_by_label(label)) == NULL) { 3107 mutex_exit(&zonehash_lock); 3108 return (NULL); 3109 } 3110 3111 status = zone_status_get(zone); 3112 if (status > ZONE_IS_DOWN) { 3113 /* 3114 * For all practical purposes the zone doesn't exist. 3115 */ 3116 mutex_exit(&zonehash_lock); 3117 return (NULL); 3118 } 3119 zone_hold(zone); 3120 mutex_exit(&zonehash_lock); 3121 return (zone); 3122 } 3123 3124 /* 3125 * Similar to zone_find_by_id, but using zone name as the key. 3126 */ 3127 zone_t * 3128 zone_find_by_name(char *name) 3129 { 3130 zone_t *zone; 3131 zone_status_t status; 3132 3133 mutex_enter(&zonehash_lock); 3134 if ((zone = zone_find_all_by_name(name)) == NULL) { 3135 mutex_exit(&zonehash_lock); 3136 return (NULL); 3137 } 3138 status = zone_status_get(zone); 3139 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3140 /* 3141 * For all practical purposes the zone doesn't exist. 3142 */ 3143 mutex_exit(&zonehash_lock); 3144 return (NULL); 3145 } 3146 zone_hold(zone); 3147 mutex_exit(&zonehash_lock); 3148 return (zone); 3149 } 3150 3151 /* 3152 * Similar to zone_find_by_id(), using the path as a key. For instance, 3153 * if there is a zone "foo" rooted at /foo/root, and the path argument 3154 * is "/foo/root/proc", it will return the held zone_t corresponding to 3155 * zone "foo". 3156 * 3157 * zone_find_by_path() always returns a non-NULL value, since at the 3158 * very least every path will be contained in the global zone. 3159 * 3160 * As with the other zone_find_by_*() functions, the caller is 3161 * responsible for zone_rele()ing the return value of this function. 3162 */ 3163 zone_t * 3164 zone_find_by_path(const char *path) 3165 { 3166 zone_t *zone; 3167 zone_t *zret = NULL; 3168 zone_status_t status; 3169 3170 if (path == NULL) { 3171 /* 3172 * Call from rootconf(). 3173 */ 3174 zone_hold(global_zone); 3175 return (global_zone); 3176 } 3177 ASSERT(*path == '/'); 3178 mutex_enter(&zonehash_lock); 3179 for (zone = list_head(&zone_active); zone != NULL; 3180 zone = list_next(&zone_active, zone)) { 3181 if (ZONE_PATH_VISIBLE(path, zone)) 3182 zret = zone; 3183 } 3184 ASSERT(zret != NULL); 3185 status = zone_status_get(zret); 3186 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3187 /* 3188 * Zone practically doesn't exist. 3189 */ 3190 zret = global_zone; 3191 } 3192 zone_hold(zret); 3193 mutex_exit(&zonehash_lock); 3194 return (zret); 3195 } 3196 3197 /* 3198 * Public interface for updating per-zone load averages. Called once per 3199 * second. 3200 * 3201 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3202 */ 3203 void 3204 zone_loadavg_update() 3205 { 3206 zone_t *zp; 3207 zone_status_t status; 3208 struct loadavg_s *lavg; 3209 hrtime_t zone_total; 3210 int i; 3211 hrtime_t hr_avg; 3212 int nrun; 3213 static int64_t f[3] = { 135, 27, 9 }; 3214 int64_t q, r; 3215 3216 mutex_enter(&zonehash_lock); 3217 for (zp = list_head(&zone_active); zp != NULL; 3218 zp = list_next(&zone_active, zp)) { 3219 mutex_enter(&zp->zone_lock); 3220 3221 /* Skip zones that are on the way down or not yet up */ 3222 status = zone_status_get(zp); 3223 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3224 /* For all practical purposes the zone doesn't exist. */ 3225 mutex_exit(&zp->zone_lock); 3226 continue; 3227 } 3228 3229 /* 3230 * Update the 10 second moving average data in zone_loadavg. 3231 */ 3232 lavg = &zp->zone_loadavg; 3233 3234 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3235 scalehrtime(&zone_total); 3236 3237 /* The zone_total should always be increasing. */ 3238 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3239 zone_total - lavg->lg_total : 0; 3240 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3241 /* lg_total holds the prev. 1 sec. total */ 3242 lavg->lg_total = zone_total; 3243 3244 /* 3245 * To simplify the calculation, we don't calculate the load avg. 3246 * until the zone has been up for at least 10 seconds and our 3247 * moving average is thus full. 3248 */ 3249 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3250 lavg->lg_len++; 3251 mutex_exit(&zp->zone_lock); 3252 continue; 3253 } 3254 3255 /* Now calculate the 1min, 5min, 15 min load avg. */ 3256 hr_avg = 0; 3257 for (i = 0; i < S_LOADAVG_SZ; i++) 3258 hr_avg += lavg->lg_loads[i]; 3259 hr_avg = hr_avg / S_LOADAVG_SZ; 3260 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3261 3262 /* Compute load avg. See comment in calcloadavg() */ 3263 for (i = 0; i < 3; i++) { 3264 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3265 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3266 zp->zone_hp_avenrun[i] += 3267 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3268 3269 /* avenrun[] can only hold 31 bits of load avg. */ 3270 if (zp->zone_hp_avenrun[i] < 3271 ((uint64_t)1<<(31+16-FSHIFT))) 3272 zp->zone_avenrun[i] = (int32_t) 3273 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3274 else 3275 zp->zone_avenrun[i] = 0x7fffffff; 3276 } 3277 3278 mutex_exit(&zp->zone_lock); 3279 } 3280 mutex_exit(&zonehash_lock); 3281 } 3282 3283 /* 3284 * Get the number of cpus visible to this zone. The system-wide global 3285 * 'ncpus' is returned if pools are disabled, the caller is in the 3286 * global zone, or a NULL zone argument is passed in. 3287 */ 3288 int 3289 zone_ncpus_get(zone_t *zone) 3290 { 3291 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3292 3293 return (myncpus != 0 ? myncpus : ncpus); 3294 } 3295 3296 /* 3297 * Get the number of online cpus visible to this zone. The system-wide 3298 * global 'ncpus_online' is returned if pools are disabled, the caller 3299 * is in the global zone, or a NULL zone argument is passed in. 3300 */ 3301 int 3302 zone_ncpus_online_get(zone_t *zone) 3303 { 3304 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3305 3306 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3307 } 3308 3309 /* 3310 * Return the pool to which the zone is currently bound. 3311 */ 3312 pool_t * 3313 zone_pool_get(zone_t *zone) 3314 { 3315 ASSERT(pool_lock_held()); 3316 3317 return (zone->zone_pool); 3318 } 3319 3320 /* 3321 * Set the zone's pool pointer and update the zone's visibility to match 3322 * the resources in the new pool. 3323 */ 3324 void 3325 zone_pool_set(zone_t *zone, pool_t *pool) 3326 { 3327 ASSERT(pool_lock_held()); 3328 ASSERT(MUTEX_HELD(&cpu_lock)); 3329 3330 zone->zone_pool = pool; 3331 zone_pset_set(zone, pool->pool_pset->pset_id); 3332 } 3333 3334 /* 3335 * Return the cached value of the id of the processor set to which the 3336 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3337 * facility is disabled. 3338 */ 3339 psetid_t 3340 zone_pset_get(zone_t *zone) 3341 { 3342 ASSERT(MUTEX_HELD(&cpu_lock)); 3343 3344 return (zone->zone_psetid); 3345 } 3346 3347 /* 3348 * Set the cached value of the id of the processor set to which the zone 3349 * is currently bound. Also update the zone's visibility to match the 3350 * resources in the new processor set. 3351 */ 3352 void 3353 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3354 { 3355 psetid_t oldpsetid; 3356 3357 ASSERT(MUTEX_HELD(&cpu_lock)); 3358 oldpsetid = zone_pset_get(zone); 3359 3360 if (oldpsetid == newpsetid) 3361 return; 3362 /* 3363 * Global zone sees all. 3364 */ 3365 if (zone != global_zone) { 3366 zone->zone_psetid = newpsetid; 3367 if (newpsetid != ZONE_PS_INVAL) 3368 pool_pset_visibility_add(newpsetid, zone); 3369 if (oldpsetid != ZONE_PS_INVAL) 3370 pool_pset_visibility_remove(oldpsetid, zone); 3371 } 3372 /* 3373 * Disabling pools, so we should start using the global values 3374 * for ncpus and ncpus_online. 3375 */ 3376 if (newpsetid == ZONE_PS_INVAL) { 3377 zone->zone_ncpus = 0; 3378 zone->zone_ncpus_online = 0; 3379 } 3380 } 3381 3382 /* 3383 * Walk the list of active zones and issue the provided callback for 3384 * each of them. 3385 * 3386 * Caller must not be holding any locks that may be acquired under 3387 * zonehash_lock. See comment at the beginning of the file for a list of 3388 * common locks and their interactions with zones. 3389 */ 3390 int 3391 zone_walk(int (*cb)(zone_t *, void *), void *data) 3392 { 3393 zone_t *zone; 3394 int ret = 0; 3395 zone_status_t status; 3396 3397 mutex_enter(&zonehash_lock); 3398 for (zone = list_head(&zone_active); zone != NULL; 3399 zone = list_next(&zone_active, zone)) { 3400 /* 3401 * Skip zones that shouldn't be externally visible. 3402 */ 3403 status = zone_status_get(zone); 3404 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3405 continue; 3406 /* 3407 * Bail immediately if any callback invocation returns a 3408 * non-zero value. 3409 */ 3410 ret = (*cb)(zone, data); 3411 if (ret != 0) 3412 break; 3413 } 3414 mutex_exit(&zonehash_lock); 3415 return (ret); 3416 } 3417 3418 static int 3419 zone_set_root(zone_t *zone, const char *upath) 3420 { 3421 vnode_t *vp; 3422 int trycount; 3423 int error = 0; 3424 char *path; 3425 struct pathname upn, pn; 3426 size_t pathlen; 3427 3428 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3429 return (error); 3430 3431 pn_alloc(&pn); 3432 3433 /* prevent infinite loop */ 3434 trycount = 10; 3435 for (;;) { 3436 if (--trycount <= 0) { 3437 error = ESTALE; 3438 goto out; 3439 } 3440 3441 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3442 /* 3443 * VOP_ACCESS() may cover 'vp' with a new 3444 * filesystem, if 'vp' is an autoFS vnode. 3445 * Get the new 'vp' if so. 3446 */ 3447 if ((error = 3448 VOP_ACCESS(vp, VEXEC, 0,