xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision d2a70789)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390 
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392 
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397     zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400     kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 
404 /*
405  * Bump this number when you alter the zone syscall interfaces; this is
406  * because we need to have support for previous API versions in libc
407  * to support patching; libc calls into the kernel to determine this number.
408  *
409  * Version 1 of the API is the version originally shipped with Solaris 10
410  * Version 2 alters the zone_create system call in order to support more
411  *     arguments by moving the args into a structure; and to do better
412  *     error reporting when zone_create() fails.
413  * Version 3 alters the zone_create system call in order to support the
414  *     import of ZFS datasets to zones.
415  * Version 4 alters the zone_create system call in order to support
416  *     Trusted Extensions.
417  * Version 5 alters the zone_boot system call, and converts its old
418  *     bootargs parameter to be set by the zone_setattr API instead.
419  * Version 6 adds the flag argument to zone_create.
420  */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422 
423 /*
424  * Certain filesystems (such as NFS and autofs) need to know which zone
425  * the mount is being placed in.  Because of this, we need to be able to
426  * ensure that a zone isn't in the process of being created/destroyed such
427  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428  * it gets added the list of mounted zones, it ends up on the wrong zone's
429  * mount list. Since a zone can't reside on an NFS file system, we don't
430  * have to worry about the zonepath itself.
431  *
432  * The following functions: block_mounts()/resume_mounts() and
433  * mount_in_progress()/mount_completed() are used by zones and the VFS
434  * layer (respectively) to synchronize zone state transitions and new
435  * mounts within a zone. This syncronization is on a per-zone basis, so
436  * activity for one zone will not interfere with activity for another zone.
437  *
438  * The semantics are like a reader-reader lock such that there may
439  * either be multiple mounts (or zone state transitions, if that weren't
440  * serialized by zonehash_lock) in progress at the same time, but not
441  * both.
442  *
443  * We use cv's so the user can ctrl-C out of the operation if it's
444  * taking too long.
445  *
446  * The semantics are such that there is unfair bias towards the
447  * "current" operation.  This means that zone halt may starve if
448  * there is a rapid succession of new mounts coming in to the zone.
449  */
450 /*
451  * Prevent new mounts from progressing to the point of calling
452  * VFS_MOUNT().  If there are already mounts in this "region", wait for
453  * them to complete.
454  */
455 static int
456 block_mounts(zone_t *zp)
457 {
458 	int retval = 0;
459 
460 	/*
461 	 * Since it may block for a long time, block_mounts() shouldn't be
462 	 * called with zonehash_lock held.
463 	 */
464 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 	mutex_enter(&zp->zone_mount_lock);
466 	while (zp->zone_mounts_in_progress > 0) {
467 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 			goto signaled;
469 	}
470 	/*
471 	 * A negative value of mounts_in_progress indicates that mounts
472 	 * have been blocked by (-mounts_in_progress) different callers
473 	 * (remotely possible if two threads enter zone_shutdown at the same
474 	 * time).
475 	 */
476 	zp->zone_mounts_in_progress--;
477 	retval = 1;
478 signaled:
479 	mutex_exit(&zp->zone_mount_lock);
480 	return (retval);
481 }
482 
483 /*
484  * The VFS layer may progress with new mounts as far as we're concerned.
485  * Allow them to progress if we were the last obstacle.
486  */
487 static void
488 resume_mounts(zone_t *zp)
489 {
490 	mutex_enter(&zp->zone_mount_lock);
491 	if (++zp->zone_mounts_in_progress == 0)
492 		cv_broadcast(&zp->zone_mount_cv);
493 	mutex_exit(&zp->zone_mount_lock);
494 }
495 
496 /*
497  * The VFS layer is busy with a mount; this zone should wait until all
498  * of its mounts are completed to progress.
499  */
500 void
501 mount_in_progress(zone_t *zp)
502 {
503 	mutex_enter(&zp->zone_mount_lock);
504 	while (zp->zone_mounts_in_progress < 0)
505 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 	zp->zone_mounts_in_progress++;
507 	mutex_exit(&zp->zone_mount_lock);
508 }
509 
510 /*
511  * VFS is done with one mount; wake up any waiting block_mounts()
512  * callers if this is the last mount.
513  */
514 void
515 mount_completed(zone_t *zp)
516 {
517 	mutex_enter(&zp->zone_mount_lock);
518 	if (--zp->zone_mounts_in_progress == 0)
519 		cv_broadcast(&zp->zone_mount_cv);
520 	mutex_exit(&zp->zone_mount_lock);
521 }
522 
523 /*
524  * ZSD routines.
525  *
526  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527  * defined by the pthread_key_create() and related interfaces.
528  *
529  * Kernel subsystems may register one or more data items and/or
530  * callbacks to be executed when a zone is created, shutdown, or
531  * destroyed.
532  *
533  * Unlike the thread counterpart, destructor callbacks will be executed
534  * even if the data pointer is NULL and/or there are no constructor
535  * callbacks, so it is the responsibility of such callbacks to check for
536  * NULL data values if necessary.
537  *
538  * The locking strategy and overall picture is as follows:
539  *
540  * When someone calls zone_key_create(), a template ZSD entry is added to the
541  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
542  * holding that lock all the existing zones are marked as
543  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544  * zone_zsd list (protected by zone_lock). The global list is updated first
545  * (under zone_key_lock) to make sure that newly created zones use the
546  * most recent list of keys. Then under zonehash_lock we walk the zones
547  * and mark them.  Similar locking is used in zone_key_delete().
548  *
549  * The actual create, shutdown, and destroy callbacks are done without
550  * holding any lock. And zsd_flags are used to ensure that the operations
551  * completed so that when zone_key_create (and zone_create) is done, as well as
552  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553  * are completed.
554  *
555  * When new zones are created constructor callbacks for all registered ZSD
556  * entries will be called. That also uses the above two phases of marking
557  * what needs to be done, and then running the callbacks without holding
558  * any locks.
559  *
560  * The framework does not provide any locking around zone_getspecific() and
561  * zone_setspecific() apart from that needed for internal consistency, so
562  * callers interested in atomic "test-and-set" semantics will need to provide
563  * their own locking.
564  */
565 
566 /*
567  * Helper function to find the zsd_entry associated with the key in the
568  * given list.
569  */
570 static struct zsd_entry *
571 zsd_find(list_t *l, zone_key_t key)
572 {
573 	struct zsd_entry *zsd;
574 
575 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 		if (zsd->zsd_key == key) {
577 			return (zsd);
578 		}
579 	}
580 	return (NULL);
581 }
582 
583 /*
584  * Helper function to find the zsd_entry associated with the key in the
585  * given list. Move it to the front of the list.
586  */
587 static struct zsd_entry *
588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 	struct zsd_entry *zsd;
591 
592 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 		if (zsd->zsd_key == key) {
594 			/*
595 			 * Move to head of list to keep list in MRU order.
596 			 */
597 			if (zsd != list_head(l)) {
598 				list_remove(l, zsd);
599 				list_insert_head(l, zsd);
600 			}
601 			return (zsd);
602 		}
603 	}
604 	return (NULL);
605 }
606 
607 void
608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 	struct zsd_entry *zsdp;
612 	struct zsd_entry *t;
613 	struct zone *zone;
614 	zone_key_t  key;
615 
616 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 	zsdp->zsd_data = NULL;
618 	zsdp->zsd_create = create;
619 	zsdp->zsd_shutdown = shutdown;
620 	zsdp->zsd_destroy = destroy;
621 
622 	/*
623 	 * Insert in global list of callbacks. Makes future zone creations
624 	 * see it.
625 	 */
626 	mutex_enter(&zsd_key_lock);
627 	key = zsdp->zsd_key = ++zsd_keyval;
628 	ASSERT(zsd_keyval != 0);
629 	list_insert_tail(&zsd_registered_keys, zsdp);
630 	mutex_exit(&zsd_key_lock);
631 
632 	/*
633 	 * Insert for all existing zones and mark them as needing
634 	 * a create callback.
635 	 */
636 	mutex_enter(&zonehash_lock);	/* stop the world */
637 	for (zone = list_head(&zone_active); zone != NULL;
638 	    zone = list_next(&zone_active, zone)) {
639 		zone_status_t status;
640 
641 		mutex_enter(&zone->zone_lock);
642 
643 		/* Skip zones that are on the way down or not yet up */
644 		status = zone_status_get(zone);
645 		if (status >= ZONE_IS_DOWN ||
646 		    status == ZONE_IS_UNINITIALIZED) {
647 			mutex_exit(&zone->zone_lock);
648 			continue;
649 		}
650 
651 		t = zsd_find_mru(&zone->zone_zsd, key);
652 		if (t != NULL) {
653 			/*
654 			 * A zsd_configure already inserted it after
655 			 * we dropped zsd_key_lock above.
656 			 */
657 			mutex_exit(&zone->zone_lock);
658 			continue;
659 		}
660 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 		t->zsd_key = key;
662 		t->zsd_create = create;
663 		t->zsd_shutdown = shutdown;
664 		t->zsd_destroy = destroy;
665 		if (create != NULL) {
666 			t->zsd_flags = ZSD_CREATE_NEEDED;
667 			DTRACE_PROBE2(zsd__create__needed,
668 			    zone_t *, zone, zone_key_t, key);
669 		}
670 		list_insert_tail(&zone->zone_zsd, t);
671 		mutex_exit(&zone->zone_lock);
672 	}
673 	mutex_exit(&zonehash_lock);
674 
675 	if (create != NULL) {
676 		/* Now call the create callback for this key */
677 		zsd_apply_all_zones(zsd_apply_create, key);
678 	}
679 	/*
680 	 * It is safe for consumers to use the key now, make it
681 	 * globally visible. Specifically zone_getspecific() will
682 	 * always successfully return the zone specific data associated
683 	 * with the key.
684 	 */
685 	*keyp = key;
686 
687 }
688 
689 /*
690  * Function called when a module is being unloaded, or otherwise wishes
691  * to unregister its ZSD key and callbacks.
692  *
693  * Remove from the global list and determine the functions that need to
694  * be called under a global lock. Then call the functions without
695  * holding any locks. Finally free up the zone_zsd entries. (The apply
696  * functions need to access the zone_zsd entries to find zsd_data etc.)
697  */
698 int
699 zone_key_delete(zone_key_t key)
700 {
701 	struct zsd_entry *zsdp = NULL;
702 	zone_t *zone;
703 
704 	mutex_enter(&zsd_key_lock);
705 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 	if (zsdp == NULL) {
707 		mutex_exit(&zsd_key_lock);
708 		return (-1);
709 	}
710 	list_remove(&zsd_registered_keys, zsdp);
711 	mutex_exit(&zsd_key_lock);
712 
713 	mutex_enter(&zonehash_lock);
714 	for (zone = list_head(&zone_active); zone != NULL;
715 	    zone = list_next(&zone_active, zone)) {
716 		struct zsd_entry *del;
717 
718 		mutex_enter(&zone->zone_lock);
719 		del = zsd_find_mru(&zone->zone_zsd, key);
720 		if (del == NULL) {
721 			/*
722 			 * Somebody else got here first e.g the zone going
723 			 * away.
724 			 */
725 			mutex_exit(&zone->zone_lock);
726 			continue;
727 		}
728 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 		if (del->zsd_shutdown != NULL &&
731 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 			DTRACE_PROBE2(zsd__shutdown__needed,
734 			    zone_t *, zone, zone_key_t, key);
735 		}
736 		if (del->zsd_destroy != NULL &&
737 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 			DTRACE_PROBE2(zsd__destroy__needed,
740 			    zone_t *, zone, zone_key_t, key);
741 		}
742 		mutex_exit(&zone->zone_lock);
743 	}
744 	mutex_exit(&zonehash_lock);
745 	kmem_free(zsdp, sizeof (*zsdp));
746 
747 	/* Now call the shutdown and destroy callback for this key */
748 	zsd_apply_all_zones(zsd_apply_shutdown, key);
749 	zsd_apply_all_zones(zsd_apply_destroy, key);
750 
751 	/* Now we can free up the zsdp structures in each zone */
752 	mutex_enter(&zonehash_lock);
753 	for (zone = list_head(&zone_active); zone != NULL;
754 	    zone = list_next(&zone_active, zone)) {
755 		struct zsd_entry *del;
756 
757 		mutex_enter(&zone->zone_lock);
758 		del = zsd_find(&zone->zone_zsd, key);
759 		if (del != NULL) {
760 			list_remove(&zone->zone_zsd, del);
761 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 			kmem_free(del, sizeof (*del));
763 		}
764 		mutex_exit(&zone->zone_lock);
765 	}
766 	mutex_exit(&zonehash_lock);
767 
768 	return (0);
769 }
770 
771 /*
772  * ZSD counterpart of pthread_setspecific().
773  *
774  * Since all zsd callbacks, including those with no create function,
775  * have an entry in zone_zsd, if the key is registered it is part of
776  * the zone_zsd list.
777  * Return an error if the key wasn't registerd.
778  */
779 int
780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 	struct zsd_entry *t;
783 
784 	mutex_enter(&zone->zone_lock);
785 	t = zsd_find_mru(&zone->zone_zsd, key);
786 	if (t != NULL) {
787 		/*
788 		 * Replace old value with new
789 		 */
790 		t->zsd_data = (void *)data;
791 		mutex_exit(&zone->zone_lock);
792 		return (0);
793 	}
794 	mutex_exit(&zone->zone_lock);
795 	return (-1);
796 }
797 
798 /*
799  * ZSD counterpart of pthread_getspecific().
800  */
801 void *
802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 	struct zsd_entry *t;
805 	void *data;
806 
807 	mutex_enter(&zone->zone_lock);
808 	t = zsd_find_mru(&zone->zone_zsd, key);
809 	data = (t == NULL ? NULL : t->zsd_data);
810 	mutex_exit(&zone->zone_lock);
811 	return (data);
812 }
813 
814 /*
815  * Function used to initialize a zone's list of ZSD callbacks and data
816  * when the zone is being created.  The callbacks are initialized from
817  * the template list (zsd_registered_keys). The constructor callback is
818  * executed later (once the zone exists and with locks dropped).
819  */
820 static void
821 zone_zsd_configure(zone_t *zone)
822 {
823 	struct zsd_entry *zsdp;
824 	struct zsd_entry *t;
825 
826 	ASSERT(MUTEX_HELD(&zonehash_lock));
827 	ASSERT(list_head(&zone->zone_zsd) == NULL);
828 	mutex_enter(&zone->zone_lock);
829 	mutex_enter(&zsd_key_lock);
830 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 		/*
833 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 		 * should not have added anything to it.
835 		 */
836 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837 
838 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 		t->zsd_key = zsdp->zsd_key;
840 		t->zsd_create = zsdp->zsd_create;
841 		t->zsd_shutdown = zsdp->zsd_shutdown;
842 		t->zsd_destroy = zsdp->zsd_destroy;
843 		if (zsdp->zsd_create != NULL) {
844 			t->zsd_flags = ZSD_CREATE_NEEDED;
845 			DTRACE_PROBE2(zsd__create__needed,
846 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 		}
848 		list_insert_tail(&zone->zone_zsd, t);
849 	}
850 	mutex_exit(&zsd_key_lock);
851 	mutex_exit(&zone->zone_lock);
852 }
853 
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855 
856 /*
857  * Helper function to execute shutdown or destructor callbacks.
858  */
859 static void
860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 	struct zsd_entry *t;
863 
864 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867 
868 	/*
869 	 * Run the callback solely based on what is registered for the zone
870 	 * in zone_zsd. The global list can change independently of this
871 	 * as keys are registered and unregistered and we don't register new
872 	 * callbacks for a zone that is in the process of going away.
873 	 */
874 	mutex_enter(&zone->zone_lock);
875 	for (t = list_head(&zone->zone_zsd); t != NULL;
876 	    t = list_next(&zone->zone_zsd, t)) {
877 		zone_key_t key = t->zsd_key;
878 
879 		/* Skip if no callbacks registered */
880 
881 		if (ct == ZSD_SHUTDOWN) {
882 			if (t->zsd_shutdown != NULL &&
883 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 				DTRACE_PROBE2(zsd__shutdown__needed,
886 				    zone_t *, zone, zone_key_t, key);
887 			}
888 		} else {
889 			if (t->zsd_destroy != NULL &&
890 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 				DTRACE_PROBE2(zsd__destroy__needed,
893 				    zone_t *, zone, zone_key_t, key);
894 			}
895 		}
896 	}
897 	mutex_exit(&zone->zone_lock);
898 
899 	/* Now call the shutdown and destroy callback for this key */
900 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 	zsd_apply_all_keys(zsd_apply_destroy, zone);
902 
903 }
904 
905 /*
906  * Called when the zone is going away; free ZSD-related memory, and
907  * destroy the zone_zsd list.
908  */
909 static void
910 zone_free_zsd(zone_t *zone)
911 {
912 	struct zsd_entry *t, *next;
913 
914 	/*
915 	 * Free all the zsd_entry's we had on this zone.
916 	 */
917 	mutex_enter(&zone->zone_lock);
918 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 		next = list_next(&zone->zone_zsd, t);
920 		list_remove(&zone->zone_zsd, t);
921 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 		kmem_free(t, sizeof (*t));
923 	}
924 	list_destroy(&zone->zone_zsd);
925 	mutex_exit(&zone->zone_lock);
926 
927 }
928 
929 /*
930  * Apply a function to all zones for particular key value.
931  *
932  * The applyfn has to drop zonehash_lock if it does some work, and
933  * then reacquire it before it returns.
934  * When the lock is dropped we don't follow list_next even
935  * if it is possible to do so without any hazards. This is
936  * because we want the design to allow for the list of zones
937  * to change in any arbitrary way during the time the
938  * lock was dropped.
939  *
940  * It is safe to restart the loop at list_head since the applyfn
941  * changes the zsd_flags as it does work, so a subsequent
942  * pass through will have no effect in applyfn, hence the loop will terminate
943  * in at worst O(N^2).
944  */
945 static void
946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 	zone_t *zone;
949 
950 	mutex_enter(&zonehash_lock);
951 	zone = list_head(&zone_active);
952 	while (zone != NULL) {
953 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 			/* Lock dropped - restart at head */
955 			zone = list_head(&zone_active);
956 		} else {
957 			zone = list_next(&zone_active, zone);
958 		}
959 	}
960 	mutex_exit(&zonehash_lock);
961 }
962 
963 /*
964  * Apply a function to all keys for a particular zone.
965  *
966  * The applyfn has to drop zonehash_lock if it does some work, and
967  * then reacquire it before it returns.
968  * When the lock is dropped we don't follow list_next even
969  * if it is possible to do so without any hazards. This is
970  * because we want the design to allow for the list of zsd callbacks
971  * to change in any arbitrary way during the time the
972  * lock was dropped.
973  *
974  * It is safe to restart the loop at list_head since the applyfn
975  * changes the zsd_flags as it does work, so a subsequent
976  * pass through will have no effect in applyfn, hence the loop will terminate
977  * in at worst O(N^2).
978  */
979 static void
980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 	struct zsd_entry *t;
983 
984 	mutex_enter(&zone->zone_lock);
985 	t = list_head(&zone->zone_zsd);
986 	while (t != NULL) {
987 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 			/* Lock dropped - restart at head */
989 			t = list_head(&zone->zone_zsd);
990 		} else {
991 			t = list_next(&zone->zone_zsd, t);
992 		}
993 	}
994 	mutex_exit(&zone->zone_lock);
995 }
996 
997 /*
998  * Call the create function for the zone and key if CREATE_NEEDED
999  * is set.
1000  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001  * we wait for that thread to complete so that we can ensure that
1002  * all the callbacks are done when we've looped over all zones/keys.
1003  *
1004  * When we call the create function, we drop the global held by the
1005  * caller, and return true to tell the caller it needs to re-evalute the
1006  * state.
1007  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008  * remains held on exit.
1009  */
1010 static boolean_t
1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012     zone_t *zone, zone_key_t key)
1013 {
1014 	void *result;
1015 	struct zsd_entry *t;
1016 	boolean_t dropped;
1017 
1018 	if (lockp != NULL) {
1019 		ASSERT(MUTEX_HELD(lockp));
1020 	}
1021 	if (zone_lock_held) {
1022 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 	} else {
1024 		mutex_enter(&zone->zone_lock);
1025 	}
1026 
1027 	t = zsd_find(&zone->zone_zsd, key);
1028 	if (t == NULL) {
1029 		/*
1030 		 * Somebody else got here first e.g the zone going
1031 		 * away.
1032 		 */
1033 		if (!zone_lock_held)
1034 			mutex_exit(&zone->zone_lock);
1035 		return (B_FALSE);
1036 	}
1037 	dropped = B_FALSE;
1038 	if (zsd_wait_for_inprogress(zone, t, lockp))
1039 		dropped = B_TRUE;
1040 
1041 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 		DTRACE_PROBE2(zsd__create__inprogress,
1045 		    zone_t *, zone, zone_key_t, key);
1046 		mutex_exit(&zone->zone_lock);
1047 		if (lockp != NULL)
1048 			mutex_exit(lockp);
1049 
1050 		dropped = B_TRUE;
1051 		ASSERT(t->zsd_create != NULL);
1052 		DTRACE_PROBE2(zsd__create__start,
1053 		    zone_t *, zone, zone_key_t, key);
1054 
1055 		result = (*t->zsd_create)(zone->zone_id);
1056 
1057 		DTRACE_PROBE2(zsd__create__end,
1058 		    zone_t *, zone, voidn *, result);
1059 
1060 		ASSERT(result != NULL);
1061 		if (lockp != NULL)
1062 			mutex_enter(lockp);
1063 		mutex_enter(&zone->zone_lock);
1064 		t->zsd_data = result;
1065 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 		cv_broadcast(&t->zsd_cv);
1068 		DTRACE_PROBE2(zsd__create__completed,
1069 		    zone_t *, zone, zone_key_t, key);
1070 	}
1071 	if (!zone_lock_held)
1072 		mutex_exit(&zone->zone_lock);
1073 	return (dropped);
1074 }
1075 
1076 /*
1077  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078  * is set.
1079  * If some other thread gets here first and sets *_INPROGRESS, then
1080  * we wait for that thread to complete so that we can ensure that
1081  * all the callbacks are done when we've looped over all zones/keys.
1082  *
1083  * When we call the shutdown function, we drop the global held by the
1084  * caller, and return true to tell the caller it needs to re-evalute the
1085  * state.
1086  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087  * remains held on exit.
1088  */
1089 static boolean_t
1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091     zone_t *zone, zone_key_t key)
1092 {
1093 	struct zsd_entry *t;
1094 	void *data;
1095 	boolean_t dropped;
1096 
1097 	if (lockp != NULL) {
1098 		ASSERT(MUTEX_HELD(lockp));
1099 	}
1100 	if (zone_lock_held) {
1101 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 	} else {
1103 		mutex_enter(&zone->zone_lock);
1104 	}
1105 
1106 	t = zsd_find(&zone->zone_zsd, key);
1107 	if (t == NULL) {
1108 		/*
1109 		 * Somebody else got here first e.g the zone going
1110 		 * away.
1111 		 */
1112 		if (!zone_lock_held)
1113 			mutex_exit(&zone->zone_lock);
1114 		return (B_FALSE);
1115 	}
1116 	dropped = B_FALSE;
1117 	if (zsd_wait_for_creator(zone, t, lockp))
1118 		dropped = B_TRUE;
1119 
1120 	if (zsd_wait_for_inprogress(zone, t, lockp))
1121 		dropped = B_TRUE;
1122 
1123 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 		    zone_t *, zone, zone_key_t, key);
1128 		mutex_exit(&zone->zone_lock);
1129 		if (lockp != NULL)
1130 			mutex_exit(lockp);
1131 		dropped = B_TRUE;
1132 
1133 		ASSERT(t->zsd_shutdown != NULL);
1134 		data = t->zsd_data;
1135 
1136 		DTRACE_PROBE2(zsd__shutdown__start,
1137 		    zone_t *, zone, zone_key_t, key);
1138 
1139 		(t->zsd_shutdown)(zone->zone_id, data);
1140 		DTRACE_PROBE2(zsd__shutdown__end,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		if (lockp != NULL)
1144 			mutex_enter(lockp);
1145 		mutex_enter(&zone->zone_lock);
1146 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 		cv_broadcast(&t->zsd_cv);
1149 		DTRACE_PROBE2(zsd__shutdown__completed,
1150 		    zone_t *, zone, zone_key_t, key);
1151 	}
1152 	if (!zone_lock_held)
1153 		mutex_exit(&zone->zone_lock);
1154 	return (dropped);
1155 }
1156 
1157 /*
1158  * Call the destroy function for the zone and key if DESTROY_NEEDED
1159  * is set.
1160  * If some other thread gets here first and sets *_INPROGRESS, then
1161  * we wait for that thread to complete so that we can ensure that
1162  * all the callbacks are done when we've looped over all zones/keys.
1163  *
1164  * When we call the destroy function, we drop the global held by the
1165  * caller, and return true to tell the caller it needs to re-evalute the
1166  * state.
1167  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168  * remains held on exit.
1169  */
1170 static boolean_t
1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172     zone_t *zone, zone_key_t key)
1173 {
1174 	struct zsd_entry *t;
1175 	void *data;
1176 	boolean_t dropped;
1177 
1178 	if (lockp != NULL) {
1179 		ASSERT(MUTEX_HELD(lockp));
1180 	}
1181 	if (zone_lock_held) {
1182 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 	} else {
1184 		mutex_enter(&zone->zone_lock);
1185 	}
1186 
1187 	t = zsd_find(&zone->zone_zsd, key);
1188 	if (t == NULL) {
1189 		/*
1190 		 * Somebody else got here first e.g the zone going
1191 		 * away.
1192 		 */
1193 		if (!zone_lock_held)
1194 			mutex_exit(&zone->zone_lock);
1195 		return (B_FALSE);
1196 	}
1197 	dropped = B_FALSE;
1198 	if (zsd_wait_for_creator(zone, t, lockp))
1199 		dropped = B_TRUE;
1200 
1201 	if (zsd_wait_for_inprogress(zone, t, lockp))
1202 		dropped = B_TRUE;
1203 
1204 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 		DTRACE_PROBE2(zsd__destroy__inprogress,
1208 		    zone_t *, zone, zone_key_t, key);
1209 		mutex_exit(&zone->zone_lock);
1210 		if (lockp != NULL)
1211 			mutex_exit(lockp);
1212 		dropped = B_TRUE;
1213 
1214 		ASSERT(t->zsd_destroy != NULL);
1215 		data = t->zsd_data;
1216 		DTRACE_PROBE2(zsd__destroy__start,
1217 		    zone_t *, zone, zone_key_t, key);
1218 
1219 		(t->zsd_destroy)(zone->zone_id, data);
1220 		DTRACE_PROBE2(zsd__destroy__end,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		if (lockp != NULL)
1224 			mutex_enter(lockp);
1225 		mutex_enter(&zone->zone_lock);
1226 		t->zsd_data = NULL;
1227 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 		cv_broadcast(&t->zsd_cv);
1230 		DTRACE_PROBE2(zsd__destroy__completed,
1231 		    zone_t *, zone, zone_key_t, key);
1232 	}
1233 	if (!zone_lock_held)
1234 		mutex_exit(&zone->zone_lock);
1235 	return (dropped);
1236 }
1237 
1238 /*
1239  * Wait for any CREATE_NEEDED flag to be cleared.
1240  * Returns true if lockp was temporarily dropped while waiting.
1241  */
1242 static boolean_t
1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 	boolean_t dropped = B_FALSE;
1246 
1247 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 		DTRACE_PROBE2(zsd__wait__for__creator,
1249 		    zone_t *, zone, struct zsd_entry *, t);
1250 		if (lockp != NULL) {
1251 			dropped = B_TRUE;
1252 			mutex_exit(lockp);
1253 		}
1254 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 		if (lockp != NULL) {
1256 			/* First drop zone_lock to preserve order */
1257 			mutex_exit(&zone->zone_lock);
1258 			mutex_enter(lockp);
1259 			mutex_enter(&zone->zone_lock);
1260 		}
1261 	}
1262 	return (dropped);
1263 }
1264 
1265 /*
1266  * Wait for any INPROGRESS flag to be cleared.
1267  * Returns true if lockp was temporarily dropped while waiting.
1268  */
1269 static boolean_t
1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 	boolean_t dropped = B_FALSE;
1273 
1274 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 		    zone_t *, zone, struct zsd_entry *, t);
1277 		if (lockp != NULL) {
1278 			dropped = B_TRUE;
1279 			mutex_exit(lockp);
1280 		}
1281 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 		if (lockp != NULL) {
1283 			/* First drop zone_lock to preserve order */
1284 			mutex_exit(&zone->zone_lock);
1285 			mutex_enter(lockp);
1286 			mutex_enter(&zone->zone_lock);
1287 		}
1288 	}
1289 	return (dropped);
1290 }
1291 
1292 /*
1293  * Frees memory associated with the zone dataset list.
1294  */
1295 static void
1296 zone_free_datasets(zone_t *zone)
1297 {
1298 	zone_dataset_t *t, *next;
1299 
1300 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 		next = list_next(&zone->zone_datasets, t);
1302 		list_remove(&zone->zone_datasets, t);
1303 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 		kmem_free(t, sizeof (*t));
1305 	}
1306 	list_destroy(&zone->zone_datasets);
1307 }
1308 
1309 /*
1310  * zone.cpu-shares resource control support.
1311  */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 	ASSERT(MUTEX_HELD(&p->p_lock));
1317 	return (p->p_zone->zone_shares);
1318 }
1319 
1320 /*ARGSUSED*/
1321 static int
1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323     rctl_qty_t nv)
1324 {
1325 	ASSERT(MUTEX_HELD(&p->p_lock));
1326 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 	if (e->rcep_p.zone == NULL)
1328 		return (0);
1329 
1330 	e->rcep_p.zone->zone_shares = nv;
1331 	return (0);
1332 }
1333 
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 	rcop_no_action,
1336 	zone_cpu_shares_usage,
1337 	zone_cpu_shares_set,
1338 	rcop_no_test
1339 };
1340 
1341 /*
1342  * zone.cpu-cap resource control support.
1343  */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 	ASSERT(MUTEX_HELD(&p->p_lock));
1349 	return (cpucaps_zone_get(p->p_zone));
1350 }
1351 
1352 /*ARGSUSED*/
1353 static int
1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355     rctl_qty_t nv)
1356 {
1357 	zone_t *zone = e->rcep_p.zone;
1358 
1359 	ASSERT(MUTEX_HELD(&p->p_lock));
1360 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1361 
1362 	if (zone == NULL)
1363 		return (0);
1364 
1365 	/*
1366 	 * set cap to the new value.
1367 	 */
1368 	return (cpucaps_zone_set(zone, nv));
1369 }
1370 
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 	rcop_no_action,
1373 	zone_cpu_cap_get,
1374 	zone_cpu_cap_set,
1375 	rcop_no_test
1376 };
1377 
1378 /*ARGSUSED*/
1379 static rctl_qty_t
1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 	rctl_qty_t nlwps;
1383 	zone_t *zone = p->p_zone;
1384 
1385 	ASSERT(MUTEX_HELD(&p->p_lock));
1386 
1387 	mutex_enter(&zone->zone_nlwps_lock);
1388 	nlwps = zone->zone_nlwps;
1389 	mutex_exit(&zone->zone_nlwps_lock);
1390 
1391 	return (nlwps);
1392 }
1393 
1394 /*ARGSUSED*/
1395 static int
1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397     rctl_qty_t incr, uint_t flags)
1398 {
1399 	rctl_qty_t nlwps;
1400 
1401 	ASSERT(MUTEX_HELD(&p->p_lock));
1402 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 	if (e->rcep_p.zone == NULL)
1404 		return (0);
1405 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 	nlwps = e->rcep_p.zone->zone_nlwps;
1407 
1408 	if (nlwps + incr > rcntl->rcv_value)
1409 		return (1);
1410 
1411 	return (0);
1412 }
1413 
1414 /*ARGSUSED*/
1415 static int
1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 	ASSERT(MUTEX_HELD(&p->p_lock));
1419 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 	if (e->rcep_p.zone == NULL)
1421 		return (0);
1422 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 	return (0);
1424 }
1425 
1426 static rctl_ops_t zone_lwps_ops = {
1427 	rcop_no_action,
1428 	zone_lwps_usage,
1429 	zone_lwps_set,
1430 	zone_lwps_test,
1431 };
1432 
1433 /*ARGSUSED*/
1434 static rctl_qty_t
1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 	rctl_qty_t nprocs;
1438 	zone_t *zone = p->p_zone;
1439 
1440 	ASSERT(MUTEX_HELD(&p->p_lock));
1441 
1442 	mutex_enter(&zone->zone_nlwps_lock);
1443 	nprocs = zone->zone_nprocs;
1444 	mutex_exit(&zone->zone_nlwps_lock);
1445 
1446 	return (nprocs);
1447 }
1448 
1449 /*ARGSUSED*/
1450 static int
1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452     rctl_qty_t incr, uint_t flags)
1453 {
1454 	rctl_qty_t nprocs;
1455 
1456 	ASSERT(MUTEX_HELD(&p->p_lock));
1457 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 	if (e->rcep_p.zone == NULL)
1459 		return (0);
1460 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 	nprocs = e->rcep_p.zone->zone_nprocs;
1462 
1463 	if (nprocs + incr > rcntl->rcv_value)
1464 		return (1);
1465 
1466 	return (0);
1467 }
1468 
1469 /*ARGSUSED*/
1470 static int
1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 	ASSERT(MUTEX_HELD(&p->p_lock));
1474 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 	if (e->rcep_p.zone == NULL)
1476 		return (0);
1477 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 	return (0);
1479 }
1480 
1481 static rctl_ops_t zone_procs_ops = {
1482 	rcop_no_action,
1483 	zone_procs_usage,
1484 	zone_procs_set,
1485 	zone_procs_test,
1486 };
1487 
1488 /*ARGSUSED*/
1489 static rctl_qty_t
1490 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1491 {
1492 	ASSERT(MUTEX_HELD(&p->p_lock));
1493 	return (p->p_zone->zone_shmmax);
1494 }
1495 
1496 /*ARGSUSED*/
1497 static int
1498 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1499     rctl_qty_t incr, uint_t flags)
1500 {
1501 	rctl_qty_t v;
1502 	ASSERT(MUTEX_HELD(&p->p_lock));
1503 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1504 	v = e->rcep_p.zone->zone_shmmax + incr;
1505 	if (v > rval->rcv_value)
1506 		return (1);
1507 	return (0);
1508 }
1509 
1510 static rctl_ops_t zone_shmmax_ops = {
1511 	rcop_no_action,
1512 	zone_shmmax_usage,
1513 	rcop_no_set,
1514 	zone_shmmax_test
1515 };
1516 
1517 /*ARGSUSED*/
1518 static rctl_qty_t
1519 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1520 {
1521 	ASSERT(MUTEX_HELD(&p->p_lock));
1522 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1523 }
1524 
1525 /*ARGSUSED*/
1526 static int
1527 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1528     rctl_qty_t incr, uint_t flags)
1529 {
1530 	rctl_qty_t v;
1531 	ASSERT(MUTEX_HELD(&p->p_lock));
1532 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1533 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1534 	if (v > rval->rcv_value)
1535 		return (1);
1536 	return (0);
1537 }
1538 
1539 static rctl_ops_t zone_shmmni_ops = {
1540 	rcop_no_action,
1541 	zone_shmmni_usage,
1542 	rcop_no_set,
1543 	zone_shmmni_test
1544 };
1545 
1546 /*ARGSUSED*/
1547 static rctl_qty_t
1548 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1549 {
1550 	ASSERT(MUTEX_HELD(&p->p_lock));
1551 	return (p->p_zone->zone_ipc.ipcq_semmni);
1552 }
1553 
1554 /*ARGSUSED*/
1555 static int
1556 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1557     rctl_qty_t incr, uint_t flags)
1558 {
1559 	rctl_qty_t v;
1560 	ASSERT(MUTEX_HELD(&p->p_lock));
1561 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1562 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1563 	if (v > rval->rcv_value)
1564 		return (1);
1565 	return (0);
1566 }
1567 
1568 static rctl_ops_t zone_semmni_ops = {
1569 	rcop_no_action,
1570 	zone_semmni_usage,
1571 	rcop_no_set,
1572 	zone_semmni_test
1573 };
1574 
1575 /*ARGSUSED*/
1576 static rctl_qty_t
1577 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1578 {
1579 	ASSERT(MUTEX_HELD(&p->p_lock));
1580 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1581 }
1582 
1583 /*ARGSUSED*/
1584 static int
1585 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1586     rctl_qty_t incr, uint_t flags)
1587 {
1588 	rctl_qty_t v;
1589 	ASSERT(MUTEX_HELD(&p->p_lock));
1590 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1591 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1592 	if (v > rval->rcv_value)
1593 		return (1);
1594 	return (0);
1595 }
1596 
1597 static rctl_ops_t zone_msgmni_ops = {
1598 	rcop_no_action,
1599 	zone_msgmni_usage,
1600 	rcop_no_set,
1601 	zone_msgmni_test
1602 };
1603 
1604 /*ARGSUSED*/
1605 static rctl_qty_t
1606 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1607 {
1608 	rctl_qty_t q;
1609 	ASSERT(MUTEX_HELD(&p->p_lock));
1610 	mutex_enter(&p->p_zone->zone_mem_lock);
1611 	q = p->p_zone->zone_locked_mem;
1612 	mutex_exit(&p->p_zone->zone_mem_lock);
1613 	return (q);
1614 }
1615 
1616 /*ARGSUSED*/
1617 static int
1618 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1619     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1620 {
1621 	rctl_qty_t q;
1622 	zone_t *z;
1623 
1624 	z = e->rcep_p.zone;
1625 	ASSERT(MUTEX_HELD(&p->p_lock));
1626 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1627 	q = z->zone_locked_mem;
1628 	if (q + incr > rcntl->rcv_value)
1629 		return (1);
1630 	return (0);
1631 }
1632 
1633 /*ARGSUSED*/
1634 static int
1635 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1636     rctl_qty_t nv)
1637 {
1638 	ASSERT(MUTEX_HELD(&p->p_lock));
1639 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1640 	if (e->rcep_p.zone == NULL)
1641 		return (0);
1642 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1643 	return (0);
1644 }
1645 
1646 static rctl_ops_t zone_locked_mem_ops = {
1647 	rcop_no_action,
1648 	zone_locked_mem_usage,
1649 	zone_locked_mem_set,
1650 	zone_locked_mem_test
1651 };
1652 
1653 /*ARGSUSED*/
1654 static rctl_qty_t
1655 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1656 {
1657 	rctl_qty_t q;
1658 	zone_t *z = p->p_zone;
1659 
1660 	ASSERT(MUTEX_HELD(&p->p_lock));
1661 	mutex_enter(&z->zone_mem_lock);
1662 	q = z->zone_max_swap;
1663 	mutex_exit(&z->zone_mem_lock);
1664 	return (q);
1665 }
1666 
1667 /*ARGSUSED*/
1668 static int
1669 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1670     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1671 {
1672 	rctl_qty_t q;
1673 	zone_t *z;
1674 
1675 	z = e->rcep_p.zone;
1676 	ASSERT(MUTEX_HELD(&p->p_lock));
1677 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1678 	q = z->zone_max_swap;
1679 	if (q + incr > rcntl->rcv_value)
1680 		return (1);
1681 	return (0);
1682 }
1683 
1684 /*ARGSUSED*/
1685 static int
1686 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1687     rctl_qty_t nv)
1688 {
1689 	ASSERT(MUTEX_HELD(&p->p_lock));
1690 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1691 	if (e->rcep_p.zone == NULL)
1692 		return (0);
1693 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1694 	return (0);
1695 }
1696 
1697 static rctl_ops_t zone_max_swap_ops = {
1698 	rcop_no_action,
1699 	zone_max_swap_usage,
1700 	zone_max_swap_set,
1701 	zone_max_swap_test
1702 };
1703 
1704 /*ARGSUSED*/
1705 static rctl_qty_t
1706 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1707 {
1708 	rctl_qty_t q;
1709 	zone_t *z = p->p_zone;
1710 
1711 	ASSERT(MUTEX_HELD(&p->p_lock));
1712 	mutex_enter(&z->zone_rctl_lock);
1713 	q = z->zone_max_lofi;
1714 	mutex_exit(&z->zone_rctl_lock);
1715 	return (q);
1716 }
1717 
1718 /*ARGSUSED*/
1719 static int
1720 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1721     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1722 {
1723 	rctl_qty_t q;
1724 	zone_t *z;
1725 
1726 	z = e->rcep_p.zone;
1727 	ASSERT(MUTEX_HELD(&p->p_lock));
1728 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1729 	q = z->zone_max_lofi;
1730 	if (q + incr > rcntl->rcv_value)
1731 		return (1);
1732 	return (0);
1733 }
1734 
1735 /*ARGSUSED*/
1736 static int
1737 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1738     rctl_qty_t nv)
1739 {
1740 	ASSERT(MUTEX_HELD(&p->p_lock));
1741 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1742 	if (e->rcep_p.zone == NULL)
1743 		return (0);
1744 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1745 	return (0);
1746 }
1747 
1748 static rctl_ops_t zone_max_lofi_ops = {
1749 	rcop_no_action,
1750 	zone_max_lofi_usage,
1751 	zone_max_lofi_set,
1752 	zone_max_lofi_test
1753 };
1754 
1755 /*
1756  * Helper function to brand the zone with a unique ID.
1757  */
1758 static void
1759 zone_uniqid(zone_t *zone)
1760 {
1761 	static uint64_t uniqid = 0;
1762 
1763 	ASSERT(MUTEX_HELD(&zonehash_lock));
1764 	zone->zone_uniqid = uniqid++;
1765 }
1766 
1767 /*
1768  * Returns a held pointer to the "kcred" for the specified zone.
1769  */
1770 struct cred *
1771 zone_get_kcred(zoneid_t zoneid)
1772 {
1773 	zone_t *zone;
1774 	cred_t *cr;
1775 
1776 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1777 		return (NULL);
1778 	cr = zone->zone_kcred;
1779 	crhold(cr);
1780 	zone_rele(zone);
1781 	return (cr);
1782 }
1783 
1784 static int
1785 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1786 {
1787 	zone_t *zone = ksp->ks_private;
1788 	zone_kstat_t *zk = ksp->ks_data;
1789 
1790 	if (rw == KSTAT_WRITE)
1791 		return (EACCES);
1792 
1793 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1794 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1795 	return (0);
1796 }
1797 
1798 static int
1799 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1800 {
1801 	zone_t *zone = ksp->ks_private;
1802 	zone_kstat_t *zk = ksp->ks_data;
1803 
1804 	if (rw == KSTAT_WRITE)
1805 		return (EACCES);
1806 
1807 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1808 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1809 	return (0);
1810 }
1811 
1812 static int
1813 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1814 {
1815 	zone_t *zone = ksp->ks_private;
1816 	zone_kstat_t *zk = ksp->ks_data;
1817 
1818 	if (rw == KSTAT_WRITE)
1819 		return (EACCES);
1820 
1821 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1822 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1823 	return (0);
1824 }
1825 
1826 static kstat_t *
1827 zone_kstat_create_common(zone_t *zone, char *name,
1828     int (*updatefunc) (kstat_t *, int))
1829 {
1830 	kstat_t *ksp;
1831 	zone_kstat_t *zk;
1832 
1833 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1834 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1835 	    KSTAT_FLAG_VIRTUAL);
1836 
1837 	if (ksp == NULL)
1838 		return (NULL);
1839 
1840 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1841 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1842 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1843 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1844 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1845 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1846 	ksp->ks_update = updatefunc;
1847 	ksp->ks_private = zone;
1848 	kstat_install(ksp);
1849 	return (ksp);
1850 }
1851 
1852 
1853 static int
1854 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1855 {
1856 	zone_t *zone = ksp->ks_private;
1857 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1858 
1859 	if (rw == KSTAT_WRITE)
1860 		return (EACCES);
1861 
1862 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1863 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1864 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1865 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1866 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1867 
1868 	return (0);
1869 }
1870 
1871 static kstat_t *
1872 zone_mcap_kstat_create(zone_t *zone)
1873 {
1874 	kstat_t *ksp;
1875 	zone_mcap_kstat_t *zmp;
1876 
1877 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1878 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1879 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1880 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1881 		return (NULL);
1882 
1883 	if (zone->zone_id != GLOBAL_ZONEID)
1884 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1885 
1886 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1887 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1888 	ksp->ks_lock = &zone->zone_mcap_lock;
1889 	zone->zone_mcap_stats = zmp;
1890 
1891 	/* The kstat "name" field is not large enough for a full zonename */
1892 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1893 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1894 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1895 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1896 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1899 	    KSTAT_DATA_UINT64);
1900 
1901 	ksp->ks_update = zone_mcap_kstat_update;
1902 	ksp->ks_private = zone;
1903 
1904 	kstat_install(ksp);
1905 	return (ksp);
1906 }
1907 
1908 static int
1909 zone_misc_kstat_update(kstat_t *ksp, int rw)
1910 {
1911 	zone_t *zone = ksp->ks_private;
1912 	zone_misc_kstat_t *zmp = ksp->ks_data;
1913 	hrtime_t tmp;
1914 
1915 	if (rw == KSTAT_WRITE)
1916 		return (EACCES);
1917 
1918 	tmp = zone->zone_utime;
1919 	scalehrtime(&tmp);
1920 	zmp->zm_utime.value.ui64 = tmp;
1921 	tmp = zone->zone_stime;
1922 	scalehrtime(&tmp);
1923 	zmp->zm_stime.value.ui64 = tmp;
1924 	tmp = zone->zone_wtime;
1925 	scalehrtime(&tmp);
1926 	zmp->zm_wtime.value.ui64 = tmp;
1927 
1928 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1929 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1930 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1931 
1932 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1933 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1934 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1935 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1936 
1937 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1938 
1939 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1940 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1941 
1942 	return (0);
1943 }
1944 
1945 static kstat_t *
1946 zone_misc_kstat_create(zone_t *zone)
1947 {
1948 	kstat_t *ksp;
1949 	zone_misc_kstat_t *zmp;
1950 
1951 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1952 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1953 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1954 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1955 		return (NULL);
1956 
1957 	if (zone->zone_id != GLOBAL_ZONEID)
1958 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1959 
1960 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1961 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1962 	ksp->ks_lock = &zone->zone_misc_lock;
1963 	zone->zone_misc_stats = zmp;
1964 
1965 	/* The kstat "name" field is not large enough for a full zonename */
1966 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1967 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1968 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1969 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1970 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1971 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1972 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1973 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1974 	    KSTAT_DATA_UINT32);
1975 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1976 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1977 	    KSTAT_DATA_UINT32);
1978 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1979 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1981 	    KSTAT_DATA_UINT32);
1982 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1984 
1985 	ksp->ks_update = zone_misc_kstat_update;
1986 	ksp->ks_private = zone;
1987 
1988 	kstat_install(ksp);
1989 	return (ksp);
1990 }
1991 
1992 static void
1993 zone_kstat_create(zone_t *zone)
1994 {
1995 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1996 	    "lockedmem", zone_lockedmem_kstat_update);
1997 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1998 	    "swapresv", zone_swapresv_kstat_update);
1999 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2000 	    "nprocs", zone_nprocs_kstat_update);
2001 
2002 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2003 		zone->zone_mcap_stats = kmem_zalloc(
2004 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2005 	}
2006 
2007 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2008 		zone->zone_misc_stats = kmem_zalloc(
2009 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2010 	}
2011 }
2012 
2013 static void
2014 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2015 {
2016 	void *data;
2017 
2018 	if (*pkstat != NULL) {
2019 		data = (*pkstat)->ks_data;
2020 		kstat_delete(*pkstat);
2021 		kmem_free(data, datasz);
2022 		*pkstat = NULL;
2023 	}
2024 }
2025 
2026 static void
2027 zone_kstat_delete(zone_t *zone)
2028 {
2029 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2030 	    sizeof (zone_kstat_t));
2031 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2032 	    sizeof (zone_kstat_t));
2033 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2034 	    sizeof (zone_kstat_t));
2035 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2036 	    sizeof (zone_mcap_kstat_t));
2037 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2038 	    sizeof (zone_misc_kstat_t));
2039 }
2040 
2041 /*
2042  * Called very early on in boot to initialize the ZSD list so that
2043  * zone_key_create() can be called before zone_init().  It also initializes
2044  * portions of zone0 which may be used before zone_init() is called.  The
2045  * variable "global_zone" will be set when zone0 is fully initialized by
2046  * zone_init().
2047  */
2048 void
2049 zone_zsd_init(void)
2050 {
2051 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2052 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2053 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2054 	    offsetof(struct zsd_entry, zsd_linkage));
2055 	list_create(&zone_active, sizeof (zone_t),
2056 	    offsetof(zone_t, zone_linkage));
2057 	list_create(&zone_deathrow, sizeof (zone_t),
2058 	    offsetof(zone_t, zone_linkage));
2059 
2060 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2061 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2062 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2063 	zone0.zone_shares = 1;
2064 	zone0.zone_nlwps = 0;
2065 	zone0.zone_nlwps_ctl = INT_MAX;
2066 	zone0.zone_nprocs = 0;
2067 	zone0.zone_nprocs_ctl = INT_MAX;
2068 	zone0.zone_locked_mem = 0;
2069 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2070 	ASSERT(zone0.zone_max_swap == 0);
2071 	zone0.zone_max_swap_ctl = UINT64_MAX;
2072 	zone0.zone_max_lofi = 0;
2073 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2074 	zone0.zone_shmmax = 0;
2075 	zone0.zone_ipc.ipcq_shmmni = 0;
2076 	zone0.zone_ipc.ipcq_semmni = 0;
2077 	zone0.zone_ipc.ipcq_msgmni = 0;
2078 	zone0.zone_name = GLOBAL_ZONENAME;
2079 	zone0.zone_nodename = utsname.nodename;
2080 	zone0.zone_domain = srpc_domain;
2081 	zone0.zone_hostid = HW_INVALID_HOSTID;
2082 	zone0.zone_fs_allowed = NULL;
2083 	psecflags_default(&zone0.zone_secflags);
2084 	zone0.zone_ref = 1;
2085 	zone0.zone_id = GLOBAL_ZONEID;
2086 	zone0.zone_status = ZONE_IS_RUNNING;
2087 	zone0.zone_rootpath = "/";
2088 	zone0.zone_rootpathlen = 2;
2089 	zone0.zone_psetid = ZONE_PS_INVAL;
2090 	zone0.zone_ncpus = 0;
2091 	zone0.zone_ncpus_online = 0;
2092 	zone0.zone_proc_initpid = 1;
2093 	zone0.zone_initname = initname;
2094 	zone0.zone_lockedmem_kstat = NULL;
2095 	zone0.zone_swapresv_kstat = NULL;
2096 	zone0.zone_nprocs_kstat = NULL;
2097 
2098 	zone0.zone_stime = 0;
2099 	zone0.zone_utime = 0;
2100 	zone0.zone_wtime = 0;
2101 
2102 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2103 	    offsetof(zone_ref_t, zref_linkage));
2104 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2105 	    offsetof(struct zsd_entry, zsd_linkage));
2106 	list_insert_head(&zone_active, &zone0);
2107 
2108 	/*
2109 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2110 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2111 	 * vfs_mountroot().
2112 	 */
2113 	zone0.zone_rootvp = NULL;
2114 	zone0.zone_vfslist = NULL;
2115 	zone0.zone_bootargs = initargs;
2116 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2117 	/*
2118 	 * The global zone has all privileges
2119 	 */
2120 	priv_fillset(zone0.zone_privset);
2121 	/*
2122 	 * Add p0 to the global zone
2123 	 */
2124 	zone0.zone_zsched = &p0;
2125 	p0.p_zone = &zone0;
2126 }
2127 
2128 /*
2129  * Compute a hash value based on the contents of the label and the DOI.  The
2130  * hash algorithm is somewhat arbitrary, but is based on the observation that
2131  * humans will likely pick labels that differ by amounts that work out to be
2132  * multiples of the number of hash chains, and thus stirring in some primes
2133  * should help.
2134  */
2135 static uint_t
2136 hash_bylabel(void *hdata, mod_hash_key_t key)
2137 {
2138 	const ts_label_t *lab = (ts_label_t *)key;
2139 	const uint32_t *up, *ue;
2140 	uint_t hash;
2141 	int i;
2142 
2143 	_NOTE(ARGUNUSED(hdata));
2144 
2145 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2146 	/* we depend on alignment of label, but not representation */
2147 	up = (const uint32_t *)&lab->tsl_label;
2148 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2149 	i = 1;
2150 	while (up < ue) {
2151 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2152 		hash += *up + (*up << ((i % 16) + 1));
2153 		up++;
2154 		i++;
2155 	}
2156 	return (hash);
2157 }
2158 
2159 /*
2160  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2161  * equal).  This may need to be changed if less than / greater than is ever
2162  * needed.
2163  */
2164 static int
2165 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2166 {
2167 	ts_label_t *lab1 = (ts_label_t *)key1;
2168 	ts_label_t *lab2 = (ts_label_t *)key2;
2169 
2170 	return (label_equal(lab1, lab2) ? 0 : 1);
2171 }
2172 
2173 /*
2174  * Called by main() to initialize the zones framework.
2175  */
2176 void
2177 zone_init(void)
2178 {
2179 	rctl_dict_entry_t *rde;
2180 	rctl_val_t *dval;
2181 	rctl_set_t *set;
2182 	rctl_alloc_gp_t *gp;
2183 	rctl_entity_p_t e;
2184 	int res;
2185 
2186 	ASSERT(curproc == &p0);
2187 
2188 	/*
2189 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2190 	 * global zone.
2191 	 */
2192 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2193 
2194 	/*
2195 	 * Initialize generic zone resource controls, if any.
2196 	 */
2197 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2198 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2199 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2200 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2201 
2202 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2203 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2204 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2205 	    RCTL_GLOBAL_INFINITE,
2206 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2207 
2208 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2209 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2210 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2211 
2212 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2213 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 	    INT_MAX, INT_MAX, &zone_procs_ops);
2215 
2216 	/*
2217 	 * System V IPC resource controls
2218 	 */
2219 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2220 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2221 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2222 
2223 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2224 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2226 
2227 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2228 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2230 
2231 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2232 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2234 
2235 	/*
2236 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2237 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2238 	 */
2239 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2240 	bzero(dval, sizeof (rctl_val_t));
2241 	dval->rcv_value = 1;
2242 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2243 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2244 	dval->rcv_action_recip_pid = -1;
2245 
2246 	rde = rctl_dict_lookup("zone.cpu-shares");
2247 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2248 
2249 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2250 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2251 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2252 	    &zone_locked_mem_ops);
2253 
2254 	rc_zone_max_swap = rctl_register("zone.max-swap",
2255 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2256 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2257 	    &zone_max_swap_ops);
2258 
2259 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2260 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2261 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2262 	    &zone_max_lofi_ops);
2263 
2264 	/*
2265 	 * Initialize the ``global zone''.
2266 	 */
2267 	set = rctl_set_create();
2268 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2269 	mutex_enter(&p0.p_lock);
2270 	e.rcep_p.zone = &zone0;
2271 	e.rcep_t = RCENTITY_ZONE;
2272 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2273 	    gp);
2274 
2275 	zone0.zone_nlwps = p0.p_lwpcnt;
2276 	zone0.zone_nprocs = 1;
2277 	zone0.zone_ntasks = 1;
2278 	mutex_exit(&p0.p_lock);
2279 	zone0.zone_restart_init = B_TRUE;
2280 	zone0.zone_brand = &native_brand;
2281 	rctl_prealloc_destroy(gp);
2282 	/*
2283 	 * pool_default hasn't been initialized yet, so we let pool_init()
2284 	 * take care of making sure the global zone is in the default pool.
2285 	 */
2286 
2287 	/*
2288 	 * Initialize global zone kstats
2289 	 */
2290 	zone_kstat_create(&zone0);
2291 
2292 	/*
2293 	 * Initialize zone label.
2294 	 * mlp are initialized when tnzonecfg is loaded.
2295 	 */
2296 	zone0.zone_slabel = l_admin_low;
2297 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2298 	label_hold(l_admin_low);
2299 
2300 	/*
2301 	 * Initialise the lock for the database structure used by mntfs.
2302 	 */
2303 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2304 
2305 	mutex_enter(&zonehash_lock);
2306 	zone_uniqid(&zone0);
2307 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2308 
2309 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2310 	    mod_hash_null_valdtor);
2311 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2312 	    zone_hash_size, mod_hash_null_valdtor);
2313 	/*
2314 	 * maintain zonehashbylabel only for labeled systems
2315 	 */
2316 	if (is_system_labeled())
2317 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2318 		    zone_hash_size, mod_hash_null_keydtor,
2319 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2320 		    hash_labelkey_cmp, KM_SLEEP);
2321 	zonecount = 1;
2322 
2323 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2324 	    (mod_hash_val_t)&zone0);
2325 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2326 	    (mod_hash_val_t)&zone0);
2327 	if (is_system_labeled()) {
2328 		zone0.zone_flags |= ZF_HASHED_LABEL;
2329 		(void) mod_hash_insert(zonehashbylabel,
2330 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2331 	}
2332 	mutex_exit(&zonehash_lock);
2333 
2334 	/*
2335 	 * We avoid setting zone_kcred until now, since kcred is initialized
2336 	 * sometime after zone_zsd_init() and before zone_init().
2337 	 */
2338 	zone0.zone_kcred = kcred;
2339 	/*
2340 	 * The global zone is fully initialized (except for zone_rootvp which
2341 	 * will be set when the root filesystem is mounted).
2342 	 */
2343 	global_zone = &zone0;
2344 
2345 	/*
2346 	 * Setup an event channel to send zone status change notifications on
2347 	 */
2348 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2349 	    EVCH_CREAT);
2350 
2351 	if (res)
2352 		panic("Sysevent_evc_bind failed during zone setup.\n");
2353 
2354 }
2355 
2356 static void
2357 zone_free(zone_t *zone)
2358 {
2359 	ASSERT(zone != global_zone);
2360 	ASSERT(zone->zone_ntasks == 0);
2361 	ASSERT(zone->zone_nlwps == 0);
2362 	ASSERT(zone->zone_nprocs == 0);
2363 	ASSERT(zone->zone_cred_ref == 0);
2364 	ASSERT(zone->zone_kcred == NULL);
2365 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2366 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2367 	ASSERT(list_is_empty(&zone->zone_ref_list));
2368 
2369 	/*
2370 	 * Remove any zone caps.
2371 	 */
2372 	cpucaps_zone_remove(zone);
2373 
2374 	ASSERT(zone->zone_cpucap == NULL);
2375 
2376 	/* remove from deathrow list */
2377 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2378 		ASSERT(zone->zone_ref == 0);
2379 		mutex_enter(&zone_deathrow_lock);
2380 		list_remove(&zone_deathrow, zone);
2381 		mutex_exit(&zone_deathrow_lock);
2382 	}
2383 
2384 	list_destroy(&zone->zone_ref_list);
2385 	zone_free_zsd(zone);
2386 	zone_free_datasets(zone);
2387 	list_destroy(&zone->zone_dl_list);
2388 
2389 	if (zone->zone_rootvp != NULL)
2390 		VN_RELE(zone->zone_rootvp);
2391 	if (zone->zone_rootpath)
2392 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2393 	if (zone->zone_name != NULL)
2394 		kmem_free(zone->zone_name, ZONENAME_MAX);
2395 	if (zone->zone_slabel != NULL)
2396 		label_rele(zone->zone_slabel);
2397 	if (zone->zone_nodename != NULL)
2398 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2399 	if (zone->zone_domain != NULL)
2400 		kmem_free(zone->zone_domain, _SYS_NMLN);
2401 	if (zone->zone_privset != NULL)
2402 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2403 	if (zone->zone_rctls != NULL)
2404 		rctl_set_free(zone->zone_rctls);
2405 	if (zone->zone_bootargs != NULL)
2406 		strfree(zone->zone_bootargs);
2407 	if (zone->zone_initname != NULL)
2408 		strfree(zone->zone_initname);
2409 	if (zone->zone_fs_allowed != NULL)
2410 		strfree(zone->zone_fs_allowed);
2411 	if (zone->zone_pfexecd != NULL)
2412 		klpd_freelist(&zone->zone_pfexecd);
2413 	id_free(zoneid_space, zone->zone_id);
2414 	mutex_destroy(&zone->zone_lock);
2415 	cv_destroy(&zone->zone_cv);
2416 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2417 	rw_destroy(&zone->zone_mntfs_db_lock);
2418 	kmem_free(zone, sizeof (zone_t));
2419 }
2420 
2421 /*
2422  * See block comment at the top of this file for information about zone
2423  * status values.
2424  */
2425 /*
2426  * Convenience function for setting zone status.
2427  */
2428 static void
2429 zone_status_set(zone_t *zone, zone_status_t status)
2430 {
2431 
2432 	nvlist_t *nvl = NULL;
2433 	ASSERT(MUTEX_HELD(&zone_status_lock));
2434 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2435 	    status >= zone_status_get(zone));
2436 
2437 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2438 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2439 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2440 	    zone_status_table[status]) ||
2441 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2442 	    zone_status_table[zone->zone_status]) ||
2443 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2444 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2445 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2446 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2447 #ifdef DEBUG
2448 		(void) printf(
2449 		    "Failed to allocate and send zone state change event.\n");
2450 #endif
2451 	}
2452 	nvlist_free(nvl);
2453 
2454 	zone->zone_status = status;
2455 
2456 	cv_broadcast(&zone->zone_cv);
2457 }
2458 
2459 /*
2460  * Public function to retrieve the zone status.  The zone status may
2461  * change after it is retrieved.
2462  */
2463 zone_status_t
2464 zone_status_get(zone_t *zone)
2465 {
2466 	return (zone->zone_status);
2467 }
2468 
2469 static int
2470 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2471 {
2472 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2473 	int err = 0;
2474 
2475 	ASSERT(zone != global_zone);
2476 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2477 		goto done;	/* EFAULT or ENAMETOOLONG */
2478 
2479 	if (zone->zone_bootargs != NULL)
2480 		strfree(zone->zone_bootargs);
2481 
2482 	zone->zone_bootargs = strdup(buf);
2483 
2484 done:
2485 	kmem_free(buf, BOOTARGS_MAX);
2486 	return (err);
2487 }
2488 
2489 static int
2490 zone_set_brand(zone_t *zone, const char *brand)
2491 {
2492 	struct brand_attr *attrp;
2493 	brand_t *bp;
2494 
2495 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2496 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2497 		kmem_free(attrp, sizeof (struct brand_attr));
2498 		return (EFAULT);
2499 	}
2500 
2501 	bp = brand_register_zone(attrp);
2502 	kmem_free(attrp, sizeof (struct brand_attr));
2503 	if (bp == NULL)
2504 		return (EINVAL);
2505 
2506 	/*
2507 	 * This is the only place where a zone can change it's brand.
2508 	 * We already need to hold zone_status_lock to check the zone
2509 	 * status, so we'll just use that lock to serialize zone
2510 	 * branding requests as well.
2511 	 */
2512 	mutex_enter(&zone_status_lock);
2513 
2514 	/* Re-Branding is not allowed and the zone can't be booted yet */
2515 	if ((ZONE_IS_BRANDED(zone)) ||
2516 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2517 		mutex_exit(&zone_status_lock);
2518 		brand_unregister_zone(bp);
2519 		return (EINVAL);
2520 	}
2521 
2522 	/* set up the brand specific data */
2523 	zone->zone_brand = bp;
2524 	ZBROP(zone)->b_init_brand_data(zone);
2525 
2526 	mutex_exit(&zone_status_lock);
2527 	return (0);
2528 }
2529 
2530 static int
2531 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2532 {
2533 	int err = 0;
2534 	psecflags_t psf;
2535 
2536 	ASSERT(zone != global_zone);
2537 
2538 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2539 		return (err);
2540 
2541 	if (zone_status_get(zone) > ZONE_IS_READY)
2542 		return (EINVAL);
2543 
2544 	if (!psecflags_validate(&psf))
2545 		return (EINVAL);
2546 
2547 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2548 
2549 	/* Set security flags on the zone's zsched */
2550 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2551 	    sizeof (zone->zone_zsched->p_secflags));
2552 
2553 	return (0);
2554 }
2555 
2556 static int
2557 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2558 {
2559 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2560 	int err = 0;
2561 
2562 	ASSERT(zone != global_zone);
2563 	if ((err = copyinstr(zone_fs_allowed, buf,
2564 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2565 		goto done;
2566 
2567 	if (zone->zone_fs_allowed != NULL)
2568 		strfree(zone->zone_fs_allowed);
2569 
2570 	zone->zone_fs_allowed = strdup(buf);
2571 
2572 done:
2573 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2574 	return (err);
2575 }
2576 
2577 static int
2578 zone_set_initname(zone_t *zone, const char *zone_initname)
2579 {
2580 	char initname[INITNAME_SZ];
2581 	size_t len;
2582 	int err = 0;
2583 
2584 	ASSERT(zone != global_zone);
2585 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2586 		return (err);	/* EFAULT or ENAMETOOLONG */
2587 
2588 	if (zone->zone_initname != NULL)
2589 		strfree(zone->zone_initname);
2590 
2591 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2592 	(void) strcpy(zone->zone_initname, initname);
2593 	return (0);
2594 }
2595 
2596 static int
2597 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2598 {
2599 	uint64_t mcap;
2600 	int err = 0;
2601 
2602 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2603 		zone->zone_phys_mcap = mcap;
2604 
2605 	return (err);
2606 }
2607 
2608 static int
2609 zone_set_sched_class(zone_t *zone, const char *new_class)
2610 {
2611 	char sched_class[PC_CLNMSZ];
2612 	id_t classid;
2613 	int err;
2614 
2615 	ASSERT(zone != global_zone);
2616 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2617 		return (err);	/* EFAULT or ENAMETOOLONG */
2618 
2619 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2620 		return (set_errno(EINVAL));
2621 	zone->zone_defaultcid = classid;
2622 	ASSERT(zone->zone_defaultcid > 0 &&
2623 	    zone->zone_defaultcid < loaded_classes);
2624 
2625 	return (0);
2626 }
2627 
2628 /*
2629  * Block indefinitely waiting for (zone_status >= status)
2630  */
2631 void
2632 zone_status_wait(zone_t *zone, zone_status_t status)
2633 {
2634 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2635 
2636 	mutex_enter(&zone_status_lock);
2637 	while (zone->zone_status < status) {
2638 		cv_wait(&zone->zone_cv, &zone_status_lock);
2639 	}
2640 	mutex_exit(&zone_status_lock);
2641 }
2642 
2643 /*
2644  * Private CPR-safe version of zone_status_wait().
2645  */
2646 static void
2647 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2648 {
2649 	callb_cpr_t cprinfo;
2650 
2651 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2652 
2653 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2654 	    str);
2655 	mutex_enter(&zone_status_lock);
2656 	while (zone->zone_status < status) {
2657 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2658 		cv_wait(&zone->zone_cv, &zone_status_lock);
2659 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2660 	}
2661 	/*
2662 	 * zone_status_lock is implicitly released by the following.
2663 	 */
2664 	CALLB_CPR_EXIT(&cprinfo);
2665 }
2666 
2667 /*
2668  * Block until zone enters requested state or signal is received.  Return (0)
2669  * if signaled, non-zero otherwise.
2670  */
2671 int
2672 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2673 {
2674 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2675 
2676 	mutex_enter(&zone_status_lock);
2677 	while (zone->zone_status < status) {
2678 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2679 			mutex_exit(&zone_status_lock);
2680 			return (0);
2681 		}
2682 	}
2683 	mutex_exit(&zone_status_lock);
2684 	return (1);
2685 }
2686 
2687 /*
2688  * Block until the zone enters the requested state or the timeout expires,
2689  * whichever happens first.  Return (-1) if operation timed out, time remaining
2690  * otherwise.
2691  */
2692 clock_t
2693 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2694 {
2695 	clock_t timeleft = 0;
2696 
2697 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2698 
2699 	mutex_enter(&zone_status_lock);
2700 	while (zone->zone_status < status && timeleft != -1) {
2701 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2702 	}
2703 	mutex_exit(&zone_status_lock);
2704 	return (timeleft);
2705 }
2706 
2707 /*
2708  * Block until the zone enters the requested state, the current process is
2709  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2710  * operation timed out, 0 if signaled, time remaining otherwise.
2711  */
2712 clock_t
2713 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2714 {
2715 	clock_t timeleft = tim - ddi_get_lbolt();
2716 
2717 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2718 
2719 	mutex_enter(&zone_status_lock);
2720 	while (zone->zone_status < status) {
2721 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2722 		    tim);
2723 		if (timeleft <= 0)
2724 			break;
2725 	}
2726 	mutex_exit(&zone_status_lock);
2727 	return (timeleft);
2728 }
2729 
2730 /*
2731  * Zones have two reference counts: one for references from credential
2732  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2733  * This is so we can allow a zone to be rebooted while there are still
2734  * outstanding cred references, since certain drivers cache dblks (which
2735  * implicitly results in cached creds).  We wait for zone_ref to drop to
2736  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2737  * later freed when the zone_cred_ref drops to 0, though nothing other
2738  * than the zone id and privilege set should be accessed once the zone
2739  * is "dead".
2740  *
2741  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2742  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2743  * to 0.  This can be useful to flush out other sources of cached creds
2744  * that may be less innocuous than the driver case.
2745  *
2746  * Zones also provide a tracked reference counting mechanism in which zone
2747  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2748  * debuggers determine the sources of leaked zone references.  See
2749  * zone_hold_ref() and zone_rele_ref() below for more information.
2750  */
2751 
2752 int zone_wait_for_cred = 0;
2753 
2754 static void
2755 zone_hold_locked(zone_t *z)
2756 {
2757 	ASSERT(MUTEX_HELD(&z->zone_lock));
2758 	z->zone_ref++;
2759 	ASSERT(z->zone_ref != 0);
2760 }
2761 
2762 /*
2763  * Increment the specified zone's reference count.  The zone's zone_t structure
2764  * will not be freed as long as the zone's reference count is nonzero.
2765  * Decrement the zone's reference count via zone_rele().
2766  *
2767  * NOTE: This function should only be used to hold zones for short periods of
2768  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2769  */
2770 void
2771 zone_hold(zone_t *z)
2772 {
2773 	mutex_enter(&z->zone_lock);
2774 	zone_hold_locked(z);
2775 	mutex_exit(&z->zone_lock);
2776 }
2777 
2778 /*
2779  * If the non-cred ref count drops to 1 and either the cred ref count
2780  * is 0 or we aren't waiting for cred references, the zone is ready to
2781  * be destroyed.
2782  */
2783 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2784 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2785 
2786 /*
2787  * Common zone reference release function invoked by zone_rele() and
2788  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2789  * zone's subsystem-specific reference counters are not affected by the
2790  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2791  * removed from the specified zone's reference list.  ref must be non-NULL iff
2792  * subsys is not ZONE_REF_NUM_SUBSYS.
2793  */
2794 static void
2795 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2796 {
2797 	boolean_t wakeup;
2798 
2799 	mutex_enter(&z->zone_lock);
2800 	ASSERT(z->zone_ref != 0);
2801 	z->zone_ref--;
2802 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2803 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2804 		z->zone_subsys_ref[subsys]--;
2805 		list_remove(&z->zone_ref_list, ref);
2806 	}
2807 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2808 		/* no more refs, free the structure */
2809 		mutex_exit(&z->zone_lock);
2810 		zone_free(z);
2811 		return;
2812 	}
2813 	/* signal zone_destroy so the zone can finish halting */
2814 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2815 	mutex_exit(&z->zone_lock);
2816 
2817 	if (wakeup) {
2818 		/*
2819 		 * Grabbing zonehash_lock here effectively synchronizes with
2820 		 * zone_destroy() to avoid missed signals.
2821 		 */
2822 		mutex_enter(&zonehash_lock);
2823 		cv_broadcast(&zone_destroy_cv);
2824 		mutex_exit(&zonehash_lock);
2825 	}
2826 }
2827 
2828 /*
2829  * Decrement the specified zone's reference count.  The specified zone will
2830  * cease to exist after this function returns if the reference count drops to
2831  * zero.  This function should be paired with zone_hold().
2832  */
2833 void
2834 zone_rele(zone_t *z)
2835 {
2836 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2837 }
2838 
2839 /*
2840  * Initialize a zone reference structure.  This function must be invoked for
2841  * a reference structure before the structure is passed to zone_hold_ref().
2842  */
2843 void
2844 zone_init_ref(zone_ref_t *ref)
2845 {
2846 	ref->zref_zone = NULL;
2847 	list_link_init(&ref->zref_linkage);
2848 }
2849 
2850 /*
2851  * Acquire a reference to zone z.  The caller must specify the
2852  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2853  * zone_ref_t structure will represent a reference to the specified zone.  Use
2854  * zone_rele_ref() to release the reference.
2855  *
2856  * The referenced zone_t structure will not be freed as long as the zone_t's
2857  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2858  * references.
2859  *
2860  * NOTE: The zone_ref_t structure must be initialized before it is used.
2861  * See zone_init_ref() above.
2862  */
2863 void
2864 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2865 {
2866 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2867 
2868 	/*
2869 	 * Prevent consumers from reusing a reference structure before
2870 	 * releasing it.
2871 	 */
2872 	VERIFY(ref->zref_zone == NULL);
2873 
2874 	ref->zref_zone = z;
2875 	mutex_enter(&z->zone_lock);
2876 	zone_hold_locked(z);
2877 	z->zone_subsys_ref[subsys]++;
2878 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2879 	list_insert_head(&z->zone_ref_list, ref);
2880 	mutex_exit(&z->zone_lock);
2881 }
2882 
2883 /*
2884  * Release the zone reference represented by the specified zone_ref_t.
2885  * The reference is invalid after it's released; however, the zone_ref_t
2886  * structure can be reused without having to invoke zone_init_ref().
2887  * subsys should be the same value that was passed to zone_hold_ref()
2888  * when the reference was acquired.
2889  */
2890 void
2891 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2892 {
2893 	zone_rele_common(ref->zref_zone, ref, subsys);
2894 
2895 	/*
2896 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2897 	 * when consumers dereference the reference.  This helps us catch
2898 	 * consumers who use released references.  Furthermore, this lets
2899 	 * consumers reuse the zone_ref_t structure without having to
2900 	 * invoke zone_init_ref().
2901 	 */
2902 	ref->zref_zone = NULL;
2903 }
2904 
2905 void
2906 zone_cred_hold(zone_t *z)
2907 {
2908 	mutex_enter(&z->zone_lock);
2909 	z->zone_cred_ref++;
2910 	ASSERT(z->zone_cred_ref != 0);
2911 	mutex_exit(&z->zone_lock);
2912 }
2913 
2914 void
2915 zone_cred_rele(zone_t *z)
2916 {
2917 	boolean_t wakeup;
2918 
2919 	mutex_enter(&z->zone_lock);
2920 	ASSERT(z->zone_cred_ref != 0);
2921 	z->zone_cred_ref--;
2922 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2923 		/* no more refs, free the structure */
2924 		mutex_exit(&z->zone_lock);
2925 		zone_free(z);
2926 		return;
2927 	}
2928 	/*
2929 	 * If zone_destroy is waiting for the cred references to drain
2930 	 * out, and they have, signal it.
2931 	 */
2932 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2933 	    zone_status_get(z) >= ZONE_IS_DEAD);
2934 	mutex_exit(&z->zone_lock);
2935 
2936 	if (wakeup) {
2937 		/*
2938 		 * Grabbing zonehash_lock here effectively synchronizes with
2939 		 * zone_destroy() to avoid missed signals.
2940 		 */
2941 		mutex_enter(&zonehash_lock);
2942 		cv_broadcast(&zone_destroy_cv);
2943 		mutex_exit(&zonehash_lock);
2944 	}
2945 }
2946 
2947 void
2948 zone_task_hold(zone_t *z)
2949 {
2950 	mutex_enter(&z->zone_lock);
2951 	z->zone_ntasks++;
2952 	ASSERT(z->zone_ntasks != 0);
2953 	mutex_exit(&z->zone_lock);
2954 }
2955 
2956 void
2957 zone_task_rele(zone_t *zone)
2958 {
2959 	uint_t refcnt;
2960 
2961 	mutex_enter(&zone->zone_lock);
2962 	ASSERT(zone->zone_ntasks != 0);
2963 	refcnt = --zone->zone_ntasks;
2964 	if (refcnt > 1)	{	/* Common case */
2965 		mutex_exit(&zone->zone_lock);
2966 		return;
2967 	}
2968 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2969 	mutex_exit(&zone->zone_lock);
2970 	if (refcnt == 1) {
2971 		/*
2972 		 * See if the zone is shutting down.
2973 		 */
2974 		mutex_enter(&zone_status_lock);
2975 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2976 			goto out;
2977 		}
2978 
2979 		/*
2980 		 * Make sure the ntasks didn't change since we
2981 		 * dropped zone_lock.
2982 		 */
2983 		mutex_enter(&zone->zone_lock);
2984 		if (refcnt != zone->zone_ntasks) {
2985 			mutex_exit(&zone->zone_lock);
2986 			goto out;
2987 		}
2988 		mutex_exit(&zone->zone_lock);
2989 
2990 		/*
2991 		 * No more user processes in the zone.  The zone is empty.
2992 		 */
2993 		zone_status_set(zone, ZONE_IS_EMPTY);
2994 		goto out;
2995 	}
2996 
2997 	ASSERT(refcnt == 0);
2998 	/*
2999 	 * zsched has exited; the zone is dead.
3000 	 */
3001 	zone->zone_zsched = NULL;		/* paranoia */
3002 	mutex_enter(&zone_status_lock);
3003 	zone_status_set(zone, ZONE_IS_DEAD);
3004 out:
3005 	mutex_exit(&zone_status_lock);
3006 	zone_rele(zone);
3007 }
3008 
3009 zoneid_t
3010 getzoneid(void)
3011 {
3012 	return (curproc->p_zone->zone_id);
3013 }
3014 
3015 /*
3016  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3017  * check the validity of a zone's state.
3018  */
3019 static zone_t *
3020 zone_find_all_by_id(zoneid_t zoneid)
3021 {
3022 	mod_hash_val_t hv;
3023 	zone_t *zone = NULL;
3024 
3025 	ASSERT(MUTEX_HELD(&zonehash_lock));
3026 
3027 	if (mod_hash_find(zonehashbyid,
3028 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3029 		zone = (zone_t *)hv;
3030 	return (zone);
3031 }
3032 
3033 static zone_t *
3034 zone_find_all_by_label(const ts_label_t *label)
3035 {
3036 	mod_hash_val_t hv;
3037 	zone_t *zone = NULL;
3038 
3039 	ASSERT(MUTEX_HELD(&zonehash_lock));
3040 
3041 	/*
3042 	 * zonehashbylabel is not maintained for unlabeled systems
3043 	 */
3044 	if (!is_system_labeled())
3045 		return (NULL);
3046 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3047 		zone = (zone_t *)hv;
3048 	return (zone);
3049 }
3050 
3051 static zone_t *
3052 zone_find_all_by_name(char *name)
3053 {
3054 	mod_hash_val_t hv;
3055 	zone_t *zone = NULL;
3056 
3057 	ASSERT(MUTEX_HELD(&zonehash_lock));
3058 
3059 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3060 		zone = (zone_t *)hv;
3061 	return (zone);
3062 }
3063 
3064 /*
3065  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3066  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3067  * Caller must call zone_rele() once it is done with the zone.
3068  *
3069  * The zone may begin the zone_destroy() sequence immediately after this
3070  * function returns, but may be safely used until zone_rele() is called.
3071  */
3072 zone_t *
3073 zone_find_by_id(zoneid_t zoneid)
3074 {
3075 	zone_t *zone;
3076 	zone_status_t status;
3077 
3078 	mutex_enter(&zonehash_lock);
3079 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3080 		mutex_exit(&zonehash_lock);
3081 		return (NULL);
3082 	}
3083 	status = zone_status_get(zone);
3084 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3085 		/*
3086 		 * For all practical purposes the zone doesn't exist.
3087 		 */
3088 		mutex_exit(&zonehash_lock);
3089 		return (NULL);
3090 	}
3091 	zone_hold(zone);
3092 	mutex_exit(&zonehash_lock);
3093 	return (zone);
3094 }
3095 
3096 /*
3097  * Similar to zone_find_by_id, but using zone label as the key.
3098  */
3099 zone_t *
3100 zone_find_by_label(const ts_label_t *label)
3101 {
3102 	zone_t *zone;
3103 	zone_status_t status;
3104 
3105 	mutex_enter(&zonehash_lock);
3106 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3107 		mutex_exit(&zonehash_lock);
3108 		return (NULL);
3109 	}
3110 
3111 	status = zone_status_get(zone);
3112 	if (status > ZONE_IS_DOWN) {
3113 		/*
3114 		 * For all practical purposes the zone doesn't exist.
3115 		 */
3116 		mutex_exit(&zonehash_lock);
3117 		return (NULL);
3118 	}
3119 	zone_hold(zone);
3120 	mutex_exit(&zonehash_lock);
3121 	return (zone);
3122 }
3123 
3124 /*
3125  * Similar to zone_find_by_id, but using zone name as the key.
3126  */
3127 zone_t *
3128 zone_find_by_name(char *name)
3129 {
3130 	zone_t *zone;
3131 	zone_status_t status;
3132 
3133 	mutex_enter(&zonehash_lock);
3134 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3135 		mutex_exit(&zonehash_lock);
3136 		return (NULL);
3137 	}
3138 	status = zone_status_get(zone);
3139 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3140 		/*
3141 		 * For all practical purposes the zone doesn't exist.
3142 		 */
3143 		mutex_exit(&zonehash_lock);
3144 		return (NULL);
3145 	}
3146 	zone_hold(zone);
3147 	mutex_exit(&zonehash_lock);
3148 	return (zone);
3149 }
3150 
3151 /*
3152  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3153  * if there is a zone "foo" rooted at /foo/root, and the path argument
3154  * is "/foo/root/proc", it will return the held zone_t corresponding to
3155  * zone "foo".
3156  *
3157  * zone_find_by_path() always returns a non-NULL value, since at the
3158  * very least every path will be contained in the global zone.
3159  *
3160  * As with the other zone_find_by_*() functions, the caller is
3161  * responsible for zone_rele()ing the return value of this function.
3162  */
3163 zone_t *
3164 zone_find_by_path(const char *path)
3165 {
3166 	zone_t *zone;
3167 	zone_t *zret = NULL;
3168 	zone_status_t status;
3169 
3170 	if (path == NULL) {
3171 		/*
3172 		 * Call from rootconf().
3173 		 */
3174 		zone_hold(global_zone);
3175 		return (global_zone);
3176 	}
3177 	ASSERT(*path == '/');
3178 	mutex_enter(&zonehash_lock);
3179 	for (zone = list_head(&zone_active); zone != NULL;
3180 	    zone = list_next(&zone_active, zone)) {
3181 		if (ZONE_PATH_VISIBLE(path, zone))
3182 			zret = zone;
3183 	}
3184 	ASSERT(zret != NULL);
3185 	status = zone_status_get(zret);
3186 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3187 		/*
3188 		 * Zone practically doesn't exist.
3189 		 */
3190 		zret = global_zone;
3191 	}
3192 	zone_hold(zret);
3193 	mutex_exit(&zonehash_lock);
3194 	return (zret);
3195 }
3196 
3197 /*
3198  * Public interface for updating per-zone load averages.  Called once per
3199  * second.
3200  *
3201  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3202  */
3203 void
3204 zone_loadavg_update()
3205 {
3206 	zone_t *zp;
3207 	zone_status_t status;
3208 	struct loadavg_s *lavg;
3209 	hrtime_t zone_total;
3210 	int i;
3211 	hrtime_t hr_avg;
3212 	int nrun;
3213 	static int64_t f[3] = { 135, 27, 9 };
3214 	int64_t q, r;
3215 
3216 	mutex_enter(&zonehash_lock);
3217 	for (zp = list_head(&zone_active); zp != NULL;
3218 	    zp = list_next(&zone_active, zp)) {
3219 		mutex_enter(&zp->zone_lock);
3220 
3221 		/* Skip zones that are on the way down or not yet up */
3222 		status = zone_status_get(zp);
3223 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3224 			/* For all practical purposes the zone doesn't exist. */
3225 			mutex_exit(&zp->zone_lock);
3226 			continue;
3227 		}
3228 
3229 		/*
3230 		 * Update the 10 second moving average data in zone_loadavg.
3231 		 */
3232 		lavg = &zp->zone_loadavg;
3233 
3234 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3235 		scalehrtime(&zone_total);
3236 
3237 		/* The zone_total should always be increasing. */
3238 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3239 		    zone_total - lavg->lg_total : 0;
3240 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3241 		/* lg_total holds the prev. 1 sec. total */
3242 		lavg->lg_total = zone_total;
3243 
3244 		/*
3245 		 * To simplify the calculation, we don't calculate the load avg.
3246 		 * until the zone has been up for at least 10 seconds and our
3247 		 * moving average is thus full.
3248 		 */
3249 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3250 			lavg->lg_len++;
3251 			mutex_exit(&zp->zone_lock);
3252 			continue;
3253 		}
3254 
3255 		/* Now calculate the 1min, 5min, 15 min load avg. */
3256 		hr_avg = 0;
3257 		for (i = 0; i < S_LOADAVG_SZ; i++)
3258 			hr_avg += lavg->lg_loads[i];
3259 		hr_avg = hr_avg / S_LOADAVG_SZ;
3260 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3261 
3262 		/* Compute load avg. See comment in calcloadavg() */
3263 		for (i = 0; i < 3; i++) {
3264 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3265 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3266 			zp->zone_hp_avenrun[i] +=
3267 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3268 
3269 			/* avenrun[] can only hold 31 bits of load avg. */
3270 			if (zp->zone_hp_avenrun[i] <
3271 			    ((uint64_t)1<<(31+16-FSHIFT)))
3272 				zp->zone_avenrun[i] = (int32_t)
3273 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3274 			else
3275 				zp->zone_avenrun[i] = 0x7fffffff;
3276 		}
3277 
3278 		mutex_exit(&zp->zone_lock);
3279 	}
3280 	mutex_exit(&zonehash_lock);
3281 }
3282 
3283 /*
3284  * Get the number of cpus visible to this zone.  The system-wide global
3285  * 'ncpus' is returned if pools are disabled, the caller is in the
3286  * global zone, or a NULL zone argument is passed in.
3287  */
3288 int
3289 zone_ncpus_get(zone_t *zone)
3290 {
3291 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3292 
3293 	return (myncpus != 0 ? myncpus : ncpus);
3294 }
3295 
3296 /*
3297  * Get the number of online cpus visible to this zone.  The system-wide
3298  * global 'ncpus_online' is returned if pools are disabled, the caller
3299  * is in the global zone, or a NULL zone argument is passed in.
3300  */
3301 int
3302 zone_ncpus_online_get(zone_t *zone)
3303 {
3304 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3305 
3306 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3307 }
3308 
3309 /*
3310  * Return the pool to which the zone is currently bound.
3311  */
3312 pool_t *
3313 zone_pool_get(zone_t *zone)
3314 {
3315 	ASSERT(pool_lock_held());
3316 
3317 	return (zone->zone_pool);
3318 }
3319 
3320 /*
3321  * Set the zone's pool pointer and update the zone's visibility to match
3322  * the resources in the new pool.
3323  */
3324 void
3325 zone_pool_set(zone_t *zone, pool_t *pool)
3326 {
3327 	ASSERT(pool_lock_held());
3328 	ASSERT(MUTEX_HELD(&cpu_lock));
3329 
3330 	zone->zone_pool = pool;
3331 	zone_pset_set(zone, pool->pool_pset->pset_id);
3332 }
3333 
3334 /*
3335  * Return the cached value of the id of the processor set to which the
3336  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3337  * facility is disabled.
3338  */
3339 psetid_t
3340 zone_pset_get(zone_t *zone)
3341 {
3342 	ASSERT(MUTEX_HELD(&cpu_lock));
3343 
3344 	return (zone->zone_psetid);
3345 }
3346 
3347 /*
3348  * Set the cached value of the id of the processor set to which the zone
3349  * is currently bound.  Also update the zone's visibility to match the
3350  * resources in the new processor set.
3351  */
3352 void
3353 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3354 {
3355 	psetid_t oldpsetid;
3356 
3357 	ASSERT(MUTEX_HELD(&cpu_lock));
3358 	oldpsetid = zone_pset_get(zone);
3359 
3360 	if (oldpsetid == newpsetid)
3361 		return;
3362 	/*
3363 	 * Global zone sees all.
3364 	 */
3365 	if (zone != global_zone) {
3366 		zone->zone_psetid = newpsetid;
3367 		if (newpsetid != ZONE_PS_INVAL)
3368 			pool_pset_visibility_add(newpsetid, zone);
3369 		if (oldpsetid != ZONE_PS_INVAL)
3370 			pool_pset_visibility_remove(oldpsetid, zone);
3371 	}
3372 	/*
3373 	 * Disabling pools, so we should start using the global values
3374 	 * for ncpus and ncpus_online.
3375 	 */
3376 	if (newpsetid == ZONE_PS_INVAL) {
3377 		zone->zone_ncpus = 0;
3378 		zone->zone_ncpus_online = 0;
3379 	}
3380 }
3381 
3382 /*
3383  * Walk the list of active zones and issue the provided callback for
3384  * each of them.
3385  *
3386  * Caller must not be holding any locks that may be acquired under
3387  * zonehash_lock.  See comment at the beginning of the file for a list of
3388  * common locks and their interactions with zones.
3389  */
3390 int
3391 zone_walk(int (*cb)(zone_t *, void *), void *data)
3392 {
3393 	zone_t *zone;
3394 	int ret = 0;
3395 	zone_status_t status;
3396 
3397 	mutex_enter(&zonehash_lock);
3398 	for (zone = list_head(&zone_active); zone != NULL;
3399 	    zone = list_next(&zone_active, zone)) {
3400 		/*
3401 		 * Skip zones that shouldn't be externally visible.
3402 		 */
3403 		status = zone_status_get(zone);
3404 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3405 			continue;
3406 		/*
3407 		 * Bail immediately if any callback invocation returns a
3408 		 * non-zero value.
3409 		 */
3410 		ret = (*cb)(zone, data);
3411 		if (ret != 0)
3412 			break;
3413 	}
3414 	mutex_exit(&zonehash_lock);
3415 	return (ret);
3416 }
3417 
3418 static int
3419 zone_set_root(zone_t *zone, const char *upath)
3420 {
3421 	vnode_t *vp;
3422 	int trycount;
3423 	int error = 0;
3424 	char *path;
3425 	struct pathname upn, pn;
3426 	size_t pathlen;
3427 
3428 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3429 		return (error);
3430 
3431 	pn_alloc(&pn);
3432 
3433 	/* prevent infinite loop */
3434 	trycount = 10;
3435 	for (;;) {
3436 		if (--trycount <= 0) {
3437 			error = ESTALE;
3438 			goto out;
3439 		}
3440 
3441 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3442 			/*
3443 			 * VOP_ACCESS() may cover 'vp' with a new
3444 			 * filesystem, if 'vp' is an autoFS vnode.
3445 			 * Get the new 'vp' if so.
3446 			 */
3447 			if ((error =
3448 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3449 			    (!vn_ismntpt(vp) ||
3450 			    (error = traverse(&vp)) == 0)) {
3451 				pathlen = pn.pn_pathlen + 2;
3452 				path = kmem_alloc(pathlen, KM_SLEEP);
3453 				(void) strncpy(path, pn.pn_path,
3454 				    pn.pn_pathlen + 1);
3455 				path[pathlen - 2] = '/';
3456 				path[pathlen - 1] = '\0';
3457 				pn_free(&pn);
3458 				pn_free(&upn);
3459 
3460 				/* Success! */
3461 				break;
3462 			}
3463 			VN_RELE(vp);
3464 		}
3465 		if (error != ESTALE)
3466 			goto out;
3467 	}
3468 
3469 	ASSERT(error == 0);
3470 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3471 	zone->zone_rootpath = path;
3472 	zone->zone_rootpathlen = pathlen;
3473 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3474 		zone->zone_flags |= ZF_IS_SCRATCH;
3475 	return (0);
3476 
3477 out:
3478 	pn_free(&pn);
3479 	pn_free(&upn);
3480 	return (error);
3481 }
3482 
3483 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3484 			((c) >= 'a' && (c) <= 'z') || \
3485 			((c) >= 'A' && (c) <= 'Z'))
3486 
3487 static int
3488 zone_set_name(zone_t *zone, const char *uname)
3489 {
3490 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3491 	size_t len;
3492 	int i, err;
3493 
3494 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3495 		kmem_free(kname, ZONENAME_MAX);
3496 		return (err);	/* EFAULT or ENAMETOOLONG */
3497 	}
3498 
3499 	/* must be less than ZONENAME_MAX */
3500 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3501 		kmem_free(kname, ZONENAME_MAX);
3502 		return (EINVAL);
3503 	}
3504 
3505 	/*
3506 	 * Name must start with an alphanumeric and must contain only
3507 	 * alphanumerics, '-', '_' and '.'.
3508 	 */
3509 	if (!isalnum(kname[0])) {
3510 		kmem_free(kname, ZONENAME_MAX);
3511 		return (EINVAL);
3512 	}
3513 	for (i = 1; i < len - 1; i++) {
3514 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3515 		    kname[i] != '.') {
3516 			kmem_free(kname, ZONENAME_MAX);
3517 			return (EINVAL);
3518 		}
3519 	}
3520 
3521 	zone->zone_name = kname;
3522 	return (0);
3523 }
3524 
3525 /*
3526  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3527  * is NULL or it points to a zone with no hostid emulation, then the machine's
3528  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3529  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3530  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3531  * hostid and the machine's hostid is invalid.
3532  */
3533 uint32_t
3534 zone_get_hostid(zone_t *zonep)
3535 {
3536 	unsigned long machine_hostid;
3537 
3538 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3539 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3540 			return (HW_INVALID_HOSTID);
3541 		return ((uint32_t)machine_hostid);
3542 	}
3543 	return (zonep->zone_hostid);
3544 }
3545 
3546 /*
3547  * Similar to thread_create(), but makes sure the thread is in the appropriate
3548  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3549  */
3550 /*ARGSUSED*/
3551 kthread_t *
3552 zthread_create(
3553     caddr_t stk,
3554     size_t stksize,
3555     void (*proc)(),
3556     void *arg,
3557     size_t len,
3558     pri_t pri)
3559 {
3560 	kthread_t *t;
3561 	zone_t *zone = curproc->p_zone;
3562 	proc_t *pp = zone->zone_zsched;
3563 
3564 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3565 
3566 	/*
3567 	 * No-one should be trying to create threads if the zone is shutting
3568 	 * down and there aren't any kernel threads around.  See comment
3569 	 * in zthread_exit().
3570 	 */
3571 	ASSERT(!(zone->zone_kthreads == NULL &&
3572 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3573 	/*
3574 	 * Create a thread, but don't let it run until we've finished setting
3575 	 * things up.
3576 	 */
3577 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3578 	ASSERT(t->t_forw == NULL);
3579 	mutex_enter(&zone_status_lock);
3580 	if (zone->zone_kthreads == NULL) {
3581 		t->t_forw = t->t_back = t;
3582 	} else {
3583 		kthread_t *tx = zone->zone_kthreads;
3584 
3585 		t->t_forw = tx;
3586 		t->t_back = tx->t_back;
3587 		tx->t_back->t_forw = t;
3588 		tx->t_back = t;
3589 	}
3590 	zone->zone_kthreads = t;
3591 	mutex_exit(&zone_status_lock);
3592 
3593 	mutex_enter(&pp->p_lock);
3594 	t->t_proc_flag |= TP_ZTHREAD;
3595 	project_rele(t->t_proj);
3596 	t->t_proj = project_hold(pp->p_task->tk_proj);
3597 
3598 	/*
3599 	 * Setup complete, let it run.
3600 	 */
3601 	thread_lock(t);
3602 	t->t_schedflag |= TS_ALLSTART;
3603 	setrun_locked(t);
3604 	thread_unlock(t);
3605 
3606 	mutex_exit(&pp->p_lock);
3607 
3608 	return (t);
3609 }
3610 
3611 /*
3612  * Similar to thread_exit().  Must be called by threads created via
3613  * zthread_exit().
3614  */
3615 void
3616 zthread_exit(void)
3617 {
3618 	kthread_t *t = curthread;
3619 	proc_t *pp = curproc;
3620 	zone_t *zone = pp->p_zone;
3621 
3622 	mutex_enter(&zone_status_lock);
3623 
3624 	/*
3625 	 * Reparent to p0
3626 	 */
3627 	kpreempt_disable();
3628 	mutex_enter(&pp->p_lock);
3629 	t->t_proc_flag &= ~TP_ZTHREAD;
3630 	t->t_procp = &p0;
3631 	hat_thread_exit(t);
3632 	mutex_exit(&pp->p_lock);
3633 	kpreempt_enable();
3634 
3635 	if (t->t_back == t) {
3636 		ASSERT(t->t_forw == t);
3637 		/*
3638 		 * If the zone is empty, once the thread count
3639 		 * goes to zero no further kernel threads can be
3640 		 * created.  This is because if the creator is a process
3641 		 * in the zone, then it must have exited before the zone
3642 		 * state could be set to ZONE_IS_EMPTY.
3643 		 * Otherwise, if the creator is a kernel thread in the
3644 		 * zone, the thread count is non-zero.
3645 		 *
3646 		 * This really means that non-zone kernel threads should
3647 		 * not create zone kernel threads.
3648 		 */
3649 		zone->zone_kthreads = NULL;
3650 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3651 			zone_status_set(zone, ZONE_IS_DOWN);
3652 			/*
3653 			 * Remove any CPU caps on this zone.
3654 			 */
3655 			cpucaps_zone_remove(zone);
3656 		}
3657 	} else {
3658 		t->t_forw->t_back = t->t_back;
3659 		t->t_back->t_forw = t->t_forw;
3660 		if (zone->zone_kthreads == t)
3661 			zone->zone_kthreads = t->t_forw;
3662 	}
3663 	mutex_exit(&zone_status_lock);
3664 	zone_rele(zone);
3665 	thread_exit();
3666 	/* NOTREACHED */
3667 }
3668 
3669 static void
3670 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3671 {
3672 	vnode_t *oldvp;
3673 
3674 	/* we're going to hold a reference here to the directory */
3675 	VN_HOLD(vp);
3676 
3677 	/* update abs cwd/root path see c2/audit.c */
3678 	if (AU_AUDITING())
3679 		audit_chdirec(vp, vpp);
3680 
3681 	mutex_enter(&pp->p_lock);
3682 	oldvp = *vpp;
3683 	*vpp = vp;
3684 	mutex_exit(&pp->p_lock);
3685 	if (oldvp != NULL)
3686 		VN_RELE(oldvp);
3687 }
3688 
3689 /*
3690  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3691  */
3692 static int
3693 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3694 {
3695 	nvpair_t *nvp = NULL;
3696 	boolean_t priv_set = B_FALSE;
3697 	boolean_t limit_set = B_FALSE;
3698 	boolean_t action_set = B_FALSE;
3699 
3700 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3701 		const char *name;
3702 		uint64_t ui64;
3703 
3704 		name = nvpair_name(nvp);
3705 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3706 			return (EINVAL);
3707 		(void) nvpair_value_uint64(nvp, &ui64);
3708 		if (strcmp(name, "privilege") == 0) {
3709 			/*
3710 			 * Currently only privileged values are allowed, but
3711 			 * this may change in the future.
3712 			 */
3713 			if (ui64 != RCPRIV_PRIVILEGED)
3714 				return (EINVAL);
3715 			rv->rcv_privilege = ui64;
3716 			priv_set = B_TRUE;
3717 		} else if (strcmp(name, "limit") == 0) {
3718 			rv->rcv_value = ui64;
3719 			limit_set = B_TRUE;
3720 		} else if (strcmp(name, "action") == 0) {
3721 			if (ui64 != RCTL_LOCAL_NOACTION &&
3722 			    ui64 != RCTL_LOCAL_DENY)
3723 				return (EINVAL);
3724 			rv->rcv_flagaction = ui64;
3725 			action_set = B_TRUE;
3726 		} else {
3727 			return (EINVAL);
3728 		}
3729 	}
3730 
3731 	if (!(priv_set && limit_set && action_set))
3732 		return (EINVAL);
3733 	rv->rcv_action_signal = 0;
3734 	rv->rcv_action_recipient = NULL;
3735 	rv->rcv_action_recip_pid = -1;
3736 	rv->rcv_firing_time = 0;
3737 
3738 	return (0);
3739 }
3740 
3741 /*
3742  * Non-global zone version of start_init.
3743  */
3744 void
3745 zone_start_init(void)
3746 {
3747 	proc_t *p = ttoproc(curthread);
3748 	zone_t *z = p->p_zone;
3749 
3750 	ASSERT(!INGLOBALZONE(curproc));
3751 
3752 	/*
3753 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3754 	 * storing just the pid of init is sufficient.
3755 	 */
3756 	z->zone_proc_initpid = p->p_pid;
3757 
3758 	/*
3759 	 * We maintain zone_boot_err so that we can return the cause of the
3760 	 * failure back to the caller of the zone_boot syscall.
3761 	 */
3762 	p->p_zone->zone_boot_err = start_init_common();
3763 
3764 	/*
3765 	 * We will prevent booting zones from becoming running zones if the
3766 	 * global zone is shutting down.
3767 	 */
3768 	mutex_enter(&zone_status_lock);
3769 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3770 	    ZONE_IS_SHUTTING_DOWN) {
3771 		/*
3772 		 * Make sure we are still in the booting state-- we could have
3773 		 * raced and already be shutting down, or even further along.
3774 		 */
3775 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3776 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3777 		}
3778 		mutex_exit(&zone_status_lock);
3779 		/* It's gone bad, dispose of the process */
3780 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3781 			mutex_enter(&p->p_lock);
3782 			ASSERT(p->p_flag & SEXITLWPS);
3783 			lwp_exit();
3784 		}
3785 	} else {
3786 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3787 			zone_status_set(z, ZONE_IS_RUNNING);
3788 		mutex_exit(&zone_status_lock);
3789 		/* cause the process to return to userland. */
3790 		lwp_rtt();
3791 	}
3792 }
3793 
3794 struct zsched_arg {
3795 	zone_t *zone;
3796 	nvlist_t *nvlist;
3797 };
3798 
3799 /*
3800  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3801  * anything to do with scheduling, but rather with the fact that
3802  * per-zone kernel threads are parented to zsched, just like regular
3803  * kernel threads are parented to sched (p0).
3804  *
3805  * zsched is also responsible for launching init for the zone.
3806  */
3807 static void
3808 zsched(void *arg)
3809 {
3810 	struct zsched_arg *za = arg;
3811 	proc_t *pp = curproc;
3812 	proc_t *initp = proc_init;
3813 	zone_t *zone = za->zone;
3814 	cred_t *cr, *oldcred;
3815 	rctl_set_t *set;
3816 	rctl_alloc_gp_t *gp;
3817 	contract_t *ct = NULL;
3818 	task_t *tk, *oldtk;
3819 	rctl_entity_p_t e;
3820 	kproject_t *pj;
3821 
3822 	nvlist_t *nvl = za->nvlist;
3823 	nvpair_t *nvp = NULL;
3824 
3825 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3826 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3827 	PTOU(pp)->u_argc = 0;
3828 	PTOU(pp)->u_argv = NULL;
3829 	PTOU(pp)->u_envp = NULL;
3830 	closeall(P_FINFO(pp));
3831 
3832 	/*
3833 	 * We are this zone's "zsched" process.  As the zone isn't generally
3834 	 * visible yet we don't need to grab any locks before initializing its
3835 	 * zone_proc pointer.
3836 	 */
3837 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3838 	zone->zone_zsched = pp;
3839 	mutex_enter(&pp->p_lock);
3840 	pp->p_zone = zone;
3841 	mutex_exit(&pp->p_lock);
3842 
3843 	/*
3844 	 * Disassociate process from its 'parent'; parent ourselves to init
3845 	 * (pid 1) and change other values as needed.
3846 	 */
3847 	sess_create();
3848 
3849 	mutex_enter(&pidlock);
3850 	proc_detach(pp);
3851 	pp->p_ppid = 1;
3852 	pp->p_flag |= SZONETOP;
3853 	pp->p_ancpid = 1;
3854 	pp->p_parent = initp;
3855 	pp->p_psibling = NULL;
3856 	if (initp->p_child)
3857 		initp->p_child->p_psibling = pp;
3858 	pp->p_sibling = initp->p_child;
3859 	initp->p_child = pp;
3860 
3861 	/* Decrement what newproc() incremented. */
3862 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3863 	/*
3864 	 * Our credentials are about to become kcred-like, so we don't care
3865 	 * about the caller's ruid.
3866 	 */
3867 	upcount_inc(crgetruid(kcred), zone->zone_id);
3868 	mutex_exit(&pidlock);
3869 
3870 	/*
3871 	 * getting out of global zone, so decrement lwp and process counts
3872 	 */
3873 	pj = pp->p_task->tk_proj;
3874 	mutex_enter(&global_zone->zone_nlwps_lock);
3875 	pj->kpj_nlwps -= pp->p_lwpcnt;
3876 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3877 	pj->kpj_nprocs--;
3878 	global_zone->zone_nprocs--;
3879 	mutex_exit(&global_zone->zone_nlwps_lock);
3880 
3881 	/*
3882 	 * Decrement locked memory counts on old zone and project.
3883 	 */
3884 	mutex_enter(&global_zone->zone_mem_lock);
3885 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3886 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3887 	mutex_exit(&global_zone->zone_mem_lock);
3888 
3889 	/*
3890 	 * Create and join a new task in project '0' of this zone.
3891 	 *
3892 	 * We don't need to call holdlwps() since we know we're the only lwp in
3893 	 * this process.
3894 	 *
3895 	 * task_join() returns with p_lock held.
3896 	 */
3897 	tk = task_create(0, zone);
3898 	mutex_enter(&cpu_lock);
3899 	oldtk = task_join(tk, 0);
3900 
3901 	pj = pp->p_task->tk_proj;
3902 
3903 	mutex_enter(&zone->zone_mem_lock);
3904 	zone->zone_locked_mem += pp->p_locked_mem;
3905 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3906 	mutex_exit(&zone->zone_mem_lock);
3907 
3908 	/*
3909 	 * add lwp and process counts to zsched's zone, and increment
3910 	 * project's task and process count due to the task created in
3911 	 * the above task_create.
3912 	 */
3913 	mutex_enter(&zone->zone_nlwps_lock);
3914 	pj->kpj_nlwps += pp->p_lwpcnt;
3915 	pj->kpj_ntasks += 1;
3916 	zone->zone_nlwps += pp->p_lwpcnt;
3917 	pj->kpj_nprocs++;
3918 	zone->zone_nprocs++;
3919 	mutex_exit(&zone->zone_nlwps_lock);
3920 
3921 	mutex_exit(&curproc->p_lock);
3922 	mutex_exit(&cpu_lock);
3923 	task_rele(oldtk);
3924 
3925 	/*
3926 	 * The process was created by a process in the global zone, hence the
3927 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3928 	 */
3929 	cr = zone->zone_kcred;
3930 	crhold(cr);
3931 	mutex_enter(&pp->p_crlock);
3932 	oldcred = pp->p_cred;
3933 	pp->p_cred = cr;
3934 	mutex_exit(&pp->p_crlock);
3935 	crfree(oldcred);
3936 
3937 	/*
3938 	 * Hold credentials again (for thread)
3939 	 */
3940 	crhold(cr);
3941 
3942 	/*
3943 	 * p_lwpcnt can't change since this is a kernel process.
3944 	 */
3945 	crset(pp, cr);
3946 
3947 	/*
3948 	 * Chroot
3949 	 */
3950 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3951 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3952 
3953 	/*
3954 	 * Initialize zone's rctl set.
3955 	 */
3956 	set = rctl_set_create();
3957 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3958 	mutex_enter(&pp->p_lock);
3959 	e.rcep_p.zone = zone;
3960 	e.rcep_t = RCENTITY_ZONE;
3961 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3962 	mutex_exit(&pp->p_lock);
3963 	rctl_prealloc_destroy(gp);
3964 
3965 	/*
3966 	 * Apply the rctls passed in to zone_create().  This is basically a list
3967 	 * assignment: all of the old values are removed and the new ones
3968 	 * inserted.  That is, if an empty list is passed in, all values are
3969 	 * removed.
3970 	 */
3971 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3972 		rctl_dict_entry_t *rde;
3973 		rctl_hndl_t hndl;
3974 		char *name;
3975 		nvlist_t **nvlarray;
3976 		uint_t i, nelem;
3977 		int error;	/* For ASSERT()s */
3978 
3979 		name = nvpair_name(nvp);
3980 		hndl = rctl_hndl_lookup(name);
3981 		ASSERT(hndl != -1);
3982 		rde = rctl_dict_lookup_hndl(hndl);
3983 		ASSERT(rde != NULL);
3984 
3985 		for (; /* ever */; ) {
3986 			rctl_val_t oval;
3987 
3988 			mutex_enter(&pp->p_lock);
3989 			error = rctl_local_get(hndl, NULL, &oval, pp);
3990 			mutex_exit(&pp->p_lock);
3991 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3992 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3993 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3994 				break;
3995 			mutex_enter(&pp->p_lock);
3996 			error = rctl_local_delete(hndl, &oval, pp);
3997 			mutex_exit(&pp->p_lock);
3998 			ASSERT(error == 0);
3999 		}
4000 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4001 		ASSERT(error == 0);
4002 		for (i = 0; i < nelem; i++) {
4003 			rctl_val_t *nvalp;
4004 
4005 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4006 			error = nvlist2rctlval(nvlarray[i], nvalp);
4007 			ASSERT(error == 0);
4008 			/*
4009 			 * rctl_local_insert can fail if the value being
4010 			 * inserted is a duplicate; this is OK.
4011 			 */
4012 			mutex_enter(&pp->p_lock);
4013 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4014 				kmem_cache_free(rctl_val_cache, nvalp);
4015 			mutex_exit(&pp->p_lock);
4016 		}
4017 	}
4018 
4019 	/*
4020 	 * Tell the world that we're done setting up.
4021 	 *
4022 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4023 	 * and atomically set the zone's processor set visibility.  Once
4024 	 * we drop pool_lock() this zone will automatically get updated
4025 	 * to reflect any future changes to the pools configuration.
4026 	 *
4027 	 * Note that after we drop the locks below (zonehash_lock in
4028 	 * particular) other operations such as a zone_getattr call can
4029 	 * now proceed and observe the zone. That is the reason for doing a
4030 	 * state transition to the INITIALIZED state.
4031 	 */
4032 	pool_lock();
4033 	mutex_enter(&cpu_lock);
4034 	mutex_enter(&zonehash_lock);
4035 	zone_uniqid(zone);
4036 	zone_zsd_configure(zone);
4037 	if (pool_state == POOL_ENABLED)
4038 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4039 	mutex_enter(&zone_status_lock);
4040 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4041 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4042 	mutex_exit(&zone_status_lock);
4043 	mutex_exit(&zonehash_lock);
4044 	mutex_exit(&cpu_lock);
4045 	pool_unlock();
4046 
4047 	/* Now call the create callback for this key */
4048 	zsd_apply_all_keys(zsd_apply_create, zone);
4049 
4050 	/* The callbacks are complete. Mark ZONE_IS_READY */
4051 	mutex_enter(&zone_status_lock);
4052 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4053 	zone_status_set(zone, ZONE_IS_READY);
4054 	mutex_exit(&zone_status_lock);
4055 
4056 	/*
4057 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4058 	 * we launch init, and set the state to running.
4059 	 */
4060 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4061 
4062 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4063 		id_t cid;
4064 
4065 		/*
4066 		 * Ok, this is a little complicated.  We need to grab the
4067 		 * zone's pool's scheduling class ID; note that by now, we
4068 		 * are already bound to a pool if we need to be (zoneadmd
4069 		 * will have done that to us while we're in the READY
4070 		 * state).  *But* the scheduling class for the zone's 'init'
4071 		 * must be explicitly passed to newproc, which doesn't
4072 		 * respect pool bindings.
4073 		 *
4074 		 * We hold the pool_lock across the call to newproc() to
4075 		 * close the obvious race: the pool's scheduling class
4076 		 * could change before we manage to create the LWP with
4077 		 * classid 'cid'.
4078 		 */
4079 		pool_lock();
4080 		if (zone->zone_defaultcid > 0)
4081 			cid = zone->zone_defaultcid;
4082 		else
4083 			cid = pool_get_class(zone->zone_pool);
4084 		if (cid == -1)
4085 			cid = defaultcid;
4086 
4087 		/*
4088 		 * If this fails, zone_boot will ultimately fail.  The
4089 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4090 		 * will have to tear down the zone, and fail, or try again.
4091 		 */
4092 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4093 		    minclsyspri - 1, &ct, 0)) != 0) {
4094 			mutex_enter(&zone_status_lock);
4095 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4096 			mutex_exit(&zone_status_lock);
4097 		} else {
4098 			zone->zone_boot_time = gethrestime_sec();
4099 		}
4100 
4101 		pool_unlock();
4102 	}
4103 
4104 	/*
4105 	 * Wait for zone_destroy() to be called.  This is what we spend
4106 	 * most of our life doing.
4107 	 */
4108 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4109 
4110 	if (ct)
4111 		/*
4112 		 * At this point the process contract should be empty.
4113 		 * (Though if it isn't, it's not the end of the world.)
4114 		 */
4115 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4116 
4117 	/*
4118 	 * Allow kcred to be freed when all referring processes
4119 	 * (including this one) go away.  We can't just do this in
4120 	 * zone_free because we need to wait for the zone_cred_ref to
4121 	 * drop to 0 before calling zone_free, and the existence of
4122 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4123 	 * balance the crdup in zone_create.  The crhold calls earlier
4124 	 * in zsched will be dropped when the thread and process exit.
4125 	 */
4126 	crfree(zone->zone_kcred);
4127 	zone->zone_kcred = NULL;
4128 
4129 	exit(CLD_EXITED, 0);
4130 }
4131 
4132 /*
4133  * Helper function to determine if there are any submounts of the
4134  * provided path.  Used to make sure the zone doesn't "inherit" any
4135  * mounts from before it is created.
4136  */
4137 static uint_t
4138 zone_mount_count(const char *rootpath)
4139 {
4140 	vfs_t *vfsp;
4141 	uint_t count = 0;
4142 	size_t rootpathlen = strlen(rootpath);
4143 
4144 	/*
4145 	 * Holding zonehash_lock prevents race conditions with
4146 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4147 	 * zone_find_by_path().
4148 	 */
4149 	ASSERT(MUTEX_HELD(&zonehash_lock));
4150 	/*
4151 	 * The rootpath must end with a '/'
4152 	 */
4153 	ASSERT(rootpath[rootpathlen - 1] == '/');
4154 
4155 	/*
4156 	 * This intentionally does not count the rootpath itself if that
4157 	 * happens to be a mount point.
4158 	 */
4159 	vfs_list_read_lock();
4160 	vfsp = rootvfs;
4161 	do {
4162 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4163 		    rootpathlen) == 0)
4164 			count++;
4165 		vfsp = vfsp->vfs_next;
4166 	} while (vfsp != rootvfs);
4167 	vfs_list_unlock();
4168 	return (count);
4169 }
4170 
4171 /*
4172  * Helper function to make sure that a zone created on 'rootpath'
4173  * wouldn't end up containing other zones' rootpaths.
4174  */
4175 static boolean_t
4176 zone_is_nested(const char *rootpath)
4177 {
4178 	zone_t *zone;
4179 	size_t rootpathlen = strlen(rootpath);
4180 	size_t len;
4181 
4182 	ASSERT(MUTEX_HELD(&zonehash_lock));
4183 
4184 	/*
4185 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4186 	 */
4187 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4188 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4189 		return (B_TRUE);
4190 
4191 	for (zone = list_head(&zone_active); zone != NULL;
4192 	    zone = list_next(&zone_active, zone)) {
4193 		if (zone == global_zone)
4194 			continue;
4195 		len = strlen(zone->zone_rootpath);
4196 		if (strncmp(rootpath, zone->zone_rootpath,
4197 		    MIN(rootpathlen, len)) == 0)
4198 			return (B_TRUE);
4199 	}
4200 	return (B_FALSE);
4201 }
4202 
4203 static int
4204 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4205     size_t zone_privssz)
4206 {
4207 	priv_set_t *privs;
4208 
4209 	if (zone_privssz < sizeof (priv_set_t))
4210 		return (ENOMEM);
4211 
4212 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4213 
4214 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4215 		kmem_free(privs, sizeof (priv_set_t));
4216 		return (EFAULT);
4217 	}
4218 
4219 	zone->zone_privset = privs;
4220 	return (0);
4221 }
4222 
4223 /*
4224  * We make creative use of nvlists to pass in rctls from userland.  The list is
4225  * a list of the following structures:
4226  *
4227  * (name = rctl_name, value = nvpair_list_array)
4228  *
4229  * Where each element of the nvpair_list_array is of the form:
4230  *
4231  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4232  * 	(name = "limit", value = uint64_t),
4233  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4234  */
4235 static int
4236 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4237 {
4238 	nvpair_t *nvp = NULL;
4239 	nvlist_t *nvl = NULL;
4240 	char *kbuf;
4241 	int error;
4242 	rctl_val_t rv;
4243 
4244 	*nvlp = NULL;
4245 
4246 	if (buflen == 0)
4247 		return (0);
4248 
4249 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4250 		return (ENOMEM);
4251 	if (copyin(ubuf, kbuf, buflen)) {
4252 		error = EFAULT;
4253 		goto out;
4254 	}
4255 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4256 		/*
4257 		 * nvl may have been allocated/free'd, but the value set to
4258 		 * non-NULL, so we reset it here.
4259 		 */
4260 		nvl = NULL;
4261 		error = EINVAL;
4262 		goto out;
4263 	}
4264 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4265 		rctl_dict_entry_t *rde;
4266 		rctl_hndl_t hndl;
4267 		nvlist_t **nvlarray;
4268 		uint_t i, nelem;
4269 		char *name;
4270 
4271 		error = EINVAL;
4272 		name = nvpair_name(nvp);
4273 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4274 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4275 			goto out;
4276 		}
4277 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4278 			goto out;
4279 		}
4280 		rde = rctl_dict_lookup_hndl(hndl);
4281 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4282 		ASSERT(error == 0);
4283 		for (i = 0; i < nelem; i++) {
4284 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4285 				goto out;
4286 		}
4287 		if (rctl_invalid_value(rde, &rv)) {
4288 			error = EINVAL;
4289 			goto out;
4290 		}
4291 	}
4292 	error = 0;
4293 	*nvlp = nvl;
4294 out:
4295 	kmem_free(kbuf, buflen);
4296 	if (error && nvl != NULL)
4297 		nvlist_free(nvl);
4298 	return (error);
4299 }
4300 
4301 int
4302 zone_create_error(int er_error, int er_ext, int *er_out)
4303 {
4304 	if (er_out != NULL) {
4305 		if (copyout(&er_ext, er_out, sizeof (int))) {
4306 			return (set_errno(EFAULT));
4307 		}
4308 	}
4309 	return (set_errno(er_error));
4310 }
4311 
4312 static int
4313 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4314 {
4315 	ts_label_t *tsl;
4316 	bslabel_t blab;
4317 
4318 	/* Get label from user */
4319 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4320 		return (EFAULT);
4321 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4322 	if (tsl == NULL)
4323 		return (ENOMEM);
4324 
4325 	zone->zone_slabel = tsl;
4326 	return (0);
4327 }
4328 
4329 /*
4330  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4331  */
4332 static int
4333 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4334 {
4335 	char *kbuf;
4336 	char *dataset, *next;
4337 	zone_dataset_t *zd;
4338 	size_t len;
4339 
4340 	if (ubuf == NULL || buflen == 0)
4341 		return (0);
4342 
4343 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4344 		return (ENOMEM);
4345 
4346 	if (copyin(ubuf, kbuf, buflen) != 0) {
4347 		kmem_free(kbuf, buflen);
4348 		return (EFAULT);
4349 	}
4350 
4351 	dataset = next = kbuf;
4352 	for (;;) {
4353 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4354 
4355 		next = strchr(dataset, ',');
4356 
4357 		if (next == NULL)
4358 			len = strlen(dataset);
4359 		else
4360 			len = next - dataset;
4361 
4362 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4363 		bcopy(dataset, zd->zd_dataset, len);
4364 		zd->zd_dataset[len] = '\0';
4365 
4366 		list_insert_head(&zone->zone_datasets, zd);
4367 
4368 		if (next == NULL)
4369 			break;
4370 
4371 		dataset = next + 1;
4372 	}
4373 
4374 	kmem_free(kbuf, buflen);
4375 	return (0);
4376 }
4377 
4378 /*
4379  * System call to create/initialize a new zone named 'zone_name', rooted
4380  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4381  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4382  * with labeling set by 'match', 'doi', and 'label'.
4383  *
4384  * If extended error is non-null, we may use it to return more detailed
4385  * error information.
4386  */
4387 static zoneid_t
4388 zone_create(const char *zone_name, const char *zone_root,
4389     const priv_set_t *zone_privs, size_t zone_privssz,
4390     caddr_t rctlbuf, size_t rctlbufsz,
4391     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4392     int match, uint32_t doi, const bslabel_t *label,
4393     int flags)
4394 {
4395 	struct zsched_arg zarg;
4396 	nvlist_t *rctls = NULL;
4397 	proc_t *pp = curproc;
4398 	zone_t *zone, *ztmp;
4399 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4400 	int error;
4401 	int error2 = 0;
4402 	char *str;
4403 	cred_t *zkcr;
4404 	boolean_t insert_label_hash;
4405 
4406 	if (secpolicy_zone_config(CRED()) != 0)
4407 		return (set_errno(EPERM));
4408 
4409 	/* can't boot zone from within chroot environment */
4410 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4411 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4412 		    extended_error));
4413 	/*
4414 	 * As the first step of zone creation, we want to allocate a zoneid.
4415 	 * This allocation is complicated by the fact that netstacks use the
4416 	 * zoneid to determine their stackid, but netstacks themselves are
4417 	 * freed asynchronously with respect to zone destruction.  This means
4418 	 * that a netstack reference leak (or in principle, an extraordinarily
4419 	 * long netstack reference hold) could result in a zoneid being
4420 	 * allocated that in fact corresponds to a stackid from an active
4421 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4422 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4423 	 * zoneid to not be deallocated until its last referencing netstack
4424 	 * has been released, but netstacks lack a backpointer into their
4425 	 * referencing zone -- and changing them to have such a pointer would
4426 	 * be substantial, to put it euphemistically.)  To avoid this, we
4427 	 * detect this condition on allocation: if we have allocated a zoneid
4428 	 * that corresponds to a netstack that's still in use, we warn about
4429 	 * it (as it is much more likely to be a reference leak than an actual
4430 	 * netstack reference), free it, and allocate another.  That these
4431 	 * identifers are allocated out of an ID space assures that we won't
4432 	 * see the identifier we just allocated.
4433 	 */
4434 	for (;;) {
4435 		zoneid = id_alloc(zoneid_space);
4436 
4437 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4438 			break;
4439 
4440 		id_free(zoneid_space, zoneid);
4441 
4442 		if (start == GLOBAL_ZONEID) {
4443 			start = zoneid;
4444 		} else if (zoneid == start) {
4445 			/*
4446 			 * We have managed to iterate over the entire available
4447 			 * zoneid space -- there are no identifiers available,
4448 			 * presumably due to some number of leaked netstack
4449 			 * references.  While it's in principle possible for us
4450 			 * to continue to try, it seems wiser to give up at
4451 			 * this point to warn and fail explicitly with a
4452 			 * distinctive error.
4453 			 */
4454 			cmn_err(CE_WARN, "zone_create() failed: all available "
4455 			    "zone IDs have netstacks still in use");
4456 			return (set_errno(ENFILE));
4457 		}
4458 
4459 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4460 		    "netstack still in use", zoneid);
4461 	}
4462 
4463 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4464 	zone->zone_id = zoneid;
4465 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4466 	zone->zone_pool = pool_default;
4467 	zone->zone_pool_mod = gethrtime();
4468 	zone->zone_psetid = ZONE_PS_INVAL;
4469 	zone->zone_ncpus = 0;
4470 	zone->zone_ncpus_online = 0;
4471 	zone->zone_restart_init = B_TRUE;
4472 	zone->zone_brand = &native_brand;
4473 	zone->zone_initname = NULL;
4474 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4475 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4476 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4477 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4478 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4479 	    offsetof(zone_ref_t, zref_linkage));
4480 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4481 	    offsetof(struct zsd_entry, zsd_linkage));
4482 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4483 	    offsetof(zone_dataset_t, zd_linkage));
4484 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4485 	    offsetof(zone_dl_t, zdl_linkage));
4486 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4487 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4488 
4489 	if (flags & ZCF_NET_EXCL) {
4490 		zone->zone_flags |= ZF_NET_EXCL;
4491 	}
4492 
4493 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4494 		zone_free(zone);
4495 		return (zone_create_error(error, 0, extended_error));
4496 	}
4497 
4498 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4499 		zone_free(zone);
4500 		return (zone_create_error(error, 0, extended_error));
4501 	}
4502 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4503 		zone_free(zone);
4504 		return (zone_create_error(error, 0, extended_error));
4505 	}
4506 
4507 	/* initialize node name to be the same as zone name */
4508 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4509 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4510 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4511 
4512 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4513 	zone->zone_domain[0] = '\0';
4514 	zone->zone_hostid = HW_INVALID_HOSTID;
4515 	zone->zone_shares = 1;
4516 	zone->zone_shmmax = 0;
4517 	zone->zone_ipc.ipcq_shmmni = 0;
4518 	zone->zone_ipc.ipcq_semmni = 0;
4519 	zone->zone_ipc.ipcq_msgmni = 0;
4520 	zone->zone_bootargs = NULL;
4521 	zone->zone_fs_allowed = NULL;
4522 
4523 	secflags_zero(&zone0.zone_secflags.psf_lower);
4524 	secflags_zero(&zone0.zone_secflags.psf_effective);
4525 	secflags_zero(&zone0.zone_secflags.psf_inherit);
4526 	secflags_fullset(&zone0.zone_secflags.psf_upper);
4527 
4528 	zone->zone_initname =
4529 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4530 	(void) strcpy(zone->zone_initname, zone_default_initname);
4531 	zone->zone_nlwps = 0;
4532 	zone->zone_nlwps_ctl = INT_MAX;
4533 	zone->zone_nprocs = 0;
4534 	zone->zone_nprocs_ctl = INT_MAX;
4535 	zone->zone_locked_mem = 0;
4536 	zone->zone_locked_mem_ctl = UINT64_MAX;
4537 	zone->zone_max_swap = 0;
4538 	zone->zone_max_swap_ctl = UINT64_MAX;
4539 	zone->zone_max_lofi = 0;
4540 	zone->zone_max_lofi_ctl = UINT64_MAX;
4541 	zone0.zone_lockedmem_kstat = NULL;
4542 	zone0.zone_swapresv_kstat = NULL;
4543 
4544 	/*
4545 	 * Zsched initializes the rctls.
4546 	 */
4547 	zone->zone_rctls = NULL;
4548 
4549 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4550 		zone_free(zone);
4551 		return (zone_create_error(error, 0, extended_error));
4552 	}
4553 
4554 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4555 		zone_free(zone);
4556 		return (set_errno(error));
4557 	}
4558 
4559 	/*
4560 	 * Read in the trusted system parameters:
4561 	 * match flag and sensitivity label.
4562 	 */
4563 	zone->zone_match = match;
4564 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4565 		/* Fail if requested to set doi to anything but system's doi */
4566 		if (doi != 0 && doi != default_doi) {
4567 			zone_free(zone);
4568 			return (set_errno(EINVAL));
4569 		}
4570 		/* Always apply system's doi to the zone */
4571 		error = zone_set_label(zone, label, default_doi);
4572 		if (error != 0) {
4573 			zone_free(zone);
4574 			return (set_errno(error));
4575 		}
4576 		insert_label_hash = B_TRUE;
4577 	} else {
4578 		/* all zones get an admin_low label if system is not labeled */
4579 		zone->zone_slabel = l_admin_low;
4580 		label_hold(l_admin_low);
4581 		insert_label_hash = B_FALSE;
4582 	}
4583 
4584 	/*
4585 	 * Stop all lwps since that's what normally happens as part of fork().
4586 	 * This needs to happen before we grab any locks to avoid deadlock
4587 	 * (another lwp in the process could be waiting for the held lock).
4588 	 */
4589 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4590 		zone_free(zone);
4591 		nvlist_free(rctls);
4592 		return (zone_create_error(error, 0, extended_error));
4593 	}
4594 
4595 	if (block_mounts(zone) == 0) {
4596 		mutex_enter(&pp->p_lock);
4597 		if (curthread != pp->p_agenttp)
4598 			continuelwps(pp);
4599 		mutex_exit(&pp->p_lock);
4600 		zone_free(zone);
4601 		nvlist_free(rctls);
4602 		return (zone_create_error(error, 0, extended_error));
4603 	}
4604 
4605 	/*
4606 	 * Set up credential for kernel access.  After this, any errors
4607 	 * should go through the dance in errout rather than calling
4608 	 * zone_free directly.
4609 	 */
4610 	zone->zone_kcred = crdup(kcred);
4611 	crsetzone(zone->zone_kcred, zone);
4612 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4613 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4614 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4615 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4616 
4617 	mutex_enter(&zonehash_lock);
4618 	/*
4619 	 * Make sure zone doesn't already exist.
4620 	 *
4621 	 * If the system and zone are labeled,
4622 	 * make sure no other zone exists that has the same label.
4623 	 */
4624 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4625 	    (insert_label_hash &&
4626 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4627 		zone_status_t status;
4628 
4629 		status = zone_status_get(ztmp);
4630 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4631 			error = EEXIST;
4632 		else
4633 			error = EBUSY;
4634 
4635 		if (insert_label_hash)
4636 			error2 = ZE_LABELINUSE;
4637 
4638 		goto errout;
4639 	}
4640 
4641 	/*
4642 	 * Don't allow zone creations which would cause one zone's rootpath to
4643 	 * be accessible from that of another (non-global) zone.
4644 	 */
4645 	if (zone_is_nested(zone->zone_rootpath)) {
4646 		error = EBUSY;
4647 		goto errout;
4648 	}
4649 
4650 	ASSERT(zonecount != 0);		/* check for leaks */
4651 	if (zonecount + 1 > maxzones) {
4652 		error = ENOMEM;
4653 		goto errout;
4654 	}
4655 
4656 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4657 		error = EBUSY;
4658 		error2 = ZE_AREMOUNTS;
4659 		goto errout;
4660 	}
4661 
4662 	/*
4663 	 * Zone is still incomplete, but we need to drop all locks while
4664 	 * zsched() initializes this zone's kernel process.  We
4665 	 * optimistically add the zone to the hashtable and associated
4666 	 * lists so a parallel zone_create() doesn't try to create the
4667 	 * same zone.
4668 	 */
4669 	zonecount++;
4670 	(void) mod_hash_insert(zonehashbyid,
4671 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4672 	    (mod_hash_val_t)(uintptr_t)zone);
4673 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4674 	(void) strcpy(str, zone->zone_name);
4675 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4676 	    (mod_hash_val_t)(uintptr_t)zone);
4677 	if (insert_label_hash) {
4678 		(void) mod_hash_insert(zonehashbylabel,
4679 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4680 		zone->zone_flags |= ZF_HASHED_LABEL;
4681 	}
4682 
4683 	/*
4684 	 * Insert into active list.  At this point there are no 'hold's
4685 	 * on the zone, but everyone else knows not to use it, so we can
4686 	 * continue to use it.  zsched() will do a zone_hold() if the
4687 	 * newproc() is successful.
4688 	 */
4689 	list_insert_tail(&zone_active, zone);
4690 	mutex_exit(&zonehash_lock);
4691 
4692 	zarg.zone = zone;
4693 	zarg.nvlist = rctls;
4694 	/*
4695 	 * The process, task, and project rctls are probably wrong;
4696 	 * we need an interface to get the default values of all rctls,
4697 	 * and initialize zsched appropriately.  I'm not sure that that
4698 	 * makes much of a difference, though.
4699 	 */
4700 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4701 	if (error != 0) {
4702 		/*
4703 		 * We need to undo all globally visible state.
4704 		 */
4705 		mutex_enter(&zonehash_lock);
4706 		list_remove(&zone_active, zone);
4707 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4708 			ASSERT(zone->zone_slabel != NULL);
4709 			(void) mod_hash_destroy(zonehashbylabel,
4710 			    (mod_hash_key_t)zone->zone_slabel);
4711 		}
4712 		(void) mod_hash_destroy(zonehashbyname,
4713 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4714 		(void) mod_hash_destroy(zonehashbyid,
4715 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4716 		ASSERT(zonecount > 1);
4717 		zonecount--;
4718 		goto errout;
4719 	}
4720 
4721 	/*
4722 	 * Zone creation can't fail from now on.
4723 	 */
4724 
4725 	/*
4726 	 * Create zone kstats
4727 	 */
4728 	zone_kstat_create(zone);
4729 
4730 	/*
4731 	 * Let the other lwps continue.
4732 	 */
4733 	mutex_enter(&pp->p_lock);
4734 	if (curthread != pp->p_agenttp)
4735 		continuelwps(pp);
4736 	mutex_exit(&pp->p_lock);
4737 
4738 	/*
4739 	 * Wait for zsched to finish initializing the zone.
4740 	 */
4741 	zone_status_wait(zone, ZONE_IS_READY);
4742 	/*
4743 	 * The zone is fully visible, so we can let mounts progress.
4744 	 */
4745 	resume_mounts(zone);
4746 	nvlist_free(rctls);
4747 
4748 	return (zoneid);
4749 
4750 errout:
4751 	mutex_exit(&zonehash_lock);
4752 	/*
4753 	 * Let the other lwps continue.
4754 	 */
4755 	mutex_enter(&pp->p_lock);
4756 	if (curthread != pp->p_agenttp)
4757 		continuelwps(pp);
4758 	mutex_exit(&pp->p_lock);
4759 
4760 	resume_mounts(zone);
4761 	nvlist_free(rctls);
4762 	/*
4763 	 * There is currently one reference to the zone, a cred_ref from
4764 	 * zone_kcred.  To free the zone, we call crfree, which will call
4765 	 * zone_cred_rele, which will call zone_free.
4766 	 */
4767 	ASSERT(zone->zone_cred_ref == 1);
4768 	ASSERT(zone->zone_kcred->cr_ref == 1);
4769 	ASSERT(zone->zone_ref == 0);
4770 	zkcr = zone->zone_kcred;
4771 	zone->zone_kcred = NULL;
4772 	crfree(zkcr);				/* triggers call to zone_free */
4773 	return (zone_create_error(error, error2, extended_error));
4774 }
4775 
4776 /*
4777  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4778  * the heavy lifting.  initname is the path to the program to launch
4779  * at the "top" of the zone; if this is NULL, we use the system default,
4780  * which is stored at zone_default_initname.
4781  */
4782 static int
4783 zone_boot(zoneid_t zoneid)
4784 {
4785 	int err;
4786 	zone_t *zone;
4787 
4788 	if (secpolicy_zone_config(CRED()) != 0)
4789 		return (set_errno(EPERM));
4790 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4791 		return (set_errno(EINVAL));
4792 
4793 	mutex_enter(&zonehash_lock);
4794 	/*
4795 	 * Look for zone under hash lock to prevent races with calls to
4796 	 * zone_shutdown, zone_destroy, etc.
4797 	 */
4798 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4799 		mutex_exit(&zonehash_lock);
4800 		return (set_errno(EINVAL));
4801 	}
4802 
4803 	mutex_enter(&zone_status_lock);
4804 	if (zone_status_get(zone) != ZONE_IS_READY) {
4805 		mutex_exit(&zone_status_lock);
4806 		mutex_exit(&zonehash_lock);
4807 		return (set_errno(EINVAL));
4808 	}
4809 	zone_status_set(zone, ZONE_IS_BOOTING);
4810 	mutex_exit(&zone_status_lock);
4811 
4812 	zone_hold(zone);	/* so we can use the zone_t later */
4813 	mutex_exit(&zonehash_lock);
4814 
4815 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4816 		zone_rele(zone);
4817 		return (set_errno(EINTR));
4818 	}
4819 
4820 	/*
4821 	 * Boot (starting init) might have failed, in which case the zone
4822 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4823 	 * be placed in zone->zone_boot_err, and so we return that.
4824 	 */
4825 	err = zone->zone_boot_err;
4826 	zone_rele(zone);
4827 	return (err ? set_errno(err) : 0);
4828 }
4829 
4830 /*
4831  * Kills all user processes in the zone, waiting for them all to exit
4832  * before returning.
4833  */
4834 static int
4835 zone_empty(zone_t *zone)
4836 {
4837 	int waitstatus;
4838 
4839 	/*
4840 	 * We need to drop zonehash_lock before killing all
4841 	 * processes, otherwise we'll deadlock with zone_find_*
4842 	 * which can be called from the exit path.
4843 	 */
4844 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4845 	while ((waitstatus = zone_status_timedwait_sig(zone,
4846 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4847 		killall(zone->zone_id);
4848 	}
4849 	/*
4850 	 * return EINTR if we were signaled
4851 	 */
4852 	if (waitstatus == 0)
4853 		return (EINTR);
4854 	return (0);
4855 }
4856 
4857 /*
4858  * This function implements the policy for zone visibility.
4859  *
4860  * In standard Solaris, a non-global zone can only see itself.
4861  *
4862  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4863  * it dominates. For this test, the label of the global zone is treated as
4864  * admin_high so it is special-cased instead of being checked for dominance.
4865  *
4866  * Returns true if zone attributes are viewable, false otherwise.
4867  */
4868 static boolean_t
4869 zone_list_access(zone_t *zone)
4870 {
4871 
4872 	if (curproc->p_zone == global_zone ||
4873 	    curproc->p_zone == zone) {
4874 		return (B_TRUE);
4875 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4876 		bslabel_t *curproc_label;
4877 		bslabel_t *zone_label;
4878 
4879 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4880 		zone_label = label2bslabel(zone->zone_slabel);
4881 
4882 		if (zone->zone_id != GLOBAL_ZONEID &&
4883 		    bldominates(curproc_label, zone_label)) {
4884 			return (B_TRUE);
4885 		} else {
4886 			return (B_FALSE);
4887 		}
4888 	} else {
4889 		return (B_FALSE);
4890 	}
4891 }
4892 
4893 /*
4894  * Systemcall to start the zone's halt sequence.  By the time this
4895  * function successfully returns, all user processes and kernel threads
4896  * executing in it will have exited, ZSD shutdown callbacks executed,
4897  * and the zone status set to ZONE_IS_DOWN.
4898  *
4899  * It is possible that the call will interrupt itself if the caller is the
4900  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4901  */
4902 static int
4903 zone_shutdown(zoneid_t zoneid)
4904 {
4905 	int error;
4906 	zone_t *zone;
4907 	zone_status_t status;
4908 
4909 	if (secpolicy_zone_config(CRED()) != 0)
4910 		return (set_errno(EPERM));
4911 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4912 		return (set_errno(EINVAL));
4913 
4914 	mutex_enter(&zonehash_lock);
4915 	/*
4916 	 * Look for zone under hash lock to prevent races with other
4917 	 * calls to zone_shutdown and zone_destroy.
4918 	 */
4919 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4920 		mutex_exit(&zonehash_lock);
4921 		return (set_errno(EINVAL));
4922 	}
4923 
4924 	/*
4925 	 * We have to drop zonehash_lock before calling block_mounts.
4926 	 * Hold the zone so we can continue to use the zone_t.
4927 	 */
4928 	zone_hold(zone);
4929 	mutex_exit(&zonehash_lock);
4930 
4931 	/*
4932 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4933 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4934 	 *
4935 	 * e.g. NFS can fail the mount if it determines that the zone
4936 	 * has already begun the shutdown sequence.
4937 	 *
4938 	 */
4939 	if (block_mounts(zone) == 0) {
4940 		zone_rele(zone);
4941 		return (set_errno(EINTR));
4942 	}
4943 
4944 	mutex_enter(&zonehash_lock);
4945 	mutex_enter(&zone_status_lock);
4946 	status = zone_status_get(zone);
4947 	/*
4948 	 * Fail if the zone isn't fully initialized yet.
4949 	 */
4950 	if (status < ZONE_IS_READY) {
4951 		mutex_exit(&zone_status_lock);
4952 		mutex_exit(&zonehash_lock);
4953 		resume_mounts(zone);
4954 		zone_rele(zone);
4955 		return (set_errno(EINVAL));
4956 	}
4957 	/*
4958 	 * If conditions required for zone_shutdown() to return have been met,
4959 	 * return success.
4960 	 */
4961 	if (status >= ZONE_IS_DOWN) {
4962 		mutex_exit(&zone_status_lock);
4963 		mutex_exit(&zonehash_lock);
4964 		resume_mounts(zone);
4965 		zone_rele(zone);
4966 		return (0);
4967 	}
4968 	/*
4969 	 * If zone_shutdown() hasn't been called before, go through the motions.
4970 	 * If it has, there's nothing to do but wait for the kernel threads to
4971 	 * drain.
4972 	 */
4973 	if (status < ZONE_IS_EMPTY) {
4974 		uint_t ntasks;
4975 
4976 		mutex_enter(&zone->zone_lock);
4977 		if ((ntasks = zone->zone_ntasks) != 1) {
4978 			/*
4979 			 * There's still stuff running.
4980 			 */
4981 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4982 		}
4983 		mutex_exit(&zone->zone_lock);
4984 		if (ntasks == 1) {
4985 			/*
4986 			 * The only way to create another task is through
4987 			 * zone_enter(), which will block until we drop
4988 			 * zonehash_lock.  The zone is empty.
4989 			 */
4990 			if (zone->zone_kthreads == NULL) {
4991 				/*
4992 				 * Skip ahead to ZONE_IS_DOWN
4993 				 */
4994 				zone_status_set(zone, ZONE_IS_DOWN);
4995 			} else {
4996 				zone_status_set(zone, ZONE_IS_EMPTY);
4997 			}
4998 		}
4999 	}
5000 	mutex_exit(&zone_status_lock);
5001 	mutex_exit(&zonehash_lock);
5002 	resume_mounts(zone);
5003 
5004 	if (error = zone_empty(zone)) {
5005 		zone_rele(zone);
5006 		return (set_errno(error));
5007 	}
5008 	/*
5009 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5010 	 * longer be notified of changes to the pools configuration, so
5011 	 * in order to not end up with a stale pool pointer, we point
5012 	 * ourselves at the default pool and remove all resource
5013 	 * visibility.  This is especially important as the zone_t may
5014 	 * languish on the deathrow for a very long time waiting for
5015 	 * cred's to drain out.
5016 	 *
5017 	 * This rebinding of the zone can happen multiple times
5018 	 * (presumably due to interrupted or parallel systemcalls)
5019 	 * without any adverse effects.
5020 	 */
5021 	if (pool_lock_intr() != 0) {
5022 		zone_rele(zone);
5023 		return (set_errno(EINTR));
5024 	}
5025 	if (pool_state == POOL_ENABLED) {
5026 		mutex_enter(&cpu_lock);
5027 		zone_pool_set(zone, pool_default);
5028 		/*
5029 		 * The zone no longer needs to be able to see any cpus.
5030 		 */
5031 		zone_pset_set(zone, ZONE_PS_INVAL);
5032 		mutex_exit(&cpu_lock);
5033 	}
5034 	pool_unlock();
5035 
5036 	/*
5037 	 * ZSD shutdown callbacks can be executed multiple times, hence
5038 	 * it is safe to not be holding any locks across this call.
5039 	 */
5040 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5041 
5042 	mutex_enter(&zone_status_lock);
5043 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5044 		zone_status_set(zone, ZONE_IS_DOWN);
5045 	mutex_exit(&zone_status_lock);
5046 
5047 	/*
5048 	 * Wait for kernel threads to drain.
5049 	 */
5050 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5051 		zone_rele(zone);
5052 		return (set_errno(EINTR));
5053 	}
5054 
5055 	/*
5056 	 * Zone can be become down/destroyable even if the above wait
5057 	 * returns EINTR, so any code added here may never execute.
5058 	 * (i.e. don't add code here)
5059 	 */
5060 
5061 	zone_rele(zone);
5062 	return (0);
5063 }
5064 
5065 /*
5066  * Log the specified zone's reference counts.  The caller should not be
5067  * holding the zone's zone_lock.
5068  */
5069 static void
5070 zone_log_refcounts(zone_t *zone)
5071 {
5072 	char *buffer;
5073 	char *buffer_position;
5074 	uint32_t buffer_size;
5075 	uint32_t index;
5076 	uint_t ref;
5077 	uint_t cred_ref;
5078 
5079 	/*
5080 	 * Construct a string representing the subsystem-specific reference
5081 	 * counts.  The counts are printed in ascending order by index into the
5082 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5083 	 * square brackets [] and will only contain nonzero reference counts.
5084 	 *
5085 	 * The buffer will hold two square bracket characters plus ten digits,
5086 	 * one colon, one space, one comma, and some characters for a
5087 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5088 	 * bit integers have at most ten decimal digits.)  The last
5089 	 * reference count's comma is replaced by the closing square
5090 	 * bracket and a NULL character to terminate the string.
5091 	 *
5092 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5093 	 * snapshot of the zone's reference counters.
5094 	 *
5095 	 * First, figure out how much space the string buffer will need.
5096 	 * The buffer's size is stored in buffer_size.
5097 	 */
5098 	buffer_size = 2;			/* for the square brackets */
5099 	mutex_enter(&zone->zone_lock);
5100 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5101 	ref = zone->zone_ref;
5102 	cred_ref = zone->zone_cred_ref;
5103 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5104 		if (zone->zone_subsys_ref[index] != 0)
5105 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5106 			    13;
5107 	if (buffer_size == 2) {
5108 		/*
5109 		 * No subsystems had nonzero reference counts.  Don't bother
5110 		 * with allocating a buffer; just log the general-purpose and
5111 		 * credential reference counts.
5112 		 */
5113 		mutex_exit(&zone->zone_lock);
5114 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5115 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5116 		    "references and %u credential references are still extant",
5117 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5118 		return;
5119 	}
5120 
5121 	/*
5122 	 * buffer_size contains the exact number of characters that the
5123 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5124 	 * subsystem-specific reference counts.  Surround the results with
5125 	 * square brackets afterwards.
5126 	 */
5127 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5128 	buffer_position = &buffer[1];
5129 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5130 		/*
5131 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5132 		 * the modified buffer rather than the number of bytes written
5133 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5134 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5135 		 * number of bytes written.  Using INT_MAX is safe because
5136 		 * the buffer is perfectly sized for the data: we'll never
5137 		 * overrun the buffer.
5138 		 */
5139 		if (zone->zone_subsys_ref[index] != 0)
5140 			buffer_position += snprintf(buffer_position, INT_MAX,
5141 			    "%s: %u,", zone_ref_subsys_names[index],
5142 			    zone->zone_subsys_ref[index]);
5143 	}
5144 	mutex_exit(&zone->zone_lock);
5145 	buffer[0] = '[';
5146 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5147 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5148 	buffer_position[-1] = ']';
5149 
5150 	/*
5151 	 * Log the reference counts and free the message buffer.
5152 	 */
5153 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5154 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5155 	    "%u credential references are still extant %s", zone->zone_name,
5156 	    zone->zone_id, ref, cred_ref, buffer);
5157 	kmem_free(buffer, buffer_size);
5158 }
5159 
5160 /*
5161  * Systemcall entry point to finalize the zone halt process.  The caller
5162  * must have already successfully called zone_shutdown().
5163  *
5164  * Upon successful completion, the zone will have been fully destroyed:
5165  * zsched will have exited, destructor callbacks executed, and the zone
5166  * removed from the list of active zones.
5167  */
5168 static int
5169 zone_destroy(zoneid_t zoneid)
5170 {
5171 	uint64_t uniqid;
5172 	zone_t *zone;
5173 	zone_status_t status;
5174 	clock_t wait_time;
5175 	boolean_t log_refcounts;
5176 
5177 	if (secpolicy_zone_config(CRED()) != 0)
5178 		return (set_errno(EPERM));
5179 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5180 		return (set_errno(EINVAL));
5181 
5182 	mutex_enter(&zonehash_lock);
5183 	/*
5184 	 * Look for zone under hash lock to prevent races with other
5185 	 * calls to zone_destroy.
5186 	 */
5187 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5188 		mutex_exit(&zonehash_lock);
5189 		return (set_errno(EINVAL));
5190 	}
5191 
5192 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5193 		mutex_exit(&zonehash_lock);
5194 		return (set_errno(EBUSY));
5195 	}
5196 	mutex_enter(&zone_status_lock);
5197 	status = zone_status_get(zone);
5198 	if (status < ZONE_IS_DOWN) {
5199 		mutex_exit(&zone_status_lock);
5200 		mutex_exit(&zonehash_lock);
5201 		return (set_errno(EBUSY));
5202 	} else if (status == ZONE_IS_DOWN) {
5203 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5204 	}
5205 	mutex_exit(&zone_status_lock);
5206 	zone_hold(zone);
5207 	mutex_exit(&zonehash_lock);
5208 
5209 	/*
5210 	 * wait for zsched to exit
5211 	 */
5212 	zone_status_wait(zone, ZONE_IS_DEAD);
5213 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5214 	zone->zone_netstack = NULL;
5215 	uniqid = zone->zone_uniqid;
5216 	zone_rele(zone);
5217 	zone = NULL;	/* potentially free'd */
5218 
5219 	log_refcounts = B_FALSE;
5220 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5221 	mutex_enter(&zonehash_lock);
5222 	for (; /* ever */; ) {
5223 		boolean_t unref;
5224 		boolean_t refs_have_been_logged;
5225 
5226 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5227 		    zone->zone_uniqid != uniqid) {
5228 			/*
5229 			 * The zone has gone away.  Necessary conditions
5230 			 * are met, so we return success.
5231 			 */
5232 			mutex_exit(&zonehash_lock);
5233 			return (0);
5234 		}
5235 		mutex_enter(&zone->zone_lock);
5236 		unref = ZONE_IS_UNREF(zone);
5237 		refs_have_been_logged = (zone->zone_flags &
5238 		    ZF_REFCOUNTS_LOGGED);
5239 		mutex_exit(&zone->zone_lock);
5240 		if (unref) {
5241 			/*
5242 			 * There is only one reference to the zone -- that
5243 			 * added when the zone was added to the hashtables --
5244 			 * and things will remain this way until we drop
5245 			 * zonehash_lock... we can go ahead and cleanup the
5246 			 * zone.
5247 			 */
5248 			break;
5249 		}
5250 
5251 		/*
5252 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5253 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5254 		 * some zone's general-purpose reference count reaches one.
5255 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5256 		 * on zone_destroy_cv, then log the zone's reference counts and
5257 		 * continue to wait for zone_rele() and zone_cred_rele().
5258 		 */
5259 		if (!refs_have_been_logged) {
5260 			if (!log_refcounts) {
5261 				/*
5262 				 * This thread hasn't timed out waiting on
5263 				 * zone_destroy_cv yet.  Wait wait_time clock
5264 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5265 				 * seconds) for the zone's references to clear.
5266 				 */
5267 				ASSERT(wait_time > 0);
5268 				wait_time = cv_reltimedwait_sig(
5269 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5270 				    TR_SEC);
5271 				if (wait_time > 0) {
5272 					/*
5273 					 * A thread in zone_rele() or
5274 					 * zone_cred_rele() signaled
5275 					 * zone_destroy_cv before this thread's
5276 					 * wait timed out.  The zone might have
5277 					 * only one reference left; find out!
5278 					 */
5279 					continue;
5280 				} else if (wait_time == 0) {
5281 					/* The thread's process was signaled. */
5282 					mutex_exit(&zonehash_lock);
5283 					return (set_errno(EINTR));
5284 				}
5285 
5286 				/*
5287 				 * The thread timed out while waiting on
5288 				 * zone_destroy_cv.  Even though the thread
5289 				 * timed out, it has to check whether another
5290 				 * thread woke up from zone_destroy_cv and
5291 				 * destroyed the zone.
5292 				 *
5293 				 * If the zone still exists and has more than
5294 				 * one unreleased general-purpose reference,
5295 				 * then log the zone's reference counts.
5296 				 */
5297 				log_refcounts = B_TRUE;
5298 				continue;
5299 			}
5300 
5301 			/*
5302 			 * The thread already timed out on zone_destroy_cv while
5303 			 * waiting for subsystems to release the zone's last
5304 			 * general-purpose references.  Log the zone's reference
5305 			 * counts and wait indefinitely on zone_destroy_cv.
5306 			 */
5307 			zone_log_refcounts(zone);
5308 		}
5309 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5310 			/* The thread's process was signaled. */
5311 			mutex_exit(&zonehash_lock);
5312 			return (set_errno(EINTR));
5313 		}
5314 	}
5315 
5316 	/*
5317 	 * Remove CPU cap for this zone now since we're not going to
5318 	 * fail below this point.
5319 	 */
5320 	cpucaps_zone_remove(zone);
5321 
5322 	/* Get rid of the zone's kstats */
5323 	zone_kstat_delete(zone);
5324 
5325 	/* remove the pfexecd doors */
5326 	if (zone->zone_pfexecd != NULL) {
5327 		klpd_freelist(&zone->zone_pfexecd);
5328 		zone->zone_pfexecd = NULL;
5329 	}
5330 
5331 	/* free brand specific data */
5332 	if (ZONE_IS_BRANDED(zone))
5333 		ZBROP(zone)->b_free_brand_data(zone);
5334 
5335 	/* Say goodbye to brand framework. */
5336 	brand_unregister_zone(zone->zone_brand);
5337 
5338 	/*
5339 	 * It is now safe to let the zone be recreated; remove it from the
5340 	 * lists.  The memory will not be freed until the last cred
5341 	 * reference goes away.
5342 	 */
5343 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5344 	zonecount--;
5345 	/* remove from active list and hash tables */
5346 	list_remove(&zone_active, zone);
5347 	(void) mod_hash_destroy(zonehashbyname,
5348 	    (mod_hash_key_t)zone->zone_name);
5349 	(void) mod_hash_destroy(zonehashbyid,
5350 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5351 	if (zone->zone_flags & ZF_HASHED_LABEL)
5352 		(void) mod_hash_destroy(zonehashbylabel,
5353 		    (mod_hash_key_t)zone->zone_slabel);
5354 	mutex_exit(&zonehash_lock);
5355 
5356 	/*
5357 	 * Release the root vnode; we're not using it anymore.  Nor should any
5358 	 * other thread that might access it exist.
5359 	 */
5360 	if (zone->zone_rootvp != NULL) {
5361 		VN_RELE(zone->zone_rootvp);
5362 		zone->zone_rootvp = NULL;
5363 	}
5364 
5365 	/* add to deathrow list */
5366 	mutex_enter(&zone_deathrow_lock);
5367 	list_insert_tail(&zone_deathrow, zone);
5368 	mutex_exit(&zone_deathrow_lock);
5369 
5370 	/*
5371 	 * Drop last reference (which was added by zsched()), this will
5372 	 * free the zone unless there are outstanding cred references.
5373 	 */
5374 	zone_rele(zone);
5375 	return (0);
5376 }
5377 
5378 /*
5379  * Systemcall entry point for zone_getattr(2).
5380  */
5381 static ssize_t
5382 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5383 {
5384 	size_t size;
5385 	int error = 0, err;
5386 	zone_t *zone;
5387 	char *zonepath;
5388 	char *outstr;
5389 	zone_status_t zone_status;
5390 	pid_t initpid;
5391 	boolean_t global = (curzone == global_zone);
5392 	boolean_t inzone = (curzone->zone_id == zoneid);
5393 	ushort_t flags;
5394 	zone_net_data_t *zbuf;
5395 
5396 	mutex_enter(&zonehash_lock);
5397 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5398 		mutex_exit(&zonehash_lock);
5399 		return (set_errno(EINVAL));
5400 	}
5401 	zone_status = zone_status_get(zone);
5402 	if (zone_status < ZONE_IS_INITIALIZED) {
5403 		mutex_exit(&zonehash_lock);
5404 		return (set_errno(EINVAL));
5405 	}
5406 	zone_hold(zone);
5407 	mutex_exit(&zonehash_lock);
5408 
5409 	/*
5410 	 * If not in the global zone, don't show information about other zones,
5411 	 * unless the system is labeled and the local zone's label dominates
5412 	 * the other zone.
5413 	 */
5414 	if (!zone_list_access(zone)) {
5415 		zone_rele(zone);
5416 		return (set_errno(EINVAL));
5417 	}
5418 
5419 	switch (attr) {
5420 	case ZONE_ATTR_ROOT:
5421 		if (global) {
5422 			/*
5423 			 * Copy the path to trim the trailing "/" (except for
5424 			 * the global zone).
5425 			 */
5426 			if (zone != global_zone)
5427 				size = zone->zone_rootpathlen - 1;
5428 			else
5429 				size = zone->zone_rootpathlen;
5430 			zonepath = kmem_alloc(size, KM_SLEEP);
5431 			bcopy(zone->zone_rootpath, zonepath, size);
5432 			zonepath[size - 1] = '\0';
5433 		} else {
5434 			if (inzone || !is_system_labeled()) {
5435 				/*
5436 				 * Caller is not in the global zone.
5437 				 * if the query is on the current zone
5438 				 * or the system is not labeled,
5439 				 * just return faked-up path for current zone.
5440 				 */
5441 				zonepath = "/";
5442 				size = 2;
5443 			} else {
5444 				/*
5445 				 * Return related path for current zone.
5446 				 */
5447 				int prefix_len = strlen(zone_prefix);
5448 				int zname_len = strlen(zone->zone_name);
5449 
5450 				size = prefix_len + zname_len + 1;
5451 				zonepath = kmem_alloc(size, KM_SLEEP);
5452 				bcopy(zone_prefix, zonepath, prefix_len);
5453 				bcopy(zone->zone_name, zonepath +
5454 				    prefix_len, zname_len);
5455 				zonepath[size - 1] = '\0';
5456 			}
5457 		}
5458 		if (bufsize > size)
5459 			bufsize = size;
5460 		if (buf != NULL) {
5461 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5462 			if (err != 0 && err != ENAMETOOLONG)
5463 				error = EFAULT;
5464 		}
5465 		if (global || (is_system_labeled() && !inzone))
5466 			kmem_free(zonepath, size);
5467 		break;
5468 
5469 	case ZONE_ATTR_NAME:
5470 		size = strlen(zone->zone_name) + 1;
5471 		if (bufsize > size)
5472 			bufsize = size;
5473 		if (buf != NULL) {
5474 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5475 			if (err != 0 && err != ENAMETOOLONG)
5476 				error = EFAULT;
5477 		}
5478 		break;
5479 
5480 	case ZONE_ATTR_STATUS:
5481 		/*
5482 		 * Since we're not holding zonehash_lock, the zone status
5483 		 * may be anything; leave it up to userland to sort it out.
5484 		 */
5485 		size = sizeof (zone_status);
5486 		if (bufsize > size)
5487 			bufsize = size;
5488 		zone_status = zone_status_get(zone);
5489 		if (buf != NULL &&
5490 		    copyout(&zone_status, buf, bufsize) != 0)
5491 			error = EFAULT;
5492 		break;
5493 	case ZONE_ATTR_FLAGS:
5494 		size = sizeof (zone->zone_flags);
5495 		if (bufsize > size)
5496 			bufsize = size;
5497 		flags = zone->zone_flags;
5498 		if (buf != NULL &&
5499 		    copyout(&flags, buf, bufsize) != 0)
5500 			error = EFAULT;
5501 		break;
5502 	case ZONE_ATTR_PRIVSET:
5503 		size = sizeof (priv_set_t);
5504 		if (bufsize > size)
5505 			bufsize = size;
5506 		if (buf != NULL &&
5507 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5508 			error = EFAULT;
5509 		break;
5510 	case ZONE_ATTR_UNIQID:
5511 		size = sizeof (zone->zone_uniqid);
5512 		if (bufsize > size)
5513 			bufsize = size;
5514 		if (buf != NULL &&
5515 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5516 			error = EFAULT;
5517 		break;
5518 	case ZONE_ATTR_POOLID:
5519 		{
5520 			pool_t *pool;
5521 			poolid_t poolid;
5522 
5523 			if (pool_lock_intr() != 0) {
5524 				error = EINTR;
5525 				break;
5526 			}
5527 			pool = zone_pool_get(zone);
5528 			poolid = pool->pool_id;
5529 			pool_unlock();
5530 			size = sizeof (poolid);
5531 			if (bufsize > size)
5532 				bufsize = size;
5533 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5534 				error = EFAULT;
5535 		}
5536 		break;
5537 	case ZONE_ATTR_SLBL:
5538 		size = sizeof (bslabel_t);
5539 		if (bufsize > size)
5540 			bufsize = size;
5541 		if (zone->zone_slabel == NULL)
5542 			error = EINVAL;
5543 		else if (buf != NULL &&
5544 		    copyout(label2bslabel(zone->zone_slabel), buf,
5545 		    bufsize) != 0)
5546 			error = EFAULT;
5547 		break;
5548 	case ZONE_ATTR_INITPID:
5549 		size = sizeof (initpid);
5550 		if (bufsize > size)
5551 			bufsize = size;
5552 		initpid = zone->zone_proc_initpid;
5553 		if (initpid == -1) {
5554 			error = ESRCH;
5555 			break;
5556 		}
5557 		if (buf != NULL &&
5558 		    copyout(&initpid, buf, bufsize) != 0)
5559 			error = EFAULT;
5560 		break;
5561 	case ZONE_ATTR_BRAND:
5562 		size = strlen(zone->zone_brand->b_name) + 1;
5563 
5564 		if (bufsize > size)
5565 			bufsize = size;
5566 		if (buf != NULL) {
5567 			err = copyoutstr(zone->zone_brand->b_name, buf,
5568 			    bufsize, NULL);
5569 			if (err != 0 && err != ENAMETOOLONG)
5570 				error = EFAULT;
5571 		}
5572 		break;
5573 	case ZONE_ATTR_INITNAME:
5574 		size = strlen(zone->zone_initname) + 1;
5575 		if (bufsize > size)
5576 			bufsize = size;
5577 		if (buf != NULL) {
5578 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5579 			    NULL);
5580 			if (err != 0 && err != ENAMETOOLONG)
5581 				error = EFAULT;
5582 		}
5583 		break;
5584 	case ZONE_ATTR_BOOTARGS:
5585 		if (zone->zone_bootargs == NULL)
5586 			outstr = "";
5587 		else
5588 			outstr = zone->zone_bootargs;
5589 		size = strlen(outstr) + 1;
5590 		if (bufsize > size)
5591 			bufsize = size;
5592 		if (buf != NULL) {
5593 			err = copyoutstr(outstr, buf, bufsize, NULL);
5594 			if (err != 0 && err != ENAMETOOLONG)
5595 				error = EFAULT;
5596 		}
5597 		break;
5598 	case ZONE_ATTR_PHYS_MCAP:
5599 		size = sizeof (zone->zone_phys_mcap);
5600 		if (bufsize > size)
5601 			bufsize = size;
5602 		if (buf != NULL &&
5603 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5604 			error = EFAULT;
5605 		break;
5606 	case ZONE_ATTR_SCHED_CLASS:
5607 		mutex_enter(&class_lock);
5608 
5609 		if (zone->zone_defaultcid >= loaded_classes)
5610 			outstr = "";
5611 		else
5612 			outstr = sclass[zone->zone_defaultcid].cl_name;
5613 		size = strlen(outstr) + 1;
5614 		if (bufsize > size)
5615 			bufsize = size;
5616 		if (buf != NULL) {
5617 			err = copyoutstr(outstr, buf, bufsize, NULL);
5618 			if (err != 0 && err != ENAMETOOLONG)
5619 				error = EFAULT;
5620 		}
5621 
5622 		mutex_exit(&class_lock);
5623 		break;
5624 	case ZONE_ATTR_HOSTID:
5625 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5626 		    bufsize == sizeof (zone->zone_hostid)) {
5627 			size = sizeof (zone->zone_hostid);
5628 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5629 			    bufsize) != 0)
5630 				error = EFAULT;
5631 		} else {
5632 			error = EINVAL;
5633 		}
5634 		break;
5635 	case ZONE_ATTR_FS_ALLOWED:
5636 		if (zone->zone_fs_allowed == NULL)
5637 			outstr = "";
5638 		else
5639 			outstr = zone->zone_fs_allowed;
5640 		size = strlen(outstr) + 1;
5641 		if (bufsize > size)
5642 			bufsize = size;
5643 		if (buf != NULL) {
5644 			err = copyoutstr(outstr, buf, bufsize, NULL);
5645 			if (err != 0 && err != ENAMETOOLONG)
5646 				error = EFAULT;
5647 		}
5648 		break;
5649 	case ZONE_ATTR_SECFLAGS:
5650 		size = sizeof (zone->zone_secflags);
5651 		if (bufsize > size)
5652 			bufsize = size;
5653 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5654 			error = EFAULT;
5655 		break;
5656 	case ZONE_ATTR_NETWORK:
5657 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5658 		if (copyin(buf, zbuf, bufsize) != 0) {
5659 			error = EFAULT;
5660 		} else {
5661 			error = zone_get_network(zoneid, zbuf);
5662 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5663 				error = EFAULT;
5664 		}
5665 		kmem_free(zbuf, bufsize);
5666 		break;
5667 	default:
5668 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5669 			size = bufsize;
5670 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5671 		} else {
5672 			error = EINVAL;
5673 		}
5674 	}
5675 	zone_rele(zone);
5676 
5677 	if (error)
5678 		return (set_errno(error));
5679 	return ((ssize_t)size);
5680 }
5681 
5682 /*
5683  * Systemcall entry point for zone_setattr(2).
5684  */
5685 /*ARGSUSED*/
5686 static int
5687 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5688 {
5689 	zone_t *zone;
5690 	zone_status_t zone_status;
5691 	int err = -1;
5692 	zone_net_data_t *zbuf;
5693 
5694 	if (secpolicy_zone_config(CRED()) != 0)
5695 		return (set_errno(EPERM));
5696 
5697 	/*
5698 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5699 	 * global zone.
5700 	 */
5701 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5702 		return (set_errno(EINVAL));
5703 	}
5704 
5705 	mutex_enter(&zonehash_lock);
5706 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5707 		mutex_exit(&zonehash_lock);
5708 		return (set_errno(EINVAL));
5709 	}
5710 	zone_hold(zone);
5711 	mutex_exit(&zonehash_lock);
5712 
5713 	/*
5714 	 * At present most attributes can only be set on non-running,
5715 	 * non-global zones.
5716 	 */
5717 	zone_status = zone_status_get(zone);
5718 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5719 		err = EINVAL;
5720 		goto done;
5721 	}
5722 
5723 	switch (attr) {
5724 	case ZONE_ATTR_INITNAME:
5725 		err = zone_set_initname(zone, (const char *)buf);
5726 		break;
5727 	case ZONE_ATTR_INITNORESTART:
5728 		zone->zone_restart_init = B_FALSE;
5729 		err = 0;
5730 		break;
5731 	case ZONE_ATTR_BOOTARGS:
5732 		err = zone_set_bootargs(zone, (const char *)buf);
5733 		break;
5734 	case ZONE_ATTR_BRAND:
5735 		err = zone_set_brand(zone, (const char *)buf);
5736 		break;
5737 	case ZONE_ATTR_FS_ALLOWED:
5738 		err = zone_set_fs_allowed(zone, (const char *)buf);
5739 		break;
5740 	case ZONE_ATTR_SECFLAGS:
5741 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5742 		break;
5743 	case ZONE_ATTR_PHYS_MCAP:
5744 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5745 		break;
5746 	case ZONE_ATTR_SCHED_CLASS:
5747 		err = zone_set_sched_class(zone, (const char *)buf);
5748 		break;
5749 	case ZONE_ATTR_HOSTID:
5750 		if (bufsize == sizeof (zone->zone_hostid)) {
5751 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5752 				err = 0;
5753 			else
5754 				err = EFAULT;
5755 		} else {
5756 			err = EINVAL;
5757 		}
5758 		break;
5759 	case ZONE_ATTR_NETWORK:
5760 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5761 			err = EINVAL;
5762 			break;
5763 		}
5764 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5765 		if (copyin(buf, zbuf, bufsize) != 0) {
5766 			kmem_free(zbuf, bufsize);
5767 			err = EFAULT;
5768 			break;
5769 		}
5770 		err = zone_set_network(zoneid, zbuf);
5771 		kmem_free(zbuf, bufsize);
5772 		break;
5773 	default:
5774 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5775 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5776 		else
5777 			err = EINVAL;
5778 	}
5779 
5780 done:
5781 	zone_rele(zone);
5782 	ASSERT(err != -1);
5783 	return (err != 0 ? set_errno(err) : 0);
5784 }
5785 
5786 /*
5787  * Return zero if the process has at least one vnode mapped in to its
5788  * address space which shouldn't be allowed to change zones.
5789  *
5790  * Also return zero if the process has any shared mappings which reserve
5791  * swap.  This is because the counting for zone.max-swap does not allow swap
5792  * reservation to be shared between zones.  zone swap reservation is counted
5793  * on zone->zone_max_swap.
5794  */
5795 static int
5796 as_can_change_zones(void)
5797 {
5798 	proc_t *pp = curproc;
5799 	struct seg *seg;
5800 	struct as *as = pp->p_as;
5801 	vnode_t *vp;
5802 	int allow = 1;
5803 
5804 	ASSERT(pp->p_as != &kas);
5805 	AS_LOCK_ENTER(as, RW_READER);
5806 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5807 
5808 		/*
5809 		 * Cannot enter zone with shared anon memory which
5810 		 * reserves swap.  See comment above.
5811 		 */
5812 		if (seg_can_change_zones(seg) == B_FALSE) {
5813 			allow = 0;
5814 			break;
5815 		}
5816 		/*
5817 		 * if we can't get a backing vnode for this segment then skip
5818 		 * it.
5819 		 */
5820 		vp = NULL;
5821 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5822 			continue;
5823 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5824 			allow = 0;
5825 			break;
5826 		}
5827 	}
5828 	AS_LOCK_EXIT(as);
5829 	return (allow);
5830 }
5831 
5832 /*
5833  * Count swap reserved by curproc's address space
5834  */
5835 static size_t
5836 as_swresv(void)
5837 {
5838 	proc_t *pp = curproc;
5839 	struct seg *seg;
5840 	struct as *as = pp->p_as;
5841 	size_t swap = 0;
5842 
5843 	ASSERT(pp->p_as != &kas);
5844 	ASSERT(AS_WRITE_HELD(as));
5845 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5846 		swap += seg_swresv(seg);
5847 
5848 	return (swap);
5849 }
5850 
5851 /*
5852  * Systemcall entry point for zone_enter().
5853  *
5854  * The current process is injected into said zone.  In the process
5855  * it will change its project membership, privileges, rootdir/cwd,
5856  * zone-wide rctls, and pool association to match those of the zone.
5857  *
5858  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5859  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5860  * enter a zone that is "ready" or "running".
5861  */
5862 static int
5863 zone_enter(zoneid_t zoneid)
5864 {
5865 	zone_t *zone;
5866 	vnode_t *vp;
5867 	proc_t *pp = curproc;
5868 	contract_t *ct;
5869 	cont_process_t *ctp;
5870 	task_t *tk, *oldtk;
5871 	kproject_t *zone_proj0;
5872 	cred_t *cr, *newcr;
5873 	pool_t *oldpool, *newpool;
5874 	sess_t *sp;
5875 	uid_t uid;
5876 	zone_status_t status;
5877 	int err = 0;
5878 	rctl_entity_p_t e;
5879 	size_t swap;
5880 	kthread_id_t t;
5881 
5882 	if (secpolicy_zone_config(CRED()) != 0)
5883 		return (set_errno(EPERM));
5884 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5885 		return (set_errno(EINVAL));
5886 
5887 	/*
5888 	 * Stop all lwps so we don't need to hold a lock to look at
5889 	 * curproc->p_zone.  This needs to happen before we grab any
5890 	 * locks to avoid deadlock (another lwp in the process could
5891 	 * be waiting for the held lock).
5892 	 */
5893 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5894 		return (set_errno(EINTR));
5895 
5896 	/*
5897 	 * Make sure we're not changing zones with files open or mapped in
5898 	 * to our address space which shouldn't be changing zones.
5899 	 */
5900 	if (!files_can_change_zones()) {
5901 		err = EBADF;
5902 		goto out;
5903 	}
5904 	if (!as_can_change_zones()) {
5905 		err = EFAULT;
5906 		goto out;
5907 	}
5908 
5909 	mutex_enter(&zonehash_lock);
5910 	if (pp->p_zone != global_zone) {
5911 		mutex_exit(&zonehash_lock);
5912 		err = EINVAL;
5913 		goto out;
5914 	}
5915 
5916 	zone = zone_find_all_by_id(zoneid);
5917 	if (zone == NULL) {
5918 		mutex_exit(&zonehash_lock);
5919 		err = EINVAL;
5920 		goto out;
5921 	}
5922 
5923 	/*
5924 	 * To prevent processes in a zone from holding contracts on
5925 	 * extrazonal resources, and to avoid process contract
5926 	 * memberships which span zones, contract holders and processes
5927 	 * which aren't the sole members of their encapsulating process
5928 	 * contracts are not allowed to zone_enter.
5929 	 */
5930 	ctp = pp->p_ct_process;
5931 	ct = &ctp->conp_contract;
5932 	mutex_enter(&ct->ct_lock);
5933 	mutex_enter(&pp->p_lock);
5934 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5935 		mutex_exit(&pp->p_lock);
5936 		mutex_exit(&ct->ct_lock);
5937 		mutex_exit(&zonehash_lock);
5938 		err = EINVAL;
5939 		goto out;
5940 	}
5941 
5942 	/*
5943 	 * Moreover, we don't allow processes whose encapsulating
5944 	 * process contracts have inherited extrazonal contracts.
5945 	 * While it would be easier to eliminate all process contracts
5946 	 * with inherited contracts, we need to be able to give a
5947 	 * restarted init (or other zone-penetrating process) its
5948 	 * predecessor's contracts.
5949 	 */
5950 	if (ctp->conp_ninherited != 0) {
5951 		contract_t *next;
5952 		for (next = list_head(&ctp->conp_inherited); next;
5953 		    next = list_next(&ctp->conp_inherited, next)) {
5954 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5955 				mutex_exit(&pp->p_lock);
5956 				mutex_exit(&ct->ct_lock);
5957 				mutex_exit(&zonehash_lock);
5958 				err = EINVAL;
5959 				goto out;
5960 			}
5961 		}
5962 	}
5963 
5964 	mutex_exit(&pp->p_lock);
5965 	mutex_exit(&ct->ct_lock);
5966 
5967 	status = zone_status_get(zone);
5968 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5969 		/*
5970 		 * Can't join
5971 		 */
5972 		mutex_exit(&zonehash_lock);
5973 		err = EINVAL;
5974 		goto out;
5975 	}
5976 
5977 	/*
5978 	 * Make sure new priv set is within the permitted set for caller
5979 	 */
5980 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5981 		mutex_exit(&zonehash_lock);
5982 		err = EPERM;
5983 		goto out;
5984 	}
5985 	/*
5986 	 * We want to momentarily drop zonehash_lock while we optimistically
5987 	 * bind curproc to the pool it should be running in.  This is safe
5988 	 * since the zone can't disappear (we have a hold on it).
5989 	 */
5990 	zone_hold(zone);
5991 	mutex_exit(&zonehash_lock);
5992 
5993 	/*
5994 	 * Grab pool_lock to keep the pools configuration from changing
5995 	 * and to stop ourselves from getting rebound to another pool
5996 	 * until we join the zone.
5997 	 */
5998 	if (pool_lock_intr() != 0) {
5999 		zone_rele(zone);
6000 		err = EINTR;
6001 		goto out;
6002 	}
6003 	ASSERT(secpolicy_pool(CRED()) == 0);
6004 	/*
6005 	 * Bind ourselves to the pool currently associated with the zone.
6006 	 */
6007 	oldpool = curproc->p_pool;
6008 	newpool = zone_pool_get(zone);
6009 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6010 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6011 	    POOL_BIND_ALL)) != 0) {
6012 		pool_unlock();
6013 		zone_rele(zone);
6014 		goto out;
6015 	}
6016 
6017 	/*
6018 	 * Grab cpu_lock now; we'll need it later when we call
6019 	 * task_join().
6020 	 */
6021 	mutex_enter(&cpu_lock);
6022 	mutex_enter(&zonehash_lock);
6023 	/*
6024 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6025 	 */
6026 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6027 		/*
6028 		 * Can't join anymore.
6029 		 */
6030 		mutex_exit(&zonehash_lock);
6031 		mutex_exit(&cpu_lock);
6032 		if (pool_state == POOL_ENABLED &&
6033 		    newpool != oldpool)
6034 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6035 			    POOL_BIND_ALL);
6036 		pool_unlock();
6037 		zone_rele(zone);
6038 		err = EINVAL;
6039 		goto out;
6040 	}
6041 
6042 	/*
6043 	 * a_lock must be held while transfering locked memory and swap
6044 	 * reservation from the global zone to the non global zone because
6045 	 * asynchronous faults on the processes' address space can lock
6046 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6047 	 * segments respectively.
6048 	 */
6049 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6050 	swap = as_swresv();
6051 	mutex_enter(&pp->p_lock);
6052 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6053 	/* verify that we do not exceed and task or lwp limits */
6054 	mutex_enter(&zone->zone_nlwps_lock);
6055 	/* add new lwps to zone and zone's proj0 */
6056 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6057 	zone->zone_nlwps += pp->p_lwpcnt;
6058 	/* add 1 task to zone's proj0 */
6059 	zone_proj0->kpj_ntasks += 1;
6060 
6061 	zone_proj0->kpj_nprocs++;
6062 	zone->zone_nprocs++;
6063 	mutex_exit(&zone->zone_nlwps_lock);
6064 
6065 	mutex_enter(&zone->zone_mem_lock);
6066 	zone->zone_locked_mem += pp->p_locked_mem;
6067 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6068 	zone->zone_max_swap += swap;
6069 	mutex_exit(&zone->zone_mem_lock);
6070 
6071 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6072 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6073 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6074 
6075 	/* remove lwps and process from proc's old zone and old project */
6076 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6077 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6078 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6079 	pp->p_task->tk_proj->kpj_nprocs--;
6080 	pp->p_zone->zone_nprocs--;
6081 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6082 
6083 	mutex_enter(&pp->p_zone->zone_mem_lock);
6084 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6085 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6086 	pp->p_zone->zone_max_swap -= swap;
6087 	mutex_exit(&pp->p_zone->zone_mem_lock);
6088 
6089 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6090 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6091 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6092 
6093 	pp->p_flag |= SZONETOP;
6094 	pp->p_zone = zone;
6095 	mutex_exit(&pp->p_lock);
6096 	AS_LOCK_EXIT(pp->p_as);
6097 
6098 	/*
6099 	 * Joining the zone cannot fail from now on.
6100 	 *
6101 	 * This means that a lot of the following code can be commonized and
6102 	 * shared with zsched().
6103 	 */
6104 
6105 	/*
6106 	 * If the process contract fmri was inherited, we need to
6107 	 * flag this so that any contract status will not leak
6108 	 * extra zone information, svc_fmri in this case
6109 	 */
6110 	if (ctp->conp_svc_ctid != ct->ct_id) {
6111 		mutex_enter(&ct->ct_lock);
6112 		ctp->conp_svc_zone_enter = ct->ct_id;
6113 		mutex_exit(&ct->ct_lock);
6114 	}
6115 
6116 	/*
6117 	 * Reset the encapsulating process contract's zone.
6118 	 */
6119 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6120 	contract_setzuniqid(ct, zone->zone_uniqid);
6121 
6122 	/*
6123 	 * Create a new task and associate the process with the project keyed
6124 	 * by (projid,zoneid).
6125 	 *
6126 	 * We might as well be in project 0; the global zone's projid doesn't
6127 	 * make much sense in a zone anyhow.
6128 	 *
6129 	 * This also increments zone_ntasks, and returns with p_lock held.
6130 	 */
6131 	tk = task_create(0, zone);
6132 	oldtk = task_join(tk, 0);
6133 	mutex_exit(&cpu_lock);
6134 
6135 	/*
6136 	 * call RCTLOP_SET functions on this proc
6137 	 */
6138 	e.rcep_p.zone = zone;
6139 	e.rcep_t = RCENTITY_ZONE;
6140 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6141 	    RCD_CALLBACK);
6142 	mutex_exit(&pp->p_lock);
6143 
6144 	/*
6145 	 * We don't need to hold any of zsched's locks here; not only do we know
6146 	 * the process and zone aren't going away, we know its session isn't
6147 	 * changing either.
6148 	 *
6149 	 * By joining zsched's session here, we mimic the behavior in the
6150 	 * global zone of init's sid being the pid of sched.  We extend this
6151 	 * to all zlogin-like zone_enter()'ing processes as well.
6152 	 */
6153 	mutex_enter(&pidlock);
6154 	sp = zone->zone_zsched->p_sessp;
6155 	sess_hold(zone->zone_zsched);
6156 	mutex_enter(&pp->p_lock);
6157 	pgexit(pp);
6158 	sess_rele(pp->p_sessp, B_TRUE);
6159 	pp->p_sessp = sp;
6160 	pgjoin(pp, zone->zone_zsched->p_pidp);
6161 
6162 	/*
6163 	 * If any threads are scheduled to be placed on zone wait queue they
6164 	 * should abandon the idea since the wait queue is changing.
6165 	 * We need to be holding pidlock & p_lock to do this.
6166 	 */
6167 	if ((t = pp->p_tlist) != NULL) {
6168 		do {
6169 			thread_lock(t);
6170 			/*
6171 			 * Kick this thread so that he doesn't sit
6172 			 * on a wrong wait queue.
6173 			 */
6174 			if (ISWAITING(t))
6175 				setrun_locked(t);
6176 
6177 			if (t->t_schedflag & TS_ANYWAITQ)
6178 				t->t_schedflag &= ~ TS_ANYWAITQ;
6179 
6180 			thread_unlock(t);
6181 		} while ((t = t->t_forw) != pp->p_tlist);
6182 	}
6183 
6184 	/*
6185 	 * If there is a default scheduling class for the zone and it is not
6186 	 * the class we are currently in, change all of the threads in the
6187 	 * process to the new class.  We need to be holding pidlock & p_lock
6188 	 * when we call parmsset so this is a good place to do it.
6189 	 */
6190 	if (zone->zone_defaultcid > 0 &&
6191 	    zone->zone_defaultcid != curthread->t_cid) {
6192 		pcparms_t pcparms;
6193 
6194 		pcparms.pc_cid = zone->zone_defaultcid;
6195 		pcparms.pc_clparms[0] = 0;
6196 
6197 		/*
6198 		 * If setting the class fails, we still want to enter the zone.
6199 		 */
6200 		if ((t = pp->p_tlist) != NULL) {
6201 			do {
6202 				(void) parmsset(&pcparms, t);
6203 			} while ((t = t->t_forw) != pp->p_tlist);
6204 		}
6205 	}
6206 
6207 	mutex_exit(&pp->p_lock);
6208 	mutex_exit(&pidlock);
6209 
6210 	mutex_exit(&zonehash_lock);
6211 	/*
6212 	 * We're firmly in the zone; let pools progress.
6213 	 */
6214 	pool_unlock();
6215 	task_rele(oldtk);
6216 	/*
6217 	 * We don't need to retain a hold on the zone since we already
6218 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6219 	 */
6220 	zone_rele(zone);
6221 
6222 	/*
6223 	 * Chroot
6224 	 */
6225 	vp = zone->zone_rootvp;
6226 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6227 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6228 
6229 	/*
6230 	 * Change process security flags.  Note that the _effective_ flags
6231 	 * cannot change
6232 	 */
6233 	secflags_copy(&pp->p_secflags.psf_lower,
6234 	    &zone->zone_secflags.psf_lower);
6235 	secflags_copy(&pp->p_secflags.psf_upper,
6236 	    &zone->zone_secflags.psf_upper);
6237 	secflags_copy(&pp->p_secflags.psf_inherit,
6238 	    &zone->zone_secflags.psf_inherit);
6239 
6240 	/*
6241 	 * Change process credentials
6242 	 */
6243 	newcr = cralloc();
6244 	mutex_enter(&pp->p_crlock);
6245 	cr = pp->p_cred;
6246 	crcopy_to(cr, newcr);
6247 	crsetzone(newcr, zone);
6248 	pp->p_cred = newcr;
6249 
6250 	/*
6251 	 * Restrict all process privilege sets to zone limit
6252 	 */
6253 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6254 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6255 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6256 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6257 	mutex_exit(&pp->p_crlock);
6258 	crset(pp, newcr);
6259 
6260 	/*
6261 	 * Adjust upcount to reflect zone entry.
6262 	 */
6263 	uid = crgetruid(newcr);
6264 	mutex_enter(&pidlock);
6265 	upcount_dec(uid, GLOBAL_ZONEID);
6266 	upcount_inc(uid, zoneid);
6267 	mutex_exit(&pidlock);
6268 
6269 	/*
6270 	 * Set up core file path and content.
6271 	 */
6272 	set_core_defaults();
6273 
6274 out:
6275 	/*
6276 	 * Let the other lwps continue.
6277 	 */
6278 	mutex_enter(&pp->p_lock);
6279 	if (curthread != pp->p_agenttp)
6280 		continuelwps(pp);
6281 	mutex_exit(&pp->p_lock);
6282 
6283 	return (err != 0 ? set_errno(err) : 0);
6284 }
6285 
6286 /*
6287  * Systemcall entry point for zone_list(2).
6288  *
6289  * Processes running in a (non-global) zone only see themselves.
6290  * On labeled systems, they see all zones whose label they dominate.
6291  */
6292 static int
6293 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6294 {
6295 	zoneid_t *zoneids;
6296 	zone_t *zone, *myzone;
6297 	uint_t user_nzones, real_nzones;
6298 	uint_t domi_nzones;
6299 	int error;
6300 
6301 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6302 		return (set_errno(EFAULT));
6303 
6304 	myzone = curproc->p_zone;
6305 	if (myzone != global_zone) {
6306 		bslabel_t *mybslab;
6307 
6308 		if (!is_system_labeled()) {
6309 			/* just return current zone */
6310 			real_nzones = domi_nzones = 1;
6311 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6312 			zoneids[0] = myzone->zone_id;
6313 		} else {
6314 			/* return all zones that are dominated */
6315 			mutex_enter(&zonehash_lock);
6316 			real_nzones = zonecount;
6317 			domi_nzones = 0;
6318 			if (real_nzones > 0) {
6319 				zoneids = kmem_alloc(real_nzones *
6320 				    sizeof (zoneid_t), KM_SLEEP);
6321 				mybslab = label2bslabel(myzone->zone_slabel);
6322 				for (zone = list_head(&zone_active);
6323 				    zone != NULL;
6324 				    zone = list_next(&zone_active, zone)) {
6325 					if (zone->zone_id == GLOBAL_ZONEID)
6326 						continue;
6327 					if (zone != myzone &&
6328 					    (zone->zone_flags & ZF_IS_SCRATCH))
6329 						continue;
6330 					/*
6331 					 * Note that a label always dominates
6332 					 * itself, so myzone is always included
6333 					 * in the list.
6334 					 */
6335 					if (bldominates(mybslab,
6336 					    label2bslabel(zone->zone_slabel))) {
6337 						zoneids[domi_nzones++] =
6338 						    zone->zone_id;
6339 					}
6340 				}
6341 			}
6342 			mutex_exit(&zonehash_lock);
6343 		}
6344 	} else {
6345 		mutex_enter(&zonehash_lock);
6346 		real_nzones = zonecount;
6347 		domi_nzones = 0;
6348 		if (real_nzones > 0) {
6349 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6350 			    KM_SLEEP);
6351 			for (zone = list_head(&zone_active); zone != NULL;
6352 			    zone = list_next(&zone_active, zone))
6353 				zoneids[domi_nzones++] = zone->zone_id;
6354 			ASSERT(domi_nzones == real_nzones);
6355 		}
6356 		mutex_exit(&zonehash_lock);
6357 	}
6358 
6359 	/*
6360 	 * If user has allocated space for fewer entries than we found, then
6361 	 * return only up to his limit.  Either way, tell him exactly how many
6362 	 * we found.
6363 	 */
6364 	if (domi_nzones < user_nzones)
6365 		user_nzones = domi_nzones;
6366 	error = 0;
6367 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6368 		error = EFAULT;
6369 	} else if (zoneidlist != NULL && user_nzones != 0) {
6370 		if (copyout(zoneids, zoneidlist,
6371 		    user_nzones * sizeof (zoneid_t)) != 0)
6372 			error = EFAULT;
6373 	}
6374 
6375 	if (real_nzones > 0)
6376 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6377 
6378 	if (error != 0)
6379 		return (set_errno(error));
6380 	else
6381 		return (0);
6382 }
6383 
6384 /*
6385  * Systemcall entry point for zone_lookup(2).
6386  *
6387  * Non-global zones are only able to see themselves and (on labeled systems)
6388  * the zones they dominate.
6389  */
6390 static zoneid_t
6391 zone_lookup(const char *zone_name)
6392 {
6393 	char *kname;
6394 	zone_t *zone;
6395 	zoneid_t zoneid;
6396 	int err;
6397 
6398 	if (zone_name == NULL) {
6399 		/* return caller's zone id */
6400 		return (getzoneid());
6401 	}
6402 
6403 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6404 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6405 		kmem_free(kname, ZONENAME_MAX);
6406 		return (set_errno(err));
6407 	}
6408 
6409 	mutex_enter(&zonehash_lock);
6410 	zone = zone_find_all_by_name(kname);
6411 	kmem_free(kname, ZONENAME_MAX);
6412 	/*
6413 	 * In a non-global zone, can only lookup global and own name.
6414 	 * In Trusted Extensions zone label dominance rules apply.
6415 	 */
6416 	if (zone == NULL ||
6417 	    zone_status_get(zone) < ZONE_IS_READY ||
6418 	    !zone_list_access(zone)) {
6419 		mutex_exit(&zonehash_lock);
6420 		return (set_errno(EINVAL));
6421 	} else {
6422 		zoneid = zone->zone_id;
6423 		mutex_exit(&zonehash_lock);
6424 		return (zoneid);
6425 	}
6426 }
6427 
6428 static int
6429 zone_version(int *version_arg)
6430 {
6431 	int version = ZONE_SYSCALL_API_VERSION;
6432 
6433 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6434 		return (set_errno(EFAULT));
6435 	return (0);
6436 }
6437 
6438 /* ARGSUSED */
6439 long
6440 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6441 {
6442 	zone_def zs;
6443 	int err;
6444 
6445 	switch (cmd) {
6446 	case ZONE_CREATE:
6447 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6448 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6449 				return (set_errno(EFAULT));
6450 			}
6451 		} else {
6452 #ifdef _SYSCALL32_IMPL
6453 			zone_def32 zs32;
6454 
6455 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6456 				return (set_errno(EFAULT));
6457 			}
6458 			zs.zone_name =
6459 			    (const char *)(unsigned long)zs32.zone_name;
6460 			zs.zone_root =
6461 			    (const char *)(unsigned long)zs32.zone_root;
6462 			zs.zone_privs =
6463 			    (const struct priv_set *)
6464 			    (unsigned long)zs32.zone_privs;
6465 			zs.zone_privssz = zs32.zone_privssz;
6466 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6467 			zs.rctlbufsz = zs32.rctlbufsz;
6468 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6469 			zs.zfsbufsz = zs32.zfsbufsz;
6470 			zs.extended_error =
6471 			    (int *)(unsigned long)zs32.extended_error;
6472 			zs.match = zs32.match;
6473 			zs.doi = zs32.doi;
6474 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6475 			zs.flags = zs32.flags;
6476 #else
6477 			panic("get_udatamodel() returned bogus result\n");
6478 #endif
6479 		}
6480 
6481 		return (zone_create(zs.zone_name, zs.zone_root,
6482 		    zs.zone_privs, zs.zone_privssz,
6483 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6484 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6485 		    zs.extended_error, zs.match, zs.doi,
6486 		    zs.label, zs.flags));
6487 	case ZONE_BOOT:
6488 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6489 	case ZONE_DESTROY:
6490 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6491 	case ZONE_GETATTR:
6492 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6493 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6494 	case ZONE_SETATTR:
6495 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6496 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6497 	case ZONE_ENTER:
6498 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6499 	case ZONE_LIST:
6500 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6501 	case ZONE_SHUTDOWN:
6502 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6503 	case ZONE_LOOKUP:
6504 		return (zone_lookup((const char *)arg1));
6505 	case ZONE_VERSION:
6506 		return (zone_version((int *)arg1));
6507 	case ZONE_ADD_DATALINK:
6508 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6509 		    (datalink_id_t)(uintptr_t)arg2));
6510 	case ZONE_DEL_DATALINK:
6511 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6512 		    (datalink_id_t)(uintptr_t)arg2));
6513 	case ZONE_CHECK_DATALINK: {
6514 		zoneid_t	zoneid;
6515 		boolean_t	need_copyout;
6516 
6517 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6518 			return (EFAULT);
6519 		need_copyout = (zoneid == ALL_ZONES);
6520 		err = zone_check_datalink(&zoneid,
6521 		    (datalink_id_t)(uintptr_t)arg2);
6522 		if (err == 0 && need_copyout) {
6523 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6524 				err = EFAULT;
6525 		}
6526 		return (err == 0 ? 0 : set_errno(err));
6527 	}
6528 	case ZONE_LIST_DATALINK:
6529 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6530 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6531 	default:
6532 		return (set_errno(EINVAL));
6533 	}
6534 }
6535 
6536 struct zarg {
6537 	zone_t *zone;
6538 	zone_cmd_arg_t arg;
6539 };
6540 
6541 static int
6542 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6543 {
6544 	char *buf;
6545 	size_t buflen;
6546 	int error;
6547 
6548 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6549 	buf = kmem_alloc(buflen, KM_SLEEP);
6550 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6551 	error = door_ki_open(buf, doorp);
6552 	kmem_free(buf, buflen);
6553 	return (error);
6554 }
6555 
6556 static void
6557 zone_release_door(door_handle_t *doorp)
6558 {
6559 	door_ki_rele(*doorp);
6560 	*doorp = NULL;
6561 }
6562 
6563 static void
6564 zone_ki_call_zoneadmd(struct zarg *zargp)
6565 {
6566 	door_handle_t door = NULL;
6567 	door_arg_t darg, save_arg;
6568 	char *zone_name;
6569 	size_t zone_namelen;
6570 	zoneid_t zoneid;
6571 	zone_t *zone;
6572 	zone_cmd_arg_t arg;
6573 	uint64_t uniqid;
6574 	size_t size;
6575 	int error;
6576 	int retry;
6577 
6578 	zone = zargp->zone;
6579 	arg = zargp->arg;
6580 	kmem_free(zargp, sizeof (*zargp));
6581 
6582 	zone_namelen = strlen(zone->zone_name) + 1;
6583 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6584 	bcopy(zone->zone_name, zone_name, zone_namelen);
6585 	zoneid = zone->zone_id;
6586 	uniqid = zone->zone_uniqid;
6587 	/*
6588 	 * zoneadmd may be down, but at least we can empty out the zone.
6589 	 * We can ignore the return value of zone_empty() since we're called
6590 	 * from a kernel thread and know we won't be delivered any signals.
6591 	 */
6592 	ASSERT(curproc == &p0);
6593 	(void) zone_empty(zone);
6594 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6595 	zone_rele(zone);
6596 
6597 	size = sizeof (arg);
6598 	darg.rbuf = (char *)&arg;
6599 	darg.data_ptr = (char *)&arg;
6600 	darg.rsize = size;
6601 	darg.data_size = size;
6602 	darg.desc_ptr = NULL;
6603 	darg.desc_num = 0;
6604 
6605 	save_arg = darg;
6606 	/*
6607 	 * Since we're not holding a reference to the zone, any number of
6608 	 * things can go wrong, including the zone disappearing before we get a
6609 	 * chance to talk to zoneadmd.
6610 	 */
6611 	for (retry = 0; /* forever */; retry++) {
6612 		if (door == NULL &&
6613 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6614 			goto next;
6615 		}
6616 		ASSERT(door != NULL);
6617 
6618 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6619 		    SIZE_MAX, 0)) == 0) {
6620 			break;
6621 		}
6622 		switch (error) {
6623 		case EINTR:
6624 			/* FALLTHROUGH */
6625 		case EAGAIN:	/* process may be forking */
6626 			/*
6627 			 * Back off for a bit
6628 			 */
6629 			break;
6630 		case EBADF:
6631 			zone_release_door(&door);
6632 			if (zone_lookup_door(zone_name, &door) != 0) {
6633 				/*
6634 				 * zoneadmd may be dead, but it may come back to
6635 				 * life later.
6636 				 */
6637 				break;
6638 			}
6639 			break;
6640 		default:
6641 			cmn_err(CE_WARN,
6642 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6643 			    error);
6644 			goto out;
6645 		}
6646 next:
6647 		/*
6648 		 * If this isn't the same zone_t that we originally had in mind,
6649 		 * then this is the same as if two kadmin requests come in at
6650 		 * the same time: the first one wins.  This means we lose, so we
6651 		 * bail.
6652 		 */
6653 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6654 			/*
6655 			 * Problem is solved.
6656 			 */
6657 			break;
6658 		}
6659 		if (zone->zone_uniqid != uniqid) {
6660 			/*
6661 			 * zoneid recycled
6662 			 */
6663 			zone_rele(zone);
6664 			break;
6665 		}
6666 		/*
6667 		 * We could zone_status_timedwait(), but there doesn't seem to
6668 		 * be much point in doing that (plus, it would mean that
6669 		 * zone_free() isn't called until this thread exits).
6670 		 */
6671 		zone_rele(zone);
6672 		delay(hz);
6673 		darg = save_arg;
6674 	}
6675 out:
6676 	if (door != NULL) {
6677 		zone_release_door(&door);
6678 	}
6679 	kmem_free(zone_name, zone_namelen);
6680 	thread_exit();
6681 }
6682 
6683 /*
6684  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6685  * kadmin().  The caller is a process in the zone.
6686  *
6687  * In order to shutdown the zone, we will hand off control to zoneadmd
6688  * (running in the global zone) via a door.  We do a half-hearted job at
6689  * killing all processes in the zone, create a kernel thread to contact
6690  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6691  * a form of generation number used to let zoneadmd (as well as
6692  * zone_destroy()) know exactly which zone they're re talking about.
6693  */
6694 int
6695 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6696 {
6697 	struct zarg *zargp;
6698 	zone_cmd_t zcmd;
6699 	zone_t *zone;
6700 
6701 	zone = curproc->p_zone;
6702 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6703 
6704 	switch (cmd) {
6705 	case A_SHUTDOWN:
6706 		switch (fcn) {
6707 		case AD_HALT:
6708 		case AD_POWEROFF:
6709 			zcmd = Z_HALT;
6710 			break;
6711 		case AD_BOOT:
6712 			zcmd = Z_REBOOT;
6713 			break;
6714 		case AD_IBOOT:
6715 		case AD_SBOOT:
6716 		case AD_SIBOOT:
6717 		case AD_NOSYNC:
6718 			return (ENOTSUP);
6719 		default:
6720 			return (EINVAL);
6721 		}
6722 		break;
6723 	case A_REBOOT:
6724 		zcmd = Z_REBOOT;
6725 		break;
6726 	case A_FTRACE:
6727 	case A_REMOUNT:
6728 	case A_FREEZE:
6729 	case A_DUMP:
6730 	case A_CONFIG:
6731 		return (ENOTSUP);
6732 	default:
6733 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6734 		return (EINVAL);
6735 	}
6736 
6737 	if (secpolicy_zone_admin(credp, B_FALSE))
6738 		return (EPERM);
6739 	mutex_enter(&zone_status_lock);
6740 
6741 	/*
6742 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6743 	 * is in the zone.
6744 	 */
6745 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6746 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6747 		/*
6748 		 * This zone is already on its way down.
6749 		 */
6750 		mutex_exit(&zone_status_lock);
6751 		return (0);
6752 	}
6753 	/*
6754 	 * Prevent future zone_enter()s
6755 	 */
6756 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6757 	mutex_exit(&zone_status_lock);
6758 
6759 	/*
6760 	 * Kill everyone now and call zoneadmd later.
6761 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6762 	 * later.
6763 	 */
6764 	killall(zone->zone_id);
6765 	/*
6766 	 * Now, create the thread to contact zoneadmd and do the rest of the
6767 	 * work.  This thread can't be created in our zone otherwise
6768 	 * zone_destroy() would deadlock.
6769 	 */
6770 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6771 	zargp->arg.cmd = zcmd;
6772 	zargp->arg.uniqid = zone->zone_uniqid;
6773 	zargp->zone = zone;
6774 	(void) strcpy(zargp->arg.locale, "C");
6775 	/* mdep was already copied in for us by uadmin */
6776 	if (mdep != NULL)
6777 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6778 		    sizeof (zargp->arg.bootbuf));
6779 	zone_hold(zone);
6780 
6781 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6782 	    TS_RUN, minclsyspri);
6783 	exit(CLD_EXITED, 0);
6784 
6785 	return (EINVAL);
6786 }
6787 
6788 /*
6789  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6790  * status to ZONE_IS_SHUTTING_DOWN.
6791  *
6792  * This function also shuts down all running zones to ensure that they won't
6793  * fork new processes.
6794  */
6795 void
6796 zone_shutdown_global(void)
6797 {
6798 	zone_t *current_zonep;
6799 
6800 	ASSERT(INGLOBALZONE(curproc));
6801 	mutex_enter(&zonehash_lock);
6802 	mutex_enter(&zone_status_lock);
6803 
6804 	/* Modify the global zone's status first. */
6805 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6806 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6807 
6808 	/*
6809 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6810 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6811 	 * could cause assertions to fail (e.g., assertions about a zone's
6812 	 * state during initialization, readying, or booting) or produce races.
6813 	 * We'll let threads continue to initialize and ready new zones: they'll
6814 	 * fail to boot the new zones when they see that the global zone is
6815 	 * shutting down.
6816 	 */
6817 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6818 	    current_zonep = list_next(&zone_active, current_zonep)) {
6819 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6820 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6821 	}
6822 	mutex_exit(&zone_status_lock);
6823 	mutex_exit(&zonehash_lock);
6824 }
6825 
6826 /*
6827  * Returns true if the named dataset is visible in the current zone.
6828  * The 'write' parameter is set to 1 if the dataset is also writable.
6829  */
6830 int
6831 zone_dataset_visible(const char *dataset, int *write)
6832 {
6833 	static int zfstype = -1;
6834 	zone_dataset_t *zd;
6835 	size_t len;
6836 	zone_t *zone = curproc->p_zone;
6837 	const char *name = NULL;
6838 	vfs_t *vfsp = NULL;
6839 
6840 	if (dataset[0] == '\0')
6841 		return (0);
6842 
6843 	/*
6844 	 * Walk the list once, looking for datasets which match exactly, or
6845 	 * specify a dataset underneath an exported dataset.  If found, return
6846 	 * true and note that it is writable.
6847 	 */
6848 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6849 	    zd = list_next(&zone->zone_datasets, zd)) {
6850 
6851 		len = strlen(zd->zd_dataset);
6852 		if (strlen(dataset) >= len &&
6853 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6854 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6855 		    dataset[len] == '@')) {
6856 			if (write)
6857 				*write = 1;
6858 			return (1);
6859 		}
6860 	}
6861 
6862 	/*
6863 	 * Walk the list a second time, searching for datasets which are parents
6864 	 * of exported datasets.  These should be visible, but read-only.
6865 	 *
6866 	 * Note that we also have to support forms such as 'pool/dataset/', with
6867 	 * a trailing slash.
6868 	 */
6869 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6870 	    zd = list_next(&zone->zone_datasets, zd)) {
6871 
6872 		len = strlen(dataset);
6873 		if (dataset[len - 1] == '/')
6874 			len--;	/* Ignore trailing slash */
6875 		if (len < strlen(zd->zd_dataset) &&
6876 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6877 		    zd->zd_dataset[len] == '/') {
6878 			if (write)
6879 				*write = 0;
6880 			return (1);
6881 		}
6882 	}
6883 
6884 	/*
6885 	 * We reach here if the given dataset is not found in the zone_dataset
6886 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6887 	 * instead of delegation. For this we search for the dataset in the
6888 	 * zone_vfslist of this zone. If found, return true and note that it is
6889 	 * not writable.
6890 	 */
6891 
6892 	/*
6893 	 * Initialize zfstype if it is not initialized yet.
6894 	 */
6895 	if (zfstype == -1) {
6896 		struct vfssw *vswp = vfs_getvfssw("zfs");
6897 		zfstype = vswp - vfssw;
6898 		vfs_unrefvfssw(vswp);
6899 	}
6900 
6901 	vfs_list_read_lock();
6902 	vfsp = zone->zone_vfslist;
6903 	do {
6904 		ASSERT(vfsp);
6905 		if (vfsp->vfs_fstype == zfstype) {
6906 			name = refstr_value(vfsp->vfs_resource);
6907 
6908 			/*
6909 			 * Check if we have an exact match.
6910 			 */
6911 			if (strcmp(dataset, name) == 0) {
6912 				vfs_list_unlock();
6913 				if (write)
6914 					*write = 0;
6915 				return (1);
6916 			}
6917 			/*
6918 			 * We need to check if we are looking for parents of
6919 			 * a dataset. These should be visible, but read-only.
6920 			 */
6921 			len = strlen(dataset);
6922 			if (dataset[len - 1] == '/')
6923 				len--;
6924 
6925 			if (len < strlen(name) &&
6926 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6927 				vfs_list_unlock();
6928 				if (write)
6929 					*write = 0;
6930 				return (1);
6931 			}
6932 		}
6933 		vfsp = vfsp->vfs_zone_next;
6934 	} while (vfsp != zone->zone_vfslist);
6935 
6936 	vfs_list_unlock();
6937 	return (0);
6938 }
6939 
6940 /*
6941  * zone_find_by_any_path() -
6942  *
6943  * kernel-private routine similar to zone_find_by_path(), but which
6944  * effectively compares against zone paths rather than zonerootpath
6945  * (i.e., the last component of zonerootpaths, which should be "root/",
6946  * are not compared.)  This is done in order to accurately identify all
6947  * paths, whether zone-visible or not, including those which are parallel
6948  * to /root/, such as /dev/, /home/, etc...
6949  *
6950  * If the specified path does not fall under any zone path then global
6951  * zone is returned.
6952  *
6953  * The treat_abs parameter indicates whether the path should be treated as
6954  * an absolute path although it does not begin with "/".  (This supports
6955  * nfs mount syntax such as host:any/path.)
6956  *
6957  * The caller is responsible for zone_rele of the returned zone.
6958  */
6959 zone_t *
6960 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6961 {
6962 	zone_t *zone;
6963 	int path_offset = 0;
6964 
6965 	if (path == NULL) {
6966 		zone_hold(global_zone);
6967 		return (global_zone);
6968 	}
6969 
6970 	if (*path != '/') {
6971 		ASSERT(treat_abs);
6972 		path_offset = 1;
6973 	}
6974 
6975 	mutex_enter(&zonehash_lock);
6976 	for (zone = list_head(&zone_active); zone != NULL;
6977 	    zone = list_next(&zone_active, zone)) {
6978 		char	*c;
6979 		size_t	pathlen;
6980 		char *rootpath_start;
6981 
6982 		if (zone == global_zone)	/* skip global zone */
6983 			continue;
6984 
6985 		/* scan backwards to find start of last component */
6986 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6987 		do {
6988 			c--;
6989 		} while (*c != '/');
6990 
6991 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6992 		rootpath_start = (zone->zone_rootpath + path_offset);
6993 		if (strncmp(path, rootpath_start, pathlen) == 0)
6994 			break;
6995 	}
6996 	if (zone == NULL)
6997 		zone = global_zone;
6998 	zone_hold(zone);
6999 	mutex_exit(&zonehash_lock);
7000 	return (zone);
7001 }
7002 
7003 /*
7004  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7005  * zone_dl_t pointer if found, and NULL otherwise.
7006  */
7007 static zone_dl_t *
7008 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7009 {
7010 	zone_dl_t *zdl;
7011 
7012 	ASSERT(mutex_owned(&zone->zone_lock));
7013 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7014 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7015 		if (zdl->zdl_id == linkid)
7016 			break;
7017 	}
7018 	return (zdl);
7019 }
7020 
7021 static boolean_t
7022 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7023 {
7024 	boolean_t exists;
7025 
7026 	mutex_enter(&zone->zone_lock);
7027 	exists = (zone_find_dl(zone, linkid) != NULL);
7028 	mutex_exit(&zone->zone_lock);
7029 	return (exists);
7030 }
7031 
7032 /*
7033  * Add an data link name for the zone.
7034  */
7035 static int
7036 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7037 {
7038 	zone_dl_t *zdl;
7039 	zone_t *zone;
7040 	zone_t *thiszone;
7041 
7042 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7043 		return (set_errno(ENXIO));
7044 
7045 	/* Verify that the datalink ID doesn't already belong to a zone. */
7046 	mutex_enter(&zonehash_lock);
7047 	for (zone = list_head(&zone_active); zone != NULL;
7048 	    zone = list_next(&zone_active, zone)) {
7049 		if (zone_dl_exists(zone, linkid)) {
7050 			mutex_exit(&zonehash_lock);
7051 			zone_rele(thiszone);
7052 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7053 		}
7054 	}
7055 
7056 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7057 	zdl->zdl_id = linkid;
7058 	zdl->zdl_net = NULL;
7059 	mutex_enter(&thiszone->zone_lock);
7060 	list_insert_head(&thiszone->zone_dl_list, zdl);
7061 	mutex_exit(&thiszone->zone_lock);
7062 	mutex_exit(&zonehash_lock);
7063 	zone_rele(thiszone);
7064 	return (0);
7065 }
7066 
7067 static int
7068 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7069 {
7070 	zone_dl_t *zdl;
7071 	zone_t *zone;
7072 	int err = 0;
7073 
7074 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7075 		return (set_errno(EINVAL));
7076 
7077 	mutex_enter(&zone->zone_lock);
7078 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7079 		err = ENXIO;
7080 	} else {
7081 		list_remove(&zone->zone_dl_list, zdl);
7082 		nvlist_free(zdl->zdl_net);
7083 		kmem_free(zdl, sizeof (zone_dl_t));
7084 	}
7085 	mutex_exit(&zone->zone_lock);
7086 	zone_rele(zone);
7087 	return (err == 0 ? 0 : set_errno(err));
7088 }
7089 
7090 /*
7091  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7092  * the linkid.  Otherwise we just check if the specified zoneidp has been
7093  * assigned the supplied linkid.
7094  */
7095 int
7096 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7097 {
7098 	zone_t *zone;
7099 	int err = ENXIO;
7100 
7101 	if (*zoneidp != ALL_ZONES) {
7102 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7103 			if (zone_dl_exists(zone, linkid))
7104 				err = 0;
7105 			zone_rele(zone);
7106 		}
7107 		return (err);
7108 	}
7109 
7110 	mutex_enter(&zonehash_lock);
7111 	for (zone = list_head(&zone_active); zone != NULL;
7112 	    zone = list_next(&zone_active, zone)) {
7113 		if (zone_dl_exists(zone, linkid)) {
7114 			*zoneidp = zone->zone_id;
7115 			err = 0;
7116 			break;
7117 		}
7118 	}
7119 	mutex_exit(&zonehash_lock);
7120 	return (err);
7121 }
7122 
7123 /*
7124  * Get the list of datalink IDs assigned to a zone.
7125  *
7126  * On input, *nump is the number of datalink IDs that can fit in the supplied
7127  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7128  * that were placed in the array if the array was large enough, or to the
7129  * number of datalink IDs that the function needs to place in the array if the
7130  * array is too small.
7131  */
7132 static int
7133 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7134 {
7135 	uint_t num, dlcount;
7136 	zone_t *zone;
7137 	zone_dl_t *zdl;
7138 	datalink_id_t *idptr = idarray;
7139 
7140 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7141 		return (set_errno(EFAULT));
7142 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7143 		return (set_errno(ENXIO));
7144 
7145 	num = 0;
7146 	mutex_enter(&zone->zone_lock);
7147 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7148 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7149 		/*
7150 		 * If the list is bigger than what the caller supplied, just
7151 		 * count, don't do copyout.
7152 		 */
7153 		if (++num > dlcount)
7154 			continue;
7155 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7156 			mutex_exit(&zone->zone_lock);
7157 			zone_rele(zone);
7158 			return (set_errno(EFAULT));
7159 		}
7160 		idptr++;
7161 	}
7162 	mutex_exit(&zone->zone_lock);
7163 	zone_rele(zone);
7164 
7165 	/* Increased or decreased, caller should be notified. */
7166 	if (num != dlcount) {
7167 		if (copyout(&num, nump, sizeof (num)) != 0)
7168 			return (set_errno(EFAULT));
7169 	}
7170 	return (0);
7171 }
7172 
7173 /*
7174  * Public interface for looking up a zone by zoneid. It's a customized version
7175  * for netstack_zone_create(). It can only be called from the zsd create
7176  * callbacks, since it doesn't have reference on the zone structure hence if
7177  * it is called elsewhere the zone could disappear after the zonehash_lock
7178  * is dropped.
7179  *
7180  * Furthermore it
7181  * 1. Doesn't check the status of the zone.
7182  * 2. It will be called even before zone_init is called, in that case the
7183  *    address of zone0 is returned directly, and netstack_zone_create()
7184  *    will only assign a value to zone0.zone_netstack, won't break anything.
7185  * 3. Returns without the zone being held.
7186  */
7187 zone_t *
7188 zone_find_by_id_nolock(zoneid_t zoneid)
7189 {
7190 	zone_t *zone;
7191 
7192 	mutex_enter(&zonehash_lock);
7193 	if (zonehashbyid == NULL)
7194 		zone = &zone0;
7195 	else
7196 		zone = zone_find_all_by_id(zoneid);
7197 	mutex_exit(&zonehash_lock);
7198 	return (zone);
7199 }
7200 
7201 /*
7202  * Walk the datalinks for a given zone
7203  */
7204 int
7205 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7206     void *data)
7207 {
7208 	zone_t		*zone;
7209 	zone_dl_t	*zdl;
7210 	datalink_id_t	*idarray;
7211 	uint_t		idcount = 0;
7212 	int		i, ret = 0;
7213 
7214 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7215 		return (ENOENT);
7216 
7217 	/*
7218 	 * We first build an array of linkid's so that we can walk these and
7219 	 * execute the callback with the zone_lock dropped.
7220 	 */
7221 	mutex_enter(&zone->zone_lock);
7222 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7223 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7224 		idcount++;
7225 	}
7226 
7227 	if (idcount == 0) {
7228 		mutex_exit(&zone->zone_lock);
7229 		zone_rele(zone);
7230 		return (0);
7231 	}
7232 
7233 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7234 	if (idarray == NULL) {
7235 		mutex_exit(&zone->zone_lock);
7236 		zone_rele(zone);
7237 		return (ENOMEM);
7238 	}
7239 
7240 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7241 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7242 		idarray[i] = zdl->zdl_id;
7243 	}
7244 
7245 	mutex_exit(&zone->zone_lock);
7246 
7247 	for (i = 0; i < idcount && ret == 0; i++) {
7248 		if ((ret = (*cb)(idarray[i], data)) != 0)
7249 			break;
7250 	}
7251 
7252 	zone_rele(zone);
7253 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7254 	return (ret);
7255 }
7256 
7257 static char *
7258 zone_net_type2name(int type)
7259 {
7260 	switch (type) {
7261 	case ZONE_NETWORK_ADDRESS:
7262 		return (ZONE_NET_ADDRNAME);
7263 	case ZONE_NETWORK_DEFROUTER:
7264 		return (ZONE_NET_RTRNAME);
7265 	default:
7266 		return (NULL);
7267 	}
7268 }
7269 
7270 static int
7271 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7272 {
7273 	zone_t *zone;
7274 	zone_dl_t *zdl;
7275 	nvlist_t *nvl;
7276 	int err = 0;
7277 	uint8_t *new = NULL;
7278 	char *nvname;
7279 	int bufsize;
7280 	datalink_id_t linkid = znbuf->zn_linkid;
7281 
7282 	if (secpolicy_zone_config(CRED()) != 0)
7283 		return (set_errno(EPERM));
7284 
7285 	if (zoneid == GLOBAL_ZONEID)
7286 		return (set_errno(EINVAL));
7287 
7288 	nvname = zone_net_type2name(znbuf->zn_type);
7289 	bufsize = znbuf->zn_len;
7290 	new = znbuf->zn_val;
7291 	if (nvname == NULL)
7292 		return (set_errno(EINVAL));
7293 
7294 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7295 		return (set_errno(EINVAL));
7296 	}
7297 
7298 	mutex_enter(&zone->zone_lock);
7299 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7300 		err = ENXIO;
7301 		goto done;
7302 	}
7303 	if ((nvl = zdl->zdl_net) == NULL) {
7304 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7305 			err = ENOMEM;
7306 			goto done;
7307 		} else {
7308 			zdl->zdl_net = nvl;
7309 		}
7310 	}
7311 	if (nvlist_exists(nvl, nvname)) {
7312 		err = EINVAL;
7313 		goto done;
7314 	}
7315 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7316 	ASSERT(err == 0);
7317 done:
7318 	mutex_exit(&zone->zone_lock);
7319 	zone_rele(zone);
7320 	if (err != 0)
7321 		return (set_errno(err));
7322 	else
7323 		return (0);
7324 }
7325 
7326 static int
7327 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7328 {
7329 	zone_t *zone;
7330 	zone_dl_t *zdl;
7331 	nvlist_t *nvl;
7332 	uint8_t *ptr;
7333 	uint_t psize;
7334 	int err = 0;
7335 	char *nvname;
7336 	int bufsize;
7337 	void *buf;
7338 	datalink_id_t linkid = znbuf->zn_linkid;
7339 
7340 	if (zoneid == GLOBAL_ZONEID)
7341 		return (set_errno(EINVAL));
7342 
7343 	nvname = zone_net_type2name(znbuf->zn_type);
7344 	bufsize = znbuf->zn_len;
7345 	buf = znbuf->zn_val;
7346 
7347 	if (nvname == NULL)
7348 		return (set_errno(EINVAL));
7349 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7350 		return (set_errno(EINVAL));
7351 
7352 	mutex_enter(&zone->zone_lock);
7353 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7354 		err = ENXIO;
7355 		goto done;
7356 	}
7357 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7358 		err = ENOENT;
7359 		goto done;
7360 	}
7361 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7362 	ASSERT(err == 0);
7363 
7364 	if (psize > bufsize) {
7365 		err = ENOBUFS;
7366 		goto done;
7367 	}
7368 	znbuf->zn_len = psize;
7369 	bcopy(ptr, buf, psize);
7370 done:
7371 	mutex_exit(&zone->zone_lock);
7372 	zone_rele(zone);
7373 	if (err != 0)
7374 		return (set_errno(err));
7375 	else
7376 		return (0);
7377 }
7378