xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision d14b1d19)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 
382 const char * const zone_default_initname = "/sbin/init";
383 static char * const zone_prefix = "/zone/";
384 static int zone_shutdown(zoneid_t zoneid);
385 static int zone_add_datalink(zoneid_t, datalink_id_t);
386 static int zone_remove_datalink(zoneid_t, datalink_id_t);
387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
388 static int zone_set_network(zoneid_t, zone_net_data_t *);
389 static int zone_get_network(zoneid_t, zone_net_data_t *);
390 
391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
392 
393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
397     zone_key_t);
398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
400     kmutex_t *);
401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 
404 /*
405  * Bump this number when you alter the zone syscall interfaces; this is
406  * because we need to have support for previous API versions in libc
407  * to support patching; libc calls into the kernel to determine this number.
408  *
409  * Version 1 of the API is the version originally shipped with Solaris 10
410  * Version 2 alters the zone_create system call in order to support more
411  *     arguments by moving the args into a structure; and to do better
412  *     error reporting when zone_create() fails.
413  * Version 3 alters the zone_create system call in order to support the
414  *     import of ZFS datasets to zones.
415  * Version 4 alters the zone_create system call in order to support
416  *     Trusted Extensions.
417  * Version 5 alters the zone_boot system call, and converts its old
418  *     bootargs parameter to be set by the zone_setattr API instead.
419  * Version 6 adds the flag argument to zone_create.
420  */
421 static const int ZONE_SYSCALL_API_VERSION = 6;
422 
423 /*
424  * Certain filesystems (such as NFS and autofs) need to know which zone
425  * the mount is being placed in.  Because of this, we need to be able to
426  * ensure that a zone isn't in the process of being created/destroyed such
427  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
428  * it gets added the list of mounted zones, it ends up on the wrong zone's
429  * mount list. Since a zone can't reside on an NFS file system, we don't
430  * have to worry about the zonepath itself.
431  *
432  * The following functions: block_mounts()/resume_mounts() and
433  * mount_in_progress()/mount_completed() are used by zones and the VFS
434  * layer (respectively) to synchronize zone state transitions and new
435  * mounts within a zone. This syncronization is on a per-zone basis, so
436  * activity for one zone will not interfere with activity for another zone.
437  *
438  * The semantics are like a reader-reader lock such that there may
439  * either be multiple mounts (or zone state transitions, if that weren't
440  * serialized by zonehash_lock) in progress at the same time, but not
441  * both.
442  *
443  * We use cv's so the user can ctrl-C out of the operation if it's
444  * taking too long.
445  *
446  * The semantics are such that there is unfair bias towards the
447  * "current" operation.  This means that zone halt may starve if
448  * there is a rapid succession of new mounts coming in to the zone.
449  */
450 /*
451  * Prevent new mounts from progressing to the point of calling
452  * VFS_MOUNT().  If there are already mounts in this "region", wait for
453  * them to complete.
454  */
455 static int
456 block_mounts(zone_t *zp)
457 {
458 	int retval = 0;
459 
460 	/*
461 	 * Since it may block for a long time, block_mounts() shouldn't be
462 	 * called with zonehash_lock held.
463 	 */
464 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
465 	mutex_enter(&zp->zone_mount_lock);
466 	while (zp->zone_mounts_in_progress > 0) {
467 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
468 			goto signaled;
469 	}
470 	/*
471 	 * A negative value of mounts_in_progress indicates that mounts
472 	 * have been blocked by (-mounts_in_progress) different callers
473 	 * (remotely possible if two threads enter zone_shutdown at the same
474 	 * time).
475 	 */
476 	zp->zone_mounts_in_progress--;
477 	retval = 1;
478 signaled:
479 	mutex_exit(&zp->zone_mount_lock);
480 	return (retval);
481 }
482 
483 /*
484  * The VFS layer may progress with new mounts as far as we're concerned.
485  * Allow them to progress if we were the last obstacle.
486  */
487 static void
488 resume_mounts(zone_t *zp)
489 {
490 	mutex_enter(&zp->zone_mount_lock);
491 	if (++zp->zone_mounts_in_progress == 0)
492 		cv_broadcast(&zp->zone_mount_cv);
493 	mutex_exit(&zp->zone_mount_lock);
494 }
495 
496 /*
497  * The VFS layer is busy with a mount; this zone should wait until all
498  * of its mounts are completed to progress.
499  */
500 void
501 mount_in_progress(zone_t *zp)
502 {
503 	mutex_enter(&zp->zone_mount_lock);
504 	while (zp->zone_mounts_in_progress < 0)
505 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
506 	zp->zone_mounts_in_progress++;
507 	mutex_exit(&zp->zone_mount_lock);
508 }
509 
510 /*
511  * VFS is done with one mount; wake up any waiting block_mounts()
512  * callers if this is the last mount.
513  */
514 void
515 mount_completed(zone_t *zp)
516 {
517 	mutex_enter(&zp->zone_mount_lock);
518 	if (--zp->zone_mounts_in_progress == 0)
519 		cv_broadcast(&zp->zone_mount_cv);
520 	mutex_exit(&zp->zone_mount_lock);
521 }
522 
523 /*
524  * ZSD routines.
525  *
526  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
527  * defined by the pthread_key_create() and related interfaces.
528  *
529  * Kernel subsystems may register one or more data items and/or
530  * callbacks to be executed when a zone is created, shutdown, or
531  * destroyed.
532  *
533  * Unlike the thread counterpart, destructor callbacks will be executed
534  * even if the data pointer is NULL and/or there are no constructor
535  * callbacks, so it is the responsibility of such callbacks to check for
536  * NULL data values if necessary.
537  *
538  * The locking strategy and overall picture is as follows:
539  *
540  * When someone calls zone_key_create(), a template ZSD entry is added to the
541  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
542  * holding that lock all the existing zones are marked as
543  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
544  * zone_zsd list (protected by zone_lock). The global list is updated first
545  * (under zone_key_lock) to make sure that newly created zones use the
546  * most recent list of keys. Then under zonehash_lock we walk the zones
547  * and mark them.  Similar locking is used in zone_key_delete().
548  *
549  * The actual create, shutdown, and destroy callbacks are done without
550  * holding any lock. And zsd_flags are used to ensure that the operations
551  * completed so that when zone_key_create (and zone_create) is done, as well as
552  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
553  * are completed.
554  *
555  * When new zones are created constructor callbacks for all registered ZSD
556  * entries will be called. That also uses the above two phases of marking
557  * what needs to be done, and then running the callbacks without holding
558  * any locks.
559  *
560  * The framework does not provide any locking around zone_getspecific() and
561  * zone_setspecific() apart from that needed for internal consistency, so
562  * callers interested in atomic "test-and-set" semantics will need to provide
563  * their own locking.
564  */
565 
566 /*
567  * Helper function to find the zsd_entry associated with the key in the
568  * given list.
569  */
570 static struct zsd_entry *
571 zsd_find(list_t *l, zone_key_t key)
572 {
573 	struct zsd_entry *zsd;
574 
575 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
576 		if (zsd->zsd_key == key) {
577 			return (zsd);
578 		}
579 	}
580 	return (NULL);
581 }
582 
583 /*
584  * Helper function to find the zsd_entry associated with the key in the
585  * given list. Move it to the front of the list.
586  */
587 static struct zsd_entry *
588 zsd_find_mru(list_t *l, zone_key_t key)
589 {
590 	struct zsd_entry *zsd;
591 
592 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
593 		if (zsd->zsd_key == key) {
594 			/*
595 			 * Move to head of list to keep list in MRU order.
596 			 */
597 			if (zsd != list_head(l)) {
598 				list_remove(l, zsd);
599 				list_insert_head(l, zsd);
600 			}
601 			return (zsd);
602 		}
603 	}
604 	return (NULL);
605 }
606 
607 void
608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
609     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
610 {
611 	struct zsd_entry *zsdp;
612 	struct zsd_entry *t;
613 	struct zone *zone;
614 	zone_key_t  key;
615 
616 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
617 	zsdp->zsd_data = NULL;
618 	zsdp->zsd_create = create;
619 	zsdp->zsd_shutdown = shutdown;
620 	zsdp->zsd_destroy = destroy;
621 
622 	/*
623 	 * Insert in global list of callbacks. Makes future zone creations
624 	 * see it.
625 	 */
626 	mutex_enter(&zsd_key_lock);
627 	key = zsdp->zsd_key = ++zsd_keyval;
628 	ASSERT(zsd_keyval != 0);
629 	list_insert_tail(&zsd_registered_keys, zsdp);
630 	mutex_exit(&zsd_key_lock);
631 
632 	/*
633 	 * Insert for all existing zones and mark them as needing
634 	 * a create callback.
635 	 */
636 	mutex_enter(&zonehash_lock);	/* stop the world */
637 	for (zone = list_head(&zone_active); zone != NULL;
638 	    zone = list_next(&zone_active, zone)) {
639 		zone_status_t status;
640 
641 		mutex_enter(&zone->zone_lock);
642 
643 		/* Skip zones that are on the way down or not yet up */
644 		status = zone_status_get(zone);
645 		if (status >= ZONE_IS_DOWN ||
646 		    status == ZONE_IS_UNINITIALIZED) {
647 			mutex_exit(&zone->zone_lock);
648 			continue;
649 		}
650 
651 		t = zsd_find_mru(&zone->zone_zsd, key);
652 		if (t != NULL) {
653 			/*
654 			 * A zsd_configure already inserted it after
655 			 * we dropped zsd_key_lock above.
656 			 */
657 			mutex_exit(&zone->zone_lock);
658 			continue;
659 		}
660 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
661 		t->zsd_key = key;
662 		t->zsd_create = create;
663 		t->zsd_shutdown = shutdown;
664 		t->zsd_destroy = destroy;
665 		if (create != NULL) {
666 			t->zsd_flags = ZSD_CREATE_NEEDED;
667 			DTRACE_PROBE2(zsd__create__needed,
668 			    zone_t *, zone, zone_key_t, key);
669 		}
670 		list_insert_tail(&zone->zone_zsd, t);
671 		mutex_exit(&zone->zone_lock);
672 	}
673 	mutex_exit(&zonehash_lock);
674 
675 	if (create != NULL) {
676 		/* Now call the create callback for this key */
677 		zsd_apply_all_zones(zsd_apply_create, key);
678 	}
679 	/*
680 	 * It is safe for consumers to use the key now, make it
681 	 * globally visible. Specifically zone_getspecific() will
682 	 * always successfully return the zone specific data associated
683 	 * with the key.
684 	 */
685 	*keyp = key;
686 
687 }
688 
689 /*
690  * Function called when a module is being unloaded, or otherwise wishes
691  * to unregister its ZSD key and callbacks.
692  *
693  * Remove from the global list and determine the functions that need to
694  * be called under a global lock. Then call the functions without
695  * holding any locks. Finally free up the zone_zsd entries. (The apply
696  * functions need to access the zone_zsd entries to find zsd_data etc.)
697  */
698 int
699 zone_key_delete(zone_key_t key)
700 {
701 	struct zsd_entry *zsdp = NULL;
702 	zone_t *zone;
703 
704 	mutex_enter(&zsd_key_lock);
705 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
706 	if (zsdp == NULL) {
707 		mutex_exit(&zsd_key_lock);
708 		return (-1);
709 	}
710 	list_remove(&zsd_registered_keys, zsdp);
711 	mutex_exit(&zsd_key_lock);
712 
713 	mutex_enter(&zonehash_lock);
714 	for (zone = list_head(&zone_active); zone != NULL;
715 	    zone = list_next(&zone_active, zone)) {
716 		struct zsd_entry *del;
717 
718 		mutex_enter(&zone->zone_lock);
719 		del = zsd_find_mru(&zone->zone_zsd, key);
720 		if (del == NULL) {
721 			/*
722 			 * Somebody else got here first e.g the zone going
723 			 * away.
724 			 */
725 			mutex_exit(&zone->zone_lock);
726 			continue;
727 		}
728 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
729 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
730 		if (del->zsd_shutdown != NULL &&
731 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
732 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
733 			DTRACE_PROBE2(zsd__shutdown__needed,
734 			    zone_t *, zone, zone_key_t, key);
735 		}
736 		if (del->zsd_destroy != NULL &&
737 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
738 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
739 			DTRACE_PROBE2(zsd__destroy__needed,
740 			    zone_t *, zone, zone_key_t, key);
741 		}
742 		mutex_exit(&zone->zone_lock);
743 	}
744 	mutex_exit(&zonehash_lock);
745 	kmem_free(zsdp, sizeof (*zsdp));
746 
747 	/* Now call the shutdown and destroy callback for this key */
748 	zsd_apply_all_zones(zsd_apply_shutdown, key);
749 	zsd_apply_all_zones(zsd_apply_destroy, key);
750 
751 	/* Now we can free up the zsdp structures in each zone */
752 	mutex_enter(&zonehash_lock);
753 	for (zone = list_head(&zone_active); zone != NULL;
754 	    zone = list_next(&zone_active, zone)) {
755 		struct zsd_entry *del;
756 
757 		mutex_enter(&zone->zone_lock);
758 		del = zsd_find(&zone->zone_zsd, key);
759 		if (del != NULL) {
760 			list_remove(&zone->zone_zsd, del);
761 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
762 			kmem_free(del, sizeof (*del));
763 		}
764 		mutex_exit(&zone->zone_lock);
765 	}
766 	mutex_exit(&zonehash_lock);
767 
768 	return (0);
769 }
770 
771 /*
772  * ZSD counterpart of pthread_setspecific().
773  *
774  * Since all zsd callbacks, including those with no create function,
775  * have an entry in zone_zsd, if the key is registered it is part of
776  * the zone_zsd list.
777  * Return an error if the key wasn't registerd.
778  */
779 int
780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
781 {
782 	struct zsd_entry *t;
783 
784 	mutex_enter(&zone->zone_lock);
785 	t = zsd_find_mru(&zone->zone_zsd, key);
786 	if (t != NULL) {
787 		/*
788 		 * Replace old value with new
789 		 */
790 		t->zsd_data = (void *)data;
791 		mutex_exit(&zone->zone_lock);
792 		return (0);
793 	}
794 	mutex_exit(&zone->zone_lock);
795 	return (-1);
796 }
797 
798 /*
799  * ZSD counterpart of pthread_getspecific().
800  */
801 void *
802 zone_getspecific(zone_key_t key, zone_t *zone)
803 {
804 	struct zsd_entry *t;
805 	void *data;
806 
807 	mutex_enter(&zone->zone_lock);
808 	t = zsd_find_mru(&zone->zone_zsd, key);
809 	data = (t == NULL ? NULL : t->zsd_data);
810 	mutex_exit(&zone->zone_lock);
811 	return (data);
812 }
813 
814 /*
815  * Function used to initialize a zone's list of ZSD callbacks and data
816  * when the zone is being created.  The callbacks are initialized from
817  * the template list (zsd_registered_keys). The constructor callback is
818  * executed later (once the zone exists and with locks dropped).
819  */
820 static void
821 zone_zsd_configure(zone_t *zone)
822 {
823 	struct zsd_entry *zsdp;
824 	struct zsd_entry *t;
825 
826 	ASSERT(MUTEX_HELD(&zonehash_lock));
827 	ASSERT(list_head(&zone->zone_zsd) == NULL);
828 	mutex_enter(&zone->zone_lock);
829 	mutex_enter(&zsd_key_lock);
830 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
831 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
832 		/*
833 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
834 		 * should not have added anything to it.
835 		 */
836 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
837 
838 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
839 		t->zsd_key = zsdp->zsd_key;
840 		t->zsd_create = zsdp->zsd_create;
841 		t->zsd_shutdown = zsdp->zsd_shutdown;
842 		t->zsd_destroy = zsdp->zsd_destroy;
843 		if (zsdp->zsd_create != NULL) {
844 			t->zsd_flags = ZSD_CREATE_NEEDED;
845 			DTRACE_PROBE2(zsd__create__needed,
846 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
847 		}
848 		list_insert_tail(&zone->zone_zsd, t);
849 	}
850 	mutex_exit(&zsd_key_lock);
851 	mutex_exit(&zone->zone_lock);
852 }
853 
854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
855 
856 /*
857  * Helper function to execute shutdown or destructor callbacks.
858  */
859 static void
860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
861 {
862 	struct zsd_entry *t;
863 
864 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
865 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
866 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
867 
868 	/*
869 	 * Run the callback solely based on what is registered for the zone
870 	 * in zone_zsd. The global list can change independently of this
871 	 * as keys are registered and unregistered and we don't register new
872 	 * callbacks for a zone that is in the process of going away.
873 	 */
874 	mutex_enter(&zone->zone_lock);
875 	for (t = list_head(&zone->zone_zsd); t != NULL;
876 	    t = list_next(&zone->zone_zsd, t)) {
877 		zone_key_t key = t->zsd_key;
878 
879 		/* Skip if no callbacks registered */
880 
881 		if (ct == ZSD_SHUTDOWN) {
882 			if (t->zsd_shutdown != NULL &&
883 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
884 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
885 				DTRACE_PROBE2(zsd__shutdown__needed,
886 				    zone_t *, zone, zone_key_t, key);
887 			}
888 		} else {
889 			if (t->zsd_destroy != NULL &&
890 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
891 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
892 				DTRACE_PROBE2(zsd__destroy__needed,
893 				    zone_t *, zone, zone_key_t, key);
894 			}
895 		}
896 	}
897 	mutex_exit(&zone->zone_lock);
898 
899 	/* Now call the shutdown and destroy callback for this key */
900 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
901 	zsd_apply_all_keys(zsd_apply_destroy, zone);
902 
903 }
904 
905 /*
906  * Called when the zone is going away; free ZSD-related memory, and
907  * destroy the zone_zsd list.
908  */
909 static void
910 zone_free_zsd(zone_t *zone)
911 {
912 	struct zsd_entry *t, *next;
913 
914 	/*
915 	 * Free all the zsd_entry's we had on this zone.
916 	 */
917 	mutex_enter(&zone->zone_lock);
918 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
919 		next = list_next(&zone->zone_zsd, t);
920 		list_remove(&zone->zone_zsd, t);
921 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
922 		kmem_free(t, sizeof (*t));
923 	}
924 	list_destroy(&zone->zone_zsd);
925 	mutex_exit(&zone->zone_lock);
926 
927 }
928 
929 /*
930  * Apply a function to all zones for particular key value.
931  *
932  * The applyfn has to drop zonehash_lock if it does some work, and
933  * then reacquire it before it returns.
934  * When the lock is dropped we don't follow list_next even
935  * if it is possible to do so without any hazards. This is
936  * because we want the design to allow for the list of zones
937  * to change in any arbitrary way during the time the
938  * lock was dropped.
939  *
940  * It is safe to restart the loop at list_head since the applyfn
941  * changes the zsd_flags as it does work, so a subsequent
942  * pass through will have no effect in applyfn, hence the loop will terminate
943  * in at worst O(N^2).
944  */
945 static void
946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
947 {
948 	zone_t *zone;
949 
950 	mutex_enter(&zonehash_lock);
951 	zone = list_head(&zone_active);
952 	while (zone != NULL) {
953 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
954 			/* Lock dropped - restart at head */
955 			zone = list_head(&zone_active);
956 		} else {
957 			zone = list_next(&zone_active, zone);
958 		}
959 	}
960 	mutex_exit(&zonehash_lock);
961 }
962 
963 /*
964  * Apply a function to all keys for a particular zone.
965  *
966  * The applyfn has to drop zonehash_lock if it does some work, and
967  * then reacquire it before it returns.
968  * When the lock is dropped we don't follow list_next even
969  * if it is possible to do so without any hazards. This is
970  * because we want the design to allow for the list of zsd callbacks
971  * to change in any arbitrary way during the time the
972  * lock was dropped.
973  *
974  * It is safe to restart the loop at list_head since the applyfn
975  * changes the zsd_flags as it does work, so a subsequent
976  * pass through will have no effect in applyfn, hence the loop will terminate
977  * in at worst O(N^2).
978  */
979 static void
980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
981 {
982 	struct zsd_entry *t;
983 
984 	mutex_enter(&zone->zone_lock);
985 	t = list_head(&zone->zone_zsd);
986 	while (t != NULL) {
987 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
988 			/* Lock dropped - restart at head */
989 			t = list_head(&zone->zone_zsd);
990 		} else {
991 			t = list_next(&zone->zone_zsd, t);
992 		}
993 	}
994 	mutex_exit(&zone->zone_lock);
995 }
996 
997 /*
998  * Call the create function for the zone and key if CREATE_NEEDED
999  * is set.
1000  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1001  * we wait for that thread to complete so that we can ensure that
1002  * all the callbacks are done when we've looped over all zones/keys.
1003  *
1004  * When we call the create function, we drop the global held by the
1005  * caller, and return true to tell the caller it needs to re-evalute the
1006  * state.
1007  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1008  * remains held on exit.
1009  */
1010 static boolean_t
1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1012     zone_t *zone, zone_key_t key)
1013 {
1014 	void *result;
1015 	struct zsd_entry *t;
1016 	boolean_t dropped;
1017 
1018 	if (lockp != NULL) {
1019 		ASSERT(MUTEX_HELD(lockp));
1020 	}
1021 	if (zone_lock_held) {
1022 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1023 	} else {
1024 		mutex_enter(&zone->zone_lock);
1025 	}
1026 
1027 	t = zsd_find(&zone->zone_zsd, key);
1028 	if (t == NULL) {
1029 		/*
1030 		 * Somebody else got here first e.g the zone going
1031 		 * away.
1032 		 */
1033 		if (!zone_lock_held)
1034 			mutex_exit(&zone->zone_lock);
1035 		return (B_FALSE);
1036 	}
1037 	dropped = B_FALSE;
1038 	if (zsd_wait_for_inprogress(zone, t, lockp))
1039 		dropped = B_TRUE;
1040 
1041 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1042 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1043 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1044 		DTRACE_PROBE2(zsd__create__inprogress,
1045 		    zone_t *, zone, zone_key_t, key);
1046 		mutex_exit(&zone->zone_lock);
1047 		if (lockp != NULL)
1048 			mutex_exit(lockp);
1049 
1050 		dropped = B_TRUE;
1051 		ASSERT(t->zsd_create != NULL);
1052 		DTRACE_PROBE2(zsd__create__start,
1053 		    zone_t *, zone, zone_key_t, key);
1054 
1055 		result = (*t->zsd_create)(zone->zone_id);
1056 
1057 		DTRACE_PROBE2(zsd__create__end,
1058 		    zone_t *, zone, voidn *, result);
1059 
1060 		ASSERT(result != NULL);
1061 		if (lockp != NULL)
1062 			mutex_enter(lockp);
1063 		mutex_enter(&zone->zone_lock);
1064 		t->zsd_data = result;
1065 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1066 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1067 		cv_broadcast(&t->zsd_cv);
1068 		DTRACE_PROBE2(zsd__create__completed,
1069 		    zone_t *, zone, zone_key_t, key);
1070 	}
1071 	if (!zone_lock_held)
1072 		mutex_exit(&zone->zone_lock);
1073 	return (dropped);
1074 }
1075 
1076 /*
1077  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1078  * is set.
1079  * If some other thread gets here first and sets *_INPROGRESS, then
1080  * we wait for that thread to complete so that we can ensure that
1081  * all the callbacks are done when we've looped over all zones/keys.
1082  *
1083  * When we call the shutdown function, we drop the global held by the
1084  * caller, and return true to tell the caller it needs to re-evalute the
1085  * state.
1086  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1087  * remains held on exit.
1088  */
1089 static boolean_t
1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1091     zone_t *zone, zone_key_t key)
1092 {
1093 	struct zsd_entry *t;
1094 	void *data;
1095 	boolean_t dropped;
1096 
1097 	if (lockp != NULL) {
1098 		ASSERT(MUTEX_HELD(lockp));
1099 	}
1100 	if (zone_lock_held) {
1101 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1102 	} else {
1103 		mutex_enter(&zone->zone_lock);
1104 	}
1105 
1106 	t = zsd_find(&zone->zone_zsd, key);
1107 	if (t == NULL) {
1108 		/*
1109 		 * Somebody else got here first e.g the zone going
1110 		 * away.
1111 		 */
1112 		if (!zone_lock_held)
1113 			mutex_exit(&zone->zone_lock);
1114 		return (B_FALSE);
1115 	}
1116 	dropped = B_FALSE;
1117 	if (zsd_wait_for_creator(zone, t, lockp))
1118 		dropped = B_TRUE;
1119 
1120 	if (zsd_wait_for_inprogress(zone, t, lockp))
1121 		dropped = B_TRUE;
1122 
1123 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1124 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1125 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1126 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1127 		    zone_t *, zone, zone_key_t, key);
1128 		mutex_exit(&zone->zone_lock);
1129 		if (lockp != NULL)
1130 			mutex_exit(lockp);
1131 		dropped = B_TRUE;
1132 
1133 		ASSERT(t->zsd_shutdown != NULL);
1134 		data = t->zsd_data;
1135 
1136 		DTRACE_PROBE2(zsd__shutdown__start,
1137 		    zone_t *, zone, zone_key_t, key);
1138 
1139 		(t->zsd_shutdown)(zone->zone_id, data);
1140 		DTRACE_PROBE2(zsd__shutdown__end,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		if (lockp != NULL)
1144 			mutex_enter(lockp);
1145 		mutex_enter(&zone->zone_lock);
1146 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1147 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1148 		cv_broadcast(&t->zsd_cv);
1149 		DTRACE_PROBE2(zsd__shutdown__completed,
1150 		    zone_t *, zone, zone_key_t, key);
1151 	}
1152 	if (!zone_lock_held)
1153 		mutex_exit(&zone->zone_lock);
1154 	return (dropped);
1155 }
1156 
1157 /*
1158  * Call the destroy function for the zone and key if DESTROY_NEEDED
1159  * is set.
1160  * If some other thread gets here first and sets *_INPROGRESS, then
1161  * we wait for that thread to complete so that we can ensure that
1162  * all the callbacks are done when we've looped over all zones/keys.
1163  *
1164  * When we call the destroy function, we drop the global held by the
1165  * caller, and return true to tell the caller it needs to re-evalute the
1166  * state.
1167  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1168  * remains held on exit.
1169  */
1170 static boolean_t
1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1172     zone_t *zone, zone_key_t key)
1173 {
1174 	struct zsd_entry *t;
1175 	void *data;
1176 	boolean_t dropped;
1177 
1178 	if (lockp != NULL) {
1179 		ASSERT(MUTEX_HELD(lockp));
1180 	}
1181 	if (zone_lock_held) {
1182 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1183 	} else {
1184 		mutex_enter(&zone->zone_lock);
1185 	}
1186 
1187 	t = zsd_find(&zone->zone_zsd, key);
1188 	if (t == NULL) {
1189 		/*
1190 		 * Somebody else got here first e.g the zone going
1191 		 * away.
1192 		 */
1193 		if (!zone_lock_held)
1194 			mutex_exit(&zone->zone_lock);
1195 		return (B_FALSE);
1196 	}
1197 	dropped = B_FALSE;
1198 	if (zsd_wait_for_creator(zone, t, lockp))
1199 		dropped = B_TRUE;
1200 
1201 	if (zsd_wait_for_inprogress(zone, t, lockp))
1202 		dropped = B_TRUE;
1203 
1204 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1205 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1206 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1207 		DTRACE_PROBE2(zsd__destroy__inprogress,
1208 		    zone_t *, zone, zone_key_t, key);
1209 		mutex_exit(&zone->zone_lock);
1210 		if (lockp != NULL)
1211 			mutex_exit(lockp);
1212 		dropped = B_TRUE;
1213 
1214 		ASSERT(t->zsd_destroy != NULL);
1215 		data = t->zsd_data;
1216 		DTRACE_PROBE2(zsd__destroy__start,
1217 		    zone_t *, zone, zone_key_t, key);
1218 
1219 		(t->zsd_destroy)(zone->zone_id, data);
1220 		DTRACE_PROBE2(zsd__destroy__end,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		if (lockp != NULL)
1224 			mutex_enter(lockp);
1225 		mutex_enter(&zone->zone_lock);
1226 		t->zsd_data = NULL;
1227 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1228 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1229 		cv_broadcast(&t->zsd_cv);
1230 		DTRACE_PROBE2(zsd__destroy__completed,
1231 		    zone_t *, zone, zone_key_t, key);
1232 	}
1233 	if (!zone_lock_held)
1234 		mutex_exit(&zone->zone_lock);
1235 	return (dropped);
1236 }
1237 
1238 /*
1239  * Wait for any CREATE_NEEDED flag to be cleared.
1240  * Returns true if lockp was temporarily dropped while waiting.
1241  */
1242 static boolean_t
1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 	boolean_t dropped = B_FALSE;
1246 
1247 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1248 		DTRACE_PROBE2(zsd__wait__for__creator,
1249 		    zone_t *, zone, struct zsd_entry *, t);
1250 		if (lockp != NULL) {
1251 			dropped = B_TRUE;
1252 			mutex_exit(lockp);
1253 		}
1254 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 		if (lockp != NULL) {
1256 			/* First drop zone_lock to preserve order */
1257 			mutex_exit(&zone->zone_lock);
1258 			mutex_enter(lockp);
1259 			mutex_enter(&zone->zone_lock);
1260 		}
1261 	}
1262 	return (dropped);
1263 }
1264 
1265 /*
1266  * Wait for any INPROGRESS flag to be cleared.
1267  * Returns true if lockp was temporarily dropped while waiting.
1268  */
1269 static boolean_t
1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1271 {
1272 	boolean_t dropped = B_FALSE;
1273 
1274 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1275 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1276 		    zone_t *, zone, struct zsd_entry *, t);
1277 		if (lockp != NULL) {
1278 			dropped = B_TRUE;
1279 			mutex_exit(lockp);
1280 		}
1281 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1282 		if (lockp != NULL) {
1283 			/* First drop zone_lock to preserve order */
1284 			mutex_exit(&zone->zone_lock);
1285 			mutex_enter(lockp);
1286 			mutex_enter(&zone->zone_lock);
1287 		}
1288 	}
1289 	return (dropped);
1290 }
1291 
1292 /*
1293  * Frees memory associated with the zone dataset list.
1294  */
1295 static void
1296 zone_free_datasets(zone_t *zone)
1297 {
1298 	zone_dataset_t *t, *next;
1299 
1300 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1301 		next = list_next(&zone->zone_datasets, t);
1302 		list_remove(&zone->zone_datasets, t);
1303 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1304 		kmem_free(t, sizeof (*t));
1305 	}
1306 	list_destroy(&zone->zone_datasets);
1307 }
1308 
1309 /*
1310  * zone.cpu-shares resource control support.
1311  */
1312 /*ARGSUSED*/
1313 static rctl_qty_t
1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1315 {
1316 	ASSERT(MUTEX_HELD(&p->p_lock));
1317 	return (p->p_zone->zone_shares);
1318 }
1319 
1320 /*ARGSUSED*/
1321 static int
1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1323     rctl_qty_t nv)
1324 {
1325 	ASSERT(MUTEX_HELD(&p->p_lock));
1326 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1327 	if (e->rcep_p.zone == NULL)
1328 		return (0);
1329 
1330 	e->rcep_p.zone->zone_shares = nv;
1331 	return (0);
1332 }
1333 
1334 static rctl_ops_t zone_cpu_shares_ops = {
1335 	rcop_no_action,
1336 	zone_cpu_shares_usage,
1337 	zone_cpu_shares_set,
1338 	rcop_no_test
1339 };
1340 
1341 /*
1342  * zone.cpu-cap resource control support.
1343  */
1344 /*ARGSUSED*/
1345 static rctl_qty_t
1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1347 {
1348 	ASSERT(MUTEX_HELD(&p->p_lock));
1349 	return (cpucaps_zone_get(p->p_zone));
1350 }
1351 
1352 /*ARGSUSED*/
1353 static int
1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1355     rctl_qty_t nv)
1356 {
1357 	zone_t *zone = e->rcep_p.zone;
1358 
1359 	ASSERT(MUTEX_HELD(&p->p_lock));
1360 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1361 
1362 	if (zone == NULL)
1363 		return (0);
1364 
1365 	/*
1366 	 * set cap to the new value.
1367 	 */
1368 	return (cpucaps_zone_set(zone, nv));
1369 }
1370 
1371 static rctl_ops_t zone_cpu_cap_ops = {
1372 	rcop_no_action,
1373 	zone_cpu_cap_get,
1374 	zone_cpu_cap_set,
1375 	rcop_no_test
1376 };
1377 
1378 /*ARGSUSED*/
1379 static rctl_qty_t
1380 zone_lwps_usage(rctl_t *r, proc_t *p)
1381 {
1382 	rctl_qty_t nlwps;
1383 	zone_t *zone = p->p_zone;
1384 
1385 	ASSERT(MUTEX_HELD(&p->p_lock));
1386 
1387 	mutex_enter(&zone->zone_nlwps_lock);
1388 	nlwps = zone->zone_nlwps;
1389 	mutex_exit(&zone->zone_nlwps_lock);
1390 
1391 	return (nlwps);
1392 }
1393 
1394 /*ARGSUSED*/
1395 static int
1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1397     rctl_qty_t incr, uint_t flags)
1398 {
1399 	rctl_qty_t nlwps;
1400 
1401 	ASSERT(MUTEX_HELD(&p->p_lock));
1402 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1403 	if (e->rcep_p.zone == NULL)
1404 		return (0);
1405 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1406 	nlwps = e->rcep_p.zone->zone_nlwps;
1407 
1408 	if (nlwps + incr > rcntl->rcv_value)
1409 		return (1);
1410 
1411 	return (0);
1412 }
1413 
1414 /*ARGSUSED*/
1415 static int
1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1417 {
1418 	ASSERT(MUTEX_HELD(&p->p_lock));
1419 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1420 	if (e->rcep_p.zone == NULL)
1421 		return (0);
1422 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1423 	return (0);
1424 }
1425 
1426 static rctl_ops_t zone_lwps_ops = {
1427 	rcop_no_action,
1428 	zone_lwps_usage,
1429 	zone_lwps_set,
1430 	zone_lwps_test,
1431 };
1432 
1433 /*ARGSUSED*/
1434 static rctl_qty_t
1435 zone_procs_usage(rctl_t *r, proc_t *p)
1436 {
1437 	rctl_qty_t nprocs;
1438 	zone_t *zone = p->p_zone;
1439 
1440 	ASSERT(MUTEX_HELD(&p->p_lock));
1441 
1442 	mutex_enter(&zone->zone_nlwps_lock);
1443 	nprocs = zone->zone_nprocs;
1444 	mutex_exit(&zone->zone_nlwps_lock);
1445 
1446 	return (nprocs);
1447 }
1448 
1449 /*ARGSUSED*/
1450 static int
1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1452     rctl_qty_t incr, uint_t flags)
1453 {
1454 	rctl_qty_t nprocs;
1455 
1456 	ASSERT(MUTEX_HELD(&p->p_lock));
1457 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1458 	if (e->rcep_p.zone == NULL)
1459 		return (0);
1460 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1461 	nprocs = e->rcep_p.zone->zone_nprocs;
1462 
1463 	if (nprocs + incr > rcntl->rcv_value)
1464 		return (1);
1465 
1466 	return (0);
1467 }
1468 
1469 /*ARGSUSED*/
1470 static int
1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1472 {
1473 	ASSERT(MUTEX_HELD(&p->p_lock));
1474 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1475 	if (e->rcep_p.zone == NULL)
1476 		return (0);
1477 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1478 	return (0);
1479 }
1480 
1481 static rctl_ops_t zone_procs_ops = {
1482 	rcop_no_action,
1483 	zone_procs_usage,
1484 	zone_procs_set,
1485 	zone_procs_test,
1486 };
1487 
1488 /*ARGSUSED*/
1489 static int
1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1491     rctl_qty_t incr, uint_t flags)
1492 {
1493 	rctl_qty_t v;
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1496 	v = e->rcep_p.zone->zone_shmmax + incr;
1497 	if (v > rval->rcv_value)
1498 		return (1);
1499 	return (0);
1500 }
1501 
1502 static rctl_ops_t zone_shmmax_ops = {
1503 	rcop_no_action,
1504 	rcop_no_usage,
1505 	rcop_no_set,
1506 	zone_shmmax_test
1507 };
1508 
1509 /*ARGSUSED*/
1510 static int
1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1512     rctl_qty_t incr, uint_t flags)
1513 {
1514 	rctl_qty_t v;
1515 	ASSERT(MUTEX_HELD(&p->p_lock));
1516 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1517 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1518 	if (v > rval->rcv_value)
1519 		return (1);
1520 	return (0);
1521 }
1522 
1523 static rctl_ops_t zone_shmmni_ops = {
1524 	rcop_no_action,
1525 	rcop_no_usage,
1526 	rcop_no_set,
1527 	zone_shmmni_test
1528 };
1529 
1530 /*ARGSUSED*/
1531 static int
1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1533     rctl_qty_t incr, uint_t flags)
1534 {
1535 	rctl_qty_t v;
1536 	ASSERT(MUTEX_HELD(&p->p_lock));
1537 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1538 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1539 	if (v > rval->rcv_value)
1540 		return (1);
1541 	return (0);
1542 }
1543 
1544 static rctl_ops_t zone_semmni_ops = {
1545 	rcop_no_action,
1546 	rcop_no_usage,
1547 	rcop_no_set,
1548 	zone_semmni_test
1549 };
1550 
1551 /*ARGSUSED*/
1552 static int
1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1554     rctl_qty_t incr, uint_t flags)
1555 {
1556 	rctl_qty_t v;
1557 	ASSERT(MUTEX_HELD(&p->p_lock));
1558 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1559 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1560 	if (v > rval->rcv_value)
1561 		return (1);
1562 	return (0);
1563 }
1564 
1565 static rctl_ops_t zone_msgmni_ops = {
1566 	rcop_no_action,
1567 	rcop_no_usage,
1568 	rcop_no_set,
1569 	zone_msgmni_test
1570 };
1571 
1572 /*ARGSUSED*/
1573 static rctl_qty_t
1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1575 {
1576 	rctl_qty_t q;
1577 	ASSERT(MUTEX_HELD(&p->p_lock));
1578 	mutex_enter(&p->p_zone->zone_mem_lock);
1579 	q = p->p_zone->zone_locked_mem;
1580 	mutex_exit(&p->p_zone->zone_mem_lock);
1581 	return (q);
1582 }
1583 
1584 /*ARGSUSED*/
1585 static int
1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1587     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1588 {
1589 	rctl_qty_t q;
1590 	zone_t *z;
1591 
1592 	z = e->rcep_p.zone;
1593 	ASSERT(MUTEX_HELD(&p->p_lock));
1594 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1595 	q = z->zone_locked_mem;
1596 	if (q + incr > rcntl->rcv_value)
1597 		return (1);
1598 	return (0);
1599 }
1600 
1601 /*ARGSUSED*/
1602 static int
1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1604     rctl_qty_t nv)
1605 {
1606 	ASSERT(MUTEX_HELD(&p->p_lock));
1607 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1608 	if (e->rcep_p.zone == NULL)
1609 		return (0);
1610 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1611 	return (0);
1612 }
1613 
1614 static rctl_ops_t zone_locked_mem_ops = {
1615 	rcop_no_action,
1616 	zone_locked_mem_usage,
1617 	zone_locked_mem_set,
1618 	zone_locked_mem_test
1619 };
1620 
1621 /*ARGSUSED*/
1622 static rctl_qty_t
1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1624 {
1625 	rctl_qty_t q;
1626 	zone_t *z = p->p_zone;
1627 
1628 	ASSERT(MUTEX_HELD(&p->p_lock));
1629 	mutex_enter(&z->zone_mem_lock);
1630 	q = z->zone_max_swap;
1631 	mutex_exit(&z->zone_mem_lock);
1632 	return (q);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1638     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1639 {
1640 	rctl_qty_t q;
1641 	zone_t *z;
1642 
1643 	z = e->rcep_p.zone;
1644 	ASSERT(MUTEX_HELD(&p->p_lock));
1645 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1646 	q = z->zone_max_swap;
1647 	if (q + incr > rcntl->rcv_value)
1648 		return (1);
1649 	return (0);
1650 }
1651 
1652 /*ARGSUSED*/
1653 static int
1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1655     rctl_qty_t nv)
1656 {
1657 	ASSERT(MUTEX_HELD(&p->p_lock));
1658 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1659 	if (e->rcep_p.zone == NULL)
1660 		return (0);
1661 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1662 	return (0);
1663 }
1664 
1665 static rctl_ops_t zone_max_swap_ops = {
1666 	rcop_no_action,
1667 	zone_max_swap_usage,
1668 	zone_max_swap_set,
1669 	zone_max_swap_test
1670 };
1671 
1672 /*ARGSUSED*/
1673 static rctl_qty_t
1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1675 {
1676 	rctl_qty_t q;
1677 	zone_t *z = p->p_zone;
1678 
1679 	ASSERT(MUTEX_HELD(&p->p_lock));
1680 	mutex_enter(&z->zone_rctl_lock);
1681 	q = z->zone_max_lofi;
1682 	mutex_exit(&z->zone_rctl_lock);
1683 	return (q);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1689     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1690 {
1691 	rctl_qty_t q;
1692 	zone_t *z;
1693 
1694 	z = e->rcep_p.zone;
1695 	ASSERT(MUTEX_HELD(&p->p_lock));
1696 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1697 	q = z->zone_max_lofi;
1698 	if (q + incr > rcntl->rcv_value)
1699 		return (1);
1700 	return (0);
1701 }
1702 
1703 /*ARGSUSED*/
1704 static int
1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1706     rctl_qty_t nv)
1707 {
1708 	ASSERT(MUTEX_HELD(&p->p_lock));
1709 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1710 	if (e->rcep_p.zone == NULL)
1711 		return (0);
1712 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1713 	return (0);
1714 }
1715 
1716 static rctl_ops_t zone_max_lofi_ops = {
1717 	rcop_no_action,
1718 	zone_max_lofi_usage,
1719 	zone_max_lofi_set,
1720 	zone_max_lofi_test
1721 };
1722 
1723 /*
1724  * Helper function to brand the zone with a unique ID.
1725  */
1726 static void
1727 zone_uniqid(zone_t *zone)
1728 {
1729 	static uint64_t uniqid = 0;
1730 
1731 	ASSERT(MUTEX_HELD(&zonehash_lock));
1732 	zone->zone_uniqid = uniqid++;
1733 }
1734 
1735 /*
1736  * Returns a held pointer to the "kcred" for the specified zone.
1737  */
1738 struct cred *
1739 zone_get_kcred(zoneid_t zoneid)
1740 {
1741 	zone_t *zone;
1742 	cred_t *cr;
1743 
1744 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1745 		return (NULL);
1746 	cr = zone->zone_kcred;
1747 	crhold(cr);
1748 	zone_rele(zone);
1749 	return (cr);
1750 }
1751 
1752 static int
1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1754 {
1755 	zone_t *zone = ksp->ks_private;
1756 	zone_kstat_t *zk = ksp->ks_data;
1757 
1758 	if (rw == KSTAT_WRITE)
1759 		return (EACCES);
1760 
1761 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1762 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1763 	return (0);
1764 }
1765 
1766 static int
1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1768 {
1769 	zone_t *zone = ksp->ks_private;
1770 	zone_kstat_t *zk = ksp->ks_data;
1771 
1772 	if (rw == KSTAT_WRITE)
1773 		return (EACCES);
1774 
1775 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1776 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1777 	return (0);
1778 }
1779 
1780 static int
1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1782 {
1783 	zone_t *zone = ksp->ks_private;
1784 	zone_kstat_t *zk = ksp->ks_data;
1785 
1786 	if (rw == KSTAT_WRITE)
1787 		return (EACCES);
1788 
1789 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1790 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1791 	return (0);
1792 }
1793 
1794 static kstat_t *
1795 zone_kstat_create_common(zone_t *zone, char *name,
1796     int (*updatefunc) (kstat_t *, int))
1797 {
1798 	kstat_t *ksp;
1799 	zone_kstat_t *zk;
1800 
1801 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1802 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1803 	    KSTAT_FLAG_VIRTUAL);
1804 
1805 	if (ksp == NULL)
1806 		return (NULL);
1807 
1808 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1809 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1810 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1811 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1812 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1813 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1814 	ksp->ks_update = updatefunc;
1815 	ksp->ks_private = zone;
1816 	kstat_install(ksp);
1817 	return (ksp);
1818 }
1819 
1820 
1821 static int
1822 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1823 {
1824 	zone_t *zone = ksp->ks_private;
1825 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1826 
1827 	if (rw == KSTAT_WRITE)
1828 		return (EACCES);
1829 
1830 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1831 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1832 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1833 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1834 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1835 
1836 	return (0);
1837 }
1838 
1839 static kstat_t *
1840 zone_mcap_kstat_create(zone_t *zone)
1841 {
1842 	kstat_t *ksp;
1843 	zone_mcap_kstat_t *zmp;
1844 
1845 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1846 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1847 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1848 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1849 		return (NULL);
1850 
1851 	if (zone->zone_id != GLOBAL_ZONEID)
1852 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1853 
1854 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1855 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1856 	ksp->ks_lock = &zone->zone_mcap_lock;
1857 	zone->zone_mcap_stats = zmp;
1858 
1859 	/* The kstat "name" field is not large enough for a full zonename */
1860 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1861 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1862 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1863 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1864 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1865 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1866 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1867 	    KSTAT_DATA_UINT64);
1868 
1869 	ksp->ks_update = zone_mcap_kstat_update;
1870 	ksp->ks_private = zone;
1871 
1872 	kstat_install(ksp);
1873 	return (ksp);
1874 }
1875 
1876 static int
1877 zone_misc_kstat_update(kstat_t *ksp, int rw)
1878 {
1879 	zone_t *zone = ksp->ks_private;
1880 	zone_misc_kstat_t *zmp = ksp->ks_data;
1881 	hrtime_t tmp;
1882 
1883 	if (rw == KSTAT_WRITE)
1884 		return (EACCES);
1885 
1886 	tmp = zone->zone_utime;
1887 	scalehrtime(&tmp);
1888 	zmp->zm_utime.value.ui64 = tmp;
1889 	tmp = zone->zone_stime;
1890 	scalehrtime(&tmp);
1891 	zmp->zm_stime.value.ui64 = tmp;
1892 	tmp = zone->zone_wtime;
1893 	scalehrtime(&tmp);
1894 	zmp->zm_wtime.value.ui64 = tmp;
1895 
1896 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1897 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1898 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1899 
1900 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1901 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1902 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1903 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1904 
1905 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1906 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1907 
1908 	return (0);
1909 }
1910 
1911 static kstat_t *
1912 zone_misc_kstat_create(zone_t *zone)
1913 {
1914 	kstat_t *ksp;
1915 	zone_misc_kstat_t *zmp;
1916 
1917 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1918 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1919 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1920 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1921 		return (NULL);
1922 
1923 	if (zone->zone_id != GLOBAL_ZONEID)
1924 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1925 
1926 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1927 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1928 	ksp->ks_lock = &zone->zone_misc_lock;
1929 	zone->zone_misc_stats = zmp;
1930 
1931 	/* The kstat "name" field is not large enough for a full zonename */
1932 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1933 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1934 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1935 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1936 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1937 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1938 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1939 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1940 	    KSTAT_DATA_UINT32);
1941 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1942 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1943 	    KSTAT_DATA_UINT32);
1944 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1945 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1946 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1947 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1948 
1949 	ksp->ks_update = zone_misc_kstat_update;
1950 	ksp->ks_private = zone;
1951 
1952 	kstat_install(ksp);
1953 	return (ksp);
1954 }
1955 
1956 static void
1957 zone_kstat_create(zone_t *zone)
1958 {
1959 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1960 	    "lockedmem", zone_lockedmem_kstat_update);
1961 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1962 	    "swapresv", zone_swapresv_kstat_update);
1963 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1964 	    "nprocs", zone_nprocs_kstat_update);
1965 
1966 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
1967 		zone->zone_mcap_stats = kmem_zalloc(
1968 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
1969 	}
1970 
1971 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1972 		zone->zone_misc_stats = kmem_zalloc(
1973 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
1974 	}
1975 }
1976 
1977 static void
1978 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1979 {
1980 	void *data;
1981 
1982 	if (*pkstat != NULL) {
1983 		data = (*pkstat)->ks_data;
1984 		kstat_delete(*pkstat);
1985 		kmem_free(data, datasz);
1986 		*pkstat = NULL;
1987 	}
1988 }
1989 
1990 static void
1991 zone_kstat_delete(zone_t *zone)
1992 {
1993 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1994 	    sizeof (zone_kstat_t));
1995 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1996 	    sizeof (zone_kstat_t));
1997 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1998 	    sizeof (zone_kstat_t));
1999 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2000 	    sizeof (zone_mcap_kstat_t));
2001 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2002 	    sizeof (zone_misc_kstat_t));
2003 }
2004 
2005 /*
2006  * Called very early on in boot to initialize the ZSD list so that
2007  * zone_key_create() can be called before zone_init().  It also initializes
2008  * portions of zone0 which may be used before zone_init() is called.  The
2009  * variable "global_zone" will be set when zone0 is fully initialized by
2010  * zone_init().
2011  */
2012 void
2013 zone_zsd_init(void)
2014 {
2015 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2016 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2017 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2018 	    offsetof(struct zsd_entry, zsd_linkage));
2019 	list_create(&zone_active, sizeof (zone_t),
2020 	    offsetof(zone_t, zone_linkage));
2021 	list_create(&zone_deathrow, sizeof (zone_t),
2022 	    offsetof(zone_t, zone_linkage));
2023 
2024 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2025 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2026 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2027 	zone0.zone_shares = 1;
2028 	zone0.zone_nlwps = 0;
2029 	zone0.zone_nlwps_ctl = INT_MAX;
2030 	zone0.zone_nprocs = 0;
2031 	zone0.zone_nprocs_ctl = INT_MAX;
2032 	zone0.zone_locked_mem = 0;
2033 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2034 	ASSERT(zone0.zone_max_swap == 0);
2035 	zone0.zone_max_swap_ctl = UINT64_MAX;
2036 	zone0.zone_max_lofi = 0;
2037 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2038 	zone0.zone_shmmax = 0;
2039 	zone0.zone_ipc.ipcq_shmmni = 0;
2040 	zone0.zone_ipc.ipcq_semmni = 0;
2041 	zone0.zone_ipc.ipcq_msgmni = 0;
2042 	zone0.zone_name = GLOBAL_ZONENAME;
2043 	zone0.zone_nodename = utsname.nodename;
2044 	zone0.zone_domain = srpc_domain;
2045 	zone0.zone_hostid = HW_INVALID_HOSTID;
2046 	zone0.zone_fs_allowed = NULL;
2047 	zone0.zone_ref = 1;
2048 	zone0.zone_id = GLOBAL_ZONEID;
2049 	zone0.zone_status = ZONE_IS_RUNNING;
2050 	zone0.zone_rootpath = "/";
2051 	zone0.zone_rootpathlen = 2;
2052 	zone0.zone_psetid = ZONE_PS_INVAL;
2053 	zone0.zone_ncpus = 0;
2054 	zone0.zone_ncpus_online = 0;
2055 	zone0.zone_proc_initpid = 1;
2056 	zone0.zone_initname = initname;
2057 	zone0.zone_lockedmem_kstat = NULL;
2058 	zone0.zone_swapresv_kstat = NULL;
2059 	zone0.zone_nprocs_kstat = NULL;
2060 
2061 	zone0.zone_stime = 0;
2062 	zone0.zone_utime = 0;
2063 	zone0.zone_wtime = 0;
2064 
2065 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2066 	    offsetof(zone_ref_t, zref_linkage));
2067 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2068 	    offsetof(struct zsd_entry, zsd_linkage));
2069 	list_insert_head(&zone_active, &zone0);
2070 
2071 	/*
2072 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2073 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2074 	 * vfs_mountroot().
2075 	 */
2076 	zone0.zone_rootvp = NULL;
2077 	zone0.zone_vfslist = NULL;
2078 	zone0.zone_bootargs = initargs;
2079 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2080 	/*
2081 	 * The global zone has all privileges
2082 	 */
2083 	priv_fillset(zone0.zone_privset);
2084 	/*
2085 	 * Add p0 to the global zone
2086 	 */
2087 	zone0.zone_zsched = &p0;
2088 	p0.p_zone = &zone0;
2089 }
2090 
2091 /*
2092  * Compute a hash value based on the contents of the label and the DOI.  The
2093  * hash algorithm is somewhat arbitrary, but is based on the observation that
2094  * humans will likely pick labels that differ by amounts that work out to be
2095  * multiples of the number of hash chains, and thus stirring in some primes
2096  * should help.
2097  */
2098 static uint_t
2099 hash_bylabel(void *hdata, mod_hash_key_t key)
2100 {
2101 	const ts_label_t *lab = (ts_label_t *)key;
2102 	const uint32_t *up, *ue;
2103 	uint_t hash;
2104 	int i;
2105 
2106 	_NOTE(ARGUNUSED(hdata));
2107 
2108 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2109 	/* we depend on alignment of label, but not representation */
2110 	up = (const uint32_t *)&lab->tsl_label;
2111 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2112 	i = 1;
2113 	while (up < ue) {
2114 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2115 		hash += *up + (*up << ((i % 16) + 1));
2116 		up++;
2117 		i++;
2118 	}
2119 	return (hash);
2120 }
2121 
2122 /*
2123  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2124  * equal).  This may need to be changed if less than / greater than is ever
2125  * needed.
2126  */
2127 static int
2128 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2129 {
2130 	ts_label_t *lab1 = (ts_label_t *)key1;
2131 	ts_label_t *lab2 = (ts_label_t *)key2;
2132 
2133 	return (label_equal(lab1, lab2) ? 0 : 1);
2134 }
2135 
2136 /*
2137  * Called by main() to initialize the zones framework.
2138  */
2139 void
2140 zone_init(void)
2141 {
2142 	rctl_dict_entry_t *rde;
2143 	rctl_val_t *dval;
2144 	rctl_set_t *set;
2145 	rctl_alloc_gp_t *gp;
2146 	rctl_entity_p_t e;
2147 	int res;
2148 
2149 	ASSERT(curproc == &p0);
2150 
2151 	/*
2152 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2153 	 * global zone.
2154 	 */
2155 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2156 
2157 	/*
2158 	 * Initialize generic zone resource controls, if any.
2159 	 */
2160 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2161 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2162 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2163 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2164 
2165 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2166 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2167 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2168 	    RCTL_GLOBAL_INFINITE,
2169 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2170 
2171 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2172 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2173 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2174 
2175 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2176 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2177 	    INT_MAX, INT_MAX, &zone_procs_ops);
2178 
2179 	/*
2180 	 * System V IPC resource controls
2181 	 */
2182 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2183 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2184 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2185 
2186 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2187 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2188 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2189 
2190 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2191 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2192 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2193 
2194 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2195 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2196 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2197 
2198 	/*
2199 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2200 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2201 	 */
2202 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2203 	bzero(dval, sizeof (rctl_val_t));
2204 	dval->rcv_value = 1;
2205 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2206 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2207 	dval->rcv_action_recip_pid = -1;
2208 
2209 	rde = rctl_dict_lookup("zone.cpu-shares");
2210 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2211 
2212 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2213 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2214 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2215 	    &zone_locked_mem_ops);
2216 
2217 	rc_zone_max_swap = rctl_register("zone.max-swap",
2218 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2219 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2220 	    &zone_max_swap_ops);
2221 
2222 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2223 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2224 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2225 	    &zone_max_lofi_ops);
2226 
2227 	/*
2228 	 * Initialize the ``global zone''.
2229 	 */
2230 	set = rctl_set_create();
2231 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2232 	mutex_enter(&p0.p_lock);
2233 	e.rcep_p.zone = &zone0;
2234 	e.rcep_t = RCENTITY_ZONE;
2235 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2236 	    gp);
2237 
2238 	zone0.zone_nlwps = p0.p_lwpcnt;
2239 	zone0.zone_nprocs = 1;
2240 	zone0.zone_ntasks = 1;
2241 	mutex_exit(&p0.p_lock);
2242 	zone0.zone_restart_init = B_TRUE;
2243 	zone0.zone_brand = &native_brand;
2244 	rctl_prealloc_destroy(gp);
2245 	/*
2246 	 * pool_default hasn't been initialized yet, so we let pool_init()
2247 	 * take care of making sure the global zone is in the default pool.
2248 	 */
2249 
2250 	/*
2251 	 * Initialize global zone kstats
2252 	 */
2253 	zone_kstat_create(&zone0);
2254 
2255 	/*
2256 	 * Initialize zone label.
2257 	 * mlp are initialized when tnzonecfg is loaded.
2258 	 */
2259 	zone0.zone_slabel = l_admin_low;
2260 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2261 	label_hold(l_admin_low);
2262 
2263 	/*
2264 	 * Initialise the lock for the database structure used by mntfs.
2265 	 */
2266 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2267 
2268 	mutex_enter(&zonehash_lock);
2269 	zone_uniqid(&zone0);
2270 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2271 
2272 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2273 	    mod_hash_null_valdtor);
2274 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2275 	    zone_hash_size, mod_hash_null_valdtor);
2276 	/*
2277 	 * maintain zonehashbylabel only for labeled systems
2278 	 */
2279 	if (is_system_labeled())
2280 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2281 		    zone_hash_size, mod_hash_null_keydtor,
2282 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2283 		    hash_labelkey_cmp, KM_SLEEP);
2284 	zonecount = 1;
2285 
2286 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2287 	    (mod_hash_val_t)&zone0);
2288 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2289 	    (mod_hash_val_t)&zone0);
2290 	if (is_system_labeled()) {
2291 		zone0.zone_flags |= ZF_HASHED_LABEL;
2292 		(void) mod_hash_insert(zonehashbylabel,
2293 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2294 	}
2295 	mutex_exit(&zonehash_lock);
2296 
2297 	/*
2298 	 * We avoid setting zone_kcred until now, since kcred is initialized
2299 	 * sometime after zone_zsd_init() and before zone_init().
2300 	 */
2301 	zone0.zone_kcred = kcred;
2302 	/*
2303 	 * The global zone is fully initialized (except for zone_rootvp which
2304 	 * will be set when the root filesystem is mounted).
2305 	 */
2306 	global_zone = &zone0;
2307 
2308 	/*
2309 	 * Setup an event channel to send zone status change notifications on
2310 	 */
2311 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2312 	    EVCH_CREAT);
2313 
2314 	if (res)
2315 		panic("Sysevent_evc_bind failed during zone setup.\n");
2316 
2317 }
2318 
2319 static void
2320 zone_free(zone_t *zone)
2321 {
2322 	ASSERT(zone != global_zone);
2323 	ASSERT(zone->zone_ntasks == 0);
2324 	ASSERT(zone->zone_nlwps == 0);
2325 	ASSERT(zone->zone_nprocs == 0);
2326 	ASSERT(zone->zone_cred_ref == 0);
2327 	ASSERT(zone->zone_kcred == NULL);
2328 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2329 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2330 	ASSERT(list_is_empty(&zone->zone_ref_list));
2331 
2332 	/*
2333 	 * Remove any zone caps.
2334 	 */
2335 	cpucaps_zone_remove(zone);
2336 
2337 	ASSERT(zone->zone_cpucap == NULL);
2338 
2339 	/* remove from deathrow list */
2340 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2341 		ASSERT(zone->zone_ref == 0);
2342 		mutex_enter(&zone_deathrow_lock);
2343 		list_remove(&zone_deathrow, zone);
2344 		mutex_exit(&zone_deathrow_lock);
2345 	}
2346 
2347 	list_destroy(&zone->zone_ref_list);
2348 	zone_free_zsd(zone);
2349 	zone_free_datasets(zone);
2350 	list_destroy(&zone->zone_dl_list);
2351 
2352 	if (zone->zone_rootvp != NULL)
2353 		VN_RELE(zone->zone_rootvp);
2354 	if (zone->zone_rootpath)
2355 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2356 	if (zone->zone_name != NULL)
2357 		kmem_free(zone->zone_name, ZONENAME_MAX);
2358 	if (zone->zone_slabel != NULL)
2359 		label_rele(zone->zone_slabel);
2360 	if (zone->zone_nodename != NULL)
2361 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2362 	if (zone->zone_domain != NULL)
2363 		kmem_free(zone->zone_domain, _SYS_NMLN);
2364 	if (zone->zone_privset != NULL)
2365 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2366 	if (zone->zone_rctls != NULL)
2367 		rctl_set_free(zone->zone_rctls);
2368 	if (zone->zone_bootargs != NULL)
2369 		strfree(zone->zone_bootargs);
2370 	if (zone->zone_initname != NULL)
2371 		strfree(zone->zone_initname);
2372 	if (zone->zone_fs_allowed != NULL)
2373 		strfree(zone->zone_fs_allowed);
2374 	if (zone->zone_pfexecd != NULL)
2375 		klpd_freelist(&zone->zone_pfexecd);
2376 	id_free(zoneid_space, zone->zone_id);
2377 	mutex_destroy(&zone->zone_lock);
2378 	cv_destroy(&zone->zone_cv);
2379 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2380 	rw_destroy(&zone->zone_mntfs_db_lock);
2381 	kmem_free(zone, sizeof (zone_t));
2382 }
2383 
2384 /*
2385  * See block comment at the top of this file for information about zone
2386  * status values.
2387  */
2388 /*
2389  * Convenience function for setting zone status.
2390  */
2391 static void
2392 zone_status_set(zone_t *zone, zone_status_t status)
2393 {
2394 
2395 	nvlist_t *nvl = NULL;
2396 	ASSERT(MUTEX_HELD(&zone_status_lock));
2397 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2398 	    status >= zone_status_get(zone));
2399 
2400 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2401 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2402 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2403 	    zone_status_table[status]) ||
2404 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2405 	    zone_status_table[zone->zone_status]) ||
2406 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2407 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2408 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2409 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2410 #ifdef DEBUG
2411 		(void) printf(
2412 		    "Failed to allocate and send zone state change event.\n");
2413 #endif
2414 	}
2415 	nvlist_free(nvl);
2416 
2417 	zone->zone_status = status;
2418 
2419 	cv_broadcast(&zone->zone_cv);
2420 }
2421 
2422 /*
2423  * Public function to retrieve the zone status.  The zone status may
2424  * change after it is retrieved.
2425  */
2426 zone_status_t
2427 zone_status_get(zone_t *zone)
2428 {
2429 	return (zone->zone_status);
2430 }
2431 
2432 static int
2433 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2434 {
2435 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2436 	int err = 0;
2437 
2438 	ASSERT(zone != global_zone);
2439 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2440 		goto done;	/* EFAULT or ENAMETOOLONG */
2441 
2442 	if (zone->zone_bootargs != NULL)
2443 		strfree(zone->zone_bootargs);
2444 
2445 	zone->zone_bootargs = strdup(buf);
2446 
2447 done:
2448 	kmem_free(buf, BOOTARGS_MAX);
2449 	return (err);
2450 }
2451 
2452 static int
2453 zone_set_brand(zone_t *zone, const char *brand)
2454 {
2455 	struct brand_attr *attrp;
2456 	brand_t *bp;
2457 
2458 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2459 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2460 		kmem_free(attrp, sizeof (struct brand_attr));
2461 		return (EFAULT);
2462 	}
2463 
2464 	bp = brand_register_zone(attrp);
2465 	kmem_free(attrp, sizeof (struct brand_attr));
2466 	if (bp == NULL)
2467 		return (EINVAL);
2468 
2469 	/*
2470 	 * This is the only place where a zone can change it's brand.
2471 	 * We already need to hold zone_status_lock to check the zone
2472 	 * status, so we'll just use that lock to serialize zone
2473 	 * branding requests as well.
2474 	 */
2475 	mutex_enter(&zone_status_lock);
2476 
2477 	/* Re-Branding is not allowed and the zone can't be booted yet */
2478 	if ((ZONE_IS_BRANDED(zone)) ||
2479 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2480 		mutex_exit(&zone_status_lock);
2481 		brand_unregister_zone(bp);
2482 		return (EINVAL);
2483 	}
2484 
2485 	/* set up the brand specific data */
2486 	zone->zone_brand = bp;
2487 	ZBROP(zone)->b_init_brand_data(zone);
2488 
2489 	mutex_exit(&zone_status_lock);
2490 	return (0);
2491 }
2492 
2493 static int
2494 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2495 {
2496 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2497 	int err = 0;
2498 
2499 	ASSERT(zone != global_zone);
2500 	if ((err = copyinstr(zone_fs_allowed, buf,
2501 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2502 		goto done;
2503 
2504 	if (zone->zone_fs_allowed != NULL)
2505 		strfree(zone->zone_fs_allowed);
2506 
2507 	zone->zone_fs_allowed = strdup(buf);
2508 
2509 done:
2510 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2511 	return (err);
2512 }
2513 
2514 static int
2515 zone_set_initname(zone_t *zone, const char *zone_initname)
2516 {
2517 	char initname[INITNAME_SZ];
2518 	size_t len;
2519 	int err = 0;
2520 
2521 	ASSERT(zone != global_zone);
2522 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2523 		return (err);	/* EFAULT or ENAMETOOLONG */
2524 
2525 	if (zone->zone_initname != NULL)
2526 		strfree(zone->zone_initname);
2527 
2528 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2529 	(void) strcpy(zone->zone_initname, initname);
2530 	return (0);
2531 }
2532 
2533 static int
2534 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2535 {
2536 	uint64_t mcap;
2537 	int err = 0;
2538 
2539 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2540 		zone->zone_phys_mcap = mcap;
2541 
2542 	return (err);
2543 }
2544 
2545 static int
2546 zone_set_sched_class(zone_t *zone, const char *new_class)
2547 {
2548 	char sched_class[PC_CLNMSZ];
2549 	id_t classid;
2550 	int err;
2551 
2552 	ASSERT(zone != global_zone);
2553 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2554 		return (err);	/* EFAULT or ENAMETOOLONG */
2555 
2556 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2557 		return (set_errno(EINVAL));
2558 	zone->zone_defaultcid = classid;
2559 	ASSERT(zone->zone_defaultcid > 0 &&
2560 	    zone->zone_defaultcid < loaded_classes);
2561 
2562 	return (0);
2563 }
2564 
2565 /*
2566  * Block indefinitely waiting for (zone_status >= status)
2567  */
2568 void
2569 zone_status_wait(zone_t *zone, zone_status_t status)
2570 {
2571 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2572 
2573 	mutex_enter(&zone_status_lock);
2574 	while (zone->zone_status < status) {
2575 		cv_wait(&zone->zone_cv, &zone_status_lock);
2576 	}
2577 	mutex_exit(&zone_status_lock);
2578 }
2579 
2580 /*
2581  * Private CPR-safe version of zone_status_wait().
2582  */
2583 static void
2584 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2585 {
2586 	callb_cpr_t cprinfo;
2587 
2588 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2589 
2590 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2591 	    str);
2592 	mutex_enter(&zone_status_lock);
2593 	while (zone->zone_status < status) {
2594 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2595 		cv_wait(&zone->zone_cv, &zone_status_lock);
2596 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2597 	}
2598 	/*
2599 	 * zone_status_lock is implicitly released by the following.
2600 	 */
2601 	CALLB_CPR_EXIT(&cprinfo);
2602 }
2603 
2604 /*
2605  * Block until zone enters requested state or signal is received.  Return (0)
2606  * if signaled, non-zero otherwise.
2607  */
2608 int
2609 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2610 {
2611 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2612 
2613 	mutex_enter(&zone_status_lock);
2614 	while (zone->zone_status < status) {
2615 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2616 			mutex_exit(&zone_status_lock);
2617 			return (0);
2618 		}
2619 	}
2620 	mutex_exit(&zone_status_lock);
2621 	return (1);
2622 }
2623 
2624 /*
2625  * Block until the zone enters the requested state or the timeout expires,
2626  * whichever happens first.  Return (-1) if operation timed out, time remaining
2627  * otherwise.
2628  */
2629 clock_t
2630 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2631 {
2632 	clock_t timeleft = 0;
2633 
2634 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2635 
2636 	mutex_enter(&zone_status_lock);
2637 	while (zone->zone_status < status && timeleft != -1) {
2638 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2639 	}
2640 	mutex_exit(&zone_status_lock);
2641 	return (timeleft);
2642 }
2643 
2644 /*
2645  * Block until the zone enters the requested state, the current process is
2646  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2647  * operation timed out, 0 if signaled, time remaining otherwise.
2648  */
2649 clock_t
2650 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2651 {
2652 	clock_t timeleft = tim - ddi_get_lbolt();
2653 
2654 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2655 
2656 	mutex_enter(&zone_status_lock);
2657 	while (zone->zone_status < status) {
2658 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2659 		    tim);
2660 		if (timeleft <= 0)
2661 			break;
2662 	}
2663 	mutex_exit(&zone_status_lock);
2664 	return (timeleft);
2665 }
2666 
2667 /*
2668  * Zones have two reference counts: one for references from credential
2669  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2670  * This is so we can allow a zone to be rebooted while there are still
2671  * outstanding cred references, since certain drivers cache dblks (which
2672  * implicitly results in cached creds).  We wait for zone_ref to drop to
2673  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2674  * later freed when the zone_cred_ref drops to 0, though nothing other
2675  * than the zone id and privilege set should be accessed once the zone
2676  * is "dead".
2677  *
2678  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2679  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2680  * to 0.  This can be useful to flush out other sources of cached creds
2681  * that may be less innocuous than the driver case.
2682  *
2683  * Zones also provide a tracked reference counting mechanism in which zone
2684  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2685  * debuggers determine the sources of leaked zone references.  See
2686  * zone_hold_ref() and zone_rele_ref() below for more information.
2687  */
2688 
2689 int zone_wait_for_cred = 0;
2690 
2691 static void
2692 zone_hold_locked(zone_t *z)
2693 {
2694 	ASSERT(MUTEX_HELD(&z->zone_lock));
2695 	z->zone_ref++;
2696 	ASSERT(z->zone_ref != 0);
2697 }
2698 
2699 /*
2700  * Increment the specified zone's reference count.  The zone's zone_t structure
2701  * will not be freed as long as the zone's reference count is nonzero.
2702  * Decrement the zone's reference count via zone_rele().
2703  *
2704  * NOTE: This function should only be used to hold zones for short periods of
2705  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2706  */
2707 void
2708 zone_hold(zone_t *z)
2709 {
2710 	mutex_enter(&z->zone_lock);
2711 	zone_hold_locked(z);
2712 	mutex_exit(&z->zone_lock);
2713 }
2714 
2715 /*
2716  * If the non-cred ref count drops to 1 and either the cred ref count
2717  * is 0 or we aren't waiting for cred references, the zone is ready to
2718  * be destroyed.
2719  */
2720 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2721 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2722 
2723 /*
2724  * Common zone reference release function invoked by zone_rele() and
2725  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2726  * zone's subsystem-specific reference counters are not affected by the
2727  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2728  * removed from the specified zone's reference list.  ref must be non-NULL iff
2729  * subsys is not ZONE_REF_NUM_SUBSYS.
2730  */
2731 static void
2732 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2733 {
2734 	boolean_t wakeup;
2735 
2736 	mutex_enter(&z->zone_lock);
2737 	ASSERT(z->zone_ref != 0);
2738 	z->zone_ref--;
2739 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2740 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2741 		z->zone_subsys_ref[subsys]--;
2742 		list_remove(&z->zone_ref_list, ref);
2743 	}
2744 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2745 		/* no more refs, free the structure */
2746 		mutex_exit(&z->zone_lock);
2747 		zone_free(z);
2748 		return;
2749 	}
2750 	/* signal zone_destroy so the zone can finish halting */
2751 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2752 	mutex_exit(&z->zone_lock);
2753 
2754 	if (wakeup) {
2755 		/*
2756 		 * Grabbing zonehash_lock here effectively synchronizes with
2757 		 * zone_destroy() to avoid missed signals.
2758 		 */
2759 		mutex_enter(&zonehash_lock);
2760 		cv_broadcast(&zone_destroy_cv);
2761 		mutex_exit(&zonehash_lock);
2762 	}
2763 }
2764 
2765 /*
2766  * Decrement the specified zone's reference count.  The specified zone will
2767  * cease to exist after this function returns if the reference count drops to
2768  * zero.  This function should be paired with zone_hold().
2769  */
2770 void
2771 zone_rele(zone_t *z)
2772 {
2773 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2774 }
2775 
2776 /*
2777  * Initialize a zone reference structure.  This function must be invoked for
2778  * a reference structure before the structure is passed to zone_hold_ref().
2779  */
2780 void
2781 zone_init_ref(zone_ref_t *ref)
2782 {
2783 	ref->zref_zone = NULL;
2784 	list_link_init(&ref->zref_linkage);
2785 }
2786 
2787 /*
2788  * Acquire a reference to zone z.  The caller must specify the
2789  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2790  * zone_ref_t structure will represent a reference to the specified zone.  Use
2791  * zone_rele_ref() to release the reference.
2792  *
2793  * The referenced zone_t structure will not be freed as long as the zone_t's
2794  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2795  * references.
2796  *
2797  * NOTE: The zone_ref_t structure must be initialized before it is used.
2798  * See zone_init_ref() above.
2799  */
2800 void
2801 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2802 {
2803 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2804 
2805 	/*
2806 	 * Prevent consumers from reusing a reference structure before
2807 	 * releasing it.
2808 	 */
2809 	VERIFY(ref->zref_zone == NULL);
2810 
2811 	ref->zref_zone = z;
2812 	mutex_enter(&z->zone_lock);
2813 	zone_hold_locked(z);
2814 	z->zone_subsys_ref[subsys]++;
2815 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2816 	list_insert_head(&z->zone_ref_list, ref);
2817 	mutex_exit(&z->zone_lock);
2818 }
2819 
2820 /*
2821  * Release the zone reference represented by the specified zone_ref_t.
2822  * The reference is invalid after it's released; however, the zone_ref_t
2823  * structure can be reused without having to invoke zone_init_ref().
2824  * subsys should be the same value that was passed to zone_hold_ref()
2825  * when the reference was acquired.
2826  */
2827 void
2828 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2829 {
2830 	zone_rele_common(ref->zref_zone, ref, subsys);
2831 
2832 	/*
2833 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2834 	 * when consumers dereference the reference.  This helps us catch
2835 	 * consumers who use released references.  Furthermore, this lets
2836 	 * consumers reuse the zone_ref_t structure without having to
2837 	 * invoke zone_init_ref().
2838 	 */
2839 	ref->zref_zone = NULL;
2840 }
2841 
2842 void
2843 zone_cred_hold(zone_t *z)
2844 {
2845 	mutex_enter(&z->zone_lock);
2846 	z->zone_cred_ref++;
2847 	ASSERT(z->zone_cred_ref != 0);
2848 	mutex_exit(&z->zone_lock);
2849 }
2850 
2851 void
2852 zone_cred_rele(zone_t *z)
2853 {
2854 	boolean_t wakeup;
2855 
2856 	mutex_enter(&z->zone_lock);
2857 	ASSERT(z->zone_cred_ref != 0);
2858 	z->zone_cred_ref--;
2859 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2860 		/* no more refs, free the structure */
2861 		mutex_exit(&z->zone_lock);
2862 		zone_free(z);
2863 		return;
2864 	}
2865 	/*
2866 	 * If zone_destroy is waiting for the cred references to drain
2867 	 * out, and they have, signal it.
2868 	 */
2869 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2870 	    zone_status_get(z) >= ZONE_IS_DEAD);
2871 	mutex_exit(&z->zone_lock);
2872 
2873 	if (wakeup) {
2874 		/*
2875 		 * Grabbing zonehash_lock here effectively synchronizes with
2876 		 * zone_destroy() to avoid missed signals.
2877 		 */
2878 		mutex_enter(&zonehash_lock);
2879 		cv_broadcast(&zone_destroy_cv);
2880 		mutex_exit(&zonehash_lock);
2881 	}
2882 }
2883 
2884 void
2885 zone_task_hold(zone_t *z)
2886 {
2887 	mutex_enter(&z->zone_lock);
2888 	z->zone_ntasks++;
2889 	ASSERT(z->zone_ntasks != 0);
2890 	mutex_exit(&z->zone_lock);
2891 }
2892 
2893 void
2894 zone_task_rele(zone_t *zone)
2895 {
2896 	uint_t refcnt;
2897 
2898 	mutex_enter(&zone->zone_lock);
2899 	ASSERT(zone->zone_ntasks != 0);
2900 	refcnt = --zone->zone_ntasks;
2901 	if (refcnt > 1)	{	/* Common case */
2902 		mutex_exit(&zone->zone_lock);
2903 		return;
2904 	}
2905 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2906 	mutex_exit(&zone->zone_lock);
2907 	if (refcnt == 1) {
2908 		/*
2909 		 * See if the zone is shutting down.
2910 		 */
2911 		mutex_enter(&zone_status_lock);
2912 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2913 			goto out;
2914 		}
2915 
2916 		/*
2917 		 * Make sure the ntasks didn't change since we
2918 		 * dropped zone_lock.
2919 		 */
2920 		mutex_enter(&zone->zone_lock);
2921 		if (refcnt != zone->zone_ntasks) {
2922 			mutex_exit(&zone->zone_lock);
2923 			goto out;
2924 		}
2925 		mutex_exit(&zone->zone_lock);
2926 
2927 		/*
2928 		 * No more user processes in the zone.  The zone is empty.
2929 		 */
2930 		zone_status_set(zone, ZONE_IS_EMPTY);
2931 		goto out;
2932 	}
2933 
2934 	ASSERT(refcnt == 0);
2935 	/*
2936 	 * zsched has exited; the zone is dead.
2937 	 */
2938 	zone->zone_zsched = NULL;		/* paranoia */
2939 	mutex_enter(&zone_status_lock);
2940 	zone_status_set(zone, ZONE_IS_DEAD);
2941 out:
2942 	mutex_exit(&zone_status_lock);
2943 	zone_rele(zone);
2944 }
2945 
2946 zoneid_t
2947 getzoneid(void)
2948 {
2949 	return (curproc->p_zone->zone_id);
2950 }
2951 
2952 /*
2953  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2954  * check the validity of a zone's state.
2955  */
2956 static zone_t *
2957 zone_find_all_by_id(zoneid_t zoneid)
2958 {
2959 	mod_hash_val_t hv;
2960 	zone_t *zone = NULL;
2961 
2962 	ASSERT(MUTEX_HELD(&zonehash_lock));
2963 
2964 	if (mod_hash_find(zonehashbyid,
2965 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2966 		zone = (zone_t *)hv;
2967 	return (zone);
2968 }
2969 
2970 static zone_t *
2971 zone_find_all_by_label(const ts_label_t *label)
2972 {
2973 	mod_hash_val_t hv;
2974 	zone_t *zone = NULL;
2975 
2976 	ASSERT(MUTEX_HELD(&zonehash_lock));
2977 
2978 	/*
2979 	 * zonehashbylabel is not maintained for unlabeled systems
2980 	 */
2981 	if (!is_system_labeled())
2982 		return (NULL);
2983 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2984 		zone = (zone_t *)hv;
2985 	return (zone);
2986 }
2987 
2988 static zone_t *
2989 zone_find_all_by_name(char *name)
2990 {
2991 	mod_hash_val_t hv;
2992 	zone_t *zone = NULL;
2993 
2994 	ASSERT(MUTEX_HELD(&zonehash_lock));
2995 
2996 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2997 		zone = (zone_t *)hv;
2998 	return (zone);
2999 }
3000 
3001 /*
3002  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3003  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3004  * Caller must call zone_rele() once it is done with the zone.
3005  *
3006  * The zone may begin the zone_destroy() sequence immediately after this
3007  * function returns, but may be safely used until zone_rele() is called.
3008  */
3009 zone_t *
3010 zone_find_by_id(zoneid_t zoneid)
3011 {
3012 	zone_t *zone;
3013 	zone_status_t status;
3014 
3015 	mutex_enter(&zonehash_lock);
3016 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3017 		mutex_exit(&zonehash_lock);
3018 		return (NULL);
3019 	}
3020 	status = zone_status_get(zone);
3021 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3022 		/*
3023 		 * For all practical purposes the zone doesn't exist.
3024 		 */
3025 		mutex_exit(&zonehash_lock);
3026 		return (NULL);
3027 	}
3028 	zone_hold(zone);
3029 	mutex_exit(&zonehash_lock);
3030 	return (zone);
3031 }
3032 
3033 /*
3034  * Similar to zone_find_by_id, but using zone label as the key.
3035  */
3036 zone_t *
3037 zone_find_by_label(const ts_label_t *label)
3038 {
3039 	zone_t *zone;
3040 	zone_status_t status;
3041 
3042 	mutex_enter(&zonehash_lock);
3043 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3044 		mutex_exit(&zonehash_lock);
3045 		return (NULL);
3046 	}
3047 
3048 	status = zone_status_get(zone);
3049 	if (status > ZONE_IS_DOWN) {
3050 		/*
3051 		 * For all practical purposes the zone doesn't exist.
3052 		 */
3053 		mutex_exit(&zonehash_lock);
3054 		return (NULL);
3055 	}
3056 	zone_hold(zone);
3057 	mutex_exit(&zonehash_lock);
3058 	return (zone);
3059 }
3060 
3061 /*
3062  * Similar to zone_find_by_id, but using zone name as the key.
3063  */
3064 zone_t *
3065 zone_find_by_name(char *name)
3066 {
3067 	zone_t *zone;
3068 	zone_status_t status;
3069 
3070 	mutex_enter(&zonehash_lock);
3071 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3072 		mutex_exit(&zonehash_lock);
3073 		return (NULL);
3074 	}
3075 	status = zone_status_get(zone);
3076 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3077 		/*
3078 		 * For all practical purposes the zone doesn't exist.
3079 		 */
3080 		mutex_exit(&zonehash_lock);
3081 		return (NULL);
3082 	}
3083 	zone_hold(zone);
3084 	mutex_exit(&zonehash_lock);
3085 	return (zone);
3086 }
3087 
3088 /*
3089  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3090  * if there is a zone "foo" rooted at /foo/root, and the path argument
3091  * is "/foo/root/proc", it will return the held zone_t corresponding to
3092  * zone "foo".
3093  *
3094  * zone_find_by_path() always returns a non-NULL value, since at the
3095  * very least every path will be contained in the global zone.
3096  *
3097  * As with the other zone_find_by_*() functions, the caller is
3098  * responsible for zone_rele()ing the return value of this function.
3099  */
3100 zone_t *
3101 zone_find_by_path(const char *path)
3102 {
3103 	zone_t *zone;
3104 	zone_t *zret = NULL;
3105 	zone_status_t status;
3106 
3107 	if (path == NULL) {
3108 		/*
3109 		 * Call from rootconf().
3110 		 */
3111 		zone_hold(global_zone);
3112 		return (global_zone);
3113 	}
3114 	ASSERT(*path == '/');
3115 	mutex_enter(&zonehash_lock);
3116 	for (zone = list_head(&zone_active); zone != NULL;
3117 	    zone = list_next(&zone_active, zone)) {
3118 		if (ZONE_PATH_VISIBLE(path, zone))
3119 			zret = zone;
3120 	}
3121 	ASSERT(zret != NULL);
3122 	status = zone_status_get(zret);
3123 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3124 		/*
3125 		 * Zone practically doesn't exist.
3126 		 */
3127 		zret = global_zone;
3128 	}
3129 	zone_hold(zret);
3130 	mutex_exit(&zonehash_lock);
3131 	return (zret);
3132 }
3133 
3134 /*
3135  * Public interface for updating per-zone load averages.  Called once per
3136  * second.
3137  *
3138  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3139  */
3140 void
3141 zone_loadavg_update()
3142 {
3143 	zone_t *zp;
3144 	zone_status_t status;
3145 	struct loadavg_s *lavg;
3146 	hrtime_t zone_total;
3147 	int i;
3148 	hrtime_t hr_avg;
3149 	int nrun;
3150 	static int64_t f[3] = { 135, 27, 9 };
3151 	int64_t q, r;
3152 
3153 	mutex_enter(&zonehash_lock);
3154 	for (zp = list_head(&zone_active); zp != NULL;
3155 	    zp = list_next(&zone_active, zp)) {
3156 		mutex_enter(&zp->zone_lock);
3157 
3158 		/* Skip zones that are on the way down or not yet up */
3159 		status = zone_status_get(zp);
3160 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3161 			/* For all practical purposes the zone doesn't exist. */
3162 			mutex_exit(&zp->zone_lock);
3163 			continue;
3164 		}
3165 
3166 		/*
3167 		 * Update the 10 second moving average data in zone_loadavg.
3168 		 */
3169 		lavg = &zp->zone_loadavg;
3170 
3171 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3172 		scalehrtime(&zone_total);
3173 
3174 		/* The zone_total should always be increasing. */
3175 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3176 		    zone_total - lavg->lg_total : 0;
3177 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3178 		/* lg_total holds the prev. 1 sec. total */
3179 		lavg->lg_total = zone_total;
3180 
3181 		/*
3182 		 * To simplify the calculation, we don't calculate the load avg.
3183 		 * until the zone has been up for at least 10 seconds and our
3184 		 * moving average is thus full.
3185 		 */
3186 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3187 			lavg->lg_len++;
3188 			mutex_exit(&zp->zone_lock);
3189 			continue;
3190 		}
3191 
3192 		/* Now calculate the 1min, 5min, 15 min load avg. */
3193 		hr_avg = 0;
3194 		for (i = 0; i < S_LOADAVG_SZ; i++)
3195 			hr_avg += lavg->lg_loads[i];
3196 		hr_avg = hr_avg / S_LOADAVG_SZ;
3197 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3198 
3199 		/* Compute load avg. See comment in calcloadavg() */
3200 		for (i = 0; i < 3; i++) {
3201 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3202 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3203 			zp->zone_hp_avenrun[i] +=
3204 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3205 
3206 			/* avenrun[] can only hold 31 bits of load avg. */
3207 			if (zp->zone_hp_avenrun[i] <
3208 			    ((uint64_t)1<<(31+16-FSHIFT)))
3209 				zp->zone_avenrun[i] = (int32_t)
3210 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3211 			else
3212 				zp->zone_avenrun[i] = 0x7fffffff;
3213 		}
3214 
3215 		mutex_exit(&zp->zone_lock);
3216 	}
3217 	mutex_exit(&zonehash_lock);
3218 }
3219 
3220 /*
3221  * Get the number of cpus visible to this zone.  The system-wide global
3222  * 'ncpus' is returned if pools are disabled, the caller is in the
3223  * global zone, or a NULL zone argument is passed in.
3224  */
3225 int
3226 zone_ncpus_get(zone_t *zone)
3227 {
3228 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3229 
3230 	return (myncpus != 0 ? myncpus : ncpus);
3231 }
3232 
3233 /*
3234  * Get the number of online cpus visible to this zone.  The system-wide
3235  * global 'ncpus_online' is returned if pools are disabled, the caller
3236  * is in the global zone, or a NULL zone argument is passed in.
3237  */
3238 int
3239 zone_ncpus_online_get(zone_t *zone)
3240 {
3241 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3242 
3243 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3244 }
3245 
3246 /*
3247  * Return the pool to which the zone is currently bound.
3248  */
3249 pool_t *
3250 zone_pool_get(zone_t *zone)
3251 {
3252 	ASSERT(pool_lock_held());
3253 
3254 	return (zone->zone_pool);
3255 }
3256 
3257 /*
3258  * Set the zone's pool pointer and update the zone's visibility to match
3259  * the resources in the new pool.
3260  */
3261 void
3262 zone_pool_set(zone_t *zone, pool_t *pool)
3263 {
3264 	ASSERT(pool_lock_held());
3265 	ASSERT(MUTEX_HELD(&cpu_lock));
3266 
3267 	zone->zone_pool = pool;
3268 	zone_pset_set(zone, pool->pool_pset->pset_id);
3269 }
3270 
3271 /*
3272  * Return the cached value of the id of the processor set to which the
3273  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3274  * facility is disabled.
3275  */
3276 psetid_t
3277 zone_pset_get(zone_t *zone)
3278 {
3279 	ASSERT(MUTEX_HELD(&cpu_lock));
3280 
3281 	return (zone->zone_psetid);
3282 }
3283 
3284 /*
3285  * Set the cached value of the id of the processor set to which the zone
3286  * is currently bound.  Also update the zone's visibility to match the
3287  * resources in the new processor set.
3288  */
3289 void
3290 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3291 {
3292 	psetid_t oldpsetid;
3293 
3294 	ASSERT(MUTEX_HELD(&cpu_lock));
3295 	oldpsetid = zone_pset_get(zone);
3296 
3297 	if (oldpsetid == newpsetid)
3298 		return;
3299 	/*
3300 	 * Global zone sees all.
3301 	 */
3302 	if (zone != global_zone) {
3303 		zone->zone_psetid = newpsetid;
3304 		if (newpsetid != ZONE_PS_INVAL)
3305 			pool_pset_visibility_add(newpsetid, zone);
3306 		if (oldpsetid != ZONE_PS_INVAL)
3307 			pool_pset_visibility_remove(oldpsetid, zone);
3308 	}
3309 	/*
3310 	 * Disabling pools, so we should start using the global values
3311 	 * for ncpus and ncpus_online.
3312 	 */
3313 	if (newpsetid == ZONE_PS_INVAL) {
3314 		zone->zone_ncpus = 0;
3315 		zone->zone_ncpus_online = 0;
3316 	}
3317 }
3318 
3319 /*
3320  * Walk the list of active zones and issue the provided callback for
3321  * each of them.
3322  *
3323  * Caller must not be holding any locks that may be acquired under
3324  * zonehash_lock.  See comment at the beginning of the file for a list of
3325  * common locks and their interactions with zones.
3326  */
3327 int
3328 zone_walk(int (*cb)(zone_t *, void *), void *data)
3329 {
3330 	zone_t *zone;
3331 	int ret = 0;
3332 	zone_status_t status;
3333 
3334 	mutex_enter(&zonehash_lock);
3335 	for (zone = list_head(&zone_active); zone != NULL;
3336 	    zone = list_next(&zone_active, zone)) {
3337 		/*
3338 		 * Skip zones that shouldn't be externally visible.
3339 		 */
3340 		status = zone_status_get(zone);
3341 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3342 			continue;
3343 		/*
3344 		 * Bail immediately if any callback invocation returns a
3345 		 * non-zero value.
3346 		 */
3347 		ret = (*cb)(zone, data);
3348 		if (ret != 0)
3349 			break;
3350 	}
3351 	mutex_exit(&zonehash_lock);
3352 	return (ret);
3353 }
3354 
3355 static int
3356 zone_set_root(zone_t *zone, const char *upath)
3357 {
3358 	vnode_t *vp;
3359 	int trycount;
3360 	int error = 0;
3361 	char *path;
3362 	struct pathname upn, pn;
3363 	size_t pathlen;
3364 
3365 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3366 		return (error);
3367 
3368 	pn_alloc(&pn);
3369 
3370 	/* prevent infinite loop */
3371 	trycount = 10;
3372 	for (;;) {
3373 		if (--trycount <= 0) {
3374 			error = ESTALE;
3375 			goto out;
3376 		}
3377 
3378 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3379 			/*
3380 			 * VOP_ACCESS() may cover 'vp' with a new
3381 			 * filesystem, if 'vp' is an autoFS vnode.
3382 			 * Get the new 'vp' if so.
3383 			 */
3384 			if ((error =
3385 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3386 			    (!vn_ismntpt(vp) ||
3387 			    (error = traverse(&vp)) == 0)) {
3388 				pathlen = pn.pn_pathlen + 2;
3389 				path = kmem_alloc(pathlen, KM_SLEEP);
3390 				(void) strncpy(path, pn.pn_path,
3391 				    pn.pn_pathlen + 1);
3392 				path[pathlen - 2] = '/';
3393 				path[pathlen - 1] = '\0';
3394 				pn_free(&pn);
3395 				pn_free(&upn);
3396 
3397 				/* Success! */
3398 				break;
3399 			}
3400 			VN_RELE(vp);
3401 		}
3402 		if (error != ESTALE)
3403 			goto out;
3404 	}
3405 
3406 	ASSERT(error == 0);
3407 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3408 	zone->zone_rootpath = path;
3409 	zone->zone_rootpathlen = pathlen;
3410 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3411 		zone->zone_flags |= ZF_IS_SCRATCH;
3412 	return (0);
3413 
3414 out:
3415 	pn_free(&pn);
3416 	pn_free(&upn);
3417 	return (error);
3418 }
3419 
3420 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3421 			((c) >= 'a' && (c) <= 'z') || \
3422 			((c) >= 'A' && (c) <= 'Z'))
3423 
3424 static int
3425 zone_set_name(zone_t *zone, const char *uname)
3426 {
3427 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3428 	size_t len;
3429 	int i, err;
3430 
3431 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3432 		kmem_free(kname, ZONENAME_MAX);
3433 		return (err);	/* EFAULT or ENAMETOOLONG */
3434 	}
3435 
3436 	/* must be less than ZONENAME_MAX */
3437 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3438 		kmem_free(kname, ZONENAME_MAX);
3439 		return (EINVAL);
3440 	}
3441 
3442 	/*
3443 	 * Name must start with an alphanumeric and must contain only
3444 	 * alphanumerics, '-', '_' and '.'.
3445 	 */
3446 	if (!isalnum(kname[0])) {
3447 		kmem_free(kname, ZONENAME_MAX);
3448 		return (EINVAL);
3449 	}
3450 	for (i = 1; i < len - 1; i++) {
3451 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3452 		    kname[i] != '.') {
3453 			kmem_free(kname, ZONENAME_MAX);
3454 			return (EINVAL);
3455 		}
3456 	}
3457 
3458 	zone->zone_name = kname;
3459 	return (0);
3460 }
3461 
3462 /*
3463  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3464  * is NULL or it points to a zone with no hostid emulation, then the machine's
3465  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3466  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3467  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3468  * hostid and the machine's hostid is invalid.
3469  */
3470 uint32_t
3471 zone_get_hostid(zone_t *zonep)
3472 {
3473 	unsigned long machine_hostid;
3474 
3475 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3476 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3477 			return (HW_INVALID_HOSTID);
3478 		return ((uint32_t)machine_hostid);
3479 	}
3480 	return (zonep->zone_hostid);
3481 }
3482 
3483 /*
3484  * Similar to thread_create(), but makes sure the thread is in the appropriate
3485  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3486  */
3487 /*ARGSUSED*/
3488 kthread_t *
3489 zthread_create(
3490     caddr_t stk,
3491     size_t stksize,
3492     void (*proc)(),
3493     void *arg,
3494     size_t len,
3495     pri_t pri)
3496 {
3497 	kthread_t *t;
3498 	zone_t *zone = curproc->p_zone;
3499 	proc_t *pp = zone->zone_zsched;
3500 
3501 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3502 
3503 	/*
3504 	 * No-one should be trying to create threads if the zone is shutting
3505 	 * down and there aren't any kernel threads around.  See comment
3506 	 * in zthread_exit().
3507 	 */
3508 	ASSERT(!(zone->zone_kthreads == NULL &&
3509 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3510 	/*
3511 	 * Create a thread, but don't let it run until we've finished setting
3512 	 * things up.
3513 	 */
3514 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3515 	ASSERT(t->t_forw == NULL);
3516 	mutex_enter(&zone_status_lock);
3517 	if (zone->zone_kthreads == NULL) {
3518 		t->t_forw = t->t_back = t;
3519 	} else {
3520 		kthread_t *tx = zone->zone_kthreads;
3521 
3522 		t->t_forw = tx;
3523 		t->t_back = tx->t_back;
3524 		tx->t_back->t_forw = t;
3525 		tx->t_back = t;
3526 	}
3527 	zone->zone_kthreads = t;
3528 	mutex_exit(&zone_status_lock);
3529 
3530 	mutex_enter(&pp->p_lock);
3531 	t->t_proc_flag |= TP_ZTHREAD;
3532 	project_rele(t->t_proj);
3533 	t->t_proj = project_hold(pp->p_task->tk_proj);
3534 
3535 	/*
3536 	 * Setup complete, let it run.
3537 	 */
3538 	thread_lock(t);
3539 	t->t_schedflag |= TS_ALLSTART;
3540 	setrun_locked(t);
3541 	thread_unlock(t);
3542 
3543 	mutex_exit(&pp->p_lock);
3544 
3545 	return (t);
3546 }
3547 
3548 /*
3549  * Similar to thread_exit().  Must be called by threads created via
3550  * zthread_exit().
3551  */
3552 void
3553 zthread_exit(void)
3554 {
3555 	kthread_t *t = curthread;
3556 	proc_t *pp = curproc;
3557 	zone_t *zone = pp->p_zone;
3558 
3559 	mutex_enter(&zone_status_lock);
3560 
3561 	/*
3562 	 * Reparent to p0
3563 	 */
3564 	kpreempt_disable();
3565 	mutex_enter(&pp->p_lock);
3566 	t->t_proc_flag &= ~TP_ZTHREAD;
3567 	t->t_procp = &p0;
3568 	hat_thread_exit(t);
3569 	mutex_exit(&pp->p_lock);
3570 	kpreempt_enable();
3571 
3572 	if (t->t_back == t) {
3573 		ASSERT(t->t_forw == t);
3574 		/*
3575 		 * If the zone is empty, once the thread count
3576 		 * goes to zero no further kernel threads can be
3577 		 * created.  This is because if the creator is a process
3578 		 * in the zone, then it must have exited before the zone
3579 		 * state could be set to ZONE_IS_EMPTY.
3580 		 * Otherwise, if the creator is a kernel thread in the
3581 		 * zone, the thread count is non-zero.
3582 		 *
3583 		 * This really means that non-zone kernel threads should
3584 		 * not create zone kernel threads.
3585 		 */
3586 		zone->zone_kthreads = NULL;
3587 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3588 			zone_status_set(zone, ZONE_IS_DOWN);
3589 			/*
3590 			 * Remove any CPU caps on this zone.
3591 			 */
3592 			cpucaps_zone_remove(zone);
3593 		}
3594 	} else {
3595 		t->t_forw->t_back = t->t_back;
3596 		t->t_back->t_forw = t->t_forw;
3597 		if (zone->zone_kthreads == t)
3598 			zone->zone_kthreads = t->t_forw;
3599 	}
3600 	mutex_exit(&zone_status_lock);
3601 	zone_rele(zone);
3602 	thread_exit();
3603 	/* NOTREACHED */
3604 }
3605 
3606 static void
3607 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3608 {
3609 	vnode_t *oldvp;
3610 
3611 	/* we're going to hold a reference here to the directory */
3612 	VN_HOLD(vp);
3613 
3614 	/* update abs cwd/root path see c2/audit.c */
3615 	if (AU_AUDITING())
3616 		audit_chdirec(vp, vpp);
3617 
3618 	mutex_enter(&pp->p_lock);
3619 	oldvp = *vpp;
3620 	*vpp = vp;
3621 	mutex_exit(&pp->p_lock);
3622 	if (oldvp != NULL)
3623 		VN_RELE(oldvp);
3624 }
3625 
3626 /*
3627  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3628  */
3629 static int
3630 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3631 {
3632 	nvpair_t *nvp = NULL;
3633 	boolean_t priv_set = B_FALSE;
3634 	boolean_t limit_set = B_FALSE;
3635 	boolean_t action_set = B_FALSE;
3636 
3637 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3638 		const char *name;
3639 		uint64_t ui64;
3640 
3641 		name = nvpair_name(nvp);
3642 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3643 			return (EINVAL);
3644 		(void) nvpair_value_uint64(nvp, &ui64);
3645 		if (strcmp(name, "privilege") == 0) {
3646 			/*
3647 			 * Currently only privileged values are allowed, but
3648 			 * this may change in the future.
3649 			 */
3650 			if (ui64 != RCPRIV_PRIVILEGED)
3651 				return (EINVAL);
3652 			rv->rcv_privilege = ui64;
3653 			priv_set = B_TRUE;
3654 		} else if (strcmp(name, "limit") == 0) {
3655 			rv->rcv_value = ui64;
3656 			limit_set = B_TRUE;
3657 		} else if (strcmp(name, "action") == 0) {
3658 			if (ui64 != RCTL_LOCAL_NOACTION &&
3659 			    ui64 != RCTL_LOCAL_DENY)
3660 				return (EINVAL);
3661 			rv->rcv_flagaction = ui64;
3662 			action_set = B_TRUE;
3663 		} else {
3664 			return (EINVAL);
3665 		}
3666 	}
3667 
3668 	if (!(priv_set && limit_set && action_set))
3669 		return (EINVAL);
3670 	rv->rcv_action_signal = 0;
3671 	rv->rcv_action_recipient = NULL;
3672 	rv->rcv_action_recip_pid = -1;
3673 	rv->rcv_firing_time = 0;
3674 
3675 	return (0);
3676 }
3677 
3678 /*
3679  * Non-global zone version of start_init.
3680  */
3681 void
3682 zone_start_init(void)
3683 {
3684 	proc_t *p = ttoproc(curthread);
3685 	zone_t *z = p->p_zone;
3686 
3687 	ASSERT(!INGLOBALZONE(curproc));
3688 
3689 	/*
3690 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3691 	 * storing just the pid of init is sufficient.
3692 	 */
3693 	z->zone_proc_initpid = p->p_pid;
3694 
3695 	/*
3696 	 * We maintain zone_boot_err so that we can return the cause of the
3697 	 * failure back to the caller of the zone_boot syscall.
3698 	 */
3699 	p->p_zone->zone_boot_err = start_init_common();
3700 
3701 	/*
3702 	 * We will prevent booting zones from becoming running zones if the
3703 	 * global zone is shutting down.
3704 	 */
3705 	mutex_enter(&zone_status_lock);
3706 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3707 	    ZONE_IS_SHUTTING_DOWN) {
3708 		/*
3709 		 * Make sure we are still in the booting state-- we could have
3710 		 * raced and already be shutting down, or even further along.
3711 		 */
3712 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3713 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3714 		}
3715 		mutex_exit(&zone_status_lock);
3716 		/* It's gone bad, dispose of the process */
3717 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3718 			mutex_enter(&p->p_lock);
3719 			ASSERT(p->p_flag & SEXITLWPS);
3720 			lwp_exit();
3721 		}
3722 	} else {
3723 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3724 			zone_status_set(z, ZONE_IS_RUNNING);
3725 		mutex_exit(&zone_status_lock);
3726 		/* cause the process to return to userland. */
3727 		lwp_rtt();
3728 	}
3729 }
3730 
3731 struct zsched_arg {
3732 	zone_t *zone;
3733 	nvlist_t *nvlist;
3734 };
3735 
3736 /*
3737  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3738  * anything to do with scheduling, but rather with the fact that
3739  * per-zone kernel threads are parented to zsched, just like regular
3740  * kernel threads are parented to sched (p0).
3741  *
3742  * zsched is also responsible for launching init for the zone.
3743  */
3744 static void
3745 zsched(void *arg)
3746 {
3747 	struct zsched_arg *za = arg;
3748 	proc_t *pp = curproc;
3749 	proc_t *initp = proc_init;
3750 	zone_t *zone = za->zone;
3751 	cred_t *cr, *oldcred;
3752 	rctl_set_t *set;
3753 	rctl_alloc_gp_t *gp;
3754 	contract_t *ct = NULL;
3755 	task_t *tk, *oldtk;
3756 	rctl_entity_p_t e;
3757 	kproject_t *pj;
3758 
3759 	nvlist_t *nvl = za->nvlist;
3760 	nvpair_t *nvp = NULL;
3761 
3762 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3763 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3764 	PTOU(pp)->u_argc = 0;
3765 	PTOU(pp)->u_argv = NULL;
3766 	PTOU(pp)->u_envp = NULL;
3767 	closeall(P_FINFO(pp));
3768 
3769 	/*
3770 	 * We are this zone's "zsched" process.  As the zone isn't generally
3771 	 * visible yet we don't need to grab any locks before initializing its
3772 	 * zone_proc pointer.
3773 	 */
3774 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3775 	zone->zone_zsched = pp;
3776 	mutex_enter(&pp->p_lock);
3777 	pp->p_zone = zone;
3778 	mutex_exit(&pp->p_lock);
3779 
3780 	/*
3781 	 * Disassociate process from its 'parent'; parent ourselves to init
3782 	 * (pid 1) and change other values as needed.
3783 	 */
3784 	sess_create();
3785 
3786 	mutex_enter(&pidlock);
3787 	proc_detach(pp);
3788 	pp->p_ppid = 1;
3789 	pp->p_flag |= SZONETOP;
3790 	pp->p_ancpid = 1;
3791 	pp->p_parent = initp;
3792 	pp->p_psibling = NULL;
3793 	if (initp->p_child)
3794 		initp->p_child->p_psibling = pp;
3795 	pp->p_sibling = initp->p_child;
3796 	initp->p_child = pp;
3797 
3798 	/* Decrement what newproc() incremented. */
3799 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3800 	/*
3801 	 * Our credentials are about to become kcred-like, so we don't care
3802 	 * about the caller's ruid.
3803 	 */
3804 	upcount_inc(crgetruid(kcred), zone->zone_id);
3805 	mutex_exit(&pidlock);
3806 
3807 	/*
3808 	 * getting out of global zone, so decrement lwp and process counts
3809 	 */
3810 	pj = pp->p_task->tk_proj;
3811 	mutex_enter(&global_zone->zone_nlwps_lock);
3812 	pj->kpj_nlwps -= pp->p_lwpcnt;
3813 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3814 	pj->kpj_nprocs--;
3815 	global_zone->zone_nprocs--;
3816 	mutex_exit(&global_zone->zone_nlwps_lock);
3817 
3818 	/*
3819 	 * Decrement locked memory counts on old zone and project.
3820 	 */
3821 	mutex_enter(&global_zone->zone_mem_lock);
3822 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3823 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3824 	mutex_exit(&global_zone->zone_mem_lock);
3825 
3826 	/*
3827 	 * Create and join a new task in project '0' of this zone.
3828 	 *
3829 	 * We don't need to call holdlwps() since we know we're the only lwp in
3830 	 * this process.
3831 	 *
3832 	 * task_join() returns with p_lock held.
3833 	 */
3834 	tk = task_create(0, zone);
3835 	mutex_enter(&cpu_lock);
3836 	oldtk = task_join(tk, 0);
3837 
3838 	pj = pp->p_task->tk_proj;
3839 
3840 	mutex_enter(&zone->zone_mem_lock);
3841 	zone->zone_locked_mem += pp->p_locked_mem;
3842 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3843 	mutex_exit(&zone->zone_mem_lock);
3844 
3845 	/*
3846 	 * add lwp and process counts to zsched's zone, and increment
3847 	 * project's task and process count due to the task created in
3848 	 * the above task_create.
3849 	 */
3850 	mutex_enter(&zone->zone_nlwps_lock);
3851 	pj->kpj_nlwps += pp->p_lwpcnt;
3852 	pj->kpj_ntasks += 1;
3853 	zone->zone_nlwps += pp->p_lwpcnt;
3854 	pj->kpj_nprocs++;
3855 	zone->zone_nprocs++;
3856 	mutex_exit(&zone->zone_nlwps_lock);
3857 
3858 	mutex_exit(&curproc->p_lock);
3859 	mutex_exit(&cpu_lock);
3860 	task_rele(oldtk);
3861 
3862 	/*
3863 	 * The process was created by a process in the global zone, hence the
3864 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3865 	 */
3866 	cr = zone->zone_kcred;
3867 	crhold(cr);
3868 	mutex_enter(&pp->p_crlock);
3869 	oldcred = pp->p_cred;
3870 	pp->p_cred = cr;
3871 	mutex_exit(&pp->p_crlock);
3872 	crfree(oldcred);
3873 
3874 	/*
3875 	 * Hold credentials again (for thread)
3876 	 */
3877 	crhold(cr);
3878 
3879 	/*
3880 	 * p_lwpcnt can't change since this is a kernel process.
3881 	 */
3882 	crset(pp, cr);
3883 
3884 	/*
3885 	 * Chroot
3886 	 */
3887 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3888 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3889 
3890 	/*
3891 	 * Initialize zone's rctl set.
3892 	 */
3893 	set = rctl_set_create();
3894 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3895 	mutex_enter(&pp->p_lock);
3896 	e.rcep_p.zone = zone;
3897 	e.rcep_t = RCENTITY_ZONE;
3898 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3899 	mutex_exit(&pp->p_lock);
3900 	rctl_prealloc_destroy(gp);
3901 
3902 	/*
3903 	 * Apply the rctls passed in to zone_create().  This is basically a list
3904 	 * assignment: all of the old values are removed and the new ones
3905 	 * inserted.  That is, if an empty list is passed in, all values are
3906 	 * removed.
3907 	 */
3908 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3909 		rctl_dict_entry_t *rde;
3910 		rctl_hndl_t hndl;
3911 		char *name;
3912 		nvlist_t **nvlarray;
3913 		uint_t i, nelem;
3914 		int error;	/* For ASSERT()s */
3915 
3916 		name = nvpair_name(nvp);
3917 		hndl = rctl_hndl_lookup(name);
3918 		ASSERT(hndl != -1);
3919 		rde = rctl_dict_lookup_hndl(hndl);
3920 		ASSERT(rde != NULL);
3921 
3922 		for (; /* ever */; ) {
3923 			rctl_val_t oval;
3924 
3925 			mutex_enter(&pp->p_lock);
3926 			error = rctl_local_get(hndl, NULL, &oval, pp);
3927 			mutex_exit(&pp->p_lock);
3928 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3929 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3930 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3931 				break;
3932 			mutex_enter(&pp->p_lock);
3933 			error = rctl_local_delete(hndl, &oval, pp);
3934 			mutex_exit(&pp->p_lock);
3935 			ASSERT(error == 0);
3936 		}
3937 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3938 		ASSERT(error == 0);
3939 		for (i = 0; i < nelem; i++) {
3940 			rctl_val_t *nvalp;
3941 
3942 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3943 			error = nvlist2rctlval(nvlarray[i], nvalp);
3944 			ASSERT(error == 0);
3945 			/*
3946 			 * rctl_local_insert can fail if the value being
3947 			 * inserted is a duplicate; this is OK.
3948 			 */
3949 			mutex_enter(&pp->p_lock);
3950 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3951 				kmem_cache_free(rctl_val_cache, nvalp);
3952 			mutex_exit(&pp->p_lock);
3953 		}
3954 	}
3955 	/*
3956 	 * Tell the world that we're done setting up.
3957 	 *
3958 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3959 	 * and atomically set the zone's processor set visibility.  Once
3960 	 * we drop pool_lock() this zone will automatically get updated
3961 	 * to reflect any future changes to the pools configuration.
3962 	 *
3963 	 * Note that after we drop the locks below (zonehash_lock in
3964 	 * particular) other operations such as a zone_getattr call can
3965 	 * now proceed and observe the zone. That is the reason for doing a
3966 	 * state transition to the INITIALIZED state.
3967 	 */
3968 	pool_lock();
3969 	mutex_enter(&cpu_lock);
3970 	mutex_enter(&zonehash_lock);
3971 	zone_uniqid(zone);
3972 	zone_zsd_configure(zone);
3973 	if (pool_state == POOL_ENABLED)
3974 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3975 	mutex_enter(&zone_status_lock);
3976 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3977 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3978 	mutex_exit(&zone_status_lock);
3979 	mutex_exit(&zonehash_lock);
3980 	mutex_exit(&cpu_lock);
3981 	pool_unlock();
3982 
3983 	/* Now call the create callback for this key */
3984 	zsd_apply_all_keys(zsd_apply_create, zone);
3985 
3986 	/* The callbacks are complete. Mark ZONE_IS_READY */
3987 	mutex_enter(&zone_status_lock);
3988 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3989 	zone_status_set(zone, ZONE_IS_READY);
3990 	mutex_exit(&zone_status_lock);
3991 
3992 	/*
3993 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3994 	 * we launch init, and set the state to running.
3995 	 */
3996 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3997 
3998 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3999 		id_t cid;
4000 
4001 		/*
4002 		 * Ok, this is a little complicated.  We need to grab the
4003 		 * zone's pool's scheduling class ID; note that by now, we
4004 		 * are already bound to a pool if we need to be (zoneadmd
4005 		 * will have done that to us while we're in the READY
4006 		 * state).  *But* the scheduling class for the zone's 'init'
4007 		 * must be explicitly passed to newproc, which doesn't
4008 		 * respect pool bindings.
4009 		 *
4010 		 * We hold the pool_lock across the call to newproc() to
4011 		 * close the obvious race: the pool's scheduling class
4012 		 * could change before we manage to create the LWP with
4013 		 * classid 'cid'.
4014 		 */
4015 		pool_lock();
4016 		if (zone->zone_defaultcid > 0)
4017 			cid = zone->zone_defaultcid;
4018 		else
4019 			cid = pool_get_class(zone->zone_pool);
4020 		if (cid == -1)
4021 			cid = defaultcid;
4022 
4023 		/*
4024 		 * If this fails, zone_boot will ultimately fail.  The
4025 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4026 		 * will have to tear down the zone, and fail, or try again.
4027 		 */
4028 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4029 		    minclsyspri - 1, &ct, 0)) != 0) {
4030 			mutex_enter(&zone_status_lock);
4031 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4032 			mutex_exit(&zone_status_lock);
4033 		} else {
4034 			zone->zone_boot_time = gethrestime_sec();
4035 		}
4036 
4037 		pool_unlock();
4038 	}
4039 
4040 	/*
4041 	 * Wait for zone_destroy() to be called.  This is what we spend
4042 	 * most of our life doing.
4043 	 */
4044 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4045 
4046 	if (ct)
4047 		/*
4048 		 * At this point the process contract should be empty.
4049 		 * (Though if it isn't, it's not the end of the world.)
4050 		 */
4051 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4052 
4053 	/*
4054 	 * Allow kcred to be freed when all referring processes
4055 	 * (including this one) go away.  We can't just do this in
4056 	 * zone_free because we need to wait for the zone_cred_ref to
4057 	 * drop to 0 before calling zone_free, and the existence of
4058 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4059 	 * balance the crdup in zone_create.  The crhold calls earlier
4060 	 * in zsched will be dropped when the thread and process exit.
4061 	 */
4062 	crfree(zone->zone_kcred);
4063 	zone->zone_kcred = NULL;
4064 
4065 	exit(CLD_EXITED, 0);
4066 }
4067 
4068 /*
4069  * Helper function to determine if there are any submounts of the
4070  * provided path.  Used to make sure the zone doesn't "inherit" any
4071  * mounts from before it is created.
4072  */
4073 static uint_t
4074 zone_mount_count(const char *rootpath)
4075 {
4076 	vfs_t *vfsp;
4077 	uint_t count = 0;
4078 	size_t rootpathlen = strlen(rootpath);
4079 
4080 	/*
4081 	 * Holding zonehash_lock prevents race conditions with
4082 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4083 	 * zone_find_by_path().
4084 	 */
4085 	ASSERT(MUTEX_HELD(&zonehash_lock));
4086 	/*
4087 	 * The rootpath must end with a '/'
4088 	 */
4089 	ASSERT(rootpath[rootpathlen - 1] == '/');
4090 
4091 	/*
4092 	 * This intentionally does not count the rootpath itself if that
4093 	 * happens to be a mount point.
4094 	 */
4095 	vfs_list_read_lock();
4096 	vfsp = rootvfs;
4097 	do {
4098 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4099 		    rootpathlen) == 0)
4100 			count++;
4101 		vfsp = vfsp->vfs_next;
4102 	} while (vfsp != rootvfs);
4103 	vfs_list_unlock();
4104 	return (count);
4105 }
4106 
4107 /*
4108  * Helper function to make sure that a zone created on 'rootpath'
4109  * wouldn't end up containing other zones' rootpaths.
4110  */
4111 static boolean_t
4112 zone_is_nested(const char *rootpath)
4113 {
4114 	zone_t *zone;
4115 	size_t rootpathlen = strlen(rootpath);
4116 	size_t len;
4117 
4118 	ASSERT(MUTEX_HELD(&zonehash_lock));
4119 
4120 	/*
4121 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4122 	 */
4123 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4124 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4125 		return (B_TRUE);
4126 
4127 	for (zone = list_head(&zone_active); zone != NULL;
4128 	    zone = list_next(&zone_active, zone)) {
4129 		if (zone == global_zone)
4130 			continue;
4131 		len = strlen(zone->zone_rootpath);
4132 		if (strncmp(rootpath, zone->zone_rootpath,
4133 		    MIN(rootpathlen, len)) == 0)
4134 			return (B_TRUE);
4135 	}
4136 	return (B_FALSE);
4137 }
4138 
4139 static int
4140 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4141     size_t zone_privssz)
4142 {
4143 	priv_set_t *privs;
4144 
4145 	if (zone_privssz < sizeof (priv_set_t))
4146 		return (ENOMEM);
4147 
4148 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4149 
4150 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4151 		kmem_free(privs, sizeof (priv_set_t));
4152 		return (EFAULT);
4153 	}
4154 
4155 	zone->zone_privset = privs;
4156 	return (0);
4157 }
4158 
4159 /*
4160  * We make creative use of nvlists to pass in rctls from userland.  The list is
4161  * a list of the following structures:
4162  *
4163  * (name = rctl_name, value = nvpair_list_array)
4164  *
4165  * Where each element of the nvpair_list_array is of the form:
4166  *
4167  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4168  * 	(name = "limit", value = uint64_t),
4169  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4170  */
4171 static int
4172 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4173 {
4174 	nvpair_t *nvp = NULL;
4175 	nvlist_t *nvl = NULL;
4176 	char *kbuf;
4177 	int error;
4178 	rctl_val_t rv;
4179 
4180 	*nvlp = NULL;
4181 
4182 	if (buflen == 0)
4183 		return (0);
4184 
4185 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4186 		return (ENOMEM);
4187 	if (copyin(ubuf, kbuf, buflen)) {
4188 		error = EFAULT;
4189 		goto out;
4190 	}
4191 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4192 		/*
4193 		 * nvl may have been allocated/free'd, but the value set to
4194 		 * non-NULL, so we reset it here.
4195 		 */
4196 		nvl = NULL;
4197 		error = EINVAL;
4198 		goto out;
4199 	}
4200 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4201 		rctl_dict_entry_t *rde;
4202 		rctl_hndl_t hndl;
4203 		nvlist_t **nvlarray;
4204 		uint_t i, nelem;
4205 		char *name;
4206 
4207 		error = EINVAL;
4208 		name = nvpair_name(nvp);
4209 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4210 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4211 			goto out;
4212 		}
4213 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4214 			goto out;
4215 		}
4216 		rde = rctl_dict_lookup_hndl(hndl);
4217 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4218 		ASSERT(error == 0);
4219 		for (i = 0; i < nelem; i++) {
4220 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4221 				goto out;
4222 		}
4223 		if (rctl_invalid_value(rde, &rv)) {
4224 			error = EINVAL;
4225 			goto out;
4226 		}
4227 	}
4228 	error = 0;
4229 	*nvlp = nvl;
4230 out:
4231 	kmem_free(kbuf, buflen);
4232 	if (error && nvl != NULL)
4233 		nvlist_free(nvl);
4234 	return (error);
4235 }
4236 
4237 int
4238 zone_create_error(int er_error, int er_ext, int *er_out) {
4239 	if (er_out != NULL) {
4240 		if (copyout(&er_ext, er_out, sizeof (int))) {
4241 			return (set_errno(EFAULT));
4242 		}
4243 	}
4244 	return (set_errno(er_error));
4245 }
4246 
4247 static int
4248 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4249 {
4250 	ts_label_t *tsl;
4251 	bslabel_t blab;
4252 
4253 	/* Get label from user */
4254 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4255 		return (EFAULT);
4256 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4257 	if (tsl == NULL)
4258 		return (ENOMEM);
4259 
4260 	zone->zone_slabel = tsl;
4261 	return (0);
4262 }
4263 
4264 /*
4265  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4266  */
4267 static int
4268 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4269 {
4270 	char *kbuf;
4271 	char *dataset, *next;
4272 	zone_dataset_t *zd;
4273 	size_t len;
4274 
4275 	if (ubuf == NULL || buflen == 0)
4276 		return (0);
4277 
4278 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4279 		return (ENOMEM);
4280 
4281 	if (copyin(ubuf, kbuf, buflen) != 0) {
4282 		kmem_free(kbuf, buflen);
4283 		return (EFAULT);
4284 	}
4285 
4286 	dataset = next = kbuf;
4287 	for (;;) {
4288 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4289 
4290 		next = strchr(dataset, ',');
4291 
4292 		if (next == NULL)
4293 			len = strlen(dataset);
4294 		else
4295 			len = next - dataset;
4296 
4297 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4298 		bcopy(dataset, zd->zd_dataset, len);
4299 		zd->zd_dataset[len] = '\0';
4300 
4301 		list_insert_head(&zone->zone_datasets, zd);
4302 
4303 		if (next == NULL)
4304 			break;
4305 
4306 		dataset = next + 1;
4307 	}
4308 
4309 	kmem_free(kbuf, buflen);
4310 	return (0);
4311 }
4312 
4313 /*
4314  * System call to create/initialize a new zone named 'zone_name', rooted
4315  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4316  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4317  * with labeling set by 'match', 'doi', and 'label'.
4318  *
4319  * If extended error is non-null, we may use it to return more detailed
4320  * error information.
4321  */
4322 static zoneid_t
4323 zone_create(const char *zone_name, const char *zone_root,
4324     const priv_set_t *zone_privs, size_t zone_privssz,
4325     caddr_t rctlbuf, size_t rctlbufsz,
4326     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4327     int match, uint32_t doi, const bslabel_t *label,
4328     int flags)
4329 {
4330 	struct zsched_arg zarg;
4331 	nvlist_t *rctls = NULL;
4332 	proc_t *pp = curproc;
4333 	zone_t *zone, *ztmp;
4334 	zoneid_t zoneid;
4335 	int error;
4336 	int error2 = 0;
4337 	char *str;
4338 	cred_t *zkcr;
4339 	boolean_t insert_label_hash;
4340 
4341 	if (secpolicy_zone_config(CRED()) != 0)
4342 		return (set_errno(EPERM));
4343 
4344 	/* can't boot zone from within chroot environment */
4345 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4346 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4347 		    extended_error));
4348 
4349 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4350 	zoneid = zone->zone_id = id_alloc(zoneid_space);
4351 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4352 	zone->zone_pool = pool_default;
4353 	zone->zone_pool_mod = gethrtime();
4354 	zone->zone_psetid = ZONE_PS_INVAL;
4355 	zone->zone_ncpus = 0;
4356 	zone->zone_ncpus_online = 0;
4357 	zone->zone_restart_init = B_TRUE;
4358 	zone->zone_brand = &native_brand;
4359 	zone->zone_initname = NULL;
4360 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4361 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4362 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4363 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4364 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4365 	    offsetof(zone_ref_t, zref_linkage));
4366 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4367 	    offsetof(struct zsd_entry, zsd_linkage));
4368 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4369 	    offsetof(zone_dataset_t, zd_linkage));
4370 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4371 	    offsetof(zone_dl_t, zdl_linkage));
4372 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4373 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4374 
4375 	if (flags & ZCF_NET_EXCL) {
4376 		zone->zone_flags |= ZF_NET_EXCL;
4377 	}
4378 
4379 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4380 		zone_free(zone);
4381 		return (zone_create_error(error, 0, extended_error));
4382 	}
4383 
4384 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4385 		zone_free(zone);
4386 		return (zone_create_error(error, 0, extended_error));
4387 	}
4388 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4389 		zone_free(zone);
4390 		return (zone_create_error(error, 0, extended_error));
4391 	}
4392 
4393 	/* initialize node name to be the same as zone name */
4394 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4395 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4396 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4397 
4398 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4399 	zone->zone_domain[0] = '\0';
4400 	zone->zone_hostid = HW_INVALID_HOSTID;
4401 	zone->zone_shares = 1;
4402 	zone->zone_shmmax = 0;
4403 	zone->zone_ipc.ipcq_shmmni = 0;
4404 	zone->zone_ipc.ipcq_semmni = 0;
4405 	zone->zone_ipc.ipcq_msgmni = 0;
4406 	zone->zone_bootargs = NULL;
4407 	zone->zone_fs_allowed = NULL;
4408 	zone->zone_initname =
4409 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4410 	(void) strcpy(zone->zone_initname, zone_default_initname);
4411 	zone->zone_nlwps = 0;
4412 	zone->zone_nlwps_ctl = INT_MAX;
4413 	zone->zone_nprocs = 0;
4414 	zone->zone_nprocs_ctl = INT_MAX;
4415 	zone->zone_locked_mem = 0;
4416 	zone->zone_locked_mem_ctl = UINT64_MAX;
4417 	zone->zone_max_swap = 0;
4418 	zone->zone_max_swap_ctl = UINT64_MAX;
4419 	zone->zone_max_lofi = 0;
4420 	zone->zone_max_lofi_ctl = UINT64_MAX;
4421 	zone0.zone_lockedmem_kstat = NULL;
4422 	zone0.zone_swapresv_kstat = NULL;
4423 
4424 	/*
4425 	 * Zsched initializes the rctls.
4426 	 */
4427 	zone->zone_rctls = NULL;
4428 
4429 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4430 		zone_free(zone);
4431 		return (zone_create_error(error, 0, extended_error));
4432 	}
4433 
4434 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4435 		zone_free(zone);
4436 		return (set_errno(error));
4437 	}
4438 
4439 	/*
4440 	 * Read in the trusted system parameters:
4441 	 * match flag and sensitivity label.
4442 	 */
4443 	zone->zone_match = match;
4444 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4445 		/* Fail if requested to set doi to anything but system's doi */
4446 		if (doi != 0 && doi != default_doi) {
4447 			zone_free(zone);
4448 			return (set_errno(EINVAL));
4449 		}
4450 		/* Always apply system's doi to the zone */
4451 		error = zone_set_label(zone, label, default_doi);
4452 		if (error != 0) {
4453 			zone_free(zone);
4454 			return (set_errno(error));
4455 		}
4456 		insert_label_hash = B_TRUE;
4457 	} else {
4458 		/* all zones get an admin_low label if system is not labeled */
4459 		zone->zone_slabel = l_admin_low;
4460 		label_hold(l_admin_low);
4461 		insert_label_hash = B_FALSE;
4462 	}
4463 
4464 	/*
4465 	 * Stop all lwps since that's what normally happens as part of fork().
4466 	 * This needs to happen before we grab any locks to avoid deadlock
4467 	 * (another lwp in the process could be waiting for the held lock).
4468 	 */
4469 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4470 		zone_free(zone);
4471 		nvlist_free(rctls);
4472 		return (zone_create_error(error, 0, extended_error));
4473 	}
4474 
4475 	if (block_mounts(zone) == 0) {
4476 		mutex_enter(&pp->p_lock);
4477 		if (curthread != pp->p_agenttp)
4478 			continuelwps(pp);
4479 		mutex_exit(&pp->p_lock);
4480 		zone_free(zone);
4481 		nvlist_free(rctls);
4482 		return (zone_create_error(error, 0, extended_error));
4483 	}
4484 
4485 	/*
4486 	 * Set up credential for kernel access.  After this, any errors
4487 	 * should go through the dance in errout rather than calling
4488 	 * zone_free directly.
4489 	 */
4490 	zone->zone_kcred = crdup(kcred);
4491 	crsetzone(zone->zone_kcred, zone);
4492 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4493 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4494 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4495 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4496 
4497 	mutex_enter(&zonehash_lock);
4498 	/*
4499 	 * Make sure zone doesn't already exist.
4500 	 *
4501 	 * If the system and zone are labeled,
4502 	 * make sure no other zone exists that has the same label.
4503 	 */
4504 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4505 	    (insert_label_hash &&
4506 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4507 		zone_status_t status;
4508 
4509 		status = zone_status_get(ztmp);
4510 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4511 			error = EEXIST;
4512 		else
4513 			error = EBUSY;
4514 
4515 		if (insert_label_hash)
4516 			error2 = ZE_LABELINUSE;
4517 
4518 		goto errout;
4519 	}
4520 
4521 	/*
4522 	 * Don't allow zone creations which would cause one zone's rootpath to
4523 	 * be accessible from that of another (non-global) zone.
4524 	 */
4525 	if (zone_is_nested(zone->zone_rootpath)) {
4526 		error = EBUSY;
4527 		goto errout;
4528 	}
4529 
4530 	ASSERT(zonecount != 0);		/* check for leaks */
4531 	if (zonecount + 1 > maxzones) {
4532 		error = ENOMEM;
4533 		goto errout;
4534 	}
4535 
4536 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4537 		error = EBUSY;
4538 		error2 = ZE_AREMOUNTS;
4539 		goto errout;
4540 	}
4541 
4542 	/*
4543 	 * Zone is still incomplete, but we need to drop all locks while
4544 	 * zsched() initializes this zone's kernel process.  We
4545 	 * optimistically add the zone to the hashtable and associated
4546 	 * lists so a parallel zone_create() doesn't try to create the
4547 	 * same zone.
4548 	 */
4549 	zonecount++;
4550 	(void) mod_hash_insert(zonehashbyid,
4551 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4552 	    (mod_hash_val_t)(uintptr_t)zone);
4553 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4554 	(void) strcpy(str, zone->zone_name);
4555 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4556 	    (mod_hash_val_t)(uintptr_t)zone);
4557 	if (insert_label_hash) {
4558 		(void) mod_hash_insert(zonehashbylabel,
4559 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4560 		zone->zone_flags |= ZF_HASHED_LABEL;
4561 	}
4562 
4563 	/*
4564 	 * Insert into active list.  At this point there are no 'hold's
4565 	 * on the zone, but everyone else knows not to use it, so we can
4566 	 * continue to use it.  zsched() will do a zone_hold() if the
4567 	 * newproc() is successful.
4568 	 */
4569 	list_insert_tail(&zone_active, zone);
4570 	mutex_exit(&zonehash_lock);
4571 
4572 	zarg.zone = zone;
4573 	zarg.nvlist = rctls;
4574 	/*
4575 	 * The process, task, and project rctls are probably wrong;
4576 	 * we need an interface to get the default values of all rctls,
4577 	 * and initialize zsched appropriately.  I'm not sure that that
4578 	 * makes much of a difference, though.
4579 	 */
4580 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4581 	if (error != 0) {
4582 		/*
4583 		 * We need to undo all globally visible state.
4584 		 */
4585 		mutex_enter(&zonehash_lock);
4586 		list_remove(&zone_active, zone);
4587 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4588 			ASSERT(zone->zone_slabel != NULL);
4589 			(void) mod_hash_destroy(zonehashbylabel,
4590 			    (mod_hash_key_t)zone->zone_slabel);
4591 		}
4592 		(void) mod_hash_destroy(zonehashbyname,
4593 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4594 		(void) mod_hash_destroy(zonehashbyid,
4595 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4596 		ASSERT(zonecount > 1);
4597 		zonecount--;
4598 		goto errout;
4599 	}
4600 
4601 	/*
4602 	 * Zone creation can't fail from now on.
4603 	 */
4604 
4605 	/*
4606 	 * Create zone kstats
4607 	 */
4608 	zone_kstat_create(zone);
4609 
4610 	/*
4611 	 * Let the other lwps continue.
4612 	 */
4613 	mutex_enter(&pp->p_lock);
4614 	if (curthread != pp->p_agenttp)
4615 		continuelwps(pp);
4616 	mutex_exit(&pp->p_lock);
4617 
4618 	/*
4619 	 * Wait for zsched to finish initializing the zone.
4620 	 */
4621 	zone_status_wait(zone, ZONE_IS_READY);
4622 	/*
4623 	 * The zone is fully visible, so we can let mounts progress.
4624 	 */
4625 	resume_mounts(zone);
4626 	nvlist_free(rctls);
4627 
4628 	return (zoneid);
4629 
4630 errout:
4631 	mutex_exit(&zonehash_lock);
4632 	/*
4633 	 * Let the other lwps continue.
4634 	 */
4635 	mutex_enter(&pp->p_lock);
4636 	if (curthread != pp->p_agenttp)
4637 		continuelwps(pp);
4638 	mutex_exit(&pp->p_lock);
4639 
4640 	resume_mounts(zone);
4641 	nvlist_free(rctls);
4642 	/*
4643 	 * There is currently one reference to the zone, a cred_ref from
4644 	 * zone_kcred.  To free the zone, we call crfree, which will call
4645 	 * zone_cred_rele, which will call zone_free.
4646 	 */
4647 	ASSERT(zone->zone_cred_ref == 1);
4648 	ASSERT(zone->zone_kcred->cr_ref == 1);
4649 	ASSERT(zone->zone_ref == 0);
4650 	zkcr = zone->zone_kcred;
4651 	zone->zone_kcred = NULL;
4652 	crfree(zkcr);				/* triggers call to zone_free */
4653 	return (zone_create_error(error, error2, extended_error));
4654 }
4655 
4656 /*
4657  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4658  * the heavy lifting.  initname is the path to the program to launch
4659  * at the "top" of the zone; if this is NULL, we use the system default,
4660  * which is stored at zone_default_initname.
4661  */
4662 static int
4663 zone_boot(zoneid_t zoneid)
4664 {
4665 	int err;
4666 	zone_t *zone;
4667 
4668 	if (secpolicy_zone_config(CRED()) != 0)
4669 		return (set_errno(EPERM));
4670 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4671 		return (set_errno(EINVAL));
4672 
4673 	mutex_enter(&zonehash_lock);
4674 	/*
4675 	 * Look for zone under hash lock to prevent races with calls to
4676 	 * zone_shutdown, zone_destroy, etc.
4677 	 */
4678 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4679 		mutex_exit(&zonehash_lock);
4680 		return (set_errno(EINVAL));
4681 	}
4682 
4683 	mutex_enter(&zone_status_lock);
4684 	if (zone_status_get(zone) != ZONE_IS_READY) {
4685 		mutex_exit(&zone_status_lock);
4686 		mutex_exit(&zonehash_lock);
4687 		return (set_errno(EINVAL));
4688 	}
4689 	zone_status_set(zone, ZONE_IS_BOOTING);
4690 	mutex_exit(&zone_status_lock);
4691 
4692 	zone_hold(zone);	/* so we can use the zone_t later */
4693 	mutex_exit(&zonehash_lock);
4694 
4695 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4696 		zone_rele(zone);
4697 		return (set_errno(EINTR));
4698 	}
4699 
4700 	/*
4701 	 * Boot (starting init) might have failed, in which case the zone
4702 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4703 	 * be placed in zone->zone_boot_err, and so we return that.
4704 	 */
4705 	err = zone->zone_boot_err;
4706 	zone_rele(zone);
4707 	return (err ? set_errno(err) : 0);
4708 }
4709 
4710 /*
4711  * Kills all user processes in the zone, waiting for them all to exit
4712  * before returning.
4713  */
4714 static int
4715 zone_empty(zone_t *zone)
4716 {
4717 	int waitstatus;
4718 
4719 	/*
4720 	 * We need to drop zonehash_lock before killing all
4721 	 * processes, otherwise we'll deadlock with zone_find_*
4722 	 * which can be called from the exit path.
4723 	 */
4724 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4725 	while ((waitstatus = zone_status_timedwait_sig(zone,
4726 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4727 		killall(zone->zone_id);
4728 	}
4729 	/*
4730 	 * return EINTR if we were signaled
4731 	 */
4732 	if (waitstatus == 0)
4733 		return (EINTR);
4734 	return (0);
4735 }
4736 
4737 /*
4738  * This function implements the policy for zone visibility.
4739  *
4740  * In standard Solaris, a non-global zone can only see itself.
4741  *
4742  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4743  * it dominates. For this test, the label of the global zone is treated as
4744  * admin_high so it is special-cased instead of being checked for dominance.
4745  *
4746  * Returns true if zone attributes are viewable, false otherwise.
4747  */
4748 static boolean_t
4749 zone_list_access(zone_t *zone)
4750 {
4751 
4752 	if (curproc->p_zone == global_zone ||
4753 	    curproc->p_zone == zone) {
4754 		return (B_TRUE);
4755 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4756 		bslabel_t *curproc_label;
4757 		bslabel_t *zone_label;
4758 
4759 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4760 		zone_label = label2bslabel(zone->zone_slabel);
4761 
4762 		if (zone->zone_id != GLOBAL_ZONEID &&
4763 		    bldominates(curproc_label, zone_label)) {
4764 			return (B_TRUE);
4765 		} else {
4766 			return (B_FALSE);
4767 		}
4768 	} else {
4769 		return (B_FALSE);
4770 	}
4771 }
4772 
4773 /*
4774  * Systemcall to start the zone's halt sequence.  By the time this
4775  * function successfully returns, all user processes and kernel threads
4776  * executing in it will have exited, ZSD shutdown callbacks executed,
4777  * and the zone status set to ZONE_IS_DOWN.
4778  *
4779  * It is possible that the call will interrupt itself if the caller is the
4780  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4781  */
4782 static int
4783 zone_shutdown(zoneid_t zoneid)
4784 {
4785 	int error;
4786 	zone_t *zone;
4787 	zone_status_t status;
4788 
4789 	if (secpolicy_zone_config(CRED()) != 0)
4790 		return (set_errno(EPERM));
4791 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4792 		return (set_errno(EINVAL));
4793 
4794 	mutex_enter(&zonehash_lock);
4795 	/*
4796 	 * Look for zone under hash lock to prevent races with other
4797 	 * calls to zone_shutdown and zone_destroy.
4798 	 */
4799 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4800 		mutex_exit(&zonehash_lock);
4801 		return (set_errno(EINVAL));
4802 	}
4803 
4804 	/*
4805 	 * We have to drop zonehash_lock before calling block_mounts.
4806 	 * Hold the zone so we can continue to use the zone_t.
4807 	 */
4808 	zone_hold(zone);
4809 	mutex_exit(&zonehash_lock);
4810 
4811 	/*
4812 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4813 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4814 	 *
4815 	 * e.g. NFS can fail the mount if it determines that the zone
4816 	 * has already begun the shutdown sequence.
4817 	 *
4818 	 */
4819 	if (block_mounts(zone) == 0) {
4820 		zone_rele(zone);
4821 		return (set_errno(EINTR));
4822 	}
4823 
4824 	mutex_enter(&zonehash_lock);
4825 	mutex_enter(&zone_status_lock);
4826 	status = zone_status_get(zone);
4827 	/*
4828 	 * Fail if the zone isn't fully initialized yet.
4829 	 */
4830 	if (status < ZONE_IS_READY) {
4831 		mutex_exit(&zone_status_lock);
4832 		mutex_exit(&zonehash_lock);
4833 		resume_mounts(zone);
4834 		zone_rele(zone);
4835 		return (set_errno(EINVAL));
4836 	}
4837 	/*
4838 	 * If conditions required for zone_shutdown() to return have been met,
4839 	 * return success.
4840 	 */
4841 	if (status >= ZONE_IS_DOWN) {
4842 		mutex_exit(&zone_status_lock);
4843 		mutex_exit(&zonehash_lock);
4844 		resume_mounts(zone);
4845 		zone_rele(zone);
4846 		return (0);
4847 	}
4848 	/*
4849 	 * If zone_shutdown() hasn't been called before, go through the motions.
4850 	 * If it has, there's nothing to do but wait for the kernel threads to
4851 	 * drain.
4852 	 */
4853 	if (status < ZONE_IS_EMPTY) {
4854 		uint_t ntasks;
4855 
4856 		mutex_enter(&zone->zone_lock);
4857 		if ((ntasks = zone->zone_ntasks) != 1) {
4858 			/*
4859 			 * There's still stuff running.
4860 			 */
4861 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4862 		}
4863 		mutex_exit(&zone->zone_lock);
4864 		if (ntasks == 1) {
4865 			/*
4866 			 * The only way to create another task is through
4867 			 * zone_enter(), which will block until we drop
4868 			 * zonehash_lock.  The zone is empty.
4869 			 */
4870 			if (zone->zone_kthreads == NULL) {
4871 				/*
4872 				 * Skip ahead to ZONE_IS_DOWN
4873 				 */
4874 				zone_status_set(zone, ZONE_IS_DOWN);
4875 			} else {
4876 				zone_status_set(zone, ZONE_IS_EMPTY);
4877 			}
4878 		}
4879 	}
4880 	mutex_exit(&zone_status_lock);
4881 	mutex_exit(&zonehash_lock);
4882 	resume_mounts(zone);
4883 
4884 	if (error = zone_empty(zone)) {
4885 		zone_rele(zone);
4886 		return (set_errno(error));
4887 	}
4888 	/*
4889 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4890 	 * longer be notified of changes to the pools configuration, so
4891 	 * in order to not end up with a stale pool pointer, we point
4892 	 * ourselves at the default pool and remove all resource
4893 	 * visibility.  This is especially important as the zone_t may
4894 	 * languish on the deathrow for a very long time waiting for
4895 	 * cred's to drain out.
4896 	 *
4897 	 * This rebinding of the zone can happen multiple times
4898 	 * (presumably due to interrupted or parallel systemcalls)
4899 	 * without any adverse effects.
4900 	 */
4901 	if (pool_lock_intr() != 0) {
4902 		zone_rele(zone);
4903 		return (set_errno(EINTR));
4904 	}
4905 	if (pool_state == POOL_ENABLED) {
4906 		mutex_enter(&cpu_lock);
4907 		zone_pool_set(zone, pool_default);
4908 		/*
4909 		 * The zone no longer needs to be able to see any cpus.
4910 		 */
4911 		zone_pset_set(zone, ZONE_PS_INVAL);
4912 		mutex_exit(&cpu_lock);
4913 	}
4914 	pool_unlock();
4915 
4916 	/*
4917 	 * ZSD shutdown callbacks can be executed multiple times, hence
4918 	 * it is safe to not be holding any locks across this call.
4919 	 */
4920 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4921 
4922 	mutex_enter(&zone_status_lock);
4923 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4924 		zone_status_set(zone, ZONE_IS_DOWN);
4925 	mutex_exit(&zone_status_lock);
4926 
4927 	/*
4928 	 * Wait for kernel threads to drain.
4929 	 */
4930 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4931 		zone_rele(zone);
4932 		return (set_errno(EINTR));
4933 	}
4934 
4935 	/*
4936 	 * Zone can be become down/destroyable even if the above wait
4937 	 * returns EINTR, so any code added here may never execute.
4938 	 * (i.e. don't add code here)
4939 	 */
4940 
4941 	zone_rele(zone);
4942 	return (0);
4943 }
4944 
4945 /*
4946  * Log the specified zone's reference counts.  The caller should not be
4947  * holding the zone's zone_lock.
4948  */
4949 static void
4950 zone_log_refcounts(zone_t *zone)
4951 {
4952 	char *buffer;
4953 	char *buffer_position;
4954 	uint32_t buffer_size;
4955 	uint32_t index;
4956 	uint_t ref;
4957 	uint_t cred_ref;
4958 
4959 	/*
4960 	 * Construct a string representing the subsystem-specific reference
4961 	 * counts.  The counts are printed in ascending order by index into the
4962 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
4963 	 * square brackets [] and will only contain nonzero reference counts.
4964 	 *
4965 	 * The buffer will hold two square bracket characters plus ten digits,
4966 	 * one colon, one space, one comma, and some characters for a
4967 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
4968 	 * bit integers have at most ten decimal digits.)  The last
4969 	 * reference count's comma is replaced by the closing square
4970 	 * bracket and a NULL character to terminate the string.
4971 	 *
4972 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
4973 	 * snapshot of the zone's reference counters.
4974 	 *
4975 	 * First, figure out how much space the string buffer will need.
4976 	 * The buffer's size is stored in buffer_size.
4977 	 */
4978 	buffer_size = 2;			/* for the square brackets */
4979 	mutex_enter(&zone->zone_lock);
4980 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4981 	ref = zone->zone_ref;
4982 	cred_ref = zone->zone_cred_ref;
4983 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4984 		if (zone->zone_subsys_ref[index] != 0)
4985 			buffer_size += strlen(zone_ref_subsys_names[index]) +
4986 			    13;
4987 	if (buffer_size == 2) {
4988 		/*
4989 		 * No subsystems had nonzero reference counts.  Don't bother
4990 		 * with allocating a buffer; just log the general-purpose and
4991 		 * credential reference counts.
4992 		 */
4993 		mutex_exit(&zone->zone_lock);
4994 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4995 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
4996 		    "references and %u credential references are still extant",
4997 		    zone->zone_name, zone->zone_id, ref, cred_ref);
4998 		return;
4999 	}
5000 
5001 	/*
5002 	 * buffer_size contains the exact number of characters that the
5003 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5004 	 * subsystem-specific reference counts.  Surround the results with
5005 	 * square brackets afterwards.
5006 	 */
5007 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5008 	buffer_position = &buffer[1];
5009 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5010 		/*
5011 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5012 		 * the modified buffer rather than the number of bytes written
5013 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5014 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5015 		 * number of bytes written.  Using INT_MAX is safe because
5016 		 * the buffer is perfectly sized for the data: we'll never
5017 		 * overrun the buffer.
5018 		 */
5019 		if (zone->zone_subsys_ref[index] != 0)
5020 			buffer_position += snprintf(buffer_position, INT_MAX,
5021 			    "%s: %u,", zone_ref_subsys_names[index],
5022 			    zone->zone_subsys_ref[index]);
5023 	}
5024 	mutex_exit(&zone->zone_lock);
5025 	buffer[0] = '[';
5026 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5027 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5028 	buffer_position[-1] = ']';
5029 
5030 	/*
5031 	 * Log the reference counts and free the message buffer.
5032 	 */
5033 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5034 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5035 	    "%u credential references are still extant %s", zone->zone_name,
5036 	    zone->zone_id, ref, cred_ref, buffer);
5037 	kmem_free(buffer, buffer_size);
5038 }
5039 
5040 /*
5041  * Systemcall entry point to finalize the zone halt process.  The caller
5042  * must have already successfully called zone_shutdown().
5043  *
5044  * Upon successful completion, the zone will have been fully destroyed:
5045  * zsched will have exited, destructor callbacks executed, and the zone
5046  * removed from the list of active zones.
5047  */
5048 static int
5049 zone_destroy(zoneid_t zoneid)
5050 {
5051 	uint64_t uniqid;
5052 	zone_t *zone;
5053 	zone_status_t status;
5054 	clock_t wait_time;
5055 	boolean_t log_refcounts;
5056 
5057 	if (secpolicy_zone_config(CRED()) != 0)
5058 		return (set_errno(EPERM));
5059 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5060 		return (set_errno(EINVAL));
5061 
5062 	mutex_enter(&zonehash_lock);
5063 	/*
5064 	 * Look for zone under hash lock to prevent races with other
5065 	 * calls to zone_destroy.
5066 	 */
5067 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5068 		mutex_exit(&zonehash_lock);
5069 		return (set_errno(EINVAL));
5070 	}
5071 
5072 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5073 		mutex_exit(&zonehash_lock);
5074 		return (set_errno(EBUSY));
5075 	}
5076 	mutex_enter(&zone_status_lock);
5077 	status = zone_status_get(zone);
5078 	if (status < ZONE_IS_DOWN) {
5079 		mutex_exit(&zone_status_lock);
5080 		mutex_exit(&zonehash_lock);
5081 		return (set_errno(EBUSY));
5082 	} else if (status == ZONE_IS_DOWN) {
5083 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5084 	}
5085 	mutex_exit(&zone_status_lock);
5086 	zone_hold(zone);
5087 	mutex_exit(&zonehash_lock);
5088 
5089 	/*
5090 	 * wait for zsched to exit
5091 	 */
5092 	zone_status_wait(zone, ZONE_IS_DEAD);
5093 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5094 	zone->zone_netstack = NULL;
5095 	uniqid = zone->zone_uniqid;
5096 	zone_rele(zone);
5097 	zone = NULL;	/* potentially free'd */
5098 
5099 	log_refcounts = B_FALSE;
5100 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5101 	mutex_enter(&zonehash_lock);
5102 	for (; /* ever */; ) {
5103 		boolean_t unref;
5104 		boolean_t refs_have_been_logged;
5105 
5106 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5107 		    zone->zone_uniqid != uniqid) {
5108 			/*
5109 			 * The zone has gone away.  Necessary conditions
5110 			 * are met, so we return success.
5111 			 */
5112 			mutex_exit(&zonehash_lock);
5113 			return (0);
5114 		}
5115 		mutex_enter(&zone->zone_lock);
5116 		unref = ZONE_IS_UNREF(zone);
5117 		refs_have_been_logged = (zone->zone_flags &
5118 		    ZF_REFCOUNTS_LOGGED);
5119 		mutex_exit(&zone->zone_lock);
5120 		if (unref) {
5121 			/*
5122 			 * There is only one reference to the zone -- that
5123 			 * added when the zone was added to the hashtables --
5124 			 * and things will remain this way until we drop
5125 			 * zonehash_lock... we can go ahead and cleanup the
5126 			 * zone.
5127 			 */
5128 			break;
5129 		}
5130 
5131 		/*
5132 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5133 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5134 		 * some zone's general-purpose reference count reaches one.
5135 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5136 		 * on zone_destroy_cv, then log the zone's reference counts and
5137 		 * continue to wait for zone_rele() and zone_cred_rele().
5138 		 */
5139 		if (!refs_have_been_logged) {
5140 			if (!log_refcounts) {
5141 				/*
5142 				 * This thread hasn't timed out waiting on
5143 				 * zone_destroy_cv yet.  Wait wait_time clock
5144 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5145 				 * seconds) for the zone's references to clear.
5146 				 */
5147 				ASSERT(wait_time > 0);
5148 				wait_time = cv_reltimedwait_sig(
5149 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5150 				    TR_SEC);
5151 				if (wait_time > 0) {
5152 					/*
5153 					 * A thread in zone_rele() or
5154 					 * zone_cred_rele() signaled
5155 					 * zone_destroy_cv before this thread's
5156 					 * wait timed out.  The zone might have
5157 					 * only one reference left; find out!
5158 					 */
5159 					continue;
5160 				} else if (wait_time == 0) {
5161 					/* The thread's process was signaled. */
5162 					mutex_exit(&zonehash_lock);
5163 					return (set_errno(EINTR));
5164 				}
5165 
5166 				/*
5167 				 * The thread timed out while waiting on
5168 				 * zone_destroy_cv.  Even though the thread
5169 				 * timed out, it has to check whether another
5170 				 * thread woke up from zone_destroy_cv and
5171 				 * destroyed the zone.
5172 				 *
5173 				 * If the zone still exists and has more than
5174 				 * one unreleased general-purpose reference,
5175 				 * then log the zone's reference counts.
5176 				 */
5177 				log_refcounts = B_TRUE;
5178 				continue;
5179 			}
5180 
5181 			/*
5182 			 * The thread already timed out on zone_destroy_cv while
5183 			 * waiting for subsystems to release the zone's last
5184 			 * general-purpose references.  Log the zone's reference
5185 			 * counts and wait indefinitely on zone_destroy_cv.
5186 			 */
5187 			zone_log_refcounts(zone);
5188 		}
5189 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5190 			/* The thread's process was signaled. */
5191 			mutex_exit(&zonehash_lock);
5192 			return (set_errno(EINTR));
5193 		}
5194 	}
5195 
5196 	/*
5197 	 * Remove CPU cap for this zone now since we're not going to
5198 	 * fail below this point.
5199 	 */
5200 	cpucaps_zone_remove(zone);
5201 
5202 	/* Get rid of the zone's kstats */
5203 	zone_kstat_delete(zone);
5204 
5205 	/* remove the pfexecd doors */
5206 	if (zone->zone_pfexecd != NULL) {
5207 		klpd_freelist(&zone->zone_pfexecd);
5208 		zone->zone_pfexecd = NULL;
5209 	}
5210 
5211 	/* free brand specific data */
5212 	if (ZONE_IS_BRANDED(zone))
5213 		ZBROP(zone)->b_free_brand_data(zone);
5214 
5215 	/* Say goodbye to brand framework. */
5216 	brand_unregister_zone(zone->zone_brand);
5217 
5218 	/*
5219 	 * It is now safe to let the zone be recreated; remove it from the
5220 	 * lists.  The memory will not be freed until the last cred
5221 	 * reference goes away.
5222 	 */
5223 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5224 	zonecount--;
5225 	/* remove from active list and hash tables */
5226 	list_remove(&zone_active, zone);
5227 	(void) mod_hash_destroy(zonehashbyname,
5228 	    (mod_hash_key_t)zone->zone_name);
5229 	(void) mod_hash_destroy(zonehashbyid,
5230 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5231 	if (zone->zone_flags & ZF_HASHED_LABEL)
5232 		(void) mod_hash_destroy(zonehashbylabel,
5233 		    (mod_hash_key_t)zone->zone_slabel);
5234 	mutex_exit(&zonehash_lock);
5235 
5236 	/*
5237 	 * Release the root vnode; we're not using it anymore.  Nor should any
5238 	 * other thread that might access it exist.
5239 	 */
5240 	if (zone->zone_rootvp != NULL) {
5241 		VN_RELE(zone->zone_rootvp);
5242 		zone->zone_rootvp = NULL;
5243 	}
5244 
5245 	/* add to deathrow list */
5246 	mutex_enter(&zone_deathrow_lock);
5247 	list_insert_tail(&zone_deathrow, zone);
5248 	mutex_exit(&zone_deathrow_lock);
5249 
5250 	/*
5251 	 * Drop last reference (which was added by zsched()), this will
5252 	 * free the zone unless there are outstanding cred references.
5253 	 */
5254 	zone_rele(zone);
5255 	return (0);
5256 }
5257 
5258 /*
5259  * Systemcall entry point for zone_getattr(2).
5260  */
5261 static ssize_t
5262 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5263 {
5264 	size_t size;
5265 	int error = 0, err;
5266 	zone_t *zone;
5267 	char *zonepath;
5268 	char *outstr;
5269 	zone_status_t zone_status;
5270 	pid_t initpid;
5271 	boolean_t global = (curzone == global_zone);
5272 	boolean_t inzone = (curzone->zone_id == zoneid);
5273 	ushort_t flags;
5274 	zone_net_data_t *zbuf;
5275 
5276 	mutex_enter(&zonehash_lock);
5277 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5278 		mutex_exit(&zonehash_lock);
5279 		return (set_errno(EINVAL));
5280 	}
5281 	zone_status = zone_status_get(zone);
5282 	if (zone_status < ZONE_IS_INITIALIZED) {
5283 		mutex_exit(&zonehash_lock);
5284 		return (set_errno(EINVAL));
5285 	}
5286 	zone_hold(zone);
5287 	mutex_exit(&zonehash_lock);
5288 
5289 	/*
5290 	 * If not in the global zone, don't show information about other zones,
5291 	 * unless the system is labeled and the local zone's label dominates
5292 	 * the other zone.
5293 	 */
5294 	if (!zone_list_access(zone)) {
5295 		zone_rele(zone);
5296 		return (set_errno(EINVAL));
5297 	}
5298 
5299 	switch (attr) {
5300 	case ZONE_ATTR_ROOT:
5301 		if (global) {
5302 			/*
5303 			 * Copy the path to trim the trailing "/" (except for
5304 			 * the global zone).
5305 			 */
5306 			if (zone != global_zone)
5307 				size = zone->zone_rootpathlen - 1;
5308 			else
5309 				size = zone->zone_rootpathlen;
5310 			zonepath = kmem_alloc(size, KM_SLEEP);
5311 			bcopy(zone->zone_rootpath, zonepath, size);
5312 			zonepath[size - 1] = '\0';
5313 		} else {
5314 			if (inzone || !is_system_labeled()) {
5315 				/*
5316 				 * Caller is not in the global zone.
5317 				 * if the query is on the current zone
5318 				 * or the system is not labeled,
5319 				 * just return faked-up path for current zone.
5320 				 */
5321 				zonepath = "/";
5322 				size = 2;
5323 			} else {
5324 				/*
5325 				 * Return related path for current zone.
5326 				 */
5327 				int prefix_len = strlen(zone_prefix);
5328 				int zname_len = strlen(zone->zone_name);
5329 
5330 				size = prefix_len + zname_len + 1;
5331 				zonepath = kmem_alloc(size, KM_SLEEP);
5332 				bcopy(zone_prefix, zonepath, prefix_len);
5333 				bcopy(zone->zone_name, zonepath +
5334 				    prefix_len, zname_len);
5335 				zonepath[size - 1] = '\0';
5336 			}
5337 		}
5338 		if (bufsize > size)
5339 			bufsize = size;
5340 		if (buf != NULL) {
5341 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5342 			if (err != 0 && err != ENAMETOOLONG)
5343 				error = EFAULT;
5344 		}
5345 		if (global || (is_system_labeled() && !inzone))
5346 			kmem_free(zonepath, size);
5347 		break;
5348 
5349 	case ZONE_ATTR_NAME:
5350 		size = strlen(zone->zone_name) + 1;
5351 		if (bufsize > size)
5352 			bufsize = size;
5353 		if (buf != NULL) {
5354 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5355 			if (err != 0 && err != ENAMETOOLONG)
5356 				error = EFAULT;
5357 		}
5358 		break;
5359 
5360 	case ZONE_ATTR_STATUS:
5361 		/*
5362 		 * Since we're not holding zonehash_lock, the zone status
5363 		 * may be anything; leave it up to userland to sort it out.
5364 		 */
5365 		size = sizeof (zone_status);
5366 		if (bufsize > size)
5367 			bufsize = size;
5368 		zone_status = zone_status_get(zone);
5369 		if (buf != NULL &&
5370 		    copyout(&zone_status, buf, bufsize) != 0)
5371 			error = EFAULT;
5372 		break;
5373 	case ZONE_ATTR_FLAGS:
5374 		size = sizeof (zone->zone_flags);
5375 		if (bufsize > size)
5376 			bufsize = size;
5377 		flags = zone->zone_flags;
5378 		if (buf != NULL &&
5379 		    copyout(&flags, buf, bufsize) != 0)
5380 			error = EFAULT;
5381 		break;
5382 	case ZONE_ATTR_PRIVSET:
5383 		size = sizeof (priv_set_t);
5384 		if (bufsize > size)
5385 			bufsize = size;
5386 		if (buf != NULL &&
5387 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5388 			error = EFAULT;
5389 		break;
5390 	case ZONE_ATTR_UNIQID:
5391 		size = sizeof (zone->zone_uniqid);
5392 		if (bufsize > size)
5393 			bufsize = size;
5394 		if (buf != NULL &&
5395 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5396 			error = EFAULT;
5397 		break;
5398 	case ZONE_ATTR_POOLID:
5399 		{
5400 			pool_t *pool;
5401 			poolid_t poolid;
5402 
5403 			if (pool_lock_intr() != 0) {
5404 				error = EINTR;
5405 				break;
5406 			}
5407 			pool = zone_pool_get(zone);
5408 			poolid = pool->pool_id;
5409 			pool_unlock();
5410 			size = sizeof (poolid);
5411 			if (bufsize > size)
5412 				bufsize = size;
5413 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5414 				error = EFAULT;
5415 		}
5416 		break;
5417 	case ZONE_ATTR_SLBL:
5418 		size = sizeof (bslabel_t);
5419 		if (bufsize > size)
5420 			bufsize = size;
5421 		if (zone->zone_slabel == NULL)
5422 			error = EINVAL;
5423 		else if (buf != NULL &&
5424 		    copyout(label2bslabel(zone->zone_slabel), buf,
5425 		    bufsize) != 0)
5426 			error = EFAULT;
5427 		break;
5428 	case ZONE_ATTR_INITPID:
5429 		size = sizeof (initpid);
5430 		if (bufsize > size)
5431 			bufsize = size;
5432 		initpid = zone->zone_proc_initpid;
5433 		if (initpid == -1) {
5434 			error = ESRCH;
5435 			break;
5436 		}
5437 		if (buf != NULL &&
5438 		    copyout(&initpid, buf, bufsize) != 0)
5439 			error = EFAULT;
5440 		break;
5441 	case ZONE_ATTR_BRAND:
5442 		size = strlen(zone->zone_brand->b_name) + 1;
5443 
5444 		if (bufsize > size)
5445 			bufsize = size;
5446 		if (buf != NULL) {
5447 			err = copyoutstr(zone->zone_brand->b_name, buf,
5448 			    bufsize, NULL);
5449 			if (err != 0 && err != ENAMETOOLONG)
5450 				error = EFAULT;
5451 		}
5452 		break;
5453 	case ZONE_ATTR_INITNAME:
5454 		size = strlen(zone->zone_initname) + 1;
5455 		if (bufsize > size)
5456 			bufsize = size;
5457 		if (buf != NULL) {
5458 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5459 			    NULL);
5460 			if (err != 0 && err != ENAMETOOLONG)
5461 				error = EFAULT;
5462 		}
5463 		break;
5464 	case ZONE_ATTR_BOOTARGS:
5465 		if (zone->zone_bootargs == NULL)
5466 			outstr = "";
5467 		else
5468 			outstr = zone->zone_bootargs;
5469 		size = strlen(outstr) + 1;
5470 		if (bufsize > size)
5471 			bufsize = size;
5472 		if (buf != NULL) {
5473 			err = copyoutstr(outstr, buf, bufsize, NULL);
5474 			if (err != 0 && err != ENAMETOOLONG)
5475 				error = EFAULT;
5476 		}
5477 		break;
5478 	case ZONE_ATTR_PHYS_MCAP:
5479 		size = sizeof (zone->zone_phys_mcap);
5480 		if (bufsize > size)
5481 			bufsize = size;
5482 		if (buf != NULL &&
5483 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5484 			error = EFAULT;
5485 		break;
5486 	case ZONE_ATTR_SCHED_CLASS:
5487 		mutex_enter(&class_lock);
5488 
5489 		if (zone->zone_defaultcid >= loaded_classes)
5490 			outstr = "";
5491 		else
5492 			outstr = sclass[zone->zone_defaultcid].cl_name;
5493 		size = strlen(outstr) + 1;
5494 		if (bufsize > size)
5495 			bufsize = size;
5496 		if (buf != NULL) {
5497 			err = copyoutstr(outstr, buf, bufsize, NULL);
5498 			if (err != 0 && err != ENAMETOOLONG)
5499 				error = EFAULT;
5500 		}
5501 
5502 		mutex_exit(&class_lock);
5503 		break;
5504 	case ZONE_ATTR_HOSTID:
5505 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5506 		    bufsize == sizeof (zone->zone_hostid)) {
5507 			size = sizeof (zone->zone_hostid);
5508 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5509 			    bufsize) != 0)
5510 				error = EFAULT;
5511 		} else {
5512 			error = EINVAL;
5513 		}
5514 		break;
5515 	case ZONE_ATTR_FS_ALLOWED:
5516 		if (zone->zone_fs_allowed == NULL)
5517 			outstr = "";
5518 		else
5519 			outstr = zone->zone_fs_allowed;
5520 		size = strlen(outstr) + 1;
5521 		if (bufsize > size)
5522 			bufsize = size;
5523 		if (buf != NULL) {
5524 			err = copyoutstr(outstr, buf, bufsize, NULL);
5525 			if (err != 0 && err != ENAMETOOLONG)
5526 				error = EFAULT;
5527 		}
5528 		break;
5529 	case ZONE_ATTR_NETWORK:
5530 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5531 		if (copyin(buf, zbuf, bufsize) != 0) {
5532 			error = EFAULT;
5533 		} else {
5534 			error = zone_get_network(zoneid, zbuf);
5535 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5536 				error = EFAULT;
5537 		}
5538 		kmem_free(zbuf, bufsize);
5539 		break;
5540 	default:
5541 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5542 			size = bufsize;
5543 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5544 		} else {
5545 			error = EINVAL;
5546 		}
5547 	}
5548 	zone_rele(zone);
5549 
5550 	if (error)
5551 		return (set_errno(error));
5552 	return ((ssize_t)size);
5553 }
5554 
5555 /*
5556  * Systemcall entry point for zone_setattr(2).
5557  */
5558 /*ARGSUSED*/
5559 static int
5560 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5561 {
5562 	zone_t *zone;
5563 	zone_status_t zone_status;
5564 	int err = -1;
5565 	zone_net_data_t *zbuf;
5566 
5567 	if (secpolicy_zone_config(CRED()) != 0)
5568 		return (set_errno(EPERM));
5569 
5570 	/*
5571 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5572 	 * global zone.
5573 	 */
5574 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5575 		return (set_errno(EINVAL));
5576 	}
5577 
5578 	mutex_enter(&zonehash_lock);
5579 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5580 		mutex_exit(&zonehash_lock);
5581 		return (set_errno(EINVAL));
5582 	}
5583 	zone_hold(zone);
5584 	mutex_exit(&zonehash_lock);
5585 
5586 	/*
5587 	 * At present most attributes can only be set on non-running,
5588 	 * non-global zones.
5589 	 */
5590 	zone_status = zone_status_get(zone);
5591 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5592 		err = EINVAL;
5593 		goto done;
5594 	}
5595 
5596 	switch (attr) {
5597 	case ZONE_ATTR_INITNAME:
5598 		err = zone_set_initname(zone, (const char *)buf);
5599 		break;
5600 	case ZONE_ATTR_INITNORESTART:
5601 		zone->zone_restart_init = B_FALSE;
5602 		err = 0;
5603 		break;
5604 	case ZONE_ATTR_BOOTARGS:
5605 		err = zone_set_bootargs(zone, (const char *)buf);
5606 		break;
5607 	case ZONE_ATTR_BRAND:
5608 		err = zone_set_brand(zone, (const char *)buf);
5609 		break;
5610 	case ZONE_ATTR_FS_ALLOWED:
5611 		err = zone_set_fs_allowed(zone, (const char *)buf);
5612 		break;
5613 	case ZONE_ATTR_PHYS_MCAP:
5614 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5615 		break;
5616 	case ZONE_ATTR_SCHED_CLASS:
5617 		err = zone_set_sched_class(zone, (const char *)buf);
5618 		break;
5619 	case ZONE_ATTR_HOSTID:
5620 		if (bufsize == sizeof (zone->zone_hostid)) {
5621 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5622 				err = 0;
5623 			else
5624 				err = EFAULT;
5625 		} else {
5626 			err = EINVAL;
5627 		}
5628 		break;
5629 	case ZONE_ATTR_NETWORK:
5630 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5631 			err = EINVAL;
5632 			break;
5633 		}
5634 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5635 		if (copyin(buf, zbuf, bufsize) != 0) {
5636 			kmem_free(zbuf, bufsize);
5637 			err = EFAULT;
5638 			break;
5639 		}
5640 		err = zone_set_network(zoneid, zbuf);
5641 		kmem_free(zbuf, bufsize);
5642 		break;
5643 	default:
5644 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5645 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5646 		else
5647 			err = EINVAL;
5648 	}
5649 
5650 done:
5651 	zone_rele(zone);
5652 	ASSERT(err != -1);
5653 	return (err != 0 ? set_errno(err) : 0);
5654 }
5655 
5656 /*
5657  * Return zero if the process has at least one vnode mapped in to its
5658  * address space which shouldn't be allowed to change zones.
5659  *
5660  * Also return zero if the process has any shared mappings which reserve
5661  * swap.  This is because the counting for zone.max-swap does not allow swap
5662  * reservation to be shared between zones.  zone swap reservation is counted
5663  * on zone->zone_max_swap.
5664  */
5665 static int
5666 as_can_change_zones(void)
5667 {
5668 	proc_t *pp = curproc;
5669 	struct seg *seg;
5670 	struct as *as = pp->p_as;
5671 	vnode_t *vp;
5672 	int allow = 1;
5673 
5674 	ASSERT(pp->p_as != &kas);
5675 	AS_LOCK_ENTER(as, RW_READER);
5676 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5677 
5678 		/*
5679 		 * Cannot enter zone with shared anon memory which
5680 		 * reserves swap.  See comment above.
5681 		 */
5682 		if (seg_can_change_zones(seg) == B_FALSE) {
5683 			allow = 0;
5684 			break;
5685 		}
5686 		/*
5687 		 * if we can't get a backing vnode for this segment then skip
5688 		 * it.
5689 		 */
5690 		vp = NULL;
5691 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5692 			continue;
5693 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5694 			allow = 0;
5695 			break;
5696 		}
5697 	}
5698 	AS_LOCK_EXIT(as);
5699 	return (allow);
5700 }
5701 
5702 /*
5703  * Count swap reserved by curproc's address space
5704  */
5705 static size_t
5706 as_swresv(void)
5707 {
5708 	proc_t *pp = curproc;
5709 	struct seg *seg;
5710 	struct as *as = pp->p_as;
5711 	size_t swap = 0;
5712 
5713 	ASSERT(pp->p_as != &kas);
5714 	ASSERT(AS_WRITE_HELD(as));
5715 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5716 		swap += seg_swresv(seg);
5717 
5718 	return (swap);
5719 }
5720 
5721 /*
5722  * Systemcall entry point for zone_enter().
5723  *
5724  * The current process is injected into said zone.  In the process
5725  * it will change its project membership, privileges, rootdir/cwd,
5726  * zone-wide rctls, and pool association to match those of the zone.
5727  *
5728  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5729  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5730  * enter a zone that is "ready" or "running".
5731  */
5732 static int
5733 zone_enter(zoneid_t zoneid)
5734 {
5735 	zone_t *zone;
5736 	vnode_t *vp;
5737 	proc_t *pp = curproc;
5738 	contract_t *ct;
5739 	cont_process_t *ctp;
5740 	task_t *tk, *oldtk;
5741 	kproject_t *zone_proj0;
5742 	cred_t *cr, *newcr;
5743 	pool_t *oldpool, *newpool;
5744 	sess_t *sp;
5745 	uid_t uid;
5746 	zone_status_t status;
5747 	int err = 0;
5748 	rctl_entity_p_t e;
5749 	size_t swap;
5750 	kthread_id_t t;
5751 
5752 	if (secpolicy_zone_config(CRED()) != 0)
5753 		return (set_errno(EPERM));
5754 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5755 		return (set_errno(EINVAL));
5756 
5757 	/*
5758 	 * Stop all lwps so we don't need to hold a lock to look at
5759 	 * curproc->p_zone.  This needs to happen before we grab any
5760 	 * locks to avoid deadlock (another lwp in the process could
5761 	 * be waiting for the held lock).
5762 	 */
5763 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5764 		return (set_errno(EINTR));
5765 
5766 	/*
5767 	 * Make sure we're not changing zones with files open or mapped in
5768 	 * to our address space which shouldn't be changing zones.
5769 	 */
5770 	if (!files_can_change_zones()) {
5771 		err = EBADF;
5772 		goto out;
5773 	}
5774 	if (!as_can_change_zones()) {
5775 		err = EFAULT;
5776 		goto out;
5777 	}
5778 
5779 	mutex_enter(&zonehash_lock);
5780 	if (pp->p_zone != global_zone) {
5781 		mutex_exit(&zonehash_lock);
5782 		err = EINVAL;
5783 		goto out;
5784 	}
5785 
5786 	zone = zone_find_all_by_id(zoneid);
5787 	if (zone == NULL) {
5788 		mutex_exit(&zonehash_lock);
5789 		err = EINVAL;
5790 		goto out;
5791 	}
5792 
5793 	/*
5794 	 * To prevent processes in a zone from holding contracts on
5795 	 * extrazonal resources, and to avoid process contract
5796 	 * memberships which span zones, contract holders and processes
5797 	 * which aren't the sole members of their encapsulating process
5798 	 * contracts are not allowed to zone_enter.
5799 	 */
5800 	ctp = pp->p_ct_process;
5801 	ct = &ctp->conp_contract;
5802 	mutex_enter(&ct->ct_lock);
5803 	mutex_enter(&pp->p_lock);
5804 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5805 		mutex_exit(&pp->p_lock);
5806 		mutex_exit(&ct->ct_lock);
5807 		mutex_exit(&zonehash_lock);
5808 		err = EINVAL;
5809 		goto out;
5810 	}
5811 
5812 	/*
5813 	 * Moreover, we don't allow processes whose encapsulating
5814 	 * process contracts have inherited extrazonal contracts.
5815 	 * While it would be easier to eliminate all process contracts
5816 	 * with inherited contracts, we need to be able to give a
5817 	 * restarted init (or other zone-penetrating process) its
5818 	 * predecessor's contracts.
5819 	 */
5820 	if (ctp->conp_ninherited != 0) {
5821 		contract_t *next;
5822 		for (next = list_head(&ctp->conp_inherited); next;
5823 		    next = list_next(&ctp->conp_inherited, next)) {
5824 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5825 				mutex_exit(&pp->p_lock);
5826 				mutex_exit(&ct->ct_lock);
5827 				mutex_exit(&zonehash_lock);
5828 				err = EINVAL;
5829 				goto out;
5830 			}
5831 		}
5832 	}
5833 
5834 	mutex_exit(&pp->p_lock);
5835 	mutex_exit(&ct->ct_lock);
5836 
5837 	status = zone_status_get(zone);
5838 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5839 		/*
5840 		 * Can't join
5841 		 */
5842 		mutex_exit(&zonehash_lock);
5843 		err = EINVAL;
5844 		goto out;
5845 	}
5846 
5847 	/*
5848 	 * Make sure new priv set is within the permitted set for caller
5849 	 */
5850 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5851 		mutex_exit(&zonehash_lock);
5852 		err = EPERM;
5853 		goto out;
5854 	}
5855 	/*
5856 	 * We want to momentarily drop zonehash_lock while we optimistically
5857 	 * bind curproc to the pool it should be running in.  This is safe
5858 	 * since the zone can't disappear (we have a hold on it).
5859 	 */
5860 	zone_hold(zone);
5861 	mutex_exit(&zonehash_lock);
5862 
5863 	/*
5864 	 * Grab pool_lock to keep the pools configuration from changing
5865 	 * and to stop ourselves from getting rebound to another pool
5866 	 * until we join the zone.
5867 	 */
5868 	if (pool_lock_intr() != 0) {
5869 		zone_rele(zone);
5870 		err = EINTR;
5871 		goto out;
5872 	}
5873 	ASSERT(secpolicy_pool(CRED()) == 0);
5874 	/*
5875 	 * Bind ourselves to the pool currently associated with the zone.
5876 	 */
5877 	oldpool = curproc->p_pool;
5878 	newpool = zone_pool_get(zone);
5879 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5880 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5881 	    POOL_BIND_ALL)) != 0) {
5882 		pool_unlock();
5883 		zone_rele(zone);
5884 		goto out;
5885 	}
5886 
5887 	/*
5888 	 * Grab cpu_lock now; we'll need it later when we call
5889 	 * task_join().
5890 	 */
5891 	mutex_enter(&cpu_lock);
5892 	mutex_enter(&zonehash_lock);
5893 	/*
5894 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5895 	 */
5896 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5897 		/*
5898 		 * Can't join anymore.
5899 		 */
5900 		mutex_exit(&zonehash_lock);
5901 		mutex_exit(&cpu_lock);
5902 		if (pool_state == POOL_ENABLED &&
5903 		    newpool != oldpool)
5904 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5905 			    POOL_BIND_ALL);
5906 		pool_unlock();
5907 		zone_rele(zone);
5908 		err = EINVAL;
5909 		goto out;
5910 	}
5911 
5912 	/*
5913 	 * a_lock must be held while transfering locked memory and swap
5914 	 * reservation from the global zone to the non global zone because
5915 	 * asynchronous faults on the processes' address space can lock
5916 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5917 	 * segments respectively.
5918 	 */
5919 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5920 	swap = as_swresv();
5921 	mutex_enter(&pp->p_lock);
5922 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5923 	/* verify that we do not exceed and task or lwp limits */
5924 	mutex_enter(&zone->zone_nlwps_lock);
5925 	/* add new lwps to zone and zone's proj0 */
5926 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5927 	zone->zone_nlwps += pp->p_lwpcnt;
5928 	/* add 1 task to zone's proj0 */
5929 	zone_proj0->kpj_ntasks += 1;
5930 
5931 	zone_proj0->kpj_nprocs++;
5932 	zone->zone_nprocs++;
5933 	mutex_exit(&zone->zone_nlwps_lock);
5934 
5935 	mutex_enter(&zone->zone_mem_lock);
5936 	zone->zone_locked_mem += pp->p_locked_mem;
5937 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5938 	zone->zone_max_swap += swap;
5939 	mutex_exit(&zone->zone_mem_lock);
5940 
5941 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5942 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5943 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5944 
5945 	/* remove lwps and process from proc's old zone and old project */
5946 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5947 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5948 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5949 	pp->p_task->tk_proj->kpj_nprocs--;
5950 	pp->p_zone->zone_nprocs--;
5951 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5952 
5953 	mutex_enter(&pp->p_zone->zone_mem_lock);
5954 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5955 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5956 	pp->p_zone->zone_max_swap -= swap;
5957 	mutex_exit(&pp->p_zone->zone_mem_lock);
5958 
5959 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5960 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5961 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5962 
5963 	pp->p_flag |= SZONETOP;
5964 	pp->p_zone = zone;
5965 	mutex_exit(&pp->p_lock);
5966 	AS_LOCK_EXIT(pp->p_as);
5967 
5968 	/*
5969 	 * Joining the zone cannot fail from now on.
5970 	 *
5971 	 * This means that a lot of the following code can be commonized and
5972 	 * shared with zsched().
5973 	 */
5974 
5975 	/*
5976 	 * If the process contract fmri was inherited, we need to
5977 	 * flag this so that any contract status will not leak
5978 	 * extra zone information, svc_fmri in this case
5979 	 */
5980 	if (ctp->conp_svc_ctid != ct->ct_id) {
5981 		mutex_enter(&ct->ct_lock);
5982 		ctp->conp_svc_zone_enter = ct->ct_id;
5983 		mutex_exit(&ct->ct_lock);
5984 	}
5985 
5986 	/*
5987 	 * Reset the encapsulating process contract's zone.
5988 	 */
5989 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5990 	contract_setzuniqid(ct, zone->zone_uniqid);
5991 
5992 	/*
5993 	 * Create a new task and associate the process with the project keyed
5994 	 * by (projid,zoneid).
5995 	 *
5996 	 * We might as well be in project 0; the global zone's projid doesn't
5997 	 * make much sense in a zone anyhow.
5998 	 *
5999 	 * This also increments zone_ntasks, and returns with p_lock held.
6000 	 */
6001 	tk = task_create(0, zone);
6002 	oldtk = task_join(tk, 0);
6003 	mutex_exit(&cpu_lock);
6004 
6005 	/*
6006 	 * call RCTLOP_SET functions on this proc
6007 	 */
6008 	e.rcep_p.zone = zone;
6009 	e.rcep_t = RCENTITY_ZONE;
6010 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6011 	    RCD_CALLBACK);
6012 	mutex_exit(&pp->p_lock);
6013 
6014 	/*
6015 	 * We don't need to hold any of zsched's locks here; not only do we know
6016 	 * the process and zone aren't going away, we know its session isn't
6017 	 * changing either.
6018 	 *
6019 	 * By joining zsched's session here, we mimic the behavior in the
6020 	 * global zone of init's sid being the pid of sched.  We extend this
6021 	 * to all zlogin-like zone_enter()'ing processes as well.
6022 	 */
6023 	mutex_enter(&pidlock);
6024 	sp = zone->zone_zsched->p_sessp;
6025 	sess_hold(zone->zone_zsched);
6026 	mutex_enter(&pp->p_lock);
6027 	pgexit(pp);
6028 	sess_rele(pp->p_sessp, B_TRUE);
6029 	pp->p_sessp = sp;
6030 	pgjoin(pp, zone->zone_zsched->p_pidp);
6031 
6032 	/*
6033 	 * If any threads are scheduled to be placed on zone wait queue they
6034 	 * should abandon the idea since the wait queue is changing.
6035 	 * We need to be holding pidlock & p_lock to do this.
6036 	 */
6037 	if ((t = pp->p_tlist) != NULL) {
6038 		do {
6039 			thread_lock(t);
6040 			/*
6041 			 * Kick this thread so that he doesn't sit
6042 			 * on a wrong wait queue.
6043 			 */
6044 			if (ISWAITING(t))
6045 				setrun_locked(t);
6046 
6047 			if (t->t_schedflag & TS_ANYWAITQ)
6048 				t->t_schedflag &= ~ TS_ANYWAITQ;
6049 
6050 			thread_unlock(t);
6051 		} while ((t = t->t_forw) != pp->p_tlist);
6052 	}
6053 
6054 	/*
6055 	 * If there is a default scheduling class for the zone and it is not
6056 	 * the class we are currently in, change all of the threads in the
6057 	 * process to the new class.  We need to be holding pidlock & p_lock
6058 	 * when we call parmsset so this is a good place to do it.
6059 	 */
6060 	if (zone->zone_defaultcid > 0 &&
6061 	    zone->zone_defaultcid != curthread->t_cid) {
6062 		pcparms_t pcparms;
6063 
6064 		pcparms.pc_cid = zone->zone_defaultcid;
6065 		pcparms.pc_clparms[0] = 0;
6066 
6067 		/*
6068 		 * If setting the class fails, we still want to enter the zone.
6069 		 */
6070 		if ((t = pp->p_tlist) != NULL) {
6071 			do {
6072 				(void) parmsset(&pcparms, t);
6073 			} while ((t = t->t_forw) != pp->p_tlist);
6074 		}
6075 	}
6076 
6077 	mutex_exit(&pp->p_lock);
6078 	mutex_exit(&pidlock);
6079 
6080 	mutex_exit(&zonehash_lock);
6081 	/*
6082 	 * We're firmly in the zone; let pools progress.
6083 	 */
6084 	pool_unlock();
6085 	task_rele(oldtk);
6086 	/*
6087 	 * We don't need to retain a hold on the zone since we already
6088 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6089 	 */
6090 	zone_rele(zone);
6091 
6092 	/*
6093 	 * Chroot
6094 	 */
6095 	vp = zone->zone_rootvp;
6096 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6097 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6098 
6099 	/*
6100 	 * Change process credentials
6101 	 */
6102 	newcr = cralloc();
6103 	mutex_enter(&pp->p_crlock);
6104 	cr = pp->p_cred;
6105 	crcopy_to(cr, newcr);
6106 	crsetzone(newcr, zone);
6107 	pp->p_cred = newcr;
6108 
6109 	/*
6110 	 * Restrict all process privilege sets to zone limit
6111 	 */
6112 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6113 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6114 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6115 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6116 	mutex_exit(&pp->p_crlock);
6117 	crset(pp, newcr);
6118 
6119 	/*
6120 	 * Adjust upcount to reflect zone entry.
6121 	 */
6122 	uid = crgetruid(newcr);
6123 	mutex_enter(&pidlock);
6124 	upcount_dec(uid, GLOBAL_ZONEID);
6125 	upcount_inc(uid, zoneid);
6126 	mutex_exit(&pidlock);
6127 
6128 	/*
6129 	 * Set up core file path and content.
6130 	 */
6131 	set_core_defaults();
6132 
6133 out:
6134 	/*
6135 	 * Let the other lwps continue.
6136 	 */
6137 	mutex_enter(&pp->p_lock);
6138 	if (curthread != pp->p_agenttp)
6139 		continuelwps(pp);
6140 	mutex_exit(&pp->p_lock);
6141 
6142 	return (err != 0 ? set_errno(err) : 0);
6143 }
6144 
6145 /*
6146  * Systemcall entry point for zone_list(2).
6147  *
6148  * Processes running in a (non-global) zone only see themselves.
6149  * On labeled systems, they see all zones whose label they dominate.
6150  */
6151 static int
6152 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6153 {
6154 	zoneid_t *zoneids;
6155 	zone_t *zone, *myzone;
6156 	uint_t user_nzones, real_nzones;
6157 	uint_t domi_nzones;
6158 	int error;
6159 
6160 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6161 		return (set_errno(EFAULT));
6162 
6163 	myzone = curproc->p_zone;
6164 	if (myzone != global_zone) {
6165 		bslabel_t *mybslab;
6166 
6167 		if (!is_system_labeled()) {
6168 			/* just return current zone */
6169 			real_nzones = domi_nzones = 1;
6170 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6171 			zoneids[0] = myzone->zone_id;
6172 		} else {
6173 			/* return all zones that are dominated */
6174 			mutex_enter(&zonehash_lock);
6175 			real_nzones = zonecount;
6176 			domi_nzones = 0;
6177 			if (real_nzones > 0) {
6178 				zoneids = kmem_alloc(real_nzones *
6179 				    sizeof (zoneid_t), KM_SLEEP);
6180 				mybslab = label2bslabel(myzone->zone_slabel);
6181 				for (zone = list_head(&zone_active);
6182 				    zone != NULL;
6183 				    zone = list_next(&zone_active, zone)) {
6184 					if (zone->zone_id == GLOBAL_ZONEID)
6185 						continue;
6186 					if (zone != myzone &&
6187 					    (zone->zone_flags & ZF_IS_SCRATCH))
6188 						continue;
6189 					/*
6190 					 * Note that a label always dominates
6191 					 * itself, so myzone is always included
6192 					 * in the list.
6193 					 */
6194 					if (bldominates(mybslab,
6195 					    label2bslabel(zone->zone_slabel))) {
6196 						zoneids[domi_nzones++] =
6197 						    zone->zone_id;
6198 					}
6199 				}
6200 			}
6201 			mutex_exit(&zonehash_lock);
6202 		}
6203 	} else {
6204 		mutex_enter(&zonehash_lock);
6205 		real_nzones = zonecount;
6206 		domi_nzones = 0;
6207 		if (real_nzones > 0) {
6208 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6209 			    KM_SLEEP);
6210 			for (zone = list_head(&zone_active); zone != NULL;
6211 			    zone = list_next(&zone_active, zone))
6212 				zoneids[domi_nzones++] = zone->zone_id;
6213 			ASSERT(domi_nzones == real_nzones);
6214 		}
6215 		mutex_exit(&zonehash_lock);
6216 	}
6217 
6218 	/*
6219 	 * If user has allocated space for fewer entries than we found, then
6220 	 * return only up to his limit.  Either way, tell him exactly how many
6221 	 * we found.
6222 	 */
6223 	if (domi_nzones < user_nzones)
6224 		user_nzones = domi_nzones;
6225 	error = 0;
6226 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6227 		error = EFAULT;
6228 	} else if (zoneidlist != NULL && user_nzones != 0) {
6229 		if (copyout(zoneids, zoneidlist,
6230 		    user_nzones * sizeof (zoneid_t)) != 0)
6231 			error = EFAULT;
6232 	}
6233 
6234 	if (real_nzones > 0)
6235 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6236 
6237 	if (error != 0)
6238 		return (set_errno(error));
6239 	else
6240 		return (0);
6241 }
6242 
6243 /*
6244  * Systemcall entry point for zone_lookup(2).
6245  *
6246  * Non-global zones are only able to see themselves and (on labeled systems)
6247  * the zones they dominate.
6248  */
6249 static zoneid_t
6250 zone_lookup(const char *zone_name)
6251 {
6252 	char *kname;
6253 	zone_t *zone;
6254 	zoneid_t zoneid;
6255 	int err;
6256 
6257 	if (zone_name == NULL) {
6258 		/* return caller's zone id */
6259 		return (getzoneid());
6260 	}
6261 
6262 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6263 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6264 		kmem_free(kname, ZONENAME_MAX);
6265 		return (set_errno(err));
6266 	}
6267 
6268 	mutex_enter(&zonehash_lock);
6269 	zone = zone_find_all_by_name(kname);
6270 	kmem_free(kname, ZONENAME_MAX);
6271 	/*
6272 	 * In a non-global zone, can only lookup global and own name.
6273 	 * In Trusted Extensions zone label dominance rules apply.
6274 	 */
6275 	if (zone == NULL ||
6276 	    zone_status_get(zone) < ZONE_IS_READY ||
6277 	    !zone_list_access(zone)) {
6278 		mutex_exit(&zonehash_lock);
6279 		return (set_errno(EINVAL));
6280 	} else {
6281 		zoneid = zone->zone_id;
6282 		mutex_exit(&zonehash_lock);
6283 		return (zoneid);
6284 	}
6285 }
6286 
6287 static int
6288 zone_version(int *version_arg)
6289 {
6290 	int version = ZONE_SYSCALL_API_VERSION;
6291 
6292 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6293 		return (set_errno(EFAULT));
6294 	return (0);
6295 }
6296 
6297 /* ARGSUSED */
6298 long
6299 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6300 {
6301 	zone_def zs;
6302 	int err;
6303 
6304 	switch (cmd) {
6305 	case ZONE_CREATE:
6306 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6307 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6308 				return (set_errno(EFAULT));
6309 			}
6310 		} else {
6311 #ifdef _SYSCALL32_IMPL
6312 			zone_def32 zs32;
6313 
6314 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6315 				return (set_errno(EFAULT));
6316 			}
6317 			zs.zone_name =
6318 			    (const char *)(unsigned long)zs32.zone_name;
6319 			zs.zone_root =
6320 			    (const char *)(unsigned long)zs32.zone_root;
6321 			zs.zone_privs =
6322 			    (const struct priv_set *)
6323 			    (unsigned long)zs32.zone_privs;
6324 			zs.zone_privssz = zs32.zone_privssz;
6325 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6326 			zs.rctlbufsz = zs32.rctlbufsz;
6327 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6328 			zs.zfsbufsz = zs32.zfsbufsz;
6329 			zs.extended_error =
6330 			    (int *)(unsigned long)zs32.extended_error;
6331 			zs.match = zs32.match;
6332 			zs.doi = zs32.doi;
6333 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6334 			zs.flags = zs32.flags;
6335 #else
6336 			panic("get_udatamodel() returned bogus result\n");
6337 #endif
6338 		}
6339 
6340 		return (zone_create(zs.zone_name, zs.zone_root,
6341 		    zs.zone_privs, zs.zone_privssz,
6342 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6343 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6344 		    zs.extended_error, zs.match, zs.doi,
6345 		    zs.label, zs.flags));
6346 	case ZONE_BOOT:
6347 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6348 	case ZONE_DESTROY:
6349 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6350 	case ZONE_GETATTR:
6351 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6352 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6353 	case ZONE_SETATTR:
6354 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6355 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6356 	case ZONE_ENTER:
6357 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6358 	case ZONE_LIST:
6359 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6360 	case ZONE_SHUTDOWN:
6361 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6362 	case ZONE_LOOKUP:
6363 		return (zone_lookup((const char *)arg1));
6364 	case ZONE_VERSION:
6365 		return (zone_version((int *)arg1));
6366 	case ZONE_ADD_DATALINK:
6367 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6368 		    (datalink_id_t)(uintptr_t)arg2));
6369 	case ZONE_DEL_DATALINK:
6370 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6371 		    (datalink_id_t)(uintptr_t)arg2));
6372 	case ZONE_CHECK_DATALINK: {
6373 		zoneid_t	zoneid;
6374 		boolean_t	need_copyout;
6375 
6376 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6377 			return (EFAULT);
6378 		need_copyout = (zoneid == ALL_ZONES);
6379 		err = zone_check_datalink(&zoneid,
6380 		    (datalink_id_t)(uintptr_t)arg2);
6381 		if (err == 0 && need_copyout) {
6382 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6383 				err = EFAULT;
6384 		}
6385 		return (err == 0 ? 0 : set_errno(err));
6386 	}
6387 	case ZONE_LIST_DATALINK:
6388 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6389 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6390 	default:
6391 		return (set_errno(EINVAL));
6392 	}
6393 }
6394 
6395 struct zarg {
6396 	zone_t *zone;
6397 	zone_cmd_arg_t arg;
6398 };
6399 
6400 static int
6401 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6402 {
6403 	char *buf;
6404 	size_t buflen;
6405 	int error;
6406 
6407 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6408 	buf = kmem_alloc(buflen, KM_SLEEP);
6409 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6410 	error = door_ki_open(buf, doorp);
6411 	kmem_free(buf, buflen);
6412 	return (error);
6413 }
6414 
6415 static void
6416 zone_release_door(door_handle_t *doorp)
6417 {
6418 	door_ki_rele(*doorp);
6419 	*doorp = NULL;
6420 }
6421 
6422 static void
6423 zone_ki_call_zoneadmd(struct zarg *zargp)
6424 {
6425 	door_handle_t door = NULL;
6426 	door_arg_t darg, save_arg;
6427 	char *zone_name;
6428 	size_t zone_namelen;
6429 	zoneid_t zoneid;
6430 	zone_t *zone;
6431 	zone_cmd_arg_t arg;
6432 	uint64_t uniqid;
6433 	size_t size;
6434 	int error;
6435 	int retry;
6436 
6437 	zone = zargp->zone;
6438 	arg = zargp->arg;
6439 	kmem_free(zargp, sizeof (*zargp));
6440 
6441 	zone_namelen = strlen(zone->zone_name) + 1;
6442 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6443 	bcopy(zone->zone_name, zone_name, zone_namelen);
6444 	zoneid = zone->zone_id;
6445 	uniqid = zone->zone_uniqid;
6446 	/*
6447 	 * zoneadmd may be down, but at least we can empty out the zone.
6448 	 * We can ignore the return value of zone_empty() since we're called
6449 	 * from a kernel thread and know we won't be delivered any signals.
6450 	 */
6451 	ASSERT(curproc == &p0);
6452 	(void) zone_empty(zone);
6453 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6454 	zone_rele(zone);
6455 
6456 	size = sizeof (arg);
6457 	darg.rbuf = (char *)&arg;
6458 	darg.data_ptr = (char *)&arg;
6459 	darg.rsize = size;
6460 	darg.data_size = size;
6461 	darg.desc_ptr = NULL;
6462 	darg.desc_num = 0;
6463 
6464 	save_arg = darg;
6465 	/*
6466 	 * Since we're not holding a reference to the zone, any number of
6467 	 * things can go wrong, including the zone disappearing before we get a
6468 	 * chance to talk to zoneadmd.
6469 	 */
6470 	for (retry = 0; /* forever */; retry++) {
6471 		if (door == NULL &&
6472 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6473 			goto next;
6474 		}
6475 		ASSERT(door != NULL);
6476 
6477 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6478 		    SIZE_MAX, 0)) == 0) {
6479 			break;
6480 		}
6481 		switch (error) {
6482 		case EINTR:
6483 			/* FALLTHROUGH */
6484 		case EAGAIN:	/* process may be forking */
6485 			/*
6486 			 * Back off for a bit
6487 			 */
6488 			break;
6489 		case EBADF:
6490 			zone_release_door(&door);
6491 			if (zone_lookup_door(zone_name, &door) != 0) {
6492 				/*
6493 				 * zoneadmd may be dead, but it may come back to
6494 				 * life later.
6495 				 */
6496 				break;
6497 			}
6498 			break;
6499 		default:
6500 			cmn_err(CE_WARN,
6501 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6502 			    error);
6503 			goto out;
6504 		}
6505 next:
6506 		/*
6507 		 * If this isn't the same zone_t that we originally had in mind,
6508 		 * then this is the same as if two kadmin requests come in at
6509 		 * the same time: the first one wins.  This means we lose, so we
6510 		 * bail.
6511 		 */
6512 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6513 			/*
6514 			 * Problem is solved.
6515 			 */
6516 			break;
6517 		}
6518 		if (zone->zone_uniqid != uniqid) {
6519 			/*
6520 			 * zoneid recycled
6521 			 */
6522 			zone_rele(zone);
6523 			break;
6524 		}
6525 		/*
6526 		 * We could zone_status_timedwait(), but there doesn't seem to
6527 		 * be much point in doing that (plus, it would mean that
6528 		 * zone_free() isn't called until this thread exits).
6529 		 */
6530 		zone_rele(zone);
6531 		delay(hz);
6532 		darg = save_arg;
6533 	}
6534 out:
6535 	if (door != NULL) {
6536 		zone_release_door(&door);
6537 	}
6538 	kmem_free(zone_name, zone_namelen);
6539 	thread_exit();
6540 }
6541 
6542 /*
6543  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6544  * kadmin().  The caller is a process in the zone.
6545  *
6546  * In order to shutdown the zone, we will hand off control to zoneadmd
6547  * (running in the global zone) via a door.  We do a half-hearted job at
6548  * killing all processes in the zone, create a kernel thread to contact
6549  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6550  * a form of generation number used to let zoneadmd (as well as
6551  * zone_destroy()) know exactly which zone they're re talking about.
6552  */
6553 int
6554 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6555 {
6556 	struct zarg *zargp;
6557 	zone_cmd_t zcmd;
6558 	zone_t *zone;
6559 
6560 	zone = curproc->p_zone;
6561 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6562 
6563 	switch (cmd) {
6564 	case A_SHUTDOWN:
6565 		switch (fcn) {
6566 		case AD_HALT:
6567 		case AD_POWEROFF:
6568 			zcmd = Z_HALT;
6569 			break;
6570 		case AD_BOOT:
6571 			zcmd = Z_REBOOT;
6572 			break;
6573 		case AD_IBOOT:
6574 		case AD_SBOOT:
6575 		case AD_SIBOOT:
6576 		case AD_NOSYNC:
6577 			return (ENOTSUP);
6578 		default:
6579 			return (EINVAL);
6580 		}
6581 		break;
6582 	case A_REBOOT:
6583 		zcmd = Z_REBOOT;
6584 		break;
6585 	case A_FTRACE:
6586 	case A_REMOUNT:
6587 	case A_FREEZE:
6588 	case A_DUMP:
6589 	case A_CONFIG:
6590 		return (ENOTSUP);
6591 	default:
6592 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6593 		return (EINVAL);
6594 	}
6595 
6596 	if (secpolicy_zone_admin(credp, B_FALSE))
6597 		return (EPERM);
6598 	mutex_enter(&zone_status_lock);
6599 
6600 	/*
6601 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6602 	 * is in the zone.
6603 	 */
6604 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6605 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6606 		/*
6607 		 * This zone is already on its way down.
6608 		 */
6609 		mutex_exit(&zone_status_lock);
6610 		return (0);
6611 	}
6612 	/*
6613 	 * Prevent future zone_enter()s
6614 	 */
6615 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6616 	mutex_exit(&zone_status_lock);
6617 
6618 	/*
6619 	 * Kill everyone now and call zoneadmd later.
6620 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6621 	 * later.
6622 	 */
6623 	killall(zone->zone_id);
6624 	/*
6625 	 * Now, create the thread to contact zoneadmd and do the rest of the
6626 	 * work.  This thread can't be created in our zone otherwise
6627 	 * zone_destroy() would deadlock.
6628 	 */
6629 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6630 	zargp->arg.cmd = zcmd;
6631 	zargp->arg.uniqid = zone->zone_uniqid;
6632 	zargp->zone = zone;
6633 	(void) strcpy(zargp->arg.locale, "C");
6634 	/* mdep was already copied in for us by uadmin */
6635 	if (mdep != NULL)
6636 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6637 		    sizeof (zargp->arg.bootbuf));
6638 	zone_hold(zone);
6639 
6640 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6641 	    TS_RUN, minclsyspri);
6642 	exit(CLD_EXITED, 0);
6643 
6644 	return (EINVAL);
6645 }
6646 
6647 /*
6648  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6649  * status to ZONE_IS_SHUTTING_DOWN.
6650  *
6651  * This function also shuts down all running zones to ensure that they won't
6652  * fork new processes.
6653  */
6654 void
6655 zone_shutdown_global(void)
6656 {
6657 	zone_t *current_zonep;
6658 
6659 	ASSERT(INGLOBALZONE(curproc));
6660 	mutex_enter(&zonehash_lock);
6661 	mutex_enter(&zone_status_lock);
6662 
6663 	/* Modify the global zone's status first. */
6664 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6665 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6666 
6667 	/*
6668 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6669 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6670 	 * could cause assertions to fail (e.g., assertions about a zone's
6671 	 * state during initialization, readying, or booting) or produce races.
6672 	 * We'll let threads continue to initialize and ready new zones: they'll
6673 	 * fail to boot the new zones when they see that the global zone is
6674 	 * shutting down.
6675 	 */
6676 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6677 	    current_zonep = list_next(&zone_active, current_zonep)) {
6678 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6679 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6680 	}
6681 	mutex_exit(&zone_status_lock);
6682 	mutex_exit(&zonehash_lock);
6683 }
6684 
6685 /*
6686  * Returns true if the named dataset is visible in the current zone.
6687  * The 'write' parameter is set to 1 if the dataset is also writable.
6688  */
6689 int
6690 zone_dataset_visible(const char *dataset, int *write)
6691 {
6692 	static int zfstype = -1;
6693 	zone_dataset_t *zd;
6694 	size_t len;
6695 	zone_t *zone = curproc->p_zone;
6696 	const char *name = NULL;
6697 	vfs_t *vfsp = NULL;
6698 
6699 	if (dataset[0] == '\0')
6700 		return (0);
6701 
6702 	/*
6703 	 * Walk the list once, looking for datasets which match exactly, or
6704 	 * specify a dataset underneath an exported dataset.  If found, return
6705 	 * true and note that it is writable.
6706 	 */
6707 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6708 	    zd = list_next(&zone->zone_datasets, zd)) {
6709 
6710 		len = strlen(zd->zd_dataset);
6711 		if (strlen(dataset) >= len &&
6712 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6713 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6714 		    dataset[len] == '@')) {
6715 			if (write)
6716 				*write = 1;
6717 			return (1);
6718 		}
6719 	}
6720 
6721 	/*
6722 	 * Walk the list a second time, searching for datasets which are parents
6723 	 * of exported datasets.  These should be visible, but read-only.
6724 	 *
6725 	 * Note that we also have to support forms such as 'pool/dataset/', with
6726 	 * a trailing slash.
6727 	 */
6728 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6729 	    zd = list_next(&zone->zone_datasets, zd)) {
6730 
6731 		len = strlen(dataset);
6732 		if (dataset[len - 1] == '/')
6733 			len--;	/* Ignore trailing slash */
6734 		if (len < strlen(zd->zd_dataset) &&
6735 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6736 		    zd->zd_dataset[len] == '/') {
6737 			if (write)
6738 				*write = 0;
6739 			return (1);
6740 		}
6741 	}
6742 
6743 	/*
6744 	 * We reach here if the given dataset is not found in the zone_dataset
6745 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6746 	 * instead of delegation. For this we search for the dataset in the
6747 	 * zone_vfslist of this zone. If found, return true and note that it is
6748 	 * not writable.
6749 	 */
6750 
6751 	/*
6752 	 * Initialize zfstype if it is not initialized yet.
6753 	 */
6754 	if (zfstype == -1) {
6755 		struct vfssw *vswp = vfs_getvfssw("zfs");
6756 		zfstype = vswp - vfssw;
6757 		vfs_unrefvfssw(vswp);
6758 	}
6759 
6760 	vfs_list_read_lock();
6761 	vfsp = zone->zone_vfslist;
6762 	do {
6763 		ASSERT(vfsp);
6764 		if (vfsp->vfs_fstype == zfstype) {
6765 			name = refstr_value(vfsp->vfs_resource);
6766 
6767 			/*
6768 			 * Check if we have an exact match.
6769 			 */
6770 			if (strcmp(dataset, name) == 0) {
6771 				vfs_list_unlock();
6772 				if (write)
6773 					*write = 0;
6774 				return (1);
6775 			}
6776 			/*
6777 			 * We need to check if we are looking for parents of
6778 			 * a dataset. These should be visible, but read-only.
6779 			 */
6780 			len = strlen(dataset);
6781 			if (dataset[len - 1] == '/')
6782 				len--;
6783 
6784 			if (len < strlen(name) &&
6785 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6786 				vfs_list_unlock();
6787 				if (write)
6788 					*write = 0;
6789 				return (1);
6790 			}
6791 		}
6792 		vfsp = vfsp->vfs_zone_next;
6793 	} while (vfsp != zone->zone_vfslist);
6794 
6795 	vfs_list_unlock();
6796 	return (0);
6797 }
6798 
6799 /*
6800  * zone_find_by_any_path() -
6801  *
6802  * kernel-private routine similar to zone_find_by_path(), but which
6803  * effectively compares against zone paths rather than zonerootpath
6804  * (i.e., the last component of zonerootpaths, which should be "root/",
6805  * are not compared.)  This is done in order to accurately identify all
6806  * paths, whether zone-visible or not, including those which are parallel
6807  * to /root/, such as /dev/, /home/, etc...
6808  *
6809  * If the specified path does not fall under any zone path then global
6810  * zone is returned.
6811  *
6812  * The treat_abs parameter indicates whether the path should be treated as
6813  * an absolute path although it does not begin with "/".  (This supports
6814  * nfs mount syntax such as host:any/path.)
6815  *
6816  * The caller is responsible for zone_rele of the returned zone.
6817  */
6818 zone_t *
6819 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6820 {
6821 	zone_t *zone;
6822 	int path_offset = 0;
6823 
6824 	if (path == NULL) {
6825 		zone_hold(global_zone);
6826 		return (global_zone);
6827 	}
6828 
6829 	if (*path != '/') {
6830 		ASSERT(treat_abs);
6831 		path_offset = 1;
6832 	}
6833 
6834 	mutex_enter(&zonehash_lock);
6835 	for (zone = list_head(&zone_active); zone != NULL;
6836 	    zone = list_next(&zone_active, zone)) {
6837 		char	*c;
6838 		size_t	pathlen;
6839 		char *rootpath_start;
6840 
6841 		if (zone == global_zone)	/* skip global zone */
6842 			continue;
6843 
6844 		/* scan backwards to find start of last component */
6845 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6846 		do {
6847 			c--;
6848 		} while (*c != '/');
6849 
6850 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6851 		rootpath_start = (zone->zone_rootpath + path_offset);
6852 		if (strncmp(path, rootpath_start, pathlen) == 0)
6853 			break;
6854 	}
6855 	if (zone == NULL)
6856 		zone = global_zone;
6857 	zone_hold(zone);
6858 	mutex_exit(&zonehash_lock);
6859 	return (zone);
6860 }
6861 
6862 /*
6863  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6864  * zone_dl_t pointer if found, and NULL otherwise.
6865  */
6866 static zone_dl_t *
6867 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6868 {
6869 	zone_dl_t *zdl;
6870 
6871 	ASSERT(mutex_owned(&zone->zone_lock));
6872 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6873 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6874 		if (zdl->zdl_id == linkid)
6875 			break;
6876 	}
6877 	return (zdl);
6878 }
6879 
6880 static boolean_t
6881 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6882 {
6883 	boolean_t exists;
6884 
6885 	mutex_enter(&zone->zone_lock);
6886 	exists = (zone_find_dl(zone, linkid) != NULL);
6887 	mutex_exit(&zone->zone_lock);
6888 	return (exists);
6889 }
6890 
6891 /*
6892  * Add an data link name for the zone.
6893  */
6894 static int
6895 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6896 {
6897 	zone_dl_t *zdl;
6898 	zone_t *zone;
6899 	zone_t *thiszone;
6900 
6901 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6902 		return (set_errno(ENXIO));
6903 
6904 	/* Verify that the datalink ID doesn't already belong to a zone. */
6905 	mutex_enter(&zonehash_lock);
6906 	for (zone = list_head(&zone_active); zone != NULL;
6907 	    zone = list_next(&zone_active, zone)) {
6908 		if (zone_dl_exists(zone, linkid)) {
6909 			mutex_exit(&zonehash_lock);
6910 			zone_rele(thiszone);
6911 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6912 		}
6913 	}
6914 
6915 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6916 	zdl->zdl_id = linkid;
6917 	zdl->zdl_net = NULL;
6918 	mutex_enter(&thiszone->zone_lock);
6919 	list_insert_head(&thiszone->zone_dl_list, zdl);
6920 	mutex_exit(&thiszone->zone_lock);
6921 	mutex_exit(&zonehash_lock);
6922 	zone_rele(thiszone);
6923 	return (0);
6924 }
6925 
6926 static int
6927 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6928 {
6929 	zone_dl_t *zdl;
6930 	zone_t *zone;
6931 	int err = 0;
6932 
6933 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6934 		return (set_errno(EINVAL));
6935 
6936 	mutex_enter(&zone->zone_lock);
6937 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6938 		err = ENXIO;
6939 	} else {
6940 		list_remove(&zone->zone_dl_list, zdl);
6941 		nvlist_free(zdl->zdl_net);
6942 		kmem_free(zdl, sizeof (zone_dl_t));
6943 	}
6944 	mutex_exit(&zone->zone_lock);
6945 	zone_rele(zone);
6946 	return (err == 0 ? 0 : set_errno(err));
6947 }
6948 
6949 /*
6950  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6951  * the linkid.  Otherwise we just check if the specified zoneidp has been
6952  * assigned the supplied linkid.
6953  */
6954 int
6955 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6956 {
6957 	zone_t *zone;
6958 	int err = ENXIO;
6959 
6960 	if (*zoneidp != ALL_ZONES) {
6961 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6962 			if (zone_dl_exists(zone, linkid))
6963 				err = 0;
6964 			zone_rele(zone);
6965 		}
6966 		return (err);
6967 	}
6968 
6969 	mutex_enter(&zonehash_lock);
6970 	for (zone = list_head(&zone_active); zone != NULL;
6971 	    zone = list_next(&zone_active, zone)) {
6972 		if (zone_dl_exists(zone, linkid)) {
6973 			*zoneidp = zone->zone_id;
6974 			err = 0;
6975 			break;
6976 		}
6977 	}
6978 	mutex_exit(&zonehash_lock);
6979 	return (err);
6980 }
6981 
6982 /*
6983  * Get the list of datalink IDs assigned to a zone.
6984  *
6985  * On input, *nump is the number of datalink IDs that can fit in the supplied
6986  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6987  * that were placed in the array if the array was large enough, or to the
6988  * number of datalink IDs that the function needs to place in the array if the
6989  * array is too small.
6990  */
6991 static int
6992 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6993 {
6994 	uint_t num, dlcount;
6995 	zone_t *zone;
6996 	zone_dl_t *zdl;
6997 	datalink_id_t *idptr = idarray;
6998 
6999 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7000 		return (set_errno(EFAULT));
7001 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7002 		return (set_errno(ENXIO));
7003 
7004 	num = 0;
7005 	mutex_enter(&zone->zone_lock);
7006 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7007 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7008 		/*
7009 		 * If the list is bigger than what the caller supplied, just
7010 		 * count, don't do copyout.
7011 		 */
7012 		if (++num > dlcount)
7013 			continue;
7014 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7015 			mutex_exit(&zone->zone_lock);
7016 			zone_rele(zone);
7017 			return (set_errno(EFAULT));
7018 		}
7019 		idptr++;
7020 	}
7021 	mutex_exit(&zone->zone_lock);
7022 	zone_rele(zone);
7023 
7024 	/* Increased or decreased, caller should be notified. */
7025 	if (num != dlcount) {
7026 		if (copyout(&num, nump, sizeof (num)) != 0)
7027 			return (set_errno(EFAULT));
7028 	}
7029 	return (0);
7030 }
7031 
7032 /*
7033  * Public interface for looking up a zone by zoneid. It's a customized version
7034  * for netstack_zone_create(). It can only be called from the zsd create
7035  * callbacks, since it doesn't have reference on the zone structure hence if
7036  * it is called elsewhere the zone could disappear after the zonehash_lock
7037  * is dropped.
7038  *
7039  * Furthermore it
7040  * 1. Doesn't check the status of the zone.
7041  * 2. It will be called even before zone_init is called, in that case the
7042  *    address of zone0 is returned directly, and netstack_zone_create()
7043  *    will only assign a value to zone0.zone_netstack, won't break anything.
7044  * 3. Returns without the zone being held.
7045  */
7046 zone_t *
7047 zone_find_by_id_nolock(zoneid_t zoneid)
7048 {
7049 	zone_t *zone;
7050 
7051 	mutex_enter(&zonehash_lock);
7052 	if (zonehashbyid == NULL)
7053 		zone = &zone0;
7054 	else
7055 		zone = zone_find_all_by_id(zoneid);
7056 	mutex_exit(&zonehash_lock);
7057 	return (zone);
7058 }
7059 
7060 /*
7061  * Walk the datalinks for a given zone
7062  */
7063 int
7064 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7065     void *data)
7066 {
7067 	zone_t		*zone;
7068 	zone_dl_t	*zdl;
7069 	datalink_id_t	*idarray;
7070 	uint_t		idcount = 0;
7071 	int		i, ret = 0;
7072 
7073 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7074 		return (ENOENT);
7075 
7076 	/*
7077 	 * We first build an array of linkid's so that we can walk these and
7078 	 * execute the callback with the zone_lock dropped.
7079 	 */
7080 	mutex_enter(&zone->zone_lock);
7081 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7082 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7083 		idcount++;
7084 	}
7085 
7086 	if (idcount == 0) {
7087 		mutex_exit(&zone->zone_lock);
7088 		zone_rele(zone);
7089 		return (0);
7090 	}
7091 
7092 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7093 	if (idarray == NULL) {
7094 		mutex_exit(&zone->zone_lock);
7095 		zone_rele(zone);
7096 		return (ENOMEM);
7097 	}
7098 
7099 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7100 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7101 		idarray[i] = zdl->zdl_id;
7102 	}
7103 
7104 	mutex_exit(&zone->zone_lock);
7105 
7106 	for (i = 0; i < idcount && ret == 0; i++) {
7107 		if ((ret = (*cb)(idarray[i], data)) != 0)
7108 			break;
7109 	}
7110 
7111 	zone_rele(zone);
7112 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7113 	return (ret);
7114 }
7115 
7116 static char *
7117 zone_net_type2name(int type)
7118 {
7119 	switch (type) {
7120 	case ZONE_NETWORK_ADDRESS:
7121 		return (ZONE_NET_ADDRNAME);
7122 	case ZONE_NETWORK_DEFROUTER:
7123 		return (ZONE_NET_RTRNAME);
7124 	default:
7125 		return (NULL);
7126 	}
7127 }
7128 
7129 static int
7130 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7131 {
7132 	zone_t *zone;
7133 	zone_dl_t *zdl;
7134 	nvlist_t *nvl;
7135 	int err = 0;
7136 	uint8_t *new = NULL;
7137 	char *nvname;
7138 	int bufsize;
7139 	datalink_id_t linkid = znbuf->zn_linkid;
7140 
7141 	if (secpolicy_zone_config(CRED()) != 0)
7142 		return (set_errno(EPERM));
7143 
7144 	if (zoneid == GLOBAL_ZONEID)
7145 		return (set_errno(EINVAL));
7146 
7147 	nvname = zone_net_type2name(znbuf->zn_type);
7148 	bufsize = znbuf->zn_len;
7149 	new = znbuf->zn_val;
7150 	if (nvname == NULL)
7151 		return (set_errno(EINVAL));
7152 
7153 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7154 		return (set_errno(EINVAL));
7155 	}
7156 
7157 	mutex_enter(&zone->zone_lock);
7158 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7159 		err = ENXIO;
7160 		goto done;
7161 	}
7162 	if ((nvl = zdl->zdl_net) == NULL) {
7163 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7164 			err = ENOMEM;
7165 			goto done;
7166 		} else {
7167 			zdl->zdl_net = nvl;
7168 		}
7169 	}
7170 	if (nvlist_exists(nvl, nvname)) {
7171 		err = EINVAL;
7172 		goto done;
7173 	}
7174 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7175 	ASSERT(err == 0);
7176 done:
7177 	mutex_exit(&zone->zone_lock);
7178 	zone_rele(zone);
7179 	if (err != 0)
7180 		return (set_errno(err));
7181 	else
7182 		return (0);
7183 }
7184 
7185 static int
7186 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7187 {
7188 	zone_t *zone;
7189 	zone_dl_t *zdl;
7190 	nvlist_t *nvl;
7191 	uint8_t *ptr;
7192 	uint_t psize;
7193 	int err = 0;
7194 	char *nvname;
7195 	int bufsize;
7196 	void *buf;
7197 	datalink_id_t linkid = znbuf->zn_linkid;
7198 
7199 	if (zoneid == GLOBAL_ZONEID)
7200 		return (set_errno(EINVAL));
7201 
7202 	nvname = zone_net_type2name(znbuf->zn_type);
7203 	bufsize = znbuf->zn_len;
7204 	buf = znbuf->zn_val;
7205 
7206 	if (nvname == NULL)
7207 		return (set_errno(EINVAL));
7208 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7209 		return (set_errno(EINVAL));
7210 
7211 	mutex_enter(&zone->zone_lock);
7212 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7213 		err = ENXIO;
7214 		goto done;
7215 	}
7216 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7217 		err = ENOENT;
7218 		goto done;
7219 	}
7220 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7221 	ASSERT(err == 0);
7222 
7223 	if (psize > bufsize) {
7224 		err = ENOBUFS;
7225 		goto done;
7226 	}
7227 	znbuf->zn_len = psize;
7228 	bcopy(ptr, buf, psize);
7229 done:
7230 	mutex_exit(&zone->zone_lock);
7231 	zone_rele(zone);
7232 	if (err != 0)
7233 		return (set_errno(err));
7234 	else
7235 		return (0);
7236 }
7237