xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision bafd1f14)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 /*
382  * Synchronization primitives used to synchronize between mounts and zone
383  * creation/destruction.
384  */
385 static int mounts_in_progress;
386 static kcondvar_t mount_cv;
387 static kmutex_t mount_lock;
388 
389 const char * const zone_default_initname = "/sbin/init";
390 static char * const zone_prefix = "/zone/";
391 static int zone_shutdown(zoneid_t zoneid);
392 static int zone_add_datalink(zoneid_t, datalink_id_t);
393 static int zone_remove_datalink(zoneid_t, datalink_id_t);
394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
395 static int zone_set_network(zoneid_t, zone_net_data_t *);
396 static int zone_get_network(zoneid_t, zone_net_data_t *);
397 
398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 
400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
404     zone_key_t);
405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
407     kmutex_t *);
408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
409     kmutex_t *);
410 
411 /*
412  * Bump this number when you alter the zone syscall interfaces; this is
413  * because we need to have support for previous API versions in libc
414  * to support patching; libc calls into the kernel to determine this number.
415  *
416  * Version 1 of the API is the version originally shipped with Solaris 10
417  * Version 2 alters the zone_create system call in order to support more
418  *     arguments by moving the args into a structure; and to do better
419  *     error reporting when zone_create() fails.
420  * Version 3 alters the zone_create system call in order to support the
421  *     import of ZFS datasets to zones.
422  * Version 4 alters the zone_create system call in order to support
423  *     Trusted Extensions.
424  * Version 5 alters the zone_boot system call, and converts its old
425  *     bootargs parameter to be set by the zone_setattr API instead.
426  * Version 6 adds the flag argument to zone_create.
427  */
428 static const int ZONE_SYSCALL_API_VERSION = 6;
429 
430 /*
431  * Certain filesystems (such as NFS and autofs) need to know which zone
432  * the mount is being placed in.  Because of this, we need to be able to
433  * ensure that a zone isn't in the process of being created such that
434  * nfs_mount() thinks it is in the global zone, while by the time it
435  * gets added the list of mounted zones, it ends up on zoneA's mount
436  * list.
437  *
438  * The following functions: block_mounts()/resume_mounts() and
439  * mount_in_progress()/mount_completed() are used by zones and the VFS
440  * layer (respectively) to synchronize zone creation and new mounts.
441  *
442  * The semantics are like a reader-reader lock such that there may
443  * either be multiple mounts (or zone creations, if that weren't
444  * serialized by zonehash_lock) in progress at the same time, but not
445  * both.
446  *
447  * We use cv's so the user can ctrl-C out of the operation if it's
448  * taking too long.
449  *
450  * The semantics are such that there is unfair bias towards the
451  * "current" operation.  This means that zone creations may starve if
452  * there is a rapid succession of new mounts coming in to the system, or
453  * there is a remote possibility that zones will be created at such a
454  * rate that new mounts will not be able to proceed.
455  */
456 /*
457  * Prevent new mounts from progressing to the point of calling
458  * VFS_MOUNT().  If there are already mounts in this "region", wait for
459  * them to complete.
460  */
461 static int
462 block_mounts(void)
463 {
464 	int retval = 0;
465 
466 	/*
467 	 * Since it may block for a long time, block_mounts() shouldn't be
468 	 * called with zonehash_lock held.
469 	 */
470 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
471 	mutex_enter(&mount_lock);
472 	while (mounts_in_progress > 0) {
473 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
474 			goto signaled;
475 	}
476 	/*
477 	 * A negative value of mounts_in_progress indicates that mounts
478 	 * have been blocked by (-mounts_in_progress) different callers.
479 	 */
480 	mounts_in_progress--;
481 	retval = 1;
482 signaled:
483 	mutex_exit(&mount_lock);
484 	return (retval);
485 }
486 
487 /*
488  * The VFS layer may progress with new mounts as far as we're concerned.
489  * Allow them to progress if we were the last obstacle.
490  */
491 static void
492 resume_mounts(void)
493 {
494 	mutex_enter(&mount_lock);
495 	if (++mounts_in_progress == 0)
496 		cv_broadcast(&mount_cv);
497 	mutex_exit(&mount_lock);
498 }
499 
500 /*
501  * The VFS layer is busy with a mount; zones should wait until all
502  * mounts are completed to progress.
503  */
504 void
505 mount_in_progress(void)
506 {
507 	mutex_enter(&mount_lock);
508 	while (mounts_in_progress < 0)
509 		cv_wait(&mount_cv, &mount_lock);
510 	mounts_in_progress++;
511 	mutex_exit(&mount_lock);
512 }
513 
514 /*
515  * VFS is done with one mount; wake up any waiting block_mounts()
516  * callers if this is the last mount.
517  */
518 void
519 mount_completed(void)
520 {
521 	mutex_enter(&mount_lock);
522 	if (--mounts_in_progress == 0)
523 		cv_broadcast(&mount_cv);
524 	mutex_exit(&mount_lock);
525 }
526 
527 /*
528  * ZSD routines.
529  *
530  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
531  * defined by the pthread_key_create() and related interfaces.
532  *
533  * Kernel subsystems may register one or more data items and/or
534  * callbacks to be executed when a zone is created, shutdown, or
535  * destroyed.
536  *
537  * Unlike the thread counterpart, destructor callbacks will be executed
538  * even if the data pointer is NULL and/or there are no constructor
539  * callbacks, so it is the responsibility of such callbacks to check for
540  * NULL data values if necessary.
541  *
542  * The locking strategy and overall picture is as follows:
543  *
544  * When someone calls zone_key_create(), a template ZSD entry is added to the
545  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
546  * holding that lock all the existing zones are marked as
547  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
548  * zone_zsd list (protected by zone_lock). The global list is updated first
549  * (under zone_key_lock) to make sure that newly created zones use the
550  * most recent list of keys. Then under zonehash_lock we walk the zones
551  * and mark them.  Similar locking is used in zone_key_delete().
552  *
553  * The actual create, shutdown, and destroy callbacks are done without
554  * holding any lock. And zsd_flags are used to ensure that the operations
555  * completed so that when zone_key_create (and zone_create) is done, as well as
556  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
557  * are completed.
558  *
559  * When new zones are created constructor callbacks for all registered ZSD
560  * entries will be called. That also uses the above two phases of marking
561  * what needs to be done, and then running the callbacks without holding
562  * any locks.
563  *
564  * The framework does not provide any locking around zone_getspecific() and
565  * zone_setspecific() apart from that needed for internal consistency, so
566  * callers interested in atomic "test-and-set" semantics will need to provide
567  * their own locking.
568  */
569 
570 /*
571  * Helper function to find the zsd_entry associated with the key in the
572  * given list.
573  */
574 static struct zsd_entry *
575 zsd_find(list_t *l, zone_key_t key)
576 {
577 	struct zsd_entry *zsd;
578 
579 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
580 		if (zsd->zsd_key == key) {
581 			return (zsd);
582 		}
583 	}
584 	return (NULL);
585 }
586 
587 /*
588  * Helper function to find the zsd_entry associated with the key in the
589  * given list. Move it to the front of the list.
590  */
591 static struct zsd_entry *
592 zsd_find_mru(list_t *l, zone_key_t key)
593 {
594 	struct zsd_entry *zsd;
595 
596 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
597 		if (zsd->zsd_key == key) {
598 			/*
599 			 * Move to head of list to keep list in MRU order.
600 			 */
601 			if (zsd != list_head(l)) {
602 				list_remove(l, zsd);
603 				list_insert_head(l, zsd);
604 			}
605 			return (zsd);
606 		}
607 	}
608 	return (NULL);
609 }
610 
611 void
612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
613     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
614 {
615 	struct zsd_entry *zsdp;
616 	struct zsd_entry *t;
617 	struct zone *zone;
618 	zone_key_t  key;
619 
620 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
621 	zsdp->zsd_data = NULL;
622 	zsdp->zsd_create = create;
623 	zsdp->zsd_shutdown = shutdown;
624 	zsdp->zsd_destroy = destroy;
625 
626 	/*
627 	 * Insert in global list of callbacks. Makes future zone creations
628 	 * see it.
629 	 */
630 	mutex_enter(&zsd_key_lock);
631 	key = zsdp->zsd_key = ++zsd_keyval;
632 	ASSERT(zsd_keyval != 0);
633 	list_insert_tail(&zsd_registered_keys, zsdp);
634 	mutex_exit(&zsd_key_lock);
635 
636 	/*
637 	 * Insert for all existing zones and mark them as needing
638 	 * a create callback.
639 	 */
640 	mutex_enter(&zonehash_lock);	/* stop the world */
641 	for (zone = list_head(&zone_active); zone != NULL;
642 	    zone = list_next(&zone_active, zone)) {
643 		zone_status_t status;
644 
645 		mutex_enter(&zone->zone_lock);
646 
647 		/* Skip zones that are on the way down or not yet up */
648 		status = zone_status_get(zone);
649 		if (status >= ZONE_IS_DOWN ||
650 		    status == ZONE_IS_UNINITIALIZED) {
651 			mutex_exit(&zone->zone_lock);
652 			continue;
653 		}
654 
655 		t = zsd_find_mru(&zone->zone_zsd, key);
656 		if (t != NULL) {
657 			/*
658 			 * A zsd_configure already inserted it after
659 			 * we dropped zsd_key_lock above.
660 			 */
661 			mutex_exit(&zone->zone_lock);
662 			continue;
663 		}
664 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
665 		t->zsd_key = key;
666 		t->zsd_create = create;
667 		t->zsd_shutdown = shutdown;
668 		t->zsd_destroy = destroy;
669 		if (create != NULL) {
670 			t->zsd_flags = ZSD_CREATE_NEEDED;
671 			DTRACE_PROBE2(zsd__create__needed,
672 			    zone_t *, zone, zone_key_t, key);
673 		}
674 		list_insert_tail(&zone->zone_zsd, t);
675 		mutex_exit(&zone->zone_lock);
676 	}
677 	mutex_exit(&zonehash_lock);
678 
679 	if (create != NULL) {
680 		/* Now call the create callback for this key */
681 		zsd_apply_all_zones(zsd_apply_create, key);
682 	}
683 	/*
684 	 * It is safe for consumers to use the key now, make it
685 	 * globally visible. Specifically zone_getspecific() will
686 	 * always successfully return the zone specific data associated
687 	 * with the key.
688 	 */
689 	*keyp = key;
690 
691 }
692 
693 /*
694  * Function called when a module is being unloaded, or otherwise wishes
695  * to unregister its ZSD key and callbacks.
696  *
697  * Remove from the global list and determine the functions that need to
698  * be called under a global lock. Then call the functions without
699  * holding any locks. Finally free up the zone_zsd entries. (The apply
700  * functions need to access the zone_zsd entries to find zsd_data etc.)
701  */
702 int
703 zone_key_delete(zone_key_t key)
704 {
705 	struct zsd_entry *zsdp = NULL;
706 	zone_t *zone;
707 
708 	mutex_enter(&zsd_key_lock);
709 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
710 	if (zsdp == NULL) {
711 		mutex_exit(&zsd_key_lock);
712 		return (-1);
713 	}
714 	list_remove(&zsd_registered_keys, zsdp);
715 	mutex_exit(&zsd_key_lock);
716 
717 	mutex_enter(&zonehash_lock);
718 	for (zone = list_head(&zone_active); zone != NULL;
719 	    zone = list_next(&zone_active, zone)) {
720 		struct zsd_entry *del;
721 
722 		mutex_enter(&zone->zone_lock);
723 		del = zsd_find_mru(&zone->zone_zsd, key);
724 		if (del == NULL) {
725 			/*
726 			 * Somebody else got here first e.g the zone going
727 			 * away.
728 			 */
729 			mutex_exit(&zone->zone_lock);
730 			continue;
731 		}
732 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
733 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
734 		if (del->zsd_shutdown != NULL &&
735 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
736 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
737 			DTRACE_PROBE2(zsd__shutdown__needed,
738 			    zone_t *, zone, zone_key_t, key);
739 		}
740 		if (del->zsd_destroy != NULL &&
741 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
742 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
743 			DTRACE_PROBE2(zsd__destroy__needed,
744 			    zone_t *, zone, zone_key_t, key);
745 		}
746 		mutex_exit(&zone->zone_lock);
747 	}
748 	mutex_exit(&zonehash_lock);
749 	kmem_free(zsdp, sizeof (*zsdp));
750 
751 	/* Now call the shutdown and destroy callback for this key */
752 	zsd_apply_all_zones(zsd_apply_shutdown, key);
753 	zsd_apply_all_zones(zsd_apply_destroy, key);
754 
755 	/* Now we can free up the zsdp structures in each zone */
756 	mutex_enter(&zonehash_lock);
757 	for (zone = list_head(&zone_active); zone != NULL;
758 	    zone = list_next(&zone_active, zone)) {
759 		struct zsd_entry *del;
760 
761 		mutex_enter(&zone->zone_lock);
762 		del = zsd_find(&zone->zone_zsd, key);
763 		if (del != NULL) {
764 			list_remove(&zone->zone_zsd, del);
765 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
766 			kmem_free(del, sizeof (*del));
767 		}
768 		mutex_exit(&zone->zone_lock);
769 	}
770 	mutex_exit(&zonehash_lock);
771 
772 	return (0);
773 }
774 
775 /*
776  * ZSD counterpart of pthread_setspecific().
777  *
778  * Since all zsd callbacks, including those with no create function,
779  * have an entry in zone_zsd, if the key is registered it is part of
780  * the zone_zsd list.
781  * Return an error if the key wasn't registerd.
782  */
783 int
784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
785 {
786 	struct zsd_entry *t;
787 
788 	mutex_enter(&zone->zone_lock);
789 	t = zsd_find_mru(&zone->zone_zsd, key);
790 	if (t != NULL) {
791 		/*
792 		 * Replace old value with new
793 		 */
794 		t->zsd_data = (void *)data;
795 		mutex_exit(&zone->zone_lock);
796 		return (0);
797 	}
798 	mutex_exit(&zone->zone_lock);
799 	return (-1);
800 }
801 
802 /*
803  * ZSD counterpart of pthread_getspecific().
804  */
805 void *
806 zone_getspecific(zone_key_t key, zone_t *zone)
807 {
808 	struct zsd_entry *t;
809 	void *data;
810 
811 	mutex_enter(&zone->zone_lock);
812 	t = zsd_find_mru(&zone->zone_zsd, key);
813 	data = (t == NULL ? NULL : t->zsd_data);
814 	mutex_exit(&zone->zone_lock);
815 	return (data);
816 }
817 
818 /*
819  * Function used to initialize a zone's list of ZSD callbacks and data
820  * when the zone is being created.  The callbacks are initialized from
821  * the template list (zsd_registered_keys). The constructor callback is
822  * executed later (once the zone exists and with locks dropped).
823  */
824 static void
825 zone_zsd_configure(zone_t *zone)
826 {
827 	struct zsd_entry *zsdp;
828 	struct zsd_entry *t;
829 
830 	ASSERT(MUTEX_HELD(&zonehash_lock));
831 	ASSERT(list_head(&zone->zone_zsd) == NULL);
832 	mutex_enter(&zone->zone_lock);
833 	mutex_enter(&zsd_key_lock);
834 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
835 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
836 		/*
837 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
838 		 * should not have added anything to it.
839 		 */
840 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
841 
842 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
843 		t->zsd_key = zsdp->zsd_key;
844 		t->zsd_create = zsdp->zsd_create;
845 		t->zsd_shutdown = zsdp->zsd_shutdown;
846 		t->zsd_destroy = zsdp->zsd_destroy;
847 		if (zsdp->zsd_create != NULL) {
848 			t->zsd_flags = ZSD_CREATE_NEEDED;
849 			DTRACE_PROBE2(zsd__create__needed,
850 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
851 		}
852 		list_insert_tail(&zone->zone_zsd, t);
853 	}
854 	mutex_exit(&zsd_key_lock);
855 	mutex_exit(&zone->zone_lock);
856 }
857 
858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
859 
860 /*
861  * Helper function to execute shutdown or destructor callbacks.
862  */
863 static void
864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
865 {
866 	struct zsd_entry *t;
867 
868 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
869 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
870 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
871 
872 	/*
873 	 * Run the callback solely based on what is registered for the zone
874 	 * in zone_zsd. The global list can change independently of this
875 	 * as keys are registered and unregistered and we don't register new
876 	 * callbacks for a zone that is in the process of going away.
877 	 */
878 	mutex_enter(&zone->zone_lock);
879 	for (t = list_head(&zone->zone_zsd); t != NULL;
880 	    t = list_next(&zone->zone_zsd, t)) {
881 		zone_key_t key = t->zsd_key;
882 
883 		/* Skip if no callbacks registered */
884 
885 		if (ct == ZSD_SHUTDOWN) {
886 			if (t->zsd_shutdown != NULL &&
887 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
888 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
889 				DTRACE_PROBE2(zsd__shutdown__needed,
890 				    zone_t *, zone, zone_key_t, key);
891 			}
892 		} else {
893 			if (t->zsd_destroy != NULL &&
894 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
895 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
896 				DTRACE_PROBE2(zsd__destroy__needed,
897 				    zone_t *, zone, zone_key_t, key);
898 			}
899 		}
900 	}
901 	mutex_exit(&zone->zone_lock);
902 
903 	/* Now call the shutdown and destroy callback for this key */
904 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
905 	zsd_apply_all_keys(zsd_apply_destroy, zone);
906 
907 }
908 
909 /*
910  * Called when the zone is going away; free ZSD-related memory, and
911  * destroy the zone_zsd list.
912  */
913 static void
914 zone_free_zsd(zone_t *zone)
915 {
916 	struct zsd_entry *t, *next;
917 
918 	/*
919 	 * Free all the zsd_entry's we had on this zone.
920 	 */
921 	mutex_enter(&zone->zone_lock);
922 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
923 		next = list_next(&zone->zone_zsd, t);
924 		list_remove(&zone->zone_zsd, t);
925 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
926 		kmem_free(t, sizeof (*t));
927 	}
928 	list_destroy(&zone->zone_zsd);
929 	mutex_exit(&zone->zone_lock);
930 
931 }
932 
933 /*
934  * Apply a function to all zones for particular key value.
935  *
936  * The applyfn has to drop zonehash_lock if it does some work, and
937  * then reacquire it before it returns.
938  * When the lock is dropped we don't follow list_next even
939  * if it is possible to do so without any hazards. This is
940  * because we want the design to allow for the list of zones
941  * to change in any arbitrary way during the time the
942  * lock was dropped.
943  *
944  * It is safe to restart the loop at list_head since the applyfn
945  * changes the zsd_flags as it does work, so a subsequent
946  * pass through will have no effect in applyfn, hence the loop will terminate
947  * in at worst O(N^2).
948  */
949 static void
950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
951 {
952 	zone_t *zone;
953 
954 	mutex_enter(&zonehash_lock);
955 	zone = list_head(&zone_active);
956 	while (zone != NULL) {
957 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
958 			/* Lock dropped - restart at head */
959 			zone = list_head(&zone_active);
960 		} else {
961 			zone = list_next(&zone_active, zone);
962 		}
963 	}
964 	mutex_exit(&zonehash_lock);
965 }
966 
967 /*
968  * Apply a function to all keys for a particular zone.
969  *
970  * The applyfn has to drop zonehash_lock if it does some work, and
971  * then reacquire it before it returns.
972  * When the lock is dropped we don't follow list_next even
973  * if it is possible to do so without any hazards. This is
974  * because we want the design to allow for the list of zsd callbacks
975  * to change in any arbitrary way during the time the
976  * lock was dropped.
977  *
978  * It is safe to restart the loop at list_head since the applyfn
979  * changes the zsd_flags as it does work, so a subsequent
980  * pass through will have no effect in applyfn, hence the loop will terminate
981  * in at worst O(N^2).
982  */
983 static void
984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
985 {
986 	struct zsd_entry *t;
987 
988 	mutex_enter(&zone->zone_lock);
989 	t = list_head(&zone->zone_zsd);
990 	while (t != NULL) {
991 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
992 			/* Lock dropped - restart at head */
993 			t = list_head(&zone->zone_zsd);
994 		} else {
995 			t = list_next(&zone->zone_zsd, t);
996 		}
997 	}
998 	mutex_exit(&zone->zone_lock);
999 }
1000 
1001 /*
1002  * Call the create function for the zone and key if CREATE_NEEDED
1003  * is set.
1004  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1005  * we wait for that thread to complete so that we can ensure that
1006  * all the callbacks are done when we've looped over all zones/keys.
1007  *
1008  * When we call the create function, we drop the global held by the
1009  * caller, and return true to tell the caller it needs to re-evalute the
1010  * state.
1011  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1012  * remains held on exit.
1013  */
1014 static boolean_t
1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1016     zone_t *zone, zone_key_t key)
1017 {
1018 	void *result;
1019 	struct zsd_entry *t;
1020 	boolean_t dropped;
1021 
1022 	if (lockp != NULL) {
1023 		ASSERT(MUTEX_HELD(lockp));
1024 	}
1025 	if (zone_lock_held) {
1026 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1027 	} else {
1028 		mutex_enter(&zone->zone_lock);
1029 	}
1030 
1031 	t = zsd_find(&zone->zone_zsd, key);
1032 	if (t == NULL) {
1033 		/*
1034 		 * Somebody else got here first e.g the zone going
1035 		 * away.
1036 		 */
1037 		if (!zone_lock_held)
1038 			mutex_exit(&zone->zone_lock);
1039 		return (B_FALSE);
1040 	}
1041 	dropped = B_FALSE;
1042 	if (zsd_wait_for_inprogress(zone, t, lockp))
1043 		dropped = B_TRUE;
1044 
1045 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1046 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1047 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1048 		DTRACE_PROBE2(zsd__create__inprogress,
1049 		    zone_t *, zone, zone_key_t, key);
1050 		mutex_exit(&zone->zone_lock);
1051 		if (lockp != NULL)
1052 			mutex_exit(lockp);
1053 
1054 		dropped = B_TRUE;
1055 		ASSERT(t->zsd_create != NULL);
1056 		DTRACE_PROBE2(zsd__create__start,
1057 		    zone_t *, zone, zone_key_t, key);
1058 
1059 		result = (*t->zsd_create)(zone->zone_id);
1060 
1061 		DTRACE_PROBE2(zsd__create__end,
1062 		    zone_t *, zone, voidn *, result);
1063 
1064 		ASSERT(result != NULL);
1065 		if (lockp != NULL)
1066 			mutex_enter(lockp);
1067 		mutex_enter(&zone->zone_lock);
1068 		t->zsd_data = result;
1069 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1070 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1071 		cv_broadcast(&t->zsd_cv);
1072 		DTRACE_PROBE2(zsd__create__completed,
1073 		    zone_t *, zone, zone_key_t, key);
1074 	}
1075 	if (!zone_lock_held)
1076 		mutex_exit(&zone->zone_lock);
1077 	return (dropped);
1078 }
1079 
1080 /*
1081  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1082  * is set.
1083  * If some other thread gets here first and sets *_INPROGRESS, then
1084  * we wait for that thread to complete so that we can ensure that
1085  * all the callbacks are done when we've looped over all zones/keys.
1086  *
1087  * When we call the shutdown function, we drop the global held by the
1088  * caller, and return true to tell the caller it needs to re-evalute the
1089  * state.
1090  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1091  * remains held on exit.
1092  */
1093 static boolean_t
1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1095     zone_t *zone, zone_key_t key)
1096 {
1097 	struct zsd_entry *t;
1098 	void *data;
1099 	boolean_t dropped;
1100 
1101 	if (lockp != NULL) {
1102 		ASSERT(MUTEX_HELD(lockp));
1103 	}
1104 	if (zone_lock_held) {
1105 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1106 	} else {
1107 		mutex_enter(&zone->zone_lock);
1108 	}
1109 
1110 	t = zsd_find(&zone->zone_zsd, key);
1111 	if (t == NULL) {
1112 		/*
1113 		 * Somebody else got here first e.g the zone going
1114 		 * away.
1115 		 */
1116 		if (!zone_lock_held)
1117 			mutex_exit(&zone->zone_lock);
1118 		return (B_FALSE);
1119 	}
1120 	dropped = B_FALSE;
1121 	if (zsd_wait_for_creator(zone, t, lockp))
1122 		dropped = B_TRUE;
1123 
1124 	if (zsd_wait_for_inprogress(zone, t, lockp))
1125 		dropped = B_TRUE;
1126 
1127 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1128 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1129 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1130 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1131 		    zone_t *, zone, zone_key_t, key);
1132 		mutex_exit(&zone->zone_lock);
1133 		if (lockp != NULL)
1134 			mutex_exit(lockp);
1135 		dropped = B_TRUE;
1136 
1137 		ASSERT(t->zsd_shutdown != NULL);
1138 		data = t->zsd_data;
1139 
1140 		DTRACE_PROBE2(zsd__shutdown__start,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		(t->zsd_shutdown)(zone->zone_id, data);
1144 		DTRACE_PROBE2(zsd__shutdown__end,
1145 		    zone_t *, zone, zone_key_t, key);
1146 
1147 		if (lockp != NULL)
1148 			mutex_enter(lockp);
1149 		mutex_enter(&zone->zone_lock);
1150 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1151 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1152 		cv_broadcast(&t->zsd_cv);
1153 		DTRACE_PROBE2(zsd__shutdown__completed,
1154 		    zone_t *, zone, zone_key_t, key);
1155 	}
1156 	if (!zone_lock_held)
1157 		mutex_exit(&zone->zone_lock);
1158 	return (dropped);
1159 }
1160 
1161 /*
1162  * Call the destroy function for the zone and key if DESTROY_NEEDED
1163  * is set.
1164  * If some other thread gets here first and sets *_INPROGRESS, then
1165  * we wait for that thread to complete so that we can ensure that
1166  * all the callbacks are done when we've looped over all zones/keys.
1167  *
1168  * When we call the destroy function, we drop the global held by the
1169  * caller, and return true to tell the caller it needs to re-evalute the
1170  * state.
1171  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1172  * remains held on exit.
1173  */
1174 static boolean_t
1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1176     zone_t *zone, zone_key_t key)
1177 {
1178 	struct zsd_entry *t;
1179 	void *data;
1180 	boolean_t dropped;
1181 
1182 	if (lockp != NULL) {
1183 		ASSERT(MUTEX_HELD(lockp));
1184 	}
1185 	if (zone_lock_held) {
1186 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1187 	} else {
1188 		mutex_enter(&zone->zone_lock);
1189 	}
1190 
1191 	t = zsd_find(&zone->zone_zsd, key);
1192 	if (t == NULL) {
1193 		/*
1194 		 * Somebody else got here first e.g the zone going
1195 		 * away.
1196 		 */
1197 		if (!zone_lock_held)
1198 			mutex_exit(&zone->zone_lock);
1199 		return (B_FALSE);
1200 	}
1201 	dropped = B_FALSE;
1202 	if (zsd_wait_for_creator(zone, t, lockp))
1203 		dropped = B_TRUE;
1204 
1205 	if (zsd_wait_for_inprogress(zone, t, lockp))
1206 		dropped = B_TRUE;
1207 
1208 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1209 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1210 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1211 		DTRACE_PROBE2(zsd__destroy__inprogress,
1212 		    zone_t *, zone, zone_key_t, key);
1213 		mutex_exit(&zone->zone_lock);
1214 		if (lockp != NULL)
1215 			mutex_exit(lockp);
1216 		dropped = B_TRUE;
1217 
1218 		ASSERT(t->zsd_destroy != NULL);
1219 		data = t->zsd_data;
1220 		DTRACE_PROBE2(zsd__destroy__start,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		(t->zsd_destroy)(zone->zone_id, data);
1224 		DTRACE_PROBE2(zsd__destroy__end,
1225 		    zone_t *, zone, zone_key_t, key);
1226 
1227 		if (lockp != NULL)
1228 			mutex_enter(lockp);
1229 		mutex_enter(&zone->zone_lock);
1230 		t->zsd_data = NULL;
1231 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1232 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1233 		cv_broadcast(&t->zsd_cv);
1234 		DTRACE_PROBE2(zsd__destroy__completed,
1235 		    zone_t *, zone, zone_key_t, key);
1236 	}
1237 	if (!zone_lock_held)
1238 		mutex_exit(&zone->zone_lock);
1239 	return (dropped);
1240 }
1241 
1242 /*
1243  * Wait for any CREATE_NEEDED flag to be cleared.
1244  * Returns true if lockp was temporarily dropped while waiting.
1245  */
1246 static boolean_t
1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1248 {
1249 	boolean_t dropped = B_FALSE;
1250 
1251 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1252 		DTRACE_PROBE2(zsd__wait__for__creator,
1253 		    zone_t *, zone, struct zsd_entry *, t);
1254 		if (lockp != NULL) {
1255 			dropped = B_TRUE;
1256 			mutex_exit(lockp);
1257 		}
1258 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1259 		if (lockp != NULL) {
1260 			/* First drop zone_lock to preserve order */
1261 			mutex_exit(&zone->zone_lock);
1262 			mutex_enter(lockp);
1263 			mutex_enter(&zone->zone_lock);
1264 		}
1265 	}
1266 	return (dropped);
1267 }
1268 
1269 /*
1270  * Wait for any INPROGRESS flag to be cleared.
1271  * Returns true if lockp was temporarily dropped while waiting.
1272  */
1273 static boolean_t
1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1275 {
1276 	boolean_t dropped = B_FALSE;
1277 
1278 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1279 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1280 		    zone_t *, zone, struct zsd_entry *, t);
1281 		if (lockp != NULL) {
1282 			dropped = B_TRUE;
1283 			mutex_exit(lockp);
1284 		}
1285 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1286 		if (lockp != NULL) {
1287 			/* First drop zone_lock to preserve order */
1288 			mutex_exit(&zone->zone_lock);
1289 			mutex_enter(lockp);
1290 			mutex_enter(&zone->zone_lock);
1291 		}
1292 	}
1293 	return (dropped);
1294 }
1295 
1296 /*
1297  * Frees memory associated with the zone dataset list.
1298  */
1299 static void
1300 zone_free_datasets(zone_t *zone)
1301 {
1302 	zone_dataset_t *t, *next;
1303 
1304 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1305 		next = list_next(&zone->zone_datasets, t);
1306 		list_remove(&zone->zone_datasets, t);
1307 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1308 		kmem_free(t, sizeof (*t));
1309 	}
1310 	list_destroy(&zone->zone_datasets);
1311 }
1312 
1313 /*
1314  * zone.cpu-shares resource control support.
1315  */
1316 /*ARGSUSED*/
1317 static rctl_qty_t
1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1319 {
1320 	ASSERT(MUTEX_HELD(&p->p_lock));
1321 	return (p->p_zone->zone_shares);
1322 }
1323 
1324 /*ARGSUSED*/
1325 static int
1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1327     rctl_qty_t nv)
1328 {
1329 	ASSERT(MUTEX_HELD(&p->p_lock));
1330 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1331 	if (e->rcep_p.zone == NULL)
1332 		return (0);
1333 
1334 	e->rcep_p.zone->zone_shares = nv;
1335 	return (0);
1336 }
1337 
1338 static rctl_ops_t zone_cpu_shares_ops = {
1339 	rcop_no_action,
1340 	zone_cpu_shares_usage,
1341 	zone_cpu_shares_set,
1342 	rcop_no_test
1343 };
1344 
1345 /*
1346  * zone.cpu-cap resource control support.
1347  */
1348 /*ARGSUSED*/
1349 static rctl_qty_t
1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1351 {
1352 	ASSERT(MUTEX_HELD(&p->p_lock));
1353 	return (cpucaps_zone_get(p->p_zone));
1354 }
1355 
1356 /*ARGSUSED*/
1357 static int
1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1359     rctl_qty_t nv)
1360 {
1361 	zone_t *zone = e->rcep_p.zone;
1362 
1363 	ASSERT(MUTEX_HELD(&p->p_lock));
1364 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1365 
1366 	if (zone == NULL)
1367 		return (0);
1368 
1369 	/*
1370 	 * set cap to the new value.
1371 	 */
1372 	return (cpucaps_zone_set(zone, nv));
1373 }
1374 
1375 static rctl_ops_t zone_cpu_cap_ops = {
1376 	rcop_no_action,
1377 	zone_cpu_cap_get,
1378 	zone_cpu_cap_set,
1379 	rcop_no_test
1380 };
1381 
1382 /*ARGSUSED*/
1383 static rctl_qty_t
1384 zone_lwps_usage(rctl_t *r, proc_t *p)
1385 {
1386 	rctl_qty_t nlwps;
1387 	zone_t *zone = p->p_zone;
1388 
1389 	ASSERT(MUTEX_HELD(&p->p_lock));
1390 
1391 	mutex_enter(&zone->zone_nlwps_lock);
1392 	nlwps = zone->zone_nlwps;
1393 	mutex_exit(&zone->zone_nlwps_lock);
1394 
1395 	return (nlwps);
1396 }
1397 
1398 /*ARGSUSED*/
1399 static int
1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1401     rctl_qty_t incr, uint_t flags)
1402 {
1403 	rctl_qty_t nlwps;
1404 
1405 	ASSERT(MUTEX_HELD(&p->p_lock));
1406 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1407 	if (e->rcep_p.zone == NULL)
1408 		return (0);
1409 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1410 	nlwps = e->rcep_p.zone->zone_nlwps;
1411 
1412 	if (nlwps + incr > rcntl->rcv_value)
1413 		return (1);
1414 
1415 	return (0);
1416 }
1417 
1418 /*ARGSUSED*/
1419 static int
1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1421 {
1422 	ASSERT(MUTEX_HELD(&p->p_lock));
1423 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1424 	if (e->rcep_p.zone == NULL)
1425 		return (0);
1426 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1427 	return (0);
1428 }
1429 
1430 static rctl_ops_t zone_lwps_ops = {
1431 	rcop_no_action,
1432 	zone_lwps_usage,
1433 	zone_lwps_set,
1434 	zone_lwps_test,
1435 };
1436 
1437 /*ARGSUSED*/
1438 static rctl_qty_t
1439 zone_procs_usage(rctl_t *r, proc_t *p)
1440 {
1441 	rctl_qty_t nprocs;
1442 	zone_t *zone = p->p_zone;
1443 
1444 	ASSERT(MUTEX_HELD(&p->p_lock));
1445 
1446 	mutex_enter(&zone->zone_nlwps_lock);
1447 	nprocs = zone->zone_nprocs;
1448 	mutex_exit(&zone->zone_nlwps_lock);
1449 
1450 	return (nprocs);
1451 }
1452 
1453 /*ARGSUSED*/
1454 static int
1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1456     rctl_qty_t incr, uint_t flags)
1457 {
1458 	rctl_qty_t nprocs;
1459 
1460 	ASSERT(MUTEX_HELD(&p->p_lock));
1461 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1462 	if (e->rcep_p.zone == NULL)
1463 		return (0);
1464 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1465 	nprocs = e->rcep_p.zone->zone_nprocs;
1466 
1467 	if (nprocs + incr > rcntl->rcv_value)
1468 		return (1);
1469 
1470 	return (0);
1471 }
1472 
1473 /*ARGSUSED*/
1474 static int
1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1476 {
1477 	ASSERT(MUTEX_HELD(&p->p_lock));
1478 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1479 	if (e->rcep_p.zone == NULL)
1480 		return (0);
1481 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1482 	return (0);
1483 }
1484 
1485 static rctl_ops_t zone_procs_ops = {
1486 	rcop_no_action,
1487 	zone_procs_usage,
1488 	zone_procs_set,
1489 	zone_procs_test,
1490 };
1491 
1492 /*ARGSUSED*/
1493 static int
1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1495     rctl_qty_t incr, uint_t flags)
1496 {
1497 	rctl_qty_t v;
1498 	ASSERT(MUTEX_HELD(&p->p_lock));
1499 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1500 	v = e->rcep_p.zone->zone_shmmax + incr;
1501 	if (v > rval->rcv_value)
1502 		return (1);
1503 	return (0);
1504 }
1505 
1506 static rctl_ops_t zone_shmmax_ops = {
1507 	rcop_no_action,
1508 	rcop_no_usage,
1509 	rcop_no_set,
1510 	zone_shmmax_test
1511 };
1512 
1513 /*ARGSUSED*/
1514 static int
1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1516     rctl_qty_t incr, uint_t flags)
1517 {
1518 	rctl_qty_t v;
1519 	ASSERT(MUTEX_HELD(&p->p_lock));
1520 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1521 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1522 	if (v > rval->rcv_value)
1523 		return (1);
1524 	return (0);
1525 }
1526 
1527 static rctl_ops_t zone_shmmni_ops = {
1528 	rcop_no_action,
1529 	rcop_no_usage,
1530 	rcop_no_set,
1531 	zone_shmmni_test
1532 };
1533 
1534 /*ARGSUSED*/
1535 static int
1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1537     rctl_qty_t incr, uint_t flags)
1538 {
1539 	rctl_qty_t v;
1540 	ASSERT(MUTEX_HELD(&p->p_lock));
1541 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1542 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1543 	if (v > rval->rcv_value)
1544 		return (1);
1545 	return (0);
1546 }
1547 
1548 static rctl_ops_t zone_semmni_ops = {
1549 	rcop_no_action,
1550 	rcop_no_usage,
1551 	rcop_no_set,
1552 	zone_semmni_test
1553 };
1554 
1555 /*ARGSUSED*/
1556 static int
1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558     rctl_qty_t incr, uint_t flags)
1559 {
1560 	rctl_qty_t v;
1561 	ASSERT(MUTEX_HELD(&p->p_lock));
1562 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1564 	if (v > rval->rcv_value)
1565 		return (1);
1566 	return (0);
1567 }
1568 
1569 static rctl_ops_t zone_msgmni_ops = {
1570 	rcop_no_action,
1571 	rcop_no_usage,
1572 	rcop_no_set,
1573 	zone_msgmni_test
1574 };
1575 
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1579 {
1580 	rctl_qty_t q;
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	mutex_enter(&p->p_zone->zone_mem_lock);
1583 	q = p->p_zone->zone_locked_mem;
1584 	mutex_exit(&p->p_zone->zone_mem_lock);
1585 	return (q);
1586 }
1587 
1588 /*ARGSUSED*/
1589 static int
1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1591     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1592 {
1593 	rctl_qty_t q;
1594 	zone_t *z;
1595 
1596 	z = e->rcep_p.zone;
1597 	ASSERT(MUTEX_HELD(&p->p_lock));
1598 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1599 	q = z->zone_locked_mem;
1600 	if (q + incr > rcntl->rcv_value)
1601 		return (1);
1602 	return (0);
1603 }
1604 
1605 /*ARGSUSED*/
1606 static int
1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1608     rctl_qty_t nv)
1609 {
1610 	ASSERT(MUTEX_HELD(&p->p_lock));
1611 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1612 	if (e->rcep_p.zone == NULL)
1613 		return (0);
1614 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1615 	return (0);
1616 }
1617 
1618 static rctl_ops_t zone_locked_mem_ops = {
1619 	rcop_no_action,
1620 	zone_locked_mem_usage,
1621 	zone_locked_mem_set,
1622 	zone_locked_mem_test
1623 };
1624 
1625 /*ARGSUSED*/
1626 static rctl_qty_t
1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1628 {
1629 	rctl_qty_t q;
1630 	zone_t *z = p->p_zone;
1631 
1632 	ASSERT(MUTEX_HELD(&p->p_lock));
1633 	mutex_enter(&z->zone_mem_lock);
1634 	q = z->zone_max_swap;
1635 	mutex_exit(&z->zone_mem_lock);
1636 	return (q);
1637 }
1638 
1639 /*ARGSUSED*/
1640 static int
1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1642     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1643 {
1644 	rctl_qty_t q;
1645 	zone_t *z;
1646 
1647 	z = e->rcep_p.zone;
1648 	ASSERT(MUTEX_HELD(&p->p_lock));
1649 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1650 	q = z->zone_max_swap;
1651 	if (q + incr > rcntl->rcv_value)
1652 		return (1);
1653 	return (0);
1654 }
1655 
1656 /*ARGSUSED*/
1657 static int
1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1659     rctl_qty_t nv)
1660 {
1661 	ASSERT(MUTEX_HELD(&p->p_lock));
1662 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1663 	if (e->rcep_p.zone == NULL)
1664 		return (0);
1665 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1666 	return (0);
1667 }
1668 
1669 static rctl_ops_t zone_max_swap_ops = {
1670 	rcop_no_action,
1671 	zone_max_swap_usage,
1672 	zone_max_swap_set,
1673 	zone_max_swap_test
1674 };
1675 
1676 /*ARGSUSED*/
1677 static rctl_qty_t
1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1679 {
1680 	rctl_qty_t q;
1681 	zone_t *z = p->p_zone;
1682 
1683 	ASSERT(MUTEX_HELD(&p->p_lock));
1684 	mutex_enter(&z->zone_rctl_lock);
1685 	q = z->zone_max_lofi;
1686 	mutex_exit(&z->zone_rctl_lock);
1687 	return (q);
1688 }
1689 
1690 /*ARGSUSED*/
1691 static int
1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1693     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1694 {
1695 	rctl_qty_t q;
1696 	zone_t *z;
1697 
1698 	z = e->rcep_p.zone;
1699 	ASSERT(MUTEX_HELD(&p->p_lock));
1700 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1701 	q = z->zone_max_lofi;
1702 	if (q + incr > rcntl->rcv_value)
1703 		return (1);
1704 	return (0);
1705 }
1706 
1707 /*ARGSUSED*/
1708 static int
1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1710     rctl_qty_t nv)
1711 {
1712 	ASSERT(MUTEX_HELD(&p->p_lock));
1713 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1714 	if (e->rcep_p.zone == NULL)
1715 		return (0);
1716 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1717 	return (0);
1718 }
1719 
1720 static rctl_ops_t zone_max_lofi_ops = {
1721 	rcop_no_action,
1722 	zone_max_lofi_usage,
1723 	zone_max_lofi_set,
1724 	zone_max_lofi_test
1725 };
1726 
1727 /*
1728  * Helper function to brand the zone with a unique ID.
1729  */
1730 static void
1731 zone_uniqid(zone_t *zone)
1732 {
1733 	static uint64_t uniqid = 0;
1734 
1735 	ASSERT(MUTEX_HELD(&zonehash_lock));
1736 	zone->zone_uniqid = uniqid++;
1737 }
1738 
1739 /*
1740  * Returns a held pointer to the "kcred" for the specified zone.
1741  */
1742 struct cred *
1743 zone_get_kcred(zoneid_t zoneid)
1744 {
1745 	zone_t *zone;
1746 	cred_t *cr;
1747 
1748 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1749 		return (NULL);
1750 	cr = zone->zone_kcred;
1751 	crhold(cr);
1752 	zone_rele(zone);
1753 	return (cr);
1754 }
1755 
1756 static int
1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1758 {
1759 	zone_t *zone = ksp->ks_private;
1760 	zone_kstat_t *zk = ksp->ks_data;
1761 
1762 	if (rw == KSTAT_WRITE)
1763 		return (EACCES);
1764 
1765 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1766 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1767 	return (0);
1768 }
1769 
1770 static int
1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1772 {
1773 	zone_t *zone = ksp->ks_private;
1774 	zone_kstat_t *zk = ksp->ks_data;
1775 
1776 	if (rw == KSTAT_WRITE)
1777 		return (EACCES);
1778 
1779 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1780 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1781 	return (0);
1782 }
1783 
1784 static int
1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1786 {
1787 	zone_t *zone = ksp->ks_private;
1788 	zone_kstat_t *zk = ksp->ks_data;
1789 
1790 	if (rw == KSTAT_WRITE)
1791 		return (EACCES);
1792 
1793 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1794 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1795 	return (0);
1796 }
1797 
1798 static kstat_t *
1799 zone_kstat_create_common(zone_t *zone, char *name,
1800     int (*updatefunc) (kstat_t *, int))
1801 {
1802 	kstat_t *ksp;
1803 	zone_kstat_t *zk;
1804 
1805 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1806 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1807 	    KSTAT_FLAG_VIRTUAL);
1808 
1809 	if (ksp == NULL)
1810 		return (NULL);
1811 
1812 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1813 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1814 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1815 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1816 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1817 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1818 	ksp->ks_update = updatefunc;
1819 	ksp->ks_private = zone;
1820 	kstat_install(ksp);
1821 	return (ksp);
1822 }
1823 
1824 static int
1825 zone_misc_kstat_update(kstat_t *ksp, int rw)
1826 {
1827 	zone_t *zone = ksp->ks_private;
1828 	zone_misc_kstat_t *zmp = ksp->ks_data;
1829 	hrtime_t tmp;
1830 
1831 	if (rw == KSTAT_WRITE)
1832 		return (EACCES);
1833 
1834 	tmp = zone->zone_utime;
1835 	scalehrtime(&tmp);
1836 	zmp->zm_utime.value.ui64 = tmp;
1837 	tmp = zone->zone_stime;
1838 	scalehrtime(&tmp);
1839 	zmp->zm_stime.value.ui64 = tmp;
1840 	tmp = zone->zone_wtime;
1841 	scalehrtime(&tmp);
1842 	zmp->zm_wtime.value.ui64 = tmp;
1843 
1844 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1845 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1846 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1847 
1848 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1849 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1850 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1851 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1852 
1853 	return (0);
1854 }
1855 
1856 static kstat_t *
1857 zone_misc_kstat_create(zone_t *zone)
1858 {
1859 	kstat_t *ksp;
1860 	zone_misc_kstat_t *zmp;
1861 
1862 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1863 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1864 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1865 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1866 		return (NULL);
1867 
1868 	if (zone->zone_id != GLOBAL_ZONEID)
1869 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1870 
1871 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1872 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1873 	ksp->ks_lock = &zone->zone_misc_lock;
1874 	zone->zone_misc_stats = zmp;
1875 
1876 	/* The kstat "name" field is not large enough for a full zonename */
1877 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1878 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1879 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1880 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1881 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1882 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1883 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1884 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1885 	    KSTAT_DATA_UINT32);
1886 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1887 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1888 	    KSTAT_DATA_UINT32);
1889 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1890 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1891 
1892 
1893 	ksp->ks_update = zone_misc_kstat_update;
1894 	ksp->ks_private = zone;
1895 
1896 	kstat_install(ksp);
1897 	return (ksp);
1898 }
1899 
1900 static void
1901 zone_kstat_create(zone_t *zone)
1902 {
1903 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1904 	    "lockedmem", zone_lockedmem_kstat_update);
1905 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1906 	    "swapresv", zone_swapresv_kstat_update);
1907 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1908 	    "nprocs", zone_nprocs_kstat_update);
1909 
1910 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1911 		zone->zone_misc_stats = kmem_zalloc(
1912 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
1913 	}
1914 }
1915 
1916 static void
1917 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1918 {
1919 	void *data;
1920 
1921 	if (*pkstat != NULL) {
1922 		data = (*pkstat)->ks_data;
1923 		kstat_delete(*pkstat);
1924 		kmem_free(data, datasz);
1925 		*pkstat = NULL;
1926 	}
1927 }
1928 
1929 static void
1930 zone_kstat_delete(zone_t *zone)
1931 {
1932 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1933 	    sizeof (zone_kstat_t));
1934 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1935 	    sizeof (zone_kstat_t));
1936 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1937 	    sizeof (zone_kstat_t));
1938 	zone_kstat_delete_common(&zone->zone_misc_ksp,
1939 	    sizeof (zone_misc_kstat_t));
1940 }
1941 
1942 /*
1943  * Called very early on in boot to initialize the ZSD list so that
1944  * zone_key_create() can be called before zone_init().  It also initializes
1945  * portions of zone0 which may be used before zone_init() is called.  The
1946  * variable "global_zone" will be set when zone0 is fully initialized by
1947  * zone_init().
1948  */
1949 void
1950 zone_zsd_init(void)
1951 {
1952 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1953 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1954 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1955 	    offsetof(struct zsd_entry, zsd_linkage));
1956 	list_create(&zone_active, sizeof (zone_t),
1957 	    offsetof(zone_t, zone_linkage));
1958 	list_create(&zone_deathrow, sizeof (zone_t),
1959 	    offsetof(zone_t, zone_linkage));
1960 
1961 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1962 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1963 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1964 	zone0.zone_shares = 1;
1965 	zone0.zone_nlwps = 0;
1966 	zone0.zone_nlwps_ctl = INT_MAX;
1967 	zone0.zone_nprocs = 0;
1968 	zone0.zone_nprocs_ctl = INT_MAX;
1969 	zone0.zone_locked_mem = 0;
1970 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1971 	ASSERT(zone0.zone_max_swap == 0);
1972 	zone0.zone_max_swap_ctl = UINT64_MAX;
1973 	zone0.zone_max_lofi = 0;
1974 	zone0.zone_max_lofi_ctl = UINT64_MAX;
1975 	zone0.zone_shmmax = 0;
1976 	zone0.zone_ipc.ipcq_shmmni = 0;
1977 	zone0.zone_ipc.ipcq_semmni = 0;
1978 	zone0.zone_ipc.ipcq_msgmni = 0;
1979 	zone0.zone_name = GLOBAL_ZONENAME;
1980 	zone0.zone_nodename = utsname.nodename;
1981 	zone0.zone_domain = srpc_domain;
1982 	zone0.zone_hostid = HW_INVALID_HOSTID;
1983 	zone0.zone_fs_allowed = NULL;
1984 	zone0.zone_ref = 1;
1985 	zone0.zone_id = GLOBAL_ZONEID;
1986 	zone0.zone_status = ZONE_IS_RUNNING;
1987 	zone0.zone_rootpath = "/";
1988 	zone0.zone_rootpathlen = 2;
1989 	zone0.zone_psetid = ZONE_PS_INVAL;
1990 	zone0.zone_ncpus = 0;
1991 	zone0.zone_ncpus_online = 0;
1992 	zone0.zone_proc_initpid = 1;
1993 	zone0.zone_initname = initname;
1994 	zone0.zone_lockedmem_kstat = NULL;
1995 	zone0.zone_swapresv_kstat = NULL;
1996 	zone0.zone_nprocs_kstat = NULL;
1997 
1998 	zone0.zone_stime = 0;
1999 	zone0.zone_utime = 0;
2000 	zone0.zone_wtime = 0;
2001 
2002 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2003 	    offsetof(zone_ref_t, zref_linkage));
2004 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2005 	    offsetof(struct zsd_entry, zsd_linkage));
2006 	list_insert_head(&zone_active, &zone0);
2007 
2008 	/*
2009 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2010 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2011 	 * vfs_mountroot().
2012 	 */
2013 	zone0.zone_rootvp = NULL;
2014 	zone0.zone_vfslist = NULL;
2015 	zone0.zone_bootargs = initargs;
2016 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2017 	/*
2018 	 * The global zone has all privileges
2019 	 */
2020 	priv_fillset(zone0.zone_privset);
2021 	/*
2022 	 * Add p0 to the global zone
2023 	 */
2024 	zone0.zone_zsched = &p0;
2025 	p0.p_zone = &zone0;
2026 }
2027 
2028 /*
2029  * Compute a hash value based on the contents of the label and the DOI.  The
2030  * hash algorithm is somewhat arbitrary, but is based on the observation that
2031  * humans will likely pick labels that differ by amounts that work out to be
2032  * multiples of the number of hash chains, and thus stirring in some primes
2033  * should help.
2034  */
2035 static uint_t
2036 hash_bylabel(void *hdata, mod_hash_key_t key)
2037 {
2038 	const ts_label_t *lab = (ts_label_t *)key;
2039 	const uint32_t *up, *ue;
2040 	uint_t hash;
2041 	int i;
2042 
2043 	_NOTE(ARGUNUSED(hdata));
2044 
2045 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2046 	/* we depend on alignment of label, but not representation */
2047 	up = (const uint32_t *)&lab->tsl_label;
2048 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2049 	i = 1;
2050 	while (up < ue) {
2051 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2052 		hash += *up + (*up << ((i % 16) + 1));
2053 		up++;
2054 		i++;
2055 	}
2056 	return (hash);
2057 }
2058 
2059 /*
2060  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2061  * equal).  This may need to be changed if less than / greater than is ever
2062  * needed.
2063  */
2064 static int
2065 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2066 {
2067 	ts_label_t *lab1 = (ts_label_t *)key1;
2068 	ts_label_t *lab2 = (ts_label_t *)key2;
2069 
2070 	return (label_equal(lab1, lab2) ? 0 : 1);
2071 }
2072 
2073 /*
2074  * Called by main() to initialize the zones framework.
2075  */
2076 void
2077 zone_init(void)
2078 {
2079 	rctl_dict_entry_t *rde;
2080 	rctl_val_t *dval;
2081 	rctl_set_t *set;
2082 	rctl_alloc_gp_t *gp;
2083 	rctl_entity_p_t e;
2084 	int res;
2085 
2086 	ASSERT(curproc == &p0);
2087 
2088 	/*
2089 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2090 	 * global zone.
2091 	 */
2092 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2093 
2094 	/*
2095 	 * Initialize generic zone resource controls, if any.
2096 	 */
2097 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2098 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2099 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2100 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2101 
2102 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2103 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2104 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2105 	    RCTL_GLOBAL_INFINITE,
2106 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2107 
2108 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2109 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2110 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2111 
2112 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2113 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2114 	    INT_MAX, INT_MAX, &zone_procs_ops);
2115 
2116 	/*
2117 	 * System V IPC resource controls
2118 	 */
2119 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2120 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2121 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2122 
2123 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2124 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2125 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2126 
2127 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2128 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2129 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2130 
2131 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2132 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2133 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2134 
2135 	/*
2136 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2137 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2138 	 */
2139 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2140 	bzero(dval, sizeof (rctl_val_t));
2141 	dval->rcv_value = 1;
2142 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2143 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2144 	dval->rcv_action_recip_pid = -1;
2145 
2146 	rde = rctl_dict_lookup("zone.cpu-shares");
2147 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2148 
2149 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2150 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2151 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2152 	    &zone_locked_mem_ops);
2153 
2154 	rc_zone_max_swap = rctl_register("zone.max-swap",
2155 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2156 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2157 	    &zone_max_swap_ops);
2158 
2159 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2160 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2161 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2162 	    &zone_max_lofi_ops);
2163 
2164 	/*
2165 	 * Initialize the ``global zone''.
2166 	 */
2167 	set = rctl_set_create();
2168 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2169 	mutex_enter(&p0.p_lock);
2170 	e.rcep_p.zone = &zone0;
2171 	e.rcep_t = RCENTITY_ZONE;
2172 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2173 	    gp);
2174 
2175 	zone0.zone_nlwps = p0.p_lwpcnt;
2176 	zone0.zone_nprocs = 1;
2177 	zone0.zone_ntasks = 1;
2178 	mutex_exit(&p0.p_lock);
2179 	zone0.zone_restart_init = B_TRUE;
2180 	zone0.zone_brand = &native_brand;
2181 	rctl_prealloc_destroy(gp);
2182 	/*
2183 	 * pool_default hasn't been initialized yet, so we let pool_init()
2184 	 * take care of making sure the global zone is in the default pool.
2185 	 */
2186 
2187 	/*
2188 	 * Initialize global zone kstats
2189 	 */
2190 	zone_kstat_create(&zone0);
2191 
2192 	/*
2193 	 * Initialize zone label.
2194 	 * mlp are initialized when tnzonecfg is loaded.
2195 	 */
2196 	zone0.zone_slabel = l_admin_low;
2197 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2198 	label_hold(l_admin_low);
2199 
2200 	/*
2201 	 * Initialise the lock for the database structure used by mntfs.
2202 	 */
2203 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2204 
2205 	mutex_enter(&zonehash_lock);
2206 	zone_uniqid(&zone0);
2207 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2208 
2209 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2210 	    mod_hash_null_valdtor);
2211 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2212 	    zone_hash_size, mod_hash_null_valdtor);
2213 	/*
2214 	 * maintain zonehashbylabel only for labeled systems
2215 	 */
2216 	if (is_system_labeled())
2217 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2218 		    zone_hash_size, mod_hash_null_keydtor,
2219 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2220 		    hash_labelkey_cmp, KM_SLEEP);
2221 	zonecount = 1;
2222 
2223 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2224 	    (mod_hash_val_t)&zone0);
2225 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2226 	    (mod_hash_val_t)&zone0);
2227 	if (is_system_labeled()) {
2228 		zone0.zone_flags |= ZF_HASHED_LABEL;
2229 		(void) mod_hash_insert(zonehashbylabel,
2230 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2231 	}
2232 	mutex_exit(&zonehash_lock);
2233 
2234 	/*
2235 	 * We avoid setting zone_kcred until now, since kcred is initialized
2236 	 * sometime after zone_zsd_init() and before zone_init().
2237 	 */
2238 	zone0.zone_kcred = kcred;
2239 	/*
2240 	 * The global zone is fully initialized (except for zone_rootvp which
2241 	 * will be set when the root filesystem is mounted).
2242 	 */
2243 	global_zone = &zone0;
2244 
2245 	/*
2246 	 * Setup an event channel to send zone status change notifications on
2247 	 */
2248 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2249 	    EVCH_CREAT);
2250 
2251 	if (res)
2252 		panic("Sysevent_evc_bind failed during zone setup.\n");
2253 
2254 }
2255 
2256 static void
2257 zone_free(zone_t *zone)
2258 {
2259 	ASSERT(zone != global_zone);
2260 	ASSERT(zone->zone_ntasks == 0);
2261 	ASSERT(zone->zone_nlwps == 0);
2262 	ASSERT(zone->zone_nprocs == 0);
2263 	ASSERT(zone->zone_cred_ref == 0);
2264 	ASSERT(zone->zone_kcred == NULL);
2265 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2266 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2267 	ASSERT(list_is_empty(&zone->zone_ref_list));
2268 
2269 	/*
2270 	 * Remove any zone caps.
2271 	 */
2272 	cpucaps_zone_remove(zone);
2273 
2274 	ASSERT(zone->zone_cpucap == NULL);
2275 
2276 	/* remove from deathrow list */
2277 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2278 		ASSERT(zone->zone_ref == 0);
2279 		mutex_enter(&zone_deathrow_lock);
2280 		list_remove(&zone_deathrow, zone);
2281 		mutex_exit(&zone_deathrow_lock);
2282 	}
2283 
2284 	list_destroy(&zone->zone_ref_list);
2285 	zone_free_zsd(zone);
2286 	zone_free_datasets(zone);
2287 	list_destroy(&zone->zone_dl_list);
2288 
2289 	if (zone->zone_rootvp != NULL)
2290 		VN_RELE(zone->zone_rootvp);
2291 	if (zone->zone_rootpath)
2292 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2293 	if (zone->zone_name != NULL)
2294 		kmem_free(zone->zone_name, ZONENAME_MAX);
2295 	if (zone->zone_slabel != NULL)
2296 		label_rele(zone->zone_slabel);
2297 	if (zone->zone_nodename != NULL)
2298 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2299 	if (zone->zone_domain != NULL)
2300 		kmem_free(zone->zone_domain, _SYS_NMLN);
2301 	if (zone->zone_privset != NULL)
2302 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2303 	if (zone->zone_rctls != NULL)
2304 		rctl_set_free(zone->zone_rctls);
2305 	if (zone->zone_bootargs != NULL)
2306 		strfree(zone->zone_bootargs);
2307 	if (zone->zone_initname != NULL)
2308 		strfree(zone->zone_initname);
2309 	if (zone->zone_fs_allowed != NULL)
2310 		strfree(zone->zone_fs_allowed);
2311 	if (zone->zone_pfexecd != NULL)
2312 		klpd_freelist(&zone->zone_pfexecd);
2313 	id_free(zoneid_space, zone->zone_id);
2314 	mutex_destroy(&zone->zone_lock);
2315 	cv_destroy(&zone->zone_cv);
2316 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2317 	rw_destroy(&zone->zone_mntfs_db_lock);
2318 	kmem_free(zone, sizeof (zone_t));
2319 }
2320 
2321 /*
2322  * See block comment at the top of this file for information about zone
2323  * status values.
2324  */
2325 /*
2326  * Convenience function for setting zone status.
2327  */
2328 static void
2329 zone_status_set(zone_t *zone, zone_status_t status)
2330 {
2331 
2332 	nvlist_t *nvl = NULL;
2333 	ASSERT(MUTEX_HELD(&zone_status_lock));
2334 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2335 	    status >= zone_status_get(zone));
2336 
2337 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2338 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2339 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2340 	    zone_status_table[status]) ||
2341 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2342 	    zone_status_table[zone->zone_status]) ||
2343 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2344 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2345 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2346 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2347 #ifdef DEBUG
2348 		(void) printf(
2349 		    "Failed to allocate and send zone state change event.\n");
2350 #endif
2351 	}
2352 	nvlist_free(nvl);
2353 
2354 	zone->zone_status = status;
2355 
2356 	cv_broadcast(&zone->zone_cv);
2357 }
2358 
2359 /*
2360  * Public function to retrieve the zone status.  The zone status may
2361  * change after it is retrieved.
2362  */
2363 zone_status_t
2364 zone_status_get(zone_t *zone)
2365 {
2366 	return (zone->zone_status);
2367 }
2368 
2369 static int
2370 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2371 {
2372 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2373 	int err = 0;
2374 
2375 	ASSERT(zone != global_zone);
2376 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2377 		goto done;	/* EFAULT or ENAMETOOLONG */
2378 
2379 	if (zone->zone_bootargs != NULL)
2380 		strfree(zone->zone_bootargs);
2381 
2382 	zone->zone_bootargs = strdup(buf);
2383 
2384 done:
2385 	kmem_free(buf, BOOTARGS_MAX);
2386 	return (err);
2387 }
2388 
2389 static int
2390 zone_set_brand(zone_t *zone, const char *brand)
2391 {
2392 	struct brand_attr *attrp;
2393 	brand_t *bp;
2394 
2395 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2396 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2397 		kmem_free(attrp, sizeof (struct brand_attr));
2398 		return (EFAULT);
2399 	}
2400 
2401 	bp = brand_register_zone(attrp);
2402 	kmem_free(attrp, sizeof (struct brand_attr));
2403 	if (bp == NULL)
2404 		return (EINVAL);
2405 
2406 	/*
2407 	 * This is the only place where a zone can change it's brand.
2408 	 * We already need to hold zone_status_lock to check the zone
2409 	 * status, so we'll just use that lock to serialize zone
2410 	 * branding requests as well.
2411 	 */
2412 	mutex_enter(&zone_status_lock);
2413 
2414 	/* Re-Branding is not allowed and the zone can't be booted yet */
2415 	if ((ZONE_IS_BRANDED(zone)) ||
2416 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2417 		mutex_exit(&zone_status_lock);
2418 		brand_unregister_zone(bp);
2419 		return (EINVAL);
2420 	}
2421 
2422 	/* set up the brand specific data */
2423 	zone->zone_brand = bp;
2424 	ZBROP(zone)->b_init_brand_data(zone);
2425 
2426 	mutex_exit(&zone_status_lock);
2427 	return (0);
2428 }
2429 
2430 static int
2431 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2432 {
2433 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2434 	int err = 0;
2435 
2436 	ASSERT(zone != global_zone);
2437 	if ((err = copyinstr(zone_fs_allowed, buf,
2438 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2439 		goto done;
2440 
2441 	if (zone->zone_fs_allowed != NULL)
2442 		strfree(zone->zone_fs_allowed);
2443 
2444 	zone->zone_fs_allowed = strdup(buf);
2445 
2446 done:
2447 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2448 	return (err);
2449 }
2450 
2451 static int
2452 zone_set_initname(zone_t *zone, const char *zone_initname)
2453 {
2454 	char initname[INITNAME_SZ];
2455 	size_t len;
2456 	int err = 0;
2457 
2458 	ASSERT(zone != global_zone);
2459 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2460 		return (err);	/* EFAULT or ENAMETOOLONG */
2461 
2462 	if (zone->zone_initname != NULL)
2463 		strfree(zone->zone_initname);
2464 
2465 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2466 	(void) strcpy(zone->zone_initname, initname);
2467 	return (0);
2468 }
2469 
2470 static int
2471 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2472 {
2473 	uint64_t mcap;
2474 	int err = 0;
2475 
2476 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2477 		zone->zone_phys_mcap = mcap;
2478 
2479 	return (err);
2480 }
2481 
2482 static int
2483 zone_set_sched_class(zone_t *zone, const char *new_class)
2484 {
2485 	char sched_class[PC_CLNMSZ];
2486 	id_t classid;
2487 	int err;
2488 
2489 	ASSERT(zone != global_zone);
2490 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2491 		return (err);	/* EFAULT or ENAMETOOLONG */
2492 
2493 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2494 		return (set_errno(EINVAL));
2495 	zone->zone_defaultcid = classid;
2496 	ASSERT(zone->zone_defaultcid > 0 &&
2497 	    zone->zone_defaultcid < loaded_classes);
2498 
2499 	return (0);
2500 }
2501 
2502 /*
2503  * Block indefinitely waiting for (zone_status >= status)
2504  */
2505 void
2506 zone_status_wait(zone_t *zone, zone_status_t status)
2507 {
2508 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2509 
2510 	mutex_enter(&zone_status_lock);
2511 	while (zone->zone_status < status) {
2512 		cv_wait(&zone->zone_cv, &zone_status_lock);
2513 	}
2514 	mutex_exit(&zone_status_lock);
2515 }
2516 
2517 /*
2518  * Private CPR-safe version of zone_status_wait().
2519  */
2520 static void
2521 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2522 {
2523 	callb_cpr_t cprinfo;
2524 
2525 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2526 
2527 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2528 	    str);
2529 	mutex_enter(&zone_status_lock);
2530 	while (zone->zone_status < status) {
2531 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2532 		cv_wait(&zone->zone_cv, &zone_status_lock);
2533 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2534 	}
2535 	/*
2536 	 * zone_status_lock is implicitly released by the following.
2537 	 */
2538 	CALLB_CPR_EXIT(&cprinfo);
2539 }
2540 
2541 /*
2542  * Block until zone enters requested state or signal is received.  Return (0)
2543  * if signaled, non-zero otherwise.
2544  */
2545 int
2546 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2547 {
2548 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2549 
2550 	mutex_enter(&zone_status_lock);
2551 	while (zone->zone_status < status) {
2552 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2553 			mutex_exit(&zone_status_lock);
2554 			return (0);
2555 		}
2556 	}
2557 	mutex_exit(&zone_status_lock);
2558 	return (1);
2559 }
2560 
2561 /*
2562  * Block until the zone enters the requested state or the timeout expires,
2563  * whichever happens first.  Return (-1) if operation timed out, time remaining
2564  * otherwise.
2565  */
2566 clock_t
2567 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2568 {
2569 	clock_t timeleft = 0;
2570 
2571 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2572 
2573 	mutex_enter(&zone_status_lock);
2574 	while (zone->zone_status < status && timeleft != -1) {
2575 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2576 	}
2577 	mutex_exit(&zone_status_lock);
2578 	return (timeleft);
2579 }
2580 
2581 /*
2582  * Block until the zone enters the requested state, the current process is
2583  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2584  * operation timed out, 0 if signaled, time remaining otherwise.
2585  */
2586 clock_t
2587 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2588 {
2589 	clock_t timeleft = tim - ddi_get_lbolt();
2590 
2591 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2592 
2593 	mutex_enter(&zone_status_lock);
2594 	while (zone->zone_status < status) {
2595 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2596 		    tim);
2597 		if (timeleft <= 0)
2598 			break;
2599 	}
2600 	mutex_exit(&zone_status_lock);
2601 	return (timeleft);
2602 }
2603 
2604 /*
2605  * Zones have two reference counts: one for references from credential
2606  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2607  * This is so we can allow a zone to be rebooted while there are still
2608  * outstanding cred references, since certain drivers cache dblks (which
2609  * implicitly results in cached creds).  We wait for zone_ref to drop to
2610  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2611  * later freed when the zone_cred_ref drops to 0, though nothing other
2612  * than the zone id and privilege set should be accessed once the zone
2613  * is "dead".
2614  *
2615  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2616  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2617  * to 0.  This can be useful to flush out other sources of cached creds
2618  * that may be less innocuous than the driver case.
2619  *
2620  * Zones also provide a tracked reference counting mechanism in which zone
2621  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2622  * debuggers determine the sources of leaked zone references.  See
2623  * zone_hold_ref() and zone_rele_ref() below for more information.
2624  */
2625 
2626 int zone_wait_for_cred = 0;
2627 
2628 static void
2629 zone_hold_locked(zone_t *z)
2630 {
2631 	ASSERT(MUTEX_HELD(&z->zone_lock));
2632 	z->zone_ref++;
2633 	ASSERT(z->zone_ref != 0);
2634 }
2635 
2636 /*
2637  * Increment the specified zone's reference count.  The zone's zone_t structure
2638  * will not be freed as long as the zone's reference count is nonzero.
2639  * Decrement the zone's reference count via zone_rele().
2640  *
2641  * NOTE: This function should only be used to hold zones for short periods of
2642  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2643  */
2644 void
2645 zone_hold(zone_t *z)
2646 {
2647 	mutex_enter(&z->zone_lock);
2648 	zone_hold_locked(z);
2649 	mutex_exit(&z->zone_lock);
2650 }
2651 
2652 /*
2653  * If the non-cred ref count drops to 1 and either the cred ref count
2654  * is 0 or we aren't waiting for cred references, the zone is ready to
2655  * be destroyed.
2656  */
2657 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2658 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2659 
2660 /*
2661  * Common zone reference release function invoked by zone_rele() and
2662  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2663  * zone's subsystem-specific reference counters are not affected by the
2664  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2665  * removed from the specified zone's reference list.  ref must be non-NULL iff
2666  * subsys is not ZONE_REF_NUM_SUBSYS.
2667  */
2668 static void
2669 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2670 {
2671 	boolean_t wakeup;
2672 
2673 	mutex_enter(&z->zone_lock);
2674 	ASSERT(z->zone_ref != 0);
2675 	z->zone_ref--;
2676 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2677 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2678 		z->zone_subsys_ref[subsys]--;
2679 		list_remove(&z->zone_ref_list, ref);
2680 	}
2681 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2682 		/* no more refs, free the structure */
2683 		mutex_exit(&z->zone_lock);
2684 		zone_free(z);
2685 		return;
2686 	}
2687 	/* signal zone_destroy so the zone can finish halting */
2688 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2689 	mutex_exit(&z->zone_lock);
2690 
2691 	if (wakeup) {
2692 		/*
2693 		 * Grabbing zonehash_lock here effectively synchronizes with
2694 		 * zone_destroy() to avoid missed signals.
2695 		 */
2696 		mutex_enter(&zonehash_lock);
2697 		cv_broadcast(&zone_destroy_cv);
2698 		mutex_exit(&zonehash_lock);
2699 	}
2700 }
2701 
2702 /*
2703  * Decrement the specified zone's reference count.  The specified zone will
2704  * cease to exist after this function returns if the reference count drops to
2705  * zero.  This function should be paired with zone_hold().
2706  */
2707 void
2708 zone_rele(zone_t *z)
2709 {
2710 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2711 }
2712 
2713 /*
2714  * Initialize a zone reference structure.  This function must be invoked for
2715  * a reference structure before the structure is passed to zone_hold_ref().
2716  */
2717 void
2718 zone_init_ref(zone_ref_t *ref)
2719 {
2720 	ref->zref_zone = NULL;
2721 	list_link_init(&ref->zref_linkage);
2722 }
2723 
2724 /*
2725  * Acquire a reference to zone z.  The caller must specify the
2726  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2727  * zone_ref_t structure will represent a reference to the specified zone.  Use
2728  * zone_rele_ref() to release the reference.
2729  *
2730  * The referenced zone_t structure will not be freed as long as the zone_t's
2731  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2732  * references.
2733  *
2734  * NOTE: The zone_ref_t structure must be initialized before it is used.
2735  * See zone_init_ref() above.
2736  */
2737 void
2738 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2739 {
2740 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2741 
2742 	/*
2743 	 * Prevent consumers from reusing a reference structure before
2744 	 * releasing it.
2745 	 */
2746 	VERIFY(ref->zref_zone == NULL);
2747 
2748 	ref->zref_zone = z;
2749 	mutex_enter(&z->zone_lock);
2750 	zone_hold_locked(z);
2751 	z->zone_subsys_ref[subsys]++;
2752 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2753 	list_insert_head(&z->zone_ref_list, ref);
2754 	mutex_exit(&z->zone_lock);
2755 }
2756 
2757 /*
2758  * Release the zone reference represented by the specified zone_ref_t.
2759  * The reference is invalid after it's released; however, the zone_ref_t
2760  * structure can be reused without having to invoke zone_init_ref().
2761  * subsys should be the same value that was passed to zone_hold_ref()
2762  * when the reference was acquired.
2763  */
2764 void
2765 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2766 {
2767 	zone_rele_common(ref->zref_zone, ref, subsys);
2768 
2769 	/*
2770 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2771 	 * when consumers dereference the reference.  This helps us catch
2772 	 * consumers who use released references.  Furthermore, this lets
2773 	 * consumers reuse the zone_ref_t structure without having to
2774 	 * invoke zone_init_ref().
2775 	 */
2776 	ref->zref_zone = NULL;
2777 }
2778 
2779 void
2780 zone_cred_hold(zone_t *z)
2781 {
2782 	mutex_enter(&z->zone_lock);
2783 	z->zone_cred_ref++;
2784 	ASSERT(z->zone_cred_ref != 0);
2785 	mutex_exit(&z->zone_lock);
2786 }
2787 
2788 void
2789 zone_cred_rele(zone_t *z)
2790 {
2791 	boolean_t wakeup;
2792 
2793 	mutex_enter(&z->zone_lock);
2794 	ASSERT(z->zone_cred_ref != 0);
2795 	z->zone_cred_ref--;
2796 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2797 		/* no more refs, free the structure */
2798 		mutex_exit(&z->zone_lock);
2799 		zone_free(z);
2800 		return;
2801 	}
2802 	/*
2803 	 * If zone_destroy is waiting for the cred references to drain
2804 	 * out, and they have, signal it.
2805 	 */
2806 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2807 	    zone_status_get(z) >= ZONE_IS_DEAD);
2808 	mutex_exit(&z->zone_lock);
2809 
2810 	if (wakeup) {
2811 		/*
2812 		 * Grabbing zonehash_lock here effectively synchronizes with
2813 		 * zone_destroy() to avoid missed signals.
2814 		 */
2815 		mutex_enter(&zonehash_lock);
2816 		cv_broadcast(&zone_destroy_cv);
2817 		mutex_exit(&zonehash_lock);
2818 	}
2819 }
2820 
2821 void
2822 zone_task_hold(zone_t *z)
2823 {
2824 	mutex_enter(&z->zone_lock);
2825 	z->zone_ntasks++;
2826 	ASSERT(z->zone_ntasks != 0);
2827 	mutex_exit(&z->zone_lock);
2828 }
2829 
2830 void
2831 zone_task_rele(zone_t *zone)
2832 {
2833 	uint_t refcnt;
2834 
2835 	mutex_enter(&zone->zone_lock);
2836 	ASSERT(zone->zone_ntasks != 0);
2837 	refcnt = --zone->zone_ntasks;
2838 	if (refcnt > 1)	{	/* Common case */
2839 		mutex_exit(&zone->zone_lock);
2840 		return;
2841 	}
2842 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2843 	mutex_exit(&zone->zone_lock);
2844 	if (refcnt == 1) {
2845 		/*
2846 		 * See if the zone is shutting down.
2847 		 */
2848 		mutex_enter(&zone_status_lock);
2849 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2850 			goto out;
2851 		}
2852 
2853 		/*
2854 		 * Make sure the ntasks didn't change since we
2855 		 * dropped zone_lock.
2856 		 */
2857 		mutex_enter(&zone->zone_lock);
2858 		if (refcnt != zone->zone_ntasks) {
2859 			mutex_exit(&zone->zone_lock);
2860 			goto out;
2861 		}
2862 		mutex_exit(&zone->zone_lock);
2863 
2864 		/*
2865 		 * No more user processes in the zone.  The zone is empty.
2866 		 */
2867 		zone_status_set(zone, ZONE_IS_EMPTY);
2868 		goto out;
2869 	}
2870 
2871 	ASSERT(refcnt == 0);
2872 	/*
2873 	 * zsched has exited; the zone is dead.
2874 	 */
2875 	zone->zone_zsched = NULL;		/* paranoia */
2876 	mutex_enter(&zone_status_lock);
2877 	zone_status_set(zone, ZONE_IS_DEAD);
2878 out:
2879 	mutex_exit(&zone_status_lock);
2880 	zone_rele(zone);
2881 }
2882 
2883 zoneid_t
2884 getzoneid(void)
2885 {
2886 	return (curproc->p_zone->zone_id);
2887 }
2888 
2889 /*
2890  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2891  * check the validity of a zone's state.
2892  */
2893 static zone_t *
2894 zone_find_all_by_id(zoneid_t zoneid)
2895 {
2896 	mod_hash_val_t hv;
2897 	zone_t *zone = NULL;
2898 
2899 	ASSERT(MUTEX_HELD(&zonehash_lock));
2900 
2901 	if (mod_hash_find(zonehashbyid,
2902 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2903 		zone = (zone_t *)hv;
2904 	return (zone);
2905 }
2906 
2907 static zone_t *
2908 zone_find_all_by_label(const ts_label_t *label)
2909 {
2910 	mod_hash_val_t hv;
2911 	zone_t *zone = NULL;
2912 
2913 	ASSERT(MUTEX_HELD(&zonehash_lock));
2914 
2915 	/*
2916 	 * zonehashbylabel is not maintained for unlabeled systems
2917 	 */
2918 	if (!is_system_labeled())
2919 		return (NULL);
2920 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2921 		zone = (zone_t *)hv;
2922 	return (zone);
2923 }
2924 
2925 static zone_t *
2926 zone_find_all_by_name(char *name)
2927 {
2928 	mod_hash_val_t hv;
2929 	zone_t *zone = NULL;
2930 
2931 	ASSERT(MUTEX_HELD(&zonehash_lock));
2932 
2933 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2934 		zone = (zone_t *)hv;
2935 	return (zone);
2936 }
2937 
2938 /*
2939  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2940  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2941  * Caller must call zone_rele() once it is done with the zone.
2942  *
2943  * The zone may begin the zone_destroy() sequence immediately after this
2944  * function returns, but may be safely used until zone_rele() is called.
2945  */
2946 zone_t *
2947 zone_find_by_id(zoneid_t zoneid)
2948 {
2949 	zone_t *zone;
2950 	zone_status_t status;
2951 
2952 	mutex_enter(&zonehash_lock);
2953 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2954 		mutex_exit(&zonehash_lock);
2955 		return (NULL);
2956 	}
2957 	status = zone_status_get(zone);
2958 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2959 		/*
2960 		 * For all practical purposes the zone doesn't exist.
2961 		 */
2962 		mutex_exit(&zonehash_lock);
2963 		return (NULL);
2964 	}
2965 	zone_hold(zone);
2966 	mutex_exit(&zonehash_lock);
2967 	return (zone);
2968 }
2969 
2970 /*
2971  * Similar to zone_find_by_id, but using zone label as the key.
2972  */
2973 zone_t *
2974 zone_find_by_label(const ts_label_t *label)
2975 {
2976 	zone_t *zone;
2977 	zone_status_t status;
2978 
2979 	mutex_enter(&zonehash_lock);
2980 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2981 		mutex_exit(&zonehash_lock);
2982 		return (NULL);
2983 	}
2984 
2985 	status = zone_status_get(zone);
2986 	if (status > ZONE_IS_DOWN) {
2987 		/*
2988 		 * For all practical purposes the zone doesn't exist.
2989 		 */
2990 		mutex_exit(&zonehash_lock);
2991 		return (NULL);
2992 	}
2993 	zone_hold(zone);
2994 	mutex_exit(&zonehash_lock);
2995 	return (zone);
2996 }
2997 
2998 /*
2999  * Similar to zone_find_by_id, but using zone name as the key.
3000  */
3001 zone_t *
3002 zone_find_by_name(char *name)
3003 {
3004 	zone_t *zone;
3005 	zone_status_t status;
3006 
3007 	mutex_enter(&zonehash_lock);
3008 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3009 		mutex_exit(&zonehash_lock);
3010 		return (NULL);
3011 	}
3012 	status = zone_status_get(zone);
3013 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3014 		/*
3015 		 * For all practical purposes the zone doesn't exist.
3016 		 */
3017 		mutex_exit(&zonehash_lock);
3018 		return (NULL);
3019 	}
3020 	zone_hold(zone);
3021 	mutex_exit(&zonehash_lock);
3022 	return (zone);
3023 }
3024 
3025 /*
3026  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3027  * if there is a zone "foo" rooted at /foo/root, and the path argument
3028  * is "/foo/root/proc", it will return the held zone_t corresponding to
3029  * zone "foo".
3030  *
3031  * zone_find_by_path() always returns a non-NULL value, since at the
3032  * very least every path will be contained in the global zone.
3033  *
3034  * As with the other zone_find_by_*() functions, the caller is
3035  * responsible for zone_rele()ing the return value of this function.
3036  */
3037 zone_t *
3038 zone_find_by_path(const char *path)
3039 {
3040 	zone_t *zone;
3041 	zone_t *zret = NULL;
3042 	zone_status_t status;
3043 
3044 	if (path == NULL) {
3045 		/*
3046 		 * Call from rootconf().
3047 		 */
3048 		zone_hold(global_zone);
3049 		return (global_zone);
3050 	}
3051 	ASSERT(*path == '/');
3052 	mutex_enter(&zonehash_lock);
3053 	for (zone = list_head(&zone_active); zone != NULL;
3054 	    zone = list_next(&zone_active, zone)) {
3055 		if (ZONE_PATH_VISIBLE(path, zone))
3056 			zret = zone;
3057 	}
3058 	ASSERT(zret != NULL);
3059 	status = zone_status_get(zret);
3060 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3061 		/*
3062 		 * Zone practically doesn't exist.
3063 		 */
3064 		zret = global_zone;
3065 	}
3066 	zone_hold(zret);
3067 	mutex_exit(&zonehash_lock);
3068 	return (zret);
3069 }
3070 
3071 /*
3072  * Public interface for updating per-zone load averages.  Called once per
3073  * second.
3074  *
3075  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3076  */
3077 void
3078 zone_loadavg_update()
3079 {
3080 	zone_t *zp;
3081 	zone_status_t status;
3082 	struct loadavg_s *lavg;
3083 	hrtime_t zone_total;
3084 	int i;
3085 	hrtime_t hr_avg;
3086 	int nrun;
3087 	static int64_t f[3] = { 135, 27, 9 };
3088 	int64_t q, r;
3089 
3090 	mutex_enter(&zonehash_lock);
3091 	for (zp = list_head(&zone_active); zp != NULL;
3092 	    zp = list_next(&zone_active, zp)) {
3093 		mutex_enter(&zp->zone_lock);
3094 
3095 		/* Skip zones that are on the way down or not yet up */
3096 		status = zone_status_get(zp);
3097 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3098 			/* For all practical purposes the zone doesn't exist. */
3099 			mutex_exit(&zp->zone_lock);
3100 			continue;
3101 		}
3102 
3103 		/*
3104 		 * Update the 10 second moving average data in zone_loadavg.
3105 		 */
3106 		lavg = &zp->zone_loadavg;
3107 
3108 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3109 		scalehrtime(&zone_total);
3110 
3111 		/* The zone_total should always be increasing. */
3112 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3113 		    zone_total - lavg->lg_total : 0;
3114 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3115 		/* lg_total holds the prev. 1 sec. total */
3116 		lavg->lg_total = zone_total;
3117 
3118 		/*
3119 		 * To simplify the calculation, we don't calculate the load avg.
3120 		 * until the zone has been up for at least 10 seconds and our
3121 		 * moving average is thus full.
3122 		 */
3123 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3124 			lavg->lg_len++;
3125 			mutex_exit(&zp->zone_lock);
3126 			continue;
3127 		}
3128 
3129 		/* Now calculate the 1min, 5min, 15 min load avg. */
3130 		hr_avg = 0;
3131 		for (i = 0; i < S_LOADAVG_SZ; i++)
3132 			hr_avg += lavg->lg_loads[i];
3133 		hr_avg = hr_avg / S_LOADAVG_SZ;
3134 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3135 
3136 		/* Compute load avg. See comment in calcloadavg() */
3137 		for (i = 0; i < 3; i++) {
3138 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3139 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3140 			zp->zone_hp_avenrun[i] +=
3141 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3142 
3143 			/* avenrun[] can only hold 31 bits of load avg. */
3144 			if (zp->zone_hp_avenrun[i] <
3145 			    ((uint64_t)1<<(31+16-FSHIFT)))
3146 				zp->zone_avenrun[i] = (int32_t)
3147 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3148 			else
3149 				zp->zone_avenrun[i] = 0x7fffffff;
3150 		}
3151 
3152 		mutex_exit(&zp->zone_lock);
3153 	}
3154 	mutex_exit(&zonehash_lock);
3155 }
3156 
3157 /*
3158  * Get the number of cpus visible to this zone.  The system-wide global
3159  * 'ncpus' is returned if pools are disabled, the caller is in the
3160  * global zone, or a NULL zone argument is passed in.
3161  */
3162 int
3163 zone_ncpus_get(zone_t *zone)
3164 {
3165 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3166 
3167 	return (myncpus != 0 ? myncpus : ncpus);
3168 }
3169 
3170 /*
3171  * Get the number of online cpus visible to this zone.  The system-wide
3172  * global 'ncpus_online' is returned if pools are disabled, the caller
3173  * is in the global zone, or a NULL zone argument is passed in.
3174  */
3175 int
3176 zone_ncpus_online_get(zone_t *zone)
3177 {
3178 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3179 
3180 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3181 }
3182 
3183 /*
3184  * Return the pool to which the zone is currently bound.
3185  */
3186 pool_t *
3187 zone_pool_get(zone_t *zone)
3188 {
3189 	ASSERT(pool_lock_held());
3190 
3191 	return (zone->zone_pool);
3192 }
3193 
3194 /*
3195  * Set the zone's pool pointer and update the zone's visibility to match
3196  * the resources in the new pool.
3197  */
3198 void
3199 zone_pool_set(zone_t *zone, pool_t *pool)
3200 {
3201 	ASSERT(pool_lock_held());
3202 	ASSERT(MUTEX_HELD(&cpu_lock));
3203 
3204 	zone->zone_pool = pool;
3205 	zone_pset_set(zone, pool->pool_pset->pset_id);
3206 }
3207 
3208 /*
3209  * Return the cached value of the id of the processor set to which the
3210  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3211  * facility is disabled.
3212  */
3213 psetid_t
3214 zone_pset_get(zone_t *zone)
3215 {
3216 	ASSERT(MUTEX_HELD(&cpu_lock));
3217 
3218 	return (zone->zone_psetid);
3219 }
3220 
3221 /*
3222  * Set the cached value of the id of the processor set to which the zone
3223  * is currently bound.  Also update the zone's visibility to match the
3224  * resources in the new processor set.
3225  */
3226 void
3227 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3228 {
3229 	psetid_t oldpsetid;
3230 
3231 	ASSERT(MUTEX_HELD(&cpu_lock));
3232 	oldpsetid = zone_pset_get(zone);
3233 
3234 	if (oldpsetid == newpsetid)
3235 		return;
3236 	/*
3237 	 * Global zone sees all.
3238 	 */
3239 	if (zone != global_zone) {
3240 		zone->zone_psetid = newpsetid;
3241 		if (newpsetid != ZONE_PS_INVAL)
3242 			pool_pset_visibility_add(newpsetid, zone);
3243 		if (oldpsetid != ZONE_PS_INVAL)
3244 			pool_pset_visibility_remove(oldpsetid, zone);
3245 	}
3246 	/*
3247 	 * Disabling pools, so we should start using the global values
3248 	 * for ncpus and ncpus_online.
3249 	 */
3250 	if (newpsetid == ZONE_PS_INVAL) {
3251 		zone->zone_ncpus = 0;
3252 		zone->zone_ncpus_online = 0;
3253 	}
3254 }
3255 
3256 /*
3257  * Walk the list of active zones and issue the provided callback for
3258  * each of them.
3259  *
3260  * Caller must not be holding any locks that may be acquired under
3261  * zonehash_lock.  See comment at the beginning of the file for a list of
3262  * common locks and their interactions with zones.
3263  */
3264 int
3265 zone_walk(int (*cb)(zone_t *, void *), void *data)
3266 {
3267 	zone_t *zone;
3268 	int ret = 0;
3269 	zone_status_t status;
3270 
3271 	mutex_enter(&zonehash_lock);
3272 	for (zone = list_head(&zone_active); zone != NULL;
3273 	    zone = list_next(&zone_active, zone)) {
3274 		/*
3275 		 * Skip zones that shouldn't be externally visible.
3276 		 */
3277 		status = zone_status_get(zone);
3278 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3279 			continue;
3280 		/*
3281 		 * Bail immediately if any callback invocation returns a
3282 		 * non-zero value.
3283 		 */
3284 		ret = (*cb)(zone, data);
3285 		if (ret != 0)
3286 			break;
3287 	}
3288 	mutex_exit(&zonehash_lock);
3289 	return (ret);
3290 }
3291 
3292 static int
3293 zone_set_root(zone_t *zone, const char *upath)
3294 {
3295 	vnode_t *vp;
3296 	int trycount;
3297 	int error = 0;
3298 	char *path;
3299 	struct pathname upn, pn;
3300 	size_t pathlen;
3301 
3302 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3303 		return (error);
3304 
3305 	pn_alloc(&pn);
3306 
3307 	/* prevent infinite loop */
3308 	trycount = 10;
3309 	for (;;) {
3310 		if (--trycount <= 0) {
3311 			error = ESTALE;
3312 			goto out;
3313 		}
3314 
3315 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3316 			/*
3317 			 * VOP_ACCESS() may cover 'vp' with a new
3318 			 * filesystem, if 'vp' is an autoFS vnode.
3319 			 * Get the new 'vp' if so.
3320 			 */
3321 			if ((error =
3322 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3323 			    (!vn_ismntpt(vp) ||
3324 			    (error = traverse(&vp)) == 0)) {
3325 				pathlen = pn.pn_pathlen + 2;
3326 				path = kmem_alloc(pathlen, KM_SLEEP);
3327 				(void) strncpy(path, pn.pn_path,
3328 				    pn.pn_pathlen + 1);
3329 				path[pathlen - 2] = '/';
3330 				path[pathlen - 1] = '\0';
3331 				pn_free(&pn);
3332 				pn_free(&upn);
3333 
3334 				/* Success! */
3335 				break;
3336 			}
3337 			VN_RELE(vp);
3338 		}
3339 		if (error != ESTALE)
3340 			goto out;
3341 	}
3342 
3343 	ASSERT(error == 0);
3344 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3345 	zone->zone_rootpath = path;
3346 	zone->zone_rootpathlen = pathlen;
3347 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3348 		zone->zone_flags |= ZF_IS_SCRATCH;
3349 	return (0);
3350 
3351 out:
3352 	pn_free(&pn);
3353 	pn_free(&upn);
3354 	return (error);
3355 }
3356 
3357 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3358 			((c) >= 'a' && (c) <= 'z') || \
3359 			((c) >= 'A' && (c) <= 'Z'))
3360 
3361 static int
3362 zone_set_name(zone_t *zone, const char *uname)
3363 {
3364 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3365 	size_t len;
3366 	int i, err;
3367 
3368 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3369 		kmem_free(kname, ZONENAME_MAX);
3370 		return (err);	/* EFAULT or ENAMETOOLONG */
3371 	}
3372 
3373 	/* must be less than ZONENAME_MAX */
3374 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3375 		kmem_free(kname, ZONENAME_MAX);
3376 		return (EINVAL);
3377 	}
3378 
3379 	/*
3380 	 * Name must start with an alphanumeric and must contain only
3381 	 * alphanumerics, '-', '_' and '.'.
3382 	 */
3383 	if (!isalnum(kname[0])) {
3384 		kmem_free(kname, ZONENAME_MAX);
3385 		return (EINVAL);
3386 	}
3387 	for (i = 1; i < len - 1; i++) {
3388 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3389 		    kname[i] != '.') {
3390 			kmem_free(kname, ZONENAME_MAX);
3391 			return (EINVAL);
3392 		}
3393 	}
3394 
3395 	zone->zone_name = kname;
3396 	return (0);
3397 }
3398 
3399 /*
3400  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3401  * is NULL or it points to a zone with no hostid emulation, then the machine's
3402  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3403  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3404  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3405  * hostid and the machine's hostid is invalid.
3406  */
3407 uint32_t
3408 zone_get_hostid(zone_t *zonep)
3409 {
3410 	unsigned long machine_hostid;
3411 
3412 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3413 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3414 			return (HW_INVALID_HOSTID);
3415 		return ((uint32_t)machine_hostid);
3416 	}
3417 	return (zonep->zone_hostid);
3418 }
3419 
3420 /*
3421  * Similar to thread_create(), but makes sure the thread is in the appropriate
3422  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3423  */
3424 /*ARGSUSED*/
3425 kthread_t *
3426 zthread_create(
3427     caddr_t stk,
3428     size_t stksize,
3429     void (*proc)(),
3430     void *arg,
3431     size_t len,
3432     pri_t pri)
3433 {
3434 	kthread_t *t;
3435 	zone_t *zone = curproc->p_zone;
3436 	proc_t *pp = zone->zone_zsched;
3437 
3438 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3439 
3440 	/*
3441 	 * No-one should be trying to create threads if the zone is shutting
3442 	 * down and there aren't any kernel threads around.  See comment
3443 	 * in zthread_exit().
3444 	 */
3445 	ASSERT(!(zone->zone_kthreads == NULL &&
3446 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3447 	/*
3448 	 * Create a thread, but don't let it run until we've finished setting
3449 	 * things up.
3450 	 */
3451 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3452 	ASSERT(t->t_forw == NULL);
3453 	mutex_enter(&zone_status_lock);
3454 	if (zone->zone_kthreads == NULL) {
3455 		t->t_forw = t->t_back = t;
3456 	} else {
3457 		kthread_t *tx = zone->zone_kthreads;
3458 
3459 		t->t_forw = tx;
3460 		t->t_back = tx->t_back;
3461 		tx->t_back->t_forw = t;
3462 		tx->t_back = t;
3463 	}
3464 	zone->zone_kthreads = t;
3465 	mutex_exit(&zone_status_lock);
3466 
3467 	mutex_enter(&pp->p_lock);
3468 	t->t_proc_flag |= TP_ZTHREAD;
3469 	project_rele(t->t_proj);
3470 	t->t_proj = project_hold(pp->p_task->tk_proj);
3471 
3472 	/*
3473 	 * Setup complete, let it run.
3474 	 */
3475 	thread_lock(t);
3476 	t->t_schedflag |= TS_ALLSTART;
3477 	setrun_locked(t);
3478 	thread_unlock(t);
3479 
3480 	mutex_exit(&pp->p_lock);
3481 
3482 	return (t);
3483 }
3484 
3485 /*
3486  * Similar to thread_exit().  Must be called by threads created via
3487  * zthread_exit().
3488  */
3489 void
3490 zthread_exit(void)
3491 {
3492 	kthread_t *t = curthread;
3493 	proc_t *pp = curproc;
3494 	zone_t *zone = pp->p_zone;
3495 
3496 	mutex_enter(&zone_status_lock);
3497 
3498 	/*
3499 	 * Reparent to p0
3500 	 */
3501 	kpreempt_disable();
3502 	mutex_enter(&pp->p_lock);
3503 	t->t_proc_flag &= ~TP_ZTHREAD;
3504 	t->t_procp = &p0;
3505 	hat_thread_exit(t);
3506 	mutex_exit(&pp->p_lock);
3507 	kpreempt_enable();
3508 
3509 	if (t->t_back == t) {
3510 		ASSERT(t->t_forw == t);
3511 		/*
3512 		 * If the zone is empty, once the thread count
3513 		 * goes to zero no further kernel threads can be
3514 		 * created.  This is because if the creator is a process
3515 		 * in the zone, then it must have exited before the zone
3516 		 * state could be set to ZONE_IS_EMPTY.
3517 		 * Otherwise, if the creator is a kernel thread in the
3518 		 * zone, the thread count is non-zero.
3519 		 *
3520 		 * This really means that non-zone kernel threads should
3521 		 * not create zone kernel threads.
3522 		 */
3523 		zone->zone_kthreads = NULL;
3524 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3525 			zone_status_set(zone, ZONE_IS_DOWN);
3526 			/*
3527 			 * Remove any CPU caps on this zone.
3528 			 */
3529 			cpucaps_zone_remove(zone);
3530 		}
3531 	} else {
3532 		t->t_forw->t_back = t->t_back;
3533 		t->t_back->t_forw = t->t_forw;
3534 		if (zone->zone_kthreads == t)
3535 			zone->zone_kthreads = t->t_forw;
3536 	}
3537 	mutex_exit(&zone_status_lock);
3538 	zone_rele(zone);
3539 	thread_exit();
3540 	/* NOTREACHED */
3541 }
3542 
3543 static void
3544 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3545 {
3546 	vnode_t *oldvp;
3547 
3548 	/* we're going to hold a reference here to the directory */
3549 	VN_HOLD(vp);
3550 
3551 	/* update abs cwd/root path see c2/audit.c */
3552 	if (AU_AUDITING())
3553 		audit_chdirec(vp, vpp);
3554 
3555 	mutex_enter(&pp->p_lock);
3556 	oldvp = *vpp;
3557 	*vpp = vp;
3558 	mutex_exit(&pp->p_lock);
3559 	if (oldvp != NULL)
3560 		VN_RELE(oldvp);
3561 }
3562 
3563 /*
3564  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3565  */
3566 static int
3567 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3568 {
3569 	nvpair_t *nvp = NULL;
3570 	boolean_t priv_set = B_FALSE;
3571 	boolean_t limit_set = B_FALSE;
3572 	boolean_t action_set = B_FALSE;
3573 
3574 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3575 		const char *name;
3576 		uint64_t ui64;
3577 
3578 		name = nvpair_name(nvp);
3579 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3580 			return (EINVAL);
3581 		(void) nvpair_value_uint64(nvp, &ui64);
3582 		if (strcmp(name, "privilege") == 0) {
3583 			/*
3584 			 * Currently only privileged values are allowed, but
3585 			 * this may change in the future.
3586 			 */
3587 			if (ui64 != RCPRIV_PRIVILEGED)
3588 				return (EINVAL);
3589 			rv->rcv_privilege = ui64;
3590 			priv_set = B_TRUE;
3591 		} else if (strcmp(name, "limit") == 0) {
3592 			rv->rcv_value = ui64;
3593 			limit_set = B_TRUE;
3594 		} else if (strcmp(name, "action") == 0) {
3595 			if (ui64 != RCTL_LOCAL_NOACTION &&
3596 			    ui64 != RCTL_LOCAL_DENY)
3597 				return (EINVAL);
3598 			rv->rcv_flagaction = ui64;
3599 			action_set = B_TRUE;
3600 		} else {
3601 			return (EINVAL);
3602 		}
3603 	}
3604 
3605 	if (!(priv_set && limit_set && action_set))
3606 		return (EINVAL);
3607 	rv->rcv_action_signal = 0;
3608 	rv->rcv_action_recipient = NULL;
3609 	rv->rcv_action_recip_pid = -1;
3610 	rv->rcv_firing_time = 0;
3611 
3612 	return (0);
3613 }
3614 
3615 /*
3616  * Non-global zone version of start_init.
3617  */
3618 void
3619 zone_start_init(void)
3620 {
3621 	proc_t *p = ttoproc(curthread);
3622 	zone_t *z = p->p_zone;
3623 
3624 	ASSERT(!INGLOBALZONE(curproc));
3625 
3626 	/*
3627 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3628 	 * storing just the pid of init is sufficient.
3629 	 */
3630 	z->zone_proc_initpid = p->p_pid;
3631 
3632 	/*
3633 	 * We maintain zone_boot_err so that we can return the cause of the
3634 	 * failure back to the caller of the zone_boot syscall.
3635 	 */
3636 	p->p_zone->zone_boot_err = start_init_common();
3637 
3638 	/*
3639 	 * We will prevent booting zones from becoming running zones if the
3640 	 * global zone is shutting down.
3641 	 */
3642 	mutex_enter(&zone_status_lock);
3643 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3644 	    ZONE_IS_SHUTTING_DOWN) {
3645 		/*
3646 		 * Make sure we are still in the booting state-- we could have
3647 		 * raced and already be shutting down, or even further along.
3648 		 */
3649 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3650 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3651 		}
3652 		mutex_exit(&zone_status_lock);
3653 		/* It's gone bad, dispose of the process */
3654 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3655 			mutex_enter(&p->p_lock);
3656 			ASSERT(p->p_flag & SEXITLWPS);
3657 			lwp_exit();
3658 		}
3659 	} else {
3660 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3661 			zone_status_set(z, ZONE_IS_RUNNING);
3662 		mutex_exit(&zone_status_lock);
3663 		/* cause the process to return to userland. */
3664 		lwp_rtt();
3665 	}
3666 }
3667 
3668 struct zsched_arg {
3669 	zone_t *zone;
3670 	nvlist_t *nvlist;
3671 };
3672 
3673 /*
3674  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3675  * anything to do with scheduling, but rather with the fact that
3676  * per-zone kernel threads are parented to zsched, just like regular
3677  * kernel threads are parented to sched (p0).
3678  *
3679  * zsched is also responsible for launching init for the zone.
3680  */
3681 static void
3682 zsched(void *arg)
3683 {
3684 	struct zsched_arg *za = arg;
3685 	proc_t *pp = curproc;
3686 	proc_t *initp = proc_init;
3687 	zone_t *zone = za->zone;
3688 	cred_t *cr, *oldcred;
3689 	rctl_set_t *set;
3690 	rctl_alloc_gp_t *gp;
3691 	contract_t *ct = NULL;
3692 	task_t *tk, *oldtk;
3693 	rctl_entity_p_t e;
3694 	kproject_t *pj;
3695 
3696 	nvlist_t *nvl = za->nvlist;
3697 	nvpair_t *nvp = NULL;
3698 
3699 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3700 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3701 	PTOU(pp)->u_argc = 0;
3702 	PTOU(pp)->u_argv = NULL;
3703 	PTOU(pp)->u_envp = NULL;
3704 	closeall(P_FINFO(pp));
3705 
3706 	/*
3707 	 * We are this zone's "zsched" process.  As the zone isn't generally
3708 	 * visible yet we don't need to grab any locks before initializing its
3709 	 * zone_proc pointer.
3710 	 */
3711 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3712 	zone->zone_zsched = pp;
3713 	mutex_enter(&pp->p_lock);
3714 	pp->p_zone = zone;
3715 	mutex_exit(&pp->p_lock);
3716 
3717 	/*
3718 	 * Disassociate process from its 'parent'; parent ourselves to init
3719 	 * (pid 1) and change other values as needed.
3720 	 */
3721 	sess_create();
3722 
3723 	mutex_enter(&pidlock);
3724 	proc_detach(pp);
3725 	pp->p_ppid = 1;
3726 	pp->p_flag |= SZONETOP;
3727 	pp->p_ancpid = 1;
3728 	pp->p_parent = initp;
3729 	pp->p_psibling = NULL;
3730 	if (initp->p_child)
3731 		initp->p_child->p_psibling = pp;
3732 	pp->p_sibling = initp->p_child;
3733 	initp->p_child = pp;
3734 
3735 	/* Decrement what newproc() incremented. */
3736 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3737 	/*
3738 	 * Our credentials are about to become kcred-like, so we don't care
3739 	 * about the caller's ruid.
3740 	 */
3741 	upcount_inc(crgetruid(kcred), zone->zone_id);
3742 	mutex_exit(&pidlock);
3743 
3744 	/*
3745 	 * getting out of global zone, so decrement lwp and process counts
3746 	 */
3747 	pj = pp->p_task->tk_proj;
3748 	mutex_enter(&global_zone->zone_nlwps_lock);
3749 	pj->kpj_nlwps -= pp->p_lwpcnt;
3750 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3751 	pj->kpj_nprocs--;
3752 	global_zone->zone_nprocs--;
3753 	mutex_exit(&global_zone->zone_nlwps_lock);
3754 
3755 	/*
3756 	 * Decrement locked memory counts on old zone and project.
3757 	 */
3758 	mutex_enter(&global_zone->zone_mem_lock);
3759 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3760 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3761 	mutex_exit(&global_zone->zone_mem_lock);
3762 
3763 	/*
3764 	 * Create and join a new task in project '0' of this zone.
3765 	 *
3766 	 * We don't need to call holdlwps() since we know we're the only lwp in
3767 	 * this process.
3768 	 *
3769 	 * task_join() returns with p_lock held.
3770 	 */
3771 	tk = task_create(0, zone);
3772 	mutex_enter(&cpu_lock);
3773 	oldtk = task_join(tk, 0);
3774 
3775 	pj = pp->p_task->tk_proj;
3776 
3777 	mutex_enter(&zone->zone_mem_lock);
3778 	zone->zone_locked_mem += pp->p_locked_mem;
3779 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3780 	mutex_exit(&zone->zone_mem_lock);
3781 
3782 	/*
3783 	 * add lwp and process counts to zsched's zone, and increment
3784 	 * project's task and process count due to the task created in
3785 	 * the above task_create.
3786 	 */
3787 	mutex_enter(&zone->zone_nlwps_lock);
3788 	pj->kpj_nlwps += pp->p_lwpcnt;
3789 	pj->kpj_ntasks += 1;
3790 	zone->zone_nlwps += pp->p_lwpcnt;
3791 	pj->kpj_nprocs++;
3792 	zone->zone_nprocs++;
3793 	mutex_exit(&zone->zone_nlwps_lock);
3794 
3795 	mutex_exit(&curproc->p_lock);
3796 	mutex_exit(&cpu_lock);
3797 	task_rele(oldtk);
3798 
3799 	/*
3800 	 * The process was created by a process in the global zone, hence the
3801 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3802 	 */
3803 	cr = zone->zone_kcred;
3804 	crhold(cr);
3805 	mutex_enter(&pp->p_crlock);
3806 	oldcred = pp->p_cred;
3807 	pp->p_cred = cr;
3808 	mutex_exit(&pp->p_crlock);
3809 	crfree(oldcred);
3810 
3811 	/*
3812 	 * Hold credentials again (for thread)
3813 	 */
3814 	crhold(cr);
3815 
3816 	/*
3817 	 * p_lwpcnt can't change since this is a kernel process.
3818 	 */
3819 	crset(pp, cr);
3820 
3821 	/*
3822 	 * Chroot
3823 	 */
3824 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3825 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3826 
3827 	/*
3828 	 * Initialize zone's rctl set.
3829 	 */
3830 	set = rctl_set_create();
3831 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3832 	mutex_enter(&pp->p_lock);
3833 	e.rcep_p.zone = zone;
3834 	e.rcep_t = RCENTITY_ZONE;
3835 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3836 	mutex_exit(&pp->p_lock);
3837 	rctl_prealloc_destroy(gp);
3838 
3839 	/*
3840 	 * Apply the rctls passed in to zone_create().  This is basically a list
3841 	 * assignment: all of the old values are removed and the new ones
3842 	 * inserted.  That is, if an empty list is passed in, all values are
3843 	 * removed.
3844 	 */
3845 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3846 		rctl_dict_entry_t *rde;
3847 		rctl_hndl_t hndl;
3848 		char *name;
3849 		nvlist_t **nvlarray;
3850 		uint_t i, nelem;
3851 		int error;	/* For ASSERT()s */
3852 
3853 		name = nvpair_name(nvp);
3854 		hndl = rctl_hndl_lookup(name);
3855 		ASSERT(hndl != -1);
3856 		rde = rctl_dict_lookup_hndl(hndl);
3857 		ASSERT(rde != NULL);
3858 
3859 		for (; /* ever */; ) {
3860 			rctl_val_t oval;
3861 
3862 			mutex_enter(&pp->p_lock);
3863 			error = rctl_local_get(hndl, NULL, &oval, pp);
3864 			mutex_exit(&pp->p_lock);
3865 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3866 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3867 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3868 				break;
3869 			mutex_enter(&pp->p_lock);
3870 			error = rctl_local_delete(hndl, &oval, pp);
3871 			mutex_exit(&pp->p_lock);
3872 			ASSERT(error == 0);
3873 		}
3874 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3875 		ASSERT(error == 0);
3876 		for (i = 0; i < nelem; i++) {
3877 			rctl_val_t *nvalp;
3878 
3879 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3880 			error = nvlist2rctlval(nvlarray[i], nvalp);
3881 			ASSERT(error == 0);
3882 			/*
3883 			 * rctl_local_insert can fail if the value being
3884 			 * inserted is a duplicate; this is OK.
3885 			 */
3886 			mutex_enter(&pp->p_lock);
3887 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3888 				kmem_cache_free(rctl_val_cache, nvalp);
3889 			mutex_exit(&pp->p_lock);
3890 		}
3891 	}
3892 	/*
3893 	 * Tell the world that we're done setting up.
3894 	 *
3895 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3896 	 * and atomically set the zone's processor set visibility.  Once
3897 	 * we drop pool_lock() this zone will automatically get updated
3898 	 * to reflect any future changes to the pools configuration.
3899 	 *
3900 	 * Note that after we drop the locks below (zonehash_lock in
3901 	 * particular) other operations such as a zone_getattr call can
3902 	 * now proceed and observe the zone. That is the reason for doing a
3903 	 * state transition to the INITIALIZED state.
3904 	 */
3905 	pool_lock();
3906 	mutex_enter(&cpu_lock);
3907 	mutex_enter(&zonehash_lock);
3908 	zone_uniqid(zone);
3909 	zone_zsd_configure(zone);
3910 	if (pool_state == POOL_ENABLED)
3911 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3912 	mutex_enter(&zone_status_lock);
3913 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3914 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3915 	mutex_exit(&zone_status_lock);
3916 	mutex_exit(&zonehash_lock);
3917 	mutex_exit(&cpu_lock);
3918 	pool_unlock();
3919 
3920 	/* Now call the create callback for this key */
3921 	zsd_apply_all_keys(zsd_apply_create, zone);
3922 
3923 	/* The callbacks are complete. Mark ZONE_IS_READY */
3924 	mutex_enter(&zone_status_lock);
3925 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3926 	zone_status_set(zone, ZONE_IS_READY);
3927 	mutex_exit(&zone_status_lock);
3928 
3929 	/*
3930 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3931 	 * we launch init, and set the state to running.
3932 	 */
3933 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3934 
3935 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3936 		id_t cid;
3937 
3938 		/*
3939 		 * Ok, this is a little complicated.  We need to grab the
3940 		 * zone's pool's scheduling class ID; note that by now, we
3941 		 * are already bound to a pool if we need to be (zoneadmd
3942 		 * will have done that to us while we're in the READY
3943 		 * state).  *But* the scheduling class for the zone's 'init'
3944 		 * must be explicitly passed to newproc, which doesn't
3945 		 * respect pool bindings.
3946 		 *
3947 		 * We hold the pool_lock across the call to newproc() to
3948 		 * close the obvious race: the pool's scheduling class
3949 		 * could change before we manage to create the LWP with
3950 		 * classid 'cid'.
3951 		 */
3952 		pool_lock();
3953 		if (zone->zone_defaultcid > 0)
3954 			cid = zone->zone_defaultcid;
3955 		else
3956 			cid = pool_get_class(zone->zone_pool);
3957 		if (cid == -1)
3958 			cid = defaultcid;
3959 
3960 		/*
3961 		 * If this fails, zone_boot will ultimately fail.  The
3962 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3963 		 * will have to tear down the zone, and fail, or try again.
3964 		 */
3965 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3966 		    minclsyspri - 1, &ct, 0)) != 0) {
3967 			mutex_enter(&zone_status_lock);
3968 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3969 			mutex_exit(&zone_status_lock);
3970 		} else {
3971 			zone->zone_boot_time = gethrestime_sec();
3972 		}
3973 
3974 		pool_unlock();
3975 	}
3976 
3977 	/*
3978 	 * Wait for zone_destroy() to be called.  This is what we spend
3979 	 * most of our life doing.
3980 	 */
3981 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3982 
3983 	if (ct)
3984 		/*
3985 		 * At this point the process contract should be empty.
3986 		 * (Though if it isn't, it's not the end of the world.)
3987 		 */
3988 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3989 
3990 	/*
3991 	 * Allow kcred to be freed when all referring processes
3992 	 * (including this one) go away.  We can't just do this in
3993 	 * zone_free because we need to wait for the zone_cred_ref to
3994 	 * drop to 0 before calling zone_free, and the existence of
3995 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3996 	 * balance the crdup in zone_create.  The crhold calls earlier
3997 	 * in zsched will be dropped when the thread and process exit.
3998 	 */
3999 	crfree(zone->zone_kcred);
4000 	zone->zone_kcred = NULL;
4001 
4002 	exit(CLD_EXITED, 0);
4003 }
4004 
4005 /*
4006  * Helper function to determine if there are any submounts of the
4007  * provided path.  Used to make sure the zone doesn't "inherit" any
4008  * mounts from before it is created.
4009  */
4010 static uint_t
4011 zone_mount_count(const char *rootpath)
4012 {
4013 	vfs_t *vfsp;
4014 	uint_t count = 0;
4015 	size_t rootpathlen = strlen(rootpath);
4016 
4017 	/*
4018 	 * Holding zonehash_lock prevents race conditions with
4019 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4020 	 * zone_find_by_path().
4021 	 */
4022 	ASSERT(MUTEX_HELD(&zonehash_lock));
4023 	/*
4024 	 * The rootpath must end with a '/'
4025 	 */
4026 	ASSERT(rootpath[rootpathlen - 1] == '/');
4027 
4028 	/*
4029 	 * This intentionally does not count the rootpath itself if that
4030 	 * happens to be a mount point.
4031 	 */
4032 	vfs_list_read_lock();
4033 	vfsp = rootvfs;
4034 	do {
4035 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4036 		    rootpathlen) == 0)
4037 			count++;
4038 		vfsp = vfsp->vfs_next;
4039 	} while (vfsp != rootvfs);
4040 	vfs_list_unlock();
4041 	return (count);
4042 }
4043 
4044 /*
4045  * Helper function to make sure that a zone created on 'rootpath'
4046  * wouldn't end up containing other zones' rootpaths.
4047  */
4048 static boolean_t
4049 zone_is_nested(const char *rootpath)
4050 {
4051 	zone_t *zone;
4052 	size_t rootpathlen = strlen(rootpath);
4053 	size_t len;
4054 
4055 	ASSERT(MUTEX_HELD(&zonehash_lock));
4056 
4057 	/*
4058 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4059 	 */
4060 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4061 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4062 		return (B_TRUE);
4063 
4064 	for (zone = list_head(&zone_active); zone != NULL;
4065 	    zone = list_next(&zone_active, zone)) {
4066 		if (zone == global_zone)
4067 			continue;
4068 		len = strlen(zone->zone_rootpath);
4069 		if (strncmp(rootpath, zone->zone_rootpath,
4070 		    MIN(rootpathlen, len)) == 0)
4071 			return (B_TRUE);
4072 	}
4073 	return (B_FALSE);
4074 }
4075 
4076 static int
4077 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4078     size_t zone_privssz)
4079 {
4080 	priv_set_t *privs;
4081 
4082 	if (zone_privssz < sizeof (priv_set_t))
4083 		return (ENOMEM);
4084 
4085 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4086 
4087 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4088 		kmem_free(privs, sizeof (priv_set_t));
4089 		return (EFAULT);
4090 	}
4091 
4092 	zone->zone_privset = privs;
4093 	return (0);
4094 }
4095 
4096 /*
4097  * We make creative use of nvlists to pass in rctls from userland.  The list is
4098  * a list of the following structures:
4099  *
4100  * (name = rctl_name, value = nvpair_list_array)
4101  *
4102  * Where each element of the nvpair_list_array is of the form:
4103  *
4104  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4105  * 	(name = "limit", value = uint64_t),
4106  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4107  */
4108 static int
4109 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4110 {
4111 	nvpair_t *nvp = NULL;
4112 	nvlist_t *nvl = NULL;
4113 	char *kbuf;
4114 	int error;
4115 	rctl_val_t rv;
4116 
4117 	*nvlp = NULL;
4118 
4119 	if (buflen == 0)
4120 		return (0);
4121 
4122 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4123 		return (ENOMEM);
4124 	if (copyin(ubuf, kbuf, buflen)) {
4125 		error = EFAULT;
4126 		goto out;
4127 	}
4128 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4129 		/*
4130 		 * nvl may have been allocated/free'd, but the value set to
4131 		 * non-NULL, so we reset it here.
4132 		 */
4133 		nvl = NULL;
4134 		error = EINVAL;
4135 		goto out;
4136 	}
4137 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4138 		rctl_dict_entry_t *rde;
4139 		rctl_hndl_t hndl;
4140 		nvlist_t **nvlarray;
4141 		uint_t i, nelem;
4142 		char *name;
4143 
4144 		error = EINVAL;
4145 		name = nvpair_name(nvp);
4146 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4147 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4148 			goto out;
4149 		}
4150 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4151 			goto out;
4152 		}
4153 		rde = rctl_dict_lookup_hndl(hndl);
4154 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4155 		ASSERT(error == 0);
4156 		for (i = 0; i < nelem; i++) {
4157 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4158 				goto out;
4159 		}
4160 		if (rctl_invalid_value(rde, &rv)) {
4161 			error = EINVAL;
4162 			goto out;
4163 		}
4164 	}
4165 	error = 0;
4166 	*nvlp = nvl;
4167 out:
4168 	kmem_free(kbuf, buflen);
4169 	if (error && nvl != NULL)
4170 		nvlist_free(nvl);
4171 	return (error);
4172 }
4173 
4174 int
4175 zone_create_error(int er_error, int er_ext, int *er_out) {
4176 	if (er_out != NULL) {
4177 		if (copyout(&er_ext, er_out, sizeof (int))) {
4178 			return (set_errno(EFAULT));
4179 		}
4180 	}
4181 	return (set_errno(er_error));
4182 }
4183 
4184 static int
4185 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4186 {
4187 	ts_label_t *tsl;
4188 	bslabel_t blab;
4189 
4190 	/* Get label from user */
4191 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4192 		return (EFAULT);
4193 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4194 	if (tsl == NULL)
4195 		return (ENOMEM);
4196 
4197 	zone->zone_slabel = tsl;
4198 	return (0);
4199 }
4200 
4201 /*
4202  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4203  */
4204 static int
4205 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4206 {
4207 	char *kbuf;
4208 	char *dataset, *next;
4209 	zone_dataset_t *zd;
4210 	size_t len;
4211 
4212 	if (ubuf == NULL || buflen == 0)
4213 		return (0);
4214 
4215 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4216 		return (ENOMEM);
4217 
4218 	if (copyin(ubuf, kbuf, buflen) != 0) {
4219 		kmem_free(kbuf, buflen);
4220 		return (EFAULT);
4221 	}
4222 
4223 	dataset = next = kbuf;
4224 	for (;;) {
4225 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4226 
4227 		next = strchr(dataset, ',');
4228 
4229 		if (next == NULL)
4230 			len = strlen(dataset);
4231 		else
4232 			len = next - dataset;
4233 
4234 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4235 		bcopy(dataset, zd->zd_dataset, len);
4236 		zd->zd_dataset[len] = '\0';
4237 
4238 		list_insert_head(&zone->zone_datasets, zd);
4239 
4240 		if (next == NULL)
4241 			break;
4242 
4243 		dataset = next + 1;
4244 	}
4245 
4246 	kmem_free(kbuf, buflen);
4247 	return (0);
4248 }
4249 
4250 /*
4251  * System call to create/initialize a new zone named 'zone_name', rooted
4252  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4253  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4254  * with labeling set by 'match', 'doi', and 'label'.
4255  *
4256  * If extended error is non-null, we may use it to return more detailed
4257  * error information.
4258  */
4259 static zoneid_t
4260 zone_create(const char *zone_name, const char *zone_root,
4261     const priv_set_t *zone_privs, size_t zone_privssz,
4262     caddr_t rctlbuf, size_t rctlbufsz,
4263     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4264     int match, uint32_t doi, const bslabel_t *label,
4265     int flags)
4266 {
4267 	struct zsched_arg zarg;
4268 	nvlist_t *rctls = NULL;
4269 	proc_t *pp = curproc;
4270 	zone_t *zone, *ztmp;
4271 	zoneid_t zoneid;
4272 	int error;
4273 	int error2 = 0;
4274 	char *str;
4275 	cred_t *zkcr;
4276 	boolean_t insert_label_hash;
4277 
4278 	if (secpolicy_zone_config(CRED()) != 0)
4279 		return (set_errno(EPERM));
4280 
4281 	/* can't boot zone from within chroot environment */
4282 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4283 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4284 		    extended_error));
4285 
4286 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4287 	zoneid = zone->zone_id = id_alloc(zoneid_space);
4288 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4289 	zone->zone_pool = pool_default;
4290 	zone->zone_pool_mod = gethrtime();
4291 	zone->zone_psetid = ZONE_PS_INVAL;
4292 	zone->zone_ncpus = 0;
4293 	zone->zone_ncpus_online = 0;
4294 	zone->zone_restart_init = B_TRUE;
4295 	zone->zone_brand = &native_brand;
4296 	zone->zone_initname = NULL;
4297 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4298 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4299 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4300 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4301 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4302 	    offsetof(zone_ref_t, zref_linkage));
4303 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4304 	    offsetof(struct zsd_entry, zsd_linkage));
4305 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4306 	    offsetof(zone_dataset_t, zd_linkage));
4307 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4308 	    offsetof(zone_dl_t, zdl_linkage));
4309 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4310 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4311 
4312 	if (flags & ZCF_NET_EXCL) {
4313 		zone->zone_flags |= ZF_NET_EXCL;
4314 	}
4315 
4316 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4317 		zone_free(zone);
4318 		return (zone_create_error(error, 0, extended_error));
4319 	}
4320 
4321 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4322 		zone_free(zone);
4323 		return (zone_create_error(error, 0, extended_error));
4324 	}
4325 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4326 		zone_free(zone);
4327 		return (zone_create_error(error, 0, extended_error));
4328 	}
4329 
4330 	/* initialize node name to be the same as zone name */
4331 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4332 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4333 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4334 
4335 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4336 	zone->zone_domain[0] = '\0';
4337 	zone->zone_hostid = HW_INVALID_HOSTID;
4338 	zone->zone_shares = 1;
4339 	zone->zone_shmmax = 0;
4340 	zone->zone_ipc.ipcq_shmmni = 0;
4341 	zone->zone_ipc.ipcq_semmni = 0;
4342 	zone->zone_ipc.ipcq_msgmni = 0;
4343 	zone->zone_bootargs = NULL;
4344 	zone->zone_fs_allowed = NULL;
4345 	zone->zone_initname =
4346 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4347 	(void) strcpy(zone->zone_initname, zone_default_initname);
4348 	zone->zone_nlwps = 0;
4349 	zone->zone_nlwps_ctl = INT_MAX;
4350 	zone->zone_nprocs = 0;
4351 	zone->zone_nprocs_ctl = INT_MAX;
4352 	zone->zone_locked_mem = 0;
4353 	zone->zone_locked_mem_ctl = UINT64_MAX;
4354 	zone->zone_max_swap = 0;
4355 	zone->zone_max_swap_ctl = UINT64_MAX;
4356 	zone->zone_max_lofi = 0;
4357 	zone->zone_max_lofi_ctl = UINT64_MAX;
4358 	zone0.zone_lockedmem_kstat = NULL;
4359 	zone0.zone_swapresv_kstat = NULL;
4360 
4361 	/*
4362 	 * Zsched initializes the rctls.
4363 	 */
4364 	zone->zone_rctls = NULL;
4365 
4366 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4367 		zone_free(zone);
4368 		return (zone_create_error(error, 0, extended_error));
4369 	}
4370 
4371 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4372 		zone_free(zone);
4373 		return (set_errno(error));
4374 	}
4375 
4376 	/*
4377 	 * Read in the trusted system parameters:
4378 	 * match flag and sensitivity label.
4379 	 */
4380 	zone->zone_match = match;
4381 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4382 		/* Fail if requested to set doi to anything but system's doi */
4383 		if (doi != 0 && doi != default_doi) {
4384 			zone_free(zone);
4385 			return (set_errno(EINVAL));
4386 		}
4387 		/* Always apply system's doi to the zone */
4388 		error = zone_set_label(zone, label, default_doi);
4389 		if (error != 0) {
4390 			zone_free(zone);
4391 			return (set_errno(error));
4392 		}
4393 		insert_label_hash = B_TRUE;
4394 	} else {
4395 		/* all zones get an admin_low label if system is not labeled */
4396 		zone->zone_slabel = l_admin_low;
4397 		label_hold(l_admin_low);
4398 		insert_label_hash = B_FALSE;
4399 	}
4400 
4401 	/*
4402 	 * Stop all lwps since that's what normally happens as part of fork().
4403 	 * This needs to happen before we grab any locks to avoid deadlock
4404 	 * (another lwp in the process could be waiting for the held lock).
4405 	 */
4406 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4407 		zone_free(zone);
4408 		if (rctls)
4409 			nvlist_free(rctls);
4410 		return (zone_create_error(error, 0, extended_error));
4411 	}
4412 
4413 	if (block_mounts() == 0) {
4414 		mutex_enter(&pp->p_lock);
4415 		if (curthread != pp->p_agenttp)
4416 			continuelwps(pp);
4417 		mutex_exit(&pp->p_lock);
4418 		zone_free(zone);
4419 		if (rctls)
4420 			nvlist_free(rctls);
4421 		return (zone_create_error(error, 0, extended_error));
4422 	}
4423 
4424 	/*
4425 	 * Set up credential for kernel access.  After this, any errors
4426 	 * should go through the dance in errout rather than calling
4427 	 * zone_free directly.
4428 	 */
4429 	zone->zone_kcred = crdup(kcred);
4430 	crsetzone(zone->zone_kcred, zone);
4431 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4432 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4433 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4434 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4435 
4436 	mutex_enter(&zonehash_lock);
4437 	/*
4438 	 * Make sure zone doesn't already exist.
4439 	 *
4440 	 * If the system and zone are labeled,
4441 	 * make sure no other zone exists that has the same label.
4442 	 */
4443 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4444 	    (insert_label_hash &&
4445 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4446 		zone_status_t status;
4447 
4448 		status = zone_status_get(ztmp);
4449 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4450 			error = EEXIST;
4451 		else
4452 			error = EBUSY;
4453 
4454 		if (insert_label_hash)
4455 			error2 = ZE_LABELINUSE;
4456 
4457 		goto errout;
4458 	}
4459 
4460 	/*
4461 	 * Don't allow zone creations which would cause one zone's rootpath to
4462 	 * be accessible from that of another (non-global) zone.
4463 	 */
4464 	if (zone_is_nested(zone->zone_rootpath)) {
4465 		error = EBUSY;
4466 		goto errout;
4467 	}
4468 
4469 	ASSERT(zonecount != 0);		/* check for leaks */
4470 	if (zonecount + 1 > maxzones) {
4471 		error = ENOMEM;
4472 		goto errout;
4473 	}
4474 
4475 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4476 		error = EBUSY;
4477 		error2 = ZE_AREMOUNTS;
4478 		goto errout;
4479 	}
4480 
4481 	/*
4482 	 * Zone is still incomplete, but we need to drop all locks while
4483 	 * zsched() initializes this zone's kernel process.  We
4484 	 * optimistically add the zone to the hashtable and associated
4485 	 * lists so a parallel zone_create() doesn't try to create the
4486 	 * same zone.
4487 	 */
4488 	zonecount++;
4489 	(void) mod_hash_insert(zonehashbyid,
4490 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4491 	    (mod_hash_val_t)(uintptr_t)zone);
4492 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4493 	(void) strcpy(str, zone->zone_name);
4494 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4495 	    (mod_hash_val_t)(uintptr_t)zone);
4496 	if (insert_label_hash) {
4497 		(void) mod_hash_insert(zonehashbylabel,
4498 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4499 		zone->zone_flags |= ZF_HASHED_LABEL;
4500 	}
4501 
4502 	/*
4503 	 * Insert into active list.  At this point there are no 'hold's
4504 	 * on the zone, but everyone else knows not to use it, so we can
4505 	 * continue to use it.  zsched() will do a zone_hold() if the
4506 	 * newproc() is successful.
4507 	 */
4508 	list_insert_tail(&zone_active, zone);
4509 	mutex_exit(&zonehash_lock);
4510 
4511 	zarg.zone = zone;
4512 	zarg.nvlist = rctls;
4513 	/*
4514 	 * The process, task, and project rctls are probably wrong;
4515 	 * we need an interface to get the default values of all rctls,
4516 	 * and initialize zsched appropriately.  I'm not sure that that
4517 	 * makes much of a difference, though.
4518 	 */
4519 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4520 	if (error != 0) {
4521 		/*
4522 		 * We need to undo all globally visible state.
4523 		 */
4524 		mutex_enter(&zonehash_lock);
4525 		list_remove(&zone_active, zone);
4526 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4527 			ASSERT(zone->zone_slabel != NULL);
4528 			(void) mod_hash_destroy(zonehashbylabel,
4529 			    (mod_hash_key_t)zone->zone_slabel);
4530 		}
4531 		(void) mod_hash_destroy(zonehashbyname,
4532 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4533 		(void) mod_hash_destroy(zonehashbyid,
4534 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4535 		ASSERT(zonecount > 1);
4536 		zonecount--;
4537 		goto errout;
4538 	}
4539 
4540 	/*
4541 	 * Zone creation can't fail from now on.
4542 	 */
4543 
4544 	/*
4545 	 * Create zone kstats
4546 	 */
4547 	zone_kstat_create(zone);
4548 
4549 	/*
4550 	 * Let the other lwps continue.
4551 	 */
4552 	mutex_enter(&pp->p_lock);
4553 	if (curthread != pp->p_agenttp)
4554 		continuelwps(pp);
4555 	mutex_exit(&pp->p_lock);
4556 
4557 	/*
4558 	 * Wait for zsched to finish initializing the zone.
4559 	 */
4560 	zone_status_wait(zone, ZONE_IS_READY);
4561 	/*
4562 	 * The zone is fully visible, so we can let mounts progress.
4563 	 */
4564 	resume_mounts();
4565 	if (rctls)
4566 		nvlist_free(rctls);
4567 
4568 	return (zoneid);
4569 
4570 errout:
4571 	mutex_exit(&zonehash_lock);
4572 	/*
4573 	 * Let the other lwps continue.
4574 	 */
4575 	mutex_enter(&pp->p_lock);
4576 	if (curthread != pp->p_agenttp)
4577 		continuelwps(pp);
4578 	mutex_exit(&pp->p_lock);
4579 
4580 	resume_mounts();
4581 	if (rctls)
4582 		nvlist_free(rctls);
4583 	/*
4584 	 * There is currently one reference to the zone, a cred_ref from
4585 	 * zone_kcred.  To free the zone, we call crfree, which will call
4586 	 * zone_cred_rele, which will call zone_free.
4587 	 */
4588 	ASSERT(zone->zone_cred_ref == 1);
4589 	ASSERT(zone->zone_kcred->cr_ref == 1);
4590 	ASSERT(zone->zone_ref == 0);
4591 	zkcr = zone->zone_kcred;
4592 	zone->zone_kcred = NULL;
4593 	crfree(zkcr);				/* triggers call to zone_free */
4594 	return (zone_create_error(error, error2, extended_error));
4595 }
4596 
4597 /*
4598  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4599  * the heavy lifting.  initname is the path to the program to launch
4600  * at the "top" of the zone; if this is NULL, we use the system default,
4601  * which is stored at zone_default_initname.
4602  */
4603 static int
4604 zone_boot(zoneid_t zoneid)
4605 {
4606 	int err;
4607 	zone_t *zone;
4608 
4609 	if (secpolicy_zone_config(CRED()) != 0)
4610 		return (set_errno(EPERM));
4611 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4612 		return (set_errno(EINVAL));
4613 
4614 	mutex_enter(&zonehash_lock);
4615 	/*
4616 	 * Look for zone under hash lock to prevent races with calls to
4617 	 * zone_shutdown, zone_destroy, etc.
4618 	 */
4619 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4620 		mutex_exit(&zonehash_lock);
4621 		return (set_errno(EINVAL));
4622 	}
4623 
4624 	mutex_enter(&zone_status_lock);
4625 	if (zone_status_get(zone) != ZONE_IS_READY) {
4626 		mutex_exit(&zone_status_lock);
4627 		mutex_exit(&zonehash_lock);
4628 		return (set_errno(EINVAL));
4629 	}
4630 	zone_status_set(zone, ZONE_IS_BOOTING);
4631 	mutex_exit(&zone_status_lock);
4632 
4633 	zone_hold(zone);	/* so we can use the zone_t later */
4634 	mutex_exit(&zonehash_lock);
4635 
4636 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4637 		zone_rele(zone);
4638 		return (set_errno(EINTR));
4639 	}
4640 
4641 	/*
4642 	 * Boot (starting init) might have failed, in which case the zone
4643 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4644 	 * be placed in zone->zone_boot_err, and so we return that.
4645 	 */
4646 	err = zone->zone_boot_err;
4647 	zone_rele(zone);
4648 	return (err ? set_errno(err) : 0);
4649 }
4650 
4651 /*
4652  * Kills all user processes in the zone, waiting for them all to exit
4653  * before returning.
4654  */
4655 static int
4656 zone_empty(zone_t *zone)
4657 {
4658 	int waitstatus;
4659 
4660 	/*
4661 	 * We need to drop zonehash_lock before killing all
4662 	 * processes, otherwise we'll deadlock with zone_find_*
4663 	 * which can be called from the exit path.
4664 	 */
4665 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4666 	while ((waitstatus = zone_status_timedwait_sig(zone,
4667 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4668 		killall(zone->zone_id);
4669 	}
4670 	/*
4671 	 * return EINTR if we were signaled
4672 	 */
4673 	if (waitstatus == 0)
4674 		return (EINTR);
4675 	return (0);
4676 }
4677 
4678 /*
4679  * This function implements the policy for zone visibility.
4680  *
4681  * In standard Solaris, a non-global zone can only see itself.
4682  *
4683  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4684  * it dominates. For this test, the label of the global zone is treated as
4685  * admin_high so it is special-cased instead of being checked for dominance.
4686  *
4687  * Returns true if zone attributes are viewable, false otherwise.
4688  */
4689 static boolean_t
4690 zone_list_access(zone_t *zone)
4691 {
4692 
4693 	if (curproc->p_zone == global_zone ||
4694 	    curproc->p_zone == zone) {
4695 		return (B_TRUE);
4696 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4697 		bslabel_t *curproc_label;
4698 		bslabel_t *zone_label;
4699 
4700 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4701 		zone_label = label2bslabel(zone->zone_slabel);
4702 
4703 		if (zone->zone_id != GLOBAL_ZONEID &&
4704 		    bldominates(curproc_label, zone_label)) {
4705 			return (B_TRUE);
4706 		} else {
4707 			return (B_FALSE);
4708 		}
4709 	} else {
4710 		return (B_FALSE);
4711 	}
4712 }
4713 
4714 /*
4715  * Systemcall to start the zone's halt sequence.  By the time this
4716  * function successfully returns, all user processes and kernel threads
4717  * executing in it will have exited, ZSD shutdown callbacks executed,
4718  * and the zone status set to ZONE_IS_DOWN.
4719  *
4720  * It is possible that the call will interrupt itself if the caller is the
4721  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4722  */
4723 static int
4724 zone_shutdown(zoneid_t zoneid)
4725 {
4726 	int error;
4727 	zone_t *zone;
4728 	zone_status_t status;
4729 
4730 	if (secpolicy_zone_config(CRED()) != 0)
4731 		return (set_errno(EPERM));
4732 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4733 		return (set_errno(EINVAL));
4734 
4735 	/*
4736 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4737 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4738 	 *
4739 	 * e.g. NFS can fail the mount if it determines that the zone
4740 	 * has already begun the shutdown sequence.
4741 	 */
4742 	if (block_mounts() == 0)
4743 		return (set_errno(EINTR));
4744 	mutex_enter(&zonehash_lock);
4745 	/*
4746 	 * Look for zone under hash lock to prevent races with other
4747 	 * calls to zone_shutdown and zone_destroy.
4748 	 */
4749 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4750 		mutex_exit(&zonehash_lock);
4751 		resume_mounts();
4752 		return (set_errno(EINVAL));
4753 	}
4754 	mutex_enter(&zone_status_lock);
4755 	status = zone_status_get(zone);
4756 	/*
4757 	 * Fail if the zone isn't fully initialized yet.
4758 	 */
4759 	if (status < ZONE_IS_READY) {
4760 		mutex_exit(&zone_status_lock);
4761 		mutex_exit(&zonehash_lock);
4762 		resume_mounts();
4763 		return (set_errno(EINVAL));
4764 	}
4765 	/*
4766 	 * If conditions required for zone_shutdown() to return have been met,
4767 	 * return success.
4768 	 */
4769 	if (status >= ZONE_IS_DOWN) {
4770 		mutex_exit(&zone_status_lock);
4771 		mutex_exit(&zonehash_lock);
4772 		resume_mounts();
4773 		return (0);
4774 	}
4775 	/*
4776 	 * If zone_shutdown() hasn't been called before, go through the motions.
4777 	 * If it has, there's nothing to do but wait for the kernel threads to
4778 	 * drain.
4779 	 */
4780 	if (status < ZONE_IS_EMPTY) {
4781 		uint_t ntasks;
4782 
4783 		mutex_enter(&zone->zone_lock);
4784 		if ((ntasks = zone->zone_ntasks) != 1) {
4785 			/*
4786 			 * There's still stuff running.
4787 			 */
4788 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4789 		}
4790 		mutex_exit(&zone->zone_lock);
4791 		if (ntasks == 1) {
4792 			/*
4793 			 * The only way to create another task is through
4794 			 * zone_enter(), which will block until we drop
4795 			 * zonehash_lock.  The zone is empty.
4796 			 */
4797 			if (zone->zone_kthreads == NULL) {
4798 				/*
4799 				 * Skip ahead to ZONE_IS_DOWN
4800 				 */
4801 				zone_status_set(zone, ZONE_IS_DOWN);
4802 			} else {
4803 				zone_status_set(zone, ZONE_IS_EMPTY);
4804 			}
4805 		}
4806 	}
4807 	zone_hold(zone);	/* so we can use the zone_t later */
4808 	mutex_exit(&zone_status_lock);
4809 	mutex_exit(&zonehash_lock);
4810 	resume_mounts();
4811 
4812 	if (error = zone_empty(zone)) {
4813 		zone_rele(zone);
4814 		return (set_errno(error));
4815 	}
4816 	/*
4817 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4818 	 * longer be notified of changes to the pools configuration, so
4819 	 * in order to not end up with a stale pool pointer, we point
4820 	 * ourselves at the default pool and remove all resource
4821 	 * visibility.  This is especially important as the zone_t may
4822 	 * languish on the deathrow for a very long time waiting for
4823 	 * cred's to drain out.
4824 	 *
4825 	 * This rebinding of the zone can happen multiple times
4826 	 * (presumably due to interrupted or parallel systemcalls)
4827 	 * without any adverse effects.
4828 	 */
4829 	if (pool_lock_intr() != 0) {
4830 		zone_rele(zone);
4831 		return (set_errno(EINTR));
4832 	}
4833 	if (pool_state == POOL_ENABLED) {
4834 		mutex_enter(&cpu_lock);
4835 		zone_pool_set(zone, pool_default);
4836 		/*
4837 		 * The zone no longer needs to be able to see any cpus.
4838 		 */
4839 		zone_pset_set(zone, ZONE_PS_INVAL);
4840 		mutex_exit(&cpu_lock);
4841 	}
4842 	pool_unlock();
4843 
4844 	/*
4845 	 * ZSD shutdown callbacks can be executed multiple times, hence
4846 	 * it is safe to not be holding any locks across this call.
4847 	 */
4848 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4849 
4850 	mutex_enter(&zone_status_lock);
4851 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4852 		zone_status_set(zone, ZONE_IS_DOWN);
4853 	mutex_exit(&zone_status_lock);
4854 
4855 	/*
4856 	 * Wait for kernel threads to drain.
4857 	 */
4858 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4859 		zone_rele(zone);
4860 		return (set_errno(EINTR));
4861 	}
4862 
4863 	/*
4864 	 * Zone can be become down/destroyable even if the above wait
4865 	 * returns EINTR, so any code added here may never execute.
4866 	 * (i.e. don't add code here)
4867 	 */
4868 
4869 	zone_rele(zone);
4870 	return (0);
4871 }
4872 
4873 /*
4874  * Log the specified zone's reference counts.  The caller should not be
4875  * holding the zone's zone_lock.
4876  */
4877 static void
4878 zone_log_refcounts(zone_t *zone)
4879 {
4880 	char *buffer;
4881 	char *buffer_position;
4882 	uint32_t buffer_size;
4883 	uint32_t index;
4884 	uint_t ref;
4885 	uint_t cred_ref;
4886 
4887 	/*
4888 	 * Construct a string representing the subsystem-specific reference
4889 	 * counts.  The counts are printed in ascending order by index into the
4890 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
4891 	 * square brackets [] and will only contain nonzero reference counts.
4892 	 *
4893 	 * The buffer will hold two square bracket characters plus ten digits,
4894 	 * one colon, one space, one comma, and some characters for a
4895 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
4896 	 * bit integers have at most ten decimal digits.)  The last
4897 	 * reference count's comma is replaced by the closing square
4898 	 * bracket and a NULL character to terminate the string.
4899 	 *
4900 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
4901 	 * snapshot of the zone's reference counters.
4902 	 *
4903 	 * First, figure out how much space the string buffer will need.
4904 	 * The buffer's size is stored in buffer_size.
4905 	 */
4906 	buffer_size = 2;			/* for the square brackets */
4907 	mutex_enter(&zone->zone_lock);
4908 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4909 	ref = zone->zone_ref;
4910 	cred_ref = zone->zone_cred_ref;
4911 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4912 		if (zone->zone_subsys_ref[index] != 0)
4913 			buffer_size += strlen(zone_ref_subsys_names[index]) +
4914 			    13;
4915 	if (buffer_size == 2) {
4916 		/*
4917 		 * No subsystems had nonzero reference counts.  Don't bother
4918 		 * with allocating a buffer; just log the general-purpose and
4919 		 * credential reference counts.
4920 		 */
4921 		mutex_exit(&zone->zone_lock);
4922 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4923 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
4924 		    "references and %u credential references are still extant",
4925 		    zone->zone_name, zone->zone_id, ref, cred_ref);
4926 		return;
4927 	}
4928 
4929 	/*
4930 	 * buffer_size contains the exact number of characters that the
4931 	 * buffer will need.  Allocate the buffer and fill it with nonzero
4932 	 * subsystem-specific reference counts.  Surround the results with
4933 	 * square brackets afterwards.
4934 	 */
4935 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
4936 	buffer_position = &buffer[1];
4937 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4938 		/*
4939 		 * NOTE: The DDI's version of sprintf() returns a pointer to
4940 		 * the modified buffer rather than the number of bytes written
4941 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
4942 		 * Therefore, we'll use snprintf() with INT_MAX to get the
4943 		 * number of bytes written.  Using INT_MAX is safe because
4944 		 * the buffer is perfectly sized for the data: we'll never
4945 		 * overrun the buffer.
4946 		 */
4947 		if (zone->zone_subsys_ref[index] != 0)
4948 			buffer_position += snprintf(buffer_position, INT_MAX,
4949 			    "%s: %u,", zone_ref_subsys_names[index],
4950 			    zone->zone_subsys_ref[index]);
4951 	}
4952 	mutex_exit(&zone->zone_lock);
4953 	buffer[0] = '[';
4954 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4955 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4956 	buffer_position[-1] = ']';
4957 
4958 	/*
4959 	 * Log the reference counts and free the message buffer.
4960 	 */
4961 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4962 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4963 	    "%u credential references are still extant %s", zone->zone_name,
4964 	    zone->zone_id, ref, cred_ref, buffer);
4965 	kmem_free(buffer, buffer_size);
4966 }
4967 
4968 /*
4969  * Systemcall entry point to finalize the zone halt process.  The caller
4970  * must have already successfully called zone_shutdown().
4971  *
4972  * Upon successful completion, the zone will have been fully destroyed:
4973  * zsched will have exited, destructor callbacks executed, and the zone
4974  * removed from the list of active zones.
4975  */
4976 static int
4977 zone_destroy(zoneid_t zoneid)
4978 {
4979 	uint64_t uniqid;
4980 	zone_t *zone;
4981 	zone_status_t status;
4982 	clock_t wait_time;
4983 	boolean_t log_refcounts;
4984 
4985 	if (secpolicy_zone_config(CRED()) != 0)
4986 		return (set_errno(EPERM));
4987 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4988 		return (set_errno(EINVAL));
4989 
4990 	mutex_enter(&zonehash_lock);
4991 	/*
4992 	 * Look for zone under hash lock to prevent races with other
4993 	 * calls to zone_destroy.
4994 	 */
4995 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4996 		mutex_exit(&zonehash_lock);
4997 		return (set_errno(EINVAL));
4998 	}
4999 
5000 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5001 		mutex_exit(&zonehash_lock);
5002 		return (set_errno(EBUSY));
5003 	}
5004 	mutex_enter(&zone_status_lock);
5005 	status = zone_status_get(zone);
5006 	if (status < ZONE_IS_DOWN) {
5007 		mutex_exit(&zone_status_lock);
5008 		mutex_exit(&zonehash_lock);
5009 		return (set_errno(EBUSY));
5010 	} else if (status == ZONE_IS_DOWN) {
5011 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5012 	}
5013 	mutex_exit(&zone_status_lock);
5014 	zone_hold(zone);
5015 	mutex_exit(&zonehash_lock);
5016 
5017 	/*
5018 	 * wait for zsched to exit
5019 	 */
5020 	zone_status_wait(zone, ZONE_IS_DEAD);
5021 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5022 	zone->zone_netstack = NULL;
5023 	uniqid = zone->zone_uniqid;
5024 	zone_rele(zone);
5025 	zone = NULL;	/* potentially free'd */
5026 
5027 	log_refcounts = B_FALSE;
5028 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5029 	mutex_enter(&zonehash_lock);
5030 	for (; /* ever */; ) {
5031 		boolean_t unref;
5032 		boolean_t refs_have_been_logged;
5033 
5034 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5035 		    zone->zone_uniqid != uniqid) {
5036 			/*
5037 			 * The zone has gone away.  Necessary conditions
5038 			 * are met, so we return success.
5039 			 */
5040 			mutex_exit(&zonehash_lock);
5041 			return (0);
5042 		}
5043 		mutex_enter(&zone->zone_lock);
5044 		unref = ZONE_IS_UNREF(zone);
5045 		refs_have_been_logged = (zone->zone_flags &
5046 		    ZF_REFCOUNTS_LOGGED);
5047 		mutex_exit(&zone->zone_lock);
5048 		if (unref) {
5049 			/*
5050 			 * There is only one reference to the zone -- that
5051 			 * added when the zone was added to the hashtables --
5052 			 * and things will remain this way until we drop
5053 			 * zonehash_lock... we can go ahead and cleanup the
5054 			 * zone.
5055 			 */
5056 			break;
5057 		}
5058 
5059 		/*
5060 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5061 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5062 		 * some zone's general-purpose reference count reaches one.
5063 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5064 		 * on zone_destroy_cv, then log the zone's reference counts and
5065 		 * continue to wait for zone_rele() and zone_cred_rele().
5066 		 */
5067 		if (!refs_have_been_logged) {
5068 			if (!log_refcounts) {
5069 				/*
5070 				 * This thread hasn't timed out waiting on
5071 				 * zone_destroy_cv yet.  Wait wait_time clock
5072 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5073 				 * seconds) for the zone's references to clear.
5074 				 */
5075 				ASSERT(wait_time > 0);
5076 				wait_time = cv_reltimedwait_sig(
5077 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5078 				    TR_SEC);
5079 				if (wait_time > 0) {
5080 					/*
5081 					 * A thread in zone_rele() or
5082 					 * zone_cred_rele() signaled
5083 					 * zone_destroy_cv before this thread's
5084 					 * wait timed out.  The zone might have
5085 					 * only one reference left; find out!
5086 					 */
5087 					continue;
5088 				} else if (wait_time == 0) {
5089 					/* The thread's process was signaled. */
5090 					mutex_exit(&zonehash_lock);
5091 					return (set_errno(EINTR));
5092 				}
5093 
5094 				/*
5095 				 * The thread timed out while waiting on
5096 				 * zone_destroy_cv.  Even though the thread
5097 				 * timed out, it has to check whether another
5098 				 * thread woke up from zone_destroy_cv and
5099 				 * destroyed the zone.
5100 				 *
5101 				 * If the zone still exists and has more than
5102 				 * one unreleased general-purpose reference,
5103 				 * then log the zone's reference counts.
5104 				 */
5105 				log_refcounts = B_TRUE;
5106 				continue;
5107 			}
5108 
5109 			/*
5110 			 * The thread already timed out on zone_destroy_cv while
5111 			 * waiting for subsystems to release the zone's last
5112 			 * general-purpose references.  Log the zone's reference
5113 			 * counts and wait indefinitely on zone_destroy_cv.
5114 			 */
5115 			zone_log_refcounts(zone);
5116 		}
5117 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5118 			/* The thread's process was signaled. */
5119 			mutex_exit(&zonehash_lock);
5120 			return (set_errno(EINTR));
5121 		}
5122 	}
5123 
5124 	/*
5125 	 * Remove CPU cap for this zone now since we're not going to
5126 	 * fail below this point.
5127 	 */
5128 	cpucaps_zone_remove(zone);
5129 
5130 	/* Get rid of the zone's kstats */
5131 	zone_kstat_delete(zone);
5132 
5133 	/* remove the pfexecd doors */
5134 	if (zone->zone_pfexecd != NULL) {
5135 		klpd_freelist(&zone->zone_pfexecd);
5136 		zone->zone_pfexecd = NULL;
5137 	}
5138 
5139 	/* free brand specific data */
5140 	if (ZONE_IS_BRANDED(zone))
5141 		ZBROP(zone)->b_free_brand_data(zone);
5142 
5143 	/* Say goodbye to brand framework. */
5144 	brand_unregister_zone(zone->zone_brand);
5145 
5146 	/*
5147 	 * It is now safe to let the zone be recreated; remove it from the
5148 	 * lists.  The memory will not be freed until the last cred
5149 	 * reference goes away.
5150 	 */
5151 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5152 	zonecount--;
5153 	/* remove from active list and hash tables */
5154 	list_remove(&zone_active, zone);
5155 	(void) mod_hash_destroy(zonehashbyname,
5156 	    (mod_hash_key_t)zone->zone_name);
5157 	(void) mod_hash_destroy(zonehashbyid,
5158 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5159 	if (zone->zone_flags & ZF_HASHED_LABEL)
5160 		(void) mod_hash_destroy(zonehashbylabel,
5161 		    (mod_hash_key_t)zone->zone_slabel);
5162 	mutex_exit(&zonehash_lock);
5163 
5164 	/*
5165 	 * Release the root vnode; we're not using it anymore.  Nor should any
5166 	 * other thread that might access it exist.
5167 	 */
5168 	if (zone->zone_rootvp != NULL) {
5169 		VN_RELE(zone->zone_rootvp);
5170 		zone->zone_rootvp = NULL;
5171 	}
5172 
5173 	/* add to deathrow list */
5174 	mutex_enter(&zone_deathrow_lock);
5175 	list_insert_tail(&zone_deathrow, zone);
5176 	mutex_exit(&zone_deathrow_lock);
5177 
5178 	/*
5179 	 * Drop last reference (which was added by zsched()), this will
5180 	 * free the zone unless there are outstanding cred references.
5181 	 */
5182 	zone_rele(zone);
5183 	return (0);
5184 }
5185 
5186 /*
5187  * Systemcall entry point for zone_getattr(2).
5188  */
5189 static ssize_t
5190 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5191 {
5192 	size_t size;
5193 	int error = 0, err;
5194 	zone_t *zone;
5195 	char *zonepath;
5196 	char *outstr;
5197 	zone_status_t zone_status;
5198 	pid_t initpid;
5199 	boolean_t global = (curzone == global_zone);
5200 	boolean_t inzone = (curzone->zone_id == zoneid);
5201 	ushort_t flags;
5202 	zone_net_data_t *zbuf;
5203 
5204 	mutex_enter(&zonehash_lock);
5205 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5206 		mutex_exit(&zonehash_lock);
5207 		return (set_errno(EINVAL));
5208 	}
5209 	zone_status = zone_status_get(zone);
5210 	if (zone_status < ZONE_IS_INITIALIZED) {
5211 		mutex_exit(&zonehash_lock);
5212 		return (set_errno(EINVAL));
5213 	}
5214 	zone_hold(zone);
5215 	mutex_exit(&zonehash_lock);
5216 
5217 	/*
5218 	 * If not in the global zone, don't show information about other zones,
5219 	 * unless the system is labeled and the local zone's label dominates
5220 	 * the other zone.
5221 	 */
5222 	if (!zone_list_access(zone)) {
5223 		zone_rele(zone);
5224 		return (set_errno(EINVAL));
5225 	}
5226 
5227 	switch (attr) {
5228 	case ZONE_ATTR_ROOT:
5229 		if (global) {
5230 			/*
5231 			 * Copy the path to trim the trailing "/" (except for
5232 			 * the global zone).
5233 			 */
5234 			if (zone != global_zone)
5235 				size = zone->zone_rootpathlen - 1;
5236 			else
5237 				size = zone->zone_rootpathlen;
5238 			zonepath = kmem_alloc(size, KM_SLEEP);
5239 			bcopy(zone->zone_rootpath, zonepath, size);
5240 			zonepath[size - 1] = '\0';
5241 		} else {
5242 			if (inzone || !is_system_labeled()) {
5243 				/*
5244 				 * Caller is not in the global zone.
5245 				 * if the query is on the current zone
5246 				 * or the system is not labeled,
5247 				 * just return faked-up path for current zone.
5248 				 */
5249 				zonepath = "/";
5250 				size = 2;
5251 			} else {
5252 				/*
5253 				 * Return related path for current zone.
5254 				 */
5255 				int prefix_len = strlen(zone_prefix);
5256 				int zname_len = strlen(zone->zone_name);
5257 
5258 				size = prefix_len + zname_len + 1;
5259 				zonepath = kmem_alloc(size, KM_SLEEP);
5260 				bcopy(zone_prefix, zonepath, prefix_len);
5261 				bcopy(zone->zone_name, zonepath +
5262 				    prefix_len, zname_len);
5263 				zonepath[size - 1] = '\0';
5264 			}
5265 		}
5266 		if (bufsize > size)
5267 			bufsize = size;
5268 		if (buf != NULL) {
5269 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5270 			if (err != 0 && err != ENAMETOOLONG)
5271 				error = EFAULT;
5272 		}
5273 		if (global || (is_system_labeled() && !inzone))
5274 			kmem_free(zonepath, size);
5275 		break;
5276 
5277 	case ZONE_ATTR_NAME:
5278 		size = strlen(zone->zone_name) + 1;
5279 		if (bufsize > size)
5280 			bufsize = size;
5281 		if (buf != NULL) {
5282 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5283 			if (err != 0 && err != ENAMETOOLONG)
5284 				error = EFAULT;
5285 		}
5286 		break;
5287 
5288 	case ZONE_ATTR_STATUS:
5289 		/*
5290 		 * Since we're not holding zonehash_lock, the zone status
5291 		 * may be anything; leave it up to userland to sort it out.
5292 		 */
5293 		size = sizeof (zone_status);
5294 		if (bufsize > size)
5295 			bufsize = size;
5296 		zone_status = zone_status_get(zone);
5297 		if (buf != NULL &&
5298 		    copyout(&zone_status, buf, bufsize) != 0)
5299 			error = EFAULT;
5300 		break;
5301 	case ZONE_ATTR_FLAGS:
5302 		size = sizeof (zone->zone_flags);
5303 		if (bufsize > size)
5304 			bufsize = size;
5305 		flags = zone->zone_flags;
5306 		if (buf != NULL &&
5307 		    copyout(&flags, buf, bufsize) != 0)
5308 			error = EFAULT;
5309 		break;
5310 	case ZONE_ATTR_PRIVSET:
5311 		size = sizeof (priv_set_t);
5312 		if (bufsize > size)
5313 			bufsize = size;
5314 		if (buf != NULL &&
5315 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5316 			error = EFAULT;
5317 		break;
5318 	case ZONE_ATTR_UNIQID:
5319 		size = sizeof (zone->zone_uniqid);
5320 		if (bufsize > size)
5321 			bufsize = size;
5322 		if (buf != NULL &&
5323 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5324 			error = EFAULT;
5325 		break;
5326 	case ZONE_ATTR_POOLID:
5327 		{
5328 			pool_t *pool;
5329 			poolid_t poolid;
5330 
5331 			if (pool_lock_intr() != 0) {
5332 				error = EINTR;
5333 				break;
5334 			}
5335 			pool = zone_pool_get(zone);
5336 			poolid = pool->pool_id;
5337 			pool_unlock();
5338 			size = sizeof (poolid);
5339 			if (bufsize > size)
5340 				bufsize = size;
5341 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5342 				error = EFAULT;
5343 		}
5344 		break;
5345 	case ZONE_ATTR_SLBL:
5346 		size = sizeof (bslabel_t);
5347 		if (bufsize > size)
5348 			bufsize = size;
5349 		if (zone->zone_slabel == NULL)
5350 			error = EINVAL;
5351 		else if (buf != NULL &&
5352 		    copyout(label2bslabel(zone->zone_slabel), buf,
5353 		    bufsize) != 0)
5354 			error = EFAULT;
5355 		break;
5356 	case ZONE_ATTR_INITPID:
5357 		size = sizeof (initpid);
5358 		if (bufsize > size)
5359 			bufsize = size;
5360 		initpid = zone->zone_proc_initpid;
5361 		if (initpid == -1) {
5362 			error = ESRCH;
5363 			break;
5364 		}
5365 		if (buf != NULL &&
5366 		    copyout(&initpid, buf, bufsize) != 0)
5367 			error = EFAULT;
5368 		break;
5369 	case ZONE_ATTR_BRAND:
5370 		size = strlen(zone->zone_brand->b_name) + 1;
5371 
5372 		if (bufsize > size)
5373 			bufsize = size;
5374 		if (buf != NULL) {
5375 			err = copyoutstr(zone->zone_brand->b_name, buf,
5376 			    bufsize, NULL);
5377 			if (err != 0 && err != ENAMETOOLONG)
5378 				error = EFAULT;
5379 		}
5380 		break;
5381 	case ZONE_ATTR_INITNAME:
5382 		size = strlen(zone->zone_initname) + 1;
5383 		if (bufsize > size)
5384 			bufsize = size;
5385 		if (buf != NULL) {
5386 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5387 			    NULL);
5388 			if (err != 0 && err != ENAMETOOLONG)
5389 				error = EFAULT;
5390 		}
5391 		break;
5392 	case ZONE_ATTR_BOOTARGS:
5393 		if (zone->zone_bootargs == NULL)
5394 			outstr = "";
5395 		else
5396 			outstr = zone->zone_bootargs;
5397 		size = strlen(outstr) + 1;
5398 		if (bufsize > size)
5399 			bufsize = size;
5400 		if (buf != NULL) {
5401 			err = copyoutstr(outstr, buf, bufsize, NULL);
5402 			if (err != 0 && err != ENAMETOOLONG)
5403 				error = EFAULT;
5404 		}
5405 		break;
5406 	case ZONE_ATTR_PHYS_MCAP:
5407 		size = sizeof (zone->zone_phys_mcap);
5408 		if (bufsize > size)
5409 			bufsize = size;
5410 		if (buf != NULL &&
5411 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5412 			error = EFAULT;
5413 		break;
5414 	case ZONE_ATTR_SCHED_CLASS:
5415 		mutex_enter(&class_lock);
5416 
5417 		if (zone->zone_defaultcid >= loaded_classes)
5418 			outstr = "";
5419 		else
5420 			outstr = sclass[zone->zone_defaultcid].cl_name;
5421 		size = strlen(outstr) + 1;
5422 		if (bufsize > size)
5423 			bufsize = size;
5424 		if (buf != NULL) {
5425 			err = copyoutstr(outstr, buf, bufsize, NULL);
5426 			if (err != 0 && err != ENAMETOOLONG)
5427 				error = EFAULT;
5428 		}
5429 
5430 		mutex_exit(&class_lock);
5431 		break;
5432 	case ZONE_ATTR_HOSTID:
5433 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5434 		    bufsize == sizeof (zone->zone_hostid)) {
5435 			size = sizeof (zone->zone_hostid);
5436 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5437 			    bufsize) != 0)
5438 				error = EFAULT;
5439 		} else {
5440 			error = EINVAL;
5441 		}
5442 		break;
5443 	case ZONE_ATTR_FS_ALLOWED:
5444 		if (zone->zone_fs_allowed == NULL)
5445 			outstr = "";
5446 		else
5447 			outstr = zone->zone_fs_allowed;
5448 		size = strlen(outstr) + 1;
5449 		if (bufsize > size)
5450 			bufsize = size;
5451 		if (buf != NULL) {
5452 			err = copyoutstr(outstr, buf, bufsize, NULL);
5453 			if (err != 0 && err != ENAMETOOLONG)
5454 				error = EFAULT;
5455 		}
5456 		break;
5457 	case ZONE_ATTR_NETWORK:
5458 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5459 		if (copyin(buf, zbuf, bufsize) != 0) {
5460 			error = EFAULT;
5461 		} else {
5462 			error = zone_get_network(zoneid, zbuf);
5463 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5464 				error = EFAULT;
5465 		}
5466 		kmem_free(zbuf, bufsize);
5467 		break;
5468 	default:
5469 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5470 			size = bufsize;
5471 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5472 		} else {
5473 			error = EINVAL;
5474 		}
5475 	}
5476 	zone_rele(zone);
5477 
5478 	if (error)
5479 		return (set_errno(error));
5480 	return ((ssize_t)size);
5481 }
5482 
5483 /*
5484  * Systemcall entry point for zone_setattr(2).
5485  */
5486 /*ARGSUSED*/
5487 static int
5488 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5489 {
5490 	zone_t *zone;
5491 	zone_status_t zone_status;
5492 	int err = -1;
5493 	zone_net_data_t *zbuf;
5494 
5495 	if (secpolicy_zone_config(CRED()) != 0)
5496 		return (set_errno(EPERM));
5497 
5498 	/*
5499 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5500 	 * global zone.
5501 	 */
5502 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5503 		return (set_errno(EINVAL));
5504 	}
5505 
5506 	mutex_enter(&zonehash_lock);
5507 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5508 		mutex_exit(&zonehash_lock);
5509 		return (set_errno(EINVAL));
5510 	}
5511 	zone_hold(zone);
5512 	mutex_exit(&zonehash_lock);
5513 
5514 	/*
5515 	 * At present most attributes can only be set on non-running,
5516 	 * non-global zones.
5517 	 */
5518 	zone_status = zone_status_get(zone);
5519 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5520 		err = EINVAL;
5521 		goto done;
5522 	}
5523 
5524 	switch (attr) {
5525 	case ZONE_ATTR_INITNAME:
5526 		err = zone_set_initname(zone, (const char *)buf);
5527 		break;
5528 	case ZONE_ATTR_INITNORESTART:
5529 		zone->zone_restart_init = B_FALSE;
5530 		err = 0;
5531 		break;
5532 	case ZONE_ATTR_BOOTARGS:
5533 		err = zone_set_bootargs(zone, (const char *)buf);
5534 		break;
5535 	case ZONE_ATTR_BRAND:
5536 		err = zone_set_brand(zone, (const char *)buf);
5537 		break;
5538 	case ZONE_ATTR_FS_ALLOWED:
5539 		err = zone_set_fs_allowed(zone, (const char *)buf);
5540 		break;
5541 	case ZONE_ATTR_PHYS_MCAP:
5542 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5543 		break;
5544 	case ZONE_ATTR_SCHED_CLASS:
5545 		err = zone_set_sched_class(zone, (const char *)buf);
5546 		break;
5547 	case ZONE_ATTR_HOSTID:
5548 		if (bufsize == sizeof (zone->zone_hostid)) {
5549 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5550 				err = 0;
5551 			else
5552 				err = EFAULT;
5553 		} else {
5554 			err = EINVAL;
5555 		}
5556 		break;
5557 	case ZONE_ATTR_NETWORK:
5558 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5559 			err = EINVAL;
5560 			break;
5561 		}
5562 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5563 		if (copyin(buf, zbuf, bufsize) != 0) {
5564 			kmem_free(zbuf, bufsize);
5565 			err = EFAULT;
5566 			break;
5567 		}
5568 		err = zone_set_network(zoneid, zbuf);
5569 		kmem_free(zbuf, bufsize);
5570 		break;
5571 	default:
5572 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5573 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5574 		else
5575 			err = EINVAL;
5576 	}
5577 
5578 done:
5579 	zone_rele(zone);
5580 	ASSERT(err != -1);
5581 	return (err != 0 ? set_errno(err) : 0);
5582 }
5583 
5584 /*
5585  * Return zero if the process has at least one vnode mapped in to its
5586  * address space which shouldn't be allowed to change zones.
5587  *
5588  * Also return zero if the process has any shared mappings which reserve
5589  * swap.  This is because the counting for zone.max-swap does not allow swap
5590  * reservation to be shared between zones.  zone swap reservation is counted
5591  * on zone->zone_max_swap.
5592  */
5593 static int
5594 as_can_change_zones(void)
5595 {
5596 	proc_t *pp = curproc;
5597 	struct seg *seg;
5598 	struct as *as = pp->p_as;
5599 	vnode_t *vp;
5600 	int allow = 1;
5601 
5602 	ASSERT(pp->p_as != &kas);
5603 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
5604 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5605 
5606 		/*
5607 		 * Cannot enter zone with shared anon memory which
5608 		 * reserves swap.  See comment above.
5609 		 */
5610 		if (seg_can_change_zones(seg) == B_FALSE) {
5611 			allow = 0;
5612 			break;
5613 		}
5614 		/*
5615 		 * if we can't get a backing vnode for this segment then skip
5616 		 * it.
5617 		 */
5618 		vp = NULL;
5619 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5620 			continue;
5621 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5622 			allow = 0;
5623 			break;
5624 		}
5625 	}
5626 	AS_LOCK_EXIT(as, &as->a_lock);
5627 	return (allow);
5628 }
5629 
5630 /*
5631  * Count swap reserved by curproc's address space
5632  */
5633 static size_t
5634 as_swresv(void)
5635 {
5636 	proc_t *pp = curproc;
5637 	struct seg *seg;
5638 	struct as *as = pp->p_as;
5639 	size_t swap = 0;
5640 
5641 	ASSERT(pp->p_as != &kas);
5642 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
5643 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5644 		swap += seg_swresv(seg);
5645 
5646 	return (swap);
5647 }
5648 
5649 /*
5650  * Systemcall entry point for zone_enter().
5651  *
5652  * The current process is injected into said zone.  In the process
5653  * it will change its project membership, privileges, rootdir/cwd,
5654  * zone-wide rctls, and pool association to match those of the zone.
5655  *
5656  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5657  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5658  * enter a zone that is "ready" or "running".
5659  */
5660 static int
5661 zone_enter(zoneid_t zoneid)
5662 {
5663 	zone_t *zone;
5664 	vnode_t *vp;
5665 	proc_t *pp = curproc;
5666 	contract_t *ct;
5667 	cont_process_t *ctp;
5668 	task_t *tk, *oldtk;
5669 	kproject_t *zone_proj0;
5670 	cred_t *cr, *newcr;
5671 	pool_t *oldpool, *newpool;
5672 	sess_t *sp;
5673 	uid_t uid;
5674 	zone_status_t status;
5675 	int err = 0;
5676 	rctl_entity_p_t e;
5677 	size_t swap;
5678 	kthread_id_t t;
5679 
5680 	if (secpolicy_zone_config(CRED()) != 0)
5681 		return (set_errno(EPERM));
5682 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5683 		return (set_errno(EINVAL));
5684 
5685 	/*
5686 	 * Stop all lwps so we don't need to hold a lock to look at
5687 	 * curproc->p_zone.  This needs to happen before we grab any
5688 	 * locks to avoid deadlock (another lwp in the process could
5689 	 * be waiting for the held lock).
5690 	 */
5691 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5692 		return (set_errno(EINTR));
5693 
5694 	/*
5695 	 * Make sure we're not changing zones with files open or mapped in
5696 	 * to our address space which shouldn't be changing zones.
5697 	 */
5698 	if (!files_can_change_zones()) {
5699 		err = EBADF;
5700 		goto out;
5701 	}
5702 	if (!as_can_change_zones()) {
5703 		err = EFAULT;
5704 		goto out;
5705 	}
5706 
5707 	mutex_enter(&zonehash_lock);
5708 	if (pp->p_zone != global_zone) {
5709 		mutex_exit(&zonehash_lock);
5710 		err = EINVAL;
5711 		goto out;
5712 	}
5713 
5714 	zone = zone_find_all_by_id(zoneid);
5715 	if (zone == NULL) {
5716 		mutex_exit(&zonehash_lock);
5717 		err = EINVAL;
5718 		goto out;
5719 	}
5720 
5721 	/*
5722 	 * To prevent processes in a zone from holding contracts on
5723 	 * extrazonal resources, and to avoid process contract
5724 	 * memberships which span zones, contract holders and processes
5725 	 * which aren't the sole members of their encapsulating process
5726 	 * contracts are not allowed to zone_enter.
5727 	 */
5728 	ctp = pp->p_ct_process;
5729 	ct = &ctp->conp_contract;
5730 	mutex_enter(&ct->ct_lock);
5731 	mutex_enter(&pp->p_lock);
5732 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5733 		mutex_exit(&pp->p_lock);
5734 		mutex_exit(&ct->ct_lock);
5735 		mutex_exit(&zonehash_lock);
5736 		err = EINVAL;
5737 		goto out;
5738 	}
5739 
5740 	/*
5741 	 * Moreover, we don't allow processes whose encapsulating
5742 	 * process contracts have inherited extrazonal contracts.
5743 	 * While it would be easier to eliminate all process contracts
5744 	 * with inherited contracts, we need to be able to give a
5745 	 * restarted init (or other zone-penetrating process) its
5746 	 * predecessor's contracts.
5747 	 */
5748 	if (ctp->conp_ninherited != 0) {
5749 		contract_t *next;
5750 		for (next = list_head(&ctp->conp_inherited); next;
5751 		    next = list_next(&ctp->conp_inherited, next)) {
5752 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5753 				mutex_exit(&pp->p_lock);
5754 				mutex_exit(&ct->ct_lock);
5755 				mutex_exit(&zonehash_lock);
5756 				err = EINVAL;
5757 				goto out;
5758 			}
5759 		}
5760 	}
5761 
5762 	mutex_exit(&pp->p_lock);
5763 	mutex_exit(&ct->ct_lock);
5764 
5765 	status = zone_status_get(zone);
5766 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5767 		/*
5768 		 * Can't join
5769 		 */
5770 		mutex_exit(&zonehash_lock);
5771 		err = EINVAL;
5772 		goto out;
5773 	}
5774 
5775 	/*
5776 	 * Make sure new priv set is within the permitted set for caller
5777 	 */
5778 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5779 		mutex_exit(&zonehash_lock);
5780 		err = EPERM;
5781 		goto out;
5782 	}
5783 	/*
5784 	 * We want to momentarily drop zonehash_lock while we optimistically
5785 	 * bind curproc to the pool it should be running in.  This is safe
5786 	 * since the zone can't disappear (we have a hold on it).
5787 	 */
5788 	zone_hold(zone);
5789 	mutex_exit(&zonehash_lock);
5790 
5791 	/*
5792 	 * Grab pool_lock to keep the pools configuration from changing
5793 	 * and to stop ourselves from getting rebound to another pool
5794 	 * until we join the zone.
5795 	 */
5796 	if (pool_lock_intr() != 0) {
5797 		zone_rele(zone);
5798 		err = EINTR;
5799 		goto out;
5800 	}
5801 	ASSERT(secpolicy_pool(CRED()) == 0);
5802 	/*
5803 	 * Bind ourselves to the pool currently associated with the zone.
5804 	 */
5805 	oldpool = curproc->p_pool;
5806 	newpool = zone_pool_get(zone);
5807 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5808 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5809 	    POOL_BIND_ALL)) != 0) {
5810 		pool_unlock();
5811 		zone_rele(zone);
5812 		goto out;
5813 	}
5814 
5815 	/*
5816 	 * Grab cpu_lock now; we'll need it later when we call
5817 	 * task_join().
5818 	 */
5819 	mutex_enter(&cpu_lock);
5820 	mutex_enter(&zonehash_lock);
5821 	/*
5822 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5823 	 */
5824 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5825 		/*
5826 		 * Can't join anymore.
5827 		 */
5828 		mutex_exit(&zonehash_lock);
5829 		mutex_exit(&cpu_lock);
5830 		if (pool_state == POOL_ENABLED &&
5831 		    newpool != oldpool)
5832 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5833 			    POOL_BIND_ALL);
5834 		pool_unlock();
5835 		zone_rele(zone);
5836 		err = EINVAL;
5837 		goto out;
5838 	}
5839 
5840 	/*
5841 	 * a_lock must be held while transfering locked memory and swap
5842 	 * reservation from the global zone to the non global zone because
5843 	 * asynchronous faults on the processes' address space can lock
5844 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5845 	 * segments respectively.
5846 	 */
5847 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5848 	swap = as_swresv();
5849 	mutex_enter(&pp->p_lock);
5850 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5851 	/* verify that we do not exceed and task or lwp limits */
5852 	mutex_enter(&zone->zone_nlwps_lock);
5853 	/* add new lwps to zone and zone's proj0 */
5854 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5855 	zone->zone_nlwps += pp->p_lwpcnt;
5856 	/* add 1 task to zone's proj0 */
5857 	zone_proj0->kpj_ntasks += 1;
5858 
5859 	zone_proj0->kpj_nprocs++;
5860 	zone->zone_nprocs++;
5861 	mutex_exit(&zone->zone_nlwps_lock);
5862 
5863 	mutex_enter(&zone->zone_mem_lock);
5864 	zone->zone_locked_mem += pp->p_locked_mem;
5865 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5866 	zone->zone_max_swap += swap;
5867 	mutex_exit(&zone->zone_mem_lock);
5868 
5869 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5870 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5871 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5872 
5873 	/* remove lwps and process from proc's old zone and old project */
5874 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5875 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5876 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5877 	pp->p_task->tk_proj->kpj_nprocs--;
5878 	pp->p_zone->zone_nprocs--;
5879 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5880 
5881 	mutex_enter(&pp->p_zone->zone_mem_lock);
5882 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5883 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5884 	pp->p_zone->zone_max_swap -= swap;
5885 	mutex_exit(&pp->p_zone->zone_mem_lock);
5886 
5887 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5888 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5889 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5890 
5891 	pp->p_flag |= SZONETOP;
5892 	pp->p_zone = zone;
5893 	mutex_exit(&pp->p_lock);
5894 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5895 
5896 	/*
5897 	 * Joining the zone cannot fail from now on.
5898 	 *
5899 	 * This means that a lot of the following code can be commonized and
5900 	 * shared with zsched().
5901 	 */
5902 
5903 	/*
5904 	 * If the process contract fmri was inherited, we need to
5905 	 * flag this so that any contract status will not leak
5906 	 * extra zone information, svc_fmri in this case
5907 	 */
5908 	if (ctp->conp_svc_ctid != ct->ct_id) {
5909 		mutex_enter(&ct->ct_lock);
5910 		ctp->conp_svc_zone_enter = ct->ct_id;
5911 		mutex_exit(&ct->ct_lock);
5912 	}
5913 
5914 	/*
5915 	 * Reset the encapsulating process contract's zone.
5916 	 */
5917 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5918 	contract_setzuniqid(ct, zone->zone_uniqid);
5919 
5920 	/*
5921 	 * Create a new task and associate the process with the project keyed
5922 	 * by (projid,zoneid).
5923 	 *
5924 	 * We might as well be in project 0; the global zone's projid doesn't
5925 	 * make much sense in a zone anyhow.
5926 	 *
5927 	 * This also increments zone_ntasks, and returns with p_lock held.
5928 	 */
5929 	tk = task_create(0, zone);
5930 	oldtk = task_join(tk, 0);
5931 	mutex_exit(&cpu_lock);
5932 
5933 	/*
5934 	 * call RCTLOP_SET functions on this proc
5935 	 */
5936 	e.rcep_p.zone = zone;
5937 	e.rcep_t = RCENTITY_ZONE;
5938 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5939 	    RCD_CALLBACK);
5940 	mutex_exit(&pp->p_lock);
5941 
5942 	/*
5943 	 * We don't need to hold any of zsched's locks here; not only do we know
5944 	 * the process and zone aren't going away, we know its session isn't
5945 	 * changing either.
5946 	 *
5947 	 * By joining zsched's session here, we mimic the behavior in the
5948 	 * global zone of init's sid being the pid of sched.  We extend this
5949 	 * to all zlogin-like zone_enter()'ing processes as well.
5950 	 */
5951 	mutex_enter(&pidlock);
5952 	sp = zone->zone_zsched->p_sessp;
5953 	sess_hold(zone->zone_zsched);
5954 	mutex_enter(&pp->p_lock);
5955 	pgexit(pp);
5956 	sess_rele(pp->p_sessp, B_TRUE);
5957 	pp->p_sessp = sp;
5958 	pgjoin(pp, zone->zone_zsched->p_pidp);
5959 
5960 	/*
5961 	 * If any threads are scheduled to be placed on zone wait queue they
5962 	 * should abandon the idea since the wait queue is changing.
5963 	 * We need to be holding pidlock & p_lock to do this.
5964 	 */
5965 	if ((t = pp->p_tlist) != NULL) {
5966 		do {
5967 			thread_lock(t);
5968 			/*
5969 			 * Kick this thread so that he doesn't sit
5970 			 * on a wrong wait queue.
5971 			 */
5972 			if (ISWAITING(t))
5973 				setrun_locked(t);
5974 
5975 			if (t->t_schedflag & TS_ANYWAITQ)
5976 				t->t_schedflag &= ~ TS_ANYWAITQ;
5977 
5978 			thread_unlock(t);
5979 		} while ((t = t->t_forw) != pp->p_tlist);
5980 	}
5981 
5982 	/*
5983 	 * If there is a default scheduling class for the zone and it is not
5984 	 * the class we are currently in, change all of the threads in the
5985 	 * process to the new class.  We need to be holding pidlock & p_lock
5986 	 * when we call parmsset so this is a good place to do it.
5987 	 */
5988 	if (zone->zone_defaultcid > 0 &&
5989 	    zone->zone_defaultcid != curthread->t_cid) {
5990 		pcparms_t pcparms;
5991 
5992 		pcparms.pc_cid = zone->zone_defaultcid;
5993 		pcparms.pc_clparms[0] = 0;
5994 
5995 		/*
5996 		 * If setting the class fails, we still want to enter the zone.
5997 		 */
5998 		if ((t = pp->p_tlist) != NULL) {
5999 			do {
6000 				(void) parmsset(&pcparms, t);
6001 			} while ((t = t->t_forw) != pp->p_tlist);
6002 		}
6003 	}
6004 
6005 	mutex_exit(&pp->p_lock);
6006 	mutex_exit(&pidlock);
6007 
6008 	mutex_exit(&zonehash_lock);
6009 	/*
6010 	 * We're firmly in the zone; let pools progress.
6011 	 */
6012 	pool_unlock();
6013 	task_rele(oldtk);
6014 	/*
6015 	 * We don't need to retain a hold on the zone since we already
6016 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6017 	 */
6018 	zone_rele(zone);
6019 
6020 	/*
6021 	 * Chroot
6022 	 */
6023 	vp = zone->zone_rootvp;
6024 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6025 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6026 
6027 	/*
6028 	 * Change process credentials
6029 	 */
6030 	newcr = cralloc();
6031 	mutex_enter(&pp->p_crlock);
6032 	cr = pp->p_cred;
6033 	crcopy_to(cr, newcr);
6034 	crsetzone(newcr, zone);
6035 	pp->p_cred = newcr;
6036 
6037 	/*
6038 	 * Restrict all process privilege sets to zone limit
6039 	 */
6040 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6041 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6042 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6043 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6044 	mutex_exit(&pp->p_crlock);
6045 	crset(pp, newcr);
6046 
6047 	/*
6048 	 * Adjust upcount to reflect zone entry.
6049 	 */
6050 	uid = crgetruid(newcr);
6051 	mutex_enter(&pidlock);
6052 	upcount_dec(uid, GLOBAL_ZONEID);
6053 	upcount_inc(uid, zoneid);
6054 	mutex_exit(&pidlock);
6055 
6056 	/*
6057 	 * Set up core file path and content.
6058 	 */
6059 	set_core_defaults();
6060 
6061 out:
6062 	/*
6063 	 * Let the other lwps continue.
6064 	 */
6065 	mutex_enter(&pp->p_lock);
6066 	if (curthread != pp->p_agenttp)
6067 		continuelwps(pp);
6068 	mutex_exit(&pp->p_lock);
6069 
6070 	return (err != 0 ? set_errno(err) : 0);
6071 }
6072 
6073 /*
6074  * Systemcall entry point for zone_list(2).
6075  *
6076  * Processes running in a (non-global) zone only see themselves.
6077  * On labeled systems, they see all zones whose label they dominate.
6078  */
6079 static int
6080 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6081 {
6082 	zoneid_t *zoneids;
6083 	zone_t *zone, *myzone;
6084 	uint_t user_nzones, real_nzones;
6085 	uint_t domi_nzones;
6086 	int error;
6087 
6088 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6089 		return (set_errno(EFAULT));
6090 
6091 	myzone = curproc->p_zone;
6092 	if (myzone != global_zone) {
6093 		bslabel_t *mybslab;
6094 
6095 		if (!is_system_labeled()) {
6096 			/* just return current zone */
6097 			real_nzones = domi_nzones = 1;
6098 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6099 			zoneids[0] = myzone->zone_id;
6100 		} else {
6101 			/* return all zones that are dominated */
6102 			mutex_enter(&zonehash_lock);
6103 			real_nzones = zonecount;
6104 			domi_nzones = 0;
6105 			if (real_nzones > 0) {
6106 				zoneids = kmem_alloc(real_nzones *
6107 				    sizeof (zoneid_t), KM_SLEEP);
6108 				mybslab = label2bslabel(myzone->zone_slabel);
6109 				for (zone = list_head(&zone_active);
6110 				    zone != NULL;
6111 				    zone = list_next(&zone_active, zone)) {
6112 					if (zone->zone_id == GLOBAL_ZONEID)
6113 						continue;
6114 					if (zone != myzone &&
6115 					    (zone->zone_flags & ZF_IS_SCRATCH))
6116 						continue;
6117 					/*
6118 					 * Note that a label always dominates
6119 					 * itself, so myzone is always included
6120 					 * in the list.
6121 					 */
6122 					if (bldominates(mybslab,
6123 					    label2bslabel(zone->zone_slabel))) {
6124 						zoneids[domi_nzones++] =
6125 						    zone->zone_id;
6126 					}
6127 				}
6128 			}
6129 			mutex_exit(&zonehash_lock);
6130 		}
6131 	} else {
6132 		mutex_enter(&zonehash_lock);
6133 		real_nzones = zonecount;
6134 		domi_nzones = 0;
6135 		if (real_nzones > 0) {
6136 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6137 			    KM_SLEEP);
6138 			for (zone = list_head(&zone_active); zone != NULL;
6139 			    zone = list_next(&zone_active, zone))
6140 				zoneids[domi_nzones++] = zone->zone_id;
6141 			ASSERT(domi_nzones == real_nzones);
6142 		}
6143 		mutex_exit(&zonehash_lock);
6144 	}
6145 
6146 	/*
6147 	 * If user has allocated space for fewer entries than we found, then
6148 	 * return only up to his limit.  Either way, tell him exactly how many
6149 	 * we found.
6150 	 */
6151 	if (domi_nzones < user_nzones)
6152 		user_nzones = domi_nzones;
6153 	error = 0;
6154 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6155 		error = EFAULT;
6156 	} else if (zoneidlist != NULL && user_nzones != 0) {
6157 		if (copyout(zoneids, zoneidlist,
6158 		    user_nzones * sizeof (zoneid_t)) != 0)
6159 			error = EFAULT;
6160 	}
6161 
6162 	if (real_nzones > 0)
6163 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6164 
6165 	if (error != 0)
6166 		return (set_errno(error));
6167 	else
6168 		return (0);
6169 }
6170 
6171 /*
6172  * Systemcall entry point for zone_lookup(2).
6173  *
6174  * Non-global zones are only able to see themselves and (on labeled systems)
6175  * the zones they dominate.
6176  */
6177 static zoneid_t
6178 zone_lookup(const char *zone_name)
6179 {
6180 	char *kname;
6181 	zone_t *zone;
6182 	zoneid_t zoneid;
6183 	int err;
6184 
6185 	if (zone_name == NULL) {
6186 		/* return caller's zone id */
6187 		return (getzoneid());
6188 	}
6189 
6190 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6191 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6192 		kmem_free(kname, ZONENAME_MAX);
6193 		return (set_errno(err));
6194 	}
6195 
6196 	mutex_enter(&zonehash_lock);
6197 	zone = zone_find_all_by_name(kname);
6198 	kmem_free(kname, ZONENAME_MAX);
6199 	/*
6200 	 * In a non-global zone, can only lookup global and own name.
6201 	 * In Trusted Extensions zone label dominance rules apply.
6202 	 */
6203 	if (zone == NULL ||
6204 	    zone_status_get(zone) < ZONE_IS_READY ||
6205 	    !zone_list_access(zone)) {
6206 		mutex_exit(&zonehash_lock);
6207 		return (set_errno(EINVAL));
6208 	} else {
6209 		zoneid = zone->zone_id;
6210 		mutex_exit(&zonehash_lock);
6211 		return (zoneid);
6212 	}
6213 }
6214 
6215 static int
6216 zone_version(int *version_arg)
6217 {
6218 	int version = ZONE_SYSCALL_API_VERSION;
6219 
6220 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6221 		return (set_errno(EFAULT));
6222 	return (0);
6223 }
6224 
6225 /* ARGSUSED */
6226 long
6227 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6228 {
6229 	zone_def zs;
6230 	int err;
6231 
6232 	switch (cmd) {
6233 	case ZONE_CREATE:
6234 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6235 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6236 				return (set_errno(EFAULT));
6237 			}
6238 		} else {
6239 #ifdef _SYSCALL32_IMPL
6240 			zone_def32 zs32;
6241 
6242 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6243 				return (set_errno(EFAULT));
6244 			}
6245 			zs.zone_name =
6246 			    (const char *)(unsigned long)zs32.zone_name;
6247 			zs.zone_root =
6248 			    (const char *)(unsigned long)zs32.zone_root;
6249 			zs.zone_privs =
6250 			    (const struct priv_set *)
6251 			    (unsigned long)zs32.zone_privs;
6252 			zs.zone_privssz = zs32.zone_privssz;
6253 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6254 			zs.rctlbufsz = zs32.rctlbufsz;
6255 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6256 			zs.zfsbufsz = zs32.zfsbufsz;
6257 			zs.extended_error =
6258 			    (int *)(unsigned long)zs32.extended_error;
6259 			zs.match = zs32.match;
6260 			zs.doi = zs32.doi;
6261 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6262 			zs.flags = zs32.flags;
6263 #else
6264 			panic("get_udatamodel() returned bogus result\n");
6265 #endif
6266 		}
6267 
6268 		return (zone_create(zs.zone_name, zs.zone_root,
6269 		    zs.zone_privs, zs.zone_privssz,
6270 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6271 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6272 		    zs.extended_error, zs.match, zs.doi,
6273 		    zs.label, zs.flags));
6274 	case ZONE_BOOT:
6275 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6276 	case ZONE_DESTROY:
6277 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6278 	case ZONE_GETATTR:
6279 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6280 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6281 	case ZONE_SETATTR:
6282 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6283 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6284 	case ZONE_ENTER:
6285 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6286 	case ZONE_LIST:
6287 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6288 	case ZONE_SHUTDOWN:
6289 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6290 	case ZONE_LOOKUP:
6291 		return (zone_lookup((const char *)arg1));
6292 	case ZONE_VERSION:
6293 		return (zone_version((int *)arg1));
6294 	case ZONE_ADD_DATALINK:
6295 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6296 		    (datalink_id_t)(uintptr_t)arg2));
6297 	case ZONE_DEL_DATALINK:
6298 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6299 		    (datalink_id_t)(uintptr_t)arg2));
6300 	case ZONE_CHECK_DATALINK: {
6301 		zoneid_t	zoneid;
6302 		boolean_t	need_copyout;
6303 
6304 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6305 			return (EFAULT);
6306 		need_copyout = (zoneid == ALL_ZONES);
6307 		err = zone_check_datalink(&zoneid,
6308 		    (datalink_id_t)(uintptr_t)arg2);
6309 		if (err == 0 && need_copyout) {
6310 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6311 				err = EFAULT;
6312 		}
6313 		return (err == 0 ? 0 : set_errno(err));
6314 	}
6315 	case ZONE_LIST_DATALINK:
6316 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6317 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6318 	default:
6319 		return (set_errno(EINVAL));
6320 	}
6321 }
6322 
6323 struct zarg {
6324 	zone_t *zone;
6325 	zone_cmd_arg_t arg;
6326 };
6327 
6328 static int
6329 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6330 {
6331 	char *buf;
6332 	size_t buflen;
6333 	int error;
6334 
6335 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6336 	buf = kmem_alloc(buflen, KM_SLEEP);
6337 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6338 	error = door_ki_open(buf, doorp);
6339 	kmem_free(buf, buflen);
6340 	return (error);
6341 }
6342 
6343 static void
6344 zone_release_door(door_handle_t *doorp)
6345 {
6346 	door_ki_rele(*doorp);
6347 	*doorp = NULL;
6348 }
6349 
6350 static void
6351 zone_ki_call_zoneadmd(struct zarg *zargp)
6352 {
6353 	door_handle_t door = NULL;
6354 	door_arg_t darg, save_arg;
6355 	char *zone_name;
6356 	size_t zone_namelen;
6357 	zoneid_t zoneid;
6358 	zone_t *zone;
6359 	zone_cmd_arg_t arg;
6360 	uint64_t uniqid;
6361 	size_t size;
6362 	int error;
6363 	int retry;
6364 
6365 	zone = zargp->zone;
6366 	arg = zargp->arg;
6367 	kmem_free(zargp, sizeof (*zargp));
6368 
6369 	zone_namelen = strlen(zone->zone_name) + 1;
6370 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6371 	bcopy(zone->zone_name, zone_name, zone_namelen);
6372 	zoneid = zone->zone_id;
6373 	uniqid = zone->zone_uniqid;
6374 	/*
6375 	 * zoneadmd may be down, but at least we can empty out the zone.
6376 	 * We can ignore the return value of zone_empty() since we're called
6377 	 * from a kernel thread and know we won't be delivered any signals.
6378 	 */
6379 	ASSERT(curproc == &p0);
6380 	(void) zone_empty(zone);
6381 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6382 	zone_rele(zone);
6383 
6384 	size = sizeof (arg);
6385 	darg.rbuf = (char *)&arg;
6386 	darg.data_ptr = (char *)&arg;
6387 	darg.rsize = size;
6388 	darg.data_size = size;
6389 	darg.desc_ptr = NULL;
6390 	darg.desc_num = 0;
6391 
6392 	save_arg = darg;
6393 	/*
6394 	 * Since we're not holding a reference to the zone, any number of
6395 	 * things can go wrong, including the zone disappearing before we get a
6396 	 * chance to talk to zoneadmd.
6397 	 */
6398 	for (retry = 0; /* forever */; retry++) {
6399 		if (door == NULL &&
6400 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6401 			goto next;
6402 		}
6403 		ASSERT(door != NULL);
6404 
6405 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6406 		    SIZE_MAX, 0)) == 0) {
6407 			break;
6408 		}
6409 		switch (error) {
6410 		case EINTR:
6411 			/* FALLTHROUGH */
6412 		case EAGAIN:	/* process may be forking */
6413 			/*
6414 			 * Back off for a bit
6415 			 */
6416 			break;
6417 		case EBADF:
6418 			zone_release_door(&door);
6419 			if (zone_lookup_door(zone_name, &door) != 0) {
6420 				/*
6421 				 * zoneadmd may be dead, but it may come back to
6422 				 * life later.
6423 				 */
6424 				break;
6425 			}
6426 			break;
6427 		default:
6428 			cmn_err(CE_WARN,
6429 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6430 			    error);
6431 			goto out;
6432 		}
6433 next:
6434 		/*
6435 		 * If this isn't the same zone_t that we originally had in mind,
6436 		 * then this is the same as if two kadmin requests come in at
6437 		 * the same time: the first one wins.  This means we lose, so we
6438 		 * bail.
6439 		 */
6440 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6441 			/*
6442 			 * Problem is solved.
6443 			 */
6444 			break;
6445 		}
6446 		if (zone->zone_uniqid != uniqid) {
6447 			/*
6448 			 * zoneid recycled
6449 			 */
6450 			zone_rele(zone);
6451 			break;
6452 		}
6453 		/*
6454 		 * We could zone_status_timedwait(), but there doesn't seem to
6455 		 * be much point in doing that (plus, it would mean that
6456 		 * zone_free() isn't called until this thread exits).
6457 		 */
6458 		zone_rele(zone);
6459 		delay(hz);
6460 		darg = save_arg;
6461 	}
6462 out:
6463 	if (door != NULL) {
6464 		zone_release_door(&door);
6465 	}
6466 	kmem_free(zone_name, zone_namelen);
6467 	thread_exit();
6468 }
6469 
6470 /*
6471  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6472  * kadmin().  The caller is a process in the zone.
6473  *
6474  * In order to shutdown the zone, we will hand off control to zoneadmd
6475  * (running in the global zone) via a door.  We do a half-hearted job at
6476  * killing all processes in the zone, create a kernel thread to contact
6477  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6478  * a form of generation number used to let zoneadmd (as well as
6479  * zone_destroy()) know exactly which zone they're re talking about.
6480  */
6481 int
6482 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6483 {
6484 	struct zarg *zargp;
6485 	zone_cmd_t zcmd;
6486 	zone_t *zone;
6487 
6488 	zone = curproc->p_zone;
6489 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6490 
6491 	switch (cmd) {
6492 	case A_SHUTDOWN:
6493 		switch (fcn) {
6494 		case AD_HALT:
6495 		case AD_POWEROFF:
6496 			zcmd = Z_HALT;
6497 			break;
6498 		case AD_BOOT:
6499 			zcmd = Z_REBOOT;
6500 			break;
6501 		case AD_IBOOT:
6502 		case AD_SBOOT:
6503 		case AD_SIBOOT:
6504 		case AD_NOSYNC:
6505 			return (ENOTSUP);
6506 		default:
6507 			return (EINVAL);
6508 		}
6509 		break;
6510 	case A_REBOOT:
6511 		zcmd = Z_REBOOT;
6512 		break;
6513 	case A_FTRACE:
6514 	case A_REMOUNT:
6515 	case A_FREEZE:
6516 	case A_DUMP:
6517 	case A_CONFIG:
6518 		return (ENOTSUP);
6519 	default:
6520 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6521 		return (EINVAL);
6522 	}
6523 
6524 	if (secpolicy_zone_admin(credp, B_FALSE))
6525 		return (EPERM);
6526 	mutex_enter(&zone_status_lock);
6527 
6528 	/*
6529 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6530 	 * is in the zone.
6531 	 */
6532 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6533 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6534 		/*
6535 		 * This zone is already on its way down.
6536 		 */
6537 		mutex_exit(&zone_status_lock);
6538 		return (0);
6539 	}
6540 	/*
6541 	 * Prevent future zone_enter()s
6542 	 */
6543 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6544 	mutex_exit(&zone_status_lock);
6545 
6546 	/*
6547 	 * Kill everyone now and call zoneadmd later.
6548 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6549 	 * later.
6550 	 */
6551 	killall(zone->zone_id);
6552 	/*
6553 	 * Now, create the thread to contact zoneadmd and do the rest of the
6554 	 * work.  This thread can't be created in our zone otherwise
6555 	 * zone_destroy() would deadlock.
6556 	 */
6557 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6558 	zargp->arg.cmd = zcmd;
6559 	zargp->arg.uniqid = zone->zone_uniqid;
6560 	zargp->zone = zone;
6561 	(void) strcpy(zargp->arg.locale, "C");
6562 	/* mdep was already copied in for us by uadmin */
6563 	if (mdep != NULL)
6564 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6565 		    sizeof (zargp->arg.bootbuf));
6566 	zone_hold(zone);
6567 
6568 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6569 	    TS_RUN, minclsyspri);
6570 	exit(CLD_EXITED, 0);
6571 
6572 	return (EINVAL);
6573 }
6574 
6575 /*
6576  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6577  * status to ZONE_IS_SHUTTING_DOWN.
6578  *
6579  * This function also shuts down all running zones to ensure that they won't
6580  * fork new processes.
6581  */
6582 void
6583 zone_shutdown_global(void)
6584 {
6585 	zone_t *current_zonep;
6586 
6587 	ASSERT(INGLOBALZONE(curproc));
6588 	mutex_enter(&zonehash_lock);
6589 	mutex_enter(&zone_status_lock);
6590 
6591 	/* Modify the global zone's status first. */
6592 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6593 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6594 
6595 	/*
6596 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6597 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6598 	 * could cause assertions to fail (e.g., assertions about a zone's
6599 	 * state during initialization, readying, or booting) or produce races.
6600 	 * We'll let threads continue to initialize and ready new zones: they'll
6601 	 * fail to boot the new zones when they see that the global zone is
6602 	 * shutting down.
6603 	 */
6604 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6605 	    current_zonep = list_next(&zone_active, current_zonep)) {
6606 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6607 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6608 	}
6609 	mutex_exit(&zone_status_lock);
6610 	mutex_exit(&zonehash_lock);
6611 }
6612 
6613 /*
6614  * Returns true if the named dataset is visible in the current zone.
6615  * The 'write' parameter is set to 1 if the dataset is also writable.
6616  */
6617 int
6618 zone_dataset_visible(const char *dataset, int *write)
6619 {
6620 	static int zfstype = -1;
6621 	zone_dataset_t *zd;
6622 	size_t len;
6623 	zone_t *zone = curproc->p_zone;
6624 	const char *name = NULL;
6625 	vfs_t *vfsp = NULL;
6626 
6627 	if (dataset[0] == '\0')
6628 		return (0);
6629 
6630 	/*
6631 	 * Walk the list once, looking for datasets which match exactly, or
6632 	 * specify a dataset underneath an exported dataset.  If found, return
6633 	 * true and note that it is writable.
6634 	 */
6635 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6636 	    zd = list_next(&zone->zone_datasets, zd)) {
6637 
6638 		len = strlen(zd->zd_dataset);
6639 		if (strlen(dataset) >= len &&
6640 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6641 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6642 		    dataset[len] == '@')) {
6643 			if (write)
6644 				*write = 1;
6645 			return (1);
6646 		}
6647 	}
6648 
6649 	/*
6650 	 * Walk the list a second time, searching for datasets which are parents
6651 	 * of exported datasets.  These should be visible, but read-only.
6652 	 *
6653 	 * Note that we also have to support forms such as 'pool/dataset/', with
6654 	 * a trailing slash.
6655 	 */
6656 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6657 	    zd = list_next(&zone->zone_datasets, zd)) {
6658 
6659 		len = strlen(dataset);
6660 		if (dataset[len - 1] == '/')
6661 			len--;	/* Ignore trailing slash */
6662 		if (len < strlen(zd->zd_dataset) &&
6663 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6664 		    zd->zd_dataset[len] == '/') {
6665 			if (write)
6666 				*write = 0;
6667 			return (1);
6668 		}
6669 	}
6670 
6671 	/*
6672 	 * We reach here if the given dataset is not found in the zone_dataset
6673 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6674 	 * instead of delegation. For this we search for the dataset in the
6675 	 * zone_vfslist of this zone. If found, return true and note that it is
6676 	 * not writable.
6677 	 */
6678 
6679 	/*
6680 	 * Initialize zfstype if it is not initialized yet.
6681 	 */
6682 	if (zfstype == -1) {
6683 		struct vfssw *vswp = vfs_getvfssw("zfs");
6684 		zfstype = vswp - vfssw;
6685 		vfs_unrefvfssw(vswp);
6686 	}
6687 
6688 	vfs_list_read_lock();
6689 	vfsp = zone->zone_vfslist;
6690 	do {
6691 		ASSERT(vfsp);
6692 		if (vfsp->vfs_fstype == zfstype) {
6693 			name = refstr_value(vfsp->vfs_resource);
6694 
6695 			/*
6696 			 * Check if we have an exact match.
6697 			 */
6698 			if (strcmp(dataset, name) == 0) {
6699 				vfs_list_unlock();
6700 				if (write)
6701 					*write = 0;
6702 				return (1);
6703 			}
6704 			/*
6705 			 * We need to check if we are looking for parents of
6706 			 * a dataset. These should be visible, but read-only.
6707 			 */
6708 			len = strlen(dataset);
6709 			if (dataset[len - 1] == '/')
6710 				len--;
6711 
6712 			if (len < strlen(name) &&
6713 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6714 				vfs_list_unlock();
6715 				if (write)
6716 					*write = 0;
6717 				return (1);
6718 			}
6719 		}
6720 		vfsp = vfsp->vfs_zone_next;
6721 	} while (vfsp != zone->zone_vfslist);
6722 
6723 	vfs_list_unlock();
6724 	return (0);
6725 }
6726 
6727 /*
6728  * zone_find_by_any_path() -
6729  *
6730  * kernel-private routine similar to zone_find_by_path(), but which
6731  * effectively compares against zone paths rather than zonerootpath
6732  * (i.e., the last component of zonerootpaths, which should be "root/",
6733  * are not compared.)  This is done in order to accurately identify all
6734  * paths, whether zone-visible or not, including those which are parallel
6735  * to /root/, such as /dev/, /home/, etc...
6736  *
6737  * If the specified path does not fall under any zone path then global
6738  * zone is returned.
6739  *
6740  * The treat_abs parameter indicates whether the path should be treated as
6741  * an absolute path although it does not begin with "/".  (This supports
6742  * nfs mount syntax such as host:any/path.)
6743  *
6744  * The caller is responsible for zone_rele of the returned zone.
6745  */
6746 zone_t *
6747 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6748 {
6749 	zone_t *zone;
6750 	int path_offset = 0;
6751 
6752 	if (path == NULL) {
6753 		zone_hold(global_zone);
6754 		return (global_zone);
6755 	}
6756 
6757 	if (*path != '/') {
6758 		ASSERT(treat_abs);
6759 		path_offset = 1;
6760 	}
6761 
6762 	mutex_enter(&zonehash_lock);
6763 	for (zone = list_head(&zone_active); zone != NULL;
6764 	    zone = list_next(&zone_active, zone)) {
6765 		char	*c;
6766 		size_t	pathlen;
6767 		char *rootpath_start;
6768 
6769 		if (zone == global_zone)	/* skip global zone */
6770 			continue;
6771 
6772 		/* scan backwards to find start of last component */
6773 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6774 		do {
6775 			c--;
6776 		} while (*c != '/');
6777 
6778 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6779 		rootpath_start = (zone->zone_rootpath + path_offset);
6780 		if (strncmp(path, rootpath_start, pathlen) == 0)
6781 			break;
6782 	}
6783 	if (zone == NULL)
6784 		zone = global_zone;
6785 	zone_hold(zone);
6786 	mutex_exit(&zonehash_lock);
6787 	return (zone);
6788 }
6789 
6790 /*
6791  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6792  * zone_dl_t pointer if found, and NULL otherwise.
6793  */
6794 static zone_dl_t *
6795 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6796 {
6797 	zone_dl_t *zdl;
6798 
6799 	ASSERT(mutex_owned(&zone->zone_lock));
6800 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6801 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6802 		if (zdl->zdl_id == linkid)
6803 			break;
6804 	}
6805 	return (zdl);
6806 }
6807 
6808 static boolean_t
6809 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6810 {
6811 	boolean_t exists;
6812 
6813 	mutex_enter(&zone->zone_lock);
6814 	exists = (zone_find_dl(zone, linkid) != NULL);
6815 	mutex_exit(&zone->zone_lock);
6816 	return (exists);
6817 }
6818 
6819 /*
6820  * Add an data link name for the zone.
6821  */
6822 static int
6823 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6824 {
6825 	zone_dl_t *zdl;
6826 	zone_t *zone;
6827 	zone_t *thiszone;
6828 
6829 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6830 		return (set_errno(ENXIO));
6831 
6832 	/* Verify that the datalink ID doesn't already belong to a zone. */
6833 	mutex_enter(&zonehash_lock);
6834 	for (zone = list_head(&zone_active); zone != NULL;
6835 	    zone = list_next(&zone_active, zone)) {
6836 		if (zone_dl_exists(zone, linkid)) {
6837 			mutex_exit(&zonehash_lock);
6838 			zone_rele(thiszone);
6839 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6840 		}
6841 	}
6842 
6843 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6844 	zdl->zdl_id = linkid;
6845 	zdl->zdl_net = NULL;
6846 	mutex_enter(&thiszone->zone_lock);
6847 	list_insert_head(&thiszone->zone_dl_list, zdl);
6848 	mutex_exit(&thiszone->zone_lock);
6849 	mutex_exit(&zonehash_lock);
6850 	zone_rele(thiszone);
6851 	return (0);
6852 }
6853 
6854 static int
6855 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6856 {
6857 	zone_dl_t *zdl;
6858 	zone_t *zone;
6859 	int err = 0;
6860 
6861 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6862 		return (set_errno(EINVAL));
6863 
6864 	mutex_enter(&zone->zone_lock);
6865 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6866 		err = ENXIO;
6867 	} else {
6868 		list_remove(&zone->zone_dl_list, zdl);
6869 		if (zdl->zdl_net != NULL)
6870 			nvlist_free(zdl->zdl_net);
6871 		kmem_free(zdl, sizeof (zone_dl_t));
6872 	}
6873 	mutex_exit(&zone->zone_lock);
6874 	zone_rele(zone);
6875 	return (err == 0 ? 0 : set_errno(err));
6876 }
6877 
6878 /*
6879  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6880  * the linkid.  Otherwise we just check if the specified zoneidp has been
6881  * assigned the supplied linkid.
6882  */
6883 int
6884 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6885 {
6886 	zone_t *zone;
6887 	int err = ENXIO;
6888 
6889 	if (*zoneidp != ALL_ZONES) {
6890 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6891 			if (zone_dl_exists(zone, linkid))
6892 				err = 0;
6893 			zone_rele(zone);
6894 		}
6895 		return (err);
6896 	}
6897 
6898 	mutex_enter(&zonehash_lock);
6899 	for (zone = list_head(&zone_active); zone != NULL;
6900 	    zone = list_next(&zone_active, zone)) {
6901 		if (zone_dl_exists(zone, linkid)) {
6902 			*zoneidp = zone->zone_id;
6903 			err = 0;
6904 			break;
6905 		}
6906 	}
6907 	mutex_exit(&zonehash_lock);
6908 	return (err);
6909 }
6910 
6911 /*
6912  * Get the list of datalink IDs assigned to a zone.
6913  *
6914  * On input, *nump is the number of datalink IDs that can fit in the supplied
6915  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6916  * that were placed in the array if the array was large enough, or to the
6917  * number of datalink IDs that the function needs to place in the array if the
6918  * array is too small.
6919  */
6920 static int
6921 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6922 {
6923 	uint_t num, dlcount;
6924 	zone_t *zone;
6925 	zone_dl_t *zdl;
6926 	datalink_id_t *idptr = idarray;
6927 
6928 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6929 		return (set_errno(EFAULT));
6930 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6931 		return (set_errno(ENXIO));
6932 
6933 	num = 0;
6934 	mutex_enter(&zone->zone_lock);
6935 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6936 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6937 		/*
6938 		 * If the list is bigger than what the caller supplied, just
6939 		 * count, don't do copyout.
6940 		 */
6941 		if (++num > dlcount)
6942 			continue;
6943 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6944 			mutex_exit(&zone->zone_lock);
6945 			zone_rele(zone);
6946 			return (set_errno(EFAULT));
6947 		}
6948 		idptr++;
6949 	}
6950 	mutex_exit(&zone->zone_lock);
6951 	zone_rele(zone);
6952 
6953 	/* Increased or decreased, caller should be notified. */
6954 	if (num != dlcount) {
6955 		if (copyout(&num, nump, sizeof (num)) != 0)
6956 			return (set_errno(EFAULT));
6957 	}
6958 	return (0);
6959 }
6960 
6961 /*
6962  * Public interface for looking up a zone by zoneid. It's a customized version
6963  * for netstack_zone_create(). It can only be called from the zsd create
6964  * callbacks, since it doesn't have reference on the zone structure hence if
6965  * it is called elsewhere the zone could disappear after the zonehash_lock
6966  * is dropped.
6967  *
6968  * Furthermore it
6969  * 1. Doesn't check the status of the zone.
6970  * 2. It will be called even before zone_init is called, in that case the
6971  *    address of zone0 is returned directly, and netstack_zone_create()
6972  *    will only assign a value to zone0.zone_netstack, won't break anything.
6973  * 3. Returns without the zone being held.
6974  */
6975 zone_t *
6976 zone_find_by_id_nolock(zoneid_t zoneid)
6977 {
6978 	zone_t *zone;
6979 
6980 	mutex_enter(&zonehash_lock);
6981 	if (zonehashbyid == NULL)
6982 		zone = &zone0;
6983 	else
6984 		zone = zone_find_all_by_id(zoneid);
6985 	mutex_exit(&zonehash_lock);
6986 	return (zone);
6987 }
6988 
6989 /*
6990  * Walk the datalinks for a given zone
6991  */
6992 int
6993 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6994     void *data)
6995 {
6996 	zone_t		*zone;
6997 	zone_dl_t	*zdl;
6998 	datalink_id_t	*idarray;
6999 	uint_t		idcount = 0;
7000 	int		i, ret = 0;
7001 
7002 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7003 		return (ENOENT);
7004 
7005 	/*
7006 	 * We first build an array of linkid's so that we can walk these and
7007 	 * execute the callback with the zone_lock dropped.
7008 	 */
7009 	mutex_enter(&zone->zone_lock);
7010 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7011 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7012 		idcount++;
7013 	}
7014 
7015 	if (idcount == 0) {
7016 		mutex_exit(&zone->zone_lock);
7017 		zone_rele(zone);
7018 		return (0);
7019 	}
7020 
7021 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7022 	if (idarray == NULL) {
7023 		mutex_exit(&zone->zone_lock);
7024 		zone_rele(zone);
7025 		return (ENOMEM);
7026 	}
7027 
7028 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7029 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7030 		idarray[i] = zdl->zdl_id;
7031 	}
7032 
7033 	mutex_exit(&zone->zone_lock);
7034 
7035 	for (i = 0; i < idcount && ret == 0; i++) {
7036 		if ((ret = (*cb)(idarray[i], data)) != 0)
7037 			break;
7038 	}
7039 
7040 	zone_rele(zone);
7041 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7042 	return (ret);
7043 }
7044 
7045 static char *
7046 zone_net_type2name(int type)
7047 {
7048 	switch (type) {
7049 	case ZONE_NETWORK_ADDRESS:
7050 		return (ZONE_NET_ADDRNAME);
7051 	case ZONE_NETWORK_DEFROUTER:
7052 		return (ZONE_NET_RTRNAME);
7053 	default:
7054 		return (NULL);
7055 	}
7056 }
7057 
7058 static int
7059 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7060 {
7061 	zone_t *zone;
7062 	zone_dl_t *zdl;
7063 	nvlist_t *nvl;
7064 	int err = 0;
7065 	uint8_t *new = NULL;
7066 	char *nvname;
7067 	int bufsize;
7068 	datalink_id_t linkid = znbuf->zn_linkid;
7069 
7070 	if (secpolicy_zone_config(CRED()) != 0)
7071 		return (set_errno(EPERM));
7072 
7073 	if (zoneid == GLOBAL_ZONEID)
7074 		return (set_errno(EINVAL));
7075 
7076 	nvname = zone_net_type2name(znbuf->zn_type);
7077 	bufsize = znbuf->zn_len;
7078 	new = znbuf->zn_val;
7079 	if (nvname == NULL)
7080 		return (set_errno(EINVAL));
7081 
7082 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7083 		return (set_errno(EINVAL));
7084 	}
7085 
7086 	mutex_enter(&zone->zone_lock);
7087 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7088 		err = ENXIO;
7089 		goto done;
7090 	}
7091 	if ((nvl = zdl->zdl_net) == NULL) {
7092 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7093 			err = ENOMEM;
7094 			goto done;
7095 		} else {
7096 			zdl->zdl_net = nvl;
7097 		}
7098 	}
7099 	if (nvlist_exists(nvl, nvname)) {
7100 		err = EINVAL;
7101 		goto done;
7102 	}
7103 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7104 	ASSERT(err == 0);
7105 done:
7106 	mutex_exit(&zone->zone_lock);
7107 	zone_rele(zone);
7108 	if (err != 0)
7109 		return (set_errno(err));
7110 	else
7111 		return (0);
7112 }
7113 
7114 static int
7115 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7116 {
7117 	zone_t *zone;
7118 	zone_dl_t *zdl;
7119 	nvlist_t *nvl;
7120 	uint8_t *ptr;
7121 	uint_t psize;
7122 	int err = 0;
7123 	char *nvname;
7124 	int bufsize;
7125 	void *buf;
7126 	datalink_id_t linkid = znbuf->zn_linkid;
7127 
7128 	if (zoneid == GLOBAL_ZONEID)
7129 		return (set_errno(EINVAL));
7130 
7131 	nvname = zone_net_type2name(znbuf->zn_type);
7132 	bufsize = znbuf->zn_len;
7133 	buf = znbuf->zn_val;
7134 
7135 	if (nvname == NULL)
7136 		return (set_errno(EINVAL));
7137 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7138 		return (set_errno(EINVAL));
7139 
7140 	mutex_enter(&zone->zone_lock);
7141 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7142 		err = ENXIO;
7143 		goto done;
7144 	}
7145 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7146 		err = ENOENT;
7147 		goto done;
7148 	}
7149 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7150 	ASSERT(err == 0);
7151 
7152 	if (psize > bufsize) {
7153 		err = ENOBUFS;
7154 		goto done;
7155 	}
7156 	znbuf->zn_len = psize;
7157 	bcopy(ptr, buf, psize);
7158 done:
7159 	mutex_exit(&zone->zone_lock);
7160 	zone_rele(zone);
7161 	if (err != 0)
7162 		return (set_errno(err));
7163 	else
7164 		return (0);
7165 }
7166