xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 2dc692e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent Inc. All rights reserved.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
164  *       currently just max_lofi
165  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
166  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
167  *       list (a list of zones in the ZONE_IS_DEAD state).
168  *
169  *   Ordering requirements:
170  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
171  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
172  *
173  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
176  *
177  *   Blocking memory allocations are permitted while holding any of the
178  *   zone locks.
179  *
180  *
181  *   System Call Interface:
182  *
183  *   The zone subsystem can be managed and queried from user level with
184  *   the following system calls (all subcodes of the primary "zone"
185  *   system call):
186  *   - zone_create: creates a zone with selected attributes (name,
187  *     root path, privileges, resource controls, ZFS datasets)
188  *   - zone_enter: allows the current process to enter a zone
189  *   - zone_getattr: reports attributes of a zone
190  *   - zone_setattr: set attributes of a zone
191  *   - zone_boot: set 'init' running for the zone
192  *   - zone_list: lists all zones active in the system
193  *   - zone_lookup: looks up zone id based on name
194  *   - zone_shutdown: initiates shutdown process (see states above)
195  *   - zone_destroy: completes shutdown process (see states above)
196  *
197  */
198 
199 #include <sys/priv_impl.h>
200 #include <sys/cred.h>
201 #include <c2/audit.h>
202 #include <sys/debug.h>
203 #include <sys/file.h>
204 #include <sys/kmem.h>
205 #include <sys/kstat.h>
206 #include <sys/mutex.h>
207 #include <sys/note.h>
208 #include <sys/pathname.h>
209 #include <sys/proc.h>
210 #include <sys/project.h>
211 #include <sys/sysevent.h>
212 #include <sys/task.h>
213 #include <sys/systm.h>
214 #include <sys/types.h>
215 #include <sys/utsname.h>
216 #include <sys/vnode.h>
217 #include <sys/vfs.h>
218 #include <sys/systeminfo.h>
219 #include <sys/policy.h>
220 #include <sys/cred_impl.h>
221 #include <sys/contract_impl.h>
222 #include <sys/contract/process_impl.h>
223 #include <sys/class.h>
224 #include <sys/pool.h>
225 #include <sys/pool_pset.h>
226 #include <sys/pset.h>
227 #include <sys/strlog.h>
228 #include <sys/sysmacros.h>
229 #include <sys/callb.h>
230 #include <sys/vmparam.h>
231 #include <sys/corectl.h>
232 #include <sys/ipc_impl.h>
233 #include <sys/klpd.h>
234 
235 #include <sys/door.h>
236 #include <sys/cpuvar.h>
237 #include <sys/sdt.h>
238 
239 #include <sys/uadmin.h>
240 #include <sys/session.h>
241 #include <sys/cmn_err.h>
242 #include <sys/modhash.h>
243 #include <sys/sunddi.h>
244 #include <sys/nvpair.h>
245 #include <sys/rctl.h>
246 #include <sys/fss.h>
247 #include <sys/brand.h>
248 #include <sys/zone.h>
249 #include <net/if.h>
250 #include <sys/cpucaps.h>
251 #include <vm/seg.h>
252 #include <sys/mac.h>
253 
254 /*
255  * This constant specifies the number of seconds that threads waiting for
256  * subsystems to release a zone's general-purpose references will wait before
257  * they log the zone's reference counts.  The constant's value shouldn't
258  * be so small that reference counts are unnecessarily reported for zones
259  * whose references are slowly released.  On the other hand, it shouldn't be so
260  * large that users reboot their systems out of frustration over hung zones
261  * before the system logs the zones' reference counts.
262  */
263 #define	ZONE_DESTROY_TIMEOUT_SECS	60
264 
265 /* List of data link IDs which are accessible from the zone */
266 typedef struct zone_dl {
267 	datalink_id_t	zdl_id;
268 	nvlist_t	*zdl_net;
269 	list_node_t	zdl_linkage;
270 } zone_dl_t;
271 
272 /*
273  * cv used to signal that all references to the zone have been released.  This
274  * needs to be global since there may be multiple waiters, and the first to
275  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
276  */
277 static kcondvar_t zone_destroy_cv;
278 /*
279  * Lock used to serialize access to zone_cv.  This could have been per-zone,
280  * but then we'd need another lock for zone_destroy_cv, and why bother?
281  */
282 static kmutex_t zone_status_lock;
283 
284 /*
285  * ZSD-related global variables.
286  */
287 static kmutex_t zsd_key_lock;	/* protects the following two */
288 /*
289  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
290  */
291 static zone_key_t zsd_keyval = 0;
292 /*
293  * Global list of registered keys.  We use this when a new zone is created.
294  */
295 static list_t zsd_registered_keys;
296 
297 int zone_hash_size = 256;
298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
299 static kmutex_t zonehash_lock;
300 static uint_t zonecount;
301 static id_space_t *zoneid_space;
302 
303 /*
304  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
305  * kernel proper runs, and which manages all other zones.
306  *
307  * Although not declared as static, the variable "zone0" should not be used
308  * except for by code that needs to reference the global zone early on in boot,
309  * before it is fully initialized.  All other consumers should use
310  * 'global_zone'.
311  */
312 zone_t zone0;
313 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
314 
315 /*
316  * List of active zones, protected by zonehash_lock.
317  */
318 static list_t zone_active;
319 
320 /*
321  * List of destroyed zones that still have outstanding cred references.
322  * Used for debugging.  Uses a separate lock to avoid lock ordering
323  * problems in zone_free.
324  */
325 static list_t zone_deathrow;
326 static kmutex_t zone_deathrow_lock;
327 
328 /* number of zones is limited by virtual interface limit in IP */
329 uint_t maxzones = 8192;
330 
331 /* Event channel to sent zone state change notifications */
332 evchan_t *zone_event_chan;
333 
334 /*
335  * This table holds the mapping from kernel zone states to
336  * states visible in the state notification API.
337  * The idea is that we only expose "obvious" states and
338  * do not expose states which are just implementation details.
339  */
340 const char  *zone_status_table[] = {
341 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
342 	ZONE_EVENT_INITIALIZED,		/* initialized */
343 	ZONE_EVENT_READY,		/* ready */
344 	ZONE_EVENT_READY,		/* booting */
345 	ZONE_EVENT_RUNNING,		/* running */
346 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
350 	ZONE_EVENT_UNINITIALIZED,	/* dead */
351 };
352 
353 /*
354  * This array contains the names of the subsystems listed in zone_ref_subsys_t
355  * (see sys/zone.h).
356  */
357 static char *zone_ref_subsys_names[] = {
358 	"NFS",		/* ZONE_REF_NFS */
359 	"NFSv4",	/* ZONE_REF_NFSV4 */
360 	"SMBFS",	/* ZONE_REF_SMBFS */
361 	"MNTFS",	/* ZONE_REF_MNTFS */
362 	"LOFI",		/* ZONE_REF_LOFI */
363 	"VFS",		/* ZONE_REF_VFS */
364 	"IPC"		/* ZONE_REF_IPC */
365 };
366 
367 /*
368  * This isn't static so lint doesn't complain.
369  */
370 rctl_hndl_t rc_zone_cpu_shares;
371 rctl_hndl_t rc_zone_locked_mem;
372 rctl_hndl_t rc_zone_max_swap;
373 rctl_hndl_t rc_zone_max_lofi;
374 rctl_hndl_t rc_zone_cpu_cap;
375 rctl_hndl_t rc_zone_nlwps;
376 rctl_hndl_t rc_zone_nprocs;
377 rctl_hndl_t rc_zone_shmmax;
378 rctl_hndl_t rc_zone_shmmni;
379 rctl_hndl_t rc_zone_semmni;
380 rctl_hndl_t rc_zone_msgmni;
381 /*
382  * Synchronization primitives used to synchronize between mounts and zone
383  * creation/destruction.
384  */
385 static int mounts_in_progress;
386 static kcondvar_t mount_cv;
387 static kmutex_t mount_lock;
388 
389 const char * const zone_default_initname = "/sbin/init";
390 static char * const zone_prefix = "/zone/";
391 static int zone_shutdown(zoneid_t zoneid);
392 static int zone_add_datalink(zoneid_t, datalink_id_t);
393 static int zone_remove_datalink(zoneid_t, datalink_id_t);
394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
395 static int zone_set_network(zoneid_t, zone_net_data_t *);
396 static int zone_get_network(zoneid_t, zone_net_data_t *);
397 
398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
399 
400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
404     zone_key_t);
405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
407     kmutex_t *);
408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
409     kmutex_t *);
410 
411 /*
412  * Bump this number when you alter the zone syscall interfaces; this is
413  * because we need to have support for previous API versions in libc
414  * to support patching; libc calls into the kernel to determine this number.
415  *
416  * Version 1 of the API is the version originally shipped with Solaris 10
417  * Version 2 alters the zone_create system call in order to support more
418  *     arguments by moving the args into a structure; and to do better
419  *     error reporting when zone_create() fails.
420  * Version 3 alters the zone_create system call in order to support the
421  *     import of ZFS datasets to zones.
422  * Version 4 alters the zone_create system call in order to support
423  *     Trusted Extensions.
424  * Version 5 alters the zone_boot system call, and converts its old
425  *     bootargs parameter to be set by the zone_setattr API instead.
426  * Version 6 adds the flag argument to zone_create.
427  */
428 static const int ZONE_SYSCALL_API_VERSION = 6;
429 
430 /*
431  * Certain filesystems (such as NFS and autofs) need to know which zone
432  * the mount is being placed in.  Because of this, we need to be able to
433  * ensure that a zone isn't in the process of being created such that
434  * nfs_mount() thinks it is in the global zone, while by the time it
435  * gets added the list of mounted zones, it ends up on zoneA's mount
436  * list.
437  *
438  * The following functions: block_mounts()/resume_mounts() and
439  * mount_in_progress()/mount_completed() are used by zones and the VFS
440  * layer (respectively) to synchronize zone creation and new mounts.
441  *
442  * The semantics are like a reader-reader lock such that there may
443  * either be multiple mounts (or zone creations, if that weren't
444  * serialized by zonehash_lock) in progress at the same time, but not
445  * both.
446  *
447  * We use cv's so the user can ctrl-C out of the operation if it's
448  * taking too long.
449  *
450  * The semantics are such that there is unfair bias towards the
451  * "current" operation.  This means that zone creations may starve if
452  * there is a rapid succession of new mounts coming in to the system, or
453  * there is a remote possibility that zones will be created at such a
454  * rate that new mounts will not be able to proceed.
455  */
456 /*
457  * Prevent new mounts from progressing to the point of calling
458  * VFS_MOUNT().  If there are already mounts in this "region", wait for
459  * them to complete.
460  */
461 static int
462 block_mounts(void)
463 {
464 	int retval = 0;
465 
466 	/*
467 	 * Since it may block for a long time, block_mounts() shouldn't be
468 	 * called with zonehash_lock held.
469 	 */
470 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
471 	mutex_enter(&mount_lock);
472 	while (mounts_in_progress > 0) {
473 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
474 			goto signaled;
475 	}
476 	/*
477 	 * A negative value of mounts_in_progress indicates that mounts
478 	 * have been blocked by (-mounts_in_progress) different callers.
479 	 */
480 	mounts_in_progress--;
481 	retval = 1;
482 signaled:
483 	mutex_exit(&mount_lock);
484 	return (retval);
485 }
486 
487 /*
488  * The VFS layer may progress with new mounts as far as we're concerned.
489  * Allow them to progress if we were the last obstacle.
490  */
491 static void
492 resume_mounts(void)
493 {
494 	mutex_enter(&mount_lock);
495 	if (++mounts_in_progress == 0)
496 		cv_broadcast(&mount_cv);
497 	mutex_exit(&mount_lock);
498 }
499 
500 /*
501  * The VFS layer is busy with a mount; zones should wait until all
502  * mounts are completed to progress.
503  */
504 void
505 mount_in_progress(void)
506 {
507 	mutex_enter(&mount_lock);
508 	while (mounts_in_progress < 0)
509 		cv_wait(&mount_cv, &mount_lock);
510 	mounts_in_progress++;
511 	mutex_exit(&mount_lock);
512 }
513 
514 /*
515  * VFS is done with one mount; wake up any waiting block_mounts()
516  * callers if this is the last mount.
517  */
518 void
519 mount_completed(void)
520 {
521 	mutex_enter(&mount_lock);
522 	if (--mounts_in_progress == 0)
523 		cv_broadcast(&mount_cv);
524 	mutex_exit(&mount_lock);
525 }
526 
527 /*
528  * ZSD routines.
529  *
530  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
531  * defined by the pthread_key_create() and related interfaces.
532  *
533  * Kernel subsystems may register one or more data items and/or
534  * callbacks to be executed when a zone is created, shutdown, or
535  * destroyed.
536  *
537  * Unlike the thread counterpart, destructor callbacks will be executed
538  * even if the data pointer is NULL and/or there are no constructor
539  * callbacks, so it is the responsibility of such callbacks to check for
540  * NULL data values if necessary.
541  *
542  * The locking strategy and overall picture is as follows:
543  *
544  * When someone calls zone_key_create(), a template ZSD entry is added to the
545  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
546  * holding that lock all the existing zones are marked as
547  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
548  * zone_zsd list (protected by zone_lock). The global list is updated first
549  * (under zone_key_lock) to make sure that newly created zones use the
550  * most recent list of keys. Then under zonehash_lock we walk the zones
551  * and mark them.  Similar locking is used in zone_key_delete().
552  *
553  * The actual create, shutdown, and destroy callbacks are done without
554  * holding any lock. And zsd_flags are used to ensure that the operations
555  * completed so that when zone_key_create (and zone_create) is done, as well as
556  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
557  * are completed.
558  *
559  * When new zones are created constructor callbacks for all registered ZSD
560  * entries will be called. That also uses the above two phases of marking
561  * what needs to be done, and then running the callbacks without holding
562  * any locks.
563  *
564  * The framework does not provide any locking around zone_getspecific() and
565  * zone_setspecific() apart from that needed for internal consistency, so
566  * callers interested in atomic "test-and-set" semantics will need to provide
567  * their own locking.
568  */
569 
570 /*
571  * Helper function to find the zsd_entry associated with the key in the
572  * given list.
573  */
574 static struct zsd_entry *
575 zsd_find(list_t *l, zone_key_t key)
576 {
577 	struct zsd_entry *zsd;
578 
579 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
580 		if (zsd->zsd_key == key) {
581 			return (zsd);
582 		}
583 	}
584 	return (NULL);
585 }
586 
587 /*
588  * Helper function to find the zsd_entry associated with the key in the
589  * given list. Move it to the front of the list.
590  */
591 static struct zsd_entry *
592 zsd_find_mru(list_t *l, zone_key_t key)
593 {
594 	struct zsd_entry *zsd;
595 
596 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
597 		if (zsd->zsd_key == key) {
598 			/*
599 			 * Move to head of list to keep list in MRU order.
600 			 */
601 			if (zsd != list_head(l)) {
602 				list_remove(l, zsd);
603 				list_insert_head(l, zsd);
604 			}
605 			return (zsd);
606 		}
607 	}
608 	return (NULL);
609 }
610 
611 void
612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
613     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
614 {
615 	struct zsd_entry *zsdp;
616 	struct zsd_entry *t;
617 	struct zone *zone;
618 	zone_key_t  key;
619 
620 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
621 	zsdp->zsd_data = NULL;
622 	zsdp->zsd_create = create;
623 	zsdp->zsd_shutdown = shutdown;
624 	zsdp->zsd_destroy = destroy;
625 
626 	/*
627 	 * Insert in global list of callbacks. Makes future zone creations
628 	 * see it.
629 	 */
630 	mutex_enter(&zsd_key_lock);
631 	key = zsdp->zsd_key = ++zsd_keyval;
632 	ASSERT(zsd_keyval != 0);
633 	list_insert_tail(&zsd_registered_keys, zsdp);
634 	mutex_exit(&zsd_key_lock);
635 
636 	/*
637 	 * Insert for all existing zones and mark them as needing
638 	 * a create callback.
639 	 */
640 	mutex_enter(&zonehash_lock);	/* stop the world */
641 	for (zone = list_head(&zone_active); zone != NULL;
642 	    zone = list_next(&zone_active, zone)) {
643 		zone_status_t status;
644 
645 		mutex_enter(&zone->zone_lock);
646 
647 		/* Skip zones that are on the way down or not yet up */
648 		status = zone_status_get(zone);
649 		if (status >= ZONE_IS_DOWN ||
650 		    status == ZONE_IS_UNINITIALIZED) {
651 			mutex_exit(&zone->zone_lock);
652 			continue;
653 		}
654 
655 		t = zsd_find_mru(&zone->zone_zsd, key);
656 		if (t != NULL) {
657 			/*
658 			 * A zsd_configure already inserted it after
659 			 * we dropped zsd_key_lock above.
660 			 */
661 			mutex_exit(&zone->zone_lock);
662 			continue;
663 		}
664 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
665 		t->zsd_key = key;
666 		t->zsd_create = create;
667 		t->zsd_shutdown = shutdown;
668 		t->zsd_destroy = destroy;
669 		if (create != NULL) {
670 			t->zsd_flags = ZSD_CREATE_NEEDED;
671 			DTRACE_PROBE2(zsd__create__needed,
672 			    zone_t *, zone, zone_key_t, key);
673 		}
674 		list_insert_tail(&zone->zone_zsd, t);
675 		mutex_exit(&zone->zone_lock);
676 	}
677 	mutex_exit(&zonehash_lock);
678 
679 	if (create != NULL) {
680 		/* Now call the create callback for this key */
681 		zsd_apply_all_zones(zsd_apply_create, key);
682 	}
683 	/*
684 	 * It is safe for consumers to use the key now, make it
685 	 * globally visible. Specifically zone_getspecific() will
686 	 * always successfully return the zone specific data associated
687 	 * with the key.
688 	 */
689 	*keyp = key;
690 
691 }
692 
693 /*
694  * Function called when a module is being unloaded, or otherwise wishes
695  * to unregister its ZSD key and callbacks.
696  *
697  * Remove from the global list and determine the functions that need to
698  * be called under a global lock. Then call the functions without
699  * holding any locks. Finally free up the zone_zsd entries. (The apply
700  * functions need to access the zone_zsd entries to find zsd_data etc.)
701  */
702 int
703 zone_key_delete(zone_key_t key)
704 {
705 	struct zsd_entry *zsdp = NULL;
706 	zone_t *zone;
707 
708 	mutex_enter(&zsd_key_lock);
709 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
710 	if (zsdp == NULL) {
711 		mutex_exit(&zsd_key_lock);
712 		return (-1);
713 	}
714 	list_remove(&zsd_registered_keys, zsdp);
715 	mutex_exit(&zsd_key_lock);
716 
717 	mutex_enter(&zonehash_lock);
718 	for (zone = list_head(&zone_active); zone != NULL;
719 	    zone = list_next(&zone_active, zone)) {
720 		struct zsd_entry *del;
721 
722 		mutex_enter(&zone->zone_lock);
723 		del = zsd_find_mru(&zone->zone_zsd, key);
724 		if (del == NULL) {
725 			/*
726 			 * Somebody else got here first e.g the zone going
727 			 * away.
728 			 */
729 			mutex_exit(&zone->zone_lock);
730 			continue;
731 		}
732 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
733 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
734 		if (del->zsd_shutdown != NULL &&
735 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
736 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
737 			DTRACE_PROBE2(zsd__shutdown__needed,
738 			    zone_t *, zone, zone_key_t, key);
739 		}
740 		if (del->zsd_destroy != NULL &&
741 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
742 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
743 			DTRACE_PROBE2(zsd__destroy__needed,
744 			    zone_t *, zone, zone_key_t, key);
745 		}
746 		mutex_exit(&zone->zone_lock);
747 	}
748 	mutex_exit(&zonehash_lock);
749 	kmem_free(zsdp, sizeof (*zsdp));
750 
751 	/* Now call the shutdown and destroy callback for this key */
752 	zsd_apply_all_zones(zsd_apply_shutdown, key);
753 	zsd_apply_all_zones(zsd_apply_destroy, key);
754 
755 	/* Now we can free up the zsdp structures in each zone */
756 	mutex_enter(&zonehash_lock);
757 	for (zone = list_head(&zone_active); zone != NULL;
758 	    zone = list_next(&zone_active, zone)) {
759 		struct zsd_entry *del;
760 
761 		mutex_enter(&zone->zone_lock);
762 		del = zsd_find(&zone->zone_zsd, key);
763 		if (del != NULL) {
764 			list_remove(&zone->zone_zsd, del);
765 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
766 			kmem_free(del, sizeof (*del));
767 		}
768 		mutex_exit(&zone->zone_lock);
769 	}
770 	mutex_exit(&zonehash_lock);
771 
772 	return (0);
773 }
774 
775 /*
776  * ZSD counterpart of pthread_setspecific().
777  *
778  * Since all zsd callbacks, including those with no create function,
779  * have an entry in zone_zsd, if the key is registered it is part of
780  * the zone_zsd list.
781  * Return an error if the key wasn't registerd.
782  */
783 int
784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
785 {
786 	struct zsd_entry *t;
787 
788 	mutex_enter(&zone->zone_lock);
789 	t = zsd_find_mru(&zone->zone_zsd, key);
790 	if (t != NULL) {
791 		/*
792 		 * Replace old value with new
793 		 */
794 		t->zsd_data = (void *)data;
795 		mutex_exit(&zone->zone_lock);
796 		return (0);
797 	}
798 	mutex_exit(&zone->zone_lock);
799 	return (-1);
800 }
801 
802 /*
803  * ZSD counterpart of pthread_getspecific().
804  */
805 void *
806 zone_getspecific(zone_key_t key, zone_t *zone)
807 {
808 	struct zsd_entry *t;
809 	void *data;
810 
811 	mutex_enter(&zone->zone_lock);
812 	t = zsd_find_mru(&zone->zone_zsd, key);
813 	data = (t == NULL ? NULL : t->zsd_data);
814 	mutex_exit(&zone->zone_lock);
815 	return (data);
816 }
817 
818 /*
819  * Function used to initialize a zone's list of ZSD callbacks and data
820  * when the zone is being created.  The callbacks are initialized from
821  * the template list (zsd_registered_keys). The constructor callback is
822  * executed later (once the zone exists and with locks dropped).
823  */
824 static void
825 zone_zsd_configure(zone_t *zone)
826 {
827 	struct zsd_entry *zsdp;
828 	struct zsd_entry *t;
829 
830 	ASSERT(MUTEX_HELD(&zonehash_lock));
831 	ASSERT(list_head(&zone->zone_zsd) == NULL);
832 	mutex_enter(&zone->zone_lock);
833 	mutex_enter(&zsd_key_lock);
834 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
835 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
836 		/*
837 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
838 		 * should not have added anything to it.
839 		 */
840 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
841 
842 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
843 		t->zsd_key = zsdp->zsd_key;
844 		t->zsd_create = zsdp->zsd_create;
845 		t->zsd_shutdown = zsdp->zsd_shutdown;
846 		t->zsd_destroy = zsdp->zsd_destroy;
847 		if (zsdp->zsd_create != NULL) {
848 			t->zsd_flags = ZSD_CREATE_NEEDED;
849 			DTRACE_PROBE2(zsd__create__needed,
850 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
851 		}
852 		list_insert_tail(&zone->zone_zsd, t);
853 	}
854 	mutex_exit(&zsd_key_lock);
855 	mutex_exit(&zone->zone_lock);
856 }
857 
858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
859 
860 /*
861  * Helper function to execute shutdown or destructor callbacks.
862  */
863 static void
864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
865 {
866 	struct zsd_entry *t;
867 
868 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
869 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
870 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
871 
872 	/*
873 	 * Run the callback solely based on what is registered for the zone
874 	 * in zone_zsd. The global list can change independently of this
875 	 * as keys are registered and unregistered and we don't register new
876 	 * callbacks for a zone that is in the process of going away.
877 	 */
878 	mutex_enter(&zone->zone_lock);
879 	for (t = list_head(&zone->zone_zsd); t != NULL;
880 	    t = list_next(&zone->zone_zsd, t)) {
881 		zone_key_t key = t->zsd_key;
882 
883 		/* Skip if no callbacks registered */
884 
885 		if (ct == ZSD_SHUTDOWN) {
886 			if (t->zsd_shutdown != NULL &&
887 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
888 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
889 				DTRACE_PROBE2(zsd__shutdown__needed,
890 				    zone_t *, zone, zone_key_t, key);
891 			}
892 		} else {
893 			if (t->zsd_destroy != NULL &&
894 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
895 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
896 				DTRACE_PROBE2(zsd__destroy__needed,
897 				    zone_t *, zone, zone_key_t, key);
898 			}
899 		}
900 	}
901 	mutex_exit(&zone->zone_lock);
902 
903 	/* Now call the shutdown and destroy callback for this key */
904 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
905 	zsd_apply_all_keys(zsd_apply_destroy, zone);
906 
907 }
908 
909 /*
910  * Called when the zone is going away; free ZSD-related memory, and
911  * destroy the zone_zsd list.
912  */
913 static void
914 zone_free_zsd(zone_t *zone)
915 {
916 	struct zsd_entry *t, *next;
917 
918 	/*
919 	 * Free all the zsd_entry's we had on this zone.
920 	 */
921 	mutex_enter(&zone->zone_lock);
922 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
923 		next = list_next(&zone->zone_zsd, t);
924 		list_remove(&zone->zone_zsd, t);
925 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
926 		kmem_free(t, sizeof (*t));
927 	}
928 	list_destroy(&zone->zone_zsd);
929 	mutex_exit(&zone->zone_lock);
930 
931 }
932 
933 /*
934  * Apply a function to all zones for particular key value.
935  *
936  * The applyfn has to drop zonehash_lock if it does some work, and
937  * then reacquire it before it returns.
938  * When the lock is dropped we don't follow list_next even
939  * if it is possible to do so without any hazards. This is
940  * because we want the design to allow for the list of zones
941  * to change in any arbitrary way during the time the
942  * lock was dropped.
943  *
944  * It is safe to restart the loop at list_head since the applyfn
945  * changes the zsd_flags as it does work, so a subsequent
946  * pass through will have no effect in applyfn, hence the loop will terminate
947  * in at worst O(N^2).
948  */
949 static void
950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
951 {
952 	zone_t *zone;
953 
954 	mutex_enter(&zonehash_lock);
955 	zone = list_head(&zone_active);
956 	while (zone != NULL) {
957 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
958 			/* Lock dropped - restart at head */
959 			zone = list_head(&zone_active);
960 		} else {
961 			zone = list_next(&zone_active, zone);
962 		}
963 	}
964 	mutex_exit(&zonehash_lock);
965 }
966 
967 /*
968  * Apply a function to all keys for a particular zone.
969  *
970  * The applyfn has to drop zonehash_lock if it does some work, and
971  * then reacquire it before it returns.
972  * When the lock is dropped we don't follow list_next even
973  * if it is possible to do so without any hazards. This is
974  * because we want the design to allow for the list of zsd callbacks
975  * to change in any arbitrary way during the time the
976  * lock was dropped.
977  *
978  * It is safe to restart the loop at list_head since the applyfn
979  * changes the zsd_flags as it does work, so a subsequent
980  * pass through will have no effect in applyfn, hence the loop will terminate
981  * in at worst O(N^2).
982  */
983 static void
984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
985 {
986 	struct zsd_entry *t;
987 
988 	mutex_enter(&zone->zone_lock);
989 	t = list_head(&zone->zone_zsd);
990 	while (t != NULL) {
991 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
992 			/* Lock dropped - restart at head */
993 			t = list_head(&zone->zone_zsd);
994 		} else {
995 			t = list_next(&zone->zone_zsd, t);
996 		}
997 	}
998 	mutex_exit(&zone->zone_lock);
999 }
1000 
1001 /*
1002  * Call the create function for the zone and key if CREATE_NEEDED
1003  * is set.
1004  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1005  * we wait for that thread to complete so that we can ensure that
1006  * all the callbacks are done when we've looped over all zones/keys.
1007  *
1008  * When we call the create function, we drop the global held by the
1009  * caller, and return true to tell the caller it needs to re-evalute the
1010  * state.
1011  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1012  * remains held on exit.
1013  */
1014 static boolean_t
1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1016     zone_t *zone, zone_key_t key)
1017 {
1018 	void *result;
1019 	struct zsd_entry *t;
1020 	boolean_t dropped;
1021 
1022 	if (lockp != NULL) {
1023 		ASSERT(MUTEX_HELD(lockp));
1024 	}
1025 	if (zone_lock_held) {
1026 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1027 	} else {
1028 		mutex_enter(&zone->zone_lock);
1029 	}
1030 
1031 	t = zsd_find(&zone->zone_zsd, key);
1032 	if (t == NULL) {
1033 		/*
1034 		 * Somebody else got here first e.g the zone going
1035 		 * away.
1036 		 */
1037 		if (!zone_lock_held)
1038 			mutex_exit(&zone->zone_lock);
1039 		return (B_FALSE);
1040 	}
1041 	dropped = B_FALSE;
1042 	if (zsd_wait_for_inprogress(zone, t, lockp))
1043 		dropped = B_TRUE;
1044 
1045 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1046 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1047 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1048 		DTRACE_PROBE2(zsd__create__inprogress,
1049 		    zone_t *, zone, zone_key_t, key);
1050 		mutex_exit(&zone->zone_lock);
1051 		if (lockp != NULL)
1052 			mutex_exit(lockp);
1053 
1054 		dropped = B_TRUE;
1055 		ASSERT(t->zsd_create != NULL);
1056 		DTRACE_PROBE2(zsd__create__start,
1057 		    zone_t *, zone, zone_key_t, key);
1058 
1059 		result = (*t->zsd_create)(zone->zone_id);
1060 
1061 		DTRACE_PROBE2(zsd__create__end,
1062 		    zone_t *, zone, voidn *, result);
1063 
1064 		ASSERT(result != NULL);
1065 		if (lockp != NULL)
1066 			mutex_enter(lockp);
1067 		mutex_enter(&zone->zone_lock);
1068 		t->zsd_data = result;
1069 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1070 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1071 		cv_broadcast(&t->zsd_cv);
1072 		DTRACE_PROBE2(zsd__create__completed,
1073 		    zone_t *, zone, zone_key_t, key);
1074 	}
1075 	if (!zone_lock_held)
1076 		mutex_exit(&zone->zone_lock);
1077 	return (dropped);
1078 }
1079 
1080 /*
1081  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1082  * is set.
1083  * If some other thread gets here first and sets *_INPROGRESS, then
1084  * we wait for that thread to complete so that we can ensure that
1085  * all the callbacks are done when we've looped over all zones/keys.
1086  *
1087  * When we call the shutdown function, we drop the global held by the
1088  * caller, and return true to tell the caller it needs to re-evalute the
1089  * state.
1090  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1091  * remains held on exit.
1092  */
1093 static boolean_t
1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1095     zone_t *zone, zone_key_t key)
1096 {
1097 	struct zsd_entry *t;
1098 	void *data;
1099 	boolean_t dropped;
1100 
1101 	if (lockp != NULL) {
1102 		ASSERT(MUTEX_HELD(lockp));
1103 	}
1104 	if (zone_lock_held) {
1105 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1106 	} else {
1107 		mutex_enter(&zone->zone_lock);
1108 	}
1109 
1110 	t = zsd_find(&zone->zone_zsd, key);
1111 	if (t == NULL) {
1112 		/*
1113 		 * Somebody else got here first e.g the zone going
1114 		 * away.
1115 		 */
1116 		if (!zone_lock_held)
1117 			mutex_exit(&zone->zone_lock);
1118 		return (B_FALSE);
1119 	}
1120 	dropped = B_FALSE;
1121 	if (zsd_wait_for_creator(zone, t, lockp))
1122 		dropped = B_TRUE;
1123 
1124 	if (zsd_wait_for_inprogress(zone, t, lockp))
1125 		dropped = B_TRUE;
1126 
1127 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1128 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1129 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1130 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1131 		    zone_t *, zone, zone_key_t, key);
1132 		mutex_exit(&zone->zone_lock);
1133 		if (lockp != NULL)
1134 			mutex_exit(lockp);
1135 		dropped = B_TRUE;
1136 
1137 		ASSERT(t->zsd_shutdown != NULL);
1138 		data = t->zsd_data;
1139 
1140 		DTRACE_PROBE2(zsd__shutdown__start,
1141 		    zone_t *, zone, zone_key_t, key);
1142 
1143 		(t->zsd_shutdown)(zone->zone_id, data);
1144 		DTRACE_PROBE2(zsd__shutdown__end,
1145 		    zone_t *, zone, zone_key_t, key);
1146 
1147 		if (lockp != NULL)
1148 			mutex_enter(lockp);
1149 		mutex_enter(&zone->zone_lock);
1150 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1151 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1152 		cv_broadcast(&t->zsd_cv);
1153 		DTRACE_PROBE2(zsd__shutdown__completed,
1154 		    zone_t *, zone, zone_key_t, key);
1155 	}
1156 	if (!zone_lock_held)
1157 		mutex_exit(&zone->zone_lock);
1158 	return (dropped);
1159 }
1160 
1161 /*
1162  * Call the destroy function for the zone and key if DESTROY_NEEDED
1163  * is set.
1164  * If some other thread gets here first and sets *_INPROGRESS, then
1165  * we wait for that thread to complete so that we can ensure that
1166  * all the callbacks are done when we've looped over all zones/keys.
1167  *
1168  * When we call the destroy function, we drop the global held by the
1169  * caller, and return true to tell the caller it needs to re-evalute the
1170  * state.
1171  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1172  * remains held on exit.
1173  */
1174 static boolean_t
1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1176     zone_t *zone, zone_key_t key)
1177 {
1178 	struct zsd_entry *t;
1179 	void *data;
1180 	boolean_t dropped;
1181 
1182 	if (lockp != NULL) {
1183 		ASSERT(MUTEX_HELD(lockp));
1184 	}
1185 	if (zone_lock_held) {
1186 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1187 	} else {
1188 		mutex_enter(&zone->zone_lock);
1189 	}
1190 
1191 	t = zsd_find(&zone->zone_zsd, key);
1192 	if (t == NULL) {
1193 		/*
1194 		 * Somebody else got here first e.g the zone going
1195 		 * away.
1196 		 */
1197 		if (!zone_lock_held)
1198 			mutex_exit(&zone->zone_lock);
1199 		return (B_FALSE);
1200 	}
1201 	dropped = B_FALSE;
1202 	if (zsd_wait_for_creator(zone, t, lockp))
1203 		dropped = B_TRUE;
1204 
1205 	if (zsd_wait_for_inprogress(zone, t, lockp))
1206 		dropped = B_TRUE;
1207 
1208 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1209 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1210 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1211 		DTRACE_PROBE2(zsd__destroy__inprogress,
1212 		    zone_t *, zone, zone_key_t, key);
1213 		mutex_exit(&zone->zone_lock);
1214 		if (lockp != NULL)
1215 			mutex_exit(lockp);
1216 		dropped = B_TRUE;
1217 
1218 		ASSERT(t->zsd_destroy != NULL);
1219 		data = t->zsd_data;
1220 		DTRACE_PROBE2(zsd__destroy__start,
1221 		    zone_t *, zone, zone_key_t, key);
1222 
1223 		(t->zsd_destroy)(zone->zone_id, data);
1224 		DTRACE_PROBE2(zsd__destroy__end,
1225 		    zone_t *, zone, zone_key_t, key);
1226 
1227 		if (lockp != NULL)
1228 			mutex_enter(lockp);
1229 		mutex_enter(&zone->zone_lock);
1230 		t->zsd_data = NULL;
1231 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1232 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1233 		cv_broadcast(&t->zsd_cv);
1234 		DTRACE_PROBE2(zsd__destroy__completed,
1235 		    zone_t *, zone, zone_key_t, key);
1236 	}
1237 	if (!zone_lock_held)
1238 		mutex_exit(&zone->zone_lock);
1239 	return (dropped);
1240 }
1241 
1242 /*
1243  * Wait for any CREATE_NEEDED flag to be cleared.
1244  * Returns true if lockp was temporarily dropped while waiting.
1245  */
1246 static boolean_t
1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1248 {
1249 	boolean_t dropped = B_FALSE;
1250 
1251 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1252 		DTRACE_PROBE2(zsd__wait__for__creator,
1253 		    zone_t *, zone, struct zsd_entry *, t);
1254 		if (lockp != NULL) {
1255 			dropped = B_TRUE;
1256 			mutex_exit(lockp);
1257 		}
1258 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1259 		if (lockp != NULL) {
1260 			/* First drop zone_lock to preserve order */
1261 			mutex_exit(&zone->zone_lock);
1262 			mutex_enter(lockp);
1263 			mutex_enter(&zone->zone_lock);
1264 		}
1265 	}
1266 	return (dropped);
1267 }
1268 
1269 /*
1270  * Wait for any INPROGRESS flag to be cleared.
1271  * Returns true if lockp was temporarily dropped while waiting.
1272  */
1273 static boolean_t
1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1275 {
1276 	boolean_t dropped = B_FALSE;
1277 
1278 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1279 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1280 		    zone_t *, zone, struct zsd_entry *, t);
1281 		if (lockp != NULL) {
1282 			dropped = B_TRUE;
1283 			mutex_exit(lockp);
1284 		}
1285 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1286 		if (lockp != NULL) {
1287 			/* First drop zone_lock to preserve order */
1288 			mutex_exit(&zone->zone_lock);
1289 			mutex_enter(lockp);
1290 			mutex_enter(&zone->zone_lock);
1291 		}
1292 	}
1293 	return (dropped);
1294 }
1295 
1296 /*
1297  * Frees memory associated with the zone dataset list.
1298  */
1299 static void
1300 zone_free_datasets(zone_t *zone)
1301 {
1302 	zone_dataset_t *t, *next;
1303 
1304 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1305 		next = list_next(&zone->zone_datasets, t);
1306 		list_remove(&zone->zone_datasets, t);
1307 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1308 		kmem_free(t, sizeof (*t));
1309 	}
1310 	list_destroy(&zone->zone_datasets);
1311 }
1312 
1313 /*
1314  * zone.cpu-shares resource control support.
1315  */
1316 /*ARGSUSED*/
1317 static rctl_qty_t
1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1319 {
1320 	ASSERT(MUTEX_HELD(&p->p_lock));
1321 	return (p->p_zone->zone_shares);
1322 }
1323 
1324 /*ARGSUSED*/
1325 static int
1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1327     rctl_qty_t nv)
1328 {
1329 	ASSERT(MUTEX_HELD(&p->p_lock));
1330 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1331 	if (e->rcep_p.zone == NULL)
1332 		return (0);
1333 
1334 	e->rcep_p.zone->zone_shares = nv;
1335 	return (0);
1336 }
1337 
1338 static rctl_ops_t zone_cpu_shares_ops = {
1339 	rcop_no_action,
1340 	zone_cpu_shares_usage,
1341 	zone_cpu_shares_set,
1342 	rcop_no_test
1343 };
1344 
1345 /*
1346  * zone.cpu-cap resource control support.
1347  */
1348 /*ARGSUSED*/
1349 static rctl_qty_t
1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1351 {
1352 	ASSERT(MUTEX_HELD(&p->p_lock));
1353 	return (cpucaps_zone_get(p->p_zone));
1354 }
1355 
1356 /*ARGSUSED*/
1357 static int
1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1359     rctl_qty_t nv)
1360 {
1361 	zone_t *zone = e->rcep_p.zone;
1362 
1363 	ASSERT(MUTEX_HELD(&p->p_lock));
1364 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1365 
1366 	if (zone == NULL)
1367 		return (0);
1368 
1369 	/*
1370 	 * set cap to the new value.
1371 	 */
1372 	return (cpucaps_zone_set(zone, nv));
1373 }
1374 
1375 static rctl_ops_t zone_cpu_cap_ops = {
1376 	rcop_no_action,
1377 	zone_cpu_cap_get,
1378 	zone_cpu_cap_set,
1379 	rcop_no_test
1380 };
1381 
1382 /*ARGSUSED*/
1383 static rctl_qty_t
1384 zone_lwps_usage(rctl_t *r, proc_t *p)
1385 {
1386 	rctl_qty_t nlwps;
1387 	zone_t *zone = p->p_zone;
1388 
1389 	ASSERT(MUTEX_HELD(&p->p_lock));
1390 
1391 	mutex_enter(&zone->zone_nlwps_lock);
1392 	nlwps = zone->zone_nlwps;
1393 	mutex_exit(&zone->zone_nlwps_lock);
1394 
1395 	return (nlwps);
1396 }
1397 
1398 /*ARGSUSED*/
1399 static int
1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1401     rctl_qty_t incr, uint_t flags)
1402 {
1403 	rctl_qty_t nlwps;
1404 
1405 	ASSERT(MUTEX_HELD(&p->p_lock));
1406 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1407 	if (e->rcep_p.zone == NULL)
1408 		return (0);
1409 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1410 	nlwps = e->rcep_p.zone->zone_nlwps;
1411 
1412 	if (nlwps + incr > rcntl->rcv_value)
1413 		return (1);
1414 
1415 	return (0);
1416 }
1417 
1418 /*ARGSUSED*/
1419 static int
1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1421 {
1422 	ASSERT(MUTEX_HELD(&p->p_lock));
1423 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1424 	if (e->rcep_p.zone == NULL)
1425 		return (0);
1426 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1427 	return (0);
1428 }
1429 
1430 static rctl_ops_t zone_lwps_ops = {
1431 	rcop_no_action,
1432 	zone_lwps_usage,
1433 	zone_lwps_set,
1434 	zone_lwps_test,
1435 };
1436 
1437 /*ARGSUSED*/
1438 static rctl_qty_t
1439 zone_procs_usage(rctl_t *r, proc_t *p)
1440 {
1441 	rctl_qty_t nprocs;
1442 	zone_t *zone = p->p_zone;
1443 
1444 	ASSERT(MUTEX_HELD(&p->p_lock));
1445 
1446 	mutex_enter(&zone->zone_nlwps_lock);
1447 	nprocs = zone->zone_nprocs;
1448 	mutex_exit(&zone->zone_nlwps_lock);
1449 
1450 	return (nprocs);
1451 }
1452 
1453 /*ARGSUSED*/
1454 static int
1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1456     rctl_qty_t incr, uint_t flags)
1457 {
1458 	rctl_qty_t nprocs;
1459 
1460 	ASSERT(MUTEX_HELD(&p->p_lock));
1461 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1462 	if (e->rcep_p.zone == NULL)
1463 		return (0);
1464 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1465 	nprocs = e->rcep_p.zone->zone_nprocs;
1466 
1467 	if (nprocs + incr > rcntl->rcv_value)
1468 		return (1);
1469 
1470 	return (0);
1471 }
1472 
1473 /*ARGSUSED*/
1474 static int
1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1476 {
1477 	ASSERT(MUTEX_HELD(&p->p_lock));
1478 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1479 	if (e->rcep_p.zone == NULL)
1480 		return (0);
1481 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1482 	return (0);
1483 }
1484 
1485 static rctl_ops_t zone_procs_ops = {
1486 	rcop_no_action,
1487 	zone_procs_usage,
1488 	zone_procs_set,
1489 	zone_procs_test,
1490 };
1491 
1492 /*ARGSUSED*/
1493 static int
1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1495     rctl_qty_t incr, uint_t flags)
1496 {
1497 	rctl_qty_t v;
1498 	ASSERT(MUTEX_HELD(&p->p_lock));
1499 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1500 	v = e->rcep_p.zone->zone_shmmax + incr;
1501 	if (v > rval->rcv_value)
1502 		return (1);
1503 	return (0);
1504 }
1505 
1506 static rctl_ops_t zone_shmmax_ops = {
1507 	rcop_no_action,
1508 	rcop_no_usage,
1509 	rcop_no_set,
1510 	zone_shmmax_test
1511 };
1512 
1513 /*ARGSUSED*/
1514 static int
1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1516     rctl_qty_t incr, uint_t flags)
1517 {
1518 	rctl_qty_t v;
1519 	ASSERT(MUTEX_HELD(&p->p_lock));
1520 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1521 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1522 	if (v > rval->rcv_value)
1523 		return (1);
1524 	return (0);
1525 }
1526 
1527 static rctl_ops_t zone_shmmni_ops = {
1528 	rcop_no_action,
1529 	rcop_no_usage,
1530 	rcop_no_set,
1531 	zone_shmmni_test
1532 };
1533 
1534 /*ARGSUSED*/
1535 static int
1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1537     rctl_qty_t incr, uint_t flags)
1538 {
1539 	rctl_qty_t v;
1540 	ASSERT(MUTEX_HELD(&p->p_lock));
1541 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1542 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1543 	if (v > rval->rcv_value)
1544 		return (1);
1545 	return (0);
1546 }
1547 
1548 static rctl_ops_t zone_semmni_ops = {
1549 	rcop_no_action,
1550 	rcop_no_usage,
1551 	rcop_no_set,
1552 	zone_semmni_test
1553 };
1554 
1555 /*ARGSUSED*/
1556 static int
1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558     rctl_qty_t incr, uint_t flags)
1559 {
1560 	rctl_qty_t v;
1561 	ASSERT(MUTEX_HELD(&p->p_lock));
1562 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1564 	if (v > rval->rcv_value)
1565 		return (1);
1566 	return (0);
1567 }
1568 
1569 static rctl_ops_t zone_msgmni_ops = {
1570 	rcop_no_action,
1571 	rcop_no_usage,
1572 	rcop_no_set,
1573 	zone_msgmni_test
1574 };
1575 
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1579 {
1580 	rctl_qty_t q;
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	mutex_enter(&p->p_zone->zone_mem_lock);
1583 	q = p->p_zone->zone_locked_mem;
1584 	mutex_exit(&p->p_zone->zone_mem_lock);
1585 	return (q);
1586 }
1587 
1588 /*ARGSUSED*/
1589 static int
1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1591     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1592 {
1593 	rctl_qty_t q;
1594 	zone_t *z;
1595 
1596 	z = e->rcep_p.zone;
1597 	ASSERT(MUTEX_HELD(&p->p_lock));
1598 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1599 	q = z->zone_locked_mem;
1600 	if (q + incr > rcntl->rcv_value)
1601 		return (1);
1602 	return (0);
1603 }
1604 
1605 /*ARGSUSED*/
1606 static int
1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1608     rctl_qty_t nv)
1609 {
1610 	ASSERT(MUTEX_HELD(&p->p_lock));
1611 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1612 	if (e->rcep_p.zone == NULL)
1613 		return (0);
1614 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1615 	return (0);
1616 }
1617 
1618 static rctl_ops_t zone_locked_mem_ops = {
1619 	rcop_no_action,
1620 	zone_locked_mem_usage,
1621 	zone_locked_mem_set,
1622 	zone_locked_mem_test
1623 };
1624 
1625 /*ARGSUSED*/
1626 static rctl_qty_t
1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1628 {
1629 	rctl_qty_t q;
1630 	zone_t *z = p->p_zone;
1631 
1632 	ASSERT(MUTEX_HELD(&p->p_lock));
1633 	mutex_enter(&z->zone_mem_lock);
1634 	q = z->zone_max_swap;
1635 	mutex_exit(&z->zone_mem_lock);
1636 	return (q);
1637 }
1638 
1639 /*ARGSUSED*/
1640 static int
1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1642     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1643 {
1644 	rctl_qty_t q;
1645 	zone_t *z;
1646 
1647 	z = e->rcep_p.zone;
1648 	ASSERT(MUTEX_HELD(&p->p_lock));
1649 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1650 	q = z->zone_max_swap;
1651 	if (q + incr > rcntl->rcv_value)
1652 		return (1);
1653 	return (0);
1654 }
1655 
1656 /*ARGSUSED*/
1657 static int
1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1659     rctl_qty_t nv)
1660 {
1661 	ASSERT(MUTEX_HELD(&p->p_lock));
1662 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1663 	if (e->rcep_p.zone == NULL)
1664 		return (0);
1665 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1666 	return (0);
1667 }
1668 
1669 static rctl_ops_t zone_max_swap_ops = {
1670 	rcop_no_action,
1671 	zone_max_swap_usage,
1672 	zone_max_swap_set,
1673 	zone_max_swap_test
1674 };
1675 
1676 /*ARGSUSED*/
1677 static rctl_qty_t
1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1679 {
1680 	rctl_qty_t q;
1681 	zone_t *z = p->p_zone;
1682 
1683 	ASSERT(MUTEX_HELD(&p->p_lock));
1684 	mutex_enter(&z->zone_rctl_lock);
1685 	q = z->zone_max_lofi;
1686 	mutex_exit(&z->zone_rctl_lock);
1687 	return (q);
1688 }
1689 
1690 /*ARGSUSED*/
1691 static int
1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1693     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1694 {
1695 	rctl_qty_t q;
1696 	zone_t *z;
1697 
1698 	z = e->rcep_p.zone;
1699 	ASSERT(MUTEX_HELD(&p->p_lock));
1700 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1701 	q = z->zone_max_lofi;
1702 	if (q + incr > rcntl->rcv_value)
1703 		return (1);
1704 	return (0);
1705 }
1706 
1707 /*ARGSUSED*/
1708 static int
1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1710     rctl_qty_t nv)
1711 {
1712 	ASSERT(MUTEX_HELD(&p->p_lock));
1713 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1714 	if (e->rcep_p.zone == NULL)
1715 		return (0);
1716 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1717 	return (0);
1718 }
1719 
1720 static rctl_ops_t zone_max_lofi_ops = {
1721 	rcop_no_action,
1722 	zone_max_lofi_usage,
1723 	zone_max_lofi_set,
1724 	zone_max_lofi_test
1725 };
1726 
1727 /*
1728  * Helper function to brand the zone with a unique ID.
1729  */
1730 static void
1731 zone_uniqid(zone_t *zone)
1732 {
1733 	static uint64_t uniqid = 0;
1734 
1735 	ASSERT(MUTEX_HELD(&zonehash_lock));
1736 	zone->zone_uniqid = uniqid++;
1737 }
1738 
1739 /*
1740  * Returns a held pointer to the "kcred" for the specified zone.
1741  */
1742 struct cred *
1743 zone_get_kcred(zoneid_t zoneid)
1744 {
1745 	zone_t *zone;
1746 	cred_t *cr;
1747 
1748 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1749 		return (NULL);
1750 	cr = zone->zone_kcred;
1751 	crhold(cr);
1752 	zone_rele(zone);
1753 	return (cr);
1754 }
1755 
1756 static int
1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1758 {
1759 	zone_t *zone = ksp->ks_private;
1760 	zone_kstat_t *zk = ksp->ks_data;
1761 
1762 	if (rw == KSTAT_WRITE)
1763 		return (EACCES);
1764 
1765 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1766 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1767 	return (0);
1768 }
1769 
1770 static int
1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1772 {
1773 	zone_t *zone = ksp->ks_private;
1774 	zone_kstat_t *zk = ksp->ks_data;
1775 
1776 	if (rw == KSTAT_WRITE)
1777 		return (EACCES);
1778 
1779 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1780 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1781 	return (0);
1782 }
1783 
1784 static int
1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1786 {
1787 	zone_t *zone = ksp->ks_private;
1788 	zone_kstat_t *zk = ksp->ks_data;
1789 
1790 	if (rw == KSTAT_WRITE)
1791 		return (EACCES);
1792 
1793 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1794 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1795 	return (0);
1796 }
1797 
1798 static kstat_t *
1799 zone_kstat_create_common(zone_t *zone, char *name,
1800     int (*updatefunc) (kstat_t *, int))
1801 {
1802 	kstat_t *ksp;
1803 	zone_kstat_t *zk;
1804 
1805 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1806 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1807 	    KSTAT_FLAG_VIRTUAL);
1808 
1809 	if (ksp == NULL)
1810 		return (NULL);
1811 
1812 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1813 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1814 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1815 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1816 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1817 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1818 	ksp->ks_update = updatefunc;
1819 	ksp->ks_private = zone;
1820 	kstat_install(ksp);
1821 	return (ksp);
1822 }
1823 
1824 static int
1825 zone_misc_kstat_update(kstat_t *ksp, int rw)
1826 {
1827 	zone_t *zone = ksp->ks_private;
1828 	zone_misc_kstat_t *zmp = ksp->ks_data;
1829 	hrtime_t tmp;
1830 
1831 	if (rw == KSTAT_WRITE)
1832 		return (EACCES);
1833 
1834 	tmp = zone->zone_utime;
1835 	scalehrtime(&tmp);
1836 	zmp->zm_utime.value.ui64 = tmp;
1837 	tmp = zone->zone_stime;
1838 	scalehrtime(&tmp);
1839 	zmp->zm_stime.value.ui64 = tmp;
1840 	tmp = zone->zone_wtime;
1841 	scalehrtime(&tmp);
1842 	zmp->zm_wtime.value.ui64 = tmp;
1843 
1844 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1845 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1846 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1847 
1848 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1849 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1850 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1851 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1852 
1853 	return (0);
1854 }
1855 
1856 static kstat_t *
1857 zone_misc_kstat_create(zone_t *zone)
1858 {
1859 	kstat_t *ksp;
1860 	zone_misc_kstat_t *zmp;
1861 
1862 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1863 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1864 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1865 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1866 		return (NULL);
1867 
1868 	if (zone->zone_id != GLOBAL_ZONEID)
1869 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1870 
1871 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1872 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1873 	ksp->ks_lock = &zone->zone_misc_lock;
1874 	zone->zone_misc_stats = zmp;
1875 
1876 	/* The kstat "name" field is not large enough for a full zonename */
1877 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1878 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1879 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1880 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1881 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1882 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1883 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1884 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1885 	    KSTAT_DATA_UINT32);
1886 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1887 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1888 	    KSTAT_DATA_UINT32);
1889 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1890 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1891 
1892 
1893 	ksp->ks_update = zone_misc_kstat_update;
1894 	ksp->ks_private = zone;
1895 
1896 	kstat_install(ksp);
1897 	return (ksp);
1898 }
1899 
1900 static void
1901 zone_kstat_create(zone_t *zone)
1902 {
1903 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1904 	    "lockedmem", zone_lockedmem_kstat_update);
1905 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1906 	    "swapresv", zone_swapresv_kstat_update);
1907 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
1908 	    "nprocs", zone_nprocs_kstat_update);
1909 
1910 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
1911 		zone->zone_misc_stats = kmem_zalloc(
1912 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
1913 	}
1914 }
1915 
1916 static void
1917 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
1918 {
1919 	void *data;
1920 
1921 	if (*pkstat != NULL) {
1922 		data = (*pkstat)->ks_data;
1923 		kstat_delete(*pkstat);
1924 		kmem_free(data, datasz);
1925 		*pkstat = NULL;
1926 	}
1927 }
1928 
1929 static void
1930 zone_kstat_delete(zone_t *zone)
1931 {
1932 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
1933 	    sizeof (zone_kstat_t));
1934 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
1935 	    sizeof (zone_kstat_t));
1936 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
1937 	    sizeof (zone_kstat_t));
1938 	zone_kstat_delete_common(&zone->zone_misc_ksp,
1939 	    sizeof (zone_misc_kstat_t));
1940 }
1941 
1942 /*
1943  * Called very early on in boot to initialize the ZSD list so that
1944  * zone_key_create() can be called before zone_init().  It also initializes
1945  * portions of zone0 which may be used before zone_init() is called.  The
1946  * variable "global_zone" will be set when zone0 is fully initialized by
1947  * zone_init().
1948  */
1949 void
1950 zone_zsd_init(void)
1951 {
1952 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1953 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1954 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1955 	    offsetof(struct zsd_entry, zsd_linkage));
1956 	list_create(&zone_active, sizeof (zone_t),
1957 	    offsetof(zone_t, zone_linkage));
1958 	list_create(&zone_deathrow, sizeof (zone_t),
1959 	    offsetof(zone_t, zone_linkage));
1960 
1961 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1962 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1963 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1964 	zone0.zone_shares = 1;
1965 	zone0.zone_nlwps = 0;
1966 	zone0.zone_nlwps_ctl = INT_MAX;
1967 	zone0.zone_nprocs = 0;
1968 	zone0.zone_nprocs_ctl = INT_MAX;
1969 	zone0.zone_locked_mem = 0;
1970 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1971 	ASSERT(zone0.zone_max_swap == 0);
1972 	zone0.zone_max_swap_ctl = UINT64_MAX;
1973 	zone0.zone_max_lofi = 0;
1974 	zone0.zone_max_lofi_ctl = UINT64_MAX;
1975 	zone0.zone_shmmax = 0;
1976 	zone0.zone_ipc.ipcq_shmmni = 0;
1977 	zone0.zone_ipc.ipcq_semmni = 0;
1978 	zone0.zone_ipc.ipcq_msgmni = 0;
1979 	zone0.zone_name = GLOBAL_ZONENAME;
1980 	zone0.zone_nodename = utsname.nodename;
1981 	zone0.zone_domain = srpc_domain;
1982 	zone0.zone_hostid = HW_INVALID_HOSTID;
1983 	zone0.zone_fs_allowed = NULL;
1984 	zone0.zone_ref = 1;
1985 	zone0.zone_id = GLOBAL_ZONEID;
1986 	zone0.zone_status = ZONE_IS_RUNNING;
1987 	zone0.zone_rootpath = "/";
1988 	zone0.zone_rootpathlen = 2;
1989 	zone0.zone_psetid = ZONE_PS_INVAL;
1990 	zone0.zone_ncpus = 0;
1991 	zone0.zone_ncpus_online = 0;
1992 	zone0.zone_proc_initpid = 1;
1993 	zone0.zone_initname = initname;
1994 	zone0.zone_lockedmem_kstat = NULL;
1995 	zone0.zone_swapresv_kstat = NULL;
1996 	zone0.zone_nprocs_kstat = NULL;
1997 
1998 	zone0.zone_stime = 0;
1999 	zone0.zone_utime = 0;
2000 	zone0.zone_wtime = 0;
2001 
2002 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2003 	    offsetof(zone_ref_t, zref_linkage));
2004 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2005 	    offsetof(struct zsd_entry, zsd_linkage));
2006 	list_insert_head(&zone_active, &zone0);
2007 
2008 	/*
2009 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2010 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2011 	 * vfs_mountroot().
2012 	 */
2013 	zone0.zone_rootvp = NULL;
2014 	zone0.zone_vfslist = NULL;
2015 	zone0.zone_bootargs = initargs;
2016 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2017 	/*
2018 	 * The global zone has all privileges
2019 	 */
2020 	priv_fillset(zone0.zone_privset);
2021 	/*
2022 	 * Add p0 to the global zone
2023 	 */
2024 	zone0.zone_zsched = &p0;
2025 	p0.p_zone = &zone0;
2026 }
2027 
2028 /*
2029  * Compute a hash value based on the contents of the label and the DOI.  The
2030  * hash algorithm is somewhat arbitrary, but is based on the observation that
2031  * humans will likely pick labels that differ by amounts that work out to be
2032  * multiples of the number of hash chains, and thus stirring in some primes
2033  * should help.
2034  */
2035 static uint_t
2036 hash_bylabel(void *hdata, mod_hash_key_t key)
2037 {
2038 	const ts_label_t *lab = (ts_label_t *)key;
2039 	const uint32_t *up, *ue;
2040 	uint_t hash;
2041 	int i;
2042 
2043 	_NOTE(ARGUNUSED(hdata));
2044 
2045 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2046 	/* we depend on alignment of label, but not representation */
2047 	up = (const uint32_t *)&lab->tsl_label;
2048 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2049 	i = 1;
2050 	while (up < ue) {
2051 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2052 		hash += *up + (*up << ((i % 16) + 1));
2053 		up++;
2054 		i++;
2055 	}
2056 	return (hash);
2057 }
2058 
2059 /*
2060  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2061  * equal).  This may need to be changed if less than / greater than is ever
2062  * needed.
2063  */
2064 static int
2065 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2066 {
2067 	ts_label_t *lab1 = (ts_label_t *)key1;
2068 	ts_label_t *lab2 = (ts_label_t *)key2;
2069 
2070 	return (label_equal(lab1, lab2) ? 0 : 1);
2071 }
2072 
2073 /*
2074  * Called by main() to initialize the zones framework.
2075  */
2076 void
2077 zone_init(void)
2078 {
2079 	rctl_dict_entry_t *rde;
2080 	rctl_val_t *dval;
2081 	rctl_set_t *set;
2082 	rctl_alloc_gp_t *gp;
2083 	rctl_entity_p_t e;
2084 	int res;
2085 
2086 	ASSERT(curproc == &p0);
2087 
2088 	/*
2089 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2090 	 * global zone.
2091 	 */
2092 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2093 
2094 	/*
2095 	 * Initialize generic zone resource controls, if any.
2096 	 */
2097 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2098 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2099 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2100 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2101 
2102 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2103 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2104 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2105 	    RCTL_GLOBAL_INFINITE,
2106 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2107 
2108 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2109 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2110 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2111 
2112 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2113 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2114 	    INT_MAX, INT_MAX, &zone_procs_ops);
2115 
2116 	/*
2117 	 * System V IPC resource controls
2118 	 */
2119 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2120 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2121 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2122 
2123 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2124 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2125 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2126 
2127 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2128 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2129 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2130 
2131 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2132 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2133 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2134 
2135 	/*
2136 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2137 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2138 	 */
2139 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2140 	bzero(dval, sizeof (rctl_val_t));
2141 	dval->rcv_value = 1;
2142 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2143 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2144 	dval->rcv_action_recip_pid = -1;
2145 
2146 	rde = rctl_dict_lookup("zone.cpu-shares");
2147 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2148 
2149 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2150 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2151 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2152 	    &zone_locked_mem_ops);
2153 
2154 	rc_zone_max_swap = rctl_register("zone.max-swap",
2155 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2156 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2157 	    &zone_max_swap_ops);
2158 
2159 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2160 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2161 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2162 	    &zone_max_lofi_ops);
2163 
2164 	/*
2165 	 * Initialize the ``global zone''.
2166 	 */
2167 	set = rctl_set_create();
2168 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2169 	mutex_enter(&p0.p_lock);
2170 	e.rcep_p.zone = &zone0;
2171 	e.rcep_t = RCENTITY_ZONE;
2172 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2173 	    gp);
2174 
2175 	zone0.zone_nlwps = p0.p_lwpcnt;
2176 	zone0.zone_nprocs = 1;
2177 	zone0.zone_ntasks = 1;
2178 	mutex_exit(&p0.p_lock);
2179 	zone0.zone_restart_init = B_TRUE;
2180 	zone0.zone_brand = &native_brand;
2181 	rctl_prealloc_destroy(gp);
2182 	/*
2183 	 * pool_default hasn't been initialized yet, so we let pool_init()
2184 	 * take care of making sure the global zone is in the default pool.
2185 	 */
2186 
2187 	/*
2188 	 * Initialize global zone kstats
2189 	 */
2190 	zone_kstat_create(&zone0);
2191 
2192 	/*
2193 	 * Initialize zone label.
2194 	 * mlp are initialized when tnzonecfg is loaded.
2195 	 */
2196 	zone0.zone_slabel = l_admin_low;
2197 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2198 	label_hold(l_admin_low);
2199 
2200 	/*
2201 	 * Initialise the lock for the database structure used by mntfs.
2202 	 */
2203 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2204 
2205 	mutex_enter(&zonehash_lock);
2206 	zone_uniqid(&zone0);
2207 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2208 
2209 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2210 	    mod_hash_null_valdtor);
2211 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2212 	    zone_hash_size, mod_hash_null_valdtor);
2213 	/*
2214 	 * maintain zonehashbylabel only for labeled systems
2215 	 */
2216 	if (is_system_labeled())
2217 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2218 		    zone_hash_size, mod_hash_null_keydtor,
2219 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2220 		    hash_labelkey_cmp, KM_SLEEP);
2221 	zonecount = 1;
2222 
2223 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2224 	    (mod_hash_val_t)&zone0);
2225 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2226 	    (mod_hash_val_t)&zone0);
2227 	if (is_system_labeled()) {
2228 		zone0.zone_flags |= ZF_HASHED_LABEL;
2229 		(void) mod_hash_insert(zonehashbylabel,
2230 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2231 	}
2232 	mutex_exit(&zonehash_lock);
2233 
2234 	/*
2235 	 * We avoid setting zone_kcred until now, since kcred is initialized
2236 	 * sometime after zone_zsd_init() and before zone_init().
2237 	 */
2238 	zone0.zone_kcred = kcred;
2239 	/*
2240 	 * The global zone is fully initialized (except for zone_rootvp which
2241 	 * will be set when the root filesystem is mounted).
2242 	 */
2243 	global_zone = &zone0;
2244 
2245 	/*
2246 	 * Setup an event channel to send zone status change notifications on
2247 	 */
2248 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2249 	    EVCH_CREAT);
2250 
2251 	if (res)
2252 		panic("Sysevent_evc_bind failed during zone setup.\n");
2253 
2254 }
2255 
2256 static void
2257 zone_free(zone_t *zone)
2258 {
2259 	ASSERT(zone != global_zone);
2260 	ASSERT(zone->zone_ntasks == 0);
2261 	ASSERT(zone->zone_nlwps == 0);
2262 	ASSERT(zone->zone_nprocs == 0);
2263 	ASSERT(zone->zone_cred_ref == 0);
2264 	ASSERT(zone->zone_kcred == NULL);
2265 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2266 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2267 	ASSERT(list_is_empty(&zone->zone_ref_list));
2268 
2269 	/*
2270 	 * Remove any zone caps.
2271 	 */
2272 	cpucaps_zone_remove(zone);
2273 
2274 	ASSERT(zone->zone_cpucap == NULL);
2275 
2276 	/* remove from deathrow list */
2277 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2278 		ASSERT(zone->zone_ref == 0);
2279 		mutex_enter(&zone_deathrow_lock);
2280 		list_remove(&zone_deathrow, zone);
2281 		mutex_exit(&zone_deathrow_lock);
2282 	}
2283 
2284 	list_destroy(&zone->zone_ref_list);
2285 	zone_free_zsd(zone);
2286 	zone_free_datasets(zone);
2287 	list_destroy(&zone->zone_dl_list);
2288 
2289 	if (zone->zone_rootvp != NULL)
2290 		VN_RELE(zone->zone_rootvp);
2291 	if (zone->zone_rootpath)
2292 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2293 	if (zone->zone_name != NULL)
2294 		kmem_free(zone->zone_name, ZONENAME_MAX);
2295 	if (zone->zone_slabel != NULL)
2296 		label_rele(zone->zone_slabel);
2297 	if (zone->zone_nodename != NULL)
2298 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2299 	if (zone->zone_domain != NULL)
2300 		kmem_free(zone->zone_domain, _SYS_NMLN);
2301 	if (zone->zone_privset != NULL)
2302 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2303 	if (zone->zone_rctls != NULL)
2304 		rctl_set_free(zone->zone_rctls);
2305 	if (zone->zone_bootargs != NULL)
2306 		strfree(zone->zone_bootargs);
2307 	if (zone->zone_initname != NULL)
2308 		strfree(zone->zone_initname);
2309 	if (zone->zone_fs_allowed != NULL)
2310 		strfree(zone->zone_fs_allowed);
2311 	if (zone->zone_pfexecd != NULL)
2312 		klpd_freelist(&zone->zone_pfexecd);
2313 	id_free(zoneid_space, zone->zone_id);
2314 	mutex_destroy(&zone->zone_lock);
2315 	cv_destroy(&zone->zone_cv);
2316 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2317 	rw_destroy(&zone->zone_mntfs_db_lock);
2318 	kmem_free(zone, sizeof (zone_t));
2319 }
2320 
2321 /*
2322  * See block comment at the top of this file for information about zone
2323  * status values.
2324  */
2325 /*
2326  * Convenience function for setting zone status.
2327  */
2328 static void
2329 zone_status_set(zone_t *zone, zone_status_t status)
2330 {
2331 
2332 	nvlist_t *nvl = NULL;
2333 	ASSERT(MUTEX_HELD(&zone_status_lock));
2334 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2335 	    status >= zone_status_get(zone));
2336 
2337 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2338 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2339 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2340 	    zone_status_table[status]) ||
2341 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2342 	    zone_status_table[zone->zone_status]) ||
2343 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2344 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2345 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2346 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2347 #ifdef DEBUG
2348 		(void) printf(
2349 		    "Failed to allocate and send zone state change event.\n");
2350 #endif
2351 	}
2352 	nvlist_free(nvl);
2353 
2354 	zone->zone_status = status;
2355 
2356 	cv_broadcast(&zone->zone_cv);
2357 }
2358 
2359 /*
2360  * Public function to retrieve the zone status.  The zone status may
2361  * change after it is retrieved.
2362  */
2363 zone_status_t
2364 zone_status_get(zone_t *zone)
2365 {
2366 	return (zone->zone_status);
2367 }
2368 
2369 static int
2370 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2371 {
2372 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2373 	int err = 0;
2374 
2375 	ASSERT(zone != global_zone);
2376 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2377 		goto done;	/* EFAULT or ENAMETOOLONG */
2378 
2379 	if (zone->zone_bootargs != NULL)
2380 		strfree(zone->zone_bootargs);
2381 
2382 	zone->zone_bootargs = strdup(buf);
2383 
2384 done:
2385 	kmem_free(buf, BOOTARGS_MAX);
2386 	return (err);
2387 }
2388 
2389 static int
2390 zone_set_brand(zone_t *zone, const char *brand)
2391 {
2392 	struct brand_attr *attrp;
2393 	brand_t *bp;
2394 
2395 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2396 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2397 		kmem_free(attrp, sizeof (struct brand_attr));
2398 		return (EFAULT);
2399 	}
2400 
2401 	bp = brand_register_zone(attrp);
2402 	kmem_free(attrp, sizeof (struct brand_attr));
2403 	if (bp == NULL)
2404 		return (EINVAL);
2405 
2406 	/*
2407 	 * This is the only place where a zone can change it's brand.
2408 	 * We already need to hold zone_status_lock to check the zone
2409 	 * status, so we'll just use that lock to serialize zone
2410 	 * branding requests as well.
2411 	 */
2412 	mutex_enter(&zone_status_lock);
2413 
2414 	/* Re-Branding is not allowed and the zone can't be booted yet */
2415 	if ((ZONE_IS_BRANDED(zone)) ||
2416 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2417 		mutex_exit(&zone_status_lock);
2418 		brand_unregister_zone(bp);
2419 		return (EINVAL);
2420 	}
2421 
2422 	/* set up the brand specific data */
2423 	zone->zone_brand = bp;
2424 	ZBROP(zone)->b_init_brand_data(zone);
2425 
2426 	mutex_exit(&zone_status_lock);
2427 	return (0);
2428 }
2429 
2430 static int
2431 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2432 {
2433 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2434 	int err = 0;
2435 
2436 	ASSERT(zone != global_zone);
2437 	if ((err = copyinstr(zone_fs_allowed, buf,
2438 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2439 		goto done;
2440 
2441 	if (zone->zone_fs_allowed != NULL)
2442 		strfree(zone->zone_fs_allowed);
2443 
2444 	zone->zone_fs_allowed = strdup(buf);
2445 
2446 done:
2447 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2448 	return (err);
2449 }
2450 
2451 static int
2452 zone_set_initname(zone_t *zone, const char *zone_initname)
2453 {
2454 	char initname[INITNAME_SZ];
2455 	size_t len;
2456 	int err = 0;
2457 
2458 	ASSERT(zone != global_zone);
2459 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2460 		return (err);	/* EFAULT or ENAMETOOLONG */
2461 
2462 	if (zone->zone_initname != NULL)
2463 		strfree(zone->zone_initname);
2464 
2465 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2466 	(void) strcpy(zone->zone_initname, initname);
2467 	return (0);
2468 }
2469 
2470 static int
2471 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2472 {
2473 	uint64_t mcap;
2474 	int err = 0;
2475 
2476 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2477 		zone->zone_phys_mcap = mcap;
2478 
2479 	return (err);
2480 }
2481 
2482 static int
2483 zone_set_sched_class(zone_t *zone, const char *new_class)
2484 {
2485 	char sched_class[PC_CLNMSZ];
2486 	id_t classid;
2487 	int err;
2488 
2489 	ASSERT(zone != global_zone);
2490 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2491 		return (err);	/* EFAULT or ENAMETOOLONG */
2492 
2493 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2494 		return (set_errno(EINVAL));
2495 	zone->zone_defaultcid = classid;
2496 	ASSERT(zone->zone_defaultcid > 0 &&
2497 	    zone->zone_defaultcid < loaded_classes);
2498 
2499 	return (0);
2500 }
2501 
2502 /*
2503  * Block indefinitely waiting for (zone_status >= status)
2504  */
2505 void
2506 zone_status_wait(zone_t *zone, zone_status_t status)
2507 {
2508 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2509 
2510 	mutex_enter(&zone_status_lock);
2511 	while (zone->zone_status < status) {
2512 		cv_wait(&zone->zone_cv, &zone_status_lock);
2513 	}
2514 	mutex_exit(&zone_status_lock);
2515 }
2516 
2517 /*
2518  * Private CPR-safe version of zone_status_wait().
2519  */
2520 static void
2521 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2522 {
2523 	callb_cpr_t cprinfo;
2524 
2525 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2526 
2527 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2528 	    str);
2529 	mutex_enter(&zone_status_lock);
2530 	while (zone->zone_status < status) {
2531 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2532 		cv_wait(&zone->zone_cv, &zone_status_lock);
2533 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2534 	}
2535 	/*
2536 	 * zone_status_lock is implicitly released by the following.
2537 	 */
2538 	CALLB_CPR_EXIT(&cprinfo);
2539 }
2540 
2541 /*
2542  * Block until zone enters requested state or signal is received.  Return (0)
2543  * if signaled, non-zero otherwise.
2544  */
2545 int
2546 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2547 {
2548 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2549 
2550 	mutex_enter(&zone_status_lock);
2551 	while (zone->zone_status < status) {
2552 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2553 			mutex_exit(&zone_status_lock);
2554 			return (0);
2555 		}
2556 	}
2557 	mutex_exit(&zone_status_lock);
2558 	return (1);
2559 }
2560 
2561 /*
2562  * Block until the zone enters the requested state or the timeout expires,
2563  * whichever happens first.  Return (-1) if operation timed out, time remaining
2564  * otherwise.
2565  */
2566 clock_t
2567 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2568 {
2569 	clock_t timeleft = 0;
2570 
2571 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2572 
2573 	mutex_enter(&zone_status_lock);
2574 	while (zone->zone_status < status && timeleft != -1) {
2575 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2576 	}
2577 	mutex_exit(&zone_status_lock);
2578 	return (timeleft);
2579 }
2580 
2581 /*
2582  * Block until the zone enters the requested state, the current process is
2583  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2584  * operation timed out, 0 if signaled, time remaining otherwise.
2585  */
2586 clock_t
2587 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2588 {
2589 	clock_t timeleft = tim - ddi_get_lbolt();
2590 
2591 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2592 
2593 	mutex_enter(&zone_status_lock);
2594 	while (zone->zone_status < status) {
2595 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2596 		    tim);
2597 		if (timeleft <= 0)
2598 			break;
2599 	}
2600 	mutex_exit(&zone_status_lock);
2601 	return (timeleft);
2602 }
2603 
2604 /*
2605  * Zones have two reference counts: one for references from credential
2606  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2607  * This is so we can allow a zone to be rebooted while there are still
2608  * outstanding cred references, since certain drivers cache dblks (which
2609  * implicitly results in cached creds).  We wait for zone_ref to drop to
2610  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2611  * later freed when the zone_cred_ref drops to 0, though nothing other
2612  * than the zone id and privilege set should be accessed once the zone
2613  * is "dead".
2614  *
2615  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2616  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2617  * to 0.  This can be useful to flush out other sources of cached creds
2618  * that may be less innocuous than the driver case.
2619  *
2620  * Zones also provide a tracked reference counting mechanism in which zone
2621  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2622  * debuggers determine the sources of leaked zone references.  See
2623  * zone_hold_ref() and zone_rele_ref() below for more information.
2624  */
2625 
2626 int zone_wait_for_cred = 0;
2627 
2628 static void
2629 zone_hold_locked(zone_t *z)
2630 {
2631 	ASSERT(MUTEX_HELD(&z->zone_lock));
2632 	z->zone_ref++;
2633 	ASSERT(z->zone_ref != 0);
2634 }
2635 
2636 /*
2637  * Increment the specified zone's reference count.  The zone's zone_t structure
2638  * will not be freed as long as the zone's reference count is nonzero.
2639  * Decrement the zone's reference count via zone_rele().
2640  *
2641  * NOTE: This function should only be used to hold zones for short periods of
2642  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2643  */
2644 void
2645 zone_hold(zone_t *z)
2646 {
2647 	mutex_enter(&z->zone_lock);
2648 	zone_hold_locked(z);
2649 	mutex_exit(&z->zone_lock);
2650 }
2651 
2652 /*
2653  * If the non-cred ref count drops to 1 and either the cred ref count
2654  * is 0 or we aren't waiting for cred references, the zone is ready to
2655  * be destroyed.
2656  */
2657 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2658 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2659 
2660 /*
2661  * Common zone reference release function invoked by zone_rele() and
2662  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2663  * zone's subsystem-specific reference counters are not affected by the
2664  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2665  * removed from the specified zone's reference list.  ref must be non-NULL iff
2666  * subsys is not ZONE_REF_NUM_SUBSYS.
2667  */
2668 static void
2669 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2670 {
2671 	boolean_t wakeup;
2672 
2673 	mutex_enter(&z->zone_lock);
2674 	ASSERT(z->zone_ref != 0);
2675 	z->zone_ref--;
2676 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2677 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2678 		z->zone_subsys_ref[subsys]--;
2679 		list_remove(&z->zone_ref_list, ref);
2680 	}
2681 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2682 		/* no more refs, free the structure */
2683 		mutex_exit(&z->zone_lock);
2684 		zone_free(z);
2685 		return;
2686 	}
2687 	/* signal zone_destroy so the zone can finish halting */
2688 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2689 	mutex_exit(&z->zone_lock);
2690 
2691 	if (wakeup) {
2692 		/*
2693 		 * Grabbing zonehash_lock here effectively synchronizes with
2694 		 * zone_destroy() to avoid missed signals.
2695 		 */
2696 		mutex_enter(&zonehash_lock);
2697 		cv_broadcast(&zone_destroy_cv);
2698 		mutex_exit(&zonehash_lock);
2699 	}
2700 }
2701 
2702 /*
2703  * Decrement the specified zone's reference count.  The specified zone will
2704  * cease to exist after this function returns if the reference count drops to
2705  * zero.  This function should be paired with zone_hold().
2706  */
2707 void
2708 zone_rele(zone_t *z)
2709 {
2710 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2711 }
2712 
2713 /*
2714  * Initialize a zone reference structure.  This function must be invoked for
2715  * a reference structure before the structure is passed to zone_hold_ref().
2716  */
2717 void
2718 zone_init_ref(zone_ref_t *ref)
2719 {
2720 	ref->zref_zone = NULL;
2721 	list_link_init(&ref->zref_linkage);
2722 }
2723 
2724 /*
2725  * Acquire a reference to zone z.  The caller must specify the
2726  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2727  * zone_ref_t structure will represent a reference to the specified zone.  Use
2728  * zone_rele_ref() to release the reference.
2729  *
2730  * The referenced zone_t structure will not be freed as long as the zone_t's
2731  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2732  * references.
2733  *
2734  * NOTE: The zone_ref_t structure must be initialized before it is used.
2735  * See zone_init_ref() above.
2736  */
2737 void
2738 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2739 {
2740 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2741 
2742 	/*
2743 	 * Prevent consumers from reusing a reference structure before
2744 	 * releasing it.
2745 	 */
2746 	VERIFY(ref->zref_zone == NULL);
2747 
2748 	ref->zref_zone = z;
2749 	mutex_enter(&z->zone_lock);
2750 	zone_hold_locked(z);
2751 	z->zone_subsys_ref[subsys]++;
2752 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2753 	list_insert_head(&z->zone_ref_list, ref);
2754 	mutex_exit(&z->zone_lock);
2755 }
2756 
2757 /*
2758  * Release the zone reference represented by the specified zone_ref_t.
2759  * The reference is invalid after it's released; however, the zone_ref_t
2760  * structure can be reused without having to invoke zone_init_ref().
2761  * subsys should be the same value that was passed to zone_hold_ref()
2762  * when the reference was acquired.
2763  */
2764 void
2765 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2766 {
2767 	zone_rele_common(ref->zref_zone, ref, subsys);
2768 
2769 	/*
2770 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2771 	 * when consumers dereference the reference.  This helps us catch
2772 	 * consumers who use released references.  Furthermore, this lets
2773 	 * consumers reuse the zone_ref_t structure without having to
2774 	 * invoke zone_init_ref().
2775 	 */
2776 	ref->zref_zone = NULL;
2777 }
2778 
2779 void
2780 zone_cred_hold(zone_t *z)
2781 {
2782 	mutex_enter(&z->zone_lock);
2783 	z->zone_cred_ref++;
2784 	ASSERT(z->zone_cred_ref != 0);
2785 	mutex_exit(&z->zone_lock);
2786 }
2787 
2788 void
2789 zone_cred_rele(zone_t *z)
2790 {
2791 	boolean_t wakeup;
2792 
2793 	mutex_enter(&z->zone_lock);
2794 	ASSERT(z->zone_cred_ref != 0);
2795 	z->zone_cred_ref--;
2796 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2797 		/* no more refs, free the structure */
2798 		mutex_exit(&z->zone_lock);
2799 		zone_free(z);
2800 		return;
2801 	}
2802 	/*
2803 	 * If zone_destroy is waiting for the cred references to drain
2804 	 * out, and they have, signal it.
2805 	 */
2806 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2807 	    zone_status_get(z) >= ZONE_IS_DEAD);
2808 	mutex_exit(&z->zone_lock);
2809 
2810 	if (wakeup) {
2811 		/*
2812 		 * Grabbing zonehash_lock here effectively synchronizes with
2813 		 * zone_destroy() to avoid missed signals.
2814 		 */
2815 		mutex_enter(&zonehash_lock);
2816 		cv_broadcast(&zone_destroy_cv);
2817 		mutex_exit(&zonehash_lock);
2818 	}
2819 }
2820 
2821 void
2822 zone_task_hold(zone_t *z)
2823 {
2824 	mutex_enter(&z->zone_lock);
2825 	z->zone_ntasks++;
2826 	ASSERT(z->zone_ntasks != 0);
2827 	mutex_exit(&z->zone_lock);
2828 }
2829 
2830 void
2831 zone_task_rele(zone_t *zone)
2832 {
2833 	uint_t refcnt;
2834 
2835 	mutex_enter(&zone->zone_lock);
2836 	ASSERT(zone->zone_ntasks != 0);
2837 	refcnt = --zone->zone_ntasks;
2838 	if (refcnt > 1)	{	/* Common case */
2839 		mutex_exit(&zone->zone_lock);
2840 		return;
2841 	}
2842 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2843 	mutex_exit(&zone->zone_lock);
2844 	if (refcnt == 1) {
2845 		/*
2846 		 * See if the zone is shutting down.
2847 		 */
2848 		mutex_enter(&zone_status_lock);
2849 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2850 			goto out;
2851 		}
2852 
2853 		/*
2854 		 * Make sure the ntasks didn't change since we
2855 		 * dropped zone_lock.
2856 		 */
2857 		mutex_enter(&zone->zone_lock);
2858 		if (refcnt != zone->zone_ntasks) {
2859 			mutex_exit(&zone->zone_lock);
2860 			goto out;
2861 		}
2862 		mutex_exit(&zone->zone_lock);
2863 
2864 		/*
2865 		 * No more user processes in the zone.  The zone is empty.
2866 		 */
2867 		zone_status_set(zone, ZONE_IS_EMPTY);
2868 		goto out;
2869 	}
2870 
2871 	ASSERT(refcnt == 0);
2872 	/*
2873 	 * zsched has exited; the zone is dead.
2874 	 */
2875 	zone->zone_zsched = NULL;		/* paranoia */
2876 	mutex_enter(&zone_status_lock);
2877 	zone_status_set(zone, ZONE_IS_DEAD);
2878 out:
2879 	mutex_exit(&zone_status_lock);
2880 	zone_rele(zone);
2881 }
2882 
2883 zoneid_t
2884 getzoneid(void)
2885 {
2886 	return (curproc->p_zone->zone_id);
2887 }
2888 
2889 /*
2890  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2891  * check the validity of a zone's state.
2892  */
2893 static zone_t *
2894 zone_find_all_by_id(zoneid_t zoneid)
2895 {
2896 	mod_hash_val_t hv;
2897 	zone_t *zone = NULL;
2898 
2899 	ASSERT(MUTEX_HELD(&zonehash_lock));
2900 
2901 	if (mod_hash_find(zonehashbyid,
2902 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2903 		zone = (zone_t *)hv;
2904 	return (zone);
2905 }
2906 
2907 static zone_t *
2908 zone_find_all_by_label(const ts_label_t *label)
2909 {
2910 	mod_hash_val_t hv;
2911 	zone_t *zone = NULL;
2912 
2913 	ASSERT(MUTEX_HELD(&zonehash_lock));
2914 
2915 	/*
2916 	 * zonehashbylabel is not maintained for unlabeled systems
2917 	 */
2918 	if (!is_system_labeled())
2919 		return (NULL);
2920 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2921 		zone = (zone_t *)hv;
2922 	return (zone);
2923 }
2924 
2925 static zone_t *
2926 zone_find_all_by_name(char *name)
2927 {
2928 	mod_hash_val_t hv;
2929 	zone_t *zone = NULL;
2930 
2931 	ASSERT(MUTEX_HELD(&zonehash_lock));
2932 
2933 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2934 		zone = (zone_t *)hv;
2935 	return (zone);
2936 }
2937 
2938 /*
2939  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2940  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2941  * Caller must call zone_rele() once it is done with the zone.
2942  *
2943  * The zone may begin the zone_destroy() sequence immediately after this
2944  * function returns, but may be safely used until zone_rele() is called.
2945  */
2946 zone_t *
2947 zone_find_by_id(zoneid_t zoneid)
2948 {
2949 	zone_t *zone;
2950 	zone_status_t status;
2951 
2952 	mutex_enter(&zonehash_lock);
2953 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2954 		mutex_exit(&zonehash_lock);
2955 		return (NULL);
2956 	}
2957 	status = zone_status_get(zone);
2958 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2959 		/*
2960 		 * For all practical purposes the zone doesn't exist.
2961 		 */
2962 		mutex_exit(&zonehash_lock);
2963 		return (NULL);
2964 	}
2965 	zone_hold(zone);
2966 	mutex_exit(&zonehash_lock);
2967 	return (zone);
2968 }
2969 
2970 /*
2971  * Similar to zone_find_by_id, but using zone label as the key.
2972  */
2973 zone_t *
2974 zone_find_by_label(const ts_label_t *label)
2975 {
2976 	zone_t *zone;
2977 	zone_status_t status;
2978 
2979 	mutex_enter(&zonehash_lock);
2980 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2981 		mutex_exit(&zonehash_lock);
2982 		return (NULL);
2983 	}
2984 
2985 	status = zone_status_get(zone);
2986 	if (status > ZONE_IS_DOWN) {
2987 		/*
2988 		 * For all practical purposes the zone doesn't exist.
2989 		 */
2990 		mutex_exit(&zonehash_lock);
2991 		return (NULL);
2992 	}
2993 	zone_hold(zone);
2994 	mutex_exit(&zonehash_lock);
2995 	return (zone);
2996 }
2997 
2998 /*
2999  * Similar to zone_find_by_id, but using zone name as the key.
3000  */
3001 zone_t *
3002 zone_find_by_name(char *name)
3003 {
3004 	zone_t *zone;
3005 	zone_status_t status;
3006 
3007 	mutex_enter(&zonehash_lock);
3008 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3009 		mutex_exit(&zonehash_lock);
3010 		return (NULL);
3011 	}
3012 	status = zone_status_get(zone);
3013 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3014 		/*
3015 		 * For all practical purposes the zone doesn't exist.
3016 		 */
3017 		mutex_exit(&zonehash_lock);
3018 		return (NULL);
3019 	}
3020 	zone_hold(zone);
3021 	mutex_exit(&zonehash_lock);
3022 	return (zone);
3023 }
3024 
3025 /*
3026  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3027  * if there is a zone "foo" rooted at /foo/root, and the path argument
3028  * is "/foo/root/proc", it will return the held zone_t corresponding to
3029  * zone "foo".
3030  *
3031  * zone_find_by_path() always returns a non-NULL value, since at the
3032  * very least every path will be contained in the global zone.
3033  *
3034  * As with the other zone_find_by_*() functions, the caller is
3035  * responsible for zone_rele()ing the return value of this function.
3036  */
3037 zone_t *
3038 zone_find_by_path(const char *path)
3039 {
3040 	zone_t *zone;
3041 	zone_t *zret = NULL;
3042 	zone_status_t status;
3043 
3044 	if (path == NULL) {
3045 		/*
3046 		 * Call from rootconf().
3047 		 */
3048 		zone_hold(global_zone);
3049 		return (global_zone);
3050 	}
3051 	ASSERT(*path == '/');
3052 	mutex_enter(&zonehash_lock);
3053 	for (zone = list_head(&zone_active); zone != NULL;
3054 	    zone = list_next(&zone_active, zone)) {
3055 		if (ZONE_PATH_VISIBLE(path, zone))
3056 			zret = zone;
3057 	}
3058 	ASSERT(zret != NULL);
3059 	status = zone_status_get(zret);
3060 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3061 		/*
3062 		 * Zone practically doesn't exist.
3063 		 */
3064 		zret = global_zone;
3065 	}
3066 	zone_hold(zret);
3067 	mutex_exit(&zonehash_lock);
3068 	return (zret);
3069 }
3070 
3071 /*
3072  * Public interface for updating per-zone load averages.  Called once per
3073  * second.
3074  *
3075  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3076  */
3077 void
3078 zone_loadavg_update()
3079 {
3080 	zone_t *zp;
3081 	zone_status_t status;
3082 	struct loadavg_s *lavg;
3083 	hrtime_t zone_total;
3084 	int i;
3085 	hrtime_t hr_avg;
3086 	int nrun;
3087 	static int64_t f[3] = { 135, 27, 9 };
3088 	int64_t q, r;
3089 
3090 	mutex_enter(&zonehash_lock);
3091 	for (zp = list_head(&zone_active); zp != NULL;
3092 	    zp = list_next(&zone_active, zp)) {
3093 		mutex_enter(&zp->zone_lock);
3094 
3095 		/* Skip zones that are on the way down or not yet up */
3096 		status = zone_status_get(zp);
3097 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3098 			/* For all practical purposes the zone doesn't exist. */
3099 			mutex_exit(&zp->zone_lock);
3100 			continue;
3101 		}
3102 
3103 		/*
3104 		 * Update the 10 second moving average data in zone_loadavg.
3105 		 */
3106 		lavg = &zp->zone_loadavg;
3107 
3108 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3109 		scalehrtime(&zone_total);
3110 
3111 		/* The zone_total should always be increasing. */
3112 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3113 		    zone_total - lavg->lg_total : 0;
3114 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3115 		/* lg_total holds the prev. 1 sec. total */
3116 		lavg->lg_total = zone_total;
3117 
3118 		/*
3119 		 * To simplify the calculation, we don't calculate the load avg.
3120 		 * until the zone has been up for at least 10 seconds and our
3121 		 * moving average is thus full.
3122 		 */
3123 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3124 			lavg->lg_len++;
3125 			mutex_exit(&zp->zone_lock);
3126 			continue;
3127 		}
3128 
3129 		/* Now calculate the 1min, 5min, 15 min load avg. */
3130 		hr_avg = 0;
3131 		for (i = 0; i < S_LOADAVG_SZ; i++)
3132 			hr_avg += lavg->lg_loads[i];
3133 		hr_avg = hr_avg / S_LOADAVG_SZ;
3134 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3135 
3136 		/* Compute load avg. See comment in calcloadavg() */
3137 		for (i = 0; i < 3; i++) {
3138 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3139 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3140 			zp->zone_hp_avenrun[i] +=
3141 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3142 
3143 			/* avenrun[] can only hold 31 bits of load avg. */
3144 			if (zp->zone_hp_avenrun[i] <
3145 			    ((uint64_t)1<<(31+16-FSHIFT)))
3146 				zp->zone_avenrun[i] = (int32_t)
3147 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3148 			else
3149 				zp->zone_avenrun[i] = 0x7fffffff;
3150 		}
3151 
3152 		mutex_exit(&zp->zone_lock);
3153 	}
3154 	mutex_exit(&zonehash_lock);
3155 }
3156 
3157 /*
3158  * Get the number of cpus visible to this zone.  The system-wide global
3159  * 'ncpus' is returned if pools are disabled, the caller is in the
3160  * global zone, or a NULL zone argument is passed in.
3161  */
3162 int
3163 zone_ncpus_get(zone_t *zone)
3164 {
3165 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3166 
3167 	return (myncpus != 0 ? myncpus : ncpus);
3168 }
3169 
3170 /*
3171  * Get the number of online cpus visible to this zone.  The system-wide
3172  * global 'ncpus_online' is returned if pools are disabled, the caller
3173  * is in the global zone, or a NULL zone argument is passed in.
3174  */
3175 int
3176 zone_ncpus_online_get(zone_t *zone)
3177 {
3178 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3179 
3180 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3181 }
3182 
3183 /*
3184  * Return the pool to which the zone is currently bound.
3185  */
3186 pool_t *
3187 zone_pool_get(zone_t *zone)
3188 {
3189 	ASSERT(pool_lock_held());
3190 
3191 	return (zone->zone_pool);
3192 }
3193 
3194 /*
3195  * Set the zone's pool pointer and update the zone's visibility to match
3196  * the resources in the new pool.
3197  */
3198 void
3199 zone_pool_set(zone_t *zone, pool_t *pool)
3200 {
3201 	ASSERT(pool_lock_held());
3202 	ASSERT(MUTEX_HELD(&cpu_lock));
3203 
3204 	zone->zone_pool = pool;
3205 	zone_pset_set(zone, pool->pool_pset->pset_id);
3206 }
3207 
3208 /*
3209  * Return the cached value of the id of the processor set to which the
3210  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3211  * facility is disabled.
3212  */
3213 psetid_t
3214 zone_pset_get(zone_t *zone)
3215 {
3216 	ASSERT(MUTEX_HELD(&cpu_lock));
3217 
3218 	return (zone->zone_psetid);
3219 }
3220 
3221 /*
3222  * Set the cached value of the id of the processor set to which the zone
3223  * is currently bound.  Also update the zone's visibility to match the
3224  * resources in the new processor set.
3225  */
3226 void
3227 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3228 {
3229 	psetid_t oldpsetid;
3230 
3231 	ASSERT(MUTEX_HELD(&cpu_lock));
3232 	oldpsetid = zone_pset_get(zone);
3233 
3234 	if (oldpsetid == newpsetid)
3235 		return;
3236 	/*
3237 	 * Global zone sees all.
3238 	 */
3239 	if (zone != global_zone) {
3240 		zone->zone_psetid = newpsetid;
3241 		if (newpsetid != ZONE_PS_INVAL)
3242 			pool_pset_visibility_add(newpsetid, zone);
3243 		if (oldpsetid != ZONE_PS_INVAL)
3244 			pool_pset_visibility_remove(oldpsetid, zone);
3245 	}
3246 	/*
3247 	 * Disabling pools, so we should start using the global values
3248 	 * for ncpus and ncpus_online.
3249 	 */
3250 	if (newpsetid == ZONE_PS_INVAL) {
3251 		zone->zone_ncpus = 0;
3252 		zone->zone_ncpus_online = 0;
3253 	}
3254 }
3255 
3256 /*
3257  * Walk the list of active zones and issue the provided callback for
3258  * each of them.
3259  *
3260  * Caller must not be holding any locks that may be acquired under
3261  * zonehash_lock.  See comment at the beginning of the file for a list of
3262  * common locks and their interactions with zones.
3263  */
3264 int
3265 zone_walk(int (*cb)(zone_t *, void *), void *data)
3266 {
3267 	zone_t *zone;
3268 	int ret = 0;
3269 	zone_status_t status;
3270 
3271 	mutex_enter(&zonehash_lock);
3272 	for (zone = list_head(&zone_active); zone != NULL;
3273 	    zone = list_next(&zone_active, zone)) {
3274 		/*
3275 		 * Skip zones that shouldn't be externally visible.
3276 		 */
3277 		status = zone_status_get(zone);
3278 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3279 			continue;
3280 		/*
3281 		 * Bail immediately if any callback invocation returns a
3282 		 * non-zero value.
3283 		 */
3284 		ret = (*cb)(zone, data);
3285 		if (ret != 0)
3286 			break;
3287 	}
3288 	mutex_exit(&zonehash_lock);
3289 	return (ret);
3290 }
3291 
3292 static int
3293 zone_set_root(zone_t *zone, const char *upath)
3294 {
3295 	vnode_t *vp;
3296 	int trycount;
3297 	int error = 0;
3298 	char *path;
3299 	struct pathname upn, pn;
3300 	size_t pathlen;
3301 
3302 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3303 		return (error);
3304 
3305 	pn_alloc(&pn);
3306 
3307 	/* prevent infinite loop */
3308 	trycount = 10;
3309 	for (;;) {
3310 		if (--trycount <= 0) {
3311 			error = ESTALE;
3312 			goto out;
3313 		}
3314 
3315 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3316 			/*
3317 			 * VOP_ACCESS() may cover 'vp' with a new
3318 			 * filesystem, if 'vp' is an autoFS vnode.
3319 			 * Get the new 'vp' if so.
3320 			 */
3321 			if ((error =
3322 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3323 			    (!vn_ismntpt(vp) ||
3324 			    (error = traverse(&vp)) == 0)) {
3325 				pathlen = pn.pn_pathlen + 2;
3326 				path = kmem_alloc(pathlen, KM_SLEEP);
3327 				(void) strncpy(path, pn.pn_path,
3328 				    pn.pn_pathlen + 1);
3329 				path[pathlen - 2] = '/';
3330 				path[pathlen - 1] = '\0';
3331 				pn_free(&pn);
3332 				pn_free(&upn);
3333 
3334 				/* Success! */
3335 				break;
3336 			}
3337 			VN_RELE(vp);
3338 		}
3339 		if (error != ESTALE)
3340 			goto out;
3341 	}
3342 
3343 	ASSERT(error == 0);
3344 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3345 	zone->zone_rootpath = path;
3346 	zone->zone_rootpathlen = pathlen;
3347 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3348 		zone->zone_flags |= ZF_IS_SCRATCH;
3349 	return (0);
3350 
3351 out:
3352 	pn_free(&pn);
3353 	pn_free(&upn);
3354 	return (error);
3355 }
3356 
3357 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3358 			((c) >= 'a' && (c) <= 'z') || \
3359 			((c) >= 'A' && (c) <= 'Z'))
3360 
3361 static int
3362 zone_set_name(zone_t *zone, const char *uname)
3363 {
3364 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3365 	size_t len;
3366 	int i, err;
3367 
3368 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3369 		kmem_free(kname, ZONENAME_MAX);
3370 		return (err);	/* EFAULT or ENAMETOOLONG */
3371 	}
3372 
3373 	/* must be less than ZONENAME_MAX */
3374 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3375 		kmem_free(kname, ZONENAME_MAX);
3376 		return (EINVAL);
3377 	}
3378 
3379 	/*
3380 	 * Name must start with an alphanumeric and must contain only
3381 	 * alphanumerics, '-', '_' and '.'.
3382 	 */
3383 	if (!isalnum(kname[0])) {
3384 		kmem_free(kname, ZONENAME_MAX);
3385 		return (EINVAL);
3386 	}
3387 	for (i = 1; i < len - 1; i++) {
3388 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3389 		    kname[i] != '.') {
3390 			kmem_free(kname, ZONENAME_MAX);
3391 			return (EINVAL);
3392 		}
3393 	}
3394 
3395 	zone->zone_name = kname;
3396 	return (0);
3397 }
3398 
3399 /*
3400  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3401  * is NULL or it points to a zone with no hostid emulation, then the machine's
3402  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3403  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3404  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3405  * hostid and the machine's hostid is invalid.
3406  */
3407 uint32_t
3408 zone_get_hostid(zone_t *zonep)
3409 {
3410 	unsigned long machine_hostid;
3411 
3412 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3413 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3414 			return (HW_INVALID_HOSTID);
3415 		return ((uint32_t)machine_hostid);
3416 	}
3417 	return (zonep->zone_hostid);
3418 }
3419 
3420 /*
3421  * Similar to thread_create(), but makes sure the thread is in the appropriate
3422  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3423  */
3424 /*ARGSUSED*/
3425 kthread_t *
3426 zthread_create(
3427     caddr_t stk,
3428     size_t stksize,
3429     void (*proc)(),
3430     void *arg,
3431     size_t len,
3432     pri_t pri)
3433 {
3434 	kthread_t *t;
3435 	zone_t *zone = curproc->p_zone;
3436 	proc_t *pp = zone->zone_zsched;
3437 
3438 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3439 
3440 	/*
3441 	 * No-one should be trying to create threads if the zone is shutting
3442 	 * down and there aren't any kernel threads around.  See comment
3443 	 * in zthread_exit().
3444 	 */
3445 	ASSERT(!(zone->zone_kthreads == NULL &&
3446 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3447 	/*
3448 	 * Create a thread, but don't let it run until we've finished setting
3449 	 * things up.
3450 	 */
3451 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3452 	ASSERT(t->t_forw == NULL);
3453 	mutex_enter(&zone_status_lock);
3454 	if (zone->zone_kthreads == NULL) {
3455 		t->t_forw = t->t_back = t;
3456 	} else {
3457 		kthread_t *tx = zone->zone_kthreads;
3458 
3459 		t->t_forw = tx;
3460 		t->t_back = tx->t_back;
3461 		tx->t_back->t_forw = t;
3462 		tx->t_back = t;
3463 	}
3464 	zone->zone_kthreads = t;
3465 	mutex_exit(&zone_status_lock);
3466 
3467 	mutex_enter(&pp->p_lock);
3468 	t->t_proc_flag |= TP_ZTHREAD;
3469 	project_rele(t->t_proj);
3470 	t->t_proj = project_hold(pp->p_task->tk_proj);
3471 
3472 	/*
3473 	 * Setup complete, let it run.
3474 	 */
3475 	thread_lock(t);
3476 	t->t_schedflag |= TS_ALLSTART;
3477 	setrun_locked(t);
3478 	thread_unlock(t);
3479 
3480 	mutex_exit(&pp->p_lock);
3481 
3482 	return (t);
3483 }
3484 
3485 /*
3486  * Similar to thread_exit().  Must be called by threads created via
3487  * zthread_exit().
3488  */
3489 void
3490 zthread_exit(void)
3491 {
3492 	kthread_t *t = curthread;
3493 	proc_t *pp = curproc;
3494 	zone_t *zone = pp->p_zone;
3495 
3496 	mutex_enter(&zone_status_lock);
3497 
3498 	/*
3499 	 * Reparent to p0