1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Kernel memory allocator, as described in the following two papers and a 27 * statement about the consolidator: 28 * 29 * Jeff Bonwick, 30 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 31 * Proceedings of the Summer 1994 Usenix Conference. 32 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 33 * 34 * Jeff Bonwick and Jonathan Adams, 35 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 36 * Arbitrary Resources. 37 * Proceedings of the 2001 Usenix Conference. 38 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 39 * 40 * kmem Slab Consolidator Big Theory Statement: 41 * 42 * 1. Motivation 43 * 44 * As stated in Bonwick94, slabs provide the following advantages over other 45 * allocation structures in terms of memory fragmentation: 46 * 47 * - Internal fragmentation (per-buffer wasted space) is minimal. 48 * - Severe external fragmentation (unused buffers on the free list) is 49 * unlikely. 50 * 51 * Segregating objects by size eliminates one source of external fragmentation, 52 * and according to Bonwick: 53 * 54 * The other reason that slabs reduce external fragmentation is that all 55 * objects in a slab are of the same type, so they have the same lifetime 56 * distribution. The resulting segregation of short-lived and long-lived 57 * objects at slab granularity reduces the likelihood of an entire page being 58 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 59 * 60 * While unlikely, severe external fragmentation remains possible. Clients that 61 * allocate both short- and long-lived objects from the same cache cannot 62 * anticipate the distribution of long-lived objects within the allocator's slab 63 * implementation. Even a small percentage of long-lived objects distributed 64 * randomly across many slabs can lead to a worst case scenario where the client 65 * frees the majority of its objects and the system gets back almost none of the 66 * slabs. Despite the client doing what it reasonably can to help the system 67 * reclaim memory, the allocator cannot shake free enough slabs because of 68 * lonely allocations stubbornly hanging on. Although the allocator is in a 69 * position to diagnose the fragmentation, there is nothing that the allocator 70 * by itself can do about it. It only takes a single allocated object to prevent 71 * an entire slab from being reclaimed, and any object handed out by 72 * kmem_cache_alloc() is by definition in the client's control. Conversely, 73 * although the client is in a position to move a long-lived object, it has no 74 * way of knowing if the object is causing fragmentation, and if so, where to 75 * move it. A solution necessarily requires further cooperation between the 76 * allocator and the client. 77 * 78 * 2. Move Callback 79 * 80 * The kmem slab consolidator therefore adds a move callback to the 81 * allocator/client interface, improving worst-case external fragmentation in 82 * kmem caches that supply a function to move objects from one memory location 83 * to another. In a situation of low memory kmem attempts to consolidate all of 84 * a cache's slabs at once; otherwise it works slowly to bring external 85 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 86 * thereby helping to avoid a low memory situation in the future. 87 * 88 * The callback has the following signature: 89 * 90 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 91 * 92 * It supplies the kmem client with two addresses: the allocated object that 93 * kmem wants to move and a buffer selected by kmem for the client to use as the 94 * copy destination. The callback is kmem's way of saying "Please get off of 95 * this buffer and use this one instead." kmem knows where it wants to move the 96 * object in order to best reduce fragmentation. All the client needs to know 97 * about the second argument (void *new) is that it is an allocated, constructed 98 * object ready to take the contents of the old object. When the move function 99 * is called, the system is likely to be low on memory, and the new object 100 * spares the client from having to worry about allocating memory for the 101 * requested move. The third argument supplies the size of the object, in case a 102 * single move function handles multiple caches whose objects differ only in 103 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 104 * user argument passed to the constructor, destructor, and reclaim functions is 105 * also passed to the move callback. 106 * 107 * 2.1 Setting the Move Callback 108 * 109 * The client sets the move callback after creating the cache and before 110 * allocating from it: 111 * 112 * object_cache = kmem_cache_create(...); 113 * kmem_cache_set_move(object_cache, object_move); 114 * 115 * 2.2 Move Callback Return Values 116 * 117 * Only the client knows about its own data and when is a good time to move it. 118 * The client is cooperating with kmem to return unused memory to the system, 119 * and kmem respectfully accepts this help at the client's convenience. When 120 * asked to move an object, the client can respond with any of the following: 121 * 122 * typedef enum kmem_cbrc { 123 * KMEM_CBRC_YES, 124 * KMEM_CBRC_NO, 125 * KMEM_CBRC_LATER, 126 * KMEM_CBRC_DONT_NEED, 127 * KMEM_CBRC_DONT_KNOW 128 * } kmem_cbrc_t; 129 * 130 * The client must not explicitly kmem_cache_free() either of the objects passed 131 * to the callback, since kmem wants to free them directly to the slab layer 132 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 133 * objects to free: 134 * 135 * YES: (Did it) The client moved the object, so kmem frees the old one. 136 * NO: (Never) The client refused, so kmem frees the new object (the 137 * unused copy destination). kmem also marks the slab of the old 138 * object so as not to bother the client with further callbacks for 139 * that object as long as the slab remains on the partial slab list. 140 * (The system won't be getting the slab back as long as the 141 * immovable object holds it hostage, so there's no point in moving 142 * any of its objects.) 143 * LATER: The client is using the object and cannot move it now, so kmem 144 * frees the new object (the unused copy destination). kmem still 145 * attempts to move other objects off the slab, since it expects to 146 * succeed in clearing the slab in a later callback. The client 147 * should use LATER instead of NO if the object is likely to become 148 * movable very soon. 149 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 150 * with the new object (the unused copy destination). This response 151 * is the client's opportunity to be a model citizen and give back as 152 * much as it can. 153 * DONT_KNOW: The client does not know about the object because 154 * a) the client has just allocated the object and not yet put it 155 * wherever it expects to find known objects 156 * b) the client has removed the object from wherever it expects to 157 * find known objects and is about to free it, or 158 * c) the client has freed the object. 159 * In all these cases (a, b, and c) kmem frees the new object (the 160 * unused copy destination) and searches for the old object in the 161 * magazine layer. If found, the object is removed from the magazine 162 * layer and freed to the slab layer so it will no longer hold the 163 * slab hostage. 164 * 165 * 2.3 Object States 166 * 167 * Neither kmem nor the client can be assumed to know the object's whereabouts 168 * at the time of the callback. An object belonging to a kmem cache may be in 169 * any of the following states: 170 * 171 * 1. Uninitialized on the slab 172 * 2. Allocated from the slab but not constructed (still uninitialized) 173 * 3. Allocated from the slab, constructed, but not yet ready for business 174 * (not in a valid state for the move callback) 175 * 4. In use (valid and known to the client) 176 * 5. About to be freed (no longer in a valid state for the move callback) 177 * 6. Freed to a magazine (still constructed) 178 * 7. Allocated from a magazine, not yet ready for business (not in a valid 179 * state for the move callback), and about to return to state #4 180 * 8. Deconstructed on a magazine that is about to be freed 181 * 9. Freed to the slab 182 * 183 * Since the move callback may be called at any time while the object is in any 184 * of the above states (except state #1), the client needs a safe way to 185 * determine whether or not it knows about the object. Specifically, the client 186 * needs to know whether or not the object is in state #4, the only state in 187 * which a move is valid. If the object is in any other state, the client should 188 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 189 * the object's fields. 190 * 191 * Note that although an object may be in state #4 when kmem initiates the move 192 * request, the object may no longer be in that state by the time kmem actually 193 * calls the move function. Not only does the client free objects 194 * asynchronously, kmem itself puts move requests on a queue where thay are 195 * pending until kmem processes them from another context. Also, objects freed 196 * to a magazine appear allocated from the point of view of the slab layer, so 197 * kmem may even initiate requests for objects in a state other than state #4. 198 * 199 * 2.3.1 Magazine Layer 200 * 201 * An important insight revealed by the states listed above is that the magazine 202 * layer is populated only by kmem_cache_free(). Magazines of constructed 203 * objects are never populated directly from the slab layer (which contains raw, 204 * unconstructed objects). Whenever an allocation request cannot be satisfied 205 * from the magazine layer, the magazines are bypassed and the request is 206 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 207 * the object constructor only when allocating from the slab layer, and only in 208 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 209 * the move callback. kmem does not preconstruct objects in anticipation of 210 * kmem_cache_alloc(). 211 * 212 * 2.3.2 Object Constructor and Destructor 213 * 214 * If the client supplies a destructor, it must be valid to call the destructor 215 * on a newly created object (immediately after the constructor). 216 * 217 * 2.4 Recognizing Known Objects 218 * 219 * There is a simple test to determine safely whether or not the client knows 220 * about a given object in the move callback. It relies on the fact that kmem 221 * guarantees that the object of the move callback has only been touched by the 222 * client itself or else by kmem. kmem does this by ensuring that none of the 223 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 224 * callback is pending. When the last object on a slab is freed, if there is a 225 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 226 * slabs on that list until all pending callbacks are completed. That way, 227 * clients can be certain that the object of a move callback is in one of the 228 * states listed above, making it possible to distinguish known objects (in 229 * state #4) using the two low order bits of any pointer member (with the 230 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 231 * platforms). 232 * 233 * The test works as long as the client always transitions objects from state #4 234 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 235 * order bit of the client-designated pointer member. Since kmem only writes 236 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 237 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 238 * guaranteed to set at least one of the two low order bits. Therefore, given an 239 * object with a back pointer to a 'container_t *o_container', the client can 240 * test 241 * 242 * container_t *container = object->o_container; 243 * if ((uintptr_t)container & 0x3) { 244 * return (KMEM_CBRC_DONT_KNOW); 245 * } 246 * 247 * Typically, an object will have a pointer to some structure with a list or 248 * hash where objects from the cache are kept while in use. Assuming that the 249 * client has some way of knowing that the container structure is valid and will 250 * not go away during the move, and assuming that the structure includes a lock 251 * to protect whatever collection is used, then the client would continue as 252 * follows: 253 * 254 * // Ensure that the container structure does not go away. 255 * if (container_hold(container) == 0) { 256 * return (KMEM_CBRC_DONT_KNOW); 257 * } 258 * mutex_enter(&container->c_objects_lock); 259 * if (container != object->o_container) { 260 * mutex_exit(&container->c_objects_lock); 261 * container_rele(container); 262 * return (KMEM_CBRC_DONT_KNOW); 263 * } 264 * 265 * At this point the client knows that the object cannot be freed as long as 266 * c_objects_lock is held. Note that after acquiring the lock, the client must 267 * recheck the o_container pointer in case the object was removed just before 268 * acquiring the lock. 269 * 270 * When the client is about to free an object, it must first remove that object 271 * from the list, hash, or other structure where it is kept. At that time, to 272 * mark the object so it can be distinguished from the remaining, known objects, 273 * the client sets the designated low order bit: 274 * 275 * mutex_enter(&container->c_objects_lock); 276 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 277 * list_remove(&container->c_objects, object); 278 * mutex_exit(&container->c_objects_lock); 279 * 280 * In the common case, the object is freed to the magazine layer, where it may 281 * be reused on a subsequent allocation without the overhead of calling the 282 * constructor. While in the magazine it appears allocated from the point of 283 * view of the slab layer, making it a candidate for the move callback. Most 284 * objects unrecognized by the client in the move callback fall into this 285 * category and are cheaply distinguished from known objects by the test 286 * described earlier. Since recognition is cheap for the client, and searching 287 * magazines is expensive for kmem, kmem defers searching until the client first 288 * returns KMEM_CBRC_DONT_KNOW. As long as the needed effort is reasonable, kmem 289 * elsewhere does what it can to avoid bothering the client unnecessarily. 290 * 291 * Invalidating the designated pointer member before freeing the object marks 292 * the object to be avoided in the callback, and conversely, assigning a valid 293 * value to the designated pointer member after allocating the object makes the 294 * object fair game for the callback: 295 * 296 * ... allocate object ... 297 * ... set any initial state not set by the constructor ... 298 * 299 * mutex_enter(&container->c_objects_lock); 300 * list_insert_tail(&container->c_objects, object); 301 * membar_producer(); 302 * object->o_container = container; 303 * mutex_exit(&container->c_objects_lock); 304 * 305 * Note that everything else must be valid before setting o_container makes the 306 * object fair game for the move callback. The membar_producer() call ensures 307 * that all the object's state is written to memory before setting the pointer 308 * that transitions the object from state #3 or #7 (allocated, constructed, not 309 * yet in use) to state #4 (in use, valid). That's important because the move 310 * function has to check the validity of the pointer before it can safely 311 * acquire the lock protecting the collection where it expects to find known 312 * objects. 313 * 314 * This method of distinguishing known objects observes the usual symmetry: 315 * invalidating the designated pointer is the first thing the client does before 316 * freeing the object, and setting the designated pointer is the last thing the 317 * client does after allocating the object. Of course, the client is not 318 * required to use this method. Fundamentally, how the client recognizes known 319 * objects is completely up to the client, but this method is recommended as an 320 * efficient and safe way to take advantage of the guarantees made by kmem. If 321 * the entire object is arbitrary data without any markable bits from a suitable 322 * pointer member, then the client must find some other method, such as 323 * searching a hash table of known objects. 324 * 325 * 2.5 Preventing Objects From Moving 326 * 327 * Besides a way to distinguish known objects, the other thing that the client 328 * needs is a strategy to ensure that an object will not move while the client 329 * is actively using it. The details of satisfying this requirement tend to be 330 * highly cache-specific. It might seem that the same rules that let a client 331 * remove an object safely should also decide when an object can be moved 332 * safely. However, any object state that makes a removal attempt invalid is 333 * likely to be long-lasting for objects that the client does not expect to 334 * remove. kmem knows nothing about the object state and is equally likely (from 335 * the client's point of view) to request a move for any object in the cache, 336 * whether prepared for removal or not. Even a low percentage of objects stuck 337 * in place by unremovability will defeat the consolidator if the stuck objects 338 * are the same long-lived allocations likely to hold slabs hostage. 339 * Fundamentally, the consolidator is not aimed at common cases. Severe external 340 * fragmentation is a worst case scenario manifested as sparsely allocated 341 * slabs, by definition a low percentage of the cache's objects. When deciding 342 * what makes an object movable, keep in mind the goal of the consolidator: to 343 * bring worst-case external fragmentation within the limits guaranteed for 344 * internal fragmentation. Removability is a poor criterion if it is likely to 345 * exclude more than an insignificant percentage of objects for long periods of 346 * time. 347 * 348 * A tricky general solution exists, and it has the advantage of letting you 349 * move any object at almost any moment, practically eliminating the likelihood 350 * that an object can hold a slab hostage. However, if there is a cache-specific 351 * way to ensure that an object is not actively in use in the vast majority of 352 * cases, a simpler solution that leverages this cache-specific knowledge is 353 * preferred. 354 * 355 * 2.5.1 Cache-Specific Solution 356 * 357 * As an example of a cache-specific solution, the ZFS znode cache takes 358 * advantage of the fact that the vast majority of znodes are only being 359 * referenced from the DNLC. (A typical case might be a few hundred in active 360 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 361 * client has established that it recognizes the znode and can access its fields 362 * safely (using the method described earlier), it then tests whether the znode 363 * is referenced by anything other than the DNLC. If so, it assumes that the 364 * znode may be in active use and is unsafe to move, so it drops its locks and 365 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 366 * else znodes are used, no change is needed to protect against the possibility 367 * of the znode moving. The disadvantage is that it remains possible for an 368 * application to hold a znode slab hostage with an open file descriptor. 369 * However, this case ought to be rare and the consolidator has a way to deal 370 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 371 * object, kmem eventually stops believing it and treats the slab as if the 372 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 373 * then focus on getting it off of the partial slab list by allocating rather 374 * than freeing all of its objects. (Either way of getting a slab off the 375 * free list reduces fragmentation.) 376 * 377 * 2.5.2 General Solution 378 * 379 * The general solution, on the other hand, requires an explicit hold everywhere 380 * the object is used to prevent it from moving. To keep the client locking 381 * strategy as uncomplicated as possible, kmem guarantees the simplifying 382 * assumption that move callbacks are sequential, even across multiple caches. 383 * Internally, a global queue processed by a single thread supports all caches 384 * implementing the callback function. No matter how many caches supply a move 385 * function, the consolidator never moves more than one object at a time, so the 386 * client does not have to worry about tricky lock ordering involving several 387 * related objects from different kmem caches. 388 * 389 * The general solution implements the explicit hold as a read-write lock, which 390 * allows multiple readers to access an object from the cache simultaneously 391 * while a single writer is excluded from moving it. A single rwlock for the 392 * entire cache would lock out all threads from using any of the cache's objects 393 * even though only a single object is being moved, so to reduce contention, 394 * the client can fan out the single rwlock into an array of rwlocks hashed by 395 * the object address, making it probable that moving one object will not 396 * prevent other threads from using a different object. The rwlock cannot be a 397 * member of the object itself, because the possibility of the object moving 398 * makes it unsafe to access any of the object's fields until the lock is 399 * acquired. 400 * 401 * Assuming a small, fixed number of locks, it's possible that multiple objects 402 * will hash to the same lock. A thread that needs to use multiple objects in 403 * the same function may acquire the same lock multiple times. Since rwlocks are 404 * reentrant for readers, and since there is never more than a single writer at 405 * a time (assuming that the client acquires the lock as a writer only when 406 * moving an object inside the callback), there would seem to be no problem. 407 * However, a client locking multiple objects in the same function must handle 408 * one case of potential deadlock: Assume that thread A needs to prevent both 409 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 410 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 411 * same lock, that thread A will acquire the lock for object 1 as a reader 412 * before thread B sets the lock's write-wanted bit, preventing thread A from 413 * reacquiring the lock for object 2 as a reader. Unable to make forward 414 * progress, thread A will never release the lock for object 1, resulting in 415 * deadlock. 416 * 417 * There are two ways of avoiding the deadlock just described. The first is to 418 * use rw_tryenter() rather than rw_enter() in the callback function when 419 * attempting to acquire the lock as a writer. If tryenter discovers that the 420 * same object (or another object hashed to the same lock) is already in use, it 421 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 422 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 423 * since it allows a thread to acquire the lock as a reader in spite of a 424 * waiting writer. This second approach insists on moving the object now, no 425 * matter how many readers the move function must wait for in order to do so, 426 * and could delay the completion of the callback indefinitely (blocking 427 * callbacks to other clients). In practice, a less insistent callback using 428 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 429 * little reason to use anything else. 430 * 431 * Avoiding deadlock is not the only problem that an implementation using an 432 * explicit hold needs to solve. Locking the object in the first place (to 433 * prevent it from moving) remains a problem, since the object could move 434 * between the time you obtain a pointer to the object and the time you acquire 435 * the rwlock hashed to that pointer value. Therefore the client needs to 436 * recheck the value of the pointer after acquiring the lock, drop the lock if 437 * the value has changed, and try again. This requires a level of indirection: 438 * something that points to the object rather than the object itself, that the 439 * client can access safely while attempting to acquire the lock. (The object 440 * itself cannot be referenced safely because it can move at any time.) 441 * The following lock-acquisition function takes whatever is safe to reference 442 * (arg), follows its pointer to the object (using function f), and tries as 443 * often as necessary to acquire the hashed lock and verify that the object 444 * still has not moved: 445 * 446 * object_t * 447 * object_hold(object_f f, void *arg) 448 * { 449 * object_t *op; 450 * 451 * op = f(arg); 452 * if (op == NULL) { 453 * return (NULL); 454 * } 455 * 456 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 457 * while (op != f(arg)) { 458 * rw_exit(OBJECT_RWLOCK(op)); 459 * op = f(arg); 460 * if (op == NULL) { 461 * break; 462 * } 463 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 464 * } 465 * 466 * return (op); 467 * } 468 * 469 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 470 * lock reacquisition loop, while necessary, almost never executes. The function 471 * pointer f (used to obtain the object pointer from arg) has the following type 472 * definition: 473 * 474 * typedef object_t *(*object_f)(void *arg); 475 * 476 * An object_f implementation is likely to be as simple as accessing a structure 477 * member: 478 * 479 * object_t * 480 * s_object(void *arg) 481 * { 482 * something_t *sp = arg; 483 * return (sp->s_object); 484 * } 485 * 486 * The flexibility of a function pointer allows the path to the object to be 487 * arbitrarily complex and also supports the notion that depending on where you 488 * are using the object, you may need to get it from someplace different. 489 * 490 * The function that releases the explicit hold is simpler because it does not 491 * have to worry about the object moving: 492 * 493 * void 494 * object_rele(object_t *op) 495 * { 496 * rw_exit(OBJECT_RWLOCK(op)); 497 * } 498 * 499 * The caller is spared these details so that obtaining and releasing an 500 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 501 * of object_hold() only needs to know that the returned object pointer is valid 502 * if not NULL and that the object will not move until released. 503 * 504 * Although object_hold() prevents an object from moving, it does not prevent it 505 * from being freed. The caller must take measures before calling object_hold() 506 * (afterwards is too late) to ensure that the held object cannot be freed. The 507 * caller must do so without accessing the unsafe object reference, so any lock 508 * or reference count used to ensure the continued existence of the object must 509 * live outside the object itself. 510 * 511 * Obtaining a new object is a special case where an explicit hold is impossible 512 * for the caller. Any function that returns a newly allocated object (either as 513 * a return value, or as an in-out paramter) must return it already held; after 514 * the caller gets it is too late, since the object cannot be safely accessed 515 * without the level of indirection described earlier. The following 516 * object_alloc() example uses the same code shown earlier to transition a new 517 * object into the state of being recognized (by the client) as a known object. 518 * The function must acquire the hold (rw_enter) before that state transition 519 * makes the object movable: 520 * 521 * static object_t * 522 * object_alloc(container_t *container) 523 * { 524 * object_t *object = kmem_cache_alloc(object_cache, 0); 525 * ... set any initial state not set by the constructor ... 526 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 527 * mutex_enter(&container->c_objects_lock); 528 * list_insert_tail(&container->c_objects, object); 529 * membar_producer(); 530 * object->o_container = container; 531 * mutex_exit(&container->c_objects_lock); 532 * return (object); 533 * } 534 * 535 * Functions that implicitly acquire an object hold (any function that calls 536 * object_alloc() to supply an object for the caller) need to be carefully noted 537 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 538 * prevent all objects hashed to the affected rwlocks from ever being moved. 539 * 540 * The pointer to a held object can be hashed to the holding rwlock even after 541 * the object has been freed. Although it is possible to release the hold 542 * after freeing the object, you may decide to release the hold implicitly in 543 * whatever function frees the object, so as to release the hold as soon as 544 * possible, and for the sake of symmetry with the function that implicitly 545 * acquires the hold when it allocates the object. Here, object_free() releases 546 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 547 * matching pair with object_hold(): 548 * 549 * void 550 * object_free(object_t *object) 551 * { 552 * container_t *container; 553 * 554 * ASSERT(object_held(object)); 555 * container = object->o_container; 556 * mutex_enter(&container->c_objects_lock); 557 * object->o_container = 558 * (void *)((uintptr_t)object->o_container | 0x1); 559 * list_remove(&container->c_objects, object); 560 * mutex_exit(&container->c_objects_lock); 561 * object_rele(object); 562 * kmem_cache_free(object_cache, object); 563 * } 564 * 565 * Note that object_free() cannot safely accept an object pointer as an argument 566 * unless the object is already held. Any function that calls object_free() 567 * needs to be carefully noted since it similarly forms a matching pair with 568 * object_hold(). 569 * 570 * To complete the picture, the following callback function implements the 571 * general solution by moving objects only if they are currently unheld: 572 * 573 * static kmem_cbrc_t 574 * object_move(void *buf, void *newbuf, size_t size, void *arg) 575 * { 576 * object_t *op = buf, *np = newbuf; 577 * container_t *container; 578 * 579 * container = op->o_container; 580 * if ((uintptr_t)container & 0x3) { 581 * return (KMEM_CBRC_DONT_KNOW); 582 * } 583 * 584 * // Ensure that the container structure does not go away. 585 * if (container_hold(container) == 0) { 586 * return (KMEM_CBRC_DONT_KNOW); 587 * } 588 * 589 * mutex_enter(&container->c_objects_lock); 590 * if (container != op->o_container) { 591 * mutex_exit(&container->c_objects_lock); 592 * container_rele(container); 593 * return (KMEM_CBRC_DONT_KNOW); 594 * } 595 * 596 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 597 * mutex_exit(&container->c_objects_lock); 598 * container_rele(container); 599 * return (KMEM_CBRC_LATER); 600 * } 601 * 602 * object_move_impl(op, np); // critical section 603 * rw_exit(OBJECT_RWLOCK(op)); 604 * 605 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 606 * list_link_replace(&op->o_link_node, &np->o_link_node); 607 * mutex_exit(&container->c_objects_lock); 608 * container_rele(container); 609 * return (KMEM_CBRC_YES); 610 * } 611 * 612 * Note that object_move() must invalidate the designated o_container pointer of 613 * the old object in the same way that object_free() does, since kmem will free 614 * the object in response to the KMEM_CBRC_YES return value. 615 * 616 * The lock order in object_move() differs from object_alloc(), which locks 617 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 618 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 619 * not a problem. Holding the lock on the object list in the example above 620 * through the entire callback not only prevents the object from going away, it 621 * also allows you to lock the list elsewhere and know that none of its elements 622 * will move during iteration. 623 * 624 * Adding an explicit hold everywhere an object from the cache is used is tricky 625 * and involves much more change to client code than a cache-specific solution 626 * that leverages existing state to decide whether or not an object is 627 * movable. However, this approach has the advantage that no object remains 628 * immovable for any significant length of time, making it extremely unlikely 629 * that long-lived allocations can continue holding slabs hostage; and it works 630 * for any cache. 631 * 632 * 3. Consolidator Implementation 633 * 634 * Once the client supplies a move function that a) recognizes known objects and 635 * b) avoids moving objects that are actively in use, the remaining work is up 636 * to the consolidator to decide which objects to move and when to issue 637 * callbacks. 638 * 639 * The consolidator relies on the fact that a cache's slabs are ordered by 640 * usage. Each slab has a fixed number of objects. Depending on the slab's 641 * "color" (the offset of the first object from the beginning of the slab; 642 * offsets are staggered to mitigate false sharing of cache lines) it is either 643 * the maximum number of objects per slab determined at cache creation time or 644 * else the number closest to the maximum that fits within the space remaining 645 * after the initial offset. A completely allocated slab may contribute some 646 * internal fragmentation (per-slab overhead) but no external fragmentation, so 647 * it is of no interest to the consolidator. At the other extreme, slabs whose 648 * objects have all been freed to the slab are released to the virtual memory 649 * (VM) subsystem (objects freed to magazines are still allocated as far as the 650 * slab is concerned). External fragmentation exists when there are slabs 651 * somewhere between these extremes. A partial slab has at least one but not all 652 * of its objects allocated. The more partial slabs, and the fewer allocated 653 * objects on each of them, the higher the fragmentation. Hence the 654 * consolidator's overall strategy is to reduce the number of partial slabs by 655 * moving allocated objects from the least allocated slabs to the most allocated 656 * slabs. 657 * 658 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 659 * slabs are kept separately in an unordered list. Since the majority of slabs 660 * tend to be completely allocated (a typical unfragmented cache may have 661 * thousands of complete slabs and only a single partial slab), separating 662 * complete slabs improves the efficiency of partial slab ordering, since the 663 * complete slabs do not affect the depth or balance of the AVL tree. This 664 * ordered sequence of partial slabs acts as a "free list" supplying objects for 665 * allocation requests. 666 * 667 * Objects are always allocated from the first partial slab in the free list, 668 * where the allocation is most likely to eliminate a partial slab (by 669 * completely allocating it). Conversely, when a single object from a completely 670 * allocated slab is freed to the slab, that slab is added to the front of the 671 * free list. Since most free list activity involves highly allocated slabs 672 * coming and going at the front of the list, slabs tend naturally toward the 673 * ideal order: highly allocated at the front, sparsely allocated at the back. 674 * Slabs with few allocated objects are likely to become completely free if they 675 * keep a safe distance away from the front of the free list. Slab misorders 676 * interfere with the natural tendency of slabs to become completely free or 677 * completely allocated. For example, a slab with a single allocated object 678 * needs only a single free to escape the cache; its natural desire is 679 * frustrated when it finds itself at the front of the list where a second 680 * allocation happens just before the free could have released it. Another slab 681 * with all but one object allocated might have supplied the buffer instead, so 682 * that both (as opposed to neither) of the slabs would have been taken off the 683 * free list. 684 * 685 * Although slabs tend naturally toward the ideal order, misorders allowed by a 686 * simple list implementation defeat the consolidator's strategy of merging 687 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 688 * needs another way to fix misorders to optimize its callback strategy. One 689 * approach is to periodically scan a limited number of slabs, advancing a 690 * marker to hold the current scan position, and to move extreme misorders to 691 * the front or back of the free list and to the front or back of the current 692 * scan range. By making consecutive scan ranges overlap by one slab, the least 693 * allocated slab in the current range can be carried along from the end of one 694 * scan to the start of the next. 695 * 696 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 697 * task, however. Since most of the cache's activity is in the magazine layer, 698 * and allocations from the slab layer represent only a startup cost, the 699 * overhead of maintaining a balanced tree is not a significant concern compared 700 * to the opportunity of reducing complexity by eliminating the partial slab 701 * scanner just described. The overhead of an AVL tree is minimized by 702 * maintaining only partial slabs in the tree and keeping completely allocated 703 * slabs separately in a list. To avoid increasing the size of the slab 704 * structure the AVL linkage pointers are reused for the slab's list linkage, 705 * since the slab will always be either partial or complete, never stored both 706 * ways at the same time. To further minimize the overhead of the AVL tree the 707 * compare function that orders partial slabs by usage divides the range of 708 * allocated object counts into bins such that counts within the same bin are 709 * considered equal. Binning partial slabs makes it less likely that allocating 710 * or freeing a single object will change the slab's order, requiring a tree 711 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 712 * requiring some rebalancing of the tree). Allocation counts closest to 713 * completely free and completely allocated are left unbinned (finely sorted) to 714 * better support the consolidator's strategy of merging slabs at either 715 * extreme. 716 * 717 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 718 * 719 * The consolidator piggybacks on the kmem maintenance thread and is called on 720 * the same interval as kmem_cache_update(), once per cache every fifteen 721 * seconds. kmem maintains a running count of unallocated objects in the slab 722 * layer (cache_bufslab). The consolidator checks whether that number exceeds 723 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 724 * there is a significant number of slabs in the cache (arbitrarily a minimum 725 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 726 * working set are included in the assessment, and magazines in the depot are 727 * reaped if those objects would lift cache_bufslab above the fragmentation 728 * threshold. Once the consolidator decides that a cache is fragmented, it looks 729 * for a candidate slab to reclaim, starting at the end of the partial slab free 730 * list and scanning backwards. At first the consolidator is choosy: only a slab 731 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 732 * single allocated object, regardless of percentage). If there is difficulty 733 * finding a candidate slab, kmem raises the allocation threshold incrementally, 734 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 735 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 736 * even in the worst case of every slab in the cache being almost 7/8 allocated. 737 * The threshold can also be lowered incrementally when candidate slabs are easy 738 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 739 * is no longer fragmented. 740 * 741 * 3.2 Generating Callbacks 742 * 743 * Once an eligible slab is chosen, a callback is generated for every allocated 744 * object on the slab, in the hope that the client will move everything off the 745 * slab and make it reclaimable. Objects selected as move destinations are 746 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 747 * order (most allocated at the front, least allocated at the back) and a 748 * cooperative client, the consolidator will succeed in removing slabs from both 749 * ends of the free list, completely allocating on the one hand and completely 750 * freeing on the other. Objects selected as move destinations are allocated in 751 * the kmem maintenance thread where move requests are enqueued. A separate 752 * callback thread removes pending callbacks from the queue and calls the 753 * client. The separate thread ensures that client code (the move function) does 754 * not interfere with internal kmem maintenance tasks. A map of pending 755 * callbacks keyed by object address (the object to be moved) is checked to 756 * ensure that duplicate callbacks are not generated for the same object. 757 * Allocating the move destination (the object to move to) prevents subsequent 758 * callbacks from selecting the same destination as an earlier pending callback. 759 * 760 * Move requests can also be generated by kmem_cache_reap() when the system is 761 * desperate for memory and by kmem_cache_move_notify(), called by the client to 762 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 763 * The map of pending callbacks is protected by the same lock that protects the 764 * slab layer. 765 * 766 * When the system is desperate for memory, kmem does not bother to determine 767 * whether or not the cache exceeds the fragmentation threshold, but tries to 768 * consolidate as many slabs as possible. Normally, the consolidator chews 769 * slowly, one sparsely allocated slab at a time during each maintenance 770 * interval that the cache is fragmented. When desperate, the consolidator 771 * starts at the last partial slab and enqueues callbacks for every allocated 772 * object on every partial slab, working backwards until it reaches the first 773 * partial slab. The first partial slab, meanwhile, advances in pace with the 774 * consolidator as allocations to supply move destinations for the enqueued 775 * callbacks use up the highly allocated slabs at the front of the free list. 776 * Ideally, the overgrown free list collapses like an accordion, starting at 777 * both ends and ending at the center with a single partial slab. 778 * 779 * 3.3 Client Responses 780 * 781 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 782 * marks the slab that supplied the stuck object non-reclaimable and moves it to 783 * front of the free list. The slab remains marked as long as it remains on the 784 * free list, and it appears more allocated to the partial slab compare function 785 * than any unmarked slab, no matter how many of its objects are allocated. 786 * Since even one immovable object ties up the entire slab, the goal is to 787 * completely allocate any slab that cannot be completely freed. kmem does not 788 * bother generating callbacks to move objects from a marked slab unless the 789 * system is desperate. 790 * 791 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 792 * slab. If the client responds LATER too many times, kmem disbelieves and 793 * treats the response as a NO. The count is cleared when the slab is taken off 794 * the partial slab list or when the client moves one of the slab's objects. 795 * 796 * 4. Observability 797 * 798 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 799 * the ::kmem_slabs dcmd. For a complete description of the command, enter 800 * '::help kmem_slabs' at the mdb prompt. 801 */ 802 803 #include <sys/kmem_impl.h> 804 #include <sys/vmem_impl.h> 805 #include <sys/param.h> 806 #include <sys/sysmacros.h> 807 #include <sys/vm.h> 808 #include <sys/proc.h> 809 #include <sys/tuneable.h> 810 #include <sys/systm.h> 811 #include <sys/cmn_err.h> 812 #include <sys/debug.h> 813 #include <sys/sdt.h> 814 #include <sys/mutex.h> 815 #include <sys/bitmap.h> 816 #include <sys/atomic.h> 817 #include <sys/kobj.h> 818 #include <sys/disp.h> 819 #include <vm/seg_kmem.h> 820 #include <sys/log.h> 821 #include <sys/callb.h> 822 #include <sys/taskq.h> 823 #include <sys/modctl.h> 824 #include <sys/reboot.h> 825 #include <sys/id32.h> 826 #include <sys/zone.h> 827 #include <sys/netstack.h> 828 #ifdef DEBUG 829 #include <sys/random.h> 830 #endif 831 832 extern void streams_msg_init(void); 833 extern int segkp_fromheap; 834 extern void segkp_cache_free(void); 835 836 struct kmem_cache_kstat { 837 kstat_named_t kmc_buf_size; 838 kstat_named_t kmc_align; 839 kstat_named_t kmc_chunk_size; 840 kstat_named_t kmc_slab_size; 841 kstat_named_t kmc_alloc; 842 kstat_named_t kmc_alloc_fail; 843 kstat_named_t kmc_free; 844 kstat_named_t kmc_depot_alloc; 845 kstat_named_t kmc_depot_free; 846 kstat_named_t kmc_depot_contention; 847 kstat_named_t kmc_slab_alloc; 848 kstat_named_t kmc_slab_free; 849 kstat_named_t kmc_buf_constructed; 850 kstat_named_t kmc_buf_avail; 851 kstat_named_t kmc_buf_inuse; 852 kstat_named_t kmc_buf_total; 853 kstat_named_t kmc_buf_max; 854 kstat_named_t kmc_slab_create; 855 kstat_named_t kmc_slab_destroy; 856 kstat_named_t kmc_vmem_source; 857 kstat_named_t kmc_hash_size; 858 kstat_named_t kmc_hash_lookup_depth; 859 kstat_named_t kmc_hash_rescale; 860 kstat_named_t kmc_full_magazines; 861 kstat_named_t kmc_empty_magazines; 862 kstat_named_t kmc_magazine_size; 863 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 864 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 865 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 866 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 867 kstat_named_t kmc_move_yes; 868 kstat_named_t kmc_move_no; 869 kstat_named_t kmc_move_later; 870 kstat_named_t kmc_move_dont_need; 871 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 872 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 873 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 874 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 875 } kmem_cache_kstat = { 876 { "buf_size", KSTAT_DATA_UINT64 }, 877 { "align", KSTAT_DATA_UINT64 }, 878 { "chunk_size", KSTAT_DATA_UINT64 }, 879 { "slab_size", KSTAT_DATA_UINT64 }, 880 { "alloc", KSTAT_DATA_UINT64 }, 881 { "alloc_fail", KSTAT_DATA_UINT64 }, 882 { "free", KSTAT_DATA_UINT64 }, 883 { "depot_alloc", KSTAT_DATA_UINT64 }, 884 { "depot_free", KSTAT_DATA_UINT64 }, 885 { "depot_contention", KSTAT_DATA_UINT64 }, 886 { "slab_alloc", KSTAT_DATA_UINT64 }, 887 { "slab_free", KSTAT_DATA_UINT64 }, 888 { "buf_constructed", KSTAT_DATA_UINT64 }, 889 { "buf_avail", KSTAT_DATA_UINT64 }, 890 { "buf_inuse", KSTAT_DATA_UINT64 }, 891 { "buf_total", KSTAT_DATA_UINT64 }, 892 { "buf_max", KSTAT_DATA_UINT64 }, 893 { "slab_create", KSTAT_DATA_UINT64 }, 894 { "slab_destroy", KSTAT_DATA_UINT64 }, 895 { "vmem_source", KSTAT_DATA_UINT64 }, 896 { "hash_size", KSTAT_DATA_UINT64 }, 897 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 898 { "hash_rescale", KSTAT_DATA_UINT64 }, 899 { "full_magazines", KSTAT_DATA_UINT64 }, 900 { "empty_magazines", KSTAT_DATA_UINT64 }, 901 { "magazine_size", KSTAT_DATA_UINT64 }, 902 { "reap", KSTAT_DATA_UINT64 }, 903 { "defrag", KSTAT_DATA_UINT64 }, 904 { "scan", KSTAT_DATA_UINT64 }, 905 { "move_callbacks", KSTAT_DATA_UINT64 }, 906 { "move_yes", KSTAT_DATA_UINT64 }, 907 { "move_no", KSTAT_DATA_UINT64 }, 908 { "move_later", KSTAT_DATA_UINT64 }, 909 { "move_dont_need", KSTAT_DATA_UINT64 }, 910 { "move_dont_know", KSTAT_DATA_UINT64 }, 911 { "move_hunt_found", KSTAT_DATA_UINT64 }, 912 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 913 { "move_reclaimable", KSTAT_DATA_UINT64 }, 914 }; 915 916 static kmutex_t kmem_cache_kstat_lock; 917 918 /* 919 * The default set of caches to back kmem_alloc(). 920 * These sizes should be reevaluated periodically. 921 * 922 * We want allocations that are multiples of the coherency granularity 923 * (64 bytes) to be satisfied from a cache which is a multiple of 64 924 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 925 * the next kmem_cache_size greater than or equal to it must be a 926 * multiple of 64. 927 * 928 * We split the table into two sections: size <= 4k and size > 4k. This 929 * saves a lot of space and cache footprint in our cache tables. 930 */ 931 static const int kmem_alloc_sizes[] = { 932 1 * 8, 933 2 * 8, 934 3 * 8, 935 4 * 8, 5 * 8, 6 * 8, 7 * 8, 936 4 * 16, 5 * 16, 6 * 16, 7 * 16, 937 4 * 32, 5 * 32, 6 * 32, 7 * 32, 938 4 * 64, 5 * 64, 6 * 64, 7 * 64, 939 4 * 128, 5 * 128, 6 * 128, 7 * 128, 940 P2ALIGN(8192 / 7, 64), 941 P2ALIGN(8192 / 6, 64), 942 P2ALIGN(8192 / 5, 64), 943 P2ALIGN(8192 / 4, 64), 944 P2ALIGN(8192 / 3, 64), 945 P2ALIGN(8192 / 2, 64), 946 }; 947 948 static const int kmem_big_alloc_sizes[] = { 949 2 * 4096, 3 * 4096, 950 2 * 8192, 3 * 8192, 951 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 952 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 953 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 954 16 * 8192 955 }; 956 957 #define KMEM_MAXBUF 4096 958 #define KMEM_BIG_MAXBUF_32BIT 32768 959 #define KMEM_BIG_MAXBUF 131072 960 961 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 962 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 963 964 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 965 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 966 967 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 968 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 969 970 static kmem_magtype_t kmem_magtype[] = { 971 { 1, 8, 3200, 65536 }, 972 { 3, 16, 256, 32768 }, 973 { 7, 32, 64, 16384 }, 974 { 15, 64, 0, 8192 }, 975 { 31, 64, 0, 4096 }, 976 { 47, 64, 0, 2048 }, 977 { 63, 64, 0, 1024 }, 978 { 95, 64, 0, 512 }, 979 { 143, 64, 0, 0 }, 980 }; 981 982 static uint32_t kmem_reaping; 983 static uint32_t kmem_reaping_idspace; 984 985 /* 986 * kmem tunables 987 */ 988 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 989 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 990 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 991 int kmem_panic = 1; /* whether to panic on error */ 992 int kmem_logging = 1; /* kmem_log_enter() override */ 993 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 994 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 995 size_t kmem_content_log_size; /* content log size [2% of memory] */ 996 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 997 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 998 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 999 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1000 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1001 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1002 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1003 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1004 1005 #ifdef _LP64 1006 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1007 #else 1008 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1009 #endif 1010 1011 #ifdef DEBUG 1012 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1013 #else 1014 int kmem_flags = 0; 1015 #endif 1016 int kmem_ready; 1017 1018 static kmem_cache_t *kmem_slab_cache; 1019 static kmem_cache_t *kmem_bufctl_cache; 1020 static kmem_cache_t *kmem_bufctl_audit_cache; 1021 1022 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1023 static list_t kmem_caches; 1024 1025 static taskq_t *kmem_taskq; 1026 static kmutex_t kmem_flags_lock; 1027 static vmem_t *kmem_metadata_arena; 1028 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1029 static vmem_t *kmem_cache_arena; 1030 static vmem_t *kmem_hash_arena; 1031 static vmem_t *kmem_log_arena; 1032 static vmem_t *kmem_oversize_arena; 1033 static vmem_t *kmem_va_arena; 1034 static vmem_t *kmem_default_arena; 1035 static vmem_t *kmem_firewall_va_arena; 1036 static vmem_t *kmem_firewall_arena; 1037 1038 /* 1039 * Define KMEM_STATS to turn on statistic gathering. By default, it is only 1040 * turned on when DEBUG is also defined. 1041 */ 1042 #ifdef DEBUG 1043 #define KMEM_STATS 1044 #endif /* DEBUG */ 1045 1046 #ifdef KMEM_STATS 1047 #define KMEM_STAT_ADD(stat) ((stat)++) 1048 #define KMEM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++)) 1049 #else 1050 #define KMEM_STAT_ADD(stat) /* nothing */ 1051 #define KMEM_STAT_COND_ADD(cond, stat) /* nothing */ 1052 #endif /* KMEM_STATS */ 1053 1054 /* 1055 * kmem slab consolidator thresholds (tunables) 1056 */ 1057 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1058 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1060 /* 1061 * Maximum number of slabs from which to move buffers during a single 1062 * maintenance interval while the system is not low on memory. 1063 */ 1064 size_t kmem_reclaim_max_slabs = 1; 1065 /* 1066 * Number of slabs to scan backwards from the end of the partial slab list 1067 * when searching for buffers to relocate. 1068 */ 1069 size_t kmem_reclaim_scan_range = 12; 1070 1071 #ifdef KMEM_STATS 1072 static struct { 1073 uint64_t kms_callbacks; 1074 uint64_t kms_yes; 1075 uint64_t kms_no; 1076 uint64_t kms_later; 1077 uint64_t kms_dont_need; 1078 uint64_t kms_dont_know; 1079 uint64_t kms_hunt_found_mag; 1080 uint64_t kms_hunt_found_slab; 1081 uint64_t kms_hunt_alloc_fail; 1082 uint64_t kms_hunt_lucky; 1083 uint64_t kms_notify; 1084 uint64_t kms_notify_callbacks; 1085 uint64_t kms_disbelief; 1086 uint64_t kms_already_pending; 1087 uint64_t kms_callback_alloc_fail; 1088 uint64_t kms_callback_taskq_fail; 1089 uint64_t kms_endscan_slab_dead; 1090 uint64_t kms_endscan_slab_destroyed; 1091 uint64_t kms_endscan_nomem; 1092 uint64_t kms_endscan_refcnt_changed; 1093 uint64_t kms_endscan_nomove_changed; 1094 uint64_t kms_endscan_freelist; 1095 uint64_t kms_avl_update; 1096 uint64_t kms_avl_noupdate; 1097 uint64_t kms_no_longer_reclaimable; 1098 uint64_t kms_notify_no_longer_reclaimable; 1099 uint64_t kms_notify_slab_dead; 1100 uint64_t kms_notify_slab_destroyed; 1101 uint64_t kms_alloc_fail; 1102 uint64_t kms_constructor_fail; 1103 uint64_t kms_dead_slabs_freed; 1104 uint64_t kms_defrags; 1105 uint64_t kms_scans; 1106 uint64_t kms_scan_depot_ws_reaps; 1107 uint64_t kms_debug_reaps; 1108 uint64_t kms_debug_scans; 1109 } kmem_move_stats; 1110 #endif /* KMEM_STATS */ 1111 1112 /* consolidator knobs */ 1113 static boolean_t kmem_move_noreap; 1114 static boolean_t kmem_move_blocked; 1115 static boolean_t kmem_move_fulltilt; 1116 static boolean_t kmem_move_any_partial; 1117 1118 #ifdef DEBUG 1119 /* 1120 * kmem consolidator debug tunables: 1121 * Ensure code coverage by occasionally running the consolidator even when the 1122 * caches are not fragmented (they may never be). These intervals are mean time 1123 * in cache maintenance intervals (kmem_cache_update). 1124 */ 1125 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1126 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1127 #endif /* DEBUG */ 1128 1129 static kmem_cache_t *kmem_defrag_cache; 1130 static kmem_cache_t *kmem_move_cache; 1131 static taskq_t *kmem_move_taskq; 1132 1133 static void kmem_cache_scan(kmem_cache_t *); 1134 static void kmem_cache_defrag(kmem_cache_t *); 1135 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1136 1137 1138 kmem_log_header_t *kmem_transaction_log; 1139 kmem_log_header_t *kmem_content_log; 1140 kmem_log_header_t *kmem_failure_log; 1141 kmem_log_header_t *kmem_slab_log; 1142 1143 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1144 1145 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1146 if ((count) > 0) { \ 1147 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1148 pc_t *_e; \ 1149 /* memmove() the old entries down one notch */ \ 1150 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1151 *_e = *(_e - 1); \ 1152 *_s = (uintptr_t)(caller); \ 1153 } 1154 1155 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1156 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1157 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1158 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1159 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1160 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1161 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1162 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1163 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1164 1165 struct { 1166 hrtime_t kmp_timestamp; /* timestamp of panic */ 1167 int kmp_error; /* type of kmem error */ 1168 void *kmp_buffer; /* buffer that induced panic */ 1169 void *kmp_realbuf; /* real start address for buffer */ 1170 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1171 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1172 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1173 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1174 } kmem_panic_info; 1175 1176 1177 static void 1178 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1179 { 1180 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1181 uint64_t *buf = buf_arg; 1182 1183 while (buf < bufend) 1184 *buf++ = pattern; 1185 } 1186 1187 static void * 1188 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1189 { 1190 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1191 uint64_t *buf; 1192 1193 for (buf = buf_arg; buf < bufend; buf++) 1194 if (*buf != pattern) 1195 return (buf); 1196 return (NULL); 1197 } 1198 1199 static void * 1200 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1201 { 1202 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1203 uint64_t *buf; 1204 1205 for (buf = buf_arg; buf < bufend; buf++) { 1206 if (*buf != old) { 1207 copy_pattern(old, buf_arg, 1208 (char *)buf - (char *)buf_arg); 1209 return (buf); 1210 } 1211 *buf = new; 1212 } 1213 1214 return (NULL); 1215 } 1216 1217 static void 1218 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1219 { 1220 kmem_cache_t *cp; 1221 1222 mutex_enter(&kmem_cache_lock); 1223 for (cp = list_head(&kmem_caches); cp != NULL; 1224 cp = list_next(&kmem_caches, cp)) 1225 if (tq != NULL) 1226 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1227 tqflag); 1228 else 1229 func(cp); 1230 mutex_exit(&kmem_cache_lock); 1231 } 1232 1233 static void 1234 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1235 { 1236 kmem_cache_t *cp; 1237 1238 mutex_enter(&kmem_cache_lock); 1239 for (cp = list_head(&kmem_caches); cp != NULL; 1240 cp = list_next(&kmem_caches, cp)) { 1241 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1242 continue; 1243 if (tq != NULL) 1244 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1245 tqflag); 1246 else 1247 func(cp); 1248 } 1249 mutex_exit(&kmem_cache_lock); 1250 } 1251 1252 /* 1253 * Debugging support. Given a buffer address, find its slab. 1254 */ 1255 static kmem_slab_t * 1256 kmem_findslab(kmem_cache_t *cp, void *buf) 1257 { 1258 kmem_slab_t *sp; 1259 1260 mutex_enter(&cp->cache_lock); 1261 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1262 sp = list_next(&cp->cache_complete_slabs, sp)) { 1263 if (KMEM_SLAB_MEMBER(sp, buf)) { 1264 mutex_exit(&cp->cache_lock); 1265 return (sp); 1266 } 1267 } 1268 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1269 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1270 if (KMEM_SLAB_MEMBER(sp, buf)) { 1271 mutex_exit(&cp->cache_lock); 1272 return (sp); 1273 } 1274 } 1275 mutex_exit(&cp->cache_lock); 1276 1277 return (NULL); 1278 } 1279 1280 static void 1281 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1282 { 1283 kmem_buftag_t *btp = NULL; 1284 kmem_bufctl_t *bcp = NULL; 1285 kmem_cache_t *cp = cparg; 1286 kmem_slab_t *sp; 1287 uint64_t *off; 1288 void *buf = bufarg; 1289 1290 kmem_logging = 0; /* stop logging when a bad thing happens */ 1291 1292 kmem_panic_info.kmp_timestamp = gethrtime(); 1293 1294 sp = kmem_findslab(cp, buf); 1295 if (sp == NULL) { 1296 for (cp = list_tail(&kmem_caches); cp != NULL; 1297 cp = list_prev(&kmem_caches, cp)) { 1298 if ((sp = kmem_findslab(cp, buf)) != NULL) 1299 break; 1300 } 1301 } 1302 1303 if (sp == NULL) { 1304 cp = NULL; 1305 error = KMERR_BADADDR; 1306 } else { 1307 if (cp != cparg) 1308 error = KMERR_BADCACHE; 1309 else 1310 buf = (char *)bufarg - ((uintptr_t)bufarg - 1311 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1312 if (buf != bufarg) 1313 error = KMERR_BADBASE; 1314 if (cp->cache_flags & KMF_BUFTAG) 1315 btp = KMEM_BUFTAG(cp, buf); 1316 if (cp->cache_flags & KMF_HASH) { 1317 mutex_enter(&cp->cache_lock); 1318 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1319 if (bcp->bc_addr == buf) 1320 break; 1321 mutex_exit(&cp->cache_lock); 1322 if (bcp == NULL && btp != NULL) 1323 bcp = btp->bt_bufctl; 1324 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1325 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1326 bcp->bc_addr != buf) { 1327 error = KMERR_BADBUFCTL; 1328 bcp = NULL; 1329 } 1330 } 1331 } 1332 1333 kmem_panic_info.kmp_error = error; 1334 kmem_panic_info.kmp_buffer = bufarg; 1335 kmem_panic_info.kmp_realbuf = buf; 1336 kmem_panic_info.kmp_cache = cparg; 1337 kmem_panic_info.kmp_realcache = cp; 1338 kmem_panic_info.kmp_slab = sp; 1339 kmem_panic_info.kmp_bufctl = bcp; 1340 1341 printf("kernel memory allocator: "); 1342 1343 switch (error) { 1344 1345 case KMERR_MODIFIED: 1346 printf("buffer modified after being freed\n"); 1347 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1348 if (off == NULL) /* shouldn't happen */ 1349 off = buf; 1350 printf("modification occurred at offset 0x%lx " 1351 "(0x%llx replaced by 0x%llx)\n", 1352 (uintptr_t)off - (uintptr_t)buf, 1353 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1354 break; 1355 1356 case KMERR_REDZONE: 1357 printf("redzone violation: write past end of buffer\n"); 1358 break; 1359 1360 case KMERR_BADADDR: 1361 printf("invalid free: buffer not in cache\n"); 1362 break; 1363 1364 case KMERR_DUPFREE: 1365 printf("duplicate free: buffer freed twice\n"); 1366 break; 1367 1368 case KMERR_BADBUFTAG: 1369 printf("boundary tag corrupted\n"); 1370 printf("bcp ^ bxstat = %lx, should be %lx\n", 1371 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1372 KMEM_BUFTAG_FREE); 1373 break; 1374 1375 case KMERR_BADBUFCTL: 1376 printf("bufctl corrupted\n"); 1377 break; 1378 1379 case KMERR_BADCACHE: 1380 printf("buffer freed to wrong cache\n"); 1381 printf("buffer was allocated from %s,\n", cp->cache_name); 1382 printf("caller attempting free to %s.\n", cparg->cache_name); 1383 break; 1384 1385 case KMERR_BADSIZE: 1386 printf("bad free: free size (%u) != alloc size (%u)\n", 1387 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1388 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1389 break; 1390 1391 case KMERR_BADBASE: 1392 printf("bad free: free address (%p) != alloc address (%p)\n", 1393 bufarg, buf); 1394 break; 1395 } 1396 1397 printf("buffer=%p bufctl=%p cache: %s\n", 1398 bufarg, (void *)bcp, cparg->cache_name); 1399 1400 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1401 error != KMERR_BADBUFCTL) { 1402 int d; 1403 timestruc_t ts; 1404 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1405 1406 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1407 printf("previous transaction on buffer %p:\n", buf); 1408 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1409 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1410 (void *)sp, cp->cache_name); 1411 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1412 ulong_t off; 1413 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1414 printf("%s+%lx\n", sym ? sym : "?", off); 1415 } 1416 } 1417 if (kmem_panic > 0) 1418 panic("kernel heap corruption detected"); 1419 if (kmem_panic == 0) 1420 debug_enter(NULL); 1421 kmem_logging = 1; /* resume logging */ 1422 } 1423 1424 static kmem_log_header_t * 1425 kmem_log_init(size_t logsize) 1426 { 1427 kmem_log_header_t *lhp; 1428 int nchunks = 4 * max_ncpus; 1429 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1430 int i; 1431 1432 /* 1433 * Make sure that lhp->lh_cpu[] is nicely aligned 1434 * to prevent false sharing of cache lines. 1435 */ 1436 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1437 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1438 NULL, NULL, VM_SLEEP); 1439 bzero(lhp, lhsize); 1440 1441 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1442 lhp->lh_nchunks = nchunks; 1443 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1444 lhp->lh_base = vmem_alloc(kmem_log_arena, 1445 lhp->lh_chunksize * nchunks, VM_SLEEP); 1446 lhp->lh_free = vmem_alloc(kmem_log_arena, 1447 nchunks * sizeof (int), VM_SLEEP); 1448 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1449 1450 for (i = 0; i < max_ncpus; i++) { 1451 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1452 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1453 clhp->clh_chunk = i; 1454 } 1455 1456 for (i = max_ncpus; i < nchunks; i++) 1457 lhp->lh_free[i] = i; 1458 1459 lhp->lh_head = max_ncpus; 1460 lhp->lh_tail = 0; 1461 1462 return (lhp); 1463 } 1464 1465 static void * 1466 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1467 { 1468 void *logspace; 1469 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1470 1471 if (lhp == NULL || kmem_logging == 0 || panicstr) 1472 return (NULL); 1473 1474 mutex_enter(&clhp->clh_lock); 1475 clhp->clh_hits++; 1476 if (size > clhp->clh_avail) { 1477 mutex_enter(&lhp->lh_lock); 1478 lhp->lh_hits++; 1479 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1480 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1481 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1482 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1483 clhp->clh_current = lhp->lh_base + 1484 clhp->clh_chunk * lhp->lh_chunksize; 1485 clhp->clh_avail = lhp->lh_chunksize; 1486 if (size > lhp->lh_chunksize) 1487 size = lhp->lh_chunksize; 1488 mutex_exit(&lhp->lh_lock); 1489 } 1490 logspace = clhp->clh_current; 1491 clhp->clh_current += size; 1492 clhp->clh_avail -= size; 1493 bcopy(data, logspace, size); 1494 mutex_exit(&clhp->clh_lock); 1495 return (logspace); 1496 } 1497 1498 #define KMEM_AUDIT(lp, cp, bcp) \ 1499 { \ 1500 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1501 _bcp->bc_timestamp = gethrtime(); \ 1502 _bcp->bc_thread = curthread; \ 1503 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1504 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1505 } 1506 1507 static void 1508 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1509 kmem_slab_t *sp, void *addr) 1510 { 1511 kmem_bufctl_audit_t bca; 1512 1513 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1514 bca.bc_addr = addr; 1515 bca.bc_slab = sp; 1516 bca.bc_cache = cp; 1517 KMEM_AUDIT(lp, cp, &bca); 1518 } 1519 1520 /* 1521 * Create a new slab for cache cp. 1522 */ 1523 static kmem_slab_t * 1524 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1525 { 1526 size_t slabsize = cp->cache_slabsize; 1527 size_t chunksize = cp->cache_chunksize; 1528 int cache_flags = cp->cache_flags; 1529 size_t color, chunks; 1530 char *buf, *slab; 1531 kmem_slab_t *sp; 1532 kmem_bufctl_t *bcp; 1533 vmem_t *vmp = cp->cache_arena; 1534 1535 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1536 1537 color = cp->cache_color + cp->cache_align; 1538 if (color > cp->cache_maxcolor) 1539 color = cp->cache_mincolor; 1540 cp->cache_color = color; 1541 1542 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1543 1544 if (slab == NULL) 1545 goto vmem_alloc_failure; 1546 1547 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1548 1549 /* 1550 * Reverify what was already checked in kmem_cache_set_move(), since the 1551 * consolidator depends (for correctness) on slabs being initialized 1552 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1553 * clients to distinguish uninitialized memory from known objects). 1554 */ 1555 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1556 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1557 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1558 1559 if (cache_flags & KMF_HASH) { 1560 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1561 goto slab_alloc_failure; 1562 chunks = (slabsize - color) / chunksize; 1563 } else { 1564 sp = KMEM_SLAB(cp, slab); 1565 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1566 } 1567 1568 sp->slab_cache = cp; 1569 sp->slab_head = NULL; 1570 sp->slab_refcnt = 0; 1571 sp->slab_base = buf = slab + color; 1572 sp->slab_chunks = chunks; 1573 sp->slab_stuck_offset = (uint32_t)-1; 1574 sp->slab_later_count = 0; 1575 sp->slab_flags = 0; 1576 1577 ASSERT(chunks > 0); 1578 while (chunks-- != 0) { 1579 if (cache_flags & KMF_HASH) { 1580 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1581 if (bcp == NULL) 1582 goto bufctl_alloc_failure; 1583 if (cache_flags & KMF_AUDIT) { 1584 kmem_bufctl_audit_t *bcap = 1585 (kmem_bufctl_audit_t *)bcp; 1586 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1587 bcap->bc_cache = cp; 1588 } 1589 bcp->bc_addr = buf; 1590 bcp->bc_slab = sp; 1591 } else { 1592 bcp = KMEM_BUFCTL(cp, buf); 1593 } 1594 if (cache_flags & KMF_BUFTAG) { 1595 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1596 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1597 btp->bt_bufctl = bcp; 1598 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1599 if (cache_flags & KMF_DEADBEEF) { 1600 copy_pattern(KMEM_FREE_PATTERN, buf, 1601 cp->cache_verify); 1602 } 1603 } 1604 bcp->bc_next = sp->slab_head; 1605 sp->slab_head = bcp; 1606 buf += chunksize; 1607 } 1608 1609 kmem_log_event(kmem_slab_log, cp, sp, slab); 1610 1611 return (sp); 1612 1613 bufctl_alloc_failure: 1614 1615 while ((bcp = sp->slab_head) != NULL) { 1616 sp->slab_head = bcp->bc_next; 1617 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1618 } 1619 kmem_cache_free(kmem_slab_cache, sp); 1620 1621 slab_alloc_failure: 1622 1623 vmem_free(vmp, slab, slabsize); 1624 1625 vmem_alloc_failure: 1626 1627 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1628 atomic_add_64(&cp->cache_alloc_fail, 1); 1629 1630 return (NULL); 1631 } 1632 1633 /* 1634 * Destroy a slab. 1635 */ 1636 static void 1637 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1638 { 1639 vmem_t *vmp = cp->cache_arena; 1640 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1641 1642 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1643 ASSERT(sp->slab_refcnt == 0); 1644 1645 if (cp->cache_flags & KMF_HASH) { 1646 kmem_bufctl_t *bcp; 1647 while ((bcp = sp->slab_head) != NULL) { 1648 sp->slab_head = bcp->bc_next; 1649 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1650 } 1651 kmem_cache_free(kmem_slab_cache, sp); 1652 } 1653 vmem_free(vmp, slab, cp->cache_slabsize); 1654 } 1655 1656 static void * 1657 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1658 { 1659 kmem_bufctl_t *bcp, **hash_bucket; 1660 void *buf; 1661 boolean_t new_slab = (sp->slab_refcnt == 0); 1662 1663 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1664 /* 1665 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1666 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1667 * slab is newly created. 1668 */ 1669 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1670 (sp == avl_first(&cp->cache_partial_slabs)))); 1671 ASSERT(sp->slab_cache == cp); 1672 1673 cp->cache_slab_alloc++; 1674 cp->cache_bufslab--; 1675 sp->slab_refcnt++; 1676 1677 bcp = sp->slab_head; 1678 sp->slab_head = bcp->bc_next; 1679 1680 if (cp->cache_flags & KMF_HASH) { 1681 /* 1682 * Add buffer to allocated-address hash table. 1683 */ 1684 buf = bcp->bc_addr; 1685 hash_bucket = KMEM_HASH(cp, buf); 1686 bcp->bc_next = *hash_bucket; 1687 *hash_bucket = bcp; 1688 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1689 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1690 } 1691 } else { 1692 buf = KMEM_BUF(cp, bcp); 1693 } 1694 1695 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1696 1697 if (sp->slab_head == NULL) { 1698 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1699 if (new_slab) { 1700 ASSERT(sp->slab_chunks == 1); 1701 } else { 1702 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1703 avl_remove(&cp->cache_partial_slabs, sp); 1704 sp->slab_later_count = 0; /* clear history */ 1705 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1706 sp->slab_stuck_offset = (uint32_t)-1; 1707 } 1708 list_insert_head(&cp->cache_complete_slabs, sp); 1709 cp->cache_complete_slab_count++; 1710 return (buf); 1711 } 1712 1713 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1714 /* 1715 * Peek to see if the magazine layer is enabled before 1716 * we prefill. We're not holding the cpu cache lock, 1717 * so the peek could be wrong, but there's no harm in it. 1718 */ 1719 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1720 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1721 kmem_slab_prefill(cp, sp); 1722 return (buf); 1723 } 1724 1725 if (new_slab) { 1726 avl_add(&cp->cache_partial_slabs, sp); 1727 return (buf); 1728 } 1729 1730 /* 1731 * The slab is now more allocated than it was, so the 1732 * order remains unchanged. 1733 */ 1734 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1735 return (buf); 1736 } 1737 1738 /* 1739 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1740 */ 1741 static void * 1742 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1743 { 1744 kmem_slab_t *sp; 1745 void *buf; 1746 boolean_t test_destructor; 1747 1748 mutex_enter(&cp->cache_lock); 1749 test_destructor = (cp->cache_slab_alloc == 0); 1750 sp = avl_first(&cp->cache_partial_slabs); 1751 if (sp == NULL) { 1752 ASSERT(cp->cache_bufslab == 0); 1753 1754 /* 1755 * The freelist is empty. Create a new slab. 1756 */ 1757 mutex_exit(&cp->cache_lock); 1758 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1759 return (NULL); 1760 } 1761 mutex_enter(&cp->cache_lock); 1762 cp->cache_slab_create++; 1763 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1764 cp->cache_bufmax = cp->cache_buftotal; 1765 cp->cache_bufslab += sp->slab_chunks; 1766 } 1767 1768 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1769 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1770 (cp->cache_complete_slab_count + 1771 avl_numnodes(&cp->cache_partial_slabs) + 1772 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1773 mutex_exit(&cp->cache_lock); 1774 1775 if (test_destructor && cp->cache_destructor != NULL) { 1776 /* 1777 * On the first kmem_slab_alloc(), assert that it is valid to 1778 * call the destructor on a newly constructed object without any 1779 * client involvement. 1780 */ 1781 if ((cp->cache_constructor == NULL) || 1782 cp->cache_constructor(buf, cp->cache_private, 1783 kmflag) == 0) { 1784 cp->cache_destructor(buf, cp->cache_private); 1785 } 1786 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1787 cp->cache_bufsize); 1788 if (cp->cache_flags & KMF_DEADBEEF) { 1789 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1790 } 1791 } 1792 1793 return (buf); 1794 } 1795 1796 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1797 1798 /* 1799 * Free a raw (unconstructed) buffer to cp's slab layer. 1800 */ 1801 static void 1802 kmem_slab_free(kmem_cache_t *cp, void *buf) 1803 { 1804 kmem_slab_t *sp; 1805 kmem_bufctl_t *bcp, **prev_bcpp; 1806 1807 ASSERT(buf != NULL); 1808 1809 mutex_enter(&cp->cache_lock); 1810 cp->cache_slab_free++; 1811 1812 if (cp->cache_flags & KMF_HASH) { 1813 /* 1814 * Look up buffer in allocated-address hash table. 1815 */ 1816 prev_bcpp = KMEM_HASH(cp, buf); 1817 while ((bcp = *prev_bcpp) != NULL) { 1818 if (bcp->bc_addr == buf) { 1819 *prev_bcpp = bcp->bc_next; 1820 sp = bcp->bc_slab; 1821 break; 1822 } 1823 cp->cache_lookup_depth++; 1824 prev_bcpp = &bcp->bc_next; 1825 } 1826 } else { 1827 bcp = KMEM_BUFCTL(cp, buf); 1828 sp = KMEM_SLAB(cp, buf); 1829 } 1830 1831 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1832 mutex_exit(&cp->cache_lock); 1833 kmem_error(KMERR_BADADDR, cp, buf); 1834 return; 1835 } 1836 1837 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1838 /* 1839 * If this is the buffer that prevented the consolidator from 1840 * clearing the slab, we can reset the slab flags now that the 1841 * buffer is freed. (It makes sense to do this in 1842 * kmem_cache_free(), where the client gives up ownership of the 1843 * buffer, but on the hot path the test is too expensive.) 1844 */ 1845 kmem_slab_move_yes(cp, sp, buf); 1846 } 1847 1848 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1849 if (cp->cache_flags & KMF_CONTENTS) 1850 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1851 kmem_log_enter(kmem_content_log, buf, 1852 cp->cache_contents); 1853 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1854 } 1855 1856 bcp->bc_next = sp->slab_head; 1857 sp->slab_head = bcp; 1858 1859 cp->cache_bufslab++; 1860 ASSERT(sp->slab_refcnt >= 1); 1861 1862 if (--sp->slab_refcnt == 0) { 1863 /* 1864 * There are no outstanding allocations from this slab, 1865 * so we can reclaim the memory. 1866 */ 1867 if (sp->slab_chunks == 1) { 1868 list_remove(&cp->cache_complete_slabs, sp); 1869 cp->cache_complete_slab_count--; 1870 } else { 1871 avl_remove(&cp->cache_partial_slabs, sp); 1872 } 1873 1874 cp->cache_buftotal -= sp->slab_chunks; 1875 cp->cache_bufslab -= sp->slab_chunks; 1876 /* 1877 * Defer releasing the slab to the virtual memory subsystem 1878 * while there is a pending move callback, since we guarantee 1879 * that buffers passed to the move callback have only been 1880 * touched by kmem or by the client itself. Since the memory 1881 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1882 * set at least one of the two lowest order bits, the client can 1883 * test those bits in the move callback to determine whether or 1884 * not it knows about the buffer (assuming that the client also 1885 * sets one of those low order bits whenever it frees a buffer). 1886 */ 1887 if (cp->cache_defrag == NULL || 1888 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1889 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1890 cp->cache_slab_destroy++; 1891 mutex_exit(&cp->cache_lock); 1892 kmem_slab_destroy(cp, sp); 1893 } else { 1894 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1895 /* 1896 * Slabs are inserted at both ends of the deadlist to 1897 * distinguish between slabs freed while move callbacks 1898 * are pending (list head) and a slab freed while the 1899 * lock is dropped in kmem_move_buffers() (list tail) so 1900 * that in both cases slab_destroy() is called from the 1901 * right context. 1902 */ 1903 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1904 list_insert_tail(deadlist, sp); 1905 } else { 1906 list_insert_head(deadlist, sp); 1907 } 1908 cp->cache_defrag->kmd_deadcount++; 1909 mutex_exit(&cp->cache_lock); 1910 } 1911 return; 1912 } 1913 1914 if (bcp->bc_next == NULL) { 1915 /* Transition the slab from completely allocated to partial. */ 1916 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1917 ASSERT(sp->slab_chunks > 1); 1918 list_remove(&cp->cache_complete_slabs, sp); 1919 cp->cache_complete_slab_count--; 1920 avl_add(&cp->cache_partial_slabs, sp); 1921 } else { 1922 #ifdef DEBUG 1923 if (avl_update_gt(&cp->cache_partial_slabs, sp)) { 1924 KMEM_STAT_ADD(kmem_move_stats.kms_avl_update); 1925 } else { 1926 KMEM_STAT_ADD(kmem_move_stats.kms_avl_noupdate); 1927 } 1928 #else 1929 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1930 #endif 1931 } 1932 1933 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1934 (cp->cache_complete_slab_count + 1935 avl_numnodes(&cp->cache_partial_slabs) + 1936 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1937 mutex_exit(&cp->cache_lock); 1938 } 1939 1940 /* 1941 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1942 */ 1943 static int 1944 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1945 caddr_t caller) 1946 { 1947 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1948 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1949 uint32_t mtbf; 1950 1951 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1952 kmem_error(KMERR_BADBUFTAG, cp, buf); 1953 return (-1); 1954 } 1955 1956 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1957 1958 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1959 kmem_error(KMERR_BADBUFCTL, cp, buf); 1960 return (-1); 1961 } 1962 1963 if (cp->cache_flags & KMF_DEADBEEF) { 1964 if (!construct && (cp->cache_flags & KMF_LITE)) { 1965 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1966 kmem_error(KMERR_MODIFIED, cp, buf); 1967 return (-1); 1968 } 1969 if (cp->cache_constructor != NULL) 1970 *(uint64_t *)buf = btp->bt_redzone; 1971 else 1972 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1973 } else { 1974 construct = 1; 1975 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1976 KMEM_UNINITIALIZED_PATTERN, buf, 1977 cp->cache_verify)) { 1978 kmem_error(KMERR_MODIFIED, cp, buf); 1979 return (-1); 1980 } 1981 } 1982 } 1983 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1984 1985 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1986 gethrtime() % mtbf == 0 && 1987 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1988 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1989 if (!construct && cp->cache_destructor != NULL) 1990 cp->cache_destructor(buf, cp->cache_private); 1991 } else { 1992 mtbf = 0; 1993 } 1994 1995 if (mtbf || (construct && cp->cache_constructor != NULL && 1996 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1997 atomic_add_64(&cp->cache_alloc_fail, 1); 1998 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1999 if (cp->cache_flags & KMF_DEADBEEF) 2000 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2001 kmem_slab_free(cp, buf); 2002 return (1); 2003 } 2004 2005 if (cp->cache_flags & KMF_AUDIT) { 2006 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2007 } 2008 2009 if ((cp->cache_flags & KMF_LITE) && 2010 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2011 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2012 } 2013 2014 return (0); 2015 } 2016 2017 static int 2018 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 2019 { 2020 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2021 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 2022 kmem_slab_t *sp; 2023 2024 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 2025 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 2026 kmem_error(KMERR_DUPFREE, cp, buf); 2027 return (-1); 2028 } 2029 sp = kmem_findslab(cp, buf); 2030 if (sp == NULL || sp->slab_cache != cp) 2031 kmem_error(KMERR_BADADDR, cp, buf); 2032 else 2033 kmem_error(KMERR_REDZONE, cp, buf); 2034 return (-1); 2035 } 2036 2037 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 2038 2039 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 2040 kmem_error(KMERR_BADBUFCTL, cp, buf); 2041 return (-1); 2042 } 2043 2044 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 2045 kmem_error(KMERR_REDZONE, cp, buf); 2046 return (-1); 2047 } 2048 2049 if (cp->cache_flags & KMF_AUDIT) { 2050 if (cp->cache_flags & KMF_CONTENTS) 2051 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2052 buf, cp->cache_contents); 2053 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2054 } 2055 2056 if ((cp->cache_flags & KMF_LITE) && 2057 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2058 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2059 } 2060 2061 if (cp->cache_flags & KMF_DEADBEEF) { 2062 if (cp->cache_flags & KMF_LITE) 2063 btp->bt_redzone = *(uint64_t *)buf; 2064 else if (cp->cache_destructor != NULL) 2065 cp->cache_destructor(buf, cp->cache_private); 2066 2067 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2068 } 2069 2070 return (0); 2071 } 2072 2073 /* 2074 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2075 */ 2076 static void 2077 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2078 { 2079 int round; 2080 2081 ASSERT(!list_link_active(&cp->cache_link) || 2082 taskq_member(kmem_taskq, curthread)); 2083 2084 for (round = 0; round < nrounds; round++) { 2085 void *buf = mp->mag_round[round]; 2086 2087 if (cp->cache_flags & KMF_DEADBEEF) { 2088 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2089 cp->cache_verify) != NULL) { 2090 kmem_error(KMERR_MODIFIED, cp, buf); 2091 continue; 2092 } 2093 if ((cp->cache_flags & KMF_LITE) && 2094 cp->cache_destructor != NULL) { 2095 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2096 *(uint64_t *)buf = btp->bt_redzone; 2097 cp->cache_destructor(buf, cp->cache_private); 2098 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2099 } 2100 } else if (cp->cache_destructor != NULL) { 2101 cp->cache_destructor(buf, cp->cache_private); 2102 } 2103 2104 kmem_slab_free(cp, buf); 2105 } 2106 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2107 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2108 } 2109 2110 /* 2111 * Allocate a magazine from the depot. 2112 */ 2113 static kmem_magazine_t * 2114 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2115 { 2116 kmem_magazine_t *mp; 2117 2118 /* 2119 * If we can't get the depot lock without contention, 2120 * update our contention count. We use the depot 2121 * contention rate to determine whether we need to 2122 * increase the magazine size for better scalability. 2123 */ 2124 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2125 mutex_enter(&cp->cache_depot_lock); 2126 cp->cache_depot_contention++; 2127 } 2128 2129 if ((mp = mlp->ml_list) != NULL) { 2130 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2131 mlp->ml_list = mp->mag_next; 2132 if (--mlp->ml_total < mlp->ml_min) 2133 mlp->ml_min = mlp->ml_total; 2134 mlp->ml_alloc++; 2135 } 2136 2137 mutex_exit(&cp->cache_depot_lock); 2138 2139 return (mp); 2140 } 2141 2142 /* 2143 * Free a magazine to the depot. 2144 */ 2145 static void 2146 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2147 { 2148 mutex_enter(&cp->cache_depot_lock); 2149 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2150 mp->mag_next = mlp->ml_list; 2151 mlp->ml_list = mp; 2152 mlp->ml_total++; 2153 mutex_exit(&cp->cache_depot_lock); 2154 } 2155 2156 /* 2157 * Update the working set statistics for cp's depot. 2158 */ 2159 static void 2160 kmem_depot_ws_update(kmem_cache_t *cp) 2161 { 2162 mutex_enter(&cp->cache_depot_lock); 2163 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2164 cp->cache_full.ml_min = cp->cache_full.ml_total; 2165 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2166 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2167 mutex_exit(&cp->cache_depot_lock); 2168 } 2169 2170 /* 2171 * Reap all magazines that have fallen out of the depot's working set. 2172 */ 2173 static void 2174 kmem_depot_ws_reap(kmem_cache_t *cp) 2175 { 2176 long reap; 2177 kmem_magazine_t *mp; 2178 2179 ASSERT(!list_link_active(&cp->cache_link) || 2180 taskq_member(kmem_taskq, curthread)); 2181 2182 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2183 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) 2184 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2185 2186 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2187 while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) 2188 kmem_magazine_destroy(cp, mp, 0); 2189 } 2190 2191 static void 2192 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2193 { 2194 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2195 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2196 ASSERT(ccp->cc_magsize > 0); 2197 2198 ccp->cc_ploaded = ccp->cc_loaded; 2199 ccp->cc_prounds = ccp->cc_rounds; 2200 ccp->cc_loaded = mp; 2201 ccp->cc_rounds = rounds; 2202 } 2203 2204 /* 2205 * Intercept kmem alloc/free calls during crash dump in order to avoid 2206 * changing kmem state while memory is being saved to the dump device. 2207 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2208 * there are no locks because only one CPU calls kmem during a crash 2209 * dump. To enable this feature, first create the associated vmem 2210 * arena with VMC_DUMPSAFE. 2211 */ 2212 static void *kmem_dump_start; /* start of pre-reserved heap */ 2213 static void *kmem_dump_end; /* end of heap area */ 2214 static void *kmem_dump_curr; /* current free heap pointer */ 2215 static size_t kmem_dump_size; /* size of heap area */ 2216 2217 /* append to each buf created in the pre-reserved heap */ 2218 typedef struct kmem_dumpctl { 2219 void *kdc_next; /* cache dump free list linkage */ 2220 } kmem_dumpctl_t; 2221 2222 #define KMEM_DUMPCTL(cp, buf) \ 2223 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2224 sizeof (void *))) 2225 2226 /* Keep some simple stats. */ 2227 #define KMEM_DUMP_LOGS (100) 2228 2229 typedef struct kmem_dump_log { 2230 kmem_cache_t *kdl_cache; 2231 uint_t kdl_allocs; /* # of dump allocations */ 2232 uint_t kdl_frees; /* # of dump frees */ 2233 uint_t kdl_alloc_fails; /* # of allocation failures */ 2234 uint_t kdl_free_nondump; /* # of non-dump frees */ 2235 uint_t kdl_unsafe; /* cache was used, but unsafe */ 2236 } kmem_dump_log_t; 2237 2238 static kmem_dump_log_t *kmem_dump_log; 2239 static int kmem_dump_log_idx; 2240 2241 #define KDI_LOG(cp, stat) { \ 2242 kmem_dump_log_t *kdl; \ 2243 if ((kdl = (kmem_dump_log_t *)((cp)->cache_dumplog)) != NULL) { \ 2244 kdl->stat++; \ 2245 } else if (kmem_dump_log_idx < KMEM_DUMP_LOGS) { \ 2246 kdl = &kmem_dump_log[kmem_dump_log_idx++]; \ 2247 kdl->stat++; \ 2248 kdl->kdl_cache = (cp); \ 2249 (cp)->cache_dumplog = kdl; \ 2250 } \ 2251 } 2252 2253 /* set non zero for full report */ 2254 uint_t kmem_dump_verbose = 0; 2255 2256 /* stats for overize heap */ 2257 uint_t kmem_dump_oversize_allocs = 0; 2258 uint_t kmem_dump_oversize_max = 0; 2259 2260 static void 2261 kmem_dumppr(char **pp, char *e, const char *format, ...) 2262 { 2263 char *p = *pp; 2264 2265 if (p < e) { 2266 int n; 2267 va_list ap; 2268 2269 va_start(ap, format); 2270 n = vsnprintf(p, e - p, format, ap); 2271 va_end(ap); 2272 *pp = p + n; 2273 } 2274 } 2275 2276 /* 2277 * Called when dumpadm(1M) configures dump parameters. 2278 */ 2279 void 2280 kmem_dump_init(size_t size) 2281 { 2282 if (kmem_dump_start != NULL) 2283 kmem_free(kmem_dump_start, kmem_dump_size); 2284 2285 if (kmem_dump_log == NULL) 2286 kmem_dump_log = (kmem_dump_log_t *)kmem_zalloc(KMEM_DUMP_LOGS * 2287 sizeof (kmem_dump_log_t), KM_SLEEP); 2288 2289 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2290 2291 if (kmem_dump_start != NULL) { 2292 kmem_dump_size = size; 2293 kmem_dump_curr = kmem_dump_start; 2294 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2295 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2296 } else { 2297 kmem_dump_size = 0; 2298 kmem_dump_curr = NULL; 2299 kmem_dump_end = NULL; 2300 } 2301 } 2302 2303 /* 2304 * Set flag for each kmem_cache_t if is safe to use alternate dump 2305 * memory. Called just before panic crash dump starts. Set the flag 2306 * for the calling CPU. 2307 */ 2308 void 2309 kmem_dump_begin(void) 2310 { 2311 ASSERT(panicstr != NULL); 2312 if (kmem_dump_start != NULL) { 2313 kmem_cache_t *cp; 2314 2315 for (cp = list_head(&kmem_caches); cp != NULL; 2316 cp = list_next(&kmem_caches, cp)) { 2317 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2318 2319 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2320 cp->cache_flags |= KMF_DUMPDIVERT; 2321 ccp->cc_flags |= KMF_DUMPDIVERT; 2322 ccp->cc_dump_rounds = ccp->cc_rounds; 2323 ccp->cc_dump_prounds = ccp->cc_prounds; 2324 ccp->cc_rounds = ccp->cc_prounds = -1; 2325 } else { 2326 cp->cache_flags |= KMF_DUMPUNSAFE; 2327 ccp->cc_flags |= KMF_DUMPUNSAFE; 2328 } 2329 } 2330 } 2331 } 2332 2333 /* 2334 * finished dump intercept 2335 * print any warnings on the console 2336 * return verbose information to dumpsys() in the given buffer 2337 */ 2338 size_t 2339 kmem_dump_finish(char *buf, size_t size) 2340 { 2341 int kdi_idx; 2342 int kdi_end = kmem_dump_log_idx; 2343 int percent = 0; 2344 int header = 0; 2345 int warn = 0; 2346 size_t used; 2347 kmem_cache_t *cp; 2348 kmem_dump_log_t *kdl; 2349 char *e = buf + size; 2350 char *p = buf; 2351 2352 if (kmem_dump_size == 0 || kmem_dump_verbose == 0) 2353 return (0); 2354 2355 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2356 percent = (used * 100) / kmem_dump_size; 2357 2358 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2359 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2360 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2361 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2362 kmem_dump_oversize_allocs); 2363 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2364 kmem_dump_oversize_max); 2365 2366 for (kdi_idx = 0; kdi_idx < kdi_end; kdi_idx++) { 2367 kdl = &kmem_dump_log[kdi_idx]; 2368 cp = kdl->kdl_cache; 2369 if (cp == NULL) 2370 break; 2371 if (kdl->kdl_alloc_fails) 2372 ++warn; 2373 if (header == 0) { 2374 kmem_dumppr(&p, e, 2375 "Cache Name,Allocs,Frees,Alloc Fails," 2376 "Nondump Frees,Unsafe Allocs/Frees\n"); 2377 header = 1; 2378 } 2379 kmem_dumppr(&p, e, "%s,%d,%d,%d,%d,%d\n", 2380 cp->cache_name, kdl->kdl_allocs, kdl->kdl_frees, 2381 kdl->kdl_alloc_fails, kdl->kdl_free_nondump, 2382 kdl->kdl_unsafe); 2383 } 2384 2385 /* return buffer size used */ 2386 if (p < e) 2387 bzero(p, e - p); 2388 return (p - buf); 2389 } 2390 2391 /* 2392 * Allocate a constructed object from alternate dump memory. 2393 */ 2394 void * 2395 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2396 { 2397 void *buf; 2398 void *curr; 2399 char *bufend; 2400 2401 /* return a constructed object */ 2402 if ((buf = cp->cache_dumpfreelist) != NULL) { 2403 cp->cache_dumpfreelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2404 KDI_LOG(cp, kdl_allocs); 2405 return (buf); 2406 } 2407 2408 /* create a new constructed object */ 2409 curr = kmem_dump_curr; 2410 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2411 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2412 2413 /* hat layer objects cannot cross a page boundary */ 2414 if (cp->cache_align < PAGESIZE) { 2415 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2416 if (bufend > page) { 2417 bufend += page - (char *)buf; 2418 buf = (void *)page; 2419 } 2420 } 2421 2422 /* fall back to normal alloc if reserved area is used up */ 2423 if (bufend > (char *)kmem_dump_end) { 2424 kmem_dump_curr = kmem_dump_end; 2425 KDI_LOG(cp, kdl_alloc_fails); 2426 return (NULL); 2427 } 2428 2429 /* 2430 * Must advance curr pointer before calling a constructor that 2431 * may also allocate memory. 2432 */ 2433 kmem_dump_curr = bufend; 2434 2435 /* run constructor */ 2436 if (cp->cache_constructor != NULL && 2437 cp->cache_constructor(buf, cp->cache_private, kmflag) 2438 != 0) { 2439 #ifdef DEBUG 2440 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2441 cp->cache_name, (void *)cp); 2442 #endif 2443 /* reset curr pointer iff no allocs were done */ 2444 if (kmem_dump_curr == bufend) 2445 kmem_dump_curr = curr; 2446 2447 /* fall back to normal alloc if the constructor fails */ 2448 KDI_LOG(cp, kdl_alloc_fails); 2449 return (NULL); 2450 } 2451 2452 KDI_LOG(cp, kdl_allocs); 2453 return (buf); 2454 } 2455 2456 /* 2457 * Free a constructed object in alternate dump memory. 2458 */ 2459 int 2460 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2461 { 2462 /* save constructed buffers for next time */ 2463 if ((char *)buf >= (char *)kmem_dump_start && 2464 (char *)buf < (char *)kmem_dump_end) { 2465 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dumpfreelist; 2466 cp->cache_dumpfreelist = buf; 2467 KDI_LOG(cp, kdl_frees); 2468 return (0); 2469 } 2470 2471 /* count all non-dump buf frees */ 2472 KDI_LOG(cp, kdl_free_nondump); 2473 2474 /* just drop buffers that were allocated before dump started */ 2475 if (kmem_dump_curr < kmem_dump_end) 2476 return (0); 2477 2478 /* fall back to normal free if reserved area is used up */ 2479 return (1); 2480 } 2481 2482 /* 2483 * Allocate a constructed object from cache cp. 2484 */ 2485 void * 2486 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2487 { 2488 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2489 kmem_magazine_t *fmp; 2490 void *buf; 2491 2492 mutex_enter(&ccp->cc_lock); 2493 for (;;) { 2494 /* 2495 * If there's an object available in the current CPU's 2496 * loaded magazine, just take it and return. 2497 */ 2498 if (ccp->cc_rounds > 0) { 2499 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2500 ccp->cc_alloc++; 2501 mutex_exit(&ccp->cc_lock); 2502 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2503 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2504 ASSERT(!(ccp->cc_flags & 2505 KMF_DUMPDIVERT)); 2506 KDI_LOG(cp, kdl_unsafe); 2507 } 2508 if ((ccp->cc_flags & KMF_BUFTAG) && 2509 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2510 caller()) != 0) { 2511 if (kmflag & KM_NOSLEEP) 2512 return (NULL); 2513 mutex_enter(&ccp->cc_lock); 2514 continue; 2515 } 2516 } 2517 return (buf); 2518 } 2519 2520 /* 2521 * The loaded magazine is empty. If the previously loaded 2522 * magazine was full, exchange them and try again. 2523 */ 2524 if (ccp->cc_prounds > 0) { 2525 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2526 continue; 2527 } 2528 2529 /* 2530 * Return an alternate buffer at dump time to preserve 2531 * the heap. 2532 */ 2533 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2534 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2535 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2536 /* log it so that we can warn about it */ 2537 KDI_LOG(cp, kdl_unsafe); 2538 } else { 2539 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2540 NULL) { 2541 mutex_exit(&ccp->cc_lock); 2542 return (buf); 2543 } 2544 break; /* fall back to slab layer */ 2545 } 2546 } 2547 2548 /* 2549 * If the magazine layer is disabled, break out now. 2550 */ 2551 if (ccp->cc_magsize == 0) 2552 break; 2553 2554 /* 2555 * Try to get a full magazine from the depot. 2556 */ 2557 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2558 if (fmp != NULL) { 2559 if (ccp->cc_ploaded != NULL) 2560 kmem_depot_free(cp, &cp->cache_empty, 2561 ccp->cc_ploaded); 2562 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2563 continue; 2564 } 2565 2566 /* 2567 * There are no full magazines in the depot, 2568 * so fall through to the slab layer. 2569 */ 2570 break; 2571 } 2572 mutex_exit(&ccp->cc_lock); 2573 2574 /* 2575 * We couldn't allocate a constructed object from the magazine layer, 2576 * so get a raw buffer from the slab layer and apply its constructor. 2577 */ 2578 buf = kmem_slab_alloc(cp, kmflag); 2579 2580 if (buf == NULL) 2581 return (NULL); 2582 2583 if (cp->cache_flags & KMF_BUFTAG) { 2584 /* 2585 * Make kmem_cache_alloc_debug() apply the constructor for us. 2586 */ 2587 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2588 if (rc != 0) { 2589 if (kmflag & KM_NOSLEEP) 2590 return (NULL); 2591 /* 2592 * kmem_cache_alloc_debug() detected corruption 2593 * but didn't panic (kmem_panic <= 0). We should not be 2594 * here because the constructor failed (indicated by a 2595 * return code of 1). Try again. 2596 */ 2597 ASSERT(rc == -1); 2598 return (kmem_cache_alloc(cp, kmflag)); 2599 } 2600 return (buf); 2601 } 2602 2603 if (cp->cache_constructor != NULL && 2604 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2605 atomic_add_64(&cp->cache_alloc_fail, 1); 2606 kmem_slab_free(cp, buf); 2607 return (NULL); 2608 } 2609 2610 return (buf); 2611 } 2612 2613 /* 2614 * The freed argument tells whether or not kmem_cache_free_debug() has already 2615 * been called so that we can avoid the duplicate free error. For example, a 2616 * buffer on a magazine has already been freed by the client but is still 2617 * constructed. 2618 */ 2619 static void 2620 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2621 { 2622 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2623 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2624 return; 2625 2626 /* 2627 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2628 * kmem_cache_free_debug() will have already applied the destructor. 2629 */ 2630 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2631 cp->cache_destructor != NULL) { 2632 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2633 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2634 *(uint64_t *)buf = btp->bt_redzone; 2635 cp->cache_destructor(buf, cp->cache_private); 2636 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2637 } else { 2638 cp->cache_destructor(buf, cp->cache_private); 2639 } 2640 } 2641 2642 kmem_slab_free(cp, buf); 2643 } 2644 2645 /* 2646 * Used when there's no room to free a buffer to the per-CPU cache. 2647 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2648 * caller should try freeing to the per-CPU cache again. 2649 * Note that we don't directly install the magazine in the cpu cache, 2650 * since its state may have changed wildly while the lock was dropped. 2651 */ 2652 static int 2653 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2654 { 2655 kmem_magazine_t *emp; 2656 kmem_magtype_t *mtp; 2657 2658 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2659 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2660 ((uint_t)ccp->cc_rounds == -1)) && 2661 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2662 ((uint_t)ccp->cc_prounds == -1))); 2663 2664 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2665 if (emp != NULL) { 2666 if (ccp->cc_ploaded != NULL) 2667 kmem_depot_free(cp, &cp->cache_full, 2668 ccp->cc_ploaded); 2669 kmem_cpu_reload(ccp, emp, 0); 2670 return (1); 2671 } 2672 /* 2673 * There are no empty magazines in the depot, 2674 * so try to allocate a new one. We must drop all locks 2675 * across kmem_cache_alloc() because lower layers may 2676 * attempt to allocate from this cache. 2677 */ 2678 mtp = cp->cache_magtype; 2679 mutex_exit(&ccp->cc_lock); 2680 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2681 mutex_enter(&ccp->cc_lock); 2682 2683 if (emp != NULL) { 2684 /* 2685 * We successfully allocated an empty magazine. 2686 * However, we had to drop ccp->cc_lock to do it, 2687 * so the cache's magazine size may have changed. 2688 * If so, free the magazine and try again. 2689 */ 2690 if (ccp->cc_magsize != mtp->mt_magsize) { 2691 mutex_exit(&ccp->cc_lock); 2692 kmem_cache_free(mtp->mt_cache, emp); 2693 mutex_enter(&ccp->cc_lock); 2694 return (1); 2695 } 2696 2697 /* 2698 * We got a magazine of the right size. Add it to 2699 * the depot and try the whole dance again. 2700 */ 2701 kmem_depot_free(cp, &cp->cache_empty, emp); 2702 return (1); 2703 } 2704 2705 /* 2706 * We couldn't allocate an empty magazine, 2707 * so fall through to the slab layer. 2708 */ 2709 return (0); 2710 } 2711 2712 /* 2713 * Free a constructed object to cache cp. 2714 */ 2715 void 2716 kmem_cache_free(kmem_cache_t *cp, void *buf) 2717 { 2718 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2719 2720 /* 2721 * The client must not free either of the buffers passed to the move 2722 * callback function. 2723 */ 2724 ASSERT(cp->cache_defrag == NULL || 2725 cp->cache_defrag->kmd_thread != curthread || 2726 (buf != cp->cache_defrag->kmd_from_buf && 2727 buf != cp->cache_defrag->kmd_to_buf)); 2728 2729 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2730 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2731 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2732 /* log it so that we can warn about it */ 2733 KDI_LOG(cp, kdl_unsafe); 2734 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2735 return; 2736 } 2737 if (ccp->cc_flags & KMF_BUFTAG) { 2738 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2739 return; 2740 } 2741 } 2742 2743 mutex_enter(&ccp->cc_lock); 2744 /* 2745 * Any changes to this logic should be reflected in kmem_slab_prefill() 2746 */ 2747 for (;;) { 2748 /* 2749 * If there's a slot available in the current CPU's 2750 * loaded magazine, just put the object there and return. 2751 */ 2752 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2753 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2754 ccp->cc_free++; 2755 mutex_exit(&ccp->cc_lock); 2756 return; 2757 } 2758 2759 /* 2760 * The loaded magazine is full. If the previously loaded 2761 * magazine was empty, exchange them and try again. 2762 */ 2763 if (ccp->cc_prounds == 0) { 2764 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2765 continue; 2766 } 2767 2768 /* 2769 * If the magazine layer is disabled, break out now. 2770 */ 2771 if (ccp->cc_magsize == 0) 2772 break; 2773 2774 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2775 /* 2776 * We couldn't free our constructed object to the 2777 * magazine layer, so apply its destructor and free it 2778 * to the slab layer. 2779 */ 2780 break; 2781 } 2782 } 2783 mutex_exit(&ccp->cc_lock); 2784 kmem_slab_free_constructed(cp, buf, B_TRUE); 2785 } 2786 2787 static void 2788 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2789 { 2790 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2791 int cache_flags = cp->cache_flags; 2792 2793 kmem_bufctl_t *next, *head; 2794 size_t nbufs; 2795 2796 /* 2797 * Completely allocate the newly created slab and put the pre-allocated 2798 * buffers in magazines. Any of the buffers that cannot be put in 2799 * magazines must be returned to the slab. 2800 */ 2801 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2802 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2803 ASSERT(cp->cache_constructor == NULL); 2804 ASSERT(sp->slab_cache == cp); 2805 ASSERT(sp->slab_refcnt == 1); 2806 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2807 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2808 2809 head = sp->slab_head; 2810 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2811 sp->slab_head = NULL; 2812 sp->slab_refcnt += nbufs; 2813 cp->cache_bufslab -= nbufs; 2814 cp->cache_slab_alloc += nbufs; 2815 list_insert_head(&cp->cache_complete_slabs, sp); 2816 cp->cache_complete_slab_count++; 2817 mutex_exit(&cp->cache_lock); 2818 mutex_enter(&ccp->cc_lock); 2819 2820 while (head != NULL) { 2821 void *buf = KMEM_BUF(cp, head); 2822 /* 2823 * If there's a slot available in the current CPU's 2824 * loaded magazine, just put the object there and 2825 * continue. 2826 */ 2827 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2828 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2829 buf; 2830 ccp->cc_free++; 2831 nbufs--; 2832 head = head->bc_next; 2833 continue; 2834 } 2835 2836 /* 2837 * The loaded magazine is full. If the previously 2838 * loaded magazine was empty, exchange them and try 2839 * again. 2840 */ 2841 if (ccp->cc_prounds == 0) { 2842 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2843 ccp->cc_prounds); 2844 continue; 2845 } 2846 2847 /* 2848 * If the magazine layer is disabled, break out now. 2849 */ 2850 2851 if (ccp->cc_magsize == 0) { 2852 break; 2853 } 2854 2855 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2856 break; 2857 } 2858 mutex_exit(&ccp->cc_lock); 2859 if (nbufs != 0) { 2860 ASSERT(head != NULL); 2861 2862 /* 2863 * If there was a failure, return remaining objects to 2864 * the slab 2865 */ 2866 while (head != NULL) { 2867 ASSERT(nbufs != 0); 2868 next = head->bc_next; 2869 head->bc_next = NULL; 2870 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2871 head = next; 2872 nbufs--; 2873 } 2874 } 2875 ASSERT(head == NULL); 2876 ASSERT(nbufs == 0); 2877 mutex_enter(&cp->cache_lock); 2878 } 2879 2880 void * 2881 kmem_zalloc(size_t size, int kmflag) 2882 { 2883 size_t index; 2884 void *buf; 2885 2886 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2887 kmem_cache_t *cp = kmem_alloc_table[index]; 2888 buf = kmem_cache_alloc(cp, kmflag); 2889 if (buf != NULL) { 2890 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2891 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2892 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2893 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2894 2895 if (cp->cache_flags & KMF_LITE) { 2896 KMEM_BUFTAG_LITE_ENTER(btp, 2897 kmem_lite_count, caller()); 2898 } 2899 } 2900 bzero(buf, size); 2901 } 2902 } else { 2903 buf = kmem_alloc(size, kmflag); 2904 if (buf != NULL) 2905 bzero(buf, size); 2906 } 2907 return (buf); 2908 } 2909 2910 void * 2911 kmem_alloc(size_t size, int kmflag) 2912 { 2913 size_t index; 2914 kmem_cache_t *cp; 2915 void *buf; 2916 2917 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2918 cp = kmem_alloc_table[index]; 2919 /* fall through to kmem_cache_alloc() */ 2920 2921 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2922 kmem_big_alloc_table_max) { 2923 cp = kmem_big_alloc_table[index]; 2924 /* fall through to kmem_cache_alloc() */ 2925 2926 } else { 2927 if (size == 0) 2928 return (NULL); 2929 2930 buf = vmem_alloc(kmem_oversize_arena, size, 2931 kmflag & KM_VMFLAGS); 2932 if (buf == NULL) 2933 kmem_log_event(kmem_failure_log, NULL, NULL, 2934 (void *)size); 2935 else if (KMEM_DUMP(kmem_slab_cache)) { 2936 /* stats for dump intercept */ 2937 kmem_dump_oversize_allocs++; 2938 if (size > kmem_dump_oversize_max) 2939 kmem_dump_oversize_max = size; 2940 } 2941 return (buf); 2942 } 2943 2944 buf = kmem_cache_alloc(cp, kmflag); 2945 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2946 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2947 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2948 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2949 2950 if (cp->cache_flags & KMF_LITE) { 2951 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2952 } 2953 } 2954 return (buf); 2955 } 2956 2957 void 2958 kmem_free(void *buf, size_t size) 2959 { 2960 size_t index; 2961 kmem_cache_t *cp; 2962 2963 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2964 cp = kmem_alloc_table[index]; 2965 /* fall through to kmem_cache_free() */ 2966 2967 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2968 kmem_big_alloc_table_max) { 2969 cp = kmem_big_alloc_table[index]; 2970 /* fall through to kmem_cache_free() */ 2971 2972 } else { 2973 if (buf == NULL && size == 0) 2974 return; 2975 vmem_free(kmem_oversize_arena, buf, size); 2976 return; 2977 } 2978 2979 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2980 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2981 uint32_t *ip = (uint32_t *)btp; 2982 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2983 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2984 kmem_error(KMERR_DUPFREE, cp, buf); 2985 return; 2986 } 2987 if (KMEM_SIZE_VALID(ip[1])) { 2988 ip[0] = KMEM_SIZE_ENCODE(size); 2989 kmem_error(KMERR_BADSIZE, cp, buf); 2990 } else { 2991 kmem_error(KMERR_REDZONE, cp, buf); 2992 } 2993 return; 2994 } 2995 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2996 kmem_error(KMERR_REDZONE, cp, buf); 2997 return; 2998 } 2999 btp->bt_redzone = KMEM_REDZONE_PATTERN; 3000 if (cp->cache_flags & KMF_LITE) { 3001 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 3002 caller()); 3003 } 3004 } 3005 kmem_cache_free(cp, buf); 3006 } 3007 3008 void * 3009 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 3010 { 3011 size_t realsize = size + vmp->vm_quantum; 3012 void *addr; 3013 3014 /* 3015 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 3016 * vm_quantum will cause integer wraparound. Check for this, and 3017 * blow off the firewall page in this case. Note that such a 3018 * giant allocation (the entire kernel address space) can never 3019 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 3020 * or sleep forever (VM_SLEEP). Thus, there is no need for a 3021 * corresponding check in kmem_firewall_va_free(). 3022 */ 3023 if (realsize < size) 3024 realsize = size; 3025 3026 /* 3027 * While boot still owns resource management, make sure that this 3028 * redzone virtual address allocation is properly accounted for in 3029 * OBPs "virtual-memory" "available" lists because we're 3030 * effectively claiming them for a red zone. If we don't do this, 3031 * the available lists become too fragmented and too large for the 3032 * current boot/kernel memory list interface. 3033 */ 3034 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 3035 3036 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 3037 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 3038 3039 return (addr); 3040 } 3041 3042 void 3043 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 3044 { 3045 ASSERT((kvseg.s_base == NULL ? 3046 va_to_pfn((char *)addr + size) : 3047 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 3048 3049 vmem_free(vmp, addr, size + vmp->vm_quantum); 3050 } 3051 3052 /* 3053 * Try to allocate at least `size' bytes of memory without sleeping or 3054 * panicking. Return actual allocated size in `asize'. If allocation failed, 3055 * try final allocation with sleep or panic allowed. 3056 */ 3057 void * 3058 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 3059 { 3060 void *p; 3061 3062 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3063 do { 3064 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 3065 if (p != NULL) 3066 return (p); 3067 *asize += KMEM_ALIGN; 3068 } while (*asize <= PAGESIZE); 3069 3070 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3071 return (kmem_alloc(*asize, kmflag)); 3072 } 3073 3074 /* 3075 * Reclaim all unused memory from a cache. 3076 */ 3077 static void 3078 kmem_cache_reap(kmem_cache_t *cp) 3079 { 3080 ASSERT(taskq_member(kmem_taskq, curthread)); 3081 cp->cache_reap++; 3082 3083 /* 3084 * Ask the cache's owner to free some memory if possible. 3085 * The idea is to handle things like the inode cache, which 3086 * typically sits on a bunch of memory that it doesn't truly 3087 * *need*. Reclaim policy is entirely up to the owner; this 3088 * callback is just an advisory plea for help. 3089 */ 3090 if (cp->cache_reclaim != NULL) { 3091 long delta; 3092 3093 /* 3094 * Reclaimed memory should be reapable (not included in the 3095 * depot's working set). 3096 */ 3097 delta = cp->cache_full.ml_total; 3098 cp->cache_reclaim(cp->cache_private); 3099 delta = cp->cache_full.ml_total - delta; 3100 if (delta > 0) { 3101 mutex_enter(&cp->cache_depot_lock); 3102 cp->cache_full.ml_reaplimit += delta; 3103 cp->cache_full.ml_min += delta; 3104 mutex_exit(&cp->cache_depot_lock); 3105 } 3106 } 3107 3108 kmem_depot_ws_reap(cp); 3109 3110 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3111 kmem_cache_defrag(cp); 3112 } 3113 } 3114 3115 static void 3116 kmem_reap_timeout(void *flag_arg) 3117 { 3118 uint32_t *flag = (uint32_t *)flag_arg; 3119 3120 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3121 *flag = 0; 3122 } 3123 3124 static void 3125 kmem_reap_done(void *flag) 3126 { 3127 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3128 } 3129 3130 static void 3131 kmem_reap_start(void *flag) 3132 { 3133 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3134 3135 if (flag == &kmem_reaping) { 3136 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3137 /* 3138 * if we have segkp under heap, reap segkp cache. 3139 */ 3140 if (segkp_fromheap) 3141 segkp_cache_free(); 3142 } 3143 else 3144 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3145 3146 /* 3147 * We use taskq_dispatch() to schedule a timeout to clear 3148 * the flag so that kmem_reap() becomes self-throttling: 3149 * we won't reap again until the current reap completes *and* 3150 * at least kmem_reap_interval ticks have elapsed. 3151 */ 3152 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3153 kmem_reap_done(flag); 3154 } 3155 3156 static void 3157 kmem_reap_common(void *flag_arg) 3158 { 3159 uint32_t *flag = (uint32_t *)flag_arg; 3160 3161 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3162 cas32(flag, 0, 1) != 0) 3163 return; 3164 3165 /* 3166 * It may not be kosher to do memory allocation when a reap is called 3167 * is called (for example, if vmem_populate() is in the call chain). 3168 * So we start the reap going with a TQ_NOALLOC dispatch. If the 3169 * dispatch fails, we reset the flag, and the next reap will try again. 3170 */ 3171 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3172 *flag = 0; 3173 } 3174 3175 /* 3176 * Reclaim all unused memory from all caches. Called from the VM system 3177 * when memory gets tight. 3178 */ 3179 void 3180 kmem_reap(void) 3181 { 3182 kmem_reap_common(&kmem_reaping); 3183 } 3184 3185 /* 3186 * Reclaim all unused memory from identifier arenas, called when a vmem 3187 * arena not back by memory is exhausted. Since reaping memory-backed caches 3188 * cannot help with identifier exhaustion, we avoid both a large amount of 3189 * work and unwanted side-effects from reclaim callbacks. 3190 */ 3191 void 3192 kmem_reap_idspace(void) 3193 { 3194 kmem_reap_common(&kmem_reaping_idspace); 3195 } 3196 3197 /* 3198 * Purge all magazines from a cache and set its magazine limit to zero. 3199 * All calls are serialized by the kmem_taskq lock, except for the final 3200 * call from kmem_cache_destroy(). 3201 */ 3202 static void 3203 kmem_cache_magazine_purge(kmem_cache_t *cp) 3204 { 3205 kmem_cpu_cache_t *ccp; 3206 kmem_magazine_t *mp, *pmp; 3207 int rounds, prounds, cpu_seqid; 3208 3209 ASSERT(!list_link_active(&cp->cache_link) || 3210 taskq_member(kmem_taskq, curthread)); 3211 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3212 3213 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3214 ccp = &cp->cache_cpu[cpu_seqid]; 3215 3216 mutex_enter(&ccp->cc_lock); 3217 mp = ccp->cc_loaded; 3218 pmp = ccp->cc_ploaded; 3219 rounds = ccp->cc_rounds; 3220 prounds = ccp->cc_prounds; 3221 ccp->cc_loaded = NULL; 3222 ccp->cc_ploaded = NULL; 3223 ccp->cc_rounds = -1; 3224 ccp->cc_prounds = -1; 3225 ccp->cc_magsize = 0; 3226 mutex_exit(&ccp->cc_lock); 3227 3228 if (mp) 3229 kmem_magazine_destroy(cp, mp, rounds); 3230 if (pmp) 3231 kmem_magazine_destroy(cp, pmp, prounds); 3232 } 3233 3234 /* 3235 * Updating the working set statistics twice in a row has the 3236 * effect of setting the working set size to zero, so everything 3237 * is eligible for reaping. 3238 */ 3239 kmem_depot_ws_update(cp); 3240 kmem_depot_ws_update(cp); 3241 3242 kmem_depot_ws_reap(cp); 3243 } 3244 3245 /* 3246 * Enable per-cpu magazines on a cache. 3247 */ 3248 static void 3249 kmem_cache_magazine_enable(kmem_cache_t *cp) 3250 { 3251 int cpu_seqid; 3252 3253 if (cp->cache_flags & KMF_NOMAGAZINE) 3254 return; 3255 3256 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3257 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3258 mutex_enter(&ccp->cc_lock); 3259 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3260 mutex_exit(&ccp->cc_lock); 3261 } 3262 3263 } 3264 3265 /* 3266 * Reap (almost) everything right now. See kmem_cache_magazine_purge() 3267 * for explanation of the back-to-back kmem_depot_ws_update() calls. 3268 */ 3269 void 3270 kmem_cache_reap_now(kmem_cache_t *cp) 3271 { 3272 ASSERT(list_link_active(&cp->cache_link)); 3273 3274 kmem_depot_ws_update(cp); 3275 kmem_depot_ws_update(cp); 3276 3277 (void) taskq_dispatch(kmem_taskq, 3278 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3279 taskq_wait(kmem_taskq); 3280 } 3281 3282 /* 3283 * Recompute a cache's magazine size. The trade-off is that larger magazines 3284 * provide a higher transfer rate with the depot, while smaller magazines 3285 * reduce memory consumption. Magazine resizing is an expensive operation; 3286 * it should not be done frequently. 3287 * 3288 * Changes to the magazine size are serialized by the kmem_taskq lock. 3289 * 3290 * Note: at present this only grows the magazine size. It might be useful 3291 * to allow shrinkage too. 3292 */ 3293 static void 3294 kmem_cache_magazine_resize(kmem_cache_t *cp) 3295 { 3296 kmem_magtype_t *mtp = cp->cache_magtype; 3297 3298 ASSERT(taskq_member(kmem_taskq, curthread)); 3299 3300 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3301 kmem_cache_magazine_purge(cp); 3302 mutex_enter(&cp->cache_depot_lock); 3303 cp->cache_magtype = ++mtp; 3304 cp->cache_depot_contention_prev = 3305 cp->cache_depot_contention + INT_MAX; 3306 mutex_exit(&cp->cache_depot_lock); 3307 kmem_cache_magazine_enable(cp); 3308 } 3309 } 3310 3311 /* 3312 * Rescale a cache's hash table, so that the table size is roughly the 3313 * cache size. We want the average lookup time to be extremely small. 3314 */ 3315 static void 3316 kmem_hash_rescale(kmem_cache_t *cp) 3317 { 3318 kmem_bufctl_t **old_table, **new_table, *bcp; 3319 size_t old_size, new_size, h; 3320 3321 ASSERT(taskq_member(kmem_taskq, curthread)); 3322 3323 new_size = MAX(KMEM_HASH_INITIAL, 3324 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3325 old_size = cp->cache_hash_mask + 1; 3326 3327 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3328 return; 3329 3330 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3331 VM_NOSLEEP); 3332 if (new_table == NULL) 3333 return; 3334 bzero(new_table, new_size * sizeof (void *)); 3335 3336 mutex_enter(&cp->cache_lock); 3337 3338 old_size = cp->cache_hash_mask + 1; 3339 old_table = cp->cache_hash_table; 3340 3341 cp->cache_hash_mask = new_size - 1; 3342 cp->cache_hash_table = new_table; 3343 cp->cache_rescale++; 3344 3345 for (h = 0; h < old_size; h++) { 3346 bcp = old_table[h]; 3347 while (bcp != NULL) { 3348 void *addr = bcp->bc_addr; 3349 kmem_bufctl_t *next_bcp = bcp->bc_next; 3350 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3351 bcp->bc_next = *hash_bucket; 3352 *hash_bucket = bcp; 3353 bcp = next_bcp; 3354 } 3355 } 3356 3357 mutex_exit(&cp->cache_lock); 3358 3359 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3360 } 3361 3362 /* 3363 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3364 * update, magazine resizing, and slab consolidation. 3365 */ 3366 static void 3367 kmem_cache_update(kmem_cache_t *cp) 3368 { 3369 int need_hash_rescale = 0; 3370 int need_magazine_resize = 0; 3371 3372 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3373 3374 /* 3375 * If the cache has become much larger or smaller than its hash table, 3376 * fire off a request to rescale the hash table. 3377 */ 3378 mutex_enter(&cp->cache_lock); 3379 3380 if ((cp->cache_flags & KMF_HASH) && 3381 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3382 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3383 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3384 need_hash_rescale = 1; 3385 3386 mutex_exit(&cp->cache_lock); 3387 3388 /* 3389 * Update the depot working set statistics. 3390 */ 3391 kmem_depot_ws_update(cp); 3392 3393 /* 3394 * If there's a lot of contention in the depot, 3395 * increase the magazine size. 3396 */ 3397 mutex_enter(&cp->cache_depot_lock); 3398 3399 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3400 (int)(cp->cache_depot_contention - 3401 cp->cache_depot_contention_prev) > kmem_depot_contention) 3402 need_magazine_resize = 1; 3403 3404 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3405 3406 mutex_exit(&cp->cache_depot_lock); 3407 3408 if (need_hash_rescale) 3409 (void) taskq_dispatch(kmem_taskq, 3410 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3411 3412 if (need_magazine_resize) 3413 (void) taskq_dispatch(kmem_taskq, 3414 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3415 3416 if (cp->cache_defrag != NULL) 3417 (void) taskq_dispatch(kmem_taskq, 3418 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3419 } 3420 3421 static void kmem_update(void *); 3422 3423 static void 3424 kmem_update_timeout(void *dummy) 3425 { 3426 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3427 } 3428 3429 static void 3430 kmem_update(void *dummy) 3431 { 3432 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3433 3434 /* 3435 * We use taskq_dispatch() to reschedule the timeout so that 3436 * kmem_update() becomes self-throttling: it won't schedule 3437 * new tasks until all previous tasks have completed. 3438 */ 3439 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3440 kmem_update_timeout(NULL); 3441 } 3442 3443 static int 3444 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3445 { 3446 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3447 kmem_cache_t *cp = ksp->ks_private; 3448 uint64_t cpu_buf_avail; 3449 uint64_t buf_avail = 0; 3450 int cpu_seqid; 3451 long reap; 3452 3453 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3454 3455 if (rw == KSTAT_WRITE) 3456 return (EACCES); 3457 3458 mutex_enter(&cp->cache_lock); 3459 3460 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3461 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3462 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3463 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3464 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3465 3466 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3467 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3468 3469 mutex_enter(&ccp->cc_lock); 3470 3471 cpu_buf_avail = 0; 3472 if (ccp->cc_rounds > 0) 3473 cpu_buf_avail += ccp->cc_rounds; 3474 if (ccp->cc_prounds > 0) 3475 cpu_buf_avail += ccp->cc_prounds; 3476 3477 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3478 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3479 buf_avail += cpu_buf_avail; 3480 3481 mutex_exit(&ccp->cc_lock); 3482 } 3483 3484 mutex_enter(&cp->cache_depot_lock); 3485 3486 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3487 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3488 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3489 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3490 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3491 kmcp->kmc_magazine_size.value.ui64 = 3492 (cp->cache_flags & KMF_NOMAGAZINE) ? 3493 0 : cp->cache_magtype->mt_magsize; 3494 3495 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3496 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3497 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3498 3499 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3500 reap = MIN(reap, cp->cache_full.ml_total); 3501 3502 mutex_exit(&cp->cache_depot_lock); 3503 3504 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3505 kmcp->kmc_align.value.ui64 = cp->cache_align; 3506 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3507 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3508 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3509 buf_avail += cp->cache_bufslab; 3510 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3511 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3512 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3513 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3514 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3515 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3516 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3517 cp->cache_hash_mask + 1 : 0; 3518 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3519 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3520 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3521 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3522 3523 if (cp->cache_defrag == NULL) { 3524 kmcp->kmc_move_callbacks.value.ui64 = 0; 3525 kmcp->kmc_move_yes.value.ui64 = 0; 3526 kmcp->kmc_move_no.value.ui64 = 0; 3527 kmcp->kmc_move_later.value.ui64 = 0; 3528 kmcp->kmc_move_dont_need.value.ui64 = 0; 3529 kmcp->kmc_move_dont_know.value.ui64 = 0; 3530 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3531 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3532 kmcp->kmc_defrag.value.ui64 = 0; 3533 kmcp->kmc_scan.value.ui64 = 0; 3534 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3535 } else { 3536 int64_t reclaimable; 3537 3538 kmem_defrag_t *kd = cp->cache_defrag; 3539 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3540 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3541 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3542 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3543 kmcp->kmc_move_dont_need.value.