1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2018, Joyent, Inc. 26 */ 27 28 /* 29 * Kernel memory allocator, as described in the following two papers and a 30 * statement about the consolidator: 31 * 32 * Jeff Bonwick, 33 * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 34 * Proceedings of the Summer 1994 Usenix Conference. 35 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 36 * 37 * Jeff Bonwick and Jonathan Adams, 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * Proceedings of the 2001 Usenix Conference. 41 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42 * 43 * kmem Slab Consolidator Big Theory Statement: 44 * 45 * 1. Motivation 46 * 47 * As stated in Bonwick94, slabs provide the following advantages over other 48 * allocation structures in terms of memory fragmentation: 49 * 50 * - Internal fragmentation (per-buffer wasted space) is minimal. 51 * - Severe external fragmentation (unused buffers on the free list) is 52 * unlikely. 53 * 54 * Segregating objects by size eliminates one source of external fragmentation, 55 * and according to Bonwick: 56 * 57 * The other reason that slabs reduce external fragmentation is that all 58 * objects in a slab are of the same type, so they have the same lifetime 59 * distribution. The resulting segregation of short-lived and long-lived 60 * objects at slab granularity reduces the likelihood of an entire page being 61 * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62 * 63 * While unlikely, severe external fragmentation remains possible. Clients that 64 * allocate both short- and long-lived objects from the same cache cannot 65 * anticipate the distribution of long-lived objects within the allocator's slab 66 * implementation. Even a small percentage of long-lived objects distributed 67 * randomly across many slabs can lead to a worst case scenario where the client 68 * frees the majority of its objects and the system gets back almost none of the 69 * slabs. Despite the client doing what it reasonably can to help the system 70 * reclaim memory, the allocator cannot shake free enough slabs because of 71 * lonely allocations stubbornly hanging on. Although the allocator is in a 72 * position to diagnose the fragmentation, there is nothing that the allocator 73 * by itself can do about it. It only takes a single allocated object to prevent 74 * an entire slab from being reclaimed, and any object handed out by 75 * kmem_cache_alloc() is by definition in the client's control. Conversely, 76 * although the client is in a position to move a long-lived object, it has no 77 * way of knowing if the object is causing fragmentation, and if so, where to 78 * move it. A solution necessarily requires further cooperation between the 79 * allocator and the client. 80 * 81 * 2. Move Callback 82 * 83 * The kmem slab consolidator therefore adds a move callback to the 84 * allocator/client interface, improving worst-case external fragmentation in 85 * kmem caches that supply a function to move objects from one memory location 86 * to another. In a situation of low memory kmem attempts to consolidate all of 87 * a cache's slabs at once; otherwise it works slowly to bring external 88 * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89 * thereby helping to avoid a low memory situation in the future. 90 * 91 * The callback has the following signature: 92 * 93 * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94 * 95 * It supplies the kmem client with two addresses: the allocated object that 96 * kmem wants to move and a buffer selected by kmem for the client to use as the 97 * copy destination. The callback is kmem's way of saying "Please get off of 98 * this buffer and use this one instead." kmem knows where it wants to move the 99 * object in order to best reduce fragmentation. All the client needs to know 100 * about the second argument (void *new) is that it is an allocated, constructed 101 * object ready to take the contents of the old object. When the move function 102 * is called, the system is likely to be low on memory, and the new object 103 * spares the client from having to worry about allocating memory for the 104 * requested move. The third argument supplies the size of the object, in case a 105 * single move function handles multiple caches whose objects differ only in 106 * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107 * user argument passed to the constructor, destructor, and reclaim functions is 108 * also passed to the move callback. 109 * 110 * 2.1 Setting the Move Callback 111 * 112 * The client sets the move callback after creating the cache and before 113 * allocating from it: 114 * 115 * object_cache = kmem_cache_create(...); 116 * kmem_cache_set_move(object_cache, object_move); 117 * 118 * 2.2 Move Callback Return Values 119 * 120 * Only the client knows about its own data and when is a good time to move it. 121 * The client is cooperating with kmem to return unused memory to the system, 122 * and kmem respectfully accepts this help at the client's convenience. When 123 * asked to move an object, the client can respond with any of the following: 124 * 125 * typedef enum kmem_cbrc { 126 * KMEM_CBRC_YES, 127 * KMEM_CBRC_NO, 128 * KMEM_CBRC_LATER, 129 * KMEM_CBRC_DONT_NEED, 130 * KMEM_CBRC_DONT_KNOW 131 * } kmem_cbrc_t; 132 * 133 * The client must not explicitly kmem_cache_free() either of the objects passed 134 * to the callback, since kmem wants to free them directly to the slab layer 135 * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136 * objects to free: 137 * 138 * YES: (Did it) The client moved the object, so kmem frees the old one. 139 * NO: (Never) The client refused, so kmem frees the new object (the 140 * unused copy destination). kmem also marks the slab of the old 141 * object so as not to bother the client with further callbacks for 142 * that object as long as the slab remains on the partial slab list. 143 * (The system won't be getting the slab back as long as the 144 * immovable object holds it hostage, so there's no point in moving 145 * any of its objects.) 146 * LATER: The client is using the object and cannot move it now, so kmem 147 * frees the new object (the unused copy destination). kmem still 148 * attempts to move other objects off the slab, since it expects to 149 * succeed in clearing the slab in a later callback. The client 150 * should use LATER instead of NO if the object is likely to become 151 * movable very soon. 152 * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153 * with the new object (the unused copy destination). This response 154 * is the client's opportunity to be a model citizen and give back as 155 * much as it can. 156 * DONT_KNOW: The client does not know about the object because 157 * a) the client has just allocated the object and not yet put it 158 * wherever it expects to find known objects 159 * b) the client has removed the object from wherever it expects to 160 * find known objects and is about to free it, or 161 * c) the client has freed the object. 162 * In all these cases (a, b, and c) kmem frees the new object (the 163 * unused copy destination). In the first case, the object is in 164 * use and the correct action is that for LATER; in the latter two 165 * cases, we know that the object is either freed or about to be 166 * freed, in which case it is either already in a magazine or about 167 * to be in one. In these cases, we know that the object will either 168 * be reallocated and reused, or it will end up in a full magazine 169 * that will be reaped (thereby liberating the slab). Because it 170 * is prohibitively expensive to differentiate these cases, and 171 * because the defrag code is executed when we're low on memory 172 * (thereby biasing the system to reclaim full magazines) we treat 173 * all DONT_KNOW cases as LATER and rely on cache reaping to 174 * generally clean up full magazines. While we take the same action 175 * for these cases, we maintain their semantic distinction: if 176 * defragmentation is not occurring, it is useful to know if this 177 * is due to objects in use (LATER) or objects in an unknown state 178 * of transition (DONT_KNOW). 179 * 180 * 2.3 Object States 181 * 182 * Neither kmem nor the client can be assumed to know the object's whereabouts 183 * at the time of the callback. An object belonging to a kmem cache may be in 184 * any of the following states: 185 * 186 * 1. Uninitialized on the slab 187 * 2. Allocated from the slab but not constructed (still uninitialized) 188 * 3. Allocated from the slab, constructed, but not yet ready for business 189 * (not in a valid state for the move callback) 190 * 4. In use (valid and known to the client) 191 * 5. About to be freed (no longer in a valid state for the move callback) 192 * 6. Freed to a magazine (still constructed) 193 * 7. Allocated from a magazine, not yet ready for business (not in a valid 194 * state for the move callback), and about to return to state #4 195 * 8. Deconstructed on a magazine that is about to be freed 196 * 9. Freed to the slab 197 * 198 * Since the move callback may be called at any time while the object is in any 199 * of the above states (except state #1), the client needs a safe way to 200 * determine whether or not it knows about the object. Specifically, the client 201 * needs to know whether or not the object is in state #4, the only state in 202 * which a move is valid. If the object is in any other state, the client should 203 * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 204 * the object's fields. 205 * 206 * Note that although an object may be in state #4 when kmem initiates the move 207 * request, the object may no longer be in that state by the time kmem actually 208 * calls the move function. Not only does the client free objects 209 * asynchronously, kmem itself puts move requests on a queue where thay are 210 * pending until kmem processes them from another context. Also, objects freed 211 * to a magazine appear allocated from the point of view of the slab layer, so 212 * kmem may even initiate requests for objects in a state other than state #4. 213 * 214 * 2.3.1 Magazine Layer 215 * 216 * An important insight revealed by the states listed above is that the magazine 217 * layer is populated only by kmem_cache_free(). Magazines of constructed 218 * objects are never populated directly from the slab layer (which contains raw, 219 * unconstructed objects). Whenever an allocation request cannot be satisfied 220 * from the magazine layer, the magazines are bypassed and the request is 221 * satisfied from the slab layer (creating a new slab if necessary). kmem calls 222 * the object constructor only when allocating from the slab layer, and only in 223 * response to kmem_cache_alloc() or to prepare the destination buffer passed in 224 * the move callback. kmem does not preconstruct objects in anticipation of 225 * kmem_cache_alloc(). 226 * 227 * 2.3.2 Object Constructor and Destructor 228 * 229 * If the client supplies a destructor, it must be valid to call the destructor 230 * on a newly created object (immediately after the constructor). 231 * 232 * 2.4 Recognizing Known Objects 233 * 234 * There is a simple test to determine safely whether or not the client knows 235 * about a given object in the move callback. It relies on the fact that kmem 236 * guarantees that the object of the move callback has only been touched by the 237 * client itself or else by kmem. kmem does this by ensuring that none of the 238 * cache's slabs are freed to the virtual memory (VM) subsystem while a move 239 * callback is pending. When the last object on a slab is freed, if there is a 240 * pending move, kmem puts the slab on a per-cache dead list and defers freeing 241 * slabs on that list until all pending callbacks are completed. That way, 242 * clients can be certain that the object of a move callback is in one of the 243 * states listed above, making it possible to distinguish known objects (in 244 * state #4) using the two low order bits of any pointer member (with the 245 * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 246 * platforms). 247 * 248 * The test works as long as the client always transitions objects from state #4 249 * (known, in use) to state #5 (about to be freed, invalid) by setting the low 250 * order bit of the client-designated pointer member. Since kmem only writes 251 * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 252 * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 253 * guaranteed to set at least one of the two low order bits. Therefore, given an 254 * object with a back pointer to a 'container_t *o_container', the client can 255 * test 256 * 257 * container_t *container = object->o_container; 258 * if ((uintptr_t)container & 0x3) { 259 * return (KMEM_CBRC_DONT_KNOW); 260 * } 261 * 262 * Typically, an object will have a pointer to some structure with a list or 263 * hash where objects from the cache are kept while in use. Assuming that the 264 * client has some way of knowing that the container structure is valid and will 265 * not go away during the move, and assuming that the structure includes a lock 266 * to protect whatever collection is used, then the client would continue as 267 * follows: 268 * 269 * // Ensure that the container structure does not go away. 270 * if (container_hold(container) == 0) { 271 * return (KMEM_CBRC_DONT_KNOW); 272 * } 273 * mutex_enter(&container->c_objects_lock); 274 * if (container != object->o_container) { 275 * mutex_exit(&container->c_objects_lock); 276 * container_rele(container); 277 * return (KMEM_CBRC_DONT_KNOW); 278 * } 279 * 280 * At this point the client knows that the object cannot be freed as long as 281 * c_objects_lock is held. Note that after acquiring the lock, the client must 282 * recheck the o_container pointer in case the object was removed just before 283 * acquiring the lock. 284 * 285 * When the client is about to free an object, it must first remove that object 286 * from the list, hash, or other structure where it is kept. At that time, to 287 * mark the object so it can be distinguished from the remaining, known objects, 288 * the client sets the designated low order bit: 289 * 290 * mutex_enter(&container->c_objects_lock); 291 * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 292 * list_remove(&container->c_objects, object); 293 * mutex_exit(&container->c_objects_lock); 294 * 295 * In the common case, the object is freed to the magazine layer, where it may 296 * be reused on a subsequent allocation without the overhead of calling the 297 * constructor. While in the magazine it appears allocated from the point of 298 * view of the slab layer, making it a candidate for the move callback. Most 299 * objects unrecognized by the client in the move callback fall into this 300 * category and are cheaply distinguished from known objects by the test 301 * described earlier. Because searching magazines is prohibitively expensive 302 * for kmem, clients that do not mark freed objects (and therefore return 303 * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 304 * efficacy reduced. 305 * 306 * Invalidating the designated pointer member before freeing the object marks 307 * the object to be avoided in the callback, and conversely, assigning a valid 308 * value to the designated pointer member after allocating the object makes the 309 * object fair game for the callback: 310 * 311 * ... allocate object ... 312 * ... set any initial state not set by the constructor ... 313 * 314 * mutex_enter(&container->c_objects_lock); 315 * list_insert_tail(&container->c_objects, object); 316 * membar_producer(); 317 * object->o_container = container; 318 * mutex_exit(&container->c_objects_lock); 319 * 320 * Note that everything else must be valid before setting o_container makes the 321 * object fair game for the move callback. The membar_producer() call ensures 322 * that all the object's state is written to memory before setting the pointer 323 * that transitions the object from state #3 or #7 (allocated, constructed, not 324 * yet in use) to state #4 (in use, valid). That's important because the move 325 * function has to check the validity of the pointer before it can safely 326 * acquire the lock protecting the collection where it expects to find known 327 * objects. 328 * 329 * This method of distinguishing known objects observes the usual symmetry: 330 * invalidating the designated pointer is the first thing the client does before 331 * freeing the object, and setting the designated pointer is the last thing the 332 * client does after allocating the object. Of course, the client is not 333 * required to use this method. Fundamentally, how the client recognizes known 334 * objects is completely up to the client, but this method is recommended as an 335 * efficient and safe way to take advantage of the guarantees made by kmem. If 336 * the entire object is arbitrary data without any markable bits from a suitable 337 * pointer member, then the client must find some other method, such as 338 * searching a hash table of known objects. 339 * 340 * 2.5 Preventing Objects From Moving 341 * 342 * Besides a way to distinguish known objects, the other thing that the client 343 * needs is a strategy to ensure that an object will not move while the client 344 * is actively using it. The details of satisfying this requirement tend to be 345 * highly cache-specific. It might seem that the same rules that let a client 346 * remove an object safely should also decide when an object can be moved 347 * safely. However, any object state that makes a removal attempt invalid is 348 * likely to be long-lasting for objects that the client does not expect to 349 * remove. kmem knows nothing about the object state and is equally likely (from 350 * the client's point of view) to request a move for any object in the cache, 351 * whether prepared for removal or not. Even a low percentage of objects stuck 352 * in place by unremovability will defeat the consolidator if the stuck objects 353 * are the same long-lived allocations likely to hold slabs hostage. 354 * Fundamentally, the consolidator is not aimed at common cases. Severe external 355 * fragmentation is a worst case scenario manifested as sparsely allocated 356 * slabs, by definition a low percentage of the cache's objects. When deciding 357 * what makes an object movable, keep in mind the goal of the consolidator: to 358 * bring worst-case external fragmentation within the limits guaranteed for 359 * internal fragmentation. Removability is a poor criterion if it is likely to 360 * exclude more than an insignificant percentage of objects for long periods of 361 * time. 362 * 363 * A tricky general solution exists, and it has the advantage of letting you 364 * move any object at almost any moment, practically eliminating the likelihood 365 * that an object can hold a slab hostage. However, if there is a cache-specific 366 * way to ensure that an object is not actively in use in the vast majority of 367 * cases, a simpler solution that leverages this cache-specific knowledge is 368 * preferred. 369 * 370 * 2.5.1 Cache-Specific Solution 371 * 372 * As an example of a cache-specific solution, the ZFS znode cache takes 373 * advantage of the fact that the vast majority of znodes are only being 374 * referenced from the DNLC. (A typical case might be a few hundred in active 375 * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 376 * client has established that it recognizes the znode and can access its fields 377 * safely (using the method described earlier), it then tests whether the znode 378 * is referenced by anything other than the DNLC. If so, it assumes that the 379 * znode may be in active use and is unsafe to move, so it drops its locks and 380 * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 381 * else znodes are used, no change is needed to protect against the possibility 382 * of the znode moving. The disadvantage is that it remains possible for an 383 * application to hold a znode slab hostage with an open file descriptor. 384 * However, this case ought to be rare and the consolidator has a way to deal 385 * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 386 * object, kmem eventually stops believing it and treats the slab as if the 387 * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 388 * then focus on getting it off of the partial slab list by allocating rather 389 * than freeing all of its objects. (Either way of getting a slab off the 390 * free list reduces fragmentation.) 391 * 392 * 2.5.2 General Solution 393 * 394 * The general solution, on the other hand, requires an explicit hold everywhere 395 * the object is used to prevent it from moving. To keep the client locking 396 * strategy as uncomplicated as possible, kmem guarantees the simplifying 397 * assumption that move callbacks are sequential, even across multiple caches. 398 * Internally, a global queue processed by a single thread supports all caches 399 * implementing the callback function. No matter how many caches supply a move 400 * function, the consolidator never moves more than one object at a time, so the 401 * client does not have to worry about tricky lock ordering involving several 402 * related objects from different kmem caches. 403 * 404 * The general solution implements the explicit hold as a read-write lock, which 405 * allows multiple readers to access an object from the cache simultaneously 406 * while a single writer is excluded from moving it. A single rwlock for the 407 * entire cache would lock out all threads from using any of the cache's objects 408 * even though only a single object is being moved, so to reduce contention, 409 * the client can fan out the single rwlock into an array of rwlocks hashed by 410 * the object address, making it probable that moving one object will not 411 * prevent other threads from using a different object. The rwlock cannot be a 412 * member of the object itself, because the possibility of the object moving 413 * makes it unsafe to access any of the object's fields until the lock is 414 * acquired. 415 * 416 * Assuming a small, fixed number of locks, it's possible that multiple objects 417 * will hash to the same lock. A thread that needs to use multiple objects in 418 * the same function may acquire the same lock multiple times. Since rwlocks are 419 * reentrant for readers, and since there is never more than a single writer at 420 * a time (assuming that the client acquires the lock as a writer only when 421 * moving an object inside the callback), there would seem to be no problem. 422 * However, a client locking multiple objects in the same function must handle 423 * one case of potential deadlock: Assume that thread A needs to prevent both 424 * object 1 and object 2 from moving, and thread B, the callback, meanwhile 425 * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 426 * same lock, that thread A will acquire the lock for object 1 as a reader 427 * before thread B sets the lock's write-wanted bit, preventing thread A from 428 * reacquiring the lock for object 2 as a reader. Unable to make forward 429 * progress, thread A will never release the lock for object 1, resulting in 430 * deadlock. 431 * 432 * There are two ways of avoiding the deadlock just described. The first is to 433 * use rw_tryenter() rather than rw_enter() in the callback function when 434 * attempting to acquire the lock as a writer. If tryenter discovers that the 435 * same object (or another object hashed to the same lock) is already in use, it 436 * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 437 * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 438 * since it allows a thread to acquire the lock as a reader in spite of a 439 * waiting writer. This second approach insists on moving the object now, no 440 * matter how many readers the move function must wait for in order to do so, 441 * and could delay the completion of the callback indefinitely (blocking 442 * callbacks to other clients). In practice, a less insistent callback using 443 * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 444 * little reason to use anything else. 445 * 446 * Avoiding deadlock is not the only problem that an implementation using an 447 * explicit hold needs to solve. Locking the object in the first place (to 448 * prevent it from moving) remains a problem, since the object could move 449 * between the time you obtain a pointer to the object and the time you acquire 450 * the rwlock hashed to that pointer value. Therefore the client needs to 451 * recheck the value of the pointer after acquiring the lock, drop the lock if 452 * the value has changed, and try again. This requires a level of indirection: 453 * something that points to the object rather than the object itself, that the 454 * client can access safely while attempting to acquire the lock. (The object 455 * itself cannot be referenced safely because it can move at any time.) 456 * The following lock-acquisition function takes whatever is safe to reference 457 * (arg), follows its pointer to the object (using function f), and tries as 458 * often as necessary to acquire the hashed lock and verify that the object 459 * still has not moved: 460 * 461 * object_t * 462 * object_hold(object_f f, void *arg) 463 * { 464 * object_t *op; 465 * 466 * op = f(arg); 467 * if (op == NULL) { 468 * return (NULL); 469 * } 470 * 471 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 472 * while (op != f(arg)) { 473 * rw_exit(OBJECT_RWLOCK(op)); 474 * op = f(arg); 475 * if (op == NULL) { 476 * break; 477 * } 478 * rw_enter(OBJECT_RWLOCK(op), RW_READER); 479 * } 480 * 481 * return (op); 482 * } 483 * 484 * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 485 * lock reacquisition loop, while necessary, almost never executes. The function 486 * pointer f (used to obtain the object pointer from arg) has the following type 487 * definition: 488 * 489 * typedef object_t *(*object_f)(void *arg); 490 * 491 * An object_f implementation is likely to be as simple as accessing a structure 492 * member: 493 * 494 * object_t * 495 * s_object(void *arg) 496 * { 497 * something_t *sp = arg; 498 * return (sp->s_object); 499 * } 500 * 501 * The flexibility of a function pointer allows the path to the object to be 502 * arbitrarily complex and also supports the notion that depending on where you 503 * are using the object, you may need to get it from someplace different. 504 * 505 * The function that releases the explicit hold is simpler because it does not 506 * have to worry about the object moving: 507 * 508 * void 509 * object_rele(object_t *op) 510 * { 511 * rw_exit(OBJECT_RWLOCK(op)); 512 * } 513 * 514 * The caller is spared these details so that obtaining and releasing an 515 * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 516 * of object_hold() only needs to know that the returned object pointer is valid 517 * if not NULL and that the object will not move until released. 518 * 519 * Although object_hold() prevents an object from moving, it does not prevent it 520 * from being freed. The caller must take measures before calling object_hold() 521 * (afterwards is too late) to ensure that the held object cannot be freed. The 522 * caller must do so without accessing the unsafe object reference, so any lock 523 * or reference count used to ensure the continued existence of the object must 524 * live outside the object itself. 525 * 526 * Obtaining a new object is a special case where an explicit hold is impossible 527 * for the caller. Any function that returns a newly allocated object (either as 528 * a return value, or as an in-out paramter) must return it already held; after 529 * the caller gets it is too late, since the object cannot be safely accessed 530 * without the level of indirection described earlier. The following 531 * object_alloc() example uses the same code shown earlier to transition a new 532 * object into the state of being recognized (by the client) as a known object. 533 * The function must acquire the hold (rw_enter) before that state transition 534 * makes the object movable: 535 * 536 * static object_t * 537 * object_alloc(container_t *container) 538 * { 539 * object_t *object = kmem_cache_alloc(object_cache, 0); 540 * ... set any initial state not set by the constructor ... 541 * rw_enter(OBJECT_RWLOCK(object), RW_READER); 542 * mutex_enter(&container->c_objects_lock); 543 * list_insert_tail(&container->c_objects, object); 544 * membar_producer(); 545 * object->o_container = container; 546 * mutex_exit(&container->c_objects_lock); 547 * return (object); 548 * } 549 * 550 * Functions that implicitly acquire an object hold (any function that calls 551 * object_alloc() to supply an object for the caller) need to be carefully noted 552 * so that the matching object_rele() is not neglected. Otherwise, leaked holds 553 * prevent all objects hashed to the affected rwlocks from ever being moved. 554 * 555 * The pointer to a held object can be hashed to the holding rwlock even after 556 * the object has been freed. Although it is possible to release the hold 557 * after freeing the object, you may decide to release the hold implicitly in 558 * whatever function frees the object, so as to release the hold as soon as 559 * possible, and for the sake of symmetry with the function that implicitly 560 * acquires the hold when it allocates the object. Here, object_free() releases 561 * the hold acquired by object_alloc(). Its implicit object_rele() forms a 562 * matching pair with object_hold(): 563 * 564 * void 565 * object_free(object_t *object) 566 * { 567 * container_t *container; 568 * 569 * ASSERT(object_held(object)); 570 * container = object->o_container; 571 * mutex_enter(&container->c_objects_lock); 572 * object->o_container = 573 * (void *)((uintptr_t)object->o_container | 0x1); 574 * list_remove(&container->c_objects, object); 575 * mutex_exit(&container->c_objects_lock); 576 * object_rele(object); 577 * kmem_cache_free(object_cache, object); 578 * } 579 * 580 * Note that object_free() cannot safely accept an object pointer as an argument 581 * unless the object is already held. Any function that calls object_free() 582 * needs to be carefully noted since it similarly forms a matching pair with 583 * object_hold(). 584 * 585 * To complete the picture, the following callback function implements the 586 * general solution by moving objects only if they are currently unheld: 587 * 588 * static kmem_cbrc_t 589 * object_move(void *buf, void *newbuf, size_t size, void *arg) 590 * { 591 * object_t *op = buf, *np = newbuf; 592 * container_t *container; 593 * 594 * container = op->o_container; 595 * if ((uintptr_t)container & 0x3) { 596 * return (KMEM_CBRC_DONT_KNOW); 597 * } 598 * 599 * // Ensure that the container structure does not go away. 600 * if (container_hold(container) == 0) { 601 * return (KMEM_CBRC_DONT_KNOW); 602 * } 603 * 604 * mutex_enter(&container->c_objects_lock); 605 * if (container != op->o_container) { 606 * mutex_exit(&container->c_objects_lock); 607 * container_rele(container); 608 * return (KMEM_CBRC_DONT_KNOW); 609 * } 610 * 611 * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 612 * mutex_exit(&container->c_objects_lock); 613 * container_rele(container); 614 * return (KMEM_CBRC_LATER); 615 * } 616 * 617 * object_move_impl(op, np); // critical section 618 * rw_exit(OBJECT_RWLOCK(op)); 619 * 620 * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 621 * list_link_replace(&op->o_link_node, &np->o_link_node); 622 * mutex_exit(&container->c_objects_lock); 623 * container_rele(container); 624 * return (KMEM_CBRC_YES); 625 * } 626 * 627 * Note that object_move() must invalidate the designated o_container pointer of 628 * the old object in the same way that object_free() does, since kmem will free 629 * the object in response to the KMEM_CBRC_YES return value. 630 * 631 * The lock order in object_move() differs from object_alloc(), which locks 632 * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 633 * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 634 * not a problem. Holding the lock on the object list in the example above 635 * through the entire callback not only prevents the object from going away, it 636 * also allows you to lock the list elsewhere and know that none of its elements 637 * will move during iteration. 638 * 639 * Adding an explicit hold everywhere an object from the cache is used is tricky 640 * and involves much more change to client code than a cache-specific solution 641 * that leverages existing state to decide whether or not an object is 642 * movable. However, this approach has the advantage that no object remains 643 * immovable for any significant length of time, making it extremely unlikely 644 * that long-lived allocations can continue holding slabs hostage; and it works 645 * for any cache. 646 * 647 * 3. Consolidator Implementation 648 * 649 * Once the client supplies a move function that a) recognizes known objects and 650 * b) avoids moving objects that are actively in use, the remaining work is up 651 * to the consolidator to decide which objects to move and when to issue 652 * callbacks. 653 * 654 * The consolidator relies on the fact that a cache's slabs are ordered by 655 * usage. Each slab has a fixed number of objects. Depending on the slab's 656 * "color" (the offset of the first object from the beginning of the slab; 657 * offsets are staggered to mitigate false sharing of cache lines) it is either 658 * the maximum number of objects per slab determined at cache creation time or 659 * else the number closest to the maximum that fits within the space remaining 660 * after the initial offset. A completely allocated slab may contribute some 661 * internal fragmentation (per-slab overhead) but no external fragmentation, so 662 * it is of no interest to the consolidator. At the other extreme, slabs whose 663 * objects have all been freed to the slab are released to the virtual memory 664 * (VM) subsystem (objects freed to magazines are still allocated as far as the 665 * slab is concerned). External fragmentation exists when there are slabs 666 * somewhere between these extremes. A partial slab has at least one but not all 667 * of its objects allocated. The more partial slabs, and the fewer allocated 668 * objects on each of them, the higher the fragmentation. Hence the 669 * consolidator's overall strategy is to reduce the number of partial slabs by 670 * moving allocated objects from the least allocated slabs to the most allocated 671 * slabs. 672 * 673 * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 674 * slabs are kept separately in an unordered list. Since the majority of slabs 675 * tend to be completely allocated (a typical unfragmented cache may have 676 * thousands of complete slabs and only a single partial slab), separating 677 * complete slabs improves the efficiency of partial slab ordering, since the 678 * complete slabs do not affect the depth or balance of the AVL tree. This 679 * ordered sequence of partial slabs acts as a "free list" supplying objects for 680 * allocation requests. 681 * 682 * Objects are always allocated from the first partial slab in the free list, 683 * where the allocation is most likely to eliminate a partial slab (by 684 * completely allocating it). Conversely, when a single object from a completely 685 * allocated slab is freed to the slab, that slab is added to the front of the 686 * free list. Since most free list activity involves highly allocated slabs 687 * coming and going at the front of the list, slabs tend naturally toward the 688 * ideal order: highly allocated at the front, sparsely allocated at the back. 689 * Slabs with few allocated objects are likely to become completely free if they 690 * keep a safe distance away from the front of the free list. Slab misorders 691 * interfere with the natural tendency of slabs to become completely free or 692 * completely allocated. For example, a slab with a single allocated object 693 * needs only a single free to escape the cache; its natural desire is 694 * frustrated when it finds itself at the front of the list where a second 695 * allocation happens just before the free could have released it. Another slab 696 * with all but one object allocated might have supplied the buffer instead, so 697 * that both (as opposed to neither) of the slabs would have been taken off the 698 * free list. 699 * 700 * Although slabs tend naturally toward the ideal order, misorders allowed by a 701 * simple list implementation defeat the consolidator's strategy of merging 702 * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 703 * needs another way to fix misorders to optimize its callback strategy. One 704 * approach is to periodically scan a limited number of slabs, advancing a 705 * marker to hold the current scan position, and to move extreme misorders to 706 * the front or back of the free list and to the front or back of the current 707 * scan range. By making consecutive scan ranges overlap by one slab, the least 708 * allocated slab in the current range can be carried along from the end of one 709 * scan to the start of the next. 710 * 711 * Maintaining partial slabs in an AVL tree relieves kmem of this additional 712 * task, however. Since most of the cache's activity is in the magazine layer, 713 * and allocations from the slab layer represent only a startup cost, the 714 * overhead of maintaining a balanced tree is not a significant concern compared 715 * to the opportunity of reducing complexity by eliminating the partial slab 716 * scanner just described. The overhead of an AVL tree is minimized by 717 * maintaining only partial slabs in the tree and keeping completely allocated 718 * slabs separately in a list. To avoid increasing the size of the slab 719 * structure the AVL linkage pointers are reused for the slab's list linkage, 720 * since the slab will always be either partial or complete, never stored both 721 * ways at the same time. To further minimize the overhead of the AVL tree the 722 * compare function that orders partial slabs by usage divides the range of 723 * allocated object counts into bins such that counts within the same bin are 724 * considered equal. Binning partial slabs makes it less likely that allocating 725 * or freeing a single object will change the slab's order, requiring a tree 726 * reinsertion (an avl_remove() followed by an avl_add(), both potentially 727 * requiring some rebalancing of the tree). Allocation counts closest to 728 * completely free and completely allocated are left unbinned (finely sorted) to 729 * better support the consolidator's strategy of merging slabs at either 730 * extreme. 731 * 732 * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 733 * 734 * The consolidator piggybacks on the kmem maintenance thread and is called on 735 * the same interval as kmem_cache_update(), once per cache every fifteen 736 * seconds. kmem maintains a running count of unallocated objects in the slab 737 * layer (cache_bufslab). The consolidator checks whether that number exceeds 738 * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 739 * there is a significant number of slabs in the cache (arbitrarily a minimum 740 * 101 total slabs). Unused objects that have fallen out of the magazine layer's 741 * working set are included in the assessment, and magazines in the depot are 742 * reaped if those objects would lift cache_bufslab above the fragmentation 743 * threshold. Once the consolidator decides that a cache is fragmented, it looks 744 * for a candidate slab to reclaim, starting at the end of the partial slab free 745 * list and scanning backwards. At first the consolidator is choosy: only a slab 746 * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 747 * single allocated object, regardless of percentage). If there is difficulty 748 * finding a candidate slab, kmem raises the allocation threshold incrementally, 749 * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 750 * external fragmentation (unused objects on the free list) below 12.5% (1/8), 751 * even in the worst case of every slab in the cache being almost 7/8 allocated. 752 * The threshold can also be lowered incrementally when candidate slabs are easy 753 * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 754 * is no longer fragmented. 755 * 756 * 3.2 Generating Callbacks 757 * 758 * Once an eligible slab is chosen, a callback is generated for every allocated 759 * object on the slab, in the hope that the client will move everything off the 760 * slab and make it reclaimable. Objects selected as move destinations are 761 * chosen from slabs at the front of the free list. Assuming slabs in the ideal 762 * order (most allocated at the front, least allocated at the back) and a 763 * cooperative client, the consolidator will succeed in removing slabs from both 764 * ends of the free list, completely allocating on the one hand and completely 765 * freeing on the other. Objects selected as move destinations are allocated in 766 * the kmem maintenance thread where move requests are enqueued. A separate 767 * callback thread removes pending callbacks from the queue and calls the 768 * client. The separate thread ensures that client code (the move function) does 769 * not interfere with internal kmem maintenance tasks. A map of pending 770 * callbacks keyed by object address (the object to be moved) is checked to 771 * ensure that duplicate callbacks are not generated for the same object. 772 * Allocating the move destination (the object to move to) prevents subsequent 773 * callbacks from selecting the same destination as an earlier pending callback. 774 * 775 * Move requests can also be generated by kmem_cache_reap() when the system is 776 * desperate for memory and by kmem_cache_move_notify(), called by the client to 777 * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 778 * The map of pending callbacks is protected by the same lock that protects the 779 * slab layer. 780 * 781 * When the system is desperate for memory, kmem does not bother to determine 782 * whether or not the cache exceeds the fragmentation threshold, but tries to 783 * consolidate as many slabs as possible. Normally, the consolidator chews 784 * slowly, one sparsely allocated slab at a time during each maintenance 785 * interval that the cache is fragmented. When desperate, the consolidator 786 * starts at the last partial slab and enqueues callbacks for every allocated 787 * object on every partial slab, working backwards until it reaches the first 788 * partial slab. The first partial slab, meanwhile, advances in pace with the 789 * consolidator as allocations to supply move destinations for the enqueued 790 * callbacks use up the highly allocated slabs at the front of the free list. 791 * Ideally, the overgrown free list collapses like an accordion, starting at 792 * both ends and ending at the center with a single partial slab. 793 * 794 * 3.3 Client Responses 795 * 796 * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 797 * marks the slab that supplied the stuck object non-reclaimable and moves it to 798 * front of the free list. The slab remains marked as long as it remains on the 799 * free list, and it appears more allocated to the partial slab compare function 800 * than any unmarked slab, no matter how many of its objects are allocated. 801 * Since even one immovable object ties up the entire slab, the goal is to 802 * completely allocate any slab that cannot be completely freed. kmem does not 803 * bother generating callbacks to move objects from a marked slab unless the 804 * system is desperate. 805 * 806 * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 807 * slab. If the client responds LATER too many times, kmem disbelieves and 808 * treats the response as a NO. The count is cleared when the slab is taken off 809 * the partial slab list or when the client moves one of the slab's objects. 810 * 811 * 4. Observability 812 * 813 * A kmem cache's external fragmentation is best observed with 'mdb -k' using 814 * the ::kmem_slabs dcmd. For a complete description of the command, enter 815 * '::help kmem_slabs' at the mdb prompt. 816 */ 817 818 #include <sys/kmem_impl.h> 819 #include <sys/vmem_impl.h> 820 #include <sys/param.h> 821 #include <sys/sysmacros.h> 822 #include <sys/vm.h> 823 #include <sys/proc.h> 824 #include <sys/tuneable.h> 825 #include <sys/systm.h> 826 #include <sys/cmn_err.h> 827 #include <sys/debug.h> 828 #include <sys/sdt.h> 829 #include <sys/mutex.h> 830 #include <sys/bitmap.h> 831 #include <sys/atomic.h> 832 #include <sys/kobj.h> 833 #include <sys/disp.h> 834 #include <vm/seg_kmem.h> 835 #include <sys/log.h> 836 #include <sys/callb.h> 837 #include <sys/taskq.h> 838 #include <sys/modctl.h> 839 #include <sys/reboot.h> 840 #include <sys/id32.h> 841 #include <sys/zone.h> 842 #include <sys/netstack.h> 843 #ifdef DEBUG 844 #include <sys/random.h> 845 #endif 846 847 extern void streams_msg_init(void); 848 extern int segkp_fromheap; 849 extern void segkp_cache_free(void); 850 extern int callout_init_done; 851 852 struct kmem_cache_kstat { 853 kstat_named_t kmc_buf_size; 854 kstat_named_t kmc_align; 855 kstat_named_t kmc_chunk_size; 856 kstat_named_t kmc_slab_size; 857 kstat_named_t kmc_alloc; 858 kstat_named_t kmc_alloc_fail; 859 kstat_named_t kmc_free; 860 kstat_named_t kmc_depot_alloc; 861 kstat_named_t kmc_depot_free; 862 kstat_named_t kmc_depot_contention; 863 kstat_named_t kmc_slab_alloc; 864 kstat_named_t kmc_slab_free; 865 kstat_named_t kmc_buf_constructed; 866 kstat_named_t kmc_buf_avail; 867 kstat_named_t kmc_buf_inuse; 868 kstat_named_t kmc_buf_total; 869 kstat_named_t kmc_buf_max; 870 kstat_named_t kmc_slab_create; 871 kstat_named_t kmc_slab_destroy; 872 kstat_named_t kmc_vmem_source; 873 kstat_named_t kmc_hash_size; 874 kstat_named_t kmc_hash_lookup_depth; 875 kstat_named_t kmc_hash_rescale; 876 kstat_named_t kmc_full_magazines; 877 kstat_named_t kmc_empty_magazines; 878 kstat_named_t kmc_magazine_size; 879 kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 880 kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 881 kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 882 kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 883 kstat_named_t kmc_move_yes; 884 kstat_named_t kmc_move_no; 885 kstat_named_t kmc_move_later; 886 kstat_named_t kmc_move_dont_need; 887 kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 888 kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 889 kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 890 kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 891 } kmem_cache_kstat = { 892 { "buf_size", KSTAT_DATA_UINT64 }, 893 { "align", KSTAT_DATA_UINT64 }, 894 { "chunk_size", KSTAT_DATA_UINT64 }, 895 { "slab_size", KSTAT_DATA_UINT64 }, 896 { "alloc", KSTAT_DATA_UINT64 }, 897 { "alloc_fail", KSTAT_DATA_UINT64 }, 898 { "free", KSTAT_DATA_UINT64 }, 899 { "depot_alloc", KSTAT_DATA_UINT64 }, 900 { "depot_free", KSTAT_DATA_UINT64 }, 901 { "depot_contention", KSTAT_DATA_UINT64 }, 902 { "slab_alloc", KSTAT_DATA_UINT64 }, 903 { "slab_free", KSTAT_DATA_UINT64 }, 904 { "buf_constructed", KSTAT_DATA_UINT64 }, 905 { "buf_avail", KSTAT_DATA_UINT64 }, 906 { "buf_inuse", KSTAT_DATA_UINT64 }, 907 { "buf_total", KSTAT_DATA_UINT64 }, 908 { "buf_max", KSTAT_DATA_UINT64 }, 909 { "slab_create", KSTAT_DATA_UINT64 }, 910 { "slab_destroy", KSTAT_DATA_UINT64 }, 911 { "vmem_source", KSTAT_DATA_UINT64 }, 912 { "hash_size", KSTAT_DATA_UINT64 }, 913 { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 914 { "hash_rescale", KSTAT_DATA_UINT64 }, 915 { "full_magazines", KSTAT_DATA_UINT64 }, 916 { "empty_magazines", KSTAT_DATA_UINT64 }, 917 { "magazine_size", KSTAT_DATA_UINT64 }, 918 { "reap", KSTAT_DATA_UINT64 }, 919 { "defrag", KSTAT_DATA_UINT64 }, 920 { "scan", KSTAT_DATA_UINT64 }, 921 { "move_callbacks", KSTAT_DATA_UINT64 }, 922 { "move_yes", KSTAT_DATA_UINT64 }, 923 { "move_no", KSTAT_DATA_UINT64 }, 924 { "move_later", KSTAT_DATA_UINT64 }, 925 { "move_dont_need", KSTAT_DATA_UINT64 }, 926 { "move_dont_know", KSTAT_DATA_UINT64 }, 927 { "move_hunt_found", KSTAT_DATA_UINT64 }, 928 { "move_slabs_freed", KSTAT_DATA_UINT64 }, 929 { "move_reclaimable", KSTAT_DATA_UINT64 }, 930 }; 931 932 static kmutex_t kmem_cache_kstat_lock; 933 934 /* 935 * The default set of caches to back kmem_alloc(). 936 * These sizes should be reevaluated periodically. 937 * 938 * We want allocations that are multiples of the coherency granularity 939 * (64 bytes) to be satisfied from a cache which is a multiple of 64 940 * bytes, so that it will be 64-byte aligned. For all multiples of 64, 941 * the next kmem_cache_size greater than or equal to it must be a 942 * multiple of 64. 943 * 944 * We split the table into two sections: size <= 4k and size > 4k. This 945 * saves a lot of space and cache footprint in our cache tables. 946 */ 947 static const int kmem_alloc_sizes[] = { 948 1 * 8, 949 2 * 8, 950 3 * 8, 951 4 * 8, 5 * 8, 6 * 8, 7 * 8, 952 4 * 16, 5 * 16, 6 * 16, 7 * 16, 953 4 * 32, 5 * 32, 6 * 32, 7 * 32, 954 4 * 64, 5 * 64, 6 * 64, 7 * 64, 955 4 * 128, 5 * 128, 6 * 128, 7 * 128, 956 P2ALIGN(8192 / 7, 64), 957 P2ALIGN(8192 / 6, 64), 958 P2ALIGN(8192 / 5, 64), 959 P2ALIGN(8192 / 4, 64), 960 P2ALIGN(8192 / 3, 64), 961 P2ALIGN(8192 / 2, 64), 962 }; 963 964 static const int kmem_big_alloc_sizes[] = { 965 2 * 4096, 3 * 4096, 966 2 * 8192, 3 * 8192, 967 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 968 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 969 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 970 16 * 8192 971 }; 972 973 #define KMEM_MAXBUF 4096 974 #define KMEM_BIG_MAXBUF_32BIT 32768 975 #define KMEM_BIG_MAXBUF 131072 976 977 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 978 #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 979 980 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 981 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 982 983 #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 984 static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 985 986 static kmem_magtype_t kmem_magtype[] = { 987 { 1, 8, 3200, 65536 }, 988 { 3, 16, 256, 32768 }, 989 { 7, 32, 64, 16384 }, 990 { 15, 64, 0, 8192 }, 991 { 31, 64, 0, 4096 }, 992 { 47, 64, 0, 2048 }, 993 { 63, 64, 0, 1024 }, 994 { 95, 64, 0, 512 }, 995 { 143, 64, 0, 0 }, 996 }; 997 998 static uint32_t kmem_reaping; 999 static uint32_t kmem_reaping_idspace; 1000 1001 /* 1002 * kmem tunables 1003 */ 1004 clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 1005 int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 1006 pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 1007 int kmem_panic = 1; /* whether to panic on error */ 1008 int kmem_logging = 1; /* kmem_log_enter() override */ 1009 uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 1010 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 1011 size_t kmem_content_log_size; /* content log size [2% of memory] */ 1012 size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 1013 size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 1014 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 1015 size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 1016 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 1017 int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 1018 size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 1019 size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 1020 1021 #ifdef _LP64 1022 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1023 #else 1024 size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1025 #endif 1026 1027 #ifdef DEBUG 1028 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 1029 #else 1030 int kmem_flags = 0; 1031 #endif 1032 int kmem_ready; 1033 1034 static kmem_cache_t *kmem_slab_cache; 1035 static kmem_cache_t *kmem_bufctl_cache; 1036 static kmem_cache_t *kmem_bufctl_audit_cache; 1037 1038 static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1039 static list_t kmem_caches; 1040 1041 static taskq_t *kmem_taskq; 1042 static kmutex_t kmem_flags_lock; 1043 static vmem_t *kmem_metadata_arena; 1044 static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 1045 static vmem_t *kmem_cache_arena; 1046 static vmem_t *kmem_hash_arena; 1047 static vmem_t *kmem_log_arena; 1048 static vmem_t *kmem_oversize_arena; 1049 static vmem_t *kmem_va_arena; 1050 static vmem_t *kmem_default_arena; 1051 static vmem_t *kmem_firewall_va_arena; 1052 static vmem_t *kmem_firewall_arena; 1053 1054 /* 1055 * kmem slab consolidator thresholds (tunables) 1056 */ 1057 size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1058 size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1059 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1060 /* 1061 * Maximum number of slabs from which to move buffers during a single 1062 * maintenance interval while the system is not low on memory. 1063 */ 1064 size_t kmem_reclaim_max_slabs = 1; 1065 /* 1066 * Number of slabs to scan backwards from the end of the partial slab list 1067 * when searching for buffers to relocate. 1068 */ 1069 size_t kmem_reclaim_scan_range = 12; 1070 1071 /* consolidator knobs */ 1072 boolean_t kmem_move_noreap; 1073 boolean_t kmem_move_blocked; 1074 boolean_t kmem_move_fulltilt; 1075 boolean_t kmem_move_any_partial; 1076 1077 #ifdef DEBUG 1078 /* 1079 * kmem consolidator debug tunables: 1080 * Ensure code coverage by occasionally running the consolidator even when the 1081 * caches are not fragmented (they may never be). These intervals are mean time 1082 * in cache maintenance intervals (kmem_cache_update). 1083 */ 1084 uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1085 uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1086 #endif /* DEBUG */ 1087 1088 static kmem_cache_t *kmem_defrag_cache; 1089 static kmem_cache_t *kmem_move_cache; 1090 static taskq_t *kmem_move_taskq; 1091 1092 static void kmem_cache_scan(kmem_cache_t *); 1093 static void kmem_cache_defrag(kmem_cache_t *); 1094 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1095 1096 1097 kmem_log_header_t *kmem_transaction_log; 1098 kmem_log_header_t *kmem_content_log; 1099 kmem_log_header_t *kmem_failure_log; 1100 kmem_log_header_t *kmem_slab_log; 1101 1102 static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 1103 1104 #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 1105 if ((count) > 0) { \ 1106 pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 1107 pc_t *_e; \ 1108 /* memmove() the old entries down one notch */ \ 1109 for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 1110 *_e = *(_e - 1); \ 1111 *_s = (uintptr_t)(caller); \ 1112 } 1113 1114 #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 1115 #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 1116 #define KMERR_DUPFREE 2 /* freed a buffer twice */ 1117 #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 1118 #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 1119 #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 1120 #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 1121 #define KMERR_BADSIZE 7 /* alloc size != free size */ 1122 #define KMERR_BADBASE 8 /* buffer base address wrong */ 1123 1124 struct { 1125 hrtime_t kmp_timestamp; /* timestamp of panic */ 1126 int kmp_error; /* type of kmem error */ 1127 void *kmp_buffer; /* buffer that induced panic */ 1128 void *kmp_realbuf; /* real start address for buffer */ 1129 kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 1130 kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 1131 kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 1132 kmem_bufctl_t *kmp_bufctl; /* bufctl */ 1133 } kmem_panic_info; 1134 1135 1136 static void 1137 copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 1138 { 1139 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1140 uint64_t *buf = buf_arg; 1141 1142 while (buf < bufend) 1143 *buf++ = pattern; 1144 } 1145 1146 static void * 1147 verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 1148 { 1149 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1150 uint64_t *buf; 1151 1152 for (buf = buf_arg; buf < bufend; buf++) 1153 if (*buf != pattern) 1154 return (buf); 1155 return (NULL); 1156 } 1157 1158 static void * 1159 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 1160 { 1161 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 1162 uint64_t *buf; 1163 1164 for (buf = buf_arg; buf < bufend; buf++) { 1165 if (*buf != old) { 1166 copy_pattern(old, buf_arg, 1167 (char *)buf - (char *)buf_arg); 1168 return (buf); 1169 } 1170 *buf = new; 1171 } 1172 1173 return (NULL); 1174 } 1175 1176 static void 1177 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1178 { 1179 kmem_cache_t *cp; 1180 1181 mutex_enter(&kmem_cache_lock); 1182 for (cp = list_head(&kmem_caches); cp != NULL; 1183 cp = list_next(&kmem_caches, cp)) 1184 if (tq != NULL) 1185 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1186 tqflag); 1187 else 1188 func(cp); 1189 mutex_exit(&kmem_cache_lock); 1190 } 1191 1192 static void 1193 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 1194 { 1195 kmem_cache_t *cp; 1196 1197 mutex_enter(&kmem_cache_lock); 1198 for (cp = list_head(&kmem_caches); cp != NULL; 1199 cp = list_next(&kmem_caches, cp)) { 1200 if (!(cp->cache_cflags & KMC_IDENTIFIER)) 1201 continue; 1202 if (tq != NULL) 1203 (void) taskq_dispatch(tq, (task_func_t *)func, cp, 1204 tqflag); 1205 else 1206 func(cp); 1207 } 1208 mutex_exit(&kmem_cache_lock); 1209 } 1210 1211 /* 1212 * Debugging support. Given a buffer address, find its slab. 1213 */ 1214 static kmem_slab_t * 1215 kmem_findslab(kmem_cache_t *cp, void *buf) 1216 { 1217 kmem_slab_t *sp; 1218 1219 mutex_enter(&cp->cache_lock); 1220 for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1221 sp = list_next(&cp->cache_complete_slabs, sp)) { 1222 if (KMEM_SLAB_MEMBER(sp, buf)) { 1223 mutex_exit(&cp->cache_lock); 1224 return (sp); 1225 } 1226 } 1227 for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1228 sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 1229 if (KMEM_SLAB_MEMBER(sp, buf)) { 1230 mutex_exit(&cp->cache_lock); 1231 return (sp); 1232 } 1233 } 1234 mutex_exit(&cp->cache_lock); 1235 1236 return (NULL); 1237 } 1238 1239 static void 1240 kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 1241 { 1242 kmem_buftag_t *btp = NULL; 1243 kmem_bufctl_t *bcp = NULL; 1244 kmem_cache_t *cp = cparg; 1245 kmem_slab_t *sp; 1246 uint64_t *off; 1247 void *buf = bufarg; 1248 1249 kmem_logging = 0; /* stop logging when a bad thing happens */ 1250 1251 kmem_panic_info.kmp_timestamp = gethrtime(); 1252 1253 sp = kmem_findslab(cp, buf); 1254 if (sp == NULL) { 1255 for (cp = list_tail(&kmem_caches); cp != NULL; 1256 cp = list_prev(&kmem_caches, cp)) { 1257 if ((sp = kmem_findslab(cp, buf)) != NULL) 1258 break; 1259 } 1260 } 1261 1262 if (sp == NULL) { 1263 cp = NULL; 1264 error = KMERR_BADADDR; 1265 } else { 1266 if (cp != cparg) 1267 error = KMERR_BADCACHE; 1268 else 1269 buf = (char *)bufarg - ((uintptr_t)bufarg - 1270 (uintptr_t)sp->slab_base) % cp->cache_chunksize; 1271 if (buf != bufarg) 1272 error = KMERR_BADBASE; 1273 if (cp->cache_flags & KMF_BUFTAG) 1274 btp = KMEM_BUFTAG(cp, buf); 1275 if (cp->cache_flags & KMF_HASH) { 1276 mutex_enter(&cp->cache_lock); 1277 for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 1278 if (bcp->bc_addr == buf) 1279 break; 1280 mutex_exit(&cp->cache_lock); 1281 if (bcp == NULL && btp != NULL) 1282 bcp = btp->bt_bufctl; 1283 if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 1284 NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 1285 bcp->bc_addr != buf) { 1286 error = KMERR_BADBUFCTL; 1287 bcp = NULL; 1288 } 1289 } 1290 } 1291 1292 kmem_panic_info.kmp_error = error; 1293 kmem_panic_info.kmp_buffer = bufarg; 1294 kmem_panic_info.kmp_realbuf = buf; 1295 kmem_panic_info.kmp_cache = cparg; 1296 kmem_panic_info.kmp_realcache = cp; 1297 kmem_panic_info.kmp_slab = sp; 1298 kmem_panic_info.kmp_bufctl = bcp; 1299 1300 printf("kernel memory allocator: "); 1301 1302 switch (error) { 1303 1304 case KMERR_MODIFIED: 1305 printf("buffer modified after being freed\n"); 1306 off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1307 if (off == NULL) /* shouldn't happen */ 1308 off = buf; 1309 printf("modification occurred at offset 0x%lx " 1310 "(0x%llx replaced by 0x%llx)\n", 1311 (uintptr_t)off - (uintptr_t)buf, 1312 (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 1313 break; 1314 1315 case KMERR_REDZONE: 1316 printf("redzone violation: write past end of buffer\n"); 1317 break; 1318 1319 case KMERR_BADADDR: 1320 printf("invalid free: buffer not in cache\n"); 1321 break; 1322 1323 case KMERR_DUPFREE: 1324 printf("duplicate free: buffer freed twice\n"); 1325 break; 1326 1327 case KMERR_BADBUFTAG: 1328 printf("boundary tag corrupted\n"); 1329 printf("bcp ^ bxstat = %lx, should be %lx\n", 1330 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 1331 KMEM_BUFTAG_FREE); 1332 break; 1333 1334 case KMERR_BADBUFCTL: 1335 printf("bufctl corrupted\n"); 1336 break; 1337 1338 case KMERR_BADCACHE: 1339 printf("buffer freed to wrong cache\n"); 1340 printf("buffer was allocated from %s,\n", cp->cache_name); 1341 printf("caller attempting free to %s.\n", cparg->cache_name); 1342 break; 1343 1344 case KMERR_BADSIZE: 1345 printf("bad free: free size (%u) != alloc size (%u)\n", 1346 KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 1347 KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 1348 break; 1349 1350 case KMERR_BADBASE: 1351 printf("bad free: free address (%p) != alloc address (%p)\n", 1352 bufarg, buf); 1353 break; 1354 } 1355 1356 printf("buffer=%p bufctl=%p cache: %s\n", 1357 bufarg, (void *)bcp, cparg->cache_name); 1358 1359 if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 1360 error != KMERR_BADBUFCTL) { 1361 int d; 1362 timestruc_t ts; 1363 kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 1364 1365 hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 1366 printf("previous transaction on buffer %p:\n", buf); 1367 printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 1368 (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 1369 (void *)sp, cp->cache_name); 1370 for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 1371 ulong_t off; 1372 char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 1373 printf("%s+%lx\n", sym ? sym : "?", off); 1374 } 1375 } 1376 if (kmem_panic > 0) 1377 panic("kernel heap corruption detected"); 1378 if (kmem_panic == 0) 1379 debug_enter(NULL); 1380 kmem_logging = 1; /* resume logging */ 1381 } 1382 1383 static kmem_log_header_t * 1384 kmem_log_init(size_t logsize) 1385 { 1386 kmem_log_header_t *lhp; 1387 int nchunks = 4 * max_ncpus; 1388 size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 1389 int i; 1390 1391 /* 1392 * Make sure that lhp->lh_cpu[] is nicely aligned 1393 * to prevent false sharing of cache lines. 1394 */ 1395 lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 1396 lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 1397 NULL, NULL, VM_SLEEP); 1398 bzero(lhp, lhsize); 1399 1400 mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 1401 lhp->lh_nchunks = nchunks; 1402 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 1403 lhp->lh_base = vmem_alloc(kmem_log_arena, 1404 lhp->lh_chunksize * nchunks, VM_SLEEP); 1405 lhp->lh_free = vmem_alloc(kmem_log_arena, 1406 nchunks * sizeof (int), VM_SLEEP); 1407 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 1408 1409 for (i = 0; i < max_ncpus; i++) { 1410 kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 1411 mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 1412 clhp->clh_chunk = i; 1413 } 1414 1415 for (i = max_ncpus; i < nchunks; i++) 1416 lhp->lh_free[i] = i; 1417 1418 lhp->lh_head = max_ncpus; 1419 lhp->lh_tail = 0; 1420 1421 return (lhp); 1422 } 1423 1424 static void * 1425 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 1426 { 1427 void *logspace; 1428 kmem_cpu_log_header_t *clhp; 1429 1430 if (lhp == NULL || kmem_logging == 0 || panicstr) 1431 return (NULL); 1432 1433 clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1434 1435 mutex_enter(&clhp->clh_lock); 1436 clhp->clh_hits++; 1437 if (size > clhp->clh_avail) { 1438 mutex_enter(&lhp->lh_lock); 1439 lhp->lh_hits++; 1440 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 1441 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 1442 clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 1443 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 1444 clhp->clh_current = lhp->lh_base + 1445 clhp->clh_chunk * lhp->lh_chunksize; 1446 clhp->clh_avail = lhp->lh_chunksize; 1447 if (size > lhp->lh_chunksize) 1448 size = lhp->lh_chunksize; 1449 mutex_exit(&lhp->lh_lock); 1450 } 1451 logspace = clhp->clh_current; 1452 clhp->clh_current += size; 1453 clhp->clh_avail -= size; 1454 bcopy(data, logspace, size); 1455 mutex_exit(&clhp->clh_lock); 1456 return (logspace); 1457 } 1458 1459 #define KMEM_AUDIT(lp, cp, bcp) \ 1460 { \ 1461 kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 1462 _bcp->bc_timestamp = gethrtime(); \ 1463 _bcp->bc_thread = curthread; \ 1464 _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 1465 _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 1466 } 1467 1468 static void 1469 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 1470 kmem_slab_t *sp, void *addr) 1471 { 1472 kmem_bufctl_audit_t bca; 1473 1474 bzero(&bca, sizeof (kmem_bufctl_audit_t)); 1475 bca.bc_addr = addr; 1476 bca.bc_slab = sp; 1477 bca.bc_cache = cp; 1478 KMEM_AUDIT(lp, cp, &bca); 1479 } 1480 1481 /* 1482 * Create a new slab for cache cp. 1483 */ 1484 static kmem_slab_t * 1485 kmem_slab_create(kmem_cache_t *cp, int kmflag) 1486 { 1487 size_t slabsize = cp->cache_slabsize; 1488 size_t chunksize = cp->cache_chunksize; 1489 int cache_flags = cp->cache_flags; 1490 size_t color, chunks; 1491 char *buf, *slab; 1492 kmem_slab_t *sp; 1493 kmem_bufctl_t *bcp; 1494 vmem_t *vmp = cp->cache_arena; 1495 1496 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1497 1498 color = cp->cache_color + cp->cache_align; 1499 if (color > cp->cache_maxcolor) 1500 color = cp->cache_mincolor; 1501 cp->cache_color = color; 1502 1503 slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 1504 1505 if (slab == NULL) 1506 goto vmem_alloc_failure; 1507 1508 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 1509 1510 /* 1511 * Reverify what was already checked in kmem_cache_set_move(), since the 1512 * consolidator depends (for correctness) on slabs being initialized 1513 * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1514 * clients to distinguish uninitialized memory from known objects). 1515 */ 1516 ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 1517 if (!(cp->cache_cflags & KMC_NOTOUCH)) 1518 copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 1519 1520 if (cache_flags & KMF_HASH) { 1521 if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 1522 goto slab_alloc_failure; 1523 chunks = (slabsize - color) / chunksize; 1524 } else { 1525 sp = KMEM_SLAB(cp, slab); 1526 chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 1527 } 1528 1529 sp->slab_cache = cp; 1530 sp->slab_head = NULL; 1531 sp->slab_refcnt = 0; 1532 sp->slab_base = buf = slab + color; 1533 sp->slab_chunks = chunks; 1534 sp->slab_stuck_offset = (uint32_t)-1; 1535 sp->slab_later_count = 0; 1536 sp->slab_flags = 0; 1537 1538 ASSERT(chunks > 0); 1539 while (chunks-- != 0) { 1540 if (cache_flags & KMF_HASH) { 1541 bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 1542 if (bcp == NULL) 1543 goto bufctl_alloc_failure; 1544 if (cache_flags & KMF_AUDIT) { 1545 kmem_bufctl_audit_t *bcap = 1546 (kmem_bufctl_audit_t *)bcp; 1547 bzero(bcap, sizeof (kmem_bufctl_audit_t)); 1548 bcap->bc_cache = cp; 1549 } 1550 bcp->bc_addr = buf; 1551 bcp->bc_slab = sp; 1552 } else { 1553 bcp = KMEM_BUFCTL(cp, buf); 1554 } 1555 if (cache_flags & KMF_BUFTAG) { 1556 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1557 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1558 btp->bt_bufctl = bcp; 1559 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1560 if (cache_flags & KMF_DEADBEEF) { 1561 copy_pattern(KMEM_FREE_PATTERN, buf, 1562 cp->cache_verify); 1563 } 1564 } 1565 bcp->bc_next = sp->slab_head; 1566 sp->slab_head = bcp; 1567 buf += chunksize; 1568 } 1569 1570 kmem_log_event(kmem_slab_log, cp, sp, slab); 1571 1572 return (sp); 1573 1574 bufctl_alloc_failure: 1575 1576 while ((bcp = sp->slab_head) != NULL) { 1577 sp->slab_head = bcp->bc_next; 1578 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1579 } 1580 kmem_cache_free(kmem_slab_cache, sp); 1581 1582 slab_alloc_failure: 1583 1584 vmem_free(vmp, slab, slabsize); 1585 1586 vmem_alloc_failure: 1587 1588 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1589 atomic_inc_64(&cp->cache_alloc_fail); 1590 1591 return (NULL); 1592 } 1593 1594 /* 1595 * Destroy a slab. 1596 */ 1597 static void 1598 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 1599 { 1600 vmem_t *vmp = cp->cache_arena; 1601 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 1602 1603 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1604 ASSERT(sp->slab_refcnt == 0); 1605 1606 if (cp->cache_flags & KMF_HASH) { 1607 kmem_bufctl_t *bcp; 1608 while ((bcp = sp->slab_head) != NULL) { 1609 sp->slab_head = bcp->bc_next; 1610 kmem_cache_free(cp->cache_bufctl_cache, bcp); 1611 } 1612 kmem_cache_free(kmem_slab_cache, sp); 1613 } 1614 vmem_free(vmp, slab, cp->cache_slabsize); 1615 } 1616 1617 static void * 1618 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 1619 { 1620 kmem_bufctl_t *bcp, **hash_bucket; 1621 void *buf; 1622 boolean_t new_slab = (sp->slab_refcnt == 0); 1623 1624 ASSERT(MUTEX_HELD(&cp->cache_lock)); 1625 /* 1626 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1627 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1628 * slab is newly created. 1629 */ 1630 ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1631 (sp == avl_first(&cp->cache_partial_slabs)))); 1632 ASSERT(sp->slab_cache == cp); 1633 1634 cp->cache_slab_alloc++; 1635 cp->cache_bufslab--; 1636 sp->slab_refcnt++; 1637 1638 bcp = sp->slab_head; 1639 sp->slab_head = bcp->bc_next; 1640 1641 if (cp->cache_flags & KMF_HASH) { 1642 /* 1643 * Add buffer to allocated-address hash table. 1644 */ 1645 buf = bcp->bc_addr; 1646 hash_bucket = KMEM_HASH(cp, buf); 1647 bcp->bc_next = *hash_bucket; 1648 *hash_bucket = bcp; 1649 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1650 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1651 } 1652 } else { 1653 buf = KMEM_BUF(cp, bcp); 1654 } 1655 1656 ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1657 1658 if (sp->slab_head == NULL) { 1659 ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1660 if (new_slab) { 1661 ASSERT(sp->slab_chunks == 1); 1662 } else { 1663 ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1664 avl_remove(&cp->cache_partial_slabs, sp); 1665 sp->slab_later_count = 0; /* clear history */ 1666 sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1667 sp->slab_stuck_offset = (uint32_t)-1; 1668 } 1669 list_insert_head(&cp->cache_complete_slabs, sp); 1670 cp->cache_complete_slab_count++; 1671 return (buf); 1672 } 1673 1674 ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1675 /* 1676 * Peek to see if the magazine layer is enabled before 1677 * we prefill. We're not holding the cpu cache lock, 1678 * so the peek could be wrong, but there's no harm in it. 1679 */ 1680 if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1681 (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1682 kmem_slab_prefill(cp, sp); 1683 return (buf); 1684 } 1685 1686 if (new_slab) { 1687 avl_add(&cp->cache_partial_slabs, sp); 1688 return (buf); 1689 } 1690 1691 /* 1692 * The slab is now more allocated than it was, so the 1693 * order remains unchanged. 1694 */ 1695 ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1696 return (buf); 1697 } 1698 1699 /* 1700 * Allocate a raw (unconstructed) buffer from cp's slab layer. 1701 */ 1702 static void * 1703 kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1704 { 1705 kmem_slab_t *sp; 1706 void *buf; 1707 boolean_t test_destructor; 1708 1709 mutex_enter(&cp->cache_lock); 1710 test_destructor = (cp->cache_slab_alloc == 0); 1711 sp = avl_first(&cp->cache_partial_slabs); 1712 if (sp == NULL) { 1713 ASSERT(cp->cache_bufslab == 0); 1714 1715 /* 1716 * The freelist is empty. Create a new slab. 1717 */ 1718 mutex_exit(&cp->cache_lock); 1719 if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1720 return (NULL); 1721 } 1722 mutex_enter(&cp->cache_lock); 1723 cp->cache_slab_create++; 1724 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1725 cp->cache_bufmax = cp->cache_buftotal; 1726 cp->cache_bufslab += sp->slab_chunks; 1727 } 1728 1729 buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1730 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1731 (cp->cache_complete_slab_count + 1732 avl_numnodes(&cp->cache_partial_slabs) + 1733 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1734 mutex_exit(&cp->cache_lock); 1735 1736 if (test_destructor && cp->cache_destructor != NULL) { 1737 /* 1738 * On the first kmem_slab_alloc(), assert that it is valid to 1739 * call the destructor on a newly constructed object without any 1740 * client involvement. 1741 */ 1742 if ((cp->cache_constructor == NULL) || 1743 cp->cache_constructor(buf, cp->cache_private, 1744 kmflag) == 0) { 1745 cp->cache_destructor(buf, cp->cache_private); 1746 } 1747 copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 1748 cp->cache_bufsize); 1749 if (cp->cache_flags & KMF_DEADBEEF) { 1750 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1751 } 1752 } 1753 1754 return (buf); 1755 } 1756 1757 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1758 1759 /* 1760 * Free a raw (unconstructed) buffer to cp's slab layer. 1761 */ 1762 static void 1763 kmem_slab_free(kmem_cache_t *cp, void *buf) 1764 { 1765 kmem_slab_t *sp; 1766 kmem_bufctl_t *bcp, **prev_bcpp; 1767 1768 ASSERT(buf != NULL); 1769 1770 mutex_enter(&cp->cache_lock); 1771 cp->cache_slab_free++; 1772 1773 if (cp->cache_flags & KMF_HASH) { 1774 /* 1775 * Look up buffer in allocated-address hash table. 1776 */ 1777 prev_bcpp = KMEM_HASH(cp, buf); 1778 while ((bcp = *prev_bcpp) != NULL) { 1779 if (bcp->bc_addr == buf) { 1780 *prev_bcpp = bcp->bc_next; 1781 sp = bcp->bc_slab; 1782 break; 1783 } 1784 cp->cache_lookup_depth++; 1785 prev_bcpp = &bcp->bc_next; 1786 } 1787 } else { 1788 bcp = KMEM_BUFCTL(cp, buf); 1789 sp = KMEM_SLAB(cp, buf); 1790 } 1791 1792 if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 1793 mutex_exit(&cp->cache_lock); 1794 kmem_error(KMERR_BADADDR, cp, buf); 1795 return; 1796 } 1797 1798 if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1799 /* 1800 * If this is the buffer that prevented the consolidator from 1801 * clearing the slab, we can reset the slab flags now that the 1802 * buffer is freed. (It makes sense to do this in 1803 * kmem_cache_free(), where the client gives up ownership of the 1804 * buffer, but on the hot path the test is too expensive.) 1805 */ 1806 kmem_slab_move_yes(cp, sp, buf); 1807 } 1808 1809 if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 1810 if (cp->cache_flags & KMF_CONTENTS) 1811 ((kmem_bufctl_audit_t *)bcp)->bc_contents = 1812 kmem_log_enter(kmem_content_log, buf, 1813 cp->cache_contents); 1814 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1815 } 1816 1817 bcp->bc_next = sp->slab_head; 1818 sp->slab_head = bcp; 1819 1820 cp->cache_bufslab++; 1821 ASSERT(sp->slab_refcnt >= 1); 1822 1823 if (--sp->slab_refcnt == 0) { 1824 /* 1825 * There are no outstanding allocations from this slab, 1826 * so we can reclaim the memory. 1827 */ 1828 if (sp->slab_chunks == 1) { 1829 list_remove(&cp->cache_complete_slabs, sp); 1830 cp->cache_complete_slab_count--; 1831 } else { 1832 avl_remove(&cp->cache_partial_slabs, sp); 1833 } 1834 1835 cp->cache_buftotal -= sp->slab_chunks; 1836 cp->cache_bufslab -= sp->slab_chunks; 1837 /* 1838 * Defer releasing the slab to the virtual memory subsystem 1839 * while there is a pending move callback, since we guarantee 1840 * that buffers passed to the move callback have only been 1841 * touched by kmem or by the client itself. Since the memory 1842 * patterns baddcafe (uninitialized) and deadbeef (freed) both 1843 * set at least one of the two lowest order bits, the client can 1844 * test those bits in the move callback to determine whether or 1845 * not it knows about the buffer (assuming that the client also 1846 * sets one of those low order bits whenever it frees a buffer). 1847 */ 1848 if (cp->cache_defrag == NULL || 1849 (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1850 !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1851 cp->cache_slab_destroy++; 1852 mutex_exit(&cp->cache_lock); 1853 kmem_slab_destroy(cp, sp); 1854 } else { 1855 list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1856 /* 1857 * Slabs are inserted at both ends of the deadlist to 1858 * distinguish between slabs freed while move callbacks 1859 * are pending (list head) and a slab freed while the 1860 * lock is dropped in kmem_move_buffers() (list tail) so 1861 * that in both cases slab_destroy() is called from the 1862 * right context. 1863 */ 1864 if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1865 list_insert_tail(deadlist, sp); 1866 } else { 1867 list_insert_head(deadlist, sp); 1868 } 1869 cp->cache_defrag->kmd_deadcount++; 1870 mutex_exit(&cp->cache_lock); 1871 } 1872 return; 1873 } 1874 1875 if (bcp->bc_next == NULL) { 1876 /* Transition the slab from completely allocated to partial. */ 1877 ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1878 ASSERT(sp->slab_chunks > 1); 1879 list_remove(&cp->cache_complete_slabs, sp); 1880 cp->cache_complete_slab_count--; 1881 avl_add(&cp->cache_partial_slabs, sp); 1882 } else { 1883 (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1884 } 1885 1886 ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1887 (cp->cache_complete_slab_count + 1888 avl_numnodes(&cp->cache_partial_slabs) + 1889 (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 1890 mutex_exit(&cp->cache_lock); 1891 } 1892 1893 /* 1894 * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1895 */ 1896 static int 1897 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 1898 caddr_t caller) 1899 { 1900 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1901 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1902 uint32_t mtbf; 1903 1904 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1905 kmem_error(KMERR_BADBUFTAG, cp, buf); 1906 return (-1); 1907 } 1908 1909 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 1910 1911 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1912 kmem_error(KMERR_BADBUFCTL, cp, buf); 1913 return (-1); 1914 } 1915 1916 if (cp->cache_flags & KMF_DEADBEEF) { 1917 if (!construct && (cp->cache_flags & KMF_LITE)) { 1918 if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 1919 kmem_error(KMERR_MODIFIED, cp, buf); 1920 return (-1); 1921 } 1922 if (cp->cache_constructor != NULL) 1923 *(uint64_t *)buf = btp->bt_redzone; 1924 else 1925 *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 1926 } else { 1927 construct = 1; 1928 if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 1929 KMEM_UNINITIALIZED_PATTERN, buf, 1930 cp->cache_verify)) { 1931 kmem_error(KMERR_MODIFIED, cp, buf); 1932 return (-1); 1933 } 1934 } 1935 } 1936 btp->bt_redzone = KMEM_REDZONE_PATTERN; 1937 1938 if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 1939 gethrtime() % mtbf == 0 && 1940 (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 1941 kmem_log_event(kmem_failure_log, cp, NULL, NULL); 1942 if (!construct && cp->cache_destructor != NULL) 1943 cp->cache_destructor(buf, cp->cache_private); 1944 } else { 1945 mtbf = 0; 1946 } 1947 1948 if (mtbf || (construct && cp->cache_constructor != NULL && 1949 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 1950 atomic_inc_64(&cp->cache_alloc_fail); 1951 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1952 if (cp->cache_flags & KMF_DEADBEEF) 1953 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 1954 kmem_slab_free(cp, buf); 1955 return (1); 1956 } 1957 1958 if (cp->cache_flags & KMF_AUDIT) { 1959 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 1960 } 1961 1962 if ((cp->cache_flags & KMF_LITE) && 1963 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 1964 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 1965 } 1966 1967 return (0); 1968 } 1969 1970 static int 1971 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 1972 { 1973 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 1974 kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 1975 kmem_slab_t *sp; 1976 1977 if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 1978 if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 1979 kmem_error(KMERR_DUPFREE, cp, buf); 1980 return (-1); 1981 } 1982 sp = kmem_findslab(cp, buf); 1983 if (sp == NULL || sp->slab_cache != cp) 1984 kmem_error(KMERR_BADADDR, cp, buf); 1985 else 1986 kmem_error(KMERR_REDZONE, cp, buf); 1987 return (-1); 1988 } 1989 1990 btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 1991 1992 if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 1993 kmem_error(KMERR_BADBUFCTL, cp, buf); 1994 return (-1); 1995 } 1996 1997 if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 1998 kmem_error(KMERR_REDZONE, cp, buf); 1999 return (-1); 2000 } 2001 2002 if (cp->cache_flags & KMF_AUDIT) { 2003 if (cp->cache_flags & KMF_CONTENTS) 2004 bcp->bc_contents = kmem_log_enter(kmem_content_log, 2005 buf, cp->cache_contents); 2006 KMEM_AUDIT(kmem_transaction_log, cp, bcp); 2007 } 2008 2009 if ((cp->cache_flags & KMF_LITE) && 2010 !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 2011 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 2012 } 2013 2014 if (cp->cache_flags & KMF_DEADBEEF) { 2015 if (cp->cache_flags & KMF_LITE) 2016 btp->bt_redzone = *(uint64_t *)buf; 2017 else if (cp->cache_destructor != NULL) 2018 cp->cache_destructor(buf, cp->cache_private); 2019 2020 copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 2021 } 2022 2023 return (0); 2024 } 2025 2026 /* 2027 * Free each object in magazine mp to cp's slab layer, and free mp itself. 2028 */ 2029 static void 2030 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 2031 { 2032 int round; 2033 2034 ASSERT(!list_link_active(&cp->cache_link) || 2035 taskq_member(kmem_taskq, curthread)); 2036 2037 for (round = 0; round < nrounds; round++) { 2038 void *buf = mp->mag_round[round]; 2039 2040 if (cp->cache_flags & KMF_DEADBEEF) { 2041 if (verify_pattern(KMEM_FREE_PATTERN, buf, 2042 cp->cache_verify) != NULL) { 2043 kmem_error(KMERR_MODIFIED, cp, buf); 2044 continue; 2045 } 2046 if ((cp->cache_flags & KMF_LITE) && 2047 cp->cache_destructor != NULL) { 2048 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2049 *(uint64_t *)buf = btp->bt_redzone; 2050 cp->cache_destructor(buf, cp->cache_private); 2051 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2052 } 2053 } else if (cp->cache_destructor != NULL) { 2054 cp->cache_destructor(buf, cp->cache_private); 2055 } 2056 2057 kmem_slab_free(cp, buf); 2058 } 2059 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2060 kmem_cache_free(cp->cache_magtype->mt_cache, mp); 2061 } 2062 2063 /* 2064 * Allocate a magazine from the depot. 2065 */ 2066 static kmem_magazine_t * 2067 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 2068 { 2069 kmem_magazine_t *mp; 2070 2071 /* 2072 * If we can't get the depot lock without contention, 2073 * update our contention count. We use the depot 2074 * contention rate to determine whether we need to 2075 * increase the magazine size for better scalability. 2076 */ 2077 if (!mutex_tryenter(&cp->cache_depot_lock)) { 2078 mutex_enter(&cp->cache_depot_lock); 2079 cp->cache_depot_contention++; 2080 } 2081 2082 if ((mp = mlp->ml_list) != NULL) { 2083 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2084 mlp->ml_list = mp->mag_next; 2085 if (--mlp->ml_total < mlp->ml_min) 2086 mlp->ml_min = mlp->ml_total; 2087 mlp->ml_alloc++; 2088 } 2089 2090 mutex_exit(&cp->cache_depot_lock); 2091 2092 return (mp); 2093 } 2094 2095 /* 2096 * Free a magazine to the depot. 2097 */ 2098 static void 2099 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 2100 { 2101 mutex_enter(&cp->cache_depot_lock); 2102 ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 2103 mp->mag_next = mlp->ml_list; 2104 mlp->ml_list = mp; 2105 mlp->ml_total++; 2106 mutex_exit(&cp->cache_depot_lock); 2107 } 2108 2109 /* 2110 * Update the working set statistics for cp's depot. 2111 */ 2112 static void 2113 kmem_depot_ws_update(kmem_cache_t *cp) 2114 { 2115 mutex_enter(&cp->cache_depot_lock); 2116 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 2117 cp->cache_full.ml_min = cp->cache_full.ml_total; 2118 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 2119 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2120 mutex_exit(&cp->cache_depot_lock); 2121 } 2122 2123 /* 2124 * Set the working set statistics for cp's depot to zero. (Everything is 2125 * eligible for reaping.) 2126 */ 2127 static void 2128 kmem_depot_ws_zero(kmem_cache_t *cp) 2129 { 2130 mutex_enter(&cp->cache_depot_lock); 2131 cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 2132 cp->cache_full.ml_min = cp->cache_full.ml_total; 2133 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 2134 cp->cache_empty.ml_min = cp->cache_empty.ml_total; 2135 mutex_exit(&cp->cache_depot_lock); 2136 } 2137 2138 /* 2139 * The number of bytes to reap before we call kpreempt(). The default (1MB) 2140 * causes us to preempt reaping up to hundreds of times per second. Using a 2141 * larger value (1GB) causes this to have virtually no effect. 2142 */ 2143 size_t kmem_reap_preempt_bytes = 1024 * 1024; 2144 2145 /* 2146 * Reap all magazines that have fallen out of the depot's working set. 2147 */ 2148 static void 2149 kmem_depot_ws_reap(kmem_cache_t *cp) 2150 { 2151 size_t bytes = 0; 2152 long reap; 2153 kmem_magazine_t *mp; 2154 2155 ASSERT(!list_link_active(&cp->cache_link) || 2156 taskq_member(kmem_taskq, curthread)); 2157 2158 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 2159 while (reap-- && 2160 (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 2161 kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 2162 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2163 if (bytes > kmem_reap_preempt_bytes) { 2164 kpreempt(KPREEMPT_SYNC); 2165 bytes = 0; 2166 } 2167 } 2168 2169 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 2170 while (reap-- && 2171 (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 2172 kmem_magazine_destroy(cp, mp, 0); 2173 bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 2174 if (bytes > kmem_reap_preempt_bytes) { 2175 kpreempt(KPREEMPT_SYNC); 2176 bytes = 0; 2177 } 2178 } 2179 } 2180 2181 static void 2182 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 2183 { 2184 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 2185 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 2186 ASSERT(ccp->cc_magsize > 0); 2187 2188 ccp->cc_ploaded = ccp->cc_loaded; 2189 ccp->cc_prounds = ccp->cc_rounds; 2190 ccp->cc_loaded = mp; 2191 ccp->cc_rounds = rounds; 2192 } 2193 2194 /* 2195 * Intercept kmem alloc/free calls during crash dump in order to avoid 2196 * changing kmem state while memory is being saved to the dump device. 2197 * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 2198 * there are no locks because only one CPU calls kmem during a crash 2199 * dump. To enable this feature, first create the associated vmem 2200 * arena with VMC_DUMPSAFE. 2201 */ 2202 static void *kmem_dump_start; /* start of pre-reserved heap */ 2203 static void *kmem_dump_end; /* end of heap area */ 2204 static void *kmem_dump_curr; /* current free heap pointer */ 2205 static size_t kmem_dump_size; /* size of heap area */ 2206 2207 /* append to each buf created in the pre-reserved heap */ 2208 typedef struct kmem_dumpctl { 2209 void *kdc_next; /* cache dump free list linkage */ 2210 } kmem_dumpctl_t; 2211 2212 #define KMEM_DUMPCTL(cp, buf) \ 2213 ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 2214 sizeof (void *))) 2215 2216 /* set non zero for full report */ 2217 uint_t kmem_dump_verbose = 0; 2218 2219 /* stats for overize heap */ 2220 uint_t kmem_dump_oversize_allocs = 0; 2221 uint_t kmem_dump_oversize_max = 0; 2222 2223 static void 2224 kmem_dumppr(char **pp, char *e, const char *format, ...) 2225 { 2226 char *p = *pp; 2227 2228 if (p < e) { 2229 int n; 2230 va_list ap; 2231 2232 va_start(ap, format); 2233 n = vsnprintf(p, e - p, format, ap); 2234 va_end(ap); 2235 *pp = p + n; 2236 } 2237 } 2238 2239 /* 2240 * Called when dumpadm(1M) configures dump parameters. 2241 */ 2242 void 2243 kmem_dump_init(size_t size) 2244 { 2245 /* Our caller ensures size is always set. */ 2246 ASSERT3U(size, >, 0); 2247 2248 if (kmem_dump_start != NULL) 2249 kmem_free(kmem_dump_start, kmem_dump_size); 2250 2251 kmem_dump_start = kmem_alloc(size, KM_SLEEP); 2252 kmem_dump_size = size; 2253 kmem_dump_curr = kmem_dump_start; 2254 kmem_dump_end = (void *)((char *)kmem_dump_start + size); 2255 copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 2256 } 2257 2258 /* 2259 * Set flag for each kmem_cache_t if is safe to use alternate dump 2260 * memory. Called just before panic crash dump starts. Set the flag 2261 * for the calling CPU. 2262 */ 2263 void 2264 kmem_dump_begin(void) 2265 { 2266 kmem_cache_t *cp; 2267 2268 ASSERT(panicstr != NULL); 2269 2270 for (cp = list_head(&kmem_caches); cp != NULL; 2271 cp = list_next(&kmem_caches, cp)) { 2272 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2273 2274 if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 2275 cp->cache_flags |= KMF_DUMPDIVERT; 2276 ccp->cc_flags |= KMF_DUMPDIVERT; 2277 ccp->cc_dump_rounds = ccp->cc_rounds; 2278 ccp->cc_dump_prounds = ccp->cc_prounds; 2279 ccp->cc_rounds = ccp->cc_prounds = -1; 2280 } else { 2281 cp->cache_flags |= KMF_DUMPUNSAFE; 2282 ccp->cc_flags |= KMF_DUMPUNSAFE; 2283 } 2284 } 2285 } 2286 2287 /* 2288 * finished dump intercept 2289 * print any warnings on the console 2290 * return verbose information to dumpsys() in the given buffer 2291 */ 2292 size_t 2293 kmem_dump_finish(char *buf, size_t size) 2294 { 2295 int percent = 0; 2296 size_t used; 2297 char *e = buf + size; 2298 char *p = buf; 2299 2300 if (kmem_dump_curr == kmem_dump_end) { 2301 cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 2302 "bytes: kmem state in dump may be inconsistent", 2303 kmem_dump_size); 2304 } 2305 2306 if (kmem_dump_verbose == 0) 2307 return (0); 2308 2309 used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 2310 percent = (used * 100) / kmem_dump_size; 2311 2312 kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 2313 kmem_dumppr(&p, e, "used bytes,%ld\n", used); 2314 kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 2315 kmem_dumppr(&p, e, "Oversize allocs,%d\n", 2316 kmem_dump_oversize_allocs); 2317 kmem_dumppr(&p, e, "Oversize max size,%ld\n", 2318 kmem_dump_oversize_max); 2319 2320 /* return buffer size used */ 2321 if (p < e) 2322 bzero(p, e - p); 2323 return (p - buf); 2324 } 2325 2326 /* 2327 * Allocate a constructed object from alternate dump memory. 2328 */ 2329 void * 2330 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 2331 { 2332 void *buf; 2333 void *curr; 2334 char *bufend; 2335 2336 /* return a constructed object */ 2337 if ((buf = cp->cache_dump.kd_freelist) != NULL) { 2338 cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 2339 return (buf); 2340 } 2341 2342 /* create a new constructed object */ 2343 curr = kmem_dump_curr; 2344 buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 2345 bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 2346 2347 /* hat layer objects cannot cross a page boundary */ 2348 if (cp->cache_align < PAGESIZE) { 2349 char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 2350 if (bufend > page) { 2351 bufend += page - (char *)buf; 2352 buf = (void *)page; 2353 } 2354 } 2355 2356 /* fall back to normal alloc if reserved area is used up */ 2357 if (bufend > (char *)kmem_dump_end) { 2358 kmem_dump_curr = kmem_dump_end; 2359 cp->cache_dump.kd_alloc_fails++; 2360 return (NULL); 2361 } 2362 2363 /* 2364 * Must advance curr pointer before calling a constructor that 2365 * may also allocate memory. 2366 */ 2367 kmem_dump_curr = bufend; 2368 2369 /* run constructor */ 2370 if (cp->cache_constructor != NULL && 2371 cp->cache_constructor(buf, cp->cache_private, kmflag) 2372 != 0) { 2373 #ifdef DEBUG 2374 printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 2375 cp->cache_name, (void *)cp); 2376 #endif 2377 /* reset curr pointer iff no allocs were done */ 2378 if (kmem_dump_curr == bufend) 2379 kmem_dump_curr = curr; 2380 2381 cp->cache_dump.kd_alloc_fails++; 2382 /* fall back to normal alloc if the constructor fails */ 2383 return (NULL); 2384 } 2385 2386 return (buf); 2387 } 2388 2389 /* 2390 * Free a constructed object in alternate dump memory. 2391 */ 2392 int 2393 kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 2394 { 2395 /* save constructed buffers for next time */ 2396 if ((char *)buf >= (char *)kmem_dump_start && 2397 (char *)buf < (char *)kmem_dump_end) { 2398 KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 2399 cp->cache_dump.kd_freelist = buf; 2400 return (0); 2401 } 2402 2403 /* just drop buffers that were allocated before dump started */ 2404 if (kmem_dump_curr < kmem_dump_end) 2405 return (0); 2406 2407 /* fall back to normal free if reserved area is used up */ 2408 return (1); 2409 } 2410 2411 /* 2412 * Allocate a constructed object from cache cp. 2413 */ 2414 void * 2415 kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 2416 { 2417 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2418 kmem_magazine_t *fmp; 2419 void *buf; 2420 2421 mutex_enter(&ccp->cc_lock); 2422 for (;;) { 2423 /* 2424 * If there's an object available in the current CPU's 2425 * loaded magazine, just take it and return. 2426 */ 2427 if (ccp->cc_rounds > 0) { 2428 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 2429 ccp->cc_alloc++; 2430 mutex_exit(&ccp->cc_lock); 2431 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 2432 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2433 ASSERT(!(ccp->cc_flags & 2434 KMF_DUMPDIVERT)); 2435 cp->cache_dump.kd_unsafe++; 2436 } 2437 if ((ccp->cc_flags & KMF_BUFTAG) && 2438 kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2439 caller()) != 0) { 2440 if (kmflag & KM_NOSLEEP) 2441 return (NULL); 2442 mutex_enter(&ccp->cc_lock); 2443 continue; 2444 } 2445 } 2446 return (buf); 2447 } 2448 2449 /* 2450 * The loaded magazine is empty. If the previously loaded 2451 * magazine was full, exchange them and try again. 2452 */ 2453 if (ccp->cc_prounds > 0) { 2454 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2455 continue; 2456 } 2457 2458 /* 2459 * Return an alternate buffer at dump time to preserve 2460 * the heap. 2461 */ 2462 if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2463 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2464 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2465 /* log it so that we can warn about it */ 2466 cp->cache_dump.kd_unsafe++; 2467 } else { 2468 if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 2469 NULL) { 2470 mutex_exit(&ccp->cc_lock); 2471 return (buf); 2472 } 2473 break; /* fall back to slab layer */ 2474 } 2475 } 2476 2477 /* 2478 * If the magazine layer is disabled, break out now. 2479 */ 2480 if (ccp->cc_magsize == 0) 2481 break; 2482 2483 /* 2484 * Try to get a full magazine from the depot. 2485 */ 2486 fmp = kmem_depot_alloc(cp, &cp->cache_full); 2487 if (fmp != NULL) { 2488 if (ccp->cc_ploaded != NULL) 2489 kmem_depot_free(cp, &cp->cache_empty, 2490 ccp->cc_ploaded); 2491 kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 2492 continue; 2493 } 2494 2495 /* 2496 * There are no full magazines in the depot, 2497 * so fall through to the slab layer. 2498 */ 2499 break; 2500 } 2501 mutex_exit(&ccp->cc_lock); 2502 2503 /* 2504 * We couldn't allocate a constructed object from the magazine layer, 2505 * so get a raw buffer from the slab layer and apply its constructor. 2506 */ 2507 buf = kmem_slab_alloc(cp, kmflag); 2508 2509 if (buf == NULL) 2510 return (NULL); 2511 2512 if (cp->cache_flags & KMF_BUFTAG) { 2513 /* 2514 * Make kmem_cache_alloc_debug() apply the constructor for us. 2515 */ 2516 int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2517 if (rc != 0) { 2518 if (kmflag & KM_NOSLEEP) 2519 return (NULL); 2520 /* 2521 * kmem_cache_alloc_debug() detected corruption 2522 * but didn't panic (kmem_panic <= 0). We should not be 2523 * here because the constructor failed (indicated by a 2524 * return code of 1). Try again. 2525 */ 2526 ASSERT(rc == -1); 2527 return (kmem_cache_alloc(cp, kmflag)); 2528 } 2529 return (buf); 2530 } 2531 2532 if (cp->cache_constructor != NULL && 2533 cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 2534 atomic_inc_64(&cp->cache_alloc_fail); 2535 kmem_slab_free(cp, buf); 2536 return (NULL); 2537 } 2538 2539 return (buf); 2540 } 2541 2542 /* 2543 * The freed argument tells whether or not kmem_cache_free_debug() has already 2544 * been called so that we can avoid the duplicate free error. For example, a 2545 * buffer on a magazine has already been freed by the client but is still 2546 * constructed. 2547 */ 2548 static void 2549 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2550 { 2551 if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2552 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2553 return; 2554 2555 /* 2556 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2557 * kmem_cache_free_debug() will have already applied the destructor. 2558 */ 2559 if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2560 cp->cache_destructor != NULL) { 2561 if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2562 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2563 *(uint64_t *)buf = btp->bt_redzone; 2564 cp->cache_destructor(buf, cp->cache_private); 2565 *(uint64_t *)buf = KMEM_FREE_PATTERN; 2566 } else { 2567 cp->cache_destructor(buf, cp->cache_private); 2568 } 2569 } 2570 2571 kmem_slab_free(cp, buf); 2572 } 2573 2574 /* 2575 * Used when there's no room to free a buffer to the per-CPU cache. 2576 * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2577 * caller should try freeing to the per-CPU cache again. 2578 * Note that we don't directly install the magazine in the cpu cache, 2579 * since its state may have changed wildly while the lock was dropped. 2580 */ 2581 static int 2582 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2583 { 2584 kmem_magazine_t *emp; 2585 kmem_magtype_t *mtp; 2586 2587 ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2588 ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2589 ((uint_t)ccp->cc_rounds == -1)) && 2590 ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2591 ((uint_t)ccp->cc_prounds == -1))); 2592 2593 emp = kmem_depot_alloc(cp, &cp->cache_empty); 2594 if (emp != NULL) { 2595 if (ccp->cc_ploaded != NULL) 2596 kmem_depot_free(cp, &cp->cache_full, 2597 ccp->cc_ploaded); 2598 kmem_cpu_reload(ccp, emp, 0); 2599 return (1); 2600 } 2601 /* 2602 * There are no empty magazines in the depot, 2603 * so try to allocate a new one. We must drop all locks 2604 * across kmem_cache_alloc() because lower layers may 2605 * attempt to allocate from this cache. 2606 */ 2607 mtp = cp->cache_magtype; 2608 mutex_exit(&ccp->cc_lock); 2609 emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2610 mutex_enter(&ccp->cc_lock); 2611 2612 if (emp != NULL) { 2613 /* 2614 * We successfully allocated an empty magazine. 2615 * However, we had to drop ccp->cc_lock to do it, 2616 * so the cache's magazine size may have changed. 2617 * If so, free the magazine and try again. 2618 */ 2619 if (ccp->cc_magsize != mtp->mt_magsize) { 2620 mutex_exit(&ccp->cc_lock); 2621 kmem_cache_free(mtp->mt_cache, emp); 2622 mutex_enter(&ccp->cc_lock); 2623 return (1); 2624 } 2625 2626 /* 2627 * We got a magazine of the right size. Add it to 2628 * the depot and try the whole dance again. 2629 */ 2630 kmem_depot_free(cp, &cp->cache_empty, emp); 2631 return (1); 2632 } 2633 2634 /* 2635 * We couldn't allocate an empty magazine, 2636 * so fall through to the slab layer. 2637 */ 2638 return (0); 2639 } 2640 2641 /* 2642 * Free a constructed object to cache cp. 2643 */ 2644 void 2645 kmem_cache_free(kmem_cache_t *cp, void *buf) 2646 { 2647 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2648 2649 /* 2650 * The client must not free either of the buffers passed to the move 2651 * callback function. 2652 */ 2653 ASSERT(cp->cache_defrag == NULL || 2654 cp->cache_defrag->kmd_thread != curthread || 2655 (buf != cp->cache_defrag->kmd_from_buf && 2656 buf != cp->cache_defrag->kmd_to_buf)); 2657 2658 if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 2659 if (ccp->cc_flags & KMF_DUMPUNSAFE) { 2660 ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 2661 /* log it so that we can warn about it */ 2662 cp->cache_dump.kd_unsafe++; 2663 } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 2664 return; 2665 } 2666 if (ccp->cc_flags & KMF_BUFTAG) { 2667 if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2668 return; 2669 } 2670 } 2671 2672 mutex_enter(&ccp->cc_lock); 2673 /* 2674 * Any changes to this logic should be reflected in kmem_slab_prefill() 2675 */ 2676 for (;;) { 2677 /* 2678 * If there's a slot available in the current CPU's 2679 * loaded magazine, just put the object there and return. 2680 */ 2681 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2682 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 2683 ccp->cc_free++; 2684 mutex_exit(&ccp->cc_lock); 2685 return; 2686 } 2687 2688 /* 2689 * The loaded magazine is full. If the previously loaded 2690 * magazine was empty, exchange them and try again. 2691 */ 2692 if (ccp->cc_prounds == 0) { 2693 kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 2694 continue; 2695 } 2696 2697 /* 2698 * If the magazine layer is disabled, break out now. 2699 */ 2700 if (ccp->cc_magsize == 0) 2701 break; 2702 2703 if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 2704 /* 2705 * We couldn't free our constructed object to the 2706 * magazine layer, so apply its destructor and free it 2707 * to the slab layer. 2708 */ 2709 break; 2710 } 2711 } 2712 mutex_exit(&ccp->cc_lock); 2713 kmem_slab_free_constructed(cp, buf, B_TRUE); 2714 } 2715 2716 static void 2717 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2718 { 2719 kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2720 int cache_flags = cp->cache_flags; 2721 2722 kmem_bufctl_t *next, *head; 2723 size_t nbufs; 2724 2725 /* 2726 * Completely allocate the newly created slab and put the pre-allocated 2727 * buffers in magazines. Any of the buffers that cannot be put in 2728 * magazines must be returned to the slab. 2729 */ 2730 ASSERT(MUTEX_HELD(&cp->cache_lock)); 2731 ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2732 ASSERT(cp->cache_constructor == NULL); 2733 ASSERT(sp->slab_cache == cp); 2734 ASSERT(sp->slab_refcnt == 1); 2735 ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2736 ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2737 2738 head = sp->slab_head; 2739 nbufs = (sp->slab_chunks - sp->slab_refcnt); 2740 sp->slab_head = NULL; 2741 sp->slab_refcnt += nbufs; 2742 cp->cache_bufslab -= nbufs; 2743 cp->cache_slab_alloc += nbufs; 2744 list_insert_head(&cp->cache_complete_slabs, sp); 2745 cp->cache_complete_slab_count++; 2746 mutex_exit(&cp->cache_lock); 2747 mutex_enter(&ccp->cc_lock); 2748 2749 while (head != NULL) { 2750 void *buf = KMEM_BUF(cp, head); 2751 /* 2752 * If there's a slot available in the current CPU's 2753 * loaded magazine, just put the object there and 2754 * continue. 2755 */ 2756 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2757 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2758 buf; 2759 ccp->cc_free++; 2760 nbufs--; 2761 head = head->bc_next; 2762 continue; 2763 } 2764 2765 /* 2766 * The loaded magazine is full. If the previously 2767 * loaded magazine was empty, exchange them and try 2768 * again. 2769 */ 2770 if (ccp->cc_prounds == 0) { 2771 kmem_cpu_reload(ccp, ccp->cc_ploaded, 2772 ccp->cc_prounds); 2773 continue; 2774 } 2775 2776 /* 2777 * If the magazine layer is disabled, break out now. 2778 */ 2779 2780 if (ccp->cc_magsize == 0) { 2781 break; 2782 } 2783 2784 if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2785 break; 2786 } 2787 mutex_exit(&ccp->cc_lock); 2788 if (nbufs != 0) { 2789 ASSERT(head != NULL); 2790 2791 /* 2792 * If there was a failure, return remaining objects to 2793 * the slab 2794 */ 2795 while (head != NULL) { 2796 ASSERT(nbufs != 0); 2797 next = head->bc_next; 2798 head->bc_next = NULL; 2799 kmem_slab_free(cp, KMEM_BUF(cp, head)); 2800 head = next; 2801 nbufs--; 2802 } 2803 } 2804 ASSERT(head == NULL); 2805 ASSERT(nbufs == 0); 2806 mutex_enter(&cp->cache_lock); 2807 } 2808 2809 void * 2810 kmem_zalloc(size_t size, int kmflag) 2811 { 2812 size_t index; 2813 void *buf; 2814 2815 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2816 kmem_cache_t *cp = kmem_alloc_table[index]; 2817 buf = kmem_cache_alloc(cp, kmflag); 2818 if (buf != NULL) { 2819 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2820 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2821 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2822 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2823 2824 if (cp->cache_flags & KMF_LITE) { 2825 KMEM_BUFTAG_LITE_ENTER(btp, 2826 kmem_lite_count, caller()); 2827 } 2828 } 2829 bzero(buf, size); 2830 } 2831 } else { 2832 buf = kmem_alloc(size, kmflag); 2833 if (buf != NULL) 2834 bzero(buf, size); 2835 } 2836 return (buf); 2837 } 2838 2839 void * 2840 kmem_alloc(size_t size, int kmflag) 2841 { 2842 size_t index; 2843 kmem_cache_t *cp; 2844 void *buf; 2845 2846 if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2847 cp = kmem_alloc_table[index]; 2848 /* fall through to kmem_cache_alloc() */ 2849 2850 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2851 kmem_big_alloc_table_max) { 2852 cp = kmem_big_alloc_table[index]; 2853 /* fall through to kmem_cache_alloc() */ 2854 2855 } else { 2856 if (size == 0) 2857 return (NULL); 2858 2859 buf = vmem_alloc(kmem_oversize_arena, size, 2860 kmflag & KM_VMFLAGS); 2861 if (buf == NULL) 2862 kmem_log_event(kmem_failure_log, NULL, NULL, 2863 (void *)size); 2864 else if (KMEM_DUMP(kmem_slab_cache)) { 2865 /* stats for dump intercept */ 2866 kmem_dump_oversize_allocs++; 2867 if (size > kmem_dump_oversize_max) 2868 kmem_dump_oversize_max = size; 2869 } 2870 return (buf); 2871 } 2872 2873 buf = kmem_cache_alloc(cp, kmflag); 2874 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 2875 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2876 ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 2877 ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 2878 2879 if (cp->cache_flags & KMF_LITE) { 2880 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 2881 } 2882 } 2883 return (buf); 2884 } 2885 2886 void 2887 kmem_free(void *buf, size_t size) 2888 { 2889 size_t index; 2890 kmem_cache_t *cp; 2891 2892 if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2893 cp = kmem_alloc_table[index]; 2894 /* fall through to kmem_cache_free() */ 2895 2896 } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2897 kmem_big_alloc_table_max) { 2898 cp = kmem_big_alloc_table[index]; 2899 /* fall through to kmem_cache_free() */ 2900 2901 } else { 2902 EQUIV(buf == NULL, size == 0); 2903 if (buf == NULL && size == 0) 2904 return; 2905 vmem_free(kmem_oversize_arena, buf, size); 2906 return; 2907 } 2908 2909 if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 2910 kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2911 uint32_t *ip = (uint32_t *)btp; 2912 if (ip[1] != KMEM_SIZE_ENCODE(size)) { 2913 if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 2914 kmem_error(KMERR_DUPFREE, cp, buf); 2915 return; 2916 } 2917 if (KMEM_SIZE_VALID(ip[1])) { 2918 ip[0] = KMEM_SIZE_ENCODE(size); 2919 kmem_error(KMERR_BADSIZE, cp, buf); 2920 } else { 2921 kmem_error(KMERR_REDZONE, cp, buf); 2922 } 2923 return; 2924 } 2925 if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 2926 kmem_error(KMERR_REDZONE, cp, buf); 2927 return; 2928 } 2929 btp->bt_redzone = KMEM_REDZONE_PATTERN; 2930 if (cp->cache_flags & KMF_LITE) { 2931 KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 2932 caller()); 2933 } 2934 } 2935 kmem_cache_free(cp, buf); 2936 } 2937 2938 void * 2939 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 2940 { 2941 size_t realsize = size + vmp->vm_quantum; 2942 void *addr; 2943 2944 /* 2945 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 2946 * vm_quantum will cause integer wraparound. Check for this, and 2947 * blow off the firewall page in this case. Note that such a 2948 * giant allocation (the entire kernel address space) can never 2949 * be satisfied, so it will either fail immediately (VM_NOSLEEP) 2950 * or sleep forever (VM_SLEEP). Thus, there is no need for a 2951 * corresponding check in kmem_firewall_va_free(). 2952 */ 2953 if (realsize < size) 2954 realsize = size; 2955 2956 /* 2957 * While boot still owns resource management, make sure that this 2958 * redzone virtual address allocation is properly accounted for in 2959 * OBPs "virtual-memory" "available" lists because we're 2960 * effectively claiming them for a red zone. If we don't do this, 2961 * the available lists become too fragmented and too large for the 2962 * current boot/kernel memory list interface. 2963 */ 2964 addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 2965 2966 if (addr != NULL && kvseg.s_base == NULL && realsize != size) 2967 (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 2968 2969 return (addr); 2970 } 2971 2972 void 2973 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 2974 { 2975 ASSERT((kvseg.s_base == NULL ? 2976 va_to_pfn((char *)addr + size) : 2977 hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 2978 2979 vmem_free(vmp, addr, size + vmp->vm_quantum); 2980 } 2981 2982 /* 2983 * Try to allocate at least `size' bytes of memory without sleeping or 2984 * panicking. Return actual allocated size in `asize'. If allocation failed, 2985 * try final allocation with sleep or panic allowed. 2986 */ 2987 void * 2988 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 2989 { 2990 void *p; 2991 2992 *asize = P2ROUNDUP(size, KMEM_ALIGN); 2993 do { 2994 p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 2995 if (p != NULL) 2996 return (p); 2997 *asize += KMEM_ALIGN; 2998 } while (*asize <= PAGESIZE); 2999 3000 *asize = P2ROUNDUP(size, KMEM_ALIGN); 3001 return (kmem_alloc(*asize, kmflag)); 3002 } 3003 3004 /* 3005 * Reclaim all unused memory from a cache. 3006 */ 3007 static void 3008 kmem_cache_reap(kmem_cache_t *cp) 3009 { 3010 ASSERT(taskq_member(kmem_taskq, curthread)); 3011 cp->cache_reap++; 3012 3013 /* 3014 * Ask the cache's owner to free some memory if possible. 3015 * The idea is to handle things like the inode cache, which 3016 * typically sits on a bunch of memory that it doesn't truly 3017 * *need*. Reclaim policy is entirely up to the owner; this 3018 * callback is just an advisory plea for help. 3019 */ 3020 if (cp->cache_reclaim != NULL) { 3021 long delta; 3022 3023 /* 3024 * Reclaimed memory should be reapable (not included in the 3025 * depot's working set). 3026 */ 3027 delta = cp->cache_full.ml_total; 3028 cp->cache_reclaim(cp->cache_private); 3029 delta = cp->cache_full.ml_total - delta; 3030 if (delta > 0) { 3031 mutex_enter(&cp->cache_depot_lock); 3032 cp->cache_full.ml_reaplimit += delta; 3033 cp->cache_full.ml_min += delta; 3034 mutex_exit(&cp->cache_depot_lock); 3035 } 3036 } 3037 3038 kmem_depot_ws_reap(cp); 3039 3040 if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3041 kmem_cache_defrag(cp); 3042 } 3043 } 3044 3045 static void 3046 kmem_reap_timeout(void *flag_arg) 3047 { 3048 uint32_t *flag = (uint32_t *)flag_arg; 3049 3050 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3051 *flag = 0; 3052 } 3053 3054 static void 3055 kmem_reap_done(void *flag) 3056 { 3057 if (!callout_init_done) { 3058 /* can't schedule a timeout at this point */ 3059 kmem_reap_timeout(flag); 3060 } else { 3061 (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 3062 } 3063 } 3064 3065 static void 3066 kmem_reap_start(void *flag) 3067 { 3068 ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 3069 3070 if (flag == &kmem_reaping) { 3071 kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3072 /* 3073 * if we have segkp under heap, reap segkp cache. 3074 */ 3075 if (segkp_fromheap) 3076 segkp_cache_free(); 3077 } 3078 else 3079 kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 3080 3081 /* 3082 * We use taskq_dispatch() to schedule a timeout to clear 3083 * the flag so that kmem_reap() becomes self-throttling: 3084 * we won't reap again until the current reap completes *and* 3085 * at least kmem_reap_interval ticks have elapsed. 3086 */ 3087 if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 3088 kmem_reap_done(flag); 3089 } 3090 3091 static void 3092 kmem_reap_common(void *flag_arg) 3093 { 3094 uint32_t *flag = (uint32_t *)flag_arg; 3095 3096 if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 3097 atomic_cas_32(flag, 0, 1) != 0) 3098 return; 3099 3100 /* 3101 * It may not be kosher to do memory allocation when a reap is called 3102 * (for example, if vmem_populate() is in the call chain). So we 3103 * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 3104 * fails, we reset the flag, and the next reap will try again. 3105 */ 3106 if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 3107 *flag = 0; 3108 } 3109 3110 /* 3111 * Reclaim all unused memory from all caches. Called from the VM system 3112 * when memory gets tight. 3113 */ 3114 void 3115 kmem_reap(void) 3116 { 3117 kmem_reap_common(&kmem_reaping); 3118 } 3119 3120 /* 3121 * Reclaim all unused memory from identifier arenas, called when a vmem 3122 * arena not back by memory is exhausted. Since reaping memory-backed caches 3123 * cannot help with identifier exhaustion, we avoid both a large amount of 3124 * work and unwanted side-effects from reclaim callbacks. 3125 */ 3126 void 3127 kmem_reap_idspace(void) 3128 { 3129 kmem_reap_common(&kmem_reaping_idspace); 3130 } 3131 3132 /* 3133 * Purge all magazines from a cache and set its magazine limit to zero. 3134 * All calls are serialized by the kmem_taskq lock, except for the final 3135 * call from kmem_cache_destroy(). 3136 */ 3137 static void 3138 kmem_cache_magazine_purge(kmem_cache_t *cp) 3139 { 3140 kmem_cpu_cache_t *ccp; 3141 kmem_magazine_t *mp, *pmp; 3142 int rounds, prounds, cpu_seqid; 3143 3144 ASSERT(!list_link_active(&cp->cache_link) || 3145 taskq_member(kmem_taskq, curthread)); 3146 ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 3147 3148 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3149 ccp = &cp->cache_cpu[cpu_seqid]; 3150 3151 mutex_enter(&ccp->cc_lock); 3152 mp = ccp->cc_loaded; 3153 pmp = ccp->cc_ploaded; 3154 rounds = ccp->cc_rounds; 3155 prounds = ccp->cc_prounds; 3156 ccp->cc_loaded = NULL; 3157 ccp->cc_ploaded = NULL; 3158 ccp->cc_rounds = -1; 3159 ccp->cc_prounds = -1; 3160 ccp->cc_magsize = 0; 3161 mutex_exit(&ccp->cc_lock); 3162 3163 if (mp) 3164 kmem_magazine_destroy(cp, mp, rounds); 3165 if (pmp) 3166 kmem_magazine_destroy(cp, pmp, prounds); 3167 } 3168 3169 kmem_depot_ws_zero(cp); 3170 kmem_depot_ws_reap(cp); 3171 } 3172 3173 /* 3174 * Enable per-cpu magazines on a cache. 3175 */ 3176 static void 3177 kmem_cache_magazine_enable(kmem_cache_t *cp) 3178 { 3179 int cpu_seqid; 3180 3181 if (cp->cache_flags & KMF_NOMAGAZINE) 3182 return; 3183 3184 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3185 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3186 mutex_enter(&ccp->cc_lock); 3187 ccp->cc_magsize = cp->cache_magtype->mt_magsize; 3188 mutex_exit(&ccp->cc_lock); 3189 } 3190 3191 } 3192 3193 /* 3194 * Allow our caller to determine if there are running reaps. 3195 * 3196 * This call is very conservative and may return B_TRUE even when 3197 * reaping activity isn't active. If it returns B_FALSE, then reaping 3198 * activity is definitely inactive. 3199 */ 3200 boolean_t 3201 kmem_cache_reap_active(void) 3202 { 3203 return (!taskq_empty(kmem_taskq)); 3204 } 3205 3206 /* 3207 * Reap (almost) everything soon. 3208 * 3209 * Note: this does not wait for the reap-tasks to complete. Caller 3210 * should use kmem_cache_reap_active() (above) and/or moderation to 3211 * avoid scheduling too many reap-tasks. 3212 */ 3213 void 3214 kmem_cache_reap_soon(kmem_cache_t *cp) 3215 { 3216 ASSERT(list_link_active(&cp->cache_link)); 3217 3218 kmem_depot_ws_zero(cp); 3219 3220 (void) taskq_dispatch(kmem_taskq, 3221 (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3222 } 3223 3224 /* 3225 * Recompute a cache's magazine size. The trade-off is that larger magazines 3226 * provide a higher transfer rate with the depot, while smaller magazines 3227 * reduce memory consumption. Magazine resizing is an expensive operation; 3228 * it should not be done frequently. 3229 * 3230 * Changes to the magazine size are serialized by the kmem_taskq lock. 3231 * 3232 * Note: at present this only grows the magazine size. It might be useful 3233 * to allow shrinkage too. 3234 */ 3235 static void 3236 kmem_cache_magazine_resize(kmem_cache_t *cp) 3237 { 3238 kmem_magtype_t *mtp = cp->cache_magtype; 3239 3240 ASSERT(taskq_member(kmem_taskq, curthread)); 3241 3242 if (cp->cache_chunksize < mtp->mt_maxbuf) { 3243 kmem_cache_magazine_purge(cp); 3244 mutex_enter(&cp->cache_depot_lock); 3245 cp->cache_magtype = ++mtp; 3246 cp->cache_depot_contention_prev = 3247 cp->cache_depot_contention + INT_MAX; 3248 mutex_exit(&cp->cache_depot_lock); 3249 kmem_cache_magazine_enable(cp); 3250 } 3251 } 3252 3253 /* 3254 * Rescale a cache's hash table, so that the table size is roughly the 3255 * cache size. We want the average lookup time to be extremely small. 3256 */ 3257 static void 3258 kmem_hash_rescale(kmem_cache_t *cp) 3259 { 3260 kmem_bufctl_t **old_table, **new_table, *bcp; 3261 size_t old_size, new_size, h; 3262 3263 ASSERT(taskq_member(kmem_taskq, curthread)); 3264 3265 new_size = MAX(KMEM_HASH_INITIAL, 3266 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 3267 old_size = cp->cache_hash_mask + 1; 3268 3269 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 3270 return; 3271 3272 new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 3273 VM_NOSLEEP); 3274 if (new_table == NULL) 3275 return; 3276 bzero(new_table, new_size * sizeof (void *)); 3277 3278 mutex_enter(&cp->cache_lock); 3279 3280 old_size = cp->cache_hash_mask + 1; 3281 old_table = cp->cache_hash_table; 3282 3283 cp->cache_hash_mask = new_size - 1; 3284 cp->cache_hash_table = new_table; 3285 cp->cache_rescale++; 3286 3287 for (h = 0; h < old_size; h++) { 3288 bcp = old_table[h]; 3289 while (bcp != NULL) { 3290 void *addr = bcp->bc_addr; 3291 kmem_bufctl_t *next_bcp = bcp->bc_next; 3292 kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 3293 bcp->bc_next = *hash_bucket; 3294 *hash_bucket = bcp; 3295 bcp = next_bcp; 3296 } 3297 } 3298 3299 mutex_exit(&cp->cache_lock); 3300 3301 vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 3302 } 3303 3304 /* 3305 * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3306 * update, magazine resizing, and slab consolidation. 3307 */ 3308 static void 3309 kmem_cache_update(kmem_cache_t *cp) 3310 { 3311 int need_hash_rescale = 0; 3312 int need_magazine_resize = 0; 3313 3314 ASSERT(MUTEX_HELD(&kmem_cache_lock)); 3315 3316 /* 3317 * If the cache has become much larger or smaller than its hash table, 3318 * fire off a request to rescale the hash table. 3319 */ 3320 mutex_enter(&cp->cache_lock); 3321 3322 if ((cp->cache_flags & KMF_HASH) && 3323 (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 3324 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 3325 cp->cache_hash_mask > KMEM_HASH_INITIAL))) 3326 need_hash_rescale = 1; 3327 3328 mutex_exit(&cp->cache_lock); 3329 3330 /* 3331 * Update the depot working set statistics. 3332 */ 3333 kmem_depot_ws_update(cp); 3334 3335 /* 3336 * If there's a lot of contention in the depot, 3337 * increase the magazine size. 3338 */ 3339 mutex_enter(&cp->cache_depot_lock); 3340 3341 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 3342 (int)(cp->cache_depot_contention - 3343 cp->cache_depot_contention_prev) > kmem_depot_contention) 3344 need_magazine_resize = 1; 3345 3346 cp->cache_depot_contention_prev = cp->cache_depot_contention; 3347 3348 mutex_exit(&cp->cache_depot_lock); 3349 3350 if (need_hash_rescale) 3351 (void) taskq_dispatch(kmem_taskq, 3352 (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 3353 3354 if (need_magazine_resize) 3355 (void) taskq_dispatch(kmem_taskq, 3356 (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3357 3358 if (cp->cache_defrag != NULL) 3359 (void) taskq_dispatch(kmem_taskq, 3360 (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 3361 } 3362 3363 static void kmem_update(void *); 3364 3365 static void 3366 kmem_update_timeout(void *dummy) 3367 { 3368 (void) timeout(kmem_update, dummy, kmem_reap_interval); 3369 } 3370 3371 static void 3372 kmem_update(void *dummy) 3373 { 3374 kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 3375 3376 /* 3377 * We use taskq_dispatch() to reschedule the timeout so that 3378 * kmem_update() becomes self-throttling: it won't schedule 3379 * new tasks until all previous tasks have completed. 3380 */ 3381 if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 3382 kmem_update_timeout(NULL); 3383 } 3384 3385 static int 3386 kmem_cache_kstat_update(kstat_t *ksp, int rw) 3387 { 3388 struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 3389 kmem_cache_t *cp = ksp->ks_private; 3390 uint64_t cpu_buf_avail; 3391 uint64_t buf_avail = 0; 3392 int cpu_seqid; 3393 long reap; 3394 3395 ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 3396 3397 if (rw == KSTAT_WRITE) 3398 return (EACCES); 3399 3400 mutex_enter(&cp->cache_lock); 3401 3402 kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 3403 kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 3404 kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 3405 kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 3406 kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 3407 3408 for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 3409 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 3410 3411 mutex_enter(&ccp->cc_lock); 3412 3413 cpu_buf_avail = 0; 3414 if (ccp->cc_rounds > 0) 3415 cpu_buf_avail += ccp->cc_rounds; 3416 if (ccp->cc_prounds > 0) 3417 cpu_buf_avail += ccp->cc_prounds; 3418 3419 kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 3420 kmcp->kmc_free.value.ui64 += ccp->cc_free; 3421 buf_avail += cpu_buf_avail; 3422 3423 mutex_exit(&ccp->cc_lock); 3424 } 3425 3426 mutex_enter(&cp->cache_depot_lock); 3427 3428 kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 3429 kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 3430 kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 3431 kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 3432 kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 3433 kmcp->kmc_magazine_size.value.ui64 = 3434 (cp->cache_flags & KMF_NOMAGAZINE) ? 3435 0 : cp->cache_magtype->mt_magsize; 3436 3437 kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 3438 kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 3439 buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 3440 3441 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3442 reap = MIN(reap, cp->cache_full.ml_total); 3443 3444 mutex_exit(&cp->cache_depot_lock); 3445 3446 kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 3447 kmcp->kmc_align.value.ui64 = cp->cache_align; 3448 kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 3449 kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 3450 kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 3451 buf_avail += cp->cache_bufslab; 3452 kmcp->kmc_buf_avail.value.ui64 = buf_avail; 3453 kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 3454 kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 3455 kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 3456 kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 3457 kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 3458 kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 3459 cp->cache_hash_mask + 1 : 0; 3460 kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 3461 kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 3462 kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3463 kmcp->kmc_reap.value.ui64 = cp->cache_reap; 3464 3465 if (cp->cache_defrag == NULL) { 3466 kmcp->kmc_move_callbacks.value.ui64 = 0; 3467 kmcp->kmc_move_yes.value.ui64 = 0; 3468 kmcp->kmc_move_no.value.ui64 = 0; 3469 kmcp->kmc_move_later.value.ui64 = 0; 3470 kmcp->kmc_move_dont_need.value.ui64 = 0; 3471 kmcp->kmc_move_dont_know.value.ui64 = 0; 3472 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3473 kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3474 kmcp->kmc_defrag.value.ui64 = 0; 3475 kmcp->kmc_scan.value.ui64 = 0; 3476 kmcp->kmc_move_reclaimable.value.ui64 = 0; 3477 } else { 3478 int64_t reclaimable; 3479 3480 kmem_defrag_t *kd = cp->cache_defrag; 3481 kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3482 kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3483 kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3484 kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3485 kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3486 kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3487 kmcp->kmc_move_hunt_found.value.ui64 = 0; 3488 kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3489 kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3490 kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3491 3492 reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3493 reclaimable = MAX(reclaimable, 0); 3494 reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3495 kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3496 } 3497 3498 mutex_exit(&cp->cache_lock); 3499 return (0); 3500 } 3501 3502 /* 3503 * Return a named statistic about a particular cache. 3504 * This shouldn't be called very often, so it's currently designed for 3505 * simplicity (leverages existing kstat support) rather than efficiency. 3506 */ 3507 uint64_t 3508 kmem_cache_stat(kmem_cache_t *cp, char *name) 3509 { 3510 int i; 3511 kstat_t *ksp = cp->cache_kstat; 3512 kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 3513 uint64_t value = 0; 3514 3515 if (ksp != NULL) { 3516 mutex_enter(&kmem_cache_kstat_lock); 3517 (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 3518 for (i = 0; i < ksp->ks_ndata; i++) { 3519 if (strcmp(knp[i].name, name) == 0) { 3520 value = knp[i].value.ui64; 3521 break; 3522 } 3523 } 3524 mutex_exit(&kmem_cache_kstat_lock); 3525 } 3526 return (value); 3527 } 3528 3529 /* 3530 * Return an estimate of currently available kernel heap memory. 3531 * On 32-bit systems, physical memory may exceed virtual memory, 3532 * we just truncate the result at 1GB. 3533 */ 3534 size_t 3535 kmem_avail(void) 3536 { 3537 spgcnt_t rmem = availrmem - tune.t_minarmem; 3538 spgcnt_t fmem = freemem - minfree; 3539 3540 return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 3541 1 << (30 - PAGESHIFT)))); 3542 } 3543 3544 /* 3545 * Return the maximum amount of memory that is (in theory) allocatable 3546 * from the heap. This may be used as an estimate only since there 3547 * is no guarentee this space will still be available when an allocation 3548 * request is made, nor that the space may be allocated in one big request 3549 * due to kernel heap fragmentation. 3550 */ 3551 size_t 3552 kmem_maxavail(void) 3553 { 3554 spgcnt_t pmem = availrmem - tune.t_minarmem; 3555 spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 3556 3557 return ((size_t)ptob(MAX(MIN(