xref: /illumos-gate/usr/src/uts/common/os/cpu.c (revision 89574a1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 /*
28  * Architecture-independent CPU control functions.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/var.h>
34 #include <sys/thread.h>
35 #include <sys/cpuvar.h>
36 #include <sys/cpu_event.h>
37 #include <sys/kstat.h>
38 #include <sys/uadmin.h>
39 #include <sys/systm.h>
40 #include <sys/errno.h>
41 #include <sys/cmn_err.h>
42 #include <sys/procset.h>
43 #include <sys/processor.h>
44 #include <sys/debug.h>
45 #include <sys/cpupart.h>
46 #include <sys/lgrp.h>
47 #include <sys/pset.h>
48 #include <sys/pghw.h>
49 #include <sys/kmem.h>
50 #include <sys/kmem_impl.h>	/* to set per-cpu kmem_cache offset */
51 #include <sys/atomic.h>
52 #include <sys/callb.h>
53 #include <sys/vtrace.h>
54 #include <sys/cyclic.h>
55 #include <sys/bitmap.h>
56 #include <sys/nvpair.h>
57 #include <sys/pool_pset.h>
58 #include <sys/msacct.h>
59 #include <sys/time.h>
60 #include <sys/archsystm.h>
61 #include <sys/sdt.h>
62 #if defined(__x86) || defined(__amd64)
63 #include <sys/x86_archext.h>
64 #endif
65 #include <sys/callo.h>
66 
67 extern int	mp_cpu_start(cpu_t *);
68 extern int	mp_cpu_stop(cpu_t *);
69 extern int	mp_cpu_poweron(cpu_t *);
70 extern int	mp_cpu_poweroff(cpu_t *);
71 extern int	mp_cpu_configure(int);
72 extern int	mp_cpu_unconfigure(int);
73 extern void	mp_cpu_faulted_enter(cpu_t *);
74 extern void	mp_cpu_faulted_exit(cpu_t *);
75 
76 extern int cmp_cpu_to_chip(processorid_t cpuid);
77 #ifdef __sparcv9
78 extern char *cpu_fru_fmri(cpu_t *cp);
79 #endif
80 
81 static void cpu_add_active_internal(cpu_t *cp);
82 static void cpu_remove_active(cpu_t *cp);
83 static void cpu_info_kstat_create(cpu_t *cp);
84 static void cpu_info_kstat_destroy(cpu_t *cp);
85 static void cpu_stats_kstat_create(cpu_t *cp);
86 static void cpu_stats_kstat_destroy(cpu_t *cp);
87 
88 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
89 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
90 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
91 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
92 
93 /*
94  * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
95  * max_cpu_seqid_ever, and dispatch queue reallocations.  The lock ordering with
96  * respect to related locks is:
97  *
98  *	cpu_lock --> thread_free_lock  --->  p_lock  --->  thread_lock()
99  *
100  * Warning:  Certain sections of code do not use the cpu_lock when
101  * traversing the cpu_list (e.g. mutex_vector_enter(), clock()).  Since
102  * all cpus are paused during modifications to this list, a solution
103  * to protect the list is too either disable kernel preemption while
104  * walking the list, *or* recheck the cpu_next pointer at each
105  * iteration in the loop.  Note that in no cases can any cached
106  * copies of the cpu pointers be kept as they may become invalid.
107  */
108 kmutex_t	cpu_lock;
109 cpu_t		*cpu_list;		/* list of all CPUs */
110 cpu_t		*clock_cpu_list;	/* used by clock to walk CPUs */
111 cpu_t		*cpu_active;		/* list of active CPUs */
112 cpuset_t	cpu_active_set;		/* cached set of active CPUs */
113 static cpuset_t	cpu_available;		/* set of available CPUs */
114 cpuset_t	cpu_seqid_inuse;	/* which cpu_seqids are in use */
115 
116 cpu_t		**cpu_seq;		/* ptrs to CPUs, indexed by seq_id */
117 
118 /*
119  * max_ncpus keeps the max cpus the system can have. Initially
120  * it's NCPU, but since most archs scan the devtree for cpus
121  * fairly early on during boot, the real max can be known before
122  * ncpus is set (useful for early NCPU based allocations).
123  */
124 int max_ncpus = NCPU;
125 /*
126  * platforms that set max_ncpus to maxiumum number of cpus that can be
127  * dynamically added will set boot_max_ncpus to the number of cpus found
128  * at device tree scan time during boot.
129  */
130 int boot_max_ncpus = -1;
131 int boot_ncpus = -1;
132 /*
133  * Maximum possible CPU id.  This can never be >= NCPU since NCPU is
134  * used to size arrays that are indexed by CPU id.
135  */
136 processorid_t max_cpuid = NCPU - 1;
137 
138 /*
139  * Maximum cpu_seqid was given. This number can only grow and never shrink. It
140  * can be used to optimize NCPU loops to avoid going through CPUs which were
141  * never on-line.
142  */
143 processorid_t max_cpu_seqid_ever = 0;
144 
145 int ncpus = 1;
146 int ncpus_online = 1;
147 
148 /*
149  * CPU that we're trying to offline.  Protected by cpu_lock.
150  */
151 cpu_t *cpu_inmotion;
152 
153 /*
154  * Can be raised to suppress further weakbinding, which are instead
155  * satisfied by disabling preemption.  Must be raised/lowered under cpu_lock,
156  * while individual thread weakbinding synchronization is done under thread
157  * lock.
158  */
159 int weakbindingbarrier;
160 
161 /*
162  * Variables used in pause_cpus().
163  */
164 static volatile char safe_list[NCPU];
165 
166 static struct _cpu_pause_info {
167 	int		cp_spl;		/* spl saved in pause_cpus() */
168 	volatile int	cp_go;		/* Go signal sent after all ready */
169 	int		cp_count;	/* # of CPUs to pause */
170 	ksema_t		cp_sem;		/* synch pause_cpus & cpu_pause */
171 	kthread_id_t	cp_paused;
172 	void		*(*cp_func)(void *);
173 } cpu_pause_info;
174 
175 static kmutex_t pause_free_mutex;
176 static kcondvar_t pause_free_cv;
177 
178 
179 static struct cpu_sys_stats_ks_data {
180 	kstat_named_t cpu_ticks_idle;
181 	kstat_named_t cpu_ticks_user;
182 	kstat_named_t cpu_ticks_kernel;
183 	kstat_named_t cpu_ticks_wait;
184 	kstat_named_t cpu_nsec_idle;
185 	kstat_named_t cpu_nsec_user;
186 	kstat_named_t cpu_nsec_kernel;
187 	kstat_named_t cpu_nsec_dtrace;
188 	kstat_named_t cpu_nsec_intr;
189 	kstat_named_t cpu_load_intr;
190 	kstat_named_t wait_ticks_io;
191 	kstat_named_t dtrace_probes;
192 	kstat_named_t bread;
193 	kstat_named_t bwrite;
194 	kstat_named_t lread;
195 	kstat_named_t lwrite;
196 	kstat_named_t phread;
197 	kstat_named_t phwrite;
198 	kstat_named_t pswitch;
199 	kstat_named_t trap;
200 	kstat_named_t intr;
201 	kstat_named_t syscall;
202 	kstat_named_t sysread;
203 	kstat_named_t syswrite;
204 	kstat_named_t sysfork;
205 	kstat_named_t sysvfork;
206 	kstat_named_t sysexec;
207 	kstat_named_t readch;
208 	kstat_named_t writech;
209 	kstat_named_t rcvint;
210 	kstat_named_t xmtint;
211 	kstat_named_t mdmint;
212 	kstat_named_t rawch;
213 	kstat_named_t canch;
214 	kstat_named_t outch;
215 	kstat_named_t msg;
216 	kstat_named_t sema;
217 	kstat_named_t namei;
218 	kstat_named_t ufsiget;
219 	kstat_named_t ufsdirblk;
220 	kstat_named_t ufsipage;
221 	kstat_named_t ufsinopage;
222 	kstat_named_t procovf;
223 	kstat_named_t intrthread;
224 	kstat_named_t intrblk;
225 	kstat_named_t intrunpin;
226 	kstat_named_t idlethread;
227 	kstat_named_t inv_swtch;
228 	kstat_named_t nthreads;
229 	kstat_named_t cpumigrate;
230 	kstat_named_t xcalls;
231 	kstat_named_t mutex_adenters;
232 	kstat_named_t rw_rdfails;
233 	kstat_named_t rw_wrfails;
234 	kstat_named_t modload;
235 	kstat_named_t modunload;
236 	kstat_named_t bawrite;
237 	kstat_named_t iowait;
238 } cpu_sys_stats_ks_data_template = {
239 	{ "cpu_ticks_idle",	KSTAT_DATA_UINT64 },
240 	{ "cpu_ticks_user",	KSTAT_DATA_UINT64 },
241 	{ "cpu_ticks_kernel",	KSTAT_DATA_UINT64 },
242 	{ "cpu_ticks_wait",	KSTAT_DATA_UINT64 },
243 	{ "cpu_nsec_idle",	KSTAT_DATA_UINT64 },
244 	{ "cpu_nsec_user",	KSTAT_DATA_UINT64 },
245 	{ "cpu_nsec_kernel",	KSTAT_DATA_UINT64 },
246 	{ "cpu_nsec_dtrace",	KSTAT_DATA_UINT64 },
247 	{ "cpu_nsec_intr",	KSTAT_DATA_UINT64 },
248 	{ "cpu_load_intr",	KSTAT_DATA_UINT64 },
249 	{ "wait_ticks_io",	KSTAT_DATA_UINT64 },
250 	{ "dtrace_probes",	KSTAT_DATA_UINT64 },
251 	{ "bread",		KSTAT_DATA_UINT64 },
252 	{ "bwrite",		KSTAT_DATA_UINT64 },
253 	{ "lread",		KSTAT_DATA_UINT64 },
254 	{ "lwrite",		KSTAT_DATA_UINT64 },
255 	{ "phread",		KSTAT_DATA_UINT64 },
256 	{ "phwrite",		KSTAT_DATA_UINT64 },
257 	{ "pswitch",		KSTAT_DATA_UINT64 },
258 	{ "trap",		KSTAT_DATA_UINT64 },
259 	{ "intr",		KSTAT_DATA_UINT64 },
260 	{ "syscall",		KSTAT_DATA_UINT64 },
261 	{ "sysread",		KSTAT_DATA_UINT64 },
262 	{ "syswrite",		KSTAT_DATA_UINT64 },
263 	{ "sysfork",		KSTAT_DATA_UINT64 },
264 	{ "sysvfork",		KSTAT_DATA_UINT64 },
265 	{ "sysexec",		KSTAT_DATA_UINT64 },
266 	{ "readch",		KSTAT_DATA_UINT64 },
267 	{ "writech",		KSTAT_DATA_UINT64 },
268 	{ "rcvint",		KSTAT_DATA_UINT64 },
269 	{ "xmtint",		KSTAT_DATA_UINT64 },
270 	{ "mdmint",		KSTAT_DATA_UINT64 },
271 	{ "rawch",		KSTAT_DATA_UINT64 },
272 	{ "canch",		KSTAT_DATA_UINT64 },
273 	{ "outch",		KSTAT_DATA_UINT64 },
274 	{ "msg",		KSTAT_DATA_UINT64 },
275 	{ "sema",		KSTAT_DATA_UINT64 },
276 	{ "namei",		KSTAT_DATA_UINT64 },
277 	{ "ufsiget",		KSTAT_DATA_UINT64 },
278 	{ "ufsdirblk",		KSTAT_DATA_UINT64 },
279 	{ "ufsipage",		KSTAT_DATA_UINT64 },
280 	{ "ufsinopage",		KSTAT_DATA_UINT64 },
281 	{ "procovf",		KSTAT_DATA_UINT64 },
282 	{ "intrthread",		KSTAT_DATA_UINT64 },
283 	{ "intrblk",		KSTAT_DATA_UINT64 },
284 	{ "intrunpin",		KSTAT_DATA_UINT64 },
285 	{ "idlethread",		KSTAT_DATA_UINT64 },
286 	{ "inv_swtch",		KSTAT_DATA_UINT64 },
287 	{ "nthreads",		KSTAT_DATA_UINT64 },
288 	{ "cpumigrate",		KSTAT_DATA_UINT64 },
289 	{ "xcalls",		KSTAT_DATA_UINT64 },
290 	{ "mutex_adenters",	KSTAT_DATA_UINT64 },
291 	{ "rw_rdfails",		KSTAT_DATA_UINT64 },
292 	{ "rw_wrfails",		KSTAT_DATA_UINT64 },
293 	{ "modload",		KSTAT_DATA_UINT64 },
294 	{ "modunload",		KSTAT_DATA_UINT64 },
295 	{ "bawrite",		KSTAT_DATA_UINT64 },
296 	{ "iowait",		KSTAT_DATA_UINT64 },
297 };
298 
299 static struct cpu_vm_stats_ks_data {
300 	kstat_named_t pgrec;
301 	kstat_named_t pgfrec;
302 	kstat_named_t pgin;
303 	kstat_named_t pgpgin;
304 	kstat_named_t pgout;
305 	kstat_named_t pgpgout;
306 	kstat_named_t swapin;
307 	kstat_named_t pgswapin;
308 	kstat_named_t swapout;
309 	kstat_named_t pgswapout;
310 	kstat_named_t zfod;
311 	kstat_named_t dfree;
312 	kstat_named_t scan;
313 	kstat_named_t rev;
314 	kstat_named_t hat_fault;
315 	kstat_named_t as_fault;
316 	kstat_named_t maj_fault;
317 	kstat_named_t cow_fault;
318 	kstat_named_t prot_fault;
319 	kstat_named_t softlock;
320 	kstat_named_t kernel_asflt;
321 	kstat_named_t pgrrun;
322 	kstat_named_t execpgin;
323 	kstat_named_t execpgout;
324 	kstat_named_t execfree;
325 	kstat_named_t anonpgin;
326 	kstat_named_t anonpgout;
327 	kstat_named_t anonfree;
328 	kstat_named_t fspgin;
329 	kstat_named_t fspgout;
330 	kstat_named_t fsfree;
331 } cpu_vm_stats_ks_data_template = {
332 	{ "pgrec",		KSTAT_DATA_UINT64 },
333 	{ "pgfrec",		KSTAT_DATA_UINT64 },
334 	{ "pgin",		KSTAT_DATA_UINT64 },
335 	{ "pgpgin",		KSTAT_DATA_UINT64 },
336 	{ "pgout",		KSTAT_DATA_UINT64 },
337 	{ "pgpgout",		KSTAT_DATA_UINT64 },
338 	{ "swapin",		KSTAT_DATA_UINT64 },
339 	{ "pgswapin",		KSTAT_DATA_UINT64 },
340 	{ "swapout",		KSTAT_DATA_UINT64 },
341 	{ "pgswapout",		KSTAT_DATA_UINT64 },
342 	{ "zfod",		KSTAT_DATA_UINT64 },
343 	{ "dfree",		KSTAT_DATA_UINT64 },
344 	{ "scan",		KSTAT_DATA_UINT64 },
345 	{ "rev",		KSTAT_DATA_UINT64 },
346 	{ "hat_fault",		KSTAT_DATA_UINT64 },
347 	{ "as_fault",		KSTAT_DATA_UINT64 },
348 	{ "maj_fault",		KSTAT_DATA_UINT64 },
349 	{ "cow_fault",		KSTAT_DATA_UINT64 },
350 	{ "prot_fault",		KSTAT_DATA_UINT64 },
351 	{ "softlock",		KSTAT_DATA_UINT64 },
352 	{ "kernel_asflt",	KSTAT_DATA_UINT64 },
353 	{ "pgrrun",		KSTAT_DATA_UINT64 },
354 	{ "execpgin",		KSTAT_DATA_UINT64 },
355 	{ "execpgout",		KSTAT_DATA_UINT64 },
356 	{ "execfree",		KSTAT_DATA_UINT64 },
357 	{ "anonpgin",		KSTAT_DATA_UINT64 },
358 	{ "anonpgout",		KSTAT_DATA_UINT64 },
359 	{ "anonfree",		KSTAT_DATA_UINT64 },
360 	{ "fspgin",		KSTAT_DATA_UINT64 },
361 	{ "fspgout",		KSTAT_DATA_UINT64 },
362 	{ "fsfree",		KSTAT_DATA_UINT64 },
363 };
364 
365 /*
366  * Force the specified thread to migrate to the appropriate processor.
367  * Called with thread lock held, returns with it dropped.
368  */
369 static void
370 force_thread_migrate(kthread_id_t tp)
371 {
372 	ASSERT(THREAD_LOCK_HELD(tp));
373 	if (tp == curthread) {
374 		THREAD_TRANSITION(tp);
375 		CL_SETRUN(tp);
376 		thread_unlock_nopreempt(tp);
377 		swtch();
378 	} else {
379 		if (tp->t_state == TS_ONPROC) {
380 			cpu_surrender(tp);
381 		} else if (tp->t_state == TS_RUN) {
382 			(void) dispdeq(tp);
383 			setbackdq(tp);
384 		}
385 		thread_unlock(tp);
386 	}
387 }
388 
389 /*
390  * Set affinity for a specified CPU.
391  * A reference count is incremented and the affinity is held until the
392  * reference count is decremented to zero by thread_affinity_clear().
393  * This is so regions of code requiring affinity can be nested.
394  * Caller needs to ensure that cpu_id remains valid, which can be
395  * done by holding cpu_lock across this call, unless the caller
396  * specifies CPU_CURRENT in which case the cpu_lock will be acquired
397  * by thread_affinity_set and CPU->cpu_id will be the target CPU.
398  */
399 void
400 thread_affinity_set(kthread_id_t t, int cpu_id)
401 {
402 	cpu_t		*cp;
403 	int		c;
404 
405 	ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
406 
407 	if ((c = cpu_id) == CPU_CURRENT) {
408 		mutex_enter(&cpu_lock);
409 		cpu_id = CPU->cpu_id;
410 	}
411 	/*
412 	 * We should be asserting that cpu_lock is held here, but
413 	 * the NCA code doesn't acquire it.  The following assert
414 	 * should be uncommented when the NCA code is fixed.
415 	 *
416 	 * ASSERT(MUTEX_HELD(&cpu_lock));
417 	 */
418 	ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
419 	cp = cpu[cpu_id];
420 	ASSERT(cp != NULL);		/* user must provide a good cpu_id */
421 	/*
422 	 * If there is already a hard affinity requested, and this affinity
423 	 * conflicts with that, panic.
424 	 */
425 	thread_lock(t);
426 	if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
427 		panic("affinity_set: setting %p but already bound to %p",
428 		    (void *)cp, (void *)t->t_bound_cpu);
429 	}
430 	t->t_affinitycnt++;
431 	t->t_bound_cpu = cp;
432 
433 	/*
434 	 * Make sure we're running on the right CPU.
435 	 */
436 	if (cp != t->t_cpu || t != curthread) {
437 		force_thread_migrate(t);	/* drops thread lock */
438 	} else {
439 		thread_unlock(t);
440 	}
441 
442 	if (c == CPU_CURRENT)
443 		mutex_exit(&cpu_lock);
444 }
445 
446 /*
447  *	Wrapper for backward compatibility.
448  */
449 void
450 affinity_set(int cpu_id)
451 {
452 	thread_affinity_set(curthread, cpu_id);
453 }
454 
455 /*
456  * Decrement the affinity reservation count and if it becomes zero,
457  * clear the CPU affinity for the current thread, or set it to the user's
458  * software binding request.
459  */
460 void
461 thread_affinity_clear(kthread_id_t t)
462 {
463 	register processorid_t binding;
464 
465 	thread_lock(t);
466 	if (--t->t_affinitycnt == 0) {
467 		if ((binding = t->t_bind_cpu) == PBIND_NONE) {
468 			/*
469 			 * Adjust disp_max_unbound_pri if necessary.
470 			 */
471 			disp_adjust_unbound_pri(t);
472 			t->t_bound_cpu = NULL;
473 			if (t->t_cpu->cpu_part != t->t_cpupart) {
474 				force_thread_migrate(t);
475 				return;
476 			}
477 		} else {
478 			t->t_bound_cpu = cpu[binding];
479 			/*
480 			 * Make sure the thread is running on the bound CPU.
481 			 */
482 			if (t->t_cpu != t->t_bound_cpu) {
483 				force_thread_migrate(t);
484 				return;		/* already dropped lock */
485 			}
486 		}
487 	}
488 	thread_unlock(t);
489 }
490 
491 /*
492  * Wrapper for backward compatibility.
493  */
494 void
495 affinity_clear(void)
496 {
497 	thread_affinity_clear(curthread);
498 }
499 
500 /*
501  * Weak cpu affinity.  Bind to the "current" cpu for short periods
502  * of time during which the thread must not block (but may be preempted).
503  * Use this instead of kpreempt_disable() when it is only "no migration"
504  * rather than "no preemption" semantics that are required - disabling
505  * preemption holds higher priority threads off of cpu and if the
506  * operation that is protected is more than momentary this is not good
507  * for realtime etc.
508  *
509  * Weakly bound threads will not prevent a cpu from being offlined -
510  * we'll only run them on the cpu to which they are weakly bound but
511  * (because they do not block) we'll always be able to move them on to
512  * another cpu at offline time if we give them just a short moment to
513  * run during which they will unbind.  To give a cpu a chance of offlining,
514  * however, we require a barrier to weak bindings that may be raised for a
515  * given cpu (offline/move code may set this and then wait a short time for
516  * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
517  *
518  * There are few restrictions on the calling context of thread_nomigrate.
519  * The caller must not hold the thread lock.  Calls may be nested.
520  *
521  * After weakbinding a thread must not perform actions that may block.
522  * In particular it must not call thread_affinity_set; calling that when
523  * already weakbound is nonsensical anyway.
524  *
525  * If curthread is prevented from migrating for other reasons
526  * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
527  * then the weak binding will succeed even if this cpu is the target of an
528  * offline/move request.
529  */
530 void
531 thread_nomigrate(void)
532 {
533 	cpu_t *cp;
534 	kthread_id_t t = curthread;
535 
536 again:
537 	kpreempt_disable();
538 	cp = CPU;
539 
540 	/*
541 	 * A highlevel interrupt must not modify t_nomigrate or
542 	 * t_weakbound_cpu of the thread it has interrupted.  A lowlevel
543 	 * interrupt thread cannot migrate and we can avoid the
544 	 * thread_lock call below by short-circuiting here.  In either
545 	 * case we can just return since no migration is possible and
546 	 * the condition will persist (ie, when we test for these again
547 	 * in thread_allowmigrate they can't have changed).   Migration
548 	 * is also impossible if we're at or above DISP_LEVEL pil.
549 	 */
550 	if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
551 	    getpil() >= DISP_LEVEL) {
552 		kpreempt_enable();
553 		return;
554 	}
555 
556 	/*
557 	 * We must be consistent with existing weak bindings.  Since we
558 	 * may be interrupted between the increment of t_nomigrate and
559 	 * the store to t_weakbound_cpu below we cannot assume that
560 	 * t_weakbound_cpu will be set if t_nomigrate is.  Note that we
561 	 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
562 	 * always the case.
563 	 */
564 	if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
565 		if (!panicstr)
566 			panic("thread_nomigrate: binding to %p but already "
567 			    "bound to %p", (void *)cp,
568 			    (void *)t->t_weakbound_cpu);
569 	}
570 
571 	/*
572 	 * At this point we have preemption disabled and we don't yet hold
573 	 * the thread lock.  So it's possible that somebody else could
574 	 * set t_bind_cpu here and not be able to force us across to the
575 	 * new cpu (since we have preemption disabled).
576 	 */
577 	thread_lock(curthread);
578 
579 	/*
580 	 * If further weak bindings are being (temporarily) suppressed then
581 	 * we'll settle for disabling kernel preemption (which assures
582 	 * no migration provided the thread does not block which it is
583 	 * not allowed to if using thread_nomigrate).  We must remember
584 	 * this disposition so we can take appropriate action in
585 	 * thread_allowmigrate.  If this is a nested call and the
586 	 * thread is already weakbound then fall through as normal.
587 	 * We remember the decision to settle for kpreempt_disable through
588 	 * negative nesting counting in t_nomigrate.  Once a thread has had one
589 	 * weakbinding request satisfied in this way any further (nested)
590 	 * requests will continue to be satisfied in the same way,
591 	 * even if weak bindings have recommenced.
592 	 */
593 	if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
594 		--t->t_nomigrate;
595 		thread_unlock(curthread);
596 		return;		/* with kpreempt_disable still active */
597 	}
598 
599 	/*
600 	 * We hold thread_lock so t_bind_cpu cannot change.  We could,
601 	 * however, be running on a different cpu to which we are t_bound_cpu
602 	 * to (as explained above).  If we grant the weak binding request
603 	 * in that case then the dispatcher must favour our weak binding
604 	 * over our strong (in which case, just as when preemption is
605 	 * disabled, we can continue to run on a cpu other than the one to
606 	 * which we are strongbound; the difference in this case is that
607 	 * this thread can be preempted and so can appear on the dispatch
608 	 * queues of a cpu other than the one it is strongbound to).
609 	 *
610 	 * If the cpu we are running on does not appear to be a current
611 	 * offline target (we check cpu_inmotion to determine this - since
612 	 * we don't hold cpu_lock we may not see a recent store to that,
613 	 * so it's possible that we at times can grant a weak binding to a
614 	 * cpu that is an offline target, but that one request will not
615 	 * prevent the offline from succeeding) then we will always grant
616 	 * the weak binding request.  This includes the case above where
617 	 * we grant a weakbinding not commensurate with our strong binding.
618 	 *
619 	 * If our cpu does appear to be an offline target then we're inclined
620 	 * not to grant the weakbinding request just yet - we'd prefer to
621 	 * migrate to another cpu and grant the request there.  The
622 	 * exceptions are those cases where going through preemption code
623 	 * will not result in us changing cpu:
624 	 *
625 	 *	. interrupts have already bypassed this case (see above)
626 	 *	. we are already weakbound to this cpu (dispatcher code will
627 	 *	  always return us to the weakbound cpu)
628 	 *	. preemption was disabled even before we disabled it above
629 	 *	. we are strongbound to this cpu (if we're strongbound to
630 	 *	another and not yet running there the trip through the
631 	 *	dispatcher will move us to the strongbound cpu and we
632 	 *	will grant the weak binding there)
633 	 */
634 	if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
635 	    t->t_bound_cpu == cp) {
636 		/*
637 		 * Don't be tempted to store to t_weakbound_cpu only on
638 		 * the first nested bind request - if we're interrupted
639 		 * after the increment of t_nomigrate and before the
640 		 * store to t_weakbound_cpu and the interrupt calls
641 		 * thread_nomigrate then the assertion in thread_allowmigrate
642 		 * would fail.
643 		 */
644 		t->t_nomigrate++;
645 		t->t_weakbound_cpu = cp;
646 		membar_producer();
647 		thread_unlock(curthread);
648 		/*
649 		 * Now that we have dropped the thread_lock another thread
650 		 * can set our t_weakbound_cpu, and will try to migrate us
651 		 * to the strongbound cpu (which will not be prevented by
652 		 * preemption being disabled since we're about to enable
653 		 * preemption).  We have granted the weakbinding to the current
654 		 * cpu, so again we are in the position that is is is possible
655 		 * that our weak and strong bindings differ.  Again this
656 		 * is catered for by dispatcher code which will favour our
657 		 * weak binding.
658 		 */
659 		kpreempt_enable();
660 	} else {
661 		/*
662 		 * Move to another cpu before granting the request by
663 		 * forcing this thread through preemption code.  When we
664 		 * get to set{front,back}dq called from CL_PREEMPT()
665 		 * cpu_choose() will be used to select a cpu to queue
666 		 * us on - that will see cpu_inmotion and take
667 		 * steps to avoid returning us to this cpu.
668 		 */
669 		cp->cpu_kprunrun = 1;
670 		thread_unlock(curthread);
671 		kpreempt_enable();	/* will call preempt() */
672 		goto again;
673 	}
674 }
675 
676 void
677 thread_allowmigrate(void)
678 {
679 	kthread_id_t t = curthread;
680 
681 	ASSERT(t->t_weakbound_cpu == CPU ||
682 	    (t->t_nomigrate < 0 && t->t_preempt > 0) ||
683 	    CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
684 	    getpil() >= DISP_LEVEL);
685 
686 	if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
687 	    getpil() >= DISP_LEVEL)
688 		return;
689 
690 	if (t->t_nomigrate < 0) {
691 		/*
692 		 * This thread was granted "weak binding" in the
693 		 * stronger form of kernel preemption disabling.
694 		 * Undo a level of nesting for both t_nomigrate
695 		 * and t_preempt.
696 		 */
697 		++t->t_nomigrate;
698 		kpreempt_enable();
699 	} else if (--t->t_nomigrate == 0) {
700 		/*
701 		 * Time to drop the weak binding.  We need to cater
702 		 * for the case where we're weakbound to a different
703 		 * cpu than that to which we're strongbound (a very
704 		 * temporary arrangement that must only persist until
705 		 * weak binding drops).  We don't acquire thread_lock
706 		 * here so even as this code executes t_bound_cpu
707 		 * may be changing.  So we disable preemption and
708 		 * a) in the case that t_bound_cpu changes while we
709 		 * have preemption disabled kprunrun will be set
710 		 * asynchronously, and b) if before disabling
711 		 * preemption we were already on a different cpu to
712 		 * our t_bound_cpu then we set kprunrun ourselves
713 		 * to force a trip through the dispatcher when
714 		 * preemption is enabled.
715 		 */
716 		kpreempt_disable();
717 		if (t->t_bound_cpu &&
718 		    t->t_weakbound_cpu != t->t_bound_cpu)
719 			CPU->cpu_kprunrun = 1;
720 		t->t_weakbound_cpu = NULL;
721 		membar_producer();
722 		kpreempt_enable();
723 	}
724 }
725 
726 /*
727  * weakbinding_stop can be used to temporarily cause weakbindings made
728  * with thread_nomigrate to be satisfied through the stronger action of
729  * kpreempt_disable.  weakbinding_start recommences normal weakbinding.
730  */
731 
732 void
733 weakbinding_stop(void)
734 {
735 	ASSERT(MUTEX_HELD(&cpu_lock));
736 	weakbindingbarrier = 1;
737 	membar_producer();	/* make visible before subsequent thread_lock */
738 }
739 
740 void
741 weakbinding_start(void)
742 {
743 	ASSERT(MUTEX_HELD(&cpu_lock));
744 	weakbindingbarrier = 0;
745 }
746 
747 void
748 null_xcall(void)
749 {
750 }
751 
752 /*
753  * This routine is called to place the CPUs in a safe place so that
754  * one of them can be taken off line or placed on line.  What we are
755  * trying to do here is prevent a thread from traversing the list
756  * of active CPUs while we are changing it or from getting placed on
757  * the run queue of a CPU that has just gone off line.  We do this by
758  * creating a thread with the highest possible prio for each CPU and
759  * having it call this routine.  The advantage of this method is that
760  * we can eliminate all checks for CPU_ACTIVE in the disp routines.
761  * This makes disp faster at the expense of making p_online() slower
762  * which is a good trade off.
763  */
764 static void
765 cpu_pause(int index)
766 {
767 	int s;
768 	struct _cpu_pause_info *cpi = &cpu_pause_info;
769 	volatile char *safe = &safe_list[index];
770 	long    lindex = index;
771 
772 	ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
773 
774 	while (*safe != PAUSE_DIE) {
775 		*safe = PAUSE_READY;
776 		membar_enter();		/* make sure stores are flushed */
777 		sema_v(&cpi->cp_sem);	/* signal requesting thread */
778 
779 		/*
780 		 * Wait here until all pause threads are running.  That
781 		 * indicates that it's safe to do the spl.  Until
782 		 * cpu_pause_info.cp_go is set, we don't want to spl
783 		 * because that might block clock interrupts needed
784 		 * to preempt threads on other CPUs.
785 		 */
786 		while (cpi->cp_go == 0)
787 			;
788 		/*
789 		 * Even though we are at the highest disp prio, we need
790 		 * to block out all interrupts below LOCK_LEVEL so that
791 		 * an intr doesn't come in, wake up a thread, and call
792 		 * setbackdq/setfrontdq.
793 		 */
794 		s = splhigh();
795 		/*
796 		 * if cp_func has been set then call it using index as the
797 		 * argument, currently only used by cpr_suspend_cpus().
798 		 * This function is used as the code to execute on the
799 		 * "paused" cpu's when a machine comes out of a sleep state
800 		 * and CPU's were powered off.  (could also be used for
801 		 * hotplugging CPU's).
802 		 */
803 		if (cpi->cp_func != NULL)
804 			(*cpi->cp_func)((void *)lindex);
805 
806 		mach_cpu_pause(safe);
807 
808 		splx(s);
809 		/*
810 		 * Waiting is at an end. Switch out of cpu_pause
811 		 * loop and resume useful work.
812 		 */
813 		swtch();
814 	}
815 
816 	mutex_enter(&pause_free_mutex);
817 	*safe = PAUSE_DEAD;
818 	cv_broadcast(&pause_free_cv);
819 	mutex_exit(&pause_free_mutex);
820 }
821 
822 /*
823  * Allow the cpus to start running again.
824  */
825 void
826 start_cpus()
827 {
828 	int i;
829 
830 	ASSERT(MUTEX_HELD(&cpu_lock));
831 	ASSERT(cpu_pause_info.cp_paused);
832 	cpu_pause_info.cp_paused = NULL;
833 	for (i = 0; i < NCPU; i++)
834 		safe_list[i] = PAUSE_IDLE;
835 	membar_enter();			/* make sure stores are flushed */
836 	affinity_clear();
837 	splx(cpu_pause_info.cp_spl);
838 	kpreempt_enable();
839 }
840 
841 /*
842  * Allocate a pause thread for a CPU.
843  */
844 static void
845 cpu_pause_alloc(cpu_t *cp)
846 {
847 	kthread_id_t	t;
848 	long		cpun = cp->cpu_id;
849 
850 	/*
851 	 * Note, v.v_nglobpris will not change value as long as I hold
852 	 * cpu_lock.
853 	 */
854 	t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
855 	    0, &p0, TS_STOPPED, v.v_nglobpris - 1);
856 	thread_lock(t);
857 	t->t_bound_cpu = cp;
858 	t->t_disp_queue = cp->cpu_disp;
859 	t->t_affinitycnt = 1;
860 	t->t_preempt = 1;
861 	thread_unlock(t);
862 	cp->cpu_pause_thread = t;
863 	/*
864 	 * Registering a thread in the callback table is usually done
865 	 * in the initialization code of the thread.  In this
866 	 * case, we do it right after thread creation because the
867 	 * thread itself may never run, and we need to register the
868 	 * fact that it is safe for cpr suspend.
869 	 */
870 	CALLB_CPR_INIT_SAFE(t, "cpu_pause");
871 }
872 
873 /*
874  * Free a pause thread for a CPU.
875  */
876 static void
877 cpu_pause_free(cpu_t *cp)
878 {
879 	kthread_id_t	t;
880 	int		cpun = cp->cpu_id;
881 
882 	ASSERT(MUTEX_HELD(&cpu_lock));
883 	/*
884 	 * We have to get the thread and tell it to die.
885 	 */
886 	if ((t = cp->cpu_pause_thread) == NULL) {
887 		ASSERT(safe_list[cpun] == PAUSE_IDLE);
888 		return;
889 	}
890 	thread_lock(t);
891 	t->t_cpu = CPU;		/* disp gets upset if last cpu is quiesced. */
892 	t->t_bound_cpu = NULL;	/* Must un-bind; cpu may not be running. */
893 	t->t_pri = v.v_nglobpris - 1;
894 	ASSERT(safe_list[cpun] == PAUSE_IDLE);
895 	safe_list[cpun] = PAUSE_DIE;
896 	THREAD_TRANSITION(t);
897 	setbackdq(t);
898 	thread_unlock_nopreempt(t);
899 
900 	/*
901 	 * If we don't wait for the thread to actually die, it may try to
902 	 * run on the wrong cpu as part of an actual call to pause_cpus().
903 	 */
904 	mutex_enter(&pause_free_mutex);
905 	while (safe_list[cpun] != PAUSE_DEAD) {
906 		cv_wait(&pause_free_cv, &pause_free_mutex);
907 	}
908 	mutex_exit(&pause_free_mutex);
909 	safe_list[cpun] = PAUSE_IDLE;
910 
911 	cp->cpu_pause_thread = NULL;
912 }
913 
914 /*
915  * Initialize basic structures for pausing CPUs.
916  */
917 void
918 cpu_pause_init()
919 {
920 	sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
921 	/*
922 	 * Create initial CPU pause thread.
923 	 */
924 	cpu_pause_alloc(CPU);
925 }
926 
927 /*
928  * Start the threads used to pause another CPU.
929  */
930 static int
931 cpu_pause_start(processorid_t cpu_id)
932 {
933 	int	i;
934 	int	cpu_count = 0;
935 
936 	for (i = 0; i < NCPU; i++) {
937 		cpu_t		*cp;
938 		kthread_id_t	t;
939 
940 		cp = cpu[i];
941 		if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
942 			safe_list[i] = PAUSE_WAIT;
943 			continue;
944 		}
945 
946 		/*
947 		 * Skip CPU if it is quiesced or not yet started.
948 		 */
949 		if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
950 			safe_list[i] = PAUSE_WAIT;
951 			continue;
952 		}
953 
954 		/*
955 		 * Start this CPU's pause thread.
956 		 */
957 		t = cp->cpu_pause_thread;
958 		thread_lock(t);
959 		/*
960 		 * Reset the priority, since nglobpris may have
961 		 * changed since the thread was created, if someone
962 		 * has loaded the RT (or some other) scheduling
963 		 * class.
964 		 */
965 		t->t_pri = v.v_nglobpris - 1;
966 		THREAD_TRANSITION(t);
967 		setbackdq(t);
968 		thread_unlock_nopreempt(t);
969 		++cpu_count;
970 	}
971 	return (cpu_count);
972 }
973 
974 
975 /*
976  * Pause all of the CPUs except the one we are on by creating a high
977  * priority thread bound to those CPUs.
978  *
979  * Note that one must be extremely careful regarding code
980  * executed while CPUs are paused.  Since a CPU may be paused
981  * while a thread scheduling on that CPU is holding an adaptive
982  * lock, code executed with CPUs paused must not acquire adaptive
983  * (or low-level spin) locks.  Also, such code must not block,
984  * since the thread that is supposed to initiate the wakeup may
985  * never run.
986  *
987  * With a few exceptions, the restrictions on code executed with CPUs
988  * paused match those for code executed at high-level interrupt
989  * context.
990  */
991 void
992 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
993 {
994 	processorid_t	cpu_id;
995 	int		i;
996 	struct _cpu_pause_info	*cpi = &cpu_pause_info;
997 
998 	ASSERT(MUTEX_HELD(&cpu_lock));
999 	ASSERT(cpi->cp_paused == NULL);
1000 	cpi->cp_count = 0;
1001 	cpi->cp_go = 0;
1002 	for (i = 0; i < NCPU; i++)
1003 		safe_list[i] = PAUSE_IDLE;
1004 	kpreempt_disable();
1005 
1006 	cpi->cp_func = func;
1007 
1008 	/*
1009 	 * If running on the cpu that is going offline, get off it.
1010 	 * This is so that it won't be necessary to rechoose a CPU
1011 	 * when done.
1012 	 */
1013 	if (CPU == off_cp)
1014 		cpu_id = off_cp->cpu_next_part->cpu_id;
1015 	else
1016 		cpu_id = CPU->cpu_id;
1017 	affinity_set(cpu_id);
1018 
1019 	/*
1020 	 * Start the pause threads and record how many were started
1021 	 */
1022 	cpi->cp_count = cpu_pause_start(cpu_id);
1023 
1024 	/*
1025 	 * Now wait for all CPUs to be running the pause thread.
1026 	 */
1027 	while (cpi->cp_count > 0) {
1028 		/*
1029 		 * Spin reading the count without grabbing the disp
1030 		 * lock to make sure we don't prevent the pause
1031 		 * threads from getting the lock.
1032 		 */
1033 		while (sema_held(&cpi->cp_sem))
1034 			;
1035 		if (sema_tryp(&cpi->cp_sem))
1036 			--cpi->cp_count;
1037 	}
1038 	cpi->cp_go = 1;			/* all have reached cpu_pause */
1039 
1040 	/*
1041 	 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1042 	 * to PAUSE_WAIT.)
1043 	 */
1044 	for (i = 0; i < NCPU; i++) {
1045 		while (safe_list[i] != PAUSE_WAIT)
1046 			;
1047 	}
1048 	cpi->cp_spl = splhigh();	/* block dispatcher on this CPU */
1049 	cpi->cp_paused = curthread;
1050 }
1051 
1052 /*
1053  * Check whether the current thread has CPUs paused
1054  */
1055 int
1056 cpus_paused(void)
1057 {
1058 	if (cpu_pause_info.cp_paused != NULL) {
1059 		ASSERT(cpu_pause_info.cp_paused == curthread);
1060 		return (1);
1061 	}
1062 	return (0);
1063 }
1064 
1065 static cpu_t *
1066 cpu_get_all(processorid_t cpun)
1067 {
1068 	ASSERT(MUTEX_HELD(&cpu_lock));
1069 
1070 	if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1071 		return (NULL);
1072 	return (cpu[cpun]);
1073 }
1074 
1075 /*
1076  * Check whether cpun is a valid processor id and whether it should be
1077  * visible from the current zone. If it is, return a pointer to the
1078  * associated CPU structure.
1079  */
1080 cpu_t *
1081 cpu_get(processorid_t cpun)
1082 {
1083 	cpu_t *c;
1084 
1085 	ASSERT(MUTEX_HELD(&cpu_lock));
1086 	c = cpu_get_all(cpun);
1087 	if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1088 	    zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1089 		return (NULL);
1090 	return (c);
1091 }
1092 
1093 /*
1094  * The following functions should be used to check CPU states in the kernel.
1095  * They should be invoked with cpu_lock held.  Kernel subsystems interested
1096  * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1097  * states.  Those are for user-land (and system call) use only.
1098  */
1099 
1100 /*
1101  * Determine whether the CPU is online and handling interrupts.
1102  */
1103 int
1104 cpu_is_online(cpu_t *cpu)
1105 {
1106 	ASSERT(MUTEX_HELD(&cpu_lock));
1107 	return (cpu_flagged_online(cpu->cpu_flags));
1108 }
1109 
1110 /*
1111  * Determine whether the CPU is offline (this includes spare and faulted).
1112  */
1113 int
1114 cpu_is_offline(cpu_t *cpu)
1115 {
1116 	ASSERT(MUTEX_HELD(&cpu_lock));
1117 	return (cpu_flagged_offline(cpu->cpu_flags));
1118 }
1119 
1120 /*
1121  * Determine whether the CPU is powered off.
1122  */
1123 int
1124 cpu_is_poweredoff(cpu_t *cpu)
1125 {
1126 	ASSERT(MUTEX_HELD(&cpu_lock));
1127 	return (cpu_flagged_poweredoff(cpu->cpu_flags));
1128 }
1129 
1130 /*
1131  * Determine whether the CPU is handling interrupts.
1132  */
1133 int
1134 cpu_is_nointr(cpu_t *cpu)
1135 {
1136 	ASSERT(MUTEX_HELD(&cpu_lock));
1137 	return (cpu_flagged_nointr(cpu->cpu_flags));
1138 }
1139 
1140 /*
1141  * Determine whether the CPU is active (scheduling threads).
1142  */
1143 int
1144 cpu_is_active(cpu_t *cpu)
1145 {
1146 	ASSERT(MUTEX_HELD(&cpu_lock));
1147 	return (cpu_flagged_active(cpu->cpu_flags));
1148 }
1149 
1150 /*
1151  * Same as above, but these require cpu_flags instead of cpu_t pointers.
1152  */
1153 int
1154 cpu_flagged_online(cpu_flag_t cpu_flags)
1155 {
1156 	return (cpu_flagged_active(cpu_flags) &&
1157 	    (cpu_flags & CPU_ENABLE));
1158 }
1159 
1160 int
1161 cpu_flagged_offline(cpu_flag_t cpu_flags)
1162 {
1163 	return (((cpu_flags & CPU_POWEROFF) == 0) &&
1164 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1165 }
1166 
1167 int
1168 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1169 {
1170 	return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1171 }
1172 
1173 int
1174 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1175 {
1176 	return (cpu_flagged_active(cpu_flags) &&
1177 	    (cpu_flags & CPU_ENABLE) == 0);
1178 }
1179 
1180 int
1181 cpu_flagged_active(cpu_flag_t cpu_flags)
1182 {
1183 	return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1184 	    ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1185 }
1186 
1187 /*
1188  * Bring the indicated CPU online.
1189  */
1190 int
1191 cpu_online(cpu_t *cp)
1192 {
1193 	int	error = 0;
1194 
1195 	/*
1196 	 * Handle on-line request.
1197 	 *	This code must put the new CPU on the active list before
1198 	 *	starting it because it will not be paused, and will start
1199 	 *	using the active list immediately.  The real start occurs
1200 	 *	when the CPU_QUIESCED flag is turned off.
1201 	 */
1202 
1203 	ASSERT(MUTEX_HELD(&cpu_lock));
1204 
1205 	/*
1206 	 * Put all the cpus into a known safe place.
1207 	 * No mutexes can be entered while CPUs are paused.
1208 	 */
1209 	error = mp_cpu_start(cp);	/* arch-dep hook */
1210 	if (error == 0) {
1211 		pg_cpupart_in(cp, cp->cpu_part);
1212 		pause_cpus(NULL, NULL);
1213 		cpu_add_active_internal(cp);
1214 		if (cp->cpu_flags & CPU_FAULTED) {
1215 			cp->cpu_flags &= ~CPU_FAULTED;
1216 			mp_cpu_faulted_exit(cp);
1217 		}
1218 		cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1219 		    CPU_SPARE);
1220 		CPU_NEW_GENERATION(cp);
1221 		start_cpus();
1222 		cpu_stats_kstat_create(cp);
1223 		cpu_create_intrstat(cp);
1224 		lgrp_kstat_create(cp);
1225 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1226 		cpu_intr_enable(cp);	/* arch-dep hook */
1227 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1228 		cpu_set_state(cp);
1229 		cyclic_online(cp);
1230 		/*
1231 		 * This has to be called only after cyclic_online(). This
1232 		 * function uses cyclics.
1233 		 */
1234 		callout_cpu_online(cp);
1235 		poke_cpu(cp->cpu_id);
1236 	}
1237 
1238 	return (error);
1239 }
1240 
1241 /*
1242  * Take the indicated CPU offline.
1243  */
1244 int
1245 cpu_offline(cpu_t *cp, int flags)
1246 {
1247 	cpupart_t *pp;
1248 	int	error = 0;
1249 	cpu_t	*ncp;
1250 	int	intr_enable;
1251 	int	cyclic_off = 0;
1252 	int	callout_off = 0;
1253 	int	loop_count;
1254 	int	no_quiesce = 0;
1255 	int	(*bound_func)(struct cpu *, int);
1256 	kthread_t *t;
1257 	lpl_t	*cpu_lpl;
1258 	proc_t	*p;
1259 	int	lgrp_diff_lpl;
1260 	boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1261 
1262 	ASSERT(MUTEX_HELD(&cpu_lock));
1263 
1264 	/*
1265 	 * If we're going from faulted or spare to offline, just
1266 	 * clear these flags and update CPU state.
1267 	 */
1268 	if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1269 		if (cp->cpu_flags & CPU_FAULTED) {
1270 			cp->cpu_flags &= ~CPU_FAULTED;
1271 			mp_cpu_faulted_exit(cp);
1272 		}
1273 		cp->cpu_flags &= ~CPU_SPARE;
1274 		cpu_set_state(cp);
1275 		return (0);
1276 	}
1277 
1278 	/*
1279 	 * Handle off-line request.
1280 	 */
1281 	pp = cp->cpu_part;
1282 	/*
1283 	 * Don't offline last online CPU in partition
1284 	 */
1285 	if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1286 		return (EBUSY);
1287 	/*
1288 	 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1289 	 * if we were asked to.
1290 	 */
1291 	error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1292 	if (error != 0)
1293 		return (error);
1294 	/*
1295 	 * We shouldn't be bound to this CPU ourselves.
1296 	 */
1297 	if (curthread->t_bound_cpu == cp)
1298 		return (EBUSY);
1299 
1300 	/*
1301 	 * Tell interested parties that this CPU is going offline.
1302 	 */
1303 	CPU_NEW_GENERATION(cp);
1304 	cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1305 
1306 	/*
1307 	 * Tell the PG subsystem that the CPU is leaving the partition
1308 	 */
1309 	pg_cpupart_out(cp, pp);
1310 
1311 	/*
1312 	 * Take the CPU out of interrupt participation so we won't find
1313 	 * bound kernel threads.  If the architecture cannot completely
1314 	 * shut off interrupts on the CPU, don't quiesce it, but don't
1315 	 * run anything but interrupt thread... this is indicated by
1316 	 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1317 	 * off.
1318 	 */
1319 	intr_enable = cp->cpu_flags & CPU_ENABLE;
1320 	if (intr_enable)
1321 		no_quiesce = cpu_intr_disable(cp);
1322 
1323 	/*
1324 	 * Record that we are aiming to offline this cpu.  This acts as
1325 	 * a barrier to further weak binding requests in thread_nomigrate
1326 	 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1327 	 * lean away from this cpu.  Further strong bindings are already
1328 	 * avoided since we hold cpu_lock.  Since threads that are set
1329 	 * runnable around now and others coming off the target cpu are
1330 	 * directed away from the target, existing strong and weak bindings
1331 	 * (especially the latter) to the target cpu stand maximum chance of
1332 	 * being able to unbind during the short delay loop below (if other
1333 	 * unbound threads compete they may not see cpu in time to unbind
1334 	 * even if they would do so immediately.
1335 	 */
1336 	cpu_inmotion = cp;
1337 	membar_enter();
1338 
1339 	/*
1340 	 * Check for kernel threads (strong or weak) bound to that CPU.
1341 	 * Strongly bound threads may not unbind, and we'll have to return
1342 	 * EBUSY.  Weakly bound threads should always disappear - we've
1343 	 * stopped more weak binding with cpu_inmotion and existing
1344 	 * bindings will drain imminently (they may not block).  Nonetheless
1345 	 * we will wait for a fixed period for all bound threads to disappear.
1346 	 * Inactive interrupt threads are OK (they'll be in TS_FREE
1347 	 * state).  If test finds some bound threads, wait a few ticks
1348 	 * to give short-lived threads (such as interrupts) chance to
1349 	 * complete.  Note that if no_quiesce is set, i.e. this cpu
1350 	 * is required to service interrupts, then we take the route
1351 	 * that permits interrupt threads to be active (or bypassed).
1352 	 */
1353 	bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1354 
1355 again:	for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1356 		if (loop_count >= 5) {
1357 			error = EBUSY;	/* some threads still bound */
1358 			break;
1359 		}
1360 
1361 		/*
1362 		 * If some threads were assigned, give them
1363 		 * a chance to complete or move.
1364 		 *
1365 		 * This assumes that the clock_thread is not bound
1366 		 * to any CPU, because the clock_thread is needed to
1367 		 * do the delay(hz/100).
1368 		 *
1369 		 * Note: we still hold the cpu_lock while waiting for
1370 		 * the next clock tick.  This is OK since it isn't
1371 		 * needed for anything else except processor_bind(2),
1372 		 * and system initialization.  If we drop the lock,
1373 		 * we would risk another p_online disabling the last
1374 		 * processor.
1375 		 */
1376 		delay(hz/100);
1377 	}
1378 
1379 	if (error == 0 && callout_off == 0) {
1380 		callout_cpu_offline(cp);
1381 		callout_off = 1;
1382 	}
1383 
1384 	if (error == 0 && cyclic_off == 0) {
1385 		if (!cyclic_offline(cp)) {
1386 			/*
1387 			 * We must have bound cyclics...
1388 			 */
1389 			error = EBUSY;
1390 			goto out;
1391 		}
1392 		cyclic_off = 1;
1393 	}
1394 
1395 	/*
1396 	 * Call mp_cpu_stop() to perform any special operations
1397 	 * needed for this machine architecture to offline a CPU.
1398 	 */
1399 	if (error == 0)
1400 		error = mp_cpu_stop(cp);	/* arch-dep hook */
1401 
1402 	/*
1403 	 * If that all worked, take the CPU offline and decrement
1404 	 * ncpus_online.
1405 	 */
1406 	if (error == 0) {
1407 		/*
1408 		 * Put all the cpus into a known safe place.
1409 		 * No mutexes can be entered while CPUs are paused.
1410 		 */
1411 		pause_cpus(cp, NULL);
1412 		/*
1413 		 * Repeat the operation, if necessary, to make sure that
1414 		 * all outstanding low-level interrupts run to completion
1415 		 * before we set the CPU_QUIESCED flag.  It's also possible
1416 		 * that a thread has weak bound to the cpu despite our raising
1417 		 * cpu_inmotion above since it may have loaded that
1418 		 * value before the barrier became visible (this would have
1419 		 * to be the thread that was on the target cpu at the time
1420 		 * we raised the barrier).
1421 		 */
1422 		if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1423 		    (*bound_func)(cp, 1)) {
1424 			start_cpus();
1425 			(void) mp_cpu_start(cp);
1426 			goto again;
1427 		}
1428 		ncp = cp->cpu_next_part;
1429 		cpu_lpl = cp->cpu_lpl;
1430 		ASSERT(cpu_lpl != NULL);
1431 
1432 		/*
1433 		 * Remove the CPU from the list of active CPUs.
1434 		 */
1435 		cpu_remove_active(cp);
1436 
1437 		/*
1438 		 * Walk the active process list and look for threads
1439 		 * whose home lgroup needs to be updated, or
1440 		 * the last CPU they run on is the one being offlined now.
1441 		 */
1442 
1443 		ASSERT(curthread->t_cpu != cp);
1444 		for (p = practive; p != NULL; p = p->p_next) {
1445 
1446 			t = p->p_tlist;
1447 
1448 			if (t == NULL)
1449 				continue;
1450 
1451 			lgrp_diff_lpl = 0;
1452 
1453 			do {
1454 				ASSERT(t->t_lpl != NULL);
1455 				/*
1456 				 * Taking last CPU in lpl offline
1457 				 * Rehome thread if it is in this lpl
1458 				 * Otherwise, update the count of how many
1459 				 * threads are in this CPU's lgroup but have
1460 				 * a different lpl.
1461 				 */
1462 
1463 				if (cpu_lpl->lpl_ncpu == 0) {
1464 					if (t->t_lpl == cpu_lpl)
1465 						lgrp_move_thread(t,
1466 						    lgrp_choose(t,
1467 						    t->t_cpupart), 0);
1468 					else if (t->t_lpl->lpl_lgrpid ==
1469 					    cpu_lpl->lpl_lgrpid)
1470 						lgrp_diff_lpl++;
1471 				}
1472 				ASSERT(t->t_lpl->lpl_ncpu > 0);
1473 
1474 				/*
1475 				 * Update CPU last ran on if it was this CPU
1476 				 */
1477 				if (t->t_cpu == cp && t->t_bound_cpu != cp)
1478 					t->t_cpu = disp_lowpri_cpu(ncp,
1479 					    t->t_lpl, t->t_pri, NULL);
1480 				ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1481 				    t->t_weakbound_cpu == cp);
1482 
1483 				t = t->t_forw;
1484 			} while (t != p->p_tlist);
1485 
1486 			/*
1487 			 * Didn't find any threads in the same lgroup as this
1488 			 * CPU with a different lpl, so remove the lgroup from
1489 			 * the process lgroup bitmask.
1490 			 */
1491 
1492 			if (lgrp_diff_lpl == 0)
1493 				klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1494 		}
1495 
1496 		/*
1497 		 * Walk thread list looking for threads that need to be
1498 		 * rehomed, since there are some threads that are not in
1499 		 * their process's p_tlist.
1500 		 */
1501 
1502 		t = curthread;
1503 		do {
1504 			ASSERT(t != NULL && t->t_lpl != NULL);
1505 
1506 			/*
1507 			 * Rehome threads with same lpl as this CPU when this
1508 			 * is the last CPU in the lpl.
1509 			 */
1510 
1511 			if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1512 				lgrp_move_thread(t,
1513 				    lgrp_choose(t, t->t_cpupart), 1);
1514 
1515 			ASSERT(t->t_lpl->lpl_ncpu > 0);
1516 
1517 			/*
1518 			 * Update CPU last ran on if it was this CPU
1519 			 */
1520 
1521 			if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1522 				t->t_cpu = disp_lowpri_cpu(ncp,
1523 				    t->t_lpl, t->t_pri, NULL);
1524 			}
1525 			ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1526 			    t->t_weakbound_cpu == cp);
1527 			t = t->t_next;
1528 
1529 		} while (t != curthread);
1530 		ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1531 		cp->cpu_flags |= CPU_OFFLINE;
1532 		disp_cpu_inactive(cp);
1533 		if (!no_quiesce)
1534 			cp->cpu_flags |= CPU_QUIESCED;
1535 		ncpus_online--;
1536 		cpu_set_state(cp);
1537 		cpu_inmotion = NULL;
1538 		start_cpus();
1539 		cpu_stats_kstat_destroy(cp);
1540 		cpu_delete_intrstat(cp);
1541 		lgrp_kstat_destroy(cp);
1542 	}
1543 
1544 out:
1545 	cpu_inmotion = NULL;
1546 
1547 	/*
1548 	 * If we failed, re-enable interrupts.
1549 	 * Do this even if cpu_intr_disable returned an error, because
1550 	 * it may have partially disabled interrupts.
1551 	 */
1552 	if (error && intr_enable)
1553 		cpu_intr_enable(cp);
1554 
1555 	/*
1556 	 * If we failed, but managed to offline the cyclic subsystem on this
1557 	 * CPU, bring it back online.
1558 	 */
1559 	if (error && cyclic_off)
1560 		cyclic_online(cp);
1561 
1562 	/*
1563 	 * If we failed, but managed to offline callouts on this CPU,
1564 	 * bring it back online.
1565 	 */
1566 	if (error && callout_off)
1567 		callout_cpu_online(cp);
1568 
1569 	/*
1570 	 * If we failed, tell the PG subsystem that the CPU is back
1571 	 */
1572 	pg_cpupart_in(cp, pp);
1573 
1574 	/*
1575 	 * If we failed, we need to notify everyone that this CPU is back on.
1576 	 */
1577 	if (error != 0) {
1578 		CPU_NEW_GENERATION(cp);
1579 		cpu_state_change_notify(cp->cpu_id, CPU_ON);
1580 		cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1581 	}
1582 
1583 	return (error);
1584 }
1585 
1586 /*
1587  * Mark the indicated CPU as faulted, taking it offline.
1588  */
1589 int
1590 cpu_faulted(cpu_t *cp, int flags)
1591 {
1592 	int	error = 0;
1593 
1594 	ASSERT(MUTEX_HELD(&cpu_lock));
1595 	ASSERT(!cpu_is_poweredoff(cp));
1596 
1597 	if (cpu_is_offline(cp)) {
1598 		cp->cpu_flags &= ~CPU_SPARE;
1599 		cp->cpu_flags |= CPU_FAULTED;
1600 		mp_cpu_faulted_enter(cp);
1601 		cpu_set_state(cp);
1602 		return (0);
1603 	}
1604 
1605 	if ((error = cpu_offline(cp, flags)) == 0) {
1606 		cp->cpu_flags |= CPU_FAULTED;
1607 		mp_cpu_faulted_enter(cp);
1608 		cpu_set_state(cp);
1609 	}
1610 
1611 	return (error);
1612 }
1613 
1614 /*
1615  * Mark the indicated CPU as a spare, taking it offline.
1616  */
1617 int
1618 cpu_spare(cpu_t *cp, int flags)
1619 {
1620 	int	error = 0;
1621 
1622 	ASSERT(MUTEX_HELD(&cpu_lock));
1623 	ASSERT(!cpu_is_poweredoff(cp));
1624 
1625 	if (cpu_is_offline(cp)) {
1626 		if (cp->cpu_flags & CPU_FAULTED) {
1627 			cp->cpu_flags &= ~CPU_FAULTED;
1628 			mp_cpu_faulted_exit(cp);
1629 		}
1630 		cp->cpu_flags |= CPU_SPARE;
1631 		cpu_set_state(cp);
1632 		return (0);
1633 	}
1634 
1635 	if ((error = cpu_offline(cp, flags)) == 0) {
1636 		cp->cpu_flags |= CPU_SPARE;
1637 		cpu_set_state(cp);
1638 	}
1639 
1640 	return (error);
1641 }
1642 
1643 /*
1644  * Take the indicated CPU from poweroff to offline.
1645  */
1646 int
1647 cpu_poweron(cpu_t *cp)
1648 {
1649 	int	error = ENOTSUP;
1650 
1651 	ASSERT(MUTEX_HELD(&cpu_lock));
1652 	ASSERT(cpu_is_poweredoff(cp));
1653 
1654 	error = mp_cpu_poweron(cp);	/* arch-dep hook */
1655 	if (error == 0)
1656 		cpu_set_state(cp);
1657 
1658 	return (error);
1659 }
1660 
1661 /*
1662  * Take the indicated CPU from any inactive state to powered off.
1663  */
1664 int
1665 cpu_poweroff(cpu_t *cp)
1666 {
1667 	int	error = ENOTSUP;
1668 
1669 	ASSERT(MUTEX_HELD(&cpu_lock));
1670 	ASSERT(cpu_is_offline(cp));
1671 
1672 	if (!(cp->cpu_flags & CPU_QUIESCED))
1673 		return (EBUSY);		/* not completely idle */
1674 
1675 	error = mp_cpu_poweroff(cp);	/* arch-dep hook */
1676 	if (error == 0)
1677 		cpu_set_state(cp);
1678 
1679 	return (error);
1680 }
1681 
1682 /*
1683  * Initialize the Sequential CPU id lookup table
1684  */
1685 void
1686 cpu_seq_tbl_init()
1687 {
1688 	cpu_t	**tbl;
1689 
1690 	tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1691 	tbl[0] = CPU;
1692 
1693 	cpu_seq = tbl;
1694 }
1695 
1696 /*
1697  * Initialize the CPU lists for the first CPU.
1698  */
1699 void
1700 cpu_list_init(cpu_t *cp)
1701 {
1702 	cp->cpu_next = cp;
1703 	cp->cpu_prev = cp;
1704 	cpu_list = cp;
1705 	clock_cpu_list = cp;
1706 
1707 	cp->cpu_next_onln = cp;
1708 	cp->cpu_prev_onln = cp;
1709 	cpu_active = cp;
1710 
1711 	cp->cpu_seqid = 0;
1712 	CPUSET_ADD(cpu_seqid_inuse, 0);
1713 
1714 	/*
1715 	 * Bootstrap cpu_seq using cpu_list
1716 	 * The cpu_seq[] table will be dynamically allocated
1717 	 * when kmem later becomes available (but before going MP)
1718 	 */
1719 	cpu_seq = &cpu_list;
1720 
1721 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1722 	cp_default.cp_cpulist = cp;
1723 	cp_default.cp_ncpus = 1;
1724 	cp->cpu_next_part = cp;
1725 	cp->cpu_prev_part = cp;
1726 	cp->cpu_part = &cp_default;
1727 
1728 	CPUSET_ADD(cpu_available, cp->cpu_id);
1729 	CPUSET_ADD(cpu_active_set, cp->cpu_id);
1730 }
1731 
1732 /*
1733  * Insert a CPU into the list of available CPUs.
1734  */
1735 void
1736 cpu_add_unit(cpu_t *cp)
1737 {
1738 	int seqid;
1739 
1740 	ASSERT(MUTEX_HELD(&cpu_lock));
1741 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1742 
1743 	lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1744 
1745 	/*
1746 	 * Note: most users of the cpu_list will grab the
1747 	 * cpu_lock to insure that it isn't modified.  However,
1748 	 * certain users can't or won't do that.  To allow this
1749 	 * we pause the other cpus.  Users who walk the list
1750 	 * without cpu_lock, must disable kernel preemption
1751 	 * to insure that the list isn't modified underneath
1752 	 * them.  Also, any cached pointers to cpu structures
1753 	 * must be revalidated by checking to see if the
1754 	 * cpu_next pointer points to itself.  This check must
1755 	 * be done with the cpu_lock held or kernel preemption
1756 	 * disabled.  This check relies upon the fact that
1757 	 * old cpu structures are not free'ed or cleared after
1758 	 * then are removed from the cpu_list.
1759 	 *
1760 	 * Note that the clock code walks the cpu list dereferencing
1761 	 * the cpu_part pointer, so we need to initialize it before
1762 	 * adding the cpu to the list.
1763 	 */
1764 	cp->cpu_part = &cp_default;
1765 	pause_cpus(NULL, NULL);
1766 	cp->cpu_next = cpu_list;
1767 	cp->cpu_prev = cpu_list->cpu_prev;
1768 	cpu_list->cpu_prev->cpu_next = cp;
1769 	cpu_list->cpu_prev = cp;
1770 	start_cpus();
1771 
1772 	for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1773 		continue;
1774 	CPUSET_ADD(cpu_seqid_inuse, seqid);
1775 	cp->cpu_seqid = seqid;
1776 
1777 	if (seqid > max_cpu_seqid_ever)
1778 		max_cpu_seqid_ever = seqid;
1779 
1780 	ASSERT(ncpus < max_ncpus);
1781 	ncpus++;
1782 	cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1783 	cpu[cp->cpu_id] = cp;
1784 	CPUSET_ADD(cpu_available, cp->cpu_id);
1785 	cpu_seq[cp->cpu_seqid] = cp;
1786 
1787 	/*
1788 	 * allocate a pause thread for this CPU.
1789 	 */
1790 	cpu_pause_alloc(cp);
1791 
1792 	/*
1793 	 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1794 	 * link them into a list of just that CPU.
1795 	 * This is so that disp_lowpri_cpu will work for thread_create in
1796 	 * pause_cpus() when called from the startup thread in a new CPU.
1797 	 */
1798 	cp->cpu_next_onln = cp;
1799 	cp->cpu_prev_onln = cp;
1800 	cpu_info_kstat_create(cp);
1801 	cp->cpu_next_part = cp;
1802 	cp->cpu_prev_part = cp;
1803 
1804 	init_cpu_mstate(cp, CMS_SYSTEM);
1805 
1806 	pool_pset_mod = gethrtime();
1807 }
1808 
1809 /*
1810  * Do the opposite of cpu_add_unit().
1811  */
1812 void
1813 cpu_del_unit(int cpuid)
1814 {
1815 	struct cpu	*cp, *cpnext;
1816 
1817 	ASSERT(MUTEX_HELD(&cpu_lock));
1818 	cp = cpu[cpuid];
1819 	ASSERT(cp != NULL);
1820 
1821 	ASSERT(cp->cpu_next_onln == cp);
1822 	ASSERT(cp->cpu_prev_onln == cp);
1823 	ASSERT(cp->cpu_next_part == cp);
1824 	ASSERT(cp->cpu_prev_part == cp);
1825 
1826 	/*
1827 	 * Tear down the CPU's physical ID cache, and update any
1828 	 * processor groups
1829 	 */
1830 	pg_cpu_fini(cp, NULL);
1831 	pghw_physid_destroy(cp);
1832 
1833 	/*
1834 	 * Destroy kstat stuff.
1835 	 */
1836 	cpu_info_kstat_destroy(cp);
1837 	term_cpu_mstate(cp);
1838 	/*
1839 	 * Free up pause thread.
1840 	 */
1841 	cpu_pause_free(cp);
1842 	CPUSET_DEL(cpu_available, cp->cpu_id);
1843 	cpu[cp->cpu_id] = NULL;
1844 	cpu_seq[cp->cpu_seqid] = NULL;
1845 
1846 	/*
1847 	 * The clock thread and mutex_vector_enter cannot hold the
1848 	 * cpu_lock while traversing the cpu list, therefore we pause
1849 	 * all other threads by pausing the other cpus. These, and any
1850 	 * other routines holding cpu pointers while possibly sleeping
1851 	 * must be sure to call kpreempt_disable before processing the
1852 	 * list and be sure to check that the cpu has not been deleted
1853 	 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1854 	 * to keep the deleted cpu structure around.
1855 	 *
1856 	 * Note that this MUST be done AFTER cpu_available
1857 	 * has been updated so that we don't waste time
1858 	 * trying to pause the cpu we're trying to delete.
1859 	 */
1860 	pause_cpus(NULL, NULL);
1861 
1862 	cpnext = cp->cpu_next;
1863 	cp->cpu_prev->cpu_next = cp->cpu_next;
1864 	cp->cpu_next->cpu_prev = cp->cpu_prev;
1865 	if (cp == cpu_list)
1866 		cpu_list = cpnext;
1867 
1868 	/*
1869 	 * Signals that the cpu has been deleted (see above).
1870 	 */
1871 	cp->cpu_next = NULL;
1872 	cp->cpu_prev = NULL;
1873 
1874 	start_cpus();
1875 
1876 	CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1877 	ncpus--;
1878 	lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1879 
1880 	pool_pset_mod = gethrtime();
1881 }
1882 
1883 /*
1884  * Add a CPU to the list of active CPUs.
1885  *	This routine must not get any locks, because other CPUs are paused.
1886  */
1887 static void
1888 cpu_add_active_internal(cpu_t *cp)
1889 {
1890 	cpupart_t	*pp = cp->cpu_part;
1891 
1892 	ASSERT(MUTEX_HELD(&cpu_lock));
1893 	ASSERT(cpu_list != NULL);	/* list started in cpu_list_init */
1894 
1895 	ncpus_online++;
1896 	cpu_set_state(cp);
1897 	cp->cpu_next_onln = cpu_active;
1898 	cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1899 	cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1900 	cpu_active->cpu_prev_onln = cp;
1901 	CPUSET_ADD(cpu_active_set, cp->cpu_id);
1902 
1903 	if (pp->cp_cpulist) {
1904 		cp->cpu_next_part = pp->cp_cpulist;
1905 		cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1906 		pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1907 		pp->cp_cpulist->cpu_prev_part = cp;
1908 	} else {
1909 		ASSERT(pp->cp_ncpus == 0);
1910 		pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1911 	}
1912 	pp->cp_ncpus++;
1913 	if (pp->cp_ncpus == 1) {
1914 		cp_numparts_nonempty++;
1915 		ASSERT(cp_numparts_nonempty != 0);
1916 	}
1917 
1918 	pg_cpu_active(cp);
1919 	lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1920 
1921 	bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1922 }
1923 
1924 /*
1925  * Add a CPU to the list of active CPUs.
1926  *	This is called from machine-dependent layers when a new CPU is started.
1927  */
1928 void
1929 cpu_add_active(cpu_t *cp)
1930 {
1931 	pg_cpupart_in(cp, cp->cpu_part);
1932 
1933 	pause_cpus(NULL, NULL);
1934 	cpu_add_active_internal(cp);
1935 	start_cpus();
1936 
1937 	cpu_stats_kstat_create(cp);
1938 	cpu_create_intrstat(cp);
1939 	lgrp_kstat_create(cp);
1940 	cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1941 }
1942 
1943 
1944 /*
1945  * Remove a CPU from the list of active CPUs.
1946  *	This routine must not get any locks, because other CPUs are paused.
1947  */
1948 /* ARGSUSED */
1949 static void
1950 cpu_remove_active(cpu_t *cp)
1951 {
1952 	cpupart_t	*pp = cp->cpu_part;
1953 
1954 	ASSERT(MUTEX_HELD(&cpu_lock));
1955 	ASSERT(cp->cpu_next_onln != cp);	/* not the last one */
1956 	ASSERT(cp->cpu_prev_onln != cp);	/* not the last one */
1957 
1958 	pg_cpu_inactive(cp);
1959 
1960 	lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1961 
1962 	if (cp == clock_cpu_list)
1963 		clock_cpu_list = cp->cpu_next_onln;
1964 
1965 	cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1966 	cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1967 	if (cpu_active == cp) {
1968 		cpu_active = cp->cpu_next_onln;
1969 	}
1970 	cp->cpu_next_onln = cp;
1971 	cp->cpu_prev_onln = cp;
1972 	CPUSET_DEL(cpu_active_set, cp->cpu_id);
1973 
1974 	cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1975 	cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1976 	if (pp->cp_cpulist == cp) {
1977 		pp->cp_cpulist = cp->cpu_next_part;
1978 		ASSERT(pp->cp_cpulist != cp);
1979 	}
1980 	cp->cpu_next_part = cp;
1981 	cp->cpu_prev_part = cp;
1982 	pp->cp_ncpus--;
1983 	if (pp->cp_ncpus == 0) {
1984 		cp_numparts_nonempty--;
1985 		ASSERT(cp_numparts_nonempty != 0);
1986 	}
1987 }
1988 
1989 /*
1990  * Routine used to setup a newly inserted CPU in preparation for starting
1991  * it running code.
1992  */
1993 int
1994 cpu_configure(int cpuid)
1995 {
1996 	int retval = 0;
1997 
1998 	ASSERT(MUTEX_HELD(&cpu_lock));
1999 
2000 	/*
2001 	 * Some structures are statically allocated based upon
2002 	 * the maximum number of cpus the system supports.  Do not
2003 	 * try to add anything beyond this limit.
2004 	 */
2005 	if (cpuid < 0 || cpuid >= NCPU) {
2006 		return (EINVAL);
2007 	}
2008 
2009 	if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2010 		return (EALREADY);
2011 	}
2012 
2013 	if ((retval = mp_cpu_configure(cpuid)) != 0) {
2014 		return (retval);
2015 	}
2016 
2017 	cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2018 	cpu_set_state(cpu[cpuid]);
2019 	retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2020 	if (retval != 0)
2021 		(void) mp_cpu_unconfigure(cpuid);
2022 
2023 	return (retval);
2024 }
2025 
2026 /*
2027  * Routine used to cleanup a CPU that has been powered off.  This will
2028  * destroy all per-cpu information related to this cpu.
2029  */
2030 int
2031 cpu_unconfigure(int cpuid)
2032 {
2033 	int error;
2034 
2035 	ASSERT(MUTEX_HELD(&cpu_lock));
2036 
2037 	if (cpu[cpuid] == NULL) {
2038 		return (ENODEV);
2039 	}
2040 
2041 	if (cpu[cpuid]->cpu_flags == 0) {
2042 		return (EALREADY);
2043 	}
2044 
2045 	if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2046 		return (EBUSY);
2047 	}
2048 
2049 	if (cpu[cpuid]->cpu_props != NULL) {
2050 		(void) nvlist_free(cpu[cpuid]->cpu_props);
2051 		cpu[cpuid]->cpu_props = NULL;
2052 	}
2053 
2054 	error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2055 
2056 	if (error != 0)
2057 		return (error);
2058 
2059 	return (mp_cpu_unconfigure(cpuid));
2060 }
2061 
2062 /*
2063  * Routines for registering and de-registering cpu_setup callback functions.
2064  *
2065  * Caller's context
2066  *	These routines must not be called from a driver's attach(9E) or
2067  *	detach(9E) entry point.
2068  *
2069  * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2070  */
2071 
2072 /*
2073  * Ideally, these would be dynamically allocated and put into a linked
2074  * list; however that is not feasible because the registration routine
2075  * has to be available before the kmem allocator is working (in fact,
2076  * it is called by the kmem allocator init code).  In any case, there
2077  * are quite a few extra entries for future users.
2078  */
2079 #define	NCPU_SETUPS	20
2080 
2081 struct cpu_setup {
2082 	cpu_setup_func_t *func;
2083 	void *arg;
2084 } cpu_setups[NCPU_SETUPS];
2085 
2086 void
2087 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2088 {
2089 	int i;
2090 
2091 	ASSERT(MUTEX_HELD(&cpu_lock));
2092 
2093 	for (i = 0; i < NCPU_SETUPS; i++)
2094 		if (cpu_setups[i].func == NULL)
2095 			break;
2096 	if (i >= NCPU_SETUPS)
2097 		cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2098 
2099 	cpu_setups[i].func = func;
2100 	cpu_setups[i].arg = arg;
2101 }
2102 
2103 void
2104 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2105 {
2106 	int i;
2107 
2108 	ASSERT(MUTEX_HELD(&cpu_lock));
2109 
2110 	for (i = 0; i < NCPU_SETUPS; i++)
2111 		if ((cpu_setups[i].func == func) &&
2112 		    (cpu_setups[i].arg == arg))
2113 			break;
2114 	if (i >= NCPU_SETUPS)
2115 		cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2116 		    "deregister");
2117 
2118 	cpu_setups[i].func = NULL;
2119 	cpu_setups[i].arg = 0;
2120 }
2121 
2122 /*
2123  * Call any state change hooks for this CPU, ignore any errors.
2124  */
2125 void
2126 cpu_state_change_notify(int id, cpu_setup_t what)
2127 {
2128 	int i;
2129 
2130 	ASSERT(MUTEX_HELD(&cpu_lock));
2131 
2132 	for (i = 0; i < NCPU_SETUPS; i++) {
2133 		if (cpu_setups[i].func != NULL) {
2134 			cpu_setups[i].func(what, id, cpu_setups[i].arg);
2135 		}
2136 	}
2137 }
2138 
2139 /*
2140  * Call any state change hooks for this CPU, undo it if error found.
2141  */
2142 static int
2143 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2144 {
2145 	int i;
2146 	int retval = 0;
2147 
2148 	ASSERT(MUTEX_HELD(&cpu_lock));
2149 
2150 	for (i = 0; i < NCPU_SETUPS; i++) {
2151 		if (cpu_setups[i].func != NULL) {
2152 			retval = cpu_setups[i].func(what, id,
2153 			    cpu_setups[i].arg);
2154 			if (retval) {
2155 				for (i--; i >= 0; i--) {
2156 					if (cpu_setups[i].func != NULL)
2157 						cpu_setups[i].func(undo,
2158 						    id, cpu_setups[i].arg);
2159 				}
2160 				break;
2161 			}
2162 		}
2163 	}
2164 	return (retval);
2165 }
2166 
2167 /*
2168  * Export information about this CPU via the kstat mechanism.
2169  */
2170 static struct {
2171 	kstat_named_t ci_state;
2172 	kstat_named_t ci_state_begin;
2173 	kstat_named_t ci_cpu_type;
2174 	kstat_named_t ci_fpu_type;
2175 	kstat_named_t ci_clock_MHz;
2176 	kstat_named_t ci_chip_id;
2177 	kstat_named_t ci_implementation;
2178 	kstat_named_t ci_brandstr;
2179 	kstat_named_t ci_core_id;
2180 	kstat_named_t ci_curr_clock_Hz;
2181 	kstat_named_t ci_supp_freq_Hz;
2182 	kstat_named_t ci_pg_id;
2183 #if defined(__sparcv9)
2184 	kstat_named_t ci_device_ID;
2185 	kstat_named_t ci_cpu_fru;
2186 #endif
2187 #if defined(__x86)
2188 	kstat_named_t ci_vendorstr;
2189 	kstat_named_t ci_family;
2190 	kstat_named_t ci_model;
2191 	kstat_named_t ci_step;
2192 	kstat_named_t ci_clogid;
2193 	kstat_named_t ci_pkg_core_id;
2194 	kstat_named_t ci_ncpuperchip;
2195 	kstat_named_t ci_ncoreperchip;
2196 	kstat_named_t ci_max_cstates;
2197 	kstat_named_t ci_curr_cstate;
2198 	kstat_named_t ci_cacheid;
2199 	kstat_named_t ci_sktstr;
2200 #endif
2201 } cpu_info_template = {
2202 	{ "state",			KSTAT_DATA_CHAR },
2203 	{ "state_begin",		KSTAT_DATA_LONG },
2204 	{ "cpu_type",			KSTAT_DATA_CHAR },
2205 	{ "fpu_type",			KSTAT_DATA_CHAR },
2206 	{ "clock_MHz",			KSTAT_DATA_LONG },
2207 	{ "chip_id",			KSTAT_DATA_LONG },
2208 	{ "implementation",		KSTAT_DATA_STRING },
2209 	{ "brand",			KSTAT_DATA_STRING },
2210 	{ "core_id",			KSTAT_DATA_LONG },
2211 	{ "current_clock_Hz",		KSTAT_DATA_UINT64 },
2212 	{ "supported_frequencies_Hz",	KSTAT_DATA_STRING },
2213 	{ "pg_id",			KSTAT_DATA_LONG },
2214 #if defined(__sparcv9)
2215 	{ "device_ID",			KSTAT_DATA_UINT64 },
2216 	{ "cpu_fru",			KSTAT_DATA_STRING },
2217 #endif
2218 #if defined(__x86)
2219 	{ "vendor_id",			KSTAT_DATA_STRING },
2220 	{ "family",			KSTAT_DATA_INT32 },
2221 	{ "model",			KSTAT_DATA_INT32 },
2222 	{ "stepping",			KSTAT_DATA_INT32 },
2223 	{ "clog_id",			KSTAT_DATA_INT32 },
2224 	{ "pkg_core_id",		KSTAT_DATA_LONG },
2225 	{ "ncpu_per_chip",		KSTAT_DATA_INT32 },
2226 	{ "ncore_per_chip",		KSTAT_DATA_INT32 },
2227 	{ "supported_max_cstates",	KSTAT_DATA_INT32 },
2228 	{ "current_cstate",		KSTAT_DATA_INT32 },
2229 	{ "cache_id",			KSTAT_DATA_INT32 },
2230 	{ "socket_type",		KSTAT_DATA_STRING },
2231 #endif
2232 };
2233 
2234 static kmutex_t cpu_info_template_lock;
2235 
2236 static int
2237 cpu_info_kstat_update(kstat_t *ksp, int rw)
2238 {
2239 	cpu_t	*cp = ksp->ks_private;
2240 	const char *pi_state;
2241 
2242 	if (rw == KSTAT_WRITE)
2243 		return (EACCES);
2244 
2245 #if defined(__x86)
2246 	/* Is the cpu still initialising itself? */
2247 	if (cpuid_checkpass(cp, 1) == 0)
2248 		return (ENXIO);
2249 #endif
2250 	switch (cp->cpu_type_info.pi_state) {
2251 	case P_ONLINE:
2252 		pi_state = PS_ONLINE;
2253 		break;
2254 	case P_POWEROFF:
2255 		pi_state = PS_POWEROFF;
2256 		break;
2257 	case P_NOINTR:
2258 		pi_state = PS_NOINTR;
2259 		break;
2260 	case P_FAULTED:
2261 		pi_state = PS_FAULTED;
2262 		break;
2263 	case P_SPARE:
2264 		pi_state = PS_SPARE;
2265 		break;
2266 	case P_OFFLINE:
2267 		pi_state = PS_OFFLINE;
2268 		break;
2269 	default:
2270 		pi_state = "unknown";
2271 	}
2272 	(void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2273 	cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2274 	(void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2275 	    cp->cpu_type_info.pi_processor_type, 15);
2276 	(void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2277 	    cp->cpu_type_info.pi_fputypes, 15);
2278 	cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2279 	cpu_info_template.ci_chip_id.value.l =
2280 	    pg_plat_hw_instance_id(cp, PGHW_CHIP);
2281 	kstat_named_setstr(&cpu_info_template.ci_implementation,
2282 	    cp->cpu_idstr);
2283 	kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2284 	cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2285 	cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2286 	    cp->cpu_curr_clock;
2287 	cpu_info_template.ci_pg_id.value.l =
2288 	    cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2289 	    cp->cpu_pg->cmt_lineage->pg_id : -1;
2290 	kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2291 	    cp->cpu_supp_freqs);
2292 #if defined(__sparcv9)
2293 	cpu_info_template.ci_device_ID.value.ui64 =
2294 	    cpunodes[cp->cpu_id].device_id;
2295 	kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2296 #endif
2297 #if defined(__x86)
2298 	kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2299 	    cpuid_getvendorstr(cp));
2300 	cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2301 	cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2302 	cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2303 	cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2304 	cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2305 	cpu_info_template.ci_ncoreperchip.value.l =
2306 	    cpuid_get_ncore_per_chip(cp);
2307 	cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2308 	cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2309 	cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2310 	cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2311 	kstat_named_setstr(&cpu_info_template.ci_sktstr,
2312 	    cpuid_getsocketstr(cp));
2313 #endif
2314 
2315 	return (0);
2316 }
2317 
2318 static void
2319 cpu_info_kstat_create(cpu_t *cp)
2320 {
2321 	zoneid_t zoneid;
2322 
2323 	ASSERT(MUTEX_HELD(&cpu_lock));
2324 
2325 	if (pool_pset_enabled())
2326 		zoneid = GLOBAL_ZONEID;
2327 	else
2328 		zoneid = ALL_ZONES;
2329 	if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2330 	    NULL, "misc", KSTAT_TYPE_NAMED,
2331 	    sizeof (cpu_info_template) / sizeof (kstat_named_t),
2332 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2333 		cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2334 #if defined(__sparcv9)
2335 		cp->cpu_info_kstat->ks_data_size +=
2336 		    strlen(cpu_fru_fmri(cp)) + 1;
2337 #endif
2338 #if defined(__x86)
2339 		cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2340 #endif
2341 		if (cp->cpu_supp_freqs != NULL)
2342 			cp->cpu_info_kstat->ks_data_size +=
2343 			    strlen(cp->cpu_supp_freqs) + 1;
2344 		cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2345 		cp->cpu_info_kstat->ks_data = &cpu_info_template;
2346 		cp->cpu_info_kstat->ks_private = cp;
2347 		cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2348 		kstat_install(cp->cpu_info_kstat);
2349 	}
2350 }
2351 
2352 static void
2353 cpu_info_kstat_destroy(cpu_t *cp)
2354 {
2355 	ASSERT(MUTEX_HELD(&cpu_lock));
2356 
2357 	kstat_delete(cp->cpu_info_kstat);
2358 	cp->cpu_info_kstat = NULL;
2359 }
2360 
2361 /*
2362  * Create and install kstats for the boot CPU.
2363  */
2364 void
2365 cpu_kstat_init(cpu_t *cp)
2366 {
2367 	mutex_enter(&cpu_lock);
2368 	cpu_info_kstat_create(cp);
2369 	cpu_stats_kstat_create(cp);
2370 	cpu_create_intrstat(cp);
2371 	cpu_set_state(cp);
2372 	mutex_exit(&cpu_lock);
2373 }
2374 
2375 /*
2376  * Make visible to the zone that subset of the cpu information that would be
2377  * initialized when a cpu is configured (but still offline).
2378  */
2379 void
2380 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2381 {
2382 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2383 
2384 	ASSERT(MUTEX_HELD(&cpu_lock));
2385 	ASSERT(pool_pset_enabled());
2386 	ASSERT(cp != NULL);
2387 
2388 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2389 		zone->zone_ncpus++;
2390 		ASSERT(zone->zone_ncpus <= ncpus);
2391 	}
2392 	if (cp->cpu_info_kstat != NULL)
2393 		kstat_zone_add(cp->cpu_info_kstat, zoneid);
2394 }
2395 
2396 /*
2397  * Make visible to the zone that subset of the cpu information that would be
2398  * initialized when a previously configured cpu is onlined.
2399  */
2400 void
2401 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2402 {
2403 	kstat_t *ksp;
2404 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2405 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2406 	processorid_t cpun;
2407 
2408 	ASSERT(MUTEX_HELD(&cpu_lock));
2409 	ASSERT(pool_pset_enabled());
2410 	ASSERT(cp != NULL);
2411 	ASSERT(cpu_is_active(cp));
2412 
2413 	cpun = cp->cpu_id;
2414 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2415 		zone->zone_ncpus_online++;
2416 		ASSERT(zone->zone_ncpus_online <= ncpus_online);
2417 	}
2418 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2419 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2420 	    != NULL) {
2421 		kstat_zone_add(ksp, zoneid);
2422 		kstat_rele(ksp);
2423 	}
2424 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2425 		kstat_zone_add(ksp, zoneid);
2426 		kstat_rele(ksp);
2427 	}
2428 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2429 		kstat_zone_add(ksp, zoneid);
2430 		kstat_rele(ksp);
2431 	}
2432 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2433 	    NULL) {
2434 		kstat_zone_add(ksp, zoneid);
2435 		kstat_rele(ksp);
2436 	}
2437 }
2438 
2439 /*
2440  * Update relevant kstats such that cpu is now visible to processes
2441  * executing in specified zone.
2442  */
2443 void
2444 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2445 {
2446 	cpu_visibility_configure(cp, zone);
2447 	if (cpu_is_active(cp))
2448 		cpu_visibility_online(cp, zone);
2449 }
2450 
2451 /*
2452  * Make invisible to the zone that subset of the cpu information that would be
2453  * torn down when a previously offlined cpu is unconfigured.
2454  */
2455 void
2456 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2457 {
2458 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2459 
2460 	ASSERT(MUTEX_HELD(&cpu_lock));
2461 	ASSERT(pool_pset_enabled());
2462 	ASSERT(cp != NULL);
2463 
2464 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2465 		ASSERT(zone->zone_ncpus != 0);
2466 		zone->zone_ncpus--;
2467 	}
2468 	if (cp->cpu_info_kstat)
2469 		kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2470 }
2471 
2472 /*
2473  * Make invisible to the zone that subset of the cpu information that would be
2474  * torn down when a cpu is offlined (but still configured).
2475  */
2476 void
2477 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2478 {
2479 	kstat_t *ksp;
2480 	char name[sizeof ("cpu_stat") + 10];	/* enough for 32-bit cpuids */
2481 	zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2482 	processorid_t cpun;
2483 
2484 	ASSERT(MUTEX_HELD(&cpu_lock));
2485 	ASSERT(pool_pset_enabled());
2486 	ASSERT(cp != NULL);
2487 	ASSERT(cpu_is_active(cp));
2488 
2489 	cpun = cp->cpu_id;
2490 	if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2491 		ASSERT(zone->zone_ncpus_online != 0);
2492 		zone->zone_ncpus_online--;
2493 	}
2494 
2495 	if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2496 	    NULL) {
2497 		kstat_zone_remove(ksp, zoneid);
2498 		kstat_rele(ksp);
2499 	}
2500 	if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2501 		kstat_zone_remove(ksp, zoneid);
2502 		kstat_rele(ksp);
2503 	}
2504 	if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2505 		kstat_zone_remove(ksp, zoneid);
2506 		kstat_rele(ksp);
2507 	}
2508 	(void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2509 	if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2510 	    != NULL) {
2511 		kstat_zone_remove(ksp, zoneid);
2512 		kstat_rele(ksp);
2513 	}
2514 }
2515 
2516 /*
2517  * Update relevant kstats such that cpu is no longer visible to processes
2518  * executing in specified zone.
2519  */
2520 void
2521 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2522 {
2523 	if (cpu_is_active(cp))
2524 		cpu_visibility_offline(cp, zone);
2525 	cpu_visibility_unconfigure(cp, zone);
2526 }
2527 
2528 /*
2529  * Bind a thread to a CPU as requested.
2530  */
2531 int
2532 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2533     int *error)
2534 {
2535 	processorid_t	binding;
2536 	cpu_t		*cp = NULL;
2537 
2538 	ASSERT(MUTEX_HELD(&cpu_lock));
2539 	ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2540 
2541 	thread_lock(tp);
2542 
2543 	/*
2544 	 * Record old binding, but change the obind, which was initialized
2545 	 * to PBIND_NONE, only if this thread has a binding.  This avoids
2546 	 * reporting PBIND_NONE for a process when some LWPs are bound.
2547 	 */
2548 	binding = tp->t_bind_cpu;
2549 	if (binding != PBIND_NONE)
2550 		*obind = binding;	/* record old binding */
2551 
2552 	switch (bind) {
2553 	case PBIND_QUERY:
2554 		/* Just return the old binding */
2555 		thread_unlock(tp);
2556 		return (0);
2557 
2558 	case PBIND_QUERY_TYPE:
2559 		/* Return the binding type */
2560 		*obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2561 		thread_unlock(tp);
2562 		return (0);
2563 
2564 	case PBIND_SOFT:
2565 		/*
2566 		 *  Set soft binding for this thread and return the actual
2567 		 *  binding
2568 		 */
2569 		TB_CPU_SOFT_SET(tp);
2570 		thread_unlock(tp);
2571 		return (0);
2572 
2573 	case PBIND_HARD:
2574 		/*
2575 		 *  Set hard binding for this thread and return the actual
2576 		 *  binding
2577 		 */
2578 		TB_CPU_HARD_SET(tp);
2579 		thread_unlock(tp);
2580 		return (0);
2581 
2582 	default:
2583 		break;
2584 	}
2585 
2586 	/*
2587 	 * If this thread/LWP cannot be bound because of permission
2588 	 * problems, just note that and return success so that the
2589 	 * other threads/LWPs will be bound.  This is the way
2590 	 * processor_bind() is defined to work.
2591 	 *
2592 	 * Binding will get EPERM if the thread is of system class
2593 	 * or hasprocperm() fails.
2594 	 */
2595 	if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2596 		*error = EPERM;
2597 		thread_unlock(tp);
2598 		return (0);
2599 	}
2600 
2601 	binding = bind;
2602 	if (binding != PBIND_NONE) {
2603 		cp = cpu_get((processorid_t)binding);
2604 		/*
2605 		 * Make sure binding is valid and is in right partition.
2606 		 */
2607 		if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2608 			*error = EINVAL;
2609 			thread_unlock(tp);
2610 			return (0);
2611 		}
2612 	}
2613 	tp->t_bind_cpu = binding;	/* set new binding */
2614 
2615 	/*
2616 	 * If there is no system-set reason for affinity, set
2617 	 * the t_bound_cpu field to reflect the binding.
2618 	 */
2619 	if (tp->t_affinitycnt == 0) {
2620 		if (binding == PBIND_NONE) {
2621 			/*
2622 			 * We may need to adjust disp_max_unbound_pri
2623 			 * since we're becoming unbound.
2624 			 */
2625 			disp_adjust_unbound_pri(tp);
2626 
2627 			tp->t_bound_cpu = NULL;	/* set new binding */
2628 
2629 			/*
2630 			 * Move thread to lgroup with strongest affinity
2631 			 * after unbinding
2632 			 */
2633 			if (tp->t_lgrp_affinity)
2634 				lgrp_move_thread(tp,
2635 				    lgrp_choose(tp, tp->t_cpupart), 1);
2636 
2637 			if (tp->t_state == TS_ONPROC &&
2638 			    tp->t_cpu->cpu_part != tp->t_cpupart)
2639 				cpu_surrender(tp);
2640 		} else {
2641 			lpl_t	*lpl;
2642 
2643 			tp->t_bound_cpu = cp;
2644 			ASSERT(cp->cpu_lpl != NULL);
2645 
2646 			/*
2647 			 * Set home to lgroup with most affinity containing CPU
2648 			 * that thread is being bound or minimum bounding
2649 			 * lgroup if no affinities set
2650 			 */
2651 			if (tp->t_lgrp_affinity)
2652 				lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2653 				    LGRP_NONE, B_FALSE);
2654 			else
2655 				lpl = cp->cpu_lpl;
2656 
2657 			if (tp->t_lpl != lpl) {
2658 				/* can't grab cpu_lock */
2659 				lgrp_move_thread(tp, lpl, 1);
2660 			}
2661 
2662 			/*
2663 			 * Make the thread switch to the bound CPU.
2664 			 * If the thread is runnable, we need to
2665 			 * requeue it even if t_cpu is already set
2666 			 * to the right CPU, since it may be on a
2667 			 * kpreempt queue and need to move to a local
2668 			 * queue.  We could check t_disp_queue to
2669 			 * avoid unnecessary overhead if it's already
2670 			 * on the right queue, but since this isn't
2671 			 * a performance-critical operation it doesn't
2672 			 * seem worth the extra code and complexity.
2673 			 *
2674 			 * If the thread is weakbound to the cpu then it will
2675 			 * resist the new binding request until the weak
2676 			 * binding drops.  The cpu_surrender or requeueing
2677 			 * below could be skipped in such cases (since it
2678 			 * will have no effect), but that would require
2679 			 * thread_allowmigrate to acquire thread_lock so
2680 			 * we'll take the very occasional hit here instead.
2681 			 */
2682 			if (tp->t_state == TS_ONPROC) {
2683 				cpu_surrender(tp);
2684 			} else if (tp->t_state == TS_RUN) {
2685 				cpu_t *ocp = tp->t_cpu;
2686 
2687 				(void) dispdeq(tp);
2688 				setbackdq(tp);
2689 				/*
2690 				 * Either on the bound CPU's disp queue now,
2691 				 * or swapped out or on the swap queue.
2692 				 */
2693 				ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2694 				    tp->t_weakbound_cpu == ocp ||
2695 				    (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2696 				    != TS_LOAD);
2697 			}
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Our binding has changed; set TP_CHANGEBIND.
2703 	 */
2704 	tp->t_proc_flag |= TP_CHANGEBIND;
2705 	aston(tp);
2706 
2707 	thread_unlock(tp);
2708 
2709 	return (0);
2710 }
2711 
2712 
2713 cpuset_t *
2714 cpuset_alloc(int kmflags)
2715 {
2716 	return (kmem_alloc(sizeof (cpuset_t), kmflags));
2717 }
2718 
2719 void
2720 cpuset_free(cpuset_t *s)
2721 {
2722 	kmem_free(s, sizeof (cpuset_t));
2723 }
2724 
2725 void
2726 cpuset_all(cpuset_t *s)
2727 {
2728 	int i;
2729 
2730 	for (i = 0; i < CPUSET_WORDS; i++)
2731 		s->cpub[i] = ~0UL;
2732 }
2733 
2734 void
2735 cpuset_all_but(cpuset_t *s, const uint_t cpu)
2736 {
2737 	cpuset_all(s);
2738 	CPUSET_DEL(*s, cpu);
2739 }
2740 
2741 void
2742 cpuset_only(cpuset_t *s, const uint_t cpu)
2743 {
2744 	CPUSET_ZERO(*s);
2745 	CPUSET_ADD(*s, cpu);
2746 }
2747 
2748 long
2749 cpu_in_set(const cpuset_t *s, const uint_t cpu)
2750 {
2751 	VERIFY(cpu < NCPU);
2752 	return (BT_TEST(s->cpub, cpu));
2753 }
2754 
2755 void
2756 cpuset_add(cpuset_t *s, const uint_t cpu)
2757 {
2758 	VERIFY(cpu < NCPU);
2759 	BT_SET(s->cpub, cpu);
2760 }
2761 
2762 void
2763 cpuset_del(cpuset_t *s, const uint_t cpu)
2764 {
2765 	VERIFY(cpu < NCPU);
2766 	BT_CLEAR(s->cpub, cpu);
2767 }
2768 
2769 int
2770 cpuset_isnull(const cpuset_t *s)
2771 {
2772 	int i;
2773 
2774 	for (i = 0; i < CPUSET_WORDS; i++) {
2775 		if (s->cpub[i] != 0)
2776 			return (0);
2777 	}
2778 	return (1);
2779 }
2780 
2781 int
2782 cpuset_isequal(const cpuset_t *s1, const cpuset_t *s2)
2783 {
2784 	int i;
2785 
2786 	for (i = 0; i < CPUSET_WORDS; i++) {
2787 		if (s1->cpub[i] != s2->cpub[i])
2788 			return (0);
2789 	}
2790 	return (1);
2791 }
2792 
2793 uint_t
2794 cpuset_find(const cpuset_t *s)
2795 {
2796 
2797 	uint_t	i;
2798 	uint_t	cpu = (uint_t)-1;
2799 
2800 	/*
2801 	 * Find a cpu in the cpuset
2802 	 */
2803 	for (i = 0; i < CPUSET_WORDS; i++) {
2804 		cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2805 		if (cpu != (uint_t)-1) {
2806 			cpu += i * BT_NBIPUL;
2807 			break;
2808 		}
2809 	}
2810 	return (cpu);
2811 }
2812 
2813 void
2814 cpuset_bounds(const cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2815 {
2816 	int	i, j;
2817 	uint_t	bit;
2818 
2819 	/*
2820 	 * First, find the smallest cpu id in the set.
2821 	 */
2822 	for (i = 0; i < CPUSET_WORDS; i++) {
2823 		if (s->cpub[i] != 0) {
2824 			bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2825 			ASSERT(bit != (uint_t)-1);
2826 			*smallestid = bit + (i * BT_NBIPUL);
2827 
2828 			/*
2829 			 * Now find the largest cpu id in
2830 			 * the set and return immediately.
2831 			 * Done in an inner loop to avoid
2832 			 * having to break out of the first
2833 			 * loop.
2834 			 */
2835 			for (j = CPUSET_WORDS - 1; j >= i; j--) {
2836 				if (s->cpub[j] != 0) {
2837 					bit = (uint_t)(highbit(s->cpub[j]) - 1);
2838 					ASSERT(bit != (uint_t)-1);
2839 					*largestid = bit + (j * BT_NBIPUL);
2840 					ASSERT(*largestid >= *smallestid);
2841 					return;
2842 				}
2843 			}
2844 
2845 			/*
2846 			 * If this code is reached, a
2847 			 * smallestid was found, but not a
2848 			 * largestid. The cpuset must have
2849 			 * been changed during the course
2850 			 * of this function call.
2851 			 */
2852 			ASSERT(0);
2853 		}
2854 	}
2855 	*smallestid = *largestid = CPUSET_NOTINSET;
2856 }
2857 
2858 void
2859 cpuset_atomic_del(cpuset_t *s, const uint_t cpu)
2860 {
2861 	VERIFY(cpu < NCPU);
2862 	BT_ATOMIC_CLEAR(s->cpub, (cpu))
2863 }
2864 
2865 void
2866 cpuset_atomic_add(cpuset_t *s, const uint_t cpu)
2867 {
2868 	VERIFY(cpu < NCPU);
2869 	BT_ATOMIC_SET(s->cpub, (cpu))
2870 }
2871 
2872 long
2873 cpuset_atomic_xadd(cpuset_t *s, const uint_t cpu)
2874 {
2875 	long res;
2876 
2877 	VERIFY(cpu < NCPU);
2878 	BT_ATOMIC_SET_EXCL(s->cpub, cpu, res);
2879 	return (res);
2880 }
2881 
2882 long
2883 cpuset_atomic_xdel(cpuset_t *s, const uint_t cpu)
2884 {
2885 	long res;
2886 
2887 	VERIFY(cpu < NCPU);
2888 	BT_ATOMIC_CLEAR_EXCL(s->cpub, cpu, res);
2889 	return (res);
2890 }
2891 
2892 void
2893 cpuset_or(cpuset_t *dst, cpuset_t *src)
2894 {
2895 	for (int i = 0; i < CPUSET_WORDS; i++) {
2896 		dst->cpub[i] |= src->cpub[i];
2897 	}
2898 }
2899 
2900 void
2901 cpuset_xor(cpuset_t *dst, cpuset_t *src)
2902 {
2903 	for (int i = 0; i < CPUSET_WORDS; i++) {
2904 		dst->cpub[i] ^= src->cpub[i];
2905 	}
2906 }
2907 
2908 void
2909 cpuset_and(cpuset_t *dst, cpuset_t *src)
2910 {
2911 	for (int i = 0; i < CPUSET_WORDS; i++) {
2912 		dst->cpub[i] &= src->cpub[i];
2913 	}
2914 }
2915 
2916 void
2917 cpuset_zero(cpuset_t *dst)
2918 {
2919 	for (int i = 0; i < CPUSET_WORDS; i++) {
2920 		dst->cpub[i] = 0;
2921 	}
2922 }
2923 
2924 
2925 /*
2926  * Unbind threads bound to specified CPU.
2927  *
2928  * If `unbind_all_threads' is true, unbind all user threads bound to a given
2929  * CPU. Otherwise unbind all soft-bound user threads.
2930  */
2931 int
2932 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2933 {
2934 	processorid_t obind;
2935 	kthread_t *tp;
2936 	int ret = 0;
2937 	proc_t *pp;
2938 	int err, berr = 0;
2939 
2940 	ASSERT(MUTEX_HELD(&cpu_lock));
2941 
2942 	mutex_enter(&pidlock);
2943 	for (pp = practive; pp != NULL; pp = pp->p_next) {
2944 		mutex_enter(&pp->p_lock);
2945 		tp = pp->p_tlist;
2946 		/*
2947 		 * Skip zombies, kernel processes, and processes in
2948 		 * other zones, if called from a non-global zone.
2949 		 */
2950 		if (tp == NULL || (pp->p_flag & SSYS) ||
2951 		    !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2952 			mutex_exit(&pp->p_lock);
2953 			continue;
2954 		}
2955 		do {
2956 			if (tp->t_bind_cpu != cpu)
2957 				continue;
2958 			/*
2959 			 * Skip threads with hard binding when
2960 			 * `unbind_all_threads' is not specified.
2961 			 */
2962 			if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2963 				continue;
2964 			err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2965 			if (ret == 0)
2966 				ret = err;
2967 		} while ((tp = tp->t_forw) != pp->p_tlist);
2968 		mutex_exit(&pp->p_lock);
2969 	}
2970 	mutex_exit(&pidlock);
2971 	if (ret == 0)
2972 		ret = berr;
2973 	return (ret);
2974 }
2975 
2976 
2977 /*
2978  * Destroy all remaining bound threads on a cpu.
2979  */
2980 void
2981 cpu_destroy_bound_threads(cpu_t *cp)
2982 {
2983 	extern id_t syscid;
2984 	register kthread_id_t	t, tlist, tnext;
2985 
2986 	/*
2987 	 * Destroy all remaining bound threads on the cpu.  This
2988 	 * should include both the interrupt threads and the idle thread.
2989 	 * This requires some care, since we need to traverse the
2990 	 * thread list with the pidlock mutex locked, but thread_free
2991 	 * also locks the pidlock mutex.  So, we collect the threads
2992 	 * we're going to reap in a list headed by "tlist", then we
2993 	 * unlock the pidlock mutex and traverse the tlist list,
2994 	 * doing thread_free's on the thread's.	 Simple, n'est pas?
2995 	 * Also, this depends on thread_free not mucking with the
2996 	 * t_next and t_prev links of the thread.
2997 	 */
2998 
2999 	if ((t = curthread) != NULL) {
3000 
3001 		tlist = NULL;
3002 		mutex_enter(&pidlock);
3003 		do {
3004 			tnext = t->t_next;
3005 			if (t->t_bound_cpu == cp) {
3006 
3007 				/*
3008 				 * We've found a bound thread, carefully unlink
3009 				 * it out of the thread list, and add it to
3010 				 * our "tlist".	 We "know" we don't have to
3011 				 * worry about unlinking curthread (the thread
3012 				 * that is executing this code).
3013 				 */
3014 				t->t_next->t_prev = t->t_prev;
3015 				t->t_prev->t_next = t->t_next;
3016 				t->t_next = tlist;
3017 				tlist = t;
3018 				ASSERT(t->t_cid == syscid);
3019 				/* wake up anyone blocked in thread_join */
3020 				cv_broadcast(&t->t_joincv);
3021 				/*
3022 				 * t_lwp set by interrupt threads and not
3023 				 * cleared.
3024 				 */
3025 				t->t_lwp = NULL;
3026 				/*
3027 				 * Pause and idle threads always have
3028 				 * t_state set to TS_ONPROC.
3029 				 */
3030 				t->t_state = TS_FREE;
3031 				t->t_prev = NULL;	/* Just in case */
3032 			}
3033 
3034 		} while ((t = tnext) != curthread);
3035 
3036 		mutex_exit(&pidlock);
3037 
3038 		mutex_sync();
3039 		for (t = tlist; t != NULL; t = tnext) {
3040 			tnext = t->t_next;
3041 			thread_free(t);
3042 		}
3043 	}
3044 }
3045 
3046 /*
3047  * Update the cpu_supp_freqs of this cpu. This information is returned
3048  * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
3049  * maintain the kstat data size.
3050  */
3051 void
3052 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
3053 {
3054 	char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
3055 	const char *lfreqs = clkstr;
3056 	boolean_t kstat_exists = B_FALSE;
3057 	kstat_t *ksp;
3058 	size_t len;
3059 
3060 	/*
3061 	 * A NULL pointer means we only support one speed.
3062 	 */
3063 	if (freqs == NULL)
3064 		(void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
3065 		    cp->cpu_curr_clock);
3066 	else
3067 		lfreqs = freqs;
3068 
3069 	/*
3070 	 * Make sure the frequency doesn't change while a snapshot is
3071 	 * going on. Of course, we only need to worry about this if
3072 	 * the kstat exists.
3073 	 */
3074 	if ((ksp = cp->cpu_info_kstat) != NULL) {
3075 		mutex_enter(ksp->ks_lock);
3076 		kstat_exists = B_TRUE;
3077 	}
3078 
3079 	/*
3080 	 * Free any previously allocated string and if the kstat
3081 	 * already exists, then update its data size.
3082 	 */
3083 	if (cp->cpu_supp_freqs != NULL) {
3084 		len = strlen(cp->cpu_supp_freqs) + 1;
3085 		kmem_free(cp->cpu_supp_freqs, len);
3086 		if (kstat_exists)
3087 			ksp->ks_data_size -= len;
3088 	}
3089 
3090 	/*
3091 	 * Allocate the new string and set the pointer.
3092 	 */
3093 	len = strlen(lfreqs) + 1;
3094 	cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
3095 	(void) strcpy(cp->cpu_supp_freqs, lfreqs);
3096 
3097 	/*
3098 	 * If the kstat already exists then update the data size and
3099 	 * free the lock.
3100 	 */
3101 	if (kstat_exists) {
3102 		ksp->ks_data_size += len;
3103 		mutex_exit(ksp->ks_lock);
3104 	}
3105 }
3106 
3107 /*
3108  * Indicate the current CPU's clock freqency (in Hz).
3109  * The calling context must be such that CPU references are safe.
3110  */
3111 void
3112 cpu_set_curr_clock(uint64_t new_clk)
3113 {
3114 	uint64_t old_clk;
3115 
3116 	old_clk = CPU->cpu_curr_clock;
3117 	CPU->cpu_curr_clock = new_clk;
3118 
3119 	/*
3120 	 * The cpu-change-speed DTrace probe exports the frequency in Hz
3121 	 */
3122 	DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3123 	    uint64_t, old_clk, uint64_t, new_clk);
3124 }
3125 
3126 /*
3127  * processor_info(2) and p_online(2) status support functions
3128  *   The constants returned by the cpu_get_state() and cpu_get_state_str() are
3129  *   for use in communicating processor state information to userland.  Kernel
3130  *   subsystems should only be using the cpu_flags value directly.  Subsystems
3131  *   modifying cpu_flags should record the state change via a call to the
3132  *   cpu_set_state().
3133  */
3134 
3135 /*
3136  * Update the pi_state of this CPU.  This function provides the CPU status for
3137  * the information returned by processor_info(2).
3138  */
3139 void
3140 cpu_set_state(cpu_t *cpu)
3141 {
3142 	ASSERT(MUTEX_HELD(&cpu_lock));
3143 	cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3144 	cpu->cpu_state_begin = gethrestime_sec();
3145 	pool_cpu_mod = gethrtime();
3146 }
3147 
3148 /*
3149  * Return offline/online/other status for the indicated CPU.  Use only for
3150  * communication with user applications; cpu_flags provides the in-kernel
3151  * interface.
3152  */
3153 int
3154 cpu_get_state(cpu_t *cpu)
3155 {
3156 	ASSERT(MUTEX_HELD(&cpu_lock));
3157 	if (cpu->cpu_flags & CPU_POWEROFF)
3158 		return (P_POWEROFF);
3159 	else if (cpu->cpu_flags & CPU_FAULTED)
3160 		return (P_FAULTED);
3161 	else if (cpu->cpu_flags & CPU_SPARE)
3162 		return (P_SPARE);
3163 	else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3164 		return (P_OFFLINE);
3165 	else if (cpu->cpu_flags & CPU_ENABLE)
3166 		return (P_ONLINE);
3167 	else
3168 		return (P_NOINTR);
3169 }
3170 
3171 /*
3172  * Return processor_info(2) state as a string.
3173  */
3174 const char *
3175 cpu_get_state_str(cpu_t *cpu)
3176 {
3177 	const char *string;
3178 
3179 	switch (cpu_get_state(cpu)) {
3180 	case P_ONLINE:
3181 		string = PS_ONLINE;
3182 		break;
3183 	case P_POWEROFF:
3184 		string = PS_POWEROFF;
3185 		break;
3186 	case P_NOINTR:
3187 		string = PS_NOINTR;
3188 		break;
3189 	case P_SPARE:
3190 		string = PS_SPARE;
3191 		break;
3192 	case P_FAULTED:
3193 		string = PS_FAULTED;
3194 		break;
3195 	case P_OFFLINE:
3196 		string = PS_OFFLINE;
3197 		break;
3198 	default:
3199 		string = "unknown";
3200 		break;
3201 	}
3202 	return (string);
3203 }
3204 
3205 /*
3206  * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3207  * kstats, respectively.  This is done when a CPU is initialized or placed
3208  * online via p_online(2).
3209  */
3210 static void
3211 cpu_stats_kstat_create(cpu_t *cp)
3212 {
3213 	int	instance = cp->cpu_id;
3214 	char	*module = "cpu";
3215 	char	*class = "misc";
3216 	kstat_t	*ksp;
3217 	zoneid_t zoneid;
3218 
3219 	ASSERT(MUTEX_HELD(&cpu_lock));
3220 
3221 	if (pool_pset_enabled())
3222 		zoneid = GLOBAL_ZONEID;
3223 	else
3224 		zoneid = ALL_ZONES;
3225 	/*
3226 	 * Create named kstats
3227 	 */
3228 #define	CPU_STATS_KS_CREATE(name, tsize, update_func)                    \
3229 	ksp = kstat_create_zone(module, instance, (name), class,         \
3230 	    KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0,       \
3231 	    zoneid);                                                     \
3232 	if (ksp != NULL) {                                               \
3233 		ksp->ks_private = cp;                                    \
3234 		ksp->ks_update = (update_func);                          \
3235 		kstat_install(ksp);                                      \
3236 	} else                                                           \
3237 		cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3238 		    module, instance, (name));
3239 
3240 	CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3241 	    cpu_sys_stats_ks_update);
3242 	CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3243 	    cpu_vm_stats_ks_update);
3244 
3245 	/*
3246 	 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3247 	 */
3248 	ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3249 	    "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3250 	if (ksp != NULL) {
3251 		ksp->ks_update = cpu_stat_ks_update;
3252 		ksp->ks_private = cp;
3253 		kstat_install(ksp);
3254 	}
3255 }
3256 
3257 static void
3258 cpu_stats_kstat_destroy(cpu_t *cp)
3259 {
3260 	char ks_name[KSTAT_STRLEN];
3261 
3262 	(void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3263 	kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3264 
3265 	kstat_delete_byname("cpu", cp->cpu_id, "sys");
3266 	kstat_delete_byname("cpu", cp->cpu_id, "vm");
3267 }
3268 
3269 static int
3270 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3271 {
3272 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3273 	struct cpu_sys_stats_ks_data *csskd;
3274 	cpu_sys_stats_t *css;
3275 	hrtime_t msnsecs[NCMSTATES];
3276 	int	i;
3277 
3278 	if (rw == KSTAT_WRITE)
3279 		return (EACCES);
3280 
3281 	csskd = ksp->ks_data;
3282 	css = &cp->cpu_stats.sys;
3283 
3284 	/*
3285 	 * Read CPU mstate, but compare with the last values we
3286 	 * received to make sure that the returned kstats never
3287 	 * decrease.
3288 	 */
3289 
3290 	get_cpu_mstate(cp, msnsecs);
3291 	if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3292 		msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3293 	if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3294 		msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3295 	if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3296 		msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3297 
3298 	bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3299 	    sizeof (cpu_sys_stats_ks_data_template));
3300 
3301 	csskd->cpu_ticks_wait.value.ui64 = 0;
3302 	csskd->wait_ticks_io.value.ui64 = 0;
3303 
3304 	csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3305 	csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3306 	csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3307 	csskd->cpu_ticks_idle.value.ui64 =
3308 	    NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3309 	csskd->cpu_ticks_user.value.ui64 =
3310 	    NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3311 	csskd->cpu_ticks_kernel.value.ui64 =
3312 	    NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3313 	csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3314 	csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3315 	csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3316 	csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3317 	csskd->bread.value.ui64 = css->bread;
3318 	csskd->bwrite.value.ui64 = css->bwrite;
3319 	csskd->lread.value.ui64 = css->lread;
3320 	csskd->lwrite.value.ui64 = css->lwrite;
3321 	csskd->phread.value.ui64 = css->phread;
3322 	csskd->phwrite.value.ui64 = css->phwrite;
3323 	csskd->pswitch.value.ui64 = css->pswitch;
3324 	csskd->trap.value.ui64 = css->trap;
3325 	csskd->intr.value.ui64 = 0;
3326 	for (i = 0; i < PIL_MAX; i++)
3327 		csskd->intr.value.ui64 += css->intr[i];
3328 	csskd->syscall.value.ui64 = css->syscall;
3329 	csskd->sysread.value.ui64 = css->sysread;
3330 	csskd->syswrite.value.ui64 = css->syswrite;
3331 	csskd->sysfork.value.ui64 = css->sysfork;
3332 	csskd->sysvfork.value.ui64 = css->sysvfork;
3333 	csskd->sysexec.value.ui64 = css->sysexec;
3334 	csskd->readch.value.ui64 = css->readch;
3335 	csskd->writech.value.ui64 = css->writech;
3336 	csskd->rcvint.value.ui64 = css->rcvint;
3337 	csskd->xmtint.value.ui64 = css->xmtint;
3338 	csskd->mdmint.value.ui64 = css->mdmint;
3339 	csskd->rawch.value.ui64 = css->rawch;
3340 	csskd->canch.value.ui64 = css->canch;
3341 	csskd->outch.value.ui64 = css->outch;
3342 	csskd->msg.value.ui64 = css->msg;
3343 	csskd->sema.value.ui64 = css->sema;
3344 	csskd->namei.value.ui64 = css->namei;
3345 	csskd->ufsiget.value.ui64 = css->ufsiget;
3346 	csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3347 	csskd->ufsipage.value.ui64 = css->ufsipage;
3348 	csskd->ufsinopage.value.ui64 = css->ufsinopage;
3349 	csskd->procovf.value.ui64 = css->procovf;
3350 	csskd->intrthread.value.ui64 = 0;
3351 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3352 		csskd->intrthread.value.ui64 += css->intr[i];
3353 	csskd->intrblk.value.ui64 = css->intrblk;
3354 	csskd->intrunpin.value.ui64 = css->intrunpin;
3355 	csskd->idlethread.value.ui64 = css->idlethread;
3356 	csskd->inv_swtch.value.ui64 = css->inv_swtch;
3357 	csskd->nthreads.value.ui64 = css->nthreads;
3358 	csskd->cpumigrate.value.ui64 = css->cpumigrate;
3359 	csskd->xcalls.value.ui64 = css->xcalls;
3360 	csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3361 	csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3362 	csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3363 	csskd->modload.value.ui64 = css->modload;
3364 	csskd->modunload.value.ui64 = css->modunload;
3365 	csskd->bawrite.value.ui64 = css->bawrite;
3366 	csskd->iowait.value.ui64 = css->iowait;
3367 
3368 	return (0);
3369 }
3370 
3371 static int
3372 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3373 {
3374 	cpu_t *cp = (cpu_t *)ksp->ks_private;
3375 	struct cpu_vm_stats_ks_data *cvskd;
3376 	cpu_vm_stats_t *cvs;
3377 
3378 	if (rw == KSTAT_WRITE)
3379 		return (EACCES);
3380 
3381 	cvs = &cp->cpu_stats.vm;
3382 	cvskd = ksp->ks_data;
3383 
3384 	bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3385 	    sizeof (cpu_vm_stats_ks_data_template));
3386 	cvskd->pgrec.value.ui64 = cvs->pgrec;
3387 	cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3388 	cvskd->pgin.value.ui64 = cvs->pgin;
3389 	cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3390 	cvskd->pgout.value.ui64 = cvs->pgout;
3391 	cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3392 	cvskd->swapin.value.ui64 = cvs->swapin;
3393 	cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3394 	cvskd->swapout.value.ui64 = cvs->swapout;
3395 	cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3396 	cvskd->zfod.value.ui64 = cvs->zfod;
3397 	cvskd->dfree.value.ui64 = cvs->dfree;
3398 	cvskd->scan.value.ui64 = cvs->scan;
3399 	cvskd->rev.value.ui64 = cvs->rev;
3400 	cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3401 	cvskd->as_fault.value.ui64 = cvs->as_fault;
3402 	cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3403 	cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3404 	cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3405 	cvskd->softlock.value.ui64 = cvs->softlock;
3406 	cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3407 	cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3408 	cvskd->execpgin.value.ui64 = cvs->execpgin;
3409 	cvskd->execpgout.value.ui64 = cvs->execpgout;
3410 	cvskd->execfree.value.ui64 = cvs->execfree;
3411 	cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3412 	cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3413 	cvskd->anonfree.value.ui64 = cvs->anonfree;
3414 	cvskd->fspgin.value.ui64 = cvs->fspgin;
3415 	cvskd->fspgout.value.ui64 = cvs->fspgout;
3416 	cvskd->fsfree.value.ui64 = cvs->fsfree;
3417 
3418 	return (0);
3419 }
3420 
3421 static int
3422 cpu_stat_ks_update(kstat_t *ksp, int rw)
3423 {
3424 	cpu_stat_t *cso;
3425 	cpu_t *cp;
3426 	int i;
3427 	hrtime_t msnsecs[NCMSTATES];
3428 
3429 	cso = (cpu_stat_t *)ksp->ks_data;
3430 	cp = (cpu_t *)ksp->ks_private;
3431 
3432 	if (rw == KSTAT_WRITE)
3433 		return (EACCES);
3434 
3435 	/*
3436 	 * Read CPU mstate, but compare with the last values we
3437 	 * received to make sure that the returned kstats never
3438 	 * decrease.
3439 	 */
3440 
3441 	get_cpu_mstate(cp, msnsecs);
3442 	msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3443 	msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3444 	msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3445 	if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3446 		cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3447 	if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3448 		cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3449 	if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3450 		cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3451 	cso->cpu_sysinfo.cpu[CPU_WAIT]	= 0;
3452 	cso->cpu_sysinfo.wait[W_IO]	= 0;
3453 	cso->cpu_sysinfo.wait[W_SWAP]	= 0;
3454 	cso->cpu_sysinfo.wait[W_PIO]	= 0;
3455 	cso->cpu_sysinfo.bread		= CPU_STATS(cp, sys.bread);
3456 	cso->cpu_sysinfo.bwrite		= CPU_STATS(cp, sys.bwrite);
3457 	cso->cpu_sysinfo.lread		= CPU_STATS(cp, sys.lread);
3458 	cso->cpu_sysinfo.lwrite		= CPU_STATS(cp, sys.lwrite);
3459 	cso->cpu_sysinfo.phread		= CPU_STATS(cp, sys.phread);
3460 	cso->cpu_sysinfo.phwrite	= CPU_STATS(cp, sys.phwrite);
3461 	cso->cpu_sysinfo.pswitch	= CPU_STATS(cp, sys.pswitch);
3462 	cso->cpu_sysinfo.trap		= CPU_STATS(cp, sys.trap);
3463 	cso->cpu_sysinfo.intr		= 0;
3464 	for (i = 0; i < PIL_MAX; i++)
3465 		cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3466 	cso->cpu_sysinfo.syscall	= CPU_STATS(cp, sys.syscall);
3467 	cso->cpu_sysinfo.sysread	= CPU_STATS(cp, sys.sysread);
3468 	cso->cpu_sysinfo.syswrite	= CPU_STATS(cp, sys.syswrite);
3469 	cso->cpu_sysinfo.sysfork	= CPU_STATS(cp, sys.sysfork);
3470 	cso->cpu_sysinfo.sysvfork	= CPU_STATS(cp, sys.sysvfork);
3471 	cso->cpu_sysinfo.sysexec	= CPU_STATS(cp, sys.sysexec);
3472 	cso->cpu_sysinfo.readch		= CPU_STATS(cp, sys.readch);
3473 	cso->cpu_sysinfo.writech	= CPU_STATS(cp, sys.writech);
3474 	cso->cpu_sysinfo.rcvint		= CPU_STATS(cp, sys.rcvint);
3475 	cso->cpu_sysinfo.xmtint		= CPU_STATS(cp, sys.xmtint);
3476 	cso->cpu_sysinfo.mdmint		= CPU_STATS(cp, sys.mdmint);
3477 	cso->cpu_sysinfo.rawch		= CPU_STATS(cp, sys.rawch);
3478 	cso->cpu_sysinfo.canch		= CPU_STATS(cp, sys.canch);
3479 	cso->cpu_sysinfo.outch		= CPU_STATS(cp, sys.outch);
3480 	cso->cpu_sysinfo.msg		= CPU_STATS(cp, sys.msg);
3481 	cso->cpu_sysinfo.sema		= CPU_STATS(cp, sys.sema);
3482 	cso->cpu_sysinfo.namei		= CPU_STATS(cp, sys.namei);
3483 	cso->cpu_sysinfo.ufsiget	= CPU_STATS(cp, sys.ufsiget);
3484 	cso->cpu_sysinfo.ufsdirblk	= CPU_STATS(cp, sys.ufsdirblk);
3485 	cso->cpu_sysinfo.ufsipage	= CPU_STATS(cp, sys.ufsipage);
3486 	cso->cpu_sysinfo.ufsinopage	= CPU_STATS(cp, sys.ufsinopage);
3487 	cso->cpu_sysinfo.inodeovf	= 0;
3488 	cso->cpu_sysinfo.fileovf	= 0;
3489 	cso->cpu_sysinfo.procovf	= CPU_STATS(cp, sys.procovf);
3490 	cso->cpu_sysinfo.intrthread	= 0;
3491 	for (i = 0; i < LOCK_LEVEL - 1; i++)
3492 		cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3493 	cso->cpu_sysinfo.intrblk	= CPU_STATS(cp, sys.intrblk);
3494 	cso->cpu_sysinfo.idlethread	= CPU_STATS(cp, sys.idlethread);
3495 	cso->cpu_sysinfo.inv_swtch	= CPU_STATS(cp, sys.inv_swtch);
3496 	cso->cpu_sysinfo.nthreads	= CPU_STATS(cp, sys.nthreads);
3497 	cso->cpu_sysinfo.cpumigrate	= CPU_STATS(cp, sys.cpumigrate);
3498 	cso->cpu_sysinfo.xcalls		= CPU_STATS(cp, sys.xcalls);
3499 	cso->cpu_sysinfo.mutex_adenters	= CPU_STATS(cp, sys.mutex_adenters);
3500 	cso->cpu_sysinfo.rw_rdfails	= CPU_STATS(cp, sys.rw_rdfails);
3501 	cso->cpu_sysinfo.rw_wrfails	= CPU_STATS(cp, sys.rw_wrfails);
3502 	cso->cpu_sysinfo.modload	= CPU_STATS(cp, sys.modload);
3503 	cso->cpu_sysinfo.modunload	= CPU_STATS(cp, sys.modunload);
3504 	cso->cpu_sysinfo.bawrite	= CPU_STATS(cp, sys.bawrite);
3505 	cso->cpu_sysinfo.rw_enters	= 0;
3506 	cso->cpu_sysinfo.win_uo_cnt	= 0;
3507 	cso->cpu_sysinfo.win_uu_cnt	= 0;
3508 	cso->cpu_sysinfo.win_so_cnt	= 0;
3509 	cso->cpu_sysinfo.win_su_cnt	= 0;
3510 	cso->cpu_sysinfo.win_suo_cnt	= 0;
3511 
3512 	cso->cpu_syswait.iowait		= CPU_STATS(cp, sys.iowait);
3513 	cso->cpu_syswait.swap		= 0;
3514 	cso->cpu_syswait.physio		= 0;
3515 
3516 	cso->cpu_vminfo.pgrec		= CPU_STATS(cp, vm.pgrec);
3517 	cso->cpu_vminfo.pgfrec		= CPU_STATS(cp, vm.pgfrec);
3518 	cso->cpu_vminfo.pgin		= CPU_STATS(cp, vm.pgin);
3519 	cso->cpu_vminfo.pgpgin		= CPU_STATS(cp, vm.pgpgin);
3520 	cso->cpu_vminfo.pgout		= CPU_STATS(cp, vm.pgout);
3521 	cso->cpu_vminfo.pgpgout		= CPU_STATS(cp, vm.pgpgout);
3522 	cso->cpu_vminfo.swapin		= CPU_STATS(cp, vm.swapin);
3523 	cso->cpu_vminfo.pgswapin	= CPU_STATS(cp, vm.pgswapin);
3524 	cso->cpu_vminfo.swapout		= CPU_STATS(cp, vm.swapout);
3525 	cso->cpu_vminfo.pgswapout	= CPU_STATS(cp, vm.pgswapout);
3526 	cso->cpu_vminfo.zfod		= CPU_STATS(cp, vm.zfod);
3527 	cso->cpu_vminfo.dfree		= CPU_STATS(cp, vm.dfree);
3528 	cso->cpu_vminfo.scan		= CPU_STATS(cp, vm.scan);
3529 	cso->cpu_vminfo.rev		= CPU_STATS(cp, vm.rev);
3530 	cso->cpu_vminfo.hat_fault	= CPU_STATS(cp, vm.hat_fault);
3531 	cso->cpu_vminfo.as_fault	= CPU_STATS(cp, vm.as_fault);
3532 	cso->cpu_vminfo.maj_fault	= CPU_STATS(cp, vm.maj_fault);
3533 	cso->cpu_vminfo.cow_fault	= CPU_STATS(cp, vm.cow_fault);
3534 	cso->cpu_vminfo.prot_fault	= CPU_STATS(cp, vm.prot_fault);
3535 	cso->cpu_vminfo.softlock	= CPU_STATS(cp, vm.softlock);
3536 	cso->cpu_vminfo.kernel_asflt	= CPU_STATS(cp, vm.kernel_asflt);
3537 	cso->cpu_vminfo.pgrrun		= CPU_STATS(cp, vm.pgrrun);
3538 	cso->cpu_vminfo.execpgin	= CPU_STATS(cp, vm.execpgin);
3539 	cso->cpu_vminfo.execpgout	= CPU_STATS(cp, vm.execpgout);
3540 	cso->cpu_vminfo.execfree	= CPU_STATS(cp, vm.execfree);
3541 	cso->cpu_vminfo.anonpgin	= CPU_STATS(cp, vm.anonpgin);
3542 	cso->cpu_vminfo.anonpgout	= CPU_STATS(cp, vm.anonpgout);
3543 	cso->cpu_vminfo.anonfree	= CPU_STATS(cp, vm.anonfree);
3544 	cso->cpu_vminfo.fspgin		= CPU_STATS(cp, vm.fspgin);
3545 	cso->cpu_vminfo.fspgout		= CPU_STATS(cp, vm.fspgout);
3546 	cso->cpu_vminfo.fsfree		= CPU_STATS(cp, vm.fsfree);
3547 
3548 	return (0);
3549 }
3550