xref: /illumos-gate/usr/src/uts/common/os/condvar.c (revision 35a5a358)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/thread.h>
28 #include <sys/proc.h>
29 #include <sys/debug.h>
30 #include <sys/cmn_err.h>
31 #include <sys/systm.h>
32 #include <sys/sobject.h>
33 #include <sys/sleepq.h>
34 #include <sys/cpuvar.h>
35 #include <sys/condvar.h>
36 #include <sys/condvar_impl.h>
37 #include <sys/schedctl.h>
38 #include <sys/procfs.h>
39 #include <sys/sdt.h>
40 #include <sys/callo.h>
41 
42 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int);
43 
44 /*
45  * CV_MAX_WAITERS is the maximum number of waiters we track; once
46  * the number becomes higher than that, we look at the sleepq to
47  * see whether there are *really* any waiters.
48  */
49 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
50 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
51 
52 /*
53  * Threads don't "own" condition variables.
54  */
55 /* ARGSUSED */
56 static kthread_t *
57 cv_owner(void *cvp)
58 {
59 	return (NULL);
60 }
61 
62 /*
63  * Unsleep a thread that's blocked on a condition variable.
64  */
65 static void
66 cv_unsleep(kthread_t *t)
67 {
68 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
69 	sleepq_head_t *sqh = SQHASH(cvp);
70 
71 	ASSERT(THREAD_LOCK_HELD(t));
72 
73 	if (cvp == NULL)
74 		panic("cv_unsleep: thread %p not on sleepq %p",
75 		    (void *)t, (void *)sqh);
76 	DTRACE_SCHED1(wakeup, kthread_t *, t);
77 	sleepq_unsleep(t);
78 	if (cvp->cv_waiters != CV_MAX_WAITERS)
79 		cvp->cv_waiters--;
80 	disp_lock_exit_high(&sqh->sq_lock);
81 	CL_SETRUN(t);
82 }
83 
84 /*
85  * Change the priority of a thread that's blocked on a condition variable.
86  */
87 static void
88 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
89 {
90 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
91 	sleepq_t *sqp = t->t_sleepq;
92 
93 	ASSERT(THREAD_LOCK_HELD(t));
94 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
95 
96 	if (cvp == NULL)
97 		panic("cv_change_pri: %p not on sleep queue", (void *)t);
98 	sleepq_dequeue(t);
99 	*t_prip = pri;
100 	sleepq_insert(sqp, t);
101 }
102 
103 /*
104  * The sobj_ops vector exports a set of functions needed when a thread
105  * is asleep on a synchronization object of this type.
106  */
107 static sobj_ops_t cv_sobj_ops = {
108 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
109 };
110 
111 /* ARGSUSED */
112 void
113 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
114 {
115 	((condvar_impl_t *)cvp)->cv_waiters = 0;
116 }
117 
118 /*
119  * cv_destroy is not currently needed, but is part of the DDI.
120  * This is in case cv_init ever needs to allocate something for a cv.
121  */
122 /* ARGSUSED */
123 void
124 cv_destroy(kcondvar_t *cvp)
125 {
126 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
127 }
128 
129 /*
130  * The cv_block() function blocks a thread on a condition variable
131  * by putting it in a hashed sleep queue associated with the
132  * synchronization object.
133  *
134  * Threads are taken off the hashed sleep queues via calls to
135  * cv_signal(), cv_broadcast(), or cv_unsleep().
136  */
137 static void
138 cv_block(condvar_impl_t *cvp)
139 {
140 	kthread_t *t = curthread;
141 	klwp_t *lwp = ttolwp(t);
142 	sleepq_head_t *sqh;
143 
144 	ASSERT(THREAD_LOCK_HELD(t));
145 	ASSERT(t != CPU->cpu_idle_thread);
146 	ASSERT(CPU_ON_INTR(CPU) == 0);
147 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
148 	ASSERT(t->t_state == TS_ONPROC);
149 
150 	t->t_schedflag &= ~TS_SIGNALLED;
151 	CL_SLEEP(t);			/* assign kernel priority */
152 	t->t_wchan = (caddr_t)cvp;
153 	t->t_sobj_ops = &cv_sobj_ops;
154 	DTRACE_SCHED(sleep);
155 
156 	/*
157 	 * The check for t_intr is to avoid doing the
158 	 * account for an interrupt thread on the still-pinned
159 	 * lwp's statistics.
160 	 */
161 	if (lwp != NULL && t->t_intr == NULL) {
162 		lwp->lwp_ru.nvcsw++;
163 		(void) new_mstate(t, LMS_SLEEP);
164 	}
165 
166 	sqh = SQHASH(cvp);
167 	disp_lock_enter_high(&sqh->sq_lock);
168 	if (cvp->cv_waiters < CV_MAX_WAITERS)
169 		cvp->cv_waiters++;
170 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
171 	THREAD_SLEEP(t, &sqh->sq_lock);
172 	sleepq_insert(&sqh->sq_queue, t);
173 	/*
174 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
175 	 * lock sqh->sq_lock. This lock is later released by the caller
176 	 * when it calls thread_unlock() on curthread.
177 	 */
178 }
179 
180 #define	cv_block_sig(t, cvp)	\
181 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
182 
183 /*
184  * Block on the indicated condition variable and release the
185  * associated kmutex while blocked.
186  */
187 void
188 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
189 {
190 	if (panicstr)
191 		return;
192 	ASSERT(!quiesce_active);
193 
194 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
195 	thread_lock(curthread);			/* lock the thread */
196 	cv_block((condvar_impl_t *)cvp);
197 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
198 	mutex_exit(mp);
199 	swtch();
200 	mutex_enter(mp);
201 }
202 
203 static void
204 cv_wakeup(void *arg)
205 {
206 	kthread_t *t = arg;
207 
208 	/*
209 	 * This mutex is acquired and released in order to make sure that
210 	 * the wakeup does not happen before the block itself happens.
211 	 */
212 	mutex_enter(&t->t_wait_mutex);
213 	mutex_exit(&t->t_wait_mutex);
214 	setrun(t);
215 }
216 
217 /*
218  * Same as cv_wait except the thread will unblock at 'tim'
219  * (an absolute time) if it hasn't already unblocked.
220  *
221  * Returns the amount of time left from the original 'tim' value
222  * when it was unblocked.
223  */
224 clock_t
225 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
226 {
227 	hrtime_t hrtim;
228 	clock_t now = ddi_get_lbolt();
229 
230 	if (tim <= now)
231 		return (-1);
232 
233 	hrtim = TICK_TO_NSEC(tim - now);
234 	return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0));
235 }
236 
237 /*
238  * Same as cv_timedwait() except that the third argument is a relative
239  * timeout value, as opposed to an absolute one. There is also a fourth
240  * argument that specifies how accurately the timeout must be implemented.
241  */
242 clock_t
243 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res)
244 {
245 	hrtime_t exp;
246 
247 	ASSERT(TIME_RES_VALID(res));
248 
249 	if (delta <= 0)
250 		return (-1);
251 
252 	if ((exp = TICK_TO_NSEC(delta)) < 0)
253 		exp = CY_INFINITY;
254 
255 	return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0));
256 }
257 
258 clock_t
259 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
260     hrtime_t res, int flag)
261 {
262 	kthread_t *t = curthread;
263 	callout_id_t id;
264 	clock_t timeleft;
265 	hrtime_t limit;
266 	int signalled;
267 
268 	if (panicstr)
269 		return (-1);
270 	ASSERT(!quiesce_active);
271 
272 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
273 	if (tim <= limit)
274 		return (-1);
275 	mutex_enter(&t->t_wait_mutex);
276 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
277 	    tim, res, flag);
278 	thread_lock(t);		/* lock the thread */
279 	cv_block((condvar_impl_t *)cvp);
280 	thread_unlock_nopreempt(t);
281 	mutex_exit(&t->t_wait_mutex);
282 	mutex_exit(mp);
283 	swtch();
284 	signalled = (t->t_schedflag & TS_SIGNALLED);
285 	/*
286 	 * Get the time left. untimeout() returns -1 if the timeout has
287 	 * occured or the time remaining.  If the time remaining is zero,
288 	 * the timeout has occured between when we were awoken and
289 	 * we called untimeout.  We will treat this as if the timeout
290 	 * has occured and set timeleft to -1.
291 	 */
292 	timeleft = untimeout_default(id, 0);
293 	mutex_enter(mp);
294 	if (timeleft <= 0) {
295 		timeleft = -1;
296 		if (signalled)	/* avoid consuming the cv_signal() */
297 			cv_signal(cvp);
298 	}
299 	return (timeleft);
300 }
301 
302 int
303 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
304 {
305 	kthread_t *t = curthread;
306 	proc_t *p = ttoproc(t);
307 	klwp_t *lwp = ttolwp(t);
308 	int cancel_pending;
309 	int rval = 1;
310 	int signalled = 0;
311 
312 	if (panicstr)
313 		return (rval);
314 	ASSERT(!quiesce_active);
315 
316 	/*
317 	 * Threads in system processes don't process signals.  This is
318 	 * true both for standard threads of system processes and for
319 	 * interrupt threads which have borrowed their pinned thread's LWP.
320 	 */
321 	if (lwp == NULL || (p->p_flag & SSYS)) {
322 		cv_wait(cvp, mp);
323 		return (rval);
324 	}
325 	ASSERT(t->t_intr == NULL);
326 
327 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
328 	cancel_pending = schedctl_cancel_pending();
329 	lwp->lwp_asleep = 1;
330 	lwp->lwp_sysabort = 0;
331 	thread_lock(t);
332 	cv_block_sig(t, (condvar_impl_t *)cvp);
333 	thread_unlock_nopreempt(t);
334 	mutex_exit(mp);
335 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
336 		setrun(t);
337 	/* ASSERT(no locks are held) */
338 	swtch();
339 	signalled = (t->t_schedflag & TS_SIGNALLED);
340 	t->t_flag &= ~T_WAKEABLE;
341 	mutex_enter(mp);
342 	if (ISSIG_PENDING(t, lwp, p)) {
343 		mutex_exit(mp);
344 		if (issig(FORREAL))
345 			rval = 0;
346 		mutex_enter(mp);
347 	}
348 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
349 		rval = 0;
350 	if (rval != 0 && cancel_pending) {
351 		schedctl_cancel_eintr();
352 		rval = 0;
353 	}
354 	lwp->lwp_asleep = 0;
355 	lwp->lwp_sysabort = 0;
356 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
357 		cv_signal(cvp);
358 	return (rval);
359 }
360 
361 static clock_t
362 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim,
363     hrtime_t res, int flag)
364 {
365 	kthread_t *t = curthread;
366 	proc_t *p = ttoproc(t);
367 	klwp_t *lwp = ttolwp(t);
368 	int cancel_pending = 0;
369 	callout_id_t id;
370 	clock_t rval = 1;
371 	hrtime_t limit;
372 	int signalled = 0;
373 
374 	if (panicstr)
375 		return (rval);
376 	ASSERT(!quiesce_active);
377 
378 	/*
379 	 * Threads in system processes don't process signals.  This is
380 	 * true both for standard threads of system processes and for
381 	 * interrupt threads which have borrowed their pinned thread's LWP.
382 	 */
383 	if (lwp == NULL || (p->p_flag & SSYS))
384 		return (cv_timedwait_hires(cvp, mp, tim, res, flag));
385 	ASSERT(t->t_intr == NULL);
386 
387 	/*
388 	 * If tim is less than or equal to current hrtime, then the timeout
389 	 * has already occured.  So just check to see if there is a signal
390 	 * pending.  If so return 0 indicating that there is a signal pending.
391 	 * Else return -1 indicating that the timeout occured. No need to
392 	 * wait on anything.
393 	 */
394 	limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0;
395 	if (tim <= limit) {
396 		lwp->lwp_asleep = 1;
397 		lwp->lwp_sysabort = 0;
398 		rval = -1;
399 		goto out;
400 	}
401 
402 	/*
403 	 * Set the timeout and wait.
404 	 */
405 	cancel_pending = schedctl_cancel_pending();
406 	mutex_enter(&t->t_wait_mutex);
407 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
408 	    tim, res, flag);
409 	lwp->lwp_asleep = 1;
410 	lwp->lwp_sysabort = 0;
411 	thread_lock(t);
412 	cv_block_sig(t, (condvar_impl_t *)cvp);
413 	thread_unlock_nopreempt(t);
414 	mutex_exit(&t->t_wait_mutex);
415 	mutex_exit(mp);
416 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
417 		setrun(t);
418 	/* ASSERT(no locks are held) */
419 	swtch();
420 	signalled = (t->t_schedflag & TS_SIGNALLED);
421 	t->t_flag &= ~T_WAKEABLE;
422 
423 	/*
424 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
425 	 * occured or the time remaining.  If the time remaining is zero,
426 	 * the timeout has occured between when we were awoken and
427 	 * we called untimeout.  We will treat this as if the timeout
428 	 * has occured and set rval to -1.
429 	 */
430 	rval = untimeout_default(id, 0);
431 	mutex_enter(mp);
432 	if (rval <= 0)
433 		rval = -1;
434 
435 	/*
436 	 * Check to see if a signal is pending.  If so, regardless of whether
437 	 * or not we were awoken due to the signal, the signal is now pending
438 	 * and a return of 0 has the highest priority.
439 	 */
440 out:
441 	if (ISSIG_PENDING(t, lwp, p)) {
442 		mutex_exit(mp);
443 		if (issig(FORREAL))
444 			rval = 0;
445 		mutex_enter(mp);
446 	}
447 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
448 		rval = 0;
449 	if (rval != 0 && cancel_pending) {
450 		schedctl_cancel_eintr();
451 		rval = 0;
452 	}
453 	lwp->lwp_asleep = 0;
454 	lwp->lwp_sysabort = 0;
455 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
456 		cv_signal(cvp);
457 	return (rval);
458 }
459 
460 /*
461  * Returns:
462  * 	Function result in order of precedence:
463  *		 0 if a signal was received
464  *		-1 if timeout occured
465  *		>0 if awakened via cv_signal() or cv_broadcast().
466  *		   (returns time remaining)
467  *
468  * cv_timedwait_sig() is now part of the DDI.
469  *
470  * This function is now just a wrapper for cv_timedwait_sig_hires().
471  */
472 clock_t
473 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
474 {
475 	hrtime_t hrtim;
476 
477 	hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt());
478 	return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0));
479 }
480 
481 /*
482  * Same as cv_timedwait_sig() except that the third argument is a relative
483  * timeout value, as opposed to an absolute one. There is also a fourth
484  * argument that specifies how accurately the timeout must be implemented.
485  */
486 clock_t
487 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta,
488     time_res_t res)
489 {
490 	hrtime_t exp;
491 
492 	ASSERT(TIME_RES_VALID(res));
493 
494 	if ((exp = TICK_TO_NSEC(delta)) < 0)
495 		exp = CY_INFINITY;
496 
497 	return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0));
498 }
499 
500 /*
501  * Like cv_wait_sig_swap but allows the caller to indicate (with a
502  * non-NULL sigret) that they will take care of signalling the cv
503  * after wakeup, if necessary.  This is a vile hack that should only
504  * be used when no other option is available; almost all callers
505  * should just use cv_wait_sig_swap (which takes care of the cv_signal
506  * stuff automatically) instead.
507  */
508 int
509 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
510 {
511 	kthread_t *t = curthread;
512 	proc_t *p = ttoproc(t);
513 	klwp_t *lwp = ttolwp(t);
514 	int cancel_pending;
515 	int rval = 1;
516 	int signalled = 0;
517 
518 	if (panicstr)
519 		return (rval);
520 
521 	/*
522 	 * Threads in system processes don't process signals.  This is
523 	 * true both for standard threads of system processes and for
524 	 * interrupt threads which have borrowed their pinned thread's LWP.
525 	 */
526 	if (lwp == NULL || (p->p_flag & SSYS)) {
527 		cv_wait(cvp, mp);
528 		return (rval);
529 	}
530 	ASSERT(t->t_intr == NULL);
531 
532 	cancel_pending = schedctl_cancel_pending();
533 	lwp->lwp_asleep = 1;
534 	lwp->lwp_sysabort = 0;
535 	thread_lock(t);
536 	t->t_kpri_req = 0;	/* don't need kernel priority */
537 	cv_block_sig(t, (condvar_impl_t *)cvp);
538 	/* I can be swapped now */
539 	curthread->t_schedflag &= ~TS_DONT_SWAP;
540 	thread_unlock_nopreempt(t);
541 	mutex_exit(mp);
542 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
543 		setrun(t);
544 	/* ASSERT(no locks are held) */
545 	swtch();
546 	signalled = (t->t_schedflag & TS_SIGNALLED);
547 	t->t_flag &= ~T_WAKEABLE;
548 	/* TS_DONT_SWAP set by disp() */
549 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
550 	mutex_enter(mp);
551 	if (ISSIG_PENDING(t, lwp, p)) {
552 		mutex_exit(mp);
553 		if (issig(FORREAL))
554 			rval = 0;
555 		mutex_enter(mp);
556 	}
557 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
558 		rval = 0;
559 	if (rval != 0 && cancel_pending) {
560 		schedctl_cancel_eintr();
561 		rval = 0;
562 	}
563 	lwp->lwp_asleep = 0;
564 	lwp->lwp_sysabort = 0;
565 	if (rval == 0) {
566 		if (sigret != NULL)
567 			*sigret = signalled;	/* just tell the caller */
568 		else if (signalled)
569 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
570 	}
571 	return (rval);
572 }
573 
574 /*
575  * Same as cv_wait_sig but the thread can be swapped out while waiting.
576  * This should only be used when we know we aren't holding any locks.
577  */
578 int
579 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
580 {
581 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
582 }
583 
584 void
585 cv_signal(kcondvar_t *cvp)
586 {
587 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
588 
589 	/* make sure the cv_waiters field looks sane */
590 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
591 	if (cp->cv_waiters > 0) {
592 		sleepq_head_t *sqh = SQHASH(cp);
593 		disp_lock_enter(&sqh->sq_lock);
594 		ASSERT(CPU_ON_INTR(CPU) == 0);
595 		if (cp->cv_waiters & CV_WAITERS_MASK) {
596 			kthread_t *t;
597 			cp->cv_waiters--;
598 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
599 			/*
600 			 * If cv_waiters is non-zero (and less than
601 			 * CV_MAX_WAITERS) there should be a thread
602 			 * in the queue.
603 			 */
604 			ASSERT(t != NULL);
605 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
606 			cp->cv_waiters = 0;
607 		}
608 		disp_lock_exit(&sqh->sq_lock);
609 	}
610 }
611 
612 void
613 cv_broadcast(kcondvar_t *cvp)
614 {
615 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
616 
617 	/* make sure the cv_waiters field looks sane */
618 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
619 	if (cp->cv_waiters > 0) {
620 		sleepq_head_t *sqh = SQHASH(cp);
621 		disp_lock_enter(&sqh->sq_lock);
622 		ASSERT(CPU_ON_INTR(CPU) == 0);
623 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
624 		cp->cv_waiters = 0;
625 		disp_lock_exit(&sqh->sq_lock);
626 	}
627 }
628 
629 /*
630  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
631  * for requests to stop, like cv_wait_sig() but without dealing with signals.
632  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
633  * If your code has to call this function then your code is the same.
634  */
635 void
636 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
637 {
638 	kthread_t *t = curthread;
639 	klwp_t *lwp = ttolwp(t);
640 	proc_t *p = ttoproc(t);
641 	callout_id_t id;
642 	clock_t tim;
643 
644 	if (panicstr)
645 		return;
646 
647 	/*
648 	 * Threads in system processes don't process signals.  This is
649 	 * true both for standard threads of system processes and for
650 	 * interrupt threads which have borrowed their pinned thread's LWP.
651 	 */
652 	if (lwp == NULL || (p->p_flag & SSYS)) {
653 		cv_wait(cvp, mp);
654 		return;
655 	}
656 	ASSERT(t->t_intr == NULL);
657 
658 	/*
659 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
660 	 */
661 	tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time);
662 	mutex_enter(&t->t_wait_mutex);
663 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
664 	    tim - ddi_get_lbolt());
665 	thread_lock(t);			/* lock the thread */
666 	cv_block((condvar_impl_t *)cvp);
667 	thread_unlock_nopreempt(t);
668 	mutex_exit(&t->t_wait_mutex);
669 	mutex_exit(mp);
670 	/* ASSERT(no locks are held); */
671 	swtch();
672 	(void) untimeout_default(id, 0);
673 
674 	/*
675 	 * Check for reasons to stop, if lwp_nostop is not true.
676 	 * See issig_forreal() for explanations of the various stops.
677 	 */
678 	mutex_enter(&p->p_lock);
679 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
680 		/*
681 		 * Hold the lwp here for watchpoint manipulation.
682 		 */
683 		if (t->t_proc_flag & TP_PAUSE) {
684 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
685 			continue;
686 		}
687 		/*
688 		 * System checkpoint.
689 		 */
690 		if (t->t_proc_flag & TP_CHKPT) {
691 			stop(PR_CHECKPOINT, 0);
692 			continue;
693 		}
694 		/*
695 		 * Honor fork1(), watchpoint activity (remapping a page),
696 		 * and lwp_suspend() requests.
697 		 */
698 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
699 		    (t->t_proc_flag & TP_HOLDLWP)) {
700 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
701 			continue;
702 		}
703 		/*
704 		 * Honor /proc requested stop.
705 		 */
706 		if (t->t_proc_flag & TP_PRSTOP) {
707 			stop(PR_REQUESTED, 0);
708 		}
709 		/*
710 		 * If some lwp in the process has already stopped
711 		 * showing PR_JOBCONTROL, stop in sympathy with it.
712 		 */
713 		if (p->p_stopsig && t != p->p_agenttp) {
714 			stop(PR_JOBCONTROL, p->p_stopsig);
715 			continue;
716 		}
717 		break;
718 	}
719 	mutex_exit(&p->p_lock);
720 	mutex_enter(mp);
721 }
722 
723 /*
724  * Like cv_timedwait_sig(), but takes an absolute hires future time
725  * rather than a future time in clock ticks.  Will not return showing
726  * that a timeout occurred until the future time is passed.
727  * If 'when' is a NULL pointer, no timeout will occur.
728  * Returns:
729  * 	Function result in order of precedence:
730  *		 0 if a signal was received
731  *		-1 if timeout occured
732  *	        >0 if awakened via cv_signal() or cv_broadcast()
733  *		   or by a spurious wakeup.
734  *		   (might return time remaining)
735  * As a special test, if someone abruptly resets the system time
736  * (but not through adjtime(2); drifting of the clock is allowed and
737  * expected [see timespectohz_adj()]), then we force a return of -1
738  * so the caller can return a premature timeout to the calling process
739  * so it can reevaluate the situation in light of the new system time.
740  * (The system clock has been reset if timecheck != timechanged.)
741  */
742 int
743 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
744 	timestruc_t *when, int timecheck)
745 {
746 	timestruc_t now;
747 	timestruc_t delta;
748 	hrtime_t interval;
749 	int rval;
750 
751 	if (when == NULL)
752 		return (cv_wait_sig_swap(cvp, mp));
753 
754 	gethrestime(&now);
755 	delta = *when;
756 	timespecsub(&delta, &now);
757 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
758 		/*
759 		 * We have already reached the absolute future time.
760 		 * Call cv_timedwait_sig() just to check for signals.
761 		 * We will return immediately with either 0 or -1.
762 		 */
763 		rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0);
764 	} else {
765 		if (timecheck == timechanged) {
766 			/*
767 			 * Make sure that the interval is atleast one tick.
768 			 * This is to prevent a user from flooding the system
769 			 * with very small, high resolution timers.
770 			 */
771 			interval = ts2hrt(&delta);
772 			if (interval < nsec_per_tick)
773 				interval = nsec_per_tick;
774 			rval = cv_timedwait_sig_hires(cvp, mp, interval, 1,
775 			    CALLOUT_FLAG_HRESTIME);
776 		} else {
777 			/*
778 			 * Someone reset the system time;
779 			 * just force an immediate timeout.
780 			 */
781 			rval = -1;
782 		}
783 		if (rval == -1 && timecheck == timechanged) {
784 			/*
785 			 * Even though cv_timedwait_sig() returned showing a
786 			 * timeout, the future time may not have passed yet.
787 			 * If not, change rval to indicate a normal wakeup.
788 			 */
789 			gethrestime(&now);
790 			delta = *when;
791 			timespecsub(&delta, &now);
792 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
793 			    delta.tv_nsec > 0))
794 				rval = 1;
795 		}
796 	}
797 	return (rval);
798 }
799