xref: /illumos-gate/usr/src/uts/common/io/wpi/wpi.c (revision 2590fb56)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac_provider.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t wldp_lenth, void *wldp_buf);
277 static void	wpi_m_propinfo(void *arg, const char *pr_name,
278     mac_prop_id_t wldp_pr_num, mac_prop_info_handle_t mph);
279 static void	wpi_destroy_locks(wpi_sc_t *sc);
280 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
281 static void	wpi_thread(wpi_sc_t *sc);
282 static int	wpi_fast_recover(wpi_sc_t *sc);
283 
284 /*
285  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
286  */
287 static const struct ieee80211_rateset wpi_rateset_11b =
288 	{ 4, { 2, 4, 11, 22 } };
289 
290 static const struct ieee80211_rateset wpi_rateset_11g =
291 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
292 
293 static const uint8_t wpi_ridx_to_signal[] = {
294 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
295 	/* R1-R4 (ral/ural is R4-R1) */
296 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
297 	/* CCK: device-dependent */
298 	10, 20, 55, 110
299 };
300 
301 /*
302  * For mfthread only
303  */
304 extern pri_t minclsyspri;
305 
306 /*
307  * Module Loading Data & Entry Points
308  */
309 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
310     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
311 
312 static struct modldrv wpi_modldrv = {
313 	&mod_driverops,
314 	"Intel(R) PRO/Wireless 3945ABG driver",
315 	&wpi_devops
316 };
317 
318 static struct modlinkage wpi_modlinkage = {
319 	MODREV_1,
320 	&wpi_modldrv,
321 	NULL
322 };
323 
324 int
_init(void)325 _init(void)
326 {
327 	int	status;
328 
329 	status = ddi_soft_state_init(&wpi_soft_state_p,
330 	    sizeof (wpi_sc_t), 1);
331 	if (status != DDI_SUCCESS)
332 		return (status);
333 
334 	mac_init_ops(&wpi_devops, "wpi");
335 	status = mod_install(&wpi_modlinkage);
336 	if (status != DDI_SUCCESS) {
337 		mac_fini_ops(&wpi_devops);
338 		ddi_soft_state_fini(&wpi_soft_state_p);
339 	}
340 
341 	return (status);
342 }
343 
344 int
_fini(void)345 _fini(void)
346 {
347 	int status;
348 
349 	status = mod_remove(&wpi_modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&wpi_devops);
352 		ddi_soft_state_fini(&wpi_soft_state_p);
353 	}
354 
355 	return (status);
356 }
357 
358 int
_info(struct modinfo * mip)359 _info(struct modinfo *mip)
360 {
361 	return (mod_info(&wpi_modlinkage, mip));
362 }
363 
364 /*
365  * Mac Call Back entries
366  */
367 mac_callbacks_t	wpi_m_callbacks = {
368 	MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
369 	wpi_m_stat,
370 	wpi_m_start,
371 	wpi_m_stop,
372 	wpi_m_promisc,
373 	wpi_m_multicst,
374 	wpi_m_unicst,
375 	wpi_m_tx,
376 	NULL,
377 	wpi_m_ioctl,
378 	NULL,
379 	NULL,
380 	NULL,
381 	wpi_m_setprop,
382 	wpi_m_getprop,
383 	wpi_m_propinfo
384 };
385 
386 #ifdef DEBUG
387 void
wpi_dbg(uint32_t flags,const char * fmt,...)388 wpi_dbg(uint32_t flags, const char *fmt, ...)
389 {
390 	va_list	ap;
391 
392 	if (flags & wpi_dbg_flags) {
393 		va_start(ap, fmt);
394 		vcmn_err(CE_NOTE, fmt, ap);
395 		va_end(ap);
396 	}
397 }
398 #endif
399 /*
400  * device operations
401  */
402 int
wpi_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)403 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
404 {
405 	wpi_sc_t		*sc;
406 	ddi_acc_handle_t	cfg_handle;
407 	caddr_t			cfg_base;
408 	ieee80211com_t	*ic;
409 	int			instance, err, i;
410 	char			strbuf[32];
411 	wifi_data_t		wd = { 0 };
412 	mac_register_t		*macp;
413 
414 	switch (cmd) {
415 	case DDI_ATTACH:
416 		break;
417 	case DDI_RESUME:
418 		sc = ddi_get_soft_state(wpi_soft_state_p,
419 		    ddi_get_instance(dip));
420 		ASSERT(sc != NULL);
421 
422 		mutex_enter(&sc->sc_glock);
423 		sc->sc_flags &= ~WPI_F_SUSPEND;
424 		mutex_exit(&sc->sc_glock);
425 
426 		if (sc->sc_flags & WPI_F_RUNNING)
427 			(void) wpi_init(sc);
428 
429 		mutex_enter(&sc->sc_glock);
430 		sc->sc_flags |= WPI_F_LAZY_RESUME;
431 		mutex_exit(&sc->sc_glock);
432 
433 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
434 		return (DDI_SUCCESS);
435 	default:
436 		err = DDI_FAILURE;
437 		goto attach_fail1;
438 	}
439 
440 	instance = ddi_get_instance(dip);
441 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
442 	if (err != DDI_SUCCESS) {
443 		cmn_err(CE_WARN,
444 		    "wpi_attach(): failed to allocate soft state\n");
445 		goto attach_fail1;
446 	}
447 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
448 	sc->sc_dip = dip;
449 
450 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
451 	    &wpi_reg_accattr, &cfg_handle);
452 	if (err != DDI_SUCCESS) {
453 		cmn_err(CE_WARN,
454 		    "wpi_attach(): failed to map config spaces regs\n");
455 		goto attach_fail2;
456 	}
457 	sc->sc_rev = ddi_get8(cfg_handle,
458 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
459 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
460 	sc->sc_clsz = ddi_get16(cfg_handle,
461 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
462 	ddi_regs_map_free(&cfg_handle);
463 	if (!sc->sc_clsz)
464 		sc->sc_clsz = 16;
465 	sc->sc_clsz = (sc->sc_clsz << 2);
466 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
467 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
468 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
469 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
470 	/*
471 	 * Map operating registers
472 	 */
473 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
474 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
475 	if (err != DDI_SUCCESS) {
476 		cmn_err(CE_WARN,
477 		    "wpi_attach(): failed to map device regs\n");
478 		goto attach_fail2;
479 	}
480 
481 	/*
482 	 * Allocate shared page.
483 	 */
484 	err = wpi_alloc_shared(sc);
485 	if (err != DDI_SUCCESS) {
486 		cmn_err(CE_WARN, "failed to allocate shared page\n");
487 		goto attach_fail3;
488 	}
489 
490 	/*
491 	 * Get the hw conf, including MAC address, then init all rings.
492 	 */
493 	wpi_read_eeprom(sc);
494 	err = wpi_ring_init(sc);
495 	if (err != DDI_SUCCESS) {
496 		cmn_err(CE_WARN, "wpi_attach(): "
497 		    "failed to allocate and initialize ring\n");
498 		goto attach_fail4;
499 	}
500 
501 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
502 
503 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
504 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
505 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
506 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
507 	err = wpi_alloc_fw_dma(sc);
508 	if (err != DDI_SUCCESS) {
509 		cmn_err(CE_WARN, "wpi_attach(): "
510 		    "failed to allocate firmware dma\n");
511 		goto attach_fail5;
512 	}
513 
514 	/*
515 	 * Initialize mutexs and condvars
516 	 */
517 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
518 	if (err != DDI_SUCCESS) {
519 		cmn_err(CE_WARN,
520 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
521 		goto attach_fail6;
522 	}
523 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
524 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
525 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
526 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
527 
528 	/*
529 	 * initialize the mfthread
530 	 */
531 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
532 	    (void *) sc->sc_iblk);
533 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
534 	sc->sc_mf_thread = NULL;
535 	sc->sc_mf_thread_switch = 0;
536 	/*
537 	 * Initialize the wifi part, which will be used by
538 	 * generic layer
539 	 */
540 	ic = &sc->sc_ic;
541 	ic->ic_phytype  = IEEE80211_T_OFDM;
542 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
543 	ic->ic_state    = IEEE80211_S_INIT;
544 	ic->ic_maxrssi  = 70; /* experimental number */
545 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
546 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
547 
548 	/*
549 	 * use software WEP and TKIP, hardware CCMP;
550 	 */
551 	ic->ic_caps |= IEEE80211_C_AES_CCM;
552 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
553 
554 	/* set supported .11b and .11g rates */
555 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
556 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
557 
558 	/* set supported .11b and .11g channels (1 through 14) */
559 	for (i = 1; i <= 14; i++) {
560 		ic->ic_sup_channels[i].ich_freq =
561 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
562 		ic->ic_sup_channels[i].ich_flags =
563 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
564 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
565 		    IEEE80211_CHAN_PASSIVE;
566 	}
567 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
568 	ic->ic_xmit = wpi_send;
569 	/*
570 	 * init Wifi layer
571 	 */
572 	ieee80211_attach(ic);
573 
574 	/* register WPA door */
575 	ieee80211_register_door(ic, ddi_driver_name(dip),
576 	    ddi_get_instance(dip));
577 
578 	/*
579 	 * Override 80211 default routines
580 	 */
581 	sc->sc_newstate = ic->ic_newstate;
582 	ic->ic_newstate = wpi_newstate;
583 	ic->ic_node_alloc = wpi_node_alloc;
584 	ic->ic_node_free = wpi_node_free;
585 	ic->ic_crypto.cs_key_set = wpi_key_set;
586 	ieee80211_media_init(ic);
587 	/*
588 	 * initialize default tx key
589 	 */
590 	ic->ic_def_txkey = 0;
591 
592 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
593 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
594 	    (caddr_t)sc);
595 	if (err != DDI_SUCCESS) {
596 		cmn_err(CE_WARN,
597 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
598 		goto attach_fail7;
599 	}
600 
601 	/*
602 	 * Add the interrupt handler
603 	 */
604 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
605 	    wpi_intr, (caddr_t)sc);
606 	if (err != DDI_SUCCESS) {
607 		cmn_err(CE_WARN,
608 		    "wpi_attach(): failed to do ddi_add_intr()\n");
609 		goto attach_fail8;
610 	}
611 
612 	/*
613 	 * Initialize pointer to device specific functions
614 	 */
615 	wd.wd_secalloc = WIFI_SEC_NONE;
616 	wd.wd_opmode = ic->ic_opmode;
617 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
618 
619 	macp = mac_alloc(MAC_VERSION);
620 	if (err != DDI_SUCCESS) {
621 		cmn_err(CE_WARN,
622 		    "wpi_attach(): failed to do mac_alloc()\n");
623 		goto attach_fail9;
624 	}
625 
626 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
627 	macp->m_driver		= sc;
628 	macp->m_dip		= dip;
629 	macp->m_src_addr	= ic->ic_macaddr;
630 	macp->m_callbacks	= &wpi_m_callbacks;
631 	macp->m_min_sdu		= 0;
632 	macp->m_max_sdu		= IEEE80211_MTU;
633 	macp->m_pdata		= &wd;
634 	macp->m_pdata_size	= sizeof (wd);
635 
636 	/*
637 	 * Register the macp to mac
638 	 */
639 	err = mac_register(macp, &ic->ic_mach);
640 	mac_free(macp);
641 	if (err != DDI_SUCCESS) {
642 		cmn_err(CE_WARN,
643 		    "wpi_attach(): failed to do mac_register()\n");
644 		goto attach_fail9;
645 	}
646 
647 	/*
648 	 * Create minor node of type DDI_NT_NET_WIFI
649 	 */
650 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
651 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
652 	    instance + 1, DDI_NT_NET_WIFI, 0);
653 	if (err != DDI_SUCCESS)
654 		cmn_err(CE_WARN,
655 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
656 
657 	/*
658 	 * Notify link is down now
659 	 */
660 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
661 
662 	/*
663 	 * create the mf thread to handle the link status,
664 	 * recovery fatal error, etc.
665 	 */
666 
667 	sc->sc_mf_thread_switch = 1;
668 	if (sc->sc_mf_thread == NULL)
669 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
670 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
671 
672 	sc->sc_flags |= WPI_F_ATTACHED;
673 
674 	return (DDI_SUCCESS);
675 attach_fail9:
676 	ddi_remove_intr(dip, 0, sc->sc_iblk);
677 attach_fail8:
678 	ddi_remove_softintr(sc->sc_notif_softint_id);
679 	sc->sc_notif_softint_id = NULL;
680 attach_fail7:
681 	ieee80211_detach(ic);
682 	wpi_destroy_locks(sc);
683 attach_fail6:
684 	wpi_free_fw_dma(sc);
685 attach_fail5:
686 	wpi_ring_free(sc);
687 attach_fail4:
688 	wpi_free_shared(sc);
689 attach_fail3:
690 	ddi_regs_map_free(&sc->sc_handle);
691 attach_fail2:
692 	ddi_soft_state_free(wpi_soft_state_p, instance);
693 attach_fail1:
694 	return (err);
695 }
696 
697 int
wpi_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)698 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
699 {
700 	wpi_sc_t	*sc;
701 	int err;
702 
703 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
704 	ASSERT(sc != NULL);
705 
706 	switch (cmd) {
707 	case DDI_DETACH:
708 		break;
709 	case DDI_SUSPEND:
710 		mutex_enter(&sc->sc_glock);
711 		sc->sc_flags |= WPI_F_SUSPEND;
712 		mutex_exit(&sc->sc_glock);
713 
714 		if (sc->sc_flags & WPI_F_RUNNING) {
715 			wpi_stop(sc);
716 		}
717 
718 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
719 		return (DDI_SUCCESS);
720 	default:
721 		return (DDI_FAILURE);
722 	}
723 	if (!(sc->sc_flags & WPI_F_ATTACHED))
724 		return (DDI_FAILURE);
725 
726 	err = mac_disable(sc->sc_ic.ic_mach);
727 	if (err != DDI_SUCCESS)
728 		return (err);
729 
730 	/*
731 	 * Destroy the mf_thread
732 	 */
733 	mutex_enter(&sc->sc_mt_lock);
734 	sc->sc_mf_thread_switch = 0;
735 	while (sc->sc_mf_thread != NULL) {
736 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
737 			break;
738 	}
739 	mutex_exit(&sc->sc_mt_lock);
740 
741 	wpi_stop(sc);
742 
743 	/*
744 	 * Unregiste from the MAC layer subsystem
745 	 */
746 	(void) mac_unregister(sc->sc_ic.ic_mach);
747 
748 	mutex_enter(&sc->sc_glock);
749 	wpi_free_fw_dma(sc);
750 	wpi_ring_free(sc);
751 	wpi_free_shared(sc);
752 	mutex_exit(&sc->sc_glock);
753 
754 	ddi_remove_intr(dip, 0, sc->sc_iblk);
755 	ddi_remove_softintr(sc->sc_notif_softint_id);
756 	sc->sc_notif_softint_id = NULL;
757 
758 	/*
759 	 * detach ieee80211
760 	 */
761 	ieee80211_detach(&sc->sc_ic);
762 
763 	wpi_destroy_locks(sc);
764 
765 	ddi_regs_map_free(&sc->sc_handle);
766 	ddi_remove_minor_node(dip, NULL);
767 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
768 
769 	return (DDI_SUCCESS);
770 }
771 
772 static void
wpi_destroy_locks(wpi_sc_t * sc)773 wpi_destroy_locks(wpi_sc_t *sc)
774 {
775 	cv_destroy(&sc->sc_mt_cv);
776 	mutex_destroy(&sc->sc_mt_lock);
777 	cv_destroy(&sc->sc_cmd_cv);
778 	cv_destroy(&sc->sc_fw_cv);
779 	mutex_destroy(&sc->sc_tx_lock);
780 	mutex_destroy(&sc->sc_glock);
781 }
782 
783 /*
784  * Allocate an area of memory and a DMA handle for accessing it
785  */
786 static int
wpi_alloc_dma_mem(wpi_sc_t * sc,size_t memsize,ddi_dma_attr_t * dma_attr_p,ddi_device_acc_attr_t * acc_attr_p,uint_t dma_flags,wpi_dma_t * dma_p)787 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
788     ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
789 {
790 	caddr_t vaddr;
791 	int err;
792 
793 	/*
794 	 * Allocate handle
795 	 */
796 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
797 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
798 	if (err != DDI_SUCCESS) {
799 		dma_p->dma_hdl = NULL;
800 		return (DDI_FAILURE);
801 	}
802 
803 	/*
804 	 * Allocate memory
805 	 */
806 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
807 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
808 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
809 	if (err != DDI_SUCCESS) {
810 		ddi_dma_free_handle(&dma_p->dma_hdl);
811 		dma_p->dma_hdl = NULL;
812 		dma_p->acc_hdl = NULL;
813 		return (DDI_FAILURE);
814 	}
815 
816 	/*
817 	 * Bind the two together
818 	 */
819 	dma_p->mem_va = vaddr;
820 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
821 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
822 	    &dma_p->cookie, &dma_p->ncookies);
823 	if (err != DDI_DMA_MAPPED) {
824 		ddi_dma_mem_free(&dma_p->acc_hdl);
825 		ddi_dma_free_handle(&dma_p->dma_hdl);
826 		dma_p->acc_hdl = NULL;
827 		dma_p->dma_hdl = NULL;
828 		return (DDI_FAILURE);
829 	}
830 
831 	dma_p->nslots = ~0U;
832 	dma_p->size = ~0U;
833 	dma_p->token = ~0U;
834 	dma_p->offset = 0;
835 	return (DDI_SUCCESS);
836 }
837 
838 /*
839  * Free one allocated area of DMAable memory
840  */
841 static void
wpi_free_dma_mem(wpi_dma_t * dma_p)842 wpi_free_dma_mem(wpi_dma_t *dma_p)
843 {
844 	if (dma_p->dma_hdl != NULL) {
845 		if (dma_p->ncookies) {
846 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
847 			dma_p->ncookies = 0;
848 		}
849 		ddi_dma_free_handle(&dma_p->dma_hdl);
850 		dma_p->dma_hdl = NULL;
851 	}
852 
853 	if (dma_p->acc_hdl != NULL) {
854 		ddi_dma_mem_free(&dma_p->acc_hdl);
855 		dma_p->acc_hdl = NULL;
856 	}
857 }
858 
859 /*
860  * Allocate an area of dma memory for firmware load.
861  * Idealy, this allocation should be a one time action, that is,
862  * the memory will be freed after the firmware is uploaded to the
863  * card. but since a recovery mechanism for the fatal firmware need
864  * reload the firmware, and re-allocate dma at run time may be failed,
865  * so we allocate it at attach and keep it in the whole lifecycle of
866  * the driver.
867  */
868 static int
wpi_alloc_fw_dma(wpi_sc_t * sc)869 wpi_alloc_fw_dma(wpi_sc_t *sc)
870 {
871 	int i, err = DDI_SUCCESS;
872 	wpi_dma_t *dma_p;
873 
874 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
875 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
876 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
877 	    &sc->sc_dma_fw_text);
878 	dma_p = &sc->sc_dma_fw_text;
879 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
880 	    dma_p->ncookies, dma_p->cookie.dmac_address,
881 	    dma_p->cookie.dmac_size));
882 	if (err != DDI_SUCCESS) {
883 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
884 		    "text dma memory");
885 		goto fail;
886 	}
887 	for (i = 0; i < dma_p->ncookies; i++) {
888 		const ddi_dma_cookie_t *c;
889 		c = ddi_dma_cookie_get(dma_p->dma_hdl, i);
890 		sc->sc_fw_text_cookie[i] = *c;
891 	}
892 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
893 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
894 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
895 	    &sc->sc_dma_fw_data);
896 	dma_p = &sc->sc_dma_fw_data;
897 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
898 	    dma_p->ncookies, dma_p->cookie.dmac_address,
899 	    dma_p->cookie.dmac_size));
900 	if (err != DDI_SUCCESS) {
901 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
902 		    "data dma memory");
903 		goto fail;
904 	}
905 	for (i = 0; i < dma_p->ncookies; i++) {
906 		const ddi_dma_cookie_t *c;
907 		c = ddi_dma_cookie_get(dma_p->dma_hdl, i);
908 		sc->sc_fw_data_cookie[i] = *c;
909 	}
910 fail:
911 	return (err);
912 }
913 
914 static void
wpi_free_fw_dma(wpi_sc_t * sc)915 wpi_free_fw_dma(wpi_sc_t *sc)
916 {
917 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
918 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
919 }
920 
921 /*
922  * Allocate a shared page between host and NIC.
923  */
924 static int
wpi_alloc_shared(wpi_sc_t * sc)925 wpi_alloc_shared(wpi_sc_t *sc)
926 {
927 	int err = DDI_SUCCESS;
928 
929 	/* must be aligned on a 4K-page boundary */
930 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
931 	    &sh_dma_attr, &wpi_dma_accattr,
932 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
933 	    &sc->sc_dma_sh);
934 	if (err != DDI_SUCCESS)
935 		goto fail;
936 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
937 	return (err);
938 
939 fail:
940 	wpi_free_shared(sc);
941 	return (err);
942 }
943 
944 static void
wpi_free_shared(wpi_sc_t * sc)945 wpi_free_shared(wpi_sc_t *sc)
946 {
947 	wpi_free_dma_mem(&sc->sc_dma_sh);
948 }
949 
950 static int
wpi_alloc_rx_ring(wpi_sc_t * sc)951 wpi_alloc_rx_ring(wpi_sc_t *sc)
952 {
953 	wpi_rx_ring_t *ring;
954 	wpi_rx_data_t *data;
955 	int i, err = DDI_SUCCESS;
956 
957 	ring = &sc->sc_rxq;
958 	ring->cur = 0;
959 
960 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
961 	    &ring_desc_dma_attr, &wpi_dma_accattr,
962 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
963 	    &ring->dma_desc);
964 	if (err != DDI_SUCCESS) {
965 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
966 		goto fail;
967 	}
968 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
969 
970 	/*
971 	 * Allocate Rx buffers.
972 	 */
973 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974 		data = &ring->data[i];
975 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
976 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
977 		    DDI_DMA_READ | DDI_DMA_STREAMING,
978 		    &data->dma_data);
979 		if (err != DDI_SUCCESS) {
980 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
981 			    "failed\n", i));
982 			goto fail;
983 		}
984 
985 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
986 	}
987 
988 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
989 
990 	return (err);
991 
992 fail:
993 	wpi_free_rx_ring(sc);
994 	return (err);
995 }
996 
997 static void
wpi_reset_rx_ring(wpi_sc_t * sc)998 wpi_reset_rx_ring(wpi_sc_t *sc)
999 {
1000 	int ntries;
1001 
1002 	wpi_mem_lock(sc);
1003 
1004 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1005 	for (ntries = 0; ntries < 2000; ntries++) {
1006 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1007 			break;
1008 		DELAY(1000);
1009 	}
1010 	if (ntries == 2000)
1011 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
1012 
1013 	wpi_mem_unlock(sc);
1014 
1015 	sc->sc_rxq.cur = 0;
1016 }
1017 
1018 static void
wpi_free_rx_ring(wpi_sc_t * sc)1019 wpi_free_rx_ring(wpi_sc_t *sc)
1020 {
1021 	int i;
1022 
1023 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1024 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1025 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1026 			    DDI_DMA_SYNC_FORCPU);
1027 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1028 	}
1029 
1030 	if (sc->sc_rxq.dma_desc.dma_hdl)
1031 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1032 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1033 }
1034 
1035 static int
wpi_alloc_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring,int count,int qid)1036 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1037 {
1038 	wpi_tx_data_t *data;
1039 	wpi_tx_desc_t *desc_h;
1040 	uint32_t paddr_desc_h;
1041 	wpi_tx_cmd_t *cmd_h;
1042 	uint32_t paddr_cmd_h;
1043 	int i, err = DDI_SUCCESS;
1044 
1045 	ring->qid = qid;
1046 	ring->count = count;
1047 	ring->queued = 0;
1048 	ring->cur = 0;
1049 
1050 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1051 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1052 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1053 	    &ring->dma_desc);
1054 	if (err != DDI_SUCCESS) {
1055 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1056 		    qid));
1057 		goto fail;
1058 	}
1059 
1060 	/* update shared page with ring's base address */
1061 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1062 
1063 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1064 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1065 
1066 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1067 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1068 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1069 	    &ring->dma_cmd);
1070 	if (err != DDI_SUCCESS) {
1071 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1072 		    qid));
1073 		goto fail;
1074 	}
1075 
1076 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1077 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1078 
1079 	/*
1080 	 * Allocate Tx buffers.
1081 	 */
1082 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1083 	if (ring->data == NULL) {
1084 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1085 		goto fail;
1086 	}
1087 
1088 	for (i = 0; i < count; i++) {
1089 		data = &ring->data[i];
1090 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1091 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1092 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1093 		    &data->dma_data);
1094 		if (err != DDI_SUCCESS) {
1095 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1096 			    "failed\n", i));
1097 			goto fail;
1098 		}
1099 
1100 		data->desc = desc_h + i;
1101 		data->paddr_desc = paddr_desc_h +
1102 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1103 		data->cmd = cmd_h + i;
1104 		data->paddr_cmd = paddr_cmd_h +
1105 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1106 	}
1107 
1108 	return (err);
1109 
1110 fail:
1111 	wpi_free_tx_ring(sc, ring);
1112 	return (err);
1113 }
1114 
1115 static void
wpi_reset_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring)1116 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1117 {
1118 	wpi_tx_data_t *data;
1119 	int i, ntries;
1120 
1121 	wpi_mem_lock(sc);
1122 
1123 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1124 	for (ntries = 0; ntries < 100; ntries++) {
1125 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1126 			break;
1127 		DELAY(10);
1128 	}
1129 #ifdef DEBUG
1130 	if (ntries == 100 && wpi_dbg_flags > 0) {
1131 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1132 		    ring->qid));
1133 	}
1134 #endif
1135 	wpi_mem_unlock(sc);
1136 
1137 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1138 		for (i = 0; i < ring->count; i++) {
1139 			data = &ring->data[i];
1140 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1141 		}
1142 	}
1143 
1144 	ring->queued = 0;
1145 	ring->cur = 0;
1146 }
1147 
1148 /*ARGSUSED*/
1149 static void
wpi_free_tx_ring(wpi_sc_t * sc,wpi_tx_ring_t * ring)1150 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1151 {
1152 	int i;
1153 
1154 	if (ring->dma_desc.dma_hdl != NULL)
1155 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1156 	wpi_free_dma_mem(&ring->dma_desc);
1157 
1158 	if (ring->dma_cmd.dma_hdl != NULL)
1159 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1160 	wpi_free_dma_mem(&ring->dma_cmd);
1161 
1162 	if (ring->data != NULL) {
1163 		for (i = 0; i < ring->count; i++) {
1164 			if (ring->data[i].dma_data.dma_hdl)
1165 				WPI_DMA_SYNC(ring->data[i].dma_data,
1166 				    DDI_DMA_SYNC_FORDEV);
1167 			wpi_free_dma_mem(&ring->data[i].dma_data);
1168 		}
1169 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1170 		ring->data = NULL;
1171 	}
1172 }
1173 
1174 static int
wpi_ring_init(wpi_sc_t * sc)1175 wpi_ring_init(wpi_sc_t *sc)
1176 {
1177 	int i, err = DDI_SUCCESS;
1178 
1179 	for (i = 0; i < 4; i++) {
1180 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1181 		    i);
1182 		if (err != DDI_SUCCESS)
1183 			goto fail;
1184 	}
1185 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1186 	if (err != DDI_SUCCESS)
1187 		goto fail;
1188 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1189 	if (err != DDI_SUCCESS)
1190 		goto fail;
1191 	err = wpi_alloc_rx_ring(sc);
1192 	if (err != DDI_SUCCESS)
1193 		goto fail;
1194 	return (err);
1195 
1196 fail:
1197 	return (err);
1198 }
1199 
1200 static void
wpi_ring_free(wpi_sc_t * sc)1201 wpi_ring_free(wpi_sc_t *sc)
1202 {
1203 	int i = 4;
1204 
1205 	wpi_free_rx_ring(sc);
1206 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1207 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1208 	while (--i >= 0) {
1209 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1210 	}
1211 }
1212 
1213 /* ARGSUSED */
1214 static ieee80211_node_t *
wpi_node_alloc(ieee80211com_t * ic)1215 wpi_node_alloc(ieee80211com_t *ic)
1216 {
1217 	wpi_amrr_t *amrr;
1218 
1219 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1220 	if (amrr != NULL)
1221 		wpi_amrr_init(amrr);
1222 	return (&amrr->in);
1223 }
1224 
1225 static void
wpi_node_free(ieee80211_node_t * in)1226 wpi_node_free(ieee80211_node_t *in)
1227 {
1228 	ieee80211com_t *ic = in->in_ic;
1229 
1230 	ic->ic_node_cleanup(in);
1231 	if (in->in_wpa_ie != NULL)
1232 		ieee80211_free(in->in_wpa_ie);
1233 	kmem_free(in, sizeof (wpi_amrr_t));
1234 }
1235 
1236 /*ARGSUSED*/
1237 static int
wpi_newstate(ieee80211com_t * ic,enum ieee80211_state nstate,int arg)1238 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1239 {
1240 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1241 	ieee80211_node_t *in = ic->ic_bss;
1242 	enum ieee80211_state ostate;
1243 	int i, err = WPI_SUCCESS;
1244 
1245 	mutex_enter(&sc->sc_glock);
1246 	ostate = ic->ic_state;
1247 	switch (nstate) {
1248 	case IEEE80211_S_SCAN:
1249 		switch (ostate) {
1250 		case IEEE80211_S_INIT:
1251 		{
1252 			wpi_node_t node;
1253 
1254 			sc->sc_flags |= WPI_F_SCANNING;
1255 			sc->sc_scan_next = 0;
1256 
1257 			/* make the link LED blink while we're scanning */
1258 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1259 
1260 			/*
1261 			 * clear association to receive beacons from all
1262 			 * BSS'es
1263 			 */
1264 			sc->sc_config.state = 0;
1265 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1266 
1267 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1268 			    "filter %x\n",
1269 			    sc->sc_config.chan, sc->sc_config.flags,
1270 			    sc->sc_config.filter));
1271 
1272 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1273 			    sizeof (wpi_config_t), 1);
1274 			if (err != WPI_SUCCESS) {
1275 				cmn_err(CE_WARN,
1276 				    "could not clear association\n");
1277 				sc->sc_flags &= ~WPI_F_SCANNING;
1278 				mutex_exit(&sc->sc_glock);
1279 				return (err);
1280 			}
1281 
1282 			/* add broadcast node to send probe request */
1283 			(void) memset(&node, 0, sizeof (node));
1284 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1285 			node.id = WPI_ID_BROADCAST;
1286 
1287 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1288 			    sizeof (node), 1);
1289 			if (err != WPI_SUCCESS) {
1290 				cmn_err(CE_WARN,
1291 				    "could not add broadcast node\n");
1292 				sc->sc_flags &= ~WPI_F_SCANNING;
1293 				mutex_exit(&sc->sc_glock);
1294 				return (err);
1295 			}
1296 			break;
1297 		}
1298 		case IEEE80211_S_SCAN:
1299 			mutex_exit(&sc->sc_glock);
1300 			/* step to next channel before actual FW scan */
1301 			err = sc->sc_newstate(ic, nstate, arg);
1302 			mutex_enter(&sc->sc_glock);
1303 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1304 				cmn_err(CE_WARN,
1305 				    "could not initiate scan\n");
1306 				sc->sc_flags &= ~WPI_F_SCANNING;
1307 				ieee80211_cancel_scan(ic);
1308 			}
1309 			mutex_exit(&sc->sc_glock);
1310 			return (err);
1311 		default:
1312 			break;
1313 		}
1314 		sc->sc_clk = 0;
1315 		break;
1316 
1317 	case IEEE80211_S_AUTH:
1318 		if (ostate == IEEE80211_S_SCAN) {
1319 			sc->sc_flags &= ~WPI_F_SCANNING;
1320 		}
1321 
1322 		/* reset state to handle reassociations correctly */
1323 		sc->sc_config.state = 0;
1324 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1325 
1326 		if ((err = wpi_auth(sc)) != 0) {
1327 			WPI_DBG((WPI_DEBUG_80211,
1328 			    "could not send authentication request\n"));
1329 			mutex_exit(&sc->sc_glock);
1330 			return (err);
1331 		}
1332 		break;
1333 
1334 	case IEEE80211_S_RUN:
1335 		if (ostate == IEEE80211_S_SCAN) {
1336 			sc->sc_flags &= ~WPI_F_SCANNING;
1337 		}
1338 
1339 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1340 			/* link LED blinks while monitoring */
1341 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1342 			break;
1343 		}
1344 
1345 		if (ic->ic_opmode != IEEE80211_M_STA) {
1346 			(void) wpi_auth(sc);
1347 			/* need setup beacon here */
1348 		}
1349 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1350 
1351 		/* update adapter's configuration */
1352 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1353 		/* short preamble/slot time are negotiated when associating */
1354 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1355 		    WPI_CONFIG_SHSLOT);
1356 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1357 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1358 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1359 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1360 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1361 		if (ic->ic_opmode != IEEE80211_M_STA)
1362 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1363 
1364 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1365 		    sc->sc_config.chan, sc->sc_config.flags));
1366 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1367 		    sizeof (wpi_config_t), 1);
1368 		if (err != WPI_SUCCESS) {
1369 			WPI_DBG((WPI_DEBUG_80211,
1370 			    "could not update configuration\n"));
1371 			mutex_exit(&sc->sc_glock);
1372 			return (err);
1373 		}
1374 
1375 		/* start automatic rate control */
1376 		mutex_enter(&sc->sc_mt_lock);
1377 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1378 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1379 			/* set rate to some reasonable initial value */
1380 			i = in->in_rates.ir_nrates - 1;
1381 			while (i > 0 && IEEE80211_RATE(i) > 72)
1382 				i--;
1383 			in->in_txrate = i;
1384 		} else {
1385 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1386 		}
1387 		mutex_exit(&sc->sc_mt_lock);
1388 
1389 		/* link LED always on while associated */
1390 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1391 		break;
1392 
1393 	case IEEE80211_S_INIT:
1394 		sc->sc_flags &= ~WPI_F_SCANNING;
1395 		break;
1396 
1397 	case IEEE80211_S_ASSOC:
1398 		sc->sc_flags &= ~WPI_F_SCANNING;
1399 		break;
1400 	}
1401 
1402 	mutex_exit(&sc->sc_glock);
1403 	return (sc->sc_newstate(ic, nstate, arg));
1404 }
1405 
1406 /*ARGSUSED*/
wpi_key_set(ieee80211com_t * ic,const struct ieee80211_key * k,const uint8_t mac[IEEE80211_ADDR_LEN])1407 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1408     const uint8_t mac[IEEE80211_ADDR_LEN])
1409 {
1410 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1411 	wpi_node_t node;
1412 	int err;
1413 
1414 	switch (k->wk_cipher->ic_cipher) {
1415 	case IEEE80211_CIPHER_WEP:
1416 	case IEEE80211_CIPHER_TKIP:
1417 		return (1); /* sofeware do it. */
1418 	case IEEE80211_CIPHER_AES_CCM:
1419 		break;
1420 	default:
1421 		return (0);
1422 	}
1423 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1424 	    WPI_FILTER_NODECRYPTMUL);
1425 
1426 	mutex_enter(&sc->sc_glock);
1427 
1428 	/* update ap/multicast node */
1429 	(void) memset(&node, 0, sizeof (node));
1430 	if (IEEE80211_IS_MULTICAST(mac)) {
1431 		(void) memset(node.bssid, 0xff, 6);
1432 		node.id = WPI_ID_BROADCAST;
1433 	} else {
1434 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1435 		node.id = WPI_ID_BSS;
1436 	}
1437 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1438 		node.key_flags = 0;
1439 		node.keyp = k->wk_keyix;
1440 	} else {
1441 		node.key_flags = (1 << 14);
1442 		node.keyp = k->wk_keyix + 4;
1443 	}
1444 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1445 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1446 	node.sta_mask = 1;
1447 	node.control = 1;
1448 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1449 	if (err != WPI_SUCCESS) {
1450 		cmn_err(CE_WARN, "wpi_key_set():"
1451 		    "failed to update ap node\n");
1452 		mutex_exit(&sc->sc_glock);
1453 		return (0);
1454 	}
1455 	mutex_exit(&sc->sc_glock);
1456 	return (1);
1457 }
1458 
1459 /*
1460  * Grab exclusive access to NIC memory.
1461  */
1462 static void
wpi_mem_lock(wpi_sc_t * sc)1463 wpi_mem_lock(wpi_sc_t *sc)
1464 {
1465 	uint32_t tmp;
1466 	int ntries;
1467 
1468 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1469 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1470 
1471 	/* spin until we actually get the lock */
1472 	for (ntries = 0; ntries < 1000; ntries++) {
1473 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1474 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1475 			break;
1476 		DELAY(10);
1477 	}
1478 	if (ntries == 1000)
1479 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1480 }
1481 
1482 /*
1483  * Release lock on NIC memory.
1484  */
1485 static void
wpi_mem_unlock(wpi_sc_t * sc)1486 wpi_mem_unlock(wpi_sc_t *sc)
1487 {
1488 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1489 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1490 }
1491 
1492 static uint32_t
wpi_mem_read(wpi_sc_t * sc,uint16_t addr)1493 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1494 {
1495 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1496 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1497 }
1498 
1499 static void
wpi_mem_write(wpi_sc_t * sc,uint16_t addr,uint32_t data)1500 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1501 {
1502 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1503 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1504 }
1505 
1506 static void
wpi_mem_write_region_4(wpi_sc_t * sc,uint16_t addr,const uint32_t * data,int wlen)1507 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1508     const uint32_t *data, int wlen)
1509 {
1510 	for (; wlen > 0; wlen--, data++, addr += 4)
1511 		wpi_mem_write(sc, addr, *data);
1512 }
1513 
1514 /*
1515  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1516  * using the traditional bit-bang method.
1517  */
1518 static uint16_t
wpi_read_prom_word(wpi_sc_t * sc,uint32_t addr)1519 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1520 {
1521 	uint32_t val;
1522 	int ntries;
1523 
1524 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1525 
1526 	wpi_mem_lock(sc);
1527 	for (ntries = 0; ntries < 10; ntries++) {
1528 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1529 			break;
1530 		DELAY(10);
1531 	}
1532 	wpi_mem_unlock(sc);
1533 
1534 	if (ntries == 10) {
1535 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1536 		return (0xdead);
1537 	}
1538 	return (val >> 16);
1539 }
1540 
1541 /*
1542  * The firmware boot code is small and is intended to be copied directly into
1543  * the NIC internal memory.
1544  */
1545 static int
wpi_load_microcode(wpi_sc_t * sc)1546 wpi_load_microcode(wpi_sc_t *sc)
1547 {
1548 	const char *ucode;
1549 	int size;
1550 
1551 	ucode = sc->sc_boot;
1552 	size = LE_32(sc->sc_hdr->bootsz);
1553 	/* check that microcode size is a multiple of 4 */
1554 	if (size & 3)
1555 		return (EINVAL);
1556 
1557 	size /= sizeof (uint32_t);
1558 
1559 	wpi_mem_lock(sc);
1560 
1561 	/* copy microcode image into NIC memory */
1562 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1563 	    size);
1564 
1565 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1566 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1567 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1568 
1569 	/* run microcode */
1570 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1571 
1572 	wpi_mem_unlock(sc);
1573 
1574 	return (WPI_SUCCESS);
1575 }
1576 
1577 /*
1578  * The firmware text and data segments are transferred to the NIC using DMA.
1579  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1580  * where to find it.  Once the NIC has copied the firmware into its internal
1581  * memory, we can free our local copy in the driver.
1582  */
1583 static int
wpi_load_firmware(wpi_sc_t * sc,uint32_t target)1584 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1585 {
1586 	const char *fw;
1587 	int size;
1588 	wpi_dma_t *dma_p;
1589 	ddi_dma_cookie_t *cookie;
1590 	wpi_tx_desc_t desc;
1591 	int i, ntries, err = WPI_SUCCESS;
1592 
1593 	/* only text and data here */
1594 	if (target == WPI_FW_TEXT) {
1595 		fw = sc->sc_text;
1596 		size = LE_32(sc->sc_hdr->textsz);
1597 		dma_p = &sc->sc_dma_fw_text;
1598 		cookie = sc->sc_fw_text_cookie;
1599 	} else {
1600 		fw = sc->sc_data;
1601 		size = LE_32(sc->sc_hdr->datasz);
1602 		dma_p = &sc->sc_dma_fw_data;
1603 		cookie = sc->sc_fw_data_cookie;
1604 	}
1605 
1606 	/* copy firmware image to DMA-safe memory */
1607 	(void) memcpy(dma_p->mem_va, fw, size);
1608 
1609 	/* make sure the adapter will get up-to-date values */
1610 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1611 
1612 	(void) memset(&desc, 0, sizeof (desc));
1613 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1614 	for (i = 0; i < dma_p->ncookies; i++) {
1615 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1616 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1617 		desc.segs[i].addr = cookie[i].dmac_address;
1618 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1619 	}
1620 
1621 	wpi_mem_lock(sc);
1622 
1623 	/* tell adapter where to copy image in its internal memory */
1624 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1625 
1626 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1627 
1628 	/* copy firmware descriptor into NIC memory */
1629 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1630 	    sizeof desc / sizeof (uint32_t));
1631 
1632 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1633 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1634 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1635 
1636 	/* wait while the adapter is busy copying the firmware */
1637 	for (ntries = 0; ntries < 100; ntries++) {
1638 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1639 			break;
1640 		DELAY(1000);
1641 	}
1642 	if (ntries == 100) {
1643 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1644 		err = ETIMEDOUT;
1645 	}
1646 
1647 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1648 
1649 	wpi_mem_unlock(sc);
1650 
1651 	return (err);
1652 }
1653 
1654 /*ARGSUSED*/
1655 static void
wpi_rx_intr(wpi_sc_t * sc,wpi_rx_desc_t * desc,wpi_rx_data_t * data)1656 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1657 {
1658 	ieee80211com_t *ic = &sc->sc_ic;
1659 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1660 	wpi_rx_stat_t *stat;
1661 	wpi_rx_head_t *head;
1662 	wpi_rx_tail_t *tail;
1663 	ieee80211_node_t *in;
1664 	struct ieee80211_frame *wh;
1665 	mblk_t *mp;
1666 	uint16_t len;
1667 
1668 	stat = (wpi_rx_stat_t *)(desc + 1);
1669 
1670 	if (stat->len > WPI_STAT_MAXLEN) {
1671 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1672 		return;
1673 	}
1674 
1675 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1676 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1677 
1678 	len = LE_16(head->len);
1679 
1680 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1681 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1682 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1683 	    LE_64(tail->tstamp)));
1684 
1685 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1686 		sc->sc_rx_err++;
1687 		return;
1688 	}
1689 
1690 	/*
1691 	 * Discard Rx frames with bad CRC early
1692 	 */
1693 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1694 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1695 		    LE_32(tail->flags)));
1696 		sc->sc_rx_err++;
1697 		return;
1698 	}
1699 
1700 	/* update Rx descriptor */
1701 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1702 
1703 #ifdef WPI_BPF
1704 #ifndef WPI_CURRENT
1705 	if (sc->sc_drvbpf != NULL) {
1706 #else
1707 	if (bpf_peers_present(sc->sc_drvbpf)) {
1708 #endif
1709 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1710 
1711 		tap->wr_flags = 0;
1712 		tap->wr_rate = head->rate;
1713 		tap->wr_chan_freq =
1714 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1715 		tap->wr_chan_flags =
1716 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1717 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1718 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1719 		tap->wr_tsft = tail->tstamp;
1720 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1721 		switch (head->rate) {
1722 		/* CCK rates */
1723 		case  10: tap->wr_rate =   2; break;
1724 		case  20: tap->wr_rate =   4; break;
1725 		case  55: tap->wr_rate =  11; break;
1726 		case 110: tap->wr_rate =  22; break;
1727 		/* OFDM rates */
1728 		case 0xd: tap->wr_rate =  12; break;
1729 		case 0xf: tap->wr_rate =  18; break;
1730 		case 0x5: tap->wr_rate =  24; break;
1731 		case 0x7: tap->wr_rate =  36; break;
1732 		case 0x9: tap->wr_rate =  48; break;
1733 		case 0xb: tap->wr_rate =  72; break;
1734 		case 0x1: tap->wr_rate =  96; break;
1735 		case 0x3: tap->wr_rate = 108; break;
1736 		/* unknown rate: should not happen */
1737 		default:  tap->wr_rate =   0;
1738 		}
1739 		if (LE_16(head->flags) & 0x4)
1740 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1741 
1742 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1743 	}
1744 #endif
1745 	/* grab a reference to the source node */
1746 	wh = (struct ieee80211_frame *)(head + 1);
1747 
1748 #ifdef DEBUG
1749 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1750 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1751 #endif
1752 
1753 	in = ieee80211_find_rxnode(ic, wh);
1754 	mp = allocb(len, BPRI_MED);
1755 	if (mp) {
1756 		(void) memcpy(mp->b_wptr, wh, len);
1757 		mp->b_wptr += len;
1758 
1759 		/* send the frame to the 802.11 layer */
1760 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1761 	} else {
1762 		sc->sc_rx_nobuf++;
1763 		WPI_DBG((WPI_DEBUG_RX,
1764 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1765 	}
1766 	/* release node reference */
1767 	ieee80211_free_node(in);
1768 }
1769 
1770 /*ARGSUSED*/
1771 static void
1772 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1773 {
1774 	ieee80211com_t *ic = &sc->sc_ic;
1775 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1776 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1777 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1778 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1779 
1780 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1781 	    "rate=%x duration=%d status=%x\n",
1782 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1783 	    LE_32(stat->duration), LE_32(stat->status)));
1784 
1785 	amrr->txcnt++;
1786 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1787 	if (stat->ntries > 0) {
1788 		amrr->retrycnt++;
1789 		sc->sc_tx_retries++;
1790 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1791 		    amrr->retrycnt));
1792 	}
1793 
1794 	sc->sc_tx_timer = 0;
1795 
1796 	mutex_enter(&sc->sc_tx_lock);
1797 	ring->queued--;
1798 	if (ring->queued < 0)
1799 		ring->queued = 0;
1800 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1801 		sc->sc_need_reschedule = 0;
1802 		mutex_exit(&sc->sc_tx_lock);
1803 		mac_tx_update(ic->ic_mach);
1804 		mutex_enter(&sc->sc_tx_lock);
1805 	}
1806 	mutex_exit(&sc->sc_tx_lock);
1807 }
1808 
1809 static void
1810 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1811 {
1812 	if ((desc->qid & 7) != 4) {
1813 		return;	/* not a command ack */
1814 	}
1815 	mutex_enter(&sc->sc_glock);
1816 	sc->sc_flags |= WPI_F_CMD_DONE;
1817 	cv_signal(&sc->sc_cmd_cv);
1818 	mutex_exit(&sc->sc_glock);
1819 }
1820 
1821 static uint_t
1822 wpi_notif_softintr(caddr_t arg)
1823 {
1824 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1825 	wpi_rx_desc_t *desc;
1826 	wpi_rx_data_t *data;
1827 	uint32_t hw;
1828 
1829 	mutex_enter(&sc->sc_glock);
1830 	if (sc->sc_notif_softint_pending != 1) {
1831 		mutex_exit(&sc->sc_glock);
1832 		return (DDI_INTR_UNCLAIMED);
1833 	}
1834 	mutex_exit(&sc->sc_glock);
1835 
1836 	hw = LE_32(sc->sc_shared->next);
1837 
1838 	while (sc->sc_rxq.cur != hw) {
1839 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1840 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1841 
1842 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1843 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1844 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1845 		    desc->type, LE_32(desc->len)));
1846 
1847 		if (!(desc->qid & 0x80))	/* reply to a command */
1848 			wpi_cmd_intr(sc, desc);
1849 
1850 		switch (desc->type) {
1851 		case WPI_RX_DONE:
1852 			/* a 802.11 frame was received */
1853 			wpi_rx_intr(sc, desc, data);
1854 			break;
1855 
1856 		case WPI_TX_DONE:
1857 			/* a 802.11 frame has been transmitted */
1858 			wpi_tx_intr(sc, desc, data);
1859 			break;
1860 
1861 		case WPI_UC_READY:
1862 		{
1863 			wpi_ucode_info_t *uc =
1864 			    (wpi_ucode_info_t *)(desc + 1);
1865 
1866 			/* the microcontroller is ready */
1867 			WPI_DBG((WPI_DEBUG_FW,
1868 			    "microcode alive notification version %x "
1869 			    "alive %x\n", LE_32(uc->version),
1870 			    LE_32(uc->valid)));
1871 
1872 			if (LE_32(uc->valid) != 1) {
1873 				WPI_DBG((WPI_DEBUG_FW,
1874 				    "microcontroller initialization failed\n"));
1875 			}
1876 			break;
1877 		}
1878 		case WPI_STATE_CHANGED:
1879 		{
1880 			uint32_t *status = (uint32_t *)(desc + 1);
1881 
1882 			/* enabled/disabled notification */
1883 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1884 			    LE_32(*status)));
1885 
1886 			if (LE_32(*status) & 1) {
1887 				/*
1888 				 * the radio button has to be pushed(OFF). It
1889 				 * is considered as a hw error, the
1890 				 * wpi_thread() tries to recover it after the
1891 				 * button is pushed again(ON)
1892 				 */
1893 				cmn_err(CE_NOTE,
1894 				    "wpi: Radio transmitter is off\n");
1895 				sc->sc_ostate = sc->sc_ic.ic_state;
1896 				ieee80211_new_state(&sc->sc_ic,
1897 				    IEEE80211_S_INIT, -1);
1898 				sc->sc_flags |=
1899 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1900 			}
1901 			break;
1902 		}
1903 		case WPI_START_SCAN:
1904 		{
1905 			wpi_start_scan_t *scan =
1906 			    (wpi_start_scan_t *)(desc + 1);
1907 
1908 			WPI_DBG((WPI_DEBUG_SCAN,
1909 			    "scanning channel %d status %x\n",
1910 			    scan->chan, LE_32(scan->status)));
1911 
1912 			break;
1913 		}
1914 		case WPI_STOP_SCAN:
1915 		{
1916 			wpi_stop_scan_t *scan =
1917 			    (wpi_stop_scan_t *)(desc + 1);
1918 
1919 			WPI_DBG((WPI_DEBUG_SCAN,
1920 			    "completed channel %d (burst of %d) status %02x\n",
1921 			    scan->chan, scan->nchan, scan->status));
1922 
1923 			sc->sc_scan_pending = 0;
1924 			sc->sc_scan_next++;
1925 			break;
1926 		}
1927 		default:
1928 			break;
1929 		}
1930 
1931 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1932 	}
1933 
1934 	/* tell the firmware what we have processed */
1935 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1936 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1937 	mutex_enter(&sc->sc_glock);
1938 	sc->sc_notif_softint_pending = 0;
1939 	mutex_exit(&sc->sc_glock);
1940 
1941 	return (DDI_INTR_CLAIMED);
1942 }
1943 
1944 static uint_t
1945 wpi_intr(caddr_t arg)
1946 {
1947 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1948 	uint32_t r, rfh;
1949 
1950 	mutex_enter(&sc->sc_glock);
1951 	if (sc->sc_flags & WPI_F_SUSPEND) {
1952 		mutex_exit(&sc->sc_glock);
1953 		return (DDI_INTR_UNCLAIMED);
1954 	}
1955 
1956 	r = WPI_READ(sc, WPI_INTR);
1957 	if (r == 0 || r == 0xffffffff) {
1958 		mutex_exit(&sc->sc_glock);
1959 		return (DDI_INTR_UNCLAIMED);
1960 	}
1961 
1962 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1963 
1964 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1965 	/* disable interrupts */
1966 	WPI_WRITE(sc, WPI_MASK, 0);
1967 	/* ack interrupts */
1968 	WPI_WRITE(sc, WPI_INTR, r);
1969 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1970 
1971 	if (sc->sc_notif_softint_id == NULL) {
1972 		mutex_exit(&sc->sc_glock);
1973 		return (DDI_INTR_CLAIMED);
1974 	}
1975 
1976 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1977 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1978 		mutex_exit(&sc->sc_glock);
1979 		wpi_stop(sc);
1980 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1981 			sc->sc_ostate = sc->sc_ic.ic_state;
1982 		}
1983 
1984 		/* not capable of fast recovery */
1985 		if (!WPI_CHK_FAST_RECOVER(sc))
1986 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1987 
1988 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1989 		return (DDI_INTR_CLAIMED);
1990 	}
1991 
1992 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1993 	    (rfh & 0x40070000)) {
1994 		sc->sc_notif_softint_pending = 1;
1995 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1996 	}
1997 
1998 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1999 		sc->sc_flags |= WPI_F_FW_INIT;
2000 		cv_signal(&sc->sc_fw_cv);
2001 	}
2002 
2003 	/* re-enable interrupts */
2004 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2005 	mutex_exit(&sc->sc_glock);
2006 
2007 	return (DDI_INTR_CLAIMED);
2008 }
2009 
2010 static uint8_t
2011 wpi_plcp_signal(int rate)
2012 {
2013 	switch (rate) {
2014 	/* CCK rates (returned values are device-dependent) */
2015 	case 2:		return (10);
2016 	case 4:		return (20);
2017 	case 11:	return (55);
2018 	case 22:	return (110);
2019 
2020 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2021 	/* R1-R4 (ral/ural is R4-R1) */
2022 	case 12:	return (0xd);
2023 	case 18:	return (0xf);
2024 	case 24:	return (0x5);
2025 	case 36:	return (0x7);
2026 	case 48:	return (0x9);
2027 	case 72:	return (0xb);
2028 	case 96:	return (0x1);
2029 	case 108:	return (0x3);
2030 
2031 	/* unsupported rates (should not get there) */
2032 	default:	return (0);
2033 	}
2034 }
2035 
2036 static mblk_t *
2037 wpi_m_tx(void *arg, mblk_t *mp)
2038 {
2039 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2040 	ieee80211com_t	*ic = &sc->sc_ic;
2041 	mblk_t			*next;
2042 
2043 	if (sc->sc_flags & WPI_F_SUSPEND) {
2044 		freemsgchain(mp);
2045 		return (NULL);
2046 	}
2047 
2048 	if (ic->ic_state != IEEE80211_S_RUN) {
2049 		freemsgchain(mp);
2050 		return (NULL);
2051 	}
2052 
2053 	if ((sc->sc_flags & WPI_F_HW_ERR_RECOVER) &&
2054 	    WPI_CHK_FAST_RECOVER(sc)) {
2055 		WPI_DBG((WPI_DEBUG_FW, "wpi_m_tx(): hold queue\n"));
2056 		return (mp);
2057 	}
2058 
2059 	while (mp != NULL) {
2060 		next = mp->b_next;
2061 		mp->b_next = NULL;
2062 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2063 			mp->b_next = next;
2064 			break;
2065 		}
2066 		mp = next;
2067 	}
2068 	return (mp);
2069 }
2070 
2071 /* ARGSUSED */
2072 static int
2073 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2074 {
2075 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2076 	wpi_tx_ring_t *ring;
2077 	wpi_tx_desc_t *desc;
2078 	wpi_tx_data_t *data;
2079 	wpi_tx_cmd_t *cmd;
2080 	wpi_cmd_data_t *tx;
2081 	ieee80211_node_t *in;
2082 	struct ieee80211_frame *wh;
2083 	struct ieee80211_key *k;
2084 	mblk_t *m, *m0;
2085 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2086 
2087 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2088 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2089 	data = &ring->data[ring->cur];
2090 	desc = data->desc;
2091 	cmd = data->cmd;
2092 	bzero(desc, sizeof (*desc));
2093 	bzero(cmd, sizeof (*cmd));
2094 
2095 	mutex_enter(&sc->sc_tx_lock);
2096 	if (sc->sc_flags & WPI_F_SUSPEND) {
2097 		mutex_exit(&sc->sc_tx_lock);
2098 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2099 		    IEEE80211_FC0_TYPE_DATA) {
2100 			freemsg(mp);
2101 		}
2102 		err = ENXIO;
2103 		goto exit;
2104 	}
2105 
2106 	if (ring->queued > ring->count - 64) {
2107 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2108 		sc->sc_need_reschedule = 1;
2109 		mutex_exit(&sc->sc_tx_lock);
2110 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2111 		    IEEE80211_FC0_TYPE_DATA) {
2112 			freemsg(mp);
2113 		}
2114 		sc->sc_tx_nobuf++;
2115 		err = ENOMEM;
2116 		goto exit;
2117 	}
2118 	mutex_exit(&sc->sc_tx_lock);
2119 
2120 	hdrlen = sizeof (struct ieee80211_frame);
2121 
2122 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2123 	if (m == NULL) { /* can not alloc buf, drop this package */
2124 		cmn_err(CE_WARN,
2125 		    "wpi_send(): failed to allocate msgbuf\n");
2126 		freemsg(mp);
2127 		err = WPI_SUCCESS;
2128 		goto exit;
2129 	}
2130 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2131 		mblen = MBLKL(m0);
2132 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2133 		off += mblen;
2134 	}
2135 	m->b_wptr += off;
2136 	freemsg(mp);
2137 
2138 	wh = (struct ieee80211_frame *)m->b_rptr;
2139 
2140 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2141 	if (in == NULL) {
2142 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2143 		freemsg(m);
2144 		sc->sc_tx_err++;
2145 		err = WPI_SUCCESS;
2146 		goto exit;
2147 	}
2148 
2149 	(void) ieee80211_encap(ic, m, in);
2150 
2151 	cmd->code = WPI_CMD_TX_DATA;
2152 	cmd->flags = 0;
2153 	cmd->qid = ring->qid;
2154 	cmd->idx = ring->cur;
2155 
2156 	tx = (wpi_cmd_data_t *)cmd->data;
2157 	tx->flags = 0;
2158 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2159 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2160 	} else {
2161 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2162 	}
2163 
2164 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2165 		k = ieee80211_crypto_encap(ic, m);
2166 		if (k == NULL) {
2167 			freemsg(m);
2168 			sc->sc_tx_err++;
2169 			err = WPI_SUCCESS;
2170 			goto exit;
2171 		}
2172 
2173 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2174 			tx->security = 2; /* for CCMP */
2175 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2176 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2177 		}
2178 
2179 		/* packet header may have moved, reset our local pointer */
2180 		wh = (struct ieee80211_frame *)m->b_rptr;
2181 	}
2182 
2183 	len = msgdsize(m);
2184 
2185 #ifdef DEBUG
2186 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2187 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2188 #endif
2189 
2190 	/* pickup a rate */
2191 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2192 	    IEEE80211_FC0_TYPE_MGT) {
2193 		/* mgmt frames are sent at the lowest available bit-rate */
2194 		rate = 2;
2195 	} else {
2196 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2197 			rate = ic->ic_fixed_rate;
2198 		} else
2199 			rate = in->in_rates.ir_rates[in->in_txrate];
2200 	}
2201 	rate &= IEEE80211_RATE_VAL;
2202 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2203 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2204 #ifdef WPI_BPF
2205 #ifndef WPI_CURRENT
2206 	if (sc->sc_drvbpf != NULL) {
2207 #else
2208 	if (bpf_peers_present(sc->sc_drvbpf)) {
2209 #endif
2210 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2211 
2212 		tap->wt_flags = 0;
2213 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2214 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2215 		tap->wt_rate = rate;
2216 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2217 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2218 
2219 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2220 	}
2221 #endif
2222 
2223 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2224 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2225 
2226 	/* retrieve destination node's id */
2227 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2228 	    WPI_ID_BSS;
2229 
2230 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2231 	    IEEE80211_FC0_TYPE_MGT) {
2232 		/* tell h/w to set timestamp in probe responses */
2233 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2234 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2235 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2236 
2237 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2238 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2239 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2240 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2241 			tx->timeout = 3;
2242 		else
2243 			tx->timeout = 2;
2244 	} else
2245 		tx->timeout = 0;
2246 
2247 	tx->rate = wpi_plcp_signal(rate);
2248 
2249 	/* be very persistant at sending frames out */
2250 	tx->rts_ntries = 7;
2251 	tx->data_ntries = 15;
2252 
2253 	tx->cck_mask  = 0x0f;
2254 	tx->ofdm_mask = 0xff;
2255 	tx->lifetime  = LE_32(0xffffffff);
2256 
2257 	tx->len = LE_16(len);
2258 
2259 	/* save and trim IEEE802.11 header */
2260 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2261 	m->b_rptr += hdrlen;
2262 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2263 
2264 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2265 	    ring->cur, len));
2266 
2267 	/* first scatter/gather segment is used by the tx data command */
2268 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2269 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2270 	desc->segs[0].len  = LE_32(
2271 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2272 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2273 	desc->segs[1].len  = LE_32(len - hdrlen);
2274 
2275 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2276 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2277 
2278 	mutex_enter(&sc->sc_tx_lock);
2279 	ring->queued++;
2280 	mutex_exit(&sc->sc_tx_lock);
2281 
2282 	/* kick ring */
2283 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2284 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2285 	freemsg(m);
2286 	/* release node reference */
2287 	ieee80211_free_node(in);
2288 
2289 	ic->ic_stats.is_tx_bytes += len;
2290 	ic->ic_stats.is_tx_frags++;
2291 
2292 	if (sc->sc_tx_timer == 0)
2293 		sc->sc_tx_timer = 5;
2294 exit:
2295 	return (err);
2296 }
2297 
2298 static void
2299 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2300 {
2301 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2302 	ieee80211com_t	*ic = &sc->sc_ic;
2303 	int		err;
2304 
2305 	err = ieee80211_ioctl(ic, wq, mp);
2306 	if (err == ENETRESET) {
2307 		/*
2308 		 * This is special for the hidden AP connection.
2309 		 * In any case, we should make sure only one 'scan'
2310 		 * in the driver for a 'connect' CLI command. So
2311 		 * when connecting to a hidden AP, the scan is just
2312 		 * sent out to the air when we know the desired
2313 		 * essid of the AP we want to connect.
2314 		 */
2315 		if (ic->ic_des_esslen) {
2316 			if (sc->sc_flags & WPI_F_RUNNING) {
2317 				wpi_m_stop(sc);
2318 				(void) wpi_m_start(sc);
2319 				(void) ieee80211_new_state(ic,
2320 				    IEEE80211_S_SCAN, -1);
2321 			}
2322 		}
2323 	}
2324 }
2325 
2326 /*
2327  * Callback functions for get/set properties
2328  */
2329 /* ARGSUSED */
2330 static int
2331 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2332     uint_t wldp_length, void *wldp_buf)
2333 {
2334 	int		err = 0;
2335 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2336 
2337 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2338 	    wldp_length, wldp_buf);
2339 
2340 	return (err);
2341 }
2342 
2343 static void
2344 wpi_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2345     mac_prop_info_handle_t mph)
2346 {
2347 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2348 
2349 	ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, mph);
2350 }
2351 
2352 static int
2353 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2354     uint_t wldp_length, const void *wldp_buf)
2355 {
2356 	int		err;
2357 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2358 	ieee80211com_t  *ic = &sc->sc_ic;
2359 
2360 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2361 	    wldp_length, wldp_buf);
2362 
2363 	if (err == ENETRESET) {
2364 		if (ic->ic_des_esslen) {
2365 			if (sc->sc_flags & WPI_F_RUNNING) {
2366 				wpi_m_stop(sc);
2367 				(void) wpi_m_start(sc);
2368 				(void) ieee80211_new_state(ic,
2369 				    IEEE80211_S_SCAN, -1);
2370 			}
2371 		}
2372 
2373 		err = 0;
2374 	}
2375 
2376 	return (err);
2377 }
2378 
2379 /*ARGSUSED*/
2380 static int
2381 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2382 {
2383 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2384 	ieee80211com_t	*ic = &sc->sc_ic;
2385 	ieee80211_node_t *in;
2386 
2387 	mutex_enter(&sc->sc_glock);
2388 	switch (stat) {
2389 	case MAC_STAT_IFSPEED:
2390 		in = ic->ic_bss;
2391 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2392 		    IEEE80211_RATE(in->in_txrate) :
2393 		    ic->ic_fixed_rate) / 2 * 1000000;
2394 		break;
2395 	case MAC_STAT_NOXMTBUF:
2396 		*val = sc->sc_tx_nobuf;
2397 		break;
2398 	case MAC_STAT_NORCVBUF:
2399 		*val = sc->sc_rx_nobuf;
2400 		break;
2401 	case MAC_STAT_IERRORS:
2402 		*val = sc->sc_rx_err;
2403 		break;
2404 	case MAC_STAT_RBYTES:
2405 		*val = ic->ic_stats.is_rx_bytes;
2406 		break;
2407 	case MAC_STAT_IPACKETS:
2408 		*val = ic->ic_stats.is_rx_frags;
2409 		break;
2410 	case MAC_STAT_OBYTES:
2411 		*val = ic->ic_stats.is_tx_bytes;
2412 		break;
2413 	case MAC_STAT_OPACKETS:
2414 		*val = ic->ic_stats.is_tx_frags;
2415 		break;
2416 	case MAC_STAT_OERRORS:
2417 	case WIFI_STAT_TX_FAILED:
2418 		*val = sc->sc_tx_err;
2419 		break;
2420 	case WIFI_STAT_TX_RETRANS:
2421 		*val = sc->sc_tx_retries;
2422 		break;
2423 	case WIFI_STAT_FCS_ERRORS:
2424 	case WIFI_STAT_WEP_ERRORS:
2425 	case WIFI_STAT_TX_FRAGS:
2426 	case WIFI_STAT_MCAST_TX:
2427 	case WIFI_STAT_RTS_SUCCESS:
2428 	case WIFI_STAT_RTS_FAILURE:
2429 	case WIFI_STAT_ACK_FAILURE:
2430 	case WIFI_STAT_RX_FRAGS:
2431 	case WIFI_STAT_MCAST_RX:
2432 	case WIFI_STAT_RX_DUPS:
2433 		mutex_exit(&sc->sc_glock);
2434 		return (ieee80211_stat(ic, stat, val));
2435 	default:
2436 		mutex_exit(&sc->sc_glock);
2437 		return (ENOTSUP);
2438 	}
2439 	mutex_exit(&sc->sc_glock);
2440 
2441 	return (WPI_SUCCESS);
2442 
2443 }
2444 
2445 static int
2446 wpi_m_start(void *arg)
2447 {
2448 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2449 	ieee80211com_t	*ic = &sc->sc_ic;
2450 	int err;
2451 
2452 	err = wpi_init(sc);
2453 	if (err != WPI_SUCCESS) {
2454 		wpi_stop(sc);
2455 		DELAY(1000000);
2456 		err = wpi_init(sc);
2457 	}
2458 
2459 	if (err) {
2460 		/*
2461 		 * The hw init err(eg. RF is OFF). Return Success to make
2462 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2463 		 * background.
2464 		 */
2465 		mutex_enter(&sc->sc_glock);
2466 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2467 		mutex_exit(&sc->sc_glock);
2468 		return (WPI_SUCCESS);
2469 	}
2470 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2471 	mutex_enter(&sc->sc_glock);
2472 	sc->sc_flags |= WPI_F_RUNNING;
2473 	mutex_exit(&sc->sc_glock);
2474 
2475 	return (WPI_SUCCESS);
2476 }
2477 
2478 static void
2479 wpi_m_stop(void *arg)
2480 {
2481 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2482 	ieee80211com_t	*ic = &sc->sc_ic;
2483 
2484 	wpi_stop(sc);
2485 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2486 	mutex_enter(&sc->sc_mt_lock);
2487 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2488 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2489 	mutex_exit(&sc->sc_mt_lock);
2490 	mutex_enter(&sc->sc_glock);
2491 	sc->sc_flags &= ~WPI_F_RUNNING;
2492 	mutex_exit(&sc->sc_glock);
2493 }
2494 
2495 /*ARGSUSED*/
2496 static int
2497 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2498 {
2499 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2500 	ieee80211com_t	*ic = &sc->sc_ic;
2501 	int err;
2502 
2503 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2504 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2505 		mutex_enter(&sc->sc_glock);
2506 		err = wpi_config(sc);
2507 		mutex_exit(&sc->sc_glock);
2508 		if (err != WPI_SUCCESS) {
2509 			cmn_err(CE_WARN,
2510 			    "wpi_m_unicst(): "
2511 			    "failed to configure device\n");
2512 			goto fail;
2513 		}
2514 	}
2515 	return (WPI_SUCCESS);
2516 fail:
2517 	return (err);
2518 }
2519 
2520 /*ARGSUSED*/
2521 static int
2522 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2523 {
2524 	return (WPI_SUCCESS);
2525 }
2526 
2527 /*ARGSUSED*/
2528 static int
2529 wpi_m_promisc(void *arg, boolean_t on)
2530 {
2531 	return (WPI_SUCCESS);
2532 }
2533 
2534 static void
2535 wpi_thread(wpi_sc_t *sc)
2536 {
2537 	ieee80211com_t	*ic = &sc->sc_ic;
2538 	clock_t clk;
2539 	int times = 0, err, n = 0, timeout = 0;
2540 	uint32_t tmp;
2541 
2542 	mutex_enter(&sc->sc_mt_lock);
2543 	while (sc->sc_mf_thread_switch) {
2544 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2545 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2546 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2547 		} else {
2548 			sc->sc_flags |= WPI_F_RADIO_OFF;
2549 		}
2550 		/*
2551 		 * If in SUSPEND or the RF is OFF, do nothing
2552 		 */
2553 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2554 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2555 			mutex_exit(&sc->sc_mt_lock);
2556 			delay(drv_usectohz(100000));
2557 			mutex_enter(&sc->sc_mt_lock);
2558 			continue;
2559 		}
2560 
2561 		/*
2562 		 * recovery fatal error
2563 		 */
2564 		if (ic->ic_mach &&
2565 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2566 
2567 			WPI_DBG((WPI_DEBUG_FW,
2568 			    "wpi_thread(): "
2569 			    "try to recover fatal hw error: %d\n", times++));
2570 
2571 			wpi_stop(sc);
2572 
2573 			if (WPI_CHK_FAST_RECOVER(sc)) {
2574 				/* save runtime configuration */
2575 				bcopy(&sc->sc_config, &sc->sc_config_save,
2576 				    sizeof (sc->sc_config));
2577 			} else {
2578 				mutex_exit(&sc->sc_mt_lock);
2579 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2580 				delay(drv_usectohz(2000000));
2581 				mutex_enter(&sc->sc_mt_lock);
2582 			}
2583 
2584 			err = wpi_init(sc);
2585 			if (err != WPI_SUCCESS) {
2586 				n++;
2587 				if (n < 3)
2588 					continue;
2589 			}
2590 			n = 0;
2591 			if (!err)
2592 				sc->sc_flags |= WPI_F_RUNNING;
2593 
2594 			if (!WPI_CHK_FAST_RECOVER(sc) ||
2595 			    wpi_fast_recover(sc) != WPI_SUCCESS) {
2596 				sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2597 
2598 				mutex_exit(&sc->sc_mt_lock);
2599 				delay(drv_usectohz(2000000));
2600 				if (sc->sc_ostate != IEEE80211_S_INIT)
2601 					ieee80211_new_state(ic,
2602 					    IEEE80211_S_SCAN, 0);
2603 				mutex_enter(&sc->sc_mt_lock);
2604 			}
2605 		}
2606 
2607 		if (ic->ic_mach && (sc->sc_flags & WPI_F_LAZY_RESUME)) {
2608 			WPI_DBG((WPI_DEBUG_RESUME,
2609 			    "wpi_thread(): "
2610 			    "lazy resume\n"));
2611 			sc->sc_flags &= ~WPI_F_LAZY_RESUME;
2612 			mutex_exit(&sc->sc_mt_lock);
2613 			/*
2614 			 * NB: under WPA mode, this call hangs (door problem?)
2615 			 * when called in wpi_attach() and wpi_detach() while
2616 			 * system is in the procedure of CPR. To be safe, let
2617 			 * the thread do this.
2618 			 */
2619 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
2620 			mutex_enter(&sc->sc_mt_lock);
2621 		}
2622 
2623 		/*
2624 		 * scan next channel
2625 		 */
2626 		if (ic->ic_mach &&
2627 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2628 
2629 			WPI_DBG((WPI_DEBUG_SCAN,
2630 			    "wpi_thread(): "
2631 			    "wait for probe response\n"));
2632 
2633 			sc->sc_scan_next--;
2634 			mutex_exit(&sc->sc_mt_lock);
2635 			delay(drv_usectohz(200000));
2636 			if (sc->sc_flags & WPI_F_SCANNING)
2637 				ieee80211_next_scan(ic);
2638 			mutex_enter(&sc->sc_mt_lock);
2639 		}
2640 
2641 		/*
2642 		 * rate ctl
2643 		 */
2644 		if (ic->ic_mach &&
2645 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2646 			clk = ddi_get_lbolt();
2647 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2648 				wpi_amrr_timeout(sc);
2649 			}
2650 		}
2651 		mutex_exit(&sc->sc_mt_lock);
2652 		delay(drv_usectohz(100000));
2653 		mutex_enter(&sc->sc_mt_lock);
2654 		if (sc->sc_tx_timer) {
2655 			timeout++;
2656 			if (timeout == 10) {
2657 				sc->sc_tx_timer--;
2658 				if (sc->sc_tx_timer == 0) {
2659 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2660 					sc->sc_ostate = IEEE80211_S_RUN;
2661 					WPI_DBG((WPI_DEBUG_FW,
2662 					    "wpi_thread(): send fail\n"));
2663 				}
2664 				timeout = 0;
2665 			}
2666 		}
2667 	}
2668 	sc->sc_mf_thread = NULL;
2669 	cv_signal(&sc->sc_mt_cv);
2670 	mutex_exit(&sc->sc_mt_lock);
2671 }
2672 
2673 /*
2674  * Extract various information from EEPROM.
2675  */
2676 static void
2677 wpi_read_eeprom(wpi_sc_t *sc)
2678 {
2679 	ieee80211com_t *ic = &sc->sc_ic;
2680 	uint16_t val;
2681 	int i;
2682 
2683 	/* read MAC address */
2684 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2685 	ic->ic_macaddr[0] = val & 0xff;
2686 	ic->ic_macaddr[1] = val >> 8;
2687 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2688 	ic->ic_macaddr[2] = val & 0xff;
2689 	ic->ic_macaddr[3] = val >> 8;
2690 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2691 	ic->ic_macaddr[4] = val & 0xff;
2692 	ic->ic_macaddr[5] = val >> 8;
2693 
2694 	WPI_DBG((WPI_DEBUG_EEPROM,
2695 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2696 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2697 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2698 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2699 	/* read power settings for 2.4GHz channels */
2700 	for (i = 0; i < 14; i++) {
2701 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2702 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2703 		WPI_DBG((WPI_DEBUG_EEPROM,
2704 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2705 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2706 	}
2707 }
2708 
2709 /*
2710  * Send a command to the firmware.
2711  */
2712 static int
2713 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2714 {
2715 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2716 	wpi_tx_desc_t *desc;
2717 	wpi_tx_cmd_t *cmd;
2718 
2719 	ASSERT(size <= sizeof (cmd->data));
2720 	ASSERT(mutex_owned(&sc->sc_glock));
2721 
2722 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2723 	desc = ring->data[ring->cur].desc;
2724 	cmd = ring->data[ring->cur].cmd;
2725 
2726 	cmd->code = (uint8_t)code;
2727 	cmd->flags = 0;
2728 	cmd->qid = ring->qid;
2729 	cmd->idx = ring->cur;
2730 	(void) memcpy(cmd->data, buf, size);
2731 
2732 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2733 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2734 	desc->segs[0].len  = 4 + size;
2735 
2736 	/* kick cmd ring */
2737 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2738 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2739 
2740 	if (async)
2741 		return (WPI_SUCCESS);
2742 	else {
2743 		clock_t clk;
2744 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2745 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2746 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2747 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2748 			    < 0)
2749 				break;
2750 		}
2751 		if (sc->sc_flags & WPI_F_CMD_DONE)
2752 			return (WPI_SUCCESS);
2753 		else
2754 			return (WPI_FAIL);
2755 	}
2756 }
2757 
2758 /*
2759  * Configure h/w multi-rate retries.
2760  */
2761 static int
2762 wpi_mrr_setup(wpi_sc_t *sc)
2763 {
2764 	wpi_mrr_setup_t mrr;
2765 	int i, err;
2766 
2767 	/* CCK rates (not used with 802.11a) */
2768 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2769 		mrr.rates[i].flags = 0;
2770 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2771 		/* fallback to the immediate lower CCK rate (if any) */
2772 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2773 		/* try one time at this rate before falling back to "next" */
2774 		mrr.rates[i].ntries = 1;
2775 	}
2776 
2777 	/* OFDM rates (not used with 802.11b) */
2778 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2779 		mrr.rates[i].flags = 0;
2780 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2781 		/* fallback to the immediate lower OFDM rate (if any) */
2782 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2783 		/* try one time at this rate before falling back to "next" */
2784 		mrr.rates[i].ntries = 1;
2785 	}
2786 
2787 	/* setup MRR for control frames */
2788 	mrr.which = LE_32(WPI_MRR_CTL);
2789 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2790 	if (err != WPI_SUCCESS) {
2791 		WPI_DBG((WPI_DEBUG_MRR,
2792 		    "could not setup MRR for control frames\n"));
2793 		return (err);
2794 	}
2795 
2796 	/* setup MRR for data frames */
2797 	mrr.which = LE_32(WPI_MRR_DATA);
2798 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2799 	if (err != WPI_SUCCESS) {
2800 		WPI_DBG((WPI_DEBUG_MRR,
2801 		    "could not setup MRR for data frames\n"));
2802 		return (err);
2803 	}
2804 
2805 	return (WPI_SUCCESS);
2806 }
2807 
2808 static void
2809 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2810 {
2811 	wpi_cmd_led_t led;
2812 
2813 	led.which = which;
2814 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2815 	led.off = off;
2816 	led.on = on;
2817 
2818 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2819 }
2820 
2821 static int
2822 wpi_auth(wpi_sc_t *sc)
2823 {
2824 	ieee80211com_t *ic = &sc->sc_ic;
2825 	ieee80211_node_t *in = ic->ic_bss;
2826 	wpi_node_t node;
2827 	int err;
2828 
2829 	/* update adapter's configuration */
2830 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2831 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2832 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2833 		sc->sc_config.cck_mask  = 0x03;
2834 		sc->sc_config.ofdm_mask = 0;
2835 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2836 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2837 		sc->sc_config.cck_mask  = 0;
2838 		sc->sc_config.ofdm_mask = 0x15;
2839 	} else {	/* assume 802.11b/g */
2840 		sc->sc_config.cck_mask  = 0x0f;
2841 		sc->sc_config.ofdm_mask = 0xff;
2842 	}
2843 
2844 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2845 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2846 	    sc->sc_config.chan, sc->sc_config.flags,
2847 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2848 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2849 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2850 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2851 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2852 	    sizeof (wpi_config_t), 1);
2853 	if (err != WPI_SUCCESS) {
2854 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2855 		    sc->sc_config.chan);
2856 		return (err);
2857 	}
2858 
2859 	/* add default node */
2860 	(void) memset(&node, 0, sizeof (node));
2861 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2862 	node.id = WPI_ID_BSS;
2863 	node.rate = wpi_plcp_signal(2);
2864 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2865 	if (err != WPI_SUCCESS) {
2866 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2867 		return (err);
2868 	}
2869 
2870 	err = wpi_mrr_setup(sc);
2871 	if (err != WPI_SUCCESS) {
2872 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2873 		return (err);
2874 	}
2875 
2876 	return (WPI_SUCCESS);
2877 }
2878 
2879 /*
2880  * Send a scan request to the firmware.
2881  */
2882 static int
2883 wpi_scan(wpi_sc_t *sc)
2884 {
2885 	ieee80211com_t *ic = &sc->sc_ic;
2886 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2887 	wpi_tx_desc_t *desc;
2888 	wpi_tx_data_t *data;
2889 	wpi_tx_cmd_t *cmd;
2890 	wpi_scan_hdr_t *hdr;
2891 	wpi_scan_chan_t *chan;
2892 	struct ieee80211_frame *wh;
2893 	ieee80211_node_t *in = ic->ic_bss;
2894 	uint8_t essid[IEEE80211_NWID_LEN+1];
2895 	struct ieee80211_rateset *rs;
2896 	enum ieee80211_phymode mode;
2897 	uint8_t *frm;
2898 	int i, pktlen, nrates;
2899 
2900 	/* previous scan not completed */
2901 	if (sc->sc_scan_pending) {
2902 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2903 		return (WPI_SUCCESS);
2904 	}
2905 
2906 	data = &ring->data[ring->cur];
2907 	desc = data->desc;
2908 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2909 
2910 	cmd->code = WPI_CMD_SCAN;
2911 	cmd->flags = 0;
2912 	cmd->qid = ring->qid;
2913 	cmd->idx = ring->cur;
2914 
2915 	hdr = (wpi_scan_hdr_t *)cmd->data;
2916 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2917 	hdr->first = 1;
2918 	hdr->nchan = 1;
2919 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2920 	hdr->quiet = LE_16(50);
2921 	hdr->threshold = LE_16(1);
2922 	hdr->filter = LE_32(5);
2923 	hdr->rate = wpi_plcp_signal(2);
2924 	hdr->id = WPI_ID_BROADCAST;
2925 	hdr->mask = LE_32(0xffffffff);
2926 	hdr->esslen = ic->ic_des_esslen;
2927 
2928 	if (ic->ic_des_esslen) {
2929 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2930 		essid[ic->ic_des_esslen] = '\0';
2931 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2932 
2933 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2934 	} else {
2935 		bzero(hdr->essid, sizeof (hdr->essid));
2936 	}
2937 
2938 	/*
2939 	 * Build a probe request frame.  Most of the following code is a
2940 	 * copy & paste of what is done in net80211.  Unfortunately, the
2941 	 * functions to add IEs are static and thus can't be reused here.
2942 	 */
2943 	wh = (struct ieee80211_frame *)(hdr + 1);
2944 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2945 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2946 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2947 	(void) memset(wh->i_addr1, 0xff, 6);
2948 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2949 	(void) memset(wh->i_addr3, 0xff, 6);
2950 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2951 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2952 
2953 	frm = (uint8_t *)(wh + 1);
2954 
2955 	/* add essid IE */
2956 	if (in->in_esslen) {
2957 		bcopy(in->in_essid, essid, in->in_esslen);
2958 		essid[in->in_esslen] = '\0';
2959 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2960 		    essid));
2961 	}
2962 	*frm++ = IEEE80211_ELEMID_SSID;
2963 	*frm++ = in->in_esslen;
2964 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2965 	frm += in->in_esslen;
2966 
2967 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2968 	rs = &ic->ic_sup_rates[mode];
2969 
2970 	/* add supported rates IE */
2971 	*frm++ = IEEE80211_ELEMID_RATES;
2972 	nrates = rs->ir_nrates;
2973 	if (nrates > IEEE80211_RATE_SIZE)
2974 		nrates = IEEE80211_RATE_SIZE;
2975 	*frm++ = (uint8_t)nrates;
2976 	(void) memcpy(frm, rs->ir_rates, nrates);
2977 	frm += nrates;
2978 
2979 	/* add supported xrates IE */
2980 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2981 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2982 		*frm++ = IEEE80211_ELEMID_XRATES;
2983 		*frm++ = (uint8_t)nrates;
2984 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2985 		frm += nrates;
2986 	}
2987 
2988 	/* add optionnal IE (usually an RSN IE) */
2989 	if (ic->ic_opt_ie != NULL) {
2990 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2991 		frm += ic->ic_opt_ie_len;
2992 	}
2993 
2994 	/* setup length of probe request */
2995 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2996 
2997 	/* align on a 4-byte boundary */
2998 	chan = (wpi_scan_chan_t *)frm;
2999 	for (i = 1; i <= hdr->nchan; i++, chan++) {
3000 		if (ic->ic_des_esslen) {
3001 			chan->flags = 0x3;
3002 		} else {
3003 			chan->flags = 0x1;
3004 		}
3005 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3006 		chan->magic = LE_16(0x62ab);
3007 		chan->active = LE_16(50);
3008 		chan->passive = LE_16(120);
3009 
3010 		frm += sizeof (wpi_scan_chan_t);
3011 	}
3012 
3013 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
3014 
3015 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
3016 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
3017 	desc->segs[0].len  = LE_32(pktlen);
3018 
3019 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
3020 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
3021 
3022 	/* kick cmd ring */
3023 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
3024 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
3025 
3026 	sc->sc_scan_pending = 1;
3027 
3028 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
3029 }
3030 
3031 static int
3032 wpi_config(wpi_sc_t *sc)
3033 {
3034 	ieee80211com_t *ic = &sc->sc_ic;
3035 	wpi_txpower_t txpower;
3036 	wpi_power_t power;
3037 #ifdef WPI_BLUE_COEXISTENCE
3038 	wpi_bluetooth_t bluetooth;
3039 #endif
3040 	wpi_node_t node;
3041 	int err;
3042 
3043 	/* Intel's binary only daemon is a joke.. */
3044 
3045 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
3046 	(void) memset(&txpower, 0, sizeof (txpower));
3047 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
3048 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
3049 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
3050 	if (err != WPI_SUCCESS) {
3051 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
3052 		return (err);
3053 	}
3054 
3055 	/* set power mode */
3056 	(void) memset(&power, 0, sizeof (power));
3057 	power.flags = LE_32(0x8);
3058 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
3059 	if (err != WPI_SUCCESS) {
3060 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
3061 		return (err);
3062 	}
3063 #ifdef WPI_BLUE_COEXISTENCE
3064 	/* configure bluetooth coexistence */
3065 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3066 	bluetooth.flags = 3;
3067 	bluetooth.lead = 0xaa;
3068 	bluetooth.kill = 1;
3069 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3070 	    sizeof (bluetooth), 0);
3071 	if (err != WPI_SUCCESS) {
3072 		cmn_err(CE_WARN,
3073 		    "wpi_config(): "
3074 		    "failed to configurate bluetooth coexistence\n");
3075 		return (err);
3076 	}
3077 #endif
3078 	/* configure adapter */
3079 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3080 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3081 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3082 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3083 	    WPI_CONFIG_24GHZ);
3084 	sc->sc_config.filter = 0;
3085 	switch (ic->ic_opmode) {
3086 	case IEEE80211_M_STA:
3087 		sc->sc_config.mode = WPI_MODE_STA;
3088 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3089 		break;
3090 	case IEEE80211_M_IBSS:
3091 	case IEEE80211_M_AHDEMO:
3092 		sc->sc_config.mode = WPI_MODE_IBSS;
3093 		break;
3094 	case IEEE80211_M_HOSTAP:
3095 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3096 		break;
3097 	case IEEE80211_M_MONITOR:
3098 		sc->sc_config.mode = WPI_MODE_MONITOR;
3099 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3100 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3101 		break;
3102 	}
3103 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3104 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3105 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3106 	    sizeof (wpi_config_t), 0);
3107 	if (err != WPI_SUCCESS) {
3108 		cmn_err(CE_WARN, "wpi_config(): "
3109 		    "failed to set configure command\n");
3110 		return (err);
3111 	}
3112 
3113 	/* add broadcast node */
3114 	(void) memset(&node, 0, sizeof (node));
3115 	(void) memset(node.bssid, 0xff, 6);
3116 	node.id = WPI_ID_BROADCAST;
3117 	node.rate = wpi_plcp_signal(2);
3118 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3119 	if (err != WPI_SUCCESS) {
3120 		cmn_err(CE_WARN, "wpi_config(): "
3121 		    "failed to add broadcast node\n");
3122 		return (err);
3123 	}
3124 
3125 	return (WPI_SUCCESS);
3126 }
3127 
3128 static void
3129 wpi_stop_master(wpi_sc_t *sc)
3130 {
3131 	uint32_t tmp;
3132 	int ntries;
3133 
3134 	tmp = WPI_READ(sc, WPI_RESET);
3135 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3136 
3137 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3138 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3139 		return;	/* already asleep */
3140 
3141 	for (ntries = 0; ntries < 2000; ntries++) {
3142 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3143 			break;
3144 		DELAY(1000);
3145 	}
3146 	if (ntries == 2000)
3147 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3148 }
3149 
3150 static int
3151 wpi_power_up(wpi_sc_t *sc)
3152 {
3153 	uint32_t tmp;
3154 	int ntries;
3155 
3156 	wpi_mem_lock(sc);
3157 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3158 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3159 	wpi_mem_unlock(sc);
3160 
3161 	for (ntries = 0; ntries < 5000; ntries++) {
3162 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3163 			break;
3164 		DELAY(10);
3165 	}
3166 	if (ntries == 5000) {
3167 		cmn_err(CE_WARN,
3168 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3169 		return (ETIMEDOUT);
3170 	}
3171 	return (WPI_SUCCESS);
3172 }
3173 
3174 static int
3175 wpi_reset(wpi_sc_t *sc)
3176 {
3177 	uint32_t tmp;
3178 	int ntries;
3179 
3180 	/* clear any pending interrupts */
3181 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3182 
3183 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3184 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3185 
3186 	tmp = WPI_READ(sc, WPI_CHICKEN);
3187 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3188 
3189 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3190 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3191 
3192 	/* wait for clock stabilization */
3193 	for (ntries = 0; ntries < 1000; ntries++) {
3194 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3195 			break;
3196 		DELAY(10);
3197 	}
3198 	if (ntries == 1000) {
3199 		cmn_err(CE_WARN,
3200 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3201 		return (ETIMEDOUT);
3202 	}
3203 
3204 	/* initialize EEPROM */
3205 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3206 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3207 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3208 		return (EIO);
3209 	}
3210 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3211 
3212 	return (WPI_SUCCESS);
3213 }
3214 
3215 static void
3216 wpi_hw_config(wpi_sc_t *sc)
3217 {
3218 	uint16_t val;
3219 	uint32_t hw;
3220 
3221 	/* voodoo from the Linux "driver".. */
3222 	hw = WPI_READ(sc, WPI_HWCONFIG);
3223 
3224 	if ((sc->sc_rev & 0xc0) == 0x40)
3225 		hw |= WPI_HW_ALM_MB;
3226 	else if (!(sc->sc_rev & 0x80))
3227 		hw |= WPI_HW_ALM_MM;
3228 
3229 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3230 	if ((val & 0xff) == 0x80)
3231 		hw |= WPI_HW_SKU_MRC;
3232 
3233 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3234 	hw &= ~WPI_HW_REV_D;
3235 	if ((val & 0xf0) == 0xd0)
3236 		hw |= WPI_HW_REV_D;
3237 
3238 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3239 	if ((val & 0xff) > 1)
3240 		hw |= WPI_HW_TYPE_B;
3241 
3242 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3243 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3244 }
3245 
3246 static int
3247 wpi_init(wpi_sc_t *sc)
3248 {
3249 	uint32_t tmp;
3250 	int qid, ntries, err;
3251 	clock_t clk;
3252 
3253 	mutex_enter(&sc->sc_glock);
3254 	sc->sc_flags &= ~WPI_F_FW_INIT;
3255 
3256 	(void) wpi_reset(sc);
3257 
3258 	wpi_mem_lock(sc);
3259 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3260 	DELAY(20);
3261 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3262 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3263 	wpi_mem_unlock(sc);
3264 
3265 	(void) wpi_power_up(sc);
3266 	wpi_hw_config(sc);
3267 
3268 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3269 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3270 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3271 		goto fail1;
3272 	}
3273 
3274 	/* init Rx ring */
3275 	wpi_mem_lock(sc);
3276 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3277 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3278 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3279 	    offsetof(wpi_shared_t, next)));
3280 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3281 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3282 	wpi_mem_unlock(sc);
3283 
3284 	/* init Tx rings */
3285 	wpi_mem_lock(sc);
3286 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3287 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3288 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3289 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3290 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3291 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3292 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3293 
3294 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3295 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3296 
3297 	for (qid = 0; qid < 6; qid++) {
3298 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3299 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3300 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3301 	}
3302 	wpi_mem_unlock(sc);
3303 
3304 	/* clear "radio off" and "disable command" bits (reversed logic) */
3305 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3306 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3307 
3308 	/* clear any pending interrupts */
3309 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3310 
3311 	/* enable interrupts */
3312 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3313 
3314 	/* load firmware boot code into NIC */
3315 	err = wpi_load_microcode(sc);
3316 	if (err != WPI_SUCCESS) {
3317 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3318 		goto fail1;
3319 	}
3320 
3321 	/* load firmware .text segment into NIC */
3322 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3323 	if (err != WPI_SUCCESS) {
3324 		cmn_err(CE_WARN, "wpi_init(): "
3325 		    "failed to load firmware(text)\n");
3326 		goto fail1;
3327 	}
3328 
3329 	/* load firmware .data segment into NIC */
3330 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3331 	if (err != WPI_SUCCESS) {
3332 		cmn_err(CE_WARN, "wpi_init(): "
3333 		    "failed to load firmware(data)\n");
3334 		goto fail1;
3335 	}
3336 
3337 	/* now press "execute" ;-) */
3338 	tmp = WPI_READ(sc, WPI_RESET);
3339 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3340 	WPI_WRITE(sc, WPI_RESET, tmp);
3341 
3342 	/* ..and wait at most one second for adapter to initialize */
3343 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3344 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3345 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3346 			break;
3347 	}
3348 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3349 		cmn_err(CE_WARN,
3350 		    "wpi_init(): timeout waiting for firmware init\n");
3351 		goto fail1;
3352 	}
3353 
3354 	/* wait for thermal sensors to calibrate */
3355 	for (ntries = 0; ntries < 1000; ntries++) {
3356 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3357 			break;
3358 		DELAY(10);
3359 	}
3360 
3361 	if (ntries == 1000) {
3362 		WPI_DBG((WPI_DEBUG_HW,
3363 		    "wpi_init(): timeout waiting for thermal sensors "
3364 		    "calibration\n"));
3365 	}
3366 
3367 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3368 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3369 
3370 	err = wpi_config(sc);
3371 	if (err) {
3372 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3373 		goto fail1;
3374 	}
3375 
3376 	mutex_exit(&sc->sc_glock);
3377 	return (WPI_SUCCESS);
3378 
3379 fail1:
3380 	err = WPI_FAIL;
3381 	mutex_exit(&sc->sc_glock);
3382 	return (err);
3383 }
3384 
3385 static int
3386 wpi_fast_recover(wpi_sc_t *sc)
3387 {
3388 	ieee80211com_t *ic = &sc->sc_ic;
3389 	int err;
3390 
3391 	mutex_enter(&sc->sc_glock);
3392 
3393 	/* restore runtime configuration */
3394 	bcopy(&sc->sc_config_save, &sc->sc_config,
3395 	    sizeof (sc->sc_config));
3396 
3397 	sc->sc_config.state = 0;
3398 	sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
3399 
3400 	if ((err = wpi_auth(sc)) != 0) {
3401 		cmn_err(CE_WARN, "wpi_fast_recover(): "
3402 		    "failed to setup authentication\n");
3403 		mutex_exit(&sc->sc_glock);
3404 		return (err);
3405 	}
3406 
3407 	sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
3408 	sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
3409 	    WPI_CONFIG_SHSLOT);
3410 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3411 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
3412 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3413 		sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
3414 	sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
3415 	if (ic->ic_opmode != IEEE80211_M_STA)
3416 		sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
3417 
3418 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
3419 	    sc->sc_config.chan, sc->sc_config.flags));
3420 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3421 	    sizeof (wpi_config_t), 1);
3422 	if (err != WPI_SUCCESS) {
3423 		cmn_err(CE_WARN, "failed to setup association\n");
3424 		mutex_exit(&sc->sc_glock);
3425 		return (err);
3426 	}
3427 	/* link LED on */
3428 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3429 
3430 	mutex_exit(&sc->sc_glock);
3431 
3432 	/* update keys */
3433 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3434 		for (int i = 0; i < IEEE80211_KEY_MAX; i++) {
3435 			if (ic->ic_nw_keys[i].wk_keyix == IEEE80211_KEYIX_NONE)
3436 				continue;
3437 			err = wpi_key_set(ic, &ic->ic_nw_keys[i],
3438 			    ic->ic_bss->in_macaddr);
3439 			/* failure */
3440 			if (err == 0) {
3441 				cmn_err(CE_WARN, "wpi_fast_recover(): "
3442 				    "failed to setup hardware keys\n");
3443 				return (WPI_FAIL);
3444 			}
3445 		}
3446 	}
3447 
3448 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
3449 
3450 	/* start queue */
3451 	WPI_DBG((WPI_DEBUG_FW, "wpi_fast_recover(): resume xmit\n"));
3452 	mac_tx_update(ic->ic_mach);
3453 
3454 	return (WPI_SUCCESS);
3455 }
3456 
3457 /*
3458  * quiesce(9E) entry point.
3459  * This function is called when the system is single-threaded at high
3460  * PIL with preemption disabled. Therefore, this function must not be
3461  * blocked.
3462  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3463  * DDI_FAILURE indicates an error condition and should almost never happen.
3464  */
3465 static int
3466 wpi_quiesce(dev_info_t *dip)
3467 {
3468 	wpi_sc_t *sc;
3469 
3470 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3471 	if (sc == NULL)
3472 		return (DDI_FAILURE);
3473 
3474 #ifdef DEBUG
3475 	/* by pass any messages, if it's quiesce */
3476 	wpi_dbg_flags = 0;
3477 #endif
3478 
3479 	/*
3480 	 * No more blocking is allowed while we are in the
3481 	 * quiesce(9E) entry point.
3482 	 */
3483 	sc->sc_flags |= WPI_F_QUIESCED;
3484 
3485 	/*
3486 	 * Disable and mask all interrupts.
3487 	 */
3488 	wpi_stop(sc);
3489 	return (DDI_SUCCESS);
3490 }
3491 
3492 static void
3493 wpi_stop(wpi_sc_t *sc)
3494 {
3495 	uint32_t tmp;
3496 	int ac;
3497 
3498 	/* no mutex operation, if it's quiesced */
3499 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3500 		mutex_enter(&sc->sc_glock);
3501 
3502 	/* disable interrupts */
3503 	WPI_WRITE(sc, WPI_MASK, 0);
3504 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3505 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3506 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3507 
3508 	wpi_mem_lock(sc);
3509 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3510 	wpi_mem_unlock(sc);
3511 
3512 	/* reset all Tx rings */
3513 	for (ac = 0; ac < 4; ac++)
3514 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3515 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3516 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3517 
3518 	/* reset Rx ring */
3519 	wpi_reset_rx_ring(sc);
3520 
3521 	wpi_mem_lock(sc);
3522 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3523 	wpi_mem_unlock(sc);
3524 
3525 	DELAY(5);
3526 
3527 	wpi_stop_master(sc);
3528 
3529 	sc->sc_tx_timer = 0;
3530 	sc->sc_flags &= ~WPI_F_SCANNING;
3531 	sc->sc_scan_pending = 0;
3532 	sc->sc_scan_next = 0;
3533 
3534 	tmp = WPI_READ(sc, WPI_RESET);
3535 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3536 
3537 	/* no mutex operation, if it's quiesced */
3538 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3539 		mutex_exit(&sc->sc_glock);
3540 }
3541 
3542 /*
3543  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3544  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3545  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3546  * INRIA Sophia - Projet Planete
3547  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3548  */
3549 #define	is_success(amrr)	\
3550 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3551 #define	is_failure(amrr)	\
3552 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3553 #define	is_enough(amrr)		\
3554 	((amrr)->txcnt > 100)
3555 #define	is_min_rate(in)		\
3556 	((in)->in_txrate == 0)
3557 #define	is_max_rate(in)		\
3558 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3559 #define	increase_rate(in)	\
3560 	((in)->in_txrate++)
3561 #define	decrease_rate(in)	\
3562 	((in)->in_txrate--)
3563 #define	reset_cnt(amrr)		\
3564 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3565 
3566 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3567 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3568 
3569 static void
3570 wpi_amrr_init(wpi_amrr_t *amrr)
3571 {
3572 	amrr->success = 0;
3573 	amrr->recovery = 0;
3574 	amrr->txcnt = amrr->retrycnt = 0;
3575 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3576 }
3577 
3578 static void
3579 wpi_amrr_timeout(wpi_sc_t *sc)
3580 {
3581 	ieee80211com_t *ic = &sc->sc_ic;
3582 
3583 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3584 	if (ic->ic_opmode == IEEE80211_M_STA)
3585 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3586 	else
3587 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3588 	sc->sc_clk = ddi_get_lbolt();
3589 }
3590 
3591 /* ARGSUSED */
3592 static void
3593 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3594 {
3595 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3596 	int need_change = 0;
3597 
3598 	if (is_success(amrr) && is_enough(amrr)) {
3599 		amrr->success++;
3600 		if (amrr->success >= amrr->success_threshold &&
3601 		    !is_max_rate(in)) {
3602 			amrr->recovery = 1;
3603 			amrr->success = 0;
3604 			increase_rate(in);
3605 			WPI_DBG((WPI_DEBUG_RATECTL,
3606 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3607 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3608 			need_change = 1;
3609 		} else {
3610 			amrr->recovery = 0;
3611 		}
3612 	} else if (is_failure(amrr)) {
3613 		amrr->success = 0;
3614 		if (!is_min_rate(in)) {
3615 			if (amrr->recovery) {
3616 				amrr->success_threshold++;
3617 				if (amrr->success_threshold >
3618 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3619 					amrr->success_threshold =
3620 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3621 			} else {
3622 				amrr->success_threshold =
3623 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3624 			}
3625 			decrease_rate(in);
3626 			WPI_DBG((WPI_DEBUG_RATECTL,
3627 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3628 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3629 			need_change = 1;
3630 		}
3631 		amrr->recovery = 0;	/* paper is incorrect */
3632 	}
3633 
3634 	if (is_enough(amrr) || need_change)
3635 		reset_cnt(amrr);
3636 }
3637