xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision d7f601ef)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 /*
31  * Copyright 2011 cyril.galibern@opensvc.com
32  */
33 
34 /*
35  * SCSI disk target driver.
36  */
37 #include <sys/scsi/scsi.h>
38 #include <sys/dkbad.h>
39 #include <sys/dklabel.h>
40 #include <sys/dkio.h>
41 #include <sys/fdio.h>
42 #include <sys/cdio.h>
43 #include <sys/mhd.h>
44 #include <sys/vtoc.h>
45 #include <sys/dktp/fdisk.h>
46 #include <sys/kstat.h>
47 #include <sys/vtrace.h>
48 #include <sys/note.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/efi_partition.h>
52 #include <sys/var.h>
53 #include <sys/aio_req.h>
54 
55 #ifdef __lock_lint
56 #define	_LP64
57 #define	__amd64
58 #endif
59 
60 #if (defined(__fibre))
61 /* Note: is there a leadville version of the following? */
62 #include <sys/fc4/fcal_linkapp.h>
63 #endif
64 #include <sys/taskq.h>
65 #include <sys/uuid.h>
66 #include <sys/byteorder.h>
67 #include <sys/sdt.h>
68 
69 #include "sd_xbuf.h"
70 
71 #include <sys/scsi/targets/sddef.h>
72 #include <sys/cmlb.h>
73 #include <sys/sysevent/eventdefs.h>
74 #include <sys/sysevent/dev.h>
75 
76 #include <sys/fm/protocol.h>
77 
78 /*
79  * Loadable module info.
80  */
81 #if (defined(__fibre))
82 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
83 #else /* !__fibre */
84 #define	SD_MODULE_NAME	"SCSI Disk Driver"
85 #endif /* !__fibre */
86 
87 /*
88  * Define the interconnect type, to allow the driver to distinguish
89  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
90  *
91  * This is really for backward compatibility. In the future, the driver
92  * should actually check the "interconnect-type" property as reported by
93  * the HBA; however at present this property is not defined by all HBAs,
94  * so we will use this #define (1) to permit the driver to run in
95  * backward-compatibility mode; and (2) to print a notification message
96  * if an FC HBA does not support the "interconnect-type" property.  The
97  * behavior of the driver will be to assume parallel SCSI behaviors unless
98  * the "interconnect-type" property is defined by the HBA **AND** has a
99  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
100  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
101  * Channel behaviors (as per the old ssd).  (Note that the
102  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
103  * will result in the driver assuming parallel SCSI behaviors.)
104  *
105  * (see common/sys/scsi/impl/services.h)
106  *
107  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
108  * since some FC HBAs may already support that, and there is some code in
109  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
110  * default would confuse that code, and besides things should work fine
111  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
112  * "interconnect_type" property.
113  *
114  */
115 #if (defined(__fibre))
116 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
117 #else
118 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
119 #endif
120 
121 /*
122  * The name of the driver, established from the module name in _init.
123  */
124 static	char *sd_label			= NULL;
125 
126 /*
127  * Driver name is unfortunately prefixed on some driver.conf properties.
128  */
129 #if (defined(__fibre))
130 #define	sd_max_xfer_size		ssd_max_xfer_size
131 #define	sd_config_list			ssd_config_list
132 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
133 static	char *sd_config_list		= "ssd-config-list";
134 #else
135 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
136 static	char *sd_config_list		= "sd-config-list";
137 #endif
138 
139 /*
140  * Driver global variables
141  */
142 
143 #if (defined(__fibre))
144 /*
145  * These #defines are to avoid namespace collisions that occur because this
146  * code is currently used to compile two separate driver modules: sd and ssd.
147  * All global variables need to be treated this way (even if declared static)
148  * in order to allow the debugger to resolve the names properly.
149  * It is anticipated that in the near future the ssd module will be obsoleted,
150  * at which time this namespace issue should go away.
151  */
152 #define	sd_state			ssd_state
153 #define	sd_io_time			ssd_io_time
154 #define	sd_failfast_enable		ssd_failfast_enable
155 #define	sd_ua_retry_count		ssd_ua_retry_count
156 #define	sd_report_pfa			ssd_report_pfa
157 #define	sd_max_throttle			ssd_max_throttle
158 #define	sd_min_throttle			ssd_min_throttle
159 #define	sd_rot_delay			ssd_rot_delay
160 
161 #define	sd_retry_on_reservation_conflict	\
162 					ssd_retry_on_reservation_conflict
163 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
164 #define	sd_resv_conflict_name		ssd_resv_conflict_name
165 
166 #define	sd_component_mask		ssd_component_mask
167 #define	sd_level_mask			ssd_level_mask
168 #define	sd_debug_un			ssd_debug_un
169 #define	sd_error_level			ssd_error_level
170 
171 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
172 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
173 
174 #define	sd_tr				ssd_tr
175 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
176 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
177 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
178 #define	sd_check_media_time		ssd_check_media_time
179 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
180 #define	sd_label_mutex			ssd_label_mutex
181 #define	sd_detach_mutex			ssd_detach_mutex
182 #define	sd_log_buf			ssd_log_buf
183 #define	sd_log_mutex			ssd_log_mutex
184 
185 #define	sd_disk_table			ssd_disk_table
186 #define	sd_disk_table_size		ssd_disk_table_size
187 #define	sd_sense_mutex			ssd_sense_mutex
188 #define	sd_cdbtab			ssd_cdbtab
189 
190 #define	sd_cb_ops			ssd_cb_ops
191 #define	sd_ops				ssd_ops
192 #define	sd_additional_codes		ssd_additional_codes
193 #define	sd_tgops			ssd_tgops
194 
195 #define	sd_minor_data			ssd_minor_data
196 #define	sd_minor_data_efi		ssd_minor_data_efi
197 
198 #define	sd_tq				ssd_tq
199 #define	sd_wmr_tq			ssd_wmr_tq
200 #define	sd_taskq_name			ssd_taskq_name
201 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
202 #define	sd_taskq_minalloc		ssd_taskq_minalloc
203 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
204 
205 #define	sd_dump_format_string		ssd_dump_format_string
206 
207 #define	sd_iostart_chain		ssd_iostart_chain
208 #define	sd_iodone_chain			ssd_iodone_chain
209 
210 #define	sd_pm_idletime			ssd_pm_idletime
211 
212 #define	sd_force_pm_supported		ssd_force_pm_supported
213 
214 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
215 
216 #define	sd_ssc_init			ssd_ssc_init
217 #define	sd_ssc_send			ssd_ssc_send
218 #define	sd_ssc_fini			ssd_ssc_fini
219 #define	sd_ssc_assessment		ssd_ssc_assessment
220 #define	sd_ssc_post			ssd_ssc_post
221 #define	sd_ssc_print			ssd_ssc_print
222 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
223 #define	sd_ssc_set_info			ssd_ssc_set_info
224 #define	sd_ssc_extract_info		ssd_ssc_extract_info
225 
226 #endif
227 
228 #ifdef	SDDEBUG
229 int	sd_force_pm_supported		= 0;
230 #endif	/* SDDEBUG */
231 
232 void *sd_state				= NULL;
233 int sd_io_time				= SD_IO_TIME;
234 int sd_failfast_enable			= 1;
235 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
236 int sd_report_pfa			= 1;
237 int sd_max_throttle			= SD_MAX_THROTTLE;
238 int sd_min_throttle			= SD_MIN_THROTTLE;
239 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
240 int sd_qfull_throttle_enable		= TRUE;
241 
242 int sd_retry_on_reservation_conflict	= 1;
243 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
245 
246 static int sd_dtype_optical_bind	= -1;
247 
248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
249 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
250 
251 /*
252  * Global data for debug logging. To enable debug printing, sd_component_mask
253  * and sd_level_mask should be set to the desired bit patterns as outlined in
254  * sddef.h.
255  */
256 uint_t	sd_component_mask		= 0x0;
257 uint_t	sd_level_mask			= 0x0;
258 struct	sd_lun *sd_debug_un		= NULL;
259 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
260 
261 /* Note: these may go away in the future... */
262 static uint32_t	sd_xbuf_active_limit	= 512;
263 static uint32_t sd_xbuf_reserve_limit	= 16;
264 
265 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
266 
267 /*
268  * Timer value used to reset the throttle after it has been reduced
269  * (typically in response to TRAN_BUSY or STATUS_QFULL)
270  */
271 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
272 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
273 
274 /*
275  * Interval value associated with the media change scsi watch.
276  */
277 static int sd_check_media_time		= 3000000;
278 
279 /*
280  * Wait value used for in progress operations during a DDI_SUSPEND
281  */
282 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
283 
284 /*
285  * sd_label_mutex protects a static buffer used in the disk label
286  * component of the driver
287  */
288 static kmutex_t sd_label_mutex;
289 
290 /*
291  * sd_detach_mutex protects un_layer_count, un_detach_count, and
292  * un_opens_in_progress in the sd_lun structure.
293  */
294 static kmutex_t sd_detach_mutex;
295 
296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
297 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
298 
299 /*
300  * Global buffer and mutex for debug logging
301  */
302 static char	sd_log_buf[1024];
303 static kmutex_t	sd_log_mutex;
304 
305 /*
306  * Structs and globals for recording attached lun information.
307  * This maintains a chain. Each node in the chain represents a SCSI controller.
308  * The structure records the number of luns attached to each target connected
309  * with the controller.
310  * For parallel scsi device only.
311  */
312 struct sd_scsi_hba_tgt_lun {
313 	struct sd_scsi_hba_tgt_lun	*next;
314 	dev_info_t			*pdip;
315 	int				nlun[NTARGETS_WIDE];
316 };
317 
318 /*
319  * Flag to indicate the lun is attached or detached
320  */
321 #define	SD_SCSI_LUN_ATTACH	0
322 #define	SD_SCSI_LUN_DETACH	1
323 
324 static kmutex_t	sd_scsi_target_lun_mutex;
325 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
326 
327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
328     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
329 
330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
331     sd_scsi_target_lun_head))
332 
333 /*
334  * "Smart" Probe Caching structs, globals, #defines, etc.
335  * For parallel scsi and non-self-identify device only.
336  */
337 
338 /*
339  * The following resources and routines are implemented to support
340  * "smart" probing, which caches the scsi_probe() results in an array,
341  * in order to help avoid long probe times.
342  */
343 struct sd_scsi_probe_cache {
344 	struct	sd_scsi_probe_cache	*next;
345 	dev_info_t	*pdip;
346 	int		cache[NTARGETS_WIDE];
347 };
348 
349 static kmutex_t	sd_scsi_probe_cache_mutex;
350 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
351 
352 /*
353  * Really we only need protection on the head of the linked list, but
354  * better safe than sorry.
355  */
356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
357     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
358 
359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
360     sd_scsi_probe_cache_head))
361 
362 /*
363  * Power attribute table
364  */
365 static sd_power_attr_ss sd_pwr_ss = {
366 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
367 	{0, 100},
368 	{30, 0},
369 	{20000, 0}
370 };
371 
372 static sd_power_attr_pc sd_pwr_pc = {
373 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
374 		"3=active", NULL },
375 	{0, 0, 0, 100},
376 	{90, 90, 20, 0},
377 	{15000, 15000, 1000, 0}
378 };
379 
380 /*
381  * Power level to power condition
382  */
383 static int sd_pl2pc[] = {
384 	SD_TARGET_START_VALID,
385 	SD_TARGET_STANDBY,
386 	SD_TARGET_IDLE,
387 	SD_TARGET_ACTIVE
388 };
389 
390 /*
391  * Vendor specific data name property declarations
392  */
393 
394 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
395 
396 static sd_tunables seagate_properties = {
397 	SEAGATE_THROTTLE_VALUE,
398 	0,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0
406 };
407 
408 
409 static sd_tunables fujitsu_properties = {
410 	FUJITSU_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables ibm_properties = {
422 	IBM_THROTTLE_VALUE,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables purple_properties = {
434 	PURPLE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	PURPLE_BUSY_RETRIES,
438 	PURPLE_RESET_RETRY_COUNT,
439 	PURPLE_RESERVE_RELEASE_TIME,
440 	0,
441 	0,
442 	0
443 };
444 
445 static sd_tunables sve_properties = {
446 	SVE_THROTTLE_VALUE,
447 	0,
448 	0,
449 	SVE_BUSY_RETRIES,
450 	SVE_RESET_RETRY_COUNT,
451 	SVE_RESERVE_RELEASE_TIME,
452 	SVE_MIN_THROTTLE_VALUE,
453 	SVE_DISKSORT_DISABLED_FLAG,
454 	0
455 };
456 
457 static sd_tunables maserati_properties = {
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	MASERATI_DISKSORT_DISABLED_FLAG,
466 	MASERATI_LUN_RESET_ENABLED_FLAG
467 };
468 
469 static sd_tunables pirus_properties = {
470 	PIRUS_THROTTLE_VALUE,
471 	0,
472 	PIRUS_NRR_COUNT,
473 	PIRUS_BUSY_RETRIES,
474 	PIRUS_RESET_RETRY_COUNT,
475 	0,
476 	PIRUS_MIN_THROTTLE_VALUE,
477 	PIRUS_DISKSORT_DISABLED_FLAG,
478 	PIRUS_LUN_RESET_ENABLED_FLAG
479 };
480 
481 #endif
482 
483 #if (defined(__sparc) && !defined(__fibre)) || \
484 	(defined(__i386) || defined(__amd64))
485 
486 
487 static sd_tunables elite_properties = {
488 	ELITE_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 static sd_tunables st31200n_properties = {
500 	ST31200N_THROTTLE_VALUE,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0
509 };
510 
511 #endif /* Fibre or not */
512 
513 static sd_tunables lsi_properties_scsi = {
514 	LSI_THROTTLE_VALUE,
515 	0,
516 	LSI_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables symbios_properties = {
526 	SYMBIOS_THROTTLE_VALUE,
527 	0,
528 	SYMBIOS_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_properties = {
538 	0,
539 	0,
540 	LSI_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 static sd_tunables lsi_oem_properties = {
550 	0,
551 	0,
552 	LSI_OEM_NOTREADY_RETRIES,
553 	0,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	1
560 };
561 
562 
563 
564 #if (defined(SD_PROP_TST))
565 
566 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
567 #define	SD_TST_THROTTLE_VAL	16
568 #define	SD_TST_NOTREADY_VAL	12
569 #define	SD_TST_BUSY_VAL		60
570 #define	SD_TST_RST_RETRY_VAL	36
571 #define	SD_TST_RSV_REL_TIME	60
572 
573 static sd_tunables tst_properties = {
574 	SD_TST_THROTTLE_VAL,
575 	SD_TST_CTYPE_VAL,
576 	SD_TST_NOTREADY_VAL,
577 	SD_TST_BUSY_VAL,
578 	SD_TST_RST_RETRY_VAL,
579 	SD_TST_RSV_REL_TIME,
580 	0,
581 	0,
582 	0
583 };
584 #endif
585 
586 /* This is similar to the ANSI toupper implementation */
587 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
588 
589 /*
590  * Static Driver Configuration Table
591  *
592  * This is the table of disks which need throttle adjustment (or, perhaps
593  * something else as defined by the flags at a future time.)  device_id
594  * is a string consisting of concatenated vid (vendor), pid (product/model)
595  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
596  * the parts of the string are as defined by the sizes in the scsi_inquiry
597  * structure.  Device type is searched as far as the device_id string is
598  * defined.  Flags defines which values are to be set in the driver from the
599  * properties list.
600  *
601  * Entries below which begin and end with a "*" are a special case.
602  * These do not have a specific vendor, and the string which follows
603  * can appear anywhere in the 16 byte PID portion of the inquiry data.
604  *
605  * Entries below which begin and end with a " " (blank) are a special
606  * case. The comparison function will treat multiple consecutive blanks
607  * as equivalent to a single blank. For example, this causes a
608  * sd_disk_table entry of " NEC CDROM " to match a device's id string
609  * of  "NEC       CDROM".
610  *
611  * Note: The MD21 controller type has been obsoleted.
612  *	 ST318202F is a Legacy device
613  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
614  *	 made with an FC connection. The entries here are a legacy.
615  */
616 static sd_disk_config_t sd_disk_table[] = {
617 #if defined(__fibre) || defined(__i386) || defined(__amd64)
618 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
642 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
668 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
669 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
670 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
671 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
672 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
673 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
674 			SD_CONF_BSET_BSY_RETRY_COUNT|
675 			SD_CONF_BSET_RST_RETRIES|
676 			SD_CONF_BSET_RSV_REL_TIME,
677 		&purple_properties },
678 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_RSV_REL_TIME|
682 		SD_CONF_BSET_MIN_THROTTLE|
683 		SD_CONF_BSET_DISKSORT_DISABLED,
684 		&sve_properties },
685 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
686 			SD_CONF_BSET_BSY_RETRY_COUNT|
687 			SD_CONF_BSET_RST_RETRIES|
688 			SD_CONF_BSET_RSV_REL_TIME,
689 		&purple_properties },
690 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&maserati_properties },
693 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
718 		SD_CONF_BSET_NRR_COUNT|
719 		SD_CONF_BSET_BSY_RETRY_COUNT|
720 		SD_CONF_BSET_RST_RETRIES|
721 		SD_CONF_BSET_MIN_THROTTLE|
722 		SD_CONF_BSET_DISKSORT_DISABLED|
723 		SD_CONF_BSET_LUN_RESET_ENABLED,
724 		&pirus_properties },
725 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
726 		SD_CONF_BSET_NRR_COUNT|
727 		SD_CONF_BSET_BSY_RETRY_COUNT|
728 		SD_CONF_BSET_RST_RETRIES|
729 		SD_CONF_BSET_MIN_THROTTLE|
730 		SD_CONF_BSET_DISKSORT_DISABLED|
731 		SD_CONF_BSET_LUN_RESET_ENABLED,
732 		&pirus_properties },
733 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
734 		SD_CONF_BSET_NRR_COUNT|
735 		SD_CONF_BSET_BSY_RETRY_COUNT|
736 		SD_CONF_BSET_RST_RETRIES|
737 		SD_CONF_BSET_MIN_THROTTLE|
738 		SD_CONF_BSET_DISKSORT_DISABLED|
739 		SD_CONF_BSET_LUN_RESET_ENABLED,
740 		&pirus_properties },
741 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
748 #endif /* fibre or NON-sparc platforms */
749 #if ((defined(__sparc) && !defined(__fibre)) ||\
750 	(defined(__i386) || defined(__amd64)))
751 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
752 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
753 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
754 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
755 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
764 	    &symbios_properties },
765 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
766 	    &lsi_properties_scsi },
767 #if defined(__i386) || defined(__amd64)
768 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
769 				    | SD_CONF_BSET_READSUB_BCD
770 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				    | SD_CONF_BSET_NO_READ_HEADER
772 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
773 
774 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
775 				    | SD_CONF_BSET_READSUB_BCD
776 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
777 				    | SD_CONF_BSET_NO_READ_HEADER
778 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
779 #endif /* __i386 || __amd64 */
780 #endif /* sparc NON-fibre or NON-sparc platforms */
781 
782 #if (defined(SD_PROP_TST))
783 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
784 				| SD_CONF_BSET_CTYPE
785 				| SD_CONF_BSET_NRR_COUNT
786 				| SD_CONF_BSET_FAB_DEVID
787 				| SD_CONF_BSET_NOCACHE
788 				| SD_CONF_BSET_BSY_RETRY_COUNT
789 				| SD_CONF_BSET_PLAYMSF_BCD
790 				| SD_CONF_BSET_READSUB_BCD
791 				| SD_CONF_BSET_READ_TOC_TRK_BCD
792 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
793 				| SD_CONF_BSET_NO_READ_HEADER
794 				| SD_CONF_BSET_READ_CD_XD4
795 				| SD_CONF_BSET_RST_RETRIES
796 				| SD_CONF_BSET_RSV_REL_TIME
797 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
798 #endif
799 };
800 
801 static const int sd_disk_table_size =
802 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
803 
804 /*
805  * Emulation mode disk drive VID/PID table
806  */
807 static char sd_flash_dev_table[][25] = {
808 	"ATA     MARVELL SD88SA02",
809 	"MARVELL SD88SA02",
810 	"TOSHIBA THNSNV05",
811 };
812 
813 static const int sd_flash_dev_table_size =
814 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
815 
816 #define	SD_INTERCONNECT_PARALLEL	0
817 #define	SD_INTERCONNECT_FABRIC		1
818 #define	SD_INTERCONNECT_FIBRE		2
819 #define	SD_INTERCONNECT_SSA		3
820 #define	SD_INTERCONNECT_SATA		4
821 #define	SD_INTERCONNECT_SAS		5
822 
823 #define	SD_IS_PARALLEL_SCSI(un)		\
824 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
825 #define	SD_IS_SERIAL(un)		\
826 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
827 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
828 
829 /*
830  * Definitions used by device id registration routines
831  */
832 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
833 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
834 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
835 
836 static kmutex_t sd_sense_mutex = {0};
837 
838 /*
839  * Macros for updates of the driver state
840  */
841 #define	New_state(un, s)        \
842 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
843 #define	Restore_state(un)	\
844 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
845 
846 static struct sd_cdbinfo sd_cdbtab[] = {
847 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
848 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
849 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
850 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
851 };
852 
853 /*
854  * Specifies the number of seconds that must have elapsed since the last
855  * cmd. has completed for a device to be declared idle to the PM framework.
856  */
857 static int sd_pm_idletime = 1;
858 
859 /*
860  * Internal function prototypes
861  */
862 
863 #if (defined(__fibre))
864 /*
865  * These #defines are to avoid namespace collisions that occur because this
866  * code is currently used to compile two separate driver modules: sd and ssd.
867  * All function names need to be treated this way (even if declared static)
868  * in order to allow the debugger to resolve the names properly.
869  * It is anticipated that in the near future the ssd module will be obsoleted,
870  * at which time this ugliness should go away.
871  */
872 #define	sd_log_trace			ssd_log_trace
873 #define	sd_log_info			ssd_log_info
874 #define	sd_log_err			ssd_log_err
875 #define	sdprobe				ssdprobe
876 #define	sdinfo				ssdinfo
877 #define	sd_prop_op			ssd_prop_op
878 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
879 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
880 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
881 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
882 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
883 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
884 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
885 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
886 #define	sd_spin_up_unit			ssd_spin_up_unit
887 #define	sd_enable_descr_sense		ssd_enable_descr_sense
888 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
889 #define	sd_set_mmc_caps			ssd_set_mmc_caps
890 #define	sd_read_unit_properties		ssd_read_unit_properties
891 #define	sd_process_sdconf_file		ssd_process_sdconf_file
892 #define	sd_process_sdconf_table		ssd_process_sdconf_table
893 #define	sd_sdconf_id_match		ssd_sdconf_id_match
894 #define	sd_blank_cmp			ssd_blank_cmp
895 #define	sd_chk_vers1_data		ssd_chk_vers1_data
896 #define	sd_set_vers1_properties		ssd_set_vers1_properties
897 #define	sd_check_solid_state		ssd_check_solid_state
898 #define	sd_check_emulation_mode		ssd_check_emulation_mode
899 
900 #define	sd_get_physical_geometry	ssd_get_physical_geometry
901 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
902 #define	sd_update_block_info		ssd_update_block_info
903 #define	sd_register_devid		ssd_register_devid
904 #define	sd_get_devid			ssd_get_devid
905 #define	sd_create_devid			ssd_create_devid
906 #define	sd_write_deviceid		ssd_write_deviceid
907 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
908 #define	sd_setup_pm			ssd_setup_pm
909 #define	sd_create_pm_components		ssd_create_pm_components
910 #define	sd_ddi_suspend			ssd_ddi_suspend
911 #define	sd_ddi_resume			ssd_ddi_resume
912 #define	sd_pm_state_change		ssd_pm_state_change
913 #define	sdpower				ssdpower
914 #define	sdattach			ssdattach
915 #define	sddetach			ssddetach
916 #define	sd_unit_attach			ssd_unit_attach
917 #define	sd_unit_detach			ssd_unit_detach
918 #define	sd_set_unit_attributes		ssd_set_unit_attributes
919 #define	sd_create_errstats		ssd_create_errstats
920 #define	sd_set_errstats			ssd_set_errstats
921 #define	sd_set_pstats			ssd_set_pstats
922 #define	sddump				ssddump
923 #define	sd_scsi_poll			ssd_scsi_poll
924 #define	sd_send_polled_RQS		ssd_send_polled_RQS
925 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
926 #define	sd_init_event_callbacks		ssd_init_event_callbacks
927 #define	sd_event_callback		ssd_event_callback
928 #define	sd_cache_control		ssd_cache_control
929 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
930 #define	sd_get_nv_sup			ssd_get_nv_sup
931 #define	sd_make_device			ssd_make_device
932 #define	sdopen				ssdopen
933 #define	sdclose				ssdclose
934 #define	sd_ready_and_valid		ssd_ready_and_valid
935 #define	sdmin				ssdmin
936 #define	sdread				ssdread
937 #define	sdwrite				ssdwrite
938 #define	sdaread				ssdaread
939 #define	sdawrite			ssdawrite
940 #define	sdstrategy			ssdstrategy
941 #define	sdioctl				ssdioctl
942 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
943 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
944 #define	sd_checksum_iostart		ssd_checksum_iostart
945 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
946 #define	sd_pm_iostart			ssd_pm_iostart
947 #define	sd_core_iostart			ssd_core_iostart
948 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
949 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
950 #define	sd_checksum_iodone		ssd_checksum_iodone
951 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
952 #define	sd_pm_iodone			ssd_pm_iodone
953 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
954 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
955 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
956 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
957 #define	sd_buf_iodone			ssd_buf_iodone
958 #define	sd_uscsi_strategy		ssd_uscsi_strategy
959 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
960 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
961 #define	sd_uscsi_iodone			ssd_uscsi_iodone
962 #define	sd_xbuf_strategy		ssd_xbuf_strategy
963 #define	sd_xbuf_init			ssd_xbuf_init
964 #define	sd_pm_entry			ssd_pm_entry
965 #define	sd_pm_exit			ssd_pm_exit
966 
967 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
968 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
969 
970 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
971 #define	sdintr				ssdintr
972 #define	sd_start_cmds			ssd_start_cmds
973 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
974 #define	sd_bioclone_alloc		ssd_bioclone_alloc
975 #define	sd_bioclone_free		ssd_bioclone_free
976 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
977 #define	sd_shadow_buf_free		ssd_shadow_buf_free
978 #define	sd_print_transport_rejected_message	\
979 					ssd_print_transport_rejected_message
980 #define	sd_retry_command		ssd_retry_command
981 #define	sd_set_retry_bp			ssd_set_retry_bp
982 #define	sd_send_request_sense_command	ssd_send_request_sense_command
983 #define	sd_start_retry_command		ssd_start_retry_command
984 #define	sd_start_direct_priority_command	\
985 					ssd_start_direct_priority_command
986 #define	sd_return_failed_command	ssd_return_failed_command
987 #define	sd_return_failed_command_no_restart	\
988 					ssd_return_failed_command_no_restart
989 #define	sd_return_command		ssd_return_command
990 #define	sd_sync_with_callback		ssd_sync_with_callback
991 #define	sdrunout			ssdrunout
992 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
993 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
994 #define	sd_reduce_throttle		ssd_reduce_throttle
995 #define	sd_restore_throttle		ssd_restore_throttle
996 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
997 #define	sd_init_cdb_limits		ssd_init_cdb_limits
998 #define	sd_pkt_status_good		ssd_pkt_status_good
999 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1000 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1001 #define	sd_pkt_status_reservation_conflict	\
1002 					ssd_pkt_status_reservation_conflict
1003 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1004 #define	sd_handle_request_sense		ssd_handle_request_sense
1005 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1006 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1007 #define	sd_validate_sense_data		ssd_validate_sense_data
1008 #define	sd_decode_sense			ssd_decode_sense
1009 #define	sd_print_sense_msg		ssd_print_sense_msg
1010 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1011 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1012 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1013 #define	sd_sense_key_medium_or_hardware_error	\
1014 					ssd_sense_key_medium_or_hardware_error
1015 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1016 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1017 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1018 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1019 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1020 #define	sd_sense_key_default		ssd_sense_key_default
1021 #define	sd_print_retry_msg		ssd_print_retry_msg
1022 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1023 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1024 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1025 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1026 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1027 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1028 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1029 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1030 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1031 #define	sd_reset_target			ssd_reset_target
1032 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1033 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1034 #define	sd_taskq_create			ssd_taskq_create
1035 #define	sd_taskq_delete			ssd_taskq_delete
1036 #define	sd_target_change_task		ssd_target_change_task
1037 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1038 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1039 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1040 #define	sd_media_change_task		ssd_media_change_task
1041 #define	sd_handle_mchange		ssd_handle_mchange
1042 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1043 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1044 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1045 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1046 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1047 					sd_send_scsi_feature_GET_CONFIGURATION
1048 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1049 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1050 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1051 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1052 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1053 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1054 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1055 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1056 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1057 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1058 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1059 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1060 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1061 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1062 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1063 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1064 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1065 #define	sd_alloc_rqs			ssd_alloc_rqs
1066 #define	sd_free_rqs			ssd_free_rqs
1067 #define	sd_dump_memory			ssd_dump_memory
1068 #define	sd_get_media_info_com		ssd_get_media_info_com
1069 #define	sd_get_media_info		ssd_get_media_info
1070 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1071 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1072 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1073 #define	sd_strtok_r			ssd_strtok_r
1074 #define	sd_set_properties		ssd_set_properties
1075 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1076 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1077 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1078 #define	sd_check_mhd			ssd_check_mhd
1079 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1080 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1081 #define	sd_sname			ssd_sname
1082 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1083 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1084 #define	sd_take_ownership		ssd_take_ownership
1085 #define	sd_reserve_release		ssd_reserve_release
1086 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1087 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1088 #define	sd_persistent_reservation_in_read_keys	\
1089 					ssd_persistent_reservation_in_read_keys
1090 #define	sd_persistent_reservation_in_read_resv	\
1091 					ssd_persistent_reservation_in_read_resv
1092 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1093 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1094 #define	sd_mhdioc_release		ssd_mhdioc_release
1095 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1096 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1097 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1098 #define	sr_change_blkmode		ssr_change_blkmode
1099 #define	sr_change_speed			ssr_change_speed
1100 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1101 #define	sr_pause_resume			ssr_pause_resume
1102 #define	sr_play_msf			ssr_play_msf
1103 #define	sr_play_trkind			ssr_play_trkind
1104 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1105 #define	sr_read_subchannel		ssr_read_subchannel
1106 #define	sr_read_tocentry		ssr_read_tocentry
1107 #define	sr_read_tochdr			ssr_read_tochdr
1108 #define	sr_read_cdda			ssr_read_cdda
1109 #define	sr_read_cdxa			ssr_read_cdxa
1110 #define	sr_read_mode1			ssr_read_mode1
1111 #define	sr_read_mode2			ssr_read_mode2
1112 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1113 #define	sr_sector_mode			ssr_sector_mode
1114 #define	sr_eject			ssr_eject
1115 #define	sr_ejected			ssr_ejected
1116 #define	sr_check_wp			ssr_check_wp
1117 #define	sd_watch_request_submit		ssd_watch_request_submit
1118 #define	sd_check_media			ssd_check_media
1119 #define	sd_media_watch_cb		ssd_media_watch_cb
1120 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1121 #define	sr_volume_ctrl			ssr_volume_ctrl
1122 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1123 #define	sd_log_page_supported		ssd_log_page_supported
1124 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1125 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1126 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1127 #define	sd_range_lock			ssd_range_lock
1128 #define	sd_get_range			ssd_get_range
1129 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1130 #define	sd_range_unlock			ssd_range_unlock
1131 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1132 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1133 
1134 #define	sd_iostart_chain		ssd_iostart_chain
1135 #define	sd_iodone_chain			ssd_iodone_chain
1136 #define	sd_initpkt_map			ssd_initpkt_map
1137 #define	sd_destroypkt_map		ssd_destroypkt_map
1138 #define	sd_chain_type_map		ssd_chain_type_map
1139 #define	sd_chain_index_map		ssd_chain_index_map
1140 
1141 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1142 #define	sd_failfast_flushq		ssd_failfast_flushq
1143 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1144 
1145 #define	sd_is_lsi			ssd_is_lsi
1146 #define	sd_tg_rdwr			ssd_tg_rdwr
1147 #define	sd_tg_getinfo			ssd_tg_getinfo
1148 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1149 
1150 #endif	/* #if (defined(__fibre)) */
1151 
1152 
1153 int _init(void);
1154 int _fini(void);
1155 int _info(struct modinfo *modinfop);
1156 
1157 /*PRINTFLIKE3*/
1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1159 /*PRINTFLIKE3*/
1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1161 /*PRINTFLIKE3*/
1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1163 
1164 static int sdprobe(dev_info_t *devi);
1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1166     void **result);
1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1168     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1169 
1170 /*
1171  * Smart probe for parallel scsi
1172  */
1173 static void sd_scsi_probe_cache_init(void);
1174 static void sd_scsi_probe_cache_fini(void);
1175 static void sd_scsi_clear_probe_cache(void);
1176 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1177 
1178 /*
1179  * Attached luns on target for parallel scsi
1180  */
1181 static void sd_scsi_target_lun_init(void);
1182 static void sd_scsi_target_lun_fini(void);
1183 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1185 
1186 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1187 
1188 /*
1189  * Using sd_ssc_init to establish sd_ssc_t struct
1190  * Using sd_ssc_send to send uscsi internal command
1191  * Using sd_ssc_fini to free sd_ssc_t struct
1192  */
1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1195     int flag, enum uio_seg dataspace, int path_flag);
1196 static void sd_ssc_fini(sd_ssc_t *ssc);
1197 
1198 /*
1199  * Using sd_ssc_assessment to set correct type-of-assessment
1200  * Using sd_ssc_post to post ereport & system log
1201  *       sd_ssc_post will call sd_ssc_print to print system log
1202  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1203  */
1204 static void sd_ssc_assessment(sd_ssc_t *ssc,
1205     enum sd_type_assessment tp_assess);
1206 
1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1210     enum sd_driver_assessment drv_assess);
1211 
1212 /*
1213  * Using sd_ssc_set_info to mark an un-decodable-data error.
1214  * Using sd_ssc_extract_info to transfer information from internal
1215  *       data structures to sd_ssc_t.
1216  */
1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1218     const char *fmt, ...);
1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1220     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1221 
1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1223     enum uio_seg dataspace, int path_flag);
1224 
1225 #ifdef _LP64
1226 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1227 static void	sd_reenable_dsense_task(void *arg);
1228 #endif /* _LP64 */
1229 
1230 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1231 
1232 static void sd_read_unit_properties(struct sd_lun *un);
1233 static int  sd_process_sdconf_file(struct sd_lun *un);
1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1238     int *data_list, sd_tunables *values);
1239 static void sd_process_sdconf_table(struct sd_lun *un);
1240 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1241 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1243 	int list_len, char *dataname_ptr);
1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1245     sd_tunables *prop_list);
1246 
1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1248     int reservation_flag);
1249 static int  sd_get_devid(sd_ssc_t *ssc);
1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1251 static int  sd_write_deviceid(sd_ssc_t *ssc);
1252 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1253 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1254 
1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1257 
1258 static int  sd_ddi_suspend(dev_info_t *devi);
1259 static int  sd_ddi_resume(dev_info_t *devi);
1260 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1261 static int  sdpower(dev_info_t *devi, int component, int level);
1262 
1263 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1264 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1265 static int  sd_unit_attach(dev_info_t *devi);
1266 static int  sd_unit_detach(dev_info_t *devi);
1267 
1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1269 static void sd_create_errstats(struct sd_lun *un, int instance);
1270 static void sd_set_errstats(struct sd_lun *un);
1271 static void sd_set_pstats(struct sd_lun *un);
1272 
1273 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1274 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1275 static int  sd_send_polled_RQS(struct sd_lun *un);
1276 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1277 
1278 #if (defined(__fibre))
1279 /*
1280  * Event callbacks (photon)
1281  */
1282 static void sd_init_event_callbacks(struct sd_lun *un);
1283 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1284 #endif
1285 
1286 /*
1287  * Defines for sd_cache_control
1288  */
1289 
1290 #define	SD_CACHE_ENABLE		1
1291 #define	SD_CACHE_DISABLE	0
1292 #define	SD_CACHE_NOCHANGE	-1
1293 
1294 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1295 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1296 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1297 static dev_t sd_make_device(dev_info_t *devi);
1298 static void  sd_check_solid_state(sd_ssc_t *ssc);
1299 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1300 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1301 	uint64_t capacity);
1302 
1303 /*
1304  * Driver entry point functions.
1305  */
1306 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1307 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1308 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1309 
1310 static void sdmin(struct buf *bp);
1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 
1316 static int sdstrategy(struct buf *bp);
1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1318 
1319 /*
1320  * Function prototypes for layering functions in the iostart chain.
1321  */
1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1323 	struct buf *bp);
1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1328 	struct buf *bp);
1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 
1332 /*
1333  * Function prototypes for layering functions in the iodone chain.
1334  */
1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1338 	struct buf *bp);
1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1343 	struct buf *bp);
1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1345 
1346 /*
1347  * Prototypes for functions to support buf(9S) based IO.
1348  */
1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1351 static void sd_destroypkt_for_buf(struct buf *);
1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1353 	struct buf *bp, int flags,
1354 	int (*callback)(caddr_t), caddr_t callback_arg,
1355 	diskaddr_t lba, uint32_t blockcount);
1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1357 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1358 
1359 /*
1360  * Prototypes for functions to support USCSI IO.
1361  */
1362 static int sd_uscsi_strategy(struct buf *bp);
1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1364 static void sd_destroypkt_for_uscsi(struct buf *);
1365 
1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1367 	uchar_t chain_type, void *pktinfop);
1368 
1369 static int  sd_pm_entry(struct sd_lun *un);
1370 static void sd_pm_exit(struct sd_lun *un);
1371 
1372 static void sd_pm_idletimeout_handler(void *arg);
1373 
1374 /*
1375  * sd_core internal functions (used at the sd_core_io layer).
1376  */
1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1378 static void sdintr(struct scsi_pkt *pktp);
1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1380 
1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1382 	enum uio_seg dataspace, int path_flag);
1383 
1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1385 	daddr_t blkno, int (*func)(struct buf *));
1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1387 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1388 static void sd_bioclone_free(struct buf *bp);
1389 static void sd_shadow_buf_free(struct buf *bp);
1390 
1391 static void sd_print_transport_rejected_message(struct sd_lun *un,
1392 	struct sd_xbuf *xp, int code);
1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1394     void *arg, int code);
1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1396     void *arg, int code);
1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1398     void *arg, int code);
1399 
1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1401 	int retry_check_flag,
1402 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1403 		int c),
1404 	void *user_arg, int failure_code,  clock_t retry_delay,
1405 	void (*statp)(kstat_io_t *));
1406 
1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1408 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1409 
1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1411 	struct scsi_pkt *pktp);
1412 static void sd_start_retry_command(void *arg);
1413 static void sd_start_direct_priority_command(void *arg);
1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1415 	int errcode);
1416 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1417 	struct buf *bp, int errcode);
1418 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1419 static void sd_sync_with_callback(struct sd_lun *un);
1420 static int sdrunout(caddr_t arg);
1421 
1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1424 
1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1426 static void sd_restore_throttle(void *arg);
1427 
1428 static void sd_init_cdb_limits(struct sd_lun *un);
1429 
1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 /*
1434  * Error handling functions
1435  */
1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1441 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 
1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1446 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1450 	struct sd_xbuf *xp, size_t actual_len);
1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1453 
1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1455 	void *arg, int code);
1456 
1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1458 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_not_ready(struct sd_lun *un,
1463 	uint8_t *sense_datap,
1464 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1466 	uint8_t *sense_datap,
1467 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1469 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_unit_attention(struct sd_lun *un,
1471 	uint8_t *sense_datap,
1472 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_sense_key_default(struct sd_lun *un,
1480 	uint8_t *sense_datap,
1481 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 
1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1484 	void *arg, int flag);
1485 
1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1487 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1497 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1499 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1501 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1502 
1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1504 
1505 static void sd_start_stop_unit_callback(void *arg);
1506 static void sd_start_stop_unit_task(void *arg);
1507 
1508 static void sd_taskq_create(void);
1509 static void sd_taskq_delete(void);
1510 static void sd_target_change_task(void *arg);
1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1514 static void sd_media_change_task(void *arg);
1515 
1516 static int sd_handle_mchange(struct sd_lun *un);
1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1519 	uint32_t *lbap, int path_flag);
1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1521 	uint32_t *lbap, uint32_t *psp, int path_flag);
1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1523 	int flag, int path_flag);
1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1525 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1528 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1530 	uchar_t usr_cmd, uchar_t *usr_bufp);
1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1532 	struct dk_callback *dkc);
1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1535 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1536 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1538 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1539 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1541 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1543 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1545 	size_t buflen, daddr_t start_block, int path_flag);
1546 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1547 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1548 	path_flag)
1549 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1550 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1551 	path_flag)
1552 
1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1554 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1555 	uint16_t param_ptr, int path_flag);
1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1557 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1559 
1560 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1561 static void sd_free_rqs(struct sd_lun *un);
1562 
1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1564 	uchar_t *data, int len, int fmt);
1565 static void sd_panic_for_res_conflict(struct sd_lun *un);
1566 
1567 /*
1568  * Disk Ioctl Function Prototypes
1569  */
1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1574 
1575 /*
1576  * Multi-host Ioctl Prototypes
1577  */
1578 static int sd_check_mhd(dev_t dev, int interval);
1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1581 static char *sd_sname(uchar_t status);
1582 static void sd_mhd_resvd_recover(void *arg);
1583 static void sd_resv_reclaim_thread();
1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1585 static int sd_reserve_release(dev_t dev, int cmd);
1586 static void sd_rmv_resv_reclaim_req(dev_t dev);
1587 static void sd_mhd_reset_notify_cb(caddr_t arg);
1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1589 	mhioc_inkeys_t *usrp, int flag);
1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1591 	mhioc_inresvs_t *usrp, int flag);
1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_release(dev_t dev);
1595 static int sd_mhdioc_register_devid(dev_t dev);
1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1598 
1599 /*
1600  * SCSI removable prototypes
1601  */
1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_pause_resume(dev_t dev, int mode);
1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1618 static int sr_eject(dev_t dev);
1619 static void sr_ejected(register struct sd_lun *un);
1620 static int sr_check_wp(dev_t dev);
1621 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1622 static int sd_check_media(dev_t dev, enum dkio_state state);
1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1624 static void sd_delayed_cv_broadcast(void *arg);
1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1627 
1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1629 
1630 /*
1631  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1632  */
1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1635 static void sd_wm_cache_destructor(void *wm, void *un);
1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1637 	daddr_t endb, ushort_t typ);
1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1639 	daddr_t endb);
1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1642 static void sd_read_modify_write_task(void * arg);
1643 static int
1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1645 	struct buf **bpp);
1646 
1647 
1648 /*
1649  * Function prototypes for failfast support.
1650  */
1651 static void sd_failfast_flushq(struct sd_lun *un);
1652 static int sd_failfast_flushq_callback(struct buf *bp);
1653 
1654 /*
1655  * Function prototypes to check for lsi devices
1656  */
1657 static void sd_is_lsi(struct sd_lun *un);
1658 
1659 /*
1660  * Function prototypes for partial DMA support
1661  */
1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1663 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1664 
1665 
1666 /* Function prototypes for cmlb */
1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1668     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1669 
1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1671 
1672 /*
1673  * For printing RMW warning message timely
1674  */
1675 static void sd_rmw_msg_print_handler(void *arg);
1676 
1677 /*
1678  * Constants for failfast support:
1679  *
1680  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1681  * failfast processing being performed.
1682  *
1683  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1684  * failfast processing on all bufs with B_FAILFAST set.
1685  */
1686 
1687 #define	SD_FAILFAST_INACTIVE		0
1688 #define	SD_FAILFAST_ACTIVE		1
1689 
1690 /*
1691  * Bitmask to control behavior of buf(9S) flushes when a transition to
1692  * the failfast state occurs. Optional bits include:
1693  *
1694  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1695  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1696  * be flushed.
1697  *
1698  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1699  * driver, in addition to the regular wait queue. This includes the xbuf
1700  * queues. When clear, only the driver's wait queue will be flushed.
1701  */
1702 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1703 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1704 
1705 /*
1706  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1707  * to flush all queues within the driver.
1708  */
1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1710 
1711 
1712 /*
1713  * SD Testing Fault Injection
1714  */
1715 #ifdef SD_FAULT_INJECTION
1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1717 static void sd_faultinjection(struct scsi_pkt *pktp);
1718 static void sd_injection_log(char *buf, struct sd_lun *un);
1719 #endif
1720 
1721 /*
1722  * Device driver ops vector
1723  */
1724 static struct cb_ops sd_cb_ops = {
1725 	sdopen,			/* open */
1726 	sdclose,		/* close */
1727 	sdstrategy,		/* strategy */
1728 	nodev,			/* print */
1729 	sddump,			/* dump */
1730 	sdread,			/* read */
1731 	sdwrite,		/* write */
1732 	sdioctl,		/* ioctl */
1733 	nodev,			/* devmap */
1734 	nodev,			/* mmap */
1735 	nodev,			/* segmap */
1736 	nochpoll,		/* poll */
1737 	sd_prop_op,		/* cb_prop_op */
1738 	0,			/* streamtab  */
1739 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1740 	CB_REV,			/* cb_rev */
1741 	sdaread, 		/* async I/O read entry point */
1742 	sdawrite		/* async I/O write entry point */
1743 };
1744 
1745 struct dev_ops sd_ops = {
1746 	DEVO_REV,		/* devo_rev, */
1747 	0,			/* refcnt  */
1748 	sdinfo,			/* info */
1749 	nulldev,		/* identify */
1750 	sdprobe,		/* probe */
1751 	sdattach,		/* attach */
1752 	sddetach,		/* detach */
1753 	nodev,			/* reset */
1754 	&sd_cb_ops,		/* driver operations */
1755 	NULL,			/* bus operations */
1756 	sdpower,		/* power */
1757 	ddi_quiesce_not_needed,		/* quiesce */
1758 };
1759 
1760 /*
1761  * This is the loadable module wrapper.
1762  */
1763 #include <sys/modctl.h>
1764 
1765 #ifndef XPV_HVM_DRIVER
1766 static struct modldrv modldrv = {
1767 	&mod_driverops,		/* Type of module. This one is a driver */
1768 	SD_MODULE_NAME,		/* Module name. */
1769 	&sd_ops			/* driver ops */
1770 };
1771 
1772 static struct modlinkage modlinkage = {
1773 	MODREV_1, &modldrv, NULL
1774 };
1775 
1776 #else /* XPV_HVM_DRIVER */
1777 static struct modlmisc modlmisc = {
1778 	&mod_miscops,		/* Type of module. This one is a misc */
1779 	"HVM " SD_MODULE_NAME,		/* Module name. */
1780 };
1781 
1782 static struct modlinkage modlinkage = {
1783 	MODREV_1, &modlmisc, NULL
1784 };
1785 
1786 #endif /* XPV_HVM_DRIVER */
1787 
1788 static cmlb_tg_ops_t sd_tgops = {
1789 	TG_DK_OPS_VERSION_1,
1790 	sd_tg_rdwr,
1791 	sd_tg_getinfo
1792 };
1793 
1794 static struct scsi_asq_key_strings sd_additional_codes[] = {
1795 	0x81, 0, "Logical Unit is Reserved",
1796 	0x85, 0, "Audio Address Not Valid",
1797 	0xb6, 0, "Media Load Mechanism Failed",
1798 	0xB9, 0, "Audio Play Operation Aborted",
1799 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1800 	0x53, 2, "Medium removal prevented",
1801 	0x6f, 0, "Authentication failed during key exchange",
1802 	0x6f, 1, "Key not present",
1803 	0x6f, 2, "Key not established",
1804 	0x6f, 3, "Read without proper authentication",
1805 	0x6f, 4, "Mismatched region to this logical unit",
1806 	0x6f, 5, "Region reset count error",
1807 	0xffff, 0x0, NULL
1808 };
1809 
1810 
1811 /*
1812  * Struct for passing printing information for sense data messages
1813  */
1814 struct sd_sense_info {
1815 	int	ssi_severity;
1816 	int	ssi_pfa_flag;
1817 };
1818 
1819 /*
1820  * Table of function pointers for iostart-side routines. Separate "chains"
1821  * of layered function calls are formed by placing the function pointers
1822  * sequentially in the desired order. Functions are called according to an
1823  * incrementing table index ordering. The last function in each chain must
1824  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1825  * in the sd_iodone_chain[] array.
1826  *
1827  * Note: It may seem more natural to organize both the iostart and iodone
1828  * functions together, into an array of structures (or some similar
1829  * organization) with a common index, rather than two separate arrays which
1830  * must be maintained in synchronization. The purpose of this division is
1831  * to achieve improved performance: individual arrays allows for more
1832  * effective cache line utilization on certain platforms.
1833  */
1834 
1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1836 
1837 
1838 static sd_chain_t sd_iostart_chain[] = {
1839 
1840 	/* Chain for buf IO for disk drive targets (PM enabled) */
1841 	sd_mapblockaddr_iostart,	/* Index: 0 */
1842 	sd_pm_iostart,			/* Index: 1 */
1843 	sd_core_iostart,		/* Index: 2 */
1844 
1845 	/* Chain for buf IO for disk drive targets (PM disabled) */
1846 	sd_mapblockaddr_iostart,	/* Index: 3 */
1847 	sd_core_iostart,		/* Index: 4 */
1848 
1849 	/*
1850 	 * Chain for buf IO for removable-media or large sector size
1851 	 * disk drive targets with RMW needed (PM enabled)
1852 	 */
1853 	sd_mapblockaddr_iostart,	/* Index: 5 */
1854 	sd_mapblocksize_iostart,	/* Index: 6 */
1855 	sd_pm_iostart,			/* Index: 7 */
1856 	sd_core_iostart,		/* Index: 8 */
1857 
1858 	/*
1859 	 * Chain for buf IO for removable-media or large sector size
1860 	 * disk drive targets with RMW needed (PM disabled)
1861 	 */
1862 	sd_mapblockaddr_iostart,	/* Index: 9 */
1863 	sd_mapblocksize_iostart,	/* Index: 10 */
1864 	sd_core_iostart,		/* Index: 11 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1867 	sd_mapblockaddr_iostart,	/* Index: 12 */
1868 	sd_checksum_iostart,		/* Index: 13 */
1869 	sd_pm_iostart,			/* Index: 14 */
1870 	sd_core_iostart,		/* Index: 15 */
1871 
1872 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1873 	sd_mapblockaddr_iostart,	/* Index: 16 */
1874 	sd_checksum_iostart,		/* Index: 17 */
1875 	sd_core_iostart,		/* Index: 18 */
1876 
1877 	/* Chain for USCSI commands (all targets) */
1878 	sd_pm_iostart,			/* Index: 19 */
1879 	sd_core_iostart,		/* Index: 20 */
1880 
1881 	/* Chain for checksumming USCSI commands (all targets) */
1882 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1883 	sd_pm_iostart,			/* Index: 22 */
1884 	sd_core_iostart,		/* Index: 23 */
1885 
1886 	/* Chain for "direct" USCSI commands (all targets) */
1887 	sd_core_iostart,		/* Index: 24 */
1888 
1889 	/* Chain for "direct priority" USCSI commands (all targets) */
1890 	sd_core_iostart,		/* Index: 25 */
1891 
1892 	/*
1893 	 * Chain for buf IO for large sector size disk drive targets
1894 	 * with RMW needed with checksumming (PM enabled)
1895 	 */
1896 	sd_mapblockaddr_iostart,	/* Index: 26 */
1897 	sd_mapblocksize_iostart,	/* Index: 27 */
1898 	sd_checksum_iostart,		/* Index: 28 */
1899 	sd_pm_iostart,			/* Index: 29 */
1900 	sd_core_iostart,		/* Index: 30 */
1901 
1902 	/*
1903 	 * Chain for buf IO for large sector size disk drive targets
1904 	 * with RMW needed with checksumming (PM disabled)
1905 	 */
1906 	sd_mapblockaddr_iostart,	/* Index: 31 */
1907 	sd_mapblocksize_iostart,	/* Index: 32 */
1908 	sd_checksum_iostart,		/* Index: 33 */
1909 	sd_core_iostart,		/* Index: 34 */
1910 
1911 };
1912 
1913 /*
1914  * Macros to locate the first function of each iostart chain in the
1915  * sd_iostart_chain[] array. These are located by the index in the array.
1916  */
1917 #define	SD_CHAIN_DISK_IOSTART			0
1918 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1919 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1920 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1921 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1922 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1923 #define	SD_CHAIN_CHKSUM_IOSTART			12
1924 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1925 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1926 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1927 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1928 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1929 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1930 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1931 
1932 
1933 /*
1934  * Table of function pointers for the iodone-side routines for the driver-
1935  * internal layering mechanism.  The calling sequence for iodone routines
1936  * uses a decrementing table index, so the last routine called in a chain
1937  * must be at the lowest array index location for that chain.  The last
1938  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1939  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1940  * of the functions in an iodone side chain must correspond to the ordering
1941  * of the iostart routines for that chain.  Note that there is no iodone
1942  * side routine that corresponds to sd_core_iostart(), so there is no
1943  * entry in the table for this.
1944  */
1945 
1946 static sd_chain_t sd_iodone_chain[] = {
1947 
1948 	/* Chain for buf IO for disk drive targets (PM enabled) */
1949 	sd_buf_iodone,			/* Index: 0 */
1950 	sd_mapblockaddr_iodone,		/* Index: 1 */
1951 	sd_pm_iodone,			/* Index: 2 */
1952 
1953 	/* Chain for buf IO for disk drive targets (PM disabled) */
1954 	sd_buf_iodone,			/* Index: 3 */
1955 	sd_mapblockaddr_iodone,		/* Index: 4 */
1956 
1957 	/*
1958 	 * Chain for buf IO for removable-media or large sector size
1959 	 * disk drive targets with RMW needed (PM enabled)
1960 	 */
1961 	sd_buf_iodone,			/* Index: 5 */
1962 	sd_mapblockaddr_iodone,		/* Index: 6 */
1963 	sd_mapblocksize_iodone,		/* Index: 7 */
1964 	sd_pm_iodone,			/* Index: 8 */
1965 
1966 	/*
1967 	 * Chain for buf IO for removable-media or large sector size
1968 	 * disk drive targets with RMW needed (PM disabled)
1969 	 */
1970 	sd_buf_iodone,			/* Index: 9 */
1971 	sd_mapblockaddr_iodone,		/* Index: 10 */
1972 	sd_mapblocksize_iodone,		/* Index: 11 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1975 	sd_buf_iodone,			/* Index: 12 */
1976 	sd_mapblockaddr_iodone,		/* Index: 13 */
1977 	sd_checksum_iodone,		/* Index: 14 */
1978 	sd_pm_iodone,			/* Index: 15 */
1979 
1980 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1981 	sd_buf_iodone,			/* Index: 16 */
1982 	sd_mapblockaddr_iodone,		/* Index: 17 */
1983 	sd_checksum_iodone,		/* Index: 18 */
1984 
1985 	/* Chain for USCSI commands (non-checksum targets) */
1986 	sd_uscsi_iodone,		/* Index: 19 */
1987 	sd_pm_iodone,			/* Index: 20 */
1988 
1989 	/* Chain for USCSI commands (checksum targets) */
1990 	sd_uscsi_iodone,		/* Index: 21 */
1991 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1992 	sd_pm_iodone,			/* Index: 22 */
1993 
1994 	/* Chain for "direct" USCSI commands (all targets) */
1995 	sd_uscsi_iodone,		/* Index: 24 */
1996 
1997 	/* Chain for "direct priority" USCSI commands (all targets) */
1998 	sd_uscsi_iodone,		/* Index: 25 */
1999 
2000 	/*
2001 	 * Chain for buf IO for large sector size disk drive targets
2002 	 * with checksumming (PM enabled)
2003 	 */
2004 	sd_buf_iodone,			/* Index: 26 */
2005 	sd_mapblockaddr_iodone,		/* Index: 27 */
2006 	sd_mapblocksize_iodone,		/* Index: 28 */
2007 	sd_checksum_iodone,		/* Index: 29 */
2008 	sd_pm_iodone,			/* Index: 30 */
2009 
2010 	/*
2011 	 * Chain for buf IO for large sector size disk drive targets
2012 	 * with checksumming (PM disabled)
2013 	 */
2014 	sd_buf_iodone,			/* Index: 31 */
2015 	sd_mapblockaddr_iodone,		/* Index: 32 */
2016 	sd_mapblocksize_iodone,		/* Index: 33 */
2017 	sd_checksum_iodone,		/* Index: 34 */
2018 };
2019 
2020 
2021 /*
2022  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2023  * each iodone-side chain. These are located by the array index, but as the
2024  * iodone side functions are called in a decrementing-index order, the
2025  * highest index number in each chain must be specified (as these correspond
2026  * to the first function in the iodone chain that will be called by the core
2027  * at IO completion time).
2028  */
2029 
2030 #define	SD_CHAIN_DISK_IODONE			2
2031 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2032 #define	SD_CHAIN_RMMEDIA_IODONE			8
2033 #define	SD_CHAIN_MSS_DISK_IODONE		8
2034 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2035 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2036 #define	SD_CHAIN_CHKSUM_IODONE			15
2037 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2038 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2039 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2040 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2041 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2042 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2043 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2044 
2045 
2046 
2047 /*
2048  * Array to map a layering chain index to the appropriate initpkt routine.
2049  * The redundant entries are present so that the index used for accessing
2050  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2051  * with this table as well.
2052  */
2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2054 
2055 static sd_initpkt_t	sd_initpkt_map[] = {
2056 
2057 	/* Chain for buf IO for disk drive targets (PM enabled) */
2058 	sd_initpkt_for_buf,		/* Index: 0 */
2059 	sd_initpkt_for_buf,		/* Index: 1 */
2060 	sd_initpkt_for_buf,		/* Index: 2 */
2061 
2062 	/* Chain for buf IO for disk drive targets (PM disabled) */
2063 	sd_initpkt_for_buf,		/* Index: 3 */
2064 	sd_initpkt_for_buf,		/* Index: 4 */
2065 
2066 	/*
2067 	 * Chain for buf IO for removable-media or large sector size
2068 	 * disk drive targets (PM enabled)
2069 	 */
2070 	sd_initpkt_for_buf,		/* Index: 5 */
2071 	sd_initpkt_for_buf,		/* Index: 6 */
2072 	sd_initpkt_for_buf,		/* Index: 7 */
2073 	sd_initpkt_for_buf,		/* Index: 8 */
2074 
2075 	/*
2076 	 * Chain for buf IO for removable-media or large sector size
2077 	 * disk drive targets (PM disabled)
2078 	 */
2079 	sd_initpkt_for_buf,		/* Index: 9 */
2080 	sd_initpkt_for_buf,		/* Index: 10 */
2081 	sd_initpkt_for_buf,		/* Index: 11 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2084 	sd_initpkt_for_buf,		/* Index: 12 */
2085 	sd_initpkt_for_buf,		/* Index: 13 */
2086 	sd_initpkt_for_buf,		/* Index: 14 */
2087 	sd_initpkt_for_buf,		/* Index: 15 */
2088 
2089 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2090 	sd_initpkt_for_buf,		/* Index: 16 */
2091 	sd_initpkt_for_buf,		/* Index: 17 */
2092 	sd_initpkt_for_buf,		/* Index: 18 */
2093 
2094 	/* Chain for USCSI commands (non-checksum targets) */
2095 	sd_initpkt_for_uscsi,		/* Index: 19 */
2096 	sd_initpkt_for_uscsi,		/* Index: 20 */
2097 
2098 	/* Chain for USCSI commands (checksum targets) */
2099 	sd_initpkt_for_uscsi,		/* Index: 21 */
2100 	sd_initpkt_for_uscsi,		/* Index: 22 */
2101 	sd_initpkt_for_uscsi,		/* Index: 22 */
2102 
2103 	/* Chain for "direct" USCSI commands (all targets) */
2104 	sd_initpkt_for_uscsi,		/* Index: 24 */
2105 
2106 	/* Chain for "direct priority" USCSI commands (all targets) */
2107 	sd_initpkt_for_uscsi,		/* Index: 25 */
2108 
2109 	/*
2110 	 * Chain for buf IO for large sector size disk drive targets
2111 	 * with checksumming (PM enabled)
2112 	 */
2113 	sd_initpkt_for_buf,		/* Index: 26 */
2114 	sd_initpkt_for_buf,		/* Index: 27 */
2115 	sd_initpkt_for_buf,		/* Index: 28 */
2116 	sd_initpkt_for_buf,		/* Index: 29 */
2117 	sd_initpkt_for_buf,		/* Index: 30 */
2118 
2119 	/*
2120 	 * Chain for buf IO for large sector size disk drive targets
2121 	 * with checksumming (PM disabled)
2122 	 */
2123 	sd_initpkt_for_buf,		/* Index: 31 */
2124 	sd_initpkt_for_buf,		/* Index: 32 */
2125 	sd_initpkt_for_buf,		/* Index: 33 */
2126 	sd_initpkt_for_buf,		/* Index: 34 */
2127 };
2128 
2129 
2130 /*
2131  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2132  * The redundant entries are present so that the index used for accessing
2133  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2134  * with this table as well.
2135  */
2136 typedef void (*sd_destroypkt_t)(struct buf *);
2137 
2138 static sd_destroypkt_t	sd_destroypkt_map[] = {
2139 
2140 	/* Chain for buf IO for disk drive targets (PM enabled) */
2141 	sd_destroypkt_for_buf,		/* Index: 0 */
2142 	sd_destroypkt_for_buf,		/* Index: 1 */
2143 	sd_destroypkt_for_buf,		/* Index: 2 */
2144 
2145 	/* Chain for buf IO for disk drive targets (PM disabled) */
2146 	sd_destroypkt_for_buf,		/* Index: 3 */
2147 	sd_destroypkt_for_buf,		/* Index: 4 */
2148 
2149 	/*
2150 	 * Chain for buf IO for removable-media or large sector size
2151 	 * disk drive targets (PM enabled)
2152 	 */
2153 	sd_destroypkt_for_buf,		/* Index: 5 */
2154 	sd_destroypkt_for_buf,		/* Index: 6 */
2155 	sd_destroypkt_for_buf,		/* Index: 7 */
2156 	sd_destroypkt_for_buf,		/* Index: 8 */
2157 
2158 	/*
2159 	 * Chain for buf IO for removable-media or large sector size
2160 	 * disk drive targets (PM disabled)
2161 	 */
2162 	sd_destroypkt_for_buf,		/* Index: 9 */
2163 	sd_destroypkt_for_buf,		/* Index: 10 */
2164 	sd_destroypkt_for_buf,		/* Index: 11 */
2165 
2166 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2167 	sd_destroypkt_for_buf,		/* Index: 12 */
2168 	sd_destroypkt_for_buf,		/* Index: 13 */
2169 	sd_destroypkt_for_buf,		/* Index: 14 */
2170 	sd_destroypkt_for_buf,		/* Index: 15 */
2171 
2172 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2173 	sd_destroypkt_for_buf,		/* Index: 16 */
2174 	sd_destroypkt_for_buf,		/* Index: 17 */
2175 	sd_destroypkt_for_buf,		/* Index: 18 */
2176 
2177 	/* Chain for USCSI commands (non-checksum targets) */
2178 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2179 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2180 
2181 	/* Chain for USCSI commands (checksum targets) */
2182 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2183 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2184 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2185 
2186 	/* Chain for "direct" USCSI commands (all targets) */
2187 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2188 
2189 	/* Chain for "direct priority" USCSI commands (all targets) */
2190 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2191 
2192 	/*
2193 	 * Chain for buf IO for large sector size disk drive targets
2194 	 * with checksumming (PM disabled)
2195 	 */
2196 	sd_destroypkt_for_buf,		/* Index: 26 */
2197 	sd_destroypkt_for_buf,		/* Index: 27 */
2198 	sd_destroypkt_for_buf,		/* Index: 28 */
2199 	sd_destroypkt_for_buf,		/* Index: 29 */
2200 	sd_destroypkt_for_buf,		/* Index: 30 */
2201 
2202 	/*
2203 	 * Chain for buf IO for large sector size disk drive targets
2204 	 * with checksumming (PM enabled)
2205 	 */
2206 	sd_destroypkt_for_buf,		/* Index: 31 */
2207 	sd_destroypkt_for_buf,		/* Index: 32 */
2208 	sd_destroypkt_for_buf,		/* Index: 33 */
2209 	sd_destroypkt_for_buf,		/* Index: 34 */
2210 };
2211 
2212 
2213 
2214 /*
2215  * Array to map a layering chain index to the appropriate chain "type".
2216  * The chain type indicates a specific property/usage of the chain.
2217  * The redundant entries are present so that the index used for accessing
2218  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2219  * with this table as well.
2220  */
2221 
2222 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2223 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2224 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2225 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2226 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2227 						/* (for error recovery) */
2228 
2229 static int sd_chain_type_map[] = {
2230 
2231 	/* Chain for buf IO for disk drive targets (PM enabled) */
2232 	SD_CHAIN_BUFIO,			/* Index: 0 */
2233 	SD_CHAIN_BUFIO,			/* Index: 1 */
2234 	SD_CHAIN_BUFIO,			/* Index: 2 */
2235 
2236 	/* Chain for buf IO for disk drive targets (PM disabled) */
2237 	SD_CHAIN_BUFIO,			/* Index: 3 */
2238 	SD_CHAIN_BUFIO,			/* Index: 4 */
2239 
2240 	/*
2241 	 * Chain for buf IO for removable-media or large sector size
2242 	 * disk drive targets (PM enabled)
2243 	 */
2244 	SD_CHAIN_BUFIO,			/* Index: 5 */
2245 	SD_CHAIN_BUFIO,			/* Index: 6 */
2246 	SD_CHAIN_BUFIO,			/* Index: 7 */
2247 	SD_CHAIN_BUFIO,			/* Index: 8 */
2248 
2249 	/*
2250 	 * Chain for buf IO for removable-media or large sector size
2251 	 * disk drive targets (PM disabled)
2252 	 */
2253 	SD_CHAIN_BUFIO,			/* Index: 9 */
2254 	SD_CHAIN_BUFIO,			/* Index: 10 */
2255 	SD_CHAIN_BUFIO,			/* Index: 11 */
2256 
2257 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2258 	SD_CHAIN_BUFIO,			/* Index: 12 */
2259 	SD_CHAIN_BUFIO,			/* Index: 13 */
2260 	SD_CHAIN_BUFIO,			/* Index: 14 */
2261 	SD_CHAIN_BUFIO,			/* Index: 15 */
2262 
2263 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2264 	SD_CHAIN_BUFIO,			/* Index: 16 */
2265 	SD_CHAIN_BUFIO,			/* Index: 17 */
2266 	SD_CHAIN_BUFIO,			/* Index: 18 */
2267 
2268 	/* Chain for USCSI commands (non-checksum targets) */
2269 	SD_CHAIN_USCSI,			/* Index: 19 */
2270 	SD_CHAIN_USCSI,			/* Index: 20 */
2271 
2272 	/* Chain for USCSI commands (checksum targets) */
2273 	SD_CHAIN_USCSI,			/* Index: 21 */
2274 	SD_CHAIN_USCSI,			/* Index: 22 */
2275 	SD_CHAIN_USCSI,			/* Index: 23 */
2276 
2277 	/* Chain for "direct" USCSI commands (all targets) */
2278 	SD_CHAIN_DIRECT,		/* Index: 24 */
2279 
2280 	/* Chain for "direct priority" USCSI commands (all targets) */
2281 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2282 
2283 	/*
2284 	 * Chain for buf IO for large sector size disk drive targets
2285 	 * with checksumming (PM enabled)
2286 	 */
2287 	SD_CHAIN_BUFIO,			/* Index: 26 */
2288 	SD_CHAIN_BUFIO,			/* Index: 27 */
2289 	SD_CHAIN_BUFIO,			/* Index: 28 */
2290 	SD_CHAIN_BUFIO,			/* Index: 29 */
2291 	SD_CHAIN_BUFIO,			/* Index: 30 */
2292 
2293 	/*
2294 	 * Chain for buf IO for large sector size disk drive targets
2295 	 * with checksumming (PM disabled)
2296 	 */
2297 	SD_CHAIN_BUFIO,			/* Index: 31 */
2298 	SD_CHAIN_BUFIO,			/* Index: 32 */
2299 	SD_CHAIN_BUFIO,			/* Index: 33 */
2300 	SD_CHAIN_BUFIO,			/* Index: 34 */
2301 };
2302 
2303 
2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2305 #define	SD_IS_BUFIO(xp)			\
2306 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2307 
2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2309 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2310 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2311 
2312 
2313 
2314 /*
2315  * Struct, array, and macros to map a specific chain to the appropriate
2316  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2317  *
2318  * The sd_chain_index_map[] array is used at attach time to set the various
2319  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2320  * chain to be used with the instance. This allows different instances to use
2321  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2322  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2323  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2324  * dynamically & without the use of locking; and (2) a layer may update the
2325  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2326  * to allow for deferred processing of an IO within the same chain from a
2327  * different execution context.
2328  */
2329 
2330 struct sd_chain_index {
2331 	int	sci_iostart_index;
2332 	int	sci_iodone_index;
2333 };
2334 
2335 static struct sd_chain_index	sd_chain_index_map[] = {
2336 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2337 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2338 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2339 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2340 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2341 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2342 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2343 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2344 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2345 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2346 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2347 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2348 
2349 };
2350 
2351 
2352 /*
2353  * The following are indexes into the sd_chain_index_map[] array.
2354  */
2355 
2356 /* un->un_buf_chain_type must be set to one of these */
2357 #define	SD_CHAIN_INFO_DISK		0
2358 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2359 #define	SD_CHAIN_INFO_RMMEDIA		2
2360 #define	SD_CHAIN_INFO_MSS_DISK		2
2361 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2362 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2363 #define	SD_CHAIN_INFO_CHKSUM		4
2364 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2365 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2366 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2367 
2368 /* un->un_uscsi_chain_type must be set to one of these */
2369 #define	SD_CHAIN_INFO_USCSI_CMD		6
2370 /* USCSI with PM disabled is the same as DIRECT */
2371 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2372 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2373 
2374 /* un->un_direct_chain_type must be set to one of these */
2375 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2376 
2377 /* un->un_priority_chain_type must be set to one of these */
2378 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2379 
2380 /* size for devid inquiries */
2381 #define	MAX_INQUIRY_SIZE		0xF0
2382 
2383 /*
2384  * Macros used by functions to pass a given buf(9S) struct along to the
2385  * next function in the layering chain for further processing.
2386  *
2387  * In the following macros, passing more than three arguments to the called
2388  * routines causes the optimizer for the SPARC compiler to stop doing tail
2389  * call elimination which results in significant performance degradation.
2390  */
2391 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2392 	((*(sd_iostart_chain[index]))(index, un, bp))
2393 
2394 #define	SD_BEGIN_IODONE(index, un, bp)	\
2395 	((*(sd_iodone_chain[index]))(index, un, bp))
2396 
2397 #define	SD_NEXT_IOSTART(index, un, bp)				\
2398 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2399 
2400 #define	SD_NEXT_IODONE(index, un, bp)				\
2401 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2402 
2403 /*
2404  *    Function: _init
2405  *
2406  * Description: This is the driver _init(9E) entry point.
2407  *
2408  * Return Code: Returns the value from mod_install(9F) or
2409  *		ddi_soft_state_init(9F) as appropriate.
2410  *
2411  *     Context: Called when driver module loaded.
2412  */
2413 
2414 int
2415 _init(void)
2416 {
2417 	int	err;
2418 
2419 	/* establish driver name from module name */
2420 	sd_label = (char *)mod_modname(&modlinkage);
2421 
2422 #ifndef XPV_HVM_DRIVER
2423 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2424 	    SD_MAXUNIT);
2425 	if (err != 0) {
2426 		return (err);
2427 	}
2428 
2429 #else /* XPV_HVM_DRIVER */
2430 	/* Remove the leading "hvm_" from the module name */
2431 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2432 	sd_label += strlen("hvm_");
2433 
2434 #endif /* XPV_HVM_DRIVER */
2435 
2436 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2437 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2438 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2439 
2440 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2441 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2442 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2443 
2444 	/*
2445 	 * it's ok to init here even for fibre device
2446 	 */
2447 	sd_scsi_probe_cache_init();
2448 
2449 	sd_scsi_target_lun_init();
2450 
2451 	/*
2452 	 * Creating taskq before mod_install ensures that all callers (threads)
2453 	 * that enter the module after a successful mod_install encounter
2454 	 * a valid taskq.
2455 	 */
2456 	sd_taskq_create();
2457 
2458 	err = mod_install(&modlinkage);
2459 	if (err != 0) {
2460 		/* delete taskq if install fails */
2461 		sd_taskq_delete();
2462 
2463 		mutex_destroy(&sd_detach_mutex);
2464 		mutex_destroy(&sd_log_mutex);
2465 		mutex_destroy(&sd_label_mutex);
2466 
2467 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2468 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2469 		cv_destroy(&sd_tr.srq_inprocess_cv);
2470 
2471 		sd_scsi_probe_cache_fini();
2472 
2473 		sd_scsi_target_lun_fini();
2474 
2475 #ifndef XPV_HVM_DRIVER
2476 		ddi_soft_state_fini(&sd_state);
2477 #endif /* !XPV_HVM_DRIVER */
2478 		return (err);
2479 	}
2480 
2481 	return (err);
2482 }
2483 
2484 
2485 /*
2486  *    Function: _fini
2487  *
2488  * Description: This is the driver _fini(9E) entry point.
2489  *
2490  * Return Code: Returns the value from mod_remove(9F)
2491  *
2492  *     Context: Called when driver module is unloaded.
2493  */
2494 
2495 int
2496 _fini(void)
2497 {
2498 	int err;
2499 
2500 	if ((err = mod_remove(&modlinkage)) != 0) {
2501 		return (err);
2502 	}
2503 
2504 	sd_taskq_delete();
2505 
2506 	mutex_destroy(&sd_detach_mutex);
2507 	mutex_destroy(&sd_log_mutex);
2508 	mutex_destroy(&sd_label_mutex);
2509 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2510 
2511 	sd_scsi_probe_cache_fini();
2512 
2513 	sd_scsi_target_lun_fini();
2514 
2515 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2516 	cv_destroy(&sd_tr.srq_inprocess_cv);
2517 
2518 #ifndef XPV_HVM_DRIVER
2519 	ddi_soft_state_fini(&sd_state);
2520 #endif /* !XPV_HVM_DRIVER */
2521 
2522 	return (err);
2523 }
2524 
2525 
2526 /*
2527  *    Function: _info
2528  *
2529  * Description: This is the driver _info(9E) entry point.
2530  *
2531  *   Arguments: modinfop - pointer to the driver modinfo structure
2532  *
2533  * Return Code: Returns the value from mod_info(9F).
2534  *
2535  *     Context: Kernel thread context
2536  */
2537 
2538 int
2539 _info(struct modinfo *modinfop)
2540 {
2541 	return (mod_info(&modlinkage, modinfop));
2542 }
2543 
2544 
2545 /*
2546  * The following routines implement the driver message logging facility.
2547  * They provide component- and level- based debug output filtering.
2548  * Output may also be restricted to messages for a single instance by
2549  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2550  * to NULL, then messages for all instances are printed.
2551  *
2552  * These routines have been cloned from each other due to the language
2553  * constraints of macros and variable argument list processing.
2554  */
2555 
2556 
2557 /*
2558  *    Function: sd_log_err
2559  *
2560  * Description: This routine is called by the SD_ERROR macro for debug
2561  *		logging of error conditions.
2562  *
2563  *   Arguments: comp - driver component being logged
2564  *		dev  - pointer to driver info structure
2565  *		fmt  - error string and format to be logged
2566  */
2567 
2568 static void
2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2570 {
2571 	va_list		ap;
2572 	dev_info_t	*dev;
2573 
2574 	ASSERT(un != NULL);
2575 	dev = SD_DEVINFO(un);
2576 	ASSERT(dev != NULL);
2577 
2578 	/*
2579 	 * Filter messages based on the global component and level masks.
2580 	 * Also print if un matches the value of sd_debug_un, or if
2581 	 * sd_debug_un is set to NULL.
2582 	 */
2583 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2584 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2585 		mutex_enter(&sd_log_mutex);
2586 		va_start(ap, fmt);
2587 		(void) vsprintf(sd_log_buf, fmt, ap);
2588 		va_end(ap);
2589 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2590 		mutex_exit(&sd_log_mutex);
2591 	}
2592 #ifdef SD_FAULT_INJECTION
2593 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2594 	if (un->sd_injection_mask & comp) {
2595 		mutex_enter(&sd_log_mutex);
2596 		va_start(ap, fmt);
2597 		(void) vsprintf(sd_log_buf, fmt, ap);
2598 		va_end(ap);
2599 		sd_injection_log(sd_log_buf, un);
2600 		mutex_exit(&sd_log_mutex);
2601 	}
2602 #endif
2603 }
2604 
2605 
2606 /*
2607  *    Function: sd_log_info
2608  *
2609  * Description: This routine is called by the SD_INFO macro for debug
2610  *		logging of general purpose informational conditions.
2611  *
2612  *   Arguments: comp - driver component being logged
2613  *		dev  - pointer to driver info structure
2614  *		fmt  - info string and format to be logged
2615  */
2616 
2617 static void
2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2619 {
2620 	va_list		ap;
2621 	dev_info_t	*dev;
2622 
2623 	ASSERT(un != NULL);
2624 	dev = SD_DEVINFO(un);
2625 	ASSERT(dev != NULL);
2626 
2627 	/*
2628 	 * Filter messages based on the global component and level masks.
2629 	 * Also print if un matches the value of sd_debug_un, or if
2630 	 * sd_debug_un is set to NULL.
2631 	 */
2632 	if ((sd_component_mask & component) &&
2633 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2634 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2635 		mutex_enter(&sd_log_mutex);
2636 		va_start(ap, fmt);
2637 		(void) vsprintf(sd_log_buf, fmt, ap);
2638 		va_end(ap);
2639 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2640 		mutex_exit(&sd_log_mutex);
2641 	}
2642 #ifdef SD_FAULT_INJECTION
2643 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2644 	if (un->sd_injection_mask & component) {
2645 		mutex_enter(&sd_log_mutex);
2646 		va_start(ap, fmt);
2647 		(void) vsprintf(sd_log_buf, fmt, ap);
2648 		va_end(ap);
2649 		sd_injection_log(sd_log_buf, un);
2650 		mutex_exit(&sd_log_mutex);
2651 	}
2652 #endif
2653 }
2654 
2655 
2656 /*
2657  *    Function: sd_log_trace
2658  *
2659  * Description: This routine is called by the SD_TRACE macro for debug
2660  *		logging of trace conditions (i.e. function entry/exit).
2661  *
2662  *   Arguments: comp - driver component being logged
2663  *		dev  - pointer to driver info structure
2664  *		fmt  - trace string and format to be logged
2665  */
2666 
2667 static void
2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2669 {
2670 	va_list		ap;
2671 	dev_info_t	*dev;
2672 
2673 	ASSERT(un != NULL);
2674 	dev = SD_DEVINFO(un);
2675 	ASSERT(dev != NULL);
2676 
2677 	/*
2678 	 * Filter messages based on the global component and level masks.
2679 	 * Also print if un matches the value of sd_debug_un, or if
2680 	 * sd_debug_un is set to NULL.
2681 	 */
2682 	if ((sd_component_mask & component) &&
2683 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2684 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2685 		mutex_enter(&sd_log_mutex);
2686 		va_start(ap, fmt);
2687 		(void) vsprintf(sd_log_buf, fmt, ap);
2688 		va_end(ap);
2689 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2690 		mutex_exit(&sd_log_mutex);
2691 	}
2692 #ifdef SD_FAULT_INJECTION
2693 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2694 	if (un->sd_injection_mask & component) {
2695 		mutex_enter(&sd_log_mutex);
2696 		va_start(ap, fmt);
2697 		(void) vsprintf(sd_log_buf, fmt, ap);
2698 		va_end(ap);
2699 		sd_injection_log(sd_log_buf, un);
2700 		mutex_exit(&sd_log_mutex);
2701 	}
2702 #endif
2703 }
2704 
2705 
2706 /*
2707  *    Function: sdprobe
2708  *
2709  * Description: This is the driver probe(9e) entry point function.
2710  *
2711  *   Arguments: devi - opaque device info handle
2712  *
2713  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2714  *              DDI_PROBE_FAILURE: If the probe failed.
2715  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2716  *				   but may be present in the future.
2717  */
2718 
2719 static int
2720 sdprobe(dev_info_t *devi)
2721 {
2722 	struct scsi_device	*devp;
2723 	int			rval;
2724 #ifndef XPV_HVM_DRIVER
2725 	int			instance = ddi_get_instance(devi);
2726 #endif /* !XPV_HVM_DRIVER */
2727 
2728 	/*
2729 	 * if it wasn't for pln, sdprobe could actually be nulldev
2730 	 * in the "__fibre" case.
2731 	 */
2732 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2733 		return (DDI_PROBE_DONTCARE);
2734 	}
2735 
2736 	devp = ddi_get_driver_private(devi);
2737 
2738 	if (devp == NULL) {
2739 		/* Ooops... nexus driver is mis-configured... */
2740 		return (DDI_PROBE_FAILURE);
2741 	}
2742 
2743 #ifndef XPV_HVM_DRIVER
2744 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2745 		return (DDI_PROBE_PARTIAL);
2746 	}
2747 #endif /* !XPV_HVM_DRIVER */
2748 
2749 	/*
2750 	 * Call the SCSA utility probe routine to see if we actually
2751 	 * have a target at this SCSI nexus.
2752 	 */
2753 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2754 	case SCSIPROBE_EXISTS:
2755 		switch (devp->sd_inq->inq_dtype) {
2756 		case DTYPE_DIRECT:
2757 			rval = DDI_PROBE_SUCCESS;
2758 			break;
2759 		case DTYPE_RODIRECT:
2760 			/* CDs etc. Can be removable media */
2761 			rval = DDI_PROBE_SUCCESS;
2762 			break;
2763 		case DTYPE_OPTICAL:
2764 			/*
2765 			 * Rewritable optical driver HP115AA
2766 			 * Can also be removable media
2767 			 */
2768 
2769 			/*
2770 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2771 			 * pre solaris 9 sparc sd behavior is required
2772 			 *
2773 			 * If first time through and sd_dtype_optical_bind
2774 			 * has not been set in /etc/system check properties
2775 			 */
2776 
2777 			if (sd_dtype_optical_bind  < 0) {
2778 				sd_dtype_optical_bind = ddi_prop_get_int
2779 				    (DDI_DEV_T_ANY, devi, 0,
2780 				    "optical-device-bind", 1);
2781 			}
2782 
2783 			if (sd_dtype_optical_bind == 0) {
2784 				rval = DDI_PROBE_FAILURE;
2785 			} else {
2786 				rval = DDI_PROBE_SUCCESS;
2787 			}
2788 			break;
2789 
2790 		case DTYPE_NOTPRESENT:
2791 		default:
2792 			rval = DDI_PROBE_FAILURE;
2793 			break;
2794 		}
2795 		break;
2796 	default:
2797 		rval = DDI_PROBE_PARTIAL;
2798 		break;
2799 	}
2800 
2801 	/*
2802 	 * This routine checks for resource allocation prior to freeing,
2803 	 * so it will take care of the "smart probing" case where a
2804 	 * scsi_probe() may or may not have been issued and will *not*
2805 	 * free previously-freed resources.
2806 	 */
2807 	scsi_unprobe(devp);
2808 	return (rval);
2809 }
2810 
2811 
2812 /*
2813  *    Function: sdinfo
2814  *
2815  * Description: This is the driver getinfo(9e) entry point function.
2816  * 		Given the device number, return the devinfo pointer from
2817  *		the scsi_device structure or the instance number
2818  *		associated with the dev_t.
2819  *
2820  *   Arguments: dip     - pointer to device info structure
2821  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2822  *			  DDI_INFO_DEVT2INSTANCE)
2823  *		arg     - driver dev_t
2824  *		resultp - user buffer for request response
2825  *
2826  * Return Code: DDI_SUCCESS
2827  *              DDI_FAILURE
2828  */
2829 /* ARGSUSED */
2830 static int
2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2832 {
2833 	struct sd_lun	*un;
2834 	dev_t		dev;
2835 	int		instance;
2836 	int		error;
2837 
2838 	switch (infocmd) {
2839 	case DDI_INFO_DEVT2DEVINFO:
2840 		dev = (dev_t)arg;
2841 		instance = SDUNIT(dev);
2842 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2843 			return (DDI_FAILURE);
2844 		}
2845 		*result = (void *) SD_DEVINFO(un);
2846 		error = DDI_SUCCESS;
2847 		break;
2848 	case DDI_INFO_DEVT2INSTANCE:
2849 		dev = (dev_t)arg;
2850 		instance = SDUNIT(dev);
2851 		*result = (void *)(uintptr_t)instance;
2852 		error = DDI_SUCCESS;
2853 		break;
2854 	default:
2855 		error = DDI_FAILURE;
2856 	}
2857 	return (error);
2858 }
2859 
2860 /*
2861  *    Function: sd_prop_op
2862  *
2863  * Description: This is the driver prop_op(9e) entry point function.
2864  *		Return the number of blocks for the partition in question
2865  *		or forward the request to the property facilities.
2866  *
2867  *   Arguments: dev       - device number
2868  *		dip       - pointer to device info structure
2869  *		prop_op   - property operator
2870  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2871  *		name      - pointer to property name
2872  *		valuep    - pointer or address of the user buffer
2873  *		lengthp   - property length
2874  *
2875  * Return Code: DDI_PROP_SUCCESS
2876  *              DDI_PROP_NOT_FOUND
2877  *              DDI_PROP_UNDEFINED
2878  *              DDI_PROP_NO_MEMORY
2879  *              DDI_PROP_BUF_TOO_SMALL
2880  */
2881 
2882 static int
2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2884 	char *name, caddr_t valuep, int *lengthp)
2885 {
2886 	struct sd_lun	*un;
2887 
2888 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2889 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2890 		    name, valuep, lengthp));
2891 
2892 	return (cmlb_prop_op(un->un_cmlbhandle,
2893 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2894 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2895 }
2896 
2897 /*
2898  * The following functions are for smart probing:
2899  * sd_scsi_probe_cache_init()
2900  * sd_scsi_probe_cache_fini()
2901  * sd_scsi_clear_probe_cache()
2902  * sd_scsi_probe_with_cache()
2903  */
2904 
2905 /*
2906  *    Function: sd_scsi_probe_cache_init
2907  *
2908  * Description: Initializes the probe response cache mutex and head pointer.
2909  *
2910  *     Context: Kernel thread context
2911  */
2912 
2913 static void
2914 sd_scsi_probe_cache_init(void)
2915 {
2916 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2917 	sd_scsi_probe_cache_head = NULL;
2918 }
2919 
2920 
2921 /*
2922  *    Function: sd_scsi_probe_cache_fini
2923  *
2924  * Description: Frees all resources associated with the probe response cache.
2925  *
2926  *     Context: Kernel thread context
2927  */
2928 
2929 static void
2930 sd_scsi_probe_cache_fini(void)
2931 {
2932 	struct sd_scsi_probe_cache *cp;
2933 	struct sd_scsi_probe_cache *ncp;
2934 
2935 	/* Clean up our smart probing linked list */
2936 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2937 		ncp = cp->next;
2938 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2939 	}
2940 	sd_scsi_probe_cache_head = NULL;
2941 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2942 }
2943 
2944 
2945 /*
2946  *    Function: sd_scsi_clear_probe_cache
2947  *
2948  * Description: This routine clears the probe response cache. This is
2949  *		done when open() returns ENXIO so that when deferred
2950  *		attach is attempted (possibly after a device has been
2951  *		turned on) we will retry the probe. Since we don't know
2952  *		which target we failed to open, we just clear the
2953  *		entire cache.
2954  *
2955  *     Context: Kernel thread context
2956  */
2957 
2958 static void
2959 sd_scsi_clear_probe_cache(void)
2960 {
2961 	struct sd_scsi_probe_cache	*cp;
2962 	int				i;
2963 
2964 	mutex_enter(&sd_scsi_probe_cache_mutex);
2965 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2966 		/*
2967 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2968 		 * force probing to be performed the next time
2969 		 * sd_scsi_probe_with_cache is called.
2970 		 */
2971 		for (i = 0; i < NTARGETS_WIDE; i++) {
2972 			cp->cache[i] = SCSIPROBE_EXISTS;
2973 		}
2974 	}
2975 	mutex_exit(&sd_scsi_probe_cache_mutex);
2976 }
2977 
2978 
2979 /*
2980  *    Function: sd_scsi_probe_with_cache
2981  *
2982  * Description: This routine implements support for a scsi device probe
2983  *		with cache. The driver maintains a cache of the target
2984  *		responses to scsi probes. If we get no response from a
2985  *		target during a probe inquiry, we remember that, and we
2986  *		avoid additional calls to scsi_probe on non-zero LUNs
2987  *		on the same target until the cache is cleared. By doing
2988  *		so we avoid the 1/4 sec selection timeout for nonzero
2989  *		LUNs. lun0 of a target is always probed.
2990  *
2991  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2992  *              waitfunc - indicates what the allocator routines should
2993  *			   do when resources are not available. This value
2994  *			   is passed on to scsi_probe() when that routine
2995  *			   is called.
2996  *
2997  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2998  *		otherwise the value returned by scsi_probe(9F).
2999  *
3000  *     Context: Kernel thread context
3001  */
3002 
3003 static int
3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3005 {
3006 	struct sd_scsi_probe_cache	*cp;
3007 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3008 	int		lun, tgt;
3009 
3010 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3011 	    SCSI_ADDR_PROP_LUN, 0);
3012 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3013 	    SCSI_ADDR_PROP_TARGET, -1);
3014 
3015 	/* Make sure caching enabled and target in range */
3016 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3017 		/* do it the old way (no cache) */
3018 		return (scsi_probe(devp, waitfn));
3019 	}
3020 
3021 	mutex_enter(&sd_scsi_probe_cache_mutex);
3022 
3023 	/* Find the cache for this scsi bus instance */
3024 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3025 		if (cp->pdip == pdip) {
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* If we can't find a cache for this pdip, create one */
3031 	if (cp == NULL) {
3032 		int i;
3033 
3034 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3035 		    KM_SLEEP);
3036 		cp->pdip = pdip;
3037 		cp->next = sd_scsi_probe_cache_head;
3038 		sd_scsi_probe_cache_head = cp;
3039 		for (i = 0; i < NTARGETS_WIDE; i++) {
3040 			cp->cache[i] = SCSIPROBE_EXISTS;
3041 		}
3042 	}
3043 
3044 	mutex_exit(&sd_scsi_probe_cache_mutex);
3045 
3046 	/* Recompute the cache for this target if LUN zero */
3047 	if (lun == 0) {
3048 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3049 	}
3050 
3051 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3052 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3053 		return (SCSIPROBE_NORESP);
3054 	}
3055 
3056 	/* Do the actual probe; save & return the result */
3057 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3058 }
3059 
3060 
3061 /*
3062  *    Function: sd_scsi_target_lun_init
3063  *
3064  * Description: Initializes the attached lun chain mutex and head pointer.
3065  *
3066  *     Context: Kernel thread context
3067  */
3068 
3069 static void
3070 sd_scsi_target_lun_init(void)
3071 {
3072 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3073 	sd_scsi_target_lun_head = NULL;
3074 }
3075 
3076 
3077 /*
3078  *    Function: sd_scsi_target_lun_fini
3079  *
3080  * Description: Frees all resources associated with the attached lun
3081  *              chain
3082  *
3083  *     Context: Kernel thread context
3084  */
3085 
3086 static void
3087 sd_scsi_target_lun_fini(void)
3088 {
3089 	struct sd_scsi_hba_tgt_lun	*cp;
3090 	struct sd_scsi_hba_tgt_lun	*ncp;
3091 
3092 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3093 		ncp = cp->next;
3094 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3095 	}
3096 	sd_scsi_target_lun_head = NULL;
3097 	mutex_destroy(&sd_scsi_target_lun_mutex);
3098 }
3099 
3100 
3101 /*
3102  *    Function: sd_scsi_get_target_lun_count
3103  *
3104  * Description: This routine will check in the attached lun chain to see
3105  * 		how many luns are attached on the required SCSI controller
3106  * 		and target. Currently, some capabilities like tagged queue
3107  *		are supported per target based by HBA. So all luns in a
3108  *		target have the same capabilities. Based on this assumption,
3109  * 		sd should only set these capabilities once per target. This
3110  *		function is called when sd needs to decide how many luns
3111  *		already attached on a target.
3112  *
3113  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3114  *			  controller device.
3115  *              target	- The target ID on the controller's SCSI bus.
3116  *
3117  * Return Code: The number of luns attached on the required target and
3118  *		controller.
3119  *		-1 if target ID is not in parallel SCSI scope or the given
3120  * 		dip is not in the chain.
3121  *
3122  *     Context: Kernel thread context
3123  */
3124 
3125 static int
3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3127 {
3128 	struct sd_scsi_hba_tgt_lun	*cp;
3129 
3130 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3131 		return (-1);
3132 	}
3133 
3134 	mutex_enter(&sd_scsi_target_lun_mutex);
3135 
3136 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3137 		if (cp->pdip == dip) {
3138 			break;
3139 		}
3140 	}
3141 
3142 	mutex_exit(&sd_scsi_target_lun_mutex);
3143 
3144 	if (cp == NULL) {
3145 		return (-1);
3146 	}
3147 
3148 	return (cp->nlun[target]);
3149 }
3150 
3151 
3152 /*
3153  *    Function: sd_scsi_update_lun_on_target
3154  *
3155  * Description: This routine is used to update the attached lun chain when a
3156  *		lun is attached or detached on a target.
3157  *
3158  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3159  *                        controller device.
3160  *              target  - The target ID on the controller's SCSI bus.
3161  *		flag	- Indicate the lun is attached or detached.
3162  *
3163  *     Context: Kernel thread context
3164  */
3165 
3166 static void
3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3168 {
3169 	struct sd_scsi_hba_tgt_lun	*cp;
3170 
3171 	mutex_enter(&sd_scsi_target_lun_mutex);
3172 
3173 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3174 		if (cp->pdip == dip) {
3175 			break;
3176 		}
3177 	}
3178 
3179 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3180 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3181 		    KM_SLEEP);
3182 		cp->pdip = dip;
3183 		cp->next = sd_scsi_target_lun_head;
3184 		sd_scsi_target_lun_head = cp;
3185 	}
3186 
3187 	mutex_exit(&sd_scsi_target_lun_mutex);
3188 
3189 	if (cp != NULL) {
3190 		if (flag == SD_SCSI_LUN_ATTACH) {
3191 			cp->nlun[target] ++;
3192 		} else {
3193 			cp->nlun[target] --;
3194 		}
3195 	}
3196 }
3197 
3198 
3199 /*
3200  *    Function: sd_spin_up_unit
3201  *
3202  * Description: Issues the following commands to spin-up the device:
3203  *		START STOP UNIT, and INQUIRY.
3204  *
3205  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3206  *                      structure for this target.
3207  *
3208  * Return Code: 0 - success
3209  *		EIO - failure
3210  *		EACCES - reservation conflict
3211  *
3212  *     Context: Kernel thread context
3213  */
3214 
3215 static int
3216 sd_spin_up_unit(sd_ssc_t *ssc)
3217 {
3218 	size_t	resid		= 0;
3219 	int	has_conflict	= FALSE;
3220 	uchar_t *bufaddr;
3221 	int 	status;
3222 	struct sd_lun	*un;
3223 
3224 	ASSERT(ssc != NULL);
3225 	un = ssc->ssc_un;
3226 	ASSERT(un != NULL);
3227 
3228 	/*
3229 	 * Send a throwaway START UNIT command.
3230 	 *
3231 	 * If we fail on this, we don't care presently what precisely
3232 	 * is wrong.  EMC's arrays will also fail this with a check
3233 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3234 	 * we don't want to fail the attach because it may become
3235 	 * "active" later.
3236 	 * We don't know if power condition is supported or not at
3237 	 * this stage, use START STOP bit.
3238 	 */
3239 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3240 	    SD_TARGET_START, SD_PATH_DIRECT);
3241 
3242 	if (status != 0) {
3243 		if (status == EACCES)
3244 			has_conflict = TRUE;
3245 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3246 	}
3247 
3248 	/*
3249 	 * Send another INQUIRY command to the target. This is necessary for
3250 	 * non-removable media direct access devices because their INQUIRY data
3251 	 * may not be fully qualified until they are spun up (perhaps via the
3252 	 * START command above).  Note: This seems to be needed for some
3253 	 * legacy devices only.) The INQUIRY command should succeed even if a
3254 	 * Reservation Conflict is present.
3255 	 */
3256 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3257 
3258 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3259 	    != 0) {
3260 		kmem_free(bufaddr, SUN_INQSIZE);
3261 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3262 		return (EIO);
3263 	}
3264 
3265 	/*
3266 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3267 	 * Note that this routine does not return a failure here even if the
3268 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3269 	 */
3270 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3271 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3272 	}
3273 
3274 	kmem_free(bufaddr, SUN_INQSIZE);
3275 
3276 	/* If we hit a reservation conflict above, tell the caller. */
3277 	if (has_conflict == TRUE) {
3278 		return (EACCES);
3279 	}
3280 
3281 	return (0);
3282 }
3283 
3284 #ifdef _LP64
3285 /*
3286  *    Function: sd_enable_descr_sense
3287  *
3288  * Description: This routine attempts to select descriptor sense format
3289  *		using the Control mode page.  Devices that support 64 bit
3290  *		LBAs (for >2TB luns) should also implement descriptor
3291  *		sense data so we will call this function whenever we see
3292  *		a lun larger than 2TB.  If for some reason the device
3293  *		supports 64 bit LBAs but doesn't support descriptor sense
3294  *		presumably the mode select will fail.  Everything will
3295  *		continue to work normally except that we will not get
3296  *		complete sense data for commands that fail with an LBA
3297  *		larger than 32 bits.
3298  *
3299  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3300  *                      structure for this target.
3301  *
3302  *     Context: Kernel thread context only
3303  */
3304 
3305 static void
3306 sd_enable_descr_sense(sd_ssc_t *ssc)
3307 {
3308 	uchar_t			*header;
3309 	struct mode_control_scsi3 *ctrl_bufp;
3310 	size_t			buflen;
3311 	size_t			bd_len;
3312 	int			status;
3313 	struct sd_lun		*un;
3314 
3315 	ASSERT(ssc != NULL);
3316 	un = ssc->ssc_un;
3317 	ASSERT(un != NULL);
3318 
3319 	/*
3320 	 * Read MODE SENSE page 0xA, Control Mode Page
3321 	 */
3322 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3323 	    sizeof (struct mode_control_scsi3);
3324 	header = kmem_zalloc(buflen, KM_SLEEP);
3325 
3326 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3327 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3328 
3329 	if (status != 0) {
3330 		SD_ERROR(SD_LOG_COMMON, un,
3331 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3332 		goto eds_exit;
3333 	}
3334 
3335 	/*
3336 	 * Determine size of Block Descriptors in order to locate
3337 	 * the mode page data. ATAPI devices return 0, SCSI devices
3338 	 * should return MODE_BLK_DESC_LENGTH.
3339 	 */
3340 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3341 
3342 	/* Clear the mode data length field for MODE SELECT */
3343 	((struct mode_header *)header)->length = 0;
3344 
3345 	ctrl_bufp = (struct mode_control_scsi3 *)
3346 	    (header + MODE_HEADER_LENGTH + bd_len);
3347 
3348 	/*
3349 	 * If the page length is smaller than the expected value,
3350 	 * the target device doesn't support D_SENSE. Bail out here.
3351 	 */
3352 	if (ctrl_bufp->mode_page.length <
3353 	    sizeof (struct mode_control_scsi3) - 2) {
3354 		SD_ERROR(SD_LOG_COMMON, un,
3355 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3356 		goto eds_exit;
3357 	}
3358 
3359 	/*
3360 	 * Clear PS bit for MODE SELECT
3361 	 */
3362 	ctrl_bufp->mode_page.ps = 0;
3363 
3364 	/*
3365 	 * Set D_SENSE to enable descriptor sense format.
3366 	 */
3367 	ctrl_bufp->d_sense = 1;
3368 
3369 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3370 
3371 	/*
3372 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3373 	 */
3374 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3375 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3376 
3377 	if (status != 0) {
3378 		SD_INFO(SD_LOG_COMMON, un,
3379 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3380 	} else {
3381 		kmem_free(header, buflen);
3382 		return;
3383 	}
3384 
3385 eds_exit:
3386 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3387 	kmem_free(header, buflen);
3388 }
3389 
3390 /*
3391  *    Function: sd_reenable_dsense_task
3392  *
3393  * Description: Re-enable descriptor sense after device or bus reset
3394  *
3395  *     Context: Executes in a taskq() thread context
3396  */
3397 static void
3398 sd_reenable_dsense_task(void *arg)
3399 {
3400 	struct	sd_lun	*un = arg;
3401 	sd_ssc_t	*ssc;
3402 
3403 	ASSERT(un != NULL);
3404 
3405 	ssc = sd_ssc_init(un);
3406 	sd_enable_descr_sense(ssc);
3407 	sd_ssc_fini(ssc);
3408 }
3409 #endif /* _LP64 */
3410 
3411 /*
3412  *    Function: sd_set_mmc_caps
3413  *
3414  * Description: This routine determines if the device is MMC compliant and if
3415  *		the device supports CDDA via a mode sense of the CDVD
3416  *		capabilities mode page. Also checks if the device is a
3417  *		dvdram writable device.
3418  *
3419  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3420  *                      structure for this target.
3421  *
3422  *     Context: Kernel thread context only
3423  */
3424 
3425 static void
3426 sd_set_mmc_caps(sd_ssc_t *ssc)
3427 {
3428 	struct mode_header_grp2		*sense_mhp;
3429 	uchar_t				*sense_page;
3430 	caddr_t				buf;
3431 	int				bd_len;
3432 	int				status;
3433 	struct uscsi_cmd		com;
3434 	int				rtn;
3435 	uchar_t				*out_data_rw, *out_data_hd;
3436 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3437 	uchar_t				*out_data_gesn;
3438 	int				gesn_len;
3439 	struct sd_lun			*un;
3440 
3441 	ASSERT(ssc != NULL);
3442 	un = ssc->ssc_un;
3443 	ASSERT(un != NULL);
3444 
3445 	/*
3446 	 * The flags which will be set in this function are - mmc compliant,
3447 	 * dvdram writable device, cdda support. Initialize them to FALSE
3448 	 * and if a capability is detected - it will be set to TRUE.
3449 	 */
3450 	un->un_f_mmc_cap = FALSE;
3451 	un->un_f_dvdram_writable_device = FALSE;
3452 	un->un_f_cfg_cdda = FALSE;
3453 
3454 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3455 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3456 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3457 
3458 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3459 
3460 	if (status != 0) {
3461 		/* command failed; just return */
3462 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3463 		return;
3464 	}
3465 	/*
3466 	 * If the mode sense request for the CDROM CAPABILITIES
3467 	 * page (0x2A) succeeds the device is assumed to be MMC.
3468 	 */
3469 	un->un_f_mmc_cap = TRUE;
3470 
3471 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3472 	if (un->un_f_mmc_gesn_polling) {
3473 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3474 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3475 
3476 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3477 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3478 
3479 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3480 
3481 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3482 			un->un_f_mmc_gesn_polling = FALSE;
3483 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3484 			    "sd_set_mmc_caps: gesn not supported "
3485 			    "%d %x %x %x %x\n", rtn,
3486 			    out_data_gesn[0], out_data_gesn[1],
3487 			    out_data_gesn[2], out_data_gesn[3]);
3488 		}
3489 
3490 		kmem_free(out_data_gesn, gesn_len);
3491 	}
3492 
3493 	/* Get to the page data */
3494 	sense_mhp = (struct mode_header_grp2 *)buf;
3495 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3496 	    sense_mhp->bdesc_length_lo;
3497 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3498 		/*
3499 		 * We did not get back the expected block descriptor
3500 		 * length so we cannot determine if the device supports
3501 		 * CDDA. However, we still indicate the device is MMC
3502 		 * according to the successful response to the page
3503 		 * 0x2A mode sense request.
3504 		 */
3505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3506 		    "sd_set_mmc_caps: Mode Sense returned "
3507 		    "invalid block descriptor length\n");
3508 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3509 		return;
3510 	}
3511 
3512 	/* See if read CDDA is supported */
3513 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3514 	    bd_len);
3515 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3516 
3517 	/* See if writing DVD RAM is supported. */
3518 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3519 	if (un->un_f_dvdram_writable_device == TRUE) {
3520 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3521 		return;
3522 	}
3523 
3524 	/*
3525 	 * If the device presents DVD or CD capabilities in the mode
3526 	 * page, we can return here since a RRD will not have
3527 	 * these capabilities.
3528 	 */
3529 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3530 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3531 		return;
3532 	}
3533 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3534 
3535 	/*
3536 	 * If un->un_f_dvdram_writable_device is still FALSE,
3537 	 * check for a Removable Rigid Disk (RRD).  A RRD
3538 	 * device is identified by the features RANDOM_WRITABLE and
3539 	 * HARDWARE_DEFECT_MANAGEMENT.
3540 	 */
3541 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3542 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3543 
3544 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3545 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3546 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3547 
3548 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3549 
3550 	if (rtn != 0) {
3551 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3552 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3553 		return;
3554 	}
3555 
3556 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3557 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3558 
3559 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3560 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3561 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3562 
3563 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3564 
3565 	if (rtn == 0) {
3566 		/*
3567 		 * We have good information, check for random writable
3568 		 * and hardware defect features.
3569 		 */
3570 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3571 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3572 			un->un_f_dvdram_writable_device = TRUE;
3573 		}
3574 	}
3575 
3576 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3577 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3578 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3579 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3580 }
3581 
3582 /*
3583  *    Function: sd_check_for_writable_cd
3584  *
3585  * Description: This routine determines if the media in the device is
3586  *		writable or not. It uses the get configuration command (0x46)
3587  *		to determine if the media is writable
3588  *
3589  *   Arguments: un - driver soft state (unit) structure
3590  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3591  *                           chain and the normal command waitq, or
3592  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3593  *                           "direct" chain and bypass the normal command
3594  *                           waitq.
3595  *
3596  *     Context: Never called at interrupt context.
3597  */
3598 
3599 static void
3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3601 {
3602 	struct uscsi_cmd		com;
3603 	uchar_t				*out_data;
3604 	uchar_t				*rqbuf;
3605 	int				rtn;
3606 	uchar_t				*out_data_rw, *out_data_hd;
3607 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3608 	struct mode_header_grp2		*sense_mhp;
3609 	uchar_t				*sense_page;
3610 	caddr_t				buf;
3611 	int				bd_len;
3612 	int				status;
3613 	struct sd_lun			*un;
3614 
3615 	ASSERT(ssc != NULL);
3616 	un = ssc->ssc_un;
3617 	ASSERT(un != NULL);
3618 	ASSERT(mutex_owned(SD_MUTEX(un)));
3619 
3620 	/*
3621 	 * Initialize the writable media to false, if configuration info.
3622 	 * tells us otherwise then only we will set it.
3623 	 */
3624 	un->un_f_mmc_writable_media = FALSE;
3625 	mutex_exit(SD_MUTEX(un));
3626 
3627 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3628 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3629 
3630 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3631 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3632 
3633 	if (rtn != 0)
3634 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3635 
3636 	mutex_enter(SD_MUTEX(un));
3637 	if (rtn == 0) {
3638 		/*
3639 		 * We have good information, check for writable DVD.
3640 		 */
3641 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3642 			un->un_f_mmc_writable_media = TRUE;
3643 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3644 			kmem_free(rqbuf, SENSE_LENGTH);
3645 			return;
3646 		}
3647 	}
3648 
3649 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3650 	kmem_free(rqbuf, SENSE_LENGTH);
3651 
3652 	/*
3653 	 * Determine if this is a RRD type device.
3654 	 */
3655 	mutex_exit(SD_MUTEX(un));
3656 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3657 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3658 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3659 
3660 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3661 
3662 	mutex_enter(SD_MUTEX(un));
3663 	if (status != 0) {
3664 		/* command failed; just return */
3665 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3666 		return;
3667 	}
3668 
3669 	/* Get to the page data */
3670 	sense_mhp = (struct mode_header_grp2 *)buf;
3671 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3672 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3673 		/*
3674 		 * We did not get back the expected block descriptor length so
3675 		 * we cannot check the mode page.
3676 		 */
3677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3678 		    "sd_check_for_writable_cd: Mode Sense returned "
3679 		    "invalid block descriptor length\n");
3680 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3681 		return;
3682 	}
3683 
3684 	/*
3685 	 * If the device presents DVD or CD capabilities in the mode
3686 	 * page, we can return here since a RRD device will not have
3687 	 * these capabilities.
3688 	 */
3689 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3690 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3691 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3692 		return;
3693 	}
3694 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3695 
3696 	/*
3697 	 * If un->un_f_mmc_writable_media is still FALSE,
3698 	 * check for RRD type media.  A RRD device is identified
3699 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3700 	 */
3701 	mutex_exit(SD_MUTEX(un));
3702 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3703 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3704 
3705 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3706 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3707 	    RANDOM_WRITABLE, path_flag);
3708 
3709 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3710 	if (rtn != 0) {
3711 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3712 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3713 		mutex_enter(SD_MUTEX(un));
3714 		return;
3715 	}
3716 
3717 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3718 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3719 
3720 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3721 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3722 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3723 
3724 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3725 	mutex_enter(SD_MUTEX(un));
3726 	if (rtn == 0) {
3727 		/*
3728 		 * We have good information, check for random writable
3729 		 * and hardware defect features as current.
3730 		 */
3731 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3732 		    (out_data_rw[10] & 0x1) &&
3733 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3734 		    (out_data_hd[10] & 0x1)) {
3735 			un->un_f_mmc_writable_media = TRUE;
3736 		}
3737 	}
3738 
3739 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3740 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3741 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3742 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3743 }
3744 
3745 /*
3746  *    Function: sd_read_unit_properties
3747  *
3748  * Description: The following implements a property lookup mechanism.
3749  *		Properties for particular disks (keyed on vendor, model
3750  *		and rev numbers) are sought in the sd.conf file via
3751  *		sd_process_sdconf_file(), and if not found there, are
3752  *		looked for in a list hardcoded in this driver via
3753  *		sd_process_sdconf_table() Once located the properties
3754  *		are used to update the driver unit structure.
3755  *
3756  *   Arguments: un - driver soft state (unit) structure
3757  */
3758 
3759 static void
3760 sd_read_unit_properties(struct sd_lun *un)
3761 {
3762 	/*
3763 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3764 	 * the "sd-config-list" property (from the sd.conf file) or if
3765 	 * there was not a match for the inquiry vid/pid. If this event
3766 	 * occurs the static driver configuration table is searched for
3767 	 * a match.
3768 	 */
3769 	ASSERT(un != NULL);
3770 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3771 		sd_process_sdconf_table(un);
3772 	}
3773 
3774 	/* check for LSI device */
3775 	sd_is_lsi(un);
3776 
3777 
3778 }
3779 
3780 
3781 /*
3782  *    Function: sd_process_sdconf_file
3783  *
3784  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3785  *		driver's config file (ie, sd.conf) and update the driver
3786  *		soft state structure accordingly.
3787  *
3788  *   Arguments: un - driver soft state (unit) structure
3789  *
3790  * Return Code: SD_SUCCESS - The properties were successfully set according
3791  *			     to the driver configuration file.
3792  *		SD_FAILURE - The driver config list was not obtained or
3793  *			     there was no vid/pid match. This indicates that
3794  *			     the static config table should be used.
3795  *
3796  * The config file has a property, "sd-config-list". Currently we support
3797  * two kinds of formats. For both formats, the value of this property
3798  * is a list of duplets:
3799  *
3800  *  sd-config-list=
3801  *	<duplet>,
3802  *	[,<duplet>]*;
3803  *
3804  * For the improved format, where
3805  *
3806  *     <duplet>:= "<vid+pid>","<tunable-list>"
3807  *
3808  * and
3809  *
3810  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3811  *     <tunable> =        <name> : <value>
3812  *
3813  * The <vid+pid> is the string that is returned by the target device on a
3814  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3815  * to apply to all target devices with the specified <vid+pid>.
3816  *
3817  * Each <tunable> is a "<name> : <value>" pair.
3818  *
3819  * For the old format, the structure of each duplet is as follows:
3820  *
3821  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3822  *
3823  * The first entry of the duplet is the device ID string (the concatenated
3824  * vid & pid; not to be confused with a device_id).  This is defined in
3825  * the same way as in the sd_disk_table.
3826  *
3827  * The second part of the duplet is a string that identifies a
3828  * data-property-name-list. The data-property-name-list is defined as
3829  * follows:
3830  *
3831  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3832  *
3833  * The syntax of <data-property-name> depends on the <version> field.
3834  *
3835  * If version = SD_CONF_VERSION_1 we have the following syntax:
3836  *
3837  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3838  *
3839  * where the prop0 value will be used to set prop0 if bit0 set in the
3840  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3841  *
3842  */
3843 
3844 static int
3845 sd_process_sdconf_file(struct sd_lun *un)
3846 {
3847 	char	**config_list = NULL;
3848 	uint_t	nelements;
3849 	char	*vidptr;
3850 	int	vidlen;
3851 	char	*dnlist_ptr;
3852 	char	*dataname_ptr;
3853 	char	*dataname_lasts;
3854 	int	*data_list = NULL;
3855 	uint_t	data_list_len;
3856 	int	rval = SD_FAILURE;
3857 	int	i;
3858 
3859 	ASSERT(un != NULL);
3860 
3861 	/* Obtain the configuration list associated with the .conf file */
3862 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3863 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3864 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3865 		return (SD_FAILURE);
3866 	}
3867 
3868 	/*
3869 	 * Compare vids in each duplet to the inquiry vid - if a match is
3870 	 * made, get the data value and update the soft state structure
3871 	 * accordingly.
3872 	 *
3873 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3874 	 * otherwise.
3875 	 */
3876 	if (nelements & 1) {
3877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3878 		    "sd-config-list should show as pairs of strings.\n");
3879 		if (config_list)
3880 			ddi_prop_free(config_list);
3881 		return (SD_FAILURE);
3882 	}
3883 
3884 	for (i = 0; i < nelements; i += 2) {
3885 		/*
3886 		 * Note: The assumption here is that each vid entry is on
3887 		 * a unique line from its associated duplet.
3888 		 */
3889 		vidptr = config_list[i];
3890 		vidlen = (int)strlen(vidptr);
3891 		if ((vidlen == 0) ||
3892 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3893 			continue;
3894 		}
3895 
3896 		/*
3897 		 * dnlist contains 1 or more blank separated
3898 		 * data-property-name entries
3899 		 */
3900 		dnlist_ptr = config_list[i + 1];
3901 
3902 		if (strchr(dnlist_ptr, ':') != NULL) {
3903 			/*
3904 			 * Decode the improved format sd-config-list.
3905 			 */
3906 			sd_nvpair_str_decode(un, dnlist_ptr);
3907 		} else {
3908 			/*
3909 			 * The old format sd-config-list, loop through all
3910 			 * data-property-name entries in the
3911 			 * data-property-name-list
3912 			 * setting the properties for each.
3913 			 */
3914 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3915 			    &dataname_lasts); dataname_ptr != NULL;
3916 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3917 			    &dataname_lasts)) {
3918 				int version;
3919 
3920 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921 				    "sd_process_sdconf_file: disk:%s, "
3922 				    "data:%s\n", vidptr, dataname_ptr);
3923 
3924 				/* Get the data list */
3925 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3926 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3927 				    &data_list_len) != DDI_PROP_SUCCESS) {
3928 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 					    "sd_process_sdconf_file: data "
3930 					    "property (%s) has no value\n",
3931 					    dataname_ptr);
3932 					continue;
3933 				}
3934 
3935 				version = data_list[0];
3936 
3937 				if (version == SD_CONF_VERSION_1) {
3938 					sd_tunables values;
3939 
3940 					/* Set the properties */
3941 					if (sd_chk_vers1_data(un, data_list[1],
3942 					    &data_list[2], data_list_len,
3943 					    dataname_ptr) == SD_SUCCESS) {
3944 						sd_get_tunables_from_conf(un,
3945 						    data_list[1], &data_list[2],
3946 						    &values);
3947 						sd_set_vers1_properties(un,
3948 						    data_list[1], &values);
3949 						rval = SD_SUCCESS;
3950 					} else {
3951 						rval = SD_FAILURE;
3952 					}
3953 				} else {
3954 					scsi_log(SD_DEVINFO(un), sd_label,
3955 					    CE_WARN, "data property %s version "
3956 					    "0x%x is invalid.",
3957 					    dataname_ptr, version);
3958 					rval = SD_FAILURE;
3959 				}
3960 				if (data_list)
3961 					ddi_prop_free(data_list);
3962 			}
3963 		}
3964 	}
3965 
3966 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3967 	if (config_list) {
3968 		ddi_prop_free(config_list);
3969 	}
3970 
3971 	return (rval);
3972 }
3973 
3974 /*
3975  *    Function: sd_nvpair_str_decode()
3976  *
3977  * Description: Parse the improved format sd-config-list to get
3978  *    each entry of tunable, which includes a name-value pair.
3979  *    Then call sd_set_properties() to set the property.
3980  *
3981  *   Arguments: un - driver soft state (unit) structure
3982  *    nvpair_str - the tunable list
3983  */
3984 static void
3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3986 {
3987 	char	*nv, *name, *value, *token;
3988 	char	*nv_lasts, *v_lasts, *x_lasts;
3989 
3990 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3991 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3992 		token = sd_strtok_r(nv, ":", &v_lasts);
3993 		name  = sd_strtok_r(token, " \t", &x_lasts);
3994 		token = sd_strtok_r(NULL, ":", &v_lasts);
3995 		value = sd_strtok_r(token, " \t", &x_lasts);
3996 		if (name == NULL || value == NULL) {
3997 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998 			    "sd_nvpair_str_decode: "
3999 			    "name or value is not valid!\n");
4000 		} else {
4001 			sd_set_properties(un, name, value);
4002 		}
4003 	}
4004 }
4005 
4006 /*
4007  *    Function: sd_strtok_r()
4008  *
4009  * Description: This function uses strpbrk and strspn to break
4010  *    string into tokens on sequentially subsequent calls. Return
4011  *    NULL when no non-separator characters remain. The first
4012  *    argument is NULL for subsequent calls.
4013  */
4014 static char *
4015 sd_strtok_r(char *string, const char *sepset, char **lasts)
4016 {
4017 	char	*q, *r;
4018 
4019 	/* First or subsequent call */
4020 	if (string == NULL)
4021 		string = *lasts;
4022 
4023 	if (string == NULL)
4024 		return (NULL);
4025 
4026 	/* Skip leading separators */
4027 	q = string + strspn(string, sepset);
4028 
4029 	if (*q == '\0')
4030 		return (NULL);
4031 
4032 	if ((r = strpbrk(q, sepset)) == NULL)
4033 		*lasts = NULL;
4034 	else {
4035 		*r = '\0';
4036 		*lasts = r + 1;
4037 	}
4038 	return (q);
4039 }
4040 
4041 /*
4042  *    Function: sd_set_properties()
4043  *
4044  * Description: Set device properties based on the improved
4045  *    format sd-config-list.
4046  *
4047  *   Arguments: un - driver soft state (unit) structure
4048  *    name  - supported tunable name
4049  *    value - tunable value
4050  */
4051 static void
4052 sd_set_properties(struct sd_lun *un, char *name, char *value)
4053 {
4054 	char	*endptr = NULL;
4055 	long	val = 0;
4056 
4057 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4058 		if (strcasecmp(value, "true") == 0) {
4059 			un->un_f_suppress_cache_flush = TRUE;
4060 		} else if (strcasecmp(value, "false") == 0) {
4061 			un->un_f_suppress_cache_flush = FALSE;
4062 		} else {
4063 			goto value_invalid;
4064 		}
4065 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4066 		    "suppress_cache_flush flag set to %d\n",
4067 		    un->un_f_suppress_cache_flush);
4068 		return;
4069 	}
4070 
4071 	if (strcasecmp(name, "controller-type") == 0) {
4072 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4073 			un->un_ctype = val;
4074 		} else {
4075 			goto value_invalid;
4076 		}
4077 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4078 		    "ctype set to %d\n", un->un_ctype);
4079 		return;
4080 	}
4081 
4082 	if (strcasecmp(name, "delay-busy") == 0) {
4083 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4084 			un->un_busy_timeout = drv_usectohz(val / 1000);
4085 		} else {
4086 			goto value_invalid;
4087 		}
4088 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4089 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4090 		return;
4091 	}
4092 
4093 	if (strcasecmp(name, "disksort") == 0) {
4094 		if (strcasecmp(value, "true") == 0) {
4095 			un->un_f_disksort_disabled = FALSE;
4096 		} else if (strcasecmp(value, "false") == 0) {
4097 			un->un_f_disksort_disabled = TRUE;
4098 		} else {
4099 			goto value_invalid;
4100 		}
4101 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4102 		    "disksort disabled flag set to %d\n",
4103 		    un->un_f_disksort_disabled);
4104 		return;
4105 	}
4106 
4107 	if (strcasecmp(name, "power-condition") == 0) {
4108 		if (strcasecmp(value, "true") == 0) {
4109 			un->un_f_power_condition_disabled = FALSE;
4110 		} else if (strcasecmp(value, "false") == 0) {
4111 			un->un_f_power_condition_disabled = TRUE;
4112 		} else {
4113 			goto value_invalid;
4114 		}
4115 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4116 		    "power condition disabled flag set to %d\n",
4117 		    un->un_f_power_condition_disabled);
4118 		return;
4119 	}
4120 
4121 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4122 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4123 			un->un_reserve_release_time = val;
4124 		} else {
4125 			goto value_invalid;
4126 		}
4127 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4128 		    "reservation release timeout set to %d\n",
4129 		    un->un_reserve_release_time);
4130 		return;
4131 	}
4132 
4133 	if (strcasecmp(name, "reset-lun") == 0) {
4134 		if (strcasecmp(value, "true") == 0) {
4135 			un->un_f_lun_reset_enabled = TRUE;
4136 		} else if (strcasecmp(value, "false") == 0) {
4137 			un->un_f_lun_reset_enabled = FALSE;
4138 		} else {
4139 			goto value_invalid;
4140 		}
4141 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4142 		    "lun reset enabled flag set to %d\n",
4143 		    un->un_f_lun_reset_enabled);
4144 		return;
4145 	}
4146 
4147 	if (strcasecmp(name, "retries-busy") == 0) {
4148 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4149 			un->un_busy_retry_count = val;
4150 		} else {
4151 			goto value_invalid;
4152 		}
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4154 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4155 		return;
4156 	}
4157 
4158 	if (strcasecmp(name, "retries-timeout") == 0) {
4159 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160 			un->un_retry_count = val;
4161 		} else {
4162 			goto value_invalid;
4163 		}
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165 		    "timeout retry count set to %d\n", un->un_retry_count);
4166 		return;
4167 	}
4168 
4169 	if (strcasecmp(name, "retries-notready") == 0) {
4170 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4171 			un->un_notready_retry_count = val;
4172 		} else {
4173 			goto value_invalid;
4174 		}
4175 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4176 		    "notready retry count set to %d\n",
4177 		    un->un_notready_retry_count);
4178 		return;
4179 	}
4180 
4181 	if (strcasecmp(name, "retries-reset") == 0) {
4182 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4183 			un->un_reset_retry_count = val;
4184 		} else {
4185 			goto value_invalid;
4186 		}
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4188 		    "reset retry count set to %d\n",
4189 		    un->un_reset_retry_count);
4190 		return;
4191 	}
4192 
4193 	if (strcasecmp(name, "throttle-max") == 0) {
4194 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4195 			un->un_saved_throttle = un->un_throttle = val;
4196 		} else {
4197 			goto value_invalid;
4198 		}
4199 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4200 		    "throttle set to %d\n", un->un_throttle);
4201 	}
4202 
4203 	if (strcasecmp(name, "throttle-min") == 0) {
4204 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4205 			un->un_min_throttle = val;
4206 		} else {
4207 			goto value_invalid;
4208 		}
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4210 		    "min throttle set to %d\n", un->un_min_throttle);
4211 	}
4212 
4213 	if (strcasecmp(name, "rmw-type") == 0) {
4214 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4215 			un->un_f_rmw_type = val;
4216 		} else {
4217 			goto value_invalid;
4218 		}
4219 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4220 		    "RMW type set to %d\n", un->un_f_rmw_type);
4221 	}
4222 
4223 	/*
4224 	 * Validate the throttle values.
4225 	 * If any of the numbers are invalid, set everything to defaults.
4226 	 */
4227 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4228 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4229 	    (un->un_min_throttle > un->un_throttle)) {
4230 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4231 		un->un_min_throttle = sd_min_throttle;
4232 	}
4233 
4234 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4235 		if (strcasecmp(value, "true") == 0) {
4236 			un->un_f_mmc_gesn_polling = TRUE;
4237 		} else if (strcasecmp(value, "false") == 0) {
4238 			un->un_f_mmc_gesn_polling = FALSE;
4239 		} else {
4240 			goto value_invalid;
4241 		}
4242 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4243 		    "mmc-gesn-polling set to %d\n",
4244 		    un->un_f_mmc_gesn_polling);
4245 	}
4246 
4247 	return;
4248 
4249 value_invalid:
4250 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4251 	    "value of prop %s is invalid\n", name);
4252 }
4253 
4254 /*
4255  *    Function: sd_get_tunables_from_conf()
4256  *
4257  *
4258  *    This function reads the data list from the sd.conf file and pulls
4259  *    the values that can have numeric values as arguments and places
4260  *    the values in the appropriate sd_tunables member.
4261  *    Since the order of the data list members varies across platforms
4262  *    This function reads them from the data list in a platform specific
4263  *    order and places them into the correct sd_tunable member that is
4264  *    consistent across all platforms.
4265  */
4266 static void
4267 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4268     sd_tunables *values)
4269 {
4270 	int i;
4271 	int mask;
4272 
4273 	bzero(values, sizeof (sd_tunables));
4274 
4275 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4276 
4277 		mask = 1 << i;
4278 		if (mask > flags) {
4279 			break;
4280 		}
4281 
4282 		switch (mask & flags) {
4283 		case 0:	/* This mask bit not set in flags */
4284 			continue;
4285 		case SD_CONF_BSET_THROTTLE:
4286 			values->sdt_throttle = data_list[i];
4287 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4288 			    "sd_get_tunables_from_conf: throttle = %d\n",
4289 			    values->sdt_throttle);
4290 			break;
4291 		case SD_CONF_BSET_CTYPE:
4292 			values->sdt_ctype = data_list[i];
4293 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4294 			    "sd_get_tunables_from_conf: ctype = %d\n",
4295 			    values->sdt_ctype);
4296 			break;
4297 		case SD_CONF_BSET_NRR_COUNT:
4298 			values->sdt_not_rdy_retries = data_list[i];
4299 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4300 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4301 			    values->sdt_not_rdy_retries);
4302 			break;
4303 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4304 			values->sdt_busy_retries = data_list[i];
4305 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4306 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4307 			    values->sdt_busy_retries);
4308 			break;
4309 		case SD_CONF_BSET_RST_RETRIES:
4310 			values->sdt_reset_retries = data_list[i];
4311 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4313 			    values->sdt_reset_retries);
4314 			break;
4315 		case SD_CONF_BSET_RSV_REL_TIME:
4316 			values->sdt_reserv_rel_time = data_list[i];
4317 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4319 			    values->sdt_reserv_rel_time);
4320 			break;
4321 		case SD_CONF_BSET_MIN_THROTTLE:
4322 			values->sdt_min_throttle = data_list[i];
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4325 			    values->sdt_min_throttle);
4326 			break;
4327 		case SD_CONF_BSET_DISKSORT_DISABLED:
4328 			values->sdt_disk_sort_dis = data_list[i];
4329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4331 			    values->sdt_disk_sort_dis);
4332 			break;
4333 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4334 			values->sdt_lun_reset_enable = data_list[i];
4335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4337 			    "\n", values->sdt_lun_reset_enable);
4338 			break;
4339 		case SD_CONF_BSET_CACHE_IS_NV:
4340 			values->sdt_suppress_cache_flush = data_list[i];
4341 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4342 			    "sd_get_tunables_from_conf: \
4343 			    suppress_cache_flush = %d"
4344 			    "\n", values->sdt_suppress_cache_flush);
4345 			break;
4346 		case SD_CONF_BSET_PC_DISABLED:
4347 			values->sdt_disk_sort_dis = data_list[i];
4348 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4349 			    "sd_get_tunables_from_conf: power_condition_dis = "
4350 			    "%d\n", values->sdt_power_condition_dis);
4351 			break;
4352 		}
4353 	}
4354 }
4355 
4356 /*
4357  *    Function: sd_process_sdconf_table
4358  *
4359  * Description: Search the static configuration table for a match on the
4360  *		inquiry vid/pid and update the driver soft state structure
4361  *		according to the table property values for the device.
4362  *
4363  *		The form of a configuration table entry is:
4364  *		  <vid+pid>,<flags>,<property-data>
4365  *		  "SEAGATE ST42400N",1,0x40000,
4366  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4367  *
4368  *   Arguments: un - driver soft state (unit) structure
4369  */
4370 
4371 static void
4372 sd_process_sdconf_table(struct sd_lun *un)
4373 {
4374 	char	*id = NULL;
4375 	int	table_index;
4376 	int	idlen;
4377 
4378 	ASSERT(un != NULL);
4379 	for (table_index = 0; table_index < sd_disk_table_size;
4380 	    table_index++) {
4381 		id = sd_disk_table[table_index].device_id;
4382 		idlen = strlen(id);
4383 		if (idlen == 0) {
4384 			continue;
4385 		}
4386 
4387 		/*
4388 		 * The static configuration table currently does not
4389 		 * implement version 10 properties. Additionally,
4390 		 * multiple data-property-name entries are not
4391 		 * implemented in the static configuration table.
4392 		 */
4393 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4394 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4395 			    "sd_process_sdconf_table: disk %s\n", id);
4396 			sd_set_vers1_properties(un,
4397 			    sd_disk_table[table_index].flags,
4398 			    sd_disk_table[table_index].properties);
4399 			break;
4400 		}
4401 	}
4402 }
4403 
4404 
4405 /*
4406  *    Function: sd_sdconf_id_match
4407  *
4408  * Description: This local function implements a case sensitive vid/pid
4409  *		comparison as well as the boundary cases of wild card and
4410  *		multiple blanks.
4411  *
4412  *		Note: An implicit assumption made here is that the scsi
4413  *		inquiry structure will always keep the vid, pid and
4414  *		revision strings in consecutive sequence, so they can be
4415  *		read as a single string. If this assumption is not the
4416  *		case, a separate string, to be used for the check, needs
4417  *		to be built with these strings concatenated.
4418  *
4419  *   Arguments: un - driver soft state (unit) structure
4420  *		id - table or config file vid/pid
4421  *		idlen  - length of the vid/pid (bytes)
4422  *
4423  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4424  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4425  */
4426 
4427 static int
4428 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4429 {
4430 	struct scsi_inquiry	*sd_inq;
4431 	int 			rval = SD_SUCCESS;
4432 
4433 	ASSERT(un != NULL);
4434 	sd_inq = un->un_sd->sd_inq;
4435 	ASSERT(id != NULL);
4436 
4437 	/*
4438 	 * We use the inq_vid as a pointer to a buffer containing the
4439 	 * vid and pid and use the entire vid/pid length of the table
4440 	 * entry for the comparison. This works because the inq_pid
4441 	 * data member follows inq_vid in the scsi_inquiry structure.
4442 	 */
4443 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4444 		/*
4445 		 * The user id string is compared to the inquiry vid/pid
4446 		 * using a case insensitive comparison and ignoring
4447 		 * multiple spaces.
4448 		 */
4449 		rval = sd_blank_cmp(un, id, idlen);
4450 		if (rval != SD_SUCCESS) {
4451 			/*
4452 			 * User id strings that start and end with a "*"
4453 			 * are a special case. These do not have a
4454 			 * specific vendor, and the product string can
4455 			 * appear anywhere in the 16 byte PID portion of
4456 			 * the inquiry data. This is a simple strstr()
4457 			 * type search for the user id in the inquiry data.
4458 			 */
4459 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4460 				char	*pidptr = &id[1];
4461 				int	i;
4462 				int	j;
4463 				int	pidstrlen = idlen - 2;
4464 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4465 				    pidstrlen;
4466 
4467 				if (j < 0) {
4468 					return (SD_FAILURE);
4469 				}
4470 				for (i = 0; i < j; i++) {
4471 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4472 					    pidptr, pidstrlen) == 0) {
4473 						rval = SD_SUCCESS;
4474 						break;
4475 					}
4476 				}
4477 			}
4478 		}
4479 	}
4480 	return (rval);
4481 }
4482 
4483 
4484 /*
4485  *    Function: sd_blank_cmp
4486  *
4487  * Description: If the id string starts and ends with a space, treat
4488  *		multiple consecutive spaces as equivalent to a single
4489  *		space. For example, this causes a sd_disk_table entry
4490  *		of " NEC CDROM " to match a device's id string of
4491  *		"NEC       CDROM".
4492  *
4493  *		Note: The success exit condition for this routine is if
4494  *		the pointer to the table entry is '\0' and the cnt of
4495  *		the inquiry length is zero. This will happen if the inquiry
4496  *		string returned by the device is padded with spaces to be
4497  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4498  *		SCSI spec states that the inquiry string is to be padded with
4499  *		spaces.
4500  *
4501  *   Arguments: un - driver soft state (unit) structure
4502  *		id - table or config file vid/pid
4503  *		idlen  - length of the vid/pid (bytes)
4504  *
4505  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4506  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4507  */
4508 
4509 static int
4510 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4511 {
4512 	char		*p1;
4513 	char		*p2;
4514 	int		cnt;
4515 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4516 	    sizeof (SD_INQUIRY(un)->inq_pid);
4517 
4518 	ASSERT(un != NULL);
4519 	p2 = un->un_sd->sd_inq->inq_vid;
4520 	ASSERT(id != NULL);
4521 	p1 = id;
4522 
4523 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4524 		/*
4525 		 * Note: string p1 is terminated by a NUL but string p2
4526 		 * isn't.  The end of p2 is determined by cnt.
4527 		 */
4528 		for (;;) {
4529 			/* skip over any extra blanks in both strings */
4530 			while ((*p1 != '\0') && (*p1 == ' ')) {
4531 				p1++;
4532 			}
4533 			while ((cnt != 0) && (*p2 == ' ')) {
4534 				p2++;
4535 				cnt--;
4536 			}
4537 
4538 			/* compare the two strings */
4539 			if ((cnt == 0) ||
4540 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4541 				break;
4542 			}
4543 			while ((cnt > 0) &&
4544 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4545 				p1++;
4546 				p2++;
4547 				cnt--;
4548 			}
4549 		}
4550 	}
4551 
4552 	/* return SD_SUCCESS if both strings match */
4553 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4554 }
4555 
4556 
4557 /*
4558  *    Function: sd_chk_vers1_data
4559  *
4560  * Description: Verify the version 1 device properties provided by the
4561  *		user via the configuration file
4562  *
4563  *   Arguments: un	     - driver soft state (unit) structure
4564  *		flags	     - integer mask indicating properties to be set
4565  *		prop_list    - integer list of property values
4566  *		list_len     - number of the elements
4567  *
4568  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4569  *		SD_FAILURE - Indicates the user provided data is invalid
4570  */
4571 
4572 static int
4573 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4574     int list_len, char *dataname_ptr)
4575 {
4576 	int i;
4577 	int mask = 1;
4578 	int index = 0;
4579 
4580 	ASSERT(un != NULL);
4581 
4582 	/* Check for a NULL property name and list */
4583 	if (dataname_ptr == NULL) {
4584 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4585 		    "sd_chk_vers1_data: NULL data property name.");
4586 		return (SD_FAILURE);
4587 	}
4588 	if (prop_list == NULL) {
4589 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4590 		    "sd_chk_vers1_data: %s NULL data property list.",
4591 		    dataname_ptr);
4592 		return (SD_FAILURE);
4593 	}
4594 
4595 	/* Display a warning if undefined bits are set in the flags */
4596 	if (flags & ~SD_CONF_BIT_MASK) {
4597 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4598 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4599 		    "Properties not set.",
4600 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4601 		return (SD_FAILURE);
4602 	}
4603 
4604 	/*
4605 	 * Verify the length of the list by identifying the highest bit set
4606 	 * in the flags and validating that the property list has a length
4607 	 * up to the index of this bit.
4608 	 */
4609 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4610 		if (flags & mask) {
4611 			index++;
4612 		}
4613 		mask = 1 << i;
4614 	}
4615 	if (list_len < (index + 2)) {
4616 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4617 		    "sd_chk_vers1_data: "
4618 		    "Data property list %s size is incorrect. "
4619 		    "Properties not set.", dataname_ptr);
4620 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4621 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4622 		return (SD_FAILURE);
4623 	}
4624 	return (SD_SUCCESS);
4625 }
4626 
4627 
4628 /*
4629  *    Function: sd_set_vers1_properties
4630  *
4631  * Description: Set version 1 device properties based on a property list
4632  *		retrieved from the driver configuration file or static
4633  *		configuration table. Version 1 properties have the format:
4634  *
4635  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4636  *
4637  *		where the prop0 value will be used to set prop0 if bit0
4638  *		is set in the flags
4639  *
4640  *   Arguments: un	     - driver soft state (unit) structure
4641  *		flags	     - integer mask indicating properties to be set
4642  *		prop_list    - integer list of property values
4643  */
4644 
4645 static void
4646 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4647 {
4648 	ASSERT(un != NULL);
4649 
4650 	/*
4651 	 * Set the flag to indicate cache is to be disabled. An attempt
4652 	 * to disable the cache via sd_cache_control() will be made
4653 	 * later during attach once the basic initialization is complete.
4654 	 */
4655 	if (flags & SD_CONF_BSET_NOCACHE) {
4656 		un->un_f_opt_disable_cache = TRUE;
4657 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4658 		    "sd_set_vers1_properties: caching disabled flag set\n");
4659 	}
4660 
4661 	/* CD-specific configuration parameters */
4662 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4663 		un->un_f_cfg_playmsf_bcd = TRUE;
4664 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4665 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4666 	}
4667 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4668 		un->un_f_cfg_readsub_bcd = TRUE;
4669 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4670 		    "sd_set_vers1_properties: readsub_bcd set\n");
4671 	}
4672 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4673 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4674 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4675 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4676 	}
4677 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4678 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4679 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4680 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4681 	}
4682 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4683 		un->un_f_cfg_no_read_header = TRUE;
4684 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4685 		    "sd_set_vers1_properties: no_read_header set\n");
4686 	}
4687 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4688 		un->un_f_cfg_read_cd_xd4 = TRUE;
4689 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4690 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4691 	}
4692 
4693 	/* Support for devices which do not have valid/unique serial numbers */
4694 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4695 		un->un_f_opt_fab_devid = TRUE;
4696 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4697 		    "sd_set_vers1_properties: fab_devid bit set\n");
4698 	}
4699 
4700 	/* Support for user throttle configuration */
4701 	if (flags & SD_CONF_BSET_THROTTLE) {
4702 		ASSERT(prop_list != NULL);
4703 		un->un_saved_throttle = un->un_throttle =
4704 		    prop_list->sdt_throttle;
4705 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4706 		    "sd_set_vers1_properties: throttle set to %d\n",
4707 		    prop_list->sdt_throttle);
4708 	}
4709 
4710 	/* Set the per disk retry count according to the conf file or table. */
4711 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4712 		ASSERT(prop_list != NULL);
4713 		if (prop_list->sdt_not_rdy_retries) {
4714 			un->un_notready_retry_count =
4715 			    prop_list->sdt_not_rdy_retries;
4716 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4717 			    "sd_set_vers1_properties: not ready retry count"
4718 			    " set to %d\n", un->un_notready_retry_count);
4719 		}
4720 	}
4721 
4722 	/* The controller type is reported for generic disk driver ioctls */
4723 	if (flags & SD_CONF_BSET_CTYPE) {
4724 		ASSERT(prop_list != NULL);
4725 		switch (prop_list->sdt_ctype) {
4726 		case CTYPE_CDROM:
4727 			un->un_ctype = prop_list->sdt_ctype;
4728 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4729 			    "sd_set_vers1_properties: ctype set to "
4730 			    "CTYPE_CDROM\n");
4731 			break;
4732 		case CTYPE_CCS:
4733 			un->un_ctype = prop_list->sdt_ctype;
4734 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4735 			    "sd_set_vers1_properties: ctype set to "
4736 			    "CTYPE_CCS\n");
4737 			break;
4738 		case CTYPE_ROD:		/* RW optical */
4739 			un->un_ctype = prop_list->sdt_ctype;
4740 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4741 			    "sd_set_vers1_properties: ctype set to "
4742 			    "CTYPE_ROD\n");
4743 			break;
4744 		default:
4745 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4746 			    "sd_set_vers1_properties: Could not set "
4747 			    "invalid ctype value (%d)",
4748 			    prop_list->sdt_ctype);
4749 		}
4750 	}
4751 
4752 	/* Purple failover timeout */
4753 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4754 		ASSERT(prop_list != NULL);
4755 		un->un_busy_retry_count =
4756 		    prop_list->sdt_busy_retries;
4757 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4758 		    "sd_set_vers1_properties: "
4759 		    "busy retry count set to %d\n",
4760 		    un->un_busy_retry_count);
4761 	}
4762 
4763 	/* Purple reset retry count */
4764 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4765 		ASSERT(prop_list != NULL);
4766 		un->un_reset_retry_count =
4767 		    prop_list->sdt_reset_retries;
4768 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4769 		    "sd_set_vers1_properties: "
4770 		    "reset retry count set to %d\n",
4771 		    un->un_reset_retry_count);
4772 	}
4773 
4774 	/* Purple reservation release timeout */
4775 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4776 		ASSERT(prop_list != NULL);
4777 		un->un_reserve_release_time =
4778 		    prop_list->sdt_reserv_rel_time;
4779 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4780 		    "sd_set_vers1_properties: "
4781 		    "reservation release timeout set to %d\n",
4782 		    un->un_reserve_release_time);
4783 	}
4784 
4785 	/*
4786 	 * Driver flag telling the driver to verify that no commands are pending
4787 	 * for a device before issuing a Test Unit Ready. This is a workaround
4788 	 * for a firmware bug in some Seagate eliteI drives.
4789 	 */
4790 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4791 		un->un_f_cfg_tur_check = TRUE;
4792 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4793 		    "sd_set_vers1_properties: tur queue check set\n");
4794 	}
4795 
4796 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4797 		un->un_min_throttle = prop_list->sdt_min_throttle;
4798 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4799 		    "sd_set_vers1_properties: min throttle set to %d\n",
4800 		    un->un_min_throttle);
4801 	}
4802 
4803 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4804 		un->un_f_disksort_disabled =
4805 		    (prop_list->sdt_disk_sort_dis != 0) ?
4806 		    TRUE : FALSE;
4807 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4808 		    "sd_set_vers1_properties: disksort disabled "
4809 		    "flag set to %d\n",
4810 		    prop_list->sdt_disk_sort_dis);
4811 	}
4812 
4813 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4814 		un->un_f_lun_reset_enabled =
4815 		    (prop_list->sdt_lun_reset_enable != 0) ?
4816 		    TRUE : FALSE;
4817 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4818 		    "sd_set_vers1_properties: lun reset enabled "
4819 		    "flag set to %d\n",
4820 		    prop_list->sdt_lun_reset_enable);
4821 	}
4822 
4823 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4824 		un->un_f_suppress_cache_flush =
4825 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4826 		    TRUE : FALSE;
4827 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4828 		    "sd_set_vers1_properties: suppress_cache_flush "
4829 		    "flag set to %d\n",
4830 		    prop_list->sdt_suppress_cache_flush);
4831 	}
4832 
4833 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4834 		un->un_f_power_condition_disabled =
4835 		    (prop_list->sdt_power_condition_dis != 0) ?
4836 		    TRUE : FALSE;
4837 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4838 		    "sd_set_vers1_properties: power_condition_disabled "
4839 		    "flag set to %d\n",
4840 		    prop_list->sdt_power_condition_dis);
4841 	}
4842 
4843 	/*
4844 	 * Validate the throttle values.
4845 	 * If any of the numbers are invalid, set everything to defaults.
4846 	 */
4847 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4848 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4849 	    (un->un_min_throttle > un->un_throttle)) {
4850 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4851 		un->un_min_throttle = sd_min_throttle;
4852 	}
4853 }
4854 
4855 /*
4856  *   Function: sd_is_lsi()
4857  *
4858  *   Description: Check for lsi devices, step through the static device
4859  *	table to match vid/pid.
4860  *
4861  *   Args: un - ptr to sd_lun
4862  *
4863  *   Notes:  When creating new LSI property, need to add the new LSI property
4864  *		to this function.
4865  */
4866 static void
4867 sd_is_lsi(struct sd_lun *un)
4868 {
4869 	char	*id = NULL;
4870 	int	table_index;
4871 	int	idlen;
4872 	void	*prop;
4873 
4874 	ASSERT(un != NULL);
4875 	for (table_index = 0; table_index < sd_disk_table_size;
4876 	    table_index++) {
4877 		id = sd_disk_table[table_index].device_id;
4878 		idlen = strlen(id);
4879 		if (idlen == 0) {
4880 			continue;
4881 		}
4882 
4883 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4884 			prop = sd_disk_table[table_index].properties;
4885 			if (prop == &lsi_properties ||
4886 			    prop == &lsi_oem_properties ||
4887 			    prop == &lsi_properties_scsi ||
4888 			    prop == &symbios_properties) {
4889 				un->un_f_cfg_is_lsi = TRUE;
4890 			}
4891 			break;
4892 		}
4893 	}
4894 }
4895 
4896 /*
4897  *    Function: sd_get_physical_geometry
4898  *
4899  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4900  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4901  *		target, and use this information to initialize the physical
4902  *		geometry cache specified by pgeom_p.
4903  *
4904  *		MODE SENSE is an optional command, so failure in this case
4905  *		does not necessarily denote an error. We want to use the
4906  *		MODE SENSE commands to derive the physical geometry of the
4907  *		device, but if either command fails, the logical geometry is
4908  *		used as the fallback for disk label geometry in cmlb.
4909  *
4910  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4911  *		have already been initialized for the current target and
4912  *		that the current values be passed as args so that we don't
4913  *		end up ever trying to use -1 as a valid value. This could
4914  *		happen if either value is reset while we're not holding
4915  *		the mutex.
4916  *
4917  *   Arguments: un - driver soft state (unit) structure
4918  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4919  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4920  *			to use the USCSI "direct" chain and bypass the normal
4921  *			command waitq.
4922  *
4923  *     Context: Kernel thread only (can sleep).
4924  */
4925 
4926 static int
4927 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4928 	diskaddr_t capacity, int lbasize, int path_flag)
4929 {
4930 	struct	mode_format	*page3p;
4931 	struct	mode_geometry	*page4p;
4932 	struct	mode_header	*headerp;
4933 	int	sector_size;
4934 	int	nsect;
4935 	int	nhead;
4936 	int	ncyl;
4937 	int	intrlv;
4938 	int	spc;
4939 	diskaddr_t	modesense_capacity;
4940 	int	rpm;
4941 	int	bd_len;
4942 	int	mode_header_length;
4943 	uchar_t	*p3bufp;
4944 	uchar_t	*p4bufp;
4945 	int	cdbsize;
4946 	int 	ret = EIO;
4947 	sd_ssc_t *ssc;
4948 	int	status;
4949 
4950 	ASSERT(un != NULL);
4951 
4952 	if (lbasize == 0) {
4953 		if (ISCD(un)) {
4954 			lbasize = 2048;
4955 		} else {
4956 			lbasize = un->un_sys_blocksize;
4957 		}
4958 	}
4959 	pgeom_p->g_secsize = (unsigned short)lbasize;
4960 
4961 	/*
4962 	 * If the unit is a cd/dvd drive MODE SENSE page three
4963 	 * and MODE SENSE page four are reserved (see SBC spec
4964 	 * and MMC spec). To prevent soft errors just return
4965 	 * using the default LBA size.
4966 	 */
4967 	if (ISCD(un))
4968 		return (ret);
4969 
4970 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4971 
4972 	/*
4973 	 * Retrieve MODE SENSE page 3 - Format Device Page
4974 	 */
4975 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4976 	ssc = sd_ssc_init(un);
4977 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4978 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4979 	if (status != 0) {
4980 		SD_ERROR(SD_LOG_COMMON, un,
4981 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4982 		goto page3_exit;
4983 	}
4984 
4985 	/*
4986 	 * Determine size of Block Descriptors in order to locate the mode
4987 	 * page data.  ATAPI devices return 0, SCSI devices should return
4988 	 * MODE_BLK_DESC_LENGTH.
4989 	 */
4990 	headerp = (struct mode_header *)p3bufp;
4991 	if (un->un_f_cfg_is_atapi == TRUE) {
4992 		struct mode_header_grp2 *mhp =
4993 		    (struct mode_header_grp2 *)headerp;
4994 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4995 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4996 	} else {
4997 		mode_header_length = MODE_HEADER_LENGTH;
4998 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4999 	}
5000 
5001 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5002 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5003 		    "sd_get_physical_geometry: received unexpected bd_len "
5004 		    "of %d, page3\n", bd_len);
5005 		status = EIO;
5006 		goto page3_exit;
5007 	}
5008 
5009 	page3p = (struct mode_format *)
5010 	    ((caddr_t)headerp + mode_header_length + bd_len);
5011 
5012 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5013 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5014 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5015 		    "%d\n", page3p->mode_page.code);
5016 		status = EIO;
5017 		goto page3_exit;
5018 	}
5019 
5020 	/*
5021 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5022 	 * complete successfully; otherwise, revert to the logical geometry.
5023 	 * So, we need to save everything in temporary variables.
5024 	 */
5025 	sector_size = BE_16(page3p->data_bytes_sect);
5026 
5027 	/*
5028 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5029 	 */
5030 	if (sector_size == 0) {
5031 		sector_size = un->un_sys_blocksize;
5032 	} else {
5033 		sector_size &= ~(un->un_sys_blocksize - 1);
5034 	}
5035 
5036 	nsect  = BE_16(page3p->sect_track);
5037 	intrlv = BE_16(page3p->interleave);
5038 
5039 	SD_INFO(SD_LOG_COMMON, un,
5040 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5041 	SD_INFO(SD_LOG_COMMON, un,
5042 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5043 	    page3p->mode_page.code, nsect, sector_size);
5044 	SD_INFO(SD_LOG_COMMON, un,
5045 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5046 	    BE_16(page3p->track_skew),
5047 	    BE_16(page3p->cylinder_skew));
5048 
5049 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5050 
5051 	/*
5052 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5053 	 */
5054 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5055 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5056 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5057 	if (status != 0) {
5058 		SD_ERROR(SD_LOG_COMMON, un,
5059 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5060 		goto page4_exit;
5061 	}
5062 
5063 	/*
5064 	 * Determine size of Block Descriptors in order to locate the mode
5065 	 * page data.  ATAPI devices return 0, SCSI devices should return
5066 	 * MODE_BLK_DESC_LENGTH.
5067 	 */
5068 	headerp = (struct mode_header *)p4bufp;
5069 	if (un->un_f_cfg_is_atapi == TRUE) {
5070 		struct mode_header_grp2 *mhp =
5071 		    (struct mode_header_grp2 *)headerp;
5072 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5073 	} else {
5074 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5075 	}
5076 
5077 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5078 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5079 		    "sd_get_physical_geometry: received unexpected bd_len of "
5080 		    "%d, page4\n", bd_len);
5081 		status = EIO;
5082 		goto page4_exit;
5083 	}
5084 
5085 	page4p = (struct mode_geometry *)
5086 	    ((caddr_t)headerp + mode_header_length + bd_len);
5087 
5088 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5089 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5090 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5091 		    "%d\n", page4p->mode_page.code);
5092 		status = EIO;
5093 		goto page4_exit;
5094 	}
5095 
5096 	/*
5097 	 * Stash the data now, after we know that both commands completed.
5098 	 */
5099 
5100 
5101 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5102 	spc   = nhead * nsect;
5103 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5104 	rpm   = BE_16(page4p->rpm);
5105 
5106 	modesense_capacity = spc * ncyl;
5107 
5108 	SD_INFO(SD_LOG_COMMON, un,
5109 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5110 	SD_INFO(SD_LOG_COMMON, un,
5111 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5112 	SD_INFO(SD_LOG_COMMON, un,
5113 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5114 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5115 	    (void *)pgeom_p, capacity);
5116 
5117 	/*
5118 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5119 	 * the product of C * H * S returned by MODE SENSE >= that returned
5120 	 * by read capacity. This is an idiosyncrasy of the original x86
5121 	 * disk subsystem.
5122 	 */
5123 	if (modesense_capacity >= capacity) {
5124 		SD_INFO(SD_LOG_COMMON, un,
5125 		    "sd_get_physical_geometry: adjusting acyl; "
5126 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5127 		    (modesense_capacity - capacity + spc - 1) / spc);
5128 		if (sector_size != 0) {
5129 			/* 1243403: NEC D38x7 drives don't support sec size */
5130 			pgeom_p->g_secsize = (unsigned short)sector_size;
5131 		}
5132 		pgeom_p->g_nsect    = (unsigned short)nsect;
5133 		pgeom_p->g_nhead    = (unsigned short)nhead;
5134 		pgeom_p->g_capacity = capacity;
5135 		pgeom_p->g_acyl	    =
5136 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5137 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5138 	}
5139 
5140 	pgeom_p->g_rpm    = (unsigned short)rpm;
5141 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5142 	ret = 0;
5143 
5144 	SD_INFO(SD_LOG_COMMON, un,
5145 	    "sd_get_physical_geometry: mode sense geometry:\n");
5146 	SD_INFO(SD_LOG_COMMON, un,
5147 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5148 	    nsect, sector_size, intrlv);
5149 	SD_INFO(SD_LOG_COMMON, un,
5150 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5151 	    nhead, ncyl, rpm, modesense_capacity);
5152 	SD_INFO(SD_LOG_COMMON, un,
5153 	    "sd_get_physical_geometry: (cached)\n");
5154 	SD_INFO(SD_LOG_COMMON, un,
5155 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5156 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5157 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5158 	SD_INFO(SD_LOG_COMMON, un,
5159 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5160 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5161 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5162 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5163 
5164 page4_exit:
5165 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5166 
5167 page3_exit:
5168 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5169 
5170 	if (status != 0) {
5171 		if (status == EIO) {
5172 			/*
5173 			 * Some disks do not support mode sense(6), we
5174 			 * should ignore this kind of error(sense key is
5175 			 * 0x5 - illegal request).
5176 			 */
5177 			uint8_t *sensep;
5178 			int senlen;
5179 
5180 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5181 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5182 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5183 
5184 			if (senlen > 0 &&
5185 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5186 				sd_ssc_assessment(ssc,
5187 				    SD_FMT_IGNORE_COMPROMISE);
5188 			} else {
5189 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5190 			}
5191 		} else {
5192 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5193 		}
5194 	}
5195 	sd_ssc_fini(ssc);
5196 	return (ret);
5197 }
5198 
5199 /*
5200  *    Function: sd_get_virtual_geometry
5201  *
5202  * Description: Ask the controller to tell us about the target device.
5203  *
5204  *   Arguments: un - pointer to softstate
5205  *		capacity - disk capacity in #blocks
5206  *		lbasize - disk block size in bytes
5207  *
5208  *     Context: Kernel thread only
5209  */
5210 
5211 static int
5212 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5213     diskaddr_t capacity, int lbasize)
5214 {
5215 	uint_t	geombuf;
5216 	int	spc;
5217 
5218 	ASSERT(un != NULL);
5219 
5220 	/* Set sector size, and total number of sectors */
5221 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5222 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5223 
5224 	/* Let the HBA tell us its geometry */
5225 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5226 
5227 	/* A value of -1 indicates an undefined "geometry" property */
5228 	if (geombuf == (-1)) {
5229 		return (EINVAL);
5230 	}
5231 
5232 	/* Initialize the logical geometry cache. */
5233 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5234 	lgeom_p->g_nsect   = geombuf & 0xffff;
5235 	lgeom_p->g_secsize = un->un_sys_blocksize;
5236 
5237 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5238 
5239 	/*
5240 	 * Note: The driver originally converted the capacity value from
5241 	 * target blocks to system blocks. However, the capacity value passed
5242 	 * to this routine is already in terms of system blocks (this scaling
5243 	 * is done when the READ CAPACITY command is issued and processed).
5244 	 * This 'error' may have gone undetected because the usage of g_ncyl
5245 	 * (which is based upon g_capacity) is very limited within the driver
5246 	 */
5247 	lgeom_p->g_capacity = capacity;
5248 
5249 	/*
5250 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5251 	 * hba may return zero values if the device has been removed.
5252 	 */
5253 	if (spc == 0) {
5254 		lgeom_p->g_ncyl = 0;
5255 	} else {
5256 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5257 	}
5258 	lgeom_p->g_acyl = 0;
5259 
5260 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5261 	return (0);
5262 
5263 }
5264 /*
5265  *    Function: sd_update_block_info
5266  *
5267  * Description: Calculate a byte count to sector count bitshift value
5268  *		from sector size.
5269  *
5270  *   Arguments: un: unit struct.
5271  *		lbasize: new target sector size
5272  *		capacity: new target capacity, ie. block count
5273  *
5274  *     Context: Kernel thread context
5275  */
5276 
5277 static void
5278 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5279 {
5280 	if (lbasize != 0) {
5281 		un->un_tgt_blocksize = lbasize;
5282 		un->un_f_tgt_blocksize_is_valid = TRUE;
5283 		if (!un->un_f_has_removable_media) {
5284 			un->un_sys_blocksize = lbasize;
5285 		}
5286 	}
5287 
5288 	if (capacity != 0) {
5289 		un->un_blockcount		= capacity;
5290 		un->un_f_blockcount_is_valid	= TRUE;
5291 
5292 		/*
5293 		 * The capacity has changed so update the errstats.
5294 		 */
5295 		if (un->un_errstats != NULL) {
5296 			struct sd_errstats *stp;
5297 
5298 			capacity *= un->un_sys_blocksize;
5299 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5300 			if (stp->sd_capacity.value.ui64 < capacity)
5301 				stp->sd_capacity.value.ui64 = capacity;
5302 		}
5303 	}
5304 }
5305 
5306 
5307 /*
5308  *    Function: sd_register_devid
5309  *
5310  * Description: This routine will obtain the device id information from the
5311  *		target, obtain the serial number, and register the device
5312  *		id with the ddi framework.
5313  *
5314  *   Arguments: devi - the system's dev_info_t for the device.
5315  *		un - driver soft state (unit) structure
5316  *		reservation_flag - indicates if a reservation conflict
5317  *		occurred during attach
5318  *
5319  *     Context: Kernel Thread
5320  */
5321 static void
5322 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5323 {
5324 	int		rval		= 0;
5325 	uchar_t		*inq80		= NULL;
5326 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5327 	size_t		inq80_resid	= 0;
5328 	uchar_t		*inq83		= NULL;
5329 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5330 	size_t		inq83_resid	= 0;
5331 	int		dlen, len;
5332 	char		*sn;
5333 	struct sd_lun	*un;
5334 
5335 	ASSERT(ssc != NULL);
5336 	un = ssc->ssc_un;
5337 	ASSERT(un != NULL);
5338 	ASSERT(mutex_owned(SD_MUTEX(un)));
5339 	ASSERT((SD_DEVINFO(un)) == devi);
5340 
5341 
5342 	/*
5343 	 * We check the availability of the World Wide Name (0x83) and Unit
5344 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5345 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5346 	 * 0x83 is available, that is the best choice.  Our next choice is
5347 	 * 0x80.  If neither are available, we munge the devid from the device
5348 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5349 	 * to fabricate a devid for non-Sun qualified disks.
5350 	 */
5351 	if (sd_check_vpd_page_support(ssc) == 0) {
5352 		/* collect page 80 data if available */
5353 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5354 
5355 			mutex_exit(SD_MUTEX(un));
5356 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5357 
5358 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5359 			    0x01, 0x80, &inq80_resid);
5360 
5361 			if (rval != 0) {
5362 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5363 				kmem_free(inq80, inq80_len);
5364 				inq80 = NULL;
5365 				inq80_len = 0;
5366 			} else if (ddi_prop_exists(
5367 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5368 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5369 			    INQUIRY_SERIAL_NO) == 0) {
5370 				/*
5371 				 * If we don't already have a serial number
5372 				 * property, do quick verify of data returned
5373 				 * and define property.
5374 				 */
5375 				dlen = inq80_len - inq80_resid;
5376 				len = (size_t)inq80[3];
5377 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5378 					/*
5379 					 * Ensure sn termination, skip leading
5380 					 * blanks, and create property
5381 					 * 'inquiry-serial-no'.
5382 					 */
5383 					sn = (char *)&inq80[4];
5384 					sn[len] = 0;
5385 					while (*sn && (*sn == ' '))
5386 						sn++;
5387 					if (*sn) {
5388 						(void) ddi_prop_update_string(
5389 						    DDI_DEV_T_NONE,
5390 						    SD_DEVINFO(un),
5391 						    INQUIRY_SERIAL_NO, sn);
5392 					}
5393 				}
5394 			}
5395 			mutex_enter(SD_MUTEX(un));
5396 		}
5397 
5398 		/* collect page 83 data if available */
5399 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5400 			mutex_exit(SD_MUTEX(un));
5401 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5402 
5403 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5404 			    0x01, 0x83, &inq83_resid);
5405 
5406 			if (rval != 0) {
5407 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5408 				kmem_free(inq83, inq83_len);
5409 				inq83 = NULL;
5410 				inq83_len = 0;
5411 			}
5412 			mutex_enter(SD_MUTEX(un));
5413 		}
5414 	}
5415 
5416 	/*
5417 	 * If transport has already registered a devid for this target
5418 	 * then that takes precedence over the driver's determination
5419 	 * of the devid.
5420 	 *
5421 	 * NOTE: The reason this check is done here instead of at the beginning
5422 	 * of the function is to allow the code above to create the
5423 	 * 'inquiry-serial-no' property.
5424 	 */
5425 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5426 		ASSERT(un->un_devid);
5427 		un->un_f_devid_transport_defined = TRUE;
5428 		goto cleanup; /* use devid registered by the transport */
5429 	}
5430 
5431 	/*
5432 	 * This is the case of antiquated Sun disk drives that have the
5433 	 * FAB_DEVID property set in the disk_table.  These drives
5434 	 * manage the devid's by storing them in last 2 available sectors
5435 	 * on the drive and have them fabricated by the ddi layer by calling
5436 	 * ddi_devid_init and passing the DEVID_FAB flag.
5437 	 */
5438 	if (un->un_f_opt_fab_devid == TRUE) {
5439 		/*
5440 		 * Depending on EINVAL isn't reliable, since a reserved disk
5441 		 * may result in invalid geometry, so check to make sure a
5442 		 * reservation conflict did not occur during attach.
5443 		 */
5444 		if ((sd_get_devid(ssc) == EINVAL) &&
5445 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5446 			/*
5447 			 * The devid is invalid AND there is no reservation
5448 			 * conflict.  Fabricate a new devid.
5449 			 */
5450 			(void) sd_create_devid(ssc);
5451 		}
5452 
5453 		/* Register the devid if it exists */
5454 		if (un->un_devid != NULL) {
5455 			(void) ddi_devid_register(SD_DEVINFO(un),
5456 			    un->un_devid);
5457 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5458 			    "sd_register_devid: Devid Fabricated\n");
5459 		}
5460 		goto cleanup;
5461 	}
5462 
5463 	/* encode best devid possible based on data available */
5464 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5465 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5466 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5467 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5468 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5469 
5470 		/* devid successfully encoded, register devid */
5471 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5472 
5473 	} else {
5474 		/*
5475 		 * Unable to encode a devid based on data available.
5476 		 * This is not a Sun qualified disk.  Older Sun disk
5477 		 * drives that have the SD_FAB_DEVID property
5478 		 * set in the disk_table and non Sun qualified
5479 		 * disks are treated in the same manner.  These
5480 		 * drives manage the devid's by storing them in
5481 		 * last 2 available sectors on the drive and
5482 		 * have them fabricated by the ddi layer by
5483 		 * calling ddi_devid_init and passing the
5484 		 * DEVID_FAB flag.
5485 		 * Create a fabricate devid only if there's no
5486 		 * fabricate devid existed.
5487 		 */
5488 		if (sd_get_devid(ssc) == EINVAL) {
5489 			(void) sd_create_devid(ssc);
5490 		}
5491 		un->un_f_opt_fab_devid = TRUE;
5492 
5493 		/* Register the devid if it exists */
5494 		if (un->un_devid != NULL) {
5495 			(void) ddi_devid_register(SD_DEVINFO(un),
5496 			    un->un_devid);
5497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5498 			    "sd_register_devid: devid fabricated using "
5499 			    "ddi framework\n");
5500 		}
5501 	}
5502 
5503 cleanup:
5504 	/* clean up resources */
5505 	if (inq80 != NULL) {
5506 		kmem_free(inq80, inq80_len);
5507 	}
5508 	if (inq83 != NULL) {
5509 		kmem_free(inq83, inq83_len);
5510 	}
5511 }
5512 
5513 
5514 
5515 /*
5516  *    Function: sd_get_devid
5517  *
5518  * Description: This routine will return 0 if a valid device id has been
5519  *		obtained from the target and stored in the soft state. If a
5520  *		valid device id has not been previously read and stored, a
5521  *		read attempt will be made.
5522  *
5523  *   Arguments: un - driver soft state (unit) structure
5524  *
5525  * Return Code: 0 if we successfully get the device id
5526  *
5527  *     Context: Kernel Thread
5528  */
5529 
5530 static int
5531 sd_get_devid(sd_ssc_t *ssc)
5532 {
5533 	struct dk_devid		*dkdevid;
5534 	ddi_devid_t		tmpid;
5535 	uint_t			*ip;
5536 	size_t			sz;
5537 	diskaddr_t		blk;
5538 	int			status;
5539 	int			chksum;
5540 	int			i;
5541 	size_t			buffer_size;
5542 	struct sd_lun		*un;
5543 
5544 	ASSERT(ssc != NULL);
5545 	un = ssc->ssc_un;
5546 	ASSERT(un != NULL);
5547 	ASSERT(mutex_owned(SD_MUTEX(un)));
5548 
5549 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5550 	    un);
5551 
5552 	if (un->un_devid != NULL) {
5553 		return (0);
5554 	}
5555 
5556 	mutex_exit(SD_MUTEX(un));
5557 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5558 	    (void *)SD_PATH_DIRECT) != 0) {
5559 		mutex_enter(SD_MUTEX(un));
5560 		return (EINVAL);
5561 	}
5562 
5563 	/*
5564 	 * Read and verify device id, stored in the reserved cylinders at the
5565 	 * end of the disk. Backup label is on the odd sectors of the last
5566 	 * track of the last cylinder. Device id will be on track of the next
5567 	 * to last cylinder.
5568 	 */
5569 	mutex_enter(SD_MUTEX(un));
5570 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5571 	mutex_exit(SD_MUTEX(un));
5572 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5573 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5574 	    SD_PATH_DIRECT);
5575 
5576 	if (status != 0) {
5577 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5578 		goto error;
5579 	}
5580 
5581 	/* Validate the revision */
5582 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5583 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5584 		status = EINVAL;
5585 		goto error;
5586 	}
5587 
5588 	/* Calculate the checksum */
5589 	chksum = 0;
5590 	ip = (uint_t *)dkdevid;
5591 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5592 	    i++) {
5593 		chksum ^= ip[i];
5594 	}
5595 
5596 	/* Compare the checksums */
5597 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5598 		status = EINVAL;
5599 		goto error;
5600 	}
5601 
5602 	/* Validate the device id */
5603 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5604 		status = EINVAL;
5605 		goto error;
5606 	}
5607 
5608 	/*
5609 	 * Store the device id in the driver soft state
5610 	 */
5611 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5612 	tmpid = kmem_alloc(sz, KM_SLEEP);
5613 
5614 	mutex_enter(SD_MUTEX(un));
5615 
5616 	un->un_devid = tmpid;
5617 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5618 
5619 	kmem_free(dkdevid, buffer_size);
5620 
5621 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5622 
5623 	return (status);
5624 error:
5625 	mutex_enter(SD_MUTEX(un));
5626 	kmem_free(dkdevid, buffer_size);
5627 	return (status);
5628 }
5629 
5630 
5631 /*
5632  *    Function: sd_create_devid
5633  *
5634  * Description: This routine will fabricate the device id and write it
5635  *		to the disk.
5636  *
5637  *   Arguments: un - driver soft state (unit) structure
5638  *
5639  * Return Code: value of the fabricated device id
5640  *
5641  *     Context: Kernel Thread
5642  */
5643 
5644 static ddi_devid_t
5645 sd_create_devid(sd_ssc_t *ssc)
5646 {
5647 	struct sd_lun	*un;
5648 
5649 	ASSERT(ssc != NULL);
5650 	un = ssc->ssc_un;
5651 	ASSERT(un != NULL);
5652 
5653 	/* Fabricate the devid */
5654 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5655 	    == DDI_FAILURE) {
5656 		return (NULL);
5657 	}
5658 
5659 	/* Write the devid to disk */
5660 	if (sd_write_deviceid(ssc) != 0) {
5661 		ddi_devid_free(un->un_devid);
5662 		un->un_devid = NULL;
5663 	}
5664 
5665 	return (un->un_devid);
5666 }
5667 
5668 
5669 /*
5670  *    Function: sd_write_deviceid
5671  *
5672  * Description: This routine will write the device id to the disk
5673  *		reserved sector.
5674  *
5675  *   Arguments: un - driver soft state (unit) structure
5676  *
5677  * Return Code: EINVAL
5678  *		value returned by sd_send_scsi_cmd
5679  *
5680  *     Context: Kernel Thread
5681  */
5682 
5683 static int
5684 sd_write_deviceid(sd_ssc_t *ssc)
5685 {
5686 	struct dk_devid		*dkdevid;
5687 	uchar_t			*buf;
5688 	diskaddr_t		blk;
5689 	uint_t			*ip, chksum;
5690 	int			status;
5691 	int			i;
5692 	struct sd_lun		*un;
5693 
5694 	ASSERT(ssc != NULL);
5695 	un = ssc->ssc_un;
5696 	ASSERT(un != NULL);
5697 	ASSERT(mutex_owned(SD_MUTEX(un)));
5698 
5699 	mutex_exit(SD_MUTEX(un));
5700 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5701 	    (void *)SD_PATH_DIRECT) != 0) {
5702 		mutex_enter(SD_MUTEX(un));
5703 		return (-1);
5704 	}
5705 
5706 
5707 	/* Allocate the buffer */
5708 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5709 	dkdevid = (struct dk_devid *)buf;
5710 
5711 	/* Fill in the revision */
5712 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5713 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5714 
5715 	/* Copy in the device id */
5716 	mutex_enter(SD_MUTEX(un));
5717 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5718 	    ddi_devid_sizeof(un->un_devid));
5719 	mutex_exit(SD_MUTEX(un));
5720 
5721 	/* Calculate the checksum */
5722 	chksum = 0;
5723 	ip = (uint_t *)dkdevid;
5724 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5725 	    i++) {
5726 		chksum ^= ip[i];
5727 	}
5728 
5729 	/* Fill-in checksum */
5730 	DKD_FORMCHKSUM(chksum, dkdevid);
5731 
5732 	/* Write the reserved sector */
5733 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5734 	    SD_PATH_DIRECT);
5735 	if (status != 0)
5736 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5737 
5738 	kmem_free(buf, un->un_sys_blocksize);
5739 
5740 	mutex_enter(SD_MUTEX(un));
5741 	return (status);
5742 }
5743 
5744 
5745 /*
5746  *    Function: sd_check_vpd_page_support
5747  *
5748  * Description: This routine sends an inquiry command with the EVPD bit set and
5749  *		a page code of 0x00 to the device. It is used to determine which
5750  *		vital product pages are available to find the devid. We are
5751  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5752  *		the device does not support that command.
5753  *
5754  *   Arguments: un  - driver soft state (unit) structure
5755  *
5756  * Return Code: 0 - success
5757  *		1 - check condition
5758  *
5759  *     Context: This routine can sleep.
5760  */
5761 
5762 static int
5763 sd_check_vpd_page_support(sd_ssc_t *ssc)
5764 {
5765 	uchar_t	*page_list	= NULL;
5766 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5767 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5768 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5769 	int    	rval		= 0;
5770 	int	counter;
5771 	struct sd_lun		*un;
5772 
5773 	ASSERT(ssc != NULL);
5774 	un = ssc->ssc_un;
5775 	ASSERT(un != NULL);
5776 	ASSERT(mutex_owned(SD_MUTEX(un)));
5777 
5778 	mutex_exit(SD_MUTEX(un));
5779 
5780 	/*
5781 	 * We'll set the page length to the maximum to save figuring it out
5782 	 * with an additional call.
5783 	 */
5784 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5785 
5786 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5787 	    page_code, NULL);
5788 
5789 	if (rval != 0)
5790 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5791 
5792 	mutex_enter(SD_MUTEX(un));
5793 
5794 	/*
5795 	 * Now we must validate that the device accepted the command, as some
5796 	 * drives do not support it.  If the drive does support it, we will
5797 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5798 	 * not, we return -1.
5799 	 */
5800 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5801 		/* Loop to find one of the 2 pages we need */
5802 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5803 
5804 		/*
5805 		 * Pages are returned in ascending order, and 0x83 is what we
5806 		 * are hoping for.
5807 		 */
5808 		while ((page_list[counter] <= 0xB1) &&
5809 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5810 		    VPD_HEAD_OFFSET))) {
5811 			/*
5812 			 * Add 3 because page_list[3] is the number of
5813 			 * pages minus 3
5814 			 */
5815 
5816 			switch (page_list[counter]) {
5817 			case 0x00:
5818 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5819 				break;
5820 			case 0x80:
5821 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5822 				break;
5823 			case 0x81:
5824 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5825 				break;
5826 			case 0x82:
5827 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5828 				break;
5829 			case 0x83:
5830 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5831 				break;
5832 			case 0x86:
5833 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5834 				break;
5835 			case 0xB1:
5836 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5837 				break;
5838 			}
5839 			counter++;
5840 		}
5841 
5842 	} else {
5843 		rval = -1;
5844 
5845 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5846 		    "sd_check_vpd_page_support: This drive does not implement "
5847 		    "VPD pages.\n");
5848 	}
5849 
5850 	kmem_free(page_list, page_length);
5851 
5852 	return (rval);
5853 }
5854 
5855 
5856 /*
5857  *    Function: sd_setup_pm
5858  *
5859  * Description: Initialize Power Management on the device
5860  *
5861  *     Context: Kernel Thread
5862  */
5863 
5864 static void
5865 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5866 {
5867 	uint_t		log_page_size;
5868 	uchar_t		*log_page_data;
5869 	int		rval = 0;
5870 	struct sd_lun	*un;
5871 
5872 	ASSERT(ssc != NULL);
5873 	un = ssc->ssc_un;
5874 	ASSERT(un != NULL);
5875 
5876 	/*
5877 	 * Since we are called from attach, holding a mutex for
5878 	 * un is unnecessary. Because some of the routines called
5879 	 * from here require SD_MUTEX to not be held, assert this
5880 	 * right up front.
5881 	 */
5882 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5883 	/*
5884 	 * Since the sd device does not have the 'reg' property,
5885 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5886 	 * The following code is to tell cpr that this device
5887 	 * DOES need to be suspended and resumed.
5888 	 */
5889 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5890 	    "pm-hardware-state", "needs-suspend-resume");
5891 
5892 	/*
5893 	 * This complies with the new power management framework
5894 	 * for certain desktop machines. Create the pm_components
5895 	 * property as a string array property.
5896 	 * If un_f_pm_supported is TRUE, that means the disk
5897 	 * attached HBA has set the "pm-capable" property and
5898 	 * the value of this property is bigger than 0.
5899 	 */
5900 	if (un->un_f_pm_supported) {
5901 		/*
5902 		 * not all devices have a motor, try it first.
5903 		 * some devices may return ILLEGAL REQUEST, some
5904 		 * will hang
5905 		 * The following START_STOP_UNIT is used to check if target
5906 		 * device has a motor.
5907 		 */
5908 		un->un_f_start_stop_supported = TRUE;
5909 
5910 		if (un->un_f_power_condition_supported) {
5911 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5912 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5913 			    SD_PATH_DIRECT);
5914 			if (rval != 0) {
5915 				un->un_f_power_condition_supported = FALSE;
5916 			}
5917 		}
5918 		if (!un->un_f_power_condition_supported) {
5919 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5920 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5921 		}
5922 		if (rval != 0) {
5923 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5924 			un->un_f_start_stop_supported = FALSE;
5925 		}
5926 
5927 		/*
5928 		 * create pm properties anyways otherwise the parent can't
5929 		 * go to sleep
5930 		 */
5931 		un->un_f_pm_is_enabled = TRUE;
5932 		(void) sd_create_pm_components(devi, un);
5933 
5934 		/*
5935 		 * If it claims that log sense is supported, check it out.
5936 		 */
5937 		if (un->un_f_log_sense_supported) {
5938 			rval = sd_log_page_supported(ssc,
5939 			    START_STOP_CYCLE_PAGE);
5940 			if (rval == 1) {
5941 				/* Page found, use it. */
5942 				un->un_start_stop_cycle_page =
5943 				    START_STOP_CYCLE_PAGE;
5944 			} else {
5945 				/*
5946 				 * Page not found or log sense is not
5947 				 * supported.
5948 				 * Notice we do not check the old style
5949 				 * START_STOP_CYCLE_VU_PAGE because this
5950 				 * code path does not apply to old disks.
5951 				 */
5952 				un->un_f_log_sense_supported = FALSE;
5953 				un->un_f_pm_log_sense_smart = FALSE;
5954 			}
5955 		}
5956 
5957 		return;
5958 	}
5959 
5960 	/*
5961 	 * For the disk whose attached HBA has not set the "pm-capable"
5962 	 * property, check if it supports the power management.
5963 	 */
5964 	if (!un->un_f_log_sense_supported) {
5965 		un->un_power_level = SD_SPINDLE_ON;
5966 		un->un_f_pm_is_enabled = FALSE;
5967 		return;
5968 	}
5969 
5970 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5971 
5972 #ifdef	SDDEBUG
5973 	if (sd_force_pm_supported) {
5974 		/* Force a successful result */
5975 		rval = 1;
5976 	}
5977 #endif
5978 
5979 	/*
5980 	 * If the start-stop cycle counter log page is not supported
5981 	 * or if the pm-capable property is set to be false (0),
5982 	 * then we should not create the pm_components property.
5983 	 */
5984 	if (rval == -1) {
5985 		/*
5986 		 * Error.
5987 		 * Reading log sense failed, most likely this is
5988 		 * an older drive that does not support log sense.
5989 		 * If this fails auto-pm is not supported.
5990 		 */
5991 		un->un_power_level = SD_SPINDLE_ON;
5992 		un->un_f_pm_is_enabled = FALSE;
5993 
5994 	} else if (rval == 0) {
5995 		/*
5996 		 * Page not found.
5997 		 * The start stop cycle counter is implemented as page
5998 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5999 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6000 		 */
6001 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6002 			/*
6003 			 * Page found, use this one.
6004 			 */
6005 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6006 			un->un_f_pm_is_enabled = TRUE;
6007 		} else {
6008 			/*
6009 			 * Error or page not found.
6010 			 * auto-pm is not supported for this device.
6011 			 */
6012 			un->un_power_level = SD_SPINDLE_ON;
6013 			un->un_f_pm_is_enabled = FALSE;
6014 		}
6015 	} else {
6016 		/*
6017 		 * Page found, use it.
6018 		 */
6019 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6020 		un->un_f_pm_is_enabled = TRUE;
6021 	}
6022 
6023 
6024 	if (un->un_f_pm_is_enabled == TRUE) {
6025 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6026 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6027 
6028 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6029 		    log_page_size, un->un_start_stop_cycle_page,
6030 		    0x01, 0, SD_PATH_DIRECT);
6031 
6032 		if (rval != 0) {
6033 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6034 		}
6035 
6036 #ifdef	SDDEBUG
6037 		if (sd_force_pm_supported) {
6038 			/* Force a successful result */
6039 			rval = 0;
6040 		}
6041 #endif
6042 
6043 		/*
6044 		 * If the Log sense for Page( Start/stop cycle counter page)
6045 		 * succeeds, then power management is supported and we can
6046 		 * enable auto-pm.
6047 		 */
6048 		if (rval == 0)  {
6049 			(void) sd_create_pm_components(devi, un);
6050 		} else {
6051 			un->un_power_level = SD_SPINDLE_ON;
6052 			un->un_f_pm_is_enabled = FALSE;
6053 		}
6054 
6055 		kmem_free(log_page_data, log_page_size);
6056 	}
6057 }
6058 
6059 
6060 /*
6061  *    Function: sd_create_pm_components
6062  *
6063  * Description: Initialize PM property.
6064  *
6065  *     Context: Kernel thread context
6066  */
6067 
6068 static void
6069 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6070 {
6071 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6072 
6073 	if (un->un_f_power_condition_supported) {
6074 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6075 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6076 		    != DDI_PROP_SUCCESS) {
6077 			un->un_power_level = SD_SPINDLE_ACTIVE;
6078 			un->un_f_pm_is_enabled = FALSE;
6079 			return;
6080 		}
6081 	} else {
6082 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6083 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6084 		    != DDI_PROP_SUCCESS) {
6085 			un->un_power_level = SD_SPINDLE_ON;
6086 			un->un_f_pm_is_enabled = FALSE;
6087 			return;
6088 		}
6089 	}
6090 	/*
6091 	 * When components are initially created they are idle,
6092 	 * power up any non-removables.
6093 	 * Note: the return value of pm_raise_power can't be used
6094 	 * for determining if PM should be enabled for this device.
6095 	 * Even if you check the return values and remove this
6096 	 * property created above, the PM framework will not honor the
6097 	 * change after the first call to pm_raise_power. Hence,
6098 	 * removal of that property does not help if pm_raise_power
6099 	 * fails. In the case of removable media, the start/stop
6100 	 * will fail if the media is not present.
6101 	 */
6102 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6103 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6104 		mutex_enter(SD_MUTEX(un));
6105 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6106 		mutex_enter(&un->un_pm_mutex);
6107 		/* Set to on and not busy. */
6108 		un->un_pm_count = 0;
6109 	} else {
6110 		mutex_enter(SD_MUTEX(un));
6111 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6112 		mutex_enter(&un->un_pm_mutex);
6113 		/* Set to off. */
6114 		un->un_pm_count = -1;
6115 	}
6116 	mutex_exit(&un->un_pm_mutex);
6117 	mutex_exit(SD_MUTEX(un));
6118 }
6119 
6120 
6121 /*
6122  *    Function: sd_ddi_suspend
6123  *
6124  * Description: Performs system power-down operations. This includes
6125  *		setting the drive state to indicate its suspended so
6126  *		that no new commands will be accepted. Also, wait for
6127  *		all commands that are in transport or queued to a timer
6128  *		for retry to complete. All timeout threads are cancelled.
6129  *
6130  * Return Code: DDI_FAILURE or DDI_SUCCESS
6131  *
6132  *     Context: Kernel thread context
6133  */
6134 
6135 static int
6136 sd_ddi_suspend(dev_info_t *devi)
6137 {
6138 	struct	sd_lun	*un;
6139 	clock_t		wait_cmds_complete;
6140 
6141 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6142 	if (un == NULL) {
6143 		return (DDI_FAILURE);
6144 	}
6145 
6146 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6147 
6148 	mutex_enter(SD_MUTEX(un));
6149 
6150 	/* Return success if the device is already suspended. */
6151 	if (un->un_state == SD_STATE_SUSPENDED) {
6152 		mutex_exit(SD_MUTEX(un));
6153 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6154 		    "device already suspended, exiting\n");
6155 		return (DDI_SUCCESS);
6156 	}
6157 
6158 	/* Return failure if the device is being used by HA */
6159 	if (un->un_resvd_status &
6160 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6161 		mutex_exit(SD_MUTEX(un));
6162 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6163 		    "device in use by HA, exiting\n");
6164 		return (DDI_FAILURE);
6165 	}
6166 
6167 	/*
6168 	 * Return failure if the device is in a resource wait
6169 	 * or power changing state.
6170 	 */
6171 	if ((un->un_state == SD_STATE_RWAIT) ||
6172 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6173 		mutex_exit(SD_MUTEX(un));
6174 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6175 		    "device in resource wait state, exiting\n");
6176 		return (DDI_FAILURE);
6177 	}
6178 
6179 
6180 	un->un_save_state = un->un_last_state;
6181 	New_state(un, SD_STATE_SUSPENDED);
6182 
6183 	/*
6184 	 * Wait for all commands that are in transport or queued to a timer
6185 	 * for retry to complete.
6186 	 *
6187 	 * While waiting, no new commands will be accepted or sent because of
6188 	 * the new state we set above.
6189 	 *
6190 	 * Wait till current operation has completed. If we are in the resource
6191 	 * wait state (with an intr outstanding) then we need to wait till the
6192 	 * intr completes and starts the next cmd. We want to wait for
6193 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6194 	 */
6195 	wait_cmds_complete = ddi_get_lbolt() +
6196 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6197 
6198 	while (un->un_ncmds_in_transport != 0) {
6199 		/*
6200 		 * Fail if commands do not finish in the specified time.
6201 		 */
6202 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6203 		    wait_cmds_complete) == -1) {
6204 			/*
6205 			 * Undo the state changes made above. Everything
6206 			 * must go back to it's original value.
6207 			 */
6208 			Restore_state(un);
6209 			un->un_last_state = un->un_save_state;
6210 			/* Wake up any threads that might be waiting. */
6211 			cv_broadcast(&un->un_suspend_cv);
6212 			mutex_exit(SD_MUTEX(un));
6213 			SD_ERROR(SD_LOG_IO_PM, un,
6214 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6215 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6216 			return (DDI_FAILURE);
6217 		}
6218 	}
6219 
6220 	/*
6221 	 * Cancel SCSI watch thread and timeouts, if any are active
6222 	 */
6223 
6224 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6225 		opaque_t temp_token = un->un_swr_token;
6226 		mutex_exit(SD_MUTEX(un));
6227 		scsi_watch_suspend(temp_token);
6228 		mutex_enter(SD_MUTEX(un));
6229 	}
6230 
6231 	if (un->un_reset_throttle_timeid != NULL) {
6232 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6233 		un->un_reset_throttle_timeid = NULL;
6234 		mutex_exit(SD_MUTEX(un));
6235 		(void) untimeout(temp_id);
6236 		mutex_enter(SD_MUTEX(un));
6237 	}
6238 
6239 	if (un->un_dcvb_timeid != NULL) {
6240 		timeout_id_t temp_id = un->un_dcvb_timeid;
6241 		un->un_dcvb_timeid = NULL;
6242 		mutex_exit(SD_MUTEX(un));
6243 		(void) untimeout(temp_id);
6244 		mutex_enter(SD_MUTEX(un));
6245 	}
6246 
6247 	mutex_enter(&un->un_pm_mutex);
6248 	if (un->un_pm_timeid != NULL) {
6249 		timeout_id_t temp_id = un->un_pm_timeid;
6250 		un->un_pm_timeid = NULL;
6251 		mutex_exit(&un->un_pm_mutex);
6252 		mutex_exit(SD_MUTEX(un));
6253 		(void) untimeout(temp_id);
6254 		mutex_enter(SD_MUTEX(un));
6255 	} else {
6256 		mutex_exit(&un->un_pm_mutex);
6257 	}
6258 
6259 	if (un->un_rmw_msg_timeid != NULL) {
6260 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6261 		un->un_rmw_msg_timeid = NULL;
6262 		mutex_exit(SD_MUTEX(un));
6263 		(void) untimeout(temp_id);
6264 		mutex_enter(SD_MUTEX(un));
6265 	}
6266 
6267 	if (un->un_retry_timeid != NULL) {
6268 		timeout_id_t temp_id = un->un_retry_timeid;
6269 		un->un_retry_timeid = NULL;
6270 		mutex_exit(SD_MUTEX(un));
6271 		(void) untimeout(temp_id);
6272 		mutex_enter(SD_MUTEX(un));
6273 
6274 		if (un->un_retry_bp != NULL) {
6275 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6276 			un->un_waitq_headp = un->un_retry_bp;
6277 			if (un->un_waitq_tailp == NULL) {
6278 				un->un_waitq_tailp = un->un_retry_bp;
6279 			}
6280 			un->un_retry_bp = NULL;
6281 			un->un_retry_statp = NULL;
6282 		}
6283 	}
6284 
6285 	if (un->un_direct_priority_timeid != NULL) {
6286 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6287 		un->un_direct_priority_timeid = NULL;
6288 		mutex_exit(SD_MUTEX(un));
6289 		(void) untimeout(temp_id);
6290 		mutex_enter(SD_MUTEX(un));
6291 	}
6292 
6293 	if (un->un_f_is_fibre == TRUE) {
6294 		/*
6295 		 * Remove callbacks for insert and remove events
6296 		 */
6297 		if (un->un_insert_event != NULL) {
6298 			mutex_exit(SD_MUTEX(un));
6299 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6300 			mutex_enter(SD_MUTEX(un));
6301 			un->un_insert_event = NULL;
6302 		}
6303 
6304 		if (un->un_remove_event != NULL) {
6305 			mutex_exit(SD_MUTEX(un));
6306 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6307 			mutex_enter(SD_MUTEX(un));
6308 			un->un_remove_event = NULL;
6309 		}
6310 	}
6311 
6312 	mutex_exit(SD_MUTEX(un));
6313 
6314 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6315 
6316 	return (DDI_SUCCESS);
6317 }
6318 
6319 
6320 /*
6321  *    Function: sd_ddi_resume
6322  *
6323  * Description: Performs system power-up operations..
6324  *
6325  * Return Code: DDI_SUCCESS
6326  *		DDI_FAILURE
6327  *
6328  *     Context: Kernel thread context
6329  */
6330 
6331 static int
6332 sd_ddi_resume(dev_info_t *devi)
6333 {
6334 	struct	sd_lun	*un;
6335 
6336 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6337 	if (un == NULL) {
6338 		return (DDI_FAILURE);
6339 	}
6340 
6341 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6342 
6343 	mutex_enter(SD_MUTEX(un));
6344 	Restore_state(un);
6345 
6346 	/*
6347 	 * Restore the state which was saved to give the
6348 	 * the right state in un_last_state
6349 	 */
6350 	un->un_last_state = un->un_save_state;
6351 	/*
6352 	 * Note: throttle comes back at full.
6353 	 * Also note: this MUST be done before calling pm_raise_power
6354 	 * otherwise the system can get hung in biowait. The scenario where
6355 	 * this'll happen is under cpr suspend. Writing of the system
6356 	 * state goes through sddump, which writes 0 to un_throttle. If
6357 	 * writing the system state then fails, example if the partition is
6358 	 * too small, then cpr attempts a resume. If throttle isn't restored
6359 	 * from the saved value until after calling pm_raise_power then
6360 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6361 	 * in biowait.
6362 	 */
6363 	un->un_throttle = un->un_saved_throttle;
6364 
6365 	/*
6366 	 * The chance of failure is very rare as the only command done in power
6367 	 * entry point is START command when you transition from 0->1 or
6368 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6369 	 * which suspend was done. Ignore the return value as the resume should
6370 	 * not be failed. In the case of removable media the media need not be
6371 	 * inserted and hence there is a chance that raise power will fail with
6372 	 * media not present.
6373 	 */
6374 	if (un->un_f_attach_spinup) {
6375 		mutex_exit(SD_MUTEX(un));
6376 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6377 		    SD_PM_STATE_ACTIVE(un));
6378 		mutex_enter(SD_MUTEX(un));
6379 	}
6380 
6381 	/*
6382 	 * Don't broadcast to the suspend cv and therefore possibly
6383 	 * start I/O until after power has been restored.
6384 	 */
6385 	cv_broadcast(&un->un_suspend_cv);
6386 	cv_broadcast(&un->un_state_cv);
6387 
6388 	/* restart thread */
6389 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6390 		scsi_watch_resume(un->un_swr_token);
6391 	}
6392 
6393 #if (defined(__fibre))
6394 	if (un->un_f_is_fibre == TRUE) {
6395 		/*
6396 		 * Add callbacks for insert and remove events
6397 		 */
6398 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6399 			sd_init_event_callbacks(un);
6400 		}
6401 	}
6402 #endif
6403 
6404 	/*
6405 	 * Transport any pending commands to the target.
6406 	 *
6407 	 * If this is a low-activity device commands in queue will have to wait
6408 	 * until new commands come in, which may take awhile. Also, we
6409 	 * specifically don't check un_ncmds_in_transport because we know that
6410 	 * there really are no commands in progress after the unit was
6411 	 * suspended and we could have reached the throttle level, been
6412 	 * suspended, and have no new commands coming in for awhile. Highly
6413 	 * unlikely, but so is the low-activity disk scenario.
6414 	 */
6415 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6416 
6417 	sd_start_cmds(un, NULL);
6418 	mutex_exit(SD_MUTEX(un));
6419 
6420 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6421 
6422 	return (DDI_SUCCESS);
6423 }
6424 
6425 
6426 /*
6427  *    Function: sd_pm_state_change
6428  *
6429  * Description: Change the driver power state.
6430  * 		Someone else is required to actually change the driver
6431  * 		power level.
6432  *
6433  *   Arguments: un - driver soft state (unit) structure
6434  *              level - the power level that is changed to
6435  *              flag - to decide how to change the power state
6436  *
6437  * Return Code: DDI_SUCCESS
6438  *
6439  *     Context: Kernel thread context
6440  */
6441 static int
6442 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6443 {
6444 	ASSERT(un != NULL);
6445 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6446 
6447 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6448 	mutex_enter(SD_MUTEX(un));
6449 
6450 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6451 		un->un_power_level = level;
6452 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6453 		mutex_enter(&un->un_pm_mutex);
6454 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6455 			un->un_pm_count++;
6456 			ASSERT(un->un_pm_count == 0);
6457 		}
6458 		mutex_exit(&un->un_pm_mutex);
6459 	} else {
6460 		/*
6461 		 * Exit if power management is not enabled for this device,
6462 		 * or if the device is being used by HA.
6463 		 */
6464 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6465 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6466 			mutex_exit(SD_MUTEX(un));
6467 			SD_TRACE(SD_LOG_POWER, un,
6468 			    "sd_pm_state_change: exiting\n");
6469 			return (DDI_FAILURE);
6470 		}
6471 
6472 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6473 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6474 
6475 		/*
6476 		 * See if the device is not busy, ie.:
6477 		 *    - we have no commands in the driver for this device
6478 		 *    - not waiting for resources
6479 		 */
6480 		if ((un->un_ncmds_in_driver == 0) &&
6481 		    (un->un_state != SD_STATE_RWAIT)) {
6482 			/*
6483 			 * The device is not busy, so it is OK to go to low
6484 			 * power state. Indicate low power, but rely on someone
6485 			 * else to actually change it.
6486 			 */
6487 			mutex_enter(&un->un_pm_mutex);
6488 			un->un_pm_count = -1;
6489 			mutex_exit(&un->un_pm_mutex);
6490 			un->un_power_level = level;
6491 		}
6492 	}
6493 
6494 	mutex_exit(SD_MUTEX(un));
6495 
6496 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6497 
6498 	return (DDI_SUCCESS);
6499 }
6500 
6501 
6502 /*
6503  *    Function: sd_pm_idletimeout_handler
6504  *
6505  * Description: A timer routine that's active only while a device is busy.
6506  *		The purpose is to extend slightly the pm framework's busy
6507  *		view of the device to prevent busy/idle thrashing for
6508  *		back-to-back commands. Do this by comparing the current time
6509  *		to the time at which the last command completed and when the
6510  *		difference is greater than sd_pm_idletime, call
6511  *		pm_idle_component. In addition to indicating idle to the pm
6512  *		framework, update the chain type to again use the internal pm
6513  *		layers of the driver.
6514  *
6515  *   Arguments: arg - driver soft state (unit) structure
6516  *
6517  *     Context: Executes in a timeout(9F) thread context
6518  */
6519 
6520 static void
6521 sd_pm_idletimeout_handler(void *arg)
6522 {
6523 	struct sd_lun *un = arg;
6524 
6525 	time_t	now;
6526 
6527 	mutex_enter(&sd_detach_mutex);
6528 	if (un->un_detach_count != 0) {
6529 		/* Abort if the instance is detaching */
6530 		mutex_exit(&sd_detach_mutex);
6531 		return;
6532 	}
6533 	mutex_exit(&sd_detach_mutex);
6534 
6535 	now = ddi_get_time();
6536 	/*
6537 	 * Grab both mutexes, in the proper order, since we're accessing
6538 	 * both PM and softstate variables.
6539 	 */
6540 	mutex_enter(SD_MUTEX(un));
6541 	mutex_enter(&un->un_pm_mutex);
6542 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6543 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6544 		/*
6545 		 * Update the chain types.
6546 		 * This takes affect on the next new command received.
6547 		 */
6548 		if (un->un_f_non_devbsize_supported) {
6549 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6550 		} else {
6551 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6552 		}
6553 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6554 
6555 		SD_TRACE(SD_LOG_IO_PM, un,
6556 		    "sd_pm_idletimeout_handler: idling device\n");
6557 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6558 		un->un_pm_idle_timeid = NULL;
6559 	} else {
6560 		un->un_pm_idle_timeid =
6561 		    timeout(sd_pm_idletimeout_handler, un,
6562 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6563 	}
6564 	mutex_exit(&un->un_pm_mutex);
6565 	mutex_exit(SD_MUTEX(un));
6566 }
6567 
6568 
6569 /*
6570  *    Function: sd_pm_timeout_handler
6571  *
6572  * Description: Callback to tell framework we are idle.
6573  *
6574  *     Context: timeout(9f) thread context.
6575  */
6576 
6577 static void
6578 sd_pm_timeout_handler(void *arg)
6579 {
6580 	struct sd_lun *un = arg;
6581 
6582 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6583 	mutex_enter(&un->un_pm_mutex);
6584 	un->un_pm_timeid = NULL;
6585 	mutex_exit(&un->un_pm_mutex);
6586 }
6587 
6588 
6589 /*
6590  *    Function: sdpower
6591  *
6592  * Description: PM entry point.
6593  *
6594  * Return Code: DDI_SUCCESS
6595  *		DDI_FAILURE
6596  *
6597  *     Context: Kernel thread context
6598  */
6599 
6600 static int
6601 sdpower(dev_info_t *devi, int component, int level)
6602 {
6603 	struct sd_lun	*un;
6604 	int		instance;
6605 	int		rval = DDI_SUCCESS;
6606 	uint_t		i, log_page_size, maxcycles, ncycles;
6607 	uchar_t		*log_page_data;
6608 	int		log_sense_page;
6609 	int		medium_present;
6610 	time_t		intvlp;
6611 	struct pm_trans_data	sd_pm_tran_data;
6612 	uchar_t		save_state;
6613 	int		sval;
6614 	uchar_t		state_before_pm;
6615 	int		got_semaphore_here;
6616 	sd_ssc_t	*ssc;
6617 	int	last_power_level;
6618 
6619 	instance = ddi_get_instance(devi);
6620 
6621 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6622 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6623 		return (DDI_FAILURE);
6624 	}
6625 
6626 	ssc = sd_ssc_init(un);
6627 
6628 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6629 
6630 	/*
6631 	 * Must synchronize power down with close.
6632 	 * Attempt to decrement/acquire the open/close semaphore,
6633 	 * but do NOT wait on it. If it's not greater than zero,
6634 	 * ie. it can't be decremented without waiting, then
6635 	 * someone else, either open or close, already has it
6636 	 * and the try returns 0. Use that knowledge here to determine
6637 	 * if it's OK to change the device power level.
6638 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6639 	 * here.
6640 	 */
6641 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6642 
6643 	mutex_enter(SD_MUTEX(un));
6644 
6645 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6646 	    un->un_ncmds_in_driver);
6647 
6648 	/*
6649 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6650 	 * already being processed in the driver, or if the semaphore was
6651 	 * not gotten here it indicates an open or close is being processed.
6652 	 * At the same time somebody is requesting to go to a lower power
6653 	 * that can't perform I/O, which can't happen, therefore we need to
6654 	 * return failure.
6655 	 */
6656 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6657 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6658 		mutex_exit(SD_MUTEX(un));
6659 
6660 		if (got_semaphore_here != 0) {
6661 			sema_v(&un->un_semoclose);
6662 		}
6663 		SD_TRACE(SD_LOG_IO_PM, un,
6664 		    "sdpower: exit, device has queued cmds.\n");
6665 
6666 		goto sdpower_failed;
6667 	}
6668 
6669 	/*
6670 	 * if it is OFFLINE that means the disk is completely dead
6671 	 * in our case we have to put the disk in on or off by sending commands
6672 	 * Of course that will fail anyway so return back here.
6673 	 *
6674 	 * Power changes to a device that's OFFLINE or SUSPENDED
6675 	 * are not allowed.
6676 	 */
6677 	if ((un->un_state == SD_STATE_OFFLINE) ||
6678 	    (un->un_state == SD_STATE_SUSPENDED)) {
6679 		mutex_exit(SD_MUTEX(un));
6680 
6681 		if (got_semaphore_here != 0) {
6682 			sema_v(&un->un_semoclose);
6683 		}
6684 		SD_TRACE(SD_LOG_IO_PM, un,
6685 		    "sdpower: exit, device is off-line.\n");
6686 
6687 		goto sdpower_failed;
6688 	}
6689 
6690 	/*
6691 	 * Change the device's state to indicate it's power level
6692 	 * is being changed. Do this to prevent a power off in the
6693 	 * middle of commands, which is especially bad on devices
6694 	 * that are really powered off instead of just spun down.
6695 	 */
6696 	state_before_pm = un->un_state;
6697 	un->un_state = SD_STATE_PM_CHANGING;
6698 
6699 	mutex_exit(SD_MUTEX(un));
6700 
6701 	/*
6702 	 * If log sense command is not supported, bypass the
6703 	 * following checking, otherwise, check the log sense
6704 	 * information for this device.
6705 	 */
6706 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6707 	    un->un_f_log_sense_supported) {
6708 		/*
6709 		 * Get the log sense information to understand whether the
6710 		 * the powercycle counts have gone beyond the threshhold.
6711 		 */
6712 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6713 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6714 
6715 		mutex_enter(SD_MUTEX(un));
6716 		log_sense_page = un->un_start_stop_cycle_page;
6717 		mutex_exit(SD_MUTEX(un));
6718 
6719 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6720 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6721 
6722 		if (rval != 0) {
6723 			if (rval == EIO)
6724 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6725 			else
6726 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6727 		}
6728 
6729 #ifdef	SDDEBUG
6730 		if (sd_force_pm_supported) {
6731 			/* Force a successful result */
6732 			rval = 0;
6733 		}
6734 #endif
6735 		if (rval != 0) {
6736 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6737 			    "Log Sense Failed\n");
6738 
6739 			kmem_free(log_page_data, log_page_size);
6740 			/* Cannot support power management on those drives */
6741 
6742 			if (got_semaphore_here != 0) {
6743 				sema_v(&un->un_semoclose);
6744 			}
6745 			/*
6746 			 * On exit put the state back to it's original value
6747 			 * and broadcast to anyone waiting for the power
6748 			 * change completion.
6749 			 */
6750 			mutex_enter(SD_MUTEX(un));
6751 			un->un_state = state_before_pm;
6752 			cv_broadcast(&un->un_suspend_cv);
6753 			mutex_exit(SD_MUTEX(un));
6754 			SD_TRACE(SD_LOG_IO_PM, un,
6755 			    "sdpower: exit, Log Sense Failed.\n");
6756 
6757 			goto sdpower_failed;
6758 		}
6759 
6760 		/*
6761 		 * From the page data - Convert the essential information to
6762 		 * pm_trans_data
6763 		 */
6764 		maxcycles =
6765 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6766 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6767 
6768 		ncycles =
6769 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6770 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6771 
6772 		if (un->un_f_pm_log_sense_smart) {
6773 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6774 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6775 			sd_pm_tran_data.un.smart_count.flag = 0;
6776 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6777 		} else {
6778 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6779 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6780 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6781 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6782 				    log_page_data[8+i];
6783 			}
6784 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6785 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6786 		}
6787 
6788 		kmem_free(log_page_data, log_page_size);
6789 
6790 		/*
6791 		 * Call pm_trans_check routine to get the Ok from
6792 		 * the global policy
6793 		 */
6794 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6795 #ifdef	SDDEBUG
6796 		if (sd_force_pm_supported) {
6797 			/* Force a successful result */
6798 			rval = 1;
6799 		}
6800 #endif
6801 		switch (rval) {
6802 		case 0:
6803 			/*
6804 			 * Not Ok to Power cycle or error in parameters passed
6805 			 * Would have given the advised time to consider power
6806 			 * cycle. Based on the new intvlp parameter we are
6807 			 * supposed to pretend we are busy so that pm framework
6808 			 * will never call our power entry point. Because of
6809 			 * that install a timeout handler and wait for the
6810 			 * recommended time to elapse so that power management
6811 			 * can be effective again.
6812 			 *
6813 			 * To effect this behavior, call pm_busy_component to
6814 			 * indicate to the framework this device is busy.
6815 			 * By not adjusting un_pm_count the rest of PM in
6816 			 * the driver will function normally, and independent
6817 			 * of this but because the framework is told the device
6818 			 * is busy it won't attempt powering down until it gets
6819 			 * a matching idle. The timeout handler sends this.
6820 			 * Note: sd_pm_entry can't be called here to do this
6821 			 * because sdpower may have been called as a result
6822 			 * of a call to pm_raise_power from within sd_pm_entry.
6823 			 *
6824 			 * If a timeout handler is already active then
6825 			 * don't install another.
6826 			 */
6827 			mutex_enter(&un->un_pm_mutex);
6828 			if (un->un_pm_timeid == NULL) {
6829 				un->un_pm_timeid =
6830 				    timeout(sd_pm_timeout_handler,
6831 				    un, intvlp * drv_usectohz(1000000));
6832 				mutex_exit(&un->un_pm_mutex);
6833 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6834 			} else {
6835 				mutex_exit(&un->un_pm_mutex);
6836 			}
6837 			if (got_semaphore_here != 0) {
6838 				sema_v(&un->un_semoclose);
6839 			}
6840 			/*
6841 			 * On exit put the state back to it's original value
6842 			 * and broadcast to anyone waiting for the power
6843 			 * change completion.
6844 			 */
6845 			mutex_enter(SD_MUTEX(un));
6846 			un->un_state = state_before_pm;
6847 			cv_broadcast(&un->un_suspend_cv);
6848 			mutex_exit(SD_MUTEX(un));
6849 
6850 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6851 			    "trans check Failed, not ok to power cycle.\n");
6852 
6853 			goto sdpower_failed;
6854 		case -1:
6855 			if (got_semaphore_here != 0) {
6856 				sema_v(&un->un_semoclose);
6857 			}
6858 			/*
6859 			 * On exit put the state back to it's original value
6860 			 * and broadcast to anyone waiting for the power
6861 			 * change completion.
6862 			 */
6863 			mutex_enter(SD_MUTEX(un));
6864 			un->un_state = state_before_pm;
6865 			cv_broadcast(&un->un_suspend_cv);
6866 			mutex_exit(SD_MUTEX(un));
6867 			SD_TRACE(SD_LOG_IO_PM, un,
6868 			    "sdpower: exit, trans check command Failed.\n");
6869 
6870 			goto sdpower_failed;
6871 		}
6872 	}
6873 
6874 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6875 		/*
6876 		 * Save the last state... if the STOP FAILS we need it
6877 		 * for restoring
6878 		 */
6879 		mutex_enter(SD_MUTEX(un));
6880 		save_state = un->un_last_state;
6881 		last_power_level = un->un_power_level;
6882 		/*
6883 		 * There must not be any cmds. getting processed
6884 		 * in the driver when we get here. Power to the
6885 		 * device is potentially going off.
6886 		 */
6887 		ASSERT(un->un_ncmds_in_driver == 0);
6888 		mutex_exit(SD_MUTEX(un));
6889 
6890 		/*
6891 		 * For now PM suspend the device completely before spindle is
6892 		 * turned off
6893 		 */
6894 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6895 		    == DDI_FAILURE) {
6896 			if (got_semaphore_here != 0) {
6897 				sema_v(&un->un_semoclose);
6898 			}
6899 			/*
6900 			 * On exit put the state back to it's original value
6901 			 * and broadcast to anyone waiting for the power
6902 			 * change completion.
6903 			 */
6904 			mutex_enter(SD_MUTEX(un));
6905 			un->un_state = state_before_pm;
6906 			un->un_power_level = last_power_level;
6907 			cv_broadcast(&un->un_suspend_cv);
6908 			mutex_exit(SD_MUTEX(un));
6909 			SD_TRACE(SD_LOG_IO_PM, un,
6910 			    "sdpower: exit, PM suspend Failed.\n");
6911 
6912 			goto sdpower_failed;
6913 		}
6914 	}
6915 
6916 	/*
6917 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6918 	 * close, or strategy. Dump no long uses this routine, it uses it's
6919 	 * own code so it can be done in polled mode.
6920 	 */
6921 
6922 	medium_present = TRUE;
6923 
6924 	/*
6925 	 * When powering up, issue a TUR in case the device is at unit
6926 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6927 	 * a deadlock on un_pm_busy_cv will occur.
6928 	 */
6929 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6930 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6931 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6932 		if (sval != 0)
6933 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6934 	}
6935 
6936 	if (un->un_f_power_condition_supported) {
6937 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6938 		    "IDLE", "ACTIVE"};
6939 		SD_TRACE(SD_LOG_IO_PM, un,
6940 		    "sdpower: sending \'%s\' power condition",
6941 		    pm_condition_name[level]);
6942 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6943 		    sd_pl2pc[level], SD_PATH_DIRECT);
6944 	} else {
6945 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6946 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6947 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6948 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6949 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6950 	}
6951 	if (sval != 0) {
6952 		if (sval == EIO)
6953 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6954 		else
6955 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6956 	}
6957 
6958 	/* Command failed, check for media present. */
6959 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6960 		medium_present = FALSE;
6961 	}
6962 
6963 	/*
6964 	 * The conditions of interest here are:
6965 	 *   if a spindle off with media present fails,
6966 	 *	then restore the state and return an error.
6967 	 *   else if a spindle on fails,
6968 	 *	then return an error (there's no state to restore).
6969 	 * In all other cases we setup for the new state
6970 	 * and return success.
6971 	 */
6972 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6973 		if ((medium_present == TRUE) && (sval != 0)) {
6974 			/* The stop command from above failed */
6975 			rval = DDI_FAILURE;
6976 			/*
6977 			 * The stop command failed, and we have media
6978 			 * present. Put the level back by calling the
6979 			 * sd_pm_resume() and set the state back to
6980 			 * it's previous value.
6981 			 */
6982 			(void) sd_pm_state_change(un, last_power_level,
6983 			    SD_PM_STATE_ROLLBACK);
6984 			mutex_enter(SD_MUTEX(un));
6985 			un->un_last_state = save_state;
6986 			mutex_exit(SD_MUTEX(un));
6987 		} else if (un->un_f_monitor_media_state) {
6988 			/*
6989 			 * The stop command from above succeeded.
6990 			 * Terminate watch thread in case of removable media
6991 			 * devices going into low power state. This is as per
6992 			 * the requirements of pm framework, otherwise commands
6993 			 * will be generated for the device (through watch
6994 			 * thread), even when the device is in low power state.
6995 			 */
6996 			mutex_enter(SD_MUTEX(un));
6997 			un->un_f_watcht_stopped = FALSE;
6998 			if (un->un_swr_token != NULL) {
6999 				opaque_t temp_token = un->un_swr_token;
7000 				un->un_f_watcht_stopped = TRUE;
7001 				un->un_swr_token = NULL;
7002 				mutex_exit(SD_MUTEX(un));
7003 				(void) scsi_watch_request_terminate(temp_token,
7004 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7005 			} else {
7006 				mutex_exit(SD_MUTEX(un));
7007 			}
7008 		}
7009 	} else {
7010 		/*
7011 		 * The level requested is I/O capable.
7012 		 * Legacy behavior: return success on a failed spinup
7013 		 * if there is no media in the drive.
7014 		 * Do this by looking at medium_present here.
7015 		 */
7016 		if ((sval != 0) && medium_present) {
7017 			/* The start command from above failed */
7018 			rval = DDI_FAILURE;
7019 		} else {
7020 			/*
7021 			 * The start command from above succeeded
7022 			 * PM resume the devices now that we have
7023 			 * started the disks
7024 			 */
7025 			(void) sd_pm_state_change(un, level,
7026 			    SD_PM_STATE_CHANGE);
7027 
7028 			/*
7029 			 * Resume the watch thread since it was suspended
7030 			 * when the device went into low power mode.
7031 			 */
7032 			if (un->un_f_monitor_media_state) {
7033 				mutex_enter(SD_MUTEX(un));
7034 				if (un->un_f_watcht_stopped == TRUE) {
7035 					opaque_t temp_token;
7036 
7037 					un->un_f_watcht_stopped = FALSE;
7038 					mutex_exit(SD_MUTEX(un));
7039 					temp_token =
7040 					    sd_watch_request_submit(un);
7041 					mutex_enter(SD_MUTEX(un));
7042 					un->un_swr_token = temp_token;
7043 				}
7044 				mutex_exit(SD_MUTEX(un));
7045 			}
7046 		}
7047 	}
7048 
7049 	if (got_semaphore_here != 0) {
7050 		sema_v(&un->un_semoclose);
7051 	}
7052 	/*
7053 	 * On exit put the state back to it's original value
7054 	 * and broadcast to anyone waiting for the power
7055 	 * change completion.
7056 	 */
7057 	mutex_enter(SD_MUTEX(un));
7058 	un->un_state = state_before_pm;
7059 	cv_broadcast(&un->un_suspend_cv);
7060 	mutex_exit(SD_MUTEX(un));
7061 
7062 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7063 
7064 	sd_ssc_fini(ssc);
7065 	return (rval);
7066 
7067 sdpower_failed:
7068 
7069 	sd_ssc_fini(ssc);
7070 	return (DDI_FAILURE);
7071 }
7072 
7073 
7074 
7075 /*
7076  *    Function: sdattach
7077  *
7078  * Description: Driver's attach(9e) entry point function.
7079  *
7080  *   Arguments: devi - opaque device info handle
7081  *		cmd  - attach  type
7082  *
7083  * Return Code: DDI_SUCCESS
7084  *		DDI_FAILURE
7085  *
7086  *     Context: Kernel thread context
7087  */
7088 
7089 static int
7090 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7091 {
7092 	switch (cmd) {
7093 	case DDI_ATTACH:
7094 		return (sd_unit_attach(devi));
7095 	case DDI_RESUME:
7096 		return (sd_ddi_resume(devi));
7097 	default:
7098 		break;
7099 	}
7100 	return (DDI_FAILURE);
7101 }
7102 
7103 
7104 /*
7105  *    Function: sddetach
7106  *
7107  * Description: Driver's detach(9E) entry point function.
7108  *
7109  *   Arguments: devi - opaque device info handle
7110  *		cmd  - detach  type
7111  *
7112  * Return Code: DDI_SUCCESS
7113  *		DDI_FAILURE
7114  *
7115  *     Context: Kernel thread context
7116  */
7117 
7118 static int
7119 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7120 {
7121 	switch (cmd) {
7122 	case DDI_DETACH:
7123 		return (sd_unit_detach(devi));
7124 	case DDI_SUSPEND:
7125 		return (sd_ddi_suspend(devi));
7126 	default:
7127 		break;
7128 	}
7129 	return (DDI_FAILURE);
7130 }
7131 
7132 
7133 /*
7134  *     Function: sd_sync_with_callback
7135  *
7136  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7137  *		 state while the callback routine is active.
7138  *
7139  *    Arguments: un: softstate structure for the instance
7140  *
7141  *	Context: Kernel thread context
7142  */
7143 
7144 static void
7145 sd_sync_with_callback(struct sd_lun *un)
7146 {
7147 	ASSERT(un != NULL);
7148 
7149 	mutex_enter(SD_MUTEX(un));
7150 
7151 	ASSERT(un->un_in_callback >= 0);
7152 
7153 	while (un->un_in_callback > 0) {
7154 		mutex_exit(SD_MUTEX(un));
7155 		delay(2);
7156 		mutex_enter(SD_MUTEX(un));
7157 	}
7158 
7159 	mutex_exit(SD_MUTEX(un));
7160 }
7161 
7162 /*
7163  *    Function: sd_unit_attach
7164  *
7165  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7166  *		the soft state structure for the device and performs
7167  *		all necessary structure and device initializations.
7168  *
7169  *   Arguments: devi: the system's dev_info_t for the device.
7170  *
7171  * Return Code: DDI_SUCCESS if attach is successful.
7172  *		DDI_FAILURE if any part of the attach fails.
7173  *
7174  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7175  *		Kernel thread context only.  Can sleep.
7176  */
7177 
7178 static int
7179 sd_unit_attach(dev_info_t *devi)
7180 {
7181 	struct	scsi_device	*devp;
7182 	struct	sd_lun		*un;
7183 	char			*variantp;
7184 	char			name_str[48];
7185 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7186 	int	instance;
7187 	int	rval;
7188 	int	wc_enabled;
7189 	int	tgt;
7190 	uint64_t	capacity;
7191 	uint_t		lbasize = 0;
7192 	dev_info_t	*pdip = ddi_get_parent(devi);
7193 	int		offbyone = 0;
7194 	int		geom_label_valid = 0;
7195 	sd_ssc_t	*ssc;
7196 	int		status;
7197 	struct sd_fm_internal	*sfip = NULL;
7198 	int		max_xfer_size;
7199 
7200 	/*
7201 	 * Retrieve the target driver's private data area. This was set
7202 	 * up by the HBA.
7203 	 */
7204 	devp = ddi_get_driver_private(devi);
7205 
7206 	/*
7207 	 * Retrieve the target ID of the device.
7208 	 */
7209 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7210 	    SCSI_ADDR_PROP_TARGET, -1);
7211 
7212 	/*
7213 	 * Since we have no idea what state things were left in by the last
7214 	 * user of the device, set up some 'default' settings, ie. turn 'em
7215 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7216 	 * Do this before the scsi_probe, which sends an inquiry.
7217 	 * This is a fix for bug (4430280).
7218 	 * Of special importance is wide-xfer. The drive could have been left
7219 	 * in wide transfer mode by the last driver to communicate with it,
7220 	 * this includes us. If that's the case, and if the following is not
7221 	 * setup properly or we don't re-negotiate with the drive prior to
7222 	 * transferring data to/from the drive, it causes bus parity errors,
7223 	 * data overruns, and unexpected interrupts. This first occurred when
7224 	 * the fix for bug (4378686) was made.
7225 	 */
7226 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7227 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7228 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7229 
7230 	/*
7231 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7232 	 * on a target. Setting it per lun instance actually sets the
7233 	 * capability of this target, which affects those luns already
7234 	 * attached on the same target. So during attach, we can only disable
7235 	 * this capability only when no other lun has been attached on this
7236 	 * target. By doing this, we assume a target has the same tagged-qing
7237 	 * capability for every lun. The condition can be removed when HBA
7238 	 * is changed to support per lun based tagged-qing capability.
7239 	 */
7240 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7241 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7242 	}
7243 
7244 	/*
7245 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7246 	 * This call will allocate and fill in the scsi_inquiry structure
7247 	 * and point the sd_inq member of the scsi_device structure to it.
7248 	 * If the attach succeeds, then this memory will not be de-allocated
7249 	 * (via scsi_unprobe()) until the instance is detached.
7250 	 */
7251 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7252 		goto probe_failed;
7253 	}
7254 
7255 	/*
7256 	 * Check the device type as specified in the inquiry data and
7257 	 * claim it if it is of a type that we support.
7258 	 */
7259 	switch (devp->sd_inq->inq_dtype) {
7260 	case DTYPE_DIRECT:
7261 		break;
7262 	case DTYPE_RODIRECT:
7263 		break;
7264 	case DTYPE_OPTICAL:
7265 		break;
7266 	case DTYPE_NOTPRESENT:
7267 	default:
7268 		/* Unsupported device type; fail the attach. */
7269 		goto probe_failed;
7270 	}
7271 
7272 	/*
7273 	 * Allocate the soft state structure for this unit.
7274 	 *
7275 	 * We rely upon this memory being set to all zeroes by
7276 	 * ddi_soft_state_zalloc().  We assume that any member of the
7277 	 * soft state structure that is not explicitly initialized by
7278 	 * this routine will have a value of zero.
7279 	 */
7280 	instance = ddi_get_instance(devp->sd_dev);
7281 #ifndef XPV_HVM_DRIVER
7282 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7283 		goto probe_failed;
7284 	}
7285 #endif /* !XPV_HVM_DRIVER */
7286 
7287 	/*
7288 	 * Retrieve a pointer to the newly-allocated soft state.
7289 	 *
7290 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7291 	 * was successful, unless something has gone horribly wrong and the
7292 	 * ddi's soft state internals are corrupt (in which case it is
7293 	 * probably better to halt here than just fail the attach....)
7294 	 */
7295 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7296 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7297 		    instance);
7298 		/*NOTREACHED*/
7299 	}
7300 
7301 	/*
7302 	 * Link the back ptr of the driver soft state to the scsi_device
7303 	 * struct for this lun.
7304 	 * Save a pointer to the softstate in the driver-private area of
7305 	 * the scsi_device struct.
7306 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7307 	 * we first set un->un_sd below.
7308 	 */
7309 	un->un_sd = devp;
7310 	devp->sd_private = (opaque_t)un;
7311 
7312 	/*
7313 	 * The following must be after devp is stored in the soft state struct.
7314 	 */
7315 #ifdef SDDEBUG
7316 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7317 	    "%s_unit_attach: un:0x%p instance:%d\n",
7318 	    ddi_driver_name(devi), un, instance);
7319 #endif
7320 
7321 	/*
7322 	 * Set up the device type and node type (for the minor nodes).
7323 	 * By default we assume that the device can at least support the
7324 	 * Common Command Set. Call it a CD-ROM if it reports itself
7325 	 * as a RODIRECT device.
7326 	 */
7327 	switch (devp->sd_inq->inq_dtype) {
7328 	case DTYPE_RODIRECT:
7329 		un->un_node_type = DDI_NT_CD_CHAN;
7330 		un->un_ctype	 = CTYPE_CDROM;
7331 		break;
7332 	case DTYPE_OPTICAL:
7333 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7334 		un->un_ctype	 = CTYPE_ROD;
7335 		break;
7336 	default:
7337 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7338 		un->un_ctype	 = CTYPE_CCS;
7339 		break;
7340 	}
7341 
7342 	/*
7343 	 * Try to read the interconnect type from the HBA.
7344 	 *
7345 	 * Note: This driver is currently compiled as two binaries, a parallel
7346 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7347 	 * differences are determined at compile time. In the future a single
7348 	 * binary will be provided and the interconnect type will be used to
7349 	 * differentiate between fibre and parallel scsi behaviors. At that time
7350 	 * it will be necessary for all fibre channel HBAs to support this
7351 	 * property.
7352 	 *
7353 	 * set un_f_is_fiber to TRUE ( default fiber )
7354 	 */
7355 	un->un_f_is_fibre = TRUE;
7356 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7357 	case INTERCONNECT_SSA:
7358 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7360 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7361 		break;
7362 	case INTERCONNECT_PARALLEL:
7363 		un->un_f_is_fibre = FALSE;
7364 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7365 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7366 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7367 		break;
7368 	case INTERCONNECT_SAS:
7369 		un->un_f_is_fibre = FALSE;
7370 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7371 		un->un_node_type = DDI_NT_BLOCK_SAS;
7372 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7373 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7374 		break;
7375 	case INTERCONNECT_SATA:
7376 		un->un_f_is_fibre = FALSE;
7377 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7378 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7379 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7380 		break;
7381 	case INTERCONNECT_FIBRE:
7382 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7383 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7384 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7385 		break;
7386 	case INTERCONNECT_FABRIC:
7387 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7388 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7389 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7390 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7391 		break;
7392 	default:
7393 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7394 		/*
7395 		 * The HBA does not support the "interconnect-type" property
7396 		 * (or did not provide a recognized type).
7397 		 *
7398 		 * Note: This will be obsoleted when a single fibre channel
7399 		 * and parallel scsi driver is delivered. In the meantime the
7400 		 * interconnect type will be set to the platform default.If that
7401 		 * type is not parallel SCSI, it means that we should be
7402 		 * assuming "ssd" semantics. However, here this also means that
7403 		 * the FC HBA is not supporting the "interconnect-type" property
7404 		 * like we expect it to, so log this occurrence.
7405 		 */
7406 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7407 		if (!SD_IS_PARALLEL_SCSI(un)) {
7408 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7409 			    "sd_unit_attach: un:0x%p Assuming "
7410 			    "INTERCONNECT_FIBRE\n", un);
7411 		} else {
7412 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7413 			    "sd_unit_attach: un:0x%p Assuming "
7414 			    "INTERCONNECT_PARALLEL\n", un);
7415 			un->un_f_is_fibre = FALSE;
7416 		}
7417 #else
7418 		/*
7419 		 * Note: This source will be implemented when a single fibre
7420 		 * channel and parallel scsi driver is delivered. The default
7421 		 * will be to assume that if a device does not support the
7422 		 * "interconnect-type" property it is a parallel SCSI HBA and
7423 		 * we will set the interconnect type for parallel scsi.
7424 		 */
7425 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7426 		un->un_f_is_fibre = FALSE;
7427 #endif
7428 		break;
7429 	}
7430 
7431 	if (un->un_f_is_fibre == TRUE) {
7432 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7433 		    SCSI_VERSION_3) {
7434 			switch (un->un_interconnect_type) {
7435 			case SD_INTERCONNECT_FIBRE:
7436 			case SD_INTERCONNECT_SSA:
7437 				un->un_node_type = DDI_NT_BLOCK_WWN;
7438 				break;
7439 			default:
7440 				break;
7441 			}
7442 		}
7443 	}
7444 
7445 	/*
7446 	 * Initialize the Request Sense command for the target
7447 	 */
7448 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7449 		goto alloc_rqs_failed;
7450 	}
7451 
7452 	/*
7453 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7454 	 * with separate binary for sd and ssd.
7455 	 *
7456 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7457 	 * The hardcoded values will go away when Sparc uses 1 binary
7458 	 * for sd and ssd.  This hardcoded values need to match
7459 	 * SD_RETRY_COUNT in sddef.h
7460 	 * The value used is base on interconnect type.
7461 	 * fibre = 3, parallel = 5
7462 	 */
7463 #if defined(__i386) || defined(__amd64)
7464 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7465 #else
7466 	un->un_retry_count = SD_RETRY_COUNT;
7467 #endif
7468 
7469 	/*
7470 	 * Set the per disk retry count to the default number of retries
7471 	 * for disks and CDROMs. This value can be overridden by the
7472 	 * disk property list or an entry in sd.conf.
7473 	 */
7474 	un->un_notready_retry_count =
7475 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7476 	    : DISK_NOT_READY_RETRY_COUNT(un);
7477 
7478 	/*
7479 	 * Set the busy retry count to the default value of un_retry_count.
7480 	 * This can be overridden by entries in sd.conf or the device
7481 	 * config table.
7482 	 */
7483 	un->un_busy_retry_count = un->un_retry_count;
7484 
7485 	/*
7486 	 * Init the reset threshold for retries.  This number determines
7487 	 * how many retries must be performed before a reset can be issued
7488 	 * (for certain error conditions). This can be overridden by entries
7489 	 * in sd.conf or the device config table.
7490 	 */
7491 	un->un_reset_retry_count = (un->un_retry_count / 2);
7492 
7493 	/*
7494 	 * Set the victim_retry_count to the default un_retry_count
7495 	 */
7496 	un->un_victim_retry_count = (2 * un->un_retry_count);
7497 
7498 	/*
7499 	 * Set the reservation release timeout to the default value of
7500 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7501 	 * device config table.
7502 	 */
7503 	un->un_reserve_release_time = 5;
7504 
7505 	/*
7506 	 * Set up the default maximum transfer size. Note that this may
7507 	 * get updated later in the attach, when setting up default wide
7508 	 * operations for disks.
7509 	 */
7510 #if defined(__i386) || defined(__amd64)
7511 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7512 	un->un_partial_dma_supported = 1;
7513 #else
7514 	un->un_max_xfer_size = (uint_t)maxphys;
7515 #endif
7516 
7517 	/*
7518 	 * Get "allow bus device reset" property (defaults to "enabled" if
7519 	 * the property was not defined). This is to disable bus resets for
7520 	 * certain kinds of error recovery. Note: In the future when a run-time
7521 	 * fibre check is available the soft state flag should default to
7522 	 * enabled.
7523 	 */
7524 	if (un->un_f_is_fibre == TRUE) {
7525 		un->un_f_allow_bus_device_reset = TRUE;
7526 	} else {
7527 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7528 		    "allow-bus-device-reset", 1) != 0) {
7529 			un->un_f_allow_bus_device_reset = TRUE;
7530 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7531 			    "sd_unit_attach: un:0x%p Bus device reset "
7532 			    "enabled\n", un);
7533 		} else {
7534 			un->un_f_allow_bus_device_reset = FALSE;
7535 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7536 			    "sd_unit_attach: un:0x%p Bus device reset "
7537 			    "disabled\n", un);
7538 		}
7539 	}
7540 
7541 	/*
7542 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7543 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7544 	 *
7545 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7546 	 * property. The new "variant" property with a value of "atapi" has been
7547 	 * introduced so that future 'variants' of standard SCSI behavior (like
7548 	 * atapi) could be specified by the underlying HBA drivers by supplying
7549 	 * a new value for the "variant" property, instead of having to define a
7550 	 * new property.
7551 	 */
7552 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7553 		un->un_f_cfg_is_atapi = TRUE;
7554 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7555 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7556 	}
7557 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7558 	    &variantp) == DDI_PROP_SUCCESS) {
7559 		if (strcmp(variantp, "atapi") == 0) {
7560 			un->un_f_cfg_is_atapi = TRUE;
7561 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7562 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7563 		}
7564 		ddi_prop_free(variantp);
7565 	}
7566 
7567 	un->un_cmd_timeout	= SD_IO_TIME;
7568 
7569 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7570 
7571 	/* Info on current states, statuses, etc. (Updated frequently) */
7572 	un->un_state		= SD_STATE_NORMAL;
7573 	un->un_last_state	= SD_STATE_NORMAL;
7574 
7575 	/* Control & status info for command throttling */
7576 	un->un_throttle		= sd_max_throttle;
7577 	un->un_saved_throttle	= sd_max_throttle;
7578 	un->un_min_throttle	= sd_min_throttle;
7579 
7580 	if (un->un_f_is_fibre == TRUE) {
7581 		un->un_f_use_adaptive_throttle = TRUE;
7582 	} else {
7583 		un->un_f_use_adaptive_throttle = FALSE;
7584 	}
7585 
7586 	/* Removable media support. */
7587 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7588 	un->un_mediastate		= DKIO_NONE;
7589 	un->un_specified_mediastate	= DKIO_NONE;
7590 
7591 	/* CVs for suspend/resume (PM or DR) */
7592 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7593 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7594 
7595 	/* Power management support. */
7596 	un->un_power_level = SD_SPINDLE_UNINIT;
7597 
7598 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7599 	un->un_f_wcc_inprog = 0;
7600 
7601 	/*
7602 	 * The open/close semaphore is used to serialize threads executing
7603 	 * in the driver's open & close entry point routines for a given
7604 	 * instance.
7605 	 */
7606 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7607 
7608 	/*
7609 	 * The conf file entry and softstate variable is a forceful override,
7610 	 * meaning a non-zero value must be entered to change the default.
7611 	 */
7612 	un->un_f_disksort_disabled = FALSE;
7613 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7614 	un->un_f_enable_rmw = FALSE;
7615 
7616 	/*
7617 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7618 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7619 	 */
7620 	un->un_f_mmc_gesn_polling = TRUE;
7621 
7622 	/*
7623 	 * Retrieve the properties from the static driver table or the driver
7624 	 * configuration file (.conf) for this unit and update the soft state
7625 	 * for the device as needed for the indicated properties.
7626 	 * Note: the property configuration needs to occur here as some of the
7627 	 * following routines may have dependencies on soft state flags set
7628 	 * as part of the driver property configuration.
7629 	 */
7630 	sd_read_unit_properties(un);
7631 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7632 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7633 
7634 	/*
7635 	 * Only if a device has "hotpluggable" property, it is
7636 	 * treated as hotpluggable device. Otherwise, it is
7637 	 * regarded as non-hotpluggable one.
7638 	 */
7639 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7640 	    -1) != -1) {
7641 		un->un_f_is_hotpluggable = TRUE;
7642 	}
7643 
7644 	/*
7645 	 * set unit's attributes(flags) according to "hotpluggable" and
7646 	 * RMB bit in INQUIRY data.
7647 	 */
7648 	sd_set_unit_attributes(un, devi);
7649 
7650 	/*
7651 	 * By default, we mark the capacity, lbasize, and geometry
7652 	 * as invalid. Only if we successfully read a valid capacity
7653 	 * will we update the un_blockcount and un_tgt_blocksize with the
7654 	 * valid values (the geometry will be validated later).
7655 	 */
7656 	un->un_f_blockcount_is_valid	= FALSE;
7657 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7658 
7659 	/*
7660 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7661 	 * otherwise.
7662 	 */
7663 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7664 	un->un_blockcount = 0;
7665 
7666 	/*
7667 	 * physical sector size default to DEV_BSIZE currently.
7668 	 */
7669 	un->un_phy_blocksize = DEV_BSIZE;
7670 
7671 	/*
7672 	 * Set up the per-instance info needed to determine the correct
7673 	 * CDBs and other info for issuing commands to the target.
7674 	 */
7675 	sd_init_cdb_limits(un);
7676 
7677 	/*
7678 	 * Set up the IO chains to use, based upon the target type.
7679 	 */
7680 	if (un->un_f_non_devbsize_supported) {
7681 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7682 	} else {
7683 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7684 	}
7685 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7686 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7687 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7688 
7689 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7690 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7691 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7692 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7693 
7694 
7695 	if (ISCD(un)) {
7696 		un->un_additional_codes = sd_additional_codes;
7697 	} else {
7698 		un->un_additional_codes = NULL;
7699 	}
7700 
7701 	/*
7702 	 * Create the kstats here so they can be available for attach-time
7703 	 * routines that send commands to the unit (either polled or via
7704 	 * sd_send_scsi_cmd).
7705 	 *
7706 	 * Note: This is a critical sequence that needs to be maintained:
7707 	 *	1) Instantiate the kstats here, before any routines using the
7708 	 *	   iopath (i.e. sd_send_scsi_cmd).
7709 	 *	2) Instantiate and initialize the partition stats
7710 	 *	   (sd_set_pstats).
7711 	 *	3) Initialize the error stats (sd_set_errstats), following
7712 	 *	   sd_validate_geometry(),sd_register_devid(),
7713 	 *	   and sd_cache_control().
7714 	 */
7715 
7716 	un->un_stats = kstat_create(sd_label, instance,
7717 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7718 	if (un->un_stats != NULL) {
7719 		un->un_stats->ks_lock = SD_MUTEX(un);
7720 		kstat_install(un->un_stats);
7721 	}
7722 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7723 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7724 
7725 	sd_create_errstats(un, instance);
7726 	if (un->un_errstats == NULL) {
7727 		goto create_errstats_failed;
7728 	}
7729 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7730 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7731 
7732 	/*
7733 	 * The following if/else code was relocated here from below as part
7734 	 * of the fix for bug (4430280). However with the default setup added
7735 	 * on entry to this routine, it's no longer absolutely necessary for
7736 	 * this to be before the call to sd_spin_up_unit.
7737 	 */
7738 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7739 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7740 		    (devp->sd_inq->inq_ansi == 5)) &&
7741 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7742 
7743 		/*
7744 		 * If tagged queueing is supported by the target
7745 		 * and by the host adapter then we will enable it
7746 		 */
7747 		un->un_tagflags = 0;
7748 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7749 		    (un->un_f_arq_enabled == TRUE)) {
7750 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7751 			    1, 1) == 1) {
7752 				un->un_tagflags = FLAG_STAG;
7753 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7754 				    "sd_unit_attach: un:0x%p tag queueing "
7755 				    "enabled\n", un);
7756 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7757 			    "untagged-qing", 0) == 1) {
7758 				un->un_f_opt_queueing = TRUE;
7759 				un->un_saved_throttle = un->un_throttle =
7760 				    min(un->un_throttle, 3);
7761 			} else {
7762 				un->un_f_opt_queueing = FALSE;
7763 				un->un_saved_throttle = un->un_throttle = 1;
7764 			}
7765 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7766 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7767 			/* The Host Adapter supports internal queueing. */
7768 			un->un_f_opt_queueing = TRUE;
7769 			un->un_saved_throttle = un->un_throttle =
7770 			    min(un->un_throttle, 3);
7771 		} else {
7772 			un->un_f_opt_queueing = FALSE;
7773 			un->un_saved_throttle = un->un_throttle = 1;
7774 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7775 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7776 		}
7777 
7778 		/*
7779 		 * Enable large transfers for SATA/SAS drives
7780 		 */
7781 		if (SD_IS_SERIAL(un)) {
7782 			un->un_max_xfer_size =
7783 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7784 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7785 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7786 			    "sd_unit_attach: un:0x%p max transfer "
7787 			    "size=0x%x\n", un, un->un_max_xfer_size);
7788 
7789 		}
7790 
7791 		/* Setup or tear down default wide operations for disks */
7792 
7793 		/*
7794 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7795 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7796 		 * system and be set to different values. In the future this
7797 		 * code may need to be updated when the ssd module is
7798 		 * obsoleted and removed from the system. (4299588)
7799 		 */
7800 		if (SD_IS_PARALLEL_SCSI(un) &&
7801 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7802 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7803 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7804 			    1, 1) == 1) {
7805 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7806 				    "sd_unit_attach: un:0x%p Wide Transfer "
7807 				    "enabled\n", un);
7808 			}
7809 
7810 			/*
7811 			 * If tagged queuing has also been enabled, then
7812 			 * enable large xfers
7813 			 */
7814 			if (un->un_saved_throttle == sd_max_throttle) {
7815 				un->un_max_xfer_size =
7816 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7817 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7818 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7819 				    "sd_unit_attach: un:0x%p max transfer "
7820 				    "size=0x%x\n", un, un->un_max_xfer_size);
7821 			}
7822 		} else {
7823 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7824 			    0, 1) == 1) {
7825 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7826 				    "sd_unit_attach: un:0x%p "
7827 				    "Wide Transfer disabled\n", un);
7828 			}
7829 		}
7830 	} else {
7831 		un->un_tagflags = FLAG_STAG;
7832 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7833 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7834 	}
7835 
7836 	/*
7837 	 * If this target supports LUN reset, try to enable it.
7838 	 */
7839 	if (un->un_f_lun_reset_enabled) {
7840 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7841 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7842 			    "un:0x%p lun_reset capability set\n", un);
7843 		} else {
7844 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7845 			    "un:0x%p lun-reset capability not set\n", un);
7846 		}
7847 	}
7848 
7849 	/*
7850 	 * Adjust the maximum transfer size. This is to fix
7851 	 * the problem of partial DMA support on SPARC. Some
7852 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7853 	 * size, which requires partial DMA support on SPARC.
7854 	 * In the future the SPARC pci nexus driver may solve
7855 	 * the problem instead of this fix.
7856 	 */
7857 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7858 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7859 		/* We need DMA partial even on sparc to ensure sddump() works */
7860 		un->un_max_xfer_size = max_xfer_size;
7861 		if (un->un_partial_dma_supported == 0)
7862 			un->un_partial_dma_supported = 1;
7863 	}
7864 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7865 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7866 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7867 		    un->un_max_xfer_size) == 1) {
7868 			un->un_buf_breakup_supported = 1;
7869 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7870 			    "un:0x%p Buf breakup enabled\n", un);
7871 		}
7872 	}
7873 
7874 	/*
7875 	 * Set PKT_DMA_PARTIAL flag.
7876 	 */
7877 	if (un->un_partial_dma_supported == 1) {
7878 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7879 	} else {
7880 		un->un_pkt_flags = 0;
7881 	}
7882 
7883 	/* Initialize sd_ssc_t for internal uscsi commands */
7884 	ssc = sd_ssc_init(un);
7885 	scsi_fm_init(devp);
7886 
7887 	/*
7888 	 * Allocate memory for SCSI FMA stuffs.
7889 	 */
7890 	un->un_fm_private =
7891 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7892 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7893 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7894 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7895 	sfip->fm_ssc.ssc_un = un;
7896 
7897 	if (ISCD(un) ||
7898 	    un->un_f_has_removable_media ||
7899 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7900 		/*
7901 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7902 		 * Their log are unchanged.
7903 		 */
7904 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7905 	} else {
7906 		/*
7907 		 * If enter here, it should be non-CDROM and FM-capable
7908 		 * device, and it will not keep the old scsi_log as before
7909 		 * in /var/adm/messages. However, the property
7910 		 * "fm-scsi-log" will control whether the FM telemetry will
7911 		 * be logged in /var/adm/messages.
7912 		 */
7913 		int fm_scsi_log;
7914 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7915 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7916 
7917 		if (fm_scsi_log)
7918 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7919 		else
7920 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7921 	}
7922 
7923 	/*
7924 	 * At this point in the attach, we have enough info in the
7925 	 * soft state to be able to issue commands to the target.
7926 	 *
7927 	 * All command paths used below MUST issue their commands as
7928 	 * SD_PATH_DIRECT. This is important as intermediate layers
7929 	 * are not all initialized yet (such as PM).
7930 	 */
7931 
7932 	/*
7933 	 * Send a TEST UNIT READY command to the device. This should clear
7934 	 * any outstanding UNIT ATTENTION that may be present.
7935 	 *
7936 	 * Note: Don't check for success, just track if there is a reservation,
7937 	 * this is a throw away command to clear any unit attentions.
7938 	 *
7939 	 * Note: This MUST be the first command issued to the target during
7940 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7941 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7942 	 * with attempts at spinning up a device with no media.
7943 	 */
7944 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7945 	if (status != 0) {
7946 		if (status == EACCES)
7947 			reservation_flag = SD_TARGET_IS_RESERVED;
7948 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7949 	}
7950 
7951 	/*
7952 	 * If the device is NOT a removable media device, attempt to spin
7953 	 * it up (using the START_STOP_UNIT command) and read its capacity
7954 	 * (using the READ CAPACITY command).  Note, however, that either
7955 	 * of these could fail and in some cases we would continue with
7956 	 * the attach despite the failure (see below).
7957 	 */
7958 	if (un->un_f_descr_format_supported) {
7959 
7960 		switch (sd_spin_up_unit(ssc)) {
7961 		case 0:
7962 			/*
7963 			 * Spin-up was successful; now try to read the
7964 			 * capacity.  If successful then save the results
7965 			 * and mark the capacity & lbasize as valid.
7966 			 */
7967 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7968 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7969 
7970 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7971 			    &lbasize, SD_PATH_DIRECT);
7972 
7973 			switch (status) {
7974 			case 0: {
7975 				if (capacity > DK_MAX_BLOCKS) {
7976 #ifdef _LP64
7977 					if ((capacity + 1) >
7978 					    SD_GROUP1_MAX_ADDRESS) {
7979 						/*
7980 						 * Enable descriptor format
7981 						 * sense data so that we can
7982 						 * get 64 bit sense data
7983 						 * fields.
7984 						 */
7985 						sd_enable_descr_sense(ssc);
7986 					}
7987 #else
7988 					/* 32-bit kernels can't handle this */
7989 					scsi_log(SD_DEVINFO(un),
7990 					    sd_label, CE_WARN,
7991 					    "disk has %llu blocks, which "
7992 					    "is too large for a 32-bit "
7993 					    "kernel", capacity);
7994 
7995 #if defined(__i386) || defined(__amd64)
7996 					/*
7997 					 * 1TB disk was treated as (1T - 512)B
7998 					 * in the past, so that it might have
7999 					 * valid VTOC and solaris partitions,
8000 					 * we have to allow it to continue to
8001 					 * work.
8002 					 */
8003 					if (capacity -1 > DK_MAX_BLOCKS)
8004 #endif
8005 					goto spinup_failed;
8006 #endif
8007 				}
8008 
8009 				/*
8010 				 * Here it's not necessary to check the case:
8011 				 * the capacity of the device is bigger than
8012 				 * what the max hba cdb can support. Because
8013 				 * sd_send_scsi_READ_CAPACITY will retrieve
8014 				 * the capacity by sending USCSI command, which
8015 				 * is constrained by the max hba cdb. Actually,
8016 				 * sd_send_scsi_READ_CAPACITY will return
8017 				 * EINVAL when using bigger cdb than required
8018 				 * cdb length. Will handle this case in
8019 				 * "case EINVAL".
8020 				 */
8021 
8022 				/*
8023 				 * The following relies on
8024 				 * sd_send_scsi_READ_CAPACITY never
8025 				 * returning 0 for capacity and/or lbasize.
8026 				 */
8027 				sd_update_block_info(un, lbasize, capacity);
8028 
8029 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8030 				    "sd_unit_attach: un:0x%p capacity = %ld "
8031 				    "blocks; lbasize= %ld.\n", un,
8032 				    un->un_blockcount, un->un_tgt_blocksize);
8033 
8034 				break;
8035 			}
8036 			case EINVAL:
8037 				/*
8038 				 * In the case where the max-cdb-length property
8039 				 * is smaller than the required CDB length for
8040 				 * a SCSI device, a target driver can fail to
8041 				 * attach to that device.
8042 				 */
8043 				scsi_log(SD_DEVINFO(un),
8044 				    sd_label, CE_WARN,
8045 				    "disk capacity is too large "
8046 				    "for current cdb length");
8047 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8048 
8049 				goto spinup_failed;
8050 			case EACCES:
8051 				/*
8052 				 * Should never get here if the spin-up
8053 				 * succeeded, but code it in anyway.
8054 				 * From here, just continue with the attach...
8055 				 */
8056 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8057 				    "sd_unit_attach: un:0x%p "
8058 				    "sd_send_scsi_READ_CAPACITY "
8059 				    "returned reservation conflict\n", un);
8060 				reservation_flag = SD_TARGET_IS_RESERVED;
8061 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8062 				break;
8063 			default:
8064 				/*
8065 				 * Likewise, should never get here if the
8066 				 * spin-up succeeded. Just continue with
8067 				 * the attach...
8068 				 */
8069 				if (status == EIO)
8070 					sd_ssc_assessment(ssc,
8071 					    SD_FMT_STATUS_CHECK);
8072 				else
8073 					sd_ssc_assessment(ssc,
8074 					    SD_FMT_IGNORE);
8075 				break;
8076 			}
8077 			break;
8078 		case EACCES:
8079 			/*
8080 			 * Device is reserved by another host.  In this case
8081 			 * we could not spin it up or read the capacity, but
8082 			 * we continue with the attach anyway.
8083 			 */
8084 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8085 			    "sd_unit_attach: un:0x%p spin-up reservation "
8086 			    "conflict.\n", un);
8087 			reservation_flag = SD_TARGET_IS_RESERVED;
8088 			break;
8089 		default:
8090 			/* Fail the attach if the spin-up failed. */
8091 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8092 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8093 			goto spinup_failed;
8094 		}
8095 
8096 	}
8097 
8098 	/*
8099 	 * Check to see if this is a MMC drive
8100 	 */
8101 	if (ISCD(un)) {
8102 		sd_set_mmc_caps(ssc);
8103 	}
8104 
8105 	/*
8106 	 * Add a zero-length attribute to tell the world we support
8107 	 * kernel ioctls (for layered drivers)
8108 	 */
8109 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8110 	    DDI_KERNEL_IOCTL, NULL, 0);
8111 
8112 	/*
8113 	 * Add a boolean property to tell the world we support
8114 	 * the B_FAILFAST flag (for layered drivers)
8115 	 */
8116 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8117 	    "ddi-failfast-supported", NULL, 0);
8118 
8119 	/*
8120 	 * Initialize power management
8121 	 */
8122 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8123 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8124 	sd_setup_pm(ssc, devi);
8125 	if (un->un_f_pm_is_enabled == FALSE) {
8126 		/*
8127 		 * For performance, point to a jump table that does
8128 		 * not include pm.
8129 		 * The direct and priority chains don't change with PM.
8130 		 *
8131 		 * Note: this is currently done based on individual device
8132 		 * capabilities. When an interface for determining system
8133 		 * power enabled state becomes available, or when additional
8134 		 * layers are added to the command chain, these values will
8135 		 * have to be re-evaluated for correctness.
8136 		 */
8137 		if (un->un_f_non_devbsize_supported) {
8138 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8139 		} else {
8140 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8141 		}
8142 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8143 	}
8144 
8145 	/*
8146 	 * This property is set to 0 by HA software to avoid retries
8147 	 * on a reserved disk. (The preferred property name is
8148 	 * "retry-on-reservation-conflict") (1189689)
8149 	 *
8150 	 * Note: The use of a global here can have unintended consequences. A
8151 	 * per instance variable is preferable to match the capabilities of
8152 	 * different underlying hba's (4402600)
8153 	 */
8154 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8155 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8156 	    sd_retry_on_reservation_conflict);
8157 	if (sd_retry_on_reservation_conflict != 0) {
8158 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8159 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8160 		    sd_retry_on_reservation_conflict);
8161 	}
8162 
8163 	/* Set up options for QFULL handling. */
8164 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8165 	    "qfull-retries", -1)) != -1) {
8166 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8167 		    rval, 1);
8168 	}
8169 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8170 	    "qfull-retry-interval", -1)) != -1) {
8171 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8172 		    rval, 1);
8173 	}
8174 
8175 	/*
8176 	 * This just prints a message that announces the existence of the
8177 	 * device. The message is always printed in the system logfile, but
8178 	 * only appears on the console if the system is booted with the
8179 	 * -v (verbose) argument.
8180 	 */
8181 	ddi_report_dev(devi);
8182 
8183 	un->un_mediastate = DKIO_NONE;
8184 
8185 	/*
8186 	 * Check if this is a SSD(Solid State Drive).
8187 	 */
8188 	sd_check_solid_state(ssc);
8189 
8190 	/*
8191 	 * Check whether the drive is in emulation mode.
8192 	 */
8193 	sd_check_emulation_mode(ssc);
8194 
8195 	cmlb_alloc_handle(&un->un_cmlbhandle);
8196 
8197 #if defined(__i386) || defined(__amd64)
8198 	/*
8199 	 * On x86, compensate for off-by-1 legacy error
8200 	 */
8201 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8202 	    (lbasize == un->un_sys_blocksize))
8203 		offbyone = CMLB_OFF_BY_ONE;
8204 #endif
8205 
8206 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8207 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8208 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8209 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8210 	    (void *)SD_PATH_DIRECT) != 0) {
8211 		goto cmlb_attach_failed;
8212 	}
8213 
8214 
8215 	/*
8216 	 * Read and validate the device's geometry (ie, disk label)
8217 	 * A new unformatted drive will not have a valid geometry, but
8218 	 * the driver needs to successfully attach to this device so
8219 	 * the drive can be formatted via ioctls.
8220 	 */
8221 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8222 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8223 
8224 	mutex_enter(SD_MUTEX(un));
8225 
8226 	/*
8227 	 * Read and initialize the devid for the unit.
8228 	 */
8229 	if (un->un_f_devid_supported) {
8230 		sd_register_devid(ssc, devi, reservation_flag);
8231 	}
8232 	mutex_exit(SD_MUTEX(un));
8233 
8234 #if (defined(__fibre))
8235 	/*
8236 	 * Register callbacks for fibre only.  You can't do this solely
8237 	 * on the basis of the devid_type because this is hba specific.
8238 	 * We need to query our hba capabilities to find out whether to
8239 	 * register or not.
8240 	 */
8241 	if (un->un_f_is_fibre) {
8242 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8243 			sd_init_event_callbacks(un);
8244 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8245 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8246 			    un);
8247 		}
8248 	}
8249 #endif
8250 
8251 	if (un->un_f_opt_disable_cache == TRUE) {
8252 		/*
8253 		 * Disable both read cache and write cache.  This is
8254 		 * the historic behavior of the keywords in the config file.
8255 		 */
8256 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8257 		    0) {
8258 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8259 			    "sd_unit_attach: un:0x%p Could not disable "
8260 			    "caching", un);
8261 			goto devid_failed;
8262 		}
8263 	}
8264 
8265 	/*
8266 	 * Check the value of the WCE bit now and
8267 	 * set un_f_write_cache_enabled accordingly.
8268 	 */
8269 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8270 	mutex_enter(SD_MUTEX(un));
8271 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8272 	mutex_exit(SD_MUTEX(un));
8273 
8274 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8275 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8276 	    un->un_f_enable_rmw) {
8277 		if (!(un->un_wm_cache)) {
8278 			(void) snprintf(name_str, sizeof (name_str),
8279 			    "%s%d_cache",
8280 			    ddi_driver_name(SD_DEVINFO(un)),
8281 			    ddi_get_instance(SD_DEVINFO(un)));
8282 			un->un_wm_cache = kmem_cache_create(
8283 			    name_str, sizeof (struct sd_w_map),
8284 			    8, sd_wm_cache_constructor,
8285 			    sd_wm_cache_destructor, NULL,
8286 			    (void *)un, NULL, 0);
8287 			if (!(un->un_wm_cache)) {
8288 				goto wm_cache_failed;
8289 			}
8290 		}
8291 	}
8292 
8293 	/*
8294 	 * Check the value of the NV_SUP bit and set
8295 	 * un_f_suppress_cache_flush accordingly.
8296 	 */
8297 	sd_get_nv_sup(ssc);
8298 
8299 	/*
8300 	 * Find out what type of reservation this disk supports.
8301 	 */
8302 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8303 
8304 	switch (status) {
8305 	case 0:
8306 		/*
8307 		 * SCSI-3 reservations are supported.
8308 		 */
8309 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8310 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8311 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8312 		break;
8313 	case ENOTSUP:
8314 		/*
8315 		 * The PERSISTENT RESERVE IN command would not be recognized by
8316 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8317 		 */
8318 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8319 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8320 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8321 
8322 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8323 		break;
8324 	default:
8325 		/*
8326 		 * default to SCSI-3 reservations
8327 		 */
8328 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8329 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8330 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8331 
8332 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8333 		break;
8334 	}
8335 
8336 	/*
8337 	 * Set the pstat and error stat values here, so data obtained during the
8338 	 * previous attach-time routines is available.
8339 	 *
8340 	 * Note: This is a critical sequence that needs to be maintained:
8341 	 *	1) Instantiate the kstats before any routines using the iopath
8342 	 *	   (i.e. sd_send_scsi_cmd).
8343 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8344 	 *	   stats (sd_set_pstats)here, following
8345 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8346 	 *	   sd_cache_control().
8347 	 */
8348 
8349 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8350 		sd_set_pstats(un);
8351 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8352 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8353 	}
8354 
8355 	sd_set_errstats(un);
8356 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8357 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8358 
8359 
8360 	/*
8361 	 * After successfully attaching an instance, we record the information
8362 	 * of how many luns have been attached on the relative target and
8363 	 * controller for parallel SCSI. This information is used when sd tries
8364 	 * to set the tagged queuing capability in HBA.
8365 	 */
8366 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8367 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8368 	}
8369 
8370 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8371 	    "sd_unit_attach: un:0x%p exit success\n", un);
8372 
8373 	/* Uninitialize sd_ssc_t pointer */
8374 	sd_ssc_fini(ssc);
8375 
8376 	return (DDI_SUCCESS);
8377 
8378 	/*
8379 	 * An error occurred during the attach; clean up & return failure.
8380 	 */
8381 wm_cache_failed:
8382 devid_failed:
8383 
8384 setup_pm_failed:
8385 	ddi_remove_minor_node(devi, NULL);
8386 
8387 cmlb_attach_failed:
8388 	/*
8389 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8390 	 */
8391 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8392 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8393 
8394 	/*
8395 	 * Refer to the comments of setting tagged-qing in the beginning of
8396 	 * sd_unit_attach. We can only disable tagged queuing when there is
8397 	 * no lun attached on the target.
8398 	 */
8399 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8400 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8401 	}
8402 
8403 	if (un->un_f_is_fibre == FALSE) {
8404 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8405 	}
8406 
8407 spinup_failed:
8408 
8409 	/* Uninitialize sd_ssc_t pointer */
8410 	sd_ssc_fini(ssc);
8411 
8412 	mutex_enter(SD_MUTEX(un));
8413 
8414 	/* Deallocate SCSI FMA memory spaces */
8415 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8416 
8417 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8418 	if (un->un_direct_priority_timeid != NULL) {
8419 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8420 		un->un_direct_priority_timeid = NULL;
8421 		mutex_exit(SD_MUTEX(un));
8422 		(void) untimeout(temp_id);
8423 		mutex_enter(SD_MUTEX(un));
8424 	}
8425 
8426 	/* Cancel any pending start/stop timeouts */
8427 	if (un->un_startstop_timeid != NULL) {
8428 		timeout_id_t temp_id = un->un_startstop_timeid;
8429 		un->un_startstop_timeid = NULL;
8430 		mutex_exit(SD_MUTEX(un));
8431 		(void) untimeout(temp_id);
8432 		mutex_enter(SD_MUTEX(un));
8433 	}
8434 
8435 	/* Cancel any pending reset-throttle timeouts */
8436 	if (un->un_reset_throttle_timeid != NULL) {
8437 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8438 		un->un_reset_throttle_timeid = NULL;
8439 		mutex_exit(SD_MUTEX(un));
8440 		(void) untimeout(temp_id);
8441 		mutex_enter(SD_MUTEX(un));
8442 	}
8443 
8444 	/* Cancel rmw warning message timeouts */
8445 	if (un->un_rmw_msg_timeid != NULL) {
8446 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8447 		un->un_rmw_msg_timeid = NULL;
8448 		mutex_exit(SD_MUTEX(un));
8449 		(void) untimeout(temp_id);
8450 		mutex_enter(SD_MUTEX(un));
8451 	}
8452 
8453 	/* Cancel any pending retry timeouts */
8454 	if (un->un_retry_timeid != NULL) {
8455 		timeout_id_t temp_id = un->un_retry_timeid;
8456 		un->un_retry_timeid = NULL;
8457 		mutex_exit(SD_MUTEX(un));
8458 		(void) untimeout(temp_id);
8459 		mutex_enter(SD_MUTEX(un));
8460 	}
8461 
8462 	/* Cancel any pending delayed cv broadcast timeouts */
8463 	if (un->un_dcvb_timeid != NULL) {
8464 		timeout_id_t temp_id = un->un_dcvb_timeid;
8465 		un->un_dcvb_timeid = NULL;
8466 		mutex_exit(SD_MUTEX(un));
8467 		(void) untimeout(temp_id);
8468 		mutex_enter(SD_MUTEX(un));
8469 	}
8470 
8471 	mutex_exit(SD_MUTEX(un));
8472 
8473 	/* There should not be any in-progress I/O so ASSERT this check */
8474 	ASSERT(un->un_ncmds_in_transport == 0);
8475 	ASSERT(un->un_ncmds_in_driver == 0);
8476 
8477 	/* Do not free the softstate if the callback routine is active */
8478 	sd_sync_with_callback(un);
8479 
8480 	/*
8481 	 * Partition stats apparently are not used with removables. These would
8482 	 * not have been created during attach, so no need to clean them up...
8483 	 */
8484 	if (un->un_errstats != NULL) {
8485 		kstat_delete(un->un_errstats);
8486 		un->un_errstats = NULL;
8487 	}
8488 
8489 create_errstats_failed:
8490 
8491 	if (un->un_stats != NULL) {
8492 		kstat_delete(un->un_stats);
8493 		un->un_stats = NULL;
8494 	}
8495 
8496 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8497 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8498 
8499 	ddi_prop_remove_all(devi);
8500 	sema_destroy(&un->un_semoclose);
8501 	cv_destroy(&un->un_state_cv);
8502 
8503 getrbuf_failed:
8504 
8505 	sd_free_rqs(un);
8506 
8507 alloc_rqs_failed:
8508 
8509 	devp->sd_private = NULL;
8510 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8511 
8512 get_softstate_failed:
8513 	/*
8514 	 * Note: the man pages are unclear as to whether or not doing a
8515 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8516 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8517 	 * ddi_get_soft_state() fails.  The implication seems to be
8518 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8519 	 */
8520 #ifndef XPV_HVM_DRIVER
8521 	ddi_soft_state_free(sd_state, instance);
8522 #endif /* !XPV_HVM_DRIVER */
8523 
8524 probe_failed:
8525 	scsi_unprobe(devp);
8526 
8527 	return (DDI_FAILURE);
8528 }
8529 
8530 
8531 /*
8532  *    Function: sd_unit_detach
8533  *
8534  * Description: Performs DDI_DETACH processing for sddetach().
8535  *
8536  * Return Code: DDI_SUCCESS
8537  *		DDI_FAILURE
8538  *
8539  *     Context: Kernel thread context
8540  */
8541 
8542 static int
8543 sd_unit_detach(dev_info_t *devi)
8544 {
8545 	struct scsi_device	*devp;
8546 	struct sd_lun		*un;
8547 	int			i;
8548 	int			tgt;
8549 	dev_t			dev;
8550 	dev_info_t		*pdip = ddi_get_parent(devi);
8551 #ifndef XPV_HVM_DRIVER
8552 	int			instance = ddi_get_instance(devi);
8553 #endif /* !XPV_HVM_DRIVER */
8554 
8555 	mutex_enter(&sd_detach_mutex);
8556 
8557 	/*
8558 	 * Fail the detach for any of the following:
8559 	 *  - Unable to get the sd_lun struct for the instance
8560 	 *  - A layered driver has an outstanding open on the instance
8561 	 *  - Another thread is already detaching this instance
8562 	 *  - Another thread is currently performing an open
8563 	 */
8564 	devp = ddi_get_driver_private(devi);
8565 	if ((devp == NULL) ||
8566 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8567 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8568 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8569 		mutex_exit(&sd_detach_mutex);
8570 		return (DDI_FAILURE);
8571 	}
8572 
8573 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8574 
8575 	/*
8576 	 * Mark this instance as currently in a detach, to inhibit any
8577 	 * opens from a layered driver.
8578 	 */
8579 	un->un_detach_count++;
8580 	mutex_exit(&sd_detach_mutex);
8581 
8582 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8583 	    SCSI_ADDR_PROP_TARGET, -1);
8584 
8585 	dev = sd_make_device(SD_DEVINFO(un));
8586 
8587 #ifndef lint
8588 	_NOTE(COMPETING_THREADS_NOW);
8589 #endif
8590 
8591 	mutex_enter(SD_MUTEX(un));
8592 
8593 	/*
8594 	 * Fail the detach if there are any outstanding layered
8595 	 * opens on this device.
8596 	 */
8597 	for (i = 0; i < NDKMAP; i++) {
8598 		if (un->un_ocmap.lyropen[i] != 0) {
8599 			goto err_notclosed;
8600 		}
8601 	}
8602 
8603 	/*
8604 	 * Verify there are NO outstanding commands issued to this device.
8605 	 * ie, un_ncmds_in_transport == 0.
8606 	 * It's possible to have outstanding commands through the physio
8607 	 * code path, even though everything's closed.
8608 	 */
8609 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8610 	    (un->un_direct_priority_timeid != NULL) ||
8611 	    (un->un_state == SD_STATE_RWAIT)) {
8612 		mutex_exit(SD_MUTEX(un));
8613 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8614 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8615 		goto err_stillbusy;
8616 	}
8617 
8618 	/*
8619 	 * If we have the device reserved, release the reservation.
8620 	 */
8621 	if ((un->un_resvd_status & SD_RESERVE) &&
8622 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8623 		mutex_exit(SD_MUTEX(un));
8624 		/*
8625 		 * Note: sd_reserve_release sends a command to the device
8626 		 * via the sd_ioctlcmd() path, and can sleep.
8627 		 */
8628 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8629 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8630 			    "sd_dr_detach: Cannot release reservation \n");
8631 		}
8632 	} else {
8633 		mutex_exit(SD_MUTEX(un));
8634 	}
8635 
8636 	/*
8637 	 * Untimeout any reserve recover, throttle reset, restart unit
8638 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8639 	 * from getting nulled by their callback functions.
8640 	 */
8641 	mutex_enter(SD_MUTEX(un));
8642 	if (un->un_resvd_timeid != NULL) {
8643 		timeout_id_t temp_id = un->un_resvd_timeid;
8644 		un->un_resvd_timeid = NULL;
8645 		mutex_exit(SD_MUTEX(un));
8646 		(void) untimeout(temp_id);
8647 		mutex_enter(SD_MUTEX(un));
8648 	}
8649 
8650 	if (un->un_reset_throttle_timeid != NULL) {
8651 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8652 		un->un_reset_throttle_timeid = NULL;
8653 		mutex_exit(SD_MUTEX(un));
8654 		(void) untimeout(temp_id);
8655 		mutex_enter(SD_MUTEX(un));
8656 	}
8657 
8658 	if (un->un_startstop_timeid != NULL) {
8659 		timeout_id_t temp_id = un->un_startstop_timeid;
8660 		un->un_startstop_timeid = NULL;
8661 		mutex_exit(SD_MUTEX(un));
8662 		(void) untimeout(temp_id);
8663 		mutex_enter(SD_MUTEX(un));
8664 	}
8665 
8666 	if (un->un_rmw_msg_timeid != NULL) {
8667 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8668 		un->un_rmw_msg_timeid = NULL;
8669 		mutex_exit(SD_MUTEX(un));
8670 		(void) untimeout(temp_id);
8671 		mutex_enter(SD_MUTEX(un));
8672 	}
8673 
8674 	if (un->un_dcvb_timeid != NULL) {
8675 		timeout_id_t temp_id = un->un_dcvb_timeid;
8676 		un->un_dcvb_timeid = NULL;
8677 		mutex_exit(SD_MUTEX(un));
8678 		(void) untimeout(temp_id);
8679 	} else {
8680 		mutex_exit(SD_MUTEX(un));
8681 	}
8682 
8683 	/* Remove any pending reservation reclaim requests for this device */
8684 	sd_rmv_resv_reclaim_req(dev);
8685 
8686 	mutex_enter(SD_MUTEX(un));
8687 
8688 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8689 	if (un->un_direct_priority_timeid != NULL) {
8690 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8691 		un->un_direct_priority_timeid = NULL;
8692 		mutex_exit(SD_MUTEX(un));
8693 		(void) untimeout(temp_id);
8694 		mutex_enter(SD_MUTEX(un));
8695 	}
8696 
8697 	/* Cancel any active multi-host disk watch thread requests */
8698 	if (un->un_mhd_token != NULL) {
8699 		mutex_exit(SD_MUTEX(un));
8700 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8701 		if (scsi_watch_request_terminate(un->un_mhd_token,
8702 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8703 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8704 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8705 			/*
8706 			 * Note: We are returning here after having removed
8707 			 * some driver timeouts above. This is consistent with
8708 			 * the legacy implementation but perhaps the watch
8709 			 * terminate call should be made with the wait flag set.
8710 			 */
8711 			goto err_stillbusy;
8712 		}
8713 		mutex_enter(SD_MUTEX(un));
8714 		un->un_mhd_token = NULL;
8715 	}
8716 
8717 	if (un->un_swr_token != NULL) {
8718 		mutex_exit(SD_MUTEX(un));
8719 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8720 		if (scsi_watch_request_terminate(un->un_swr_token,
8721 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8722 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8723 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8724 			/*
8725 			 * Note: We are returning here after having removed
8726 			 * some driver timeouts above. This is consistent with
8727 			 * the legacy implementation but perhaps the watch
8728 			 * terminate call should be made with the wait flag set.
8729 			 */
8730 			goto err_stillbusy;
8731 		}
8732 		mutex_enter(SD_MUTEX(un));
8733 		un->un_swr_token = NULL;
8734 	}
8735 
8736 	mutex_exit(SD_MUTEX(un));
8737 
8738 	/*
8739 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8740 	 * if we have not registered one.
8741 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8742 	 */
8743 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8744 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8745 
8746 	/*
8747 	 * protect the timeout pointers from getting nulled by
8748 	 * their callback functions during the cancellation process.
8749 	 * In such a scenario untimeout can be invoked with a null value.
8750 	 */
8751 	_NOTE(NO_COMPETING_THREADS_NOW);
8752 
8753 	mutex_enter(&un->un_pm_mutex);
8754 	if (un->un_pm_idle_timeid != NULL) {
8755 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8756 		un->un_pm_idle_timeid = NULL;
8757 		mutex_exit(&un->un_pm_mutex);
8758 
8759 		/*
8760 		 * Timeout is active; cancel it.
8761 		 * Note that it'll never be active on a device
8762 		 * that does not support PM therefore we don't
8763 		 * have to check before calling pm_idle_component.
8764 		 */
8765 		(void) untimeout(temp_id);
8766 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8767 		mutex_enter(&un->un_pm_mutex);
8768 	}
8769 
8770 	/*
8771 	 * Check whether there is already a timeout scheduled for power
8772 	 * management. If yes then don't lower the power here, that's.
8773 	 * the timeout handler's job.
8774 	 */
8775 	if (un->un_pm_timeid != NULL) {
8776 		timeout_id_t temp_id = un->un_pm_timeid;
8777 		un->un_pm_timeid = NULL;
8778 		mutex_exit(&un->un_pm_mutex);
8779 		/*
8780 		 * Timeout is active; cancel it.
8781 		 * Note that it'll never be active on a device
8782 		 * that does not support PM therefore we don't
8783 		 * have to check before calling pm_idle_component.
8784 		 */
8785 		(void) untimeout(temp_id);
8786 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8787 
8788 	} else {
8789 		mutex_exit(&un->un_pm_mutex);
8790 		if ((un->un_f_pm_is_enabled == TRUE) &&
8791 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8792 		    != DDI_SUCCESS)) {
8793 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8794 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8795 			/*
8796 			 * Fix for bug: 4297749, item # 13
8797 			 * The above test now includes a check to see if PM is
8798 			 * supported by this device before call
8799 			 * pm_lower_power().
8800 			 * Note, the following is not dead code. The call to
8801 			 * pm_lower_power above will generate a call back into
8802 			 * our sdpower routine which might result in a timeout
8803 			 * handler getting activated. Therefore the following
8804 			 * code is valid and necessary.
8805 			 */
8806 			mutex_enter(&un->un_pm_mutex);
8807 			if (un->un_pm_timeid != NULL) {
8808 				timeout_id_t temp_id = un->un_pm_timeid;
8809 				un->un_pm_timeid = NULL;
8810 				mutex_exit(&un->un_pm_mutex);
8811 				(void) untimeout(temp_id);
8812 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8813 			} else {
8814 				mutex_exit(&un->un_pm_mutex);
8815 			}
8816 		}
8817 	}
8818 
8819 	/*
8820 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8821 	 * Relocated here from above to be after the call to
8822 	 * pm_lower_power, which was getting errors.
8823 	 */
8824 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8825 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8826 
8827 	/*
8828 	 * Currently, tagged queuing is supported per target based by HBA.
8829 	 * Setting this per lun instance actually sets the capability of this
8830 	 * target in HBA, which affects those luns already attached on the
8831 	 * same target. So during detach, we can only disable this capability
8832 	 * only when this is the only lun left on this target. By doing
8833 	 * this, we assume a target has the same tagged queuing capability
8834 	 * for every lun. The condition can be removed when HBA is changed to
8835 	 * support per lun based tagged queuing capability.
8836 	 */
8837 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8838 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8839 	}
8840 
8841 	if (un->un_f_is_fibre == FALSE) {
8842 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8843 	}
8844 
8845 	/*
8846 	 * Remove any event callbacks, fibre only
8847 	 */
8848 	if (un->un_f_is_fibre == TRUE) {
8849 		if ((un->un_insert_event != NULL) &&
8850 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8851 		    DDI_SUCCESS)) {
8852 			/*
8853 			 * Note: We are returning here after having done
8854 			 * substantial cleanup above. This is consistent
8855 			 * with the legacy implementation but this may not
8856 			 * be the right thing to do.
8857 			 */
8858 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8859 			    "sd_dr_detach: Cannot cancel insert event\n");
8860 			goto err_remove_event;
8861 		}
8862 		un->un_insert_event = NULL;
8863 
8864 		if ((un->un_remove_event != NULL) &&
8865 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8866 		    DDI_SUCCESS)) {
8867 			/*
8868 			 * Note: We are returning here after having done
8869 			 * substantial cleanup above. This is consistent
8870 			 * with the legacy implementation but this may not
8871 			 * be the right thing to do.
8872 			 */
8873 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8874 			    "sd_dr_detach: Cannot cancel remove event\n");
8875 			goto err_remove_event;
8876 		}
8877 		un->un_remove_event = NULL;
8878 	}
8879 
8880 	/* Do not free the softstate if the callback routine is active */
8881 	sd_sync_with_callback(un);
8882 
8883 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8884 	cmlb_free_handle(&un->un_cmlbhandle);
8885 
8886 	/*
8887 	 * Hold the detach mutex here, to make sure that no other threads ever
8888 	 * can access a (partially) freed soft state structure.
8889 	 */
8890 	mutex_enter(&sd_detach_mutex);
8891 
8892 	/*
8893 	 * Clean up the soft state struct.
8894 	 * Cleanup is done in reverse order of allocs/inits.
8895 	 * At this point there should be no competing threads anymore.
8896 	 */
8897 
8898 	scsi_fm_fini(devp);
8899 
8900 	/*
8901 	 * Deallocate memory for SCSI FMA.
8902 	 */
8903 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8904 
8905 	/*
8906 	 * Unregister and free device id if it was not registered
8907 	 * by the transport.
8908 	 */
8909 	if (un->un_f_devid_transport_defined == FALSE)
8910 		ddi_devid_unregister(devi);
8911 
8912 	/*
8913 	 * free the devid structure if allocated before (by ddi_devid_init()
8914 	 * or ddi_devid_get()).
8915 	 */
8916 	if (un->un_devid) {
8917 		ddi_devid_free(un->un_devid);
8918 		un->un_devid = NULL;
8919 	}
8920 
8921 	/*
8922 	 * Destroy wmap cache if it exists.
8923 	 */
8924 	if (un->un_wm_cache != NULL) {
8925 		kmem_cache_destroy(un->un_wm_cache);
8926 		un->un_wm_cache = NULL;
8927 	}
8928 
8929 	/*
8930 	 * kstat cleanup is done in detach for all device types (4363169).
8931 	 * We do not want to fail detach if the device kstats are not deleted
8932 	 * since there is a confusion about the devo_refcnt for the device.
8933 	 * We just delete the kstats and let detach complete successfully.
8934 	 */
8935 	if (un->un_stats != NULL) {
8936 		kstat_delete(un->un_stats);
8937 		un->un_stats = NULL;
8938 	}
8939 	if (un->un_errstats != NULL) {
8940 		kstat_delete(un->un_errstats);
8941 		un->un_errstats = NULL;
8942 	}
8943 
8944 	/* Remove partition stats */
8945 	if (un->un_f_pkstats_enabled) {
8946 		for (i = 0; i < NSDMAP; i++) {
8947 			if (un->un_pstats[i] != NULL) {
8948 				kstat_delete(un->un_pstats[i]);
8949 				un->un_pstats[i] = NULL;
8950 			}
8951 		}
8952 	}
8953 
8954 	/* Remove xbuf registration */
8955 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8956 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8957 
8958 	/* Remove driver properties */
8959 	ddi_prop_remove_all(devi);
8960 
8961 	mutex_destroy(&un->un_pm_mutex);
8962 	cv_destroy(&un->un_pm_busy_cv);
8963 
8964 	cv_destroy(&un->un_wcc_cv);
8965 
8966 	/* Open/close semaphore */
8967 	sema_destroy(&un->un_semoclose);
8968 
8969 	/* Removable media condvar. */
8970 	cv_destroy(&un->un_state_cv);
8971 
8972 	/* Suspend/resume condvar. */
8973 	cv_destroy(&un->un_suspend_cv);
8974 	cv_destroy(&un->un_disk_busy_cv);
8975 
8976 	sd_free_rqs(un);
8977 
8978 	/* Free up soft state */
8979 	devp->sd_private = NULL;
8980 
8981 	bzero(un, sizeof (struct sd_lun));
8982 #ifndef XPV_HVM_DRIVER
8983 	ddi_soft_state_free(sd_state, instance);
8984 #endif /* !XPV_HVM_DRIVER */
8985 
8986 	mutex_exit(&sd_detach_mutex);
8987 
8988 	/* This frees up the INQUIRY data associated with the device. */
8989 	scsi_unprobe(devp);
8990 
8991 	/*
8992 	 * After successfully detaching an instance, we update the information
8993 	 * of how many luns have been attached in the relative target and
8994 	 * controller for parallel SCSI. This information is used when sd tries
8995 	 * to set the tagged queuing capability in HBA.
8996 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8997 	 * check if the device is parallel SCSI. However, we don't need to
8998 	 * check here because we've already checked during attach. No device
8999 	 * that is not parallel SCSI is in the chain.
9000 	 */
9001 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9002 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9003 	}
9004 
9005 	return (DDI_SUCCESS);
9006 
9007 err_notclosed:
9008 	mutex_exit(SD_MUTEX(un));
9009 
9010 err_stillbusy:
9011 	_NOTE(NO_COMPETING_THREADS_NOW);
9012 
9013 err_remove_event:
9014 	mutex_enter(&sd_detach_mutex);
9015 	un->un_detach_count--;
9016 	mutex_exit(&sd_detach_mutex);
9017 
9018 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9019 	return (DDI_FAILURE);
9020 }
9021 
9022 
9023 /*
9024  *    Function: sd_create_errstats
9025  *
9026  * Description: This routine instantiates the device error stats.
9027  *
9028  *		Note: During attach the stats are instantiated first so they are
9029  *		available for attach-time routines that utilize the driver
9030  *		iopath to send commands to the device. The stats are initialized
9031  *		separately so data obtained during some attach-time routines is
9032  *		available. (4362483)
9033  *
9034  *   Arguments: un - driver soft state (unit) structure
9035  *		instance - driver instance
9036  *
9037  *     Context: Kernel thread context
9038  */
9039 
9040 static void
9041 sd_create_errstats(struct sd_lun *un, int instance)
9042 {
9043 	struct	sd_errstats	*stp;
9044 	char	kstatmodule_err[KSTAT_STRLEN];
9045 	char	kstatname[KSTAT_STRLEN];
9046 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9047 
9048 	ASSERT(un != NULL);
9049 
9050 	if (un->un_errstats != NULL) {
9051 		return;
9052 	}
9053 
9054 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9055 	    "%serr", sd_label);
9056 	(void) snprintf(kstatname, sizeof (kstatname),
9057 	    "%s%d,err", sd_label, instance);
9058 
9059 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9060 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9061 
9062 	if (un->un_errstats == NULL) {
9063 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9064 		    "sd_create_errstats: Failed kstat_create\n");
9065 		return;
9066 	}
9067 
9068 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9069 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9070 	    KSTAT_DATA_UINT32);
9071 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9072 	    KSTAT_DATA_UINT32);
9073 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9074 	    KSTAT_DATA_UINT32);
9075 	kstat_named_init(&stp->sd_vid,		"Vendor",
9076 	    KSTAT_DATA_CHAR);
9077 	kstat_named_init(&stp->sd_pid,		"Product",
9078 	    KSTAT_DATA_CHAR);
9079 	kstat_named_init(&stp->sd_revision,	"Revision",
9080 	    KSTAT_DATA_CHAR);
9081 	kstat_named_init(&stp->sd_serial,	"Serial No",
9082 	    KSTAT_DATA_CHAR);
9083 	kstat_named_init(&stp->sd_capacity,	"Size",
9084 	    KSTAT_DATA_ULONGLONG);
9085 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9086 	    KSTAT_DATA_UINT32);
9087 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9088 	    KSTAT_DATA_UINT32);
9089 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9090 	    KSTAT_DATA_UINT32);
9091 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9092 	    KSTAT_DATA_UINT32);
9093 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9094 	    KSTAT_DATA_UINT32);
9095 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9096 	    KSTAT_DATA_UINT32);
9097 
9098 	un->un_errstats->ks_private = un;
9099 	un->un_errstats->ks_update  = nulldev;
9100 
9101 	kstat_install(un->un_errstats);
9102 }
9103 
9104 
9105 /*
9106  *    Function: sd_set_errstats
9107  *
9108  * Description: This routine sets the value of the vendor id, product id,
9109  *		revision, serial number, and capacity device error stats.
9110  *
9111  *		Note: During attach the stats are instantiated first so they are
9112  *		available for attach-time routines that utilize the driver
9113  *		iopath to send commands to the device. The stats are initialized
9114  *		separately so data obtained during some attach-time routines is
9115  *		available. (4362483)
9116  *
9117  *   Arguments: un - driver soft state (unit) structure
9118  *
9119  *     Context: Kernel thread context
9120  */
9121 
9122 static void
9123 sd_set_errstats(struct sd_lun *un)
9124 {
9125 	struct	sd_errstats	*stp;
9126 	char 			*sn;
9127 
9128 	ASSERT(un != NULL);
9129 	ASSERT(un->un_errstats != NULL);
9130 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9131 	ASSERT(stp != NULL);
9132 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9133 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9134 	(void) strncpy(stp->sd_revision.value.c,
9135 	    un->un_sd->sd_inq->inq_revision, 4);
9136 
9137 	/*
9138 	 * All the errstats are persistent across detach/attach,
9139 	 * so reset all the errstats here in case of the hot
9140 	 * replacement of disk drives, except for not changed
9141 	 * Sun qualified drives.
9142 	 */
9143 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9144 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9145 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9146 		stp->sd_softerrs.value.ui32 = 0;
9147 		stp->sd_harderrs.value.ui32 = 0;
9148 		stp->sd_transerrs.value.ui32 = 0;
9149 		stp->sd_rq_media_err.value.ui32 = 0;
9150 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9151 		stp->sd_rq_nodev_err.value.ui32 = 0;
9152 		stp->sd_rq_recov_err.value.ui32 = 0;
9153 		stp->sd_rq_illrq_err.value.ui32 = 0;
9154 		stp->sd_rq_pfa_err.value.ui32 = 0;
9155 	}
9156 
9157 	/*
9158 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9159 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9160 	 * (4376302))
9161 	 */
9162 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9163 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9164 		    sizeof (SD_INQUIRY(un)->inq_serial));
9165 	} else {
9166 		/*
9167 		 * Set the "Serial No" kstat for non-Sun qualified drives
9168 		 */
9169 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9170 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9171 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9172 			(void) strlcpy(stp->sd_serial.value.c, sn,
9173 			    sizeof (stp->sd_serial.value.c));
9174 			ddi_prop_free(sn);
9175 		}
9176 	}
9177 
9178 	if (un->un_f_blockcount_is_valid != TRUE) {
9179 		/*
9180 		 * Set capacity error stat to 0 for no media. This ensures
9181 		 * a valid capacity is displayed in response to 'iostat -E'
9182 		 * when no media is present in the device.
9183 		 */
9184 		stp->sd_capacity.value.ui64 = 0;
9185 	} else {
9186 		/*
9187 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9188 		 * capacity.
9189 		 *
9190 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9191 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9192 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9193 		 */
9194 		stp->sd_capacity.value.ui64 = (uint64_t)
9195 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9196 	}
9197 }
9198 
9199 
9200 /*
9201  *    Function: sd_set_pstats
9202  *
9203  * Description: This routine instantiates and initializes the partition
9204  *              stats for each partition with more than zero blocks.
9205  *		(4363169)
9206  *
9207  *   Arguments: un - driver soft state (unit) structure
9208  *
9209  *     Context: Kernel thread context
9210  */
9211 
9212 static void
9213 sd_set_pstats(struct sd_lun *un)
9214 {
9215 	char	kstatname[KSTAT_STRLEN];
9216 	int	instance;
9217 	int	i;
9218 	diskaddr_t	nblks = 0;
9219 	char	*partname = NULL;
9220 
9221 	ASSERT(un != NULL);
9222 
9223 	instance = ddi_get_instance(SD_DEVINFO(un));
9224 
9225 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9226 	for (i = 0; i < NSDMAP; i++) {
9227 
9228 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9229 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9230 			continue;
9231 		mutex_enter(SD_MUTEX(un));
9232 
9233 		if ((un->un_pstats[i] == NULL) &&
9234 		    (nblks != 0)) {
9235 
9236 			(void) snprintf(kstatname, sizeof (kstatname),
9237 			    "%s%d,%s", sd_label, instance,
9238 			    partname);
9239 
9240 			un->un_pstats[i] = kstat_create(sd_label,
9241 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9242 			    1, KSTAT_FLAG_PERSISTENT);
9243 			if (un->un_pstats[i] != NULL) {
9244 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9245 				kstat_install(un->un_pstats[i]);
9246 			}
9247 		}
9248 		mutex_exit(SD_MUTEX(un));
9249 	}
9250 }
9251 
9252 
9253 #if (defined(__fibre))
9254 /*
9255  *    Function: sd_init_event_callbacks
9256  *
9257  * Description: This routine initializes the insertion and removal event
9258  *		callbacks. (fibre only)
9259  *
9260  *   Arguments: un - driver soft state (unit) structure
9261  *
9262  *     Context: Kernel thread context
9263  */
9264 
9265 static void
9266 sd_init_event_callbacks(struct sd_lun *un)
9267 {
9268 	ASSERT(un != NULL);
9269 
9270 	if ((un->un_insert_event == NULL) &&
9271 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9272 	    &un->un_insert_event) == DDI_SUCCESS)) {
9273 		/*
9274 		 * Add the callback for an insertion event
9275 		 */
9276 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9277 		    un->un_insert_event, sd_event_callback, (void *)un,
9278 		    &(un->un_insert_cb_id));
9279 	}
9280 
9281 	if ((un->un_remove_event == NULL) &&
9282 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9283 	    &un->un_remove_event) == DDI_SUCCESS)) {
9284 		/*
9285 		 * Add the callback for a removal event
9286 		 */
9287 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9288 		    un->un_remove_event, sd_event_callback, (void *)un,
9289 		    &(un->un_remove_cb_id));
9290 	}
9291 }
9292 
9293 
9294 /*
9295  *    Function: sd_event_callback
9296  *
9297  * Description: This routine handles insert/remove events (photon). The
9298  *		state is changed to OFFLINE which can be used to supress
9299  *		error msgs. (fibre only)
9300  *
9301  *   Arguments: un - driver soft state (unit) structure
9302  *
9303  *     Context: Callout thread context
9304  */
9305 /* ARGSUSED */
9306 static void
9307 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9308     void *bus_impldata)
9309 {
9310 	struct sd_lun *un = (struct sd_lun *)arg;
9311 
9312 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9313 	if (event == un->un_insert_event) {
9314 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9315 		mutex_enter(SD_MUTEX(un));
9316 		if (un->un_state == SD_STATE_OFFLINE) {
9317 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9318 				un->un_state = un->un_last_state;
9319 			} else {
9320 				/*
9321 				 * We have gone through SUSPEND/RESUME while
9322 				 * we were offline. Restore the last state
9323 				 */
9324 				un->un_state = un->un_save_state;
9325 			}
9326 		}
9327 		mutex_exit(SD_MUTEX(un));
9328 
9329 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9330 	} else if (event == un->un_remove_event) {
9331 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9332 		mutex_enter(SD_MUTEX(un));
9333 		/*
9334 		 * We need to handle an event callback that occurs during
9335 		 * the suspend operation, since we don't prevent it.
9336 		 */
9337 		if (un->un_state != SD_STATE_OFFLINE) {
9338 			if (un->un_state != SD_STATE_SUSPENDED) {
9339 				New_state(un, SD_STATE_OFFLINE);
9340 			} else {
9341 				un->un_last_state = SD_STATE_OFFLINE;
9342 			}
9343 		}
9344 		mutex_exit(SD_MUTEX(un));
9345 	} else {
9346 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9347 		    "!Unknown event\n");
9348 	}
9349 
9350 }
9351 #endif
9352 
9353 /*
9354  *    Function: sd_cache_control()
9355  *
9356  * Description: This routine is the driver entry point for setting
9357  *		read and write caching by modifying the WCE (write cache
9358  *		enable) and RCD (read cache disable) bits of mode
9359  *		page 8 (MODEPAGE_CACHING).
9360  *
9361  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9362  *                      structure for this target.
9363  *		rcd_flag - flag for controlling the read cache
9364  *		wce_flag - flag for controlling the write cache
9365  *
9366  * Return Code: EIO
9367  *		code returned by sd_send_scsi_MODE_SENSE and
9368  *		sd_send_scsi_MODE_SELECT
9369  *
9370  *     Context: Kernel Thread
9371  */
9372 
9373 static int
9374 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9375 {
9376 	struct mode_caching	*mode_caching_page;
9377 	uchar_t			*header;
9378 	size_t			buflen;
9379 	int			hdrlen;
9380 	int			bd_len;
9381 	int			rval = 0;
9382 	struct mode_header_grp2	*mhp;
9383 	struct sd_lun		*un;
9384 	int			status;
9385 
9386 	ASSERT(ssc != NULL);
9387 	un = ssc->ssc_un;
9388 	ASSERT(un != NULL);
9389 
9390 	/*
9391 	 * Do a test unit ready, otherwise a mode sense may not work if this
9392 	 * is the first command sent to the device after boot.
9393 	 */
9394 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9395 	if (status != 0)
9396 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9397 
9398 	if (un->un_f_cfg_is_atapi == TRUE) {
9399 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9400 	} else {
9401 		hdrlen = MODE_HEADER_LENGTH;
9402 	}
9403 
9404 	/*
9405 	 * Allocate memory for the retrieved mode page and its headers.  Set
9406 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9407 	 * we get all of the mode sense data otherwise, the mode select
9408 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9409 	 */
9410 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9411 	    sizeof (struct mode_cache_scsi3);
9412 
9413 	header = kmem_zalloc(buflen, KM_SLEEP);
9414 
9415 	/* Get the information from the device. */
9416 	if (un->un_f_cfg_is_atapi == TRUE) {
9417 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9418 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9419 	} else {
9420 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9421 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9422 	}
9423 
9424 	if (rval != 0) {
9425 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9426 		    "sd_cache_control: Mode Sense Failed\n");
9427 		goto mode_sense_failed;
9428 	}
9429 
9430 	/*
9431 	 * Determine size of Block Descriptors in order to locate
9432 	 * the mode page data. ATAPI devices return 0, SCSI devices
9433 	 * should return MODE_BLK_DESC_LENGTH.
9434 	 */
9435 	if (un->un_f_cfg_is_atapi == TRUE) {
9436 		mhp	= (struct mode_header_grp2 *)header;
9437 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9438 	} else {
9439 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9440 	}
9441 
9442 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9443 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9444 		    "sd_cache_control: Mode Sense returned invalid block "
9445 		    "descriptor length\n");
9446 		rval = EIO;
9447 		goto mode_sense_failed;
9448 	}
9449 
9450 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9451 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9452 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9453 		    "sd_cache_control: Mode Sense caching page code mismatch "
9454 		    "%d\n", mode_caching_page->mode_page.code);
9455 		rval = EIO;
9456 		goto mode_sense_failed;
9457 	}
9458 
9459 	/* Check the relevant bits on successful mode sense. */
9460 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9461 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9462 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9463 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9464 
9465 		size_t sbuflen;
9466 		uchar_t save_pg;
9467 
9468 		/*
9469 		 * Construct select buffer length based on the
9470 		 * length of the sense data returned.
9471 		 */
9472 		sbuflen =  hdrlen + bd_len +
9473 		    sizeof (struct mode_page) +
9474 		    (int)mode_caching_page->mode_page.length;
9475 
9476 		/*
9477 		 * Set the caching bits as requested.
9478 		 */
9479 		if (rcd_flag == SD_CACHE_ENABLE)
9480 			mode_caching_page->rcd = 0;
9481 		else if (rcd_flag == SD_CACHE_DISABLE)
9482 			mode_caching_page->rcd = 1;
9483 
9484 		if (wce_flag == SD_CACHE_ENABLE)
9485 			mode_caching_page->wce = 1;
9486 		else if (wce_flag == SD_CACHE_DISABLE)
9487 			mode_caching_page->wce = 0;
9488 
9489 		/*
9490 		 * Save the page if the mode sense says the
9491 		 * drive supports it.
9492 		 */
9493 		save_pg = mode_caching_page->mode_page.ps ?
9494 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9495 
9496 		/* Clear reserved bits before mode select. */
9497 		mode_caching_page->mode_page.ps = 0;
9498 
9499 		/*
9500 		 * Clear out mode header for mode select.
9501 		 * The rest of the retrieved page will be reused.
9502 		 */
9503 		bzero(header, hdrlen);
9504 
9505 		if (un->un_f_cfg_is_atapi == TRUE) {
9506 			mhp = (struct mode_header_grp2 *)header;
9507 			mhp->bdesc_length_hi = bd_len >> 8;
9508 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9509 		} else {
9510 			((struct mode_header *)header)->bdesc_length = bd_len;
9511 		}
9512 
9513 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9514 
9515 		/* Issue mode select to change the cache settings */
9516 		if (un->un_f_cfg_is_atapi == TRUE) {
9517 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9518 			    sbuflen, save_pg, SD_PATH_DIRECT);
9519 		} else {
9520 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9521 			    sbuflen, save_pg, SD_PATH_DIRECT);
9522 		}
9523 
9524 	}
9525 
9526 
9527 mode_sense_failed:
9528 
9529 	kmem_free(header, buflen);
9530 
9531 	if (rval != 0) {
9532 		if (rval == EIO)
9533 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9534 		else
9535 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9536 	}
9537 	return (rval);
9538 }
9539 
9540 
9541 /*
9542  *    Function: sd_get_write_cache_enabled()
9543  *
9544  * Description: This routine is the driver entry point for determining if
9545  *		write caching is enabled.  It examines the WCE (write cache
9546  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9547  *
9548  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9549  *                      structure for this target.
9550  *		is_enabled - pointer to int where write cache enabled state
9551  *		is returned (non-zero -> write cache enabled)
9552  *
9553  *
9554  * Return Code: EIO
9555  *		code returned by sd_send_scsi_MODE_SENSE
9556  *
9557  *     Context: Kernel Thread
9558  *
9559  * NOTE: If ioctl is added to disable write cache, this sequence should
9560  * be followed so that no locking is required for accesses to
9561  * un->un_f_write_cache_enabled:
9562  * 	do mode select to clear wce
9563  * 	do synchronize cache to flush cache
9564  * 	set un->un_f_write_cache_enabled = FALSE
9565  *
9566  * Conversely, an ioctl to enable the write cache should be done
9567  * in this order:
9568  * 	set un->un_f_write_cache_enabled = TRUE
9569  * 	do mode select to set wce
9570  */
9571 
9572 static int
9573 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9574 {
9575 	struct mode_caching	*mode_caching_page;
9576 	uchar_t			*header;
9577 	size_t			buflen;
9578 	int			hdrlen;
9579 	int			bd_len;
9580 	int			rval = 0;
9581 	struct sd_lun		*un;
9582 	int			status;
9583 
9584 	ASSERT(ssc != NULL);
9585 	un = ssc->ssc_un;
9586 	ASSERT(un != NULL);
9587 	ASSERT(is_enabled != NULL);
9588 
9589 	/* in case of error, flag as enabled */
9590 	*is_enabled = TRUE;
9591 
9592 	/*
9593 	 * Do a test unit ready, otherwise a mode sense may not work if this
9594 	 * is the first command sent to the device after boot.
9595 	 */
9596 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9597 
9598 	if (status != 0)
9599 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9600 
9601 	if (un->un_f_cfg_is_atapi == TRUE) {
9602 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9603 	} else {
9604 		hdrlen = MODE_HEADER_LENGTH;
9605 	}
9606 
9607 	/*
9608 	 * Allocate memory for the retrieved mode page and its headers.  Set
9609 	 * a pointer to the page itself.
9610 	 */
9611 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9612 	header = kmem_zalloc(buflen, KM_SLEEP);
9613 
9614 	/* Get the information from the device. */
9615 	if (un->un_f_cfg_is_atapi == TRUE) {
9616 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9617 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9618 	} else {
9619 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9620 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9621 	}
9622 
9623 	if (rval != 0) {
9624 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9625 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9626 		goto mode_sense_failed;
9627 	}
9628 
9629 	/*
9630 	 * Determine size of Block Descriptors in order to locate
9631 	 * the mode page data. ATAPI devices return 0, SCSI devices
9632 	 * should return MODE_BLK_DESC_LENGTH.
9633 	 */
9634 	if (un->un_f_cfg_is_atapi == TRUE) {
9635 		struct mode_header_grp2	*mhp;
9636 		mhp	= (struct mode_header_grp2 *)header;
9637 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9638 	} else {
9639 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9640 	}
9641 
9642 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9643 		/* FMA should make upset complain here */
9644 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9645 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9646 		    "block descriptor length\n");
9647 		rval = EIO;
9648 		goto mode_sense_failed;
9649 	}
9650 
9651 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9652 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9653 		/* FMA could make upset complain here */
9654 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9655 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9656 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9657 		rval = EIO;
9658 		goto mode_sense_failed;
9659 	}
9660 	*is_enabled = mode_caching_page->wce;
9661 
9662 mode_sense_failed:
9663 	if (rval == 0) {
9664 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9665 	} else if (rval == EIO) {
9666 		/*
9667 		 * Some disks do not support mode sense(6), we
9668 		 * should ignore this kind of error(sense key is
9669 		 * 0x5 - illegal request).
9670 		 */
9671 		uint8_t *sensep;
9672 		int senlen;
9673 
9674 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9675 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9676 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9677 
9678 		if (senlen > 0 &&
9679 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9680 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9681 		} else {
9682 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9683 		}
9684 	} else {
9685 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9686 	}
9687 	kmem_free(header, buflen);
9688 	return (rval);
9689 }
9690 
9691 /*
9692  *    Function: sd_get_nv_sup()
9693  *
9694  * Description: This routine is the driver entry point for
9695  * determining whether non-volatile cache is supported. This
9696  * determination process works as follows:
9697  *
9698  * 1. sd first queries sd.conf on whether
9699  * suppress_cache_flush bit is set for this device.
9700  *
9701  * 2. if not there, then queries the internal disk table.
9702  *
9703  * 3. if either sd.conf or internal disk table specifies
9704  * cache flush be suppressed, we don't bother checking
9705  * NV_SUP bit.
9706  *
9707  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9708  * the optional INQUIRY VPD page 0x86. If the device
9709  * supports VPD page 0x86, sd examines the NV_SUP
9710  * (non-volatile cache support) bit in the INQUIRY VPD page
9711  * 0x86:
9712  *   o If NV_SUP bit is set, sd assumes the device has a
9713  *   non-volatile cache and set the
9714  *   un_f_sync_nv_supported to TRUE.
9715  *   o Otherwise cache is not non-volatile,
9716  *   un_f_sync_nv_supported is set to FALSE.
9717  *
9718  * Arguments: un - driver soft state (unit) structure
9719  *
9720  * Return Code:
9721  *
9722  *     Context: Kernel Thread
9723  */
9724 
9725 static void
9726 sd_get_nv_sup(sd_ssc_t *ssc)
9727 {
9728 	int		rval		= 0;
9729 	uchar_t		*inq86		= NULL;
9730 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9731 	size_t		inq86_resid	= 0;
9732 	struct		dk_callback *dkc;
9733 	struct sd_lun	*un;
9734 
9735 	ASSERT(ssc != NULL);
9736 	un = ssc->ssc_un;
9737 	ASSERT(un != NULL);
9738 
9739 	mutex_enter(SD_MUTEX(un));
9740 
9741 	/*
9742 	 * Be conservative on the device's support of
9743 	 * SYNC_NV bit: un_f_sync_nv_supported is
9744 	 * initialized to be false.
9745 	 */
9746 	un->un_f_sync_nv_supported = FALSE;
9747 
9748 	/*
9749 	 * If either sd.conf or internal disk table
9750 	 * specifies cache flush be suppressed, then
9751 	 * we don't bother checking NV_SUP bit.
9752 	 */
9753 	if (un->un_f_suppress_cache_flush == TRUE) {
9754 		mutex_exit(SD_MUTEX(un));
9755 		return;
9756 	}
9757 
9758 	if (sd_check_vpd_page_support(ssc) == 0 &&
9759 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9760 		mutex_exit(SD_MUTEX(un));
9761 		/* collect page 86 data if available */
9762 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9763 
9764 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9765 		    0x01, 0x86, &inq86_resid);
9766 
9767 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9768 			SD_TRACE(SD_LOG_COMMON, un,
9769 			    "sd_get_nv_sup: \
9770 			    successfully get VPD page: %x \
9771 			    PAGE LENGTH: %x BYTE 6: %x\n",
9772 			    inq86[1], inq86[3], inq86[6]);
9773 
9774 			mutex_enter(SD_MUTEX(un));
9775 			/*
9776 			 * check the value of NV_SUP bit: only if the device
9777 			 * reports NV_SUP bit to be 1, the
9778 			 * un_f_sync_nv_supported bit will be set to true.
9779 			 */
9780 			if (inq86[6] & SD_VPD_NV_SUP) {
9781 				un->un_f_sync_nv_supported = TRUE;
9782 			}
9783 			mutex_exit(SD_MUTEX(un));
9784 		} else if (rval != 0) {
9785 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9786 		}
9787 
9788 		kmem_free(inq86, inq86_len);
9789 	} else {
9790 		mutex_exit(SD_MUTEX(un));
9791 	}
9792 
9793 	/*
9794 	 * Send a SYNC CACHE command to check whether
9795 	 * SYNC_NV bit is supported. This command should have
9796 	 * un_f_sync_nv_supported set to correct value.
9797 	 */
9798 	mutex_enter(SD_MUTEX(un));
9799 	if (un->un_f_sync_nv_supported) {
9800 		mutex_exit(SD_MUTEX(un));
9801 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9802 		dkc->dkc_flag = FLUSH_VOLATILE;
9803 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9804 
9805 		/*
9806 		 * Send a TEST UNIT READY command to the device. This should
9807 		 * clear any outstanding UNIT ATTENTION that may be present.
9808 		 */
9809 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9810 		if (rval != 0)
9811 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9812 
9813 		kmem_free(dkc, sizeof (struct dk_callback));
9814 	} else {
9815 		mutex_exit(SD_MUTEX(un));
9816 	}
9817 
9818 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9819 	    un_f_suppress_cache_flush is set to %d\n",
9820 	    un->un_f_suppress_cache_flush);
9821 }
9822 
9823 /*
9824  *    Function: sd_make_device
9825  *
9826  * Description: Utility routine to return the Solaris device number from
9827  *		the data in the device's dev_info structure.
9828  *
9829  * Return Code: The Solaris device number
9830  *
9831  *     Context: Any
9832  */
9833 
9834 static dev_t
9835 sd_make_device(dev_info_t *devi)
9836 {
9837 	return (makedevice(ddi_driver_major(devi),
9838 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9839 }
9840 
9841 
9842 /*
9843  *    Function: sd_pm_entry
9844  *
9845  * Description: Called at the start of a new command to manage power
9846  *		and busy status of a device. This includes determining whether
9847  *		the current power state of the device is sufficient for
9848  *		performing the command or whether it must be changed.
9849  *		The PM framework is notified appropriately.
9850  *		Only with a return status of DDI_SUCCESS will the
9851  *		component be busy to the framework.
9852  *
9853  *		All callers of sd_pm_entry must check the return status
9854  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9855  *		of DDI_FAILURE indicates the device failed to power up.
9856  *		In this case un_pm_count has been adjusted so the result
9857  *		on exit is still powered down, ie. count is less than 0.
9858  *		Calling sd_pm_exit with this count value hits an ASSERT.
9859  *
9860  * Return Code: DDI_SUCCESS or DDI_FAILURE
9861  *
9862  *     Context: Kernel thread context.
9863  */
9864 
9865 static int
9866 sd_pm_entry(struct sd_lun *un)
9867 {
9868 	int return_status = DDI_SUCCESS;
9869 
9870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9871 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9872 
9873 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9874 
9875 	if (un->un_f_pm_is_enabled == FALSE) {
9876 		SD_TRACE(SD_LOG_IO_PM, un,
9877 		    "sd_pm_entry: exiting, PM not enabled\n");
9878 		return (return_status);
9879 	}
9880 
9881 	/*
9882 	 * Just increment a counter if PM is enabled. On the transition from
9883 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9884 	 * the count with each IO and mark the device as idle when the count
9885 	 * hits 0.
9886 	 *
9887 	 * If the count is less than 0 the device is powered down. If a powered
9888 	 * down device is successfully powered up then the count must be
9889 	 * incremented to reflect the power up. Note that it'll get incremented
9890 	 * a second time to become busy.
9891 	 *
9892 	 * Because the following has the potential to change the device state
9893 	 * and must release the un_pm_mutex to do so, only one thread can be
9894 	 * allowed through at a time.
9895 	 */
9896 
9897 	mutex_enter(&un->un_pm_mutex);
9898 	while (un->un_pm_busy == TRUE) {
9899 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9900 	}
9901 	un->un_pm_busy = TRUE;
9902 
9903 	if (un->un_pm_count < 1) {
9904 
9905 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9906 
9907 		/*
9908 		 * Indicate we are now busy so the framework won't attempt to
9909 		 * power down the device. This call will only fail if either
9910 		 * we passed a bad component number or the device has no
9911 		 * components. Neither of these should ever happen.
9912 		 */
9913 		mutex_exit(&un->un_pm_mutex);
9914 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9915 		ASSERT(return_status == DDI_SUCCESS);
9916 
9917 		mutex_enter(&un->un_pm_mutex);
9918 
9919 		if (un->un_pm_count < 0) {
9920 			mutex_exit(&un->un_pm_mutex);
9921 
9922 			SD_TRACE(SD_LOG_IO_PM, un,
9923 			    "sd_pm_entry: power up component\n");
9924 
9925 			/*
9926 			 * pm_raise_power will cause sdpower to be called
9927 			 * which brings the device power level to the
9928 			 * desired state, If successful, un_pm_count and
9929 			 * un_power_level will be updated appropriately.
9930 			 */
9931 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9932 			    SD_PM_STATE_ACTIVE(un));
9933 
9934 			mutex_enter(&un->un_pm_mutex);
9935 
9936 			if (return_status != DDI_SUCCESS) {
9937 				/*
9938 				 * Power up failed.
9939 				 * Idle the device and adjust the count
9940 				 * so the result on exit is that we're
9941 				 * still powered down, ie. count is less than 0.
9942 				 */
9943 				SD_TRACE(SD_LOG_IO_PM, un,
9944 				    "sd_pm_entry: power up failed,"
9945 				    " idle the component\n");
9946 
9947 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9948 				un->un_pm_count--;
9949 			} else {
9950 				/*
9951 				 * Device is powered up, verify the
9952 				 * count is non-negative.
9953 				 * This is debug only.
9954 				 */
9955 				ASSERT(un->un_pm_count == 0);
9956 			}
9957 		}
9958 
9959 		if (return_status == DDI_SUCCESS) {
9960 			/*
9961 			 * For performance, now that the device has been tagged
9962 			 * as busy, and it's known to be powered up, update the
9963 			 * chain types to use jump tables that do not include
9964 			 * pm. This significantly lowers the overhead and
9965 			 * therefore improves performance.
9966 			 */
9967 
9968 			mutex_exit(&un->un_pm_mutex);
9969 			mutex_enter(SD_MUTEX(un));
9970 			SD_TRACE(SD_LOG_IO_PM, un,
9971 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9972 			    un->un_uscsi_chain_type);
9973 
9974 			if (un->un_f_non_devbsize_supported) {
9975 				un->un_buf_chain_type =
9976 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9977 			} else {
9978 				un->un_buf_chain_type =
9979 				    SD_CHAIN_INFO_DISK_NO_PM;
9980 			}
9981 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9982 
9983 			SD_TRACE(SD_LOG_IO_PM, un,
9984 			    "             changed  uscsi_chain_type to   %d\n",
9985 			    un->un_uscsi_chain_type);
9986 			mutex_exit(SD_MUTEX(un));
9987 			mutex_enter(&un->un_pm_mutex);
9988 
9989 			if (un->un_pm_idle_timeid == NULL) {
9990 				/* 300 ms. */
9991 				un->un_pm_idle_timeid =
9992 				    timeout(sd_pm_idletimeout_handler, un,
9993 				    (drv_usectohz((clock_t)300000)));
9994 				/*
9995 				 * Include an extra call to busy which keeps the
9996 				 * device busy with-respect-to the PM layer
9997 				 * until the timer fires, at which time it'll
9998 				 * get the extra idle call.
9999 				 */
10000 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10001 			}
10002 		}
10003 	}
10004 	un->un_pm_busy = FALSE;
10005 	/* Next... */
10006 	cv_signal(&un->un_pm_busy_cv);
10007 
10008 	un->un_pm_count++;
10009 
10010 	SD_TRACE(SD_LOG_IO_PM, un,
10011 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10012 
10013 	mutex_exit(&un->un_pm_mutex);
10014 
10015 	return (return_status);
10016 }
10017 
10018 
10019 /*
10020  *    Function: sd_pm_exit
10021  *
10022  * Description: Called at the completion of a command to manage busy
10023  *		status for the device. If the device becomes idle the
10024  *		PM framework is notified.
10025  *
10026  *     Context: Kernel thread context
10027  */
10028 
10029 static void
10030 sd_pm_exit(struct sd_lun *un)
10031 {
10032 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10033 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10034 
10035 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10036 
10037 	/*
10038 	 * After attach the following flag is only read, so don't
10039 	 * take the penalty of acquiring a mutex for it.
10040 	 */
10041 	if (un->un_f_pm_is_enabled == TRUE) {
10042 
10043 		mutex_enter(&un->un_pm_mutex);
10044 		un->un_pm_count--;
10045 
10046 		SD_TRACE(SD_LOG_IO_PM, un,
10047 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10048 
10049 		ASSERT(un->un_pm_count >= 0);
10050 		if (un->un_pm_count == 0) {
10051 			mutex_exit(&un->un_pm_mutex);
10052 
10053 			SD_TRACE(SD_LOG_IO_PM, un,
10054 			    "sd_pm_exit: idle component\n");
10055 
10056 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10057 
10058 		} else {
10059 			mutex_exit(&un->un_pm_mutex);
10060 		}
10061 	}
10062 
10063 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10064 }
10065 
10066 
10067 /*
10068  *    Function: sdopen
10069  *
10070  * Description: Driver's open(9e) entry point function.
10071  *
10072  *   Arguments: dev_i   - pointer to device number
10073  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10074  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10075  *		cred_p  - user credential pointer
10076  *
10077  * Return Code: EINVAL
10078  *		ENXIO
10079  *		EIO
10080  *		EROFS
10081  *		EBUSY
10082  *
10083  *     Context: Kernel thread context
10084  */
10085 /* ARGSUSED */
10086 static int
10087 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10088 {
10089 	struct sd_lun	*un;
10090 	int		nodelay;
10091 	int		part;
10092 	uint64_t	partmask;
10093 	int		instance;
10094 	dev_t		dev;
10095 	int		rval = EIO;
10096 	diskaddr_t	nblks = 0;
10097 	diskaddr_t	label_cap;
10098 
10099 	/* Validate the open type */
10100 	if (otyp >= OTYPCNT) {
10101 		return (EINVAL);
10102 	}
10103 
10104 	dev = *dev_p;
10105 	instance = SDUNIT(dev);
10106 	mutex_enter(&sd_detach_mutex);
10107 
10108 	/*
10109 	 * Fail the open if there is no softstate for the instance, or
10110 	 * if another thread somewhere is trying to detach the instance.
10111 	 */
10112 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10113 	    (un->un_detach_count != 0)) {
10114 		mutex_exit(&sd_detach_mutex);
10115 		/*
10116 		 * The probe cache only needs to be cleared when open (9e) fails
10117 		 * with ENXIO (4238046).
10118 		 */
10119 		/*
10120 		 * un-conditionally clearing probe cache is ok with
10121 		 * separate sd/ssd binaries
10122 		 * x86 platform can be an issue with both parallel
10123 		 * and fibre in 1 binary
10124 		 */
10125 		sd_scsi_clear_probe_cache();
10126 		return (ENXIO);
10127 	}
10128 
10129 	/*
10130 	 * The un_layer_count is to prevent another thread in specfs from
10131 	 * trying to detach the instance, which can happen when we are
10132 	 * called from a higher-layer driver instead of thru specfs.
10133 	 * This will not be needed when DDI provides a layered driver
10134 	 * interface that allows specfs to know that an instance is in
10135 	 * use by a layered driver & should not be detached.
10136 	 *
10137 	 * Note: the semantics for layered driver opens are exactly one
10138 	 * close for every open.
10139 	 */
10140 	if (otyp == OTYP_LYR) {
10141 		un->un_layer_count++;
10142 	}
10143 
10144 	/*
10145 	 * Keep a count of the current # of opens in progress. This is because
10146 	 * some layered drivers try to call us as a regular open. This can
10147 	 * cause problems that we cannot prevent, however by keeping this count
10148 	 * we can at least keep our open and detach routines from racing against
10149 	 * each other under such conditions.
10150 	 */
10151 	un->un_opens_in_progress++;
10152 	mutex_exit(&sd_detach_mutex);
10153 
10154 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10155 	part	 = SDPART(dev);
10156 	partmask = 1 << part;
10157 
10158 	/*
10159 	 * We use a semaphore here in order to serialize
10160 	 * open and close requests on the device.
10161 	 */
10162 	sema_p(&un->un_semoclose);
10163 
10164 	mutex_enter(SD_MUTEX(un));
10165 
10166 	/*
10167 	 * All device accesses go thru sdstrategy() where we check
10168 	 * on suspend status but there could be a scsi_poll command,
10169 	 * which bypasses sdstrategy(), so we need to check pm
10170 	 * status.
10171 	 */
10172 
10173 	if (!nodelay) {
10174 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10175 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10176 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10177 		}
10178 
10179 		mutex_exit(SD_MUTEX(un));
10180 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10181 			rval = EIO;
10182 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10183 			    "sdopen: sd_pm_entry failed\n");
10184 			goto open_failed_with_pm;
10185 		}
10186 		mutex_enter(SD_MUTEX(un));
10187 	}
10188 
10189 	/* check for previous exclusive open */
10190 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10191 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10192 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10193 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10194 
10195 	if (un->un_exclopen & (partmask)) {
10196 		goto excl_open_fail;
10197 	}
10198 
10199 	if (flag & FEXCL) {
10200 		int i;
10201 		if (un->un_ocmap.lyropen[part]) {
10202 			goto excl_open_fail;
10203 		}
10204 		for (i = 0; i < (OTYPCNT - 1); i++) {
10205 			if (un->un_ocmap.regopen[i] & (partmask)) {
10206 				goto excl_open_fail;
10207 			}
10208 		}
10209 	}
10210 
10211 	/*
10212 	 * Check the write permission if this is a removable media device,
10213 	 * NDELAY has not been set, and writable permission is requested.
10214 	 *
10215 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10216 	 * attempt will fail with EIO as part of the I/O processing. This is a
10217 	 * more permissive implementation that allows the open to succeed and
10218 	 * WRITE attempts to fail when appropriate.
10219 	 */
10220 	if (un->un_f_chk_wp_open) {
10221 		if ((flag & FWRITE) && (!nodelay)) {
10222 			mutex_exit(SD_MUTEX(un));
10223 			/*
10224 			 * Defer the check for write permission on writable
10225 			 * DVD drive till sdstrategy and will not fail open even
10226 			 * if FWRITE is set as the device can be writable
10227 			 * depending upon the media and the media can change
10228 			 * after the call to open().
10229 			 */
10230 			if (un->un_f_dvdram_writable_device == FALSE) {
10231 				if (ISCD(un) || sr_check_wp(dev)) {
10232 				rval = EROFS;
10233 				mutex_enter(SD_MUTEX(un));
10234 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10235 				    "write to cd or write protected media\n");
10236 				goto open_fail;
10237 				}
10238 			}
10239 			mutex_enter(SD_MUTEX(un));
10240 		}
10241 	}
10242 
10243 	/*
10244 	 * If opening in NDELAY/NONBLOCK mode, just return.
10245 	 * Check if disk is ready and has a valid geometry later.
10246 	 */
10247 	if (!nodelay) {
10248 		sd_ssc_t	*ssc;
10249 
10250 		mutex_exit(SD_MUTEX(un));
10251 		ssc = sd_ssc_init(un);
10252 		rval = sd_ready_and_valid(ssc, part);
10253 		sd_ssc_fini(ssc);
10254 		mutex_enter(SD_MUTEX(un));
10255 		/*
10256 		 * Fail if device is not ready or if the number of disk
10257 		 * blocks is zero or negative for non CD devices.
10258 		 */
10259 
10260 		nblks = 0;
10261 
10262 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10263 			/* if cmlb_partinfo fails, nblks remains 0 */
10264 			mutex_exit(SD_MUTEX(un));
10265 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10266 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10267 			mutex_enter(SD_MUTEX(un));
10268 		}
10269 
10270 		if ((rval != SD_READY_VALID) ||
10271 		    (!ISCD(un) && nblks <= 0)) {
10272 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10273 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10274 			    "device not ready or invalid disk block value\n");
10275 			goto open_fail;
10276 		}
10277 #if defined(__i386) || defined(__amd64)
10278 	} else {
10279 		uchar_t *cp;
10280 		/*
10281 		 * x86 requires special nodelay handling, so that p0 is
10282 		 * always defined and accessible.
10283 		 * Invalidate geometry only if device is not already open.
10284 		 */
10285 		cp = &un->un_ocmap.chkd[0];
10286 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10287 			if (*cp != (uchar_t)0) {
10288 				break;
10289 			}
10290 			cp++;
10291 		}
10292 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10293 			mutex_exit(SD_MUTEX(un));
10294 			cmlb_invalidate(un->un_cmlbhandle,
10295 			    (void *)SD_PATH_DIRECT);
10296 			mutex_enter(SD_MUTEX(un));
10297 		}
10298 
10299 #endif
10300 	}
10301 
10302 	if (otyp == OTYP_LYR) {
10303 		un->un_ocmap.lyropen[part]++;
10304 	} else {
10305 		un->un_ocmap.regopen[otyp] |= partmask;
10306 	}
10307 
10308 	/* Set up open and exclusive open flags */
10309 	if (flag & FEXCL) {
10310 		un->un_exclopen |= (partmask);
10311 	}
10312 
10313 	/*
10314 	 * If the lun is EFI labeled and lun capacity is greater than the
10315 	 * capacity contained in the label, log a sys-event to notify the
10316 	 * interested module.
10317 	 * To avoid an infinite loop of logging sys-event, we only log the
10318 	 * event when the lun is not opened in NDELAY mode. The event handler
10319 	 * should open the lun in NDELAY mode.
10320 	 */
10321 	if (!nodelay) {
10322 		mutex_exit(SD_MUTEX(un));
10323 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10324 		    (void*)SD_PATH_DIRECT) == 0) {
10325 			mutex_enter(SD_MUTEX(un));
10326 			if (un->un_f_blockcount_is_valid &&
10327 			    un->un_blockcount > label_cap &&
10328 			    un->un_f_expnevent == B_FALSE) {
10329 				un->un_f_expnevent = B_TRUE;
10330 				mutex_exit(SD_MUTEX(un));
10331 				sd_log_lun_expansion_event(un,
10332 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10333 				mutex_enter(SD_MUTEX(un));
10334 			}
10335 		} else {
10336 			mutex_enter(SD_MUTEX(un));
10337 		}
10338 	}
10339 
10340 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10341 	    "open of part %d type %d\n", part, otyp);
10342 
10343 	mutex_exit(SD_MUTEX(un));
10344 	if (!nodelay) {
10345 		sd_pm_exit(un);
10346 	}
10347 
10348 	sema_v(&un->un_semoclose);
10349 
10350 	mutex_enter(&sd_detach_mutex);
10351 	un->un_opens_in_progress--;
10352 	mutex_exit(&sd_detach_mutex);
10353 
10354 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10355 	return (DDI_SUCCESS);
10356 
10357 excl_open_fail:
10358 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10359 	rval = EBUSY;
10360 
10361 open_fail:
10362 	mutex_exit(SD_MUTEX(un));
10363 
10364 	/*
10365 	 * On a failed open we must exit the pm management.
10366 	 */
10367 	if (!nodelay) {
10368 		sd_pm_exit(un);
10369 	}
10370 open_failed_with_pm:
10371 	sema_v(&un->un_semoclose);
10372 
10373 	mutex_enter(&sd_detach_mutex);
10374 	un->un_opens_in_progress--;
10375 	if (otyp == OTYP_LYR) {
10376 		un->un_layer_count--;
10377 	}
10378 	mutex_exit(&sd_detach_mutex);
10379 
10380 	return (rval);
10381 }
10382 
10383 
10384 /*
10385  *    Function: sdclose
10386  *
10387  * Description: Driver's close(9e) entry point function.
10388  *
10389  *   Arguments: dev    - device number
10390  *		flag   - file status flag, informational only
10391  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10392  *		cred_p - user credential pointer
10393  *
10394  * Return Code: ENXIO
10395  *
10396  *     Context: Kernel thread context
10397  */
10398 /* ARGSUSED */
10399 static int
10400 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10401 {
10402 	struct sd_lun	*un;
10403 	uchar_t		*cp;
10404 	int		part;
10405 	int		nodelay;
10406 	int		rval = 0;
10407 
10408 	/* Validate the open type */
10409 	if (otyp >= OTYPCNT) {
10410 		return (ENXIO);
10411 	}
10412 
10413 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10414 		return (ENXIO);
10415 	}
10416 
10417 	part = SDPART(dev);
10418 	nodelay = flag & (FNDELAY | FNONBLOCK);
10419 
10420 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10421 	    "sdclose: close of part %d type %d\n", part, otyp);
10422 
10423 	/*
10424 	 * We use a semaphore here in order to serialize
10425 	 * open and close requests on the device.
10426 	 */
10427 	sema_p(&un->un_semoclose);
10428 
10429 	mutex_enter(SD_MUTEX(un));
10430 
10431 	/* Don't proceed if power is being changed. */
10432 	while (un->un_state == SD_STATE_PM_CHANGING) {
10433 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10434 	}
10435 
10436 	if (un->un_exclopen & (1 << part)) {
10437 		un->un_exclopen &= ~(1 << part);
10438 	}
10439 
10440 	/* Update the open partition map */
10441 	if (otyp == OTYP_LYR) {
10442 		un->un_ocmap.lyropen[part] -= 1;
10443 	} else {
10444 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10445 	}
10446 
10447 	cp = &un->un_ocmap.chkd[0];
10448 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10449 		if (*cp != NULL) {
10450 			break;
10451 		}
10452 		cp++;
10453 	}
10454 
10455 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10456 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10457 
10458 		/*
10459 		 * We avoid persistance upon the last close, and set
10460 		 * the throttle back to the maximum.
10461 		 */
10462 		un->un_throttle = un->un_saved_throttle;
10463 
10464 		if (un->un_state == SD_STATE_OFFLINE) {
10465 			if (un->un_f_is_fibre == FALSE) {
10466 				scsi_log(SD_DEVINFO(un), sd_label,
10467 				    CE_WARN, "offline\n");
10468 			}
10469 			mutex_exit(SD_MUTEX(un));
10470 			cmlb_invalidate(un->un_cmlbhandle,
10471 			    (void *)SD_PATH_DIRECT);
10472 			mutex_enter(SD_MUTEX(un));
10473 
10474 		} else {
10475 			/*
10476 			 * Flush any outstanding writes in NVRAM cache.
10477 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10478 			 * cmd, it may not work for non-Pluto devices.
10479 			 * SYNCHRONIZE CACHE is not required for removables,
10480 			 * except DVD-RAM drives.
10481 			 *
10482 			 * Also note: because SYNCHRONIZE CACHE is currently
10483 			 * the only command issued here that requires the
10484 			 * drive be powered up, only do the power up before
10485 			 * sending the Sync Cache command. If additional
10486 			 * commands are added which require a powered up
10487 			 * drive, the following sequence may have to change.
10488 			 *
10489 			 * And finally, note that parallel SCSI on SPARC
10490 			 * only issues a Sync Cache to DVD-RAM, a newly
10491 			 * supported device.
10492 			 */
10493 #if defined(__i386) || defined(__amd64)
10494 			if ((un->un_f_sync_cache_supported &&
10495 			    un->un_f_sync_cache_required) ||
10496 			    un->un_f_dvdram_writable_device == TRUE) {
10497 #else
10498 			if (un->un_f_dvdram_writable_device == TRUE) {
10499 #endif
10500 				mutex_exit(SD_MUTEX(un));
10501 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10502 					rval =
10503 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10504 					    NULL);
10505 					/* ignore error if not supported */
10506 					if (rval == ENOTSUP) {
10507 						rval = 0;
10508 					} else if (rval != 0) {
10509 						rval = EIO;
10510 					}
10511 					sd_pm_exit(un);
10512 				} else {
10513 					rval = EIO;
10514 				}
10515 				mutex_enter(SD_MUTEX(un));
10516 			}
10517 
10518 			/*
10519 			 * For devices which supports DOOR_LOCK, send an ALLOW
10520 			 * MEDIA REMOVAL command, but don't get upset if it
10521 			 * fails. We need to raise the power of the drive before
10522 			 * we can call sd_send_scsi_DOORLOCK()
10523 			 */
10524 			if (un->un_f_doorlock_supported) {
10525 				mutex_exit(SD_MUTEX(un));
10526 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10527 					sd_ssc_t	*ssc;
10528 
10529 					ssc = sd_ssc_init(un);
10530 					rval = sd_send_scsi_DOORLOCK(ssc,
10531 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10532 					if (rval != 0)
10533 						sd_ssc_assessment(ssc,
10534 						    SD_FMT_IGNORE);
10535 					sd_ssc_fini(ssc);
10536 
10537 					sd_pm_exit(un);
10538 					if (ISCD(un) && (rval != 0) &&
10539 					    (nodelay != 0)) {
10540 						rval = ENXIO;
10541 					}
10542 				} else {
10543 					rval = EIO;
10544 				}
10545 				mutex_enter(SD_MUTEX(un));
10546 			}
10547 
10548 			/*
10549 			 * If a device has removable media, invalidate all
10550 			 * parameters related to media, such as geometry,
10551 			 * blocksize, and blockcount.
10552 			 */
10553 			if (un->un_f_has_removable_media) {
10554 				sr_ejected(un);
10555 			}
10556 
10557 			/*
10558 			 * Destroy the cache (if it exists) which was
10559 			 * allocated for the write maps since this is
10560 			 * the last close for this media.
10561 			 */
10562 			if (un->un_wm_cache) {
10563 				/*
10564 				 * Check if there are pending commands.
10565 				 * and if there are give a warning and
10566 				 * do not destroy the cache.
10567 				 */
10568 				if (un->un_ncmds_in_driver > 0) {
10569 					scsi_log(SD_DEVINFO(un),
10570 					    sd_label, CE_WARN,
10571 					    "Unable to clean up memory "
10572 					    "because of pending I/O\n");
10573 				} else {
10574 					kmem_cache_destroy(
10575 					    un->un_wm_cache);
10576 					un->un_wm_cache = NULL;
10577 				}
10578 			}
10579 		}
10580 	}
10581 
10582 	mutex_exit(SD_MUTEX(un));
10583 	sema_v(&un->un_semoclose);
10584 
10585 	if (otyp == OTYP_LYR) {
10586 		mutex_enter(&sd_detach_mutex);
10587 		/*
10588 		 * The detach routine may run when the layer count
10589 		 * drops to zero.
10590 		 */
10591 		un->un_layer_count--;
10592 		mutex_exit(&sd_detach_mutex);
10593 	}
10594 
10595 	return (rval);
10596 }
10597 
10598 
10599 /*
10600  *    Function: sd_ready_and_valid
10601  *
10602  * Description: Test if device is ready and has a valid geometry.
10603  *
10604  *   Arguments: ssc - sd_ssc_t will contain un
10605  *		un  - driver soft state (unit) structure
10606  *
10607  * Return Code: SD_READY_VALID		ready and valid label
10608  *		SD_NOT_READY_VALID	not ready, no label
10609  *		SD_RESERVED_BY_OTHERS	reservation conflict
10610  *
10611  *     Context: Never called at interrupt context.
10612  */
10613 
10614 static int
10615 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10616 {
10617 	struct sd_errstats	*stp;
10618 	uint64_t		capacity;
10619 	uint_t			lbasize;
10620 	int			rval = SD_READY_VALID;
10621 	char			name_str[48];
10622 	boolean_t		is_valid;
10623 	struct sd_lun		*un;
10624 	int			status;
10625 
10626 	ASSERT(ssc != NULL);
10627 	un = ssc->ssc_un;
10628 	ASSERT(un != NULL);
10629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10630 
10631 	mutex_enter(SD_MUTEX(un));
10632 	/*
10633 	 * If a device has removable media, we must check if media is
10634 	 * ready when checking if this device is ready and valid.
10635 	 */
10636 	if (un->un_f_has_removable_media) {
10637 		mutex_exit(SD_MUTEX(un));
10638 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10639 
10640 		if (status != 0) {
10641 			rval = SD_NOT_READY_VALID;
10642 			mutex_enter(SD_MUTEX(un));
10643 
10644 			/* Ignore all failed status for removalbe media */
10645 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10646 
10647 			goto done;
10648 		}
10649 
10650 		is_valid = SD_IS_VALID_LABEL(un);
10651 		mutex_enter(SD_MUTEX(un));
10652 		if (!is_valid ||
10653 		    (un->un_f_blockcount_is_valid == FALSE) ||
10654 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10655 
10656 			/* capacity has to be read every open. */
10657 			mutex_exit(SD_MUTEX(un));
10658 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10659 			    &lbasize, SD_PATH_DIRECT);
10660 
10661 			if (status != 0) {
10662 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10663 
10664 				cmlb_invalidate(un->un_cmlbhandle,
10665 				    (void *)SD_PATH_DIRECT);
10666 				mutex_enter(SD_MUTEX(un));
10667 				rval = SD_NOT_READY_VALID;
10668 
10669 				goto done;
10670 			} else {
10671 				mutex_enter(SD_MUTEX(un));
10672 				sd_update_block_info(un, lbasize, capacity);
10673 			}
10674 		}
10675 
10676 		/*
10677 		 * Check if the media in the device is writable or not.
10678 		 */
10679 		if (!is_valid && ISCD(un)) {
10680 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10681 		}
10682 
10683 	} else {
10684 		/*
10685 		 * Do a test unit ready to clear any unit attention from non-cd
10686 		 * devices.
10687 		 */
10688 		mutex_exit(SD_MUTEX(un));
10689 
10690 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10691 		if (status != 0) {
10692 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10693 		}
10694 
10695 		mutex_enter(SD_MUTEX(un));
10696 	}
10697 
10698 
10699 	/*
10700 	 * If this is a non 512 block device, allocate space for
10701 	 * the wmap cache. This is being done here since every time
10702 	 * a media is changed this routine will be called and the
10703 	 * block size is a function of media rather than device.
10704 	 */
10705 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10706 	    un->un_f_non_devbsize_supported) &&
10707 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10708 	    un->un_f_enable_rmw) {
10709 		if (!(un->un_wm_cache)) {
10710 			(void) snprintf(name_str, sizeof (name_str),
10711 			    "%s%d_cache",
10712 			    ddi_driver_name(SD_DEVINFO(un)),
10713 			    ddi_get_instance(SD_DEVINFO(un)));
10714 			un->un_wm_cache = kmem_cache_create(
10715 			    name_str, sizeof (struct sd_w_map),
10716 			    8, sd_wm_cache_constructor,
10717 			    sd_wm_cache_destructor, NULL,
10718 			    (void *)un, NULL, 0);
10719 			if (!(un->un_wm_cache)) {
10720 				rval = ENOMEM;
10721 				goto done;
10722 			}
10723 		}
10724 	}
10725 
10726 	if (un->un_state == SD_STATE_NORMAL) {
10727 		/*
10728 		 * If the target is not yet ready here (defined by a TUR
10729 		 * failure), invalidate the geometry and print an 'offline'
10730 		 * message. This is a legacy message, as the state of the
10731 		 * target is not actually changed to SD_STATE_OFFLINE.
10732 		 *
10733 		 * If the TUR fails for EACCES (Reservation Conflict),
10734 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10735 		 * reservation conflict. If the TUR fails for other
10736 		 * reasons, SD_NOT_READY_VALID will be returned.
10737 		 */
10738 		int err;
10739 
10740 		mutex_exit(SD_MUTEX(un));
10741 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10742 		mutex_enter(SD_MUTEX(un));
10743 
10744 		if (err != 0) {
10745 			mutex_exit(SD_MUTEX(un));
10746 			cmlb_invalidate(un->un_cmlbhandle,
10747 			    (void *)SD_PATH_DIRECT);
10748 			mutex_enter(SD_MUTEX(un));
10749 			if (err == EACCES) {
10750 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10751 				    "reservation conflict\n");
10752 				rval = SD_RESERVED_BY_OTHERS;
10753 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10754 			} else {
10755 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10756 				    "drive offline\n");
10757 				rval = SD_NOT_READY_VALID;
10758 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10759 			}
10760 			goto done;
10761 		}
10762 	}
10763 
10764 	if (un->un_f_format_in_progress == FALSE) {
10765 		mutex_exit(SD_MUTEX(un));
10766 
10767 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10768 		    (void *)SD_PATH_DIRECT);
10769 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10770 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10771 			rval = SD_NOT_READY_VALID;
10772 			mutex_enter(SD_MUTEX(un));
10773 
10774 			goto done;
10775 		}
10776 		if (un->un_f_pkstats_enabled) {
10777 			sd_set_pstats(un);
10778 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10779 			    "sd_ready_and_valid: un:0x%p pstats created and "
10780 			    "set\n", un);
10781 		}
10782 		mutex_enter(SD_MUTEX(un));
10783 	}
10784 
10785 	/*
10786 	 * If this device supports DOOR_LOCK command, try and send
10787 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10788 	 * if it fails. For a CD, however, it is an error
10789 	 */
10790 	if (un->un_f_doorlock_supported) {
10791 		mutex_exit(SD_MUTEX(un));
10792 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10793 		    SD_PATH_DIRECT);
10794 
10795 		if ((status != 0) && ISCD(un)) {
10796 			rval = SD_NOT_READY_VALID;
10797 			mutex_enter(SD_MUTEX(un));
10798 
10799 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10800 
10801 			goto done;
10802 		} else if (status != 0)
10803 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10804 		mutex_enter(SD_MUTEX(un));
10805 	}
10806 
10807 	/* The state has changed, inform the media watch routines */
10808 	un->un_mediastate = DKIO_INSERTED;
10809 	cv_broadcast(&un->un_state_cv);
10810 	rval = SD_READY_VALID;
10811 
10812 done:
10813 
10814 	/*
10815 	 * Initialize the capacity kstat value, if no media previously
10816 	 * (capacity kstat is 0) and a media has been inserted
10817 	 * (un_blockcount > 0).
10818 	 */
10819 	if (un->un_errstats != NULL) {
10820 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10821 		if ((stp->sd_capacity.value.ui64 == 0) &&
10822 		    (un->un_f_blockcount_is_valid == TRUE)) {
10823 			stp->sd_capacity.value.ui64 =
10824 			    (uint64_t)((uint64_t)un->un_blockcount *
10825 			    un->un_sys_blocksize);
10826 		}
10827 	}
10828 
10829 	mutex_exit(SD_MUTEX(un));
10830 	return (rval);
10831 }
10832 
10833 
10834 /*
10835  *    Function: sdmin
10836  *
10837  * Description: Routine to limit the size of a data transfer. Used in
10838  *		conjunction with physio(9F).
10839  *
10840  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10841  *
10842  *     Context: Kernel thread context.
10843  */
10844 
10845 static void
10846 sdmin(struct buf *bp)
10847 {
10848 	struct sd_lun	*un;
10849 	int		instance;
10850 
10851 	instance = SDUNIT(bp->b_edev);
10852 
10853 	un = ddi_get_soft_state(sd_state, instance);
10854 	ASSERT(un != NULL);
10855 
10856 	/*
10857 	 * We depend on buf breakup to restrict
10858 	 * IO size if it is enabled.
10859 	 */
10860 	if (un->un_buf_breakup_supported) {
10861 		return;
10862 	}
10863 
10864 	if (bp->b_bcount > un->un_max_xfer_size) {
10865 		bp->b_bcount = un->un_max_xfer_size;
10866 	}
10867 }
10868 
10869 
10870 /*
10871  *    Function: sdread
10872  *
10873  * Description: Driver's read(9e) entry point function.
10874  *
10875  *   Arguments: dev   - device number
10876  *		uio   - structure pointer describing where data is to be stored
10877  *			in user's space
10878  *		cred_p  - user credential pointer
10879  *
10880  * Return Code: ENXIO
10881  *		EIO
10882  *		EINVAL
10883  *		value returned by physio
10884  *
10885  *     Context: Kernel thread context.
10886  */
10887 /* ARGSUSED */
10888 static int
10889 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10890 {
10891 	struct sd_lun	*un = NULL;
10892 	int		secmask;
10893 	int		err = 0;
10894 	sd_ssc_t	*ssc;
10895 
10896 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10897 		return (ENXIO);
10898 	}
10899 
10900 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10901 
10902 
10903 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10904 		mutex_enter(SD_MUTEX(un));
10905 		/*
10906 		 * Because the call to sd_ready_and_valid will issue I/O we
10907 		 * must wait here if either the device is suspended or
10908 		 * if it's power level is changing.
10909 		 */
10910 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10911 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10912 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10913 		}
10914 		un->un_ncmds_in_driver++;
10915 		mutex_exit(SD_MUTEX(un));
10916 
10917 		/* Initialize sd_ssc_t for internal uscsi commands */
10918 		ssc = sd_ssc_init(un);
10919 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10920 			err = EIO;
10921 		} else {
10922 			err = 0;
10923 		}
10924 		sd_ssc_fini(ssc);
10925 
10926 		mutex_enter(SD_MUTEX(un));
10927 		un->un_ncmds_in_driver--;
10928 		ASSERT(un->un_ncmds_in_driver >= 0);
10929 		mutex_exit(SD_MUTEX(un));
10930 		if (err != 0)
10931 			return (err);
10932 	}
10933 
10934 	/*
10935 	 * Read requests are restricted to multiples of the system block size.
10936 	 */
10937 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10938 	    !un->un_f_enable_rmw)
10939 		secmask = un->un_tgt_blocksize - 1;
10940 	else
10941 		secmask = DEV_BSIZE - 1;
10942 
10943 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10944 		SD_ERROR(SD_LOG_READ_WRITE, un,
10945 		    "sdread: file offset not modulo %d\n",
10946 		    secmask + 1);
10947 		err = EINVAL;
10948 	} else if (uio->uio_iov->iov_len & (secmask)) {
10949 		SD_ERROR(SD_LOG_READ_WRITE, un,
10950 		    "sdread: transfer length not modulo %d\n",
10951 		    secmask + 1);
10952 		err = EINVAL;
10953 	} else {
10954 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10955 	}
10956 
10957 	return (err);
10958 }
10959 
10960 
10961 /*
10962  *    Function: sdwrite
10963  *
10964  * Description: Driver's write(9e) entry point function.
10965  *
10966  *   Arguments: dev   - device number
10967  *		uio   - structure pointer describing where data is stored in
10968  *			user's space
10969  *		cred_p  - user credential pointer
10970  *
10971  * Return Code: ENXIO
10972  *		EIO
10973  *		EINVAL
10974  *		value returned by physio
10975  *
10976  *     Context: Kernel thread context.
10977  */
10978 /* ARGSUSED */
10979 static int
10980 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10981 {
10982 	struct sd_lun	*un = NULL;
10983 	int		secmask;
10984 	int		err = 0;
10985 	sd_ssc_t	*ssc;
10986 
10987 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10988 		return (ENXIO);
10989 	}
10990 
10991 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10992 
10993 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10994 		mutex_enter(SD_MUTEX(un));
10995 		/*
10996 		 * Because the call to sd_ready_and_valid will issue I/O we
10997 		 * must wait here if either the device is suspended or
10998 		 * if it's power level is changing.
10999 		 */
11000 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11001 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11002 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11003 		}
11004 		un->un_ncmds_in_driver++;
11005 		mutex_exit(SD_MUTEX(un));
11006 
11007 		/* Initialize sd_ssc_t for internal uscsi commands */
11008 		ssc = sd_ssc_init(un);
11009 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11010 			err = EIO;
11011 		} else {
11012 			err = 0;
11013 		}
11014 		sd_ssc_fini(ssc);
11015 
11016 		mutex_enter(SD_MUTEX(un));
11017 		un->un_ncmds_in_driver--;
11018 		ASSERT(un->un_ncmds_in_driver >= 0);
11019 		mutex_exit(SD_MUTEX(un));
11020 		if (err != 0)
11021 			return (err);
11022 	}
11023 
11024 	/*
11025 	 * Write requests are restricted to multiples of the system block size.
11026 	 */
11027 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11028 	    !un->un_f_enable_rmw)
11029 		secmask = un->un_tgt_blocksize - 1;
11030 	else
11031 		secmask = DEV_BSIZE - 1;
11032 
11033 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11034 		SD_ERROR(SD_LOG_READ_WRITE, un,
11035 		    "sdwrite: file offset not modulo %d\n",
11036 		    secmask + 1);
11037 		err = EINVAL;
11038 	} else if (uio->uio_iov->iov_len & (secmask)) {
11039 		SD_ERROR(SD_LOG_READ_WRITE, un,
11040 		    "sdwrite: transfer length not modulo %d\n",
11041 		    secmask + 1);
11042 		err = EINVAL;
11043 	} else {
11044 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11045 	}
11046 
11047 	return (err);
11048 }
11049 
11050 
11051 /*
11052  *    Function: sdaread
11053  *
11054  * Description: Driver's aread(9e) entry point function.
11055  *
11056  *   Arguments: dev   - device number
11057  *		aio   - structure pointer describing where data is to be stored
11058  *		cred_p  - user credential pointer
11059  *
11060  * Return Code: ENXIO
11061  *		EIO
11062  *		EINVAL
11063  *		value returned by aphysio
11064  *
11065  *     Context: Kernel thread context.
11066  */
11067 /* ARGSUSED */
11068 static int
11069 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11070 {
11071 	struct sd_lun	*un = NULL;
11072 	struct uio	*uio = aio->aio_uio;
11073 	int		secmask;
11074 	int		err = 0;
11075 	sd_ssc_t	*ssc;
11076 
11077 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11078 		return (ENXIO);
11079 	}
11080 
11081 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11082 
11083 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11084 		mutex_enter(SD_MUTEX(un));
11085 		/*
11086 		 * Because the call to sd_ready_and_valid will issue I/O we
11087 		 * must wait here if either the device is suspended or
11088 		 * if it's power level is changing.
11089 		 */
11090 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11091 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11092 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11093 		}
11094 		un->un_ncmds_in_driver++;
11095 		mutex_exit(SD_MUTEX(un));
11096 
11097 		/* Initialize sd_ssc_t for internal uscsi commands */
11098 		ssc = sd_ssc_init(un);
11099 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11100 			err = EIO;
11101 		} else {
11102 			err = 0;
11103 		}
11104 		sd_ssc_fini(ssc);
11105 
11106 		mutex_enter(SD_MUTEX(un));
11107 		un->un_ncmds_in_driver--;
11108 		ASSERT(un->un_ncmds_in_driver >= 0);
11109 		mutex_exit(SD_MUTEX(un));
11110 		if (err != 0)
11111 			return (err);
11112 	}
11113 
11114 	/*
11115 	 * Read requests are restricted to multiples of the system block size.
11116 	 */
11117 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11118 	    !un->un_f_enable_rmw)
11119 		secmask = un->un_tgt_blocksize - 1;
11120 	else
11121 		secmask = DEV_BSIZE - 1;
11122 
11123 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11124 		SD_ERROR(SD_LOG_READ_WRITE, un,
11125 		    "sdaread: file offset not modulo %d\n",
11126 		    secmask + 1);
11127 		err = EINVAL;
11128 	} else if (uio->uio_iov->iov_len & (secmask)) {
11129 		SD_ERROR(SD_LOG_READ_WRITE, un,
11130 		    "sdaread: transfer length not modulo %d\n",
11131 		    secmask + 1);
11132 		err = EINVAL;
11133 	} else {
11134 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11135 	}
11136 
11137 	return (err);
11138 }
11139 
11140 
11141 /*
11142  *    Function: sdawrite
11143  *
11144  * Description: Driver's awrite(9e) entry point function.
11145  *
11146  *   Arguments: dev   - device number
11147  *		aio   - structure pointer describing where data is stored
11148  *		cred_p  - user credential pointer
11149  *
11150  * Return Code: ENXIO
11151  *		EIO
11152  *		EINVAL
11153  *		value returned by aphysio
11154  *
11155  *     Context: Kernel thread context.
11156  */
11157 /* ARGSUSED */
11158 static int
11159 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11160 {
11161 	struct sd_lun	*un = NULL;
11162 	struct uio	*uio = aio->aio_uio;
11163 	int		secmask;
11164 	int		err = 0;
11165 	sd_ssc_t	*ssc;
11166 
11167 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11168 		return (ENXIO);
11169 	}
11170 
11171 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11172 
11173 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11174 		mutex_enter(SD_MUTEX(un));
11175 		/*
11176 		 * Because the call to sd_ready_and_valid will issue I/O we
11177 		 * must wait here if either the device is suspended or
11178 		 * if it's power level is changing.
11179 		 */
11180 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11181 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11182 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11183 		}
11184 		un->un_ncmds_in_driver++;
11185 		mutex_exit(SD_MUTEX(un));
11186 
11187 		/* Initialize sd_ssc_t for internal uscsi commands */
11188 		ssc = sd_ssc_init(un);
11189 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11190 			err = EIO;
11191 		} else {
11192 			err = 0;
11193 		}
11194 		sd_ssc_fini(ssc);
11195 
11196 		mutex_enter(SD_MUTEX(un));
11197 		un->un_ncmds_in_driver--;
11198 		ASSERT(un->un_ncmds_in_driver >= 0);
11199 		mutex_exit(SD_MUTEX(un));
11200 		if (err != 0)
11201 			return (err);
11202 	}
11203 
11204 	/*
11205 	 * Write requests are restricted to multiples of the system block size.
11206 	 */
11207 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11208 	    !un->un_f_enable_rmw)
11209 		secmask = un->un_tgt_blocksize - 1;
11210 	else
11211 		secmask = DEV_BSIZE - 1;
11212 
11213 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11214 		SD_ERROR(SD_LOG_READ_WRITE, un,
11215 		    "sdawrite: file offset not modulo %d\n",
11216 		    secmask + 1);
11217 		err = EINVAL;
11218 	} else if (uio->uio_iov->iov_len & (secmask)) {
11219 		SD_ERROR(SD_LOG_READ_WRITE, un,
11220 		    "sdawrite: transfer length not modulo %d\n",
11221 		    secmask + 1);
11222 		err = EINVAL;
11223 	} else {
11224 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11225 	}
11226 
11227 	return (err);
11228 }
11229 
11230 
11231 
11232 
11233 
11234 /*
11235  * Driver IO processing follows the following sequence:
11236  *
11237  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11238  *         |                |                     ^
11239  *         v                v                     |
11240  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11241  *         |                |                     |                   |
11242  *         v                |                     |                   |
11243  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11244  *         |                |                     ^                   ^
11245  *         v                v                     |                   |
11246  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11247  *         |                |                     |                   |
11248  *     +---+                |                     +------------+      +-------+
11249  *     |                    |                                  |              |
11250  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11251  *     |                    v                                  |              |
11252  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11253  *     |                    |                                  ^              |
11254  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11255  *     |                    v                                  |              |
11256  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11257  *     |                    |                                  ^              |
11258  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11259  *     |                    v                                  |              |
11260  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11261  *     |                    |                                  ^              |
11262  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11263  *     |                    v                                  |              |
11264  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11265  *     |                    |                                  ^              |
11266  *     |                    |                                  |              |
11267  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11268  *                          |                           ^
11269  *                          v                           |
11270  *                   sd_core_iostart()                  |
11271  *                          |                           |
11272  *                          |                           +------>(*destroypkt)()
11273  *                          +-> sd_start_cmds() <-+     |           |
11274  *                          |                     |     |           v
11275  *                          |                     |     |  scsi_destroy_pkt(9F)
11276  *                          |                     |     |
11277  *                          +->(*initpkt)()       +- sdintr()
11278  *                          |  |                        |  |
11279  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11280  *                          |  +-> scsi_setup_cdb(9F)   |
11281  *                          |                           |
11282  *                          +--> scsi_transport(9F)     |
11283  *                                     |                |
11284  *                                     +----> SCSA ---->+
11285  *
11286  *
11287  * This code is based upon the following presumptions:
11288  *
11289  *   - iostart and iodone functions operate on buf(9S) structures. These
11290  *     functions perform the necessary operations on the buf(9S) and pass
11291  *     them along to the next function in the chain by using the macros
11292  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11293  *     (for iodone side functions).
11294  *
11295  *   - The iostart side functions may sleep. The iodone side functions
11296  *     are called under interrupt context and may NOT sleep. Therefore
11297  *     iodone side functions also may not call iostart side functions.
11298  *     (NOTE: iostart side functions should NOT sleep for memory, as
11299  *     this could result in deadlock.)
11300  *
11301  *   - An iostart side function may call its corresponding iodone side
11302  *     function directly (if necessary).
11303  *
11304  *   - In the event of an error, an iostart side function can return a buf(9S)
11305  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11306  *     b_error in the usual way of course).
11307  *
11308  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11309  *     requests to the iostart side functions.  The iostart side functions in
11310  *     this case would be called under the context of a taskq thread, so it's
11311  *     OK for them to block/sleep/spin in this case.
11312  *
11313  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11314  *     pass them along to the next function in the chain.  The corresponding
11315  *     iodone side functions must coalesce the "shadow" bufs and return
11316  *     the "original" buf to the next higher layer.
11317  *
11318  *   - The b_private field of the buf(9S) struct holds a pointer to
11319  *     an sd_xbuf struct, which contains information needed to
11320  *     construct the scsi_pkt for the command.
11321  *
11322  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11323  *     layer must acquire & release the SD_MUTEX(un) as needed.
11324  */
11325 
11326 
11327 /*
11328  * Create taskq for all targets in the system. This is created at
11329  * _init(9E) and destroyed at _fini(9E).
11330  *
11331  * Note: here we set the minalloc to a reasonably high number to ensure that
11332  * we will have an adequate supply of task entries available at interrupt time.
11333  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11334  * sd_create_taskq().  Since we do not want to sleep for allocations at
11335  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11336  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11337  * requests any one instant in time.
11338  */
11339 #define	SD_TASKQ_NUMTHREADS	8
11340 #define	SD_TASKQ_MINALLOC	256
11341 #define	SD_TASKQ_MAXALLOC	256
11342 
11343 static taskq_t	*sd_tq = NULL;
11344 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11345 
11346 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11347 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11348 
11349 /*
11350  * The following task queue is being created for the write part of
11351  * read-modify-write of non-512 block size devices.
11352  * Limit the number of threads to 1 for now. This number has been chosen
11353  * considering the fact that it applies only to dvd ram drives/MO drives
11354  * currently. Performance for which is not main criteria at this stage.
11355  * Note: It needs to be explored if we can use a single taskq in future
11356  */
11357 #define	SD_WMR_TASKQ_NUMTHREADS	1
11358 static taskq_t	*sd_wmr_tq = NULL;
11359 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11360 
11361 /*
11362  *    Function: sd_taskq_create
11363  *
11364  * Description: Create taskq thread(s) and preallocate task entries
11365  *
11366  * Return Code: Returns a pointer to the allocated taskq_t.
11367  *
11368  *     Context: Can sleep. Requires blockable context.
11369  *
11370  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11371  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11372  *		- taskq_create() will block for memory, also it will panic
11373  *		  if it cannot create the requested number of threads.
11374  *		- Currently taskq_create() creates threads that cannot be
11375  *		  swapped.
11376  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11377  *		  supply of taskq entries at interrupt time (ie, so that we
11378  *		  do not have to sleep for memory)
11379  */
11380 
11381 static void
11382 sd_taskq_create(void)
11383 {
11384 	char	taskq_name[TASKQ_NAMELEN];
11385 
11386 	ASSERT(sd_tq == NULL);
11387 	ASSERT(sd_wmr_tq == NULL);
11388 
11389 	(void) snprintf(taskq_name, sizeof (taskq_name),
11390 	    "%s_drv_taskq", sd_label);
11391 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11392 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11393 	    TASKQ_PREPOPULATE));
11394 
11395 	(void) snprintf(taskq_name, sizeof (taskq_name),
11396 	    "%s_rmw_taskq", sd_label);
11397 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11398 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11399 	    TASKQ_PREPOPULATE));
11400 }
11401 
11402 
11403 /*
11404  *    Function: sd_taskq_delete
11405  *
11406  * Description: Complementary cleanup routine for sd_taskq_create().
11407  *
11408  *     Context: Kernel thread context.
11409  */
11410 
11411 static void
11412 sd_taskq_delete(void)
11413 {
11414 	ASSERT(sd_tq != NULL);
11415 	ASSERT(sd_wmr_tq != NULL);
11416 	taskq_destroy(sd_tq);
11417 	taskq_destroy(sd_wmr_tq);
11418 	sd_tq = NULL;
11419 	sd_wmr_tq = NULL;
11420 }
11421 
11422 
11423 /*
11424  *    Function: sdstrategy
11425  *
11426  * Description: Driver's strategy (9E) entry point function.
11427  *
11428  *   Arguments: bp - pointer to buf(9S)
11429  *
11430  * Return Code: Always returns zero
11431  *
11432  *     Context: Kernel thread context.
11433  */
11434 
11435 static int
11436 sdstrategy(struct buf *bp)
11437 {
11438 	struct sd_lun *un;
11439 
11440 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11441 	if (un == NULL) {
11442 		bioerror(bp, EIO);
11443 		bp->b_resid = bp->b_bcount;
11444 		biodone(bp);
11445 		return (0);
11446 	}
11447 
11448 	/* As was done in the past, fail new cmds. if state is dumping. */
11449 	if (un->un_state == SD_STATE_DUMPING) {
11450 		bioerror(bp, ENXIO);
11451 		bp->b_resid = bp->b_bcount;
11452 		biodone(bp);
11453 		return (0);
11454 	}
11455 
11456 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11457 
11458 	/*
11459 	 * Commands may sneak in while we released the mutex in
11460 	 * DDI_SUSPEND, we should block new commands. However, old
11461 	 * commands that are still in the driver at this point should
11462 	 * still be allowed to drain.
11463 	 */
11464 	mutex_enter(SD_MUTEX(un));
11465 	/*
11466 	 * Must wait here if either the device is suspended or
11467 	 * if it's power level is changing.
11468 	 */
11469 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11470 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11471 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11472 	}
11473 
11474 	un->un_ncmds_in_driver++;
11475 
11476 	/*
11477 	 * atapi: Since we are running the CD for now in PIO mode we need to
11478 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11479 	 * the HBA's init_pkt routine.
11480 	 */
11481 	if (un->un_f_cfg_is_atapi == TRUE) {
11482 		mutex_exit(SD_MUTEX(un));
11483 		bp_mapin(bp);
11484 		mutex_enter(SD_MUTEX(un));
11485 	}
11486 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11487 	    un->un_ncmds_in_driver);
11488 
11489 	if (bp->b_flags & B_WRITE)
11490 		un->un_f_sync_cache_required = TRUE;
11491 
11492 	mutex_exit(SD_MUTEX(un));
11493 
11494 	/*
11495 	 * This will (eventually) allocate the sd_xbuf area and
11496 	 * call sd_xbuf_strategy().  We just want to return the
11497 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11498 	 * imized tail call which saves us a stack frame.
11499 	 */
11500 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11501 }
11502 
11503 
11504 /*
11505  *    Function: sd_xbuf_strategy
11506  *
11507  * Description: Function for initiating IO operations via the
11508  *		ddi_xbuf_qstrategy() mechanism.
11509  *
11510  *     Context: Kernel thread context.
11511  */
11512 
11513 static void
11514 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11515 {
11516 	struct sd_lun *un = arg;
11517 
11518 	ASSERT(bp != NULL);
11519 	ASSERT(xp != NULL);
11520 	ASSERT(un != NULL);
11521 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11522 
11523 	/*
11524 	 * Initialize the fields in the xbuf and save a pointer to the
11525 	 * xbuf in bp->b_private.
11526 	 */
11527 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11528 
11529 	/* Send the buf down the iostart chain */
11530 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11531 }
11532 
11533 
11534 /*
11535  *    Function: sd_xbuf_init
11536  *
11537  * Description: Prepare the given sd_xbuf struct for use.
11538  *
11539  *   Arguments: un - ptr to softstate
11540  *		bp - ptr to associated buf(9S)
11541  *		xp - ptr to associated sd_xbuf
11542  *		chain_type - IO chain type to use:
11543  *			SD_CHAIN_NULL
11544  *			SD_CHAIN_BUFIO
11545  *			SD_CHAIN_USCSI
11546  *			SD_CHAIN_DIRECT
11547  *			SD_CHAIN_DIRECT_PRIORITY
11548  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11549  *			initialization; may be NULL if none.
11550  *
11551  *     Context: Kernel thread context
11552  */
11553 
11554 static void
11555 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11556 	uchar_t chain_type, void *pktinfop)
11557 {
11558 	int index;
11559 
11560 	ASSERT(un != NULL);
11561 	ASSERT(bp != NULL);
11562 	ASSERT(xp != NULL);
11563 
11564 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11565 	    bp, chain_type);
11566 
11567 	xp->xb_un	= un;
11568 	xp->xb_pktp	= NULL;
11569 	xp->xb_pktinfo	= pktinfop;
11570 	xp->xb_private	= bp->b_private;
11571 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11572 
11573 	/*
11574 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11575 	 * upon the specified chain type to use.
11576 	 */
11577 	switch (chain_type) {
11578 	case SD_CHAIN_NULL:
11579 		/*
11580 		 * Fall thru to just use the values for the buf type, even
11581 		 * tho for the NULL chain these values will never be used.
11582 		 */
11583 		/* FALLTHRU */
11584 	case SD_CHAIN_BUFIO:
11585 		index = un->un_buf_chain_type;
11586 		if ((!un->un_f_has_removable_media) &&
11587 		    (un->un_tgt_blocksize != 0) &&
11588 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11589 		    un->un_f_enable_rmw)) {
11590 			int secmask = 0, blknomask = 0;
11591 			if (un->un_f_enable_rmw) {
11592 				blknomask =
11593 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11594 				secmask = un->un_phy_blocksize - 1;
11595 			} else {
11596 				blknomask =
11597 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11598 				secmask = un->un_tgt_blocksize - 1;
11599 			}
11600 
11601 			if ((bp->b_lblkno & (blknomask)) ||
11602 			    (bp->b_bcount & (secmask))) {
11603 				if ((un->un_f_rmw_type !=
11604 				    SD_RMW_TYPE_RETURN_ERROR) ||
11605 				    un->un_f_enable_rmw) {
11606 					if (un->un_f_pm_is_enabled == FALSE)
11607 						index =
11608 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11609 					else
11610 						index =
11611 						    SD_CHAIN_INFO_MSS_DISK;
11612 				}
11613 			}
11614 		}
11615 		break;
11616 	case SD_CHAIN_USCSI:
11617 		index = un->un_uscsi_chain_type;
11618 		break;
11619 	case SD_CHAIN_DIRECT:
11620 		index = un->un_direct_chain_type;
11621 		break;
11622 	case SD_CHAIN_DIRECT_PRIORITY:
11623 		index = un->un_priority_chain_type;
11624 		break;
11625 	default:
11626 		/* We're really broken if we ever get here... */
11627 		panic("sd_xbuf_init: illegal chain type!");
11628 		/*NOTREACHED*/
11629 	}
11630 
11631 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11632 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11633 
11634 	/*
11635 	 * It might be a bit easier to simply bzero the entire xbuf above,
11636 	 * but it turns out that since we init a fair number of members anyway,
11637 	 * we save a fair number cycles by doing explicit assignment of zero.
11638 	 */
11639 	xp->xb_pkt_flags	= 0;
11640 	xp->xb_dma_resid	= 0;
11641 	xp->xb_retry_count	= 0;
11642 	xp->xb_victim_retry_count = 0;
11643 	xp->xb_ua_retry_count	= 0;
11644 	xp->xb_nr_retry_count	= 0;
11645 	xp->xb_sense_bp		= NULL;
11646 	xp->xb_sense_status	= 0;
11647 	xp->xb_sense_state	= 0;
11648 	xp->xb_sense_resid	= 0;
11649 	xp->xb_ena		= 0;
11650 
11651 	bp->b_private	= xp;
11652 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11653 	bp->b_resid	= 0;
11654 	bp->av_forw	= NULL;
11655 	bp->av_back	= NULL;
11656 	bioerror(bp, 0);
11657 
11658 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11659 }
11660 
11661 
11662 /*
11663  *    Function: sd_uscsi_strategy
11664  *
11665  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11666  *
11667  *   Arguments: bp - buf struct ptr
11668  *
11669  * Return Code: Always returns 0
11670  *
11671  *     Context: Kernel thread context
11672  */
11673 
11674 static int
11675 sd_uscsi_strategy(struct buf *bp)
11676 {
11677 	struct sd_lun		*un;
11678 	struct sd_uscsi_info	*uip;
11679 	struct sd_xbuf		*xp;
11680 	uchar_t			chain_type;
11681 	uchar_t			cmd;
11682 
11683 	ASSERT(bp != NULL);
11684 
11685 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11686 	if (un == NULL) {
11687 		bioerror(bp, EIO);
11688 		bp->b_resid = bp->b_bcount;
11689 		biodone(bp);
11690 		return (0);
11691 	}
11692 
11693 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11694 
11695 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11696 
11697 	/*
11698 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11699 	 */
11700 	ASSERT(bp->b_private != NULL);
11701 	uip = (struct sd_uscsi_info *)bp->b_private;
11702 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11703 
11704 	mutex_enter(SD_MUTEX(un));
11705 	/*
11706 	 * atapi: Since we are running the CD for now in PIO mode we need to
11707 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11708 	 * the HBA's init_pkt routine.
11709 	 */
11710 	if (un->un_f_cfg_is_atapi == TRUE) {
11711 		mutex_exit(SD_MUTEX(un));
11712 		bp_mapin(bp);
11713 		mutex_enter(SD_MUTEX(un));
11714 	}
11715 	un->un_ncmds_in_driver++;
11716 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11717 	    un->un_ncmds_in_driver);
11718 
11719 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11720 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11721 		un->un_f_sync_cache_required = TRUE;
11722 
11723 	mutex_exit(SD_MUTEX(un));
11724 
11725 	switch (uip->ui_flags) {
11726 	case SD_PATH_DIRECT:
11727 		chain_type = SD_CHAIN_DIRECT;
11728 		break;
11729 	case SD_PATH_DIRECT_PRIORITY:
11730 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11731 		break;
11732 	default:
11733 		chain_type = SD_CHAIN_USCSI;
11734 		break;
11735 	}
11736 
11737 	/*
11738 	 * We may allocate extra buf for external USCSI commands. If the
11739 	 * application asks for bigger than 20-byte sense data via USCSI,
11740 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11741 	 */
11742 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11743 	    SENSE_LENGTH) {
11744 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11745 		    MAX_SENSE_LENGTH, KM_SLEEP);
11746 	} else {
11747 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11748 	}
11749 
11750 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11751 
11752 	/* Use the index obtained within xbuf_init */
11753 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11754 
11755 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11756 
11757 	return (0);
11758 }
11759 
11760 /*
11761  *    Function: sd_send_scsi_cmd
11762  *
11763  * Description: Runs a USCSI command for user (when called thru sdioctl),
11764  *		or for the driver
11765  *
11766  *   Arguments: dev - the dev_t for the device
11767  *		incmd - ptr to a valid uscsi_cmd struct
11768  *		flag - bit flag, indicating open settings, 32/64 bit type
11769  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11770  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11771  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11772  *			to use the USCSI "direct" chain and bypass the normal
11773  *			command waitq.
11774  *
11775  * Return Code: 0 -  successful completion of the given command
11776  *		EIO - scsi_uscsi_handle_command() failed
11777  *		ENXIO  - soft state not found for specified dev
11778  *		EINVAL
11779  *		EFAULT - copyin/copyout error
11780  *		return code of scsi_uscsi_handle_command():
11781  *			EIO
11782  *			ENXIO
11783  *			EACCES
11784  *
11785  *     Context: Waits for command to complete. Can sleep.
11786  */
11787 
11788 static int
11789 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11790 	enum uio_seg dataspace, int path_flag)
11791 {
11792 	struct sd_lun	*un;
11793 	sd_ssc_t	*ssc;
11794 	int		rval;
11795 
11796 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11797 	if (un == NULL) {
11798 		return (ENXIO);
11799 	}
11800 
11801 	/*
11802 	 * Using sd_ssc_send to handle uscsi cmd
11803 	 */
11804 	ssc = sd_ssc_init(un);
11805 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11806 	sd_ssc_fini(ssc);
11807 
11808 	return (rval);
11809 }
11810 
11811 /*
11812  *    Function: sd_ssc_init
11813  *
11814  * Description: Uscsi end-user call this function to initialize necessary
11815  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11816  *
11817  *              The return value of sd_send_scsi_cmd will be treated as a
11818  *              fault in various conditions. Even it is not Zero, some
11819  *              callers may ignore the return value. That is to say, we can
11820  *              not make an accurate assessment in sdintr, since if a
11821  *              command is failed in sdintr it does not mean the caller of
11822  *              sd_send_scsi_cmd will treat it as a real failure.
11823  *
11824  *              To avoid printing too many error logs for a failed uscsi
11825  *              packet that the caller may not treat it as a failure, the
11826  *              sd will keep silent for handling all uscsi commands.
11827  *
11828  *              During detach->attach and attach-open, for some types of
11829  *              problems, the driver should be providing information about
11830  *              the problem encountered. Device use USCSI_SILENT, which
11831  *              suppresses all driver information. The result is that no
11832  *              information about the problem is available. Being
11833  *              completely silent during this time is inappropriate. The
11834  *              driver needs a more selective filter than USCSI_SILENT, so
11835  *              that information related to faults is provided.
11836  *
11837  *              To make the accurate accessment, the caller  of
11838  *              sd_send_scsi_USCSI_CMD should take the ownership and
11839  *              get necessary information to print error messages.
11840  *
11841  *              If we want to print necessary info of uscsi command, we need to
11842  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11843  *              assessment. We use sd_ssc_init to alloc necessary
11844  *              structs for sending an uscsi command and we are also
11845  *              responsible for free the memory by calling
11846  *              sd_ssc_fini.
11847  *
11848  *              The calling secquences will look like:
11849  *              sd_ssc_init->
11850  *
11851  *                  ...
11852  *
11853  *                  sd_send_scsi_USCSI_CMD->
11854  *                      sd_ssc_send-> - - - sdintr
11855  *                  ...
11856  *
11857  *                  if we think the return value should be treated as a
11858  *                  failure, we make the accessment here and print out
11859  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11860  *
11861  *                  ...
11862  *
11863  *              sd_ssc_fini
11864  *
11865  *
11866  *   Arguments: un - pointer to driver soft state (unit) structure for this
11867  *                   target.
11868  *
11869  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11870  *                         uscsi_cmd and sd_uscsi_info.
11871  *                  NULL - if can not alloc memory for sd_ssc_t struct
11872  *
11873  *     Context: Kernel Thread.
11874  */
11875 static sd_ssc_t *
11876 sd_ssc_init(struct sd_lun *un)
11877 {
11878 	sd_ssc_t		*ssc;
11879 	struct uscsi_cmd	*ucmdp;
11880 	struct sd_uscsi_info	*uip;
11881 
11882 	ASSERT(un != NULL);
11883 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11884 
11885 	/*
11886 	 * Allocate sd_ssc_t structure
11887 	 */
11888 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11889 
11890 	/*
11891 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11892 	 */
11893 	ucmdp = scsi_uscsi_alloc();
11894 
11895 	/*
11896 	 * Allocate sd_uscsi_info structure
11897 	 */
11898 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11899 
11900 	ssc->ssc_uscsi_cmd = ucmdp;
11901 	ssc->ssc_uscsi_info = uip;
11902 	ssc->ssc_un = un;
11903 
11904 	return (ssc);
11905 }
11906 
11907 /*
11908  * Function: sd_ssc_fini
11909  *
11910  * Description: To free sd_ssc_t and it's hanging off
11911  *
11912  * Arguments: ssc - struct pointer of sd_ssc_t.
11913  */
11914 static void
11915 sd_ssc_fini(sd_ssc_t *ssc)
11916 {
11917 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11918 
11919 	if (ssc->ssc_uscsi_info != NULL) {
11920 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11921 		ssc->ssc_uscsi_info = NULL;
11922 	}
11923 
11924 	kmem_free(ssc, sizeof (sd_ssc_t));
11925 	ssc = NULL;
11926 }
11927 
11928 /*
11929  * Function: sd_ssc_send
11930  *
11931  * Description: Runs a USCSI command for user when called through sdioctl,
11932  *              or for the driver.
11933  *
11934  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11935  *                    sd_uscsi_info in.
11936  *		incmd - ptr to a valid uscsi_cmd struct
11937  *		flag - bit flag, indicating open settings, 32/64 bit type
11938  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11939  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11940  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11941  *			to use the USCSI "direct" chain and bypass the normal
11942  *			command waitq.
11943  *
11944  * Return Code: 0 -  successful completion of the given command
11945  *		EIO - scsi_uscsi_handle_command() failed
11946  *		ENXIO  - soft state not found for specified dev
11947  *		ECANCELED - command cancelled due to low power
11948  *		EINVAL
11949  *		EFAULT - copyin/copyout error
11950  *		return code of scsi_uscsi_handle_command():
11951  *			EIO
11952  *			ENXIO
11953  *			EACCES
11954  *
11955  *     Context: Kernel Thread;
11956  *              Waits for command to complete. Can sleep.
11957  */
11958 static int
11959 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11960 	enum uio_seg dataspace, int path_flag)
11961 {
11962 	struct sd_uscsi_info	*uip;
11963 	struct uscsi_cmd	*uscmd;
11964 	struct sd_lun		*un;
11965 	dev_t			dev;
11966 
11967 	int	format = 0;
11968 	int	rval;
11969 
11970 	ASSERT(ssc != NULL);
11971 	un = ssc->ssc_un;
11972 	ASSERT(un != NULL);
11973 	uscmd = ssc->ssc_uscsi_cmd;
11974 	ASSERT(uscmd != NULL);
11975 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11976 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11977 		/*
11978 		 * If enter here, it indicates that the previous uscsi
11979 		 * command has not been processed by sd_ssc_assessment.
11980 		 * This is violating our rules of FMA telemetry processing.
11981 		 * We should print out this message and the last undisposed
11982 		 * uscsi command.
11983 		 */
11984 		if (uscmd->uscsi_cdb != NULL) {
11985 			SD_INFO(SD_LOG_SDTEST, un,
11986 			    "sd_ssc_send is missing the alternative "
11987 			    "sd_ssc_assessment when running command 0x%x.\n",
11988 			    uscmd->uscsi_cdb[0]);
11989 		}
11990 		/*
11991 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11992 		 * the initial status.
11993 		 */
11994 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11995 	}
11996 
11997 	/*
11998 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11999 	 * followed to avoid missing FMA telemetries.
12000 	 */
12001 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12002 
12003 	/*
12004 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12005 	 * command immediately.
12006 	 */
12007 	mutex_enter(SD_MUTEX(un));
12008 	mutex_enter(&un->un_pm_mutex);
12009 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12010 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12011 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12012 		    "un:0x%p is in low power\n", un);
12013 		mutex_exit(&un->un_pm_mutex);
12014 		mutex_exit(SD_MUTEX(un));
12015 		return (ECANCELED);
12016 	}
12017 	mutex_exit(&un->un_pm_mutex);
12018 	mutex_exit(SD_MUTEX(un));
12019 
12020 #ifdef SDDEBUG
12021 	switch (dataspace) {
12022 	case UIO_USERSPACE:
12023 		SD_TRACE(SD_LOG_IO, un,
12024 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12025 		break;
12026 	case UIO_SYSSPACE:
12027 		SD_TRACE(SD_LOG_IO, un,
12028 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12029 		break;
12030 	default:
12031 		SD_TRACE(SD_LOG_IO, un,
12032 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12033 		break;
12034 	}
12035 #endif
12036 
12037 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12038 	    SD_ADDRESS(un), &uscmd);
12039 	if (rval != 0) {
12040 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12041 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12042 		return (rval);
12043 	}
12044 
12045 	if ((uscmd->uscsi_cdb != NULL) &&
12046 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12047 		mutex_enter(SD_MUTEX(un));
12048 		un->un_f_format_in_progress = TRUE;
12049 		mutex_exit(SD_MUTEX(un));
12050 		format = 1;
12051 	}
12052 
12053 	/*
12054 	 * Allocate an sd_uscsi_info struct and fill it with the info
12055 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12056 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12057 	 * since we allocate the buf here in this function, we do not
12058 	 * need to preserve the prior contents of b_private.
12059 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12060 	 */
12061 	uip = ssc->ssc_uscsi_info;
12062 	uip->ui_flags = path_flag;
12063 	uip->ui_cmdp = uscmd;
12064 
12065 	/*
12066 	 * Commands sent with priority are intended for error recovery
12067 	 * situations, and do not have retries performed.
12068 	 */
12069 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12070 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12071 	}
12072 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12073 
12074 	dev = SD_GET_DEV(un);
12075 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12076 	    sd_uscsi_strategy, NULL, uip);
12077 
12078 	/*
12079 	 * mark ssc_flags right after handle_cmd to make sure
12080 	 * the uscsi has been sent
12081 	 */
12082 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12083 
12084 #ifdef SDDEBUG
12085 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12086 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12087 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12088 	if (uscmd->uscsi_bufaddr != NULL) {
12089 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12090 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12091 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12092 		if (dataspace == UIO_SYSSPACE) {
12093 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12094 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12095 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12096 		}
12097 	}
12098 #endif
12099 
12100 	if (format == 1) {
12101 		mutex_enter(SD_MUTEX(un));
12102 		un->un_f_format_in_progress = FALSE;
12103 		mutex_exit(SD_MUTEX(un));
12104 	}
12105 
12106 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12107 
12108 	return (rval);
12109 }
12110 
12111 /*
12112  *     Function: sd_ssc_print
12113  *
12114  * Description: Print information available to the console.
12115  *
12116  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12117  *                    sd_uscsi_info in.
12118  *            sd_severity - log level.
12119  *     Context: Kernel thread or interrupt context.
12120  */
12121 static void
12122 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12123 {
12124 	struct uscsi_cmd	*ucmdp;
12125 	struct scsi_device	*devp;
12126 	dev_info_t 		*devinfo;
12127 	uchar_t			*sensep;
12128 	int			senlen;
12129 	union scsi_cdb		*cdbp;
12130 	uchar_t			com;
12131 	extern struct scsi_key_strings scsi_cmds[];
12132 
12133 	ASSERT(ssc != NULL);
12134 	ASSERT(ssc->ssc_un != NULL);
12135 
12136 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12137 		return;
12138 	ucmdp = ssc->ssc_uscsi_cmd;
12139 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12140 	devinfo = SD_DEVINFO(ssc->ssc_un);
12141 	ASSERT(ucmdp != NULL);
12142 	ASSERT(devp != NULL);
12143 	ASSERT(devinfo != NULL);
12144 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12145 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12146 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12147 
12148 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12149 	if (cdbp == NULL)
12150 		return;
12151 	/* We don't print log if no sense data available. */
12152 	if (senlen == 0)
12153 		sensep = NULL;
12154 	com = cdbp->scc_cmd;
12155 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12156 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12157 }
12158 
12159 /*
12160  *     Function: sd_ssc_assessment
12161  *
12162  * Description: We use this function to make an assessment at the point
12163  *              where SD driver may encounter a potential error.
12164  *
12165  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12166  *                  sd_uscsi_info in.
12167  *            tp_assess - a hint of strategy for ereport posting.
12168  *            Possible values of tp_assess include:
12169  *                SD_FMT_IGNORE - we don't post any ereport because we're
12170  *                sure that it is ok to ignore the underlying problems.
12171  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12172  *                but it might be not correct to ignore the underlying hardware
12173  *                error.
12174  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12175  *                payload driver-assessment of value "fail" or
12176  *                "fatal"(depending on what information we have here). This
12177  *                assessment value is usually set when SD driver think there
12178  *                is a potential error occurred(Typically, when return value
12179  *                of the SCSI command is EIO).
12180  *                SD_FMT_STANDARD - we will post an ereport with the payload
12181  *                driver-assessment of value "info". This assessment value is
12182  *                set when the SCSI command returned successfully and with
12183  *                sense data sent back.
12184  *
12185  *     Context: Kernel thread.
12186  */
12187 static void
12188 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12189 {
12190 	int senlen = 0;
12191 	struct uscsi_cmd *ucmdp = NULL;
12192 	struct sd_lun *un;
12193 
12194 	ASSERT(ssc != NULL);
12195 	un = ssc->ssc_un;
12196 	ASSERT(un != NULL);
12197 	ucmdp = ssc->ssc_uscsi_cmd;
12198 	ASSERT(ucmdp != NULL);
12199 
12200 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12201 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12202 	} else {
12203 		/*
12204 		 * If enter here, it indicates that we have a wrong
12205 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12206 		 * both of which should be called in a pair in case of
12207 		 * loss of FMA telemetries.
12208 		 */
12209 		if (ucmdp->uscsi_cdb != NULL) {
12210 			SD_INFO(SD_LOG_SDTEST, un,
12211 			    "sd_ssc_assessment is missing the "
12212 			    "alternative sd_ssc_send when running 0x%x, "
12213 			    "or there are superfluous sd_ssc_assessment for "
12214 			    "the same sd_ssc_send.\n",
12215 			    ucmdp->uscsi_cdb[0]);
12216 		}
12217 		/*
12218 		 * Set the ssc_flags to the initial value to avoid passing
12219 		 * down dirty flags to the following sd_ssc_send function.
12220 		 */
12221 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12222 		return;
12223 	}
12224 
12225 	/*
12226 	 * Only handle an issued command which is waiting for assessment.
12227 	 * A command which is not issued will not have
12228 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12229 	 */
12230 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12231 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12232 		return;
12233 	} else {
12234 		/*
12235 		 * For an issued command, we should clear this flag in
12236 		 * order to make the sd_ssc_t structure be used off
12237 		 * multiple uscsi commands.
12238 		 */
12239 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12240 	}
12241 
12242 	/*
12243 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12244 	 * commands here. And we should clear the ssc_flags before return.
12245 	 */
12246 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12247 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12248 		return;
12249 	}
12250 
12251 	switch (tp_assess) {
12252 	case SD_FMT_IGNORE:
12253 	case SD_FMT_IGNORE_COMPROMISE:
12254 		break;
12255 	case SD_FMT_STATUS_CHECK:
12256 		/*
12257 		 * For a failed command(including the succeeded command
12258 		 * with invalid data sent back).
12259 		 */
12260 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12261 		break;
12262 	case SD_FMT_STANDARD:
12263 		/*
12264 		 * Always for the succeeded commands probably with sense
12265 		 * data sent back.
12266 		 * Limitation:
12267 		 *	We can only handle a succeeded command with sense
12268 		 *	data sent back when auto-request-sense is enabled.
12269 		 */
12270 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12271 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12272 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12273 		    (un->un_f_arq_enabled == TRUE) &&
12274 		    senlen > 0 &&
12275 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12276 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12277 		}
12278 		break;
12279 	default:
12280 		/*
12281 		 * Should not have other type of assessment.
12282 		 */
12283 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12284 		    "sd_ssc_assessment got wrong "
12285 		    "sd_type_assessment %d.\n", tp_assess);
12286 		break;
12287 	}
12288 	/*
12289 	 * Clear up the ssc_flags before return.
12290 	 */
12291 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12292 }
12293 
12294 /*
12295  *    Function: sd_ssc_post
12296  *
12297  * Description: 1. read the driver property to get fm-scsi-log flag.
12298  *              2. print log if fm_log_capable is non-zero.
12299  *              3. call sd_ssc_ereport_post to post ereport if possible.
12300  *
12301  *    Context: May be called from kernel thread or interrupt context.
12302  */
12303 static void
12304 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12305 {
12306 	struct sd_lun	*un;
12307 	int		sd_severity;
12308 
12309 	ASSERT(ssc != NULL);
12310 	un = ssc->ssc_un;
12311 	ASSERT(un != NULL);
12312 
12313 	/*
12314 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12315 	 * by directly called from sdintr context.
12316 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12317 	 * Clear the ssc_flags before return in case we've set
12318 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12319 	 * driver.
12320 	 */
12321 	if (ISCD(un) || un->un_f_has_removable_media) {
12322 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12323 		return;
12324 	}
12325 
12326 	switch (sd_assess) {
12327 		case SD_FM_DRV_FATAL:
12328 			sd_severity = SCSI_ERR_FATAL;
12329 			break;
12330 		case SD_FM_DRV_RECOVERY:
12331 			sd_severity = SCSI_ERR_RECOVERED;
12332 			break;
12333 		case SD_FM_DRV_RETRY:
12334 			sd_severity = SCSI_ERR_RETRYABLE;
12335 			break;
12336 		case SD_FM_DRV_NOTICE:
12337 			sd_severity = SCSI_ERR_INFO;
12338 			break;
12339 		default:
12340 			sd_severity = SCSI_ERR_UNKNOWN;
12341 	}
12342 	/* print log */
12343 	sd_ssc_print(ssc, sd_severity);
12344 
12345 	/* always post ereport */
12346 	sd_ssc_ereport_post(ssc, sd_assess);
12347 }
12348 
12349 /*
12350  *    Function: sd_ssc_set_info
12351  *
12352  * Description: Mark ssc_flags and set ssc_info which would be the
12353  *              payload of uderr ereport. This function will cause
12354  *              sd_ssc_ereport_post to post uderr ereport only.
12355  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12356  *              the function will also call SD_ERROR or scsi_log for a
12357  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12358  *
12359  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12360  *                  sd_uscsi_info in.
12361  *            ssc_flags - indicate the sub-category of a uderr.
12362  *            comp - this argument is meaningful only when
12363  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12364  *                   values include:
12365  *                   > 0, SD_ERROR is used with comp as the driver logging
12366  *                   component;
12367  *                   = 0, scsi-log is used to log error telemetries;
12368  *                   < 0, no log available for this telemetry.
12369  *
12370  *    Context: Kernel thread or interrupt context
12371  */
12372 static void
12373 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12374 {
12375 	va_list	ap;
12376 
12377 	ASSERT(ssc != NULL);
12378 	ASSERT(ssc->ssc_un != NULL);
12379 
12380 	ssc->ssc_flags |= ssc_flags;
12381 	va_start(ap, fmt);
12382 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12383 	va_end(ap);
12384 
12385 	/*
12386 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12387 	 * with invalid data sent back. For non-uscsi command, the
12388 	 * following code will be bypassed.
12389 	 */
12390 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12391 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12392 			/*
12393 			 * If the error belong to certain component and we
12394 			 * do not want it to show up on the console, we
12395 			 * will use SD_ERROR, otherwise scsi_log is
12396 			 * preferred.
12397 			 */
12398 			if (comp > 0) {
12399 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12400 			} else if (comp == 0) {
12401 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12402 				    CE_WARN, ssc->ssc_info);
12403 			}
12404 		}
12405 	}
12406 }
12407 
12408 /*
12409  *    Function: sd_buf_iodone
12410  *
12411  * Description: Frees the sd_xbuf & returns the buf to its originator.
12412  *
12413  *     Context: May be called from interrupt context.
12414  */
12415 /* ARGSUSED */
12416 static void
12417 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12418 {
12419 	struct sd_xbuf *xp;
12420 
12421 	ASSERT(un != NULL);
12422 	ASSERT(bp != NULL);
12423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12424 
12425 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12426 
12427 	xp = SD_GET_XBUF(bp);
12428 	ASSERT(xp != NULL);
12429 
12430 	/* xbuf is gone after this */
12431 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12432 		mutex_enter(SD_MUTEX(un));
12433 
12434 		/*
12435 		 * Grab time when the cmd completed.
12436 		 * This is used for determining if the system has been
12437 		 * idle long enough to make it idle to the PM framework.
12438 		 * This is for lowering the overhead, and therefore improving
12439 		 * performance per I/O operation.
12440 		 */
12441 		un->un_pm_idle_time = ddi_get_time();
12442 
12443 		un->un_ncmds_in_driver--;
12444 		ASSERT(un->un_ncmds_in_driver >= 0);
12445 		SD_INFO(SD_LOG_IO, un,
12446 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12447 		    un->un_ncmds_in_driver);
12448 
12449 		mutex_exit(SD_MUTEX(un));
12450 	}
12451 
12452 	biodone(bp);				/* bp is gone after this */
12453 
12454 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12455 }
12456 
12457 
12458 /*
12459  *    Function: sd_uscsi_iodone
12460  *
12461  * Description: Frees the sd_xbuf & returns the buf to its originator.
12462  *
12463  *     Context: May be called from interrupt context.
12464  */
12465 /* ARGSUSED */
12466 static void
12467 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12468 {
12469 	struct sd_xbuf *xp;
12470 
12471 	ASSERT(un != NULL);
12472 	ASSERT(bp != NULL);
12473 
12474 	xp = SD_GET_XBUF(bp);
12475 	ASSERT(xp != NULL);
12476 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12477 
12478 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12479 
12480 	bp->b_private = xp->xb_private;
12481 
12482 	mutex_enter(SD_MUTEX(un));
12483 
12484 	/*
12485 	 * Grab time when the cmd completed.
12486 	 * This is used for determining if the system has been
12487 	 * idle long enough to make it idle to the PM framework.
12488 	 * This is for lowering the overhead, and therefore improving
12489 	 * performance per I/O operation.
12490 	 */
12491 	un->un_pm_idle_time = ddi_get_time();
12492 
12493 	un->un_ncmds_in_driver--;
12494 	ASSERT(un->un_ncmds_in_driver >= 0);
12495 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12496 	    un->un_ncmds_in_driver);
12497 
12498 	mutex_exit(SD_MUTEX(un));
12499 
12500 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12501 	    SENSE_LENGTH) {
12502 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12503 		    MAX_SENSE_LENGTH);
12504 	} else {
12505 		kmem_free(xp, sizeof (struct sd_xbuf));
12506 	}
12507 
12508 	biodone(bp);
12509 
12510 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12511 }
12512 
12513 
12514 /*
12515  *    Function: sd_mapblockaddr_iostart
12516  *
12517  * Description: Verify request lies within the partition limits for
12518  *		the indicated minor device.  Issue "overrun" buf if
12519  *		request would exceed partition range.  Converts
12520  *		partition-relative block address to absolute.
12521  *
12522  *              Upon exit of this function:
12523  *              1.I/O is aligned
12524  *                 xp->xb_blkno represents the absolute sector address
12525  *              2.I/O is misaligned
12526  *                 xp->xb_blkno represents the absolute logical block address
12527  *                 based on DEV_BSIZE. The logical block address will be
12528  *                 converted to physical sector address in sd_mapblocksize_\
12529  *                 iostart.
12530  *              3.I/O is misaligned but is aligned in "overrun" buf
12531  *                 xp->xb_blkno represents the absolute logical block address
12532  *                 based on DEV_BSIZE. The logical block address will be
12533  *                 converted to physical sector address in sd_mapblocksize_\
12534  *                 iostart. But no RMW will be issued in this case.
12535  *
12536  *     Context: Can sleep
12537  *
12538  *      Issues: This follows what the old code did, in terms of accessing
12539  *		some of the partition info in the unit struct without holding
12540  *		the mutext.  This is a general issue, if the partition info
12541  *		can be altered while IO is in progress... as soon as we send
12542  *		a buf, its partitioning can be invalid before it gets to the
12543  *		device.  Probably the right fix is to move partitioning out
12544  *		of the driver entirely.
12545  */
12546 
12547 static void
12548 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12549 {
12550 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12551 	daddr_t	blocknum;	/* Block number specified by the buf */
12552 	size_t	requested_nblocks;
12553 	size_t	available_nblocks;
12554 	int	partition;
12555 	diskaddr_t	partition_offset;
12556 	struct sd_xbuf *xp;
12557 	int secmask = 0, blknomask = 0;
12558 	ushort_t is_aligned = TRUE;
12559 
12560 	ASSERT(un != NULL);
12561 	ASSERT(bp != NULL);
12562 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12563 
12564 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12565 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12566 
12567 	xp = SD_GET_XBUF(bp);
12568 	ASSERT(xp != NULL);
12569 
12570 	/*
12571 	 * If the geometry is not indicated as valid, attempt to access
12572 	 * the unit & verify the geometry/label. This can be the case for
12573 	 * removable-media devices, of if the device was opened in
12574 	 * NDELAY/NONBLOCK mode.
12575 	 */
12576 	partition = SDPART(bp->b_edev);
12577 
12578 	if (!SD_IS_VALID_LABEL(un)) {
12579 		sd_ssc_t *ssc;
12580 		/*
12581 		 * Initialize sd_ssc_t for internal uscsi commands
12582 		 * In case of potential porformance issue, we need
12583 		 * to alloc memory only if there is invalid label
12584 		 */
12585 		ssc = sd_ssc_init(un);
12586 
12587 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12588 			/*
12589 			 * For removable devices it is possible to start an
12590 			 * I/O without a media by opening the device in nodelay
12591 			 * mode. Also for writable CDs there can be many
12592 			 * scenarios where there is no geometry yet but volume
12593 			 * manager is trying to issue a read() just because
12594 			 * it can see TOC on the CD. So do not print a message
12595 			 * for removables.
12596 			 */
12597 			if (!un->un_f_has_removable_media) {
12598 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12599 				    "i/o to invalid geometry\n");
12600 			}
12601 			bioerror(bp, EIO);
12602 			bp->b_resid = bp->b_bcount;
12603 			SD_BEGIN_IODONE(index, un, bp);
12604 
12605 			sd_ssc_fini(ssc);
12606 			return;
12607 		}
12608 		sd_ssc_fini(ssc);
12609 	}
12610 
12611 	nblocks = 0;
12612 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12613 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12614 
12615 	if (un->un_f_enable_rmw) {
12616 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12617 		secmask = un->un_phy_blocksize - 1;
12618 	} else {
12619 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12620 		secmask = un->un_tgt_blocksize - 1;
12621 	}
12622 
12623 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12624 		is_aligned = FALSE;
12625 	}
12626 
12627 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12628 		/*
12629 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12630 		 * Convert the logical block number to target's physical sector
12631 		 * number.
12632 		 */
12633 		if (is_aligned) {
12634 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12635 		} else {
12636 			switch (un->un_f_rmw_type) {
12637 			case SD_RMW_TYPE_RETURN_ERROR:
12638 				if (un->un_f_enable_rmw)
12639 					break;
12640 				else {
12641 					bp->b_flags |= B_ERROR;
12642 					goto error_exit;
12643 				}
12644 
12645 			case SD_RMW_TYPE_DEFAULT:
12646 				mutex_enter(SD_MUTEX(un));
12647 				if (!un->un_f_enable_rmw &&
12648 				    un->un_rmw_msg_timeid == NULL) {
12649 					scsi_log(SD_DEVINFO(un), sd_label,
12650 					    CE_WARN, "I/O request is not "
12651 					    "aligned with %d disk sector size. "
12652 					    "It is handled through Read Modify "
12653 					    "Write but the performance is "
12654 					    "very low.\n",
12655 					    un->un_tgt_blocksize);
12656 					un->un_rmw_msg_timeid =
12657 					    timeout(sd_rmw_msg_print_handler,
12658 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12659 				} else {
12660 					un->un_rmw_incre_count ++;
12661 				}
12662 				mutex_exit(SD_MUTEX(un));
12663 				break;
12664 
12665 			case SD_RMW_TYPE_NO_WARNING:
12666 			default:
12667 				break;
12668 			}
12669 
12670 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12671 			partition_offset = SD_TGT2SYSBLOCK(un,
12672 			    partition_offset);
12673 		}
12674 	}
12675 
12676 	/*
12677 	 * blocknum is the starting block number of the request. At this
12678 	 * point it is still relative to the start of the minor device.
12679 	 */
12680 	blocknum = xp->xb_blkno;
12681 
12682 	/*
12683 	 * Legacy: If the starting block number is one past the last block
12684 	 * in the partition, do not set B_ERROR in the buf.
12685 	 */
12686 	if (blocknum == nblocks)  {
12687 		goto error_exit;
12688 	}
12689 
12690 	/*
12691 	 * Confirm that the first block of the request lies within the
12692 	 * partition limits. Also the requested number of bytes must be
12693 	 * a multiple of the system block size.
12694 	 */
12695 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12696 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12697 		bp->b_flags |= B_ERROR;
12698 		goto error_exit;
12699 	}
12700 
12701 	/*
12702 	 * If the requsted # blocks exceeds the available # blocks, that
12703 	 * is an overrun of the partition.
12704 	 */
12705 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12706 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12707 	} else {
12708 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12709 	}
12710 
12711 	available_nblocks = (size_t)(nblocks - blocknum);
12712 	ASSERT(nblocks >= blocknum);
12713 
12714 	if (requested_nblocks > available_nblocks) {
12715 		size_t resid;
12716 
12717 		/*
12718 		 * Allocate an "overrun" buf to allow the request to proceed
12719 		 * for the amount of space available in the partition. The
12720 		 * amount not transferred will be added into the b_resid
12721 		 * when the operation is complete. The overrun buf
12722 		 * replaces the original buf here, and the original buf
12723 		 * is saved inside the overrun buf, for later use.
12724 		 */
12725 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12726 			resid = SD_TGTBLOCKS2BYTES(un,
12727 			    (offset_t)(requested_nblocks - available_nblocks));
12728 		} else {
12729 			resid = SD_SYSBLOCKS2BYTES(
12730 			    (offset_t)(requested_nblocks - available_nblocks));
12731 		}
12732 
12733 		size_t count = bp->b_bcount - resid;
12734 		/*
12735 		 * Note: count is an unsigned entity thus it'll NEVER
12736 		 * be less than 0 so ASSERT the original values are
12737 		 * correct.
12738 		 */
12739 		ASSERT(bp->b_bcount >= resid);
12740 
12741 		bp = sd_bioclone_alloc(bp, count, blocknum,
12742 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12743 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12744 		ASSERT(xp != NULL);
12745 	}
12746 
12747 	/* At this point there should be no residual for this buf. */
12748 	ASSERT(bp->b_resid == 0);
12749 
12750 	/* Convert the block number to an absolute address. */
12751 	xp->xb_blkno += partition_offset;
12752 
12753 	SD_NEXT_IOSTART(index, un, bp);
12754 
12755 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12756 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12757 
12758 	return;
12759 
12760 error_exit:
12761 	bp->b_resid = bp->b_bcount;
12762 	SD_BEGIN_IODONE(index, un, bp);
12763 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12764 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12765 }
12766 
12767 
12768 /*
12769  *    Function: sd_mapblockaddr_iodone
12770  *
12771  * Description: Completion-side processing for partition management.
12772  *
12773  *     Context: May be called under interrupt context
12774  */
12775 
12776 static void
12777 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12778 {
12779 	/* int	partition; */	/* Not used, see below. */
12780 	ASSERT(un != NULL);
12781 	ASSERT(bp != NULL);
12782 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12783 
12784 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12785 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12786 
12787 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12788 		/*
12789 		 * We have an "overrun" buf to deal with...
12790 		 */
12791 		struct sd_xbuf	*xp;
12792 		struct buf	*obp;	/* ptr to the original buf */
12793 
12794 		xp = SD_GET_XBUF(bp);
12795 		ASSERT(xp != NULL);
12796 
12797 		/* Retrieve the pointer to the original buf */
12798 		obp = (struct buf *)xp->xb_private;
12799 		ASSERT(obp != NULL);
12800 
12801 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12802 		bioerror(obp, bp->b_error);
12803 
12804 		sd_bioclone_free(bp);
12805 
12806 		/*
12807 		 * Get back the original buf.
12808 		 * Note that since the restoration of xb_blkno below
12809 		 * was removed, the sd_xbuf is not needed.
12810 		 */
12811 		bp = obp;
12812 		/*
12813 		 * xp = SD_GET_XBUF(bp);
12814 		 * ASSERT(xp != NULL);
12815 		 */
12816 	}
12817 
12818 	/*
12819 	 * Convert sd->xb_blkno back to a minor-device relative value.
12820 	 * Note: this has been commented out, as it is not needed in the
12821 	 * current implementation of the driver (ie, since this function
12822 	 * is at the top of the layering chains, so the info will be
12823 	 * discarded) and it is in the "hot" IO path.
12824 	 *
12825 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12826 	 * xp->xb_blkno -= un->un_offset[partition];
12827 	 */
12828 
12829 	SD_NEXT_IODONE(index, un, bp);
12830 
12831 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12832 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12833 }
12834 
12835 
12836 /*
12837  *    Function: sd_mapblocksize_iostart
12838  *
12839  * Description: Convert between system block size (un->un_sys_blocksize)
12840  *		and target block size (un->un_tgt_blocksize).
12841  *
12842  *     Context: Can sleep to allocate resources.
12843  *
12844  * Assumptions: A higher layer has already performed any partition validation,
12845  *		and converted the xp->xb_blkno to an absolute value relative
12846  *		to the start of the device.
12847  *
12848  *		It is also assumed that the higher layer has implemented
12849  *		an "overrun" mechanism for the case where the request would
12850  *		read/write beyond the end of a partition.  In this case we
12851  *		assume (and ASSERT) that bp->b_resid == 0.
12852  *
12853  *		Note: The implementation for this routine assumes the target
12854  *		block size remains constant between allocation and transport.
12855  */
12856 
12857 static void
12858 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12859 {
12860 	struct sd_mapblocksize_info	*bsp;
12861 	struct sd_xbuf			*xp;
12862 	offset_t first_byte;
12863 	daddr_t	start_block, end_block;
12864 	daddr_t	request_bytes;
12865 	ushort_t is_aligned = FALSE;
12866 
12867 	ASSERT(un != NULL);
12868 	ASSERT(bp != NULL);
12869 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12870 	ASSERT(bp->b_resid == 0);
12871 
12872 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12873 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12874 
12875 	/*
12876 	 * For a non-writable CD, a write request is an error
12877 	 */
12878 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12879 	    (un->un_f_mmc_writable_media == FALSE)) {
12880 		bioerror(bp, EIO);
12881 		bp->b_resid = bp->b_bcount;
12882 		SD_BEGIN_IODONE(index, un, bp);
12883 		return;
12884 	}
12885 
12886 	/*
12887 	 * We do not need a shadow buf if the device is using
12888 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12889 	 * In this case there is no layer-private data block allocated.
12890 	 */
12891 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12892 	    (bp->b_bcount == 0)) {
12893 		goto done;
12894 	}
12895 
12896 #if defined(__i386) || defined(__amd64)
12897 	/* We do not support non-block-aligned transfers for ROD devices */
12898 	ASSERT(!ISROD(un));
12899 #endif
12900 
12901 	xp = SD_GET_XBUF(bp);
12902 	ASSERT(xp != NULL);
12903 
12904 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12905 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12906 	    un->un_tgt_blocksize, DEV_BSIZE);
12907 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12908 	    "request start block:0x%x\n", xp->xb_blkno);
12909 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12910 	    "request len:0x%x\n", bp->b_bcount);
12911 
12912 	/*
12913 	 * Allocate the layer-private data area for the mapblocksize layer.
12914 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12915 	 * struct to store the pointer to their layer-private data block, but
12916 	 * each layer also has the responsibility of restoring the prior
12917 	 * contents of xb_private before returning the buf/xbuf to the
12918 	 * higher layer that sent it.
12919 	 *
12920 	 * Here we save the prior contents of xp->xb_private into the
12921 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12922 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12923 	 * the layer-private area and returning the buf/xbuf to the layer
12924 	 * that sent it.
12925 	 *
12926 	 * Note that here we use kmem_zalloc for the allocation as there are
12927 	 * parts of the mapblocksize code that expect certain fields to be
12928 	 * zero unless explicitly set to a required value.
12929 	 */
12930 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12931 	bsp->mbs_oprivate = xp->xb_private;
12932 	xp->xb_private = bsp;
12933 
12934 	/*
12935 	 * This treats the data on the disk (target) as an array of bytes.
12936 	 * first_byte is the byte offset, from the beginning of the device,
12937 	 * to the location of the request. This is converted from a
12938 	 * un->un_sys_blocksize block address to a byte offset, and then back
12939 	 * to a block address based upon a un->un_tgt_blocksize block size.
12940 	 *
12941 	 * xp->xb_blkno should be absolute upon entry into this function,
12942 	 * but, but it is based upon partitions that use the "system"
12943 	 * block size. It must be adjusted to reflect the block size of
12944 	 * the target.
12945 	 *
12946 	 * Note that end_block is actually the block that follows the last
12947 	 * block of the request, but that's what is needed for the computation.
12948 	 */
12949 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12950 	if (un->un_f_enable_rmw) {
12951 		start_block = xp->xb_blkno =
12952 		    (first_byte / un->un_phy_blocksize) *
12953 		    (un->un_phy_blocksize / DEV_BSIZE);
12954 		end_block   = ((first_byte + bp->b_bcount +
12955 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12956 		    (un->un_phy_blocksize / DEV_BSIZE);
12957 	} else {
12958 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12959 		end_block   = (first_byte + bp->b_bcount +
12960 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12961 	}
12962 
12963 	/* request_bytes is rounded up to a multiple of the target block size */
12964 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12965 
12966 	/*
12967 	 * See if the starting address of the request and the request
12968 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12969 	 * then we do not need to allocate a shadow buf to handle the request.
12970 	 */
12971 	if (un->un_f_enable_rmw) {
12972 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12973 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12974 			is_aligned = TRUE;
12975 		}
12976 	} else {
12977 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12978 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12979 			is_aligned = TRUE;
12980 		}
12981 	}
12982 
12983 	if ((bp->b_flags & B_READ) == 0) {
12984 		/*
12985 		 * Lock the range for a write operation. An aligned request is
12986 		 * considered a simple write; otherwise the request must be a
12987 		 * read-modify-write.
12988 		 */
12989 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12990 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12991 	}
12992 
12993 	/*
12994 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12995 	 * where the READ command is generated for a read-modify-write. (The
12996 	 * write phase is deferred until after the read completes.)
12997 	 */
12998 	if (is_aligned == FALSE) {
12999 
13000 		struct sd_mapblocksize_info	*shadow_bsp;
13001 		struct sd_xbuf	*shadow_xp;
13002 		struct buf	*shadow_bp;
13003 
13004 		/*
13005 		 * Allocate the shadow buf and it associated xbuf. Note that
13006 		 * after this call the xb_blkno value in both the original
13007 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13008 		 * same: absolute relative to the start of the device, and
13009 		 * adjusted for the target block size. The b_blkno in the
13010 		 * shadow buf will also be set to this value. We should never
13011 		 * change b_blkno in the original bp however.
13012 		 *
13013 		 * Note also that the shadow buf will always need to be a
13014 		 * READ command, regardless of whether the incoming command
13015 		 * is a READ or a WRITE.
13016 		 */
13017 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13018 		    xp->xb_blkno,
13019 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13020 
13021 		shadow_xp = SD_GET_XBUF(shadow_bp);
13022 
13023 		/*
13024 		 * Allocate the layer-private data for the shadow buf.
13025 		 * (No need to preserve xb_private in the shadow xbuf.)
13026 		 */
13027 		shadow_xp->xb_private = shadow_bsp =
13028 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13029 
13030 		/*
13031 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13032 		 * to figure out where the start of the user data is (based upon
13033 		 * the system block size) in the data returned by the READ
13034 		 * command (which will be based upon the target blocksize). Note
13035 		 * that this is only really used if the request is unaligned.
13036 		 */
13037 		if (un->un_f_enable_rmw) {
13038 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13039 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13040 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13041 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13042 		} else {
13043 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13044 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13045 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13046 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13047 		}
13048 
13049 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13050 
13051 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13052 
13053 		/* Transfer the wmap (if any) to the shadow buf */
13054 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13055 		bsp->mbs_wmp = NULL;
13056 
13057 		/*
13058 		 * The shadow buf goes on from here in place of the
13059 		 * original buf.
13060 		 */
13061 		shadow_bsp->mbs_orig_bp = bp;
13062 		bp = shadow_bp;
13063 	}
13064 
13065 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13066 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13067 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13068 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13069 	    request_bytes);
13070 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13071 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13072 
13073 done:
13074 	SD_NEXT_IOSTART(index, un, bp);
13075 
13076 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13077 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13078 }
13079 
13080 
13081 /*
13082  *    Function: sd_mapblocksize_iodone
13083  *
13084  * Description: Completion side processing for block-size mapping.
13085  *
13086  *     Context: May be called under interrupt context
13087  */
13088 
13089 static void
13090 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13091 {
13092 	struct sd_mapblocksize_info	*bsp;
13093 	struct sd_xbuf	*xp;
13094 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13095 	struct buf	*orig_bp;	/* ptr to the original buf */
13096 	offset_t	shadow_end;
13097 	offset_t	request_end;
13098 	offset_t	shadow_start;
13099 	ssize_t		copy_offset;
13100 	size_t		copy_length;
13101 	size_t		shortfall;
13102 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13103 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13104 
13105 	ASSERT(un != NULL);
13106 	ASSERT(bp != NULL);
13107 
13108 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13109 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13110 
13111 	/*
13112 	 * There is no shadow buf or layer-private data if the target is
13113 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13114 	 */
13115 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13116 	    (bp->b_bcount == 0)) {
13117 		goto exit;
13118 	}
13119 
13120 	xp = SD_GET_XBUF(bp);
13121 	ASSERT(xp != NULL);
13122 
13123 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13124 	bsp = xp->xb_private;
13125 
13126 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13127 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13128 
13129 	if (is_write) {
13130 		/*
13131 		 * For a WRITE request we must free up the block range that
13132 		 * we have locked up.  This holds regardless of whether this is
13133 		 * an aligned write request or a read-modify-write request.
13134 		 */
13135 		sd_range_unlock(un, bsp->mbs_wmp);
13136 		bsp->mbs_wmp = NULL;
13137 	}
13138 
13139 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13140 		/*
13141 		 * An aligned read or write command will have no shadow buf;
13142 		 * there is not much else to do with it.
13143 		 */
13144 		goto done;
13145 	}
13146 
13147 	orig_bp = bsp->mbs_orig_bp;
13148 	ASSERT(orig_bp != NULL);
13149 	orig_xp = SD_GET_XBUF(orig_bp);
13150 	ASSERT(orig_xp != NULL);
13151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13152 
13153 	if (!is_write && has_wmap) {
13154 		/*
13155 		 * A READ with a wmap means this is the READ phase of a
13156 		 * read-modify-write. If an error occurred on the READ then
13157 		 * we do not proceed with the WRITE phase or copy any data.
13158 		 * Just release the write maps and return with an error.
13159 		 */
13160 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13161 			orig_bp->b_resid = orig_bp->b_bcount;
13162 			bioerror(orig_bp, bp->b_error);
13163 			sd_range_unlock(un, bsp->mbs_wmp);
13164 			goto freebuf_done;
13165 		}
13166 	}
13167 
13168 	/*
13169 	 * Here is where we set up to copy the data from the shadow buf
13170 	 * into the space associated with the original buf.
13171 	 *
13172 	 * To deal with the conversion between block sizes, these
13173 	 * computations treat the data as an array of bytes, with the
13174 	 * first byte (byte 0) corresponding to the first byte in the
13175 	 * first block on the disk.
13176 	 */
13177 
13178 	/*
13179 	 * shadow_start and shadow_len indicate the location and size of
13180 	 * the data returned with the shadow IO request.
13181 	 */
13182 	if (un->un_f_enable_rmw) {
13183 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13184 	} else {
13185 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13186 	}
13187 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13188 
13189 	/*
13190 	 * copy_offset gives the offset (in bytes) from the start of the first
13191 	 * block of the READ request to the beginning of the data.  We retrieve
13192 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13193 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13194 	 * data to be copied (in bytes).
13195 	 */
13196 	copy_offset  = bsp->mbs_copy_offset;
13197 	if (un->un_f_enable_rmw) {
13198 		ASSERT((copy_offset >= 0) &&
13199 		    (copy_offset < un->un_phy_blocksize));
13200 	} else {
13201 		ASSERT((copy_offset >= 0) &&
13202 		    (copy_offset < un->un_tgt_blocksize));
13203 	}
13204 
13205 	copy_length  = orig_bp->b_bcount;
13206 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13207 
13208 	/*
13209 	 * Set up the resid and error fields of orig_bp as appropriate.
13210 	 */
13211 	if (shadow_end >= request_end) {
13212 		/* We got all the requested data; set resid to zero */
13213 		orig_bp->b_resid = 0;
13214 	} else {
13215 		/*
13216 		 * We failed to get enough data to fully satisfy the original
13217 		 * request. Just copy back whatever data we got and set
13218 		 * up the residual and error code as required.
13219 		 *
13220 		 * 'shortfall' is the amount by which the data received with the
13221 		 * shadow buf has "fallen short" of the requested amount.
13222 		 */
13223 		shortfall = (size_t)(request_end - shadow_end);
13224 
13225 		if (shortfall > orig_bp->b_bcount) {
13226 			/*
13227 			 * We did not get enough data to even partially
13228 			 * fulfill the original request.  The residual is
13229 			 * equal to the amount requested.
13230 			 */
13231 			orig_bp->b_resid = orig_bp->b_bcount;
13232 		} else {
13233 			/*
13234 			 * We did not get all the data that we requested
13235 			 * from the device, but we will try to return what
13236 			 * portion we did get.
13237 			 */
13238 			orig_bp->b_resid = shortfall;
13239 		}
13240 		ASSERT(copy_length >= orig_bp->b_resid);
13241 		copy_length  -= orig_bp->b_resid;
13242 	}
13243 
13244 	/* Propagate the error code from the shadow buf to the original buf */
13245 	bioerror(orig_bp, bp->b_error);
13246 
13247 	if (is_write) {
13248 		goto freebuf_done;	/* No data copying for a WRITE */
13249 	}
13250 
13251 	if (has_wmap) {
13252 		/*
13253 		 * This is a READ command from the READ phase of a
13254 		 * read-modify-write request. We have to copy the data given
13255 		 * by the user OVER the data returned by the READ command,
13256 		 * then convert the command from a READ to a WRITE and send
13257 		 * it back to the target.
13258 		 */
13259 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13260 		    copy_length);
13261 
13262 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13263 
13264 		/*
13265 		 * Dispatch the WRITE command to the taskq thread, which
13266 		 * will in turn send the command to the target. When the
13267 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13268 		 * will get called again as part of the iodone chain
13269 		 * processing for it. Note that we will still be dealing
13270 		 * with the shadow buf at that point.
13271 		 */
13272 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13273 		    KM_NOSLEEP) != 0) {
13274 			/*
13275 			 * Dispatch was successful so we are done. Return
13276 			 * without going any higher up the iodone chain. Do
13277 			 * not free up any layer-private data until after the
13278 			 * WRITE completes.
13279 			 */
13280 			return;
13281 		}
13282 
13283 		/*
13284 		 * Dispatch of the WRITE command failed; set up the error
13285 		 * condition and send this IO back up the iodone chain.
13286 		 */
13287 		bioerror(orig_bp, EIO);
13288 		orig_bp->b_resid = orig_bp->b_bcount;
13289 
13290 	} else {
13291 		/*
13292 		 * This is a regular READ request (ie, not a RMW). Copy the
13293 		 * data from the shadow buf into the original buf. The
13294 		 * copy_offset compensates for any "misalignment" between the
13295 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13296 		 * original buf (with its un->un_sys_blocksize blocks).
13297 		 */
13298 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13299 		    copy_length);
13300 	}
13301 
13302 freebuf_done:
13303 
13304 	/*
13305 	 * At this point we still have both the shadow buf AND the original
13306 	 * buf to deal with, as well as the layer-private data area in each.
13307 	 * Local variables are as follows:
13308 	 *
13309 	 * bp -- points to shadow buf
13310 	 * xp -- points to xbuf of shadow buf
13311 	 * bsp -- points to layer-private data area of shadow buf
13312 	 * orig_bp -- points to original buf
13313 	 *
13314 	 * First free the shadow buf and its associated xbuf, then free the
13315 	 * layer-private data area from the shadow buf. There is no need to
13316 	 * restore xb_private in the shadow xbuf.
13317 	 */
13318 	sd_shadow_buf_free(bp);
13319 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13320 
13321 	/*
13322 	 * Now update the local variables to point to the original buf, xbuf,
13323 	 * and layer-private area.
13324 	 */
13325 	bp = orig_bp;
13326 	xp = SD_GET_XBUF(bp);
13327 	ASSERT(xp != NULL);
13328 	ASSERT(xp == orig_xp);
13329 	bsp = xp->xb_private;
13330 	ASSERT(bsp != NULL);
13331 
13332 done:
13333 	/*
13334 	 * Restore xb_private to whatever it was set to by the next higher
13335 	 * layer in the chain, then free the layer-private data area.
13336 	 */
13337 	xp->xb_private = bsp->mbs_oprivate;
13338 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13339 
13340 exit:
13341 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13342 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13343 
13344 	SD_NEXT_IODONE(index, un, bp);
13345 }
13346 
13347 
13348 /*
13349  *    Function: sd_checksum_iostart
13350  *
13351  * Description: A stub function for a layer that's currently not used.
13352  *		For now just a placeholder.
13353  *
13354  *     Context: Kernel thread context
13355  */
13356 
13357 static void
13358 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13359 {
13360 	ASSERT(un != NULL);
13361 	ASSERT(bp != NULL);
13362 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13363 	SD_NEXT_IOSTART(index, un, bp);
13364 }
13365 
13366 
13367 /*
13368  *    Function: sd_checksum_iodone
13369  *
13370  * Description: A stub function for a layer that's currently not used.
13371  *		For now just a placeholder.
13372  *
13373  *     Context: May be called under interrupt context
13374  */
13375 
13376 static void
13377 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13378 {
13379 	ASSERT(un != NULL);
13380 	ASSERT(bp != NULL);
13381 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13382 	SD_NEXT_IODONE(index, un, bp);
13383 }
13384 
13385 
13386 /*
13387  *    Function: sd_checksum_uscsi_iostart
13388  *
13389  * Description: A stub function for a layer that's currently not used.
13390  *		For now just a placeholder.
13391  *
13392  *     Context: Kernel thread context
13393  */
13394 
13395 static void
13396 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13397 {
13398 	ASSERT(un != NULL);
13399 	ASSERT(bp != NULL);
13400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13401 	SD_NEXT_IOSTART(index, un, bp);
13402 }
13403 
13404 
13405 /*
13406  *    Function: sd_checksum_uscsi_iodone
13407  *
13408  * Description: A stub function for a layer that's currently not used.
13409  *		For now just a placeholder.
13410  *
13411  *     Context: May be called under interrupt context
13412  */
13413 
13414 static void
13415 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13416 {
13417 	ASSERT(un != NULL);
13418 	ASSERT(bp != NULL);
13419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13420 	SD_NEXT_IODONE(index, un, bp);
13421 }
13422 
13423 
13424 /*
13425  *    Function: sd_pm_iostart
13426  *
13427  * Description: iostart-side routine for Power mangement.
13428  *
13429  *     Context: Kernel thread context
13430  */
13431 
13432 static void
13433 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13434 {
13435 	ASSERT(un != NULL);
13436 	ASSERT(bp != NULL);
13437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13438 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13439 
13440 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13441 
13442 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13443 		/*
13444 		 * Set up to return the failed buf back up the 'iodone'
13445 		 * side of the calling chain.
13446 		 */
13447 		bioerror(bp, EIO);
13448 		bp->b_resid = bp->b_bcount;
13449 
13450 		SD_BEGIN_IODONE(index, un, bp);
13451 
13452 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13453 		return;
13454 	}
13455 
13456 	SD_NEXT_IOSTART(index, un, bp);
13457 
13458 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13459 }
13460 
13461 
13462 /*
13463  *    Function: sd_pm_iodone
13464  *
13465  * Description: iodone-side routine for power mangement.
13466  *
13467  *     Context: may be called from interrupt context
13468  */
13469 
13470 static void
13471 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13472 {
13473 	ASSERT(un != NULL);
13474 	ASSERT(bp != NULL);
13475 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13476 
13477 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13478 
13479 	/*
13480 	 * After attach the following flag is only read, so don't
13481 	 * take the penalty of acquiring a mutex for it.
13482 	 */
13483 	if (un->un_f_pm_is_enabled == TRUE) {
13484 		sd_pm_exit(un);
13485 	}
13486 
13487 	SD_NEXT_IODONE(index, un, bp);
13488 
13489 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13490 }
13491 
13492 
13493 /*
13494  *    Function: sd_core_iostart
13495  *
13496  * Description: Primary driver function for enqueuing buf(9S) structs from
13497  *		the system and initiating IO to the target device
13498  *
13499  *     Context: Kernel thread context. Can sleep.
13500  *
13501  * Assumptions:  - The given xp->xb_blkno is absolute
13502  *		   (ie, relative to the start of the device).
13503  *		 - The IO is to be done using the native blocksize of
13504  *		   the device, as specified in un->un_tgt_blocksize.
13505  */
13506 /* ARGSUSED */
13507 static void
13508 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13509 {
13510 	struct sd_xbuf *xp;
13511 
13512 	ASSERT(un != NULL);
13513 	ASSERT(bp != NULL);
13514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13515 	ASSERT(bp->b_resid == 0);
13516 
13517 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13518 
13519 	xp = SD_GET_XBUF(bp);
13520 	ASSERT(xp != NULL);
13521 
13522 	mutex_enter(SD_MUTEX(un));
13523 
13524 	/*
13525 	 * If we are currently in the failfast state, fail any new IO
13526 	 * that has B_FAILFAST set, then return.
13527 	 */
13528 	if ((bp->b_flags & B_FAILFAST) &&
13529 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13530 		mutex_exit(SD_MUTEX(un));
13531 		bioerror(bp, EIO);
13532 		bp->b_resid = bp->b_bcount;
13533 		SD_BEGIN_IODONE(index, un, bp);
13534 		return;
13535 	}
13536 
13537 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13538 		/*
13539 		 * Priority command -- transport it immediately.
13540 		 *
13541 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13542 		 * because all direct priority commands should be associated
13543 		 * with error recovery actions which we don't want to retry.
13544 		 */
13545 		sd_start_cmds(un, bp);
13546 	} else {
13547 		/*
13548 		 * Normal command -- add it to the wait queue, then start
13549 		 * transporting commands from the wait queue.
13550 		 */
13551 		sd_add_buf_to_waitq(un, bp);
13552 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13553 		sd_start_cmds(un, NULL);
13554 	}
13555 
13556 	mutex_exit(SD_MUTEX(un));
13557 
13558 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13559 }
13560 
13561 
13562 /*
13563  *    Function: sd_init_cdb_limits
13564  *
13565  * Description: This is to handle scsi_pkt initialization differences
13566  *		between the driver platforms.
13567  *
13568  *		Legacy behaviors:
13569  *
13570  *		If the block number or the sector count exceeds the
13571  *		capabilities of a Group 0 command, shift over to a
13572  *		Group 1 command. We don't blindly use Group 1
13573  *		commands because a) some drives (CDC Wren IVs) get a
13574  *		bit confused, and b) there is probably a fair amount
13575  *		of speed difference for a target to receive and decode
13576  *		a 10 byte command instead of a 6 byte command.
13577  *
13578  *		The xfer time difference of 6 vs 10 byte CDBs is
13579  *		still significant so this code is still worthwhile.
13580  *		10 byte CDBs are very inefficient with the fas HBA driver
13581  *		and older disks. Each CDB byte took 1 usec with some
13582  *		popular disks.
13583  *
13584  *     Context: Must be called at attach time
13585  */
13586 
13587 static void
13588 sd_init_cdb_limits(struct sd_lun *un)
13589 {
13590 	int hba_cdb_limit;
13591 
13592 	/*
13593 	 * Use CDB_GROUP1 commands for most devices except for
13594 	 * parallel SCSI fixed drives in which case we get better
13595 	 * performance using CDB_GROUP0 commands (where applicable).
13596 	 */
13597 	un->un_mincdb = SD_CDB_GROUP1;
13598 #if !defined(__fibre)
13599 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13600 	    !un->un_f_has_removable_media) {
13601 		un->un_mincdb = SD_CDB_GROUP0;
13602 	}
13603 #endif
13604 
13605 	/*
13606 	 * Try to read the max-cdb-length supported by HBA.
13607 	 */
13608 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13609 	if (0 >= un->un_max_hba_cdb) {
13610 		un->un_max_hba_cdb = CDB_GROUP4;
13611 		hba_cdb_limit = SD_CDB_GROUP4;
13612 	} else if (0 < un->un_max_hba_cdb &&
13613 	    un->un_max_hba_cdb < CDB_GROUP1) {
13614 		hba_cdb_limit = SD_CDB_GROUP0;
13615 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13616 	    un->un_max_hba_cdb < CDB_GROUP5) {
13617 		hba_cdb_limit = SD_CDB_GROUP1;
13618 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13619 	    un->un_max_hba_cdb < CDB_GROUP4) {
13620 		hba_cdb_limit = SD_CDB_GROUP5;
13621 	} else {
13622 		hba_cdb_limit = SD_CDB_GROUP4;
13623 	}
13624 
13625 	/*
13626 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13627 	 * commands for fixed disks unless we are building for a 32 bit
13628 	 * kernel.
13629 	 */
13630 #ifdef _LP64
13631 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13632 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13633 #else
13634 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13635 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13636 #endif
13637 
13638 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13639 	    ? sizeof (struct scsi_arq_status) : 1);
13640 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13641 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13642 }
13643 
13644 
13645 /*
13646  *    Function: sd_initpkt_for_buf
13647  *
13648  * Description: Allocate and initialize for transport a scsi_pkt struct,
13649  *		based upon the info specified in the given buf struct.
13650  *
13651  *		Assumes the xb_blkno in the request is absolute (ie,
13652  *		relative to the start of the device (NOT partition!).
13653  *		Also assumes that the request is using the native block
13654  *		size of the device (as returned by the READ CAPACITY
13655  *		command).
13656  *
13657  * Return Code: SD_PKT_ALLOC_SUCCESS
13658  *		SD_PKT_ALLOC_FAILURE
13659  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13660  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13661  *
13662  *     Context: Kernel thread and may be called from software interrupt context
13663  *		as part of a sdrunout callback. This function may not block or
13664  *		call routines that block
13665  */
13666 
13667 static int
13668 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13669 {
13670 	struct sd_xbuf	*xp;
13671 	struct scsi_pkt *pktp = NULL;
13672 	struct sd_lun	*un;
13673 	size_t		blockcount;
13674 	daddr_t		startblock;
13675 	int		rval;
13676 	int		cmd_flags;
13677 
13678 	ASSERT(bp != NULL);
13679 	ASSERT(pktpp != NULL);
13680 	xp = SD_GET_XBUF(bp);
13681 	ASSERT(xp != NULL);
13682 	un = SD_GET_UN(bp);
13683 	ASSERT(un != NULL);
13684 	ASSERT(mutex_owned(SD_MUTEX(un)));
13685 	ASSERT(bp->b_resid == 0);
13686 
13687 	SD_TRACE(SD_LOG_IO_CORE, un,
13688 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13689 
13690 	mutex_exit(SD_MUTEX(un));
13691 
13692 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13693 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13694 		/*
13695 		 * Already have a scsi_pkt -- just need DMA resources.
13696 		 * We must recompute the CDB in case the mapping returns
13697 		 * a nonzero pkt_resid.
13698 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13699 		 * that is being retried, the unmap/remap of the DMA resouces
13700 		 * will result in the entire transfer starting over again
13701 		 * from the very first block.
13702 		 */
13703 		ASSERT(xp->xb_pktp != NULL);
13704 		pktp = xp->xb_pktp;
13705 	} else {
13706 		pktp = NULL;
13707 	}
13708 #endif /* __i386 || __amd64 */
13709 
13710 	startblock = xp->xb_blkno;	/* Absolute block num. */
13711 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13712 
13713 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13714 
13715 	/*
13716 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13717 	 * call scsi_init_pkt, and build the CDB.
13718 	 */
13719 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13720 	    cmd_flags, sdrunout, (caddr_t)un,
13721 	    startblock, blockcount);
13722 
13723 	if (rval == 0) {
13724 		/*
13725 		 * Success.
13726 		 *
13727 		 * If partial DMA is being used and required for this transfer.
13728 		 * set it up here.
13729 		 */
13730 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13731 		    (pktp->pkt_resid != 0)) {
13732 
13733 			/*
13734 			 * Save the CDB length and pkt_resid for the
13735 			 * next xfer
13736 			 */
13737 			xp->xb_dma_resid = pktp->pkt_resid;
13738 
13739 			/* rezero resid */
13740 			pktp->pkt_resid = 0;
13741 
13742 		} else {
13743 			xp->xb_dma_resid = 0;
13744 		}
13745 
13746 		pktp->pkt_flags = un->un_tagflags;
13747 		pktp->pkt_time  = un->un_cmd_timeout;
13748 		pktp->pkt_comp  = sdintr;
13749 
13750 		pktp->pkt_private = bp;
13751 		*pktpp = pktp;
13752 
13753 		SD_TRACE(SD_LOG_IO_CORE, un,
13754 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13755 
13756 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13757 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13758 #endif
13759 
13760 		mutex_enter(SD_MUTEX(un));
13761 		return (SD_PKT_ALLOC_SUCCESS);
13762 
13763 	}
13764 
13765 	/*
13766 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13767 	 * from sd_setup_rw_pkt.
13768 	 */
13769 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13770 
13771 	if (rval == SD_PKT_ALLOC_FAILURE) {
13772 		*pktpp = NULL;
13773 		/*
13774 		 * Set the driver state to RWAIT to indicate the driver
13775 		 * is waiting on resource allocations. The driver will not
13776 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13777 		 */
13778 		mutex_enter(SD_MUTEX(un));
13779 		New_state(un, SD_STATE_RWAIT);
13780 
13781 		SD_ERROR(SD_LOG_IO_CORE, un,
13782 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13783 
13784 		if ((bp->b_flags & B_ERROR) != 0) {
13785 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13786 		}
13787 		return (SD_PKT_ALLOC_FAILURE);
13788 	} else {
13789 		/*
13790 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13791 		 *
13792 		 * This should never happen.  Maybe someone messed with the
13793 		 * kernel's minphys?
13794 		 */
13795 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13796 		    "Request rejected: too large for CDB: "
13797 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13798 		SD_ERROR(SD_LOG_IO_CORE, un,
13799 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13800 		mutex_enter(SD_MUTEX(un));
13801 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13802 
13803 	}
13804 }
13805 
13806 
13807 /*
13808  *    Function: sd_destroypkt_for_buf
13809  *
13810  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13811  *
13812  *     Context: Kernel thread or interrupt context
13813  */
13814 
13815 static void
13816 sd_destroypkt_for_buf(struct buf *bp)
13817 {
13818 	ASSERT(bp != NULL);
13819 	ASSERT(SD_GET_UN(bp) != NULL);
13820 
13821 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13822 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13823 
13824 	ASSERT(SD_GET_PKTP(bp) != NULL);
13825 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13826 
13827 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13828 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13829 }
13830 
13831 /*
13832  *    Function: sd_setup_rw_pkt
13833  *
13834  * Description: Determines appropriate CDB group for the requested LBA
13835  *		and transfer length, calls scsi_init_pkt, and builds
13836  *		the CDB.  Do not use for partial DMA transfers except
13837  *		for the initial transfer since the CDB size must
13838  *		remain constant.
13839  *
13840  *     Context: Kernel thread and may be called from software interrupt
13841  *		context as part of a sdrunout callback. This function may not
13842  *		block or call routines that block
13843  */
13844 
13845 
13846 int
13847 sd_setup_rw_pkt(struct sd_lun *un,
13848     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13849     int (*callback)(caddr_t), caddr_t callback_arg,
13850     diskaddr_t lba, uint32_t blockcount)
13851 {
13852 	struct scsi_pkt *return_pktp;
13853 	union scsi_cdb *cdbp;
13854 	struct sd_cdbinfo *cp = NULL;
13855 	int i;
13856 
13857 	/*
13858 	 * See which size CDB to use, based upon the request.
13859 	 */
13860 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13861 
13862 		/*
13863 		 * Check lba and block count against sd_cdbtab limits.
13864 		 * In the partial DMA case, we have to use the same size
13865 		 * CDB for all the transfers.  Check lba + blockcount
13866 		 * against the max LBA so we know that segment of the
13867 		 * transfer can use the CDB we select.
13868 		 */
13869 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13870 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13871 
13872 			/*
13873 			 * The command will fit into the CDB type
13874 			 * specified by sd_cdbtab[i].
13875 			 */
13876 			cp = sd_cdbtab + i;
13877 
13878 			/*
13879 			 * Call scsi_init_pkt so we can fill in the
13880 			 * CDB.
13881 			 */
13882 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13883 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13884 			    flags, callback, callback_arg);
13885 
13886 			if (return_pktp != NULL) {
13887 
13888 				/*
13889 				 * Return new value of pkt
13890 				 */
13891 				*pktpp = return_pktp;
13892 
13893 				/*
13894 				 * To be safe, zero the CDB insuring there is
13895 				 * no leftover data from a previous command.
13896 				 */
13897 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13898 
13899 				/*
13900 				 * Handle partial DMA mapping
13901 				 */
13902 				if (return_pktp->pkt_resid != 0) {
13903 
13904 					/*
13905 					 * Not going to xfer as many blocks as
13906 					 * originally expected
13907 					 */
13908 					blockcount -=
13909 					    SD_BYTES2TGTBLOCKS(un,
13910 					    return_pktp->pkt_resid);
13911 				}
13912 
13913 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13914 
13915 				/*
13916 				 * Set command byte based on the CDB
13917 				 * type we matched.
13918 				 */
13919 				cdbp->scc_cmd = cp->sc_grpmask |
13920 				    ((bp->b_flags & B_READ) ?
13921 				    SCMD_READ : SCMD_WRITE);
13922 
13923 				SD_FILL_SCSI1_LUN(un, return_pktp);
13924 
13925 				/*
13926 				 * Fill in LBA and length
13927 				 */
13928 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13929 				    (cp->sc_grpcode == CDB_GROUP4) ||
13930 				    (cp->sc_grpcode == CDB_GROUP0) ||
13931 				    (cp->sc_grpcode == CDB_GROUP5));
13932 
13933 				if (cp->sc_grpcode == CDB_GROUP1) {
13934 					FORMG1ADDR(cdbp, lba);
13935 					FORMG1COUNT(cdbp, blockcount);
13936 					return (0);
13937 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13938 					FORMG4LONGADDR(cdbp, lba);
13939 					FORMG4COUNT(cdbp, blockcount);
13940 					return (0);
13941 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13942 					FORMG0ADDR(cdbp, lba);
13943 					FORMG0COUNT(cdbp, blockcount);
13944 					return (0);
13945 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13946 					FORMG5ADDR(cdbp, lba);
13947 					FORMG5COUNT(cdbp, blockcount);
13948 					return (0);
13949 				}
13950 
13951 				/*
13952 				 * It should be impossible to not match one
13953 				 * of the CDB types above, so we should never
13954 				 * reach this point.  Set the CDB command byte
13955 				 * to test-unit-ready to avoid writing
13956 				 * to somewhere we don't intend.
13957 				 */
13958 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13959 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13960 			} else {
13961 				/*
13962 				 * Couldn't get scsi_pkt
13963 				 */
13964 				return (SD_PKT_ALLOC_FAILURE);
13965 			}
13966 		}
13967 	}
13968 
13969 	/*
13970 	 * None of the available CDB types were suitable.  This really
13971 	 * should never happen:  on a 64 bit system we support
13972 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13973 	 * and on a 32 bit system we will refuse to bind to a device
13974 	 * larger than 2TB so addresses will never be larger than 32 bits.
13975 	 */
13976 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13977 }
13978 
13979 /*
13980  *    Function: sd_setup_next_rw_pkt
13981  *
13982  * Description: Setup packet for partial DMA transfers, except for the
13983  * 		initial transfer.  sd_setup_rw_pkt should be used for
13984  *		the initial transfer.
13985  *
13986  *     Context: Kernel thread and may be called from interrupt context.
13987  */
13988 
13989 int
13990 sd_setup_next_rw_pkt(struct sd_lun *un,
13991     struct scsi_pkt *pktp, struct buf *bp,
13992     diskaddr_t lba, uint32_t blockcount)
13993 {
13994 	uchar_t com;
13995 	union scsi_cdb *cdbp;
13996 	uchar_t cdb_group_id;
13997 
13998 	ASSERT(pktp != NULL);
13999 	ASSERT(pktp->pkt_cdbp != NULL);
14000 
14001 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14002 	com = cdbp->scc_cmd;
14003 	cdb_group_id = CDB_GROUPID(com);
14004 
14005 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14006 	    (cdb_group_id == CDB_GROUPID_1) ||
14007 	    (cdb_group_id == CDB_GROUPID_4) ||
14008 	    (cdb_group_id == CDB_GROUPID_5));
14009 
14010 	/*
14011 	 * Move pkt to the next portion of the xfer.
14012 	 * func is NULL_FUNC so we do not have to release
14013 	 * the disk mutex here.
14014 	 */
14015 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14016 	    NULL_FUNC, NULL) == pktp) {
14017 		/* Success.  Handle partial DMA */
14018 		if (pktp->pkt_resid != 0) {
14019 			blockcount -=
14020 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14021 		}
14022 
14023 		cdbp->scc_cmd = com;
14024 		SD_FILL_SCSI1_LUN(un, pktp);
14025 		if (cdb_group_id == CDB_GROUPID_1) {
14026 			FORMG1ADDR(cdbp, lba);
14027 			FORMG1COUNT(cdbp, blockcount);
14028 			return (0);
14029 		} else if (cdb_group_id == CDB_GROUPID_4) {
14030 			FORMG4LONGADDR(cdbp, lba);
14031 			FORMG4COUNT(cdbp, blockcount);
14032 			return (0);
14033 		} else if (cdb_group_id == CDB_GROUPID_0) {
14034 			FORMG0ADDR(cdbp, lba);
14035 			FORMG0COUNT(cdbp, blockcount);
14036 			return (0);
14037 		} else if (cdb_group_id == CDB_GROUPID_5) {
14038 			FORMG5ADDR(cdbp, lba);
14039 			FORMG5COUNT(cdbp, blockcount);
14040 			return (0);
14041 		}
14042 
14043 		/* Unreachable */
14044 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14045 	}
14046 
14047 	/*
14048 	 * Error setting up next portion of cmd transfer.
14049 	 * Something is definitely very wrong and this
14050 	 * should not happen.
14051 	 */
14052 	return (SD_PKT_ALLOC_FAILURE);
14053 }
14054 
14055 /*
14056  *    Function: sd_initpkt_for_uscsi
14057  *
14058  * Description: Allocate and initialize for transport a scsi_pkt struct,
14059  *		based upon the info specified in the given uscsi_cmd struct.
14060  *
14061  * Return Code: SD_PKT_ALLOC_SUCCESS
14062  *		SD_PKT_ALLOC_FAILURE
14063  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14064  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14065  *
14066  *     Context: Kernel thread and may be called from software interrupt context
14067  *		as part of a sdrunout callback. This function may not block or
14068  *		call routines that block
14069  */
14070 
14071 static int
14072 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14073 {
14074 	struct uscsi_cmd *uscmd;
14075 	struct sd_xbuf	*xp;
14076 	struct scsi_pkt	*pktp;
14077 	struct sd_lun	*un;
14078 	uint32_t	flags = 0;
14079 
14080 	ASSERT(bp != NULL);
14081 	ASSERT(pktpp != NULL);
14082 	xp = SD_GET_XBUF(bp);
14083 	ASSERT(xp != NULL);
14084 	un = SD_GET_UN(bp);
14085 	ASSERT(un != NULL);
14086 	ASSERT(mutex_owned(SD_MUTEX(un)));
14087 
14088 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14089 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14090 	ASSERT(uscmd != NULL);
14091 
14092 	SD_TRACE(SD_LOG_IO_CORE, un,
14093 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14094 
14095 	/*
14096 	 * Allocate the scsi_pkt for the command.
14097 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14098 	 *	 during scsi_init_pkt time and will continue to use the
14099 	 *	 same path as long as the same scsi_pkt is used without
14100 	 *	 intervening scsi_dma_free(). Since uscsi command does
14101 	 *	 not call scsi_dmafree() before retry failed command, it
14102 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14103 	 *	 set such that scsi_vhci can use other available path for
14104 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14105 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14106 	 */
14107 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14108 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14109 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14110 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14111 		    - sizeof (struct scsi_extended_sense)), 0,
14112 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14113 		    sdrunout, (caddr_t)un);
14114 	} else {
14115 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14116 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14117 		    sizeof (struct scsi_arq_status), 0,
14118 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14119 		    sdrunout, (caddr_t)un);
14120 	}
14121 
14122 	if (pktp == NULL) {
14123 		*pktpp = NULL;
14124 		/*
14125 		 * Set the driver state to RWAIT to indicate the driver
14126 		 * is waiting on resource allocations. The driver will not
14127 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14128 		 */
14129 		New_state(un, SD_STATE_RWAIT);
14130 
14131 		SD_ERROR(SD_LOG_IO_CORE, un,
14132 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14133 
14134 		if ((bp->b_flags & B_ERROR) != 0) {
14135 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14136 		}
14137 		return (SD_PKT_ALLOC_FAILURE);
14138 	}
14139 
14140 	/*
14141 	 * We do not do DMA breakup for USCSI commands, so return failure
14142 	 * here if all the needed DMA resources were not allocated.
14143 	 */
14144 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14145 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14146 		scsi_destroy_pkt(pktp);
14147 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14148 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14149 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14150 	}
14151 
14152 	/* Init the cdb from the given uscsi struct */
14153 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14154 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14155 
14156 	SD_FILL_SCSI1_LUN(un, pktp);
14157 
14158 	/*
14159 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14160 	 * for listing of the supported flags.
14161 	 */
14162 
14163 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14164 		flags |= FLAG_SILENT;
14165 	}
14166 
14167 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14168 		flags |= FLAG_DIAGNOSE;
14169 	}
14170 
14171 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14172 		flags |= FLAG_ISOLATE;
14173 	}
14174 
14175 	if (un->un_f_is_fibre == FALSE) {
14176 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14177 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14178 		}
14179 	}
14180 
14181 	/*
14182 	 * Set the pkt flags here so we save time later.
14183 	 * Note: These flags are NOT in the uscsi man page!!!
14184 	 */
14185 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14186 		flags |= FLAG_HEAD;
14187 	}
14188 
14189 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14190 		flags |= FLAG_NOINTR;
14191 	}
14192 
14193 	/*
14194 	 * For tagged queueing, things get a bit complicated.
14195 	 * Check first for head of queue and last for ordered queue.
14196 	 * If neither head nor order, use the default driver tag flags.
14197 	 */
14198 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14199 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14200 			flags |= FLAG_HTAG;
14201 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14202 			flags |= FLAG_OTAG;
14203 		} else {
14204 			flags |= un->un_tagflags & FLAG_TAGMASK;
14205 		}
14206 	}
14207 
14208 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14209 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14210 	}
14211 
14212 	pktp->pkt_flags = flags;
14213 
14214 	/* Transfer uscsi information to scsi_pkt */
14215 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14216 
14217 	/* Copy the caller's CDB into the pkt... */
14218 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14219 
14220 	if (uscmd->uscsi_timeout == 0) {
14221 		pktp->pkt_time = un->un_uscsi_timeout;
14222 	} else {
14223 		pktp->pkt_time = uscmd->uscsi_timeout;
14224 	}
14225 
14226 	/* need it later to identify USCSI request in sdintr */
14227 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14228 
14229 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14230 
14231 	pktp->pkt_private = bp;
14232 	pktp->pkt_comp = sdintr;
14233 	*pktpp = pktp;
14234 
14235 	SD_TRACE(SD_LOG_IO_CORE, un,
14236 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14237 
14238 	return (SD_PKT_ALLOC_SUCCESS);
14239 }
14240 
14241 
14242 /*
14243  *    Function: sd_destroypkt_for_uscsi
14244  *
14245  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14246  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14247  *		struct.
14248  *
14249  *     Context: May be called under interrupt context
14250  */
14251 
14252 static void
14253 sd_destroypkt_for_uscsi(struct buf *bp)
14254 {
14255 	struct uscsi_cmd *uscmd;
14256 	struct sd_xbuf	*xp;
14257 	struct scsi_pkt	*pktp;
14258 	struct sd_lun	*un;
14259 	struct sd_uscsi_info *suip;
14260 
14261 	ASSERT(bp != NULL);
14262 	xp = SD_GET_XBUF(bp);
14263 	ASSERT(xp != NULL);
14264 	un = SD_GET_UN(bp);
14265 	ASSERT(un != NULL);
14266 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14267 	pktp = SD_GET_PKTP(bp);
14268 	ASSERT(pktp != NULL);
14269 
14270 	SD_TRACE(SD_LOG_IO_CORE, un,
14271 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14272 
14273 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14274 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14275 	ASSERT(uscmd != NULL);
14276 
14277 	/* Save the status and the residual into the uscsi_cmd struct */
14278 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14279 	uscmd->uscsi_resid  = bp->b_resid;
14280 
14281 	/* Transfer scsi_pkt information to uscsi */
14282 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14283 
14284 	/*
14285 	 * If enabled, copy any saved sense data into the area specified
14286 	 * by the uscsi command.
14287 	 */
14288 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14289 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14290 		/*
14291 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14292 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14293 		 */
14294 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14295 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14296 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14297 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14298 			    MAX_SENSE_LENGTH);
14299 		} else {
14300 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14301 			    SENSE_LENGTH);
14302 		}
14303 	}
14304 	/*
14305 	 * The following assignments are for SCSI FMA.
14306 	 */
14307 	ASSERT(xp->xb_private != NULL);
14308 	suip = (struct sd_uscsi_info *)xp->xb_private;
14309 	suip->ui_pkt_reason = pktp->pkt_reason;
14310 	suip->ui_pkt_state = pktp->pkt_state;
14311 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14312 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14313 
14314 	/* We are done with the scsi_pkt; free it now */
14315 	ASSERT(SD_GET_PKTP(bp) != NULL);
14316 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14317 
14318 	SD_TRACE(SD_LOG_IO_CORE, un,
14319 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14320 }
14321 
14322 
14323 /*
14324  *    Function: sd_bioclone_alloc
14325  *
14326  * Description: Allocate a buf(9S) and init it as per the given buf
14327  *		and the various arguments.  The associated sd_xbuf
14328  *		struct is (nearly) duplicated.  The struct buf *bp
14329  *		argument is saved in new_xp->xb_private.
14330  *
14331  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14332  *		datalen - size of data area for the shadow bp
14333  *		blkno - starting LBA
14334  *		func - function pointer for b_iodone in the shadow buf. (May
14335  *			be NULL if none.)
14336  *
14337  * Return Code: Pointer to allocates buf(9S) struct
14338  *
14339  *     Context: Can sleep.
14340  */
14341 
14342 static struct buf *
14343 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14344 	daddr_t blkno, int (*func)(struct buf *))
14345 {
14346 	struct	sd_lun	*un;
14347 	struct	sd_xbuf	*xp;
14348 	struct	sd_xbuf	*new_xp;
14349 	struct	buf	*new_bp;
14350 
14351 	ASSERT(bp != NULL);
14352 	xp = SD_GET_XBUF(bp);
14353 	ASSERT(xp != NULL);
14354 	un = SD_GET_UN(bp);
14355 	ASSERT(un != NULL);
14356 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14357 
14358 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14359 	    NULL, KM_SLEEP);
14360 
14361 	new_bp->b_lblkno	= blkno;
14362 
14363 	/*
14364 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14365 	 * original xbuf into it.
14366 	 */
14367 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14368 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14369 
14370 	/*
14371 	 * The given bp is automatically saved in the xb_private member
14372 	 * of the new xbuf.  Callers are allowed to depend on this.
14373 	 */
14374 	new_xp->xb_private = bp;
14375 
14376 	new_bp->b_private  = new_xp;
14377 
14378 	return (new_bp);
14379 }
14380 
14381 /*
14382  *    Function: sd_shadow_buf_alloc
14383  *
14384  * Description: Allocate a buf(9S) and init it as per the given buf
14385  *		and the various arguments.  The associated sd_xbuf
14386  *		struct is (nearly) duplicated.  The struct buf *bp
14387  *		argument is saved in new_xp->xb_private.
14388  *
14389  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14390  *		datalen - size of data area for the shadow bp
14391  *		bflags - B_READ or B_WRITE (pseudo flag)
14392  *		blkno - starting LBA
14393  *		func - function pointer for b_iodone in the shadow buf. (May
14394  *			be NULL if none.)
14395  *
14396  * Return Code: Pointer to allocates buf(9S) struct
14397  *
14398  *     Context: Can sleep.
14399  */
14400 
14401 static struct buf *
14402 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14403 	daddr_t blkno, int (*func)(struct buf *))
14404 {
14405 	struct	sd_lun	*un;
14406 	struct	sd_xbuf	*xp;
14407 	struct	sd_xbuf	*new_xp;
14408 	struct	buf	*new_bp;
14409 
14410 	ASSERT(bp != NULL);
14411 	xp = SD_GET_XBUF(bp);
14412 	ASSERT(xp != NULL);
14413 	un = SD_GET_UN(bp);
14414 	ASSERT(un != NULL);
14415 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14416 
14417 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14418 		bp_mapin(bp);
14419 	}
14420 
14421 	bflags &= (B_READ | B_WRITE);
14422 #if defined(__i386) || defined(__amd64)
14423 	new_bp = getrbuf(KM_SLEEP);
14424 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14425 	new_bp->b_bcount = datalen;
14426 	new_bp->b_flags = bflags |
14427 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14428 #else
14429 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14430 	    datalen, bflags, SLEEP_FUNC, NULL);
14431 #endif
14432 	new_bp->av_forw	= NULL;
14433 	new_bp->av_back	= NULL;
14434 	new_bp->b_dev	= bp->b_dev;
14435 	new_bp->b_blkno	= blkno;
14436 	new_bp->b_iodone = func;
14437 	new_bp->b_edev	= bp->b_edev;
14438 	new_bp->b_resid	= 0;
14439 
14440 	/* We need to preserve the B_FAILFAST flag */
14441 	if (bp->b_flags & B_FAILFAST) {
14442 		new_bp->b_flags |= B_FAILFAST;
14443 	}
14444 
14445 	/*
14446 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14447 	 * original xbuf into it.
14448 	 */
14449 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14450 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14451 
14452 	/* Need later to copy data between the shadow buf & original buf! */
14453 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14454 
14455 	/*
14456 	 * The given bp is automatically saved in the xb_private member
14457 	 * of the new xbuf.  Callers are allowed to depend on this.
14458 	 */
14459 	new_xp->xb_private = bp;
14460 
14461 	new_bp->b_private  = new_xp;
14462 
14463 	return (new_bp);
14464 }
14465 
14466 /*
14467  *    Function: sd_bioclone_free
14468  *
14469  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14470  *		in the larger than partition operation.
14471  *
14472  *     Context: May be called under interrupt context
14473  */
14474 
14475 static void
14476 sd_bioclone_free(struct buf *bp)
14477 {
14478 	struct sd_xbuf	*xp;
14479 
14480 	ASSERT(bp != NULL);
14481 	xp = SD_GET_XBUF(bp);
14482 	ASSERT(xp != NULL);
14483 
14484 	/*
14485 	 * Call bp_mapout() before freeing the buf,  in case a lower
14486 	 * layer or HBA  had done a bp_mapin().  we must do this here
14487 	 * as we are the "originator" of the shadow buf.
14488 	 */
14489 	bp_mapout(bp);
14490 
14491 	/*
14492 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14493 	 * never gets confused by a stale value in this field. (Just a little
14494 	 * extra defensiveness here.)
14495 	 */
14496 	bp->b_iodone = NULL;
14497 
14498 	freerbuf(bp);
14499 
14500 	kmem_free(xp, sizeof (struct sd_xbuf));
14501 }
14502 
14503 /*
14504  *    Function: sd_shadow_buf_free
14505  *
14506  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14507  *
14508  *     Context: May be called under interrupt context
14509  */
14510 
14511 static void
14512 sd_shadow_buf_free(struct buf *bp)
14513 {
14514 	struct sd_xbuf	*xp;
14515 
14516 	ASSERT(bp != NULL);
14517 	xp = SD_GET_XBUF(bp);
14518 	ASSERT(xp != NULL);
14519 
14520 #if defined(__sparc)
14521 	/*
14522 	 * Call bp_mapout() before freeing the buf,  in case a lower
14523 	 * layer or HBA  had done a bp_mapin().  we must do this here
14524 	 * as we are the "originator" of the shadow buf.
14525 	 */
14526 	bp_mapout(bp);
14527 #endif
14528 
14529 	/*
14530 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14531 	 * never gets confused by a stale value in this field. (Just a little
14532 	 * extra defensiveness here.)
14533 	 */
14534 	bp->b_iodone = NULL;
14535 
14536 #if defined(__i386) || defined(__amd64)
14537 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14538 	freerbuf(bp);
14539 #else
14540 	scsi_free_consistent_buf(bp);
14541 #endif
14542 
14543 	kmem_free(xp, sizeof (struct sd_xbuf));
14544 }
14545 
14546 
14547 /*
14548  *    Function: sd_print_transport_rejected_message
14549  *
14550  * Description: This implements the ludicrously complex rules for printing
14551  *		a "transport rejected" message.  This is to address the
14552  *		specific problem of having a flood of this error message
14553  *		produced when a failover occurs.
14554  *
14555  *     Context: Any.
14556  */
14557 
14558 static void
14559 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14560 	int code)
14561 {
14562 	ASSERT(un != NULL);
14563 	ASSERT(mutex_owned(SD_MUTEX(un)));
14564 	ASSERT(xp != NULL);
14565 
14566 	/*
14567 	 * Print the "transport rejected" message under the following
14568 	 * conditions:
14569 	 *
14570 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14571 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14572 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14573 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14574 	 *   scsi_transport(9F) (which indicates that the target might have
14575 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14576 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14577 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14578 	 *   from scsi_transport().
14579 	 *
14580 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14581 	 * the preceeding cases in order for the message to be printed.
14582 	 */
14583 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14584 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14585 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14586 		    (code != TRAN_FATAL_ERROR) ||
14587 		    (un->un_tran_fatal_count == 1)) {
14588 			switch (code) {
14589 			case TRAN_BADPKT:
14590 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14591 				    "transport rejected bad packet\n");
14592 				break;
14593 			case TRAN_FATAL_ERROR:
14594 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14595 				    "transport rejected fatal error\n");
14596 				break;
14597 			default:
14598 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14599 				    "transport rejected (%d)\n", code);
14600 				break;
14601 			}
14602 		}
14603 	}
14604 }
14605 
14606 
14607 /*
14608  *    Function: sd_add_buf_to_waitq
14609  *
14610  * Description: Add the given buf(9S) struct to the wait queue for the
14611  *		instance.  If sorting is enabled, then the buf is added
14612  *		to the queue via an elevator sort algorithm (a la
14613  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14614  *		If sorting is not enabled, then the buf is just added
14615  *		to the end of the wait queue.
14616  *
14617  * Return Code: void
14618  *
14619  *     Context: Does not sleep/block, therefore technically can be called
14620  *		from any context.  However if sorting is enabled then the
14621  *		execution time is indeterminate, and may take long if
14622  *		the wait queue grows large.
14623  */
14624 
14625 static void
14626 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14627 {
14628 	struct buf *ap;
14629 
14630 	ASSERT(bp != NULL);
14631 	ASSERT(un != NULL);
14632 	ASSERT(mutex_owned(SD_MUTEX(un)));
14633 
14634 	/* If the queue is empty, add the buf as the only entry & return. */
14635 	if (un->un_waitq_headp == NULL) {
14636 		ASSERT(un->un_waitq_tailp == NULL);
14637 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14638 		bp->av_forw = NULL;
14639 		return;
14640 	}
14641 
14642 	ASSERT(un->un_waitq_tailp != NULL);
14643 
14644 	/*
14645 	 * If sorting is disabled, just add the buf to the tail end of
14646 	 * the wait queue and return.
14647 	 */
14648 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14649 		un->un_waitq_tailp->av_forw = bp;
14650 		un->un_waitq_tailp = bp;
14651 		bp->av_forw = NULL;
14652 		return;
14653 	}
14654 
14655 	/*
14656 	 * Sort thru the list of requests currently on the wait queue
14657 	 * and add the new buf request at the appropriate position.
14658 	 *
14659 	 * The un->un_waitq_headp is an activity chain pointer on which
14660 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14661 	 * first queue holds those requests which are positioned after
14662 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14663 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14664 	 * Thus we implement a one way scan, retracting after reaching
14665 	 * the end of the drive to the first request on the second
14666 	 * queue, at which time it becomes the first queue.
14667 	 * A one-way scan is natural because of the way UNIX read-ahead
14668 	 * blocks are allocated.
14669 	 *
14670 	 * If we lie after the first request, then we must locate the
14671 	 * second request list and add ourselves to it.
14672 	 */
14673 	ap = un->un_waitq_headp;
14674 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14675 		while (ap->av_forw != NULL) {
14676 			/*
14677 			 * Look for an "inversion" in the (normally
14678 			 * ascending) block numbers. This indicates
14679 			 * the start of the second request list.
14680 			 */
14681 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14682 				/*
14683 				 * Search the second request list for the
14684 				 * first request at a larger block number.
14685 				 * We go before that; however if there is
14686 				 * no such request, we go at the end.
14687 				 */
14688 				do {
14689 					if (SD_GET_BLKNO(bp) <
14690 					    SD_GET_BLKNO(ap->av_forw)) {
14691 						goto insert;
14692 					}
14693 					ap = ap->av_forw;
14694 				} while (ap->av_forw != NULL);
14695 				goto insert;		/* after last */
14696 			}
14697 			ap = ap->av_forw;
14698 		}
14699 
14700 		/*
14701 		 * No inversions... we will go after the last, and
14702 		 * be the first request in the second request list.
14703 		 */
14704 		goto insert;
14705 	}
14706 
14707 	/*
14708 	 * Request is at/after the current request...
14709 	 * sort in the first request list.
14710 	 */
14711 	while (ap->av_forw != NULL) {
14712 		/*
14713 		 * We want to go after the current request (1) if
14714 		 * there is an inversion after it (i.e. it is the end
14715 		 * of the first request list), or (2) if the next
14716 		 * request is a larger block no. than our request.
14717 		 */
14718 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14719 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14720 			goto insert;
14721 		}
14722 		ap = ap->av_forw;
14723 	}
14724 
14725 	/*
14726 	 * Neither a second list nor a larger request, therefore
14727 	 * we go at the end of the first list (which is the same
14728 	 * as the end of the whole schebang).
14729 	 */
14730 insert:
14731 	bp->av_forw = ap->av_forw;
14732 	ap->av_forw = bp;
14733 
14734 	/*
14735 	 * If we inserted onto the tail end of the waitq, make sure the
14736 	 * tail pointer is updated.
14737 	 */
14738 	if (ap == un->un_waitq_tailp) {
14739 		un->un_waitq_tailp = bp;
14740 	}
14741 }
14742 
14743 
14744 /*
14745  *    Function: sd_start_cmds
14746  *
14747  * Description: Remove and transport cmds from the driver queues.
14748  *
14749  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14750  *
14751  *		immed_bp - ptr to a buf to be transported immediately. Only
14752  *		the immed_bp is transported; bufs on the waitq are not
14753  *		processed and the un_retry_bp is not checked.  If immed_bp is
14754  *		NULL, then normal queue processing is performed.
14755  *
14756  *     Context: May be called from kernel thread context, interrupt context,
14757  *		or runout callback context. This function may not block or
14758  *		call routines that block.
14759  */
14760 
14761 static void
14762 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14763 {
14764 	struct	sd_xbuf	*xp;
14765 	struct	buf	*bp;
14766 	void	(*statp)(kstat_io_t *);
14767 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14768 	void	(*saved_statp)(kstat_io_t *);
14769 #endif
14770 	int	rval;
14771 	struct sd_fm_internal *sfip = NULL;
14772 
14773 	ASSERT(un != NULL);
14774 	ASSERT(mutex_owned(SD_MUTEX(un)));
14775 	ASSERT(un->un_ncmds_in_transport >= 0);
14776 	ASSERT(un->un_throttle >= 0);
14777 
14778 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14779 
14780 	do {
14781 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14782 		saved_statp = NULL;
14783 #endif
14784 
14785 		/*
14786 		 * If we are syncing or dumping, fail the command to
14787 		 * avoid recursively calling back into scsi_transport().
14788 		 * The dump I/O itself uses a separate code path so this
14789 		 * only prevents non-dump I/O from being sent while dumping.
14790 		 * File system sync takes place before dumping begins.
14791 		 * During panic, filesystem I/O is allowed provided
14792 		 * un_in_callback is <= 1.  This is to prevent recursion
14793 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14794 		 * sd_start_cmds and so on.  See panic.c for more information
14795 		 * about the states the system can be in during panic.
14796 		 */
14797 		if ((un->un_state == SD_STATE_DUMPING) ||
14798 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14799 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14800 			    "sd_start_cmds: panicking\n");
14801 			goto exit;
14802 		}
14803 
14804 		if ((bp = immed_bp) != NULL) {
14805 			/*
14806 			 * We have a bp that must be transported immediately.
14807 			 * It's OK to transport the immed_bp here without doing
14808 			 * the throttle limit check because the immed_bp is
14809 			 * always used in a retry/recovery case. This means
14810 			 * that we know we are not at the throttle limit by
14811 			 * virtue of the fact that to get here we must have
14812 			 * already gotten a command back via sdintr(). This also
14813 			 * relies on (1) the command on un_retry_bp preventing
14814 			 * further commands from the waitq from being issued;
14815 			 * and (2) the code in sd_retry_command checking the
14816 			 * throttle limit before issuing a delayed or immediate
14817 			 * retry. This holds even if the throttle limit is
14818 			 * currently ratcheted down from its maximum value.
14819 			 */
14820 			statp = kstat_runq_enter;
14821 			if (bp == un->un_retry_bp) {
14822 				ASSERT((un->un_retry_statp == NULL) ||
14823 				    (un->un_retry_statp == kstat_waitq_enter) ||
14824 				    (un->un_retry_statp ==
14825 				    kstat_runq_back_to_waitq));
14826 				/*
14827 				 * If the waitq kstat was incremented when
14828 				 * sd_set_retry_bp() queued this bp for a retry,
14829 				 * then we must set up statp so that the waitq
14830 				 * count will get decremented correctly below.
14831 				 * Also we must clear un->un_retry_statp to
14832 				 * ensure that we do not act on a stale value
14833 				 * in this field.
14834 				 */
14835 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14836 				    (un->un_retry_statp ==
14837 				    kstat_runq_back_to_waitq)) {
14838 					statp = kstat_waitq_to_runq;
14839 				}
14840 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14841 				saved_statp = un->un_retry_statp;
14842 #endif
14843 				un->un_retry_statp = NULL;
14844 
14845 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14846 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14847 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14848 				    un, un->un_retry_bp, un->un_throttle,
14849 				    un->un_ncmds_in_transport);
14850 			} else {
14851 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14852 				    "processing priority bp:0x%p\n", bp);
14853 			}
14854 
14855 		} else if ((bp = un->un_waitq_headp) != NULL) {
14856 			/*
14857 			 * A command on the waitq is ready to go, but do not
14858 			 * send it if:
14859 			 *
14860 			 * (1) the throttle limit has been reached, or
14861 			 * (2) a retry is pending, or
14862 			 * (3) a START_STOP_UNIT callback pending, or
14863 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14864 			 *	command is pending.
14865 			 *
14866 			 * For all of these conditions, IO processing will
14867 			 * restart after the condition is cleared.
14868 			 */
14869 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14870 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14871 				    "sd_start_cmds: exiting, "
14872 				    "throttle limit reached!\n");
14873 				goto exit;
14874 			}
14875 			if (un->un_retry_bp != NULL) {
14876 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14877 				    "sd_start_cmds: exiting, retry pending!\n");
14878 				goto exit;
14879 			}
14880 			if (un->un_startstop_timeid != NULL) {
14881 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14882 				    "sd_start_cmds: exiting, "
14883 				    "START_STOP pending!\n");
14884 				goto exit;
14885 			}
14886 			if (un->un_direct_priority_timeid != NULL) {
14887 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14888 				    "sd_start_cmds: exiting, "
14889 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14890 				goto exit;
14891 			}
14892 
14893 			/* Dequeue the command */
14894 			un->un_waitq_headp = bp->av_forw;
14895 			if (un->un_waitq_headp == NULL) {
14896 				un->un_waitq_tailp = NULL;
14897 			}
14898 			bp->av_forw = NULL;
14899 			statp = kstat_waitq_to_runq;
14900 			SD_TRACE(SD_LOG_IO_CORE, un,
14901 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14902 
14903 		} else {
14904 			/* No work to do so bail out now */
14905 			SD_TRACE(SD_LOG_IO_CORE, un,
14906 			    "sd_start_cmds: no more work, exiting!\n");
14907 			goto exit;
14908 		}
14909 
14910 		/*
14911 		 * Reset the state to normal. This is the mechanism by which
14912 		 * the state transitions from either SD_STATE_RWAIT or
14913 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14914 		 * If state is SD_STATE_PM_CHANGING then this command is
14915 		 * part of the device power control and the state must
14916 		 * not be put back to normal. Doing so would would
14917 		 * allow new commands to proceed when they shouldn't,
14918 		 * the device may be going off.
14919 		 */
14920 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14921 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14922 			New_state(un, SD_STATE_NORMAL);
14923 		}
14924 
14925 		xp = SD_GET_XBUF(bp);
14926 		ASSERT(xp != NULL);
14927 
14928 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14929 		/*
14930 		 * Allocate the scsi_pkt if we need one, or attach DMA
14931 		 * resources if we have a scsi_pkt that needs them. The
14932 		 * latter should only occur for commands that are being
14933 		 * retried.
14934 		 */
14935 		if ((xp->xb_pktp == NULL) ||
14936 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14937 #else
14938 		if (xp->xb_pktp == NULL) {
14939 #endif
14940 			/*
14941 			 * There is no scsi_pkt allocated for this buf. Call
14942 			 * the initpkt function to allocate & init one.
14943 			 *
14944 			 * The scsi_init_pkt runout callback functionality is
14945 			 * implemented as follows:
14946 			 *
14947 			 * 1) The initpkt function always calls
14948 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14949 			 *    callback routine.
14950 			 * 2) A successful packet allocation is initialized and
14951 			 *    the I/O is transported.
14952 			 * 3) The I/O associated with an allocation resource
14953 			 *    failure is left on its queue to be retried via
14954 			 *    runout or the next I/O.
14955 			 * 4) The I/O associated with a DMA error is removed
14956 			 *    from the queue and failed with EIO. Processing of
14957 			 *    the transport queues is also halted to be
14958 			 *    restarted via runout or the next I/O.
14959 			 * 5) The I/O associated with a CDB size or packet
14960 			 *    size error is removed from the queue and failed
14961 			 *    with EIO. Processing of the transport queues is
14962 			 *    continued.
14963 			 *
14964 			 * Note: there is no interface for canceling a runout
14965 			 * callback. To prevent the driver from detaching or
14966 			 * suspending while a runout is pending the driver
14967 			 * state is set to SD_STATE_RWAIT
14968 			 *
14969 			 * Note: using the scsi_init_pkt callback facility can
14970 			 * result in an I/O request persisting at the head of
14971 			 * the list which cannot be satisfied even after
14972 			 * multiple retries. In the future the driver may
14973 			 * implement some kind of maximum runout count before
14974 			 * failing an I/O.
14975 			 *
14976 			 * Note: the use of funcp below may seem superfluous,
14977 			 * but it helps warlock figure out the correct
14978 			 * initpkt function calls (see [s]sd.wlcmd).
14979 			 */
14980 			struct scsi_pkt	*pktp;
14981 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14982 
14983 			ASSERT(bp != un->un_rqs_bp);
14984 
14985 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14986 			switch ((*funcp)(bp, &pktp)) {
14987 			case  SD_PKT_ALLOC_SUCCESS:
14988 				xp->xb_pktp = pktp;
14989 				SD_TRACE(SD_LOG_IO_CORE, un,
14990 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14991 				    pktp);
14992 				goto got_pkt;
14993 
14994 			case SD_PKT_ALLOC_FAILURE:
14995 				/*
14996 				 * Temporary (hopefully) resource depletion.
14997 				 * Since retries and RQS commands always have a
14998 				 * scsi_pkt allocated, these cases should never
14999 				 * get here. So the only cases this needs to
15000 				 * handle is a bp from the waitq (which we put
15001 				 * back onto the waitq for sdrunout), or a bp
15002 				 * sent as an immed_bp (which we just fail).
15003 				 */
15004 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15005 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15006 
15007 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15008 
15009 				if (bp == immed_bp) {
15010 					/*
15011 					 * If SD_XB_DMA_FREED is clear, then
15012 					 * this is a failure to allocate a
15013 					 * scsi_pkt, and we must fail the
15014 					 * command.
15015 					 */
15016 					if ((xp->xb_pkt_flags &
15017 					    SD_XB_DMA_FREED) == 0) {
15018 						break;
15019 					}
15020 
15021 					/*
15022 					 * If this immediate command is NOT our
15023 					 * un_retry_bp, then we must fail it.
15024 					 */
15025 					if (bp != un->un_retry_bp) {
15026 						break;
15027 					}
15028 
15029 					/*
15030 					 * We get here if this cmd is our
15031 					 * un_retry_bp that was DMAFREED, but
15032 					 * scsi_init_pkt() failed to reallocate
15033 					 * DMA resources when we attempted to
15034 					 * retry it. This can happen when an
15035 					 * mpxio failover is in progress, but
15036 					 * we don't want to just fail the
15037 					 * command in this case.
15038 					 *
15039 					 * Use timeout(9F) to restart it after
15040 					 * a 100ms delay.  We don't want to
15041 					 * let sdrunout() restart it, because
15042 					 * sdrunout() is just supposed to start
15043 					 * commands that are sitting on the
15044 					 * wait queue.  The un_retry_bp stays
15045 					 * set until the command completes, but
15046 					 * sdrunout can be called many times
15047 					 * before that happens.  Since sdrunout
15048 					 * cannot tell if the un_retry_bp is
15049 					 * already in the transport, it could
15050 					 * end up calling scsi_transport() for
15051 					 * the un_retry_bp multiple times.
15052 					 *
15053 					 * Also: don't schedule the callback
15054 					 * if some other callback is already
15055 					 * pending.
15056 					 */
15057 					if (un->un_retry_statp == NULL) {
15058 						/*
15059 						 * restore the kstat pointer to
15060 						 * keep kstat counts coherent
15061 						 * when we do retry the command.
15062 						 */
15063 						un->un_retry_statp =
15064 						    saved_statp;
15065 					}
15066 
15067 					if ((un->un_startstop_timeid == NULL) &&
15068 					    (un->un_retry_timeid == NULL) &&
15069 					    (un->un_direct_priority_timeid ==
15070 					    NULL)) {
15071 
15072 						un->un_retry_timeid =
15073 						    timeout(
15074 						    sd_start_retry_command,
15075 						    un, SD_RESTART_TIMEOUT);
15076 					}
15077 					goto exit;
15078 				}
15079 
15080 #else
15081 				if (bp == immed_bp) {
15082 					break;	/* Just fail the command */
15083 				}
15084 #endif
15085 
15086 				/* Add the buf back to the head of the waitq */
15087 				bp->av_forw = un->un_waitq_headp;
15088 				un->un_waitq_headp = bp;
15089 				if (un->un_waitq_tailp == NULL) {
15090 					un->un_waitq_tailp = bp;
15091 				}
15092 				goto exit;
15093 
15094 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15095 				/*
15096 				 * HBA DMA resource failure. Fail the command
15097 				 * and continue processing of the queues.
15098 				 */
15099 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15100 				    "sd_start_cmds: "
15101 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15102 				break;
15103 
15104 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15105 				/*
15106 				 * Note:x86: Partial DMA mapping not supported
15107 				 * for USCSI commands, and all the needed DMA
15108 				 * resources were not allocated.
15109 				 */
15110 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15111 				    "sd_start_cmds: "
15112 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15113 				break;
15114 
15115 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15116 				/*
15117 				 * Note:x86: Request cannot fit into CDB based
15118 				 * on lba and len.
15119 				 */
15120 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15121 				    "sd_start_cmds: "
15122 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15123 				break;
15124 
15125 			default:
15126 				/* Should NEVER get here! */
15127 				panic("scsi_initpkt error");
15128 				/*NOTREACHED*/
15129 			}
15130 
15131 			/*
15132 			 * Fatal error in allocating a scsi_pkt for this buf.
15133 			 * Update kstats & return the buf with an error code.
15134 			 * We must use sd_return_failed_command_no_restart() to
15135 			 * avoid a recursive call back into sd_start_cmds().
15136 			 * However this also means that we must keep processing
15137 			 * the waitq here in order to avoid stalling.
15138 			 */
15139 			if (statp == kstat_waitq_to_runq) {
15140 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15141 			}
15142 			sd_return_failed_command_no_restart(un, bp, EIO);
15143 			if (bp == immed_bp) {
15144 				/* immed_bp is gone by now, so clear this */
15145 				immed_bp = NULL;
15146 			}
15147 			continue;
15148 		}
15149 got_pkt:
15150 		if (bp == immed_bp) {
15151 			/* goto the head of the class.... */
15152 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15153 		}
15154 
15155 		un->un_ncmds_in_transport++;
15156 		SD_UPDATE_KSTATS(un, statp, bp);
15157 
15158 		/*
15159 		 * Call scsi_transport() to send the command to the target.
15160 		 * According to SCSA architecture, we must drop the mutex here
15161 		 * before calling scsi_transport() in order to avoid deadlock.
15162 		 * Note that the scsi_pkt's completion routine can be executed
15163 		 * (from interrupt context) even before the call to
15164 		 * scsi_transport() returns.
15165 		 */
15166 		SD_TRACE(SD_LOG_IO_CORE, un,
15167 		    "sd_start_cmds: calling scsi_transport()\n");
15168 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15169 
15170 		mutex_exit(SD_MUTEX(un));
15171 		rval = scsi_transport(xp->xb_pktp);
15172 		mutex_enter(SD_MUTEX(un));
15173 
15174 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15175 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15176 
15177 		switch (rval) {
15178 		case TRAN_ACCEPT:
15179 			/* Clear this with every pkt accepted by the HBA */
15180 			un->un_tran_fatal_count = 0;
15181 			break;	/* Success; try the next cmd (if any) */
15182 
15183 		case TRAN_BUSY:
15184 			un->un_ncmds_in_transport--;
15185 			ASSERT(un->un_ncmds_in_transport >= 0);
15186 
15187 			/*
15188 			 * Don't retry request sense, the sense data
15189 			 * is lost when another request is sent.
15190 			 * Free up the rqs buf and retry
15191 			 * the original failed cmd.  Update kstat.
15192 			 */
15193 			if (bp == un->un_rqs_bp) {
15194 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15195 				bp = sd_mark_rqs_idle(un, xp);
15196 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15197 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15198 				    kstat_waitq_enter);
15199 				goto exit;
15200 			}
15201 
15202 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15203 			/*
15204 			 * Free the DMA resources for the  scsi_pkt. This will
15205 			 * allow mpxio to select another path the next time
15206 			 * we call scsi_transport() with this scsi_pkt.
15207 			 * See sdintr() for the rationalization behind this.
15208 			 */
15209 			if ((un->un_f_is_fibre == TRUE) &&
15210 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15211 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15212 				scsi_dmafree(xp->xb_pktp);
15213 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15214 			}
15215 #endif
15216 
15217 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15218 				/*
15219 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15220 				 * are for error recovery situations. These do
15221 				 * not use the normal command waitq, so if they
15222 				 * get a TRAN_BUSY we cannot put them back onto
15223 				 * the waitq for later retry. One possible
15224 				 * problem is that there could already be some
15225 				 * other command on un_retry_bp that is waiting
15226 				 * for this one to complete, so we would be
15227 				 * deadlocked if we put this command back onto
15228 				 * the waitq for later retry (since un_retry_bp
15229 				 * must complete before the driver gets back to
15230 				 * commands on the waitq).
15231 				 *
15232 				 * To avoid deadlock we must schedule a callback
15233 				 * that will restart this command after a set
15234 				 * interval.  This should keep retrying for as
15235 				 * long as the underlying transport keeps
15236 				 * returning TRAN_BUSY (just like for other
15237 				 * commands).  Use the same timeout interval as
15238 				 * for the ordinary TRAN_BUSY retry.
15239 				 */
15240 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15241 				    "sd_start_cmds: scsi_transport() returned "
15242 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15243 
15244 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15245 				un->un_direct_priority_timeid =
15246 				    timeout(sd_start_direct_priority_command,
15247 				    bp, un->un_busy_timeout / 500);
15248 
15249 				goto exit;
15250 			}
15251 
15252 			/*
15253 			 * For TRAN_BUSY, we want to reduce the throttle value,
15254 			 * unless we are retrying a command.
15255 			 */
15256 			if (bp != un->un_retry_bp) {
15257 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15258 			}
15259 
15260 			/*
15261 			 * Set up the bp to be tried again 10 ms later.
15262 			 * Note:x86: Is there a timeout value in the sd_lun
15263 			 * for this condition?
15264 			 */
15265 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15266 			    kstat_runq_back_to_waitq);
15267 			goto exit;
15268 
15269 		case TRAN_FATAL_ERROR:
15270 			un->un_tran_fatal_count++;
15271 			/* FALLTHRU */
15272 
15273 		case TRAN_BADPKT:
15274 		default:
15275 			un->un_ncmds_in_transport--;
15276 			ASSERT(un->un_ncmds_in_transport >= 0);
15277 
15278 			/*
15279 			 * If this is our REQUEST SENSE command with a
15280 			 * transport error, we must get back the pointers
15281 			 * to the original buf, and mark the REQUEST
15282 			 * SENSE command as "available".
15283 			 */
15284 			if (bp == un->un_rqs_bp) {
15285 				bp = sd_mark_rqs_idle(un, xp);
15286 				xp = SD_GET_XBUF(bp);
15287 			} else {
15288 				/*
15289 				 * Legacy behavior: do not update transport
15290 				 * error count for request sense commands.
15291 				 */
15292 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15293 			}
15294 
15295 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15296 			sd_print_transport_rejected_message(un, xp, rval);
15297 
15298 			/*
15299 			 * This command will be terminated by SD driver due
15300 			 * to a fatal transport error. We should post
15301 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15302 			 * of "fail" for any command to indicate this
15303 			 * situation.
15304 			 */
15305 			if (xp->xb_ena > 0) {
15306 				ASSERT(un->un_fm_private != NULL);
15307 				sfip = un->un_fm_private;
15308 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15309 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15310 				    xp->xb_pktp, bp, xp);
15311 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15312 			}
15313 
15314 			/*
15315 			 * We must use sd_return_failed_command_no_restart() to
15316 			 * avoid a recursive call back into sd_start_cmds().
15317 			 * However this also means that we must keep processing
15318 			 * the waitq here in order to avoid stalling.
15319 			 */
15320 			sd_return_failed_command_no_restart(un, bp, EIO);
15321 
15322 			/*
15323 			 * Notify any threads waiting in sd_ddi_suspend() that
15324 			 * a command completion has occurred.
15325 			 */
15326 			if (un->un_state == SD_STATE_SUSPENDED) {
15327 				cv_broadcast(&un->un_disk_busy_cv);
15328 			}
15329 
15330 			if (bp == immed_bp) {
15331 				/* immed_bp is gone by now, so clear this */
15332 				immed_bp = NULL;
15333 			}
15334 			break;
15335 		}
15336 
15337 	} while (immed_bp == NULL);
15338 
15339 exit:
15340 	ASSERT(mutex_owned(SD_MUTEX(un)));
15341 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15342 }
15343 
15344 
15345 /*
15346  *    Function: sd_return_command
15347  *
15348  * Description: Returns a command to its originator (with or without an
15349  *		error).  Also starts commands waiting to be transported
15350  *		to the target.
15351  *
15352  *     Context: May be called from interrupt, kernel, or timeout context
15353  */
15354 
15355 static void
15356 sd_return_command(struct sd_lun *un, struct buf *bp)
15357 {
15358 	struct sd_xbuf *xp;
15359 	struct scsi_pkt *pktp;
15360 	struct sd_fm_internal *sfip;
15361 
15362 	ASSERT(bp != NULL);
15363 	ASSERT(un != NULL);
15364 	ASSERT(mutex_owned(SD_MUTEX(un)));
15365 	ASSERT(bp != un->un_rqs_bp);
15366 	xp = SD_GET_XBUF(bp);
15367 	ASSERT(xp != NULL);
15368 
15369 	pktp = SD_GET_PKTP(bp);
15370 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15371 	ASSERT(sfip != NULL);
15372 
15373 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15374 
15375 	/*
15376 	 * Note: check for the "sdrestart failed" case.
15377 	 */
15378 	if ((un->un_partial_dma_supported == 1) &&
15379 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15380 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15381 	    (xp->xb_pktp->pkt_resid == 0)) {
15382 
15383 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15384 			/*
15385 			 * Successfully set up next portion of cmd
15386 			 * transfer, try sending it
15387 			 */
15388 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15389 			    NULL, NULL, 0, (clock_t)0, NULL);
15390 			sd_start_cmds(un, NULL);
15391 			return;	/* Note:x86: need a return here? */
15392 		}
15393 	}
15394 
15395 	/*
15396 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15397 	 * can happen if upon being re-tried the failfast bp either
15398 	 * succeeded or encountered another error (possibly even a different
15399 	 * error than the one that precipitated the failfast state, but in
15400 	 * that case it would have had to exhaust retries as well). Regardless,
15401 	 * this should not occur whenever the instance is in the active
15402 	 * failfast state.
15403 	 */
15404 	if (bp == un->un_failfast_bp) {
15405 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15406 		un->un_failfast_bp = NULL;
15407 	}
15408 
15409 	/*
15410 	 * Clear the failfast state upon successful completion of ANY cmd.
15411 	 */
15412 	if (bp->b_error == 0) {
15413 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15414 		/*
15415 		 * If this is a successful command, but used to be retried,
15416 		 * we will take it as a recovered command and post an
15417 		 * ereport with driver-assessment of "recovered".
15418 		 */
15419 		if (xp->xb_ena > 0) {
15420 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15421 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15422 		}
15423 	} else {
15424 		/*
15425 		 * If this is a failed non-USCSI command we will post an
15426 		 * ereport with driver-assessment set accordingly("fail" or
15427 		 * "fatal").
15428 		 */
15429 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15430 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15431 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15432 		}
15433 	}
15434 
15435 	/*
15436 	 * This is used if the command was retried one or more times. Show that
15437 	 * we are done with it, and allow processing of the waitq to resume.
15438 	 */
15439 	if (bp == un->un_retry_bp) {
15440 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15441 		    "sd_return_command: un:0x%p: "
15442 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15443 		un->un_retry_bp = NULL;
15444 		un->un_retry_statp = NULL;
15445 	}
15446 
15447 	SD_UPDATE_RDWR_STATS(un, bp);
15448 	SD_UPDATE_PARTITION_STATS(un, bp);
15449 
15450 	switch (un->un_state) {
15451 	case SD_STATE_SUSPENDED:
15452 		/*
15453 		 * Notify any threads waiting in sd_ddi_suspend() that
15454 		 * a command completion has occurred.
15455 		 */
15456 		cv_broadcast(&un->un_disk_busy_cv);
15457 		break;
15458 	default:
15459 		sd_start_cmds(un, NULL);
15460 		break;
15461 	}
15462 
15463 	/* Return this command up the iodone chain to its originator. */
15464 	mutex_exit(SD_MUTEX(un));
15465 
15466 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15467 	xp->xb_pktp = NULL;
15468 
15469 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15470 
15471 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15472 	mutex_enter(SD_MUTEX(un));
15473 
15474 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15475 }
15476 
15477 
15478 /*
15479  *    Function: sd_return_failed_command
15480  *
15481  * Description: Command completion when an error occurred.
15482  *
15483  *     Context: May be called from interrupt context
15484  */
15485 
15486 static void
15487 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15488 {
15489 	ASSERT(bp != NULL);
15490 	ASSERT(un != NULL);
15491 	ASSERT(mutex_owned(SD_MUTEX(un)));
15492 
15493 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15494 	    "sd_return_failed_command: entry\n");
15495 
15496 	/*
15497 	 * b_resid could already be nonzero due to a partial data
15498 	 * transfer, so do not change it here.
15499 	 */
15500 	SD_BIOERROR(bp, errcode);
15501 
15502 	sd_return_command(un, bp);
15503 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15504 	    "sd_return_failed_command: exit\n");
15505 }
15506 
15507 
15508 /*
15509  *    Function: sd_return_failed_command_no_restart
15510  *
15511  * Description: Same as sd_return_failed_command, but ensures that no
15512  *		call back into sd_start_cmds will be issued.
15513  *
15514  *     Context: May be called from interrupt context
15515  */
15516 
15517 static void
15518 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15519 	int errcode)
15520 {
15521 	struct sd_xbuf *xp;
15522 
15523 	ASSERT(bp != NULL);
15524 	ASSERT(un != NULL);
15525 	ASSERT(mutex_owned(SD_MUTEX(un)));
15526 	xp = SD_GET_XBUF(bp);
15527 	ASSERT(xp != NULL);
15528 	ASSERT(errcode != 0);
15529 
15530 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15531 	    "sd_return_failed_command_no_restart: entry\n");
15532 
15533 	/*
15534 	 * b_resid could already be nonzero due to a partial data
15535 	 * transfer, so do not change it here.
15536 	 */
15537 	SD_BIOERROR(bp, errcode);
15538 
15539 	/*
15540 	 * If this is the failfast bp, clear it. This can happen if the
15541 	 * failfast bp encounterd a fatal error when we attempted to
15542 	 * re-try it (such as a scsi_transport(9F) failure).  However
15543 	 * we should NOT be in an active failfast state if the failfast
15544 	 * bp is not NULL.
15545 	 */
15546 	if (bp == un->un_failfast_bp) {
15547 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15548 		un->un_failfast_bp = NULL;
15549 	}
15550 
15551 	if (bp == un->un_retry_bp) {
15552 		/*
15553 		 * This command was retried one or more times. Show that we are
15554 		 * done with it, and allow processing of the waitq to resume.
15555 		 */
15556 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15557 		    "sd_return_failed_command_no_restart: "
15558 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15559 		un->un_retry_bp = NULL;
15560 		un->un_retry_statp = NULL;
15561 	}
15562 
15563 	SD_UPDATE_RDWR_STATS(un, bp);
15564 	SD_UPDATE_PARTITION_STATS(un, bp);
15565 
15566 	mutex_exit(SD_MUTEX(un));
15567 
15568 	if (xp->xb_pktp != NULL) {
15569 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15570 		xp->xb_pktp = NULL;
15571 	}
15572 
15573 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15574 
15575 	mutex_enter(SD_MUTEX(un));
15576 
15577 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15578 	    "sd_return_failed_command_no_restart: exit\n");
15579 }
15580 
15581 
15582 /*
15583  *    Function: sd_retry_command
15584  *
15585  * Description: queue up a command for retry, or (optionally) fail it
15586  *		if retry counts are exhausted.
15587  *
15588  *   Arguments: un - Pointer to the sd_lun struct for the target.
15589  *
15590  *		bp - Pointer to the buf for the command to be retried.
15591  *
15592  *		retry_check_flag - Flag to see which (if any) of the retry
15593  *		   counts should be decremented/checked. If the indicated
15594  *		   retry count is exhausted, then the command will not be
15595  *		   retried; it will be failed instead. This should use a
15596  *		   value equal to one of the following:
15597  *
15598  *			SD_RETRIES_NOCHECK
15599  *			SD_RESD_RETRIES_STANDARD
15600  *			SD_RETRIES_VICTIM
15601  *
15602  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15603  *		   if the check should be made to see of FLAG_ISOLATE is set
15604  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15605  *		   not retried, it is simply failed.
15606  *
15607  *		user_funcp - Ptr to function to call before dispatching the
15608  *		   command. May be NULL if no action needs to be performed.
15609  *		   (Primarily intended for printing messages.)
15610  *
15611  *		user_arg - Optional argument to be passed along to
15612  *		   the user_funcp call.
15613  *
15614  *		failure_code - errno return code to set in the bp if the
15615  *		   command is going to be failed.
15616  *
15617  *		retry_delay - Retry delay interval in (clock_t) units. May
15618  *		   be zero which indicates that the retry should be retried
15619  *		   immediately (ie, without an intervening delay).
15620  *
15621  *		statp - Ptr to kstat function to be updated if the command
15622  *		   is queued for a delayed retry. May be NULL if no kstat
15623  *		   update is desired.
15624  *
15625  *     Context: May be called from interrupt context.
15626  */
15627 
15628 static void
15629 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15630 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15631 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15632 	void (*statp)(kstat_io_t *))
15633 {
15634 	struct sd_xbuf	*xp;
15635 	struct scsi_pkt	*pktp;
15636 	struct sd_fm_internal *sfip;
15637 
15638 	ASSERT(un != NULL);
15639 	ASSERT(mutex_owned(SD_MUTEX(un)));
15640 	ASSERT(bp != NULL);
15641 	xp = SD_GET_XBUF(bp);
15642 	ASSERT(xp != NULL);
15643 	pktp = SD_GET_PKTP(bp);
15644 	ASSERT(pktp != NULL);
15645 
15646 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15647 	ASSERT(sfip != NULL);
15648 
15649 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15650 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15651 
15652 	/*
15653 	 * If we are syncing or dumping, fail the command to avoid
15654 	 * recursively calling back into scsi_transport().
15655 	 */
15656 	if (ddi_in_panic()) {
15657 		goto fail_command_no_log;
15658 	}
15659 
15660 	/*
15661 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15662 	 * log an error and fail the command.
15663 	 */
15664 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15665 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15666 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15667 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15668 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15669 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15670 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15671 		goto fail_command;
15672 	}
15673 
15674 	/*
15675 	 * If we are suspended, then put the command onto head of the
15676 	 * wait queue since we don't want to start more commands, and
15677 	 * clear the un_retry_bp. Next time when we are resumed, will
15678 	 * handle the command in the wait queue.
15679 	 */
15680 	switch (un->un_state) {
15681 	case SD_STATE_SUSPENDED:
15682 	case SD_STATE_DUMPING:
15683 		bp->av_forw = un->un_waitq_headp;
15684 		un->un_waitq_headp = bp;
15685 		if (un->un_waitq_tailp == NULL) {
15686 			un->un_waitq_tailp = bp;
15687 		}
15688 		if (bp == un->un_retry_bp) {
15689 			un->un_retry_bp = NULL;
15690 			un->un_retry_statp = NULL;
15691 		}
15692 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15693 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15694 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15695 		return;
15696 	default:
15697 		break;
15698 	}
15699 
15700 	/*
15701 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15702 	 * is set; if it is then we do not want to retry the command.
15703 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15704 	 */
15705 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15706 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15707 			goto fail_command;
15708 		}
15709 	}
15710 
15711 
15712 	/*
15713 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15714 	 * command timeout or a selection timeout has occurred. This means
15715 	 * that we were unable to establish an kind of communication with
15716 	 * the target, and subsequent retries and/or commands are likely
15717 	 * to encounter similar results and take a long time to complete.
15718 	 *
15719 	 * If this is a failfast error condition, we need to update the
15720 	 * failfast state, even if this bp does not have B_FAILFAST set.
15721 	 */
15722 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15723 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15724 			ASSERT(un->un_failfast_bp == NULL);
15725 			/*
15726 			 * If we are already in the active failfast state, and
15727 			 * another failfast error condition has been detected,
15728 			 * then fail this command if it has B_FAILFAST set.
15729 			 * If B_FAILFAST is clear, then maintain the legacy
15730 			 * behavior of retrying heroically, even tho this will
15731 			 * take a lot more time to fail the command.
15732 			 */
15733 			if (bp->b_flags & B_FAILFAST) {
15734 				goto fail_command;
15735 			}
15736 		} else {
15737 			/*
15738 			 * We're not in the active failfast state, but we
15739 			 * have a failfast error condition, so we must begin
15740 			 * transition to the next state. We do this regardless
15741 			 * of whether or not this bp has B_FAILFAST set.
15742 			 */
15743 			if (un->un_failfast_bp == NULL) {
15744 				/*
15745 				 * This is the first bp to meet a failfast
15746 				 * condition so save it on un_failfast_bp &
15747 				 * do normal retry processing. Do not enter
15748 				 * active failfast state yet. This marks
15749 				 * entry into the "failfast pending" state.
15750 				 */
15751 				un->un_failfast_bp = bp;
15752 
15753 			} else if (un->un_failfast_bp == bp) {
15754 				/*
15755 				 * This is the second time *this* bp has
15756 				 * encountered a failfast error condition,
15757 				 * so enter active failfast state & flush
15758 				 * queues as appropriate.
15759 				 */
15760 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15761 				un->un_failfast_bp = NULL;
15762 				sd_failfast_flushq(un);
15763 
15764 				/*
15765 				 * Fail this bp now if B_FAILFAST set;
15766 				 * otherwise continue with retries. (It would
15767 				 * be pretty ironic if this bp succeeded on a
15768 				 * subsequent retry after we just flushed all
15769 				 * the queues).
15770 				 */
15771 				if (bp->b_flags & B_FAILFAST) {
15772 					goto fail_command;
15773 				}
15774 
15775 #if !defined(lint) && !defined(__lint)
15776 			} else {
15777 				/*
15778 				 * If neither of the preceeding conditionals
15779 				 * was true, it means that there is some
15780 				 * *other* bp that has met an inital failfast
15781 				 * condition and is currently either being
15782 				 * retried or is waiting to be retried. In
15783 				 * that case we should perform normal retry
15784 				 * processing on *this* bp, since there is a
15785 				 * chance that the current failfast condition
15786 				 * is transient and recoverable. If that does
15787 				 * not turn out to be the case, then retries
15788 				 * will be cleared when the wait queue is
15789 				 * flushed anyway.
15790 				 */
15791 #endif
15792 			}
15793 		}
15794 	} else {
15795 		/*
15796 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15797 		 * likely were able to at least establish some level of
15798 		 * communication with the target and subsequent commands
15799 		 * and/or retries are likely to get through to the target,
15800 		 * In this case we want to be aggressive about clearing
15801 		 * the failfast state. Note that this does not affect
15802 		 * the "failfast pending" condition.
15803 		 */
15804 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15805 	}
15806 
15807 
15808 	/*
15809 	 * Check the specified retry count to see if we can still do
15810 	 * any retries with this pkt before we should fail it.
15811 	 */
15812 	switch (retry_check_flag & SD_RETRIES_MASK) {
15813 	case SD_RETRIES_VICTIM:
15814 		/*
15815 		 * Check the victim retry count. If exhausted, then fall
15816 		 * thru & check against the standard retry count.
15817 		 */
15818 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15819 			/* Increment count & proceed with the retry */
15820 			xp->xb_victim_retry_count++;
15821 			break;
15822 		}
15823 		/* Victim retries exhausted, fall back to std. retries... */
15824 		/* FALLTHRU */
15825 
15826 	case SD_RETRIES_STANDARD:
15827 		if (xp->xb_retry_count >= un->un_retry_count) {
15828 			/* Retries exhausted, fail the command */
15829 			SD_TRACE(SD_LOG_IO_CORE, un,
15830 			    "sd_retry_command: retries exhausted!\n");
15831 			/*
15832 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15833 			 * commands with nonzero pkt_resid.
15834 			 */
15835 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15836 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15837 			    (pktp->pkt_resid != 0)) {
15838 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15839 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15840 					SD_UPDATE_B_RESID(bp, pktp);
15841 				}
15842 			}
15843 			goto fail_command;
15844 		}
15845 		xp->xb_retry_count++;
15846 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15847 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15848 		break;
15849 
15850 	case SD_RETRIES_UA:
15851 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15852 			/* Retries exhausted, fail the command */
15853 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15854 			    "Unit Attention retries exhausted. "
15855 			    "Check the target.\n");
15856 			goto fail_command;
15857 		}
15858 		xp->xb_ua_retry_count++;
15859 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15860 		    "sd_retry_command: retry count:%d\n",
15861 		    xp->xb_ua_retry_count);
15862 		break;
15863 
15864 	case SD_RETRIES_BUSY:
15865 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15866 			/* Retries exhausted, fail the command */
15867 			SD_TRACE(SD_LOG_IO_CORE, un,
15868 			    "sd_retry_command: retries exhausted!\n");
15869 			goto fail_command;
15870 		}
15871 		xp->xb_retry_count++;
15872 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15873 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15874 		break;
15875 
15876 	case SD_RETRIES_NOCHECK:
15877 	default:
15878 		/* No retry count to check. Just proceed with the retry */
15879 		break;
15880 	}
15881 
15882 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15883 
15884 	/*
15885 	 * If this is a non-USCSI command being retried
15886 	 * during execution last time, we should post an ereport with
15887 	 * driver-assessment of the value "retry".
15888 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15889 	 * hardware errors, we bypass ereport posting.
15890 	 */
15891 	if (failure_code != 0) {
15892 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15893 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15894 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15895 		}
15896 	}
15897 
15898 	/*
15899 	 * If we were given a zero timeout, we must attempt to retry the
15900 	 * command immediately (ie, without a delay).
15901 	 */
15902 	if (retry_delay == 0) {
15903 		/*
15904 		 * Check some limiting conditions to see if we can actually
15905 		 * do the immediate retry.  If we cannot, then we must
15906 		 * fall back to queueing up a delayed retry.
15907 		 */
15908 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15909 			/*
15910 			 * We are at the throttle limit for the target,
15911 			 * fall back to delayed retry.
15912 			 */
15913 			retry_delay = un->un_busy_timeout;
15914 			statp = kstat_waitq_enter;
15915 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15916 			    "sd_retry_command: immed. retry hit "
15917 			    "throttle!\n");
15918 		} else {
15919 			/*
15920 			 * We're clear to proceed with the immediate retry.
15921 			 * First call the user-provided function (if any)
15922 			 */
15923 			if (user_funcp != NULL) {
15924 				(*user_funcp)(un, bp, user_arg,
15925 				    SD_IMMEDIATE_RETRY_ISSUED);
15926 #ifdef __lock_lint
15927 				sd_print_incomplete_msg(un, bp, user_arg,
15928 				    SD_IMMEDIATE_RETRY_ISSUED);
15929 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15930 				    SD_IMMEDIATE_RETRY_ISSUED);
15931 				sd_print_sense_failed_msg(un, bp, user_arg,
15932 				    SD_IMMEDIATE_RETRY_ISSUED);
15933 #endif
15934 			}
15935 
15936 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15937 			    "sd_retry_command: issuing immediate retry\n");
15938 
15939 			/*
15940 			 * Call sd_start_cmds() to transport the command to
15941 			 * the target.
15942 			 */
15943 			sd_start_cmds(un, bp);
15944 
15945 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15946 			    "sd_retry_command exit\n");
15947 			return;
15948 		}
15949 	}
15950 
15951 	/*
15952 	 * Set up to retry the command after a delay.
15953 	 * First call the user-provided function (if any)
15954 	 */
15955 	if (user_funcp != NULL) {
15956 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15957 	}
15958 
15959 	sd_set_retry_bp(un, bp, retry_delay, statp);
15960 
15961 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15962 	return;
15963 
15964 fail_command:
15965 
15966 	if (user_funcp != NULL) {
15967 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15968 	}
15969 
15970 fail_command_no_log:
15971 
15972 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15973 	    "sd_retry_command: returning failed command\n");
15974 
15975 	sd_return_failed_command(un, bp, failure_code);
15976 
15977 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15978 }
15979 
15980 
15981 /*
15982  *    Function: sd_set_retry_bp
15983  *
15984  * Description: Set up the given bp for retry.
15985  *
15986  *   Arguments: un - ptr to associated softstate
15987  *		bp - ptr to buf(9S) for the command
15988  *		retry_delay - time interval before issuing retry (may be 0)
15989  *		statp - optional pointer to kstat function
15990  *
15991  *     Context: May be called under interrupt context
15992  */
15993 
15994 static void
15995 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15996 	void (*statp)(kstat_io_t *))
15997 {
15998 	ASSERT(un != NULL);
15999 	ASSERT(mutex_owned(SD_MUTEX(un)));
16000 	ASSERT(bp != NULL);
16001 
16002 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16003 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16004 
16005 	/*
16006 	 * Indicate that the command is being retried. This will not allow any
16007 	 * other commands on the wait queue to be transported to the target
16008 	 * until this command has been completed (success or failure). The
16009 	 * "retry command" is not transported to the target until the given
16010 	 * time delay expires, unless the user specified a 0 retry_delay.
16011 	 *
16012 	 * Note: the timeout(9F) callback routine is what actually calls
16013 	 * sd_start_cmds() to transport the command, with the exception of a
16014 	 * zero retry_delay. The only current implementor of a zero retry delay
16015 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16016 	 */
16017 	if (un->un_retry_bp == NULL) {
16018 		ASSERT(un->un_retry_statp == NULL);
16019 		un->un_retry_bp = bp;
16020 
16021 		/*
16022 		 * If the user has not specified a delay the command should
16023 		 * be queued and no timeout should be scheduled.
16024 		 */
16025 		if (retry_delay == 0) {
16026 			/*
16027 			 * Save the kstat pointer that will be used in the
16028 			 * call to SD_UPDATE_KSTATS() below, so that
16029 			 * sd_start_cmds() can correctly decrement the waitq
16030 			 * count when it is time to transport this command.
16031 			 */
16032 			un->un_retry_statp = statp;
16033 			goto done;
16034 		}
16035 	}
16036 
16037 	if (un->un_retry_bp == bp) {
16038 		/*
16039 		 * Save the kstat pointer that will be used in the call to
16040 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16041 		 * correctly decrement the waitq count when it is time to
16042 		 * transport this command.
16043 		 */
16044 		un->un_retry_statp = statp;
16045 
16046 		/*
16047 		 * Schedule a timeout if:
16048 		 *   1) The user has specified a delay.
16049 		 *   2) There is not a START_STOP_UNIT callback pending.
16050 		 *
16051 		 * If no delay has been specified, then it is up to the caller
16052 		 * to ensure that IO processing continues without stalling.
16053 		 * Effectively, this means that the caller will issue the
16054 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16055 		 * callback does this after the START STOP UNIT command has
16056 		 * completed. In either of these cases we should not schedule
16057 		 * a timeout callback here.  Also don't schedule the timeout if
16058 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16059 		 */
16060 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16061 		    (un->un_direct_priority_timeid == NULL)) {
16062 			un->un_retry_timeid =
16063 			    timeout(sd_start_retry_command, un, retry_delay);
16064 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16065 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16066 			    " bp:0x%p un_retry_timeid:0x%p\n",
16067 			    un, bp, un->un_retry_timeid);
16068 		}
16069 	} else {
16070 		/*
16071 		 * We only get in here if there is already another command
16072 		 * waiting to be retried.  In this case, we just put the
16073 		 * given command onto the wait queue, so it can be transported
16074 		 * after the current retry command has completed.
16075 		 *
16076 		 * Also we have to make sure that if the command at the head
16077 		 * of the wait queue is the un_failfast_bp, that we do not
16078 		 * put ahead of it any other commands that are to be retried.
16079 		 */
16080 		if ((un->un_failfast_bp != NULL) &&
16081 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16082 			/*
16083 			 * Enqueue this command AFTER the first command on
16084 			 * the wait queue (which is also un_failfast_bp).
16085 			 */
16086 			bp->av_forw = un->un_waitq_headp->av_forw;
16087 			un->un_waitq_headp->av_forw = bp;
16088 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16089 				un->un_waitq_tailp = bp;
16090 			}
16091 		} else {
16092 			/* Enqueue this command at the head of the waitq. */
16093 			bp->av_forw = un->un_waitq_headp;
16094 			un->un_waitq_headp = bp;
16095 			if (un->un_waitq_tailp == NULL) {
16096 				un->un_waitq_tailp = bp;
16097 			}
16098 		}
16099 
16100 		if (statp == NULL) {
16101 			statp = kstat_waitq_enter;
16102 		}
16103 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16104 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16105 	}
16106 
16107 done:
16108 	if (statp != NULL) {
16109 		SD_UPDATE_KSTATS(un, statp, bp);
16110 	}
16111 
16112 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16113 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16114 }
16115 
16116 
16117 /*
16118  *    Function: sd_start_retry_command
16119  *
16120  * Description: Start the command that has been waiting on the target's
16121  *		retry queue.  Called from timeout(9F) context after the
16122  *		retry delay interval has expired.
16123  *
16124  *   Arguments: arg - pointer to associated softstate for the device.
16125  *
16126  *     Context: timeout(9F) thread context.  May not sleep.
16127  */
16128 
16129 static void
16130 sd_start_retry_command(void *arg)
16131 {
16132 	struct sd_lun *un = arg;
16133 
16134 	ASSERT(un != NULL);
16135 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16136 
16137 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16138 	    "sd_start_retry_command: entry\n");
16139 
16140 	mutex_enter(SD_MUTEX(un));
16141 
16142 	un->un_retry_timeid = NULL;
16143 
16144 	if (un->un_retry_bp != NULL) {
16145 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16146 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16147 		    un, un->un_retry_bp);
16148 		sd_start_cmds(un, un->un_retry_bp);
16149 	}
16150 
16151 	mutex_exit(SD_MUTEX(un));
16152 
16153 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16154 	    "sd_start_retry_command: exit\n");
16155 }
16156 
16157 /*
16158  *    Function: sd_rmw_msg_print_handler
16159  *
16160  * Description: If RMW mode is enabled and warning message is triggered
16161  *              print I/O count during a fixed interval.
16162  *
16163  *   Arguments: arg - pointer to associated softstate for the device.
16164  *
16165  *     Context: timeout(9F) thread context. May not sleep.
16166  */
16167 static void
16168 sd_rmw_msg_print_handler(void *arg)
16169 {
16170 	struct sd_lun *un = arg;
16171 
16172 	ASSERT(un != NULL);
16173 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16174 
16175 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16176 	    "sd_rmw_msg_print_handler: entry\n");
16177 
16178 	mutex_enter(SD_MUTEX(un));
16179 
16180 	if (un->un_rmw_incre_count > 0) {
16181 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16182 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16183 		    "sector size in %ld seconds. They are handled through "
16184 		    "Read Modify Write but the performance is very low!\n",
16185 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16186 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16187 		un->un_rmw_incre_count = 0;
16188 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16189 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16190 	} else {
16191 		un->un_rmw_msg_timeid = NULL;
16192 	}
16193 
16194 	mutex_exit(SD_MUTEX(un));
16195 
16196 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16197 	    "sd_rmw_msg_print_handler: exit\n");
16198 }
16199 
16200 /*
16201  *    Function: sd_start_direct_priority_command
16202  *
16203  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16204  *		received TRAN_BUSY when we called scsi_transport() to send it
16205  *		to the underlying HBA. This function is called from timeout(9F)
16206  *		context after the delay interval has expired.
16207  *
16208  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16209  *
16210  *     Context: timeout(9F) thread context.  May not sleep.
16211  */
16212 
16213 static void
16214 sd_start_direct_priority_command(void *arg)
16215 {
16216 	struct buf	*priority_bp = arg;
16217 	struct sd_lun	*un;
16218 
16219 	ASSERT(priority_bp != NULL);
16220 	un = SD_GET_UN(priority_bp);
16221 	ASSERT(un != NULL);
16222 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16223 
16224 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16225 	    "sd_start_direct_priority_command: entry\n");
16226 
16227 	mutex_enter(SD_MUTEX(un));
16228 	un->un_direct_priority_timeid = NULL;
16229 	sd_start_cmds(un, priority_bp);
16230 	mutex_exit(SD_MUTEX(un));
16231 
16232 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16233 	    "sd_start_direct_priority_command: exit\n");
16234 }
16235 
16236 
16237 /*
16238  *    Function: sd_send_request_sense_command
16239  *
16240  * Description: Sends a REQUEST SENSE command to the target
16241  *
16242  *     Context: May be called from interrupt context.
16243  */
16244 
16245 static void
16246 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16247 	struct scsi_pkt *pktp)
16248 {
16249 	ASSERT(bp != NULL);
16250 	ASSERT(un != NULL);
16251 	ASSERT(mutex_owned(SD_MUTEX(un)));
16252 
16253 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16254 	    "entry: buf:0x%p\n", bp);
16255 
16256 	/*
16257 	 * If we are syncing or dumping, then fail the command to avoid a
16258 	 * recursive callback into scsi_transport(). Also fail the command
16259 	 * if we are suspended (legacy behavior).
16260 	 */
16261 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16262 	    (un->un_state == SD_STATE_DUMPING)) {
16263 		sd_return_failed_command(un, bp, EIO);
16264 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16265 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16266 		return;
16267 	}
16268 
16269 	/*
16270 	 * Retry the failed command and don't issue the request sense if:
16271 	 *    1) the sense buf is busy
16272 	 *    2) we have 1 or more outstanding commands on the target
16273 	 *    (the sense data will be cleared or invalidated any way)
16274 	 *
16275 	 * Note: There could be an issue with not checking a retry limit here,
16276 	 * the problem is determining which retry limit to check.
16277 	 */
16278 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16279 		/* Don't retry if the command is flagged as non-retryable */
16280 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16281 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16282 			    NULL, NULL, 0, un->un_busy_timeout,
16283 			    kstat_waitq_enter);
16284 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16285 			    "sd_send_request_sense_command: "
16286 			    "at full throttle, retrying exit\n");
16287 		} else {
16288 			sd_return_failed_command(un, bp, EIO);
16289 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16290 			    "sd_send_request_sense_command: "
16291 			    "at full throttle, non-retryable exit\n");
16292 		}
16293 		return;
16294 	}
16295 
16296 	sd_mark_rqs_busy(un, bp);
16297 	sd_start_cmds(un, un->un_rqs_bp);
16298 
16299 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16300 	    "sd_send_request_sense_command: exit\n");
16301 }
16302 
16303 
16304 /*
16305  *    Function: sd_mark_rqs_busy
16306  *
16307  * Description: Indicate that the request sense bp for this instance is
16308  *		in use.
16309  *
16310  *     Context: May be called under interrupt context
16311  */
16312 
16313 static void
16314 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16315 {
16316 	struct sd_xbuf	*sense_xp;
16317 
16318 	ASSERT(un != NULL);
16319 	ASSERT(bp != NULL);
16320 	ASSERT(mutex_owned(SD_MUTEX(un)));
16321 	ASSERT(un->un_sense_isbusy == 0);
16322 
16323 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16324 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16325 
16326 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16327 	ASSERT(sense_xp != NULL);
16328 
16329 	SD_INFO(SD_LOG_IO, un,
16330 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16331 
16332 	ASSERT(sense_xp->xb_pktp != NULL);
16333 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16334 	    == (FLAG_SENSING | FLAG_HEAD));
16335 
16336 	un->un_sense_isbusy = 1;
16337 	un->un_rqs_bp->b_resid = 0;
16338 	sense_xp->xb_pktp->pkt_resid  = 0;
16339 	sense_xp->xb_pktp->pkt_reason = 0;
16340 
16341 	/* So we can get back the bp at interrupt time! */
16342 	sense_xp->xb_sense_bp = bp;
16343 
16344 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16345 
16346 	/*
16347 	 * Mark this buf as awaiting sense data. (This is already set in
16348 	 * the pkt_flags for the RQS packet.)
16349 	 */
16350 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16351 
16352 	/* Request sense down same path */
16353 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16354 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16355 		sense_xp->xb_pktp->pkt_path_instance =
16356 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16357 
16358 	sense_xp->xb_retry_count	= 0;
16359 	sense_xp->xb_victim_retry_count = 0;
16360 	sense_xp->xb_ua_retry_count	= 0;
16361 	sense_xp->xb_nr_retry_count 	= 0;
16362 	sense_xp->xb_dma_resid  = 0;
16363 
16364 	/* Clean up the fields for auto-request sense */
16365 	sense_xp->xb_sense_status = 0;
16366 	sense_xp->xb_sense_state  = 0;
16367 	sense_xp->xb_sense_resid  = 0;
16368 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16369 
16370 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16371 }
16372 
16373 
16374 /*
16375  *    Function: sd_mark_rqs_idle
16376  *
16377  * Description: SD_MUTEX must be held continuously through this routine
16378  *		to prevent reuse of the rqs struct before the caller can
16379  *		complete it's processing.
16380  *
16381  * Return Code: Pointer to the RQS buf
16382  *
16383  *     Context: May be called under interrupt context
16384  */
16385 
16386 static struct buf *
16387 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16388 {
16389 	struct buf *bp;
16390 	ASSERT(un != NULL);
16391 	ASSERT(sense_xp != NULL);
16392 	ASSERT(mutex_owned(SD_MUTEX(un)));
16393 	ASSERT(un->un_sense_isbusy != 0);
16394 
16395 	un->un_sense_isbusy = 0;
16396 	bp = sense_xp->xb_sense_bp;
16397 	sense_xp->xb_sense_bp = NULL;
16398 
16399 	/* This pkt is no longer interested in getting sense data */
16400 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16401 
16402 	return (bp);
16403 }
16404 
16405 
16406 
16407 /*
16408  *    Function: sd_alloc_rqs
16409  *
16410  * Description: Set up the unit to receive auto request sense data
16411  *
16412  * Return Code: DDI_SUCCESS or DDI_FAILURE
16413  *
16414  *     Context: Called under attach(9E) context
16415  */
16416 
16417 static int
16418 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16419 {
16420 	struct sd_xbuf *xp;
16421 
16422 	ASSERT(un != NULL);
16423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16424 	ASSERT(un->un_rqs_bp == NULL);
16425 	ASSERT(un->un_rqs_pktp == NULL);
16426 
16427 	/*
16428 	 * First allocate the required buf and scsi_pkt structs, then set up
16429 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16430 	 */
16431 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16432 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16433 	if (un->un_rqs_bp == NULL) {
16434 		return (DDI_FAILURE);
16435 	}
16436 
16437 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16438 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16439 
16440 	if (un->un_rqs_pktp == NULL) {
16441 		sd_free_rqs(un);
16442 		return (DDI_FAILURE);
16443 	}
16444 
16445 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16446 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16447 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16448 
16449 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16450 
16451 	/* Set up the other needed members in the ARQ scsi_pkt. */
16452 	un->un_rqs_pktp->pkt_comp   = sdintr;
16453 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16454 	un->un_rqs_pktp->pkt_flags |=
16455 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16456 
16457 	/*
16458 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16459 	 * provide any intpkt, destroypkt routines as we take care of
16460 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16461 	 */
16462 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16463 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16464 	xp->xb_pktp = un->un_rqs_pktp;
16465 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16466 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16467 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16468 
16469 	/*
16470 	 * Save the pointer to the request sense private bp so it can
16471 	 * be retrieved in sdintr.
16472 	 */
16473 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16474 	ASSERT(un->un_rqs_bp->b_private == xp);
16475 
16476 	/*
16477 	 * See if the HBA supports auto-request sense for the specified
16478 	 * target/lun. If it does, then try to enable it (if not already
16479 	 * enabled).
16480 	 *
16481 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16482 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16483 	 * return success.  However, in both of these cases ARQ is always
16484 	 * enabled and scsi_ifgetcap will always return true. The best approach
16485 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16486 	 *
16487 	 * The 3rd case is the HBA (adp) always return enabled on
16488 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16489 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16490 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16491 	 */
16492 
16493 	if (un->un_f_is_fibre == TRUE) {
16494 		un->un_f_arq_enabled = TRUE;
16495 	} else {
16496 #if defined(__i386) || defined(__amd64)
16497 		/*
16498 		 * Circumvent the Adaptec bug, remove this code when
16499 		 * the bug is fixed
16500 		 */
16501 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16502 #endif
16503 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16504 		case 0:
16505 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16506 			    "sd_alloc_rqs: HBA supports ARQ\n");
16507 			/*
16508 			 * ARQ is supported by this HBA but currently is not
16509 			 * enabled. Attempt to enable it and if successful then
16510 			 * mark this instance as ARQ enabled.
16511 			 */
16512 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16513 			    == 1) {
16514 				/* Successfully enabled ARQ in the HBA */
16515 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16516 				    "sd_alloc_rqs: ARQ enabled\n");
16517 				un->un_f_arq_enabled = TRUE;
16518 			} else {
16519 				/* Could not enable ARQ in the HBA */
16520 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16521 				    "sd_alloc_rqs: failed ARQ enable\n");
16522 				un->un_f_arq_enabled = FALSE;
16523 			}
16524 			break;
16525 		case 1:
16526 			/*
16527 			 * ARQ is supported by this HBA and is already enabled.
16528 			 * Just mark ARQ as enabled for this instance.
16529 			 */
16530 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16531 			    "sd_alloc_rqs: ARQ already enabled\n");
16532 			un->un_f_arq_enabled = TRUE;
16533 			break;
16534 		default:
16535 			/*
16536 			 * ARQ is not supported by this HBA; disable it for this
16537 			 * instance.
16538 			 */
16539 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16540 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16541 			un->un_f_arq_enabled = FALSE;
16542 			break;
16543 		}
16544 	}
16545 
16546 	return (DDI_SUCCESS);
16547 }
16548 
16549 
16550 /*
16551  *    Function: sd_free_rqs
16552  *
16553  * Description: Cleanup for the pre-instance RQS command.
16554  *
16555  *     Context: Kernel thread context
16556  */
16557 
16558 static void
16559 sd_free_rqs(struct sd_lun *un)
16560 {
16561 	ASSERT(un != NULL);
16562 
16563 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16564 
16565 	/*
16566 	 * If consistent memory is bound to a scsi_pkt, the pkt
16567 	 * has to be destroyed *before* freeing the consistent memory.
16568 	 * Don't change the sequence of this operations.
16569 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16570 	 * after it was freed in scsi_free_consistent_buf().
16571 	 */
16572 	if (un->un_rqs_pktp != NULL) {
16573 		scsi_destroy_pkt(un->un_rqs_pktp);
16574 		un->un_rqs_pktp = NULL;
16575 	}
16576 
16577 	if (un->un_rqs_bp != NULL) {
16578 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16579 		if (xp != NULL) {
16580 			kmem_free(xp, sizeof (struct sd_xbuf));
16581 		}
16582 		scsi_free_consistent_buf(un->un_rqs_bp);
16583 		un->un_rqs_bp = NULL;
16584 	}
16585 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16586 }
16587 
16588 
16589 
16590 /*
16591  *    Function: sd_reduce_throttle
16592  *
16593  * Description: Reduces the maximum # of outstanding commands on a
16594  *		target to the current number of outstanding commands.
16595  *		Queues a tiemout(9F) callback to restore the limit
16596  *		after a specified interval has elapsed.
16597  *		Typically used when we get a TRAN_BUSY return code
16598  *		back from scsi_transport().
16599  *
16600  *   Arguments: un - ptr to the sd_lun softstate struct
16601  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16602  *
16603  *     Context: May be called from interrupt context
16604  */
16605 
16606 static void
16607 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16608 {
16609 	ASSERT(un != NULL);
16610 	ASSERT(mutex_owned(SD_MUTEX(un)));
16611 	ASSERT(un->un_ncmds_in_transport >= 0);
16612 
16613 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16614 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16615 	    un, un->un_throttle, un->un_ncmds_in_transport);
16616 
16617 	if (un->un_throttle > 1) {
16618 		if (un->un_f_use_adaptive_throttle == TRUE) {
16619 			switch (throttle_type) {
16620 			case SD_THROTTLE_TRAN_BUSY:
16621 				if (un->un_busy_throttle == 0) {
16622 					un->un_busy_throttle = un->un_throttle;
16623 				}
16624 				break;
16625 			case SD_THROTTLE_QFULL:
16626 				un->un_busy_throttle = 0;
16627 				break;
16628 			default:
16629 				ASSERT(FALSE);
16630 			}
16631 
16632 			if (un->un_ncmds_in_transport > 0) {
16633 				un->un_throttle = un->un_ncmds_in_transport;
16634 			}
16635 
16636 		} else {
16637 			if (un->un_ncmds_in_transport == 0) {
16638 				un->un_throttle = 1;
16639 			} else {
16640 				un->un_throttle = un->un_ncmds_in_transport;
16641 			}
16642 		}
16643 	}
16644 
16645 	/* Reschedule the timeout if none is currently active */
16646 	if (un->un_reset_throttle_timeid == NULL) {
16647 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16648 		    un, SD_THROTTLE_RESET_INTERVAL);
16649 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16650 		    "sd_reduce_throttle: timeout scheduled!\n");
16651 	}
16652 
16653 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16654 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16655 }
16656 
16657 
16658 
16659 /*
16660  *    Function: sd_restore_throttle
16661  *
16662  * Description: Callback function for timeout(9F).  Resets the current
16663  *		value of un->un_throttle to its default.
16664  *
16665  *   Arguments: arg - pointer to associated softstate for the device.
16666  *
16667  *     Context: May be called from interrupt context
16668  */
16669 
16670 static void
16671 sd_restore_throttle(void *arg)
16672 {
16673 	struct sd_lun	*un = arg;
16674 
16675 	ASSERT(un != NULL);
16676 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16677 
16678 	mutex_enter(SD_MUTEX(un));
16679 
16680 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16681 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16682 
16683 	un->un_reset_throttle_timeid = NULL;
16684 
16685 	if (un->un_f_use_adaptive_throttle == TRUE) {
16686 		/*
16687 		 * If un_busy_throttle is nonzero, then it contains the
16688 		 * value that un_throttle was when we got a TRAN_BUSY back
16689 		 * from scsi_transport(). We want to revert back to this
16690 		 * value.
16691 		 *
16692 		 * In the QFULL case, the throttle limit will incrementally
16693 		 * increase until it reaches max throttle.
16694 		 */
16695 		if (un->un_busy_throttle > 0) {
16696 			un->un_throttle = un->un_busy_throttle;
16697 			un->un_busy_throttle = 0;
16698 		} else {
16699 			/*
16700 			 * increase throttle by 10% open gate slowly, schedule
16701 			 * another restore if saved throttle has not been
16702 			 * reached
16703 			 */
16704 			short throttle;
16705 			if (sd_qfull_throttle_enable) {
16706 				throttle = un->un_throttle +
16707 				    max((un->un_throttle / 10), 1);
16708 				un->un_throttle =
16709 				    (throttle < un->un_saved_throttle) ?
16710 				    throttle : un->un_saved_throttle;
16711 				if (un->un_throttle < un->un_saved_throttle) {
16712 					un->un_reset_throttle_timeid =
16713 					    timeout(sd_restore_throttle,
16714 					    un,
16715 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16716 				}
16717 			}
16718 		}
16719 
16720 		/*
16721 		 * If un_throttle has fallen below the low-water mark, we
16722 		 * restore the maximum value here (and allow it to ratchet
16723 		 * down again if necessary).
16724 		 */
16725 		if (un->un_throttle < un->un_min_throttle) {
16726 			un->un_throttle = un->un_saved_throttle;
16727 		}
16728 	} else {
16729 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16730 		    "restoring limit from 0x%x to 0x%x\n",
16731 		    un->un_throttle, un->un_saved_throttle);
16732 		un->un_throttle = un->un_saved_throttle;
16733 	}
16734 
16735 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16736 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16737 
16738 	sd_start_cmds(un, NULL);
16739 
16740 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16741 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16742 	    un, un->un_throttle);
16743 
16744 	mutex_exit(SD_MUTEX(un));
16745 
16746 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16747 }
16748 
16749 /*
16750  *    Function: sdrunout
16751  *
16752  * Description: Callback routine for scsi_init_pkt when a resource allocation
16753  *		fails.
16754  *
16755  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16756  *		soft state instance.
16757  *
16758  * Return Code: The scsi_init_pkt routine allows for the callback function to
16759  *		return a 0 indicating the callback should be rescheduled or a 1
16760  *		indicating not to reschedule. This routine always returns 1
16761  *		because the driver always provides a callback function to
16762  *		scsi_init_pkt. This results in a callback always being scheduled
16763  *		(via the scsi_init_pkt callback implementation) if a resource
16764  *		failure occurs.
16765  *
16766  *     Context: This callback function may not block or call routines that block
16767  *
16768  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16769  *		request persisting at the head of the list which cannot be
16770  *		satisfied even after multiple retries. In the future the driver
16771  *		may implement some time of maximum runout count before failing
16772  *		an I/O.
16773  */
16774 
16775 static int
16776 sdrunout(caddr_t arg)
16777 {
16778 	struct sd_lun	*un = (struct sd_lun *)arg;
16779 
16780 	ASSERT(un != NULL);
16781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16782 
16783 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16784 
16785 	mutex_enter(SD_MUTEX(un));
16786 	sd_start_cmds(un, NULL);
16787 	mutex_exit(SD_MUTEX(un));
16788 	/*
16789 	 * This callback routine always returns 1 (i.e. do not reschedule)
16790 	 * because we always specify sdrunout as the callback handler for
16791 	 * scsi_init_pkt inside the call to sd_start_cmds.
16792 	 */
16793 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16794 	return (1);
16795 }
16796 
16797 
16798 /*
16799  *    Function: sdintr
16800  *
16801  * Description: Completion callback routine for scsi_pkt(9S) structs
16802  *		sent to the HBA driver via scsi_transport(9F).
16803  *
16804  *     Context: Interrupt context
16805  */
16806 
16807 static void
16808 sdintr(struct scsi_pkt *pktp)
16809 {
16810 	struct buf	*bp;
16811 	struct sd_xbuf	*xp;
16812 	struct sd_lun	*un;
16813 	size_t		actual_len;
16814 	sd_ssc_t	*sscp;
16815 
16816 	ASSERT(pktp != NULL);
16817 	bp = (struct buf *)pktp->pkt_private;
16818 	ASSERT(bp != NULL);
16819 	xp = SD_GET_XBUF(bp);
16820 	ASSERT(xp != NULL);
16821 	ASSERT(xp->xb_pktp != NULL);
16822 	un = SD_GET_UN(bp);
16823 	ASSERT(un != NULL);
16824 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16825 
16826 #ifdef SD_FAULT_INJECTION
16827 
16828 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16829 	/* SD FaultInjection */
16830 	sd_faultinjection(pktp);
16831 
16832 #endif /* SD_FAULT_INJECTION */
16833 
16834 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16835 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16836 
16837 	mutex_enter(SD_MUTEX(un));
16838 
16839 	ASSERT(un->un_fm_private != NULL);
16840 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16841 	ASSERT(sscp != NULL);
16842 
16843 	/* Reduce the count of the #commands currently in transport */
16844 	un->un_ncmds_in_transport--;
16845 	ASSERT(un->un_ncmds_in_transport >= 0);
16846 
16847 	/* Increment counter to indicate that the callback routine is active */
16848 	un->un_in_callback++;
16849 
16850 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16851 
16852 #ifdef	SDDEBUG
16853 	if (bp == un->un_retry_bp) {
16854 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16855 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16856 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16857 	}
16858 #endif
16859 
16860 	/*
16861 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16862 	 * state if needed.
16863 	 */
16864 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16865 		/* Prevent multiple console messages for the same failure. */
16866 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16867 			un->un_last_pkt_reason = CMD_DEV_GONE;
16868 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16869 			    "Command failed to complete...Device is gone\n");
16870 		}
16871 		if (un->un_mediastate != DKIO_DEV_GONE) {
16872 			un->un_mediastate = DKIO_DEV_GONE;
16873 			cv_broadcast(&un->un_state_cv);
16874 		}
16875 		/*
16876 		 * If the command happens to be the REQUEST SENSE command,
16877 		 * free up the rqs buf and fail the original command.
16878 		 */
16879 		if (bp == un->un_rqs_bp) {
16880 			bp = sd_mark_rqs_idle(un, xp);
16881 		}
16882 		sd_return_failed_command(un, bp, EIO);
16883 		goto exit;
16884 	}
16885 
16886 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16887 		SD_TRACE(SD_LOG_COMMON, un,
16888 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16889 	}
16890 
16891 	/*
16892 	 * First see if the pkt has auto-request sense data with it....
16893 	 * Look at the packet state first so we don't take a performance
16894 	 * hit looking at the arq enabled flag unless absolutely necessary.
16895 	 */
16896 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16897 	    (un->un_f_arq_enabled == TRUE)) {
16898 		/*
16899 		 * The HBA did an auto request sense for this command so check
16900 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16901 		 * driver command that should not be retried.
16902 		 */
16903 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16904 			/*
16905 			 * Save the relevant sense info into the xp for the
16906 			 * original cmd.
16907 			 */
16908 			struct scsi_arq_status *asp;
16909 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16910 			xp->xb_sense_status =
16911 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16912 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16913 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16914 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16915 				actual_len = MAX_SENSE_LENGTH -
16916 				    xp->xb_sense_resid;
16917 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16918 				    MAX_SENSE_LENGTH);
16919 			} else {
16920 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16921 					actual_len = MAX_SENSE_LENGTH -
16922 					    xp->xb_sense_resid;
16923 				} else {
16924 					actual_len = SENSE_LENGTH -
16925 					    xp->xb_sense_resid;
16926 				}
16927 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16928 					if ((((struct uscsi_cmd *)
16929 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16930 					    actual_len) {
16931 						xp->xb_sense_resid =
16932 						    (((struct uscsi_cmd *)
16933 						    (xp->xb_pktinfo))->
16934 						    uscsi_rqlen) - actual_len;
16935 					} else {
16936 						xp->xb_sense_resid = 0;
16937 					}
16938 				}
16939 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16940 				    SENSE_LENGTH);
16941 			}
16942 
16943 			/* fail the command */
16944 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16945 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16946 			sd_return_failed_command(un, bp, EIO);
16947 			goto exit;
16948 		}
16949 
16950 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16951 		/*
16952 		 * We want to either retry or fail this command, so free
16953 		 * the DMA resources here.  If we retry the command then
16954 		 * the DMA resources will be reallocated in sd_start_cmds().
16955 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16956 		 * causes the *entire* transfer to start over again from the
16957 		 * beginning of the request, even for PARTIAL chunks that
16958 		 * have already transferred successfully.
16959 		 */
16960 		if ((un->un_f_is_fibre == TRUE) &&
16961 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16962 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16963 			scsi_dmafree(pktp);
16964 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16965 		}
16966 #endif
16967 
16968 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16969 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16970 
16971 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16972 		goto exit;
16973 	}
16974 
16975 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16976 	if (pktp->pkt_flags & FLAG_SENSING)  {
16977 		/* This pktp is from the unit's REQUEST_SENSE command */
16978 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16979 		    "sdintr: sd_handle_request_sense\n");
16980 		sd_handle_request_sense(un, bp, xp, pktp);
16981 		goto exit;
16982 	}
16983 
16984 	/*
16985 	 * Check to see if the command successfully completed as requested;
16986 	 * this is the most common case (and also the hot performance path).
16987 	 *
16988 	 * Requirements for successful completion are:
16989 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16990 	 * In addition:
16991 	 * - A residual of zero indicates successful completion no matter what
16992 	 *   the command is.
16993 	 * - If the residual is not zero and the command is not a read or
16994 	 *   write, then it's still defined as successful completion. In other
16995 	 *   words, if the command is a read or write the residual must be
16996 	 *   zero for successful completion.
16997 	 * - If the residual is not zero and the command is a read or
16998 	 *   write, and it's a USCSICMD, then it's still defined as
16999 	 *   successful completion.
17000 	 */
17001 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17002 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17003 
17004 		/*
17005 		 * Since this command is returned with a good status, we
17006 		 * can reset the count for Sonoma failover.
17007 		 */
17008 		un->un_sonoma_failure_count = 0;
17009 
17010 		/*
17011 		 * Return all USCSI commands on good status
17012 		 */
17013 		if (pktp->pkt_resid == 0) {
17014 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17015 			    "sdintr: returning command for resid == 0\n");
17016 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17017 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17018 			SD_UPDATE_B_RESID(bp, pktp);
17019 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17020 			    "sdintr: returning command for resid != 0\n");
17021 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17022 			SD_UPDATE_B_RESID(bp, pktp);
17023 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17024 			    "sdintr: returning uscsi command\n");
17025 		} else {
17026 			goto not_successful;
17027 		}
17028 		sd_return_command(un, bp);
17029 
17030 		/*
17031 		 * Decrement counter to indicate that the callback routine
17032 		 * is done.
17033 		 */
17034 		un->un_in_callback--;
17035 		ASSERT(un->un_in_callback >= 0);
17036 		mutex_exit(SD_MUTEX(un));
17037 
17038 		return;
17039 	}
17040 
17041 not_successful:
17042 
17043 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17044 	/*
17045 	 * The following is based upon knowledge of the underlying transport
17046 	 * and its use of DMA resources.  This code should be removed when
17047 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17048 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17049 	 * and sd_start_cmds().
17050 	 *
17051 	 * Free any DMA resources associated with this command if there
17052 	 * is a chance it could be retried or enqueued for later retry.
17053 	 * If we keep the DMA binding then mpxio cannot reissue the
17054 	 * command on another path whenever a path failure occurs.
17055 	 *
17056 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17057 	 * causes the *entire* transfer to start over again from the
17058 	 * beginning of the request, even for PARTIAL chunks that
17059 	 * have already transferred successfully.
17060 	 *
17061 	 * This is only done for non-uscsi commands (and also skipped for the
17062 	 * driver's internal RQS command). Also just do this for Fibre Channel
17063 	 * devices as these are the only ones that support mpxio.
17064 	 */
17065 	if ((un->un_f_is_fibre == TRUE) &&
17066 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17067 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17068 		scsi_dmafree(pktp);
17069 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17070 	}
17071 #endif
17072 
17073 	/*
17074 	 * The command did not successfully complete as requested so check
17075 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17076 	 * driver command that should not be retried so just return. If
17077 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17078 	 */
17079 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17080 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17081 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17082 		/*
17083 		 * Issue a request sense if a check condition caused the error
17084 		 * (we handle the auto request sense case above), otherwise
17085 		 * just fail the command.
17086 		 */
17087 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17088 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17089 			sd_send_request_sense_command(un, bp, pktp);
17090 		} else {
17091 			sd_return_failed_command(un, bp, EIO);
17092 		}
17093 		goto exit;
17094 	}
17095 
17096 	/*
17097 	 * The command did not successfully complete as requested so process
17098 	 * the error, retry, and/or attempt recovery.
17099 	 */
17100 	switch (pktp->pkt_reason) {
17101 	case CMD_CMPLT:
17102 		switch (SD_GET_PKT_STATUS(pktp)) {
17103 		case STATUS_GOOD:
17104 			/*
17105 			 * The command completed successfully with a non-zero
17106 			 * residual
17107 			 */
17108 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17109 			    "sdintr: STATUS_GOOD \n");
17110 			sd_pkt_status_good(un, bp, xp, pktp);
17111 			break;
17112 
17113 		case STATUS_CHECK:
17114 		case STATUS_TERMINATED:
17115 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17116 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17117 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17118 			break;
17119 
17120 		case STATUS_BUSY:
17121 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17122 			    "sdintr: STATUS_BUSY\n");
17123 			sd_pkt_status_busy(un, bp, xp, pktp);
17124 			break;
17125 
17126 		case STATUS_RESERVATION_CONFLICT:
17127 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17128 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17129 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17130 			break;
17131 
17132 		case STATUS_QFULL:
17133 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17134 			    "sdintr: STATUS_QFULL\n");
17135 			sd_pkt_status_qfull(un, bp, xp, pktp);
17136 			break;
17137 
17138 		case STATUS_MET:
17139 		case STATUS_INTERMEDIATE:
17140 		case STATUS_SCSI2:
17141 		case STATUS_INTERMEDIATE_MET:
17142 		case STATUS_ACA_ACTIVE:
17143 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17144 			    "Unexpected SCSI status received: 0x%x\n",
17145 			    SD_GET_PKT_STATUS(pktp));
17146 			/*
17147 			 * Mark the ssc_flags when detected invalid status
17148 			 * code for non-USCSI command.
17149 			 */
17150 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17151 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17152 				    0, "stat-code");
17153 			}
17154 			sd_return_failed_command(un, bp, EIO);
17155 			break;
17156 
17157 		default:
17158 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17159 			    "Invalid SCSI status received: 0x%x\n",
17160 			    SD_GET_PKT_STATUS(pktp));
17161 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17162 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17163 				    0, "stat-code");
17164 			}
17165 			sd_return_failed_command(un, bp, EIO);
17166 			break;
17167 
17168 		}
17169 		break;
17170 
17171 	case CMD_INCOMPLETE:
17172 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17173 		    "sdintr:  CMD_INCOMPLETE\n");
17174 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17175 		break;
17176 	case CMD_TRAN_ERR:
17177 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17178 		    "sdintr: CMD_TRAN_ERR\n");
17179 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17180 		break;
17181 	case CMD_RESET:
17182 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17183 		    "sdintr: CMD_RESET \n");
17184 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17185 		break;
17186 	case CMD_ABORTED:
17187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17188 		    "sdintr: CMD_ABORTED \n");
17189 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17190 		break;
17191 	case CMD_TIMEOUT:
17192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17193 		    "sdintr: CMD_TIMEOUT\n");
17194 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17195 		break;
17196 	case CMD_UNX_BUS_FREE:
17197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17198 		    "sdintr: CMD_UNX_BUS_FREE \n");
17199 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17200 		break;
17201 	case CMD_TAG_REJECT:
17202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17203 		    "sdintr: CMD_TAG_REJECT\n");
17204 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17205 		break;
17206 	default:
17207 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17208 		    "sdintr: default\n");
17209 		/*
17210 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17211 		 */
17212 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17213 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17214 			    0, "pkt-reason");
17215 		}
17216 		sd_pkt_reason_default(un, bp, xp, pktp);
17217 		break;
17218 	}
17219 
17220 exit:
17221 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17222 
17223 	/* Decrement counter to indicate that the callback routine is done. */
17224 	un->un_in_callback--;
17225 	ASSERT(un->un_in_callback >= 0);
17226 
17227 	/*
17228 	 * At this point, the pkt has been dispatched, ie, it is either
17229 	 * being re-tried or has been returned to its caller and should
17230 	 * not be referenced.
17231 	 */
17232 
17233 	mutex_exit(SD_MUTEX(un));
17234 }
17235 
17236 
17237 /*
17238  *    Function: sd_print_incomplete_msg
17239  *
17240  * Description: Prints the error message for a CMD_INCOMPLETE error.
17241  *
17242  *   Arguments: un - ptr to associated softstate for the device.
17243  *		bp - ptr to the buf(9S) for the command.
17244  *		arg - message string ptr
17245  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17246  *			or SD_NO_RETRY_ISSUED.
17247  *
17248  *     Context: May be called under interrupt context
17249  */
17250 
17251 static void
17252 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17253 {
17254 	struct scsi_pkt	*pktp;
17255 	char	*msgp;
17256 	char	*cmdp = arg;
17257 
17258 	ASSERT(un != NULL);
17259 	ASSERT(mutex_owned(SD_MUTEX(un)));
17260 	ASSERT(bp != NULL);
17261 	ASSERT(arg != NULL);
17262 	pktp = SD_GET_PKTP(bp);
17263 	ASSERT(pktp != NULL);
17264 
17265 	switch (code) {
17266 	case SD_DELAYED_RETRY_ISSUED:
17267 	case SD_IMMEDIATE_RETRY_ISSUED:
17268 		msgp = "retrying";
17269 		break;
17270 	case SD_NO_RETRY_ISSUED:
17271 	default:
17272 		msgp = "giving up";
17273 		break;
17274 	}
17275 
17276 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17277 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17278 		    "incomplete %s- %s\n", cmdp, msgp);
17279 	}
17280 }
17281 
17282 
17283 
17284 /*
17285  *    Function: sd_pkt_status_good
17286  *
17287  * Description: Processing for a STATUS_GOOD code in pkt_status.
17288  *
17289  *     Context: May be called under interrupt context
17290  */
17291 
17292 static void
17293 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17294 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17295 {
17296 	char	*cmdp;
17297 
17298 	ASSERT(un != NULL);
17299 	ASSERT(mutex_owned(SD_MUTEX(un)));
17300 	ASSERT(bp != NULL);
17301 	ASSERT(xp != NULL);
17302 	ASSERT(pktp != NULL);
17303 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17304 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17305 	ASSERT(pktp->pkt_resid != 0);
17306 
17307 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17308 
17309 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17310 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17311 	case SCMD_READ:
17312 		cmdp = "read";
17313 		break;
17314 	case SCMD_WRITE:
17315 		cmdp = "write";
17316 		break;
17317 	default:
17318 		SD_UPDATE_B_RESID(bp, pktp);
17319 		sd_return_command(un, bp);
17320 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17321 		return;
17322 	}
17323 
17324 	/*
17325 	 * See if we can retry the read/write, preferrably immediately.
17326 	 * If retries are exhaused, then sd_retry_command() will update
17327 	 * the b_resid count.
17328 	 */
17329 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17330 	    cmdp, EIO, (clock_t)0, NULL);
17331 
17332 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17333 }
17334 
17335 
17336 
17337 
17338 
17339 /*
17340  *    Function: sd_handle_request_sense
17341  *
17342  * Description: Processing for non-auto Request Sense command.
17343  *
17344  *   Arguments: un - ptr to associated softstate
17345  *		sense_bp - ptr to buf(9S) for the RQS command
17346  *		sense_xp - ptr to the sd_xbuf for the RQS command
17347  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17348  *
17349  *     Context: May be called under interrupt context
17350  */
17351 
17352 static void
17353 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17354 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17355 {
17356 	struct buf	*cmd_bp;	/* buf for the original command */
17357 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17358 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17359 	size_t		actual_len;	/* actual sense data length */
17360 
17361 	ASSERT(un != NULL);
17362 	ASSERT(mutex_owned(SD_MUTEX(un)));
17363 	ASSERT(sense_bp != NULL);
17364 	ASSERT(sense_xp != NULL);
17365 	ASSERT(sense_pktp != NULL);
17366 
17367 	/*
17368 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17369 	 * RQS command and not the original command.
17370 	 */
17371 	ASSERT(sense_pktp == un->un_rqs_pktp);
17372 	ASSERT(sense_bp   == un->un_rqs_bp);
17373 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17374 	    (FLAG_SENSING | FLAG_HEAD));
17375 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17376 	    FLAG_SENSING) == FLAG_SENSING);
17377 
17378 	/* These are the bp, xp, and pktp for the original command */
17379 	cmd_bp = sense_xp->xb_sense_bp;
17380 	cmd_xp = SD_GET_XBUF(cmd_bp);
17381 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17382 
17383 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17384 		/*
17385 		 * The REQUEST SENSE command failed.  Release the REQUEST
17386 		 * SENSE command for re-use, get back the bp for the original
17387 		 * command, and attempt to re-try the original command if
17388 		 * FLAG_DIAGNOSE is not set in the original packet.
17389 		 */
17390 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17391 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17392 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17393 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17394 			    NULL, NULL, EIO, (clock_t)0, NULL);
17395 			return;
17396 		}
17397 	}
17398 
17399 	/*
17400 	 * Save the relevant sense info into the xp for the original cmd.
17401 	 *
17402 	 * Note: if the request sense failed the state info will be zero
17403 	 * as set in sd_mark_rqs_busy()
17404 	 */
17405 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17406 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17407 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17408 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17409 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17410 	    SENSE_LENGTH)) {
17411 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17412 		    MAX_SENSE_LENGTH);
17413 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17414 	} else {
17415 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17416 		    SENSE_LENGTH);
17417 		if (actual_len < SENSE_LENGTH) {
17418 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17419 		} else {
17420 			cmd_xp->xb_sense_resid = 0;
17421 		}
17422 	}
17423 
17424 	/*
17425 	 *  Free up the RQS command....
17426 	 *  NOTE:
17427 	 *	Must do this BEFORE calling sd_validate_sense_data!
17428 	 *	sd_validate_sense_data may return the original command in
17429 	 *	which case the pkt will be freed and the flags can no
17430 	 *	longer be touched.
17431 	 *	SD_MUTEX is held through this process until the command
17432 	 *	is dispatched based upon the sense data, so there are
17433 	 *	no race conditions.
17434 	 */
17435 	(void) sd_mark_rqs_idle(un, sense_xp);
17436 
17437 	/*
17438 	 * For a retryable command see if we have valid sense data, if so then
17439 	 * turn it over to sd_decode_sense() to figure out the right course of
17440 	 * action. Just fail a non-retryable command.
17441 	 */
17442 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17443 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17444 		    SD_SENSE_DATA_IS_VALID) {
17445 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17446 		}
17447 	} else {
17448 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17449 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17450 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17451 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17452 		sd_return_failed_command(un, cmd_bp, EIO);
17453 	}
17454 }
17455 
17456 
17457 
17458 
17459 /*
17460  *    Function: sd_handle_auto_request_sense
17461  *
17462  * Description: Processing for auto-request sense information.
17463  *
17464  *   Arguments: un - ptr to associated softstate
17465  *		bp - ptr to buf(9S) for the command
17466  *		xp - ptr to the sd_xbuf for the command
17467  *		pktp - ptr to the scsi_pkt(9S) for the command
17468  *
17469  *     Context: May be called under interrupt context
17470  */
17471 
17472 static void
17473 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17474 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17475 {
17476 	struct scsi_arq_status *asp;
17477 	size_t actual_len;
17478 
17479 	ASSERT(un != NULL);
17480 	ASSERT(mutex_owned(SD_MUTEX(un)));
17481 	ASSERT(bp != NULL);
17482 	ASSERT(xp != NULL);
17483 	ASSERT(pktp != NULL);
17484 	ASSERT(pktp != un->un_rqs_pktp);
17485 	ASSERT(bp   != un->un_rqs_bp);
17486 
17487 	/*
17488 	 * For auto-request sense, we get a scsi_arq_status back from
17489 	 * the HBA, with the sense data in the sts_sensedata member.
17490 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17491 	 */
17492 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17493 
17494 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17495 		/*
17496 		 * The auto REQUEST SENSE failed; see if we can re-try
17497 		 * the original command.
17498 		 */
17499 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17500 		    "auto request sense failed (reason=%s)\n",
17501 		    scsi_rname(asp->sts_rqpkt_reason));
17502 
17503 		sd_reset_target(un, pktp);
17504 
17505 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17506 		    NULL, NULL, EIO, (clock_t)0, NULL);
17507 		return;
17508 	}
17509 
17510 	/* Save the relevant sense info into the xp for the original cmd. */
17511 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17512 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17513 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17514 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17515 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17516 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17517 		    MAX_SENSE_LENGTH);
17518 	} else {
17519 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17520 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17521 		} else {
17522 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17523 		}
17524 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17525 			if ((((struct uscsi_cmd *)
17526 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17527 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17528 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17529 				    actual_len;
17530 			} else {
17531 				xp->xb_sense_resid = 0;
17532 			}
17533 		}
17534 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17535 	}
17536 
17537 	/*
17538 	 * See if we have valid sense data, if so then turn it over to
17539 	 * sd_decode_sense() to figure out the right course of action.
17540 	 */
17541 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17542 	    SD_SENSE_DATA_IS_VALID) {
17543 		sd_decode_sense(un, bp, xp, pktp);
17544 	}
17545 }
17546 
17547 
17548 /*
17549  *    Function: sd_print_sense_failed_msg
17550  *
17551  * Description: Print log message when RQS has failed.
17552  *
17553  *   Arguments: un - ptr to associated softstate
17554  *		bp - ptr to buf(9S) for the command
17555  *		arg - generic message string ptr
17556  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17557  *			or SD_NO_RETRY_ISSUED
17558  *
17559  *     Context: May be called from interrupt context
17560  */
17561 
17562 static void
17563 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17564 	int code)
17565 {
17566 	char	*msgp = arg;
17567 
17568 	ASSERT(un != NULL);
17569 	ASSERT(mutex_owned(SD_MUTEX(un)));
17570 	ASSERT(bp != NULL);
17571 
17572 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17573 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17574 	}
17575 }
17576 
17577 
17578 /*
17579  *    Function: sd_validate_sense_data
17580  *
17581  * Description: Check the given sense data for validity.
17582  *		If the sense data is not valid, the command will
17583  *		be either failed or retried!
17584  *
17585  * Return Code: SD_SENSE_DATA_IS_INVALID
17586  *		SD_SENSE_DATA_IS_VALID
17587  *
17588  *     Context: May be called from interrupt context
17589  */
17590 
17591 static int
17592 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17593 	size_t actual_len)
17594 {
17595 	struct scsi_extended_sense *esp;
17596 	struct	scsi_pkt *pktp;
17597 	char	*msgp = NULL;
17598 	sd_ssc_t *sscp;
17599 
17600 	ASSERT(un != NULL);
17601 	ASSERT(mutex_owned(SD_MUTEX(un)));
17602 	ASSERT(bp != NULL);
17603 	ASSERT(bp != un->un_rqs_bp);
17604 	ASSERT(xp != NULL);
17605 	ASSERT(un->un_fm_private != NULL);
17606 
17607 	pktp = SD_GET_PKTP(bp);
17608 	ASSERT(pktp != NULL);
17609 
17610 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17611 	ASSERT(sscp != NULL);
17612 
17613 	/*
17614 	 * Check the status of the RQS command (auto or manual).
17615 	 */
17616 	switch (xp->xb_sense_status & STATUS_MASK) {
17617 	case STATUS_GOOD:
17618 		break;
17619 
17620 	case STATUS_RESERVATION_CONFLICT:
17621 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17622 		return (SD_SENSE_DATA_IS_INVALID);
17623 
17624 	case STATUS_BUSY:
17625 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17626 		    "Busy Status on REQUEST SENSE\n");
17627 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17628 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17629 		return (SD_SENSE_DATA_IS_INVALID);
17630 
17631 	case STATUS_QFULL:
17632 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17633 		    "QFULL Status on REQUEST SENSE\n");
17634 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17635 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17636 		return (SD_SENSE_DATA_IS_INVALID);
17637 
17638 	case STATUS_CHECK:
17639 	case STATUS_TERMINATED:
17640 		msgp = "Check Condition on REQUEST SENSE\n";
17641 		goto sense_failed;
17642 
17643 	default:
17644 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17645 		goto sense_failed;
17646 	}
17647 
17648 	/*
17649 	 * See if we got the minimum required amount of sense data.
17650 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17651 	 * or less.
17652 	 */
17653 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17654 	    (actual_len == 0)) {
17655 		msgp = "Request Sense couldn't get sense data\n";
17656 		goto sense_failed;
17657 	}
17658 
17659 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17660 		msgp = "Not enough sense information\n";
17661 		/* Mark the ssc_flags for detecting invalid sense data */
17662 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17663 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17664 			    "sense-data");
17665 		}
17666 		goto sense_failed;
17667 	}
17668 
17669 	/*
17670 	 * We require the extended sense data
17671 	 */
17672 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17673 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17674 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17675 			static char tmp[8];
17676 			static char buf[148];
17677 			char *p = (char *)(xp->xb_sense_data);
17678 			int i;
17679 
17680 			mutex_enter(&sd_sense_mutex);
17681 			(void) strcpy(buf, "undecodable sense information:");
17682 			for (i = 0; i < actual_len; i++) {
17683 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17684 				(void) strcpy(&buf[strlen(buf)], tmp);
17685 			}
17686 			i = strlen(buf);
17687 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17688 
17689 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17690 				scsi_log(SD_DEVINFO(un), sd_label,
17691 				    CE_WARN, buf);
17692 			}
17693 			mutex_exit(&sd_sense_mutex);
17694 		}
17695 
17696 		/* Mark the ssc_flags for detecting invalid sense data */
17697 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17698 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17699 			    "sense-data");
17700 		}
17701 
17702 		/* Note: Legacy behavior, fail the command with no retry */
17703 		sd_return_failed_command(un, bp, EIO);
17704 		return (SD_SENSE_DATA_IS_INVALID);
17705 	}
17706 
17707 	/*
17708 	 * Check that es_code is valid (es_class concatenated with es_code
17709 	 * make up the "response code" field.  es_class will always be 7, so
17710 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17711 	 * format.
17712 	 */
17713 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17714 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17715 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17716 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17717 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17718 		/* Mark the ssc_flags for detecting invalid sense data */
17719 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17720 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17721 			    "sense-data");
17722 		}
17723 		goto sense_failed;
17724 	}
17725 
17726 	return (SD_SENSE_DATA_IS_VALID);
17727 
17728 sense_failed:
17729 	/*
17730 	 * If the request sense failed (for whatever reason), attempt
17731 	 * to retry the original command.
17732 	 */
17733 #if defined(__i386) || defined(__amd64)
17734 	/*
17735 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17736 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17737 	 * for both SCSI/FC.
17738 	 * The SD_RETRY_DELAY value need to be adjusted here
17739 	 * when SD_RETRY_DELAY change in sddef.h
17740 	 */
17741 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17742 	    sd_print_sense_failed_msg, msgp, EIO,
17743 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17744 #else
17745 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17746 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17747 #endif
17748 
17749 	return (SD_SENSE_DATA_IS_INVALID);
17750 }
17751 
17752 /*
17753  *    Function: sd_decode_sense
17754  *
17755  * Description: Take recovery action(s) when SCSI Sense Data is received.
17756  *
17757  *     Context: Interrupt context.
17758  */
17759 
17760 static void
17761 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17762 	struct scsi_pkt *pktp)
17763 {
17764 	uint8_t sense_key;
17765 
17766 	ASSERT(un != NULL);
17767 	ASSERT(mutex_owned(SD_MUTEX(un)));
17768 	ASSERT(bp != NULL);
17769 	ASSERT(bp != un->un_rqs_bp);
17770 	ASSERT(xp != NULL);
17771 	ASSERT(pktp != NULL);
17772 
17773 	sense_key = scsi_sense_key(xp->xb_sense_data);
17774 
17775 	switch (sense_key) {
17776 	case KEY_NO_SENSE:
17777 		sd_sense_key_no_sense(un, bp, xp, pktp);
17778 		break;
17779 	case KEY_RECOVERABLE_ERROR:
17780 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17781 		    bp, xp, pktp);
17782 		break;
17783 	case KEY_NOT_READY:
17784 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17785 		    bp, xp, pktp);
17786 		break;
17787 	case KEY_MEDIUM_ERROR:
17788 	case KEY_HARDWARE_ERROR:
17789 		sd_sense_key_medium_or_hardware_error(un,
17790 		    xp->xb_sense_data, bp, xp, pktp);
17791 		break;
17792 	case KEY_ILLEGAL_REQUEST:
17793 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17794 		break;
17795 	case KEY_UNIT_ATTENTION:
17796 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17797 		    bp, xp, pktp);
17798 		break;
17799 	case KEY_WRITE_PROTECT:
17800 	case KEY_VOLUME_OVERFLOW:
17801 	case KEY_MISCOMPARE:
17802 		sd_sense_key_fail_command(un, bp, xp, pktp);
17803 		break;
17804 	case KEY_BLANK_CHECK:
17805 		sd_sense_key_blank_check(un, bp, xp, pktp);
17806 		break;
17807 	case KEY_ABORTED_COMMAND:
17808 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17809 		break;
17810 	case KEY_VENDOR_UNIQUE:
17811 	case KEY_COPY_ABORTED:
17812 	case KEY_EQUAL:
17813 	case KEY_RESERVED:
17814 	default:
17815 		sd_sense_key_default(un, xp->xb_sense_data,
17816 		    bp, xp, pktp);
17817 		break;
17818 	}
17819 }
17820 
17821 
17822 /*
17823  *    Function: sd_dump_memory
17824  *
17825  * Description: Debug logging routine to print the contents of a user provided
17826  *		buffer. The output of the buffer is broken up into 256 byte
17827  *		segments due to a size constraint of the scsi_log.
17828  *		implementation.
17829  *
17830  *   Arguments: un - ptr to softstate
17831  *		comp - component mask
17832  *		title - "title" string to preceed data when printed
17833  *		data - ptr to data block to be printed
17834  *		len - size of data block to be printed
17835  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17836  *
17837  *     Context: May be called from interrupt context
17838  */
17839 
17840 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17841 
17842 static char *sd_dump_format_string[] = {
17843 		" 0x%02x",
17844 		" %c"
17845 };
17846 
17847 static void
17848 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17849     int len, int fmt)
17850 {
17851 	int	i, j;
17852 	int	avail_count;
17853 	int	start_offset;
17854 	int	end_offset;
17855 	size_t	entry_len;
17856 	char	*bufp;
17857 	char	*local_buf;
17858 	char	*format_string;
17859 
17860 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17861 
17862 	/*
17863 	 * In the debug version of the driver, this function is called from a
17864 	 * number of places which are NOPs in the release driver.
17865 	 * The debug driver therefore has additional methods of filtering
17866 	 * debug output.
17867 	 */
17868 #ifdef SDDEBUG
17869 	/*
17870 	 * In the debug version of the driver we can reduce the amount of debug
17871 	 * messages by setting sd_error_level to something other than
17872 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17873 	 * sd_component_mask.
17874 	 */
17875 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17876 	    (sd_error_level != SCSI_ERR_ALL)) {
17877 		return;
17878 	}
17879 	if (((sd_component_mask & comp) == 0) ||
17880 	    (sd_error_level != SCSI_ERR_ALL)) {
17881 		return;
17882 	}
17883 #else
17884 	if (sd_error_level != SCSI_ERR_ALL) {
17885 		return;
17886 	}
17887 #endif
17888 
17889 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17890 	bufp = local_buf;
17891 	/*
17892 	 * Available length is the length of local_buf[], minus the
17893 	 * length of the title string, minus one for the ":", minus
17894 	 * one for the newline, minus one for the NULL terminator.
17895 	 * This gives the #bytes available for holding the printed
17896 	 * values from the given data buffer.
17897 	 */
17898 	if (fmt == SD_LOG_HEX) {
17899 		format_string = sd_dump_format_string[0];
17900 	} else /* SD_LOG_CHAR */ {
17901 		format_string = sd_dump_format_string[1];
17902 	}
17903 	/*
17904 	 * Available count is the number of elements from the given
17905 	 * data buffer that we can fit into the available length.
17906 	 * This is based upon the size of the format string used.
17907 	 * Make one entry and find it's size.
17908 	 */
17909 	(void) sprintf(bufp, format_string, data[0]);
17910 	entry_len = strlen(bufp);
17911 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17912 
17913 	j = 0;
17914 	while (j < len) {
17915 		bufp = local_buf;
17916 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17917 		start_offset = j;
17918 
17919 		end_offset = start_offset + avail_count;
17920 
17921 		(void) sprintf(bufp, "%s:", title);
17922 		bufp += strlen(bufp);
17923 		for (i = start_offset; ((i < end_offset) && (j < len));
17924 		    i++, j++) {
17925 			(void) sprintf(bufp, format_string, data[i]);
17926 			bufp += entry_len;
17927 		}
17928 		(void) sprintf(bufp, "\n");
17929 
17930 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17931 	}
17932 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17933 }
17934 
17935 /*
17936  *    Function: sd_print_sense_msg
17937  *
17938  * Description: Log a message based upon the given sense data.
17939  *
17940  *   Arguments: un - ptr to associated softstate
17941  *		bp - ptr to buf(9S) for the command
17942  *		arg - ptr to associate sd_sense_info struct
17943  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17944  *			or SD_NO_RETRY_ISSUED
17945  *
17946  *     Context: May be called from interrupt context
17947  */
17948 
17949 static void
17950 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17951 {
17952 	struct sd_xbuf	*xp;
17953 	struct scsi_pkt	*pktp;
17954 	uint8_t *sensep;
17955 	daddr_t request_blkno;
17956 	diskaddr_t err_blkno;
17957 	int severity;
17958 	int pfa_flag;
17959 	extern struct scsi_key_strings scsi_cmds[];
17960 
17961 	ASSERT(un != NULL);
17962 	ASSERT(mutex_owned(SD_MUTEX(un)));
17963 	ASSERT(bp != NULL);
17964 	xp = SD_GET_XBUF(bp);
17965 	ASSERT(xp != NULL);
17966 	pktp = SD_GET_PKTP(bp);
17967 	ASSERT(pktp != NULL);
17968 	ASSERT(arg != NULL);
17969 
17970 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17971 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17972 
17973 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17974 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17975 		severity = SCSI_ERR_RETRYABLE;
17976 	}
17977 
17978 	/* Use absolute block number for the request block number */
17979 	request_blkno = xp->xb_blkno;
17980 
17981 	/*
17982 	 * Now try to get the error block number from the sense data
17983 	 */
17984 	sensep = xp->xb_sense_data;
17985 
17986 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17987 	    (uint64_t *)&err_blkno)) {
17988 		/*
17989 		 * We retrieved the error block number from the information
17990 		 * portion of the sense data.
17991 		 *
17992 		 * For USCSI commands we are better off using the error
17993 		 * block no. as the requested block no. (This is the best
17994 		 * we can estimate.)
17995 		 */
17996 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17997 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17998 			request_blkno = err_blkno;
17999 		}
18000 	} else {
18001 		/*
18002 		 * Without the es_valid bit set (for fixed format) or an
18003 		 * information descriptor (for descriptor format) we cannot
18004 		 * be certain of the error blkno, so just use the
18005 		 * request_blkno.
18006 		 */
18007 		err_blkno = (diskaddr_t)request_blkno;
18008 	}
18009 
18010 	/*
18011 	 * The following will log the buffer contents for the release driver
18012 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18013 	 * level is set to verbose.
18014 	 */
18015 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18016 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18017 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18018 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18019 
18020 	if (pfa_flag == FALSE) {
18021 		/* This is normally only set for USCSI */
18022 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18023 			return;
18024 		}
18025 
18026 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18027 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18028 		    (severity < sd_error_level))) {
18029 			return;
18030 		}
18031 	}
18032 	/*
18033 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18034 	 */
18035 	if ((SD_IS_LSI(un)) &&
18036 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18037 	    (scsi_sense_asc(sensep) == 0x94) &&
18038 	    (scsi_sense_ascq(sensep) == 0x01)) {
18039 		un->un_sonoma_failure_count++;
18040 		if (un->un_sonoma_failure_count > 1) {
18041 			return;
18042 		}
18043 	}
18044 
18045 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18046 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18047 	    (pktp->pkt_resid == 0))) {
18048 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18049 		    request_blkno, err_blkno, scsi_cmds,
18050 		    (struct scsi_extended_sense *)sensep,
18051 		    un->un_additional_codes, NULL);
18052 	}
18053 }
18054 
18055 /*
18056  *    Function: sd_sense_key_no_sense
18057  *
18058  * Description: Recovery action when sense data was not received.
18059  *
18060  *     Context: May be called from interrupt context
18061  */
18062 
18063 static void
18064 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18065 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18066 {
18067 	struct sd_sense_info	si;
18068 
18069 	ASSERT(un != NULL);
18070 	ASSERT(mutex_owned(SD_MUTEX(un)));
18071 	ASSERT(bp != NULL);
18072 	ASSERT(xp != NULL);
18073 	ASSERT(pktp != NULL);
18074 
18075 	si.ssi_severity = SCSI_ERR_FATAL;
18076 	si.ssi_pfa_flag = FALSE;
18077 
18078 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18079 
18080 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18081 	    &si, EIO, (clock_t)0, NULL);
18082 }
18083 
18084 
18085 /*
18086  *    Function: sd_sense_key_recoverable_error
18087  *
18088  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18089  *
18090  *     Context: May be called from interrupt context
18091  */
18092 
18093 static void
18094 sd_sense_key_recoverable_error(struct sd_lun *un,
18095 	uint8_t *sense_datap,
18096 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18097 {
18098 	struct sd_sense_info	si;
18099 	uint8_t asc = scsi_sense_asc(sense_datap);
18100 
18101 	ASSERT(un != NULL);
18102 	ASSERT(mutex_owned(SD_MUTEX(un)));
18103 	ASSERT(bp != NULL);
18104 	ASSERT(xp != NULL);
18105 	ASSERT(pktp != NULL);
18106 
18107 	/*
18108 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18109 	 */
18110 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18111 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18112 		si.ssi_severity = SCSI_ERR_INFO;
18113 		si.ssi_pfa_flag = TRUE;
18114 	} else {
18115 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18116 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18117 		si.ssi_severity = SCSI_ERR_RECOVERED;
18118 		si.ssi_pfa_flag = FALSE;
18119 	}
18120 
18121 	if (pktp->pkt_resid == 0) {
18122 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18123 		sd_return_command(un, bp);
18124 		return;
18125 	}
18126 
18127 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18128 	    &si, EIO, (clock_t)0, NULL);
18129 }
18130 
18131 
18132 
18133 
18134 /*
18135  *    Function: sd_sense_key_not_ready
18136  *
18137  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18138  *
18139  *     Context: May be called from interrupt context
18140  */
18141 
18142 static void
18143 sd_sense_key_not_ready(struct sd_lun *un,
18144 	uint8_t *sense_datap,
18145 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18146 {
18147 	struct sd_sense_info	si;
18148 	uint8_t asc = scsi_sense_asc(sense_datap);
18149 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18150 
18151 	ASSERT(un != NULL);
18152 	ASSERT(mutex_owned(SD_MUTEX(un)));
18153 	ASSERT(bp != NULL);
18154 	ASSERT(xp != NULL);
18155 	ASSERT(pktp != NULL);
18156 
18157 	si.ssi_severity = SCSI_ERR_FATAL;
18158 	si.ssi_pfa_flag = FALSE;
18159 
18160 	/*
18161 	 * Update error stats after first NOT READY error. Disks may have
18162 	 * been powered down and may need to be restarted.  For CDROMs,
18163 	 * report NOT READY errors only if media is present.
18164 	 */
18165 	if ((ISCD(un) && (asc == 0x3A)) ||
18166 	    (xp->xb_nr_retry_count > 0)) {
18167 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18168 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18169 	}
18170 
18171 	/*
18172 	 * Just fail if the "not ready" retry limit has been reached.
18173 	 */
18174 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18175 		/* Special check for error message printing for removables. */
18176 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18177 		    (ascq >= 0x04)) {
18178 			si.ssi_severity = SCSI_ERR_ALL;
18179 		}
18180 		goto fail_command;
18181 	}
18182 
18183 	/*
18184 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18185 	 * what to do.
18186 	 */
18187 	switch (asc) {
18188 	case 0x04:	/* LOGICAL UNIT NOT READY */
18189 		/*
18190 		 * disk drives that don't spin up result in a very long delay
18191 		 * in format without warning messages. We will log a message
18192 		 * if the error level is set to verbose.
18193 		 */
18194 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18195 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18196 			    "logical unit not ready, resetting disk\n");
18197 		}
18198 
18199 		/*
18200 		 * There are different requirements for CDROMs and disks for
18201 		 * the number of retries.  If a CD-ROM is giving this, it is
18202 		 * probably reading TOC and is in the process of getting
18203 		 * ready, so we should keep on trying for a long time to make
18204 		 * sure that all types of media are taken in account (for
18205 		 * some media the drive takes a long time to read TOC).  For
18206 		 * disks we do not want to retry this too many times as this
18207 		 * can cause a long hang in format when the drive refuses to
18208 		 * spin up (a very common failure).
18209 		 */
18210 		switch (ascq) {
18211 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18212 			/*
18213 			 * Disk drives frequently refuse to spin up which
18214 			 * results in a very long hang in format without
18215 			 * warning messages.
18216 			 *
18217 			 * Note: This code preserves the legacy behavior of
18218 			 * comparing xb_nr_retry_count against zero for fibre
18219 			 * channel targets instead of comparing against the
18220 			 * un_reset_retry_count value.  The reason for this
18221 			 * discrepancy has been so utterly lost beneath the
18222 			 * Sands of Time that even Indiana Jones could not
18223 			 * find it.
18224 			 */
18225 			if (un->un_f_is_fibre == TRUE) {
18226 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18227 				    (xp->xb_nr_retry_count > 0)) &&
18228 				    (un->un_startstop_timeid == NULL)) {
18229 					scsi_log(SD_DEVINFO(un), sd_label,
18230 					    CE_WARN, "logical unit not ready, "
18231 					    "resetting disk\n");
18232 					sd_reset_target(un, pktp);
18233 				}
18234 			} else {
18235 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18236 				    (xp->xb_nr_retry_count >
18237 				    un->un_reset_retry_count)) &&
18238 				    (un->un_startstop_timeid == NULL)) {
18239 					scsi_log(SD_DEVINFO(un), sd_label,
18240 					    CE_WARN, "logical unit not ready, "
18241 					    "resetting disk\n");
18242 					sd_reset_target(un, pktp);
18243 				}
18244 			}
18245 			break;
18246 
18247 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18248 			/*
18249 			 * If the target is in the process of becoming
18250 			 * ready, just proceed with the retry. This can
18251 			 * happen with CD-ROMs that take a long time to
18252 			 * read TOC after a power cycle or reset.
18253 			 */
18254 			goto do_retry;
18255 
18256 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18257 			break;
18258 
18259 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18260 			/*
18261 			 * Retries cannot help here so just fail right away.
18262 			 */
18263 			goto fail_command;
18264 
18265 		case 0x88:
18266 			/*
18267 			 * Vendor-unique code for T3/T4: it indicates a
18268 			 * path problem in a mutipathed config, but as far as
18269 			 * the target driver is concerned it equates to a fatal
18270 			 * error, so we should just fail the command right away
18271 			 * (without printing anything to the console). If this
18272 			 * is not a T3/T4, fall thru to the default recovery
18273 			 * action.
18274 			 * T3/T4 is FC only, don't need to check is_fibre
18275 			 */
18276 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18277 				sd_return_failed_command(un, bp, EIO);
18278 				return;
18279 			}
18280 			/* FALLTHRU */
18281 
18282 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18283 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18284 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18285 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18286 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18287 		default:    /* Possible future codes in SCSI spec? */
18288 			/*
18289 			 * For removable-media devices, do not retry if
18290 			 * ASCQ > 2 as these result mostly from USCSI commands
18291 			 * on MMC devices issued to check status of an
18292 			 * operation initiated in immediate mode.  Also for
18293 			 * ASCQ >= 4 do not print console messages as these
18294 			 * mainly represent a user-initiated operation
18295 			 * instead of a system failure.
18296 			 */
18297 			if (un->un_f_has_removable_media) {
18298 				si.ssi_severity = SCSI_ERR_ALL;
18299 				goto fail_command;
18300 			}
18301 			break;
18302 		}
18303 
18304 		/*
18305 		 * As part of our recovery attempt for the NOT READY
18306 		 * condition, we issue a START STOP UNIT command. However
18307 		 * we want to wait for a short delay before attempting this
18308 		 * as there may still be more commands coming back from the
18309 		 * target with the check condition. To do this we use
18310 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18311 		 * the delay interval expires. (sd_start_stop_unit_callback()
18312 		 * dispatches sd_start_stop_unit_task(), which will issue
18313 		 * the actual START STOP UNIT command. The delay interval
18314 		 * is one-half of the delay that we will use to retry the
18315 		 * command that generated the NOT READY condition.
18316 		 *
18317 		 * Note that we could just dispatch sd_start_stop_unit_task()
18318 		 * from here and allow it to sleep for the delay interval,
18319 		 * but then we would be tying up the taskq thread
18320 		 * uncesessarily for the duration of the delay.
18321 		 *
18322 		 * Do not issue the START STOP UNIT if the current command
18323 		 * is already a START STOP UNIT.
18324 		 */
18325 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18326 			break;
18327 		}
18328 
18329 		/*
18330 		 * Do not schedule the timeout if one is already pending.
18331 		 */
18332 		if (un->un_startstop_timeid != NULL) {
18333 			SD_INFO(SD_LOG_ERROR, un,
18334 			    "sd_sense_key_not_ready: restart already issued to"
18335 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18336 			    ddi_get_instance(SD_DEVINFO(un)));
18337 			break;
18338 		}
18339 
18340 		/*
18341 		 * Schedule the START STOP UNIT command, then queue the command
18342 		 * for a retry.
18343 		 *
18344 		 * Note: A timeout is not scheduled for this retry because we
18345 		 * want the retry to be serial with the START_STOP_UNIT. The
18346 		 * retry will be started when the START_STOP_UNIT is completed
18347 		 * in sd_start_stop_unit_task.
18348 		 */
18349 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18350 		    un, un->un_busy_timeout / 2);
18351 		xp->xb_nr_retry_count++;
18352 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18353 		return;
18354 
18355 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18356 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18357 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18358 			    "unit does not respond to selection\n");
18359 		}
18360 		break;
18361 
18362 	case 0x3A:	/* MEDIUM NOT PRESENT */
18363 		if (sd_error_level >= SCSI_ERR_FATAL) {
18364 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18365 			    "Caddy not inserted in drive\n");
18366 		}
18367 
18368 		sr_ejected(un);
18369 		un->un_mediastate = DKIO_EJECTED;
18370 		/* The state has changed, inform the media watch routines */
18371 		cv_broadcast(&un->un_state_cv);
18372 		/* Just fail if no media is present in the drive. */
18373 		goto fail_command;
18374 
18375 	default:
18376 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18377 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18378 			    "Unit not Ready. Additional sense code 0x%x\n",
18379 			    asc);
18380 		}
18381 		break;
18382 	}
18383 
18384 do_retry:
18385 
18386 	/*
18387 	 * Retry the command, as some targets may report NOT READY for
18388 	 * several seconds after being reset.
18389 	 */
18390 	xp->xb_nr_retry_count++;
18391 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18392 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18393 	    &si, EIO, un->un_busy_timeout, NULL);
18394 
18395 	return;
18396 
18397 fail_command:
18398 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18399 	sd_return_failed_command(un, bp, EIO);
18400 }
18401 
18402 
18403 
18404 /*
18405  *    Function: sd_sense_key_medium_or_hardware_error
18406  *
18407  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18408  *		sense key.
18409  *
18410  *     Context: May be called from interrupt context
18411  */
18412 
18413 static void
18414 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18415 	uint8_t *sense_datap,
18416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18417 {
18418 	struct sd_sense_info	si;
18419 	uint8_t sense_key = scsi_sense_key(sense_datap);
18420 	uint8_t asc = scsi_sense_asc(sense_datap);
18421 
18422 	ASSERT(un != NULL);
18423 	ASSERT(mutex_owned(SD_MUTEX(un)));
18424 	ASSERT(bp != NULL);
18425 	ASSERT(xp != NULL);
18426 	ASSERT(pktp != NULL);
18427 
18428 	si.ssi_severity = SCSI_ERR_FATAL;
18429 	si.ssi_pfa_flag = FALSE;
18430 
18431 	if (sense_key == KEY_MEDIUM_ERROR) {
18432 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18433 	}
18434 
18435 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18436 
18437 	if ((un->un_reset_retry_count != 0) &&
18438 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18439 		mutex_exit(SD_MUTEX(un));
18440 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18441 		if (un->un_f_allow_bus_device_reset == TRUE) {
18442 
18443 			boolean_t try_resetting_target = B_TRUE;
18444 
18445 			/*
18446 			 * We need to be able to handle specific ASC when we are
18447 			 * handling a KEY_HARDWARE_ERROR. In particular
18448 			 * taking the default action of resetting the target may
18449 			 * not be the appropriate way to attempt recovery.
18450 			 * Resetting a target because of a single LUN failure
18451 			 * victimizes all LUNs on that target.
18452 			 *
18453 			 * This is true for the LSI arrays, if an LSI
18454 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18455 			 * should trust it.
18456 			 */
18457 
18458 			if (sense_key == KEY_HARDWARE_ERROR) {
18459 				switch (asc) {
18460 				case 0x84:
18461 					if (SD_IS_LSI(un)) {
18462 						try_resetting_target = B_FALSE;
18463 					}
18464 					break;
18465 				default:
18466 					break;
18467 				}
18468 			}
18469 
18470 			if (try_resetting_target == B_TRUE) {
18471 				int reset_retval = 0;
18472 				if (un->un_f_lun_reset_enabled == TRUE) {
18473 					SD_TRACE(SD_LOG_IO_CORE, un,
18474 					    "sd_sense_key_medium_or_hardware_"
18475 					    "error: issuing RESET_LUN\n");
18476 					reset_retval =
18477 					    scsi_reset(SD_ADDRESS(un),
18478 					    RESET_LUN);
18479 				}
18480 				if (reset_retval == 0) {
18481 					SD_TRACE(SD_LOG_IO_CORE, un,
18482 					    "sd_sense_key_medium_or_hardware_"
18483 					    "error: issuing RESET_TARGET\n");
18484 					(void) scsi_reset(SD_ADDRESS(un),
18485 					    RESET_TARGET);
18486 				}
18487 			}
18488 		}
18489 		mutex_enter(SD_MUTEX(un));
18490 	}
18491 
18492 	/*
18493 	 * This really ought to be a fatal error, but we will retry anyway
18494 	 * as some drives report this as a spurious error.
18495 	 */
18496 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18497 	    &si, EIO, (clock_t)0, NULL);
18498 }
18499 
18500 
18501 
18502 /*
18503  *    Function: sd_sense_key_illegal_request
18504  *
18505  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18506  *
18507  *     Context: May be called from interrupt context
18508  */
18509 
18510 static void
18511 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18512 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18513 {
18514 	struct sd_sense_info	si;
18515 
18516 	ASSERT(un != NULL);
18517 	ASSERT(mutex_owned(SD_MUTEX(un)));
18518 	ASSERT(bp != NULL);
18519 	ASSERT(xp != NULL);
18520 	ASSERT(pktp != NULL);
18521 
18522 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18523 
18524 	si.ssi_severity = SCSI_ERR_INFO;
18525 	si.ssi_pfa_flag = FALSE;
18526 
18527 	/* Pointless to retry if the target thinks it's an illegal request */
18528 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18529 	sd_return_failed_command(un, bp, EIO);
18530 }
18531 
18532 
18533 
18534 
18535 /*
18536  *    Function: sd_sense_key_unit_attention
18537  *
18538  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18539  *
18540  *     Context: May be called from interrupt context
18541  */
18542 
18543 static void
18544 sd_sense_key_unit_attention(struct sd_lun *un,
18545 	uint8_t *sense_datap,
18546 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18547 {
18548 	/*
18549 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18550 	 * like Sonoma can return UNIT ATTENTION close to a minute
18551 	 * under certain conditions.
18552 	 */
18553 	int	retry_check_flag = SD_RETRIES_UA;
18554 	boolean_t	kstat_updated = B_FALSE;
18555 	struct	sd_sense_info		si;
18556 	uint8_t asc = scsi_sense_asc(sense_datap);
18557 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18558 
18559 	ASSERT(un != NULL);
18560 	ASSERT(mutex_owned(SD_MUTEX(un)));
18561 	ASSERT(bp != NULL);
18562 	ASSERT(xp != NULL);
18563 	ASSERT(pktp != NULL);
18564 
18565 	si.ssi_severity = SCSI_ERR_INFO;
18566 	si.ssi_pfa_flag = FALSE;
18567 
18568 
18569 	switch (asc) {
18570 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18571 		if (sd_report_pfa != 0) {
18572 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18573 			si.ssi_pfa_flag = TRUE;
18574 			retry_check_flag = SD_RETRIES_STANDARD;
18575 			goto do_retry;
18576 		}
18577 
18578 		break;
18579 
18580 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18581 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18582 			un->un_resvd_status |=
18583 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18584 		}
18585 #ifdef _LP64
18586 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18587 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18588 			    un, KM_NOSLEEP) == 0) {
18589 				/*
18590 				 * If we can't dispatch the task we'll just
18591 				 * live without descriptor sense.  We can
18592 				 * try again on the next "unit attention"
18593 				 */
18594 				SD_ERROR(SD_LOG_ERROR, un,
18595 				    "sd_sense_key_unit_attention: "
18596 				    "Could not dispatch "
18597 				    "sd_reenable_dsense_task\n");
18598 			}
18599 		}
18600 #endif /* _LP64 */
18601 		/* FALLTHRU */
18602 
18603 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18604 		if (!un->un_f_has_removable_media) {
18605 			break;
18606 		}
18607 
18608 		/*
18609 		 * When we get a unit attention from a removable-media device,
18610 		 * it may be in a state that will take a long time to recover
18611 		 * (e.g., from a reset).  Since we are executing in interrupt
18612 		 * context here, we cannot wait around for the device to come
18613 		 * back. So hand this command off to sd_media_change_task()
18614 		 * for deferred processing under taskq thread context. (Note
18615 		 * that the command still may be failed if a problem is
18616 		 * encountered at a later time.)
18617 		 */
18618 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18619 		    KM_NOSLEEP) == 0) {
18620 			/*
18621 			 * Cannot dispatch the request so fail the command.
18622 			 */
18623 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18624 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18625 			si.ssi_severity = SCSI_ERR_FATAL;
18626 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18627 			sd_return_failed_command(un, bp, EIO);
18628 		}
18629 
18630 		/*
18631 		 * If failed to dispatch sd_media_change_task(), we already
18632 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18633 		 * we should update kstat later if it encounters an error. So,
18634 		 * we update kstat_updated flag here.
18635 		 */
18636 		kstat_updated = B_TRUE;
18637 
18638 		/*
18639 		 * Either the command has been successfully dispatched to a
18640 		 * task Q for retrying, or the dispatch failed. In either case
18641 		 * do NOT retry again by calling sd_retry_command. This sets up
18642 		 * two retries of the same command and when one completes and
18643 		 * frees the resources the other will access freed memory,
18644 		 * a bad thing.
18645 		 */
18646 		return;
18647 
18648 	default:
18649 		break;
18650 	}
18651 
18652 	/*
18653 	 * ASC  ASCQ
18654 	 *  2A   09	Capacity data has changed
18655 	 *  2A   01	Mode parameters changed
18656 	 *  3F   0E	Reported luns data has changed
18657 	 * Arrays that support logical unit expansion should report
18658 	 * capacity changes(2Ah/09). Mode parameters changed and
18659 	 * reported luns data has changed are the approximation.
18660 	 */
18661 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18662 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18663 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18664 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18665 		    KM_NOSLEEP) == 0) {
18666 			SD_ERROR(SD_LOG_ERROR, un,
18667 			    "sd_sense_key_unit_attention: "
18668 			    "Could not dispatch sd_target_change_task\n");
18669 		}
18670 	}
18671 
18672 	/*
18673 	 * Update kstat if we haven't done that.
18674 	 */
18675 	if (!kstat_updated) {
18676 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18677 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18678 	}
18679 
18680 do_retry:
18681 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18682 	    EIO, SD_UA_RETRY_DELAY, NULL);
18683 }
18684 
18685 
18686 
18687 /*
18688  *    Function: sd_sense_key_fail_command
18689  *
18690  * Description: Use to fail a command when we don't like the sense key that
18691  *		was returned.
18692  *
18693  *     Context: May be called from interrupt context
18694  */
18695 
18696 static void
18697 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18698 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18699 {
18700 	struct sd_sense_info	si;
18701 
18702 	ASSERT(un != NULL);
18703 	ASSERT(mutex_owned(SD_MUTEX(un)));
18704 	ASSERT(bp != NULL);
18705 	ASSERT(xp != NULL);
18706 	ASSERT(pktp != NULL);
18707 
18708 	si.ssi_severity = SCSI_ERR_FATAL;
18709 	si.ssi_pfa_flag = FALSE;
18710 
18711 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18712 	sd_return_failed_command(un, bp, EIO);
18713 }
18714 
18715 
18716 
18717 /*
18718  *    Function: sd_sense_key_blank_check
18719  *
18720  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18721  *		Has no monetary connotation.
18722  *
18723  *     Context: May be called from interrupt context
18724  */
18725 
18726 static void
18727 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18728 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18729 {
18730 	struct sd_sense_info	si;
18731 
18732 	ASSERT(un != NULL);
18733 	ASSERT(mutex_owned(SD_MUTEX(un)));
18734 	ASSERT(bp != NULL);
18735 	ASSERT(xp != NULL);
18736 	ASSERT(pktp != NULL);
18737 
18738 	/*
18739 	 * Blank check is not fatal for removable devices, therefore
18740 	 * it does not require a console message.
18741 	 */
18742 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18743 	    SCSI_ERR_FATAL;
18744 	si.ssi_pfa_flag = FALSE;
18745 
18746 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18747 	sd_return_failed_command(un, bp, EIO);
18748 }
18749 
18750 
18751 
18752 
18753 /*
18754  *    Function: sd_sense_key_aborted_command
18755  *
18756  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18757  *
18758  *     Context: May be called from interrupt context
18759  */
18760 
18761 static void
18762 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18763 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18764 {
18765 	struct sd_sense_info	si;
18766 
18767 	ASSERT(un != NULL);
18768 	ASSERT(mutex_owned(SD_MUTEX(un)));
18769 	ASSERT(bp != NULL);
18770 	ASSERT(xp != NULL);
18771 	ASSERT(pktp != NULL);
18772 
18773 	si.ssi_severity = SCSI_ERR_FATAL;
18774 	si.ssi_pfa_flag = FALSE;
18775 
18776 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18777 
18778 	/*
18779 	 * This really ought to be a fatal error, but we will retry anyway
18780 	 * as some drives report this as a spurious error.
18781 	 */
18782 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18783 	    &si, EIO, drv_usectohz(100000), NULL);
18784 }
18785 
18786 
18787 
18788 /*
18789  *    Function: sd_sense_key_default
18790  *
18791  * Description: Default recovery action for several SCSI sense keys (basically
18792  *		attempts a retry).
18793  *
18794  *     Context: May be called from interrupt context
18795  */
18796 
18797 static void
18798 sd_sense_key_default(struct sd_lun *un,
18799 	uint8_t *sense_datap,
18800 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18801 {
18802 	struct sd_sense_info	si;
18803 	uint8_t sense_key = scsi_sense_key(sense_datap);
18804 
18805 	ASSERT(un != NULL);
18806 	ASSERT(mutex_owned(SD_MUTEX(un)));
18807 	ASSERT(bp != NULL);
18808 	ASSERT(xp != NULL);
18809 	ASSERT(pktp != NULL);
18810 
18811 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18812 
18813 	/*
18814 	 * Undecoded sense key.	Attempt retries and hope that will fix
18815 	 * the problem.  Otherwise, we're dead.
18816 	 */
18817 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18818 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18819 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18820 	}
18821 
18822 	si.ssi_severity = SCSI_ERR_FATAL;
18823 	si.ssi_pfa_flag = FALSE;
18824 
18825 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18826 	    &si, EIO, (clock_t)0, NULL);
18827 }
18828 
18829 
18830 
18831 /*
18832  *    Function: sd_print_retry_msg
18833  *
18834  * Description: Print a message indicating the retry action being taken.
18835  *
18836  *   Arguments: un - ptr to associated softstate
18837  *		bp - ptr to buf(9S) for the command
18838  *		arg - not used.
18839  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18840  *			or SD_NO_RETRY_ISSUED
18841  *
18842  *     Context: May be called from interrupt context
18843  */
18844 /* ARGSUSED */
18845 static void
18846 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18847 {
18848 	struct sd_xbuf	*xp;
18849 	struct scsi_pkt *pktp;
18850 	char *reasonp;
18851 	char *msgp;
18852 
18853 	ASSERT(un != NULL);
18854 	ASSERT(mutex_owned(SD_MUTEX(un)));
18855 	ASSERT(bp != NULL);
18856 	pktp = SD_GET_PKTP(bp);
18857 	ASSERT(pktp != NULL);
18858 	xp = SD_GET_XBUF(bp);
18859 	ASSERT(xp != NULL);
18860 
18861 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18862 	mutex_enter(&un->un_pm_mutex);
18863 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18864 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18865 	    (pktp->pkt_flags & FLAG_SILENT)) {
18866 		mutex_exit(&un->un_pm_mutex);
18867 		goto update_pkt_reason;
18868 	}
18869 	mutex_exit(&un->un_pm_mutex);
18870 
18871 	/*
18872 	 * Suppress messages if they are all the same pkt_reason; with
18873 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18874 	 * If we are in panic, then suppress the retry messages.
18875 	 */
18876 	switch (flag) {
18877 	case SD_NO_RETRY_ISSUED:
18878 		msgp = "giving up";
18879 		break;
18880 	case SD_IMMEDIATE_RETRY_ISSUED:
18881 	case SD_DELAYED_RETRY_ISSUED:
18882 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18883 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18884 		    (sd_error_level != SCSI_ERR_ALL))) {
18885 			return;
18886 		}
18887 		msgp = "retrying command";
18888 		break;
18889 	default:
18890 		goto update_pkt_reason;
18891 	}
18892 
18893 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18894 	    scsi_rname(pktp->pkt_reason));
18895 
18896 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18897 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18898 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18899 	}
18900 
18901 update_pkt_reason:
18902 	/*
18903 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18904 	 * This is to prevent multiple console messages for the same failure
18905 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18906 	 * when the command is retried successfully because there still may be
18907 	 * more commands coming back with the same value of pktp->pkt_reason.
18908 	 */
18909 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18910 		un->un_last_pkt_reason = pktp->pkt_reason;
18911 	}
18912 }
18913 
18914 
18915 /*
18916  *    Function: sd_print_cmd_incomplete_msg
18917  *
18918  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18919  *
18920  *   Arguments: un - ptr to associated softstate
18921  *		bp - ptr to buf(9S) for the command
18922  *		arg - passed to sd_print_retry_msg()
18923  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18924  *			or SD_NO_RETRY_ISSUED
18925  *
18926  *     Context: May be called from interrupt context
18927  */
18928 
18929 static void
18930 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18931 	int code)
18932 {
18933 	dev_info_t	*dip;
18934 
18935 	ASSERT(un != NULL);
18936 	ASSERT(mutex_owned(SD_MUTEX(un)));
18937 	ASSERT(bp != NULL);
18938 
18939 	switch (code) {
18940 	case SD_NO_RETRY_ISSUED:
18941 		/* Command was failed. Someone turned off this target? */
18942 		if (un->un_state != SD_STATE_OFFLINE) {
18943 			/*
18944 			 * Suppress message if we are detaching and
18945 			 * device has been disconnected
18946 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18947 			 * private interface and not part of the DDI
18948 			 */
18949 			dip = un->un_sd->sd_dev;
18950 			if (!(DEVI_IS_DETACHING(dip) &&
18951 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18952 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18953 				"disk not responding to selection\n");
18954 			}
18955 			New_state(un, SD_STATE_OFFLINE);
18956 		}
18957 		break;
18958 
18959 	case SD_DELAYED_RETRY_ISSUED:
18960 	case SD_IMMEDIATE_RETRY_ISSUED:
18961 	default:
18962 		/* Command was successfully queued for retry */
18963 		sd_print_retry_msg(un, bp, arg, code);
18964 		break;
18965 	}
18966 }
18967 
18968 
18969 /*
18970  *    Function: sd_pkt_reason_cmd_incomplete
18971  *
18972  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18973  *
18974  *     Context: May be called from interrupt context
18975  */
18976 
18977 static void
18978 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18979 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18980 {
18981 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18982 
18983 	ASSERT(un != NULL);
18984 	ASSERT(mutex_owned(SD_MUTEX(un)));
18985 	ASSERT(bp != NULL);
18986 	ASSERT(xp != NULL);
18987 	ASSERT(pktp != NULL);
18988 
18989 	/* Do not do a reset if selection did not complete */
18990 	/* Note: Should this not just check the bit? */
18991 	if (pktp->pkt_state != STATE_GOT_BUS) {
18992 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18993 		sd_reset_target(un, pktp);
18994 	}
18995 
18996 	/*
18997 	 * If the target was not successfully selected, then set
18998 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18999 	 * with the target, and further retries and/or commands are
19000 	 * likely to take a long time.
19001 	 */
19002 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19003 		flag |= SD_RETRIES_FAILFAST;
19004 	}
19005 
19006 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19007 
19008 	sd_retry_command(un, bp, flag,
19009 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19010 }
19011 
19012 
19013 
19014 /*
19015  *    Function: sd_pkt_reason_cmd_tran_err
19016  *
19017  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19018  *
19019  *     Context: May be called from interrupt context
19020  */
19021 
19022 static void
19023 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19024 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19025 {
19026 	ASSERT(un != NULL);
19027 	ASSERT(mutex_owned(SD_MUTEX(un)));
19028 	ASSERT(bp != NULL);
19029 	ASSERT(xp != NULL);
19030 	ASSERT(pktp != NULL);
19031 
19032 	/*
19033 	 * Do not reset if we got a parity error, or if
19034 	 * selection did not complete.
19035 	 */
19036 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19037 	/* Note: Should this not just check the bit for pkt_state? */
19038 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19039 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19040 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19041 		sd_reset_target(un, pktp);
19042 	}
19043 
19044 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19045 
19046 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19047 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19048 }
19049 
19050 
19051 
19052 /*
19053  *    Function: sd_pkt_reason_cmd_reset
19054  *
19055  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19056  *
19057  *     Context: May be called from interrupt context
19058  */
19059 
19060 static void
19061 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19062 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19063 {
19064 	ASSERT(un != NULL);
19065 	ASSERT(mutex_owned(SD_MUTEX(un)));
19066 	ASSERT(bp != NULL);
19067 	ASSERT(xp != NULL);
19068 	ASSERT(pktp != NULL);
19069 
19070 	/* The target may still be running the command, so try to reset. */
19071 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19072 	sd_reset_target(un, pktp);
19073 
19074 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19075 
19076 	/*
19077 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19078 	 * reset because another target on this bus caused it. The target
19079 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19080 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19081 	 */
19082 
19083 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19084 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19085 }
19086 
19087 
19088 
19089 
19090 /*
19091  *    Function: sd_pkt_reason_cmd_aborted
19092  *
19093  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19094  *
19095  *     Context: May be called from interrupt context
19096  */
19097 
19098 static void
19099 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19100 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19101 {
19102 	ASSERT(un != NULL);
19103 	ASSERT(mutex_owned(SD_MUTEX(un)));
19104 	ASSERT(bp != NULL);
19105 	ASSERT(xp != NULL);
19106 	ASSERT(pktp != NULL);
19107 
19108 	/* The target may still be running the command, so try to reset. */
19109 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19110 	sd_reset_target(un, pktp);
19111 
19112 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19113 
19114 	/*
19115 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19116 	 * aborted because another target on this bus caused it. The target
19117 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19118 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19119 	 */
19120 
19121 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19122 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19123 }
19124 
19125 
19126 
19127 /*
19128  *    Function: sd_pkt_reason_cmd_timeout
19129  *
19130  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19131  *
19132  *     Context: May be called from interrupt context
19133  */
19134 
19135 static void
19136 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19137 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19138 {
19139 	ASSERT(un != NULL);
19140 	ASSERT(mutex_owned(SD_MUTEX(un)));
19141 	ASSERT(bp != NULL);
19142 	ASSERT(xp != NULL);
19143 	ASSERT(pktp != NULL);
19144 
19145 
19146 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19147 	sd_reset_target(un, pktp);
19148 
19149 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19150 
19151 	/*
19152 	 * A command timeout indicates that we could not establish
19153 	 * communication with the target, so set SD_RETRIES_FAILFAST
19154 	 * as further retries/commands are likely to take a long time.
19155 	 */
19156 	sd_retry_command(un, bp,
19157 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19158 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19159 }
19160 
19161 
19162 
19163 /*
19164  *    Function: sd_pkt_reason_cmd_unx_bus_free
19165  *
19166  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19167  *
19168  *     Context: May be called from interrupt context
19169  */
19170 
19171 static void
19172 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19173 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19174 {
19175 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19176 
19177 	ASSERT(un != NULL);
19178 	ASSERT(mutex_owned(SD_MUTEX(un)));
19179 	ASSERT(bp != NULL);
19180 	ASSERT(xp != NULL);
19181 	ASSERT(pktp != NULL);
19182 
19183 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19184 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19185 
19186 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19187 	    sd_print_retry_msg : NULL;
19188 
19189 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19190 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19191 }
19192 
19193 
19194 /*
19195  *    Function: sd_pkt_reason_cmd_tag_reject
19196  *
19197  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19198  *
19199  *     Context: May be called from interrupt context
19200  */
19201 
19202 static void
19203 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19204 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19205 {
19206 	ASSERT(un != NULL);
19207 	ASSERT(mutex_owned(SD_MUTEX(un)));
19208 	ASSERT(bp != NULL);
19209 	ASSERT(xp != NULL);
19210 	ASSERT(pktp != NULL);
19211 
19212 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19213 	pktp->pkt_flags = 0;
19214 	un->un_tagflags = 0;
19215 	if (un->un_f_opt_queueing == TRUE) {
19216 		un->un_throttle = min(un->un_throttle, 3);
19217 	} else {
19218 		un->un_throttle = 1;
19219 	}
19220 	mutex_exit(SD_MUTEX(un));
19221 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19222 	mutex_enter(SD_MUTEX(un));
19223 
19224 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19225 
19226 	/* Legacy behavior not to check retry counts here. */
19227 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19228 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19229 }
19230 
19231 
19232 /*
19233  *    Function: sd_pkt_reason_default
19234  *
19235  * Description: Default recovery actions for SCSA pkt_reason values that
19236  *		do not have more explicit recovery actions.
19237  *
19238  *     Context: May be called from interrupt context
19239  */
19240 
19241 static void
19242 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19243 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19244 {
19245 	ASSERT(un != NULL);
19246 	ASSERT(mutex_owned(SD_MUTEX(un)));
19247 	ASSERT(bp != NULL);
19248 	ASSERT(xp != NULL);
19249 	ASSERT(pktp != NULL);
19250 
19251 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19252 	sd_reset_target(un, pktp);
19253 
19254 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19255 
19256 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19257 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19258 }
19259 
19260 
19261 
19262 /*
19263  *    Function: sd_pkt_status_check_condition
19264  *
19265  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19266  *
19267  *     Context: May be called from interrupt context
19268  */
19269 
19270 static void
19271 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19272 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19273 {
19274 	ASSERT(un != NULL);
19275 	ASSERT(mutex_owned(SD_MUTEX(un)));
19276 	ASSERT(bp != NULL);
19277 	ASSERT(xp != NULL);
19278 	ASSERT(pktp != NULL);
19279 
19280 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19281 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19282 
19283 	/*
19284 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19285 	 * command will be retried after the request sense). Otherwise, retry
19286 	 * the command. Note: we are issuing the request sense even though the
19287 	 * retry limit may have been reached for the failed command.
19288 	 */
19289 	if (un->un_f_arq_enabled == FALSE) {
19290 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19291 		    "no ARQ, sending request sense command\n");
19292 		sd_send_request_sense_command(un, bp, pktp);
19293 	} else {
19294 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19295 		    "ARQ,retrying request sense command\n");
19296 #if defined(__i386) || defined(__amd64)
19297 		/*
19298 		 * The SD_RETRY_DELAY value need to be adjusted here
19299 		 * when SD_RETRY_DELAY change in sddef.h
19300 		 */
19301 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19302 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19303 		    NULL);
19304 #else
19305 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19306 		    EIO, SD_RETRY_DELAY, NULL);
19307 #endif
19308 	}
19309 
19310 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19311 }
19312 
19313 
19314 /*
19315  *    Function: sd_pkt_status_busy
19316  *
19317  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19318  *
19319  *     Context: May be called from interrupt context
19320  */
19321 
19322 static void
19323 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19324 	struct scsi_pkt *pktp)
19325 {
19326 	ASSERT(un != NULL);
19327 	ASSERT(mutex_owned(SD_MUTEX(un)));
19328 	ASSERT(bp != NULL);
19329 	ASSERT(xp != NULL);
19330 	ASSERT(pktp != NULL);
19331 
19332 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19333 	    "sd_pkt_status_busy: entry\n");
19334 
19335 	/* If retries are exhausted, just fail the command. */
19336 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19337 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19338 		    "device busy too long\n");
19339 		sd_return_failed_command(un, bp, EIO);
19340 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19341 		    "sd_pkt_status_busy: exit\n");
19342 		return;
19343 	}
19344 	xp->xb_retry_count++;
19345 
19346 	/*
19347 	 * Try to reset the target. However, we do not want to perform
19348 	 * more than one reset if the device continues to fail. The reset
19349 	 * will be performed when the retry count reaches the reset
19350 	 * threshold.  This threshold should be set such that at least
19351 	 * one retry is issued before the reset is performed.
19352 	 */
19353 	if (xp->xb_retry_count ==
19354 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19355 		int rval = 0;
19356 		mutex_exit(SD_MUTEX(un));
19357 		if (un->un_f_allow_bus_device_reset == TRUE) {
19358 			/*
19359 			 * First try to reset the LUN; if we cannot then
19360 			 * try to reset the target.
19361 			 */
19362 			if (un->un_f_lun_reset_enabled == TRUE) {
19363 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19364 				    "sd_pkt_status_busy: RESET_LUN\n");
19365 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19366 			}
19367 			if (rval == 0) {
19368 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19369 				    "sd_pkt_status_busy: RESET_TARGET\n");
19370 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19371 			}
19372 		}
19373 		if (rval == 0) {
19374 			/*
19375 			 * If the RESET_LUN and/or RESET_TARGET failed,
19376 			 * try RESET_ALL
19377 			 */
19378 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19379 			    "sd_pkt_status_busy: RESET_ALL\n");
19380 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19381 		}
19382 		mutex_enter(SD_MUTEX(un));
19383 		if (rval == 0) {
19384 			/*
19385 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19386 			 * At this point we give up & fail the command.
19387 			 */
19388 			sd_return_failed_command(un, bp, EIO);
19389 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19390 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19391 			return;
19392 		}
19393 	}
19394 
19395 	/*
19396 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19397 	 * we have already checked the retry counts above.
19398 	 */
19399 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19400 	    EIO, un->un_busy_timeout, NULL);
19401 
19402 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19403 	    "sd_pkt_status_busy: exit\n");
19404 }
19405 
19406 
19407 /*
19408  *    Function: sd_pkt_status_reservation_conflict
19409  *
19410  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19411  *		command status.
19412  *
19413  *     Context: May be called from interrupt context
19414  */
19415 
19416 static void
19417 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19418 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19419 {
19420 	ASSERT(un != NULL);
19421 	ASSERT(mutex_owned(SD_MUTEX(un)));
19422 	ASSERT(bp != NULL);
19423 	ASSERT(xp != NULL);
19424 	ASSERT(pktp != NULL);
19425 
19426 	/*
19427 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19428 	 * conflict could be due to various reasons like incorrect keys, not
19429 	 * registered or not reserved etc. So, we return EACCES to the caller.
19430 	 */
19431 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19432 		int cmd = SD_GET_PKT_OPCODE(pktp);
19433 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19434 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19435 			sd_return_failed_command(un, bp, EACCES);
19436 			return;
19437 		}
19438 	}
19439 
19440 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19441 
19442 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19443 		if (sd_failfast_enable != 0) {
19444 			/* By definition, we must panic here.... */
19445 			sd_panic_for_res_conflict(un);
19446 			/*NOTREACHED*/
19447 		}
19448 		SD_ERROR(SD_LOG_IO, un,
19449 		    "sd_handle_resv_conflict: Disk Reserved\n");
19450 		sd_return_failed_command(un, bp, EACCES);
19451 		return;
19452 	}
19453 
19454 	/*
19455 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19456 	 * property is set (default is 1). Retries will not succeed
19457 	 * on a disk reserved by another initiator. HA systems
19458 	 * may reset this via sd.conf to avoid these retries.
19459 	 *
19460 	 * Note: The legacy return code for this failure is EIO, however EACCES
19461 	 * seems more appropriate for a reservation conflict.
19462 	 */
19463 	if (sd_retry_on_reservation_conflict == 0) {
19464 		SD_ERROR(SD_LOG_IO, un,
19465 		    "sd_handle_resv_conflict: Device Reserved\n");
19466 		sd_return_failed_command(un, bp, EIO);
19467 		return;
19468 	}
19469 
19470 	/*
19471 	 * Retry the command if we can.
19472 	 *
19473 	 * Note: The legacy return code for this failure is EIO, however EACCES
19474 	 * seems more appropriate for a reservation conflict.
19475 	 */
19476 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19477 	    (clock_t)2, NULL);
19478 }
19479 
19480 
19481 
19482 /*
19483  *    Function: sd_pkt_status_qfull
19484  *
19485  * Description: Handle a QUEUE FULL condition from the target.  This can
19486  *		occur if the HBA does not handle the queue full condition.
19487  *		(Basically this means third-party HBAs as Sun HBAs will
19488  *		handle the queue full condition.)  Note that if there are
19489  *		some commands already in the transport, then the queue full
19490  *		has occurred because the queue for this nexus is actually
19491  *		full. If there are no commands in the transport, then the
19492  *		queue full is resulting from some other initiator or lun
19493  *		consuming all the resources at the target.
19494  *
19495  *     Context: May be called from interrupt context
19496  */
19497 
19498 static void
19499 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19500 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19501 {
19502 	ASSERT(un != NULL);
19503 	ASSERT(mutex_owned(SD_MUTEX(un)));
19504 	ASSERT(bp != NULL);
19505 	ASSERT(xp != NULL);
19506 	ASSERT(pktp != NULL);
19507 
19508 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19509 	    "sd_pkt_status_qfull: entry\n");
19510 
19511 	/*
19512 	 * Just lower the QFULL throttle and retry the command.  Note that
19513 	 * we do not limit the number of retries here.
19514 	 */
19515 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19516 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19517 	    SD_RESTART_TIMEOUT, NULL);
19518 
19519 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19520 	    "sd_pkt_status_qfull: exit\n");
19521 }
19522 
19523 
19524 /*
19525  *    Function: sd_reset_target
19526  *
19527  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19528  *		RESET_TARGET, or RESET_ALL.
19529  *
19530  *     Context: May be called under interrupt context.
19531  */
19532 
19533 static void
19534 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19535 {
19536 	int rval = 0;
19537 
19538 	ASSERT(un != NULL);
19539 	ASSERT(mutex_owned(SD_MUTEX(un)));
19540 	ASSERT(pktp != NULL);
19541 
19542 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19543 
19544 	/*
19545 	 * No need to reset if the transport layer has already done so.
19546 	 */
19547 	if ((pktp->pkt_statistics &
19548 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19549 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19550 		    "sd_reset_target: no reset\n");
19551 		return;
19552 	}
19553 
19554 	mutex_exit(SD_MUTEX(un));
19555 
19556 	if (un->un_f_allow_bus_device_reset == TRUE) {
19557 		if (un->un_f_lun_reset_enabled == TRUE) {
19558 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19559 			    "sd_reset_target: RESET_LUN\n");
19560 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19561 		}
19562 		if (rval == 0) {
19563 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19564 			    "sd_reset_target: RESET_TARGET\n");
19565 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19566 		}
19567 	}
19568 
19569 	if (rval == 0) {
19570 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19571 		    "sd_reset_target: RESET_ALL\n");
19572 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19573 	}
19574 
19575 	mutex_enter(SD_MUTEX(un));
19576 
19577 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19578 }
19579 
19580 /*
19581  *    Function: sd_target_change_task
19582  *
19583  * Description: Handle dynamic target change
19584  *
19585  *     Context: Executes in a taskq() thread context
19586  */
19587 static void
19588 sd_target_change_task(void *arg)
19589 {
19590 	struct sd_lun		*un = arg;
19591 	uint64_t		capacity;
19592 	diskaddr_t		label_cap;
19593 	uint_t			lbasize;
19594 	sd_ssc_t		*ssc;
19595 
19596 	ASSERT(un != NULL);
19597 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19598 
19599 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19600 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19601 		return;
19602 	}
19603 
19604 	ssc = sd_ssc_init(un);
19605 
19606 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19607 	    &lbasize, SD_PATH_DIRECT) != 0) {
19608 		SD_ERROR(SD_LOG_ERROR, un,
19609 		    "sd_target_change_task: fail to read capacity\n");
19610 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19611 		goto task_exit;
19612 	}
19613 
19614 	mutex_enter(SD_MUTEX(un));
19615 	if (capacity <= un->un_blockcount) {
19616 		mutex_exit(SD_MUTEX(un));
19617 		goto task_exit;
19618 	}
19619 
19620 	sd_update_block_info(un, lbasize, capacity);
19621 	mutex_exit(SD_MUTEX(un));
19622 
19623 	/*
19624 	 * If lun is EFI labeled and lun capacity is greater than the
19625 	 * capacity contained in the label, log a sys event.
19626 	 */
19627 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19628 	    (void*)SD_PATH_DIRECT) == 0) {
19629 		mutex_enter(SD_MUTEX(un));
19630 		if (un->un_f_blockcount_is_valid &&
19631 		    un->un_blockcount > label_cap) {
19632 			mutex_exit(SD_MUTEX(un));
19633 			sd_log_lun_expansion_event(un, KM_SLEEP);
19634 		} else {
19635 			mutex_exit(SD_MUTEX(un));
19636 		}
19637 	}
19638 
19639 task_exit:
19640 	sd_ssc_fini(ssc);
19641 }
19642 
19643 
19644 /*
19645  *    Function: sd_log_dev_status_event
19646  *
19647  * Description: Log EC_dev_status sysevent
19648  *
19649  *     Context: Never called from interrupt context
19650  */
19651 static void
19652 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19653 {
19654 	int err;
19655 	char			*path;
19656 	nvlist_t		*attr_list;
19657 
19658 	/* Allocate and build sysevent attribute list */
19659 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19660 	if (err != 0) {
19661 		SD_ERROR(SD_LOG_ERROR, un,
19662 		    "sd_log_dev_status_event: fail to allocate space\n");
19663 		return;
19664 	}
19665 
19666 	path = kmem_alloc(MAXPATHLEN, km_flag);
19667 	if (path == NULL) {
19668 		nvlist_free(attr_list);
19669 		SD_ERROR(SD_LOG_ERROR, un,
19670 		    "sd_log_dev_status_event: fail to allocate space\n");
19671 		return;
19672 	}
19673 	/*
19674 	 * Add path attribute to identify the lun.
19675 	 * We are using minor node 'a' as the sysevent attribute.
19676 	 */
19677 	(void) snprintf(path, MAXPATHLEN, "/devices");
19678 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19679 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19680 	    ":a");
19681 
19682 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19683 	if (err != 0) {
19684 		nvlist_free(attr_list);
19685 		kmem_free(path, MAXPATHLEN);
19686 		SD_ERROR(SD_LOG_ERROR, un,
19687 		    "sd_log_dev_status_event: fail to add attribute\n");
19688 		return;
19689 	}
19690 
19691 	/* Log dynamic lun expansion sysevent */
19692 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19693 	    esc, attr_list, NULL, km_flag);
19694 	if (err != DDI_SUCCESS) {
19695 		SD_ERROR(SD_LOG_ERROR, un,
19696 		    "sd_log_dev_status_event: fail to log sysevent\n");
19697 	}
19698 
19699 	nvlist_free(attr_list);
19700 	kmem_free(path, MAXPATHLEN);
19701 }
19702 
19703 
19704 /*
19705  *    Function: sd_log_lun_expansion_event
19706  *
19707  * Description: Log lun expansion sys event
19708  *
19709  *     Context: Never called from interrupt context
19710  */
19711 static void
19712 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19713 {
19714 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19715 }
19716 
19717 
19718 /*
19719  *    Function: sd_log_eject_request_event
19720  *
19721  * Description: Log eject request sysevent
19722  *
19723  *     Context: Never called from interrupt context
19724  */
19725 static void
19726 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19727 {
19728 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19729 }
19730 
19731 
19732 /*
19733  *    Function: sd_media_change_task
19734  *
19735  * Description: Recovery action for CDROM to become available.
19736  *
19737  *     Context: Executes in a taskq() thread context
19738  */
19739 
19740 static void
19741 sd_media_change_task(void *arg)
19742 {
19743 	struct	scsi_pkt	*pktp = arg;
19744 	struct	sd_lun		*un;
19745 	struct	buf		*bp;
19746 	struct	sd_xbuf		*xp;
19747 	int	err		= 0;
19748 	int	retry_count	= 0;
19749 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19750 	struct	sd_sense_info	si;
19751 
19752 	ASSERT(pktp != NULL);
19753 	bp = (struct buf *)pktp->pkt_private;
19754 	ASSERT(bp != NULL);
19755 	xp = SD_GET_XBUF(bp);
19756 	ASSERT(xp != NULL);
19757 	un = SD_GET_UN(bp);
19758 	ASSERT(un != NULL);
19759 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19760 	ASSERT(un->un_f_monitor_media_state);
19761 
19762 	si.ssi_severity = SCSI_ERR_INFO;
19763 	si.ssi_pfa_flag = FALSE;
19764 
19765 	/*
19766 	 * When a reset is issued on a CDROM, it takes a long time to
19767 	 * recover. First few attempts to read capacity and other things
19768 	 * related to handling unit attention fail (with a ASC 0x4 and
19769 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19770 	 * to limit the retries in other cases of genuine failures like
19771 	 * no media in drive.
19772 	 */
19773 	while (retry_count++ < retry_limit) {
19774 		if ((err = sd_handle_mchange(un)) == 0) {
19775 			break;
19776 		}
19777 		if (err == EAGAIN) {
19778 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19779 		}
19780 		/* Sleep for 0.5 sec. & try again */
19781 		delay(drv_usectohz(500000));
19782 	}
19783 
19784 	/*
19785 	 * Dispatch (retry or fail) the original command here,
19786 	 * along with appropriate console messages....
19787 	 *
19788 	 * Must grab the mutex before calling sd_retry_command,
19789 	 * sd_print_sense_msg and sd_return_failed_command.
19790 	 */
19791 	mutex_enter(SD_MUTEX(un));
19792 	if (err != SD_CMD_SUCCESS) {
19793 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19794 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19795 		si.ssi_severity = SCSI_ERR_FATAL;
19796 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19797 		sd_return_failed_command(un, bp, EIO);
19798 	} else {
19799 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19800 		    &si, EIO, (clock_t)0, NULL);
19801 	}
19802 	mutex_exit(SD_MUTEX(un));
19803 }
19804 
19805 
19806 
19807 /*
19808  *    Function: sd_handle_mchange
19809  *
19810  * Description: Perform geometry validation & other recovery when CDROM
19811  *		has been removed from drive.
19812  *
19813  * Return Code: 0 for success
19814  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19815  *		sd_send_scsi_READ_CAPACITY()
19816  *
19817  *     Context: Executes in a taskq() thread context
19818  */
19819 
19820 static int
19821 sd_handle_mchange(struct sd_lun *un)
19822 {
19823 	uint64_t	capacity;
19824 	uint32_t	lbasize;
19825 	int		rval;
19826 	sd_ssc_t	*ssc;
19827 
19828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19829 	ASSERT(un->un_f_monitor_media_state);
19830 
19831 	ssc = sd_ssc_init(un);
19832 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19833 	    SD_PATH_DIRECT_PRIORITY);
19834 
19835 	if (rval != 0)
19836 		goto failed;
19837 
19838 	mutex_enter(SD_MUTEX(un));
19839 	sd_update_block_info(un, lbasize, capacity);
19840 
19841 	if (un->un_errstats != NULL) {
19842 		struct	sd_errstats *stp =
19843 		    (struct sd_errstats *)un->un_errstats->ks_data;
19844 		stp->sd_capacity.value.ui64 = (uint64_t)
19845 		    ((uint64_t)un->un_blockcount *
19846 		    (uint64_t)un->un_tgt_blocksize);
19847 	}
19848 
19849 	/*
19850 	 * Check if the media in the device is writable or not
19851 	 */
19852 	if (ISCD(un)) {
19853 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19854 	}
19855 
19856 	/*
19857 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19858 	 * valid geometry.
19859 	 */
19860 	mutex_exit(SD_MUTEX(un));
19861 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19862 
19863 
19864 	if (cmlb_validate(un->un_cmlbhandle, 0,
19865 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19866 		sd_ssc_fini(ssc);
19867 		return (EIO);
19868 	} else {
19869 		if (un->un_f_pkstats_enabled) {
19870 			sd_set_pstats(un);
19871 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19872 			    "sd_handle_mchange: un:0x%p pstats created and "
19873 			    "set\n", un);
19874 		}
19875 	}
19876 
19877 	/*
19878 	 * Try to lock the door
19879 	 */
19880 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19881 	    SD_PATH_DIRECT_PRIORITY);
19882 failed:
19883 	if (rval != 0)
19884 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19885 	sd_ssc_fini(ssc);
19886 	return (rval);
19887 }
19888 
19889 
19890 /*
19891  *    Function: sd_send_scsi_DOORLOCK
19892  *
19893  * Description: Issue the scsi DOOR LOCK command
19894  *
19895  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19896  *                      structure for this target.
19897  *		flag  - SD_REMOVAL_ALLOW
19898  *			SD_REMOVAL_PREVENT
19899  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19900  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19901  *			to use the USCSI "direct" chain and bypass the normal
19902  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19903  *			command is issued as part of an error recovery action.
19904  *
19905  * Return Code: 0   - Success
19906  *		errno return code from sd_ssc_send()
19907  *
19908  *     Context: Can sleep.
19909  */
19910 
19911 static int
19912 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19913 {
19914 	struct scsi_extended_sense	sense_buf;
19915 	union scsi_cdb		cdb;
19916 	struct uscsi_cmd	ucmd_buf;
19917 	int			status;
19918 	struct sd_lun		*un;
19919 
19920 	ASSERT(ssc != NULL);
19921 	un = ssc->ssc_un;
19922 	ASSERT(un != NULL);
19923 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19924 
19925 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19926 
19927 	/* already determined doorlock is not supported, fake success */
19928 	if (un->un_f_doorlock_supported == FALSE) {
19929 		return (0);
19930 	}
19931 
19932 	/*
19933 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19934 	 * ignore the command so we can complete the eject
19935 	 * operation.
19936 	 */
19937 	if (flag == SD_REMOVAL_PREVENT) {
19938 		mutex_enter(SD_MUTEX(un));
19939 		if (un->un_f_ejecting == TRUE) {
19940 			mutex_exit(SD_MUTEX(un));
19941 			return (EAGAIN);
19942 		}
19943 		mutex_exit(SD_MUTEX(un));
19944 	}
19945 
19946 	bzero(&cdb, sizeof (cdb));
19947 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19948 
19949 	cdb.scc_cmd = SCMD_DOORLOCK;
19950 	cdb.cdb_opaque[4] = (uchar_t)flag;
19951 
19952 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19953 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19954 	ucmd_buf.uscsi_bufaddr	= NULL;
19955 	ucmd_buf.uscsi_buflen	= 0;
19956 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19957 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19958 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19959 	ucmd_buf.uscsi_timeout	= 15;
19960 
19961 	SD_TRACE(SD_LOG_IO, un,
19962 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19963 
19964 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19965 	    UIO_SYSSPACE, path_flag);
19966 
19967 	if (status == 0)
19968 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19969 
19970 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19971 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19972 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19973 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19974 
19975 		/* fake success and skip subsequent doorlock commands */
19976 		un->un_f_doorlock_supported = FALSE;
19977 		return (0);
19978 	}
19979 
19980 	return (status);
19981 }
19982 
19983 /*
19984  *    Function: sd_send_scsi_READ_CAPACITY
19985  *
19986  * Description: This routine uses the scsi READ CAPACITY command to determine
19987  *		the device capacity in number of blocks and the device native
19988  *		block size. If this function returns a failure, then the
19989  *		values in *capp and *lbap are undefined.  If the capacity
19990  *		returned is 0xffffffff then the lun is too large for a
19991  *		normal READ CAPACITY command and the results of a
19992  *		READ CAPACITY 16 will be used instead.
19993  *
19994  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19995  *		capp - ptr to unsigned 64-bit variable to receive the
19996  *			capacity value from the command.
19997  *		lbap - ptr to unsigned 32-bit varaible to receive the
19998  *			block size value from the command
19999  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20000  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20001  *			to use the USCSI "direct" chain and bypass the normal
20002  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20003  *			command is issued as part of an error recovery action.
20004  *
20005  * Return Code: 0   - Success
20006  *		EIO - IO error
20007  *		EACCES - Reservation conflict detected
20008  *		EAGAIN - Device is becoming ready
20009  *		errno return code from sd_ssc_send()
20010  *
20011  *     Context: Can sleep.  Blocks until command completes.
20012  */
20013 
20014 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20015 
20016 static int
20017 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20018 	int path_flag)
20019 {
20020 	struct	scsi_extended_sense	sense_buf;
20021 	struct	uscsi_cmd	ucmd_buf;
20022 	union	scsi_cdb	cdb;
20023 	uint32_t		*capacity_buf;
20024 	uint64_t		capacity;
20025 	uint32_t		lbasize;
20026 	uint32_t		pbsize;
20027 	int			status;
20028 	struct sd_lun		*un;
20029 
20030 	ASSERT(ssc != NULL);
20031 
20032 	un = ssc->ssc_un;
20033 	ASSERT(un != NULL);
20034 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20035 	ASSERT(capp != NULL);
20036 	ASSERT(lbap != NULL);
20037 
20038 	SD_TRACE(SD_LOG_IO, un,
20039 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20040 
20041 	/*
20042 	 * First send a READ_CAPACITY command to the target.
20043 	 * (This command is mandatory under SCSI-2.)
20044 	 *
20045 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20046 	 * Medium Indicator bit is cleared.  The address field must be
20047 	 * zero if the PMI bit is zero.
20048 	 */
20049 	bzero(&cdb, sizeof (cdb));
20050 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20051 
20052 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20053 
20054 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20055 
20056 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20057 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20058 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20059 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20060 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20061 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20062 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20063 	ucmd_buf.uscsi_timeout	= 60;
20064 
20065 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20066 	    UIO_SYSSPACE, path_flag);
20067 
20068 	switch (status) {
20069 	case 0:
20070 		/* Return failure if we did not get valid capacity data. */
20071 		if (ucmd_buf.uscsi_resid != 0) {
20072 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20073 			    "sd_send_scsi_READ_CAPACITY received invalid "
20074 			    "capacity data");
20075 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20076 			return (EIO);
20077 		}
20078 		/*
20079 		 * Read capacity and block size from the READ CAPACITY 10 data.
20080 		 * This data may be adjusted later due to device specific
20081 		 * issues.
20082 		 *
20083 		 * According to the SCSI spec, the READ CAPACITY 10
20084 		 * command returns the following:
20085 		 *
20086 		 *  bytes 0-3: Maximum logical block address available.
20087 		 *		(MSB in byte:0 & LSB in byte:3)
20088 		 *
20089 		 *  bytes 4-7: Block length in bytes
20090 		 *		(MSB in byte:4 & LSB in byte:7)
20091 		 *
20092 		 */
20093 		capacity = BE_32(capacity_buf[0]);
20094 		lbasize = BE_32(capacity_buf[1]);
20095 
20096 		/*
20097 		 * Done with capacity_buf
20098 		 */
20099 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20100 
20101 		/*
20102 		 * if the reported capacity is set to all 0xf's, then
20103 		 * this disk is too large and requires SBC-2 commands.
20104 		 * Reissue the request using READ CAPACITY 16.
20105 		 */
20106 		if (capacity == 0xffffffff) {
20107 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20108 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20109 			    &lbasize, &pbsize, path_flag);
20110 			if (status != 0) {
20111 				return (status);
20112 			} else {
20113 				goto rc16_done;
20114 			}
20115 		}
20116 		break;	/* Success! */
20117 	case EIO:
20118 		switch (ucmd_buf.uscsi_status) {
20119 		case STATUS_RESERVATION_CONFLICT:
20120 			status = EACCES;
20121 			break;
20122 		case STATUS_CHECK:
20123 			/*
20124 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20125 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20126 			 */
20127 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20128 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20129 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20130 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20131 				return (EAGAIN);
20132 			}
20133 			break;
20134 		default:
20135 			break;
20136 		}
20137 		/* FALLTHRU */
20138 	default:
20139 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20140 		return (status);
20141 	}
20142 
20143 	/*
20144 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20145 	 * (2352 and 0 are common) so for these devices always force the value
20146 	 * to 2048 as required by the ATAPI specs.
20147 	 */
20148 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20149 		lbasize = 2048;
20150 	}
20151 
20152 	/*
20153 	 * Get the maximum LBA value from the READ CAPACITY data.
20154 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20155 	 * was cleared when issuing the command. This means that the LBA
20156 	 * returned from the device is the LBA of the last logical block
20157 	 * on the logical unit.  The actual logical block count will be
20158 	 * this value plus one.
20159 	 */
20160 	capacity += 1;
20161 
20162 	/*
20163 	 * Currently, for removable media, the capacity is saved in terms
20164 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20165 	 */
20166 	if (un->un_f_has_removable_media)
20167 		capacity *= (lbasize / un->un_sys_blocksize);
20168 
20169 rc16_done:
20170 
20171 	/*
20172 	 * Copy the values from the READ CAPACITY command into the space
20173 	 * provided by the caller.
20174 	 */
20175 	*capp = capacity;
20176 	*lbap = lbasize;
20177 
20178 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20179 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20180 
20181 	/*
20182 	 * Both the lbasize and capacity from the device must be nonzero,
20183 	 * otherwise we assume that the values are not valid and return
20184 	 * failure to the caller. (4203735)
20185 	 */
20186 	if ((capacity == 0) || (lbasize == 0)) {
20187 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20188 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20189 		    "capacity %llu lbasize %d", capacity, lbasize);
20190 		return (EIO);
20191 	}
20192 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20193 	return (0);
20194 }
20195 
20196 /*
20197  *    Function: sd_send_scsi_READ_CAPACITY_16
20198  *
20199  * Description: This routine uses the scsi READ CAPACITY 16 command to
20200  *		determine the device capacity in number of blocks and the
20201  *		device native block size.  If this function returns a failure,
20202  *		then the values in *capp and *lbap are undefined.
20203  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20204  *              which will apply any device specific adjustments to capacity
20205  *              and lbasize. One exception is it is also called by
20206  *              sd_get_media_info_ext. In that function, there is no need to
20207  *              adjust the capacity and lbasize.
20208  *
20209  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20210  *		capp - ptr to unsigned 64-bit variable to receive the
20211  *			capacity value from the command.
20212  *		lbap - ptr to unsigned 32-bit varaible to receive the
20213  *			block size value from the command
20214  *              psp  - ptr to unsigned 32-bit variable to receive the
20215  *                      physical block size value from the command
20216  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20217  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20218  *			to use the USCSI "direct" chain and bypass the normal
20219  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20220  *			this command is issued as part of an error recovery
20221  *			action.
20222  *
20223  * Return Code: 0   - Success
20224  *		EIO - IO error
20225  *		EACCES - Reservation conflict detected
20226  *		EAGAIN - Device is becoming ready
20227  *		errno return code from sd_ssc_send()
20228  *
20229  *     Context: Can sleep.  Blocks until command completes.
20230  */
20231 
20232 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20233 
20234 static int
20235 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20236 	uint32_t *lbap, uint32_t *psp, int path_flag)
20237 {
20238 	struct	scsi_extended_sense	sense_buf;
20239 	struct	uscsi_cmd	ucmd_buf;
20240 	union	scsi_cdb	cdb;
20241 	uint64_t		*capacity16_buf;
20242 	uint64_t		capacity;
20243 	uint32_t		lbasize;
20244 	uint32_t		pbsize;
20245 	uint32_t		lbpb_exp;
20246 	int			status;
20247 	struct sd_lun		*un;
20248 
20249 	ASSERT(ssc != NULL);
20250 
20251 	un = ssc->ssc_un;
20252 	ASSERT(un != NULL);
20253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20254 	ASSERT(capp != NULL);
20255 	ASSERT(lbap != NULL);
20256 
20257 	SD_TRACE(SD_LOG_IO, un,
20258 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20259 
20260 	/*
20261 	 * First send a READ_CAPACITY_16 command to the target.
20262 	 *
20263 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20264 	 * Medium Indicator bit is cleared.  The address field must be
20265 	 * zero if the PMI bit is zero.
20266 	 */
20267 	bzero(&cdb, sizeof (cdb));
20268 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20269 
20270 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20271 
20272 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20273 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20274 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20275 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20276 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20277 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20278 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20279 	ucmd_buf.uscsi_timeout	= 60;
20280 
20281 	/*
20282 	 * Read Capacity (16) is a Service Action In command.  One
20283 	 * command byte (0x9E) is overloaded for multiple operations,
20284 	 * with the second CDB byte specifying the desired operation
20285 	 */
20286 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20287 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20288 
20289 	/*
20290 	 * Fill in allocation length field
20291 	 */
20292 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20293 
20294 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20295 	    UIO_SYSSPACE, path_flag);
20296 
20297 	switch (status) {
20298 	case 0:
20299 		/* Return failure if we did not get valid capacity data. */
20300 		if (ucmd_buf.uscsi_resid > 20) {
20301 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20302 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20303 			    "capacity data");
20304 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20305 			return (EIO);
20306 		}
20307 
20308 		/*
20309 		 * Read capacity and block size from the READ CAPACITY 16 data.
20310 		 * This data may be adjusted later due to device specific
20311 		 * issues.
20312 		 *
20313 		 * According to the SCSI spec, the READ CAPACITY 16
20314 		 * command returns the following:
20315 		 *
20316 		 *  bytes 0-7: Maximum logical block address available.
20317 		 *		(MSB in byte:0 & LSB in byte:7)
20318 		 *
20319 		 *  bytes 8-11: Block length in bytes
20320 		 *		(MSB in byte:8 & LSB in byte:11)
20321 		 *
20322 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20323 		 */
20324 		capacity = BE_64(capacity16_buf[0]);
20325 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20326 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20327 
20328 		pbsize = lbasize << lbpb_exp;
20329 
20330 		/*
20331 		 * Done with capacity16_buf
20332 		 */
20333 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20334 
20335 		/*
20336 		 * if the reported capacity is set to all 0xf's, then
20337 		 * this disk is too large.  This could only happen with
20338 		 * a device that supports LBAs larger than 64 bits which
20339 		 * are not defined by any current T10 standards.
20340 		 */
20341 		if (capacity == 0xffffffffffffffff) {
20342 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20343 			    "disk is too large");
20344 			return (EIO);
20345 		}
20346 		break;	/* Success! */
20347 	case EIO:
20348 		switch (ucmd_buf.uscsi_status) {
20349 		case STATUS_RESERVATION_CONFLICT:
20350 			status = EACCES;
20351 			break;
20352 		case STATUS_CHECK:
20353 			/*
20354 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20355 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20356 			 */
20357 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20358 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20359 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20360 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20361 				return (EAGAIN);
20362 			}
20363 			break;
20364 		default:
20365 			break;
20366 		}
20367 		/* FALLTHRU */
20368 	default:
20369 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20370 		return (status);
20371 	}
20372 
20373 	/*
20374 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20375 	 * (2352 and 0 are common) so for these devices always force the value
20376 	 * to 2048 as required by the ATAPI specs.
20377 	 */
20378 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20379 		lbasize = 2048;
20380 	}
20381 
20382 	/*
20383 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20384 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20385 	 * was cleared when issuing the command. This means that the LBA
20386 	 * returned from the device is the LBA of the last logical block
20387 	 * on the logical unit.  The actual logical block count will be
20388 	 * this value plus one.
20389 	 */
20390 	capacity += 1;
20391 
20392 	/*
20393 	 * Currently, for removable media, the capacity is saved in terms
20394 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20395 	 */
20396 	if (un->un_f_has_removable_media)
20397 		capacity *= (lbasize / un->un_sys_blocksize);
20398 
20399 	*capp = capacity;
20400 	*lbap = lbasize;
20401 	*psp = pbsize;
20402 
20403 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20404 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20405 	    capacity, lbasize, pbsize);
20406 
20407 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20408 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20409 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20410 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20411 		return (EIO);
20412 	}
20413 
20414 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20415 	return (0);
20416 }
20417 
20418 
20419 /*
20420  *    Function: sd_send_scsi_START_STOP_UNIT
20421  *
20422  * Description: Issue a scsi START STOP UNIT command to the target.
20423  *
20424  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20425  *                       structure for this target.
20426  *      pc_flag - SD_POWER_CONDITION
20427  *                SD_START_STOP
20428  *		flag  - SD_TARGET_START
20429  *			SD_TARGET_STOP
20430  *			SD_TARGET_EJECT
20431  *			SD_TARGET_CLOSE
20432  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20433  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20434  *			to use the USCSI "direct" chain and bypass the normal
20435  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20436  *			command is issued as part of an error recovery action.
20437  *
20438  * Return Code: 0   - Success
20439  *		EIO - IO error
20440  *		EACCES - Reservation conflict detected
20441  *		ENXIO  - Not Ready, medium not present
20442  *		errno return code from sd_ssc_send()
20443  *
20444  *     Context: Can sleep.
20445  */
20446 
20447 static int
20448 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20449     int path_flag)
20450 {
20451 	struct	scsi_extended_sense	sense_buf;
20452 	union scsi_cdb		cdb;
20453 	struct uscsi_cmd	ucmd_buf;
20454 	int			status;
20455 	struct sd_lun		*un;
20456 
20457 	ASSERT(ssc != NULL);
20458 	un = ssc->ssc_un;
20459 	ASSERT(un != NULL);
20460 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20461 
20462 	SD_TRACE(SD_LOG_IO, un,
20463 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20464 
20465 	if (un->un_f_check_start_stop &&
20466 	    (pc_flag == SD_START_STOP) &&
20467 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20468 	    (un->un_f_start_stop_supported != TRUE)) {
20469 		return (0);
20470 	}
20471 
20472 	/*
20473 	 * If we are performing an eject operation and
20474 	 * we receive any command other than SD_TARGET_EJECT
20475 	 * we should immediately return.
20476 	 */
20477 	if (flag != SD_TARGET_EJECT) {
20478 		mutex_enter(SD_MUTEX(un));
20479 		if (un->un_f_ejecting == TRUE) {
20480 			mutex_exit(SD_MUTEX(un));
20481 			return (EAGAIN);
20482 		}
20483 		mutex_exit(SD_MUTEX(un));
20484 	}
20485 
20486 	bzero(&cdb, sizeof (cdb));
20487 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20488 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20489 
20490 	cdb.scc_cmd = SCMD_START_STOP;
20491 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20492 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20493 
20494 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20495 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20496 	ucmd_buf.uscsi_bufaddr	= NULL;
20497 	ucmd_buf.uscsi_buflen	= 0;
20498 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20499 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20500 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20501 	ucmd_buf.uscsi_timeout	= 200;
20502 
20503 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20504 	    UIO_SYSSPACE, path_flag);
20505 
20506 	switch (status) {
20507 	case 0:
20508 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20509 		break;	/* Success! */
20510 	case EIO:
20511 		switch (ucmd_buf.uscsi_status) {
20512 		case STATUS_RESERVATION_CONFLICT:
20513 			status = EACCES;
20514 			break;
20515 		case STATUS_CHECK:
20516 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20517 				switch (scsi_sense_key(
20518 				    (uint8_t *)&sense_buf)) {
20519 				case KEY_ILLEGAL_REQUEST:
20520 					status = ENOTSUP;
20521 					break;
20522 				case KEY_NOT_READY:
20523 					if (scsi_sense_asc(
20524 					    (uint8_t *)&sense_buf)
20525 					    == 0x3A) {
20526 						status = ENXIO;
20527 					}
20528 					break;
20529 				default:
20530 					break;
20531 				}
20532 			}
20533 			break;
20534 		default:
20535 			break;
20536 		}
20537 		break;
20538 	default:
20539 		break;
20540 	}
20541 
20542 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20543 
20544 	return (status);
20545 }
20546 
20547 
20548 /*
20549  *    Function: sd_start_stop_unit_callback
20550  *
20551  * Description: timeout(9F) callback to begin recovery process for a
20552  *		device that has spun down.
20553  *
20554  *   Arguments: arg - pointer to associated softstate struct.
20555  *
20556  *     Context: Executes in a timeout(9F) thread context
20557  */
20558 
20559 static void
20560 sd_start_stop_unit_callback(void *arg)
20561 {
20562 	struct sd_lun	*un = arg;
20563 	ASSERT(un != NULL);
20564 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20565 
20566 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20567 
20568 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20569 }
20570 
20571 
20572 /*
20573  *    Function: sd_start_stop_unit_task
20574  *
20575  * Description: Recovery procedure when a drive is spun down.
20576  *
20577  *   Arguments: arg - pointer to associated softstate struct.
20578  *
20579  *     Context: Executes in a taskq() thread context
20580  */
20581 
20582 static void
20583 sd_start_stop_unit_task(void *arg)
20584 {
20585 	struct sd_lun	*un = arg;
20586 	sd_ssc_t	*ssc;
20587 	int		power_level;
20588 	int		rval;
20589 
20590 	ASSERT(un != NULL);
20591 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20592 
20593 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20594 
20595 	/*
20596 	 * Some unformatted drives report not ready error, no need to
20597 	 * restart if format has been initiated.
20598 	 */
20599 	mutex_enter(SD_MUTEX(un));
20600 	if (un->un_f_format_in_progress == TRUE) {
20601 		mutex_exit(SD_MUTEX(un));
20602 		return;
20603 	}
20604 	mutex_exit(SD_MUTEX(un));
20605 
20606 	ssc = sd_ssc_init(un);
20607 	/*
20608 	 * When a START STOP command is issued from here, it is part of a
20609 	 * failure recovery operation and must be issued before any other
20610 	 * commands, including any pending retries. Thus it must be sent
20611 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20612 	 * succeeds or not, we will start I/O after the attempt.
20613 	 * If power condition is supported and the current power level
20614 	 * is capable of performing I/O, we should set the power condition
20615 	 * to that level. Otherwise, set the power condition to ACTIVE.
20616 	 */
20617 	if (un->un_f_power_condition_supported) {
20618 		mutex_enter(SD_MUTEX(un));
20619 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20620 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20621 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20622 		mutex_exit(SD_MUTEX(un));
20623 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20624 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20625 	} else {
20626 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20627 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20628 	}
20629 
20630 	if (rval != 0)
20631 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20632 	sd_ssc_fini(ssc);
20633 	/*
20634 	 * The above call blocks until the START_STOP_UNIT command completes.
20635 	 * Now that it has completed, we must re-try the original IO that
20636 	 * received the NOT READY condition in the first place. There are
20637 	 * three possible conditions here:
20638 	 *
20639 	 *  (1) The original IO is on un_retry_bp.
20640 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20641 	 *	is NULL.
20642 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20643 	 *	points to some other, unrelated bp.
20644 	 *
20645 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20646 	 * as the argument. If un_retry_bp is NULL, this will initiate
20647 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20648 	 * then this will process the bp on un_retry_bp. That may or may not
20649 	 * be the original IO, but that does not matter: the important thing
20650 	 * is to keep the IO processing going at this point.
20651 	 *
20652 	 * Note: This is a very specific error recovery sequence associated
20653 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20654 	 * serialize the I/O with completion of the spin-up.
20655 	 */
20656 	mutex_enter(SD_MUTEX(un));
20657 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20658 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20659 	    un, un->un_retry_bp);
20660 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20661 	sd_start_cmds(un, un->un_retry_bp);
20662 	mutex_exit(SD_MUTEX(un));
20663 
20664 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20665 }
20666 
20667 
20668 /*
20669  *    Function: sd_send_scsi_INQUIRY
20670  *
20671  * Description: Issue the scsi INQUIRY command.
20672  *
20673  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20674  *                      structure for this target.
20675  *		bufaddr
20676  *		buflen
20677  *		evpd
20678  *		page_code
20679  *		page_length
20680  *
20681  * Return Code: 0   - Success
20682  *		errno return code from sd_ssc_send()
20683  *
20684  *     Context: Can sleep. Does not return until command is completed.
20685  */
20686 
20687 static int
20688 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20689 	uchar_t evpd, uchar_t page_code, size_t *residp)
20690 {
20691 	union scsi_cdb		cdb;
20692 	struct uscsi_cmd	ucmd_buf;
20693 	int			status;
20694 	struct sd_lun		*un;
20695 
20696 	ASSERT(ssc != NULL);
20697 	un = ssc->ssc_un;
20698 	ASSERT(un != NULL);
20699 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20700 	ASSERT(bufaddr != NULL);
20701 
20702 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20703 
20704 	bzero(&cdb, sizeof (cdb));
20705 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20706 	bzero(bufaddr, buflen);
20707 
20708 	cdb.scc_cmd = SCMD_INQUIRY;
20709 	cdb.cdb_opaque[1] = evpd;
20710 	cdb.cdb_opaque[2] = page_code;
20711 	FORMG0COUNT(&cdb, buflen);
20712 
20713 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20714 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20715 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20716 	ucmd_buf.uscsi_buflen	= buflen;
20717 	ucmd_buf.uscsi_rqbuf	= NULL;
20718 	ucmd_buf.uscsi_rqlen	= 0;
20719 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20720 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20721 
20722 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20723 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20724 
20725 	/*
20726 	 * Only handle status == 0, the upper-level caller
20727 	 * will put different assessment based on the context.
20728 	 */
20729 	if (status == 0)
20730 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20731 
20732 	if ((status == 0) && (residp != NULL)) {
20733 		*residp = ucmd_buf.uscsi_resid;
20734 	}
20735 
20736 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20737 
20738 	return (status);
20739 }
20740 
20741 
20742 /*
20743  *    Function: sd_send_scsi_TEST_UNIT_READY
20744  *
20745  * Description: Issue the scsi TEST UNIT READY command.
20746  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20747  *		prevent retrying failed commands. Use this when the intent
20748  *		is either to check for device readiness, to clear a Unit
20749  *		Attention, or to clear any outstanding sense data.
20750  *		However under specific conditions the expected behavior
20751  *		is for retries to bring a device ready, so use the flag
20752  *		with caution.
20753  *
20754  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20755  *                      structure for this target.
20756  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20757  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20758  *			0: dont check for media present, do retries on cmd.
20759  *
20760  * Return Code: 0   - Success
20761  *		EIO - IO error
20762  *		EACCES - Reservation conflict detected
20763  *		ENXIO  - Not Ready, medium not present
20764  *		errno return code from sd_ssc_send()
20765  *
20766  *     Context: Can sleep. Does not return until command is completed.
20767  */
20768 
20769 static int
20770 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20771 {
20772 	struct	scsi_extended_sense	sense_buf;
20773 	union scsi_cdb		cdb;
20774 	struct uscsi_cmd	ucmd_buf;
20775 	int			status;
20776 	struct sd_lun		*un;
20777 
20778 	ASSERT(ssc != NULL);
20779 	un = ssc->ssc_un;
20780 	ASSERT(un != NULL);
20781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20782 
20783 	SD_TRACE(SD_LOG_IO, un,
20784 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20785 
20786 	/*
20787 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20788 	 * timeouts when they receive a TUR and the queue is not empty. Check
20789 	 * the configuration flag set during attach (indicating the drive has
20790 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20791 	 * TUR. If there are
20792 	 * pending commands return success, this is a bit arbitrary but is ok
20793 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20794 	 * configurations.
20795 	 */
20796 	if (un->un_f_cfg_tur_check == TRUE) {
20797 		mutex_enter(SD_MUTEX(un));
20798 		if (un->un_ncmds_in_transport != 0) {
20799 			mutex_exit(SD_MUTEX(un));
20800 			return (0);
20801 		}
20802 		mutex_exit(SD_MUTEX(un));
20803 	}
20804 
20805 	bzero(&cdb, sizeof (cdb));
20806 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20807 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20808 
20809 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20810 
20811 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20812 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20813 	ucmd_buf.uscsi_bufaddr	= NULL;
20814 	ucmd_buf.uscsi_buflen	= 0;
20815 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20816 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20817 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20818 
20819 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20820 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20821 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20822 	}
20823 	ucmd_buf.uscsi_timeout	= 60;
20824 
20825 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20826 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20827 	    SD_PATH_STANDARD));
20828 
20829 	switch (status) {
20830 	case 0:
20831 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20832 		break;	/* Success! */
20833 	case EIO:
20834 		switch (ucmd_buf.uscsi_status) {
20835 		case STATUS_RESERVATION_CONFLICT:
20836 			status = EACCES;
20837 			break;
20838 		case STATUS_CHECK:
20839 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20840 				break;
20841 			}
20842 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20843 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20844 			    KEY_NOT_READY) &&
20845 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20846 				status = ENXIO;
20847 			}
20848 			break;
20849 		default:
20850 			break;
20851 		}
20852 		break;
20853 	default:
20854 		break;
20855 	}
20856 
20857 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20858 
20859 	return (status);
20860 }
20861 
20862 /*
20863  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20864  *
20865  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20866  *
20867  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20868  *                      structure for this target.
20869  *
20870  * Return Code: 0   - Success
20871  *		EACCES
20872  *		ENOTSUP
20873  *		errno return code from sd_ssc_send()
20874  *
20875  *     Context: Can sleep. Does not return until command is completed.
20876  */
20877 
20878 static int
20879 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20880 	uint16_t data_len, uchar_t *data_bufp)
20881 {
20882 	struct scsi_extended_sense	sense_buf;
20883 	union scsi_cdb		cdb;
20884 	struct uscsi_cmd	ucmd_buf;
20885 	int			status;
20886 	int			no_caller_buf = FALSE;
20887 	struct sd_lun		*un;
20888 
20889 	ASSERT(ssc != NULL);
20890 	un = ssc->ssc_un;
20891 	ASSERT(un != NULL);
20892 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20893 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20894 
20895 	SD_TRACE(SD_LOG_IO, un,
20896 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20897 
20898 	bzero(&cdb, sizeof (cdb));
20899 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20900 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20901 	if (data_bufp == NULL) {
20902 		/* Allocate a default buf if the caller did not give one */
20903 		ASSERT(data_len == 0);
20904 		data_len  = MHIOC_RESV_KEY_SIZE;
20905 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20906 		no_caller_buf = TRUE;
20907 	}
20908 
20909 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20910 	cdb.cdb_opaque[1] = usr_cmd;
20911 	FORMG1COUNT(&cdb, data_len);
20912 
20913 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20914 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20915 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20916 	ucmd_buf.uscsi_buflen	= data_len;
20917 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20918 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20919 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20920 	ucmd_buf.uscsi_timeout	= 60;
20921 
20922 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20923 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20924 
20925 	switch (status) {
20926 	case 0:
20927 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20928 
20929 		break;	/* Success! */
20930 	case EIO:
20931 		switch (ucmd_buf.uscsi_status) {
20932 		case STATUS_RESERVATION_CONFLICT:
20933 			status = EACCES;
20934 			break;
20935 		case STATUS_CHECK:
20936 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20937 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20938 			    KEY_ILLEGAL_REQUEST)) {
20939 				status = ENOTSUP;
20940 			}
20941 			break;
20942 		default:
20943 			break;
20944 		}
20945 		break;
20946 	default:
20947 		break;
20948 	}
20949 
20950 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20951 
20952 	if (no_caller_buf == TRUE) {
20953 		kmem_free(data_bufp, data_len);
20954 	}
20955 
20956 	return (status);
20957 }
20958 
20959 
20960 /*
20961  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20962  *
20963  * Description: This routine is the driver entry point for handling CD-ROM
20964  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20965  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20966  *		device.
20967  *
20968  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20969  *                      for the target.
20970  *		usr_cmd SCSI-3 reservation facility command (one of
20971  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20972  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
20973  *		usr_bufp - user provided pointer register, reserve descriptor or
20974  *			preempt and abort structure (mhioc_register_t,
20975  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20976  *
20977  * Return Code: 0   - Success
20978  *		EACCES
20979  *		ENOTSUP
20980  *		errno return code from sd_ssc_send()
20981  *
20982  *     Context: Can sleep. Does not return until command is completed.
20983  */
20984 
20985 static int
20986 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20987 	uchar_t	*usr_bufp)
20988 {
20989 	struct scsi_extended_sense	sense_buf;
20990 	union scsi_cdb		cdb;
20991 	struct uscsi_cmd	ucmd_buf;
20992 	int			status;
20993 	uchar_t			data_len = sizeof (sd_prout_t);
20994 	sd_prout_t		*prp;
20995 	struct sd_lun		*un;
20996 
20997 	ASSERT(ssc != NULL);
20998 	un = ssc->ssc_un;
20999 	ASSERT(un != NULL);
21000 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21001 	ASSERT(data_len == 24);	/* required by scsi spec */
21002 
21003 	SD_TRACE(SD_LOG_IO, un,
21004 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21005 
21006 	if (usr_bufp == NULL) {
21007 		return (EINVAL);
21008 	}
21009 
21010 	bzero(&cdb, sizeof (cdb));
21011 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21012 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21013 	prp = kmem_zalloc(data_len, KM_SLEEP);
21014 
21015 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21016 	cdb.cdb_opaque[1] = usr_cmd;
21017 	FORMG1COUNT(&cdb, data_len);
21018 
21019 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21020 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21021 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21022 	ucmd_buf.uscsi_buflen	= data_len;
21023 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21024 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21025 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21026 	ucmd_buf.uscsi_timeout	= 60;
21027 
21028 	switch (usr_cmd) {
21029 	case SD_SCSI3_REGISTER: {
21030 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21031 
21032 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21033 		bcopy(ptr->newkey.key, prp->service_key,
21034 		    MHIOC_RESV_KEY_SIZE);
21035 		prp->aptpl = ptr->aptpl;
21036 		break;
21037 	}
21038 	case SD_SCSI3_CLEAR: {
21039 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21040 
21041 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21042 		break;
21043 	}
21044 	case SD_SCSI3_RESERVE:
21045 	case SD_SCSI3_RELEASE: {
21046 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21047 
21048 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21049 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21050 		cdb.cdb_opaque[2] = ptr->type;
21051 		break;
21052 	}
21053 	case SD_SCSI3_PREEMPTANDABORT: {
21054 		mhioc_preemptandabort_t *ptr =
21055 		    (mhioc_preemptandabort_t *)usr_bufp;
21056 
21057 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21058 		bcopy(ptr->victim_key.key, prp->service_key,
21059 		    MHIOC_RESV_KEY_SIZE);
21060 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21061 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21062 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21063 		break;
21064 	}
21065 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21066 	{
21067 		mhioc_registerandignorekey_t *ptr;
21068 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21069 		bcopy(ptr->newkey.key,
21070 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21071 		prp->aptpl = ptr->aptpl;
21072 		break;
21073 	}
21074 	default:
21075 		ASSERT(FALSE);
21076 		break;
21077 	}
21078 
21079 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21080 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21081 
21082 	switch (status) {
21083 	case 0:
21084 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21085 		break;	/* Success! */
21086 	case EIO:
21087 		switch (ucmd_buf.uscsi_status) {
21088 		case STATUS_RESERVATION_CONFLICT:
21089 			status = EACCES;
21090 			break;
21091 		case STATUS_CHECK:
21092 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21093 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21094 			    KEY_ILLEGAL_REQUEST)) {
21095 				status = ENOTSUP;
21096 			}
21097 			break;
21098 		default:
21099 			break;
21100 		}
21101 		break;
21102 	default:
21103 		break;
21104 	}
21105 
21106 	kmem_free(prp, data_len);
21107 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21108 	return (status);
21109 }
21110 
21111 
21112 /*
21113  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21114  *
21115  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21116  *
21117  *   Arguments: un - pointer to the target's soft state struct
21118  *              dkc - pointer to the callback structure
21119  *
21120  * Return Code: 0 - success
21121  *		errno-type error code
21122  *
21123  *     Context: kernel thread context only.
21124  *
21125  *  _______________________________________________________________
21126  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21127  * |FLUSH_VOLATILE|              | operation                       |
21128  * |______________|______________|_________________________________|
21129  * | 0            | NULL         | Synchronous flush on both       |
21130  * |              |              | volatile and non-volatile cache |
21131  * |______________|______________|_________________________________|
21132  * | 1            | NULL         | Synchronous flush on volatile   |
21133  * |              |              | cache; disk drivers may suppress|
21134  * |              |              | flush if disk table indicates   |
21135  * |              |              | non-volatile cache              |
21136  * |______________|______________|_________________________________|
21137  * | 0            | !NULL        | Asynchronous flush on both      |
21138  * |              |              | volatile and non-volatile cache;|
21139  * |______________|______________|_________________________________|
21140  * | 1            | !NULL        | Asynchronous flush on volatile  |
21141  * |              |              | cache; disk drivers may suppress|
21142  * |              |              | flush if disk table indicates   |
21143  * |              |              | non-volatile cache              |
21144  * |______________|______________|_________________________________|
21145  *
21146  */
21147 
21148 static int
21149 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21150 {
21151 	struct sd_uscsi_info	*uip;
21152 	struct uscsi_cmd	*uscmd;
21153 	union scsi_cdb		*cdb;
21154 	struct buf		*bp;
21155 	int			rval = 0;
21156 	int			is_async;
21157 
21158 	SD_TRACE(SD_LOG_IO, un,
21159 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21160 
21161 	ASSERT(un != NULL);
21162 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21163 
21164 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21165 		is_async = FALSE;
21166 	} else {
21167 		is_async = TRUE;
21168 	}
21169 
21170 	mutex_enter(SD_MUTEX(un));
21171 	/* check whether cache flush should be suppressed */
21172 	if (un->un_f_suppress_cache_flush == TRUE) {
21173 		mutex_exit(SD_MUTEX(un));
21174 		/*
21175 		 * suppress the cache flush if the device is told to do
21176 		 * so by sd.conf or disk table
21177 		 */
21178 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21179 		    skip the cache flush since suppress_cache_flush is %d!\n",
21180 		    un->un_f_suppress_cache_flush);
21181 
21182 		if (is_async == TRUE) {
21183 			/* invoke callback for asynchronous flush */
21184 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21185 		}
21186 		return (rval);
21187 	}
21188 	mutex_exit(SD_MUTEX(un));
21189 
21190 	/*
21191 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21192 	 * set properly
21193 	 */
21194 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21195 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21196 
21197 	mutex_enter(SD_MUTEX(un));
21198 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21199 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21200 		/*
21201 		 * if the device supports SYNC_NV bit, turn on
21202 		 * the SYNC_NV bit to only flush volatile cache
21203 		 */
21204 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21205 	}
21206 	mutex_exit(SD_MUTEX(un));
21207 
21208 	/*
21209 	 * First get some memory for the uscsi_cmd struct and cdb
21210 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21211 	 */
21212 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21213 	uscmd->uscsi_cdblen = CDB_GROUP1;
21214 	uscmd->uscsi_cdb = (caddr_t)cdb;
21215 	uscmd->uscsi_bufaddr = NULL;
21216 	uscmd->uscsi_buflen = 0;
21217 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21218 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21219 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21220 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21221 	uscmd->uscsi_timeout = sd_io_time;
21222 
21223 	/*
21224 	 * Allocate an sd_uscsi_info struct and fill it with the info
21225 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21226 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21227 	 * since we allocate the buf here in this function, we do not
21228 	 * need to preserve the prior contents of b_private.
21229 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21230 	 */
21231 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21232 	uip->ui_flags = SD_PATH_DIRECT;
21233 	uip->ui_cmdp  = uscmd;
21234 
21235 	bp = getrbuf(KM_SLEEP);
21236 	bp->b_private = uip;
21237 
21238 	/*
21239 	 * Setup buffer to carry uscsi request.
21240 	 */
21241 	bp->b_flags  = B_BUSY;
21242 	bp->b_bcount = 0;
21243 	bp->b_blkno  = 0;
21244 
21245 	if (is_async == TRUE) {
21246 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21247 		uip->ui_dkc = *dkc;
21248 	}
21249 
21250 	bp->b_edev = SD_GET_DEV(un);
21251 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21252 
21253 	/*
21254 	 * Unset un_f_sync_cache_required flag
21255 	 */
21256 	mutex_enter(SD_MUTEX(un));
21257 	un->un_f_sync_cache_required = FALSE;
21258 	mutex_exit(SD_MUTEX(un));
21259 
21260 	(void) sd_uscsi_strategy(bp);
21261 
21262 	/*
21263 	 * If synchronous request, wait for completion
21264 	 * If async just return and let b_iodone callback
21265 	 * cleanup.
21266 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21267 	 * but it was also incremented in sd_uscsi_strategy(), so
21268 	 * we should be ok.
21269 	 */
21270 	if (is_async == FALSE) {
21271 		(void) biowait(bp);
21272 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21273 	}
21274 
21275 	return (rval);
21276 }
21277 
21278 
21279 static int
21280 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21281 {
21282 	struct sd_uscsi_info *uip;
21283 	struct uscsi_cmd *uscmd;
21284 	uint8_t *sense_buf;
21285 	struct sd_lun *un;
21286 	int status;
21287 	union scsi_cdb *cdb;
21288 
21289 	uip = (struct sd_uscsi_info *)(bp->b_private);
21290 	ASSERT(uip != NULL);
21291 
21292 	uscmd = uip->ui_cmdp;
21293 	ASSERT(uscmd != NULL);
21294 
21295 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21296 	ASSERT(sense_buf != NULL);
21297 
21298 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21299 	ASSERT(un != NULL);
21300 
21301 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21302 
21303 	status = geterror(bp);
21304 	switch (status) {
21305 	case 0:
21306 		break;	/* Success! */
21307 	case EIO:
21308 		switch (uscmd->uscsi_status) {
21309 		case STATUS_RESERVATION_CONFLICT:
21310 			/* Ignore reservation conflict */
21311 			status = 0;
21312 			goto done;
21313 
21314 		case STATUS_CHECK:
21315 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21316 			    (scsi_sense_key(sense_buf) ==
21317 			    KEY_ILLEGAL_REQUEST)) {
21318 				/* Ignore Illegal Request error */
21319 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21320 					mutex_enter(SD_MUTEX(un));
21321 					un->un_f_sync_nv_supported = FALSE;
21322 					mutex_exit(SD_MUTEX(un));
21323 					status = 0;
21324 					SD_TRACE(SD_LOG_IO, un,
21325 					    "un_f_sync_nv_supported \
21326 					    is set to false.\n");
21327 					goto done;
21328 				}
21329 
21330 				mutex_enter(SD_MUTEX(un));
21331 				un->un_f_sync_cache_supported = FALSE;
21332 				mutex_exit(SD_MUTEX(un));
21333 				SD_TRACE(SD_LOG_IO, un,
21334 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21335 				    un_f_sync_cache_supported set to false \
21336 				    with asc = %x, ascq = %x\n",
21337 				    scsi_sense_asc(sense_buf),
21338 				    scsi_sense_ascq(sense_buf));
21339 				status = ENOTSUP;
21340 				goto done;
21341 			}
21342 			break;
21343 		default:
21344 			break;
21345 		}
21346 		/* FALLTHRU */
21347 	default:
21348 		/*
21349 		 * Turn on the un_f_sync_cache_required flag
21350 		 * since the SYNC CACHE command failed
21351 		 */
21352 		mutex_enter(SD_MUTEX(un));
21353 		un->un_f_sync_cache_required = TRUE;
21354 		mutex_exit(SD_MUTEX(un));
21355 
21356 		/*
21357 		 * Don't log an error message if this device
21358 		 * has removable media.
21359 		 */
21360 		if (!un->un_f_has_removable_media) {
21361 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21362 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21363 		}
21364 		break;
21365 	}
21366 
21367 done:
21368 	if (uip->ui_dkc.dkc_callback != NULL) {
21369 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21370 	}
21371 
21372 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21373 	freerbuf(bp);
21374 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21375 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21376 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21377 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21378 
21379 	return (status);
21380 }
21381 
21382 
21383 /*
21384  *    Function: sd_send_scsi_GET_CONFIGURATION
21385  *
21386  * Description: Issues the get configuration command to the device.
21387  *		Called from sd_check_for_writable_cd & sd_get_media_info
21388  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21389  *   Arguments: ssc
21390  *		ucmdbuf
21391  *		rqbuf
21392  *		rqbuflen
21393  *		bufaddr
21394  *		buflen
21395  *		path_flag
21396  *
21397  * Return Code: 0   - Success
21398  *		errno return code from sd_ssc_send()
21399  *
21400  *     Context: Can sleep. Does not return until command is completed.
21401  *
21402  */
21403 
21404 static int
21405 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21406 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21407 	int path_flag)
21408 {
21409 	char	cdb[CDB_GROUP1];
21410 	int	status;
21411 	struct sd_lun	*un;
21412 
21413 	ASSERT(ssc != NULL);
21414 	un = ssc->ssc_un;
21415 	ASSERT(un != NULL);
21416 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21417 	ASSERT(bufaddr != NULL);
21418 	ASSERT(ucmdbuf != NULL);
21419 	ASSERT(rqbuf != NULL);
21420 
21421 	SD_TRACE(SD_LOG_IO, un,
21422 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21423 
21424 	bzero(cdb, sizeof (cdb));
21425 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21426 	bzero(rqbuf, rqbuflen);
21427 	bzero(bufaddr, buflen);
21428 
21429 	/*
21430 	 * Set up cdb field for the get configuration command.
21431 	 */
21432 	cdb[0] = SCMD_GET_CONFIGURATION;
21433 	cdb[1] = 0x02;  /* Requested Type */
21434 	cdb[8] = SD_PROFILE_HEADER_LEN;
21435 	ucmdbuf->uscsi_cdb = cdb;
21436 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21437 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21438 	ucmdbuf->uscsi_buflen = buflen;
21439 	ucmdbuf->uscsi_timeout = sd_io_time;
21440 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21441 	ucmdbuf->uscsi_rqlen = rqbuflen;
21442 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21443 
21444 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21445 	    UIO_SYSSPACE, path_flag);
21446 
21447 	switch (status) {
21448 	case 0:
21449 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21450 		break;  /* Success! */
21451 	case EIO:
21452 		switch (ucmdbuf->uscsi_status) {
21453 		case STATUS_RESERVATION_CONFLICT:
21454 			status = EACCES;
21455 			break;
21456 		default:
21457 			break;
21458 		}
21459 		break;
21460 	default:
21461 		break;
21462 	}
21463 
21464 	if (status == 0) {
21465 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21466 		    "sd_send_scsi_GET_CONFIGURATION: data",
21467 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21468 	}
21469 
21470 	SD_TRACE(SD_LOG_IO, un,
21471 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21472 
21473 	return (status);
21474 }
21475 
21476 /*
21477  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21478  *
21479  * Description: Issues the get configuration command to the device to
21480  *              retrieve a specific feature. Called from
21481  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21482  *   Arguments: ssc
21483  *              ucmdbuf
21484  *              rqbuf
21485  *              rqbuflen
21486  *              bufaddr
21487  *              buflen
21488  *		feature
21489  *
21490  * Return Code: 0   - Success
21491  *              errno return code from sd_ssc_send()
21492  *
21493  *     Context: Can sleep. Does not return until command is completed.
21494  *
21495  */
21496 static int
21497 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21498 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21499 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21500 {
21501 	char    cdb[CDB_GROUP1];
21502 	int	status;
21503 	struct sd_lun	*un;
21504 
21505 	ASSERT(ssc != NULL);
21506 	un = ssc->ssc_un;
21507 	ASSERT(un != NULL);
21508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21509 	ASSERT(bufaddr != NULL);
21510 	ASSERT(ucmdbuf != NULL);
21511 	ASSERT(rqbuf != NULL);
21512 
21513 	SD_TRACE(SD_LOG_IO, un,
21514 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21515 
21516 	bzero(cdb, sizeof (cdb));
21517 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21518 	bzero(rqbuf, rqbuflen);
21519 	bzero(bufaddr, buflen);
21520 
21521 	/*
21522 	 * Set up cdb field for the get configuration command.
21523 	 */
21524 	cdb[0] = SCMD_GET_CONFIGURATION;
21525 	cdb[1] = 0x02;  /* Requested Type */
21526 	cdb[3] = feature;
21527 	cdb[8] = buflen;
21528 	ucmdbuf->uscsi_cdb = cdb;
21529 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21530 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21531 	ucmdbuf->uscsi_buflen = buflen;
21532 	ucmdbuf->uscsi_timeout = sd_io_time;
21533 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21534 	ucmdbuf->uscsi_rqlen = rqbuflen;
21535 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21536 
21537 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21538 	    UIO_SYSSPACE, path_flag);
21539 
21540 	switch (status) {
21541 	case 0:
21542 
21543 		break;  /* Success! */
21544 	case EIO:
21545 		switch (ucmdbuf->uscsi_status) {
21546 		case STATUS_RESERVATION_CONFLICT:
21547 			status = EACCES;
21548 			break;
21549 		default:
21550 			break;
21551 		}
21552 		break;
21553 	default:
21554 		break;
21555 	}
21556 
21557 	if (status == 0) {
21558 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21559 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21560 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21561 	}
21562 
21563 	SD_TRACE(SD_LOG_IO, un,
21564 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21565 
21566 	return (status);
21567 }
21568 
21569 
21570 /*
21571  *    Function: sd_send_scsi_MODE_SENSE
21572  *
21573  * Description: Utility function for issuing a scsi MODE SENSE command.
21574  *		Note: This routine uses a consistent implementation for Group0,
21575  *		Group1, and Group2 commands across all platforms. ATAPI devices
21576  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21577  *
21578  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21579  *                      structure for this target.
21580  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21581  *			  CDB_GROUP[1|2] (10 byte).
21582  *		bufaddr - buffer for page data retrieved from the target.
21583  *		buflen - size of page to be retrieved.
21584  *		page_code - page code of data to be retrieved from the target.
21585  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21586  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21587  *			to use the USCSI "direct" chain and bypass the normal
21588  *			command waitq.
21589  *
21590  * Return Code: 0   - Success
21591  *		errno return code from sd_ssc_send()
21592  *
21593  *     Context: Can sleep. Does not return until command is completed.
21594  */
21595 
21596 static int
21597 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21598 	size_t buflen,  uchar_t page_code, int path_flag)
21599 {
21600 	struct	scsi_extended_sense	sense_buf;
21601 	union scsi_cdb		cdb;
21602 	struct uscsi_cmd	ucmd_buf;
21603 	int			status;
21604 	int			headlen;
21605 	struct sd_lun		*un;
21606 
21607 	ASSERT(ssc != NULL);
21608 	un = ssc->ssc_un;
21609 	ASSERT(un != NULL);
21610 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21611 	ASSERT(bufaddr != NULL);
21612 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21613 	    (cdbsize == CDB_GROUP2));
21614 
21615 	SD_TRACE(SD_LOG_IO, un,
21616 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21617 
21618 	bzero(&cdb, sizeof (cdb));
21619 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21620 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21621 	bzero(bufaddr, buflen);
21622 
21623 	if (cdbsize == CDB_GROUP0) {
21624 		cdb.scc_cmd = SCMD_MODE_SENSE;
21625 		cdb.cdb_opaque[2] = page_code;
21626 		FORMG0COUNT(&cdb, buflen);
21627 		headlen = MODE_HEADER_LENGTH;
21628 	} else {
21629 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21630 		cdb.cdb_opaque[2] = page_code;
21631 		FORMG1COUNT(&cdb, buflen);
21632 		headlen = MODE_HEADER_LENGTH_GRP2;
21633 	}
21634 
21635 	ASSERT(headlen <= buflen);
21636 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21637 
21638 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21639 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21640 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21641 	ucmd_buf.uscsi_buflen	= buflen;
21642 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21643 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21644 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21645 	ucmd_buf.uscsi_timeout	= 60;
21646 
21647 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21648 	    UIO_SYSSPACE, path_flag);
21649 
21650 	switch (status) {
21651 	case 0:
21652 		/*
21653 		 * sr_check_wp() uses 0x3f page code and check the header of
21654 		 * mode page to determine if target device is write-protected.
21655 		 * But some USB devices return 0 bytes for 0x3f page code. For
21656 		 * this case, make sure that mode page header is returned at
21657 		 * least.
21658 		 */
21659 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21660 			status = EIO;
21661 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21662 			    "mode page header is not returned");
21663 		}
21664 		break;	/* Success! */
21665 	case EIO:
21666 		switch (ucmd_buf.uscsi_status) {
21667 		case STATUS_RESERVATION_CONFLICT:
21668 			status = EACCES;
21669 			break;
21670 		default:
21671 			break;
21672 		}
21673 		break;
21674 	default:
21675 		break;
21676 	}
21677 
21678 	if (status == 0) {
21679 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21680 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21681 	}
21682 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21683 
21684 	return (status);
21685 }
21686 
21687 
21688 /*
21689  *    Function: sd_send_scsi_MODE_SELECT
21690  *
21691  * Description: Utility function for issuing a scsi MODE SELECT command.
21692  *		Note: This routine uses a consistent implementation for Group0,
21693  *		Group1, and Group2 commands across all platforms. ATAPI devices
21694  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21695  *
21696  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21697  *                      structure for this target.
21698  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21699  *			  CDB_GROUP[1|2] (10 byte).
21700  *		bufaddr - buffer for page data retrieved from the target.
21701  *		buflen - size of page to be retrieved.
21702  *		save_page - boolean to determin if SP bit should be set.
21703  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21704  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21705  *			to use the USCSI "direct" chain and bypass the normal
21706  *			command waitq.
21707  *
21708  * Return Code: 0   - Success
21709  *		errno return code from sd_ssc_send()
21710  *
21711  *     Context: Can sleep. Does not return until command is completed.
21712  */
21713 
21714 static int
21715 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21716 	size_t buflen,  uchar_t save_page, int path_flag)
21717 {
21718 	struct	scsi_extended_sense	sense_buf;
21719 	union scsi_cdb		cdb;
21720 	struct uscsi_cmd	ucmd_buf;
21721 	int			status;
21722 	struct sd_lun		*un;
21723 
21724 	ASSERT(ssc != NULL);
21725 	un = ssc->ssc_un;
21726 	ASSERT(un != NULL);
21727 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21728 	ASSERT(bufaddr != NULL);
21729 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21730 	    (cdbsize == CDB_GROUP2));
21731 
21732 	SD_TRACE(SD_LOG_IO, un,
21733 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21734 
21735 	bzero(&cdb, sizeof (cdb));
21736 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21737 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21738 
21739 	/* Set the PF bit for many third party drives */
21740 	cdb.cdb_opaque[1] = 0x10;
21741 
21742 	/* Set the savepage(SP) bit if given */
21743 	if (save_page == SD_SAVE_PAGE) {
21744 		cdb.cdb_opaque[1] |= 0x01;
21745 	}
21746 
21747 	if (cdbsize == CDB_GROUP0) {
21748 		cdb.scc_cmd = SCMD_MODE_SELECT;
21749 		FORMG0COUNT(&cdb, buflen);
21750 	} else {
21751 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21752 		FORMG1COUNT(&cdb, buflen);
21753 	}
21754 
21755 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21756 
21757 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21758 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21759 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21760 	ucmd_buf.uscsi_buflen	= buflen;
21761 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21762 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21763 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21764 	ucmd_buf.uscsi_timeout	= 60;
21765 
21766 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21767 	    UIO_SYSSPACE, path_flag);
21768 
21769 	switch (status) {
21770 	case 0:
21771 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21772 		break;	/* Success! */
21773 	case EIO:
21774 		switch (ucmd_buf.uscsi_status) {
21775 		case STATUS_RESERVATION_CONFLICT:
21776 			status = EACCES;
21777 			break;
21778 		default:
21779 			break;
21780 		}
21781 		break;
21782 	default:
21783 		break;
21784 	}
21785 
21786 	if (status == 0) {
21787 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21788 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21789 	}
21790 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21791 
21792 	return (status);
21793 }
21794 
21795 
21796 /*
21797  *    Function: sd_send_scsi_RDWR
21798  *
21799  * Description: Issue a scsi READ or WRITE command with the given parameters.
21800  *
21801  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21802  *                      structure for this target.
21803  *		cmd:	 SCMD_READ or SCMD_WRITE
21804  *		bufaddr: Address of caller's buffer to receive the RDWR data
21805  *		buflen:  Length of caller's buffer receive the RDWR data.
21806  *		start_block: Block number for the start of the RDWR operation.
21807  *			 (Assumes target-native block size.)
21808  *		residp:  Pointer to variable to receive the redisual of the
21809  *			 RDWR operation (may be NULL of no residual requested).
21810  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21811  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21812  *			to use the USCSI "direct" chain and bypass the normal
21813  *			command waitq.
21814  *
21815  * Return Code: 0   - Success
21816  *		errno return code from sd_ssc_send()
21817  *
21818  *     Context: Can sleep. Does not return until command is completed.
21819  */
21820 
21821 static int
21822 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21823 	size_t buflen, daddr_t start_block, int path_flag)
21824 {
21825 	struct	scsi_extended_sense	sense_buf;
21826 	union scsi_cdb		cdb;
21827 	struct uscsi_cmd	ucmd_buf;
21828 	uint32_t		block_count;
21829 	int			status;
21830 	int			cdbsize;
21831 	uchar_t			flag;
21832 	struct sd_lun		*un;
21833 
21834 	ASSERT(ssc != NULL);
21835 	un = ssc->ssc_un;
21836 	ASSERT(un != NULL);
21837 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21838 	ASSERT(bufaddr != NULL);
21839 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21840 
21841 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21842 
21843 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21844 		return (EINVAL);
21845 	}
21846 
21847 	mutex_enter(SD_MUTEX(un));
21848 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21849 	mutex_exit(SD_MUTEX(un));
21850 
21851 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21852 
21853 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21854 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21855 	    bufaddr, buflen, start_block, block_count);
21856 
21857 	bzero(&cdb, sizeof (cdb));
21858 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21859 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21860 
21861 	/* Compute CDB size to use */
21862 	if (start_block > 0xffffffff)
21863 		cdbsize = CDB_GROUP4;
21864 	else if ((start_block & 0xFFE00000) ||
21865 	    (un->un_f_cfg_is_atapi == TRUE))
21866 		cdbsize = CDB_GROUP1;
21867 	else
21868 		cdbsize = CDB_GROUP0;
21869 
21870 	switch (cdbsize) {
21871 	case CDB_GROUP0:	/* 6-byte CDBs */
21872 		cdb.scc_cmd = cmd;
21873 		FORMG0ADDR(&cdb, start_block);
21874 		FORMG0COUNT(&cdb, block_count);
21875 		break;
21876 	case CDB_GROUP1:	/* 10-byte CDBs */
21877 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21878 		FORMG1ADDR(&cdb, start_block);
21879 		FORMG1COUNT(&cdb, block_count);
21880 		break;
21881 	case CDB_GROUP4:	/* 16-byte CDBs */
21882 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21883 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21884 		FORMG4COUNT(&cdb, block_count);
21885 		break;
21886 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21887 	default:
21888 		/* All others reserved */
21889 		return (EINVAL);
21890 	}
21891 
21892 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21893 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21894 
21895 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21896 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21897 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21898 	ucmd_buf.uscsi_buflen	= buflen;
21899 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21900 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21901 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21902 	ucmd_buf.uscsi_timeout	= 60;
21903 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21904 	    UIO_SYSSPACE, path_flag);
21905 
21906 	switch (status) {
21907 	case 0:
21908 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21909 		break;	/* Success! */
21910 	case EIO:
21911 		switch (ucmd_buf.uscsi_status) {
21912 		case STATUS_RESERVATION_CONFLICT:
21913 			status = EACCES;
21914 			break;
21915 		default:
21916 			break;
21917 		}
21918 		break;
21919 	default:
21920 		break;
21921 	}
21922 
21923 	if (status == 0) {
21924 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21925 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21926 	}
21927 
21928 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21929 
21930 	return (status);
21931 }
21932 
21933 
21934 /*
21935  *    Function: sd_send_scsi_LOG_SENSE
21936  *
21937  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21938  *
21939  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21940  *                      structure for this target.
21941  *
21942  * Return Code: 0   - Success
21943  *		errno return code from sd_ssc_send()
21944  *
21945  *     Context: Can sleep. Does not return until command is completed.
21946  */
21947 
21948 static int
21949 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21950 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21951 	int path_flag)
21952 
21953 {
21954 	struct scsi_extended_sense	sense_buf;
21955 	union scsi_cdb		cdb;
21956 	struct uscsi_cmd	ucmd_buf;
21957 	int			status;
21958 	struct sd_lun		*un;
21959 
21960 	ASSERT(ssc != NULL);
21961 	un = ssc->ssc_un;
21962 	ASSERT(un != NULL);
21963 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21964 
21965 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21966 
21967 	bzero(&cdb, sizeof (cdb));
21968 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21969 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21970 
21971 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21972 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21973 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21974 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21975 	FORMG1COUNT(&cdb, buflen);
21976 
21977 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21978 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21979 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21980 	ucmd_buf.uscsi_buflen	= buflen;
21981 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21982 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21983 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21984 	ucmd_buf.uscsi_timeout	= 60;
21985 
21986 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21987 	    UIO_SYSSPACE, path_flag);
21988 
21989 	switch (status) {
21990 	case 0:
21991 		break;
21992 	case EIO:
21993 		switch (ucmd_buf.uscsi_status) {
21994 		case STATUS_RESERVATION_CONFLICT:
21995 			status = EACCES;
21996 			break;
21997 		case STATUS_CHECK:
21998 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21999 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22000 				KEY_ILLEGAL_REQUEST) &&
22001 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22002 				/*
22003 				 * ASC 0x24: INVALID FIELD IN CDB
22004 				 */
22005 				switch (page_code) {
22006 				case START_STOP_CYCLE_PAGE:
22007 					/*
22008 					 * The start stop cycle counter is
22009 					 * implemented as page 0x31 in earlier
22010 					 * generation disks. In new generation
22011 					 * disks the start stop cycle counter is
22012 					 * implemented as page 0xE. To properly
22013 					 * handle this case if an attempt for
22014 					 * log page 0xE is made and fails we
22015 					 * will try again using page 0x31.
22016 					 *
22017 					 * Network storage BU committed to
22018 					 * maintain the page 0x31 for this
22019 					 * purpose and will not have any other
22020 					 * page implemented with page code 0x31
22021 					 * until all disks transition to the
22022 					 * standard page.
22023 					 */
22024 					mutex_enter(SD_MUTEX(un));
22025 					un->un_start_stop_cycle_page =
22026 					    START_STOP_CYCLE_VU_PAGE;
22027 					cdb.cdb_opaque[2] =
22028 					    (char)(page_control << 6) |
22029 					    un->un_start_stop_cycle_page;
22030 					mutex_exit(SD_MUTEX(un));
22031 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22032 					status = sd_ssc_send(
22033 					    ssc, &ucmd_buf, FKIOCTL,
22034 					    UIO_SYSSPACE, path_flag);
22035 
22036 					break;
22037 				case TEMPERATURE_PAGE:
22038 					status = ENOTTY;
22039 					break;
22040 				default:
22041 					break;
22042 				}
22043 			}
22044 			break;
22045 		default:
22046 			break;
22047 		}
22048 		break;
22049 	default:
22050 		break;
22051 	}
22052 
22053 	if (status == 0) {
22054 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22055 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22056 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22057 	}
22058 
22059 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22060 
22061 	return (status);
22062 }
22063 
22064 
22065 /*
22066  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22067  *
22068  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22069  *
22070  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22071  *                      structure for this target.
22072  *		bufaddr
22073  *		buflen
22074  *		class_req
22075  *
22076  * Return Code: 0   - Success
22077  *		errno return code from sd_ssc_send()
22078  *
22079  *     Context: Can sleep. Does not return until command is completed.
22080  */
22081 
22082 static int
22083 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22084 	size_t buflen, uchar_t class_req)
22085 {
22086 	union scsi_cdb		cdb;
22087 	struct uscsi_cmd	ucmd_buf;
22088 	int			status;
22089 	struct sd_lun		*un;
22090 
22091 	ASSERT(ssc != NULL);
22092 	un = ssc->ssc_un;
22093 	ASSERT(un != NULL);
22094 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22095 	ASSERT(bufaddr != NULL);
22096 
22097 	SD_TRACE(SD_LOG_IO, un,
22098 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22099 
22100 	bzero(&cdb, sizeof (cdb));
22101 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22102 	bzero(bufaddr, buflen);
22103 
22104 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22105 	cdb.cdb_opaque[1] = 1; /* polled */
22106 	cdb.cdb_opaque[4] = class_req;
22107 	FORMG1COUNT(&cdb, buflen);
22108 
22109 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22110 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22111 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22112 	ucmd_buf.uscsi_buflen	= buflen;
22113 	ucmd_buf.uscsi_rqbuf	= NULL;
22114 	ucmd_buf.uscsi_rqlen	= 0;
22115 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22116 	ucmd_buf.uscsi_timeout	= 60;
22117 
22118 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22119 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22120 
22121 	/*
22122 	 * Only handle status == 0, the upper-level caller
22123 	 * will put different assessment based on the context.
22124 	 */
22125 	if (status == 0) {
22126 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22127 
22128 		if (ucmd_buf.uscsi_resid != 0) {
22129 			status = EIO;
22130 		}
22131 	}
22132 
22133 	SD_TRACE(SD_LOG_IO, un,
22134 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22135 
22136 	return (status);
22137 }
22138 
22139 
22140 static boolean_t
22141 sd_gesn_media_data_valid(uchar_t *data)
22142 {
22143 	uint16_t			len;
22144 
22145 	len = (data[1] << 8) | data[0];
22146 	return ((len >= 6) &&
22147 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22148 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22149 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22150 }
22151 
22152 
22153 /*
22154  *    Function: sdioctl
22155  *
22156  * Description: Driver's ioctl(9e) entry point function.
22157  *
22158  *   Arguments: dev     - device number
22159  *		cmd     - ioctl operation to be performed
22160  *		arg     - user argument, contains data to be set or reference
22161  *			  parameter for get
22162  *		flag    - bit flag, indicating open settings, 32/64 bit type
22163  *		cred_p  - user credential pointer
22164  *		rval_p  - calling process return value (OPT)
22165  *
22166  * Return Code: EINVAL
22167  *		ENOTTY
22168  *		ENXIO
22169  *		EIO
22170  *		EFAULT
22171  *		ENOTSUP
22172  *		EPERM
22173  *
22174  *     Context: Called from the device switch at normal priority.
22175  */
22176 
22177 static int
22178 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22179 {
22180 	struct sd_lun	*un = NULL;
22181 	int		err = 0;
22182 	int		i = 0;
22183 	cred_t		*cr;
22184 	int		tmprval = EINVAL;
22185 	boolean_t	is_valid;
22186 	sd_ssc_t	*ssc;
22187 
22188 	/*
22189 	 * All device accesses go thru sdstrategy where we check on suspend
22190 	 * status
22191 	 */
22192 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22193 		return (ENXIO);
22194 	}
22195 
22196 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22197 
22198 	/* Initialize sd_ssc_t for internal uscsi commands */
22199 	ssc = sd_ssc_init(un);
22200 
22201 	is_valid = SD_IS_VALID_LABEL(un);
22202 
22203 	/*
22204 	 * Moved this wait from sd_uscsi_strategy to here for
22205 	 * reasons of deadlock prevention. Internal driver commands,
22206 	 * specifically those to change a devices power level, result
22207 	 * in a call to sd_uscsi_strategy.
22208 	 */
22209 	mutex_enter(SD_MUTEX(un));
22210 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22211 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22212 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22213 	}
22214 	/*
22215 	 * Twiddling the counter here protects commands from now
22216 	 * through to the top of sd_uscsi_strategy. Without the
22217 	 * counter inc. a power down, for example, could get in
22218 	 * after the above check for state is made and before
22219 	 * execution gets to the top of sd_uscsi_strategy.
22220 	 * That would cause problems.
22221 	 */
22222 	un->un_ncmds_in_driver++;
22223 
22224 	if (!is_valid &&
22225 	    (flag & (FNDELAY | FNONBLOCK))) {
22226 		switch (cmd) {
22227 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22228 		case DKIOCGVTOC:
22229 		case DKIOCGEXTVTOC:
22230 		case DKIOCGAPART:
22231 		case DKIOCPARTINFO:
22232 		case DKIOCEXTPARTINFO:
22233 		case DKIOCSGEOM:
22234 		case DKIOCSAPART:
22235 		case DKIOCGETEFI:
22236 		case DKIOCPARTITION:
22237 		case DKIOCSVTOC:
22238 		case DKIOCSEXTVTOC:
22239 		case DKIOCSETEFI:
22240 		case DKIOCGMBOOT:
22241 		case DKIOCSMBOOT:
22242 		case DKIOCG_PHYGEOM:
22243 		case DKIOCG_VIRTGEOM:
22244 #if defined(__i386) || defined(__amd64)
22245 		case DKIOCSETEXTPART:
22246 #endif
22247 			/* let cmlb handle it */
22248 			goto skip_ready_valid;
22249 
22250 		case CDROMPAUSE:
22251 		case CDROMRESUME:
22252 		case CDROMPLAYMSF:
22253 		case CDROMPLAYTRKIND:
22254 		case CDROMREADTOCHDR:
22255 		case CDROMREADTOCENTRY:
22256 		case CDROMSTOP:
22257 		case CDROMSTART:
22258 		case CDROMVOLCTRL:
22259 		case CDROMSUBCHNL:
22260 		case CDROMREADMODE2:
22261 		case CDROMREADMODE1:
22262 		case CDROMREADOFFSET:
22263 		case CDROMSBLKMODE:
22264 		case CDROMGBLKMODE:
22265 		case CDROMGDRVSPEED:
22266 		case CDROMSDRVSPEED:
22267 		case CDROMCDDA:
22268 		case CDROMCDXA:
22269 		case CDROMSUBCODE:
22270 			if (!ISCD(un)) {
22271 				un->un_ncmds_in_driver--;
22272 				ASSERT(un->un_ncmds_in_driver >= 0);
22273 				mutex_exit(SD_MUTEX(un));
22274 				err = ENOTTY;
22275 				goto done_without_assess;
22276 			}
22277 			break;
22278 		case FDEJECT:
22279 		case DKIOCEJECT:
22280 		case CDROMEJECT:
22281 			if (!un->un_f_eject_media_supported) {
22282 				un->un_ncmds_in_driver--;
22283 				ASSERT(un->un_ncmds_in_driver >= 0);
22284 				mutex_exit(SD_MUTEX(un));
22285 				err = ENOTTY;
22286 				goto done_without_assess;
22287 			}
22288 			break;
22289 		case DKIOCFLUSHWRITECACHE:
22290 			mutex_exit(SD_MUTEX(un));
22291 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22292 			if (err != 0) {
22293 				mutex_enter(SD_MUTEX(un));
22294 				un->un_ncmds_in_driver--;
22295 				ASSERT(un->un_ncmds_in_driver >= 0);
22296 				mutex_exit(SD_MUTEX(un));
22297 				err = EIO;
22298 				goto done_quick_assess;
22299 			}
22300 			mutex_enter(SD_MUTEX(un));
22301 			/* FALLTHROUGH */
22302 		case DKIOCREMOVABLE:
22303 		case DKIOCHOTPLUGGABLE:
22304 		case DKIOCINFO:
22305 		case DKIOCGMEDIAINFO:
22306 		case DKIOCGMEDIAINFOEXT:
22307 		case MHIOCENFAILFAST:
22308 		case MHIOCSTATUS:
22309 		case MHIOCTKOWN:
22310 		case MHIOCRELEASE:
22311 		case MHIOCGRP_INKEYS:
22312 		case MHIOCGRP_INRESV:
22313 		case MHIOCGRP_REGISTER:
22314 		case MHIOCGRP_CLEAR:
22315 		case MHIOCGRP_RESERVE:
22316 		case MHIOCGRP_PREEMPTANDABORT:
22317 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22318 		case CDROMCLOSETRAY:
22319 		case USCSICMD:
22320 			goto skip_ready_valid;
22321 		default:
22322 			break;
22323 		}
22324 
22325 		mutex_exit(SD_MUTEX(un));
22326 		err = sd_ready_and_valid(ssc, SDPART(dev));
22327 		mutex_enter(SD_MUTEX(un));
22328 
22329 		if (err != SD_READY_VALID) {
22330 			switch (cmd) {
22331 			case DKIOCSTATE:
22332 			case CDROMGDRVSPEED:
22333 			case CDROMSDRVSPEED:
22334 			case FDEJECT:	/* for eject command */
22335 			case DKIOCEJECT:
22336 			case CDROMEJECT:
22337 			case DKIOCREMOVABLE:
22338 			case DKIOCHOTPLUGGABLE:
22339 				break;
22340 			default:
22341 				if (un->un_f_has_removable_media) {
22342 					err = ENXIO;
22343 				} else {
22344 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22345 					if (err == SD_RESERVED_BY_OTHERS) {
22346 						err = EACCES;
22347 					} else {
22348 						err = EIO;
22349 					}
22350 				}
22351 				un->un_ncmds_in_driver--;
22352 				ASSERT(un->un_ncmds_in_driver >= 0);
22353 				mutex_exit(SD_MUTEX(un));
22354 
22355 				goto done_without_assess;
22356 			}
22357 		}
22358 	}
22359 
22360 skip_ready_valid:
22361 	mutex_exit(SD_MUTEX(un));
22362 
22363 	switch (cmd) {
22364 	case DKIOCINFO:
22365 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22366 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22367 		break;
22368 
22369 	case DKIOCGMEDIAINFO:
22370 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22371 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22372 		break;
22373 
22374 	case DKIOCGMEDIAINFOEXT:
22375 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22376 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22377 		break;
22378 
22379 	case DKIOCGGEOM:
22380 	case DKIOCGVTOC:
22381 	case DKIOCGEXTVTOC:
22382 	case DKIOCGAPART:
22383 	case DKIOCPARTINFO:
22384 	case DKIOCEXTPARTINFO:
22385 	case DKIOCSGEOM:
22386 	case DKIOCSAPART:
22387 	case DKIOCGETEFI:
22388 	case DKIOCPARTITION:
22389 	case DKIOCSVTOC:
22390 	case DKIOCSEXTVTOC:
22391 	case DKIOCSETEFI:
22392 	case DKIOCGMBOOT:
22393 	case DKIOCSMBOOT:
22394 	case DKIOCG_PHYGEOM:
22395 	case DKIOCG_VIRTGEOM:
22396 #if defined(__i386) || defined(__amd64)
22397 	case DKIOCSETEXTPART:
22398 #endif
22399 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22400 
22401 		/* TUR should spin up */
22402 
22403 		if (un->un_f_has_removable_media)
22404 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22405 			    SD_CHECK_FOR_MEDIA);
22406 
22407 		else
22408 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22409 
22410 		if (err != 0)
22411 			goto done_with_assess;
22412 
22413 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22414 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22415 
22416 		if ((err == 0) &&
22417 		    ((cmd == DKIOCSETEFI) ||
22418 		    (un->un_f_pkstats_enabled) &&
22419 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22420 		    cmd == DKIOCSEXTVTOC))) {
22421 
22422 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22423 			    (void *)SD_PATH_DIRECT);
22424 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22425 				sd_set_pstats(un);
22426 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22427 				    "sd_ioctl: un:0x%p pstats created and "
22428 				    "set\n", un);
22429 			}
22430 		}
22431 
22432 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22433 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22434 
22435 			mutex_enter(SD_MUTEX(un));
22436 			if (un->un_f_devid_supported &&
22437 			    (un->un_f_opt_fab_devid == TRUE)) {
22438 				if (un->un_devid == NULL) {
22439 					sd_register_devid(ssc, SD_DEVINFO(un),
22440 					    SD_TARGET_IS_UNRESERVED);
22441 				} else {
22442 					/*
22443 					 * The device id for this disk
22444 					 * has been fabricated. The
22445 					 * device id must be preserved
22446 					 * by writing it back out to
22447 					 * disk.
22448 					 */
22449 					if (sd_write_deviceid(ssc) != 0) {
22450 						ddi_devid_free(un->un_devid);
22451 						un->un_devid = NULL;
22452 					}
22453 				}
22454 			}
22455 			mutex_exit(SD_MUTEX(un));
22456 		}
22457 
22458 		break;
22459 
22460 	case DKIOCLOCK:
22461 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22462 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22463 		    SD_PATH_STANDARD);
22464 		goto done_with_assess;
22465 
22466 	case DKIOCUNLOCK:
22467 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22468 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22469 		    SD_PATH_STANDARD);
22470 		goto done_with_assess;
22471 
22472 	case DKIOCSTATE: {
22473 		enum dkio_state		state;
22474 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22475 
22476 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22477 			err = EFAULT;
22478 		} else {
22479 			err = sd_check_media(dev, state);
22480 			if (err == 0) {
22481 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22482 				    sizeof (int), flag) != 0)
22483 					err = EFAULT;
22484 			}
22485 		}
22486 		break;
22487 	}
22488 
22489 	case DKIOCREMOVABLE:
22490 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22491 		i = un->un_f_has_removable_media ? 1 : 0;
22492 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22493 			err = EFAULT;
22494 		} else {
22495 			err = 0;
22496 		}
22497 		break;
22498 
22499 	case DKIOCHOTPLUGGABLE:
22500 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22501 		i = un->un_f_is_hotpluggable ? 1 : 0;
22502 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22503 			err = EFAULT;
22504 		} else {
22505 			err = 0;
22506 		}
22507 		break;
22508 
22509 	case DKIOCREADONLY:
22510 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22511 		i = 0;
22512 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22513 		    (sr_check_wp(dev) != 0)) {
22514 			i = 1;
22515 		}
22516 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22517 			err = EFAULT;
22518 		} else {
22519 			err = 0;
22520 		}
22521 		break;
22522 
22523 	case DKIOCGTEMPERATURE:
22524 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22525 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22526 		break;
22527 
22528 	case MHIOCENFAILFAST:
22529 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22530 		if ((err = drv_priv(cred_p)) == 0) {
22531 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22532 		}
22533 		break;
22534 
22535 	case MHIOCTKOWN:
22536 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22537 		if ((err = drv_priv(cred_p)) == 0) {
22538 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22539 		}
22540 		break;
22541 
22542 	case MHIOCRELEASE:
22543 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22544 		if ((err = drv_priv(cred_p)) == 0) {
22545 			err = sd_mhdioc_release(dev);
22546 		}
22547 		break;
22548 
22549 	case MHIOCSTATUS:
22550 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22551 		if ((err = drv_priv(cred_p)) == 0) {
22552 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22553 			case 0:
22554 				err = 0;
22555 				break;
22556 			case EACCES:
22557 				*rval_p = 1;
22558 				err = 0;
22559 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22560 				break;
22561 			default:
22562 				err = EIO;
22563 				goto done_with_assess;
22564 			}
22565 		}
22566 		break;
22567 
22568 	case MHIOCQRESERVE:
22569 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22570 		if ((err = drv_priv(cred_p)) == 0) {
22571 			err = sd_reserve_release(dev, SD_RESERVE);
22572 		}
22573 		break;
22574 
22575 	case MHIOCREREGISTERDEVID:
22576 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22577 		if (drv_priv(cred_p) == EPERM) {
22578 			err = EPERM;
22579 		} else if (!un->un_f_devid_supported) {
22580 			err = ENOTTY;
22581 		} else {
22582 			err = sd_mhdioc_register_devid(dev);
22583 		}
22584 		break;
22585 
22586 	case MHIOCGRP_INKEYS:
22587 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22588 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22589 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22590 				err = ENOTSUP;
22591 			} else {
22592 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22593 				    flag);
22594 			}
22595 		}
22596 		break;
22597 
22598 	case MHIOCGRP_INRESV:
22599 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22600 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22601 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22602 				err = ENOTSUP;
22603 			} else {
22604 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22605 			}
22606 		}
22607 		break;
22608 
22609 	case MHIOCGRP_REGISTER:
22610 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22611 		if ((err = drv_priv(cred_p)) != EPERM) {
22612 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22613 				err = ENOTSUP;
22614 			} else if (arg != NULL) {
22615 				mhioc_register_t reg;
22616 				if (ddi_copyin((void *)arg, &reg,
22617 				    sizeof (mhioc_register_t), flag) != 0) {
22618 					err = EFAULT;
22619 				} else {
22620 					err =
22621 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22622 					    ssc, SD_SCSI3_REGISTER,
22623 					    (uchar_t *)&reg);
22624 					if (err != 0)
22625 						goto done_with_assess;
22626 				}
22627 			}
22628 		}
22629 		break;
22630 
22631 	case MHIOCGRP_CLEAR:
22632 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22633 		if ((err = drv_priv(cred_p)) != EPERM) {
22634 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22635 				err = ENOTSUP;
22636 			} else if (arg != NULL) {
22637 				mhioc_register_t reg;
22638 				if (ddi_copyin((void *)arg, &reg,
22639 				    sizeof (mhioc_register_t), flag) != 0) {
22640 					err = EFAULT;
22641 				} else {
22642 					err =
22643 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22644 					    ssc, SD_SCSI3_CLEAR,
22645 					    (uchar_t *)&reg);
22646 					if (err != 0)
22647 						goto done_with_assess;
22648 				}
22649 			}
22650 		}
22651 		break;
22652 
22653 	case MHIOCGRP_RESERVE:
22654 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22655 		if ((err = drv_priv(cred_p)) != EPERM) {
22656 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22657 				err = ENOTSUP;
22658 			} else if (arg != NULL) {
22659 				mhioc_resv_desc_t resv_desc;
22660 				if (ddi_copyin((void *)arg, &resv_desc,
22661 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22662 					err = EFAULT;
22663 				} else {
22664 					err =
22665 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22666 					    ssc, SD_SCSI3_RESERVE,
22667 					    (uchar_t *)&resv_desc);
22668 					if (err != 0)
22669 						goto done_with_assess;
22670 				}
22671 			}
22672 		}
22673 		break;
22674 
22675 	case MHIOCGRP_PREEMPTANDABORT:
22676 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22677 		if ((err = drv_priv(cred_p)) != EPERM) {
22678 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22679 				err = ENOTSUP;
22680 			} else if (arg != NULL) {
22681 				mhioc_preemptandabort_t preempt_abort;
22682 				if (ddi_copyin((void *)arg, &preempt_abort,
22683 				    sizeof (mhioc_preemptandabort_t),
22684 				    flag) != 0) {
22685 					err = EFAULT;
22686 				} else {
22687 					err =
22688 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22689 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22690 					    (uchar_t *)&preempt_abort);
22691 					if (err != 0)
22692 						goto done_with_assess;
22693 				}
22694 			}
22695 		}
22696 		break;
22697 
22698 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22699 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22700 		if ((err = drv_priv(cred_p)) != EPERM) {
22701 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22702 				err = ENOTSUP;
22703 			} else if (arg != NULL) {
22704 				mhioc_registerandignorekey_t r_and_i;
22705 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22706 				    sizeof (mhioc_registerandignorekey_t),
22707 				    flag) != 0) {
22708 					err = EFAULT;
22709 				} else {
22710 					err =
22711 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22712 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22713 					    (uchar_t *)&r_and_i);
22714 					if (err != 0)
22715 						goto done_with_assess;
22716 				}
22717 			}
22718 		}
22719 		break;
22720 
22721 	case USCSICMD:
22722 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22723 		cr = ddi_get_cred();
22724 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22725 			err = EPERM;
22726 		} else {
22727 			enum uio_seg	uioseg;
22728 
22729 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22730 			    UIO_USERSPACE;
22731 			if (un->un_f_format_in_progress == TRUE) {
22732 				err = EAGAIN;
22733 				break;
22734 			}
22735 
22736 			err = sd_ssc_send(ssc,
22737 			    (struct uscsi_cmd *)arg,
22738 			    flag, uioseg, SD_PATH_STANDARD);
22739 			if (err != 0)
22740 				goto done_with_assess;
22741 			else
22742 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22743 		}
22744 		break;
22745 
22746 	case CDROMPAUSE:
22747 	case CDROMRESUME:
22748 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22749 		if (!ISCD(un)) {
22750 			err = ENOTTY;
22751 		} else {
22752 			err = sr_pause_resume(dev, cmd);
22753 		}
22754 		break;
22755 
22756 	case CDROMPLAYMSF:
22757 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22758 		if (!ISCD(un)) {
22759 			err = ENOTTY;
22760 		} else {
22761 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22762 		}
22763 		break;
22764 
22765 	case CDROMPLAYTRKIND:
22766 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22767 #if defined(__i386) || defined(__amd64)
22768 		/*
22769 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22770 		 */
22771 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22772 #else
22773 		if (!ISCD(un)) {
22774 #endif
22775 			err = ENOTTY;
22776 		} else {
22777 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22778 		}
22779 		break;
22780 
22781 	case CDROMREADTOCHDR:
22782 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22783 		if (!ISCD(un)) {
22784 			err = ENOTTY;
22785 		} else {
22786 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22787 		}
22788 		break;
22789 
22790 	case CDROMREADTOCENTRY:
22791 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22792 		if (!ISCD(un)) {
22793 			err = ENOTTY;
22794 		} else {
22795 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22796 		}
22797 		break;
22798 
22799 	case CDROMSTOP:
22800 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22801 		if (!ISCD(un)) {
22802 			err = ENOTTY;
22803 		} else {
22804 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22805 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22806 			goto done_with_assess;
22807 		}
22808 		break;
22809 
22810 	case CDROMSTART:
22811 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22812 		if (!ISCD(un)) {
22813 			err = ENOTTY;
22814 		} else {
22815 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22816 			    SD_TARGET_START, SD_PATH_STANDARD);
22817 			goto done_with_assess;
22818 		}
22819 		break;
22820 
22821 	case CDROMCLOSETRAY:
22822 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22823 		if (!ISCD(un)) {
22824 			err = ENOTTY;
22825 		} else {
22826 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22827 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22828 			goto done_with_assess;
22829 		}
22830 		break;
22831 
22832 	case FDEJECT:	/* for eject command */
22833 	case DKIOCEJECT:
22834 	case CDROMEJECT:
22835 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22836 		if (!un->un_f_eject_media_supported) {
22837 			err = ENOTTY;
22838 		} else {
22839 			err = sr_eject(dev);
22840 		}
22841 		break;
22842 
22843 	case CDROMVOLCTRL:
22844 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22845 		if (!ISCD(un)) {
22846 			err = ENOTTY;
22847 		} else {
22848 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22849 		}
22850 		break;
22851 
22852 	case CDROMSUBCHNL:
22853 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22854 		if (!ISCD(un)) {
22855 			err = ENOTTY;
22856 		} else {
22857 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22858 		}
22859 		break;
22860 
22861 	case CDROMREADMODE2:
22862 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22863 		if (!ISCD(un)) {
22864 			err = ENOTTY;
22865 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22866 			/*
22867 			 * If the drive supports READ CD, use that instead of
22868 			 * switching the LBA size via a MODE SELECT
22869 			 * Block Descriptor
22870 			 */
22871 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22872 		} else {
22873 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22874 		}
22875 		break;
22876 
22877 	case CDROMREADMODE1:
22878 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22879 		if (!ISCD(un)) {
22880 			err = ENOTTY;
22881 		} else {
22882 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22883 		}
22884 		break;
22885 
22886 	case CDROMREADOFFSET:
22887 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22888 		if (!ISCD(un)) {
22889 			err = ENOTTY;
22890 		} else {
22891 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22892 			    flag);
22893 		}
22894 		break;
22895 
22896 	case CDROMSBLKMODE:
22897 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22898 		/*
22899 		 * There is no means of changing block size in case of atapi
22900 		 * drives, thus return ENOTTY if drive type is atapi
22901 		 */
22902 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22903 			err = ENOTTY;
22904 		} else if (un->un_f_mmc_cap == TRUE) {
22905 
22906 			/*
22907 			 * MMC Devices do not support changing the
22908 			 * logical block size
22909 			 *
22910 			 * Note: EINVAL is being returned instead of ENOTTY to
22911 			 * maintain consistancy with the original mmc
22912 			 * driver update.
22913 			 */
22914 			err = EINVAL;
22915 		} else {
22916 			mutex_enter(SD_MUTEX(un));
22917 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22918 			    (un->un_ncmds_in_transport > 0)) {
22919 				mutex_exit(SD_MUTEX(un));
22920 				err = EINVAL;
22921 			} else {
22922 				mutex_exit(SD_MUTEX(un));
22923 				err = sr_change_blkmode(dev, cmd, arg, flag);
22924 			}
22925 		}
22926 		break;
22927 
22928 	case CDROMGBLKMODE:
22929 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22930 		if (!ISCD(un)) {
22931 			err = ENOTTY;
22932 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22933 		    (un->un_f_blockcount_is_valid != FALSE)) {
22934 			/*
22935 			 * Drive is an ATAPI drive so return target block
22936 			 * size for ATAPI drives since we cannot change the
22937 			 * blocksize on ATAPI drives. Used primarily to detect
22938 			 * if an ATAPI cdrom is present.
22939 			 */
22940 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22941 			    sizeof (int), flag) != 0) {
22942 				err = EFAULT;
22943 			} else {
22944 				err = 0;
22945 			}
22946 
22947 		} else {
22948 			/*
22949 			 * Drive supports changing block sizes via a Mode
22950 			 * Select.
22951 			 */
22952 			err = sr_change_blkmode(dev, cmd, arg, flag);
22953 		}
22954 		break;
22955 
22956 	case CDROMGDRVSPEED:
22957 	case CDROMSDRVSPEED:
22958 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22959 		if (!ISCD(un)) {
22960 			err = ENOTTY;
22961 		} else if (un->un_f_mmc_cap == TRUE) {
22962 			/*
22963 			 * Note: In the future the driver implementation
22964 			 * for getting and
22965 			 * setting cd speed should entail:
22966 			 * 1) If non-mmc try the Toshiba mode page
22967 			 *    (sr_change_speed)
22968 			 * 2) If mmc but no support for Real Time Streaming try
22969 			 *    the SET CD SPEED (0xBB) command
22970 			 *   (sr_atapi_change_speed)
22971 			 * 3) If mmc and support for Real Time Streaming
22972 			 *    try the GET PERFORMANCE and SET STREAMING
22973 			 *    commands (not yet implemented, 4380808)
22974 			 */
22975 			/*
22976 			 * As per recent MMC spec, CD-ROM speed is variable
22977 			 * and changes with LBA. Since there is no such
22978 			 * things as drive speed now, fail this ioctl.
22979 			 *
22980 			 * Note: EINVAL is returned for consistancy of original
22981 			 * implementation which included support for getting
22982 			 * the drive speed of mmc devices but not setting
22983 			 * the drive speed. Thus EINVAL would be returned
22984 			 * if a set request was made for an mmc device.
22985 			 * We no longer support get or set speed for
22986 			 * mmc but need to remain consistent with regard
22987 			 * to the error code returned.
22988 			 */
22989 			err = EINVAL;
22990 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22991 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22992 		} else {
22993 			err = sr_change_speed(dev, cmd, arg, flag);
22994 		}
22995 		break;
22996 
22997 	case CDROMCDDA:
22998 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22999 		if (!ISCD(un)) {
23000 			err = ENOTTY;
23001 		} else {
23002 			err = sr_read_cdda(dev, (void *)arg, flag);
23003 		}
23004 		break;
23005 
23006 	case CDROMCDXA:
23007 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23008 		if (!ISCD(un)) {
23009 			err = ENOTTY;
23010 		} else {
23011 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23012 		}
23013 		break;
23014 
23015 	case CDROMSUBCODE:
23016 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23017 		if (!ISCD(un)) {
23018 			err = ENOTTY;
23019 		} else {
23020 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23021 		}
23022 		break;
23023 
23024 
23025 #ifdef SDDEBUG
23026 /* RESET/ABORTS testing ioctls */
23027 	case DKIOCRESET: {
23028 		int	reset_level;
23029 
23030 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23031 			err = EFAULT;
23032 		} else {
23033 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23034 			    "reset_level = 0x%lx\n", reset_level);
23035 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23036 				err = 0;
23037 			} else {
23038 				err = EIO;
23039 			}
23040 		}
23041 		break;
23042 	}
23043 
23044 	case DKIOCABORT:
23045 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23046 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23047 			err = 0;
23048 		} else {
23049 			err = EIO;
23050 		}
23051 		break;
23052 #endif
23053 
23054 #ifdef SD_FAULT_INJECTION
23055 /* SDIOC FaultInjection testing ioctls */
23056 	case SDIOCSTART:
23057 	case SDIOCSTOP:
23058 	case SDIOCINSERTPKT:
23059 	case SDIOCINSERTXB:
23060 	case SDIOCINSERTUN:
23061 	case SDIOCINSERTARQ:
23062 	case SDIOCPUSH:
23063 	case SDIOCRETRIEVE:
23064 	case SDIOCRUN:
23065 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23066 		    "SDIOC detected cmd:0x%X:\n", cmd);
23067 		/* call error generator */
23068 		sd_faultinjection_ioctl(cmd, arg, un);
23069 		err = 0;
23070 		break;
23071 
23072 #endif /* SD_FAULT_INJECTION */
23073 
23074 	case DKIOCFLUSHWRITECACHE:
23075 		{
23076 			struct dk_callback *dkc = (struct dk_callback *)arg;
23077 
23078 			mutex_enter(SD_MUTEX(un));
23079 			if (!un->un_f_sync_cache_supported ||
23080 			    !un->un_f_write_cache_enabled) {
23081 				err = un->un_f_sync_cache_supported ?
23082 				    0 : ENOTSUP;
23083 				mutex_exit(SD_MUTEX(un));
23084 				if ((flag & FKIOCTL) && dkc != NULL &&
23085 				    dkc->dkc_callback != NULL) {
23086 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23087 					    err);
23088 					/*
23089 					 * Did callback and reported error.
23090 					 * Since we did a callback, ioctl
23091 					 * should return 0.
23092 					 */
23093 					err = 0;
23094 				}
23095 				break;
23096 			}
23097 			mutex_exit(SD_MUTEX(un));
23098 
23099 			if ((flag & FKIOCTL) && dkc != NULL &&
23100 			    dkc->dkc_callback != NULL) {
23101 				/* async SYNC CACHE request */
23102 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23103 			} else {
23104 				/* synchronous SYNC CACHE request */
23105 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23106 			}
23107 		}
23108 		break;
23109 
23110 	case DKIOCGETWCE: {
23111 
23112 		int wce;
23113 
23114 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23115 			break;
23116 		}
23117 
23118 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23119 			err = EFAULT;
23120 		}
23121 		break;
23122 	}
23123 
23124 	case DKIOCSETWCE: {
23125 
23126 		int wce, sync_supported;
23127 		int cur_wce = 0;
23128 
23129 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23130 			err = EFAULT;
23131 			break;
23132 		}
23133 
23134 		/*
23135 		 * Synchronize multiple threads trying to enable
23136 		 * or disable the cache via the un_f_wcc_cv
23137 		 * condition variable.
23138 		 */
23139 		mutex_enter(SD_MUTEX(un));
23140 
23141 		/*
23142 		 * Don't allow the cache to be enabled if the
23143 		 * config file has it disabled.
23144 		 */
23145 		if (un->un_f_opt_disable_cache && wce) {
23146 			mutex_exit(SD_MUTEX(un));
23147 			err = EINVAL;
23148 			break;
23149 		}
23150 
23151 		/*
23152 		 * Wait for write cache change in progress
23153 		 * bit to be clear before proceeding.
23154 		 */
23155 		while (un->un_f_wcc_inprog)
23156 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23157 
23158 		un->un_f_wcc_inprog = 1;
23159 
23160 		mutex_exit(SD_MUTEX(un));
23161 
23162 		/*
23163 		 * Get the current write cache state
23164 		 */
23165 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23166 			mutex_enter(SD_MUTEX(un));
23167 			un->un_f_wcc_inprog = 0;
23168 			cv_broadcast(&un->un_wcc_cv);
23169 			mutex_exit(SD_MUTEX(un));
23170 			break;
23171 		}
23172 
23173 		mutex_enter(SD_MUTEX(un));
23174 		un->un_f_write_cache_enabled = (cur_wce != 0);
23175 
23176 		if (un->un_f_write_cache_enabled && wce == 0) {
23177 			/*
23178 			 * Disable the write cache.  Don't clear
23179 			 * un_f_write_cache_enabled until after
23180 			 * the mode select and flush are complete.
23181 			 */
23182 			sync_supported = un->un_f_sync_cache_supported;
23183 
23184 			/*
23185 			 * If cache flush is suppressed, we assume that the
23186 			 * controller firmware will take care of managing the
23187 			 * write cache for us: no need to explicitly
23188 			 * disable it.
23189 			 */
23190 			if (!un->un_f_suppress_cache_flush) {
23191 				mutex_exit(SD_MUTEX(un));
23192 				if ((err = sd_cache_control(ssc,
23193 				    SD_CACHE_NOCHANGE,
23194 				    SD_CACHE_DISABLE)) == 0 &&
23195 				    sync_supported) {
23196 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23197 					    NULL);
23198 				}
23199 			} else {
23200 				mutex_exit(SD_MUTEX(un));
23201 			}
23202 
23203 			mutex_enter(SD_MUTEX(un));
23204 			if (err == 0) {
23205 				un->un_f_write_cache_enabled = 0;
23206 			}
23207 
23208 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23209 			/*
23210 			 * Set un_f_write_cache_enabled first, so there is
23211 			 * no window where the cache is enabled, but the
23212 			 * bit says it isn't.
23213 			 */
23214 			un->un_f_write_cache_enabled = 1;
23215 
23216 			/*
23217 			 * If cache flush is suppressed, we assume that the
23218 			 * controller firmware will take care of managing the
23219 			 * write cache for us: no need to explicitly
23220 			 * enable it.
23221 			 */
23222 			if (!un->un_f_suppress_cache_flush) {
23223 				mutex_exit(SD_MUTEX(un));
23224 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23225 				    SD_CACHE_ENABLE);
23226 			} else {
23227 				mutex_exit(SD_MUTEX(un));
23228 			}
23229 
23230 			mutex_enter(SD_MUTEX(un));
23231 
23232 			if (err) {
23233 				un->un_f_write_cache_enabled = 0;
23234 			}
23235 		}
23236 
23237 		un->un_f_wcc_inprog = 0;
23238 		cv_broadcast(&un->un_wcc_cv);
23239 		mutex_exit(SD_MUTEX(un));
23240 		break;
23241 	}
23242 
23243 	default:
23244 		err = ENOTTY;
23245 		break;
23246 	}
23247 	mutex_enter(SD_MUTEX(un));
23248 	un->un_ncmds_in_driver--;
23249 	ASSERT(un->un_ncmds_in_driver >= 0);
23250 	mutex_exit(SD_MUTEX(un));
23251 
23252 
23253 done_without_assess:
23254 	sd_ssc_fini(ssc);
23255 
23256 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23257 	return (err);
23258 
23259 done_with_assess:
23260 	mutex_enter(SD_MUTEX(un));
23261 	un->un_ncmds_in_driver--;
23262 	ASSERT(un->un_ncmds_in_driver >= 0);
23263 	mutex_exit(SD_MUTEX(un));
23264 
23265 done_quick_assess:
23266 	if (err != 0)
23267 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23268 	/* Uninitialize sd_ssc_t pointer */
23269 	sd_ssc_fini(ssc);
23270 
23271 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23272 	return (err);
23273 }
23274 
23275 
23276 /*
23277  *    Function: sd_dkio_ctrl_info
23278  *
23279  * Description: This routine is the driver entry point for handling controller
23280  *		information ioctl requests (DKIOCINFO).
23281  *
23282  *   Arguments: dev  - the device number
23283  *		arg  - pointer to user provided dk_cinfo structure
23284  *		       specifying the controller type and attributes.
23285  *		flag - this argument is a pass through to ddi_copyxxx()
23286  *		       directly from the mode argument of ioctl().
23287  *
23288  * Return Code: 0
23289  *		EFAULT
23290  *		ENXIO
23291  */
23292 
23293 static int
23294 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23295 {
23296 	struct sd_lun	*un = NULL;
23297 	struct dk_cinfo	*info;
23298 	dev_info_t	*pdip;
23299 	int		lun, tgt;
23300 
23301 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23302 		return (ENXIO);
23303 	}
23304 
23305 	info = (struct dk_cinfo *)
23306 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23307 
23308 	switch (un->un_ctype) {
23309 	case CTYPE_CDROM:
23310 		info->dki_ctype = DKC_CDROM;
23311 		break;
23312 	default:
23313 		info->dki_ctype = DKC_SCSI_CCS;
23314 		break;
23315 	}
23316 	pdip = ddi_get_parent(SD_DEVINFO(un));
23317 	info->dki_cnum = ddi_get_instance(pdip);
23318 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23319 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23320 	} else {
23321 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23322 		    DK_DEVLEN - 1);
23323 	}
23324 
23325 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23326 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23327 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23328 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23329 
23330 	/* Unit Information */
23331 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23332 	info->dki_slave = ((tgt << 3) | lun);
23333 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23334 	    DK_DEVLEN - 1);
23335 	info->dki_flags = DKI_FMTVOL;
23336 	info->dki_partition = SDPART(dev);
23337 
23338 	/* Max Transfer size of this device in blocks */
23339 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23340 	info->dki_addr = 0;
23341 	info->dki_space = 0;
23342 	info->dki_prio = 0;
23343 	info->dki_vec = 0;
23344 
23345 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23346 		kmem_free(info, sizeof (struct dk_cinfo));
23347 		return (EFAULT);
23348 	} else {
23349 		kmem_free(info, sizeof (struct dk_cinfo));
23350 		return (0);
23351 	}
23352 }
23353 
23354 /*
23355  *    Function: sd_get_media_info_com
23356  *
23357  * Description: This routine returns the information required to populate
23358  *		the fields for the dk_minfo/dk_minfo_ext structures.
23359  *
23360  *   Arguments: dev		- the device number
23361  *		dki_media_type	- media_type
23362  *		dki_lbsize	- logical block size
23363  *		dki_capacity	- capacity in blocks
23364  *		dki_pbsize	- physical block size (if requested)
23365  *
23366  * Return Code: 0
23367  *		EACCESS
23368  *		EFAULT
23369  *		ENXIO
23370  *		EIO
23371  */
23372 static int
23373 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23374 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23375 {
23376 	struct sd_lun		*un = NULL;
23377 	struct uscsi_cmd	com;
23378 	struct scsi_inquiry	*sinq;
23379 	u_longlong_t		media_capacity;
23380 	uint64_t		capacity;
23381 	uint_t			lbasize;
23382 	uint_t			pbsize;
23383 	uchar_t			*out_data;
23384 	uchar_t			*rqbuf;
23385 	int			rval = 0;
23386 	int			rtn;
23387 	sd_ssc_t		*ssc;
23388 
23389 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23390 	    (un->un_state == SD_STATE_OFFLINE)) {
23391 		return (ENXIO);
23392 	}
23393 
23394 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23395 
23396 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23397 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23398 	ssc = sd_ssc_init(un);
23399 
23400 	/* Issue a TUR to determine if the drive is ready with media present */
23401 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23402 	if (rval == ENXIO) {
23403 		goto done;
23404 	} else if (rval != 0) {
23405 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23406 	}
23407 
23408 	/* Now get configuration data */
23409 	if (ISCD(un)) {
23410 		*dki_media_type = DK_CDROM;
23411 
23412 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23413 		if (un->un_f_mmc_cap == TRUE) {
23414 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23415 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23416 			    SD_PATH_STANDARD);
23417 
23418 			if (rtn) {
23419 				/*
23420 				 * We ignore all failures for CD and need to
23421 				 * put the assessment before processing code
23422 				 * to avoid missing assessment for FMA.
23423 				 */
23424 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23425 				/*
23426 				 * Failed for other than an illegal request
23427 				 * or command not supported
23428 				 */
23429 				if ((com.uscsi_status == STATUS_CHECK) &&
23430 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23431 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23432 					    (rqbuf[12] != 0x20)) {
23433 						rval = EIO;
23434 						goto no_assessment;
23435 					}
23436 				}
23437 			} else {
23438 				/*
23439 				 * The GET CONFIGURATION command succeeded
23440 				 * so set the media type according to the
23441 				 * returned data
23442 				 */
23443 				*dki_media_type = out_data[6];
23444 				*dki_media_type <<= 8;
23445 				*dki_media_type |= out_data[7];
23446 			}
23447 		}
23448 	} else {
23449 		/*
23450 		 * The profile list is not available, so we attempt to identify
23451 		 * the media type based on the inquiry data
23452 		 */
23453 		sinq = un->un_sd->sd_inq;
23454 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23455 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23456 			/* This is a direct access device  or optical disk */
23457 			*dki_media_type = DK_FIXED_DISK;
23458 
23459 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23460 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23461 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23462 					*dki_media_type = DK_ZIP;
23463 				} else if (
23464 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23465 					*dki_media_type = DK_JAZ;
23466 				}
23467 			}
23468 		} else {
23469 			/*
23470 			 * Not a CD, direct access or optical disk so return
23471 			 * unknown media
23472 			 */
23473 			*dki_media_type = DK_UNKNOWN;
23474 		}
23475 	}
23476 
23477 	/*
23478 	 * Now read the capacity so we can provide the lbasize,
23479 	 * pbsize and capacity.
23480 	 */
23481 	if (dki_pbsize && un->un_f_descr_format_supported)
23482 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23483 		    &pbsize, SD_PATH_DIRECT);
23484 
23485 	if (dki_pbsize == NULL || rval != 0 ||
23486 	    !un->un_f_descr_format_supported) {
23487 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23488 		    SD_PATH_DIRECT);
23489 
23490 		switch (rval) {
23491 		case 0:
23492 			if (un->un_f_enable_rmw &&
23493 			    un->un_phy_blocksize != 0) {
23494 				pbsize = un->un_phy_blocksize;
23495 			} else {
23496 				pbsize = lbasize;
23497 			}
23498 			media_capacity = capacity;
23499 
23500 			/*
23501 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23502 			 * un->un_sys_blocksize chunks. So we need to convert
23503 			 * it into cap.lbsize chunks.
23504 			 */
23505 			if (un->un_f_has_removable_media) {
23506 				media_capacity *= un->un_sys_blocksize;
23507 				media_capacity /= lbasize;
23508 			}
23509 			break;
23510 		case EACCES:
23511 			rval = EACCES;
23512 			goto done;
23513 		default:
23514 			rval = EIO;
23515 			goto done;
23516 		}
23517 	} else {
23518 		if (un->un_f_enable_rmw &&
23519 		    !ISP2(pbsize % DEV_BSIZE)) {
23520 			pbsize = SSD_SECSIZE;
23521 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23522 		    !ISP2(pbsize % DEV_BSIZE)) {
23523 			pbsize = lbasize = DEV_BSIZE;
23524 		}
23525 		media_capacity = capacity;
23526 	}
23527 
23528 	/*
23529 	 * If lun is expanded dynamically, update the un structure.
23530 	 */
23531 	mutex_enter(SD_MUTEX(un));
23532 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23533 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23534 	    (capacity > un->un_blockcount)) {
23535 		un->un_f_expnevent = B_FALSE;
23536 		sd_update_block_info(un, lbasize, capacity);
23537 	}
23538 	mutex_exit(SD_MUTEX(un));
23539 
23540 	*dki_lbsize = lbasize;
23541 	*dki_capacity = media_capacity;
23542 	if (dki_pbsize)
23543 		*dki_pbsize = pbsize;
23544 
23545 done:
23546 	if (rval != 0) {
23547 		if (rval == EIO)
23548 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23549 		else
23550 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23551 	}
23552 no_assessment:
23553 	sd_ssc_fini(ssc);
23554 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23555 	kmem_free(rqbuf, SENSE_LENGTH);
23556 	return (rval);
23557 }
23558 
23559 /*
23560  *    Function: sd_get_media_info
23561  *
23562  * Description: This routine is the driver entry point for handling ioctl
23563  *		requests for the media type or command set profile used by the
23564  *		drive to operate on the media (DKIOCGMEDIAINFO).
23565  *
23566  *   Arguments: dev	- the device number
23567  *		arg	- pointer to user provided dk_minfo structure
23568  *			  specifying the media type, logical block size and
23569  *			  drive capacity.
23570  *		flag	- this argument is a pass through to ddi_copyxxx()
23571  *			  directly from the mode argument of ioctl().
23572  *
23573  * Return Code: returns the value from sd_get_media_info_com
23574  */
23575 static int
23576 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23577 {
23578 	struct dk_minfo		mi;
23579 	int			rval;
23580 
23581 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23582 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23583 
23584 	if (rval)
23585 		return (rval);
23586 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23587 		rval = EFAULT;
23588 	return (rval);
23589 }
23590 
23591 /*
23592  *    Function: sd_get_media_info_ext
23593  *
23594  * Description: This routine is the driver entry point for handling ioctl
23595  *		requests for the media type or command set profile used by the
23596  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23597  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23598  *		of this ioctl contains both logical block size and physical
23599  *		block size.
23600  *
23601  *
23602  *   Arguments: dev	- the device number
23603  *		arg	- pointer to user provided dk_minfo_ext structure
23604  *			  specifying the media type, logical block size,
23605  *			  physical block size and disk capacity.
23606  *		flag	- this argument is a pass through to ddi_copyxxx()
23607  *			  directly from the mode argument of ioctl().
23608  *
23609  * Return Code: returns the value from sd_get_media_info_com
23610  */
23611 static int
23612 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23613 {
23614 	struct dk_minfo_ext	mie;
23615 	int			rval = 0;
23616 
23617 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23618 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23619 
23620 	if (rval)
23621 		return (rval);
23622 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23623 		rval = EFAULT;
23624 	return (rval);
23625 
23626 }
23627 
23628 /*
23629  *    Function: sd_watch_request_submit
23630  *
23631  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23632  *		depending on which is supported by device.
23633  */
23634 static opaque_t
23635 sd_watch_request_submit(struct sd_lun *un)
23636 {
23637 	dev_t			dev;
23638 
23639 	/* All submissions are unified to use same device number */
23640 	dev = sd_make_device(SD_DEVINFO(un));
23641 
23642 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23643 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23644 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23645 		    (caddr_t)dev));
23646 	} else {
23647 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23648 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23649 		    (caddr_t)dev));
23650 	}
23651 }
23652 
23653 
23654 /*
23655  *    Function: sd_check_media
23656  *
23657  * Description: This utility routine implements the functionality for the
23658  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23659  *		driver state changes from that specified by the user
23660  *		(inserted or ejected). For example, if the user specifies
23661  *		DKIO_EJECTED and the current media state is inserted this
23662  *		routine will immediately return DKIO_INSERTED. However, if the
23663  *		current media state is not inserted the user thread will be
23664  *		blocked until the drive state changes. If DKIO_NONE is specified
23665  *		the user thread will block until a drive state change occurs.
23666  *
23667  *   Arguments: dev  - the device number
23668  *		state  - user pointer to a dkio_state, updated with the current
23669  *			drive state at return.
23670  *
23671  * Return Code: ENXIO
23672  *		EIO
23673  *		EAGAIN
23674  *		EINTR
23675  */
23676 
23677 static int
23678 sd_check_media(dev_t dev, enum dkio_state state)
23679 {
23680 	struct sd_lun		*un = NULL;
23681 	enum dkio_state		prev_state;
23682 	opaque_t		token = NULL;
23683 	int			rval = 0;
23684 	sd_ssc_t		*ssc;
23685 
23686 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23687 		return (ENXIO);
23688 	}
23689 
23690 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23691 
23692 	ssc = sd_ssc_init(un);
23693 
23694 	mutex_enter(SD_MUTEX(un));
23695 
23696 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23697 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23698 
23699 	prev_state = un->un_mediastate;
23700 
23701 	/* is there anything to do? */
23702 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23703 		/*
23704 		 * submit the request to the scsi_watch service;
23705 		 * scsi_media_watch_cb() does the real work
23706 		 */
23707 		mutex_exit(SD_MUTEX(un));
23708 
23709 		/*
23710 		 * This change handles the case where a scsi watch request is
23711 		 * added to a device that is powered down. To accomplish this
23712 		 * we power up the device before adding the scsi watch request,
23713 		 * since the scsi watch sends a TUR directly to the device
23714 		 * which the device cannot handle if it is powered down.
23715 		 */
23716 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23717 			mutex_enter(SD_MUTEX(un));
23718 			goto done;
23719 		}
23720 
23721 		token = sd_watch_request_submit(un);
23722 
23723 		sd_pm_exit(un);
23724 
23725 		mutex_enter(SD_MUTEX(un));
23726 		if (token == NULL) {
23727 			rval = EAGAIN;
23728 			goto done;
23729 		}
23730 
23731 		/*
23732 		 * This is a special case IOCTL that doesn't return
23733 		 * until the media state changes. Routine sdpower
23734 		 * knows about and handles this so don't count it
23735 		 * as an active cmd in the driver, which would
23736 		 * keep the device busy to the pm framework.
23737 		 * If the count isn't decremented the device can't
23738 		 * be powered down.
23739 		 */
23740 		un->un_ncmds_in_driver--;
23741 		ASSERT(un->un_ncmds_in_driver >= 0);
23742 
23743 		/*
23744 		 * if a prior request had been made, this will be the same
23745 		 * token, as scsi_watch was designed that way.
23746 		 */
23747 		un->un_swr_token = token;
23748 		un->un_specified_mediastate = state;
23749 
23750 		/*
23751 		 * now wait for media change
23752 		 * we will not be signalled unless mediastate == state but it is
23753 		 * still better to test for this condition, since there is a
23754 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23755 		 */
23756 		SD_TRACE(SD_LOG_COMMON, un,
23757 		    "sd_check_media: waiting for media state change\n");
23758 		while (un->un_mediastate == state) {
23759 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23760 				SD_TRACE(SD_LOG_COMMON, un,
23761 				    "sd_check_media: waiting for media state "
23762 				    "was interrupted\n");
23763 				un->un_ncmds_in_driver++;
23764 				rval = EINTR;
23765 				goto done;
23766 			}
23767 			SD_TRACE(SD_LOG_COMMON, un,
23768 			    "sd_check_media: received signal, state=%x\n",
23769 			    un->un_mediastate);
23770 		}
23771 		/*
23772 		 * Inc the counter to indicate the device once again
23773 		 * has an active outstanding cmd.
23774 		 */
23775 		un->un_ncmds_in_driver++;
23776 	}
23777 
23778 	/* invalidate geometry */
23779 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23780 		sr_ejected(un);
23781 	}
23782 
23783 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23784 		uint64_t	capacity;
23785 		uint_t		lbasize;
23786 
23787 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23788 		mutex_exit(SD_MUTEX(un));
23789 		/*
23790 		 * Since the following routines use SD_PATH_DIRECT, we must
23791 		 * call PM directly before the upcoming disk accesses. This
23792 		 * may cause the disk to be power/spin up.
23793 		 */
23794 
23795 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23796 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23797 			    &capacity, &lbasize, SD_PATH_DIRECT);
23798 			if (rval != 0) {
23799 				sd_pm_exit(un);
23800 				if (rval == EIO)
23801 					sd_ssc_assessment(ssc,
23802 					    SD_FMT_STATUS_CHECK);
23803 				else
23804 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23805 				mutex_enter(SD_MUTEX(un));
23806 				goto done;
23807 			}
23808 		} else {
23809 			rval = EIO;
23810 			mutex_enter(SD_MUTEX(un));
23811 			goto done;
23812 		}
23813 		mutex_enter(SD_MUTEX(un));
23814 
23815 		sd_update_block_info(un, lbasize, capacity);
23816 
23817 		/*
23818 		 *  Check if the media in the device is writable or not
23819 		 */
23820 		if (ISCD(un)) {
23821 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23822 		}
23823 
23824 		mutex_exit(SD_MUTEX(un));
23825 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23826 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23827 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23828 			sd_set_pstats(un);
23829 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23830 			    "sd_check_media: un:0x%p pstats created and "
23831 			    "set\n", un);
23832 		}
23833 
23834 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23835 		    SD_PATH_DIRECT);
23836 
23837 		sd_pm_exit(un);
23838 
23839 		if (rval != 0) {
23840 			if (rval == EIO)
23841 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23842 			else
23843 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23844 		}
23845 
23846 		mutex_enter(SD_MUTEX(un));
23847 	}
23848 done:
23849 	sd_ssc_fini(ssc);
23850 	un->un_f_watcht_stopped = FALSE;
23851 	if (token != NULL && un->un_swr_token != NULL) {
23852 		/*
23853 		 * Use of this local token and the mutex ensures that we avoid
23854 		 * some race conditions associated with terminating the
23855 		 * scsi watch.
23856 		 */
23857 		token = un->un_swr_token;
23858 		mutex_exit(SD_MUTEX(un));
23859 		(void) scsi_watch_request_terminate(token,
23860 		    SCSI_WATCH_TERMINATE_WAIT);
23861 		if (scsi_watch_get_ref_count(token) == 0) {
23862 			mutex_enter(SD_MUTEX(un));
23863 			un->un_swr_token = (opaque_t)NULL;
23864 		} else {
23865 			mutex_enter(SD_MUTEX(un));
23866 		}
23867 	}
23868 
23869 	/*
23870 	 * Update the capacity kstat value, if no media previously
23871 	 * (capacity kstat is 0) and a media has been inserted
23872 	 * (un_f_blockcount_is_valid == TRUE)
23873 	 */
23874 	if (un->un_errstats) {
23875 		struct sd_errstats	*stp = NULL;
23876 
23877 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23878 		if ((stp->sd_capacity.value.ui64 == 0) &&
23879 		    (un->un_f_blockcount_is_valid == TRUE)) {
23880 			stp->sd_capacity.value.ui64 =
23881 			    (uint64_t)((uint64_t)un->un_blockcount *
23882 			    un->un_sys_blocksize);
23883 		}
23884 	}
23885 	mutex_exit(SD_MUTEX(un));
23886 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23887 	return (rval);
23888 }
23889 
23890 
23891 /*
23892  *    Function: sd_delayed_cv_broadcast
23893  *
23894  * Description: Delayed cv_broadcast to allow for target to recover from media
23895  *		insertion.
23896  *
23897  *   Arguments: arg - driver soft state (unit) structure
23898  */
23899 
23900 static void
23901 sd_delayed_cv_broadcast(void *arg)
23902 {
23903 	struct sd_lun *un = arg;
23904 
23905 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23906 
23907 	mutex_enter(SD_MUTEX(un));
23908 	un->un_dcvb_timeid = NULL;
23909 	cv_broadcast(&un->un_state_cv);
23910 	mutex_exit(SD_MUTEX(un));
23911 }
23912 
23913 
23914 /*
23915  *    Function: sd_media_watch_cb
23916  *
23917  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23918  *		routine processes the TUR sense data and updates the driver
23919  *		state if a transition has occurred. The user thread
23920  *		(sd_check_media) is then signalled.
23921  *
23922  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23923  *			among multiple watches that share this callback function
23924  *		resultp - scsi watch facility result packet containing scsi
23925  *			  packet, status byte and sense data
23926  *
23927  * Return Code: 0 for success, -1 for failure
23928  */
23929 
23930 static int
23931 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23932 {
23933 	struct sd_lun			*un;
23934 	struct scsi_status		*statusp = resultp->statusp;
23935 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23936 	enum dkio_state			state = DKIO_NONE;
23937 	dev_t				dev = (dev_t)arg;
23938 	uchar_t				actual_sense_length;
23939 	uint8_t				skey, asc, ascq;
23940 
23941 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23942 		return (-1);
23943 	}
23944 	actual_sense_length = resultp->actual_sense_length;
23945 
23946 	mutex_enter(SD_MUTEX(un));
23947 	SD_TRACE(SD_LOG_COMMON, un,
23948 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23949 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23950 
23951 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23952 		un->un_mediastate = DKIO_DEV_GONE;
23953 		cv_broadcast(&un->un_state_cv);
23954 		mutex_exit(SD_MUTEX(un));
23955 
23956 		return (0);
23957 	}
23958 
23959 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23960 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23961 			if ((resultp->mmc_data[5] &
23962 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23963 				state = DKIO_INSERTED;
23964 			} else {
23965 				state = DKIO_EJECTED;
23966 			}
23967 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23968 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23969 				sd_log_eject_request_event(un, KM_NOSLEEP);
23970 			}
23971 		}
23972 	} else if (sensep != NULL) {
23973 		/*
23974 		 * If there was a check condition then sensep points to valid
23975 		 * sense data. If status was not a check condition but a
23976 		 * reservation or busy status then the new state is DKIO_NONE.
23977 		 */
23978 		skey = scsi_sense_key(sensep);
23979 		asc = scsi_sense_asc(sensep);
23980 		ascq = scsi_sense_ascq(sensep);
23981 
23982 		SD_INFO(SD_LOG_COMMON, un,
23983 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23984 		    skey, asc, ascq);
23985 		/* This routine only uses up to 13 bytes of sense data. */
23986 		if (actual_sense_length >= 13) {
23987 			if (skey == KEY_UNIT_ATTENTION) {
23988 				if (asc == 0x28) {
23989 					state = DKIO_INSERTED;
23990 				}
23991 			} else if (skey == KEY_NOT_READY) {
23992 				/*
23993 				 * Sense data of 02/06/00 means that the
23994 				 * drive could not read the media (No
23995 				 * reference position found). In this case
23996 				 * to prevent a hang on the DKIOCSTATE IOCTL
23997 				 * we set the media state to DKIO_INSERTED.
23998 				 */
23999 				if (asc == 0x06 && ascq == 0x00)
24000 					state = DKIO_INSERTED;
24001 
24002 				/*
24003 				 * if 02/04/02  means that the host
24004 				 * should send start command. Explicitly
24005 				 * leave the media state as is
24006 				 * (inserted) as the media is inserted
24007 				 * and host has stopped device for PM
24008 				 * reasons. Upon next true read/write
24009 				 * to this media will bring the
24010 				 * device to the right state good for
24011 				 * media access.
24012 				 */
24013 				if (asc == 0x3a) {
24014 					state = DKIO_EJECTED;
24015 				} else {
24016 					/*
24017 					 * If the drive is busy with an
24018 					 * operation or long write, keep the
24019 					 * media in an inserted state.
24020 					 */
24021 
24022 					if ((asc == 0x04) &&
24023 					    ((ascq == 0x02) ||
24024 					    (ascq == 0x07) ||
24025 					    (ascq == 0x08))) {
24026 						state = DKIO_INSERTED;
24027 					}
24028 				}
24029 			} else if (skey == KEY_NO_SENSE) {
24030 				if ((asc == 0x00) && (ascq == 0x00)) {
24031 					/*
24032 					 * Sense Data 00/00/00 does not provide
24033 					 * any information about the state of
24034 					 * the media. Ignore it.
24035 					 */
24036 					mutex_exit(SD_MUTEX(un));
24037 					return (0);
24038 				}
24039 			}
24040 		}
24041 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24042 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24043 		state = DKIO_INSERTED;
24044 	}
24045 
24046 	SD_TRACE(SD_LOG_COMMON, un,
24047 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24048 	    state, un->un_specified_mediastate);
24049 
24050 	/*
24051 	 * now signal the waiting thread if this is *not* the specified state;
24052 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24053 	 * to recover
24054 	 */
24055 	if (state != un->un_specified_mediastate) {
24056 		un->un_mediastate = state;
24057 		if (state == DKIO_INSERTED) {
24058 			/*
24059 			 * delay the signal to give the drive a chance
24060 			 * to do what it apparently needs to do
24061 			 */
24062 			SD_TRACE(SD_LOG_COMMON, un,
24063 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24064 			if (un->un_dcvb_timeid == NULL) {
24065 				un->un_dcvb_timeid =
24066 				    timeout(sd_delayed_cv_broadcast, un,
24067 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24068 			}
24069 		} else {
24070 			SD_TRACE(SD_LOG_COMMON, un,
24071 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24072 			cv_broadcast(&un->un_state_cv);
24073 		}
24074 	}
24075 	mutex_exit(SD_MUTEX(un));
24076 	return (0);
24077 }
24078 
24079 
24080 /*
24081  *    Function: sd_dkio_get_temp
24082  *
24083  * Description: This routine is the driver entry point for handling ioctl
24084  *		requests to get the disk temperature.
24085  *
24086  *   Arguments: dev  - the device number
24087  *		arg  - pointer to user provided dk_temperature structure.
24088  *		flag - this argument is a pass through to ddi_copyxxx()
24089  *		       directly from the mode argument of ioctl().
24090  *
24091  * Return Code: 0
24092  *		EFAULT
24093  *		ENXIO
24094  *		EAGAIN
24095  */
24096 
24097 static int
24098 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24099 {
24100 	struct sd_lun		*un = NULL;
24101 	struct dk_temperature	*dktemp = NULL;
24102 	uchar_t			*temperature_page;
24103 	int			rval = 0;
24104 	int			path_flag = SD_PATH_STANDARD;
24105 	sd_ssc_t		*ssc;
24106 
24107 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24108 		return (ENXIO);
24109 	}
24110 
24111 	ssc = sd_ssc_init(un);
24112 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24113 
24114 	/* copyin the disk temp argument to get the user flags */
24115 	if (ddi_copyin((void *)arg, dktemp,
24116 	    sizeof (struct dk_temperature), flag) != 0) {
24117 		rval = EFAULT;
24118 		goto done;
24119 	}
24120 
24121 	/* Initialize the temperature to invalid. */
24122 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24123 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24124 
24125 	/*
24126 	 * Note: Investigate removing the "bypass pm" semantic.
24127 	 * Can we just bypass PM always?
24128 	 */
24129 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24130 		path_flag = SD_PATH_DIRECT;
24131 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24132 		mutex_enter(&un->un_pm_mutex);
24133 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24134 			/*
24135 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24136 			 * in low power mode, we can not wake it up, Need to
24137 			 * return EAGAIN.
24138 			 */
24139 			mutex_exit(&un->un_pm_mutex);
24140 			rval = EAGAIN;
24141 			goto done;
24142 		} else {
24143 			/*
24144 			 * Indicate to PM the device is busy. This is required
24145 			 * to avoid a race - i.e. the ioctl is issuing a
24146 			 * command and the pm framework brings down the device
24147 			 * to low power mode (possible power cut-off on some
24148 			 * platforms).
24149 			 */
24150 			mutex_exit(&un->un_pm_mutex);
24151 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24152 				rval = EAGAIN;
24153 				goto done;
24154 			}
24155 		}
24156 	}
24157 
24158 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24159 
24160 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24161 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24162 	if (rval != 0)
24163 		goto done2;
24164 
24165 	/*
24166 	 * For the current temperature verify that the parameter length is 0x02
24167 	 * and the parameter code is 0x00
24168 	 */
24169 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24170 	    (temperature_page[5] == 0x00)) {
24171 		if (temperature_page[9] == 0xFF) {
24172 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24173 		} else {
24174 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24175 		}
24176 	}
24177 
24178 	/*
24179 	 * For the reference temperature verify that the parameter
24180 	 * length is 0x02 and the parameter code is 0x01
24181 	 */
24182 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24183 	    (temperature_page[11] == 0x01)) {
24184 		if (temperature_page[15] == 0xFF) {
24185 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24186 		} else {
24187 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24188 		}
24189 	}
24190 
24191 	/* Do the copyout regardless of the temperature commands status. */
24192 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24193 	    flag) != 0) {
24194 		rval = EFAULT;
24195 		goto done1;
24196 	}
24197 
24198 done2:
24199 	if (rval != 0) {
24200 		if (rval == EIO)
24201 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24202 		else
24203 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24204 	}
24205 done1:
24206 	if (path_flag == SD_PATH_DIRECT) {
24207 		sd_pm_exit(un);
24208 	}
24209 
24210 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24211 done:
24212 	sd_ssc_fini(ssc);
24213 	if (dktemp != NULL) {
24214 		kmem_free(dktemp, sizeof (struct dk_temperature));
24215 	}
24216 
24217 	return (rval);
24218 }
24219 
24220 
24221 /*
24222  *    Function: sd_log_page_supported
24223  *
24224  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24225  *		supported log pages.
24226  *
24227  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24228  *                      structure for this target.
24229  *		log_page -
24230  *
24231  * Return Code: -1 - on error (log sense is optional and may not be supported).
24232  *		0  - log page not found.
24233  *  		1  - log page found.
24234  */
24235 
24236 static int
24237 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24238 {
24239 	uchar_t *log_page_data;
24240 	int	i;
24241 	int	match = 0;
24242 	int	log_size;
24243 	int	status = 0;
24244 	struct sd_lun	*un;
24245 
24246 	ASSERT(ssc != NULL);
24247 	un = ssc->ssc_un;
24248 	ASSERT(un != NULL);
24249 
24250 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24251 
24252 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24253 	    SD_PATH_DIRECT);
24254 
24255 	if (status != 0) {
24256 		if (status == EIO) {
24257 			/*
24258 			 * Some disks do not support log sense, we
24259 			 * should ignore this kind of error(sense key is
24260 			 * 0x5 - illegal request).
24261 			 */
24262 			uint8_t *sensep;
24263 			int senlen;
24264 
24265 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24266 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24267 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24268 
24269 			if (senlen > 0 &&
24270 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24271 				sd_ssc_assessment(ssc,
24272 				    SD_FMT_IGNORE_COMPROMISE);
24273 			} else {
24274 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24275 			}
24276 		} else {
24277 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24278 		}
24279 
24280 		SD_ERROR(SD_LOG_COMMON, un,
24281 		    "sd_log_page_supported: failed log page retrieval\n");
24282 		kmem_free(log_page_data, 0xFF);
24283 		return (-1);
24284 	}
24285 
24286 	log_size = log_page_data[3];
24287 
24288 	/*
24289 	 * The list of supported log pages start from the fourth byte. Check
24290 	 * until we run out of log pages or a match is found.
24291 	 */
24292 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24293 		if (log_page_data[i] == log_page) {
24294 			match++;
24295 		}
24296 	}
24297 	kmem_free(log_page_data, 0xFF);
24298 	return (match);
24299 }
24300 
24301 
24302 /*
24303  *    Function: sd_mhdioc_failfast
24304  *
24305  * Description: This routine is the driver entry point for handling ioctl
24306  *		requests to enable/disable the multihost failfast option.
24307  *		(MHIOCENFAILFAST)
24308  *
24309  *   Arguments: dev	- the device number
24310  *		arg	- user specified probing interval.
24311  *		flag	- this argument is a pass through to ddi_copyxxx()
24312  *			  directly from the mode argument of ioctl().
24313  *
24314  * Return Code: 0
24315  *		EFAULT
24316  *		ENXIO
24317  */
24318 
24319 static int
24320 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24321 {
24322 	struct sd_lun	*un = NULL;
24323 	int		mh_time;
24324 	int		rval = 0;
24325 
24326 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24327 		return (ENXIO);
24328 	}
24329 
24330 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24331 		return (EFAULT);
24332 
24333 	if (mh_time) {
24334 		mutex_enter(SD_MUTEX(un));
24335 		un->un_resvd_status |= SD_FAILFAST;
24336 		mutex_exit(SD_MUTEX(un));
24337 		/*
24338 		 * If mh_time is INT_MAX, then this ioctl is being used for
24339 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24340 		 */
24341 		if (mh_time != INT_MAX) {
24342 			rval = sd_check_mhd(dev, mh_time);
24343 		}
24344 	} else {
24345 		(void) sd_check_mhd(dev, 0);
24346 		mutex_enter(SD_MUTEX(un));
24347 		un->un_resvd_status &= ~SD_FAILFAST;
24348 		mutex_exit(SD_MUTEX(un));
24349 	}
24350 	return (rval);
24351 }
24352 
24353 
24354 /*
24355  *    Function: sd_mhdioc_takeown
24356  *
24357  * Description: This routine is the driver entry point for handling ioctl
24358  *		requests to forcefully acquire exclusive access rights to the
24359  *		multihost disk (MHIOCTKOWN).
24360  *
24361  *   Arguments: dev	- the device number
24362  *		arg	- user provided structure specifying the delay
24363  *			  parameters in milliseconds
24364  *		flag	- this argument is a pass through to ddi_copyxxx()
24365  *			  directly from the mode argument of ioctl().
24366  *
24367  * Return Code: 0
24368  *		EFAULT
24369  *		ENXIO
24370  */
24371 
24372 static int
24373 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24374 {
24375 	struct sd_lun		*un = NULL;
24376 	struct mhioctkown	*tkown = NULL;
24377 	int			rval = 0;
24378 
24379 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24380 		return (ENXIO);
24381 	}
24382 
24383 	if (arg != NULL) {
24384 		tkown = (struct mhioctkown *)
24385 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24386 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24387 		if (rval != 0) {
24388 			rval = EFAULT;
24389 			goto error;
24390 		}
24391 	}
24392 
24393 	rval = sd_take_ownership(dev, tkown);
24394 	mutex_enter(SD_MUTEX(un));
24395 	if (rval == 0) {
24396 		un->un_resvd_status |= SD_RESERVE;
24397 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24398 			sd_reinstate_resv_delay =
24399 			    tkown->reinstate_resv_delay * 1000;
24400 		} else {
24401 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24402 		}
24403 		/*
24404 		 * Give the scsi_watch routine interval set by
24405 		 * the MHIOCENFAILFAST ioctl precedence here.
24406 		 */
24407 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24408 			mutex_exit(SD_MUTEX(un));
24409 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24410 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24411 			    "sd_mhdioc_takeown : %d\n",
24412 			    sd_reinstate_resv_delay);
24413 		} else {
24414 			mutex_exit(SD_MUTEX(un));
24415 		}
24416 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24417 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24418 	} else {
24419 		un->un_resvd_status &= ~SD_RESERVE;
24420 		mutex_exit(SD_MUTEX(un));
24421 	}
24422 
24423 error:
24424 	if (tkown != NULL) {
24425 		kmem_free(tkown, sizeof (struct mhioctkown));
24426 	}
24427 	return (rval);
24428 }
24429 
24430 
24431 /*
24432  *    Function: sd_mhdioc_release
24433  *
24434  * Description: This routine is the driver entry point for handling ioctl
24435  *		requests to release exclusive access rights to the multihost
24436  *		disk (MHIOCRELEASE).
24437  *
24438  *   Arguments: dev	- the device number
24439  *
24440  * Return Code: 0
24441  *		ENXIO
24442  */
24443 
24444 static int
24445 sd_mhdioc_release(dev_t dev)
24446 {
24447 	struct sd_lun		*un = NULL;
24448 	timeout_id_t		resvd_timeid_save;
24449 	int			resvd_status_save;
24450 	int			rval = 0;
24451 
24452 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24453 		return (ENXIO);
24454 	}
24455 
24456 	mutex_enter(SD_MUTEX(un));
24457 	resvd_status_save = un->un_resvd_status;
24458 	un->un_resvd_status &=
24459 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24460 	if (un->un_resvd_timeid) {
24461 		resvd_timeid_save = un->un_resvd_timeid;
24462 		un->un_resvd_timeid = NULL;
24463 		mutex_exit(SD_MUTEX(un));
24464 		(void) untimeout(resvd_timeid_save);
24465 	} else {
24466 		mutex_exit(SD_MUTEX(un));
24467 	}
24468 
24469 	/*
24470 	 * destroy any pending timeout thread that may be attempting to
24471 	 * reinstate reservation on this device.
24472 	 */
24473 	sd_rmv_resv_reclaim_req(dev);
24474 
24475 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24476 		mutex_enter(SD_MUTEX(un));
24477 		if ((un->un_mhd_token) &&
24478 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24479 			mutex_exit(SD_MUTEX(un));
24480 			(void) sd_check_mhd(dev, 0);
24481 		} else {
24482 			mutex_exit(SD_MUTEX(un));
24483 		}
24484 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24485 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24486 	} else {
24487 		/*
24488 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24489 		 */
24490 		mutex_enter(SD_MUTEX(un));
24491 		un->un_resvd_status = resvd_status_save;
24492 		mutex_exit(SD_MUTEX(un));
24493 	}
24494 	return (rval);
24495 }
24496 
24497 
24498 /*
24499  *    Function: sd_mhdioc_register_devid
24500  *
24501  * Description: This routine is the driver entry point for handling ioctl
24502  *		requests to register the device id (MHIOCREREGISTERDEVID).
24503  *
24504  *		Note: The implementation for this ioctl has been updated to
24505  *		be consistent with the original PSARC case (1999/357)
24506  *		(4375899, 4241671, 4220005)
24507  *
24508  *   Arguments: dev	- the device number
24509  *
24510  * Return Code: 0
24511  *		ENXIO
24512  */
24513 
24514 static int
24515 sd_mhdioc_register_devid(dev_t dev)
24516 {
24517 	struct sd_lun	*un = NULL;
24518 	int		rval = 0;
24519 	sd_ssc_t	*ssc;
24520 
24521 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24522 		return (ENXIO);
24523 	}
24524 
24525 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24526 
24527 	mutex_enter(SD_MUTEX(un));
24528 
24529 	/* If a devid already exists, de-register it */
24530 	if (un->un_devid != NULL) {
24531 		ddi_devid_unregister(SD_DEVINFO(un));
24532 		/*
24533 		 * After unregister devid, needs to free devid memory
24534 		 */
24535 		ddi_devid_free(un->un_devid);
24536 		un->un_devid = NULL;
24537 	}
24538 
24539 	/* Check for reservation conflict */
24540 	mutex_exit(SD_MUTEX(un));
24541 	ssc = sd_ssc_init(un);
24542 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24543 	mutex_enter(SD_MUTEX(un));
24544 
24545 	switch (rval) {
24546 	case 0:
24547 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24548 		break;
24549 	case EACCES:
24550 		break;
24551 	default:
24552 		rval = EIO;
24553 	}
24554 
24555 	mutex_exit(SD_MUTEX(un));
24556 	if (rval != 0) {
24557 		if (rval == EIO)
24558 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24559 		else
24560 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24561 	}
24562 	sd_ssc_fini(ssc);
24563 	return (rval);
24564 }
24565 
24566 
24567 /*
24568  *    Function: sd_mhdioc_inkeys
24569  *
24570  * Description: This routine is the driver entry point for handling ioctl
24571  *		requests to issue the SCSI-3 Persistent In Read Keys command
24572  *		to the device (MHIOCGRP_INKEYS).
24573  *
24574  *   Arguments: dev	- the device number
24575  *		arg	- user provided in_keys structure
24576  *		flag	- this argument is a pass through to ddi_copyxxx()
24577  *			  directly from the mode argument of ioctl().
24578  *
24579  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24580  *		ENXIO
24581  *		EFAULT
24582  */
24583 
24584 static int
24585 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24586 {
24587 	struct sd_lun		*un;
24588 	mhioc_inkeys_t		inkeys;
24589 	int			rval = 0;
24590 
24591 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24592 		return (ENXIO);
24593 	}
24594 
24595 #ifdef _MULTI_DATAMODEL
24596 	switch (ddi_model_convert_from(flag & FMODELS)) {
24597 	case DDI_MODEL_ILP32: {
24598 		struct mhioc_inkeys32	inkeys32;
24599 
24600 		if (ddi_copyin(arg, &inkeys32,
24601 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24602 			return (EFAULT);
24603 		}
24604 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24605 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24606 		    &inkeys, flag)) != 0) {
24607 			return (rval);
24608 		}
24609 		inkeys32.generation = inkeys.generation;
24610 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24611 		    flag) != 0) {
24612 			return (EFAULT);
24613 		}
24614 		break;
24615 	}
24616 	case DDI_MODEL_NONE:
24617 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24618 		    flag) != 0) {
24619 			return (EFAULT);
24620 		}
24621 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24622 		    &inkeys, flag)) != 0) {
24623 			return (rval);
24624 		}
24625 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24626 		    flag) != 0) {
24627 			return (EFAULT);
24628 		}
24629 		break;
24630 	}
24631 
24632 #else /* ! _MULTI_DATAMODEL */
24633 
24634 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24635 		return (EFAULT);
24636 	}
24637 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24638 	if (rval != 0) {
24639 		return (rval);
24640 	}
24641 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24642 		return (EFAULT);
24643 	}
24644 
24645 #endif /* _MULTI_DATAMODEL */
24646 
24647 	return (rval);
24648 }
24649 
24650 
24651 /*
24652  *    Function: sd_mhdioc_inresv
24653  *
24654  * Description: This routine is the driver entry point for handling ioctl
24655  *		requests to issue the SCSI-3 Persistent In Read Reservations
24656  *		command to the device (MHIOCGRP_INKEYS).
24657  *
24658  *   Arguments: dev	- the device number
24659  *		arg	- user provided in_resv structure
24660  *		flag	- this argument is a pass through to ddi_copyxxx()
24661  *			  directly from the mode argument of ioctl().
24662  *
24663  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24664  *		ENXIO
24665  *		EFAULT
24666  */
24667 
24668 static int
24669 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24670 {
24671 	struct sd_lun		*un;
24672 	mhioc_inresvs_t		inresvs;
24673 	int			rval = 0;
24674 
24675 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24676 		return (ENXIO);
24677 	}
24678 
24679 #ifdef _MULTI_DATAMODEL
24680 
24681 	switch (ddi_model_convert_from(flag & FMODELS)) {
24682 	case DDI_MODEL_ILP32: {
24683 		struct mhioc_inresvs32	inresvs32;
24684 
24685 		if (ddi_copyin(arg, &inresvs32,
24686 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24687 			return (EFAULT);
24688 		}
24689 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24690 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24691 		    &inresvs, flag)) != 0) {
24692 			return (rval);
24693 		}
24694 		inresvs32.generation = inresvs.generation;
24695 		if (ddi_copyout(&inresvs32, arg,
24696 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24697 			return (EFAULT);
24698 		}
24699 		break;
24700 	}
24701 	case DDI_MODEL_NONE:
24702 		if (ddi_copyin(arg, &inresvs,
24703 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24704 			return (EFAULT);
24705 		}
24706 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24707 		    &inresvs, flag)) != 0) {
24708 			return (rval);
24709 		}
24710 		if (ddi_copyout(&inresvs, arg,
24711 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24712 			return (EFAULT);
24713 		}
24714 		break;
24715 	}
24716 
24717 #else /* ! _MULTI_DATAMODEL */
24718 
24719 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24720 		return (EFAULT);
24721 	}
24722 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24723 	if (rval != 0) {
24724 		return (rval);
24725 	}
24726 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24727 		return (EFAULT);
24728 	}
24729 
24730 #endif /* ! _MULTI_DATAMODEL */
24731 
24732 	return (rval);
24733 }
24734 
24735 
24736 /*
24737  * The following routines support the clustering functionality described below
24738  * and implement lost reservation reclaim functionality.
24739  *
24740  * Clustering
24741  * ----------
24742  * The clustering code uses two different, independent forms of SCSI
24743  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24744  * Persistent Group Reservations. For any particular disk, it will use either
24745  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24746  *
24747  * SCSI-2
24748  * The cluster software takes ownership of a multi-hosted disk by issuing the
24749  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24750  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24751  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24752  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24753  * driver. The meaning of failfast is that if the driver (on this host) ever
24754  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24755  * it should immediately panic the host. The motivation for this ioctl is that
24756  * if this host does encounter reservation conflict, the underlying cause is
24757  * that some other host of the cluster has decided that this host is no longer
24758  * in the cluster and has seized control of the disks for itself. Since this
24759  * host is no longer in the cluster, it ought to panic itself. The
24760  * MHIOCENFAILFAST ioctl does two things:
24761  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24762  *      error to panic the host
24763  *      (b) it sets up a periodic timer to test whether this host still has
24764  *      "access" (in that no other host has reserved the device):  if the
24765  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24766  *      purpose of that periodic timer is to handle scenarios where the host is
24767  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24768  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24769  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24770  * the device itself.
24771  *
24772  * SCSI-3 PGR
24773  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24774  * facility is supported through the shared multihost disk ioctls
24775  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24776  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24777  *
24778  * Reservation Reclaim:
24779  * --------------------
24780  * To support the lost reservation reclaim operations this driver creates a
24781  * single thread to handle reinstating reservations on all devices that have
24782  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24783  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24784  * and the reservation reclaim thread loops through the requests to regain the
24785  * lost reservations.
24786  */
24787 
24788 /*
24789  *    Function: sd_check_mhd()
24790  *
24791  * Description: This function sets up and submits a scsi watch request or
24792  *		terminates an existing watch request. This routine is used in
24793  *		support of reservation reclaim.
24794  *
24795  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24796  *			 among multiple watches that share the callback function
24797  *		interval - the number of microseconds specifying the watch
24798  *			   interval for issuing TEST UNIT READY commands. If
24799  *			   set to 0 the watch should be terminated. If the
24800  *			   interval is set to 0 and if the device is required
24801  *			   to hold reservation while disabling failfast, the
24802  *			   watch is restarted with an interval of
24803  *			   reinstate_resv_delay.
24804  *
24805  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24806  *		ENXIO      - Indicates an invalid device was specified
24807  *		EAGAIN     - Unable to submit the scsi watch request
24808  */
24809 
24810 static int
24811 sd_check_mhd(dev_t dev, int interval)
24812 {
24813 	struct sd_lun	*un;
24814 	opaque_t	token;
24815 
24816 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24817 		return (ENXIO);
24818 	}
24819 
24820 	/* is this a watch termination request? */
24821 	if (interval == 0) {
24822 		mutex_enter(SD_MUTEX(un));
24823 		/* if there is an existing watch task then terminate it */
24824 		if (un->un_mhd_token) {
24825 			token = un->un_mhd_token;
24826 			un->un_mhd_token = NULL;
24827 			mutex_exit(SD_MUTEX(un));
24828 			(void) scsi_watch_request_terminate(token,
24829 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24830 			mutex_enter(SD_MUTEX(un));
24831 		} else {
24832 			mutex_exit(SD_MUTEX(un));
24833 			/*
24834 			 * Note: If we return here we don't check for the
24835 			 * failfast case. This is the original legacy
24836 			 * implementation but perhaps we should be checking
24837 			 * the failfast case.
24838 			 */
24839 			return (0);
24840 		}
24841 		/*
24842 		 * If the device is required to hold reservation while
24843 		 * disabling failfast, we need to restart the scsi_watch
24844 		 * routine with an interval of reinstate_resv_delay.
24845 		 */
24846 		if (un->un_resvd_status & SD_RESERVE) {
24847 			interval = sd_reinstate_resv_delay/1000;
24848 		} else {
24849 			/* no failfast so bail */
24850 			mutex_exit(SD_MUTEX(un));
24851 			return (0);
24852 		}
24853 		mutex_exit(SD_MUTEX(un));
24854 	}
24855 
24856 	/*
24857 	 * adjust minimum time interval to 1 second,
24858 	 * and convert from msecs to usecs
24859 	 */
24860 	if (interval > 0 && interval < 1000) {
24861 		interval = 1000;
24862 	}
24863 	interval *= 1000;
24864 
24865 	/*
24866 	 * submit the request to the scsi_watch service
24867 	 */
24868 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24869 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24870 	if (token == NULL) {
24871 		return (EAGAIN);
24872 	}
24873 
24874 	/*
24875 	 * save token for termination later on
24876 	 */
24877 	mutex_enter(SD_MUTEX(un));
24878 	un->un_mhd_token = token;
24879 	mutex_exit(SD_MUTEX(un));
24880 	return (0);
24881 }
24882 
24883 
24884 /*
24885  *    Function: sd_mhd_watch_cb()
24886  *
24887  * Description: This function is the call back function used by the scsi watch
24888  *		facility. The scsi watch facility sends the "Test Unit Ready"
24889  *		and processes the status. If applicable (i.e. a "Unit Attention"
24890  *		status and automatic "Request Sense" not used) the scsi watch
24891  *		facility will send a "Request Sense" and retrieve the sense data
24892  *		to be passed to this callback function. In either case the
24893  *		automatic "Request Sense" or the facility submitting one, this
24894  *		callback is passed the status and sense data.
24895  *
24896  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24897  *			among multiple watches that share this callback function
24898  *		resultp - scsi watch facility result packet containing scsi
24899  *			  packet, status byte and sense data
24900  *
24901  * Return Code: 0 - continue the watch task
24902  *		non-zero - terminate the watch task
24903  */
24904 
24905 static int
24906 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24907 {
24908 	struct sd_lun			*un;
24909 	struct scsi_status		*statusp;
24910 	uint8_t				*sensep;
24911 	struct scsi_pkt			*pkt;
24912 	uchar_t				actual_sense_length;
24913 	dev_t  				dev = (dev_t)arg;
24914 
24915 	ASSERT(resultp != NULL);
24916 	statusp			= resultp->statusp;
24917 	sensep			= (uint8_t *)resultp->sensep;
24918 	pkt			= resultp->pkt;
24919 	actual_sense_length	= resultp->actual_sense_length;
24920 
24921 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24922 		return (ENXIO);
24923 	}
24924 
24925 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24926 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24927 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24928 
24929 	/* Begin processing of the status and/or sense data */
24930 	if (pkt->pkt_reason != CMD_CMPLT) {
24931 		/* Handle the incomplete packet */
24932 		sd_mhd_watch_incomplete(un, pkt);
24933 		return (0);
24934 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24935 		if (*((unsigned char *)statusp)
24936 		    == STATUS_RESERVATION_CONFLICT) {
24937 			/*
24938 			 * Handle a reservation conflict by panicking if
24939 			 * configured for failfast or by logging the conflict
24940 			 * and updating the reservation status
24941 			 */
24942 			mutex_enter(SD_MUTEX(un));
24943 			if ((un->un_resvd_status & SD_FAILFAST) &&
24944 			    (sd_failfast_enable)) {
24945 				sd_panic_for_res_conflict(un);
24946 				/*NOTREACHED*/
24947 			}
24948 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24949 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24950 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24951 			mutex_exit(SD_MUTEX(un));
24952 		}
24953 	}
24954 
24955 	if (sensep != NULL) {
24956 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24957 			mutex_enter(SD_MUTEX(un));
24958 			if ((scsi_sense_asc(sensep) ==
24959 			    SD_SCSI_RESET_SENSE_CODE) &&
24960 			    (un->un_resvd_status & SD_RESERVE)) {
24961 				/*
24962 				 * The additional sense code indicates a power
24963 				 * on or bus device reset has occurred; update
24964 				 * the reservation status.
24965 				 */
24966 				un->un_resvd_status |=
24967 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24968 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24969 				    "sd_mhd_watch_cb: Lost Reservation\n");
24970 			}
24971 		} else {
24972 			return (0);
24973 		}
24974 	} else {
24975 		mutex_enter(SD_MUTEX(un));
24976 	}
24977 
24978 	if ((un->un_resvd_status & SD_RESERVE) &&
24979 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24980 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24981 			/*
24982 			 * A reset occurred in between the last probe and this
24983 			 * one so if a timeout is pending cancel it.
24984 			 */
24985 			if (un->un_resvd_timeid) {
24986 				timeout_id_t temp_id = un->un_resvd_timeid;
24987 				un->un_resvd_timeid = NULL;
24988 				mutex_exit(SD_MUTEX(un));
24989 				(void) untimeout(temp_id);
24990 				mutex_enter(SD_MUTEX(un));
24991 			}
24992 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24993 		}
24994 		if (un->un_resvd_timeid == 0) {
24995 			/* Schedule a timeout to handle the lost reservation */
24996 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24997 			    (void *)dev,
24998 			    drv_usectohz(sd_reinstate_resv_delay));
24999 		}
25000 	}
25001 	mutex_exit(SD_MUTEX(un));
25002 	return (0);
25003 }
25004 
25005 
25006 /*
25007  *    Function: sd_mhd_watch_incomplete()
25008  *
25009  * Description: This function is used to find out why a scsi pkt sent by the
25010  *		scsi watch facility was not completed. Under some scenarios this
25011  *		routine will return. Otherwise it will send a bus reset to see
25012  *		if the drive is still online.
25013  *
25014  *   Arguments: un  - driver soft state (unit) structure
25015  *		pkt - incomplete scsi pkt
25016  */
25017 
25018 static void
25019 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25020 {
25021 	int	be_chatty;
25022 	int	perr;
25023 
25024 	ASSERT(pkt != NULL);
25025 	ASSERT(un != NULL);
25026 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25027 	perr		= (pkt->pkt_statistics & STAT_PERR);
25028 
25029 	mutex_enter(SD_MUTEX(un));
25030 	if (un->un_state == SD_STATE_DUMPING) {
25031 		mutex_exit(SD_MUTEX(un));
25032 		return;
25033 	}
25034 
25035 	switch (pkt->pkt_reason) {
25036 	case CMD_UNX_BUS_FREE:
25037 		/*
25038 		 * If we had a parity error that caused the target to drop BSY*,
25039 		 * don't be chatty about it.
25040 		 */
25041 		if (perr && be_chatty) {
25042 			be_chatty = 0;
25043 		}
25044 		break;
25045 	case CMD_TAG_REJECT:
25046 		/*
25047 		 * The SCSI-2 spec states that a tag reject will be sent by the
25048 		 * target if tagged queuing is not supported. A tag reject may
25049 		 * also be sent during certain initialization periods or to
25050 		 * control internal resources. For the latter case the target
25051 		 * may also return Queue Full.
25052 		 *
25053 		 * If this driver receives a tag reject from a target that is
25054 		 * going through an init period or controlling internal
25055 		 * resources tagged queuing will be disabled. This is a less
25056 		 * than optimal behavior but the driver is unable to determine
25057 		 * the target state and assumes tagged queueing is not supported
25058 		 */
25059 		pkt->pkt_flags = 0;
25060 		un->un_tagflags = 0;
25061 
25062 		if (un->un_f_opt_queueing == TRUE) {
25063 			un->un_throttle = min(un->un_throttle, 3);
25064 		} else {
25065 			un->un_throttle = 1;
25066 		}
25067 		mutex_exit(SD_MUTEX(un));
25068 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25069 		mutex_enter(SD_MUTEX(un));
25070 		break;
25071 	case CMD_INCOMPLETE:
25072 		/*
25073 		 * The transport stopped with an abnormal state, fallthrough and
25074 		 * reset the target and/or bus unless selection did not complete
25075 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25076 		 * go through a target/bus reset
25077 		 */
25078 		if (pkt->pkt_state == STATE_GOT_BUS) {
25079 			break;
25080 		}
25081 		/*FALLTHROUGH*/
25082 
25083 	case CMD_TIMEOUT:
25084 	default:
25085 		/*
25086 		 * The lun may still be running the command, so a lun reset
25087 		 * should be attempted. If the lun reset fails or cannot be
25088 		 * issued, than try a target reset. Lastly try a bus reset.
25089 		 */
25090 		if ((pkt->pkt_statistics &
25091 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25092 			int reset_retval = 0;
25093 			mutex_exit(SD_MUTEX(un));
25094 			if (un->un_f_allow_bus_device_reset == TRUE) {
25095 				if (un->un_f_lun_reset_enabled == TRUE) {
25096 					reset_retval =
25097 					    scsi_reset(SD_ADDRESS(un),
25098 					    RESET_LUN);
25099 				}
25100 				if (reset_retval == 0) {
25101 					reset_retval =
25102 					    scsi_reset(SD_ADDRESS(un),
25103 					    RESET_TARGET);
25104 				}
25105 			}
25106 			if (reset_retval == 0) {
25107 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25108 			}
25109 			mutex_enter(SD_MUTEX(un));
25110 		}
25111 		break;
25112 	}
25113 
25114 	/* A device/bus reset has occurred; update the reservation status. */
25115 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25116 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25117 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25118 			un->un_resvd_status |=
25119 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25120 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25121 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25122 		}
25123 	}
25124 
25125 	/*
25126 	 * The disk has been turned off; Update the device state.
25127 	 *
25128 	 * Note: Should we be offlining the disk here?
25129 	 */
25130 	if (pkt->pkt_state == STATE_GOT_BUS) {
25131 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25132 		    "Disk not responding to selection\n");
25133 		if (un->un_state != SD_STATE_OFFLINE) {
25134 			New_state(un, SD_STATE_OFFLINE);
25135 		}
25136 	} else if (be_chatty) {
25137 		/*
25138 		 * suppress messages if they are all the same pkt reason;
25139 		 * with TQ, many (up to 256) are returned with the same
25140 		 * pkt_reason
25141 		 */
25142 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25143 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25144 			    "sd_mhd_watch_incomplete: "
25145 			    "SCSI transport failed: reason '%s'\n",
25146 			    scsi_rname(pkt->pkt_reason));
25147 		}
25148 	}
25149 	un->un_last_pkt_reason = pkt->pkt_reason;
25150 	mutex_exit(SD_MUTEX(un));
25151 }
25152 
25153 
25154 /*
25155  *    Function: sd_sname()
25156  *
25157  * Description: This is a simple little routine to return a string containing
25158  *		a printable description of command status byte for use in
25159  *		logging.
25160  *
25161  *   Arguments: status - pointer to a status byte
25162  *
25163  * Return Code: char * - string containing status description.
25164  */
25165 
25166 static char *
25167 sd_sname(uchar_t status)
25168 {
25169 	switch (status & STATUS_MASK) {
25170 	case STATUS_GOOD:
25171 		return ("good status");
25172 	case STATUS_CHECK:
25173 		return ("check condition");
25174 	case STATUS_MET:
25175 		return ("condition met");
25176 	case STATUS_BUSY:
25177 		return ("busy");
25178 	case STATUS_INTERMEDIATE:
25179 		return ("intermediate");
25180 	case STATUS_INTERMEDIATE_MET:
25181 		return ("intermediate - condition met");
25182 	case STATUS_RESERVATION_CONFLICT:
25183 		return ("reservation_conflict");
25184 	case STATUS_TERMINATED:
25185 		return ("command terminated");
25186 	case STATUS_QFULL:
25187 		return ("queue full");
25188 	default:
25189 		return ("<unknown status>");
25190 	}
25191 }
25192 
25193 
25194 /*
25195  *    Function: sd_mhd_resvd_recover()
25196  *
25197  * Description: This function adds a reservation entry to the
25198  *		sd_resv_reclaim_request list and signals the reservation
25199  *		reclaim thread that there is work pending. If the reservation
25200  *		reclaim thread has not been previously created this function
25201  *		will kick it off.
25202  *
25203  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25204  *			among multiple watches that share this callback function
25205  *
25206  *     Context: This routine is called by timeout() and is run in interrupt
25207  *		context. It must not sleep or call other functions which may
25208  *		sleep.
25209  */
25210 
25211 static void
25212 sd_mhd_resvd_recover(void *arg)
25213 {
25214 	dev_t			dev = (dev_t)arg;
25215 	struct sd_lun		*un;
25216 	struct sd_thr_request	*sd_treq = NULL;
25217 	struct sd_thr_request	*sd_cur = NULL;
25218 	struct sd_thr_request	*sd_prev = NULL;
25219 	int			already_there = 0;
25220 
25221 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25222 		return;
25223 	}
25224 
25225 	mutex_enter(SD_MUTEX(un));
25226 	un->un_resvd_timeid = NULL;
25227 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25228 		/*
25229 		 * There was a reset so don't issue the reserve, allow the
25230 		 * sd_mhd_watch_cb callback function to notice this and
25231 		 * reschedule the timeout for reservation.
25232 		 */
25233 		mutex_exit(SD_MUTEX(un));
25234 		return;
25235 	}
25236 	mutex_exit(SD_MUTEX(un));
25237 
25238 	/*
25239 	 * Add this device to the sd_resv_reclaim_request list and the
25240 	 * sd_resv_reclaim_thread should take care of the rest.
25241 	 *
25242 	 * Note: We can't sleep in this context so if the memory allocation
25243 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25244 	 * reschedule the timeout for reservation.  (4378460)
25245 	 */
25246 	sd_treq = (struct sd_thr_request *)
25247 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25248 	if (sd_treq == NULL) {
25249 		return;
25250 	}
25251 
25252 	sd_treq->sd_thr_req_next = NULL;
25253 	sd_treq->dev = dev;
25254 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25255 	if (sd_tr.srq_thr_req_head == NULL) {
25256 		sd_tr.srq_thr_req_head = sd_treq;
25257 	} else {
25258 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25259 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25260 			if (sd_cur->dev == dev) {
25261 				/*
25262 				 * already in Queue so don't log
25263 				 * another request for the device
25264 				 */
25265 				already_there = 1;
25266 				break;
25267 			}
25268 			sd_prev = sd_cur;
25269 		}
25270 		if (!already_there) {
25271 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25272 			    "logging request for %lx\n", dev);
25273 			sd_prev->sd_thr_req_next = sd_treq;
25274 		} else {
25275 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25276 		}
25277 	}
25278 
25279 	/*
25280 	 * Create a kernel thread to do the reservation reclaim and free up this
25281 	 * thread. We cannot block this thread while we go away to do the
25282 	 * reservation reclaim
25283 	 */
25284 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25285 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25286 		    sd_resv_reclaim_thread, NULL,
25287 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25288 
25289 	/* Tell the reservation reclaim thread that it has work to do */
25290 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25291 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25292 }
25293 
25294 /*
25295  *    Function: sd_resv_reclaim_thread()
25296  *
25297  * Description: This function implements the reservation reclaim operations
25298  *
25299  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25300  *		      among multiple watches that share this callback function
25301  */
25302 
25303 static void
25304 sd_resv_reclaim_thread()
25305 {
25306 	struct sd_lun		*un;
25307 	struct sd_thr_request	*sd_mhreq;
25308 
25309 	/* Wait for work */
25310 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25311 	if (sd_tr.srq_thr_req_head == NULL) {
25312 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25313 		    &sd_tr.srq_resv_reclaim_mutex);
25314 	}
25315 
25316 	/* Loop while we have work */
25317 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25318 		un = ddi_get_soft_state(sd_state,
25319 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25320 		if (un == NULL) {
25321 			/*
25322 			 * softstate structure is NULL so just
25323 			 * dequeue the request and continue
25324 			 */
25325 			sd_tr.srq_thr_req_head =
25326 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25327 			kmem_free(sd_tr.srq_thr_cur_req,
25328 			    sizeof (struct sd_thr_request));
25329 			continue;
25330 		}
25331 
25332 		/* dequeue the request */
25333 		sd_mhreq = sd_tr.srq_thr_cur_req;
25334 		sd_tr.srq_thr_req_head =
25335 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25336 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25337 
25338 		/*
25339 		 * Reclaim reservation only if SD_RESERVE is still set. There
25340 		 * may have been a call to MHIOCRELEASE before we got here.
25341 		 */
25342 		mutex_enter(SD_MUTEX(un));
25343 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25344 			/*
25345 			 * Note: The SD_LOST_RESERVE flag is cleared before
25346 			 * reclaiming the reservation. If this is done after the
25347 			 * call to sd_reserve_release a reservation loss in the
25348 			 * window between pkt completion of reserve cmd and
25349 			 * mutex_enter below may not be recognized
25350 			 */
25351 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25352 			mutex_exit(SD_MUTEX(un));
25353 
25354 			if (sd_reserve_release(sd_mhreq->dev,
25355 			    SD_RESERVE) == 0) {
25356 				mutex_enter(SD_MUTEX(un));
25357 				un->un_resvd_status |= SD_RESERVE;
25358 				mutex_exit(SD_MUTEX(un));
25359 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25360 				    "sd_resv_reclaim_thread: "
25361 				    "Reservation Recovered\n");
25362 			} else {
25363 				mutex_enter(SD_MUTEX(un));
25364 				un->un_resvd_status |= SD_LOST_RESERVE;
25365 				mutex_exit(SD_MUTEX(un));
25366 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25367 				    "sd_resv_reclaim_thread: Failed "
25368 				    "Reservation Recovery\n");
25369 			}
25370 		} else {
25371 			mutex_exit(SD_MUTEX(un));
25372 		}
25373 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25374 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25375 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25376 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25377 		/*
25378 		 * wakeup the destroy thread if anyone is waiting on
25379 		 * us to complete.
25380 		 */
25381 		cv_signal(&sd_tr.srq_inprocess_cv);
25382 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25383 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25384 	}
25385 
25386 	/*
25387 	 * cleanup the sd_tr structure now that this thread will not exist
25388 	 */
25389 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25390 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25391 	sd_tr.srq_resv_reclaim_thread = NULL;
25392 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25393 	thread_exit();
25394 }
25395 
25396 
25397 /*
25398  *    Function: sd_rmv_resv_reclaim_req()
25399  *
25400  * Description: This function removes any pending reservation reclaim requests
25401  *		for the specified device.
25402  *
25403  *   Arguments: dev - the device 'dev_t'
25404  */
25405 
25406 static void
25407 sd_rmv_resv_reclaim_req(dev_t dev)
25408 {
25409 	struct sd_thr_request *sd_mhreq;
25410 	struct sd_thr_request *sd_prev;
25411 
25412 	/* Remove a reservation reclaim request from the list */
25413 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25414 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25415 		/*
25416 		 * We are attempting to reinstate reservation for
25417 		 * this device. We wait for sd_reserve_release()
25418 		 * to return before we return.
25419 		 */
25420 		cv_wait(&sd_tr.srq_inprocess_cv,
25421 		    &sd_tr.srq_resv_reclaim_mutex);
25422 	} else {
25423 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25424 		if (sd_mhreq && sd_mhreq->dev == dev) {
25425 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25426 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25427 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25428 			return;
25429 		}
25430 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25431 			if (sd_mhreq && sd_mhreq->dev == dev) {
25432 				break;
25433 			}
25434 			sd_prev = sd_mhreq;
25435 		}
25436 		if (sd_mhreq != NULL) {
25437 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25438 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25439 		}
25440 	}
25441 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25442 }
25443 
25444 
25445 /*
25446  *    Function: sd_mhd_reset_notify_cb()
25447  *
25448  * Description: This is a call back function for scsi_reset_notify. This
25449  *		function updates the softstate reserved status and logs the
25450  *		reset. The driver scsi watch facility callback function
25451  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25452  *		will reclaim the reservation.
25453  *
25454  *   Arguments: arg  - driver soft state (unit) structure
25455  */
25456 
25457 static void
25458 sd_mhd_reset_notify_cb(caddr_t arg)
25459 {
25460 	struct sd_lun *un = (struct sd_lun *)arg;
25461 
25462 	mutex_enter(SD_MUTEX(un));
25463 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25464 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25465 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25466 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25467 	}
25468 	mutex_exit(SD_MUTEX(un));
25469 }
25470 
25471 
25472 /*
25473  *    Function: sd_take_ownership()
25474  *
25475  * Description: This routine implements an algorithm to achieve a stable
25476  *		reservation on disks which don't implement priority reserve,
25477  *		and makes sure that other host lose re-reservation attempts.
25478  *		This algorithm contains of a loop that keeps issuing the RESERVE
25479  *		for some period of time (min_ownership_delay, default 6 seconds)
25480  *		During that loop, it looks to see if there has been a bus device
25481  *		reset or bus reset (both of which cause an existing reservation
25482  *		to be lost). If the reservation is lost issue RESERVE until a
25483  *		period of min_ownership_delay with no resets has gone by, or
25484  *		until max_ownership_delay has expired. This loop ensures that
25485  *		the host really did manage to reserve the device, in spite of
25486  *		resets. The looping for min_ownership_delay (default six
25487  *		seconds) is important to early generation clustering products,
25488  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25489  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25490  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25491  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25492  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25493  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25494  *		no longer "owns" the disk and will have panicked itself.  Thus,
25495  *		the host issuing the MHIOCTKOWN is assured (with timing
25496  *		dependencies) that by the time it actually starts to use the
25497  *		disk for real work, the old owner is no longer accessing it.
25498  *
25499  *		min_ownership_delay is the minimum amount of time for which the
25500  *		disk must be reserved continuously devoid of resets before the
25501  *		MHIOCTKOWN ioctl will return success.
25502  *
25503  *		max_ownership_delay indicates the amount of time by which the
25504  *		take ownership should succeed or timeout with an error.
25505  *
25506  *   Arguments: dev - the device 'dev_t'
25507  *		*p  - struct containing timing info.
25508  *
25509  * Return Code: 0 for success or error code
25510  */
25511 
25512 static int
25513 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25514 {
25515 	struct sd_lun	*un;
25516 	int		rval;
25517 	int		err;
25518 	int		reservation_count   = 0;
25519 	int		min_ownership_delay =  6000000; /* in usec */
25520 	int		max_ownership_delay = 30000000; /* in usec */
25521 	clock_t		start_time;	/* starting time of this algorithm */
25522 	clock_t		end_time;	/* time limit for giving up */
25523 	clock_t		ownership_time;	/* time limit for stable ownership */
25524 	clock_t		current_time;
25525 	clock_t		previous_current_time;
25526 
25527 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25528 		return (ENXIO);
25529 	}
25530 
25531 	/*
25532 	 * Attempt a device reservation. A priority reservation is requested.
25533 	 */
25534 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25535 	    != SD_SUCCESS) {
25536 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25537 		    "sd_take_ownership: return(1)=%d\n", rval);
25538 		return (rval);
25539 	}
25540 
25541 	/* Update the softstate reserved status to indicate the reservation */
25542 	mutex_enter(SD_MUTEX(un));
25543 	un->un_resvd_status |= SD_RESERVE;
25544 	un->un_resvd_status &=
25545 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25546 	mutex_exit(SD_MUTEX(un));
25547 
25548 	if (p != NULL) {
25549 		if (p->min_ownership_delay != 0) {
25550 			min_ownership_delay = p->min_ownership_delay * 1000;
25551 		}
25552 		if (p->max_ownership_delay != 0) {
25553 			max_ownership_delay = p->max_ownership_delay * 1000;
25554 		}
25555 	}
25556 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25557 	    "sd_take_ownership: min, max delays: %d, %d\n",
25558 	    min_ownership_delay, max_ownership_delay);
25559 
25560 	start_time = ddi_get_lbolt();
25561 	current_time	= start_time;
25562 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25563 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25564 
25565 	while (current_time - end_time < 0) {
25566 		delay(drv_usectohz(500000));
25567 
25568 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25569 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25570 				mutex_enter(SD_MUTEX(un));
25571 				rval = (un->un_resvd_status &
25572 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25573 				mutex_exit(SD_MUTEX(un));
25574 				break;
25575 			}
25576 		}
25577 		previous_current_time = current_time;
25578 		current_time = ddi_get_lbolt();
25579 		mutex_enter(SD_MUTEX(un));
25580 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25581 			ownership_time = ddi_get_lbolt() +
25582 			    drv_usectohz(min_ownership_delay);
25583 			reservation_count = 0;
25584 		} else {
25585 			reservation_count++;
25586 		}
25587 		un->un_resvd_status |= SD_RESERVE;
25588 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25589 		mutex_exit(SD_MUTEX(un));
25590 
25591 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25592 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25593 		    "reservation=%s\n", (current_time - previous_current_time),
25594 		    reservation_count ? "ok" : "reclaimed");
25595 
25596 		if (current_time - ownership_time >= 0 &&
25597 		    reservation_count >= 4) {
25598 			rval = 0; /* Achieved a stable ownership */
25599 			break;
25600 		}
25601 		if (current_time - end_time >= 0) {
25602 			rval = EACCES; /* No ownership in max possible time */
25603 			break;
25604 		}
25605 	}
25606 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25607 	    "sd_take_ownership: return(2)=%d\n", rval);
25608 	return (rval);
25609 }
25610 
25611 
25612 /*
25613  *    Function: sd_reserve_release()
25614  *
25615  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25616  *		PRIORITY RESERVE commands based on a user specified command type
25617  *
25618  *   Arguments: dev - the device 'dev_t'
25619  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25620  *		      SD_RESERVE, SD_RELEASE
25621  *
25622  * Return Code: 0 or Error Code
25623  */
25624 
25625 static int
25626 sd_reserve_release(dev_t dev, int cmd)
25627 {
25628 	struct uscsi_cmd	*com = NULL;
25629 	struct sd_lun		*un = NULL;
25630 	char			cdb[CDB_GROUP0];
25631 	int			rval;
25632 
25633 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25634 	    (cmd == SD_PRIORITY_RESERVE));
25635 
25636 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25637 		return (ENXIO);
25638 	}
25639 
25640 	/* instantiate and initialize the command and cdb */
25641 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25642 	bzero(cdb, CDB_GROUP0);
25643 	com->uscsi_flags   = USCSI_SILENT;
25644 	com->uscsi_timeout = un->un_reserve_release_time;
25645 	com->uscsi_cdblen  = CDB_GROUP0;
25646 	com->uscsi_cdb	   = cdb;
25647 	if (cmd == SD_RELEASE) {
25648 		cdb[0] = SCMD_RELEASE;
25649 	} else {
25650 		cdb[0] = SCMD_RESERVE;
25651 	}
25652 
25653 	/* Send the command. */
25654 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25655 	    SD_PATH_STANDARD);
25656 
25657 	/*
25658 	 * "break" a reservation that is held by another host, by issuing a
25659 	 * reset if priority reserve is desired, and we could not get the
25660 	 * device.
25661 	 */
25662 	if ((cmd == SD_PRIORITY_RESERVE) &&
25663 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25664 		/*
25665 		 * First try to reset the LUN. If we cannot, then try a target
25666 		 * reset, followed by a bus reset if the target reset fails.
25667 		 */
25668 		int reset_retval = 0;
25669 		if (un->un_f_lun_reset_enabled == TRUE) {
25670 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25671 		}
25672 		if (reset_retval == 0) {
25673 			/* The LUN reset either failed or was not issued */
25674 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25675 		}
25676 		if ((reset_retval == 0) &&
25677 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25678 			rval = EIO;
25679 			kmem_free(com, sizeof (*com));
25680 			return (rval);
25681 		}
25682 
25683 		bzero(com, sizeof (struct uscsi_cmd));
25684 		com->uscsi_flags   = USCSI_SILENT;
25685 		com->uscsi_cdb	   = cdb;
25686 		com->uscsi_cdblen  = CDB_GROUP0;
25687 		com->uscsi_timeout = 5;
25688 
25689 		/*
25690 		 * Reissue the last reserve command, this time without request
25691 		 * sense.  Assume that it is just a regular reserve command.
25692 		 */
25693 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25694 		    SD_PATH_STANDARD);
25695 	}
25696 
25697 	/* Return an error if still getting a reservation conflict. */
25698 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25699 		rval = EACCES;
25700 	}
25701 
25702 	kmem_free(com, sizeof (*com));
25703 	return (rval);
25704 }
25705 
25706 
25707 #define	SD_NDUMP_RETRIES	12
25708 /*
25709  *	System Crash Dump routine
25710  */
25711 
25712 static int
25713 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25714 {
25715 	int		instance;
25716 	int		partition;
25717 	int		i;
25718 	int		err;
25719 	struct sd_lun	*un;
25720 	struct scsi_pkt *wr_pktp;
25721 	struct buf	*wr_bp;
25722 	struct buf	wr_buf;
25723 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25724 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25725 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25726 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25727 	size_t		io_start_offset;
25728 	int		doing_rmw = FALSE;
25729 	int		rval;
25730 	ssize_t		dma_resid;
25731 	daddr_t		oblkno;
25732 	diskaddr_t	nblks = 0;
25733 	diskaddr_t	start_block;
25734 
25735 	instance = SDUNIT(dev);
25736 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25737 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25738 		return (ENXIO);
25739 	}
25740 
25741 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25742 
25743 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25744 
25745 	partition = SDPART(dev);
25746 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25747 
25748 	if (!(NOT_DEVBSIZE(un))) {
25749 		int secmask = 0;
25750 		int blknomask = 0;
25751 
25752 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25753 		secmask = un->un_tgt_blocksize - 1;
25754 
25755 		if (blkno & blknomask) {
25756 			SD_TRACE(SD_LOG_DUMP, un,
25757 			    "sddump: dump start block not modulo %d\n",
25758 			    un->un_tgt_blocksize);
25759 			return (EINVAL);
25760 		}
25761 
25762 		if ((nblk * DEV_BSIZE) & secmask) {
25763 			SD_TRACE(SD_LOG_DUMP, un,
25764 			    "sddump: dump length not modulo %d\n",
25765 			    un->un_tgt_blocksize);
25766 			return (EINVAL);
25767 		}
25768 
25769 	}
25770 
25771 	/* Validate blocks to dump at against partition size. */
25772 
25773 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25774 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25775 
25776 	if (NOT_DEVBSIZE(un)) {
25777 		if ((blkno + nblk) > nblks) {
25778 			SD_TRACE(SD_LOG_DUMP, un,
25779 			    "sddump: dump range larger than partition: "
25780 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25781 			    blkno, nblk, nblks);
25782 			return (EINVAL);
25783 		}
25784 	} else {
25785 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25786 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25787 			SD_TRACE(SD_LOG_DUMP, un,
25788 			    "sddump: dump range larger than partition: "
25789 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25790 			    blkno, nblk, nblks);
25791 			return (EINVAL);
25792 		}
25793 	}
25794 
25795 	mutex_enter(&un->un_pm_mutex);
25796 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25797 		struct scsi_pkt *start_pktp;
25798 
25799 		mutex_exit(&un->un_pm_mutex);
25800 
25801 		/*
25802 		 * use pm framework to power on HBA 1st
25803 		 */
25804 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25805 		    SD_PM_STATE_ACTIVE(un));
25806 
25807 		/*
25808 		 * Dump no long uses sdpower to power on a device, it's
25809 		 * in-line here so it can be done in polled mode.
25810 		 */
25811 
25812 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25813 
25814 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25815 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25816 
25817 		if (start_pktp == NULL) {
25818 			/* We were not given a SCSI packet, fail. */
25819 			return (EIO);
25820 		}
25821 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25822 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25823 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25824 		start_pktp->pkt_flags = FLAG_NOINTR;
25825 
25826 		mutex_enter(SD_MUTEX(un));
25827 		SD_FILL_SCSI1_LUN(un, start_pktp);
25828 		mutex_exit(SD_MUTEX(un));
25829 		/*
25830 		 * Scsi_poll returns 0 (success) if the command completes and
25831 		 * the status block is STATUS_GOOD.
25832 		 */
25833 		if (sd_scsi_poll(un, start_pktp) != 0) {
25834 			scsi_destroy_pkt(start_pktp);
25835 			return (EIO);
25836 		}
25837 		scsi_destroy_pkt(start_pktp);
25838 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25839 		    SD_PM_STATE_CHANGE);
25840 	} else {
25841 		mutex_exit(&un->un_pm_mutex);
25842 	}
25843 
25844 	mutex_enter(SD_MUTEX(un));
25845 	un->un_throttle = 0;
25846 
25847 	/*
25848 	 * The first time through, reset the specific target device.
25849 	 * However, when cpr calls sddump we know that sd is in a
25850 	 * a good state so no bus reset is required.
25851 	 * Clear sense data via Request Sense cmd.
25852 	 * In sddump we don't care about allow_bus_device_reset anymore
25853 	 */
25854 
25855 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25856 	    (un->un_state != SD_STATE_DUMPING)) {
25857 
25858 		New_state(un, SD_STATE_DUMPING);
25859 
25860 		if (un->un_f_is_fibre == FALSE) {
25861 			mutex_exit(SD_MUTEX(un));
25862 			/*
25863 			 * Attempt a bus reset for parallel scsi.
25864 			 *
25865 			 * Note: A bus reset is required because on some host
25866 			 * systems (i.e. E420R) a bus device reset is
25867 			 * insufficient to reset the state of the target.
25868 			 *
25869 			 * Note: Don't issue the reset for fibre-channel,
25870 			 * because this tends to hang the bus (loop) for
25871 			 * too long while everyone is logging out and in
25872 			 * and the deadman timer for dumping will fire
25873 			 * before the dump is complete.
25874 			 */
25875 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25876 				mutex_enter(SD_MUTEX(un));
25877 				Restore_state(un);
25878 				mutex_exit(SD_MUTEX(un));
25879 				return (EIO);
25880 			}
25881 
25882 			/* Delay to give the device some recovery time. */
25883 			drv_usecwait(10000);
25884 
25885 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25886 				SD_INFO(SD_LOG_DUMP, un,
25887 				    "sddump: sd_send_polled_RQS failed\n");
25888 			}
25889 			mutex_enter(SD_MUTEX(un));
25890 		}
25891 	}
25892 
25893 	/*
25894 	 * Convert the partition-relative block number to a
25895 	 * disk physical block number.
25896 	 */
25897 	if (NOT_DEVBSIZE(un)) {
25898 		blkno += start_block;
25899 	} else {
25900 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25901 		blkno += start_block;
25902 	}
25903 
25904 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25905 
25906 
25907 	/*
25908 	 * Check if the device has a non-512 block size.
25909 	 */
25910 	wr_bp = NULL;
25911 	if (NOT_DEVBSIZE(un)) {
25912 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25913 		tgt_byte_count = nblk * un->un_sys_blocksize;
25914 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25915 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25916 			doing_rmw = TRUE;
25917 			/*
25918 			 * Calculate the block number and number of block
25919 			 * in terms of the media block size.
25920 			 */
25921 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25922 			tgt_nblk =
25923 			    ((tgt_byte_offset + tgt_byte_count +
25924 			    (un->un_tgt_blocksize - 1)) /
25925 			    un->un_tgt_blocksize) - tgt_blkno;
25926 
25927 			/*
25928 			 * Invoke the routine which is going to do read part
25929 			 * of read-modify-write.
25930 			 * Note that this routine returns a pointer to
25931 			 * a valid bp in wr_bp.
25932 			 */
25933 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25934 			    &wr_bp);
25935 			if (err) {
25936 				mutex_exit(SD_MUTEX(un));
25937 				return (err);
25938 			}
25939 			/*
25940 			 * Offset is being calculated as -
25941 			 * (original block # * system block size) -
25942 			 * (new block # * target block size)
25943 			 */
25944 			io_start_offset =
25945 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25946 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25947 
25948 			ASSERT((io_start_offset >= 0) &&
25949 			    (io_start_offset < un->un_tgt_blocksize));
25950 			/*
25951 			 * Do the modify portion of read modify write.
25952 			 */
25953 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25954 			    (size_t)nblk * un->un_sys_blocksize);
25955 		} else {
25956 			doing_rmw = FALSE;
25957 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25958 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25959 		}
25960 
25961 		/* Convert blkno and nblk to target blocks */
25962 		blkno = tgt_blkno;
25963 		nblk = tgt_nblk;
25964 	} else {
25965 		wr_bp = &wr_buf;
25966 		bzero(wr_bp, sizeof (struct buf));
25967 		wr_bp->b_flags		= B_BUSY;
25968 		wr_bp->b_un.b_addr	= addr;
25969 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25970 		wr_bp->b_resid		= 0;
25971 	}
25972 
25973 	mutex_exit(SD_MUTEX(un));
25974 
25975 	/*
25976 	 * Obtain a SCSI packet for the write command.
25977 	 * It should be safe to call the allocator here without
25978 	 * worrying about being locked for DVMA mapping because
25979 	 * the address we're passed is already a DVMA mapping
25980 	 *
25981 	 * We are also not going to worry about semaphore ownership
25982 	 * in the dump buffer. Dumping is single threaded at present.
25983 	 */
25984 
25985 	wr_pktp = NULL;
25986 
25987 	dma_resid = wr_bp->b_bcount;
25988 	oblkno = blkno;
25989 
25990 	if (!(NOT_DEVBSIZE(un))) {
25991 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
25992 	}
25993 
25994 	while (dma_resid != 0) {
25995 
25996 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25997 		wr_bp->b_flags &= ~B_ERROR;
25998 
25999 		if (un->un_partial_dma_supported == 1) {
26000 			blkno = oblkno +
26001 			    ((wr_bp->b_bcount - dma_resid) /
26002 			    un->un_tgt_blocksize);
26003 			nblk = dma_resid / un->un_tgt_blocksize;
26004 
26005 			if (wr_pktp) {
26006 				/*
26007 				 * Partial DMA transfers after initial transfer
26008 				 */
26009 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26010 				    blkno, nblk);
26011 			} else {
26012 				/* Initial transfer */
26013 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26014 				    un->un_pkt_flags, NULL_FUNC, NULL,
26015 				    blkno, nblk);
26016 			}
26017 		} else {
26018 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26019 			    0, NULL_FUNC, NULL, blkno, nblk);
26020 		}
26021 
26022 		if (rval == 0) {
26023 			/* We were given a SCSI packet, continue. */
26024 			break;
26025 		}
26026 
26027 		if (i == 0) {
26028 			if (wr_bp->b_flags & B_ERROR) {
26029 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26030 				    "no resources for dumping; "
26031 				    "error code: 0x%x, retrying",
26032 				    geterror(wr_bp));
26033 			} else {
26034 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26035 				    "no resources for dumping; retrying");
26036 			}
26037 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26038 			if (wr_bp->b_flags & B_ERROR) {
26039 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26040 				    "no resources for dumping; error code: "
26041 				    "0x%x, retrying\n", geterror(wr_bp));
26042 			}
26043 		} else {
26044 			if (wr_bp->b_flags & B_ERROR) {
26045 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26046 				    "no resources for dumping; "
26047 				    "error code: 0x%x, retries failed, "
26048 				    "giving up.\n", geterror(wr_bp));
26049 			} else {
26050 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26051 				    "no resources for dumping; "
26052 				    "retries failed, giving up.\n");
26053 			}
26054 			mutex_enter(SD_MUTEX(un));
26055 			Restore_state(un);
26056 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26057 				mutex_exit(SD_MUTEX(un));
26058 				scsi_free_consistent_buf(wr_bp);
26059 			} else {
26060 				mutex_exit(SD_MUTEX(un));
26061 			}
26062 			return (EIO);
26063 		}
26064 		drv_usecwait(10000);
26065 	}
26066 
26067 	if (un->un_partial_dma_supported == 1) {
26068 		/*
26069 		 * save the resid from PARTIAL_DMA
26070 		 */
26071 		dma_resid = wr_pktp->pkt_resid;
26072 		if (dma_resid != 0)
26073 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26074 		wr_pktp->pkt_resid = 0;
26075 	} else {
26076 		dma_resid = 0;
26077 	}
26078 
26079 	/* SunBug 1222170 */
26080 	wr_pktp->pkt_flags = FLAG_NOINTR;
26081 
26082 	err = EIO;
26083 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26084 
26085 		/*
26086 		 * Scsi_poll returns 0 (success) if the command completes and
26087 		 * the status block is STATUS_GOOD.  We should only check
26088 		 * errors if this condition is not true.  Even then we should
26089 		 * send our own request sense packet only if we have a check
26090 		 * condition and auto request sense has not been performed by
26091 		 * the hba.
26092 		 */
26093 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26094 
26095 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26096 		    (wr_pktp->pkt_resid == 0)) {
26097 			err = SD_SUCCESS;
26098 			break;
26099 		}
26100 
26101 		/*
26102 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26103 		 */
26104 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26105 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26106 			    "Error while dumping state...Device is gone\n");
26107 			break;
26108 		}
26109 
26110 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26111 			SD_INFO(SD_LOG_DUMP, un,
26112 			    "sddump: write failed with CHECK, try # %d\n", i);
26113 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26114 				(void) sd_send_polled_RQS(un);
26115 			}
26116 
26117 			continue;
26118 		}
26119 
26120 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26121 			int reset_retval = 0;
26122 
26123 			SD_INFO(SD_LOG_DUMP, un,
26124 			    "sddump: write failed with BUSY, try # %d\n", i);
26125 
26126 			if (un->un_f_lun_reset_enabled == TRUE) {
26127 				reset_retval = scsi_reset(SD_ADDRESS(un),
26128 				    RESET_LUN);
26129 			}
26130 			if (reset_retval == 0) {
26131 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26132 			}
26133 			(void) sd_send_polled_RQS(un);
26134 
26135 		} else {
26136 			SD_INFO(SD_LOG_DUMP, un,
26137 			    "sddump: write failed with 0x%x, try # %d\n",
26138 			    SD_GET_PKT_STATUS(wr_pktp), i);
26139 			mutex_enter(SD_MUTEX(un));
26140 			sd_reset_target(un, wr_pktp);
26141 			mutex_exit(SD_MUTEX(un));
26142 		}
26143 
26144 		/*
26145 		 * If we are not getting anywhere with lun/target resets,
26146 		 * let's reset the bus.
26147 		 */
26148 		if (i == SD_NDUMP_RETRIES/2) {
26149 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26150 			(void) sd_send_polled_RQS(un);
26151 		}
26152 	}
26153 	}
26154 
26155 	scsi_destroy_pkt(wr_pktp);
26156 	mutex_enter(SD_MUTEX(un));
26157 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26158 		mutex_exit(SD_MUTEX(un));
26159 		scsi_free_consistent_buf(wr_bp);
26160 	} else {
26161 		mutex_exit(SD_MUTEX(un));
26162 	}
26163 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26164 	return (err);
26165 }
26166 
26167 /*
26168  *    Function: sd_scsi_poll()
26169  *
26170  * Description: This is a wrapper for the scsi_poll call.
26171  *
26172  *   Arguments: sd_lun - The unit structure
26173  *              scsi_pkt - The scsi packet being sent to the device.
26174  *
26175  * Return Code: 0 - Command completed successfully with good status
26176  *             -1 - Command failed.  This could indicate a check condition
26177  *                  or other status value requiring recovery action.
26178  *
26179  * NOTE: This code is only called off sddump().
26180  */
26181 
26182 static int
26183 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26184 {
26185 	int status;
26186 
26187 	ASSERT(un != NULL);
26188 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26189 	ASSERT(pktp != NULL);
26190 
26191 	status = SD_SUCCESS;
26192 
26193 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26194 		pktp->pkt_flags |= un->un_tagflags;
26195 		pktp->pkt_flags &= ~FLAG_NODISCON;
26196 	}
26197 
26198 	status = sd_ddi_scsi_poll(pktp);
26199 	/*
26200 	 * Scsi_poll returns 0 (success) if the command completes and the
26201 	 * status block is STATUS_GOOD.  We should only check errors if this
26202 	 * condition is not true.  Even then we should send our own request
26203 	 * sense packet only if we have a check condition and auto
26204 	 * request sense has not been performed by the hba.
26205 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26206 	 */
26207 	if ((status != SD_SUCCESS) &&
26208 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26209 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26210 	    (pktp->pkt_reason != CMD_DEV_GONE))
26211 		(void) sd_send_polled_RQS(un);
26212 
26213 	return (status);
26214 }
26215 
26216 /*
26217  *    Function: sd_send_polled_RQS()
26218  *
26219  * Description: This sends the request sense command to a device.
26220  *
26221  *   Arguments: sd_lun - The unit structure
26222  *
26223  * Return Code: 0 - Command completed successfully with good status
26224  *             -1 - Command failed.
26225  *
26226  */
26227 
26228 static int
26229 sd_send_polled_RQS(struct sd_lun *un)
26230 {
26231 	int	ret_val;
26232 	struct	scsi_pkt	*rqs_pktp;
26233 	struct	buf		*rqs_bp;
26234 
26235 	ASSERT(un != NULL);
26236 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26237 
26238 	ret_val = SD_SUCCESS;
26239 
26240 	rqs_pktp = un->un_rqs_pktp;
26241 	rqs_bp	 = un->un_rqs_bp;
26242 
26243 	mutex_enter(SD_MUTEX(un));
26244 
26245 	if (un->un_sense_isbusy) {
26246 		ret_val = SD_FAILURE;
26247 		mutex_exit(SD_MUTEX(un));
26248 		return (ret_val);
26249 	}
26250 
26251 	/*
26252 	 * If the request sense buffer (and packet) is not in use,
26253 	 * let's set the un_sense_isbusy and send our packet
26254 	 */
26255 	un->un_sense_isbusy 	= 1;
26256 	rqs_pktp->pkt_resid  	= 0;
26257 	rqs_pktp->pkt_reason 	= 0;
26258 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26259 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26260 
26261 	mutex_exit(SD_MUTEX(un));
26262 
26263 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26264 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26265 
26266 	/*
26267 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26268 	 * axle - it has a call into us!
26269 	 */
26270 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26271 		SD_INFO(SD_LOG_COMMON, un,
26272 		    "sd_send_polled_RQS: RQS failed\n");
26273 	}
26274 
26275 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26276 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26277 
26278 	mutex_enter(SD_MUTEX(un));
26279 	un->un_sense_isbusy = 0;
26280 	mutex_exit(SD_MUTEX(un));
26281 
26282 	return (ret_val);
26283 }
26284 
26285 /*
26286  * Defines needed for localized version of the scsi_poll routine.
26287  */
26288 #define	CSEC		10000			/* usecs */
26289 #define	SEC_TO_CSEC	(1000000/CSEC)
26290 
26291 /*
26292  *    Function: sd_ddi_scsi_poll()
26293  *
26294  * Description: Localized version of the scsi_poll routine.  The purpose is to
26295  *		send a scsi_pkt to a device as a polled command.  This version
26296  *		is to ensure more robust handling of transport errors.
26297  *		Specifically this routine cures not ready, coming ready
26298  *		transition for power up and reset of sonoma's.  This can take
26299  *		up to 45 seconds for power-on and 20 seconds for reset of a
26300  * 		sonoma lun.
26301  *
26302  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26303  *
26304  * Return Code: 0 - Command completed successfully with good status
26305  *             -1 - Command failed.
26306  *
26307  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26308  * be fixed (removing this code), we need to determine how to handle the
26309  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26310  *
26311  * NOTE: This code is only called off sddump().
26312  */
26313 static int
26314 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26315 {
26316 	int			rval = -1;
26317 	int			savef;
26318 	long			savet;
26319 	void			(*savec)();
26320 	int			timeout;
26321 	int			busy_count;
26322 	int			poll_delay;
26323 	int			rc;
26324 	uint8_t			*sensep;
26325 	struct scsi_arq_status	*arqstat;
26326 	extern int		do_polled_io;
26327 
26328 	ASSERT(pkt->pkt_scbp);
26329 
26330 	/*
26331 	 * save old flags..
26332 	 */
26333 	savef = pkt->pkt_flags;
26334 	savec = pkt->pkt_comp;
26335 	savet = pkt->pkt_time;
26336 
26337 	pkt->pkt_flags |= FLAG_NOINTR;
26338 
26339 	/*
26340 	 * XXX there is nothing in the SCSA spec that states that we should not
26341 	 * do a callback for polled cmds; however, removing this will break sd
26342 	 * and probably other target drivers
26343 	 */
26344 	pkt->pkt_comp = NULL;
26345 
26346 	/*
26347 	 * we don't like a polled command without timeout.
26348 	 * 60 seconds seems long enough.
26349 	 */
26350 	if (pkt->pkt_time == 0)
26351 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26352 
26353 	/*
26354 	 * Send polled cmd.
26355 	 *
26356 	 * We do some error recovery for various errors.  Tran_busy,
26357 	 * queue full, and non-dispatched commands are retried every 10 msec.
26358 	 * as they are typically transient failures.  Busy status and Not
26359 	 * Ready are retried every second as this status takes a while to
26360 	 * change.
26361 	 */
26362 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26363 
26364 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26365 		/*
26366 		 * Initialize pkt status variables.
26367 		 */
26368 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26369 
26370 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26371 			if (rc != TRAN_BUSY) {
26372 				/* Transport failed - give up. */
26373 				break;
26374 			} else {
26375 				/* Transport busy - try again. */
26376 				poll_delay = 1 * CSEC;		/* 10 msec. */
26377 			}
26378 		} else {
26379 			/*
26380 			 * Transport accepted - check pkt status.
26381 			 */
26382 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26383 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26384 			    (rc == STATUS_CHECK) &&
26385 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26386 				arqstat =
26387 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26388 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26389 			} else {
26390 				sensep = NULL;
26391 			}
26392 
26393 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26394 			    (rc == STATUS_GOOD)) {
26395 				/* No error - we're done */
26396 				rval = 0;
26397 				break;
26398 
26399 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26400 				/* Lost connection - give up */
26401 				break;
26402 
26403 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26404 			    (pkt->pkt_state == 0)) {
26405 				/* Pkt not dispatched - try again. */
26406 				poll_delay = 1 * CSEC;		/* 10 msec. */
26407 
26408 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26409 			    (rc == STATUS_QFULL)) {
26410 				/* Queue full - try again. */
26411 				poll_delay = 1 * CSEC;		/* 10 msec. */
26412 
26413 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26414 			    (rc == STATUS_BUSY)) {
26415 				/* Busy - try again. */
26416 				poll_delay = 100 * CSEC;	/* 1 sec. */
26417 				busy_count += (SEC_TO_CSEC - 1);
26418 
26419 			} else if ((sensep != NULL) &&
26420 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26421 				/*
26422 				 * Unit Attention - try again.
26423 				 * Pretend it took 1 sec.
26424 				 * NOTE: 'continue' avoids poll_delay
26425 				 */
26426 				busy_count += (SEC_TO_CSEC - 1);
26427 				continue;
26428 
26429 			} else if ((sensep != NULL) &&
26430 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26431 			    (scsi_sense_asc(sensep) == 0x04) &&
26432 			    (scsi_sense_ascq(sensep) == 0x01)) {
26433 				/*
26434 				 * Not ready -> ready - try again.
26435 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26436 				 * ...same as STATUS_BUSY
26437 				 */
26438 				poll_delay = 100 * CSEC;	/* 1 sec. */
26439 				busy_count += (SEC_TO_CSEC - 1);
26440 
26441 			} else {
26442 				/* BAD status - give up. */
26443 				break;
26444 			}
26445 		}
26446 
26447 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26448 		    !do_polled_io) {
26449 			delay(drv_usectohz(poll_delay));
26450 		} else {
26451 			/* we busy wait during cpr_dump or interrupt threads */
26452 			drv_usecwait(poll_delay);
26453 		}
26454 	}
26455 
26456 	pkt->pkt_flags = savef;
26457 	pkt->pkt_comp = savec;
26458 	pkt->pkt_time = savet;
26459 
26460 	/* return on error */
26461 	if (rval)
26462 		return (rval);
26463 
26464 	/*
26465 	 * This is not a performance critical code path.
26466 	 *
26467 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26468 	 * issues associated with looking at DMA memory prior to
26469 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26470 	 */
26471 	scsi_sync_pkt(pkt);
26472 	return (0);
26473 }
26474 
26475 
26476 
26477 /*
26478  *    Function: sd_persistent_reservation_in_read_keys
26479  *
26480  * Description: This routine is the driver entry point for handling CD-ROM
26481  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26482  *		by sending the SCSI-3 PRIN commands to the device.
26483  *		Processes the read keys command response by copying the
26484  *		reservation key information into the user provided buffer.
26485  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26486  *
26487  *   Arguments: un   -  Pointer to soft state struct for the target.
26488  *		usrp -	user provided pointer to multihost Persistent In Read
26489  *			Keys structure (mhioc_inkeys_t)
26490  *		flag -	this argument is a pass through to ddi_copyxxx()
26491  *			directly from the mode argument of ioctl().
26492  *
26493  * Return Code: 0   - Success
26494  *		EACCES
26495  *		ENOTSUP
26496  *		errno return code from sd_send_scsi_cmd()
26497  *
26498  *     Context: Can sleep. Does not return until command is completed.
26499  */
26500 
26501 static int
26502 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26503     mhioc_inkeys_t *usrp, int flag)
26504 {
26505 #ifdef _MULTI_DATAMODEL
26506 	struct mhioc_key_list32	li32;
26507 #endif
26508 	sd_prin_readkeys_t	*in;
26509 	mhioc_inkeys_t		*ptr;
26510 	mhioc_key_list_t	li;
26511 	uchar_t			*data_bufp;
26512 	int 			data_len;
26513 	int			rval = 0;
26514 	size_t			copysz;
26515 	sd_ssc_t		*ssc;
26516 
26517 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26518 		return (EINVAL);
26519 	}
26520 	bzero(&li, sizeof (mhioc_key_list_t));
26521 
26522 	ssc = sd_ssc_init(un);
26523 
26524 	/*
26525 	 * Get the listsize from user
26526 	 */
26527 #ifdef _MULTI_DATAMODEL
26528 
26529 	switch (ddi_model_convert_from(flag & FMODELS)) {
26530 	case DDI_MODEL_ILP32:
26531 		copysz = sizeof (struct mhioc_key_list32);
26532 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26533 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26534 			    "sd_persistent_reservation_in_read_keys: "
26535 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26536 			rval = EFAULT;
26537 			goto done;
26538 		}
26539 		li.listsize = li32.listsize;
26540 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26541 		break;
26542 
26543 	case DDI_MODEL_NONE:
26544 		copysz = sizeof (mhioc_key_list_t);
26545 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26546 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26547 			    "sd_persistent_reservation_in_read_keys: "
26548 			    "failed ddi_copyin: mhioc_key_list_t\n");
26549 			rval = EFAULT;
26550 			goto done;
26551 		}
26552 		break;
26553 	}
26554 
26555 #else /* ! _MULTI_DATAMODEL */
26556 	copysz = sizeof (mhioc_key_list_t);
26557 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26558 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26559 		    "sd_persistent_reservation_in_read_keys: "
26560 		    "failed ddi_copyin: mhioc_key_list_t\n");
26561 		rval = EFAULT;
26562 		goto done;
26563 	}
26564 #endif
26565 
26566 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26567 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26568 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26569 
26570 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26571 	    data_len, data_bufp);
26572 	if (rval != 0) {
26573 		if (rval == EIO)
26574 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26575 		else
26576 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26577 		goto done;
26578 	}
26579 	in = (sd_prin_readkeys_t *)data_bufp;
26580 	ptr->generation = BE_32(in->generation);
26581 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26582 
26583 	/*
26584 	 * Return the min(listsize, listlen) keys
26585 	 */
26586 #ifdef _MULTI_DATAMODEL
26587 
26588 	switch (ddi_model_convert_from(flag & FMODELS)) {
26589 	case DDI_MODEL_ILP32:
26590 		li32.listlen = li.listlen;
26591 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26592 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26593 			    "sd_persistent_reservation_in_read_keys: "
26594 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26595 			rval = EFAULT;
26596 			goto done;
26597 		}
26598 		break;
26599 
26600 	case DDI_MODEL_NONE:
26601 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26602 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26603 			    "sd_persistent_reservation_in_read_keys: "
26604 			    "failed ddi_copyout: mhioc_key_list_t\n");
26605 			rval = EFAULT;
26606 			goto done;
26607 		}
26608 		break;
26609 	}
26610 
26611 #else /* ! _MULTI_DATAMODEL */
26612 
26613 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26614 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26615 		    "sd_persistent_reservation_in_read_keys: "
26616 		    "failed ddi_copyout: mhioc_key_list_t\n");
26617 		rval = EFAULT;
26618 		goto done;
26619 	}
26620 
26621 #endif /* _MULTI_DATAMODEL */
26622 
26623 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26624 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26625 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26626 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26627 		    "sd_persistent_reservation_in_read_keys: "
26628 		    "failed ddi_copyout: keylist\n");
26629 		rval = EFAULT;
26630 	}
26631 done:
26632 	sd_ssc_fini(ssc);
26633 	kmem_free(data_bufp, data_len);
26634 	return (rval);
26635 }
26636 
26637 
26638 /*
26639  *    Function: sd_persistent_reservation_in_read_resv
26640  *
26641  * Description: This routine is the driver entry point for handling CD-ROM
26642  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26643  *		by sending the SCSI-3 PRIN commands to the device.
26644  *		Process the read persistent reservations command response by
26645  *		copying the reservation information into the user provided
26646  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26647  *
26648  *   Arguments: un   -  Pointer to soft state struct for the target.
26649  *		usrp -	user provided pointer to multihost Persistent In Read
26650  *			Keys structure (mhioc_inkeys_t)
26651  *		flag -	this argument is a pass through to ddi_copyxxx()
26652  *			directly from the mode argument of ioctl().
26653  *
26654  * Return Code: 0   - Success
26655  *		EACCES
26656  *		ENOTSUP
26657  *		errno return code from sd_send_scsi_cmd()
26658  *
26659  *     Context: Can sleep. Does not return until command is completed.
26660  */
26661 
26662 static int
26663 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26664     mhioc_inresvs_t *usrp, int flag)
26665 {
26666 #ifdef _MULTI_DATAMODEL
26667 	struct mhioc_resv_desc_list32 resvlist32;
26668 #endif
26669 	sd_prin_readresv_t	*in;
26670 	mhioc_inresvs_t		*ptr;
26671 	sd_readresv_desc_t	*readresv_ptr;
26672 	mhioc_resv_desc_list_t	resvlist;
26673 	mhioc_resv_desc_t 	resvdesc;
26674 	uchar_t			*data_bufp = NULL;
26675 	int 			data_len;
26676 	int			rval = 0;
26677 	int			i;
26678 	size_t			copysz;
26679 	mhioc_resv_desc_t	*bufp;
26680 	sd_ssc_t		*ssc;
26681 
26682 	if ((ptr = usrp) == NULL) {
26683 		return (EINVAL);
26684 	}
26685 
26686 	ssc = sd_ssc_init(un);
26687 
26688 	/*
26689 	 * Get the listsize from user
26690 	 */
26691 #ifdef _MULTI_DATAMODEL
26692 	switch (ddi_model_convert_from(flag & FMODELS)) {
26693 	case DDI_MODEL_ILP32:
26694 		copysz = sizeof (struct mhioc_resv_desc_list32);
26695 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26696 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26697 			    "sd_persistent_reservation_in_read_resv: "
26698 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26699 			rval = EFAULT;
26700 			goto done;
26701 		}
26702 		resvlist.listsize = resvlist32.listsize;
26703 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26704 		break;
26705 
26706 	case DDI_MODEL_NONE:
26707 		copysz = sizeof (mhioc_resv_desc_list_t);
26708 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26709 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26710 			    "sd_persistent_reservation_in_read_resv: "
26711 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26712 			rval = EFAULT;
26713 			goto done;
26714 		}
26715 		break;
26716 	}
26717 #else /* ! _MULTI_DATAMODEL */
26718 	copysz = sizeof (mhioc_resv_desc_list_t);
26719 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26720 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26721 		    "sd_persistent_reservation_in_read_resv: "
26722 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26723 		rval = EFAULT;
26724 		goto done;
26725 	}
26726 #endif /* ! _MULTI_DATAMODEL */
26727 
26728 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26729 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26730 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26731 
26732 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26733 	    data_len, data_bufp);
26734 	if (rval != 0) {
26735 		if (rval == EIO)
26736 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26737 		else
26738 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26739 		goto done;
26740 	}
26741 	in = (sd_prin_readresv_t *)data_bufp;
26742 	ptr->generation = BE_32(in->generation);
26743 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26744 
26745 	/*
26746 	 * Return the min(listsize, listlen( keys
26747 	 */
26748 #ifdef _MULTI_DATAMODEL
26749 
26750 	switch (ddi_model_convert_from(flag & FMODELS)) {
26751 	case DDI_MODEL_ILP32:
26752 		resvlist32.listlen = resvlist.listlen;
26753 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26754 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26755 			    "sd_persistent_reservation_in_read_resv: "
26756 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26757 			rval = EFAULT;
26758 			goto done;
26759 		}
26760 		break;
26761 
26762 	case DDI_MODEL_NONE:
26763 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26764 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26765 			    "sd_persistent_reservation_in_read_resv: "
26766 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26767 			rval = EFAULT;
26768 			goto done;
26769 		}
26770 		break;
26771 	}
26772 
26773 #else /* ! _MULTI_DATAMODEL */
26774 
26775 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26776 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26777 		    "sd_persistent_reservation_in_read_resv: "
26778 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26779 		rval = EFAULT;
26780 		goto done;
26781 	}
26782 
26783 #endif /* ! _MULTI_DATAMODEL */
26784 
26785 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26786 	bufp = resvlist.list;
26787 	copysz = sizeof (mhioc_resv_desc_t);
26788 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26789 	    i++, readresv_ptr++, bufp++) {
26790 
26791 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26792 		    MHIOC_RESV_KEY_SIZE);
26793 		resvdesc.type  = readresv_ptr->type;
26794 		resvdesc.scope = readresv_ptr->scope;
26795 		resvdesc.scope_specific_addr =
26796 		    BE_32(readresv_ptr->scope_specific_addr);
26797 
26798 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26799 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26800 			    "sd_persistent_reservation_in_read_resv: "
26801 			    "failed ddi_copyout: resvlist\n");
26802 			rval = EFAULT;
26803 			goto done;
26804 		}
26805 	}
26806 done:
26807 	sd_ssc_fini(ssc);
26808 	/* only if data_bufp is allocated, we need to free it */
26809 	if (data_bufp) {
26810 		kmem_free(data_bufp, data_len);
26811 	}
26812 	return (rval);
26813 }
26814 
26815 
26816 /*
26817  *    Function: sr_change_blkmode()
26818  *
26819  * Description: This routine is the driver entry point for handling CD-ROM
26820  *		block mode ioctl requests. Support for returning and changing
26821  *		the current block size in use by the device is implemented. The
26822  *		LBA size is changed via a MODE SELECT Block Descriptor.
26823  *
26824  *		This routine issues a mode sense with an allocation length of
26825  *		12 bytes for the mode page header and a single block descriptor.
26826  *
26827  *   Arguments: dev - the device 'dev_t'
26828  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26829  *		      CDROMSBLKMODE (set)
26830  *		data - current block size or requested block size
26831  *		flag - this argument is a pass through to ddi_copyxxx() directly
26832  *		       from the mode argument of ioctl().
26833  *
26834  * Return Code: the code returned by sd_send_scsi_cmd()
26835  *		EINVAL if invalid arguments are provided
26836  *		EFAULT if ddi_copyxxx() fails
26837  *		ENXIO if fail ddi_get_soft_state
26838  *		EIO if invalid mode sense block descriptor length
26839  *
26840  */
26841 
26842 static int
26843 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26844 {
26845 	struct sd_lun			*un = NULL;
26846 	struct mode_header		*sense_mhp, *select_mhp;
26847 	struct block_descriptor		*sense_desc, *select_desc;
26848 	int				current_bsize;
26849 	int				rval = EINVAL;
26850 	uchar_t				*sense = NULL;
26851 	uchar_t				*select = NULL;
26852 	sd_ssc_t			*ssc;
26853 
26854 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26855 
26856 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26857 		return (ENXIO);
26858 	}
26859 
26860 	/*
26861 	 * The block length is changed via the Mode Select block descriptor, the
26862 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26863 	 * required as part of this routine. Therefore the mode sense allocation
26864 	 * length is specified to be the length of a mode page header and a
26865 	 * block descriptor.
26866 	 */
26867 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26868 
26869 	ssc = sd_ssc_init(un);
26870 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26871 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26872 	sd_ssc_fini(ssc);
26873 	if (rval != 0) {
26874 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26875 		    "sr_change_blkmode: Mode Sense Failed\n");
26876 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26877 		return (rval);
26878 	}
26879 
26880 	/* Check the block descriptor len to handle only 1 block descriptor */
26881 	sense_mhp = (struct mode_header *)sense;
26882 	if ((sense_mhp->bdesc_length == 0) ||
26883 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26884 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26885 		    "sr_change_blkmode: Mode Sense returned invalid block"
26886 		    " descriptor length\n");
26887 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26888 		return (EIO);
26889 	}
26890 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26891 	current_bsize = ((sense_desc->blksize_hi << 16) |
26892 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26893 
26894 	/* Process command */
26895 	switch (cmd) {
26896 	case CDROMGBLKMODE:
26897 		/* Return the block size obtained during the mode sense */
26898 		if (ddi_copyout(&current_bsize, (void *)data,
26899 		    sizeof (int), flag) != 0)
26900 			rval = EFAULT;
26901 		break;
26902 	case CDROMSBLKMODE:
26903 		/* Validate the requested block size */
26904 		switch (data) {
26905 		case CDROM_BLK_512:
26906 		case CDROM_BLK_1024:
26907 		case CDROM_BLK_2048:
26908 		case CDROM_BLK_2056:
26909 		case CDROM_BLK_2336:
26910 		case CDROM_BLK_2340:
26911 		case CDROM_BLK_2352:
26912 		case CDROM_BLK_2368:
26913 		case CDROM_BLK_2448:
26914 		case CDROM_BLK_2646:
26915 		case CDROM_BLK_2647:
26916 			break;
26917 		default:
26918 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26919 			    "sr_change_blkmode: "
26920 			    "Block Size '%ld' Not Supported\n", data);
26921 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26922 			return (EINVAL);
26923 		}
26924 
26925 		/*
26926 		 * The current block size matches the requested block size so
26927 		 * there is no need to send the mode select to change the size
26928 		 */
26929 		if (current_bsize == data) {
26930 			break;
26931 		}
26932 
26933 		/* Build the select data for the requested block size */
26934 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26935 		select_mhp = (struct mode_header *)select;
26936 		select_desc =
26937 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26938 		/*
26939 		 * The LBA size is changed via the block descriptor, so the
26940 		 * descriptor is built according to the user data
26941 		 */
26942 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26943 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26944 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26945 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26946 
26947 		/* Send the mode select for the requested block size */
26948 		ssc = sd_ssc_init(un);
26949 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26950 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26951 		    SD_PATH_STANDARD);
26952 		sd_ssc_fini(ssc);
26953 		if (rval != 0) {
26954 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26955 			    "sr_change_blkmode: Mode Select Failed\n");
26956 			/*
26957 			 * The mode select failed for the requested block size,
26958 			 * so reset the data for the original block size and
26959 			 * send it to the target. The error is indicated by the
26960 			 * return value for the failed mode select.
26961 			 */
26962 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26963 			select_desc->blksize_mid = sense_desc->blksize_mid;
26964 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26965 			ssc = sd_ssc_init(un);
26966 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26967 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26968 			    SD_PATH_STANDARD);
26969 			sd_ssc_fini(ssc);
26970 		} else {
26971 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26972 			mutex_enter(SD_MUTEX(un));
26973 			sd_update_block_info(un, (uint32_t)data, 0);
26974 			mutex_exit(SD_MUTEX(un));
26975 		}
26976 		break;
26977 	default:
26978 		/* should not reach here, but check anyway */
26979 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26980 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26981 		rval = EINVAL;
26982 		break;
26983 	}
26984 
26985 	if (select) {
26986 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26987 	}
26988 	if (sense) {
26989 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26990 	}
26991 	return (rval);
26992 }
26993 
26994 
26995 /*
26996  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26997  * implement driver support for getting and setting the CD speed. The command
26998  * set used will be based on the device type. If the device has not been
26999  * identified as MMC the Toshiba vendor specific mode page will be used. If
27000  * the device is MMC but does not support the Real Time Streaming feature
27001  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27002  * be used to read the speed.
27003  */
27004 
27005 /*
27006  *    Function: sr_change_speed()
27007  *
27008  * Description: This routine is the driver entry point for handling CD-ROM
27009  *		drive speed ioctl requests for devices supporting the Toshiba
27010  *		vendor specific drive speed mode page. Support for returning
27011  *		and changing the current drive speed in use by the device is
27012  *		implemented.
27013  *
27014  *   Arguments: dev - the device 'dev_t'
27015  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27016  *		      CDROMSDRVSPEED (set)
27017  *		data - current drive speed or requested drive speed
27018  *		flag - this argument is a pass through to ddi_copyxxx() directly
27019  *		       from the mode argument of ioctl().
27020  *
27021  * Return Code: the code returned by sd_send_scsi_cmd()
27022  *		EINVAL if invalid arguments are provided
27023  *		EFAULT if ddi_copyxxx() fails
27024  *		ENXIO if fail ddi_get_soft_state
27025  *		EIO if invalid mode sense block descriptor length
27026  */
27027 
27028 static int
27029 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27030 {
27031 	struct sd_lun			*un = NULL;
27032 	struct mode_header		*sense_mhp, *select_mhp;
27033 	struct mode_speed		*sense_page, *select_page;
27034 	int				current_speed;
27035 	int				rval = EINVAL;
27036 	int				bd_len;
27037 	uchar_t				*sense = NULL;
27038 	uchar_t				*select = NULL;
27039 	sd_ssc_t			*ssc;
27040 
27041 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27042 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27043 		return (ENXIO);
27044 	}
27045 
27046 	/*
27047 	 * Note: The drive speed is being modified here according to a Toshiba
27048 	 * vendor specific mode page (0x31).
27049 	 */
27050 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27051 
27052 	ssc = sd_ssc_init(un);
27053 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27054 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27055 	    SD_PATH_STANDARD);
27056 	sd_ssc_fini(ssc);
27057 	if (rval != 0) {
27058 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27059 		    "sr_change_speed: Mode Sense Failed\n");
27060 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27061 		return (rval);
27062 	}
27063 	sense_mhp  = (struct mode_header *)sense;
27064 
27065 	/* Check the block descriptor len to handle only 1 block descriptor */
27066 	bd_len = sense_mhp->bdesc_length;
27067 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27068 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27069 		    "sr_change_speed: Mode Sense returned invalid block "
27070 		    "descriptor length\n");
27071 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27072 		return (EIO);
27073 	}
27074 
27075 	sense_page = (struct mode_speed *)
27076 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27077 	current_speed = sense_page->speed;
27078 
27079 	/* Process command */
27080 	switch (cmd) {
27081 	case CDROMGDRVSPEED:
27082 		/* Return the drive speed obtained during the mode sense */
27083 		if (current_speed == 0x2) {
27084 			current_speed = CDROM_TWELVE_SPEED;
27085 		}
27086 		if (ddi_copyout(&current_speed, (void *)data,
27087 		    sizeof (int), flag) != 0) {
27088 			rval = EFAULT;
27089 		}
27090 		break;
27091 	case CDROMSDRVSPEED:
27092 		/* Validate the requested drive speed */
27093 		switch ((uchar_t)data) {
27094 		case CDROM_TWELVE_SPEED:
27095 			data = 0x2;
27096 			/*FALLTHROUGH*/
27097 		case CDROM_NORMAL_SPEED:
27098 		case CDROM_DOUBLE_SPEED:
27099 		case CDROM_QUAD_SPEED:
27100 		case CDROM_MAXIMUM_SPEED:
27101 			break;
27102 		default:
27103 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27104 			    "sr_change_speed: "
27105 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27106 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27107 			return (EINVAL);
27108 		}
27109 
27110 		/*
27111 		 * The current drive speed matches the requested drive speed so
27112 		 * there is no need to send the mode select to change the speed
27113 		 */
27114 		if (current_speed == data) {
27115 			break;
27116 		}
27117 
27118 		/* Build the select data for the requested drive speed */
27119 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27120 		select_mhp = (struct mode_header *)select;
27121 		select_mhp->bdesc_length = 0;
27122 		select_page =
27123 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27124 		select_page =
27125 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27126 		select_page->mode_page.code = CDROM_MODE_SPEED;
27127 		select_page->mode_page.length = 2;
27128 		select_page->speed = (uchar_t)data;
27129 
27130 		/* Send the mode select for the requested block size */
27131 		ssc = sd_ssc_init(un);
27132 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27133 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27134 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27135 		sd_ssc_fini(ssc);
27136 		if (rval != 0) {
27137 			/*
27138 			 * The mode select failed for the requested drive speed,
27139 			 * so reset the data for the original drive speed and
27140 			 * send it to the target. The error is indicated by the
27141 			 * return value for the failed mode select.
27142 			 */
27143 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27144 			    "sr_drive_speed: Mode Select Failed\n");
27145 			select_page->speed = sense_page->speed;
27146 			ssc = sd_ssc_init(un);
27147 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27148 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27149 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27150 			sd_ssc_fini(ssc);
27151 		}
27152 		break;
27153 	default:
27154 		/* should not reach here, but check anyway */
27155 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27156 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27157 		rval = EINVAL;
27158 		break;
27159 	}
27160 
27161 	if (select) {
27162 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27163 	}
27164 	if (sense) {
27165 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27166 	}
27167 
27168 	return (rval);
27169 }
27170 
27171 
27172 /*
27173  *    Function: sr_atapi_change_speed()
27174  *
27175  * Description: This routine is the driver entry point for handling CD-ROM
27176  *		drive speed ioctl requests for MMC devices that do not support
27177  *		the Real Time Streaming feature (0x107).
27178  *
27179  *		Note: This routine will use the SET SPEED command which may not
27180  *		be supported by all devices.
27181  *
27182  *   Arguments: dev- the device 'dev_t'
27183  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27184  *		     CDROMSDRVSPEED (set)
27185  *		data- current drive speed or requested drive speed
27186  *		flag- this argument is a pass through to ddi_copyxxx() directly
27187  *		      from the mode argument of ioctl().
27188  *
27189  * Return Code: the code returned by sd_send_scsi_cmd()
27190  *		EINVAL if invalid arguments are provided
27191  *		EFAULT if ddi_copyxxx() fails
27192  *		ENXIO if fail ddi_get_soft_state
27193  *		EIO if invalid mode sense block descriptor length
27194  */
27195 
27196 static int
27197 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27198 {
27199 	struct sd_lun			*un;
27200 	struct uscsi_cmd		*com = NULL;
27201 	struct mode_header_grp2		*sense_mhp;
27202 	uchar_t				*sense_page;
27203 	uchar_t				*sense = NULL;
27204 	char				cdb[CDB_GROUP5];
27205 	int				bd_len;
27206 	int				current_speed = 0;
27207 	int				max_speed = 0;
27208 	int				rval;
27209 	sd_ssc_t			*ssc;
27210 
27211 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27212 
27213 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27214 		return (ENXIO);
27215 	}
27216 
27217 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27218 
27219 	ssc = sd_ssc_init(un);
27220 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27221 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27222 	    SD_PATH_STANDARD);
27223 	sd_ssc_fini(ssc);
27224 	if (rval != 0) {
27225 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27226 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27227 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27228 		return (rval);
27229 	}
27230 
27231 	/* Check the block descriptor len to handle only 1 block descriptor */
27232 	sense_mhp = (struct mode_header_grp2 *)sense;
27233 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27234 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27235 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27236 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27237 		    "block descriptor length\n");
27238 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27239 		return (EIO);
27240 	}
27241 
27242 	/* Calculate the current and maximum drive speeds */
27243 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27244 	current_speed = (sense_page[14] << 8) | sense_page[15];
27245 	max_speed = (sense_page[8] << 8) | sense_page[9];
27246 
27247 	/* Process the command */
27248 	switch (cmd) {
27249 	case CDROMGDRVSPEED:
27250 		current_speed /= SD_SPEED_1X;
27251 		if (ddi_copyout(&current_speed, (void *)data,
27252 		    sizeof (int), flag) != 0)
27253 			rval = EFAULT;
27254 		break;
27255 	case CDROMSDRVSPEED:
27256 		/* Convert the speed code to KB/sec */
27257 		switch ((uchar_t)data) {
27258 		case CDROM_NORMAL_SPEED:
27259 			current_speed = SD_SPEED_1X;
27260 			break;
27261 		case CDROM_DOUBLE_SPEED:
27262 			current_speed = 2 * SD_SPEED_1X;
27263 			break;
27264 		case CDROM_QUAD_SPEED:
27265 			current_speed = 4 * SD_SPEED_1X;
27266 			break;
27267 		case CDROM_TWELVE_SPEED:
27268 			current_speed = 12 * SD_SPEED_1X;
27269 			break;
27270 		case CDROM_MAXIMUM_SPEED:
27271 			current_speed = 0xffff;
27272 			break;
27273 		default:
27274 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27275 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27276 			    (uchar_t)data);
27277 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27278 			return (EINVAL);
27279 		}
27280 
27281 		/* Check the request against the drive's max speed. */
27282 		if (current_speed != 0xffff) {
27283 			if (current_speed > max_speed) {
27284 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27285 				return (EINVAL);
27286 			}
27287 		}
27288 
27289 		/*
27290 		 * Build and send the SET SPEED command
27291 		 *
27292 		 * Note: The SET SPEED (0xBB) command used in this routine is
27293 		 * obsolete per the SCSI MMC spec but still supported in the
27294 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27295 		 * therefore the command is still implemented in this routine.
27296 		 */
27297 		bzero(cdb, sizeof (cdb));
27298 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27299 		cdb[2] = (uchar_t)(current_speed >> 8);
27300 		cdb[3] = (uchar_t)current_speed;
27301 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27302 		com->uscsi_cdb	   = (caddr_t)cdb;
27303 		com->uscsi_cdblen  = CDB_GROUP5;
27304 		com->uscsi_bufaddr = NULL;
27305 		com->uscsi_buflen  = 0;
27306 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27307 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27308 		break;
27309 	default:
27310 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27311 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27312 		rval = EINVAL;
27313 	}
27314 
27315 	if (sense) {
27316 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27317 	}
27318 	if (com) {
27319 		kmem_free(com, sizeof (*com));
27320 	}
27321 	return (rval);
27322 }
27323 
27324 
27325 /*
27326  *    Function: sr_pause_resume()
27327  *
27328  * Description: This routine is the driver entry point for handling CD-ROM
27329  *		pause/resume ioctl requests. This only affects the audio play
27330  *		operation.
27331  *
27332  *   Arguments: dev - the device 'dev_t'
27333  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27334  *		      for setting the resume bit of the cdb.
27335  *
27336  * Return Code: the code returned by sd_send_scsi_cmd()
27337  *		EINVAL if invalid mode specified
27338  *
27339  */
27340 
27341 static int
27342 sr_pause_resume(dev_t dev, int cmd)
27343 {
27344 	struct sd_lun		*un;
27345 	struct uscsi_cmd	*com;
27346 	char			cdb[CDB_GROUP1];
27347 	int			rval;
27348 
27349 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27350 		return (ENXIO);
27351 	}
27352 
27353 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27354 	bzero(cdb, CDB_GROUP1);
27355 	cdb[0] = SCMD_PAUSE_RESUME;
27356 	switch (cmd) {
27357 	case CDROMRESUME:
27358 		cdb[8] = 1;
27359 		break;
27360 	case CDROMPAUSE:
27361 		cdb[8] = 0;
27362 		break;
27363 	default:
27364 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27365 		    " Command '%x' Not Supported\n", cmd);
27366 		rval = EINVAL;
27367 		goto done;
27368 	}
27369 
27370 	com->uscsi_cdb    = cdb;
27371 	com->uscsi_cdblen = CDB_GROUP1;
27372 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27373 
27374 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27375 	    SD_PATH_STANDARD);
27376 
27377 done:
27378 	kmem_free(com, sizeof (*com));
27379 	return (rval);
27380 }
27381 
27382 
27383 /*
27384  *    Function: sr_play_msf()
27385  *
27386  * Description: This routine is the driver entry point for handling CD-ROM
27387  *		ioctl requests to output the audio signals at the specified
27388  *		starting address and continue the audio play until the specified
27389  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27390  *		Frame (MSF) format.
27391  *
27392  *   Arguments: dev	- the device 'dev_t'
27393  *		data	- pointer to user provided audio msf structure,
27394  *		          specifying start/end addresses.
27395  *		flag	- this argument is a pass through to ddi_copyxxx()
27396  *		          directly from the mode argument of ioctl().
27397  *
27398  * Return Code: the code returned by sd_send_scsi_cmd()
27399  *		EFAULT if ddi_copyxxx() fails
27400  *		ENXIO if fail ddi_get_soft_state
27401  *		EINVAL if data pointer is NULL
27402  */
27403 
27404 static int
27405 sr_play_msf(dev_t dev, caddr_t data, int flag)
27406 {
27407 	struct sd_lun		*un;
27408 	struct uscsi_cmd	*com;
27409 	struct cdrom_msf	msf_struct;
27410 	struct cdrom_msf	*msf = &msf_struct;
27411 	char			cdb[CDB_GROUP1];
27412 	int			rval;
27413 
27414 	if (data == NULL) {
27415 		return (EINVAL);
27416 	}
27417 
27418 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27419 		return (ENXIO);
27420 	}
27421 
27422 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27423 		return (EFAULT);
27424 	}
27425 
27426 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27427 	bzero(cdb, CDB_GROUP1);
27428 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27429 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27430 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27431 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27432 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27433 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27434 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27435 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27436 	} else {
27437 		cdb[3] = msf->cdmsf_min0;
27438 		cdb[4] = msf->cdmsf_sec0;
27439 		cdb[5] = msf->cdmsf_frame0;
27440 		cdb[6] = msf->cdmsf_min1;
27441 		cdb[7] = msf->cdmsf_sec1;
27442 		cdb[8] = msf->cdmsf_frame1;
27443 	}
27444 	com->uscsi_cdb    = cdb;
27445 	com->uscsi_cdblen = CDB_GROUP1;
27446 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27447 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27448 	    SD_PATH_STANDARD);
27449 	kmem_free(com, sizeof (*com));
27450 	return (rval);
27451 }
27452 
27453 
27454 /*
27455  *    Function: sr_play_trkind()
27456  *
27457  * Description: This routine is the driver entry point for handling CD-ROM
27458  *		ioctl requests to output the audio signals at the specified
27459  *		starting address and continue the audio play until the specified
27460  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27461  *		format.
27462  *
27463  *   Arguments: dev	- the device 'dev_t'
27464  *		data	- pointer to user provided audio track/index structure,
27465  *		          specifying start/end addresses.
27466  *		flag	- this argument is a pass through to ddi_copyxxx()
27467  *		          directly from the mode argument of ioctl().
27468  *
27469  * Return Code: the code returned by sd_send_scsi_cmd()
27470  *		EFAULT if ddi_copyxxx() fails
27471  *		ENXIO if fail ddi_get_soft_state
27472  *		EINVAL if data pointer is NULL
27473  */
27474 
27475 static int
27476 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27477 {
27478 	struct cdrom_ti		ti_struct;
27479 	struct cdrom_ti		*ti = &ti_struct;
27480 	struct uscsi_cmd	*com = NULL;
27481 	char			cdb[CDB_GROUP1];
27482 	int			rval;
27483 
27484 	if (data == NULL) {
27485 		return (EINVAL);
27486 	}
27487 
27488 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27489 		return (EFAULT);
27490 	}
27491 
27492 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27493 	bzero(cdb, CDB_GROUP1);
27494 	cdb[0] = SCMD_PLAYAUDIO_TI;
27495 	cdb[4] = ti->cdti_trk0;
27496 	cdb[5] = ti->cdti_ind0;
27497 	cdb[7] = ti->cdti_trk1;
27498 	cdb[8] = ti->cdti_ind1;
27499 	com->uscsi_cdb    = cdb;
27500 	com->uscsi_cdblen = CDB_GROUP1;
27501 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27502 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27503 	    SD_PATH_STANDARD);
27504 	kmem_free(com, sizeof (*com));
27505 	return (rval);
27506 }
27507 
27508 
27509 /*
27510  *    Function: sr_read_all_subcodes()
27511  *
27512  * Description: This routine is the driver entry point for handling CD-ROM
27513  *		ioctl requests to return raw subcode data while the target is
27514  *		playing audio (CDROMSUBCODE).
27515  *
27516  *   Arguments: dev	- the device 'dev_t'
27517  *		data	- pointer to user provided cdrom subcode structure,
27518  *		          specifying the transfer length and address.
27519  *		flag	- this argument is a pass through to ddi_copyxxx()
27520  *		          directly from the mode argument of ioctl().
27521  *
27522  * Return Code: the code returned by sd_send_scsi_cmd()
27523  *		EFAULT if ddi_copyxxx() fails
27524  *		ENXIO if fail ddi_get_soft_state
27525  *		EINVAL if data pointer is NULL
27526  */
27527 
27528 static int
27529 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27530 {
27531 	struct sd_lun		*un = NULL;
27532 	struct uscsi_cmd	*com = NULL;
27533 	struct cdrom_subcode	*subcode = NULL;
27534 	int			rval;
27535 	size_t			buflen;
27536 	char			cdb[CDB_GROUP5];
27537 
27538 #ifdef _MULTI_DATAMODEL
27539 	/* To support ILP32 applications in an LP64 world */
27540 	struct cdrom_subcode32		cdrom_subcode32;
27541 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27542 #endif
27543 	if (data == NULL) {
27544 		return (EINVAL);
27545 	}
27546 
27547 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27548 		return (ENXIO);
27549 	}
27550 
27551 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27552 
27553 #ifdef _MULTI_DATAMODEL
27554 	switch (ddi_model_convert_from(flag & FMODELS)) {
27555 	case DDI_MODEL_ILP32:
27556 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27557 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27558 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27559 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27560 			return (EFAULT);
27561 		}
27562 		/* Convert the ILP32 uscsi data from the application to LP64 */
27563 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27564 		break;
27565 	case DDI_MODEL_NONE:
27566 		if (ddi_copyin(data, subcode,
27567 		    sizeof (struct cdrom_subcode), flag)) {
27568 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27569 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27570 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27571 			return (EFAULT);
27572 		}
27573 		break;
27574 	}
27575 #else /* ! _MULTI_DATAMODEL */
27576 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27577 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27578 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27579 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27580 		return (EFAULT);
27581 	}
27582 #endif /* _MULTI_DATAMODEL */
27583 
27584 	/*
27585 	 * Since MMC-2 expects max 3 bytes for length, check if the
27586 	 * length input is greater than 3 bytes
27587 	 */
27588 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27589 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27590 		    "sr_read_all_subcodes: "
27591 		    "cdrom transfer length too large: %d (limit %d)\n",
27592 		    subcode->cdsc_length, 0xFFFFFF);
27593 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27594 		return (EINVAL);
27595 	}
27596 
27597 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27598 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27599 	bzero(cdb, CDB_GROUP5);
27600 
27601 	if (un->un_f_mmc_cap == TRUE) {
27602 		cdb[0] = (char)SCMD_READ_CD;
27603 		cdb[2] = (char)0xff;
27604 		cdb[3] = (char)0xff;
27605 		cdb[4] = (char)0xff;
27606 		cdb[5] = (char)0xff;
27607 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27608 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27609 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27610 		cdb[10] = 1;
27611 	} else {
27612 		/*
27613 		 * Note: A vendor specific command (0xDF) is being used her to
27614 		 * request a read of all subcodes.
27615 		 */
27616 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27617 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27618 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27619 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27620 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27621 	}
27622 	com->uscsi_cdb	   = cdb;
27623 	com->uscsi_cdblen  = CDB_GROUP5;
27624 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27625 	com->uscsi_buflen  = buflen;
27626 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27627 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27628 	    SD_PATH_STANDARD);
27629 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27630 	kmem_free(com, sizeof (*com));
27631 	return (rval);
27632 }
27633 
27634 
27635 /*
27636  *    Function: sr_read_subchannel()
27637  *
27638  * Description: This routine is the driver entry point for handling CD-ROM
27639  *		ioctl requests to return the Q sub-channel data of the CD
27640  *		current position block. (CDROMSUBCHNL) The data includes the
27641  *		track number, index number, absolute CD-ROM address (LBA or MSF
27642  *		format per the user) , track relative CD-ROM address (LBA or MSF
27643  *		format per the user), control data and audio status.
27644  *
27645  *   Arguments: dev	- the device 'dev_t'
27646  *		data	- pointer to user provided cdrom sub-channel structure
27647  *		flag	- this argument is a pass through to ddi_copyxxx()
27648  *		          directly from the mode argument of ioctl().
27649  *
27650  * Return Code: the code returned by sd_send_scsi_cmd()
27651  *		EFAULT if ddi_copyxxx() fails
27652  *		ENXIO if fail ddi_get_soft_state
27653  *		EINVAL if data pointer is NULL
27654  */
27655 
27656 static int
27657 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27658 {
27659 	struct sd_lun		*un;
27660 	struct uscsi_cmd	*com;
27661 	struct cdrom_subchnl	subchanel;
27662 	struct cdrom_subchnl	*subchnl = &subchanel;
27663 	char			cdb[CDB_GROUP1];
27664 	caddr_t			buffer;
27665 	int			rval;
27666 
27667 	if (data == NULL) {
27668 		return (EINVAL);
27669 	}
27670 
27671 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27672 	    (un->un_state == SD_STATE_OFFLINE)) {
27673 		return (ENXIO);
27674 	}
27675 
27676 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27677 		return (EFAULT);
27678 	}
27679 
27680 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27681 	bzero(cdb, CDB_GROUP1);
27682 	cdb[0] = SCMD_READ_SUBCHANNEL;
27683 	/* Set the MSF bit based on the user requested address format */
27684 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27685 	/*
27686 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27687 	 * returned
27688 	 */
27689 	cdb[2] = 0x40;
27690 	/*
27691 	 * Set byte 3 to specify the return data format. A value of 0x01
27692 	 * indicates that the CD-ROM current position should be returned.
27693 	 */
27694 	cdb[3] = 0x01;
27695 	cdb[8] = 0x10;
27696 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27697 	com->uscsi_cdb	   = cdb;
27698 	com->uscsi_cdblen  = CDB_GROUP1;
27699 	com->uscsi_bufaddr = buffer;
27700 	com->uscsi_buflen  = 16;
27701 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27702 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27703 	    SD_PATH_STANDARD);
27704 	if (rval != 0) {
27705 		kmem_free(buffer, 16);
27706 		kmem_free(com, sizeof (*com));
27707 		return (rval);
27708 	}
27709 
27710 	/* Process the returned Q sub-channel data */
27711 	subchnl->cdsc_audiostatus = buffer[1];
27712 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27713 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27714 	subchnl->cdsc_trk	= buffer[6];
27715 	subchnl->cdsc_ind	= buffer[7];
27716 	if (subchnl->cdsc_format & CDROM_LBA) {
27717 		subchnl->cdsc_absaddr.lba =
27718 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27719 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27720 		subchnl->cdsc_reladdr.lba =
27721 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27722 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27723 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27724 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27725 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27726 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27727 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27728 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27729 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27730 	} else {
27731 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27732 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27733 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27734 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27735 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27736 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27737 	}
27738 	kmem_free(buffer, 16);
27739 	kmem_free(com, sizeof (*com));
27740 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27741 	    != 0) {
27742 		return (EFAULT);
27743 	}
27744 	return (rval);
27745 }
27746 
27747 
27748 /*
27749  *    Function: sr_read_tocentry()
27750  *
27751  * Description: This routine is the driver entry point for handling CD-ROM
27752  *		ioctl requests to read from the Table of Contents (TOC)
27753  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27754  *		fields, the starting address (LBA or MSF format per the user)
27755  *		and the data mode if the user specified track is a data track.
27756  *
27757  *		Note: The READ HEADER (0x44) command used in this routine is
27758  *		obsolete per the SCSI MMC spec but still supported in the
27759  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27760  *		therefore the command is still implemented in this routine.
27761  *
27762  *   Arguments: dev	- the device 'dev_t'
27763  *		data	- pointer to user provided toc entry structure,
27764  *			  specifying the track # and the address format
27765  *			  (LBA or MSF).
27766  *		flag	- this argument is a pass through to ddi_copyxxx()
27767  *		          directly from the mode argument of ioctl().
27768  *
27769  * Return Code: the code returned by sd_send_scsi_cmd()
27770  *		EFAULT if ddi_copyxxx() fails
27771  *		ENXIO if fail ddi_get_soft_state
27772  *		EINVAL if data pointer is NULL
27773  */
27774 
27775 static int
27776 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27777 {
27778 	struct sd_lun		*un = NULL;
27779 	struct uscsi_cmd	*com;
27780 	struct cdrom_tocentry	toc_entry;
27781 	struct cdrom_tocentry	*entry = &toc_entry;
27782 	caddr_t			buffer;
27783 	int			rval;
27784 	char			cdb[CDB_GROUP1];
27785 
27786 	if (data == NULL) {
27787 		return (EINVAL);
27788 	}
27789 
27790 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27791 	    (un->un_state == SD_STATE_OFFLINE)) {
27792 		return (ENXIO);
27793 	}
27794 
27795 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27796 		return (EFAULT);
27797 	}
27798 
27799 	/* Validate the requested track and address format */
27800 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27801 		return (EINVAL);
27802 	}
27803 
27804 	if (entry->cdte_track == 0) {
27805 		return (EINVAL);
27806 	}
27807 
27808 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27809 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27810 	bzero(cdb, CDB_GROUP1);
27811 
27812 	cdb[0] = SCMD_READ_TOC;
27813 	/* Set the MSF bit based on the user requested address format  */
27814 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27815 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27816 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27817 	} else {
27818 		cdb[6] = entry->cdte_track;
27819 	}
27820 
27821 	/*
27822 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27823 	 * (4 byte TOC response header + 8 byte track descriptor)
27824 	 */
27825 	cdb[8] = 12;
27826 	com->uscsi_cdb	   = cdb;
27827 	com->uscsi_cdblen  = CDB_GROUP1;
27828 	com->uscsi_bufaddr = buffer;
27829 	com->uscsi_buflen  = 0x0C;
27830 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27831 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27832 	    SD_PATH_STANDARD);
27833 	if (rval != 0) {
27834 		kmem_free(buffer, 12);
27835 		kmem_free(com, sizeof (*com));
27836 		return (rval);
27837 	}
27838 
27839 	/* Process the toc entry */
27840 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27841 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27842 	if (entry->cdte_format & CDROM_LBA) {
27843 		entry->cdte_addr.lba =
27844 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27845 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27846 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27847 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27848 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27849 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27850 		/*
27851 		 * Send a READ TOC command using the LBA address format to get
27852 		 * the LBA for the track requested so it can be used in the
27853 		 * READ HEADER request
27854 		 *
27855 		 * Note: The MSF bit of the READ HEADER command specifies the
27856 		 * output format. The block address specified in that command
27857 		 * must be in LBA format.
27858 		 */
27859 		cdb[1] = 0;
27860 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27861 		    SD_PATH_STANDARD);
27862 		if (rval != 0) {
27863 			kmem_free(buffer, 12);
27864 			kmem_free(com, sizeof (*com));
27865 			return (rval);
27866 		}
27867 	} else {
27868 		entry->cdte_addr.msf.minute	= buffer[9];
27869 		entry->cdte_addr.msf.second	= buffer[10];
27870 		entry->cdte_addr.msf.frame	= buffer[11];
27871 		/*
27872 		 * Send a READ TOC command using the LBA address format to get
27873 		 * the LBA for the track requested so it can be used in the
27874 		 * READ HEADER request
27875 		 *
27876 		 * Note: The MSF bit of the READ HEADER command specifies the
27877 		 * output format. The block address specified in that command
27878 		 * must be in LBA format.
27879 		 */
27880 		cdb[1] = 0;
27881 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27882 		    SD_PATH_STANDARD);
27883 		if (rval != 0) {
27884 			kmem_free(buffer, 12);
27885 			kmem_free(com, sizeof (*com));
27886 			return (rval);
27887 		}
27888 	}
27889 
27890 	/*
27891 	 * Build and send the READ HEADER command to determine the data mode of
27892 	 * the user specified track.
27893 	 */
27894 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27895 	    (entry->cdte_track != CDROM_LEADOUT)) {
27896 		bzero(cdb, CDB_GROUP1);
27897 		cdb[0] = SCMD_READ_HEADER;
27898 		cdb[2] = buffer[8];
27899 		cdb[3] = buffer[9];
27900 		cdb[4] = buffer[10];
27901 		cdb[5] = buffer[11];
27902 		cdb[8] = 0x08;
27903 		com->uscsi_buflen = 0x08;
27904 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27905 		    SD_PATH_STANDARD);
27906 		if (rval == 0) {
27907 			entry->cdte_datamode = buffer[0];
27908 		} else {
27909 			/*
27910 			 * READ HEADER command failed, since this is
27911 			 * obsoleted in one spec, its better to return
27912 			 * -1 for an invlid track so that we can still
27913 			 * receive the rest of the TOC data.
27914 			 */
27915 			entry->cdte_datamode = (uchar_t)-1;
27916 		}
27917 	} else {
27918 		entry->cdte_datamode = (uchar_t)-1;
27919 	}
27920 
27921 	kmem_free(buffer, 12);
27922 	kmem_free(com, sizeof (*com));
27923 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27924 		return (EFAULT);
27925 
27926 	return (rval);
27927 }
27928 
27929 
27930 /*
27931  *    Function: sr_read_tochdr()
27932  *
27933  * Description: This routine is the driver entry point for handling CD-ROM
27934  * 		ioctl requests to read the Table of Contents (TOC) header
27935  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27936  *		and ending track numbers
27937  *
27938  *   Arguments: dev	- the device 'dev_t'
27939  *		data	- pointer to user provided toc header structure,
27940  *			  specifying the starting and ending track numbers.
27941  *		flag	- this argument is a pass through to ddi_copyxxx()
27942  *			  directly from the mode argument of ioctl().
27943  *
27944  * Return Code: the code returned by sd_send_scsi_cmd()
27945  *		EFAULT if ddi_copyxxx() fails
27946  *		ENXIO if fail ddi_get_soft_state
27947  *		EINVAL if data pointer is NULL
27948  */
27949 
27950 static int
27951 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27952 {
27953 	struct sd_lun		*un;
27954 	struct uscsi_cmd	*com;
27955 	struct cdrom_tochdr	toc_header;
27956 	struct cdrom_tochdr	*hdr = &toc_header;
27957 	char			cdb[CDB_GROUP1];
27958 	int			rval;
27959 	caddr_t			buffer;
27960 
27961 	if (data == NULL) {
27962 		return (EINVAL);
27963 	}
27964 
27965 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27966 	    (un->un_state == SD_STATE_OFFLINE)) {
27967 		return (ENXIO);
27968 	}
27969 
27970 	buffer = kmem_zalloc(4, KM_SLEEP);
27971 	bzero(cdb, CDB_GROUP1);
27972 	cdb[0] = SCMD_READ_TOC;
27973 	/*
27974 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27975 	 * that the TOC header should be returned
27976 	 */
27977 	cdb[6] = 0x00;
27978 	/*
27979 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27980 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27981 	 */
27982 	cdb[8] = 0x04;
27983 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27984 	com->uscsi_cdb	   = cdb;
27985 	com->uscsi_cdblen  = CDB_GROUP1;
27986 	com->uscsi_bufaddr = buffer;
27987 	com->uscsi_buflen  = 0x04;
27988 	com->uscsi_timeout = 300;
27989 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27990 
27991 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27992 	    SD_PATH_STANDARD);
27993 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27994 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27995 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27996 	} else {
27997 		hdr->cdth_trk0 = buffer[2];
27998 		hdr->cdth_trk1 = buffer[3];
27999 	}
28000 	kmem_free(buffer, 4);
28001 	kmem_free(com, sizeof (*com));
28002 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28003 		return (EFAULT);
28004 	}
28005 	return (rval);
28006 }
28007 
28008 
28009 /*
28010  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28011  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28012  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28013  * digital audio and extended architecture digital audio. These modes are
28014  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28015  * MMC specs.
28016  *
28017  * In addition to support for the various data formats these routines also
28018  * include support for devices that implement only the direct access READ
28019  * commands (0x08, 0x28), devices that implement the READ_CD commands
28020  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28021  * READ CDXA commands (0xD8, 0xDB)
28022  */
28023 
28024 /*
28025  *    Function: sr_read_mode1()
28026  *
28027  * Description: This routine is the driver entry point for handling CD-ROM
28028  *		ioctl read mode1 requests (CDROMREADMODE1).
28029  *
28030  *   Arguments: dev	- the device 'dev_t'
28031  *		data	- pointer to user provided cd read structure specifying
28032  *			  the lba buffer address and length.
28033  *		flag	- this argument is a pass through to ddi_copyxxx()
28034  *			  directly from the mode argument of ioctl().
28035  *
28036  * Return Code: the code returned by sd_send_scsi_cmd()
28037  *		EFAULT if ddi_copyxxx() fails
28038  *		ENXIO if fail ddi_get_soft_state
28039  *		EINVAL if data pointer is NULL
28040  */
28041 
28042 static int
28043 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28044 {
28045 	struct sd_lun		*un;
28046 	struct cdrom_read	mode1_struct;
28047 	struct cdrom_read	*mode1 = &mode1_struct;
28048 	int			rval;
28049 	sd_ssc_t		*ssc;
28050 
28051 #ifdef _MULTI_DATAMODEL
28052 	/* To support ILP32 applications in an LP64 world */
28053 	struct cdrom_read32	cdrom_read32;
28054 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28055 #endif /* _MULTI_DATAMODEL */
28056 
28057 	if (data == NULL) {
28058 		return (EINVAL);
28059 	}
28060 
28061 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28062 	    (un->un_state == SD_STATE_OFFLINE)) {
28063 		return (ENXIO);
28064 	}
28065 
28066 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28067 	    "sd_read_mode1: entry: un:0x%p\n", un);
28068 
28069 #ifdef _MULTI_DATAMODEL
28070 	switch (ddi_model_convert_from(flag & FMODELS)) {
28071 	case DDI_MODEL_ILP32:
28072 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28073 			return (EFAULT);
28074 		}
28075 		/* Convert the ILP32 uscsi data from the application to LP64 */
28076 		cdrom_read32tocdrom_read(cdrd32, mode1);
28077 		break;
28078 	case DDI_MODEL_NONE:
28079 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28080 			return (EFAULT);
28081 		}
28082 	}
28083 #else /* ! _MULTI_DATAMODEL */
28084 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28085 		return (EFAULT);
28086 	}
28087 #endif /* _MULTI_DATAMODEL */
28088 
28089 	ssc = sd_ssc_init(un);
28090 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28091 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28092 	sd_ssc_fini(ssc);
28093 
28094 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28095 	    "sd_read_mode1: exit: un:0x%p\n", un);
28096 
28097 	return (rval);
28098 }
28099 
28100 
28101 /*
28102  *    Function: sr_read_cd_mode2()
28103  *
28104  * Description: This routine is the driver entry point for handling CD-ROM
28105  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28106  *		support the READ CD (0xBE) command or the 1st generation
28107  *		READ CD (0xD4) command.
28108  *
28109  *   Arguments: dev	- the device 'dev_t'
28110  *		data	- pointer to user provided cd read structure specifying
28111  *			  the lba buffer address and length.
28112  *		flag	- this argument is a pass through to ddi_copyxxx()
28113  *			  directly from the mode argument of ioctl().
28114  *
28115  * Return Code: the code returned by sd_send_scsi_cmd()
28116  *		EFAULT if ddi_copyxxx() fails
28117  *		ENXIO if fail ddi_get_soft_state
28118  *		EINVAL if data pointer is NULL
28119  */
28120 
28121 static int
28122 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28123 {
28124 	struct sd_lun		*un;
28125 	struct uscsi_cmd	*com;
28126 	struct cdrom_read	mode2_struct;
28127 	struct cdrom_read	*mode2 = &mode2_struct;
28128 	uchar_t			cdb[CDB_GROUP5];
28129 	int			nblocks;
28130 	int			rval;
28131 #ifdef _MULTI_DATAMODEL
28132 	/*  To support ILP32 applications in an LP64 world */
28133 	struct cdrom_read32	cdrom_read32;
28134 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28135 #endif /* _MULTI_DATAMODEL */
28136 
28137 	if (data == NULL) {
28138 		return (EINVAL);
28139 	}
28140 
28141 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28142 	    (un->un_state == SD_STATE_OFFLINE)) {
28143 		return (ENXIO);
28144 	}
28145 
28146 #ifdef _MULTI_DATAMODEL
28147 	switch (ddi_model_convert_from(flag & FMODELS)) {
28148 	case DDI_MODEL_ILP32:
28149 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28150 			return (EFAULT);
28151 		}
28152 		/* Convert the ILP32 uscsi data from the application to LP64 */
28153 		cdrom_read32tocdrom_read(cdrd32, mode2);
28154 		break;
28155 	case DDI_MODEL_NONE:
28156 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28157 			return (EFAULT);
28158 		}
28159 		break;
28160 	}
28161 
28162 #else /* ! _MULTI_DATAMODEL */
28163 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28164 		return (EFAULT);
28165 	}
28166 #endif /* _MULTI_DATAMODEL */
28167 
28168 	bzero(cdb, sizeof (cdb));
28169 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28170 		/* Read command supported by 1st generation atapi drives */
28171 		cdb[0] = SCMD_READ_CDD4;
28172 	} else {
28173 		/* Universal CD Access Command */
28174 		cdb[0] = SCMD_READ_CD;
28175 	}
28176 
28177 	/*
28178 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28179 	 */
28180 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28181 
28182 	/* set the start address */
28183 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28184 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28185 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28186 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28187 
28188 	/* set the transfer length */
28189 	nblocks = mode2->cdread_buflen / 2336;
28190 	cdb[6] = (uchar_t)(nblocks >> 16);
28191 	cdb[7] = (uchar_t)(nblocks >> 8);
28192 	cdb[8] = (uchar_t)nblocks;
28193 
28194 	/* set the filter bits */
28195 	cdb[9] = CDROM_READ_CD_USERDATA;
28196 
28197 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28198 	com->uscsi_cdb = (caddr_t)cdb;
28199 	com->uscsi_cdblen = sizeof (cdb);
28200 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28201 	com->uscsi_buflen = mode2->cdread_buflen;
28202 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28203 
28204 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28205 	    SD_PATH_STANDARD);
28206 	kmem_free(com, sizeof (*com));
28207 	return (rval);
28208 }
28209 
28210 
28211 /*
28212  *    Function: sr_read_mode2()
28213  *
28214  * Description: This routine is the driver entry point for handling CD-ROM
28215  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28216  *		do not support the READ CD (0xBE) command.
28217  *
28218  *   Arguments: dev	- the device 'dev_t'
28219  *		data	- pointer to user provided cd read structure specifying
28220  *			  the lba buffer address and length.
28221  *		flag	- this argument is a pass through to ddi_copyxxx()
28222  *			  directly from the mode argument of ioctl().
28223  *
28224  * Return Code: the code returned by sd_send_scsi_cmd()
28225  *		EFAULT if ddi_copyxxx() fails
28226  *		ENXIO if fail ddi_get_soft_state
28227  *		EINVAL if data pointer is NULL
28228  *		EIO if fail to reset block size
28229  *		EAGAIN if commands are in progress in the driver
28230  */
28231 
28232 static int
28233 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28234 {
28235 	struct sd_lun		*un;
28236 	struct cdrom_read	mode2_struct;
28237 	struct cdrom_read	*mode2 = &mode2_struct;
28238 	int			rval;
28239 	uint32_t		restore_blksize;
28240 	struct uscsi_cmd	*com;
28241 	uchar_t			cdb[CDB_GROUP0];
28242 	int			nblocks;
28243 
28244 #ifdef _MULTI_DATAMODEL
28245 	/* To support ILP32 applications in an LP64 world */
28246 	struct cdrom_read32	cdrom_read32;
28247 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28248 #endif /* _MULTI_DATAMODEL */
28249 
28250 	if (data == NULL) {
28251 		return (EINVAL);
28252 	}
28253 
28254 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28255 	    (un->un_state == SD_STATE_OFFLINE)) {
28256 		return (ENXIO);
28257 	}
28258 
28259 	/*
28260 	 * Because this routine will update the device and driver block size
28261 	 * being used we want to make sure there are no commands in progress.
28262 	 * If commands are in progress the user will have to try again.
28263 	 *
28264 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28265 	 * in sdioctl to protect commands from sdioctl through to the top of
28266 	 * sd_uscsi_strategy. See sdioctl for details.
28267 	 */
28268 	mutex_enter(SD_MUTEX(un));
28269 	if (un->un_ncmds_in_driver != 1) {
28270 		mutex_exit(SD_MUTEX(un));
28271 		return (EAGAIN);
28272 	}
28273 	mutex_exit(SD_MUTEX(un));
28274 
28275 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28276 	    "sd_read_mode2: entry: un:0x%p\n", un);
28277 
28278 #ifdef _MULTI_DATAMODEL
28279 	switch (ddi_model_convert_from(flag & FMODELS)) {
28280 	case DDI_MODEL_ILP32:
28281 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28282 			return (EFAULT);
28283 		}
28284 		/* Convert the ILP32 uscsi data from the application to LP64 */
28285 		cdrom_read32tocdrom_read(cdrd32, mode2);
28286 		break;
28287 	case DDI_MODEL_NONE:
28288 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28289 			return (EFAULT);
28290 		}
28291 		break;
28292 	}
28293 #else /* ! _MULTI_DATAMODEL */
28294 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28295 		return (EFAULT);
28296 	}
28297 #endif /* _MULTI_DATAMODEL */
28298 
28299 	/* Store the current target block size for restoration later */
28300 	restore_blksize = un->un_tgt_blocksize;
28301 
28302 	/* Change the device and soft state target block size to 2336 */
28303 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28304 		rval = EIO;
28305 		goto done;
28306 	}
28307 
28308 
28309 	bzero(cdb, sizeof (cdb));
28310 
28311 	/* set READ operation */
28312 	cdb[0] = SCMD_READ;
28313 
28314 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28315 	mode2->cdread_lba >>= 2;
28316 
28317 	/* set the start address */
28318 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28319 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28320 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28321 
28322 	/* set the transfer length */
28323 	nblocks = mode2->cdread_buflen / 2336;
28324 	cdb[4] = (uchar_t)nblocks & 0xFF;
28325 
28326 	/* build command */
28327 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28328 	com->uscsi_cdb = (caddr_t)cdb;
28329 	com->uscsi_cdblen = sizeof (cdb);
28330 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28331 	com->uscsi_buflen = mode2->cdread_buflen;
28332 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28333 
28334 	/*
28335 	 * Issue SCSI command with user space address for read buffer.
28336 	 *
28337 	 * This sends the command through main channel in the driver.
28338 	 *
28339 	 * Since this is accessed via an IOCTL call, we go through the
28340 	 * standard path, so that if the device was powered down, then
28341 	 * it would be 'awakened' to handle the command.
28342 	 */
28343 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28344 	    SD_PATH_STANDARD);
28345 
28346 	kmem_free(com, sizeof (*com));
28347 
28348 	/* Restore the device and soft state target block size */
28349 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28350 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28351 		    "can't do switch back to mode 1\n");
28352 		/*
28353 		 * If sd_send_scsi_READ succeeded we still need to report
28354 		 * an error because we failed to reset the block size
28355 		 */
28356 		if (rval == 0) {
28357 			rval = EIO;
28358 		}
28359 	}
28360 
28361 done:
28362 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28363 	    "sd_read_mode2: exit: un:0x%p\n", un);
28364 
28365 	return (rval);
28366 }
28367 
28368 
28369 /*
28370  *    Function: sr_sector_mode()
28371  *
28372  * Description: This utility function is used by sr_read_mode2 to set the target
28373  *		block size based on the user specified size. This is a legacy
28374  *		implementation based upon a vendor specific mode page
28375  *
28376  *   Arguments: dev	- the device 'dev_t'
28377  *		data	- flag indicating if block size is being set to 2336 or
28378  *			  512.
28379  *
28380  * Return Code: the code returned by sd_send_scsi_cmd()
28381  *		EFAULT if ddi_copyxxx() fails
28382  *		ENXIO if fail ddi_get_soft_state
28383  *		EINVAL if data pointer is NULL
28384  */
28385 
28386 static int
28387 sr_sector_mode(dev_t dev, uint32_t blksize)
28388 {
28389 	struct sd_lun	*un;
28390 	uchar_t		*sense;
28391 	uchar_t		*select;
28392 	int		rval;
28393 	sd_ssc_t	*ssc;
28394 
28395 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28396 	    (un->un_state == SD_STATE_OFFLINE)) {
28397 		return (ENXIO);
28398 	}
28399 
28400 	sense = kmem_zalloc(20, KM_SLEEP);
28401 
28402 	/* Note: This is a vendor specific mode page (0x81) */
28403 	ssc = sd_ssc_init(un);
28404 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28405 	    SD_PATH_STANDARD);
28406 	sd_ssc_fini(ssc);
28407 	if (rval != 0) {
28408 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28409 		    "sr_sector_mode: Mode Sense failed\n");
28410 		kmem_free(sense, 20);
28411 		return (rval);
28412 	}
28413 	select = kmem_zalloc(20, KM_SLEEP);
28414 	select[3] = 0x08;
28415 	select[10] = ((blksize >> 8) & 0xff);
28416 	select[11] = (blksize & 0xff);
28417 	select[12] = 0x01;
28418 	select[13] = 0x06;
28419 	select[14] = sense[14];
28420 	select[15] = sense[15];
28421 	if (blksize == SD_MODE2_BLKSIZE) {
28422 		select[14] |= 0x01;
28423 	}
28424 
28425 	ssc = sd_ssc_init(un);
28426 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28427 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28428 	sd_ssc_fini(ssc);
28429 	if (rval != 0) {
28430 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28431 		    "sr_sector_mode: Mode Select failed\n");
28432 	} else {
28433 		/*
28434 		 * Only update the softstate block size if we successfully
28435 		 * changed the device block mode.
28436 		 */
28437 		mutex_enter(SD_MUTEX(un));
28438 		sd_update_block_info(un, blksize, 0);
28439 		mutex_exit(SD_MUTEX(un));
28440 	}
28441 	kmem_free(sense, 20);
28442 	kmem_free(select, 20);
28443 	return (rval);
28444 }
28445 
28446 
28447 /*
28448  *    Function: sr_read_cdda()
28449  *
28450  * Description: This routine is the driver entry point for handling CD-ROM
28451  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28452  *		the target supports CDDA these requests are handled via a vendor
28453  *		specific command (0xD8) If the target does not support CDDA
28454  *		these requests are handled via the READ CD command (0xBE).
28455  *
28456  *   Arguments: dev	- the device 'dev_t'
28457  *		data	- pointer to user provided CD-DA structure specifying
28458  *			  the track starting address, transfer length, and
28459  *			  subcode options.
28460  *		flag	- this argument is a pass through to ddi_copyxxx()
28461  *			  directly from the mode argument of ioctl().
28462  *
28463  * Return Code: the code returned by sd_send_scsi_cmd()
28464  *		EFAULT if ddi_copyxxx() fails
28465  *		ENXIO if fail ddi_get_soft_state
28466  *		EINVAL if invalid arguments are provided
28467  *		ENOTTY
28468  */
28469 
28470 static int
28471 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28472 {
28473 	struct sd_lun			*un;
28474 	struct uscsi_cmd		*com;
28475 	struct cdrom_cdda		*cdda;
28476 	int				rval;
28477 	size_t				buflen;
28478 	char				cdb[CDB_GROUP5];
28479 
28480 #ifdef _MULTI_DATAMODEL
28481 	/* To support ILP32 applications in an LP64 world */
28482 	struct cdrom_cdda32	cdrom_cdda32;
28483 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28484 #endif /* _MULTI_DATAMODEL */
28485 
28486 	if (data == NULL) {
28487 		return (EINVAL);
28488 	}
28489 
28490 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28491 		return (ENXIO);
28492 	}
28493 
28494 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28495 
28496 #ifdef _MULTI_DATAMODEL
28497 	switch (ddi_model_convert_from(flag & FMODELS)) {
28498 	case DDI_MODEL_ILP32:
28499 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28500 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28501 			    "sr_read_cdda: ddi_copyin Failed\n");
28502 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28503 			return (EFAULT);
28504 		}
28505 		/* Convert the ILP32 uscsi data from the application to LP64 */
28506 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28507 		break;
28508 	case DDI_MODEL_NONE:
28509 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28510 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28511 			    "sr_read_cdda: ddi_copyin Failed\n");
28512 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28513 			return (EFAULT);
28514 		}
28515 		break;
28516 	}
28517 #else /* ! _MULTI_DATAMODEL */
28518 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28519 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28520 		    "sr_read_cdda: ddi_copyin Failed\n");
28521 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28522 		return (EFAULT);
28523 	}
28524 #endif /* _MULTI_DATAMODEL */
28525 
28526 	/*
28527 	 * Since MMC-2 expects max 3 bytes for length, check if the
28528 	 * length input is greater than 3 bytes
28529 	 */
28530 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28531 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28532 		    "cdrom transfer length too large: %d (limit %d)\n",
28533 		    cdda->cdda_length, 0xFFFFFF);
28534 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28535 		return (EINVAL);
28536 	}
28537 
28538 	switch (cdda->cdda_subcode) {
28539 	case CDROM_DA_NO_SUBCODE:
28540 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28541 		break;
28542 	case CDROM_DA_SUBQ:
28543 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28544 		break;
28545 	case CDROM_DA_ALL_SUBCODE:
28546 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28547 		break;
28548 	case CDROM_DA_SUBCODE_ONLY:
28549 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28550 		break;
28551 	default:
28552 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28553 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28554 		    cdda->cdda_subcode);
28555 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28556 		return (EINVAL);
28557 	}
28558 
28559 	/* Build and send the command */
28560 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28561 	bzero(cdb, CDB_GROUP5);
28562 
28563 	if (un->un_f_cfg_cdda == TRUE) {
28564 		cdb[0] = (char)SCMD_READ_CD;
28565 		cdb[1] = 0x04;
28566 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28567 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28568 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28569 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28570 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28571 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28572 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28573 		cdb[9] = 0x10;
28574 		switch (cdda->cdda_subcode) {
28575 		case CDROM_DA_NO_SUBCODE :
28576 			cdb[10] = 0x0;
28577 			break;
28578 		case CDROM_DA_SUBQ :
28579 			cdb[10] = 0x2;
28580 			break;
28581 		case CDROM_DA_ALL_SUBCODE :
28582 			cdb[10] = 0x1;
28583 			break;
28584 		case CDROM_DA_SUBCODE_ONLY :
28585 			/* FALLTHROUGH */
28586 		default :
28587 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28588 			kmem_free(com, sizeof (*com));
28589 			return (ENOTTY);
28590 		}
28591 	} else {
28592 		cdb[0] = (char)SCMD_READ_CDDA;
28593 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28594 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28595 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28596 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28597 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28598 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28599 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28600 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28601 		cdb[10] = cdda->cdda_subcode;
28602 	}
28603 
28604 	com->uscsi_cdb = cdb;
28605 	com->uscsi_cdblen = CDB_GROUP5;
28606 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28607 	com->uscsi_buflen = buflen;
28608 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28609 
28610 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28611 	    SD_PATH_STANDARD);
28612 
28613 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28614 	kmem_free(com, sizeof (*com));
28615 	return (rval);
28616 }
28617 
28618 
28619 /*
28620  *    Function: sr_read_cdxa()
28621  *
28622  * Description: This routine is the driver entry point for handling CD-ROM
28623  *		ioctl requests to return CD-XA (Extended Architecture) data.
28624  *		(CDROMCDXA).
28625  *
28626  *   Arguments: dev	- the device 'dev_t'
28627  *		data	- pointer to user provided CD-XA structure specifying
28628  *			  the data starting address, transfer length, and format
28629  *		flag	- this argument is a pass through to ddi_copyxxx()
28630  *			  directly from the mode argument of ioctl().
28631  *
28632  * Return Code: the code returned by sd_send_scsi_cmd()
28633  *		EFAULT if ddi_copyxxx() fails
28634  *		ENXIO if fail ddi_get_soft_state
28635  *		EINVAL if data pointer is NULL
28636  */
28637 
28638 static int
28639 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28640 {
28641 	struct sd_lun		*un;
28642 	struct uscsi_cmd	*com;
28643 	struct cdrom_cdxa	*cdxa;
28644 	int			rval;
28645 	size_t			buflen;
28646 	char			cdb[CDB_GROUP5];
28647 	uchar_t			read_flags;
28648 
28649 #ifdef _MULTI_DATAMODEL
28650 	/* To support ILP32 applications in an LP64 world */
28651 	struct cdrom_cdxa32		cdrom_cdxa32;
28652 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28653 #endif /* _MULTI_DATAMODEL */
28654 
28655 	if (data == NULL) {
28656 		return (EINVAL);
28657 	}
28658 
28659 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28660 		return (ENXIO);
28661 	}
28662 
28663 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28664 
28665 #ifdef _MULTI_DATAMODEL
28666 	switch (ddi_model_convert_from(flag & FMODELS)) {
28667 	case DDI_MODEL_ILP32:
28668 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28669 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28670 			return (EFAULT);
28671 		}
28672 		/*
28673 		 * Convert the ILP32 uscsi data from the
28674 		 * application to LP64 for internal use.
28675 		 */
28676 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28677 		break;
28678 	case DDI_MODEL_NONE:
28679 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28680 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28681 			return (EFAULT);
28682 		}
28683 		break;
28684 	}
28685 #else /* ! _MULTI_DATAMODEL */
28686 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28687 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28688 		return (EFAULT);
28689 	}
28690 #endif /* _MULTI_DATAMODEL */
28691 
28692 	/*
28693 	 * Since MMC-2 expects max 3 bytes for length, check if the
28694 	 * length input is greater than 3 bytes
28695 	 */
28696 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28697 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28698 		    "cdrom transfer length too large: %d (limit %d)\n",
28699 		    cdxa->cdxa_length, 0xFFFFFF);
28700 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28701 		return (EINVAL);
28702 	}
28703 
28704 	switch (cdxa->cdxa_format) {
28705 	case CDROM_XA_DATA:
28706 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28707 		read_flags = 0x10;
28708 		break;
28709 	case CDROM_XA_SECTOR_DATA:
28710 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28711 		read_flags = 0xf8;
28712 		break;
28713 	case CDROM_XA_DATA_W_ERROR:
28714 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28715 		read_flags = 0xfc;
28716 		break;
28717 	default:
28718 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28719 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28720 		    cdxa->cdxa_format);
28721 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28722 		return (EINVAL);
28723 	}
28724 
28725 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28726 	bzero(cdb, CDB_GROUP5);
28727 	if (un->un_f_mmc_cap == TRUE) {
28728 		cdb[0] = (char)SCMD_READ_CD;
28729 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28730 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28731 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28732 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28733 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28734 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28735 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28736 		cdb[9] = (char)read_flags;
28737 	} else {
28738 		/*
28739 		 * Note: A vendor specific command (0xDB) is being used her to
28740 		 * request a read of all subcodes.
28741 		 */
28742 		cdb[0] = (char)SCMD_READ_CDXA;
28743 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28744 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28745 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28746 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28747 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28748 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28749 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28750 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28751 		cdb[10] = cdxa->cdxa_format;
28752 	}
28753 	com->uscsi_cdb	   = cdb;
28754 	com->uscsi_cdblen  = CDB_GROUP5;
28755 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28756 	com->uscsi_buflen  = buflen;
28757 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28758 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28759 	    SD_PATH_STANDARD);
28760 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28761 	kmem_free(com, sizeof (*com));
28762 	return (rval);
28763 }
28764 
28765 
28766 /*
28767  *    Function: sr_eject()
28768  *
28769  * Description: This routine is the driver entry point for handling CD-ROM
28770  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28771  *
28772  *   Arguments: dev	- the device 'dev_t'
28773  *
28774  * Return Code: the code returned by sd_send_scsi_cmd()
28775  */
28776 
28777 static int
28778 sr_eject(dev_t dev)
28779 {
28780 	struct sd_lun	*un;
28781 	int		rval;
28782 	sd_ssc_t	*ssc;
28783 
28784 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28785 	    (un->un_state == SD_STATE_OFFLINE)) {
28786 		return (ENXIO);
28787 	}
28788 
28789 	/*
28790 	 * To prevent race conditions with the eject
28791 	 * command, keep track of an eject command as
28792 	 * it progresses. If we are already handling
28793 	 * an eject command in the driver for the given
28794 	 * unit and another request to eject is received
28795 	 * immediately return EAGAIN so we don't lose
28796 	 * the command if the current eject command fails.
28797 	 */
28798 	mutex_enter(SD_MUTEX(un));
28799 	if (un->un_f_ejecting == TRUE) {
28800 		mutex_exit(SD_MUTEX(un));
28801 		return (EAGAIN);
28802 	}
28803 	un->un_f_ejecting = TRUE;
28804 	mutex_exit(SD_MUTEX(un));
28805 
28806 	ssc = sd_ssc_init(un);
28807 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28808 	    SD_PATH_STANDARD);
28809 	sd_ssc_fini(ssc);
28810 
28811 	if (rval != 0) {
28812 		mutex_enter(SD_MUTEX(un));
28813 		un->un_f_ejecting = FALSE;
28814 		mutex_exit(SD_MUTEX(un));
28815 		return (rval);
28816 	}
28817 
28818 	ssc = sd_ssc_init(un);
28819 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28820 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28821 	sd_ssc_fini(ssc);
28822 
28823 	if (rval == 0) {
28824 		mutex_enter(SD_MUTEX(un));
28825 		sr_ejected(un);
28826 		un->un_mediastate = DKIO_EJECTED;
28827 		un->un_f_ejecting = FALSE;
28828 		cv_broadcast(&un->un_state_cv);
28829 		mutex_exit(SD_MUTEX(un));
28830 	} else {
28831 		mutex_enter(SD_MUTEX(un));
28832 		un->un_f_ejecting = FALSE;
28833 		mutex_exit(SD_MUTEX(un));
28834 	}
28835 	return (rval);
28836 }
28837 
28838 
28839 /*
28840  *    Function: sr_ejected()
28841  *
28842  * Description: This routine updates the soft state structure to invalidate the
28843  *		geometry information after the media has been ejected or a
28844  *		media eject has been detected.
28845  *
28846  *   Arguments: un - driver soft state (unit) structure
28847  */
28848 
28849 static void
28850 sr_ejected(struct sd_lun *un)
28851 {
28852 	struct sd_errstats *stp;
28853 
28854 	ASSERT(un != NULL);
28855 	ASSERT(mutex_owned(SD_MUTEX(un)));
28856 
28857 	un->un_f_blockcount_is_valid	= FALSE;
28858 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28859 	mutex_exit(SD_MUTEX(un));
28860 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28861 	mutex_enter(SD_MUTEX(un));
28862 
28863 	if (un->un_errstats != NULL) {
28864 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28865 		stp->sd_capacity.value.ui64 = 0;
28866 	}
28867 }
28868 
28869 
28870 /*
28871  *    Function: sr_check_wp()
28872  *
28873  * Description: This routine checks the write protection of a removable
28874  *      media disk and hotpluggable devices via the write protect bit of
28875  *      the Mode Page Header device specific field. Some devices choke
28876  *      on unsupported mode page. In order to workaround this issue,
28877  *      this routine has been implemented to use 0x3f mode page(request
28878  *      for all pages) for all device types.
28879  *
28880  *   Arguments: dev             - the device 'dev_t'
28881  *
28882  * Return Code: int indicating if the device is write protected (1) or not (0)
28883  *
28884  *     Context: Kernel thread.
28885  *
28886  */
28887 
28888 static int
28889 sr_check_wp(dev_t dev)
28890 {
28891 	struct sd_lun	*un;
28892 	uchar_t		device_specific;
28893 	uchar_t		*sense;
28894 	int		hdrlen;
28895 	int		rval = FALSE;
28896 	int		status;
28897 	sd_ssc_t	*ssc;
28898 
28899 	/*
28900 	 * Note: The return codes for this routine should be reworked to
28901 	 * properly handle the case of a NULL softstate.
28902 	 */
28903 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28904 		return (FALSE);
28905 	}
28906 
28907 	if (un->un_f_cfg_is_atapi == TRUE) {
28908 		/*
28909 		 * The mode page contents are not required; set the allocation
28910 		 * length for the mode page header only
28911 		 */
28912 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28913 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28914 		ssc = sd_ssc_init(un);
28915 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28916 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28917 		sd_ssc_fini(ssc);
28918 		if (status != 0)
28919 			goto err_exit;
28920 		device_specific =
28921 		    ((struct mode_header_grp2 *)sense)->device_specific;
28922 	} else {
28923 		hdrlen = MODE_HEADER_LENGTH;
28924 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28925 		ssc = sd_ssc_init(un);
28926 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28927 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28928 		sd_ssc_fini(ssc);
28929 		if (status != 0)
28930 			goto err_exit;
28931 		device_specific =
28932 		    ((struct mode_header *)sense)->device_specific;
28933 	}
28934 
28935 
28936 	/*
28937 	 * Write protect mode sense failed; not all disks
28938 	 * understand this query. Return FALSE assuming that
28939 	 * these devices are not writable.
28940 	 */
28941 	if (device_specific & WRITE_PROTECT) {
28942 		rval = TRUE;
28943 	}
28944 
28945 err_exit:
28946 	kmem_free(sense, hdrlen);
28947 	return (rval);
28948 }
28949 
28950 /*
28951  *    Function: sr_volume_ctrl()
28952  *
28953  * Description: This routine is the driver entry point for handling CD-ROM
28954  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28955  *
28956  *   Arguments: dev	- the device 'dev_t'
28957  *		data	- pointer to user audio volume control structure
28958  *		flag	- this argument is a pass through to ddi_copyxxx()
28959  *			  directly from the mode argument of ioctl().
28960  *
28961  * Return Code: the code returned by sd_send_scsi_cmd()
28962  *		EFAULT if ddi_copyxxx() fails
28963  *		ENXIO if fail ddi_get_soft_state
28964  *		EINVAL if data pointer is NULL
28965  *
28966  */
28967 
28968 static int
28969 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28970 {
28971 	struct sd_lun		*un;
28972 	struct cdrom_volctrl    volume;
28973 	struct cdrom_volctrl    *vol = &volume;
28974 	uchar_t			*sense_page;
28975 	uchar_t			*select_page;
28976 	uchar_t			*sense;
28977 	uchar_t			*select;
28978 	int			sense_buflen;
28979 	int			select_buflen;
28980 	int			rval;
28981 	sd_ssc_t		*ssc;
28982 
28983 	if (data == NULL) {
28984 		return (EINVAL);
28985 	}
28986 
28987 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28988 	    (un->un_state == SD_STATE_OFFLINE)) {
28989 		return (ENXIO);
28990 	}
28991 
28992 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28993 		return (EFAULT);
28994 	}
28995 
28996 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28997 		struct mode_header_grp2		*sense_mhp;
28998 		struct mode_header_grp2		*select_mhp;
28999 		int				bd_len;
29000 
29001 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29002 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29003 		    MODEPAGE_AUDIO_CTRL_LEN;
29004 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29005 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29006 		ssc = sd_ssc_init(un);
29007 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29008 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29009 		    SD_PATH_STANDARD);
29010 		sd_ssc_fini(ssc);
29011 
29012 		if (rval != 0) {
29013 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29014 			    "sr_volume_ctrl: Mode Sense Failed\n");
29015 			kmem_free(sense, sense_buflen);
29016 			kmem_free(select, select_buflen);
29017 			return (rval);
29018 		}
29019 		sense_mhp = (struct mode_header_grp2 *)sense;
29020 		select_mhp = (struct mode_header_grp2 *)select;
29021 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29022 		    sense_mhp->bdesc_length_lo;
29023 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29024 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29025 			    "sr_volume_ctrl: Mode Sense returned invalid "
29026 			    "block descriptor length\n");
29027 			kmem_free(sense, sense_buflen);
29028 			kmem_free(select, select_buflen);
29029 			return (EIO);
29030 		}
29031 		sense_page = (uchar_t *)
29032 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29033 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29034 		select_mhp->length_msb = 0;
29035 		select_mhp->length_lsb = 0;
29036 		select_mhp->bdesc_length_hi = 0;
29037 		select_mhp->bdesc_length_lo = 0;
29038 	} else {
29039 		struct mode_header		*sense_mhp, *select_mhp;
29040 
29041 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29042 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29043 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29044 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29045 		ssc = sd_ssc_init(un);
29046 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29047 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29048 		    SD_PATH_STANDARD);
29049 		sd_ssc_fini(ssc);
29050 
29051 		if (rval != 0) {
29052 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29053 			    "sr_volume_ctrl: Mode Sense Failed\n");
29054 			kmem_free(sense, sense_buflen);
29055 			kmem_free(select, select_buflen);
29056 			return (rval);
29057 		}
29058 		sense_mhp  = (struct mode_header *)sense;
29059 		select_mhp = (struct mode_header *)select;
29060 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29061 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29062 			    "sr_volume_ctrl: Mode Sense returned invalid "
29063 			    "block descriptor length\n");
29064 			kmem_free(sense, sense_buflen);
29065 			kmem_free(select, select_buflen);
29066 			return (EIO);
29067 		}
29068 		sense_page = (uchar_t *)
29069 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29070 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29071 		select_mhp->length = 0;
29072 		select_mhp->bdesc_length = 0;
29073 	}
29074 	/*
29075 	 * Note: An audio control data structure could be created and overlayed
29076 	 * on the following in place of the array indexing method implemented.
29077 	 */
29078 
29079 	/* Build the select data for the user volume data */
29080 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29081 	select_page[1] = 0xE;
29082 	/* Set the immediate bit */
29083 	select_page[2] = 0x04;
29084 	/* Zero out reserved fields */
29085 	select_page[3] = 0x00;
29086 	select_page[4] = 0x00;
29087 	/* Return sense data for fields not to be modified */
29088 	select_page[5] = sense_page[5];
29089 	select_page[6] = sense_page[6];
29090 	select_page[7] = sense_page[7];
29091 	/* Set the user specified volume levels for channel 0 and 1 */
29092 	select_page[8] = 0x01;
29093 	select_page[9] = vol->channel0;
29094 	select_page[10] = 0x02;
29095 	select_page[11] = vol->channel1;
29096 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29097 	select_page[12] = sense_page[12];
29098 	select_page[13] = sense_page[13];
29099 	select_page[14] = sense_page[14];
29100 	select_page[15] = sense_page[15];
29101 
29102 	ssc = sd_ssc_init(un);
29103 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29104 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29105 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29106 	} else {
29107 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29108 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29109 	}
29110 	sd_ssc_fini(ssc);
29111 
29112 	kmem_free(sense, sense_buflen);
29113 	kmem_free(select, select_buflen);
29114 	return (rval);
29115 }
29116 
29117 
29118 /*
29119  *    Function: sr_read_sony_session_offset()
29120  *
29121  * Description: This routine is the driver entry point for handling CD-ROM
29122  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29123  *		The address of the first track in the last session of a
29124  *		multi-session CD-ROM is returned
29125  *
29126  *		Note: This routine uses a vendor specific key value in the
29127  *		command control field without implementing any vendor check here
29128  *		or in the ioctl routine.
29129  *
29130  *   Arguments: dev	- the device 'dev_t'
29131  *		data	- pointer to an int to hold the requested address
29132  *		flag	- this argument is a pass through to ddi_copyxxx()
29133  *			  directly from the mode argument of ioctl().
29134  *
29135  * Return Code: the code returned by sd_send_scsi_cmd()
29136  *		EFAULT if ddi_copyxxx() fails
29137  *		ENXIO if fail ddi_get_soft_state
29138  *		EINVAL if data pointer is NULL
29139  */
29140 
29141 static int
29142 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29143 {
29144 	struct sd_lun		*un;
29145 	struct uscsi_cmd	*com;
29146 	caddr_t			buffer;
29147 	char			cdb[CDB_GROUP1];
29148 	int			session_offset = 0;
29149 	int			rval;
29150 
29151 	if (data == NULL) {
29152 		return (EINVAL);
29153 	}
29154 
29155 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29156 	    (un->un_state == SD_STATE_OFFLINE)) {
29157 		return (ENXIO);
29158 	}
29159 
29160 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29161 	bzero(cdb, CDB_GROUP1);
29162 	cdb[0] = SCMD_READ_TOC;
29163 	/*
29164 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29165 	 * (4 byte TOC response header + 8 byte response data)
29166 	 */
29167 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29168 	/* Byte 9 is the control byte. A vendor specific value is used */
29169 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29170 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29171 	com->uscsi_cdb = cdb;
29172 	com->uscsi_cdblen = CDB_GROUP1;
29173 	com->uscsi_bufaddr = buffer;
29174 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29175 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29176 
29177 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29178 	    SD_PATH_STANDARD);
29179 	if (rval != 0) {
29180 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29181 		kmem_free(com, sizeof (*com));
29182 		return (rval);
29183 	}
29184 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29185 		session_offset =
29186 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29187 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29188 		/*
29189 		 * Offset returned offset in current lbasize block's. Convert to
29190 		 * 2k block's to return to the user
29191 		 */
29192 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29193 			session_offset >>= 2;
29194 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29195 			session_offset >>= 1;
29196 		}
29197 	}
29198 
29199 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29200 		rval = EFAULT;
29201 	}
29202 
29203 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29204 	kmem_free(com, sizeof (*com));
29205 	return (rval);
29206 }
29207 
29208 
29209 /*
29210  *    Function: sd_wm_cache_constructor()
29211  *
29212  * Description: Cache Constructor for the wmap cache for the read/modify/write
29213  * 		devices.
29214  *
29215  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29216  *		un	- sd_lun structure for the device.
29217  *		flag	- the km flags passed to constructor
29218  *
29219  * Return Code: 0 on success.
29220  *		-1 on failure.
29221  */
29222 
29223 /*ARGSUSED*/
29224 static int
29225 sd_wm_cache_constructor(void *wm, void *un, int flags)
29226 {
29227 	bzero(wm, sizeof (struct sd_w_map));
29228 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29229 	return (0);
29230 }
29231 
29232 
29233 /*
29234  *    Function: sd_wm_cache_destructor()
29235  *
29236  * Description: Cache destructor for the wmap cache for the read/modify/write
29237  * 		devices.
29238  *
29239  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29240  *		un	- sd_lun structure for the device.
29241  */
29242 /*ARGSUSED*/
29243 static void
29244 sd_wm_cache_destructor(void *wm, void *un)
29245 {
29246 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29247 }
29248 
29249 
29250 /*
29251  *    Function: sd_range_lock()
29252  *
29253  * Description: Lock the range of blocks specified as parameter to ensure
29254  *		that read, modify write is atomic and no other i/o writes
29255  *		to the same location. The range is specified in terms
29256  *		of start and end blocks. Block numbers are the actual
29257  *		media block numbers and not system.
29258  *
29259  *   Arguments: un	- sd_lun structure for the device.
29260  *		startb - The starting block number
29261  *		endb - The end block number
29262  *		typ - type of i/o - simple/read_modify_write
29263  *
29264  * Return Code: wm  - pointer to the wmap structure.
29265  *
29266  *     Context: This routine can sleep.
29267  */
29268 
29269 static struct sd_w_map *
29270 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29271 {
29272 	struct sd_w_map *wmp = NULL;
29273 	struct sd_w_map *sl_wmp = NULL;
29274 	struct sd_w_map *tmp_wmp;
29275 	wm_state state = SD_WM_CHK_LIST;
29276 
29277 
29278 	ASSERT(un != NULL);
29279 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29280 
29281 	mutex_enter(SD_MUTEX(un));
29282 
29283 	while (state != SD_WM_DONE) {
29284 
29285 		switch (state) {
29286 		case SD_WM_CHK_LIST:
29287 			/*
29288 			 * This is the starting state. Check the wmap list
29289 			 * to see if the range is currently available.
29290 			 */
29291 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29292 				/*
29293 				 * If this is a simple write and no rmw
29294 				 * i/o is pending then try to lock the
29295 				 * range as the range should be available.
29296 				 */
29297 				state = SD_WM_LOCK_RANGE;
29298 			} else {
29299 				tmp_wmp = sd_get_range(un, startb, endb);
29300 				if (tmp_wmp != NULL) {
29301 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29302 						/*
29303 						 * Should not keep onlist wmps
29304 						 * while waiting this macro
29305 						 * will also do wmp = NULL;
29306 						 */
29307 						FREE_ONLIST_WMAP(un, wmp);
29308 					}
29309 					/*
29310 					 * sl_wmp is the wmap on which wait
29311 					 * is done, since the tmp_wmp points
29312 					 * to the inuse wmap, set sl_wmp to
29313 					 * tmp_wmp and change the state to sleep
29314 					 */
29315 					sl_wmp = tmp_wmp;
29316 					state = SD_WM_WAIT_MAP;
29317 				} else {
29318 					state = SD_WM_LOCK_RANGE;
29319 				}
29320 
29321 			}
29322 			break;
29323 
29324 		case SD_WM_LOCK_RANGE:
29325 			ASSERT(un->un_wm_cache);
29326 			/*
29327 			 * The range need to be locked, try to get a wmap.
29328 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29329 			 * if possible as we will have to release the sd mutex
29330 			 * if we have to sleep.
29331 			 */
29332 			if (wmp == NULL)
29333 				wmp = kmem_cache_alloc(un->un_wm_cache,
29334 				    KM_NOSLEEP);
29335 			if (wmp == NULL) {
29336 				mutex_exit(SD_MUTEX(un));
29337 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29338 				    (sd_lun::un_wm_cache))
29339 				wmp = kmem_cache_alloc(un->un_wm_cache,
29340 				    KM_SLEEP);
29341 				mutex_enter(SD_MUTEX(un));
29342 				/*
29343 				 * we released the mutex so recheck and go to
29344 				 * check list state.
29345 				 */
29346 				state = SD_WM_CHK_LIST;
29347 			} else {
29348 				/*
29349 				 * We exit out of state machine since we
29350 				 * have the wmap. Do the housekeeping first.
29351 				 * place the wmap on the wmap list if it is not
29352 				 * on it already and then set the state to done.
29353 				 */
29354 				wmp->wm_start = startb;
29355 				wmp->wm_end = endb;
29356 				wmp->wm_flags = typ | SD_WM_BUSY;
29357 				if (typ & SD_WTYPE_RMW) {
29358 					un->un_rmw_count++;
29359 				}
29360 				/*
29361 				 * If not already on the list then link
29362 				 */
29363 				if (!ONLIST(un, wmp)) {
29364 					wmp->wm_next = un->un_wm;
29365 					wmp->wm_prev = NULL;
29366 					if (wmp->wm_next)
29367 						wmp->wm_next->wm_prev = wmp;
29368 					un->un_wm = wmp;
29369 				}
29370 				state = SD_WM_DONE;
29371 			}
29372 			break;
29373 
29374 		case SD_WM_WAIT_MAP:
29375 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29376 			/*
29377 			 * Wait is done on sl_wmp, which is set in the
29378 			 * check_list state.
29379 			 */
29380 			sl_wmp->wm_wanted_count++;
29381 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29382 			sl_wmp->wm_wanted_count--;
29383 			/*
29384 			 * We can reuse the memory from the completed sl_wmp
29385 			 * lock range for our new lock, but only if noone is
29386 			 * waiting for it.
29387 			 */
29388 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29389 			if (sl_wmp->wm_wanted_count == 0) {
29390 				if (wmp != NULL)
29391 					CHK_N_FREEWMP(un, wmp);
29392 				wmp = sl_wmp;
29393 			}
29394 			sl_wmp = NULL;
29395 			/*
29396 			 * After waking up, need to recheck for availability of
29397 			 * range.
29398 			 */
29399 			state = SD_WM_CHK_LIST;
29400 			break;
29401 
29402 		default:
29403 			panic("sd_range_lock: "
29404 			    "Unknown state %d in sd_range_lock", state);
29405 			/*NOTREACHED*/
29406 		} /* switch(state) */
29407 
29408 	} /* while(state != SD_WM_DONE) */
29409 
29410 	mutex_exit(SD_MUTEX(un));
29411 
29412 	ASSERT(wmp != NULL);
29413 
29414 	return (wmp);
29415 }
29416 
29417 
29418 /*
29419  *    Function: sd_get_range()
29420  *
29421  * Description: Find if there any overlapping I/O to this one
29422  *		Returns the write-map of 1st such I/O, NULL otherwise.
29423  *
29424  *   Arguments: un	- sd_lun structure for the device.
29425  *		startb - The starting block number
29426  *		endb - The end block number
29427  *
29428  * Return Code: wm  - pointer to the wmap structure.
29429  */
29430 
29431 static struct sd_w_map *
29432 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29433 {
29434 	struct sd_w_map *wmp;
29435 
29436 	ASSERT(un != NULL);
29437 
29438 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29439 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29440 			continue;
29441 		}
29442 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29443 			break;
29444 		}
29445 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29446 			break;
29447 		}
29448 	}
29449 
29450 	return (wmp);
29451 }
29452 
29453 
29454 /*
29455  *    Function: sd_free_inlist_wmap()
29456  *
29457  * Description: Unlink and free a write map struct.
29458  *
29459  *   Arguments: un      - sd_lun structure for the device.
29460  *		wmp	- sd_w_map which needs to be unlinked.
29461  */
29462 
29463 static void
29464 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29465 {
29466 	ASSERT(un != NULL);
29467 
29468 	if (un->un_wm == wmp) {
29469 		un->un_wm = wmp->wm_next;
29470 	} else {
29471 		wmp->wm_prev->wm_next = wmp->wm_next;
29472 	}
29473 
29474 	if (wmp->wm_next) {
29475 		wmp->wm_next->wm_prev = wmp->wm_prev;
29476 	}
29477 
29478 	wmp->wm_next = wmp->wm_prev = NULL;
29479 
29480 	kmem_cache_free(un->un_wm_cache, wmp);
29481 }
29482 
29483 
29484 /*
29485  *    Function: sd_range_unlock()
29486  *
29487  * Description: Unlock the range locked by wm.
29488  *		Free write map if nobody else is waiting on it.
29489  *
29490  *   Arguments: un      - sd_lun structure for the device.
29491  *              wmp     - sd_w_map which needs to be unlinked.
29492  */
29493 
29494 static void
29495 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29496 {
29497 	ASSERT(un != NULL);
29498 	ASSERT(wm != NULL);
29499 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29500 
29501 	mutex_enter(SD_MUTEX(un));
29502 
29503 	if (wm->wm_flags & SD_WTYPE_RMW) {
29504 		un->un_rmw_count--;
29505 	}
29506 
29507 	if (wm->wm_wanted_count) {
29508 		wm->wm_flags = 0;
29509 		/*
29510 		 * Broadcast that the wmap is available now.
29511 		 */
29512 		cv_broadcast(&wm->wm_avail);
29513 	} else {
29514 		/*
29515 		 * If no one is waiting on the map, it should be free'ed.
29516 		 */
29517 		sd_free_inlist_wmap(un, wm);
29518 	}
29519 
29520 	mutex_exit(SD_MUTEX(un));
29521 }
29522 
29523 
29524 /*
29525  *    Function: sd_read_modify_write_task
29526  *
29527  * Description: Called from a taskq thread to initiate the write phase of
29528  *		a read-modify-write request.  This is used for targets where
29529  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29530  *
29531  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29532  *
29533  *     Context: Called under taskq thread context.
29534  */
29535 
29536 static void
29537 sd_read_modify_write_task(void *arg)
29538 {
29539 	struct sd_mapblocksize_info	*bsp;
29540 	struct buf	*bp;
29541 	struct sd_xbuf	*xp;
29542 	struct sd_lun	*un;
29543 
29544 	bp = arg;	/* The bp is given in arg */
29545 	ASSERT(bp != NULL);
29546 
29547 	/* Get the pointer to the layer-private data struct */
29548 	xp = SD_GET_XBUF(bp);
29549 	ASSERT(xp != NULL);
29550 	bsp = xp->xb_private;
29551 	ASSERT(bsp != NULL);
29552 
29553 	un = SD_GET_UN(bp);
29554 	ASSERT(un != NULL);
29555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29556 
29557 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29558 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29559 
29560 	/*
29561 	 * This is the write phase of a read-modify-write request, called
29562 	 * under the context of a taskq thread in response to the completion
29563 	 * of the read portion of the rmw request completing under interrupt
29564 	 * context. The write request must be sent from here down the iostart
29565 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29566 	 * we use the layer index saved in the layer-private data area.
29567 	 */
29568 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29569 
29570 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29571 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29572 }
29573 
29574 
29575 /*
29576  *    Function: sddump_do_read_of_rmw()
29577  *
29578  * Description: This routine will be called from sddump, If sddump is called
29579  *		with an I/O which not aligned on device blocksize boundary
29580  *		then the write has to be converted to read-modify-write.
29581  *		Do the read part here in order to keep sddump simple.
29582  *		Note - That the sd_mutex is held across the call to this
29583  *		routine.
29584  *
29585  *   Arguments: un	- sd_lun
29586  *		blkno	- block number in terms of media block size.
29587  *		nblk	- number of blocks.
29588  *		bpp	- pointer to pointer to the buf structure. On return
29589  *			from this function, *bpp points to the valid buffer
29590  *			to which the write has to be done.
29591  *
29592  * Return Code: 0 for success or errno-type return code
29593  */
29594 
29595 static int
29596 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29597 	struct buf **bpp)
29598 {
29599 	int err;
29600 	int i;
29601 	int rval;
29602 	struct buf *bp;
29603 	struct scsi_pkt *pkt = NULL;
29604 	uint32_t target_blocksize;
29605 
29606 	ASSERT(un != NULL);
29607 	ASSERT(mutex_owned(SD_MUTEX(un)));
29608 
29609 	target_blocksize = un->un_tgt_blocksize;
29610 
29611 	mutex_exit(SD_MUTEX(un));
29612 
29613 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29614 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29615 	if (bp == NULL) {
29616 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29617 		    "no resources for dumping; giving up");
29618 		err = ENOMEM;
29619 		goto done;
29620 	}
29621 
29622 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29623 	    blkno, nblk);
29624 	if (rval != 0) {
29625 		scsi_free_consistent_buf(bp);
29626 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29627 		    "no resources for dumping; giving up");
29628 		err = ENOMEM;
29629 		goto done;
29630 	}
29631 
29632 	pkt->pkt_flags |= FLAG_NOINTR;
29633 
29634 	err = EIO;
29635 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29636 
29637 		/*
29638 		 * Scsi_poll returns 0 (success) if the command completes and
29639 		 * the status block is STATUS_GOOD.  We should only check
29640 		 * errors if this condition is not true.  Even then we should
29641 		 * send our own request sense packet only if we have a check
29642 		 * condition and auto request sense has not been performed by
29643 		 * the hba.
29644 		 */
29645 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29646 
29647 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29648 			err = 0;
29649 			break;
29650 		}
29651 
29652 		/*
29653 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29654 		 * no need to read RQS data.
29655 		 */
29656 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29657 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29658 			    "Error while dumping state with rmw..."
29659 			    "Device is gone\n");
29660 			break;
29661 		}
29662 
29663 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29664 			SD_INFO(SD_LOG_DUMP, un,
29665 			    "sddump: read failed with CHECK, try # %d\n", i);
29666 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29667 				(void) sd_send_polled_RQS(un);
29668 			}
29669 
29670 			continue;
29671 		}
29672 
29673 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29674 			int reset_retval = 0;
29675 
29676 			SD_INFO(SD_LOG_DUMP, un,
29677 			    "sddump: read failed with BUSY, try # %d\n", i);
29678 
29679 			if (un->un_f_lun_reset_enabled == TRUE) {
29680 				reset_retval = scsi_reset(SD_ADDRESS(un),
29681 				    RESET_LUN);
29682 			}
29683 			if (reset_retval == 0) {
29684 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29685 			}
29686 			(void) sd_send_polled_RQS(un);
29687 
29688 		} else {
29689 			SD_INFO(SD_LOG_DUMP, un,
29690 			    "sddump: read failed with 0x%x, try # %d\n",
29691 			    SD_GET_PKT_STATUS(pkt), i);
29692 			mutex_enter(SD_MUTEX(un));
29693 			sd_reset_target(un, pkt);
29694 			mutex_exit(SD_MUTEX(un));
29695 		}
29696 
29697 		/*
29698 		 * If we are not getting anywhere with lun/target resets,
29699 		 * let's reset the bus.
29700 		 */
29701 		if (i > SD_NDUMP_RETRIES/2) {
29702 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29703 			(void) sd_send_polled_RQS(un);
29704 		}
29705 
29706 	}
29707 	scsi_destroy_pkt(pkt);
29708 
29709 	if (err != 0) {
29710 		scsi_free_consistent_buf(bp);
29711 		*bpp = NULL;
29712 	} else {
29713 		*bpp = bp;
29714 	}
29715 
29716 done:
29717 	mutex_enter(SD_MUTEX(un));
29718 	return (err);
29719 }
29720 
29721 
29722 /*
29723  *    Function: sd_failfast_flushq
29724  *
29725  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29726  *		in b_flags and move them onto the failfast queue, then kick
29727  *		off a thread to return all bp's on the failfast queue to
29728  *		their owners with an error set.
29729  *
29730  *   Arguments: un - pointer to the soft state struct for the instance.
29731  *
29732  *     Context: may execute in interrupt context.
29733  */
29734 
29735 static void
29736 sd_failfast_flushq(struct sd_lun *un)
29737 {
29738 	struct buf *bp;
29739 	struct buf *next_waitq_bp;
29740 	struct buf *prev_waitq_bp = NULL;
29741 
29742 	ASSERT(un != NULL);
29743 	ASSERT(mutex_owned(SD_MUTEX(un)));
29744 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29745 	ASSERT(un->un_failfast_bp == NULL);
29746 
29747 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29748 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29749 
29750 	/*
29751 	 * Check if we should flush all bufs when entering failfast state, or
29752 	 * just those with B_FAILFAST set.
29753 	 */
29754 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29755 		/*
29756 		 * Move *all* bp's on the wait queue to the failfast flush
29757 		 * queue, including those that do NOT have B_FAILFAST set.
29758 		 */
29759 		if (un->un_failfast_headp == NULL) {
29760 			ASSERT(un->un_failfast_tailp == NULL);
29761 			un->un_failfast_headp = un->un_waitq_headp;
29762 		} else {
29763 			ASSERT(un->un_failfast_tailp != NULL);
29764 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29765 		}
29766 
29767 		un->un_failfast_tailp = un->un_waitq_tailp;
29768 
29769 		/* update kstat for each bp moved out of the waitq */
29770 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29771 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29772 		}
29773 
29774 		/* empty the waitq */
29775 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29776 
29777 	} else {
29778 		/*
29779 		 * Go thru the wait queue, pick off all entries with
29780 		 * B_FAILFAST set, and move these onto the failfast queue.
29781 		 */
29782 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29783 			/*
29784 			 * Save the pointer to the next bp on the wait queue,
29785 			 * so we get to it on the next iteration of this loop.
29786 			 */
29787 			next_waitq_bp = bp->av_forw;
29788 
29789 			/*
29790 			 * If this bp from the wait queue does NOT have
29791 			 * B_FAILFAST set, just move on to the next element
29792 			 * in the wait queue. Note, this is the only place
29793 			 * where it is correct to set prev_waitq_bp.
29794 			 */
29795 			if ((bp->b_flags & B_FAILFAST) == 0) {
29796 				prev_waitq_bp = bp;
29797 				continue;
29798 			}
29799 
29800 			/*
29801 			 * Remove the bp from the wait queue.
29802 			 */
29803 			if (bp == un->un_waitq_headp) {
29804 				/* The bp is the first element of the waitq. */
29805 				un->un_waitq_headp = next_waitq_bp;
29806 				if (un->un_waitq_headp == NULL) {
29807 					/* The wait queue is now empty */
29808 					un->un_waitq_tailp = NULL;
29809 				}
29810 			} else {
29811 				/*
29812 				 * The bp is either somewhere in the middle
29813 				 * or at the end of the wait queue.
29814 				 */
29815 				ASSERT(un->un_waitq_headp != NULL);
29816 				ASSERT(prev_waitq_bp != NULL);
29817 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29818 				    == 0);
29819 				if (bp == un->un_waitq_tailp) {
29820 					/* bp is the last entry on the waitq. */
29821 					ASSERT(next_waitq_bp == NULL);
29822 					un->un_waitq_tailp = prev_waitq_bp;
29823 				}
29824 				prev_waitq_bp->av_forw = next_waitq_bp;
29825 			}
29826 			bp->av_forw = NULL;
29827 
29828 			/*
29829 			 * update kstat since the bp is moved out of
29830 			 * the waitq
29831 			 */
29832 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29833 
29834 			/*
29835 			 * Now put the bp onto the failfast queue.
29836 			 */
29837 			if (un->un_failfast_headp == NULL) {
29838 				/* failfast queue is currently empty */
29839 				ASSERT(un->un_failfast_tailp == NULL);
29840 				un->un_failfast_headp =
29841 				    un->un_failfast_tailp = bp;
29842 			} else {
29843 				/* Add the bp to the end of the failfast q */
29844 				ASSERT(un->un_failfast_tailp != NULL);
29845 				ASSERT(un->un_failfast_tailp->b_flags &
29846 				    B_FAILFAST);
29847 				un->un_failfast_tailp->av_forw = bp;
29848 				un->un_failfast_tailp = bp;
29849 			}
29850 		}
29851 	}
29852 
29853 	/*
29854 	 * Now return all bp's on the failfast queue to their owners.
29855 	 */
29856 	while ((bp = un->un_failfast_headp) != NULL) {
29857 
29858 		un->un_failfast_headp = bp->av_forw;
29859 		if (un->un_failfast_headp == NULL) {
29860 			un->un_failfast_tailp = NULL;
29861 		}
29862 
29863 		/*
29864 		 * We want to return the bp with a failure error code, but
29865 		 * we do not want a call to sd_start_cmds() to occur here,
29866 		 * so use sd_return_failed_command_no_restart() instead of
29867 		 * sd_return_failed_command().
29868 		 */
29869 		sd_return_failed_command_no_restart(un, bp, EIO);
29870 	}
29871 
29872 	/* Flush the xbuf queues if required. */
29873 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29874 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29875 	}
29876 
29877 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29878 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29879 }
29880 
29881 
29882 /*
29883  *    Function: sd_failfast_flushq_callback
29884  *
29885  * Description: Return TRUE if the given bp meets the criteria for failfast
29886  *		flushing. Used with ddi_xbuf_flushq(9F).
29887  *
29888  *   Arguments: bp - ptr to buf struct to be examined.
29889  *
29890  *     Context: Any
29891  */
29892 
29893 static int
29894 sd_failfast_flushq_callback(struct buf *bp)
29895 {
29896 	/*
29897 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29898 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29899 	 */
29900 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29901 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29902 }
29903 
29904 
29905 
29906 /*
29907  * Function: sd_setup_next_xfer
29908  *
29909  * Description: Prepare next I/O operation using DMA_PARTIAL
29910  *
29911  */
29912 
29913 static int
29914 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29915     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29916 {
29917 	ssize_t	num_blks_not_xfered;
29918 	daddr_t	strt_blk_num;
29919 	ssize_t	bytes_not_xfered;
29920 	int	rval;
29921 
29922 	ASSERT(pkt->pkt_resid == 0);
29923 
29924 	/*
29925 	 * Calculate next block number and amount to be transferred.
29926 	 *
29927 	 * How much data NOT transfered to the HBA yet.
29928 	 */
29929 	bytes_not_xfered = xp->xb_dma_resid;
29930 
29931 	/*
29932 	 * figure how many blocks NOT transfered to the HBA yet.
29933 	 */
29934 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29935 
29936 	/*
29937 	 * set starting block number to the end of what WAS transfered.
29938 	 */
29939 	strt_blk_num = xp->xb_blkno +
29940 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29941 
29942 	/*
29943 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29944 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29945 	 * the disk mutex here.
29946 	 */
29947 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29948 	    strt_blk_num, num_blks_not_xfered);
29949 
29950 	if (rval == 0) {
29951 
29952 		/*
29953 		 * Success.
29954 		 *
29955 		 * Adjust things if there are still more blocks to be
29956 		 * transfered.
29957 		 */
29958 		xp->xb_dma_resid = pkt->pkt_resid;
29959 		pkt->pkt_resid = 0;
29960 
29961 		return (1);
29962 	}
29963 
29964 	/*
29965 	 * There's really only one possible return value from
29966 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29967 	 * returns NULL.
29968 	 */
29969 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29970 
29971 	bp->b_resid = bp->b_bcount;
29972 	bp->b_flags |= B_ERROR;
29973 
29974 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29975 	    "Error setting up next portion of DMA transfer\n");
29976 
29977 	return (0);
29978 }
29979 
29980 /*
29981  *    Function: sd_panic_for_res_conflict
29982  *
29983  * Description: Call panic with a string formatted with "Reservation Conflict"
29984  *		and a human readable identifier indicating the SD instance
29985  *		that experienced the reservation conflict.
29986  *
29987  *   Arguments: un - pointer to the soft state struct for the instance.
29988  *
29989  *     Context: may execute in interrupt context.
29990  */
29991 
29992 #define	SD_RESV_CONFLICT_FMT_LEN 40
29993 void
29994 sd_panic_for_res_conflict(struct sd_lun *un)
29995 {
29996 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
29997 	char path_str[MAXPATHLEN];
29998 
29999 	(void) snprintf(panic_str, sizeof (panic_str),
30000 	    "Reservation Conflict\nDisk: %s",
30001 	    ddi_pathname(SD_DEVINFO(un), path_str));
30002 
30003 	panic(panic_str);
30004 }
30005 
30006 /*
30007  * Note: The following sd_faultinjection_ioctl( ) routines implement
30008  * driver support for handling fault injection for error analysis
30009  * causing faults in multiple layers of the driver.
30010  *
30011  */
30012 
30013 #ifdef SD_FAULT_INJECTION
30014 static uint_t   sd_fault_injection_on = 0;
30015 
30016 /*
30017  *    Function: sd_faultinjection_ioctl()
30018  *
30019  * Description: This routine is the driver entry point for handling
30020  *              faultinjection ioctls to inject errors into the
30021  *              layer model
30022  *
30023  *   Arguments: cmd	- the ioctl cmd received
30024  *		arg	- the arguments from user and returns
30025  */
30026 
30027 static void
30028 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30029 
30030 	uint_t i = 0;
30031 	uint_t rval;
30032 
30033 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30034 
30035 	mutex_enter(SD_MUTEX(un));
30036 
30037 	switch (cmd) {
30038 	case SDIOCRUN:
30039 		/* Allow pushed faults to be injected */
30040 		SD_INFO(SD_LOG_SDTEST, un,
30041 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30042 
30043 		sd_fault_injection_on = 1;
30044 
30045 		SD_INFO(SD_LOG_IOERR, un,
30046 		    "sd_faultinjection_ioctl: run finished\n");
30047 		break;
30048 
30049 	case SDIOCSTART:
30050 		/* Start Injection Session */
30051 		SD_INFO(SD_LOG_SDTEST, un,
30052 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30053 
30054 		sd_fault_injection_on = 0;
30055 		un->sd_injection_mask = 0xFFFFFFFF;
30056 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30057 			un->sd_fi_fifo_pkt[i] = NULL;
30058 			un->sd_fi_fifo_xb[i] = NULL;
30059 			un->sd_fi_fifo_un[i] = NULL;
30060 			un->sd_fi_fifo_arq[i] = NULL;
30061 		}
30062 		un->sd_fi_fifo_start = 0;
30063 		un->sd_fi_fifo_end = 0;
30064 
30065 		mutex_enter(&(un->un_fi_mutex));
30066 		un->sd_fi_log[0] = '\0';
30067 		un->sd_fi_buf_len = 0;
30068 		mutex_exit(&(un->un_fi_mutex));
30069 
30070 		SD_INFO(SD_LOG_IOERR, un,
30071 		    "sd_faultinjection_ioctl: start finished\n");
30072 		break;
30073 
30074 	case SDIOCSTOP:
30075 		/* Stop Injection Session */
30076 		SD_INFO(SD_LOG_SDTEST, un,
30077 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30078 		sd_fault_injection_on = 0;
30079 		un->sd_injection_mask = 0x0;
30080 
30081 		/* Empty stray or unuseds structs from fifo */
30082 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30083 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30084 				kmem_free(un->sd_fi_fifo_pkt[i],
30085 				    sizeof (struct sd_fi_pkt));
30086 			}
30087 			if (un->sd_fi_fifo_xb[i] != NULL) {
30088 				kmem_free(un->sd_fi_fifo_xb[i],
30089 				    sizeof (struct sd_fi_xb));
30090 			}
30091 			if (un->sd_fi_fifo_un[i] != NULL) {
30092 				kmem_free(un->sd_fi_fifo_un[i],
30093 				    sizeof (struct sd_fi_un));
30094 			}
30095 			if (un->sd_fi_fifo_arq[i] != NULL) {
30096 				kmem_free(un->sd_fi_fifo_arq[i],
30097 				    sizeof (struct sd_fi_arq));
30098 			}
30099 			un->sd_fi_fifo_pkt[i] = NULL;
30100 			un->sd_fi_fifo_un[i] = NULL;
30101 			un->sd_fi_fifo_xb[i] = NULL;
30102 			un->sd_fi_fifo_arq[i] = NULL;
30103 		}
30104 		un->sd_fi_fifo_start = 0;
30105 		un->sd_fi_fifo_end = 0;
30106 
30107 		SD_INFO(SD_LOG_IOERR, un,
30108 		    "sd_faultinjection_ioctl: stop finished\n");
30109 		break;
30110 
30111 	case SDIOCINSERTPKT:
30112 		/* Store a packet struct to be pushed onto fifo */
30113 		SD_INFO(SD_LOG_SDTEST, un,
30114 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30115 
30116 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30117 
30118 		sd_fault_injection_on = 0;
30119 
30120 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30121 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30122 			kmem_free(un->sd_fi_fifo_pkt[i],
30123 			    sizeof (struct sd_fi_pkt));
30124 		}
30125 		if (arg != NULL) {
30126 			un->sd_fi_fifo_pkt[i] =
30127 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30128 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30129 				/* Alloc failed don't store anything */
30130 				break;
30131 			}
30132 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30133 			    sizeof (struct sd_fi_pkt), 0);
30134 			if (rval == -1) {
30135 				kmem_free(un->sd_fi_fifo_pkt[i],
30136 				    sizeof (struct sd_fi_pkt));
30137 				un->sd_fi_fifo_pkt[i] = NULL;
30138 			}
30139 		} else {
30140 			SD_INFO(SD_LOG_IOERR, un,
30141 			    "sd_faultinjection_ioctl: pkt null\n");
30142 		}
30143 		break;
30144 
30145 	case SDIOCINSERTXB:
30146 		/* Store a xb struct to be pushed onto fifo */
30147 		SD_INFO(SD_LOG_SDTEST, un,
30148 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30149 
30150 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30151 
30152 		sd_fault_injection_on = 0;
30153 
30154 		if (un->sd_fi_fifo_xb[i] != NULL) {
30155 			kmem_free(un->sd_fi_fifo_xb[i],
30156 			    sizeof (struct sd_fi_xb));
30157 			un->sd_fi_fifo_xb[i] = NULL;
30158 		}
30159 		if (arg != NULL) {
30160 			un->sd_fi_fifo_xb[i] =
30161 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30162 			if (un->sd_fi_fifo_xb[i] == NULL) {
30163 				/* Alloc failed don't store anything */
30164 				break;
30165 			}
30166 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30167 			    sizeof (struct sd_fi_xb), 0);
30168 
30169 			if (rval == -1) {
30170 				kmem_free(un->sd_fi_fifo_xb[i],
30171 				    sizeof (struct sd_fi_xb));
30172 				un->sd_fi_fifo_xb[i] = NULL;
30173 			}
30174 		} else {
30175 			SD_INFO(SD_LOG_IOERR, un,
30176 			    "sd_faultinjection_ioctl: xb null\n");
30177 		}
30178 		break;
30179 
30180 	case SDIOCINSERTUN:
30181 		/* Store a un struct to be pushed onto fifo */
30182 		SD_INFO(SD_LOG_SDTEST, un,
30183 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30184 
30185 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30186 
30187 		sd_fault_injection_on = 0;
30188 
30189 		if (un->sd_fi_fifo_un[i] != NULL) {
30190 			kmem_free(un->sd_fi_fifo_un[i],
30191 			    sizeof (struct sd_fi_un));
30192 			un->sd_fi_fifo_un[i] = NULL;
30193 		}
30194 		if (arg != NULL) {
30195 			un->sd_fi_fifo_un[i] =
30196 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30197 			if (un->sd_fi_fifo_un[i] == NULL) {
30198 				/* Alloc failed don't store anything */
30199 				break;
30200 			}
30201 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30202 			    sizeof (struct sd_fi_un), 0);
30203 			if (rval == -1) {
30204 				kmem_free(un->sd_fi_fifo_un[i],
30205 				    sizeof (struct sd_fi_un));
30206 				un->sd_fi_fifo_un[i] = NULL;
30207 			}
30208 
30209 		} else {
30210 			SD_INFO(SD_LOG_IOERR, un,
30211 			    "sd_faultinjection_ioctl: un null\n");
30212 		}
30213 
30214 		break;
30215 
30216 	case SDIOCINSERTARQ:
30217 		/* Store a arq struct to be pushed onto fifo */
30218 		SD_INFO(SD_LOG_SDTEST, un,
30219 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30220 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30221 
30222 		sd_fault_injection_on = 0;
30223 
30224 		if (un->sd_fi_fifo_arq[i] != NULL) {
30225 			kmem_free(un->sd_fi_fifo_arq[i],
30226 			    sizeof (struct sd_fi_arq));
30227 			un->sd_fi_fifo_arq[i] = NULL;
30228 		}
30229 		if (arg != NULL) {
30230 			un->sd_fi_fifo_arq[i] =
30231 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30232 			if (un->sd_fi_fifo_arq[i] == NULL) {
30233 				/* Alloc failed don't store anything */
30234 				break;
30235 			}
30236 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30237 			    sizeof (struct sd_fi_arq), 0);
30238 			if (rval == -1) {
30239 				kmem_free(un->sd_fi_fifo_arq[i],
30240 				    sizeof (struct sd_fi_arq));
30241 				un->sd_fi_fifo_arq[i] = NULL;
30242 			}
30243 
30244 		} else {
30245 			SD_INFO(SD_LOG_IOERR, un,
30246 			    "sd_faultinjection_ioctl: arq null\n");
30247 		}
30248 
30249 		break;
30250 
30251 	case SDIOCPUSH:
30252 		/* Push stored xb, pkt, un, and arq onto fifo */
30253 		sd_fault_injection_on = 0;
30254 
30255 		if (arg != NULL) {
30256 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30257 			if (rval != -1 &&
30258 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30259 				un->sd_fi_fifo_end += i;
30260 			}
30261 		} else {
30262 			SD_INFO(SD_LOG_IOERR, un,
30263 			    "sd_faultinjection_ioctl: push arg null\n");
30264 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30265 				un->sd_fi_fifo_end++;
30266 			}
30267 		}
30268 		SD_INFO(SD_LOG_IOERR, un,
30269 		    "sd_faultinjection_ioctl: push to end=%d\n",
30270 		    un->sd_fi_fifo_end);
30271 		break;
30272 
30273 	case SDIOCRETRIEVE:
30274 		/* Return buffer of log from Injection session */
30275 		SD_INFO(SD_LOG_SDTEST, un,
30276 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30277 
30278 		sd_fault_injection_on = 0;
30279 
30280 		mutex_enter(&(un->un_fi_mutex));
30281 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30282 		    un->sd_fi_buf_len+1, 0);
30283 		mutex_exit(&(un->un_fi_mutex));
30284 
30285 		if (rval == -1) {
30286 			/*
30287 			 * arg is possibly invalid setting
30288 			 * it to NULL for return
30289 			 */
30290 			arg = NULL;
30291 		}
30292 		break;
30293 	}
30294 
30295 	mutex_exit(SD_MUTEX(un));
30296 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30297 			    " exit\n");
30298 }
30299 
30300 
30301 /*
30302  *    Function: sd_injection_log()
30303  *
30304  * Description: This routine adds buff to the already existing injection log
30305  *              for retrieval via faultinjection_ioctl for use in fault
30306  *              detection and recovery
30307  *
30308  *   Arguments: buf - the string to add to the log
30309  */
30310 
30311 static void
30312 sd_injection_log(char *buf, struct sd_lun *un)
30313 {
30314 	uint_t len;
30315 
30316 	ASSERT(un != NULL);
30317 	ASSERT(buf != NULL);
30318 
30319 	mutex_enter(&(un->un_fi_mutex));
30320 
30321 	len = min(strlen(buf), 255);
30322 	/* Add logged value to Injection log to be returned later */
30323 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30324 		uint_t	offset = strlen((char *)un->sd_fi_log);
30325 		char *destp = (char *)un->sd_fi_log + offset;
30326 		int i;
30327 		for (i = 0; i < len; i++) {
30328 			*destp++ = *buf++;
30329 		}
30330 		un->sd_fi_buf_len += len;
30331 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30332 	}
30333 
30334 	mutex_exit(&(un->un_fi_mutex));
30335 }
30336 
30337 
30338 /*
30339  *    Function: sd_faultinjection()
30340  *
30341  * Description: This routine takes the pkt and changes its
30342  *		content based on error injection scenerio.
30343  *
30344  *   Arguments: pktp	- packet to be changed
30345  */
30346 
30347 static void
30348 sd_faultinjection(struct scsi_pkt *pktp)
30349 {
30350 	uint_t i;
30351 	struct sd_fi_pkt *fi_pkt;
30352 	struct sd_fi_xb *fi_xb;
30353 	struct sd_fi_un *fi_un;
30354 	struct sd_fi_arq *fi_arq;
30355 	struct buf *bp;
30356 	struct sd_xbuf *xb;
30357 	struct sd_lun *un;
30358 
30359 	ASSERT(pktp != NULL);
30360 
30361 	/* pull bp xb and un from pktp */
30362 	bp = (struct buf *)pktp->pkt_private;
30363 	xb = SD_GET_XBUF(bp);
30364 	un = SD_GET_UN(bp);
30365 
30366 	ASSERT(un != NULL);
30367 
30368 	mutex_enter(SD_MUTEX(un));
30369 
30370 	SD_TRACE(SD_LOG_SDTEST, un,
30371 	    "sd_faultinjection: entry Injection from sdintr\n");
30372 
30373 	/* if injection is off return */
30374 	if (sd_fault_injection_on == 0 ||
30375 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30376 		mutex_exit(SD_MUTEX(un));
30377 		return;
30378 	}
30379 
30380 	SD_INFO(SD_LOG_SDTEST, un,
30381 	    "sd_faultinjection: is working for copying\n");
30382 
30383 	/* take next set off fifo */
30384 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30385 
30386 	fi_pkt = un->sd_fi_fifo_pkt[i];
30387 	fi_xb = un->sd_fi_fifo_xb[i];
30388 	fi_un = un->sd_fi_fifo_un[i];
30389 	fi_arq = un->sd_fi_fifo_arq[i];
30390 
30391 
30392 	/* set variables accordingly */
30393 	/* set pkt if it was on fifo */
30394 	if (fi_pkt != NULL) {
30395 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30396 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30397 		if (fi_pkt->pkt_cdbp != 0xff)
30398 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30399 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30400 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30401 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30402 
30403 	}
30404 	/* set xb if it was on fifo */
30405 	if (fi_xb != NULL) {
30406 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30407 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30408 		if (fi_xb->xb_retry_count != 0)
30409 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30410 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30411 		    "xb_victim_retry_count");
30412 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30413 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30414 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30415 
30416 		/* copy in block data from sense */
30417 		/*
30418 		 * if (fi_xb->xb_sense_data[0] != -1) {
30419 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30420 		 *	SENSE_LENGTH);
30421 		 * }
30422 		 */
30423 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30424 
30425 		/* copy in extended sense codes */
30426 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30427 		    xb, es_code, "es_code");
30428 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30429 		    xb, es_key, "es_key");
30430 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30431 		    xb, es_add_code, "es_add_code");
30432 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30433 		    xb, es_qual_code, "es_qual_code");
30434 		struct scsi_extended_sense *esp;
30435 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30436 		esp->es_class = CLASS_EXTENDED_SENSE;
30437 	}
30438 
30439 	/* set un if it was on fifo */
30440 	if (fi_un != NULL) {
30441 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30442 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30443 		SD_CONDSET(un, un, un_reset_retry_count,
30444 		    "un_reset_retry_count");
30445 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30446 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30447 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30448 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30449 		    "un_f_allow_bus_device_reset");
30450 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30451 
30452 	}
30453 
30454 	/* copy in auto request sense if it was on fifo */
30455 	if (fi_arq != NULL) {
30456 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30457 	}
30458 
30459 	/* free structs */
30460 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30461 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30462 	}
30463 	if (un->sd_fi_fifo_xb[i] != NULL) {
30464 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30465 	}
30466 	if (un->sd_fi_fifo_un[i] != NULL) {
30467 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30468 	}
30469 	if (un->sd_fi_fifo_arq[i] != NULL) {
30470 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30471 	}
30472 
30473 	/*
30474 	 * kmem_free does not gurantee to set to NULL
30475 	 * since we uses these to determine if we set
30476 	 * values or not lets confirm they are always
30477 	 * NULL after free
30478 	 */
30479 	un->sd_fi_fifo_pkt[i] = NULL;
30480 	un->sd_fi_fifo_un[i] = NULL;
30481 	un->sd_fi_fifo_xb[i] = NULL;
30482 	un->sd_fi_fifo_arq[i] = NULL;
30483 
30484 	un->sd_fi_fifo_start++;
30485 
30486 	mutex_exit(SD_MUTEX(un));
30487 
30488 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30489 }
30490 
30491 #endif /* SD_FAULT_INJECTION */
30492 
30493 /*
30494  * This routine is invoked in sd_unit_attach(). Before calling it, the
30495  * properties in conf file should be processed already, and "hotpluggable"
30496  * property was processed also.
30497  *
30498  * The sd driver distinguishes 3 different type of devices: removable media,
30499  * non-removable media, and hotpluggable. Below the differences are defined:
30500  *
30501  * 1. Device ID
30502  *
30503  *     The device ID of a device is used to identify this device. Refer to
30504  *     ddi_devid_register(9F).
30505  *
30506  *     For a non-removable media disk device which can provide 0x80 or 0x83
30507  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30508  *     device ID is created to identify this device. For other non-removable
30509  *     media devices, a default device ID is created only if this device has
30510  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30511  *
30512  *     -------------------------------------------------------
30513  *     removable media   hotpluggable  | Can Have Device ID
30514  *     -------------------------------------------------------
30515  *         false             false     |     Yes
30516  *         false             true      |     Yes
30517  *         true                x       |     No
30518  *     ------------------------------------------------------
30519  *
30520  *
30521  * 2. SCSI group 4 commands
30522  *
30523  *     In SCSI specs, only some commands in group 4 command set can use
30524  *     8-byte addresses that can be used to access >2TB storage spaces.
30525  *     Other commands have no such capability. Without supporting group4,
30526  *     it is impossible to make full use of storage spaces of a disk with
30527  *     capacity larger than 2TB.
30528  *
30529  *     -----------------------------------------------
30530  *     removable media   hotpluggable   LP64  |  Group
30531  *     -----------------------------------------------
30532  *           false          false       false |   1
30533  *           false          false       true  |   4
30534  *           false          true        false |   1
30535  *           false          true        true  |   4
30536  *           true             x           x   |   5
30537  *     -----------------------------------------------
30538  *
30539  *
30540  * 3. Check for VTOC Label
30541  *
30542  *     If a direct-access disk has no EFI label, sd will check if it has a
30543  *     valid VTOC label. Now, sd also does that check for removable media
30544  *     and hotpluggable devices.
30545  *
30546  *     --------------------------------------------------------------
30547  *     Direct-Access   removable media    hotpluggable |  Check Label
30548  *     -------------------------------------------------------------
30549  *         false          false           false        |   No
30550  *         false          false           true         |   No
30551  *         false          true            false        |   Yes
30552  *         false          true            true         |   Yes
30553  *         true            x                x          |   Yes
30554  *     --------------------------------------------------------------
30555  *
30556  *
30557  * 4. Building default VTOC label
30558  *
30559  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30560  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30561  *     create default VTOC for them. Currently sd creates default VTOC label
30562  *     for all devices on x86 platform (VTOC_16), but only for removable
30563  *     media devices on SPARC (VTOC_8).
30564  *
30565  *     -----------------------------------------------------------
30566  *       removable media hotpluggable platform   |   Default Label
30567  *     -----------------------------------------------------------
30568  *             false          false    sparc     |     No
30569  *             false          true      x86      |     Yes
30570  *             false          true     sparc     |     Yes
30571  *             true             x        x       |     Yes
30572  *     ----------------------------------------------------------
30573  *
30574  *
30575  * 5. Supported blocksizes of target devices
30576  *
30577  *     Sd supports non-512-byte blocksize for removable media devices only.
30578  *     For other devices, only 512-byte blocksize is supported. This may be
30579  *     changed in near future because some RAID devices require non-512-byte
30580  *     blocksize
30581  *
30582  *     -----------------------------------------------------------
30583  *     removable media    hotpluggable    | non-512-byte blocksize
30584  *     -----------------------------------------------------------
30585  *           false          false         |   No
30586  *           false          true          |   No
30587  *           true             x           |   Yes
30588  *     -----------------------------------------------------------
30589  *
30590  *
30591  * 6. Automatic mount & unmount
30592  *
30593  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30594  *     if a device is removable media device. It return 1 for removable media
30595  *     devices, and 0 for others.
30596  *
30597  *     The automatic mounting subsystem should distinguish between the types
30598  *     of devices and apply automounting policies to each.
30599  *
30600  *
30601  * 7. fdisk partition management
30602  *
30603  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30604  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30605  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30606  *     fdisk partitions on both x86 and SPARC platform.
30607  *
30608  *     -----------------------------------------------------------
30609  *       platform   removable media  USB/1394  |  fdisk supported
30610  *     -----------------------------------------------------------
30611  *        x86         X               X        |       true
30612  *     ------------------------------------------------------------
30613  *        sparc       X               X        |       false
30614  *     ------------------------------------------------------------
30615  *
30616  *
30617  * 8. MBOOT/MBR
30618  *
30619  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30620  *     read/write mboot for removable media devices on sparc platform.
30621  *
30622  *     -----------------------------------------------------------
30623  *       platform   removable media  USB/1394  |  mboot supported
30624  *     -----------------------------------------------------------
30625  *        x86         X               X        |       true
30626  *     ------------------------------------------------------------
30627  *        sparc      false           false     |       false
30628  *        sparc      false           true      |       true
30629  *        sparc      true            false     |       true
30630  *        sparc      true            true      |       true
30631  *     ------------------------------------------------------------
30632  *
30633  *
30634  * 9.  error handling during opening device
30635  *
30636  *     If failed to open a disk device, an errno is returned. For some kinds
30637  *     of errors, different errno is returned depending on if this device is
30638  *     a removable media device. This brings USB/1394 hard disks in line with
30639  *     expected hard disk behavior. It is not expected that this breaks any
30640  *     application.
30641  *
30642  *     ------------------------------------------------------
30643  *       removable media    hotpluggable   |  errno
30644  *     ------------------------------------------------------
30645  *             false          false        |   EIO
30646  *             false          true         |   EIO
30647  *             true             x          |   ENXIO
30648  *     ------------------------------------------------------
30649  *
30650  *
30651  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30652  *
30653  *     These IOCTLs are applicable only to removable media devices.
30654  *
30655  *     -----------------------------------------------------------
30656  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30657  *     -----------------------------------------------------------
30658  *             false          false        |     No
30659  *             false          true         |     No
30660  *             true            x           |     Yes
30661  *     -----------------------------------------------------------
30662  *
30663  *
30664  * 12. Kstats for partitions
30665  *
30666  *     sd creates partition kstat for non-removable media devices. USB and
30667  *     Firewire hard disks now have partition kstats
30668  *
30669  *      ------------------------------------------------------
30670  *       removable media    hotpluggable   |   kstat
30671  *      ------------------------------------------------------
30672  *             false          false        |    Yes
30673  *             false          true         |    Yes
30674  *             true             x          |    No
30675  *       ------------------------------------------------------
30676  *
30677  *
30678  * 13. Removable media & hotpluggable properties
30679  *
30680  *     Sd driver creates a "removable-media" property for removable media
30681  *     devices. Parent nexus drivers create a "hotpluggable" property if
30682  *     it supports hotplugging.
30683  *
30684  *     ---------------------------------------------------------------------
30685  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30686  *     ---------------------------------------------------------------------
30687  *       false            false       |    No                   No
30688  *       false            true        |    No                   Yes
30689  *       true             false       |    Yes                  No
30690  *       true             true        |    Yes                  Yes
30691  *     ---------------------------------------------------------------------
30692  *
30693  *
30694  * 14. Power Management
30695  *
30696  *     sd only power manages removable media devices or devices that support
30697  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30698  *
30699  *     A parent nexus that supports hotplugging can also set "pm-capable"
30700  *     if the disk can be power managed.
30701  *
30702  *     ------------------------------------------------------------
30703  *       removable media hotpluggable pm-capable  |   power manage
30704  *     ------------------------------------------------------------
30705  *             false          false     false     |     No
30706  *             false          false     true      |     Yes
30707  *             false          true      false     |     No
30708  *             false          true      true      |     Yes
30709  *             true             x        x        |     Yes
30710  *     ------------------------------------------------------------
30711  *
30712  *      USB and firewire hard disks can now be power managed independently
30713  *      of the framebuffer
30714  *
30715  *
30716  * 15. Support for USB disks with capacity larger than 1TB
30717  *
30718  *     Currently, sd doesn't permit a fixed disk device with capacity
30719  *     larger than 1TB to be used in a 32-bit operating system environment.
30720  *     However, sd doesn't do that for removable media devices. Instead, it
30721  *     assumes that removable media devices cannot have a capacity larger
30722  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30723  *     supported, which can cause some unexpected results.
30724  *
30725  *     ---------------------------------------------------------------------
30726  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30727  *     ---------------------------------------------------------------------
30728  *             false          false  |   true         |     no
30729  *             false          true   |   true         |     no
30730  *             true           false  |   true         |     Yes
30731  *             true           true   |   true         |     Yes
30732  *     ---------------------------------------------------------------------
30733  *
30734  *
30735  * 16. Check write-protection at open time
30736  *
30737  *     When a removable media device is being opened for writing without NDELAY
30738  *     flag, sd will check if this device is writable. If attempting to open
30739  *     without NDELAY flag a write-protected device, this operation will abort.
30740  *
30741  *     ------------------------------------------------------------
30742  *       removable media    USB/1394   |   WP Check
30743  *     ------------------------------------------------------------
30744  *             false          false    |     No
30745  *             false          true     |     No
30746  *             true           false    |     Yes
30747  *             true           true     |     Yes
30748  *     ------------------------------------------------------------
30749  *
30750  *
30751  * 17. syslog when corrupted VTOC is encountered
30752  *
30753  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30754  *      for fixed SCSI disks.
30755  *     ------------------------------------------------------------
30756  *       removable media    USB/1394   |   print syslog
30757  *     ------------------------------------------------------------
30758  *             false          false    |     Yes
30759  *             false          true     |     No
30760  *             true           false    |     No
30761  *             true           true     |     No
30762  *     ------------------------------------------------------------
30763  */
30764 static void
30765 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30766 {
30767 	int	pm_cap;
30768 
30769 	ASSERT(un->un_sd);
30770 	ASSERT(un->un_sd->sd_inq);
30771 
30772 	/*
30773 	 * Enable SYNC CACHE support for all devices.
30774 	 */
30775 	un->un_f_sync_cache_supported = TRUE;
30776 
30777 	/*
30778 	 * Set the sync cache required flag to false.
30779 	 * This would ensure that there is no SYNC CACHE
30780 	 * sent when there are no writes
30781 	 */
30782 	un->un_f_sync_cache_required = FALSE;
30783 
30784 	if (un->un_sd->sd_inq->inq_rmb) {
30785 		/*
30786 		 * The media of this device is removable. And for this kind
30787 		 * of devices, it is possible to change medium after opening
30788 		 * devices. Thus we should support this operation.
30789 		 */
30790 		un->un_f_has_removable_media = TRUE;
30791 
30792 		/*
30793 		 * support non-512-byte blocksize of removable media devices
30794 		 */
30795 		un->un_f_non_devbsize_supported = TRUE;
30796 
30797 		/*
30798 		 * Assume that all removable media devices support DOOR_LOCK
30799 		 */
30800 		un->un_f_doorlock_supported = TRUE;
30801 
30802 		/*
30803 		 * For a removable media device, it is possible to be opened
30804 		 * with NDELAY flag when there is no media in drive, in this
30805 		 * case we don't care if device is writable. But if without
30806 		 * NDELAY flag, we need to check if media is write-protected.
30807 		 */
30808 		un->un_f_chk_wp_open = TRUE;
30809 
30810 		/*
30811 		 * need to start a SCSI watch thread to monitor media state,
30812 		 * when media is being inserted or ejected, notify syseventd.
30813 		 */
30814 		un->un_f_monitor_media_state = TRUE;
30815 
30816 		/*
30817 		 * Some devices don't support START_STOP_UNIT command.
30818 		 * Therefore, we'd better check if a device supports it
30819 		 * before sending it.
30820 		 */
30821 		un->un_f_check_start_stop = TRUE;
30822 
30823 		/*
30824 		 * support eject media ioctl:
30825 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30826 		 */
30827 		un->un_f_eject_media_supported = TRUE;
30828 
30829 		/*
30830 		 * Because many removable-media devices don't support
30831 		 * LOG_SENSE, we couldn't use this command to check if
30832 		 * a removable media device support power-management.
30833 		 * We assume that they support power-management via
30834 		 * START_STOP_UNIT command and can be spun up and down
30835 		 * without limitations.
30836 		 */
30837 		un->un_f_pm_supported = TRUE;
30838 
30839 		/*
30840 		 * Need to create a zero length (Boolean) property
30841 		 * removable-media for the removable media devices.
30842 		 * Note that the return value of the property is not being
30843 		 * checked, since if unable to create the property
30844 		 * then do not want the attach to fail altogether. Consistent
30845 		 * with other property creation in attach.
30846 		 */
30847 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30848 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30849 
30850 	} else {
30851 		/*
30852 		 * create device ID for device
30853 		 */
30854 		un->un_f_devid_supported = TRUE;
30855 
30856 		/*
30857 		 * Spin up non-removable-media devices once it is attached
30858 		 */
30859 		un->un_f_attach_spinup = TRUE;
30860 
30861 		/*
30862 		 * According to SCSI specification, Sense data has two kinds of
30863 		 * format: fixed format, and descriptor format. At present, we
30864 		 * don't support descriptor format sense data for removable
30865 		 * media.
30866 		 */
30867 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30868 			un->un_f_descr_format_supported = TRUE;
30869 		}
30870 
30871 		/*
30872 		 * kstats are created only for non-removable media devices.
30873 		 *
30874 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30875 		 * default is 1, so they are enabled by default.
30876 		 */
30877 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30878 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30879 		    "enable-partition-kstats", 1));
30880 
30881 		/*
30882 		 * Check if HBA has set the "pm-capable" property.
30883 		 * If "pm-capable" exists and is non-zero then we can
30884 		 * power manage the device without checking the start/stop
30885 		 * cycle count log sense page.
30886 		 *
30887 		 * If "pm-capable" exists and is set to be false (0),
30888 		 * then we should not power manage the device.
30889 		 *
30890 		 * If "pm-capable" doesn't exist then pm_cap will
30891 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30892 		 * sd will check the start/stop cycle count log sense page
30893 		 * and power manage the device if the cycle count limit has
30894 		 * not been exceeded.
30895 		 */
30896 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30897 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30898 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30899 			un->un_f_log_sense_supported = TRUE;
30900 			if (!un->un_f_power_condition_disabled &&
30901 			    SD_INQUIRY(un)->inq_ansi == 6) {
30902 				un->un_f_power_condition_supported = TRUE;
30903 			}
30904 		} else {
30905 			/*
30906 			 * pm-capable property exists.
30907 			 *
30908 			 * Convert "TRUE" values for pm_cap to
30909 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30910 			 * later. "TRUE" values are any values defined in
30911 			 * inquiry.h.
30912 			 */
30913 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30914 				un->un_f_log_sense_supported = FALSE;
30915 			} else {
30916 				/* SD_PM_CAPABLE_IS_TRUE case */
30917 				un->un_f_pm_supported = TRUE;
30918 				if (!un->un_f_power_condition_disabled &&
30919 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30920 					un->un_f_power_condition_supported =
30921 					    TRUE;
30922 				}
30923 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30924 					un->un_f_log_sense_supported = TRUE;
30925 					un->un_f_pm_log_sense_smart =
30926 					    SD_PM_CAP_SMART_LOG(pm_cap);
30927 				}
30928 			}
30929 
30930 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30931 			    "sd_unit_attach: un:0x%p pm-capable "
30932 			    "property set to %d.\n", un, un->un_f_pm_supported);
30933 		}
30934 	}
30935 
30936 	if (un->un_f_is_hotpluggable) {
30937 
30938 		/*
30939 		 * Have to watch hotpluggable devices as well, since
30940 		 * that's the only way for userland applications to
30941 		 * detect hot removal while device is busy/mounted.
30942 		 */
30943 		un->un_f_monitor_media_state = TRUE;
30944 
30945 		un->un_f_check_start_stop = TRUE;
30946 
30947 	}
30948 }
30949 
30950 /*
30951  * sd_tg_rdwr:
30952  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30953  * in sys block size, req_length in bytes.
30954  *
30955  */
30956 static int
30957 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30958     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30959 {
30960 	struct sd_lun *un;
30961 	int path_flag = (int)(uintptr_t)tg_cookie;
30962 	char *dkl = NULL;
30963 	diskaddr_t real_addr = start_block;
30964 	diskaddr_t first_byte, end_block;
30965 
30966 	size_t	buffer_size = reqlength;
30967 	int rval = 0;
30968 	diskaddr_t	cap;
30969 	uint32_t	lbasize;
30970 	sd_ssc_t	*ssc;
30971 
30972 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30973 	if (un == NULL)
30974 		return (ENXIO);
30975 
30976 	if (cmd != TG_READ && cmd != TG_WRITE)
30977 		return (EINVAL);
30978 
30979 	ssc = sd_ssc_init(un);
30980 	mutex_enter(SD_MUTEX(un));
30981 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
30982 		mutex_exit(SD_MUTEX(un));
30983 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
30984 		    &lbasize, path_flag);
30985 		if (rval != 0)
30986 			goto done1;
30987 		mutex_enter(SD_MUTEX(un));
30988 		sd_update_block_info(un, lbasize, cap);
30989 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
30990 			mutex_exit(SD_MUTEX(un));
30991 			rval = EIO;
30992 			goto done;
30993 		}
30994 	}
30995 
30996 	if (NOT_DEVBSIZE(un)) {
30997 		/*
30998 		 * sys_blocksize != tgt_blocksize, need to re-adjust
30999 		 * blkno and save the index to beginning of dk_label
31000 		 */
31001 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31002 		real_addr = first_byte / un->un_tgt_blocksize;
31003 
31004 		end_block = (first_byte + reqlength +
31005 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31006 
31007 		/* round up buffer size to multiple of target block size */
31008 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31009 
31010 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31011 		    "label_addr: 0x%x allocation size: 0x%x\n",
31012 		    real_addr, buffer_size);
31013 
31014 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31015 		    (reqlength % un->un_tgt_blocksize) != 0)
31016 			/* the request is not aligned */
31017 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31018 	}
31019 
31020 	/*
31021 	 * The MMC standard allows READ CAPACITY to be
31022 	 * inaccurate by a bounded amount (in the interest of
31023 	 * response latency).  As a result, failed READs are
31024 	 * commonplace (due to the reading of metadata and not
31025 	 * data). Depending on the per-Vendor/drive Sense data,
31026 	 * the failed READ can cause many (unnecessary) retries.
31027 	 */
31028 
31029 	if (ISCD(un) && (cmd == TG_READ) &&
31030 	    (un->un_f_blockcount_is_valid == TRUE) &&
31031 	    ((start_block == (un->un_blockcount - 1))||
31032 	    (start_block == (un->un_blockcount - 2)))) {
31033 			path_flag = SD_PATH_DIRECT_PRIORITY;
31034 	}
31035 
31036 	mutex_exit(SD_MUTEX(un));
31037 	if (cmd == TG_READ) {
31038 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31039 		    buffer_size, real_addr, path_flag);
31040 		if (dkl != NULL)
31041 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31042 			    real_addr), bufaddr, reqlength);
31043 	} else {
31044 		if (dkl) {
31045 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31046 			    real_addr, path_flag);
31047 			if (rval) {
31048 				goto done1;
31049 			}
31050 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31051 			    real_addr), reqlength);
31052 		}
31053 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31054 		    buffer_size, real_addr, path_flag);
31055 	}
31056 
31057 done1:
31058 	if (dkl != NULL)
31059 		kmem_free(dkl, buffer_size);
31060 
31061 	if (rval != 0) {
31062 		if (rval == EIO)
31063 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31064 		else
31065 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31066 	}
31067 done:
31068 	sd_ssc_fini(ssc);
31069 	return (rval);
31070 }
31071 
31072 
31073 static int
31074 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31075 {
31076 
31077 	struct sd_lun *un;
31078 	diskaddr_t	cap;
31079 	uint32_t	lbasize;
31080 	int		path_flag = (int)(uintptr_t)tg_cookie;
31081 	int		ret = 0;
31082 
31083 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31084 	if (un == NULL)
31085 		return (ENXIO);
31086 
31087 	switch (cmd) {
31088 	case TG_GETPHYGEOM:
31089 	case TG_GETVIRTGEOM:
31090 	case TG_GETCAPACITY:
31091 	case TG_GETBLOCKSIZE:
31092 		mutex_enter(SD_MUTEX(un));
31093 
31094 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31095 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31096 			cap = un->un_blockcount;
31097 			lbasize = un->un_tgt_blocksize;
31098 			mutex_exit(SD_MUTEX(un));
31099 		} else {
31100 			sd_ssc_t	*ssc;
31101 			mutex_exit(SD_MUTEX(un));
31102 			ssc = sd_ssc_init(un);
31103 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31104 			    &lbasize, path_flag);
31105 			if (ret != 0) {
31106 				if (ret == EIO)
31107 					sd_ssc_assessment(ssc,
31108 					    SD_FMT_STATUS_CHECK);
31109 				else
31110 					sd_ssc_assessment(ssc,
31111 					    SD_FMT_IGNORE);
31112 				sd_ssc_fini(ssc);
31113 				return (ret);
31114 			}
31115 			sd_ssc_fini(ssc);
31116 			mutex_enter(SD_MUTEX(un));
31117 			sd_update_block_info(un, lbasize, cap);
31118 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31119 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31120 				mutex_exit(SD_MUTEX(un));
31121 				return (EIO);
31122 			}
31123 			mutex_exit(SD_MUTEX(un));
31124 		}
31125 
31126 		if (cmd == TG_GETCAPACITY) {
31127 			*(diskaddr_t *)arg = cap;
31128 			return (0);
31129 		}
31130 
31131 		if (cmd == TG_GETBLOCKSIZE) {
31132 			*(uint32_t *)arg = lbasize;
31133 			return (0);
31134 		}
31135 
31136 		if (cmd == TG_GETPHYGEOM)
31137 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31138 			    cap, lbasize, path_flag);
31139 		else
31140 			/* TG_GETVIRTGEOM */
31141 			ret = sd_get_virtual_geometry(un,
31142 			    (cmlb_geom_t *)arg, cap, lbasize);
31143 
31144 		return (ret);
31145 
31146 	case TG_GETATTR:
31147 		mutex_enter(SD_MUTEX(un));
31148 		((tg_attribute_t *)arg)->media_is_writable =
31149 		    un->un_f_mmc_writable_media;
31150 		((tg_attribute_t *)arg)->media_is_solid_state =
31151 		    un->un_f_is_solid_state;
31152 		mutex_exit(SD_MUTEX(un));
31153 		return (0);
31154 	default:
31155 		return (ENOTTY);
31156 
31157 	}
31158 }
31159 
31160 /*
31161  *    Function: sd_ssc_ereport_post
31162  *
31163  * Description: Will be called when SD driver need to post an ereport.
31164  *
31165  *    Context: Kernel thread or interrupt context.
31166  */
31167 
31168 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31169 
31170 static void
31171 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31172 {
31173 	int uscsi_path_instance = 0;
31174 	uchar_t	uscsi_pkt_reason;
31175 	uint32_t uscsi_pkt_state;
31176 	uint32_t uscsi_pkt_statistics;
31177 	uint64_t uscsi_ena;
31178 	uchar_t op_code;
31179 	uint8_t *sensep;
31180 	union scsi_cdb *cdbp;
31181 	uint_t cdblen = 0;
31182 	uint_t senlen = 0;
31183 	struct sd_lun *un;
31184 	dev_info_t *dip;
31185 	char *devid;
31186 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31187 	    SSC_FLAGS_INVALID_STATUS |
31188 	    SSC_FLAGS_INVALID_SENSE |
31189 	    SSC_FLAGS_INVALID_DATA;
31190 	char assessment[16];
31191 
31192 	ASSERT(ssc != NULL);
31193 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31194 	ASSERT(ssc->ssc_uscsi_info != NULL);
31195 
31196 	un = ssc->ssc_un;
31197 	ASSERT(un != NULL);
31198 
31199 	dip = un->un_sd->sd_dev;
31200 
31201 	/*
31202 	 * Get the devid:
31203 	 *	devid will only be passed to non-transport error reports.
31204 	 */
31205 	devid = DEVI(dip)->devi_devid_str;
31206 
31207 	/*
31208 	 * If we are syncing or dumping, the command will not be executed
31209 	 * so we bypass this situation.
31210 	 */
31211 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31212 	    (un->un_state == SD_STATE_DUMPING))
31213 		return;
31214 
31215 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31216 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31217 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31218 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31219 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31220 
31221 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31222 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31223 
31224 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31225 	if (cdbp == NULL) {
31226 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31227 		    "sd_ssc_ereport_post meet empty cdb\n");
31228 		return;
31229 	}
31230 
31231 	op_code = cdbp->scc_cmd;
31232 
31233 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31234 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31235 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31236 
31237 	if (senlen > 0)
31238 		ASSERT(sensep != NULL);
31239 
31240 	/*
31241 	 * Initialize drv_assess to corresponding values.
31242 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31243 	 * on the sense-key returned back.
31244 	 */
31245 	switch (drv_assess) {
31246 		case SD_FM_DRV_RECOVERY:
31247 			(void) sprintf(assessment, "%s", "recovered");
31248 			break;
31249 		case SD_FM_DRV_RETRY:
31250 			(void) sprintf(assessment, "%s", "retry");
31251 			break;
31252 		case SD_FM_DRV_NOTICE:
31253 			(void) sprintf(assessment, "%s", "info");
31254 			break;
31255 		case SD_FM_DRV_FATAL:
31256 		default:
31257 			(void) sprintf(assessment, "%s", "unknown");
31258 	}
31259 	/*
31260 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31261 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31262 	 * driver-assessment will always be "recovered" here.
31263 	 */
31264 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31265 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31266 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31267 		    DDI_NOSLEEP, NULL,
31268 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31269 		    DEVID_IF_KNOWN(devid),
31270 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31271 		    "op-code", DATA_TYPE_UINT8, op_code,
31272 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31273 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31274 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31275 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31276 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31277 		    NULL);
31278 		return;
31279 	}
31280 
31281 	/*
31282 	 * If there is un-expected/un-decodable data, we should post
31283 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31284 	 * driver-assessment will be set based on parameter drv_assess.
31285 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31286 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31287 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31288 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31289 	 */
31290 	if (ssc->ssc_flags & ssc_invalid_flags) {
31291 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31292 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31293 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31294 			    NULL, DDI_NOSLEEP, NULL,
31295 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31296 			    DEVID_IF_KNOWN(devid),
31297 			    "driver-assessment", DATA_TYPE_STRING,
31298 			    drv_assess == SD_FM_DRV_FATAL ?
31299 			    "fail" : assessment,
31300 			    "op-code", DATA_TYPE_UINT8, op_code,
31301 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31302 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31303 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31304 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31305 			    "pkt-stats", DATA_TYPE_UINT32,
31306 			    uscsi_pkt_statistics,
31307 			    "stat-code", DATA_TYPE_UINT8,
31308 			    ssc->ssc_uscsi_cmd->uscsi_status,
31309 			    "un-decode-info", DATA_TYPE_STRING,
31310 			    ssc->ssc_info,
31311 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31312 			    senlen, sensep,
31313 			    NULL);
31314 		} else {
31315 			/*
31316 			 * For other type of invalid data, the
31317 			 * un-decode-value field would be empty because the
31318 			 * un-decodable content could be seen from upper
31319 			 * level payload or inside un-decode-info.
31320 			 */
31321 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31322 			    NULL,
31323 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31324 			    NULL, DDI_NOSLEEP, NULL,
31325 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31326 			    DEVID_IF_KNOWN(devid),
31327 			    "driver-assessment", DATA_TYPE_STRING,
31328 			    drv_assess == SD_FM_DRV_FATAL ?
31329 			    "fail" : assessment,
31330 			    "op-code", DATA_TYPE_UINT8, op_code,
31331 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31332 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31333 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31334 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31335 			    "pkt-stats", DATA_TYPE_UINT32,
31336 			    uscsi_pkt_statistics,
31337 			    "stat-code", DATA_TYPE_UINT8,
31338 			    ssc->ssc_uscsi_cmd->uscsi_status,
31339 			    "un-decode-info", DATA_TYPE_STRING,
31340 			    ssc->ssc_info,
31341 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31342 			    0, NULL,
31343 			    NULL);
31344 		}
31345 		ssc->ssc_flags &= ~ssc_invalid_flags;
31346 		return;
31347 	}
31348 
31349 	if (uscsi_pkt_reason != CMD_CMPLT ||
31350 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31351 		/*
31352 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31353 		 * set inside sd_start_cmds due to errors(bad packet or
31354 		 * fatal transport error), we should take it as a
31355 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31356 		 * driver-assessment will be set based on drv_assess.
31357 		 * We will set devid to NULL because it is a transport
31358 		 * error.
31359 		 */
31360 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31361 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31362 
31363 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31364 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31365 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31366 		    DEVID_IF_KNOWN(devid),
31367 		    "driver-assessment", DATA_TYPE_STRING,
31368 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31369 		    "op-code", DATA_TYPE_UINT8, op_code,
31370 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31371 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31372 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31373 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31374 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31375 		    NULL);
31376 	} else {
31377 		/*
31378 		 * If we got here, we have a completed command, and we need
31379 		 * to further investigate the sense data to see what kind
31380 		 * of ereport we should post.
31381 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31382 		 * if sense-key == 0x3.
31383 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31384 		 * driver-assessment will be set based on the parameter
31385 		 * drv_assess.
31386 		 */
31387 		if (senlen > 0) {
31388 			/*
31389 			 * Here we have sense data available.
31390 			 */
31391 			uint8_t sense_key;
31392 			sense_key = scsi_sense_key(sensep);
31393 			if (sense_key == 0x3) {
31394 				/*
31395 				 * sense-key == 0x3(medium error),
31396 				 * driver-assessment should be "fatal" if
31397 				 * drv_assess is SD_FM_DRV_FATAL.
31398 				 */
31399 				scsi_fm_ereport_post(un->un_sd,
31400 				    uscsi_path_instance, NULL,
31401 				    "cmd.disk.dev.rqs.merr",
31402 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31403 				    FM_VERSION, DATA_TYPE_UINT8,
31404 				    FM_EREPORT_VERS0,
31405 				    DEVID_IF_KNOWN(devid),
31406 				    "driver-assessment",
31407 				    DATA_TYPE_STRING,
31408 				    drv_assess == SD_FM_DRV_FATAL ?
31409 				    "fatal" : assessment,
31410 				    "op-code",
31411 				    DATA_TYPE_UINT8, op_code,
31412 				    "cdb",
31413 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31414 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31415 				    "pkt-reason",
31416 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31417 				    "pkt-state",
31418 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31419 				    "pkt-stats",
31420 				    DATA_TYPE_UINT32,
31421 				    uscsi_pkt_statistics,
31422 				    "stat-code",
31423 				    DATA_TYPE_UINT8,
31424 				    ssc->ssc_uscsi_cmd->uscsi_status,
31425 				    "key",
31426 				    DATA_TYPE_UINT8,
31427 				    scsi_sense_key(sensep),
31428 				    "asc",
31429 				    DATA_TYPE_UINT8,
31430 				    scsi_sense_asc(sensep),
31431 				    "ascq",
31432 				    DATA_TYPE_UINT8,
31433 				    scsi_sense_ascq(sensep),
31434 				    "sense-data",
31435 				    DATA_TYPE_UINT8_ARRAY,
31436 				    senlen, sensep,
31437 				    "lba",
31438 				    DATA_TYPE_UINT64,
31439 				    ssc->ssc_uscsi_info->ui_lba,
31440 				    NULL);
31441 				} else {
31442 					/*
31443 					 * if sense-key == 0x4(hardware
31444 					 * error), driver-assessment should
31445 					 * be "fatal" if drv_assess is
31446 					 * SD_FM_DRV_FATAL.
31447 					 */
31448 					scsi_fm_ereport_post(un->un_sd,
31449 					    uscsi_path_instance, NULL,
31450 					    "cmd.disk.dev.rqs.derr",
31451 					    uscsi_ena, devid,
31452 					    NULL, DDI_NOSLEEP, NULL,
31453 					    FM_VERSION,
31454 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31455 					    DEVID_IF_KNOWN(devid),
31456 					    "driver-assessment",
31457 					    DATA_TYPE_STRING,
31458 					    drv_assess == SD_FM_DRV_FATAL ?
31459 					    (sense_key == 0x4 ?
31460 					    "fatal" : "fail") : assessment,
31461 					    "op-code",
31462 					    DATA_TYPE_UINT8, op_code,
31463 					    "cdb",
31464 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31465 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31466 					    "pkt-reason",
31467 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31468 					    "pkt-state",
31469 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31470 					    "pkt-stats",
31471 					    DATA_TYPE_UINT32,
31472 					    uscsi_pkt_statistics,
31473 					    "stat-code",
31474 					    DATA_TYPE_UINT8,
31475 					    ssc->ssc_uscsi_cmd->uscsi_status,
31476 					    "key",
31477 					    DATA_TYPE_UINT8,
31478 					    scsi_sense_key(sensep),
31479 					    "asc",
31480 					    DATA_TYPE_UINT8,
31481 					    scsi_sense_asc(sensep),
31482 					    "ascq",
31483 					    DATA_TYPE_UINT8,
31484 					    scsi_sense_ascq(sensep),
31485 					    "sense-data",
31486 					    DATA_TYPE_UINT8_ARRAY,
31487 					    senlen, sensep,
31488 					    NULL);
31489 				}
31490 		} else {
31491 			/*
31492 			 * For stat_code == STATUS_GOOD, this is not a
31493 			 * hardware error.
31494 			 */
31495 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31496 				return;
31497 
31498 			/*
31499 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31500 			 * stat-code but with sense data unavailable.
31501 			 * driver-assessment will be set based on parameter
31502 			 * drv_assess.
31503 			 */
31504 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31505 			    NULL,
31506 			    "cmd.disk.dev.serr", uscsi_ena,
31507 			    devid, NULL, DDI_NOSLEEP, NULL,
31508 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31509 			    DEVID_IF_KNOWN(devid),
31510 			    "driver-assessment", DATA_TYPE_STRING,
31511 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31512 			    "op-code", DATA_TYPE_UINT8, op_code,
31513 			    "cdb",
31514 			    DATA_TYPE_UINT8_ARRAY,
31515 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31516 			    "pkt-reason",
31517 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31518 			    "pkt-state",
31519 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31520 			    "pkt-stats",
31521 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31522 			    "stat-code",
31523 			    DATA_TYPE_UINT8,
31524 			    ssc->ssc_uscsi_cmd->uscsi_status,
31525 			    NULL);
31526 		}
31527 	}
31528 }
31529 
31530 /*
31531  *     Function: sd_ssc_extract_info
31532  *
31533  * Description: Extract information available to help generate ereport.
31534  *
31535  *     Context: Kernel thread or interrupt context.
31536  */
31537 static void
31538 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31539     struct buf *bp, struct sd_xbuf *xp)
31540 {
31541 	size_t senlen = 0;
31542 	union scsi_cdb *cdbp;
31543 	int path_instance;
31544 	/*
31545 	 * Need scsi_cdb_size array to determine the cdb length.
31546 	 */
31547 	extern uchar_t	scsi_cdb_size[];
31548 
31549 	ASSERT(un != NULL);
31550 	ASSERT(pktp != NULL);
31551 	ASSERT(bp != NULL);
31552 	ASSERT(xp != NULL);
31553 	ASSERT(ssc != NULL);
31554 	ASSERT(mutex_owned(SD_MUTEX(un)));
31555 
31556 	/*
31557 	 * Transfer the cdb buffer pointer here.
31558 	 */
31559 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31560 
31561 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31562 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31563 
31564 	/*
31565 	 * Transfer the sense data buffer pointer if sense data is available,
31566 	 * calculate the sense data length first.
31567 	 */
31568 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31569 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31570 		/*
31571 		 * For arq case, we will enter here.
31572 		 */
31573 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31574 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31575 		} else {
31576 			senlen = SENSE_LENGTH;
31577 		}
31578 	} else {
31579 		/*
31580 		 * For non-arq case, we will enter this branch.
31581 		 */
31582 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31583 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31584 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31585 		}
31586 
31587 	}
31588 
31589 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31590 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31591 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31592 
31593 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31594 
31595 	/*
31596 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31597 	 */
31598 	path_instance = pktp->pkt_path_instance;
31599 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31600 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31601 	else
31602 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31603 
31604 	/*
31605 	 * Copy in the other fields we may need when posting ereport.
31606 	 */
31607 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31608 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31609 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31610 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31611 
31612 	/*
31613 	 * For partially read/write command, we will not create ena
31614 	 * in case of a successful command be reconized as recovered.
31615 	 */
31616 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31617 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31618 	    (senlen == 0)) {
31619 		return;
31620 	}
31621 
31622 	/*
31623 	 * To associate ereports of a single command execution flow, we
31624 	 * need a shared ena for a specific command.
31625 	 */
31626 	if (xp->xb_ena == 0)
31627 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31628 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31629 }
31630 
31631 
31632 /*
31633  *     Function: sd_check_solid_state
31634  *
31635  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31636  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31637  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31638  *              device is a solid state drive.
31639  *
31640  *     Context: Kernel thread or interrupt context.
31641  */
31642 
31643 static void
31644 sd_check_solid_state(sd_ssc_t *ssc)
31645 {
31646 	int		rval		= 0;
31647 	uchar_t		*inqb1		= NULL;
31648 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31649 	size_t		inqb1_resid	= 0;
31650 	struct sd_lun	*un;
31651 
31652 	ASSERT(ssc != NULL);
31653 	un = ssc->ssc_un;
31654 	ASSERT(un != NULL);
31655 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31656 
31657 	mutex_enter(SD_MUTEX(un));
31658 	un->un_f_is_solid_state = FALSE;
31659 
31660 	if (ISCD(un)) {
31661 		mutex_exit(SD_MUTEX(un));
31662 		return;
31663 	}
31664 
31665 	if (sd_check_vpd_page_support(ssc) == 0 &&
31666 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31667 		mutex_exit(SD_MUTEX(un));
31668 		/* collect page b1 data */
31669 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31670 
31671 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31672 		    0x01, 0xB1, &inqb1_resid);
31673 
31674 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31675 			SD_TRACE(SD_LOG_COMMON, un,
31676 			    "sd_check_solid_state: \
31677 			    successfully get VPD page: %x \
31678 			    PAGE LENGTH: %x BYTE 4: %x \
31679 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31680 			    inqb1[5]);
31681 
31682 			mutex_enter(SD_MUTEX(un));
31683 			/*
31684 			 * Check the MEDIUM ROTATION RATE. If it is set
31685 			 * to 1, the device is a solid state drive.
31686 			 */
31687 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31688 				un->un_f_is_solid_state = TRUE;
31689 				/* solid state drives don't need disksort */
31690 				un->un_f_disksort_disabled = TRUE;
31691 			}
31692 			mutex_exit(SD_MUTEX(un));
31693 		} else if (rval != 0) {
31694 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31695 		}
31696 
31697 		kmem_free(inqb1, inqb1_len);
31698 	} else {
31699 		mutex_exit(SD_MUTEX(un));
31700 	}
31701 }
31702 
31703 /*
31704  *	Function: sd_check_emulation_mode
31705  *
31706  *   Description: Check whether the SSD is at emulation mode
31707  *		  by issuing READ_CAPACITY_16 to see whether
31708  *		  we can get physical block size of the drive.
31709  *
31710  *	 Context: Kernel thread or interrupt context.
31711  */
31712 
31713 static void
31714 sd_check_emulation_mode(sd_ssc_t *ssc)
31715 {
31716 	int		rval = 0;
31717 	uint64_t	capacity;
31718 	uint_t		lbasize;
31719 	uint_t		pbsize;
31720 	int		i;
31721 	int		devid_len;
31722 	struct sd_lun	*un;
31723 
31724 	ASSERT(ssc != NULL);
31725 	un = ssc->ssc_un;
31726 	ASSERT(un != NULL);
31727 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31728 
31729 	mutex_enter(SD_MUTEX(un));
31730 	if (ISCD(un)) {
31731 		mutex_exit(SD_MUTEX(un));
31732 		return;
31733 	}
31734 
31735 	if (un->un_f_descr_format_supported) {
31736 		mutex_exit(SD_MUTEX(un));
31737 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31738 		    &pbsize, SD_PATH_DIRECT);
31739 		mutex_enter(SD_MUTEX(un));
31740 
31741 		if (rval != 0) {
31742 			un->un_phy_blocksize = DEV_BSIZE;
31743 		} else {
31744 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31745 				un->un_phy_blocksize = DEV_BSIZE;
31746 			} else {
31747 				un->un_phy_blocksize = pbsize;
31748 			}
31749 		}
31750 	}
31751 
31752 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31753 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31754 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31755 		    == SD_SUCCESS) {
31756 			un->un_phy_blocksize = SSD_SECSIZE;
31757 			if (un->un_f_is_solid_state &&
31758 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31759 				un->un_f_enable_rmw = TRUE;
31760 		}
31761 	}
31762 
31763 	mutex_exit(SD_MUTEX(un));
31764 }
31765