xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision af007057)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 #include <sys/sysevent/eventdefs.h>
68 #include <sys/sysevent/dev.h>
69 
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #endif
212 
213 
214 #ifdef	SDDEBUG
215 int	sd_force_pm_supported		= 0;
216 #endif	/* SDDEBUG */
217 
218 void *sd_state				= NULL;
219 int sd_io_time				= SD_IO_TIME;
220 int sd_failfast_enable			= 1;
221 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
222 int sd_report_pfa			= 1;
223 int sd_max_throttle			= SD_MAX_THROTTLE;
224 int sd_min_throttle			= SD_MIN_THROTTLE;
225 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
226 int sd_qfull_throttle_enable		= TRUE;
227 
228 int sd_retry_on_reservation_conflict	= 1;
229 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
230 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
231 
232 static int sd_dtype_optical_bind	= -1;
233 
234 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
235 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
236 
237 /*
238  * Global data for debug logging. To enable debug printing, sd_component_mask
239  * and sd_level_mask should be set to the desired bit patterns as outlined in
240  * sddef.h.
241  */
242 uint_t	sd_component_mask		= 0x0;
243 uint_t	sd_level_mask			= 0x0;
244 struct	sd_lun *sd_debug_un		= NULL;
245 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
246 
247 /* Note: these may go away in the future... */
248 static uint32_t	sd_xbuf_active_limit	= 512;
249 static uint32_t sd_xbuf_reserve_limit	= 16;
250 
251 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
252 
253 /*
254  * Timer value used to reset the throttle after it has been reduced
255  * (typically in response to TRAN_BUSY or STATUS_QFULL)
256  */
257 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
258 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
259 
260 /*
261  * Interval value associated with the media change scsi watch.
262  */
263 static int sd_check_media_time		= 3000000;
264 
265 /*
266  * Wait value used for in progress operations during a DDI_SUSPEND
267  */
268 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
269 
270 /*
271  * sd_label_mutex protects a static buffer used in the disk label
272  * component of the driver
273  */
274 static kmutex_t sd_label_mutex;
275 
276 /*
277  * sd_detach_mutex protects un_layer_count, un_detach_count, and
278  * un_opens_in_progress in the sd_lun structure.
279  */
280 static kmutex_t sd_detach_mutex;
281 
282 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
283 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
284 
285 /*
286  * Global buffer and mutex for debug logging
287  */
288 static char	sd_log_buf[1024];
289 static kmutex_t	sd_log_mutex;
290 
291 /*
292  * Structs and globals for recording attached lun information.
293  * This maintains a chain. Each node in the chain represents a SCSI controller.
294  * The structure records the number of luns attached to each target connected
295  * with the controller.
296  * For parallel scsi device only.
297  */
298 struct sd_scsi_hba_tgt_lun {
299 	struct sd_scsi_hba_tgt_lun	*next;
300 	dev_info_t			*pdip;
301 	int				nlun[NTARGETS_WIDE];
302 };
303 
304 /*
305  * Flag to indicate the lun is attached or detached
306  */
307 #define	SD_SCSI_LUN_ATTACH	0
308 #define	SD_SCSI_LUN_DETACH	1
309 
310 static kmutex_t	sd_scsi_target_lun_mutex;
311 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
312 
313 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
314     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
315 
316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
317     sd_scsi_target_lun_head))
318 
319 /*
320  * "Smart" Probe Caching structs, globals, #defines, etc.
321  * For parallel scsi and non-self-identify device only.
322  */
323 
324 /*
325  * The following resources and routines are implemented to support
326  * "smart" probing, which caches the scsi_probe() results in an array,
327  * in order to help avoid long probe times.
328  */
329 struct sd_scsi_probe_cache {
330 	struct	sd_scsi_probe_cache	*next;
331 	dev_info_t	*pdip;
332 	int		cache[NTARGETS_WIDE];
333 };
334 
335 static kmutex_t	sd_scsi_probe_cache_mutex;
336 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
337 
338 /*
339  * Really we only need protection on the head of the linked list, but
340  * better safe than sorry.
341  */
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
343     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
346     sd_scsi_probe_cache_head))
347 
348 
349 /*
350  * Vendor specific data name property declarations
351  */
352 
353 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
354 
355 static sd_tunables seagate_properties = {
356 	SEAGATE_THROTTLE_VALUE,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0,
364 	0
365 };
366 
367 
368 static sd_tunables fujitsu_properties = {
369 	FUJITSU_THROTTLE_VALUE,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0,
376 	0,
377 	0
378 };
379 
380 static sd_tunables ibm_properties = {
381 	IBM_THROTTLE_VALUE,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0
390 };
391 
392 static sd_tunables purple_properties = {
393 	PURPLE_THROTTLE_VALUE,
394 	0,
395 	0,
396 	PURPLE_BUSY_RETRIES,
397 	PURPLE_RESET_RETRY_COUNT,
398 	PURPLE_RESERVE_RELEASE_TIME,
399 	0,
400 	0,
401 	0
402 };
403 
404 static sd_tunables sve_properties = {
405 	SVE_THROTTLE_VALUE,
406 	0,
407 	0,
408 	SVE_BUSY_RETRIES,
409 	SVE_RESET_RETRY_COUNT,
410 	SVE_RESERVE_RELEASE_TIME,
411 	SVE_MIN_THROTTLE_VALUE,
412 	SVE_DISKSORT_DISABLED_FLAG,
413 	0
414 };
415 
416 static sd_tunables maserati_properties = {
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	0,
423 	0,
424 	MASERATI_DISKSORT_DISABLED_FLAG,
425 	MASERATI_LUN_RESET_ENABLED_FLAG
426 };
427 
428 static sd_tunables pirus_properties = {
429 	PIRUS_THROTTLE_VALUE,
430 	0,
431 	PIRUS_NRR_COUNT,
432 	PIRUS_BUSY_RETRIES,
433 	PIRUS_RESET_RETRY_COUNT,
434 	0,
435 	PIRUS_MIN_THROTTLE_VALUE,
436 	PIRUS_DISKSORT_DISABLED_FLAG,
437 	PIRUS_LUN_RESET_ENABLED_FLAG
438 };
439 
440 #endif
441 
442 #if (defined(__sparc) && !defined(__fibre)) || \
443 	(defined(__i386) || defined(__amd64))
444 
445 
446 static sd_tunables elite_properties = {
447 	ELITE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0
456 };
457 
458 static sd_tunables st31200n_properties = {
459 	ST31200N_THROTTLE_VALUE,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0
468 };
469 
470 #endif /* Fibre or not */
471 
472 static sd_tunables lsi_properties_scsi = {
473 	LSI_THROTTLE_VALUE,
474 	0,
475 	LSI_NOTREADY_RETRIES,
476 	0,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0
482 };
483 
484 static sd_tunables symbios_properties = {
485 	SYMBIOS_THROTTLE_VALUE,
486 	0,
487 	SYMBIOS_NOTREADY_RETRIES,
488 	0,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0
494 };
495 
496 static sd_tunables lsi_properties = {
497 	0,
498 	0,
499 	LSI_NOTREADY_RETRIES,
500 	0,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0
506 };
507 
508 static sd_tunables lsi_oem_properties = {
509 	0,
510 	0,
511 	LSI_OEM_NOTREADY_RETRIES,
512 	0,
513 	0,
514 	0,
515 	0,
516 	0,
517 	0,
518 	1
519 };
520 
521 
522 
523 #if (defined(SD_PROP_TST))
524 
525 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
526 #define	SD_TST_THROTTLE_VAL	16
527 #define	SD_TST_NOTREADY_VAL	12
528 #define	SD_TST_BUSY_VAL		60
529 #define	SD_TST_RST_RETRY_VAL	36
530 #define	SD_TST_RSV_REL_TIME	60
531 
532 static sd_tunables tst_properties = {
533 	SD_TST_THROTTLE_VAL,
534 	SD_TST_CTYPE_VAL,
535 	SD_TST_NOTREADY_VAL,
536 	SD_TST_BUSY_VAL,
537 	SD_TST_RST_RETRY_VAL,
538 	SD_TST_RSV_REL_TIME,
539 	0,
540 	0,
541 	0
542 };
543 #endif
544 
545 /* This is similar to the ANSI toupper implementation */
546 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
547 
548 /*
549  * Static Driver Configuration Table
550  *
551  * This is the table of disks which need throttle adjustment (or, perhaps
552  * something else as defined by the flags at a future time.)  device_id
553  * is a string consisting of concatenated vid (vendor), pid (product/model)
554  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
555  * the parts of the string are as defined by the sizes in the scsi_inquiry
556  * structure.  Device type is searched as far as the device_id string is
557  * defined.  Flags defines which values are to be set in the driver from the
558  * properties list.
559  *
560  * Entries below which begin and end with a "*" are a special case.
561  * These do not have a specific vendor, and the string which follows
562  * can appear anywhere in the 16 byte PID portion of the inquiry data.
563  *
564  * Entries below which begin and end with a " " (blank) are a special
565  * case. The comparison function will treat multiple consecutive blanks
566  * as equivalent to a single blank. For example, this causes a
567  * sd_disk_table entry of " NEC CDROM " to match a device's id string
568  * of  "NEC       CDROM".
569  *
570  * Note: The MD21 controller type has been obsoleted.
571  *	 ST318202F is a Legacy device
572  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
573  *	 made with an FC connection. The entries here are a legacy.
574  */
575 static sd_disk_config_t sd_disk_table[] = {
576 #if defined(__fibre) || defined(__i386) || defined(__amd64)
577 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
599 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
600 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
603 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
604 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
625 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
626 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
627 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
628 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
629 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
630 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
631 			SD_CONF_BSET_BSY_RETRY_COUNT|
632 			SD_CONF_BSET_RST_RETRIES|
633 			SD_CONF_BSET_RSV_REL_TIME,
634 		&purple_properties },
635 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
636 		SD_CONF_BSET_BSY_RETRY_COUNT|
637 		SD_CONF_BSET_RST_RETRIES|
638 		SD_CONF_BSET_RSV_REL_TIME|
639 		SD_CONF_BSET_MIN_THROTTLE|
640 		SD_CONF_BSET_DISKSORT_DISABLED,
641 		&sve_properties },
642 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
643 			SD_CONF_BSET_BSY_RETRY_COUNT|
644 			SD_CONF_BSET_RST_RETRIES|
645 			SD_CONF_BSET_RSV_REL_TIME,
646 		&purple_properties },
647 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
648 		SD_CONF_BSET_LUN_RESET_ENABLED,
649 		&maserati_properties },
650 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
651 		SD_CONF_BSET_NRR_COUNT|
652 		SD_CONF_BSET_BSY_RETRY_COUNT|
653 		SD_CONF_BSET_RST_RETRIES|
654 		SD_CONF_BSET_MIN_THROTTLE|
655 		SD_CONF_BSET_DISKSORT_DISABLED|
656 		SD_CONF_BSET_LUN_RESET_ENABLED,
657 		&pirus_properties },
658 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
659 		SD_CONF_BSET_NRR_COUNT|
660 		SD_CONF_BSET_BSY_RETRY_COUNT|
661 		SD_CONF_BSET_RST_RETRIES|
662 		SD_CONF_BSET_MIN_THROTTLE|
663 		SD_CONF_BSET_DISKSORT_DISABLED|
664 		SD_CONF_BSET_LUN_RESET_ENABLED,
665 		&pirus_properties },
666 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
667 		SD_CONF_BSET_NRR_COUNT|
668 		SD_CONF_BSET_BSY_RETRY_COUNT|
669 		SD_CONF_BSET_RST_RETRIES|
670 		SD_CONF_BSET_MIN_THROTTLE|
671 		SD_CONF_BSET_DISKSORT_DISABLED|
672 		SD_CONF_BSET_LUN_RESET_ENABLED,
673 		&pirus_properties },
674 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
675 		SD_CONF_BSET_NRR_COUNT|
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_MIN_THROTTLE|
679 		SD_CONF_BSET_DISKSORT_DISABLED|
680 		SD_CONF_BSET_LUN_RESET_ENABLED,
681 		&pirus_properties },
682 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
683 		SD_CONF_BSET_NRR_COUNT|
684 		SD_CONF_BSET_BSY_RETRY_COUNT|
685 		SD_CONF_BSET_RST_RETRIES|
686 		SD_CONF_BSET_MIN_THROTTLE|
687 		SD_CONF_BSET_DISKSORT_DISABLED|
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&pirus_properties },
690 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
691 		SD_CONF_BSET_NRR_COUNT|
692 		SD_CONF_BSET_BSY_RETRY_COUNT|
693 		SD_CONF_BSET_RST_RETRIES|
694 		SD_CONF_BSET_MIN_THROTTLE|
695 		SD_CONF_BSET_DISKSORT_DISABLED|
696 		SD_CONF_BSET_LUN_RESET_ENABLED,
697 		&pirus_properties },
698 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
700 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
701 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
702 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
703 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
704 #endif /* fibre or NON-sparc platforms */
705 #if ((defined(__sparc) && !defined(__fibre)) ||\
706 	(defined(__i386) || defined(__amd64)))
707 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
708 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
709 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
710 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
711 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
716 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
717 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
718 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
719 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
720 	    &symbios_properties },
721 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
722 	    &lsi_properties_scsi },
723 #if defined(__i386) || defined(__amd64)
724 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
725 				    | SD_CONF_BSET_READSUB_BCD
726 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
727 				    | SD_CONF_BSET_NO_READ_HEADER
728 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
729 
730 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
731 				    | SD_CONF_BSET_READSUB_BCD
732 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
733 				    | SD_CONF_BSET_NO_READ_HEADER
734 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
735 #endif /* __i386 || __amd64 */
736 #endif /* sparc NON-fibre or NON-sparc platforms */
737 
738 #if (defined(SD_PROP_TST))
739 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
740 				| SD_CONF_BSET_CTYPE
741 				| SD_CONF_BSET_NRR_COUNT
742 				| SD_CONF_BSET_FAB_DEVID
743 				| SD_CONF_BSET_NOCACHE
744 				| SD_CONF_BSET_BSY_RETRY_COUNT
745 				| SD_CONF_BSET_PLAYMSF_BCD
746 				| SD_CONF_BSET_READSUB_BCD
747 				| SD_CONF_BSET_READ_TOC_TRK_BCD
748 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
749 				| SD_CONF_BSET_NO_READ_HEADER
750 				| SD_CONF_BSET_READ_CD_XD4
751 				| SD_CONF_BSET_RST_RETRIES
752 				| SD_CONF_BSET_RSV_REL_TIME
753 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
754 #endif
755 };
756 
757 static const int sd_disk_table_size =
758 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
759 
760 
761 
762 #define	SD_INTERCONNECT_PARALLEL	0
763 #define	SD_INTERCONNECT_FABRIC		1
764 #define	SD_INTERCONNECT_FIBRE		2
765 #define	SD_INTERCONNECT_SSA		3
766 #define	SD_INTERCONNECT_SATA		4
767 #define	SD_IS_PARALLEL_SCSI(un)		\
768 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
769 #define	SD_IS_SERIAL(un)		\
770 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
771 
772 /*
773  * Definitions used by device id registration routines
774  */
775 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
776 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
777 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
778 
779 static kmutex_t sd_sense_mutex = {0};
780 
781 /*
782  * Macros for updates of the driver state
783  */
784 #define	New_state(un, s)        \
785 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
786 #define	Restore_state(un)	\
787 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
788 
789 static struct sd_cdbinfo sd_cdbtab[] = {
790 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
791 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
792 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
793 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
794 };
795 
796 /*
797  * Specifies the number of seconds that must have elapsed since the last
798  * cmd. has completed for a device to be declared idle to the PM framework.
799  */
800 static int sd_pm_idletime = 1;
801 
802 /*
803  * Internal function prototypes
804  */
805 
806 #if (defined(__fibre))
807 /*
808  * These #defines are to avoid namespace collisions that occur because this
809  * code is currently used to compile two separate driver modules: sd and ssd.
810  * All function names need to be treated this way (even if declared static)
811  * in order to allow the debugger to resolve the names properly.
812  * It is anticipated that in the near future the ssd module will be obsoleted,
813  * at which time this ugliness should go away.
814  */
815 #define	sd_log_trace			ssd_log_trace
816 #define	sd_log_info			ssd_log_info
817 #define	sd_log_err			ssd_log_err
818 #define	sdprobe				ssdprobe
819 #define	sdinfo				ssdinfo
820 #define	sd_prop_op			ssd_prop_op
821 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
822 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
823 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
824 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
825 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
826 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
827 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
828 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
829 #define	sd_spin_up_unit			ssd_spin_up_unit
830 #define	sd_enable_descr_sense		ssd_enable_descr_sense
831 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
832 #define	sd_set_mmc_caps			ssd_set_mmc_caps
833 #define	sd_read_unit_properties		ssd_read_unit_properties
834 #define	sd_process_sdconf_file		ssd_process_sdconf_file
835 #define	sd_process_sdconf_table		ssd_process_sdconf_table
836 #define	sd_sdconf_id_match		ssd_sdconf_id_match
837 #define	sd_blank_cmp			ssd_blank_cmp
838 #define	sd_chk_vers1_data		ssd_chk_vers1_data
839 #define	sd_set_vers1_properties		ssd_set_vers1_properties
840 
841 #define	sd_get_physical_geometry	ssd_get_physical_geometry
842 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
843 #define	sd_update_block_info		ssd_update_block_info
844 #define	sd_register_devid		ssd_register_devid
845 #define	sd_get_devid			ssd_get_devid
846 #define	sd_create_devid			ssd_create_devid
847 #define	sd_write_deviceid		ssd_write_deviceid
848 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
849 #define	sd_setup_pm			ssd_setup_pm
850 #define	sd_create_pm_components		ssd_create_pm_components
851 #define	sd_ddi_suspend			ssd_ddi_suspend
852 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
853 #define	sd_ddi_resume			ssd_ddi_resume
854 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
855 #define	sdpower				ssdpower
856 #define	sdattach			ssdattach
857 #define	sddetach			ssddetach
858 #define	sd_unit_attach			ssd_unit_attach
859 #define	sd_unit_detach			ssd_unit_detach
860 #define	sd_set_unit_attributes		ssd_set_unit_attributes
861 #define	sd_create_errstats		ssd_create_errstats
862 #define	sd_set_errstats			ssd_set_errstats
863 #define	sd_set_pstats			ssd_set_pstats
864 #define	sddump				ssddump
865 #define	sd_scsi_poll			ssd_scsi_poll
866 #define	sd_send_polled_RQS		ssd_send_polled_RQS
867 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
868 #define	sd_init_event_callbacks		ssd_init_event_callbacks
869 #define	sd_event_callback		ssd_event_callback
870 #define	sd_cache_control		ssd_cache_control
871 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
872 #define	sd_get_nv_sup			ssd_get_nv_sup
873 #define	sd_make_device			ssd_make_device
874 #define	sdopen				ssdopen
875 #define	sdclose				ssdclose
876 #define	sd_ready_and_valid		ssd_ready_and_valid
877 #define	sdmin				ssdmin
878 #define	sdread				ssdread
879 #define	sdwrite				ssdwrite
880 #define	sdaread				ssdaread
881 #define	sdawrite			ssdawrite
882 #define	sdstrategy			ssdstrategy
883 #define	sdioctl				ssdioctl
884 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
885 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
886 #define	sd_checksum_iostart		ssd_checksum_iostart
887 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
888 #define	sd_pm_iostart			ssd_pm_iostart
889 #define	sd_core_iostart			ssd_core_iostart
890 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
891 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
892 #define	sd_checksum_iodone		ssd_checksum_iodone
893 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
894 #define	sd_pm_iodone			ssd_pm_iodone
895 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
896 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
897 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
898 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
899 #define	sd_buf_iodone			ssd_buf_iodone
900 #define	sd_uscsi_strategy		ssd_uscsi_strategy
901 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
902 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
903 #define	sd_uscsi_iodone			ssd_uscsi_iodone
904 #define	sd_xbuf_strategy		ssd_xbuf_strategy
905 #define	sd_xbuf_init			ssd_xbuf_init
906 #define	sd_pm_entry			ssd_pm_entry
907 #define	sd_pm_exit			ssd_pm_exit
908 
909 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
910 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
911 
912 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
913 #define	sdintr				ssdintr
914 #define	sd_start_cmds			ssd_start_cmds
915 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
916 #define	sd_bioclone_alloc		ssd_bioclone_alloc
917 #define	sd_bioclone_free		ssd_bioclone_free
918 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
919 #define	sd_shadow_buf_free		ssd_shadow_buf_free
920 #define	sd_print_transport_rejected_message	\
921 					ssd_print_transport_rejected_message
922 #define	sd_retry_command		ssd_retry_command
923 #define	sd_set_retry_bp			ssd_set_retry_bp
924 #define	sd_send_request_sense_command	ssd_send_request_sense_command
925 #define	sd_start_retry_command		ssd_start_retry_command
926 #define	sd_start_direct_priority_command	\
927 					ssd_start_direct_priority_command
928 #define	sd_return_failed_command	ssd_return_failed_command
929 #define	sd_return_failed_command_no_restart	\
930 					ssd_return_failed_command_no_restart
931 #define	sd_return_command		ssd_return_command
932 #define	sd_sync_with_callback		ssd_sync_with_callback
933 #define	sdrunout			ssdrunout
934 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
935 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
936 #define	sd_reduce_throttle		ssd_reduce_throttle
937 #define	sd_restore_throttle		ssd_restore_throttle
938 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
939 #define	sd_init_cdb_limits		ssd_init_cdb_limits
940 #define	sd_pkt_status_good		ssd_pkt_status_good
941 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
942 #define	sd_pkt_status_busy		ssd_pkt_status_busy
943 #define	sd_pkt_status_reservation_conflict	\
944 					ssd_pkt_status_reservation_conflict
945 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
946 #define	sd_handle_request_sense		ssd_handle_request_sense
947 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
948 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
949 #define	sd_validate_sense_data		ssd_validate_sense_data
950 #define	sd_decode_sense			ssd_decode_sense
951 #define	sd_print_sense_msg		ssd_print_sense_msg
952 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
953 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
954 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
955 #define	sd_sense_key_medium_or_hardware_error	\
956 					ssd_sense_key_medium_or_hardware_error
957 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
958 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
959 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
960 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
961 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
962 #define	sd_sense_key_default		ssd_sense_key_default
963 #define	sd_print_retry_msg		ssd_print_retry_msg
964 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
965 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
966 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
967 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
968 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
969 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
970 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
971 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
972 #define	sd_pkt_reason_default		ssd_pkt_reason_default
973 #define	sd_reset_target			ssd_reset_target
974 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
975 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
976 #define	sd_taskq_create			ssd_taskq_create
977 #define	sd_taskq_delete			ssd_taskq_delete
978 #define	sd_target_change_task		ssd_target_change_task
979 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
980 #define	sd_media_change_task		ssd_media_change_task
981 #define	sd_handle_mchange		ssd_handle_mchange
982 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
983 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
984 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
985 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
986 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
987 					sd_send_scsi_feature_GET_CONFIGURATION
988 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
989 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
990 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
991 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
992 					ssd_send_scsi_PERSISTENT_RESERVE_IN
993 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
994 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
995 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
996 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
997 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
998 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
999 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1000 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1001 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1002 #define	sd_alloc_rqs			ssd_alloc_rqs
1003 #define	sd_free_rqs			ssd_free_rqs
1004 #define	sd_dump_memory			ssd_dump_memory
1005 #define	sd_get_media_info		ssd_get_media_info
1006 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1007 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1008 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1009 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1010 #define	sd_check_mhd			ssd_check_mhd
1011 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1012 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1013 #define	sd_sname			ssd_sname
1014 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1015 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1016 #define	sd_take_ownership		ssd_take_ownership
1017 #define	sd_reserve_release		ssd_reserve_release
1018 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1019 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1020 #define	sd_persistent_reservation_in_read_keys	\
1021 					ssd_persistent_reservation_in_read_keys
1022 #define	sd_persistent_reservation_in_read_resv	\
1023 					ssd_persistent_reservation_in_read_resv
1024 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1025 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1026 #define	sd_mhdioc_release		ssd_mhdioc_release
1027 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1028 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1029 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1030 #define	sr_change_blkmode		ssr_change_blkmode
1031 #define	sr_change_speed			ssr_change_speed
1032 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1033 #define	sr_pause_resume			ssr_pause_resume
1034 #define	sr_play_msf			ssr_play_msf
1035 #define	sr_play_trkind			ssr_play_trkind
1036 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1037 #define	sr_read_subchannel		ssr_read_subchannel
1038 #define	sr_read_tocentry		ssr_read_tocentry
1039 #define	sr_read_tochdr			ssr_read_tochdr
1040 #define	sr_read_cdda			ssr_read_cdda
1041 #define	sr_read_cdxa			ssr_read_cdxa
1042 #define	sr_read_mode1			ssr_read_mode1
1043 #define	sr_read_mode2			ssr_read_mode2
1044 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1045 #define	sr_sector_mode			ssr_sector_mode
1046 #define	sr_eject			ssr_eject
1047 #define	sr_ejected			ssr_ejected
1048 #define	sr_check_wp			ssr_check_wp
1049 #define	sd_check_media			ssd_check_media
1050 #define	sd_media_watch_cb		ssd_media_watch_cb
1051 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1052 #define	sr_volume_ctrl			ssr_volume_ctrl
1053 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1054 #define	sd_log_page_supported		ssd_log_page_supported
1055 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1056 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1057 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1058 #define	sd_range_lock			ssd_range_lock
1059 #define	sd_get_range			ssd_get_range
1060 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1061 #define	sd_range_unlock			ssd_range_unlock
1062 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1063 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1064 
1065 #define	sd_iostart_chain		ssd_iostart_chain
1066 #define	sd_iodone_chain			ssd_iodone_chain
1067 #define	sd_initpkt_map			ssd_initpkt_map
1068 #define	sd_destroypkt_map		ssd_destroypkt_map
1069 #define	sd_chain_type_map		ssd_chain_type_map
1070 #define	sd_chain_index_map		ssd_chain_index_map
1071 
1072 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1073 #define	sd_failfast_flushq		ssd_failfast_flushq
1074 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1075 
1076 #define	sd_is_lsi			ssd_is_lsi
1077 #define	sd_tg_rdwr			ssd_tg_rdwr
1078 #define	sd_tg_getinfo			ssd_tg_getinfo
1079 
1080 #endif	/* #if (defined(__fibre)) */
1081 
1082 
1083 int _init(void);
1084 int _fini(void);
1085 int _info(struct modinfo *modinfop);
1086 
1087 /*PRINTFLIKE3*/
1088 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1089 /*PRINTFLIKE3*/
1090 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1091 /*PRINTFLIKE3*/
1092 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1093 
1094 static int sdprobe(dev_info_t *devi);
1095 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1096     void **result);
1097 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1098     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1099 
1100 /*
1101  * Smart probe for parallel scsi
1102  */
1103 static void sd_scsi_probe_cache_init(void);
1104 static void sd_scsi_probe_cache_fini(void);
1105 static void sd_scsi_clear_probe_cache(void);
1106 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1107 
1108 /*
1109  * Attached luns on target for parallel scsi
1110  */
1111 static void sd_scsi_target_lun_init(void);
1112 static void sd_scsi_target_lun_fini(void);
1113 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1114 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1115 
1116 static int	sd_spin_up_unit(struct sd_lun *un);
1117 #ifdef _LP64
1118 static void	sd_enable_descr_sense(struct sd_lun *un);
1119 static void	sd_reenable_dsense_task(void *arg);
1120 #endif /* _LP64 */
1121 
1122 static void	sd_set_mmc_caps(struct sd_lun *un);
1123 
1124 static void sd_read_unit_properties(struct sd_lun *un);
1125 static int  sd_process_sdconf_file(struct sd_lun *un);
1126 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1127     int *data_list, sd_tunables *values);
1128 static void sd_process_sdconf_table(struct sd_lun *un);
1129 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1130 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1131 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1132 	int list_len, char *dataname_ptr);
1133 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1134     sd_tunables *prop_list);
1135 
1136 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1137     int reservation_flag);
1138 static int  sd_get_devid(struct sd_lun *un);
1139 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1140 static int  sd_write_deviceid(struct sd_lun *un);
1141 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1142 static int  sd_check_vpd_page_support(struct sd_lun *un);
1143 
1144 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1145 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1146 
1147 static int  sd_ddi_suspend(dev_info_t *devi);
1148 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1149 static int  sd_ddi_resume(dev_info_t *devi);
1150 static int  sd_ddi_pm_resume(struct sd_lun *un);
1151 static int  sdpower(dev_info_t *devi, int component, int level);
1152 
1153 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1154 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1155 static int  sd_unit_attach(dev_info_t *devi);
1156 static int  sd_unit_detach(dev_info_t *devi);
1157 
1158 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1159 static void sd_create_errstats(struct sd_lun *un, int instance);
1160 static void sd_set_errstats(struct sd_lun *un);
1161 static void sd_set_pstats(struct sd_lun *un);
1162 
1163 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1164 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1165 static int  sd_send_polled_RQS(struct sd_lun *un);
1166 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1167 
1168 #if (defined(__fibre))
1169 /*
1170  * Event callbacks (photon)
1171  */
1172 static void sd_init_event_callbacks(struct sd_lun *un);
1173 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1174 #endif
1175 
1176 /*
1177  * Defines for sd_cache_control
1178  */
1179 
1180 #define	SD_CACHE_ENABLE		1
1181 #define	SD_CACHE_DISABLE	0
1182 #define	SD_CACHE_NOCHANGE	-1
1183 
1184 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1185 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1186 static void  sd_get_nv_sup(struct sd_lun *un);
1187 static dev_t sd_make_device(dev_info_t *devi);
1188 
1189 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1190 	uint64_t capacity);
1191 
1192 /*
1193  * Driver entry point functions.
1194  */
1195 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1196 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1197 static int  sd_ready_and_valid(struct sd_lun *un);
1198 
1199 static void sdmin(struct buf *bp);
1200 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1201 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1202 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1203 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1204 
1205 static int sdstrategy(struct buf *bp);
1206 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1207 
1208 /*
1209  * Function prototypes for layering functions in the iostart chain.
1210  */
1211 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1212 	struct buf *bp);
1213 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1216 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1217 	struct buf *bp);
1218 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1220 
1221 /*
1222  * Function prototypes for layering functions in the iodone chain.
1223  */
1224 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1225 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1226 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1227 	struct buf *bp);
1228 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1229 	struct buf *bp);
1230 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1231 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1232 	struct buf *bp);
1233 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1234 
1235 /*
1236  * Prototypes for functions to support buf(9S) based IO.
1237  */
1238 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1239 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1240 static void sd_destroypkt_for_buf(struct buf *);
1241 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1242 	struct buf *bp, int flags,
1243 	int (*callback)(caddr_t), caddr_t callback_arg,
1244 	diskaddr_t lba, uint32_t blockcount);
1245 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1246 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1247 
1248 /*
1249  * Prototypes for functions to support USCSI IO.
1250  */
1251 static int sd_uscsi_strategy(struct buf *bp);
1252 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1253 static void sd_destroypkt_for_uscsi(struct buf *);
1254 
1255 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1256 	uchar_t chain_type, void *pktinfop);
1257 
1258 static int  sd_pm_entry(struct sd_lun *un);
1259 static void sd_pm_exit(struct sd_lun *un);
1260 
1261 static void sd_pm_idletimeout_handler(void *arg);
1262 
1263 /*
1264  * sd_core internal functions (used at the sd_core_io layer).
1265  */
1266 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1267 static void sdintr(struct scsi_pkt *pktp);
1268 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1269 
1270 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1271 	enum uio_seg dataspace, int path_flag);
1272 
1273 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1274 	daddr_t blkno, int (*func)(struct buf *));
1275 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1276 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1277 static void sd_bioclone_free(struct buf *bp);
1278 static void sd_shadow_buf_free(struct buf *bp);
1279 
1280 static void sd_print_transport_rejected_message(struct sd_lun *un,
1281 	struct sd_xbuf *xp, int code);
1282 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1283     void *arg, int code);
1284 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1285     void *arg, int code);
1286 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1287     void *arg, int code);
1288 
1289 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1290 	int retry_check_flag,
1291 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1292 		int c),
1293 	void *user_arg, int failure_code,  clock_t retry_delay,
1294 	void (*statp)(kstat_io_t *));
1295 
1296 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1297 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1298 
1299 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1300 	struct scsi_pkt *pktp);
1301 static void sd_start_retry_command(void *arg);
1302 static void sd_start_direct_priority_command(void *arg);
1303 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1304 	int errcode);
1305 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1306 	struct buf *bp, int errcode);
1307 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1308 static void sd_sync_with_callback(struct sd_lun *un);
1309 static int sdrunout(caddr_t arg);
1310 
1311 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1312 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1313 
1314 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1315 static void sd_restore_throttle(void *arg);
1316 
1317 static void sd_init_cdb_limits(struct sd_lun *un);
1318 
1319 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 
1322 /*
1323  * Error handling functions
1324  */
1325 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1330 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1332 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 
1334 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, size_t actual_len);
1340 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 
1343 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1344 	void *arg, int code);
1345 
1346 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1347 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_not_ready(struct sd_lun *un,
1352 	uint8_t *sense_datap,
1353 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1354 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1355 	uint8_t *sense_datap,
1356 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1358 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359 static void sd_sense_key_unit_attention(struct sd_lun *un,
1360 	uint8_t *sense_datap,
1361 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1363 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_sense_key_default(struct sd_lun *un,
1369 	uint8_t *sense_datap,
1370 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 
1372 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1373 	void *arg, int flag);
1374 
1375 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1386 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1387 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1388 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1389 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 
1392 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1393 
1394 static void sd_start_stop_unit_callback(void *arg);
1395 static void sd_start_stop_unit_task(void *arg);
1396 
1397 static void sd_taskq_create(void);
1398 static void sd_taskq_delete(void);
1399 static void sd_target_change_task(void *arg);
1400 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1401 static void sd_media_change_task(void *arg);
1402 
1403 static int sd_handle_mchange(struct sd_lun *un);
1404 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1405 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1406 	uint32_t *lbap, int path_flag);
1407 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1408 	uint32_t *lbap, int path_flag);
1409 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1410 	int path_flag);
1411 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1412 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1413 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1414 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1415 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1416 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1417 	uchar_t usr_cmd, uchar_t *usr_bufp);
1418 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1419 	struct dk_callback *dkc);
1420 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1421 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1422 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1423 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1424 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1425 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1426 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1427 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1428 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1429 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1430 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1431 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1432 	size_t buflen, daddr_t start_block, int path_flag);
1433 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1434 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1435 	path_flag)
1436 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1437 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1438 	path_flag)
1439 
1440 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1441 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1442 	uint16_t param_ptr, int path_flag);
1443 
1444 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1445 static void sd_free_rqs(struct sd_lun *un);
1446 
1447 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1448 	uchar_t *data, int len, int fmt);
1449 static void sd_panic_for_res_conflict(struct sd_lun *un);
1450 
1451 /*
1452  * Disk Ioctl Function Prototypes
1453  */
1454 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1455 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1456 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1457 
1458 /*
1459  * Multi-host Ioctl Prototypes
1460  */
1461 static int sd_check_mhd(dev_t dev, int interval);
1462 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1463 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1464 static char *sd_sname(uchar_t status);
1465 static void sd_mhd_resvd_recover(void *arg);
1466 static void sd_resv_reclaim_thread();
1467 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1468 static int sd_reserve_release(dev_t dev, int cmd);
1469 static void sd_rmv_resv_reclaim_req(dev_t dev);
1470 static void sd_mhd_reset_notify_cb(caddr_t arg);
1471 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1472 	mhioc_inkeys_t *usrp, int flag);
1473 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1474 	mhioc_inresvs_t *usrp, int flag);
1475 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1476 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1477 static int sd_mhdioc_release(dev_t dev);
1478 static int sd_mhdioc_register_devid(dev_t dev);
1479 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1480 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1481 
1482 /*
1483  * SCSI removable prototypes
1484  */
1485 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1486 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1487 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1488 static int sr_pause_resume(dev_t dev, int mode);
1489 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1490 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1492 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1493 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1494 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1496 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1497 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1498 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1499 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1500 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1501 static int sr_eject(dev_t dev);
1502 static void sr_ejected(register struct sd_lun *un);
1503 static int sr_check_wp(dev_t dev);
1504 static int sd_check_media(dev_t dev, enum dkio_state state);
1505 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1506 static void sd_delayed_cv_broadcast(void *arg);
1507 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1508 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1509 
1510 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1511 
1512 /*
1513  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1514  */
1515 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1516 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1517 static void sd_wm_cache_destructor(void *wm, void *un);
1518 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1519 	daddr_t endb, ushort_t typ);
1520 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1521 	daddr_t endb);
1522 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1523 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1524 static void sd_read_modify_write_task(void * arg);
1525 static int
1526 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1527 	struct buf **bpp);
1528 
1529 
1530 /*
1531  * Function prototypes for failfast support.
1532  */
1533 static void sd_failfast_flushq(struct sd_lun *un);
1534 static int sd_failfast_flushq_callback(struct buf *bp);
1535 
1536 /*
1537  * Function prototypes to check for lsi devices
1538  */
1539 static void sd_is_lsi(struct sd_lun *un);
1540 
1541 /*
1542  * Function prototypes for partial DMA support
1543  */
1544 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1545 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1546 
1547 
1548 /* Function prototypes for cmlb */
1549 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1550     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1551 
1552 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1553 
1554 /*
1555  * Constants for failfast support:
1556  *
1557  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1558  * failfast processing being performed.
1559  *
1560  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1561  * failfast processing on all bufs with B_FAILFAST set.
1562  */
1563 
1564 #define	SD_FAILFAST_INACTIVE		0
1565 #define	SD_FAILFAST_ACTIVE		1
1566 
1567 /*
1568  * Bitmask to control behavior of buf(9S) flushes when a transition to
1569  * the failfast state occurs. Optional bits include:
1570  *
1571  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1572  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1573  * be flushed.
1574  *
1575  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1576  * driver, in addition to the regular wait queue. This includes the xbuf
1577  * queues. When clear, only the driver's wait queue will be flushed.
1578  */
1579 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1580 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1581 
1582 /*
1583  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1584  * to flush all queues within the driver.
1585  */
1586 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1587 
1588 
1589 /*
1590  * SD Testing Fault Injection
1591  */
1592 #ifdef SD_FAULT_INJECTION
1593 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1594 static void sd_faultinjection(struct scsi_pkt *pktp);
1595 static void sd_injection_log(char *buf, struct sd_lun *un);
1596 #endif
1597 
1598 /*
1599  * Device driver ops vector
1600  */
1601 static struct cb_ops sd_cb_ops = {
1602 	sdopen,			/* open */
1603 	sdclose,		/* close */
1604 	sdstrategy,		/* strategy */
1605 	nodev,			/* print */
1606 	sddump,			/* dump */
1607 	sdread,			/* read */
1608 	sdwrite,		/* write */
1609 	sdioctl,		/* ioctl */
1610 	nodev,			/* devmap */
1611 	nodev,			/* mmap */
1612 	nodev,			/* segmap */
1613 	nochpoll,		/* poll */
1614 	sd_prop_op,		/* cb_prop_op */
1615 	0,			/* streamtab  */
1616 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1617 	CB_REV,			/* cb_rev */
1618 	sdaread, 		/* async I/O read entry point */
1619 	sdawrite		/* async I/O write entry point */
1620 };
1621 
1622 static struct dev_ops sd_ops = {
1623 	DEVO_REV,		/* devo_rev, */
1624 	0,			/* refcnt  */
1625 	sdinfo,			/* info */
1626 	nulldev,		/* identify */
1627 	sdprobe,		/* probe */
1628 	sdattach,		/* attach */
1629 	sddetach,		/* detach */
1630 	nodev,			/* reset */
1631 	&sd_cb_ops,		/* driver operations */
1632 	NULL,			/* bus operations */
1633 	sdpower			/* power */
1634 };
1635 
1636 
1637 /*
1638  * This is the loadable module wrapper.
1639  */
1640 #include <sys/modctl.h>
1641 
1642 static struct modldrv modldrv = {
1643 	&mod_driverops,		/* Type of module. This one is a driver */
1644 	SD_MODULE_NAME,		/* Module name. */
1645 	&sd_ops			/* driver ops */
1646 };
1647 
1648 
1649 static struct modlinkage modlinkage = {
1650 	MODREV_1,
1651 	&modldrv,
1652 	NULL
1653 };
1654 
1655 static cmlb_tg_ops_t sd_tgops = {
1656 	TG_DK_OPS_VERSION_1,
1657 	sd_tg_rdwr,
1658 	sd_tg_getinfo
1659 	};
1660 
1661 static struct scsi_asq_key_strings sd_additional_codes[] = {
1662 	0x81, 0, "Logical Unit is Reserved",
1663 	0x85, 0, "Audio Address Not Valid",
1664 	0xb6, 0, "Media Load Mechanism Failed",
1665 	0xB9, 0, "Audio Play Operation Aborted",
1666 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1667 	0x53, 2, "Medium removal prevented",
1668 	0x6f, 0, "Authentication failed during key exchange",
1669 	0x6f, 1, "Key not present",
1670 	0x6f, 2, "Key not established",
1671 	0x6f, 3, "Read without proper authentication",
1672 	0x6f, 4, "Mismatched region to this logical unit",
1673 	0x6f, 5, "Region reset count error",
1674 	0xffff, 0x0, NULL
1675 };
1676 
1677 
1678 /*
1679  * Struct for passing printing information for sense data messages
1680  */
1681 struct sd_sense_info {
1682 	int	ssi_severity;
1683 	int	ssi_pfa_flag;
1684 };
1685 
1686 /*
1687  * Table of function pointers for iostart-side routines. Separate "chains"
1688  * of layered function calls are formed by placing the function pointers
1689  * sequentially in the desired order. Functions are called according to an
1690  * incrementing table index ordering. The last function in each chain must
1691  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1692  * in the sd_iodone_chain[] array.
1693  *
1694  * Note: It may seem more natural to organize both the iostart and iodone
1695  * functions together, into an array of structures (or some similar
1696  * organization) with a common index, rather than two separate arrays which
1697  * must be maintained in synchronization. The purpose of this division is
1698  * to achieve improved performance: individual arrays allows for more
1699  * effective cache line utilization on certain platforms.
1700  */
1701 
1702 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1703 
1704 
1705 static sd_chain_t sd_iostart_chain[] = {
1706 
1707 	/* Chain for buf IO for disk drive targets (PM enabled) */
1708 	sd_mapblockaddr_iostart,	/* Index: 0 */
1709 	sd_pm_iostart,			/* Index: 1 */
1710 	sd_core_iostart,		/* Index: 2 */
1711 
1712 	/* Chain for buf IO for disk drive targets (PM disabled) */
1713 	sd_mapblockaddr_iostart,	/* Index: 3 */
1714 	sd_core_iostart,		/* Index: 4 */
1715 
1716 	/* Chain for buf IO for removable-media targets (PM enabled) */
1717 	sd_mapblockaddr_iostart,	/* Index: 5 */
1718 	sd_mapblocksize_iostart,	/* Index: 6 */
1719 	sd_pm_iostart,			/* Index: 7 */
1720 	sd_core_iostart,		/* Index: 8 */
1721 
1722 	/* Chain for buf IO for removable-media targets (PM disabled) */
1723 	sd_mapblockaddr_iostart,	/* Index: 9 */
1724 	sd_mapblocksize_iostart,	/* Index: 10 */
1725 	sd_core_iostart,		/* Index: 11 */
1726 
1727 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1728 	sd_mapblockaddr_iostart,	/* Index: 12 */
1729 	sd_checksum_iostart,		/* Index: 13 */
1730 	sd_pm_iostart,			/* Index: 14 */
1731 	sd_core_iostart,		/* Index: 15 */
1732 
1733 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1734 	sd_mapblockaddr_iostart,	/* Index: 16 */
1735 	sd_checksum_iostart,		/* Index: 17 */
1736 	sd_core_iostart,		/* Index: 18 */
1737 
1738 	/* Chain for USCSI commands (all targets) */
1739 	sd_pm_iostart,			/* Index: 19 */
1740 	sd_core_iostart,		/* Index: 20 */
1741 
1742 	/* Chain for checksumming USCSI commands (all targets) */
1743 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1744 	sd_pm_iostart,			/* Index: 22 */
1745 	sd_core_iostart,		/* Index: 23 */
1746 
1747 	/* Chain for "direct" USCSI commands (all targets) */
1748 	sd_core_iostart,		/* Index: 24 */
1749 
1750 	/* Chain for "direct priority" USCSI commands (all targets) */
1751 	sd_core_iostart,		/* Index: 25 */
1752 };
1753 
1754 /*
1755  * Macros to locate the first function of each iostart chain in the
1756  * sd_iostart_chain[] array. These are located by the index in the array.
1757  */
1758 #define	SD_CHAIN_DISK_IOSTART			0
1759 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1760 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1761 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1762 #define	SD_CHAIN_CHKSUM_IOSTART			12
1763 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1764 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1765 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1766 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1767 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1768 
1769 
1770 /*
1771  * Table of function pointers for the iodone-side routines for the driver-
1772  * internal layering mechanism.  The calling sequence for iodone routines
1773  * uses a decrementing table index, so the last routine called in a chain
1774  * must be at the lowest array index location for that chain.  The last
1775  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1776  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1777  * of the functions in an iodone side chain must correspond to the ordering
1778  * of the iostart routines for that chain.  Note that there is no iodone
1779  * side routine that corresponds to sd_core_iostart(), so there is no
1780  * entry in the table for this.
1781  */
1782 
1783 static sd_chain_t sd_iodone_chain[] = {
1784 
1785 	/* Chain for buf IO for disk drive targets (PM enabled) */
1786 	sd_buf_iodone,			/* Index: 0 */
1787 	sd_mapblockaddr_iodone,		/* Index: 1 */
1788 	sd_pm_iodone,			/* Index: 2 */
1789 
1790 	/* Chain for buf IO for disk drive targets (PM disabled) */
1791 	sd_buf_iodone,			/* Index: 3 */
1792 	sd_mapblockaddr_iodone,		/* Index: 4 */
1793 
1794 	/* Chain for buf IO for removable-media targets (PM enabled) */
1795 	sd_buf_iodone,			/* Index: 5 */
1796 	sd_mapblockaddr_iodone,		/* Index: 6 */
1797 	sd_mapblocksize_iodone,		/* Index: 7 */
1798 	sd_pm_iodone,			/* Index: 8 */
1799 
1800 	/* Chain for buf IO for removable-media targets (PM disabled) */
1801 	sd_buf_iodone,			/* Index: 9 */
1802 	sd_mapblockaddr_iodone,		/* Index: 10 */
1803 	sd_mapblocksize_iodone,		/* Index: 11 */
1804 
1805 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1806 	sd_buf_iodone,			/* Index: 12 */
1807 	sd_mapblockaddr_iodone,		/* Index: 13 */
1808 	sd_checksum_iodone,		/* Index: 14 */
1809 	sd_pm_iodone,			/* Index: 15 */
1810 
1811 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1812 	sd_buf_iodone,			/* Index: 16 */
1813 	sd_mapblockaddr_iodone,		/* Index: 17 */
1814 	sd_checksum_iodone,		/* Index: 18 */
1815 
1816 	/* Chain for USCSI commands (non-checksum targets) */
1817 	sd_uscsi_iodone,		/* Index: 19 */
1818 	sd_pm_iodone,			/* Index: 20 */
1819 
1820 	/* Chain for USCSI commands (checksum targets) */
1821 	sd_uscsi_iodone,		/* Index: 21 */
1822 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1823 	sd_pm_iodone,			/* Index: 22 */
1824 
1825 	/* Chain for "direct" USCSI commands (all targets) */
1826 	sd_uscsi_iodone,		/* Index: 24 */
1827 
1828 	/* Chain for "direct priority" USCSI commands (all targets) */
1829 	sd_uscsi_iodone,		/* Index: 25 */
1830 };
1831 
1832 
1833 /*
1834  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1835  * each iodone-side chain. These are located by the array index, but as the
1836  * iodone side functions are called in a decrementing-index order, the
1837  * highest index number in each chain must be specified (as these correspond
1838  * to the first function in the iodone chain that will be called by the core
1839  * at IO completion time).
1840  */
1841 
1842 #define	SD_CHAIN_DISK_IODONE			2
1843 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1844 #define	SD_CHAIN_RMMEDIA_IODONE			8
1845 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1846 #define	SD_CHAIN_CHKSUM_IODONE			15
1847 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1848 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1849 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1850 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1851 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1852 
1853 
1854 
1855 
1856 /*
1857  * Array to map a layering chain index to the appropriate initpkt routine.
1858  * The redundant entries are present so that the index used for accessing
1859  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1860  * with this table as well.
1861  */
1862 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1863 
1864 static sd_initpkt_t	sd_initpkt_map[] = {
1865 
1866 	/* Chain for buf IO for disk drive targets (PM enabled) */
1867 	sd_initpkt_for_buf,		/* Index: 0 */
1868 	sd_initpkt_for_buf,		/* Index: 1 */
1869 	sd_initpkt_for_buf,		/* Index: 2 */
1870 
1871 	/* Chain for buf IO for disk drive targets (PM disabled) */
1872 	sd_initpkt_for_buf,		/* Index: 3 */
1873 	sd_initpkt_for_buf,		/* Index: 4 */
1874 
1875 	/* Chain for buf IO for removable-media targets (PM enabled) */
1876 	sd_initpkt_for_buf,		/* Index: 5 */
1877 	sd_initpkt_for_buf,		/* Index: 6 */
1878 	sd_initpkt_for_buf,		/* Index: 7 */
1879 	sd_initpkt_for_buf,		/* Index: 8 */
1880 
1881 	/* Chain for buf IO for removable-media targets (PM disabled) */
1882 	sd_initpkt_for_buf,		/* Index: 9 */
1883 	sd_initpkt_for_buf,		/* Index: 10 */
1884 	sd_initpkt_for_buf,		/* Index: 11 */
1885 
1886 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1887 	sd_initpkt_for_buf,		/* Index: 12 */
1888 	sd_initpkt_for_buf,		/* Index: 13 */
1889 	sd_initpkt_for_buf,		/* Index: 14 */
1890 	sd_initpkt_for_buf,		/* Index: 15 */
1891 
1892 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1893 	sd_initpkt_for_buf,		/* Index: 16 */
1894 	sd_initpkt_for_buf,		/* Index: 17 */
1895 	sd_initpkt_for_buf,		/* Index: 18 */
1896 
1897 	/* Chain for USCSI commands (non-checksum targets) */
1898 	sd_initpkt_for_uscsi,		/* Index: 19 */
1899 	sd_initpkt_for_uscsi,		/* Index: 20 */
1900 
1901 	/* Chain for USCSI commands (checksum targets) */
1902 	sd_initpkt_for_uscsi,		/* Index: 21 */
1903 	sd_initpkt_for_uscsi,		/* Index: 22 */
1904 	sd_initpkt_for_uscsi,		/* Index: 22 */
1905 
1906 	/* Chain for "direct" USCSI commands (all targets) */
1907 	sd_initpkt_for_uscsi,		/* Index: 24 */
1908 
1909 	/* Chain for "direct priority" USCSI commands (all targets) */
1910 	sd_initpkt_for_uscsi,		/* Index: 25 */
1911 
1912 };
1913 
1914 
1915 /*
1916  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1917  * The redundant entries are present so that the index used for accessing
1918  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1919  * with this table as well.
1920  */
1921 typedef void (*sd_destroypkt_t)(struct buf *);
1922 
1923 static sd_destroypkt_t	sd_destroypkt_map[] = {
1924 
1925 	/* Chain for buf IO for disk drive targets (PM enabled) */
1926 	sd_destroypkt_for_buf,		/* Index: 0 */
1927 	sd_destroypkt_for_buf,		/* Index: 1 */
1928 	sd_destroypkt_for_buf,		/* Index: 2 */
1929 
1930 	/* Chain for buf IO for disk drive targets (PM disabled) */
1931 	sd_destroypkt_for_buf,		/* Index: 3 */
1932 	sd_destroypkt_for_buf,		/* Index: 4 */
1933 
1934 	/* Chain for buf IO for removable-media targets (PM enabled) */
1935 	sd_destroypkt_for_buf,		/* Index: 5 */
1936 	sd_destroypkt_for_buf,		/* Index: 6 */
1937 	sd_destroypkt_for_buf,		/* Index: 7 */
1938 	sd_destroypkt_for_buf,		/* Index: 8 */
1939 
1940 	/* Chain for buf IO for removable-media targets (PM disabled) */
1941 	sd_destroypkt_for_buf,		/* Index: 9 */
1942 	sd_destroypkt_for_buf,		/* Index: 10 */
1943 	sd_destroypkt_for_buf,		/* Index: 11 */
1944 
1945 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1946 	sd_destroypkt_for_buf,		/* Index: 12 */
1947 	sd_destroypkt_for_buf,		/* Index: 13 */
1948 	sd_destroypkt_for_buf,		/* Index: 14 */
1949 	sd_destroypkt_for_buf,		/* Index: 15 */
1950 
1951 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1952 	sd_destroypkt_for_buf,		/* Index: 16 */
1953 	sd_destroypkt_for_buf,		/* Index: 17 */
1954 	sd_destroypkt_for_buf,		/* Index: 18 */
1955 
1956 	/* Chain for USCSI commands (non-checksum targets) */
1957 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1958 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1959 
1960 	/* Chain for USCSI commands (checksum targets) */
1961 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1962 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1963 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1964 
1965 	/* Chain for "direct" USCSI commands (all targets) */
1966 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1967 
1968 	/* Chain for "direct priority" USCSI commands (all targets) */
1969 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1970 
1971 };
1972 
1973 
1974 
1975 /*
1976  * Array to map a layering chain index to the appropriate chain "type".
1977  * The chain type indicates a specific property/usage of the chain.
1978  * The redundant entries are present so that the index used for accessing
1979  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1980  * with this table as well.
1981  */
1982 
1983 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1984 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1985 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1986 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1987 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1988 						/* (for error recovery) */
1989 
1990 static int sd_chain_type_map[] = {
1991 
1992 	/* Chain for buf IO for disk drive targets (PM enabled) */
1993 	SD_CHAIN_BUFIO,			/* Index: 0 */
1994 	SD_CHAIN_BUFIO,			/* Index: 1 */
1995 	SD_CHAIN_BUFIO,			/* Index: 2 */
1996 
1997 	/* Chain for buf IO for disk drive targets (PM disabled) */
1998 	SD_CHAIN_BUFIO,			/* Index: 3 */
1999 	SD_CHAIN_BUFIO,			/* Index: 4 */
2000 
2001 	/* Chain for buf IO for removable-media targets (PM enabled) */
2002 	SD_CHAIN_BUFIO,			/* Index: 5 */
2003 	SD_CHAIN_BUFIO,			/* Index: 6 */
2004 	SD_CHAIN_BUFIO,			/* Index: 7 */
2005 	SD_CHAIN_BUFIO,			/* Index: 8 */
2006 
2007 	/* Chain for buf IO for removable-media targets (PM disabled) */
2008 	SD_CHAIN_BUFIO,			/* Index: 9 */
2009 	SD_CHAIN_BUFIO,			/* Index: 10 */
2010 	SD_CHAIN_BUFIO,			/* Index: 11 */
2011 
2012 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2013 	SD_CHAIN_BUFIO,			/* Index: 12 */
2014 	SD_CHAIN_BUFIO,			/* Index: 13 */
2015 	SD_CHAIN_BUFIO,			/* Index: 14 */
2016 	SD_CHAIN_BUFIO,			/* Index: 15 */
2017 
2018 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2019 	SD_CHAIN_BUFIO,			/* Index: 16 */
2020 	SD_CHAIN_BUFIO,			/* Index: 17 */
2021 	SD_CHAIN_BUFIO,			/* Index: 18 */
2022 
2023 	/* Chain for USCSI commands (non-checksum targets) */
2024 	SD_CHAIN_USCSI,			/* Index: 19 */
2025 	SD_CHAIN_USCSI,			/* Index: 20 */
2026 
2027 	/* Chain for USCSI commands (checksum targets) */
2028 	SD_CHAIN_USCSI,			/* Index: 21 */
2029 	SD_CHAIN_USCSI,			/* Index: 22 */
2030 	SD_CHAIN_USCSI,			/* Index: 22 */
2031 
2032 	/* Chain for "direct" USCSI commands (all targets) */
2033 	SD_CHAIN_DIRECT,		/* Index: 24 */
2034 
2035 	/* Chain for "direct priority" USCSI commands (all targets) */
2036 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2037 };
2038 
2039 
2040 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2041 #define	SD_IS_BUFIO(xp)			\
2042 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2043 
2044 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2045 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2046 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2047 
2048 
2049 
2050 /*
2051  * Struct, array, and macros to map a specific chain to the appropriate
2052  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2053  *
2054  * The sd_chain_index_map[] array is used at attach time to set the various
2055  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2056  * chain to be used with the instance. This allows different instances to use
2057  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2058  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2059  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2060  * dynamically & without the use of locking; and (2) a layer may update the
2061  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2062  * to allow for deferred processing of an IO within the same chain from a
2063  * different execution context.
2064  */
2065 
2066 struct sd_chain_index {
2067 	int	sci_iostart_index;
2068 	int	sci_iodone_index;
2069 };
2070 
2071 static struct sd_chain_index	sd_chain_index_map[] = {
2072 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2073 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2074 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2075 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2076 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2077 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2078 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2079 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2080 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2081 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2082 };
2083 
2084 
2085 /*
2086  * The following are indexes into the sd_chain_index_map[] array.
2087  */
2088 
2089 /* un->un_buf_chain_type must be set to one of these */
2090 #define	SD_CHAIN_INFO_DISK		0
2091 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2092 #define	SD_CHAIN_INFO_RMMEDIA		2
2093 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2094 #define	SD_CHAIN_INFO_CHKSUM		4
2095 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2096 
2097 /* un->un_uscsi_chain_type must be set to one of these */
2098 #define	SD_CHAIN_INFO_USCSI_CMD		6
2099 /* USCSI with PM disabled is the same as DIRECT */
2100 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2101 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2102 
2103 /* un->un_direct_chain_type must be set to one of these */
2104 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2105 
2106 /* un->un_priority_chain_type must be set to one of these */
2107 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2108 
2109 /* size for devid inquiries */
2110 #define	MAX_INQUIRY_SIZE		0xF0
2111 
2112 /*
2113  * Macros used by functions to pass a given buf(9S) struct along to the
2114  * next function in the layering chain for further processing.
2115  *
2116  * In the following macros, passing more than three arguments to the called
2117  * routines causes the optimizer for the SPARC compiler to stop doing tail
2118  * call elimination which results in significant performance degradation.
2119  */
2120 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2121 	((*(sd_iostart_chain[index]))(index, un, bp))
2122 
2123 #define	SD_BEGIN_IODONE(index, un, bp)	\
2124 	((*(sd_iodone_chain[index]))(index, un, bp))
2125 
2126 #define	SD_NEXT_IOSTART(index, un, bp)				\
2127 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2128 
2129 #define	SD_NEXT_IODONE(index, un, bp)				\
2130 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2131 
2132 /*
2133  *    Function: _init
2134  *
2135  * Description: This is the driver _init(9E) entry point.
2136  *
2137  * Return Code: Returns the value from mod_install(9F) or
2138  *		ddi_soft_state_init(9F) as appropriate.
2139  *
2140  *     Context: Called when driver module loaded.
2141  */
2142 
2143 int
2144 _init(void)
2145 {
2146 	int	err;
2147 
2148 	/* establish driver name from module name */
2149 	sd_label = mod_modname(&modlinkage);
2150 
2151 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2152 	    SD_MAXUNIT);
2153 
2154 	if (err != 0) {
2155 		return (err);
2156 	}
2157 
2158 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2159 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2160 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2161 
2162 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2163 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2164 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2165 
2166 	/*
2167 	 * it's ok to init here even for fibre device
2168 	 */
2169 	sd_scsi_probe_cache_init();
2170 
2171 	sd_scsi_target_lun_init();
2172 
2173 	/*
2174 	 * Creating taskq before mod_install ensures that all callers (threads)
2175 	 * that enter the module after a successfull mod_install encounter
2176 	 * a valid taskq.
2177 	 */
2178 	sd_taskq_create();
2179 
2180 	err = mod_install(&modlinkage);
2181 	if (err != 0) {
2182 		/* delete taskq if install fails */
2183 		sd_taskq_delete();
2184 
2185 		mutex_destroy(&sd_detach_mutex);
2186 		mutex_destroy(&sd_log_mutex);
2187 		mutex_destroy(&sd_label_mutex);
2188 
2189 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2190 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2191 		cv_destroy(&sd_tr.srq_inprocess_cv);
2192 
2193 		sd_scsi_probe_cache_fini();
2194 
2195 		sd_scsi_target_lun_fini();
2196 
2197 		ddi_soft_state_fini(&sd_state);
2198 		return (err);
2199 	}
2200 
2201 	return (err);
2202 }
2203 
2204 
2205 /*
2206  *    Function: _fini
2207  *
2208  * Description: This is the driver _fini(9E) entry point.
2209  *
2210  * Return Code: Returns the value from mod_remove(9F)
2211  *
2212  *     Context: Called when driver module is unloaded.
2213  */
2214 
2215 int
2216 _fini(void)
2217 {
2218 	int err;
2219 
2220 	if ((err = mod_remove(&modlinkage)) != 0) {
2221 		return (err);
2222 	}
2223 
2224 	sd_taskq_delete();
2225 
2226 	mutex_destroy(&sd_detach_mutex);
2227 	mutex_destroy(&sd_log_mutex);
2228 	mutex_destroy(&sd_label_mutex);
2229 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2230 
2231 	sd_scsi_probe_cache_fini();
2232 
2233 	sd_scsi_target_lun_fini();
2234 
2235 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2236 	cv_destroy(&sd_tr.srq_inprocess_cv);
2237 
2238 	ddi_soft_state_fini(&sd_state);
2239 
2240 	return (err);
2241 }
2242 
2243 
2244 /*
2245  *    Function: _info
2246  *
2247  * Description: This is the driver _info(9E) entry point.
2248  *
2249  *   Arguments: modinfop - pointer to the driver modinfo structure
2250  *
2251  * Return Code: Returns the value from mod_info(9F).
2252  *
2253  *     Context: Kernel thread context
2254  */
2255 
2256 int
2257 _info(struct modinfo *modinfop)
2258 {
2259 	return (mod_info(&modlinkage, modinfop));
2260 }
2261 
2262 
2263 /*
2264  * The following routines implement the driver message logging facility.
2265  * They provide component- and level- based debug output filtering.
2266  * Output may also be restricted to messages for a single instance by
2267  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2268  * to NULL, then messages for all instances are printed.
2269  *
2270  * These routines have been cloned from each other due to the language
2271  * constraints of macros and variable argument list processing.
2272  */
2273 
2274 
2275 /*
2276  *    Function: sd_log_err
2277  *
2278  * Description: This routine is called by the SD_ERROR macro for debug
2279  *		logging of error conditions.
2280  *
2281  *   Arguments: comp - driver component being logged
2282  *		dev  - pointer to driver info structure
2283  *		fmt  - error string and format to be logged
2284  */
2285 
2286 static void
2287 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2288 {
2289 	va_list		ap;
2290 	dev_info_t	*dev;
2291 
2292 	ASSERT(un != NULL);
2293 	dev = SD_DEVINFO(un);
2294 	ASSERT(dev != NULL);
2295 
2296 	/*
2297 	 * Filter messages based on the global component and level masks.
2298 	 * Also print if un matches the value of sd_debug_un, or if
2299 	 * sd_debug_un is set to NULL.
2300 	 */
2301 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2302 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2303 		mutex_enter(&sd_log_mutex);
2304 		va_start(ap, fmt);
2305 		(void) vsprintf(sd_log_buf, fmt, ap);
2306 		va_end(ap);
2307 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2308 		mutex_exit(&sd_log_mutex);
2309 	}
2310 #ifdef SD_FAULT_INJECTION
2311 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2312 	if (un->sd_injection_mask & comp) {
2313 		mutex_enter(&sd_log_mutex);
2314 		va_start(ap, fmt);
2315 		(void) vsprintf(sd_log_buf, fmt, ap);
2316 		va_end(ap);
2317 		sd_injection_log(sd_log_buf, un);
2318 		mutex_exit(&sd_log_mutex);
2319 	}
2320 #endif
2321 }
2322 
2323 
2324 /*
2325  *    Function: sd_log_info
2326  *
2327  * Description: This routine is called by the SD_INFO macro for debug
2328  *		logging of general purpose informational conditions.
2329  *
2330  *   Arguments: comp - driver component being logged
2331  *		dev  - pointer to driver info structure
2332  *		fmt  - info string and format to be logged
2333  */
2334 
2335 static void
2336 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2337 {
2338 	va_list		ap;
2339 	dev_info_t	*dev;
2340 
2341 	ASSERT(un != NULL);
2342 	dev = SD_DEVINFO(un);
2343 	ASSERT(dev != NULL);
2344 
2345 	/*
2346 	 * Filter messages based on the global component and level masks.
2347 	 * Also print if un matches the value of sd_debug_un, or if
2348 	 * sd_debug_un is set to NULL.
2349 	 */
2350 	if ((sd_component_mask & component) &&
2351 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2352 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2353 		mutex_enter(&sd_log_mutex);
2354 		va_start(ap, fmt);
2355 		(void) vsprintf(sd_log_buf, fmt, ap);
2356 		va_end(ap);
2357 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2358 		mutex_exit(&sd_log_mutex);
2359 	}
2360 #ifdef SD_FAULT_INJECTION
2361 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2362 	if (un->sd_injection_mask & component) {
2363 		mutex_enter(&sd_log_mutex);
2364 		va_start(ap, fmt);
2365 		(void) vsprintf(sd_log_buf, fmt, ap);
2366 		va_end(ap);
2367 		sd_injection_log(sd_log_buf, un);
2368 		mutex_exit(&sd_log_mutex);
2369 	}
2370 #endif
2371 }
2372 
2373 
2374 /*
2375  *    Function: sd_log_trace
2376  *
2377  * Description: This routine is called by the SD_TRACE macro for debug
2378  *		logging of trace conditions (i.e. function entry/exit).
2379  *
2380  *   Arguments: comp - driver component being logged
2381  *		dev  - pointer to driver info structure
2382  *		fmt  - trace string and format to be logged
2383  */
2384 
2385 static void
2386 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2387 {
2388 	va_list		ap;
2389 	dev_info_t	*dev;
2390 
2391 	ASSERT(un != NULL);
2392 	dev = SD_DEVINFO(un);
2393 	ASSERT(dev != NULL);
2394 
2395 	/*
2396 	 * Filter messages based on the global component and level masks.
2397 	 * Also print if un matches the value of sd_debug_un, or if
2398 	 * sd_debug_un is set to NULL.
2399 	 */
2400 	if ((sd_component_mask & component) &&
2401 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2402 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2403 		mutex_enter(&sd_log_mutex);
2404 		va_start(ap, fmt);
2405 		(void) vsprintf(sd_log_buf, fmt, ap);
2406 		va_end(ap);
2407 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2408 		mutex_exit(&sd_log_mutex);
2409 	}
2410 #ifdef SD_FAULT_INJECTION
2411 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2412 	if (un->sd_injection_mask & component) {
2413 		mutex_enter(&sd_log_mutex);
2414 		va_start(ap, fmt);
2415 		(void) vsprintf(sd_log_buf, fmt, ap);
2416 		va_end(ap);
2417 		sd_injection_log(sd_log_buf, un);
2418 		mutex_exit(&sd_log_mutex);
2419 	}
2420 #endif
2421 }
2422 
2423 
2424 /*
2425  *    Function: sdprobe
2426  *
2427  * Description: This is the driver probe(9e) entry point function.
2428  *
2429  *   Arguments: devi - opaque device info handle
2430  *
2431  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2432  *              DDI_PROBE_FAILURE: If the probe failed.
2433  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2434  *				   but may be present in the future.
2435  */
2436 
2437 static int
2438 sdprobe(dev_info_t *devi)
2439 {
2440 	struct scsi_device	*devp;
2441 	int			rval;
2442 	int			instance;
2443 
2444 	/*
2445 	 * if it wasn't for pln, sdprobe could actually be nulldev
2446 	 * in the "__fibre" case.
2447 	 */
2448 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2449 		return (DDI_PROBE_DONTCARE);
2450 	}
2451 
2452 	devp = ddi_get_driver_private(devi);
2453 
2454 	if (devp == NULL) {
2455 		/* Ooops... nexus driver is mis-configured... */
2456 		return (DDI_PROBE_FAILURE);
2457 	}
2458 
2459 	instance = ddi_get_instance(devi);
2460 
2461 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2462 		return (DDI_PROBE_PARTIAL);
2463 	}
2464 
2465 	/*
2466 	 * Call the SCSA utility probe routine to see if we actually
2467 	 * have a target at this SCSI nexus.
2468 	 */
2469 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2470 	case SCSIPROBE_EXISTS:
2471 		switch (devp->sd_inq->inq_dtype) {
2472 		case DTYPE_DIRECT:
2473 			rval = DDI_PROBE_SUCCESS;
2474 			break;
2475 		case DTYPE_RODIRECT:
2476 			/* CDs etc. Can be removable media */
2477 			rval = DDI_PROBE_SUCCESS;
2478 			break;
2479 		case DTYPE_OPTICAL:
2480 			/*
2481 			 * Rewritable optical driver HP115AA
2482 			 * Can also be removable media
2483 			 */
2484 
2485 			/*
2486 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2487 			 * pre solaris 9 sparc sd behavior is required
2488 			 *
2489 			 * If first time through and sd_dtype_optical_bind
2490 			 * has not been set in /etc/system check properties
2491 			 */
2492 
2493 			if (sd_dtype_optical_bind  < 0) {
2494 				sd_dtype_optical_bind = ddi_prop_get_int
2495 				    (DDI_DEV_T_ANY, devi, 0,
2496 				    "optical-device-bind", 1);
2497 			}
2498 
2499 			if (sd_dtype_optical_bind == 0) {
2500 				rval = DDI_PROBE_FAILURE;
2501 			} else {
2502 				rval = DDI_PROBE_SUCCESS;
2503 			}
2504 			break;
2505 
2506 		case DTYPE_NOTPRESENT:
2507 		default:
2508 			rval = DDI_PROBE_FAILURE;
2509 			break;
2510 		}
2511 		break;
2512 	default:
2513 		rval = DDI_PROBE_PARTIAL;
2514 		break;
2515 	}
2516 
2517 	/*
2518 	 * This routine checks for resource allocation prior to freeing,
2519 	 * so it will take care of the "smart probing" case where a
2520 	 * scsi_probe() may or may not have been issued and will *not*
2521 	 * free previously-freed resources.
2522 	 */
2523 	scsi_unprobe(devp);
2524 	return (rval);
2525 }
2526 
2527 
2528 /*
2529  *    Function: sdinfo
2530  *
2531  * Description: This is the driver getinfo(9e) entry point function.
2532  * 		Given the device number, return the devinfo pointer from
2533  *		the scsi_device structure or the instance number
2534  *		associated with the dev_t.
2535  *
2536  *   Arguments: dip     - pointer to device info structure
2537  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2538  *			  DDI_INFO_DEVT2INSTANCE)
2539  *		arg     - driver dev_t
2540  *		resultp - user buffer for request response
2541  *
2542  * Return Code: DDI_SUCCESS
2543  *              DDI_FAILURE
2544  */
2545 /* ARGSUSED */
2546 static int
2547 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2548 {
2549 	struct sd_lun	*un;
2550 	dev_t		dev;
2551 	int		instance;
2552 	int		error;
2553 
2554 	switch (infocmd) {
2555 	case DDI_INFO_DEVT2DEVINFO:
2556 		dev = (dev_t)arg;
2557 		instance = SDUNIT(dev);
2558 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2559 			return (DDI_FAILURE);
2560 		}
2561 		*result = (void *) SD_DEVINFO(un);
2562 		error = DDI_SUCCESS;
2563 		break;
2564 	case DDI_INFO_DEVT2INSTANCE:
2565 		dev = (dev_t)arg;
2566 		instance = SDUNIT(dev);
2567 		*result = (void *)(uintptr_t)instance;
2568 		error = DDI_SUCCESS;
2569 		break;
2570 	default:
2571 		error = DDI_FAILURE;
2572 	}
2573 	return (error);
2574 }
2575 
2576 /*
2577  *    Function: sd_prop_op
2578  *
2579  * Description: This is the driver prop_op(9e) entry point function.
2580  *		Return the number of blocks for the partition in question
2581  *		or forward the request to the property facilities.
2582  *
2583  *   Arguments: dev       - device number
2584  *		dip       - pointer to device info structure
2585  *		prop_op   - property operator
2586  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2587  *		name      - pointer to property name
2588  *		valuep    - pointer or address of the user buffer
2589  *		lengthp   - property length
2590  *
2591  * Return Code: DDI_PROP_SUCCESS
2592  *              DDI_PROP_NOT_FOUND
2593  *              DDI_PROP_UNDEFINED
2594  *              DDI_PROP_NO_MEMORY
2595  *              DDI_PROP_BUF_TOO_SMALL
2596  */
2597 
2598 static int
2599 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2600 	char *name, caddr_t valuep, int *lengthp)
2601 {
2602 	int		instance = ddi_get_instance(dip);
2603 	struct sd_lun	*un;
2604 	uint64_t	nblocks64;
2605 	uint_t		dblk;
2606 
2607 	/*
2608 	 * Our dynamic properties are all device specific and size oriented.
2609 	 * Requests issued under conditions where size is valid are passed
2610 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2611 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2612 	 */
2613 	un = ddi_get_soft_state(sd_state, instance);
2614 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2615 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2616 		    name, valuep, lengthp));
2617 	} else if (!SD_IS_VALID_LABEL(un)) {
2618 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2619 		    valuep, lengthp));
2620 	}
2621 
2622 	/* get nblocks value */
2623 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2624 
2625 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2626 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2627 
2628 	/* report size in target size blocks */
2629 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2630 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2631 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2632 }
2633 
2634 /*
2635  * The following functions are for smart probing:
2636  * sd_scsi_probe_cache_init()
2637  * sd_scsi_probe_cache_fini()
2638  * sd_scsi_clear_probe_cache()
2639  * sd_scsi_probe_with_cache()
2640  */
2641 
2642 /*
2643  *    Function: sd_scsi_probe_cache_init
2644  *
2645  * Description: Initializes the probe response cache mutex and head pointer.
2646  *
2647  *     Context: Kernel thread context
2648  */
2649 
2650 static void
2651 sd_scsi_probe_cache_init(void)
2652 {
2653 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2654 	sd_scsi_probe_cache_head = NULL;
2655 }
2656 
2657 
2658 /*
2659  *    Function: sd_scsi_probe_cache_fini
2660  *
2661  * Description: Frees all resources associated with the probe response cache.
2662  *
2663  *     Context: Kernel thread context
2664  */
2665 
2666 static void
2667 sd_scsi_probe_cache_fini(void)
2668 {
2669 	struct sd_scsi_probe_cache *cp;
2670 	struct sd_scsi_probe_cache *ncp;
2671 
2672 	/* Clean up our smart probing linked list */
2673 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2674 		ncp = cp->next;
2675 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2676 	}
2677 	sd_scsi_probe_cache_head = NULL;
2678 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2679 }
2680 
2681 
2682 /*
2683  *    Function: sd_scsi_clear_probe_cache
2684  *
2685  * Description: This routine clears the probe response cache. This is
2686  *		done when open() returns ENXIO so that when deferred
2687  *		attach is attempted (possibly after a device has been
2688  *		turned on) we will retry the probe. Since we don't know
2689  *		which target we failed to open, we just clear the
2690  *		entire cache.
2691  *
2692  *     Context: Kernel thread context
2693  */
2694 
2695 static void
2696 sd_scsi_clear_probe_cache(void)
2697 {
2698 	struct sd_scsi_probe_cache	*cp;
2699 	int				i;
2700 
2701 	mutex_enter(&sd_scsi_probe_cache_mutex);
2702 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2703 		/*
2704 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2705 		 * force probing to be performed the next time
2706 		 * sd_scsi_probe_with_cache is called.
2707 		 */
2708 		for (i = 0; i < NTARGETS_WIDE; i++) {
2709 			cp->cache[i] = SCSIPROBE_EXISTS;
2710 		}
2711 	}
2712 	mutex_exit(&sd_scsi_probe_cache_mutex);
2713 }
2714 
2715 
2716 /*
2717  *    Function: sd_scsi_probe_with_cache
2718  *
2719  * Description: This routine implements support for a scsi device probe
2720  *		with cache. The driver maintains a cache of the target
2721  *		responses to scsi probes. If we get no response from a
2722  *		target during a probe inquiry, we remember that, and we
2723  *		avoid additional calls to scsi_probe on non-zero LUNs
2724  *		on the same target until the cache is cleared. By doing
2725  *		so we avoid the 1/4 sec selection timeout for nonzero
2726  *		LUNs. lun0 of a target is always probed.
2727  *
2728  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2729  *              waitfunc - indicates what the allocator routines should
2730  *			   do when resources are not available. This value
2731  *			   is passed on to scsi_probe() when that routine
2732  *			   is called.
2733  *
2734  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2735  *		otherwise the value returned by scsi_probe(9F).
2736  *
2737  *     Context: Kernel thread context
2738  */
2739 
2740 static int
2741 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2742 {
2743 	struct sd_scsi_probe_cache	*cp;
2744 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2745 	int		lun, tgt;
2746 
2747 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2748 	    SCSI_ADDR_PROP_LUN, 0);
2749 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2750 	    SCSI_ADDR_PROP_TARGET, -1);
2751 
2752 	/* Make sure caching enabled and target in range */
2753 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2754 		/* do it the old way (no cache) */
2755 		return (scsi_probe(devp, waitfn));
2756 	}
2757 
2758 	mutex_enter(&sd_scsi_probe_cache_mutex);
2759 
2760 	/* Find the cache for this scsi bus instance */
2761 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2762 		if (cp->pdip == pdip) {
2763 			break;
2764 		}
2765 	}
2766 
2767 	/* If we can't find a cache for this pdip, create one */
2768 	if (cp == NULL) {
2769 		int i;
2770 
2771 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2772 		    KM_SLEEP);
2773 		cp->pdip = pdip;
2774 		cp->next = sd_scsi_probe_cache_head;
2775 		sd_scsi_probe_cache_head = cp;
2776 		for (i = 0; i < NTARGETS_WIDE; i++) {
2777 			cp->cache[i] = SCSIPROBE_EXISTS;
2778 		}
2779 	}
2780 
2781 	mutex_exit(&sd_scsi_probe_cache_mutex);
2782 
2783 	/* Recompute the cache for this target if LUN zero */
2784 	if (lun == 0) {
2785 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2786 	}
2787 
2788 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2789 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2790 		return (SCSIPROBE_NORESP);
2791 	}
2792 
2793 	/* Do the actual probe; save & return the result */
2794 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2795 }
2796 
2797 
2798 /*
2799  *    Function: sd_scsi_target_lun_init
2800  *
2801  * Description: Initializes the attached lun chain mutex and head pointer.
2802  *
2803  *     Context: Kernel thread context
2804  */
2805 
2806 static void
2807 sd_scsi_target_lun_init(void)
2808 {
2809 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2810 	sd_scsi_target_lun_head = NULL;
2811 }
2812 
2813 
2814 /*
2815  *    Function: sd_scsi_target_lun_fini
2816  *
2817  * Description: Frees all resources associated with the attached lun
2818  *              chain
2819  *
2820  *     Context: Kernel thread context
2821  */
2822 
2823 static void
2824 sd_scsi_target_lun_fini(void)
2825 {
2826 	struct sd_scsi_hba_tgt_lun	*cp;
2827 	struct sd_scsi_hba_tgt_lun	*ncp;
2828 
2829 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2830 		ncp = cp->next;
2831 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2832 	}
2833 	sd_scsi_target_lun_head = NULL;
2834 	mutex_destroy(&sd_scsi_target_lun_mutex);
2835 }
2836 
2837 
2838 /*
2839  *    Function: sd_scsi_get_target_lun_count
2840  *
2841  * Description: This routine will check in the attached lun chain to see
2842  * 		how many luns are attached on the required SCSI controller
2843  * 		and target. Currently, some capabilities like tagged queue
2844  *		are supported per target based by HBA. So all luns in a
2845  *		target have the same capabilities. Based on this assumption,
2846  * 		sd should only set these capabilities once per target. This
2847  *		function is called when sd needs to decide how many luns
2848  *		already attached on a target.
2849  *
2850  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2851  *			  controller device.
2852  *              target	- The target ID on the controller's SCSI bus.
2853  *
2854  * Return Code: The number of luns attached on the required target and
2855  *		controller.
2856  *		-1 if target ID is not in parallel SCSI scope or the given
2857  * 		dip is not in the chain.
2858  *
2859  *     Context: Kernel thread context
2860  */
2861 
2862 static int
2863 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2864 {
2865 	struct sd_scsi_hba_tgt_lun	*cp;
2866 
2867 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2868 		return (-1);
2869 	}
2870 
2871 	mutex_enter(&sd_scsi_target_lun_mutex);
2872 
2873 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2874 		if (cp->pdip == dip) {
2875 			break;
2876 		}
2877 	}
2878 
2879 	mutex_exit(&sd_scsi_target_lun_mutex);
2880 
2881 	if (cp == NULL) {
2882 		return (-1);
2883 	}
2884 
2885 	return (cp->nlun[target]);
2886 }
2887 
2888 
2889 /*
2890  *    Function: sd_scsi_update_lun_on_target
2891  *
2892  * Description: This routine is used to update the attached lun chain when a
2893  *		lun is attached or detached on a target.
2894  *
2895  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2896  *                        controller device.
2897  *              target  - The target ID on the controller's SCSI bus.
2898  *		flag	- Indicate the lun is attached or detached.
2899  *
2900  *     Context: Kernel thread context
2901  */
2902 
2903 static void
2904 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2905 {
2906 	struct sd_scsi_hba_tgt_lun	*cp;
2907 
2908 	mutex_enter(&sd_scsi_target_lun_mutex);
2909 
2910 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2911 		if (cp->pdip == dip) {
2912 			break;
2913 		}
2914 	}
2915 
2916 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2917 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2918 		    KM_SLEEP);
2919 		cp->pdip = dip;
2920 		cp->next = sd_scsi_target_lun_head;
2921 		sd_scsi_target_lun_head = cp;
2922 	}
2923 
2924 	mutex_exit(&sd_scsi_target_lun_mutex);
2925 
2926 	if (cp != NULL) {
2927 		if (flag == SD_SCSI_LUN_ATTACH) {
2928 			cp->nlun[target] ++;
2929 		} else {
2930 			cp->nlun[target] --;
2931 		}
2932 	}
2933 }
2934 
2935 
2936 /*
2937  *    Function: sd_spin_up_unit
2938  *
2939  * Description: Issues the following commands to spin-up the device:
2940  *		START STOP UNIT, and INQUIRY.
2941  *
2942  *   Arguments: un - driver soft state (unit) structure
2943  *
2944  * Return Code: 0 - success
2945  *		EIO - failure
2946  *		EACCES - reservation conflict
2947  *
2948  *     Context: Kernel thread context
2949  */
2950 
2951 static int
2952 sd_spin_up_unit(struct sd_lun *un)
2953 {
2954 	size_t	resid		= 0;
2955 	int	has_conflict	= FALSE;
2956 	uchar_t *bufaddr;
2957 
2958 	ASSERT(un != NULL);
2959 
2960 	/*
2961 	 * Send a throwaway START UNIT command.
2962 	 *
2963 	 * If we fail on this, we don't care presently what precisely
2964 	 * is wrong.  EMC's arrays will also fail this with a check
2965 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2966 	 * we don't want to fail the attach because it may become
2967 	 * "active" later.
2968 	 */
2969 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2970 	    == EACCES)
2971 		has_conflict = TRUE;
2972 
2973 	/*
2974 	 * Send another INQUIRY command to the target. This is necessary for
2975 	 * non-removable media direct access devices because their INQUIRY data
2976 	 * may not be fully qualified until they are spun up (perhaps via the
2977 	 * START command above).  Note: This seems to be needed for some
2978 	 * legacy devices only.) The INQUIRY command should succeed even if a
2979 	 * Reservation Conflict is present.
2980 	 */
2981 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2982 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2983 		kmem_free(bufaddr, SUN_INQSIZE);
2984 		return (EIO);
2985 	}
2986 
2987 	/*
2988 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2989 	 * Note that this routine does not return a failure here even if the
2990 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2991 	 */
2992 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2993 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2994 	}
2995 
2996 	kmem_free(bufaddr, SUN_INQSIZE);
2997 
2998 	/* If we hit a reservation conflict above, tell the caller. */
2999 	if (has_conflict == TRUE) {
3000 		return (EACCES);
3001 	}
3002 
3003 	return (0);
3004 }
3005 
3006 #ifdef _LP64
3007 /*
3008  *    Function: sd_enable_descr_sense
3009  *
3010  * Description: This routine attempts to select descriptor sense format
3011  *		using the Control mode page.  Devices that support 64 bit
3012  *		LBAs (for >2TB luns) should also implement descriptor
3013  *		sense data so we will call this function whenever we see
3014  *		a lun larger than 2TB.  If for some reason the device
3015  *		supports 64 bit LBAs but doesn't support descriptor sense
3016  *		presumably the mode select will fail.  Everything will
3017  *		continue to work normally except that we will not get
3018  *		complete sense data for commands that fail with an LBA
3019  *		larger than 32 bits.
3020  *
3021  *   Arguments: un - driver soft state (unit) structure
3022  *
3023  *     Context: Kernel thread context only
3024  */
3025 
3026 static void
3027 sd_enable_descr_sense(struct sd_lun *un)
3028 {
3029 	uchar_t			*header;
3030 	struct mode_control_scsi3 *ctrl_bufp;
3031 	size_t			buflen;
3032 	size_t			bd_len;
3033 
3034 	/*
3035 	 * Read MODE SENSE page 0xA, Control Mode Page
3036 	 */
3037 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3038 	    sizeof (struct mode_control_scsi3);
3039 	header = kmem_zalloc(buflen, KM_SLEEP);
3040 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3041 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3042 		SD_ERROR(SD_LOG_COMMON, un,
3043 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3044 		goto eds_exit;
3045 	}
3046 
3047 	/*
3048 	 * Determine size of Block Descriptors in order to locate
3049 	 * the mode page data. ATAPI devices return 0, SCSI devices
3050 	 * should return MODE_BLK_DESC_LENGTH.
3051 	 */
3052 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3053 
3054 	/* Clear the mode data length field for MODE SELECT */
3055 	((struct mode_header *)header)->length = 0;
3056 
3057 	ctrl_bufp = (struct mode_control_scsi3 *)
3058 	    (header + MODE_HEADER_LENGTH + bd_len);
3059 
3060 	/*
3061 	 * If the page length is smaller than the expected value,
3062 	 * the target device doesn't support D_SENSE. Bail out here.
3063 	 */
3064 	if (ctrl_bufp->mode_page.length <
3065 	    sizeof (struct mode_control_scsi3) - 2) {
3066 		SD_ERROR(SD_LOG_COMMON, un,
3067 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3068 		goto eds_exit;
3069 	}
3070 
3071 	/*
3072 	 * Clear PS bit for MODE SELECT
3073 	 */
3074 	ctrl_bufp->mode_page.ps = 0;
3075 
3076 	/*
3077 	 * Set D_SENSE to enable descriptor sense format.
3078 	 */
3079 	ctrl_bufp->d_sense = 1;
3080 
3081 	/*
3082 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3083 	 */
3084 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3085 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3086 		SD_INFO(SD_LOG_COMMON, un,
3087 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3088 		goto eds_exit;
3089 	}
3090 
3091 eds_exit:
3092 	kmem_free(header, buflen);
3093 }
3094 
3095 /*
3096  *    Function: sd_reenable_dsense_task
3097  *
3098  * Description: Re-enable descriptor sense after device or bus reset
3099  *
3100  *     Context: Executes in a taskq() thread context
3101  */
3102 static void
3103 sd_reenable_dsense_task(void *arg)
3104 {
3105 	struct	sd_lun	*un = arg;
3106 
3107 	ASSERT(un != NULL);
3108 	sd_enable_descr_sense(un);
3109 }
3110 #endif /* _LP64 */
3111 
3112 /*
3113  *    Function: sd_set_mmc_caps
3114  *
3115  * Description: This routine determines if the device is MMC compliant and if
3116  *		the device supports CDDA via a mode sense of the CDVD
3117  *		capabilities mode page. Also checks if the device is a
3118  *		dvdram writable device.
3119  *
3120  *   Arguments: un - driver soft state (unit) structure
3121  *
3122  *     Context: Kernel thread context only
3123  */
3124 
3125 static void
3126 sd_set_mmc_caps(struct sd_lun *un)
3127 {
3128 	struct mode_header_grp2		*sense_mhp;
3129 	uchar_t				*sense_page;
3130 	caddr_t				buf;
3131 	int				bd_len;
3132 	int				status;
3133 	struct uscsi_cmd		com;
3134 	int				rtn;
3135 	uchar_t				*out_data_rw, *out_data_hd;
3136 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3137 
3138 	ASSERT(un != NULL);
3139 
3140 	/*
3141 	 * The flags which will be set in this function are - mmc compliant,
3142 	 * dvdram writable device, cdda support. Initialize them to FALSE
3143 	 * and if a capability is detected - it will be set to TRUE.
3144 	 */
3145 	un->un_f_mmc_cap = FALSE;
3146 	un->un_f_dvdram_writable_device = FALSE;
3147 	un->un_f_cfg_cdda = FALSE;
3148 
3149 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3150 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3151 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3152 
3153 	if (status != 0) {
3154 		/* command failed; just return */
3155 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3156 		return;
3157 	}
3158 	/*
3159 	 * If the mode sense request for the CDROM CAPABILITIES
3160 	 * page (0x2A) succeeds the device is assumed to be MMC.
3161 	 */
3162 	un->un_f_mmc_cap = TRUE;
3163 
3164 	/* Get to the page data */
3165 	sense_mhp = (struct mode_header_grp2 *)buf;
3166 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3167 	    sense_mhp->bdesc_length_lo;
3168 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3169 		/*
3170 		 * We did not get back the expected block descriptor
3171 		 * length so we cannot determine if the device supports
3172 		 * CDDA. However, we still indicate the device is MMC
3173 		 * according to the successful response to the page
3174 		 * 0x2A mode sense request.
3175 		 */
3176 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3177 		    "sd_set_mmc_caps: Mode Sense returned "
3178 		    "invalid block descriptor length\n");
3179 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3180 		return;
3181 	}
3182 
3183 	/* See if read CDDA is supported */
3184 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3185 	    bd_len);
3186 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3187 
3188 	/* See if writing DVD RAM is supported. */
3189 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3190 	if (un->un_f_dvdram_writable_device == TRUE) {
3191 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3192 		return;
3193 	}
3194 
3195 	/*
3196 	 * If the device presents DVD or CD capabilities in the mode
3197 	 * page, we can return here since a RRD will not have
3198 	 * these capabilities.
3199 	 */
3200 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3201 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3202 		return;
3203 	}
3204 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3205 
3206 	/*
3207 	 * If un->un_f_dvdram_writable_device is still FALSE,
3208 	 * check for a Removable Rigid Disk (RRD).  A RRD
3209 	 * device is identified by the features RANDOM_WRITABLE and
3210 	 * HARDWARE_DEFECT_MANAGEMENT.
3211 	 */
3212 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3213 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3214 
3215 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3216 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3217 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3218 	if (rtn != 0) {
3219 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3220 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3221 		return;
3222 	}
3223 
3224 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3225 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3226 
3227 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3228 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3229 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3230 	if (rtn == 0) {
3231 		/*
3232 		 * We have good information, check for random writable
3233 		 * and hardware defect features.
3234 		 */
3235 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3236 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3237 			un->un_f_dvdram_writable_device = TRUE;
3238 		}
3239 	}
3240 
3241 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3242 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3243 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3244 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3245 }
3246 
3247 /*
3248  *    Function: sd_check_for_writable_cd
3249  *
3250  * Description: This routine determines if the media in the device is
3251  *		writable or not. It uses the get configuration command (0x46)
3252  *		to determine if the media is writable
3253  *
3254  *   Arguments: un - driver soft state (unit) structure
3255  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3256  *                           chain and the normal command waitq, or
3257  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3258  *                           "direct" chain and bypass the normal command
3259  *                           waitq.
3260  *
3261  *     Context: Never called at interrupt context.
3262  */
3263 
3264 static void
3265 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3266 {
3267 	struct uscsi_cmd		com;
3268 	uchar_t				*out_data;
3269 	uchar_t				*rqbuf;
3270 	int				rtn;
3271 	uchar_t				*out_data_rw, *out_data_hd;
3272 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3273 	struct mode_header_grp2		*sense_mhp;
3274 	uchar_t				*sense_page;
3275 	caddr_t				buf;
3276 	int				bd_len;
3277 	int				status;
3278 
3279 	ASSERT(un != NULL);
3280 	ASSERT(mutex_owned(SD_MUTEX(un)));
3281 
3282 	/*
3283 	 * Initialize the writable media to false, if configuration info.
3284 	 * tells us otherwise then only we will set it.
3285 	 */
3286 	un->un_f_mmc_writable_media = FALSE;
3287 	mutex_exit(SD_MUTEX(un));
3288 
3289 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3290 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3291 
3292 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3293 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3294 
3295 	mutex_enter(SD_MUTEX(un));
3296 	if (rtn == 0) {
3297 		/*
3298 		 * We have good information, check for writable DVD.
3299 		 */
3300 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3301 			un->un_f_mmc_writable_media = TRUE;
3302 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3303 			kmem_free(rqbuf, SENSE_LENGTH);
3304 			return;
3305 		}
3306 	}
3307 
3308 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3309 	kmem_free(rqbuf, SENSE_LENGTH);
3310 
3311 	/*
3312 	 * Determine if this is a RRD type device.
3313 	 */
3314 	mutex_exit(SD_MUTEX(un));
3315 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3316 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3317 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3318 	mutex_enter(SD_MUTEX(un));
3319 	if (status != 0) {
3320 		/* command failed; just return */
3321 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3322 		return;
3323 	}
3324 
3325 	/* Get to the page data */
3326 	sense_mhp = (struct mode_header_grp2 *)buf;
3327 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3328 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3329 		/*
3330 		 * We did not get back the expected block descriptor length so
3331 		 * we cannot check the mode page.
3332 		 */
3333 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3334 		    "sd_check_for_writable_cd: Mode Sense returned "
3335 		    "invalid block descriptor length\n");
3336 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3337 		return;
3338 	}
3339 
3340 	/*
3341 	 * If the device presents DVD or CD capabilities in the mode
3342 	 * page, we can return here since a RRD device will not have
3343 	 * these capabilities.
3344 	 */
3345 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3346 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3347 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3348 		return;
3349 	}
3350 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3351 
3352 	/*
3353 	 * If un->un_f_mmc_writable_media is still FALSE,
3354 	 * check for RRD type media.  A RRD device is identified
3355 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3356 	 */
3357 	mutex_exit(SD_MUTEX(un));
3358 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3359 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3360 
3361 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3362 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3363 	    RANDOM_WRITABLE, path_flag);
3364 	if (rtn != 0) {
3365 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3366 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3367 		mutex_enter(SD_MUTEX(un));
3368 		return;
3369 	}
3370 
3371 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3372 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3373 
3374 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3375 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3376 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3377 	mutex_enter(SD_MUTEX(un));
3378 	if (rtn == 0) {
3379 		/*
3380 		 * We have good information, check for random writable
3381 		 * and hardware defect features as current.
3382 		 */
3383 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3384 		    (out_data_rw[10] & 0x1) &&
3385 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3386 		    (out_data_hd[10] & 0x1)) {
3387 			un->un_f_mmc_writable_media = TRUE;
3388 		}
3389 	}
3390 
3391 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3392 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3393 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3394 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3395 }
3396 
3397 /*
3398  *    Function: sd_read_unit_properties
3399  *
3400  * Description: The following implements a property lookup mechanism.
3401  *		Properties for particular disks (keyed on vendor, model
3402  *		and rev numbers) are sought in the sd.conf file via
3403  *		sd_process_sdconf_file(), and if not found there, are
3404  *		looked for in a list hardcoded in this driver via
3405  *		sd_process_sdconf_table() Once located the properties
3406  *		are used to update the driver unit structure.
3407  *
3408  *   Arguments: un - driver soft state (unit) structure
3409  */
3410 
3411 static void
3412 sd_read_unit_properties(struct sd_lun *un)
3413 {
3414 	/*
3415 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3416 	 * the "sd-config-list" property (from the sd.conf file) or if
3417 	 * there was not a match for the inquiry vid/pid. If this event
3418 	 * occurs the static driver configuration table is searched for
3419 	 * a match.
3420 	 */
3421 	ASSERT(un != NULL);
3422 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3423 		sd_process_sdconf_table(un);
3424 	}
3425 
3426 	/* check for LSI device */
3427 	sd_is_lsi(un);
3428 
3429 
3430 }
3431 
3432 
3433 /*
3434  *    Function: sd_process_sdconf_file
3435  *
3436  * Description: Use ddi_getlongprop to obtain the properties from the
3437  *		driver's config file (ie, sd.conf) and update the driver
3438  *		soft state structure accordingly.
3439  *
3440  *   Arguments: un - driver soft state (unit) structure
3441  *
3442  * Return Code: SD_SUCCESS - The properties were successfully set according
3443  *			     to the driver configuration file.
3444  *		SD_FAILURE - The driver config list was not obtained or
3445  *			     there was no vid/pid match. This indicates that
3446  *			     the static config table should be used.
3447  *
3448  * The config file has a property, "sd-config-list", which consists of
3449  * one or more duplets as follows:
3450  *
3451  *  sd-config-list=
3452  *	<duplet>,
3453  *	[<duplet>,]
3454  *	[<duplet>];
3455  *
3456  * The structure of each duplet is as follows:
3457  *
3458  *  <duplet>:= <vid+pid>,<data-property-name_list>
3459  *
3460  * The first entry of the duplet is the device ID string (the concatenated
3461  * vid & pid; not to be confused with a device_id).  This is defined in
3462  * the same way as in the sd_disk_table.
3463  *
3464  * The second part of the duplet is a string that identifies a
3465  * data-property-name-list. The data-property-name-list is defined as
3466  * follows:
3467  *
3468  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3469  *
3470  * The syntax of <data-property-name> depends on the <version> field.
3471  *
3472  * If version = SD_CONF_VERSION_1 we have the following syntax:
3473  *
3474  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3475  *
3476  * where the prop0 value will be used to set prop0 if bit0 set in the
3477  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3478  *
3479  */
3480 
3481 static int
3482 sd_process_sdconf_file(struct sd_lun *un)
3483 {
3484 	char	*config_list = NULL;
3485 	int	config_list_len;
3486 	int	len;
3487 	int	dupletlen = 0;
3488 	char	*vidptr;
3489 	int	vidlen;
3490 	char	*dnlist_ptr;
3491 	char	*dataname_ptr;
3492 	int	dnlist_len;
3493 	int	dataname_len;
3494 	int	*data_list;
3495 	int	data_list_len;
3496 	int	rval = SD_FAILURE;
3497 	int	i;
3498 
3499 	ASSERT(un != NULL);
3500 
3501 	/* Obtain the configuration list associated with the .conf file */
3502 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3503 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3504 	    != DDI_PROP_SUCCESS) {
3505 		return (SD_FAILURE);
3506 	}
3507 
3508 	/*
3509 	 * Compare vids in each duplet to the inquiry vid - if a match is
3510 	 * made, get the data value and update the soft state structure
3511 	 * accordingly.
3512 	 *
3513 	 * Note: This algorithm is complex and difficult to maintain. It should
3514 	 * be replaced with a more robust implementation.
3515 	 */
3516 	for (len = config_list_len, vidptr = config_list; len > 0;
3517 	    vidptr += dupletlen, len -= dupletlen) {
3518 		/*
3519 		 * Note: The assumption here is that each vid entry is on
3520 		 * a unique line from its associated duplet.
3521 		 */
3522 		vidlen = dupletlen = (int)strlen(vidptr);
3523 		if ((vidlen == 0) ||
3524 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3525 			dupletlen++;
3526 			continue;
3527 		}
3528 
3529 		/*
3530 		 * dnlist contains 1 or more blank separated
3531 		 * data-property-name entries
3532 		 */
3533 		dnlist_ptr = vidptr + vidlen + 1;
3534 		dnlist_len = (int)strlen(dnlist_ptr);
3535 		dupletlen += dnlist_len + 2;
3536 
3537 		/*
3538 		 * Set a pointer for the first data-property-name
3539 		 * entry in the list
3540 		 */
3541 		dataname_ptr = dnlist_ptr;
3542 		dataname_len = 0;
3543 
3544 		/*
3545 		 * Loop through all data-property-name entries in the
3546 		 * data-property-name-list setting the properties for each.
3547 		 */
3548 		while (dataname_len < dnlist_len) {
3549 			int version;
3550 
3551 			/*
3552 			 * Determine the length of the current
3553 			 * data-property-name entry by indexing until a
3554 			 * blank or NULL is encountered. When the space is
3555 			 * encountered reset it to a NULL for compliance
3556 			 * with ddi_getlongprop().
3557 			 */
3558 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3559 			    (dataname_ptr[i] != '\0')); i++) {
3560 				;
3561 			}
3562 
3563 			dataname_len += i;
3564 			/* If not null terminated, Make it so */
3565 			if (dataname_ptr[i] == ' ') {
3566 				dataname_ptr[i] = '\0';
3567 			}
3568 			dataname_len++;
3569 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3570 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3571 			    vidptr, dataname_ptr);
3572 
3573 			/* Get the data list */
3574 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3575 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3576 			    != DDI_PROP_SUCCESS) {
3577 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3578 				    "sd_process_sdconf_file: data property (%s)"
3579 				    " has no value\n", dataname_ptr);
3580 				dataname_ptr = dnlist_ptr + dataname_len;
3581 				continue;
3582 			}
3583 
3584 			version = data_list[0];
3585 
3586 			if (version == SD_CONF_VERSION_1) {
3587 				sd_tunables values;
3588 
3589 				/* Set the properties */
3590 				if (sd_chk_vers1_data(un, data_list[1],
3591 				    &data_list[2], data_list_len, dataname_ptr)
3592 				    == SD_SUCCESS) {
3593 					sd_get_tunables_from_conf(un,
3594 					    data_list[1], &data_list[2],
3595 					    &values);
3596 					sd_set_vers1_properties(un,
3597 					    data_list[1], &values);
3598 					rval = SD_SUCCESS;
3599 				} else {
3600 					rval = SD_FAILURE;
3601 				}
3602 			} else {
3603 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3604 				    "data property %s version 0x%x is invalid.",
3605 				    dataname_ptr, version);
3606 				rval = SD_FAILURE;
3607 			}
3608 			kmem_free(data_list, data_list_len);
3609 			dataname_ptr = dnlist_ptr + dataname_len;
3610 		}
3611 	}
3612 
3613 	/* free up the memory allocated by ddi_getlongprop */
3614 	if (config_list) {
3615 		kmem_free(config_list, config_list_len);
3616 	}
3617 
3618 	return (rval);
3619 }
3620 
3621 /*
3622  *    Function: sd_get_tunables_from_conf()
3623  *
3624  *
3625  *    This function reads the data list from the sd.conf file and pulls
3626  *    the values that can have numeric values as arguments and places
3627  *    the values in the appropriate sd_tunables member.
3628  *    Since the order of the data list members varies across platforms
3629  *    This function reads them from the data list in a platform specific
3630  *    order and places them into the correct sd_tunable member that is
3631  *    consistent across all platforms.
3632  */
3633 static void
3634 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3635     sd_tunables *values)
3636 {
3637 	int i;
3638 	int mask;
3639 
3640 	bzero(values, sizeof (sd_tunables));
3641 
3642 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3643 
3644 		mask = 1 << i;
3645 		if (mask > flags) {
3646 			break;
3647 		}
3648 
3649 		switch (mask & flags) {
3650 		case 0:	/* This mask bit not set in flags */
3651 			continue;
3652 		case SD_CONF_BSET_THROTTLE:
3653 			values->sdt_throttle = data_list[i];
3654 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3655 			    "sd_get_tunables_from_conf: throttle = %d\n",
3656 			    values->sdt_throttle);
3657 			break;
3658 		case SD_CONF_BSET_CTYPE:
3659 			values->sdt_ctype = data_list[i];
3660 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3661 			    "sd_get_tunables_from_conf: ctype = %d\n",
3662 			    values->sdt_ctype);
3663 			break;
3664 		case SD_CONF_BSET_NRR_COUNT:
3665 			values->sdt_not_rdy_retries = data_list[i];
3666 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3668 			    values->sdt_not_rdy_retries);
3669 			break;
3670 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3671 			values->sdt_busy_retries = data_list[i];
3672 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3673 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3674 			    values->sdt_busy_retries);
3675 			break;
3676 		case SD_CONF_BSET_RST_RETRIES:
3677 			values->sdt_reset_retries = data_list[i];
3678 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3679 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3680 			    values->sdt_reset_retries);
3681 			break;
3682 		case SD_CONF_BSET_RSV_REL_TIME:
3683 			values->sdt_reserv_rel_time = data_list[i];
3684 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3685 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3686 			    values->sdt_reserv_rel_time);
3687 			break;
3688 		case SD_CONF_BSET_MIN_THROTTLE:
3689 			values->sdt_min_throttle = data_list[i];
3690 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3691 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3692 			    values->sdt_min_throttle);
3693 			break;
3694 		case SD_CONF_BSET_DISKSORT_DISABLED:
3695 			values->sdt_disk_sort_dis = data_list[i];
3696 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3697 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3698 			    values->sdt_disk_sort_dis);
3699 			break;
3700 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3701 			values->sdt_lun_reset_enable = data_list[i];
3702 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3703 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3704 			    "\n", values->sdt_lun_reset_enable);
3705 			break;
3706 		case SD_CONF_BSET_CACHE_IS_NV:
3707 			values->sdt_suppress_cache_flush = data_list[i];
3708 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3709 			    "sd_get_tunables_from_conf: \
3710 			    suppress_cache_flush = %d"
3711 			    "\n", values->sdt_suppress_cache_flush);
3712 			break;
3713 		}
3714 	}
3715 }
3716 
3717 /*
3718  *    Function: sd_process_sdconf_table
3719  *
3720  * Description: Search the static configuration table for a match on the
3721  *		inquiry vid/pid and update the driver soft state structure
3722  *		according to the table property values for the device.
3723  *
3724  *		The form of a configuration table entry is:
3725  *		  <vid+pid>,<flags>,<property-data>
3726  *		  "SEAGATE ST42400N",1,0x40000,
3727  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3728  *
3729  *   Arguments: un - driver soft state (unit) structure
3730  */
3731 
3732 static void
3733 sd_process_sdconf_table(struct sd_lun *un)
3734 {
3735 	char	*id = NULL;
3736 	int	table_index;
3737 	int	idlen;
3738 
3739 	ASSERT(un != NULL);
3740 	for (table_index = 0; table_index < sd_disk_table_size;
3741 	    table_index++) {
3742 		id = sd_disk_table[table_index].device_id;
3743 		idlen = strlen(id);
3744 		if (idlen == 0) {
3745 			continue;
3746 		}
3747 
3748 		/*
3749 		 * The static configuration table currently does not
3750 		 * implement version 10 properties. Additionally,
3751 		 * multiple data-property-name entries are not
3752 		 * implemented in the static configuration table.
3753 		 */
3754 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3755 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3756 			    "sd_process_sdconf_table: disk %s\n", id);
3757 			sd_set_vers1_properties(un,
3758 			    sd_disk_table[table_index].flags,
3759 			    sd_disk_table[table_index].properties);
3760 			break;
3761 		}
3762 	}
3763 }
3764 
3765 
3766 /*
3767  *    Function: sd_sdconf_id_match
3768  *
3769  * Description: This local function implements a case sensitive vid/pid
3770  *		comparison as well as the boundary cases of wild card and
3771  *		multiple blanks.
3772  *
3773  *		Note: An implicit assumption made here is that the scsi
3774  *		inquiry structure will always keep the vid, pid and
3775  *		revision strings in consecutive sequence, so they can be
3776  *		read as a single string. If this assumption is not the
3777  *		case, a separate string, to be used for the check, needs
3778  *		to be built with these strings concatenated.
3779  *
3780  *   Arguments: un - driver soft state (unit) structure
3781  *		id - table or config file vid/pid
3782  *		idlen  - length of the vid/pid (bytes)
3783  *
3784  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3785  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3786  */
3787 
3788 static int
3789 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3790 {
3791 	struct scsi_inquiry	*sd_inq;
3792 	int 			rval = SD_SUCCESS;
3793 
3794 	ASSERT(un != NULL);
3795 	sd_inq = un->un_sd->sd_inq;
3796 	ASSERT(id != NULL);
3797 
3798 	/*
3799 	 * We use the inq_vid as a pointer to a buffer containing the
3800 	 * vid and pid and use the entire vid/pid length of the table
3801 	 * entry for the comparison. This works because the inq_pid
3802 	 * data member follows inq_vid in the scsi_inquiry structure.
3803 	 */
3804 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3805 		/*
3806 		 * The user id string is compared to the inquiry vid/pid
3807 		 * using a case insensitive comparison and ignoring
3808 		 * multiple spaces.
3809 		 */
3810 		rval = sd_blank_cmp(un, id, idlen);
3811 		if (rval != SD_SUCCESS) {
3812 			/*
3813 			 * User id strings that start and end with a "*"
3814 			 * are a special case. These do not have a
3815 			 * specific vendor, and the product string can
3816 			 * appear anywhere in the 16 byte PID portion of
3817 			 * the inquiry data. This is a simple strstr()
3818 			 * type search for the user id in the inquiry data.
3819 			 */
3820 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3821 				char	*pidptr = &id[1];
3822 				int	i;
3823 				int	j;
3824 				int	pidstrlen = idlen - 2;
3825 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3826 				    pidstrlen;
3827 
3828 				if (j < 0) {
3829 					return (SD_FAILURE);
3830 				}
3831 				for (i = 0; i < j; i++) {
3832 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3833 					    pidptr, pidstrlen) == 0) {
3834 						rval = SD_SUCCESS;
3835 						break;
3836 					}
3837 				}
3838 			}
3839 		}
3840 	}
3841 	return (rval);
3842 }
3843 
3844 
3845 /*
3846  *    Function: sd_blank_cmp
3847  *
3848  * Description: If the id string starts and ends with a space, treat
3849  *		multiple consecutive spaces as equivalent to a single
3850  *		space. For example, this causes a sd_disk_table entry
3851  *		of " NEC CDROM " to match a device's id string of
3852  *		"NEC       CDROM".
3853  *
3854  *		Note: The success exit condition for this routine is if
3855  *		the pointer to the table entry is '\0' and the cnt of
3856  *		the inquiry length is zero. This will happen if the inquiry
3857  *		string returned by the device is padded with spaces to be
3858  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3859  *		SCSI spec states that the inquiry string is to be padded with
3860  *		spaces.
3861  *
3862  *   Arguments: un - driver soft state (unit) structure
3863  *		id - table or config file vid/pid
3864  *		idlen  - length of the vid/pid (bytes)
3865  *
3866  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3867  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3868  */
3869 
3870 static int
3871 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3872 {
3873 	char		*p1;
3874 	char		*p2;
3875 	int		cnt;
3876 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3877 	    sizeof (SD_INQUIRY(un)->inq_pid);
3878 
3879 	ASSERT(un != NULL);
3880 	p2 = un->un_sd->sd_inq->inq_vid;
3881 	ASSERT(id != NULL);
3882 	p1 = id;
3883 
3884 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3885 		/*
3886 		 * Note: string p1 is terminated by a NUL but string p2
3887 		 * isn't.  The end of p2 is determined by cnt.
3888 		 */
3889 		for (;;) {
3890 			/* skip over any extra blanks in both strings */
3891 			while ((*p1 != '\0') && (*p1 == ' ')) {
3892 				p1++;
3893 			}
3894 			while ((cnt != 0) && (*p2 == ' ')) {
3895 				p2++;
3896 				cnt--;
3897 			}
3898 
3899 			/* compare the two strings */
3900 			if ((cnt == 0) ||
3901 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3902 				break;
3903 			}
3904 			while ((cnt > 0) &&
3905 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3906 				p1++;
3907 				p2++;
3908 				cnt--;
3909 			}
3910 		}
3911 	}
3912 
3913 	/* return SD_SUCCESS if both strings match */
3914 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3915 }
3916 
3917 
3918 /*
3919  *    Function: sd_chk_vers1_data
3920  *
3921  * Description: Verify the version 1 device properties provided by the
3922  *		user via the configuration file
3923  *
3924  *   Arguments: un	     - driver soft state (unit) structure
3925  *		flags	     - integer mask indicating properties to be set
3926  *		prop_list    - integer list of property values
3927  *		list_len     - length of user provided data
3928  *
3929  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3930  *		SD_FAILURE - Indicates the user provided data is invalid
3931  */
3932 
3933 static int
3934 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3935     int list_len, char *dataname_ptr)
3936 {
3937 	int i;
3938 	int mask = 1;
3939 	int index = 0;
3940 
3941 	ASSERT(un != NULL);
3942 
3943 	/* Check for a NULL property name and list */
3944 	if (dataname_ptr == NULL) {
3945 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3946 		    "sd_chk_vers1_data: NULL data property name.");
3947 		return (SD_FAILURE);
3948 	}
3949 	if (prop_list == NULL) {
3950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3951 		    "sd_chk_vers1_data: %s NULL data property list.",
3952 		    dataname_ptr);
3953 		return (SD_FAILURE);
3954 	}
3955 
3956 	/* Display a warning if undefined bits are set in the flags */
3957 	if (flags & ~SD_CONF_BIT_MASK) {
3958 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3959 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3960 		    "Properties not set.",
3961 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3962 		return (SD_FAILURE);
3963 	}
3964 
3965 	/*
3966 	 * Verify the length of the list by identifying the highest bit set
3967 	 * in the flags and validating that the property list has a length
3968 	 * up to the index of this bit.
3969 	 */
3970 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3971 		if (flags & mask) {
3972 			index++;
3973 		}
3974 		mask = 1 << i;
3975 	}
3976 	if ((list_len / sizeof (int)) < (index + 2)) {
3977 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3978 		    "sd_chk_vers1_data: "
3979 		    "Data property list %s size is incorrect. "
3980 		    "Properties not set.", dataname_ptr);
3981 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3982 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3983 		return (SD_FAILURE);
3984 	}
3985 	return (SD_SUCCESS);
3986 }
3987 
3988 
3989 /*
3990  *    Function: sd_set_vers1_properties
3991  *
3992  * Description: Set version 1 device properties based on a property list
3993  *		retrieved from the driver configuration file or static
3994  *		configuration table. Version 1 properties have the format:
3995  *
3996  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3997  *
3998  *		where the prop0 value will be used to set prop0 if bit0
3999  *		is set in the flags
4000  *
4001  *   Arguments: un	     - driver soft state (unit) structure
4002  *		flags	     - integer mask indicating properties to be set
4003  *		prop_list    - integer list of property values
4004  */
4005 
4006 static void
4007 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4008 {
4009 	ASSERT(un != NULL);
4010 
4011 	/*
4012 	 * Set the flag to indicate cache is to be disabled. An attempt
4013 	 * to disable the cache via sd_cache_control() will be made
4014 	 * later during attach once the basic initialization is complete.
4015 	 */
4016 	if (flags & SD_CONF_BSET_NOCACHE) {
4017 		un->un_f_opt_disable_cache = TRUE;
4018 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4019 		    "sd_set_vers1_properties: caching disabled flag set\n");
4020 	}
4021 
4022 	/* CD-specific configuration parameters */
4023 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4024 		un->un_f_cfg_playmsf_bcd = TRUE;
4025 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4027 	}
4028 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4029 		un->un_f_cfg_readsub_bcd = TRUE;
4030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4031 		    "sd_set_vers1_properties: readsub_bcd set\n");
4032 	}
4033 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4034 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4035 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4037 	}
4038 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4039 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4040 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4041 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4042 	}
4043 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4044 		un->un_f_cfg_no_read_header = TRUE;
4045 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4046 		    "sd_set_vers1_properties: no_read_header set\n");
4047 	}
4048 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4049 		un->un_f_cfg_read_cd_xd4 = TRUE;
4050 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4051 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4052 	}
4053 
4054 	/* Support for devices which do not have valid/unique serial numbers */
4055 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4056 		un->un_f_opt_fab_devid = TRUE;
4057 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4058 		    "sd_set_vers1_properties: fab_devid bit set\n");
4059 	}
4060 
4061 	/* Support for user throttle configuration */
4062 	if (flags & SD_CONF_BSET_THROTTLE) {
4063 		ASSERT(prop_list != NULL);
4064 		un->un_saved_throttle = un->un_throttle =
4065 		    prop_list->sdt_throttle;
4066 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4067 		    "sd_set_vers1_properties: throttle set to %d\n",
4068 		    prop_list->sdt_throttle);
4069 	}
4070 
4071 	/* Set the per disk retry count according to the conf file or table. */
4072 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4073 		ASSERT(prop_list != NULL);
4074 		if (prop_list->sdt_not_rdy_retries) {
4075 			un->un_notready_retry_count =
4076 			    prop_list->sdt_not_rdy_retries;
4077 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4078 			    "sd_set_vers1_properties: not ready retry count"
4079 			    " set to %d\n", un->un_notready_retry_count);
4080 		}
4081 	}
4082 
4083 	/* The controller type is reported for generic disk driver ioctls */
4084 	if (flags & SD_CONF_BSET_CTYPE) {
4085 		ASSERT(prop_list != NULL);
4086 		switch (prop_list->sdt_ctype) {
4087 		case CTYPE_CDROM:
4088 			un->un_ctype = prop_list->sdt_ctype;
4089 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4090 			    "sd_set_vers1_properties: ctype set to "
4091 			    "CTYPE_CDROM\n");
4092 			break;
4093 		case CTYPE_CCS:
4094 			un->un_ctype = prop_list->sdt_ctype;
4095 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4096 			    "sd_set_vers1_properties: ctype set to "
4097 			    "CTYPE_CCS\n");
4098 			break;
4099 		case CTYPE_ROD:		/* RW optical */
4100 			un->un_ctype = prop_list->sdt_ctype;
4101 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4102 			    "sd_set_vers1_properties: ctype set to "
4103 			    "CTYPE_ROD\n");
4104 			break;
4105 		default:
4106 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4107 			    "sd_set_vers1_properties: Could not set "
4108 			    "invalid ctype value (%d)",
4109 			    prop_list->sdt_ctype);
4110 		}
4111 	}
4112 
4113 	/* Purple failover timeout */
4114 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4115 		ASSERT(prop_list != NULL);
4116 		un->un_busy_retry_count =
4117 		    prop_list->sdt_busy_retries;
4118 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4119 		    "sd_set_vers1_properties: "
4120 		    "busy retry count set to %d\n",
4121 		    un->un_busy_retry_count);
4122 	}
4123 
4124 	/* Purple reset retry count */
4125 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4126 		ASSERT(prop_list != NULL);
4127 		un->un_reset_retry_count =
4128 		    prop_list->sdt_reset_retries;
4129 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4130 		    "sd_set_vers1_properties: "
4131 		    "reset retry count set to %d\n",
4132 		    un->un_reset_retry_count);
4133 	}
4134 
4135 	/* Purple reservation release timeout */
4136 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4137 		ASSERT(prop_list != NULL);
4138 		un->un_reserve_release_time =
4139 		    prop_list->sdt_reserv_rel_time;
4140 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4141 		    "sd_set_vers1_properties: "
4142 		    "reservation release timeout set to %d\n",
4143 		    un->un_reserve_release_time);
4144 	}
4145 
4146 	/*
4147 	 * Driver flag telling the driver to verify that no commands are pending
4148 	 * for a device before issuing a Test Unit Ready. This is a workaround
4149 	 * for a firmware bug in some Seagate eliteI drives.
4150 	 */
4151 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4152 		un->un_f_cfg_tur_check = TRUE;
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154 		    "sd_set_vers1_properties: tur queue check set\n");
4155 	}
4156 
4157 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4158 		un->un_min_throttle = prop_list->sdt_min_throttle;
4159 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4160 		    "sd_set_vers1_properties: min throttle set to %d\n",
4161 		    un->un_min_throttle);
4162 	}
4163 
4164 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4165 		un->un_f_disksort_disabled =
4166 		    (prop_list->sdt_disk_sort_dis != 0) ?
4167 		    TRUE : FALSE;
4168 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4169 		    "sd_set_vers1_properties: disksort disabled "
4170 		    "flag set to %d\n",
4171 		    prop_list->sdt_disk_sort_dis);
4172 	}
4173 
4174 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4175 		un->un_f_lun_reset_enabled =
4176 		    (prop_list->sdt_lun_reset_enable != 0) ?
4177 		    TRUE : FALSE;
4178 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4179 		    "sd_set_vers1_properties: lun reset enabled "
4180 		    "flag set to %d\n",
4181 		    prop_list->sdt_lun_reset_enable);
4182 	}
4183 
4184 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4185 		un->un_f_suppress_cache_flush =
4186 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4187 		    TRUE : FALSE;
4188 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4189 		    "sd_set_vers1_properties: suppress_cache_flush "
4190 		    "flag set to %d\n",
4191 		    prop_list->sdt_suppress_cache_flush);
4192 	}
4193 
4194 	/*
4195 	 * Validate the throttle values.
4196 	 * If any of the numbers are invalid, set everything to defaults.
4197 	 */
4198 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4199 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4200 	    (un->un_min_throttle > un->un_throttle)) {
4201 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4202 		un->un_min_throttle = sd_min_throttle;
4203 	}
4204 }
4205 
4206 /*
4207  *   Function: sd_is_lsi()
4208  *
4209  *   Description: Check for lsi devices, step through the static device
4210  *	table to match vid/pid.
4211  *
4212  *   Args: un - ptr to sd_lun
4213  *
4214  *   Notes:  When creating new LSI property, need to add the new LSI property
4215  *		to this function.
4216  */
4217 static void
4218 sd_is_lsi(struct sd_lun *un)
4219 {
4220 	char	*id = NULL;
4221 	int	table_index;
4222 	int	idlen;
4223 	void	*prop;
4224 
4225 	ASSERT(un != NULL);
4226 	for (table_index = 0; table_index < sd_disk_table_size;
4227 	    table_index++) {
4228 		id = sd_disk_table[table_index].device_id;
4229 		idlen = strlen(id);
4230 		if (idlen == 0) {
4231 			continue;
4232 		}
4233 
4234 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4235 			prop = sd_disk_table[table_index].properties;
4236 			if (prop == &lsi_properties ||
4237 			    prop == &lsi_oem_properties ||
4238 			    prop == &lsi_properties_scsi ||
4239 			    prop == &symbios_properties) {
4240 				un->un_f_cfg_is_lsi = TRUE;
4241 			}
4242 			break;
4243 		}
4244 	}
4245 }
4246 
4247 /*
4248  *    Function: sd_get_physical_geometry
4249  *
4250  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4251  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4252  *		target, and use this information to initialize the physical
4253  *		geometry cache specified by pgeom_p.
4254  *
4255  *		MODE SENSE is an optional command, so failure in this case
4256  *		does not necessarily denote an error. We want to use the
4257  *		MODE SENSE commands to derive the physical geometry of the
4258  *		device, but if either command fails, the logical geometry is
4259  *		used as the fallback for disk label geometry in cmlb.
4260  *
4261  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4262  *		have already been initialized for the current target and
4263  *		that the current values be passed as args so that we don't
4264  *		end up ever trying to use -1 as a valid value. This could
4265  *		happen if either value is reset while we're not holding
4266  *		the mutex.
4267  *
4268  *   Arguments: un - driver soft state (unit) structure
4269  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4270  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4271  *			to use the USCSI "direct" chain and bypass the normal
4272  *			command waitq.
4273  *
4274  *     Context: Kernel thread only (can sleep).
4275  */
4276 
4277 static int
4278 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4279 	diskaddr_t capacity, int lbasize, int path_flag)
4280 {
4281 	struct	mode_format	*page3p;
4282 	struct	mode_geometry	*page4p;
4283 	struct	mode_header	*headerp;
4284 	int	sector_size;
4285 	int	nsect;
4286 	int	nhead;
4287 	int	ncyl;
4288 	int	intrlv;
4289 	int	spc;
4290 	diskaddr_t	modesense_capacity;
4291 	int	rpm;
4292 	int	bd_len;
4293 	int	mode_header_length;
4294 	uchar_t	*p3bufp;
4295 	uchar_t	*p4bufp;
4296 	int	cdbsize;
4297 	int 	ret = EIO;
4298 
4299 	ASSERT(un != NULL);
4300 
4301 	if (lbasize == 0) {
4302 		if (ISCD(un)) {
4303 			lbasize = 2048;
4304 		} else {
4305 			lbasize = un->un_sys_blocksize;
4306 		}
4307 	}
4308 	pgeom_p->g_secsize = (unsigned short)lbasize;
4309 
4310 	/*
4311 	 * If the unit is a cd/dvd drive MODE SENSE page three
4312 	 * and MODE SENSE page four are reserved (see SBC spec
4313 	 * and MMC spec). To prevent soft errors just return
4314 	 * using the default LBA size.
4315 	 */
4316 	if (ISCD(un))
4317 		return (ret);
4318 
4319 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4320 
4321 	/*
4322 	 * Retrieve MODE SENSE page 3 - Format Device Page
4323 	 */
4324 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4325 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4326 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4327 	    != 0) {
4328 		SD_ERROR(SD_LOG_COMMON, un,
4329 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4330 		goto page3_exit;
4331 	}
4332 
4333 	/*
4334 	 * Determine size of Block Descriptors in order to locate the mode
4335 	 * page data.  ATAPI devices return 0, SCSI devices should return
4336 	 * MODE_BLK_DESC_LENGTH.
4337 	 */
4338 	headerp = (struct mode_header *)p3bufp;
4339 	if (un->un_f_cfg_is_atapi == TRUE) {
4340 		struct mode_header_grp2 *mhp =
4341 		    (struct mode_header_grp2 *)headerp;
4342 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4343 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4344 	} else {
4345 		mode_header_length = MODE_HEADER_LENGTH;
4346 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4347 	}
4348 
4349 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4350 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4351 		    "received unexpected bd_len of %d, page3\n", bd_len);
4352 		goto page3_exit;
4353 	}
4354 
4355 	page3p = (struct mode_format *)
4356 	    ((caddr_t)headerp + mode_header_length + bd_len);
4357 
4358 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4359 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4360 		    "mode sense pg3 code mismatch %d\n",
4361 		    page3p->mode_page.code);
4362 		goto page3_exit;
4363 	}
4364 
4365 	/*
4366 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4367 	 * complete successfully; otherwise, revert to the logical geometry.
4368 	 * So, we need to save everything in temporary variables.
4369 	 */
4370 	sector_size = BE_16(page3p->data_bytes_sect);
4371 
4372 	/*
4373 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4374 	 */
4375 	if (sector_size == 0) {
4376 		sector_size = un->un_sys_blocksize;
4377 	} else {
4378 		sector_size &= ~(un->un_sys_blocksize - 1);
4379 	}
4380 
4381 	nsect  = BE_16(page3p->sect_track);
4382 	intrlv = BE_16(page3p->interleave);
4383 
4384 	SD_INFO(SD_LOG_COMMON, un,
4385 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4386 	SD_INFO(SD_LOG_COMMON, un,
4387 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4388 	    page3p->mode_page.code, nsect, sector_size);
4389 	SD_INFO(SD_LOG_COMMON, un,
4390 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4391 	    BE_16(page3p->track_skew),
4392 	    BE_16(page3p->cylinder_skew));
4393 
4394 
4395 	/*
4396 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4397 	 */
4398 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4399 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4400 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4401 	    != 0) {
4402 		SD_ERROR(SD_LOG_COMMON, un,
4403 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4404 		goto page4_exit;
4405 	}
4406 
4407 	/*
4408 	 * Determine size of Block Descriptors in order to locate the mode
4409 	 * page data.  ATAPI devices return 0, SCSI devices should return
4410 	 * MODE_BLK_DESC_LENGTH.
4411 	 */
4412 	headerp = (struct mode_header *)p4bufp;
4413 	if (un->un_f_cfg_is_atapi == TRUE) {
4414 		struct mode_header_grp2 *mhp =
4415 		    (struct mode_header_grp2 *)headerp;
4416 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4417 	} else {
4418 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4419 	}
4420 
4421 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4422 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4423 		    "received unexpected bd_len of %d, page4\n", bd_len);
4424 		goto page4_exit;
4425 	}
4426 
4427 	page4p = (struct mode_geometry *)
4428 	    ((caddr_t)headerp + mode_header_length + bd_len);
4429 
4430 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4431 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4432 		    "mode sense pg4 code mismatch %d\n",
4433 		    page4p->mode_page.code);
4434 		goto page4_exit;
4435 	}
4436 
4437 	/*
4438 	 * Stash the data now, after we know that both commands completed.
4439 	 */
4440 
4441 
4442 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4443 	spc   = nhead * nsect;
4444 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4445 	rpm   = BE_16(page4p->rpm);
4446 
4447 	modesense_capacity = spc * ncyl;
4448 
4449 	SD_INFO(SD_LOG_COMMON, un,
4450 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4451 	SD_INFO(SD_LOG_COMMON, un,
4452 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4453 	SD_INFO(SD_LOG_COMMON, un,
4454 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4455 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4456 	    (void *)pgeom_p, capacity);
4457 
4458 	/*
4459 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4460 	 * the product of C * H * S returned by MODE SENSE >= that returned
4461 	 * by read capacity. This is an idiosyncrasy of the original x86
4462 	 * disk subsystem.
4463 	 */
4464 	if (modesense_capacity >= capacity) {
4465 		SD_INFO(SD_LOG_COMMON, un,
4466 		    "sd_get_physical_geometry: adjusting acyl; "
4467 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4468 		    (modesense_capacity - capacity + spc - 1) / spc);
4469 		if (sector_size != 0) {
4470 			/* 1243403: NEC D38x7 drives don't support sec size */
4471 			pgeom_p->g_secsize = (unsigned short)sector_size;
4472 		}
4473 		pgeom_p->g_nsect    = (unsigned short)nsect;
4474 		pgeom_p->g_nhead    = (unsigned short)nhead;
4475 		pgeom_p->g_capacity = capacity;
4476 		pgeom_p->g_acyl	    =
4477 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4478 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4479 	}
4480 
4481 	pgeom_p->g_rpm    = (unsigned short)rpm;
4482 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4483 	ret = 0;
4484 
4485 	SD_INFO(SD_LOG_COMMON, un,
4486 	    "sd_get_physical_geometry: mode sense geometry:\n");
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4489 	    nsect, sector_size, intrlv);
4490 	SD_INFO(SD_LOG_COMMON, un,
4491 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4492 	    nhead, ncyl, rpm, modesense_capacity);
4493 	SD_INFO(SD_LOG_COMMON, un,
4494 	    "sd_get_physical_geometry: (cached)\n");
4495 	SD_INFO(SD_LOG_COMMON, un,
4496 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4497 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4498 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4499 	SD_INFO(SD_LOG_COMMON, un,
4500 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4501 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4502 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4503 
4504 page4_exit:
4505 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4506 page3_exit:
4507 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4508 
4509 	return (ret);
4510 }
4511 
4512 /*
4513  *    Function: sd_get_virtual_geometry
4514  *
4515  * Description: Ask the controller to tell us about the target device.
4516  *
4517  *   Arguments: un - pointer to softstate
4518  *		capacity - disk capacity in #blocks
4519  *		lbasize - disk block size in bytes
4520  *
4521  *     Context: Kernel thread only
4522  */
4523 
4524 static int
4525 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4526     diskaddr_t capacity, int lbasize)
4527 {
4528 	uint_t	geombuf;
4529 	int	spc;
4530 
4531 	ASSERT(un != NULL);
4532 
4533 	/* Set sector size, and total number of sectors */
4534 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4535 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4536 
4537 	/* Let the HBA tell us its geometry */
4538 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4539 
4540 	/* A value of -1 indicates an undefined "geometry" property */
4541 	if (geombuf == (-1)) {
4542 		return (EINVAL);
4543 	}
4544 
4545 	/* Initialize the logical geometry cache. */
4546 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4547 	lgeom_p->g_nsect   = geombuf & 0xffff;
4548 	lgeom_p->g_secsize = un->un_sys_blocksize;
4549 
4550 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4551 
4552 	/*
4553 	 * Note: The driver originally converted the capacity value from
4554 	 * target blocks to system blocks. However, the capacity value passed
4555 	 * to this routine is already in terms of system blocks (this scaling
4556 	 * is done when the READ CAPACITY command is issued and processed).
4557 	 * This 'error' may have gone undetected because the usage of g_ncyl
4558 	 * (which is based upon g_capacity) is very limited within the driver
4559 	 */
4560 	lgeom_p->g_capacity = capacity;
4561 
4562 	/*
4563 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4564 	 * hba may return zero values if the device has been removed.
4565 	 */
4566 	if (spc == 0) {
4567 		lgeom_p->g_ncyl = 0;
4568 	} else {
4569 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4570 	}
4571 	lgeom_p->g_acyl = 0;
4572 
4573 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4574 	return (0);
4575 
4576 }
4577 /*
4578  *    Function: sd_update_block_info
4579  *
4580  * Description: Calculate a byte count to sector count bitshift value
4581  *		from sector size.
4582  *
4583  *   Arguments: un: unit struct.
4584  *		lbasize: new target sector size
4585  *		capacity: new target capacity, ie. block count
4586  *
4587  *     Context: Kernel thread context
4588  */
4589 
4590 static void
4591 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4592 {
4593 	uint_t		dblk;
4594 
4595 	if (lbasize != 0) {
4596 		un->un_tgt_blocksize = lbasize;
4597 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4598 	}
4599 
4600 	if (capacity != 0) {
4601 		un->un_blockcount		= capacity;
4602 		un->un_f_blockcount_is_valid	= TRUE;
4603 	}
4604 
4605 	/*
4606 	 * Update device capacity properties.
4607 	 *
4608 	 *   'device-nblocks'	number of blocks in target's units
4609 	 *   'device-blksize'	data bearing size of target's block
4610 	 *
4611 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4612 	 * not be a power of two for checksumming disks with 520/528 byte
4613 	 * sectors.
4614 	 */
4615 	if (un->un_f_tgt_blocksize_is_valid &&
4616 	    un->un_f_blockcount_is_valid &&
4617 	    un->un_sys_blocksize) {
4618 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4619 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4620 		    "device-nblocks", un->un_blockcount / dblk);
4621 		/*
4622 		 * To save memory, only define "device-blksize" when its
4623 		 * value is differnet than the default DEV_BSIZE value.
4624 		 */
4625 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4626 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4627 			    SD_DEVINFO(un), "device-blksize",
4628 			    un->un_sys_blocksize * dblk);
4629 	}
4630 }
4631 
4632 
4633 /*
4634  *    Function: sd_register_devid
4635  *
4636  * Description: This routine will obtain the device id information from the
4637  *		target, obtain the serial number, and register the device
4638  *		id with the ddi framework.
4639  *
4640  *   Arguments: devi - the system's dev_info_t for the device.
4641  *		un - driver soft state (unit) structure
4642  *		reservation_flag - indicates if a reservation conflict
4643  *		occurred during attach
4644  *
4645  *     Context: Kernel Thread
4646  */
4647 static void
4648 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4649 {
4650 	int		rval		= 0;
4651 	uchar_t		*inq80		= NULL;
4652 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4653 	size_t		inq80_resid	= 0;
4654 	uchar_t		*inq83		= NULL;
4655 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4656 	size_t		inq83_resid	= 0;
4657 	int		dlen, len;
4658 	char		*sn;
4659 
4660 	ASSERT(un != NULL);
4661 	ASSERT(mutex_owned(SD_MUTEX(un)));
4662 	ASSERT((SD_DEVINFO(un)) == devi);
4663 
4664 	/*
4665 	 * If transport has already registered a devid for this target
4666 	 * then that takes precedence over the driver's determination
4667 	 * of the devid.
4668 	 */
4669 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4670 		ASSERT(un->un_devid);
4671 		return; /* use devid registered by the transport */
4672 	}
4673 
4674 	/*
4675 	 * This is the case of antiquated Sun disk drives that have the
4676 	 * FAB_DEVID property set in the disk_table.  These drives
4677 	 * manage the devid's by storing them in last 2 available sectors
4678 	 * on the drive and have them fabricated by the ddi layer by calling
4679 	 * ddi_devid_init and passing the DEVID_FAB flag.
4680 	 */
4681 	if (un->un_f_opt_fab_devid == TRUE) {
4682 		/*
4683 		 * Depending on EINVAL isn't reliable, since a reserved disk
4684 		 * may result in invalid geometry, so check to make sure a
4685 		 * reservation conflict did not occur during attach.
4686 		 */
4687 		if ((sd_get_devid(un) == EINVAL) &&
4688 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4689 			/*
4690 			 * The devid is invalid AND there is no reservation
4691 			 * conflict.  Fabricate a new devid.
4692 			 */
4693 			(void) sd_create_devid(un);
4694 		}
4695 
4696 		/* Register the devid if it exists */
4697 		if (un->un_devid != NULL) {
4698 			(void) ddi_devid_register(SD_DEVINFO(un),
4699 			    un->un_devid);
4700 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4701 			    "sd_register_devid: Devid Fabricated\n");
4702 		}
4703 		return;
4704 	}
4705 
4706 	/*
4707 	 * We check the availibility of the World Wide Name (0x83) and Unit
4708 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4709 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4710 	 * 0x83 is availible, that is the best choice.  Our next choice is
4711 	 * 0x80.  If neither are availible, we munge the devid from the device
4712 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4713 	 * to fabricate a devid for non-Sun qualified disks.
4714 	 */
4715 	if (sd_check_vpd_page_support(un) == 0) {
4716 		/* collect page 80 data if available */
4717 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4718 
4719 			mutex_exit(SD_MUTEX(un));
4720 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4721 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4722 			    0x01, 0x80, &inq80_resid);
4723 
4724 			if (rval != 0) {
4725 				kmem_free(inq80, inq80_len);
4726 				inq80 = NULL;
4727 				inq80_len = 0;
4728 			} else if (ddi_prop_exists(
4729 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4730 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4731 			    INQUIRY_SERIAL_NO) == 0) {
4732 				/*
4733 				 * If we don't already have a serial number
4734 				 * property, do quick verify of data returned
4735 				 * and define property.
4736 				 */
4737 				dlen = inq80_len - inq80_resid;
4738 				len = (size_t)inq80[3];
4739 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4740 					/*
4741 					 * Ensure sn termination, skip leading
4742 					 * blanks, and create property
4743 					 * 'inquiry-serial-no'.
4744 					 */
4745 					sn = (char *)&inq80[4];
4746 					sn[len] = 0;
4747 					while (*sn && (*sn == ' '))
4748 						sn++;
4749 					if (*sn) {
4750 						(void) ddi_prop_update_string(
4751 						    DDI_DEV_T_NONE,
4752 						    SD_DEVINFO(un),
4753 						    INQUIRY_SERIAL_NO, sn);
4754 					}
4755 				}
4756 			}
4757 			mutex_enter(SD_MUTEX(un));
4758 		}
4759 
4760 		/* collect page 83 data if available */
4761 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4762 			mutex_exit(SD_MUTEX(un));
4763 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4764 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4765 			    0x01, 0x83, &inq83_resid);
4766 
4767 			if (rval != 0) {
4768 				kmem_free(inq83, inq83_len);
4769 				inq83 = NULL;
4770 				inq83_len = 0;
4771 			}
4772 			mutex_enter(SD_MUTEX(un));
4773 		}
4774 	}
4775 
4776 	/* encode best devid possible based on data available */
4777 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4778 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4779 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4780 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4781 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4782 
4783 		/* devid successfully encoded, register devid */
4784 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4785 
4786 	} else {
4787 		/*
4788 		 * Unable to encode a devid based on data available.
4789 		 * This is not a Sun qualified disk.  Older Sun disk
4790 		 * drives that have the SD_FAB_DEVID property
4791 		 * set in the disk_table and non Sun qualified
4792 		 * disks are treated in the same manner.  These
4793 		 * drives manage the devid's by storing them in
4794 		 * last 2 available sectors on the drive and
4795 		 * have them fabricated by the ddi layer by
4796 		 * calling ddi_devid_init and passing the
4797 		 * DEVID_FAB flag.
4798 		 * Create a fabricate devid only if there's no
4799 		 * fabricate devid existed.
4800 		 */
4801 		if (sd_get_devid(un) == EINVAL) {
4802 			(void) sd_create_devid(un);
4803 		}
4804 		un->un_f_opt_fab_devid = TRUE;
4805 
4806 		/* Register the devid if it exists */
4807 		if (un->un_devid != NULL) {
4808 			(void) ddi_devid_register(SD_DEVINFO(un),
4809 			    un->un_devid);
4810 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4811 			    "sd_register_devid: devid fabricated using "
4812 			    "ddi framework\n");
4813 		}
4814 	}
4815 
4816 	/* clean up resources */
4817 	if (inq80 != NULL) {
4818 		kmem_free(inq80, inq80_len);
4819 	}
4820 	if (inq83 != NULL) {
4821 		kmem_free(inq83, inq83_len);
4822 	}
4823 }
4824 
4825 
4826 
4827 /*
4828  *    Function: sd_get_devid
4829  *
4830  * Description: This routine will return 0 if a valid device id has been
4831  *		obtained from the target and stored in the soft state. If a
4832  *		valid device id has not been previously read and stored, a
4833  *		read attempt will be made.
4834  *
4835  *   Arguments: un - driver soft state (unit) structure
4836  *
4837  * Return Code: 0 if we successfully get the device id
4838  *
4839  *     Context: Kernel Thread
4840  */
4841 
4842 static int
4843 sd_get_devid(struct sd_lun *un)
4844 {
4845 	struct dk_devid		*dkdevid;
4846 	ddi_devid_t		tmpid;
4847 	uint_t			*ip;
4848 	size_t			sz;
4849 	diskaddr_t		blk;
4850 	int			status;
4851 	int			chksum;
4852 	int			i;
4853 	size_t			buffer_size;
4854 
4855 	ASSERT(un != NULL);
4856 	ASSERT(mutex_owned(SD_MUTEX(un)));
4857 
4858 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4859 	    un);
4860 
4861 	if (un->un_devid != NULL) {
4862 		return (0);
4863 	}
4864 
4865 	mutex_exit(SD_MUTEX(un));
4866 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4867 	    (void *)SD_PATH_DIRECT) != 0) {
4868 		mutex_enter(SD_MUTEX(un));
4869 		return (EINVAL);
4870 	}
4871 
4872 	/*
4873 	 * Read and verify device id, stored in the reserved cylinders at the
4874 	 * end of the disk. Backup label is on the odd sectors of the last
4875 	 * track of the last cylinder. Device id will be on track of the next
4876 	 * to last cylinder.
4877 	 */
4878 	mutex_enter(SD_MUTEX(un));
4879 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4880 	mutex_exit(SD_MUTEX(un));
4881 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4882 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4883 	    SD_PATH_DIRECT);
4884 	if (status != 0) {
4885 		goto error;
4886 	}
4887 
4888 	/* Validate the revision */
4889 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4890 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4891 		status = EINVAL;
4892 		goto error;
4893 	}
4894 
4895 	/* Calculate the checksum */
4896 	chksum = 0;
4897 	ip = (uint_t *)dkdevid;
4898 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4899 	    i++) {
4900 		chksum ^= ip[i];
4901 	}
4902 
4903 	/* Compare the checksums */
4904 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4905 		status = EINVAL;
4906 		goto error;
4907 	}
4908 
4909 	/* Validate the device id */
4910 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4911 		status = EINVAL;
4912 		goto error;
4913 	}
4914 
4915 	/*
4916 	 * Store the device id in the driver soft state
4917 	 */
4918 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4919 	tmpid = kmem_alloc(sz, KM_SLEEP);
4920 
4921 	mutex_enter(SD_MUTEX(un));
4922 
4923 	un->un_devid = tmpid;
4924 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4925 
4926 	kmem_free(dkdevid, buffer_size);
4927 
4928 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4929 
4930 	return (status);
4931 error:
4932 	mutex_enter(SD_MUTEX(un));
4933 	kmem_free(dkdevid, buffer_size);
4934 	return (status);
4935 }
4936 
4937 
4938 /*
4939  *    Function: sd_create_devid
4940  *
4941  * Description: This routine will fabricate the device id and write it
4942  *		to the disk.
4943  *
4944  *   Arguments: un - driver soft state (unit) structure
4945  *
4946  * Return Code: value of the fabricated device id
4947  *
4948  *     Context: Kernel Thread
4949  */
4950 
4951 static ddi_devid_t
4952 sd_create_devid(struct sd_lun *un)
4953 {
4954 	ASSERT(un != NULL);
4955 
4956 	/* Fabricate the devid */
4957 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4958 	    == DDI_FAILURE) {
4959 		return (NULL);
4960 	}
4961 
4962 	/* Write the devid to disk */
4963 	if (sd_write_deviceid(un) != 0) {
4964 		ddi_devid_free(un->un_devid);
4965 		un->un_devid = NULL;
4966 	}
4967 
4968 	return (un->un_devid);
4969 }
4970 
4971 
4972 /*
4973  *    Function: sd_write_deviceid
4974  *
4975  * Description: This routine will write the device id to the disk
4976  *		reserved sector.
4977  *
4978  *   Arguments: un - driver soft state (unit) structure
4979  *
4980  * Return Code: EINVAL
4981  *		value returned by sd_send_scsi_cmd
4982  *
4983  *     Context: Kernel Thread
4984  */
4985 
4986 static int
4987 sd_write_deviceid(struct sd_lun *un)
4988 {
4989 	struct dk_devid		*dkdevid;
4990 	diskaddr_t		blk;
4991 	uint_t			*ip, chksum;
4992 	int			status;
4993 	int			i;
4994 
4995 	ASSERT(mutex_owned(SD_MUTEX(un)));
4996 
4997 	mutex_exit(SD_MUTEX(un));
4998 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4999 	    (void *)SD_PATH_DIRECT) != 0) {
5000 		mutex_enter(SD_MUTEX(un));
5001 		return (-1);
5002 	}
5003 
5004 
5005 	/* Allocate the buffer */
5006 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5007 
5008 	/* Fill in the revision */
5009 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5010 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5011 
5012 	/* Copy in the device id */
5013 	mutex_enter(SD_MUTEX(un));
5014 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5015 	    ddi_devid_sizeof(un->un_devid));
5016 	mutex_exit(SD_MUTEX(un));
5017 
5018 	/* Calculate the checksum */
5019 	chksum = 0;
5020 	ip = (uint_t *)dkdevid;
5021 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5022 	    i++) {
5023 		chksum ^= ip[i];
5024 	}
5025 
5026 	/* Fill-in checksum */
5027 	DKD_FORMCHKSUM(chksum, dkdevid);
5028 
5029 	/* Write the reserved sector */
5030 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5031 	    SD_PATH_DIRECT);
5032 
5033 	kmem_free(dkdevid, un->un_sys_blocksize);
5034 
5035 	mutex_enter(SD_MUTEX(un));
5036 	return (status);
5037 }
5038 
5039 
5040 /*
5041  *    Function: sd_check_vpd_page_support
5042  *
5043  * Description: This routine sends an inquiry command with the EVPD bit set and
5044  *		a page code of 0x00 to the device. It is used to determine which
5045  *		vital product pages are availible to find the devid. We are
5046  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5047  *		device does not support that command.
5048  *
5049  *   Arguments: un  - driver soft state (unit) structure
5050  *
5051  * Return Code: 0 - success
5052  *		1 - check condition
5053  *
5054  *     Context: This routine can sleep.
5055  */
5056 
5057 static int
5058 sd_check_vpd_page_support(struct sd_lun *un)
5059 {
5060 	uchar_t	*page_list	= NULL;
5061 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5062 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5063 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5064 	int    	rval		= 0;
5065 	int	counter;
5066 
5067 	ASSERT(un != NULL);
5068 	ASSERT(mutex_owned(SD_MUTEX(un)));
5069 
5070 	mutex_exit(SD_MUTEX(un));
5071 
5072 	/*
5073 	 * We'll set the page length to the maximum to save figuring it out
5074 	 * with an additional call.
5075 	 */
5076 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5077 
5078 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5079 	    page_code, NULL);
5080 
5081 	mutex_enter(SD_MUTEX(un));
5082 
5083 	/*
5084 	 * Now we must validate that the device accepted the command, as some
5085 	 * drives do not support it.  If the drive does support it, we will
5086 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5087 	 * not, we return -1.
5088 	 */
5089 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5090 		/* Loop to find one of the 2 pages we need */
5091 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5092 
5093 		/*
5094 		 * Pages are returned in ascending order, and 0x83 is what we
5095 		 * are hoping for.
5096 		 */
5097 		while ((page_list[counter] <= 0x86) &&
5098 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5099 		    VPD_HEAD_OFFSET))) {
5100 			/*
5101 			 * Add 3 because page_list[3] is the number of
5102 			 * pages minus 3
5103 			 */
5104 
5105 			switch (page_list[counter]) {
5106 			case 0x00:
5107 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5108 				break;
5109 			case 0x80:
5110 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5111 				break;
5112 			case 0x81:
5113 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5114 				break;
5115 			case 0x82:
5116 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5117 				break;
5118 			case 0x83:
5119 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5120 				break;
5121 			case 0x86:
5122 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5123 				break;
5124 			}
5125 			counter++;
5126 		}
5127 
5128 	} else {
5129 		rval = -1;
5130 
5131 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5132 		    "sd_check_vpd_page_support: This drive does not implement "
5133 		    "VPD pages.\n");
5134 	}
5135 
5136 	kmem_free(page_list, page_length);
5137 
5138 	return (rval);
5139 }
5140 
5141 
5142 /*
5143  *    Function: sd_setup_pm
5144  *
5145  * Description: Initialize Power Management on the device
5146  *
5147  *     Context: Kernel Thread
5148  */
5149 
5150 static void
5151 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5152 {
5153 	uint_t	log_page_size;
5154 	uchar_t	*log_page_data;
5155 	int	rval;
5156 
5157 	/*
5158 	 * Since we are called from attach, holding a mutex for
5159 	 * un is unnecessary. Because some of the routines called
5160 	 * from here require SD_MUTEX to not be held, assert this
5161 	 * right up front.
5162 	 */
5163 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5164 	/*
5165 	 * Since the sd device does not have the 'reg' property,
5166 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5167 	 * The following code is to tell cpr that this device
5168 	 * DOES need to be suspended and resumed.
5169 	 */
5170 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5171 	    "pm-hardware-state", "needs-suspend-resume");
5172 
5173 	/*
5174 	 * This complies with the new power management framework
5175 	 * for certain desktop machines. Create the pm_components
5176 	 * property as a string array property.
5177 	 */
5178 	if (un->un_f_pm_supported) {
5179 		/*
5180 		 * not all devices have a motor, try it first.
5181 		 * some devices may return ILLEGAL REQUEST, some
5182 		 * will hang
5183 		 * The following START_STOP_UNIT is used to check if target
5184 		 * device has a motor.
5185 		 */
5186 		un->un_f_start_stop_supported = TRUE;
5187 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5188 		    SD_PATH_DIRECT) != 0) {
5189 			un->un_f_start_stop_supported = FALSE;
5190 		}
5191 
5192 		/*
5193 		 * create pm properties anyways otherwise the parent can't
5194 		 * go to sleep
5195 		 */
5196 		(void) sd_create_pm_components(devi, un);
5197 		un->un_f_pm_is_enabled = TRUE;
5198 		return;
5199 	}
5200 
5201 	if (!un->un_f_log_sense_supported) {
5202 		un->un_power_level = SD_SPINDLE_ON;
5203 		un->un_f_pm_is_enabled = FALSE;
5204 		return;
5205 	}
5206 
5207 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5208 
5209 #ifdef	SDDEBUG
5210 	if (sd_force_pm_supported) {
5211 		/* Force a successful result */
5212 		rval = 1;
5213 	}
5214 #endif
5215 
5216 	/*
5217 	 * If the start-stop cycle counter log page is not supported
5218 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5219 	 * then we should not create the pm_components property.
5220 	 */
5221 	if (rval == -1) {
5222 		/*
5223 		 * Error.
5224 		 * Reading log sense failed, most likely this is
5225 		 * an older drive that does not support log sense.
5226 		 * If this fails auto-pm is not supported.
5227 		 */
5228 		un->un_power_level = SD_SPINDLE_ON;
5229 		un->un_f_pm_is_enabled = FALSE;
5230 
5231 	} else if (rval == 0) {
5232 		/*
5233 		 * Page not found.
5234 		 * The start stop cycle counter is implemented as page
5235 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5236 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5237 		 */
5238 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5239 			/*
5240 			 * Page found, use this one.
5241 			 */
5242 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5243 			un->un_f_pm_is_enabled = TRUE;
5244 		} else {
5245 			/*
5246 			 * Error or page not found.
5247 			 * auto-pm is not supported for this device.
5248 			 */
5249 			un->un_power_level = SD_SPINDLE_ON;
5250 			un->un_f_pm_is_enabled = FALSE;
5251 		}
5252 	} else {
5253 		/*
5254 		 * Page found, use it.
5255 		 */
5256 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5257 		un->un_f_pm_is_enabled = TRUE;
5258 	}
5259 
5260 
5261 	if (un->un_f_pm_is_enabled == TRUE) {
5262 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5263 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5264 
5265 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5266 		    log_page_size, un->un_start_stop_cycle_page,
5267 		    0x01, 0, SD_PATH_DIRECT);
5268 #ifdef	SDDEBUG
5269 		if (sd_force_pm_supported) {
5270 			/* Force a successful result */
5271 			rval = 0;
5272 		}
5273 #endif
5274 
5275 		/*
5276 		 * If the Log sense for Page( Start/stop cycle counter page)
5277 		 * succeeds, then power managment is supported and we can
5278 		 * enable auto-pm.
5279 		 */
5280 		if (rval == 0)  {
5281 			(void) sd_create_pm_components(devi, un);
5282 		} else {
5283 			un->un_power_level = SD_SPINDLE_ON;
5284 			un->un_f_pm_is_enabled = FALSE;
5285 		}
5286 
5287 		kmem_free(log_page_data, log_page_size);
5288 	}
5289 }
5290 
5291 
5292 /*
5293  *    Function: sd_create_pm_components
5294  *
5295  * Description: Initialize PM property.
5296  *
5297  *     Context: Kernel thread context
5298  */
5299 
5300 static void
5301 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5302 {
5303 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5304 
5305 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5306 
5307 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5308 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5309 		/*
5310 		 * When components are initially created they are idle,
5311 		 * power up any non-removables.
5312 		 * Note: the return value of pm_raise_power can't be used
5313 		 * for determining if PM should be enabled for this device.
5314 		 * Even if you check the return values and remove this
5315 		 * property created above, the PM framework will not honor the
5316 		 * change after the first call to pm_raise_power. Hence,
5317 		 * removal of that property does not help if pm_raise_power
5318 		 * fails. In the case of removable media, the start/stop
5319 		 * will fail if the media is not present.
5320 		 */
5321 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5322 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5323 			mutex_enter(SD_MUTEX(un));
5324 			un->un_power_level = SD_SPINDLE_ON;
5325 			mutex_enter(&un->un_pm_mutex);
5326 			/* Set to on and not busy. */
5327 			un->un_pm_count = 0;
5328 		} else {
5329 			mutex_enter(SD_MUTEX(un));
5330 			un->un_power_level = SD_SPINDLE_OFF;
5331 			mutex_enter(&un->un_pm_mutex);
5332 			/* Set to off. */
5333 			un->un_pm_count = -1;
5334 		}
5335 		mutex_exit(&un->un_pm_mutex);
5336 		mutex_exit(SD_MUTEX(un));
5337 	} else {
5338 		un->un_power_level = SD_SPINDLE_ON;
5339 		un->un_f_pm_is_enabled = FALSE;
5340 	}
5341 }
5342 
5343 
5344 /*
5345  *    Function: sd_ddi_suspend
5346  *
5347  * Description: Performs system power-down operations. This includes
5348  *		setting the drive state to indicate its suspended so
5349  *		that no new commands will be accepted. Also, wait for
5350  *		all commands that are in transport or queued to a timer
5351  *		for retry to complete. All timeout threads are cancelled.
5352  *
5353  * Return Code: DDI_FAILURE or DDI_SUCCESS
5354  *
5355  *     Context: Kernel thread context
5356  */
5357 
5358 static int
5359 sd_ddi_suspend(dev_info_t *devi)
5360 {
5361 	struct	sd_lun	*un;
5362 	clock_t		wait_cmds_complete;
5363 
5364 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5365 	if (un == NULL) {
5366 		return (DDI_FAILURE);
5367 	}
5368 
5369 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5370 
5371 	mutex_enter(SD_MUTEX(un));
5372 
5373 	/* Return success if the device is already suspended. */
5374 	if (un->un_state == SD_STATE_SUSPENDED) {
5375 		mutex_exit(SD_MUTEX(un));
5376 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5377 		    "device already suspended, exiting\n");
5378 		return (DDI_SUCCESS);
5379 	}
5380 
5381 	/* Return failure if the device is being used by HA */
5382 	if (un->un_resvd_status &
5383 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5384 		mutex_exit(SD_MUTEX(un));
5385 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5386 		    "device in use by HA, exiting\n");
5387 		return (DDI_FAILURE);
5388 	}
5389 
5390 	/*
5391 	 * Return failure if the device is in a resource wait
5392 	 * or power changing state.
5393 	 */
5394 	if ((un->un_state == SD_STATE_RWAIT) ||
5395 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5396 		mutex_exit(SD_MUTEX(un));
5397 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5398 		    "device in resource wait state, exiting\n");
5399 		return (DDI_FAILURE);
5400 	}
5401 
5402 
5403 	un->un_save_state = un->un_last_state;
5404 	New_state(un, SD_STATE_SUSPENDED);
5405 
5406 	/*
5407 	 * Wait for all commands that are in transport or queued to a timer
5408 	 * for retry to complete.
5409 	 *
5410 	 * While waiting, no new commands will be accepted or sent because of
5411 	 * the new state we set above.
5412 	 *
5413 	 * Wait till current operation has completed. If we are in the resource
5414 	 * wait state (with an intr outstanding) then we need to wait till the
5415 	 * intr completes and starts the next cmd. We want to wait for
5416 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5417 	 */
5418 	wait_cmds_complete = ddi_get_lbolt() +
5419 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5420 
5421 	while (un->un_ncmds_in_transport != 0) {
5422 		/*
5423 		 * Fail if commands do not finish in the specified time.
5424 		 */
5425 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5426 		    wait_cmds_complete) == -1) {
5427 			/*
5428 			 * Undo the state changes made above. Everything
5429 			 * must go back to it's original value.
5430 			 */
5431 			Restore_state(un);
5432 			un->un_last_state = un->un_save_state;
5433 			/* Wake up any threads that might be waiting. */
5434 			cv_broadcast(&un->un_suspend_cv);
5435 			mutex_exit(SD_MUTEX(un));
5436 			SD_ERROR(SD_LOG_IO_PM, un,
5437 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5438 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5439 			return (DDI_FAILURE);
5440 		}
5441 	}
5442 
5443 	/*
5444 	 * Cancel SCSI watch thread and timeouts, if any are active
5445 	 */
5446 
5447 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5448 		opaque_t temp_token = un->un_swr_token;
5449 		mutex_exit(SD_MUTEX(un));
5450 		scsi_watch_suspend(temp_token);
5451 		mutex_enter(SD_MUTEX(un));
5452 	}
5453 
5454 	if (un->un_reset_throttle_timeid != NULL) {
5455 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5456 		un->un_reset_throttle_timeid = NULL;
5457 		mutex_exit(SD_MUTEX(un));
5458 		(void) untimeout(temp_id);
5459 		mutex_enter(SD_MUTEX(un));
5460 	}
5461 
5462 	if (un->un_dcvb_timeid != NULL) {
5463 		timeout_id_t temp_id = un->un_dcvb_timeid;
5464 		un->un_dcvb_timeid = NULL;
5465 		mutex_exit(SD_MUTEX(un));
5466 		(void) untimeout(temp_id);
5467 		mutex_enter(SD_MUTEX(un));
5468 	}
5469 
5470 	mutex_enter(&un->un_pm_mutex);
5471 	if (un->un_pm_timeid != NULL) {
5472 		timeout_id_t temp_id = un->un_pm_timeid;
5473 		un->un_pm_timeid = NULL;
5474 		mutex_exit(&un->un_pm_mutex);
5475 		mutex_exit(SD_MUTEX(un));
5476 		(void) untimeout(temp_id);
5477 		mutex_enter(SD_MUTEX(un));
5478 	} else {
5479 		mutex_exit(&un->un_pm_mutex);
5480 	}
5481 
5482 	if (un->un_retry_timeid != NULL) {
5483 		timeout_id_t temp_id = un->un_retry_timeid;
5484 		un->un_retry_timeid = NULL;
5485 		mutex_exit(SD_MUTEX(un));
5486 		(void) untimeout(temp_id);
5487 		mutex_enter(SD_MUTEX(un));
5488 
5489 		if (un->un_retry_bp != NULL) {
5490 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5491 			un->un_waitq_headp = un->un_retry_bp;
5492 			if (un->un_waitq_tailp == NULL) {
5493 				un->un_waitq_tailp = un->un_retry_bp;
5494 			}
5495 			un->un_retry_bp = NULL;
5496 			un->un_retry_statp = NULL;
5497 		}
5498 	}
5499 
5500 	if (un->un_direct_priority_timeid != NULL) {
5501 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5502 		un->un_direct_priority_timeid = NULL;
5503 		mutex_exit(SD_MUTEX(un));
5504 		(void) untimeout(temp_id);
5505 		mutex_enter(SD_MUTEX(un));
5506 	}
5507 
5508 	if (un->un_f_is_fibre == TRUE) {
5509 		/*
5510 		 * Remove callbacks for insert and remove events
5511 		 */
5512 		if (un->un_insert_event != NULL) {
5513 			mutex_exit(SD_MUTEX(un));
5514 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5515 			mutex_enter(SD_MUTEX(un));
5516 			un->un_insert_event = NULL;
5517 		}
5518 
5519 		if (un->un_remove_event != NULL) {
5520 			mutex_exit(SD_MUTEX(un));
5521 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5522 			mutex_enter(SD_MUTEX(un));
5523 			un->un_remove_event = NULL;
5524 		}
5525 	}
5526 
5527 	mutex_exit(SD_MUTEX(un));
5528 
5529 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5530 
5531 	return (DDI_SUCCESS);
5532 }
5533 
5534 
5535 /*
5536  *    Function: sd_ddi_pm_suspend
5537  *
5538  * Description: Set the drive state to low power.
5539  *		Someone else is required to actually change the drive
5540  *		power level.
5541  *
5542  *   Arguments: un - driver soft state (unit) structure
5543  *
5544  * Return Code: DDI_FAILURE or DDI_SUCCESS
5545  *
5546  *     Context: Kernel thread context
5547  */
5548 
5549 static int
5550 sd_ddi_pm_suspend(struct sd_lun *un)
5551 {
5552 	ASSERT(un != NULL);
5553 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5554 
5555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5556 	mutex_enter(SD_MUTEX(un));
5557 
5558 	/*
5559 	 * Exit if power management is not enabled for this device, or if
5560 	 * the device is being used by HA.
5561 	 */
5562 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5563 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5564 		mutex_exit(SD_MUTEX(un));
5565 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5566 		return (DDI_SUCCESS);
5567 	}
5568 
5569 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5570 	    un->un_ncmds_in_driver);
5571 
5572 	/*
5573 	 * See if the device is not busy, ie.:
5574 	 *    - we have no commands in the driver for this device
5575 	 *    - not waiting for resources
5576 	 */
5577 	if ((un->un_ncmds_in_driver == 0) &&
5578 	    (un->un_state != SD_STATE_RWAIT)) {
5579 		/*
5580 		 * The device is not busy, so it is OK to go to low power state.
5581 		 * Indicate low power, but rely on someone else to actually
5582 		 * change it.
5583 		 */
5584 		mutex_enter(&un->un_pm_mutex);
5585 		un->un_pm_count = -1;
5586 		mutex_exit(&un->un_pm_mutex);
5587 		un->un_power_level = SD_SPINDLE_OFF;
5588 	}
5589 
5590 	mutex_exit(SD_MUTEX(un));
5591 
5592 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5593 
5594 	return (DDI_SUCCESS);
5595 }
5596 
5597 
5598 /*
5599  *    Function: sd_ddi_resume
5600  *
5601  * Description: Performs system power-up operations..
5602  *
5603  * Return Code: DDI_SUCCESS
5604  *		DDI_FAILURE
5605  *
5606  *     Context: Kernel thread context
5607  */
5608 
5609 static int
5610 sd_ddi_resume(dev_info_t *devi)
5611 {
5612 	struct	sd_lun	*un;
5613 
5614 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5615 	if (un == NULL) {
5616 		return (DDI_FAILURE);
5617 	}
5618 
5619 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5620 
5621 	mutex_enter(SD_MUTEX(un));
5622 	Restore_state(un);
5623 
5624 	/*
5625 	 * Restore the state which was saved to give the
5626 	 * the right state in un_last_state
5627 	 */
5628 	un->un_last_state = un->un_save_state;
5629 	/*
5630 	 * Note: throttle comes back at full.
5631 	 * Also note: this MUST be done before calling pm_raise_power
5632 	 * otherwise the system can get hung in biowait. The scenario where
5633 	 * this'll happen is under cpr suspend. Writing of the system
5634 	 * state goes through sddump, which writes 0 to un_throttle. If
5635 	 * writing the system state then fails, example if the partition is
5636 	 * too small, then cpr attempts a resume. If throttle isn't restored
5637 	 * from the saved value until after calling pm_raise_power then
5638 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5639 	 * in biowait.
5640 	 */
5641 	un->un_throttle = un->un_saved_throttle;
5642 
5643 	/*
5644 	 * The chance of failure is very rare as the only command done in power
5645 	 * entry point is START command when you transition from 0->1 or
5646 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5647 	 * which suspend was done. Ignore the return value as the resume should
5648 	 * not be failed. In the case of removable media the media need not be
5649 	 * inserted and hence there is a chance that raise power will fail with
5650 	 * media not present.
5651 	 */
5652 	if (un->un_f_attach_spinup) {
5653 		mutex_exit(SD_MUTEX(un));
5654 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5655 		mutex_enter(SD_MUTEX(un));
5656 	}
5657 
5658 	/*
5659 	 * Don't broadcast to the suspend cv and therefore possibly
5660 	 * start I/O until after power has been restored.
5661 	 */
5662 	cv_broadcast(&un->un_suspend_cv);
5663 	cv_broadcast(&un->un_state_cv);
5664 
5665 	/* restart thread */
5666 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5667 		scsi_watch_resume(un->un_swr_token);
5668 	}
5669 
5670 #if (defined(__fibre))
5671 	if (un->un_f_is_fibre == TRUE) {
5672 		/*
5673 		 * Add callbacks for insert and remove events
5674 		 */
5675 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5676 			sd_init_event_callbacks(un);
5677 		}
5678 	}
5679 #endif
5680 
5681 	/*
5682 	 * Transport any pending commands to the target.
5683 	 *
5684 	 * If this is a low-activity device commands in queue will have to wait
5685 	 * until new commands come in, which may take awhile. Also, we
5686 	 * specifically don't check un_ncmds_in_transport because we know that
5687 	 * there really are no commands in progress after the unit was
5688 	 * suspended and we could have reached the throttle level, been
5689 	 * suspended, and have no new commands coming in for awhile. Highly
5690 	 * unlikely, but so is the low-activity disk scenario.
5691 	 */
5692 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5693 
5694 	sd_start_cmds(un, NULL);
5695 	mutex_exit(SD_MUTEX(un));
5696 
5697 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5698 
5699 	return (DDI_SUCCESS);
5700 }
5701 
5702 
5703 /*
5704  *    Function: sd_ddi_pm_resume
5705  *
5706  * Description: Set the drive state to powered on.
5707  *		Someone else is required to actually change the drive
5708  *		power level.
5709  *
5710  *   Arguments: un - driver soft state (unit) structure
5711  *
5712  * Return Code: DDI_SUCCESS
5713  *
5714  *     Context: Kernel thread context
5715  */
5716 
5717 static int
5718 sd_ddi_pm_resume(struct sd_lun *un)
5719 {
5720 	ASSERT(un != NULL);
5721 
5722 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5723 	mutex_enter(SD_MUTEX(un));
5724 	un->un_power_level = SD_SPINDLE_ON;
5725 
5726 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5727 	mutex_enter(&un->un_pm_mutex);
5728 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5729 		un->un_pm_count++;
5730 		ASSERT(un->un_pm_count == 0);
5731 		/*
5732 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5733 		 * un_suspend_cv is for a system resume, not a power management
5734 		 * device resume. (4297749)
5735 		 *	 cv_broadcast(&un->un_suspend_cv);
5736 		 */
5737 	}
5738 	mutex_exit(&un->un_pm_mutex);
5739 	mutex_exit(SD_MUTEX(un));
5740 
5741 	return (DDI_SUCCESS);
5742 }
5743 
5744 
5745 /*
5746  *    Function: sd_pm_idletimeout_handler
5747  *
5748  * Description: A timer routine that's active only while a device is busy.
5749  *		The purpose is to extend slightly the pm framework's busy
5750  *		view of the device to prevent busy/idle thrashing for
5751  *		back-to-back commands. Do this by comparing the current time
5752  *		to the time at which the last command completed and when the
5753  *		difference is greater than sd_pm_idletime, call
5754  *		pm_idle_component. In addition to indicating idle to the pm
5755  *		framework, update the chain type to again use the internal pm
5756  *		layers of the driver.
5757  *
5758  *   Arguments: arg - driver soft state (unit) structure
5759  *
5760  *     Context: Executes in a timeout(9F) thread context
5761  */
5762 
5763 static void
5764 sd_pm_idletimeout_handler(void *arg)
5765 {
5766 	struct sd_lun *un = arg;
5767 
5768 	time_t	now;
5769 
5770 	mutex_enter(&sd_detach_mutex);
5771 	if (un->un_detach_count != 0) {
5772 		/* Abort if the instance is detaching */
5773 		mutex_exit(&sd_detach_mutex);
5774 		return;
5775 	}
5776 	mutex_exit(&sd_detach_mutex);
5777 
5778 	now = ddi_get_time();
5779 	/*
5780 	 * Grab both mutexes, in the proper order, since we're accessing
5781 	 * both PM and softstate variables.
5782 	 */
5783 	mutex_enter(SD_MUTEX(un));
5784 	mutex_enter(&un->un_pm_mutex);
5785 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5786 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5787 		/*
5788 		 * Update the chain types.
5789 		 * This takes affect on the next new command received.
5790 		 */
5791 		if (un->un_f_non_devbsize_supported) {
5792 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5793 		} else {
5794 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5795 		}
5796 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5797 
5798 		SD_TRACE(SD_LOG_IO_PM, un,
5799 		    "sd_pm_idletimeout_handler: idling device\n");
5800 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5801 		un->un_pm_idle_timeid = NULL;
5802 	} else {
5803 		un->un_pm_idle_timeid =
5804 		    timeout(sd_pm_idletimeout_handler, un,
5805 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5806 	}
5807 	mutex_exit(&un->un_pm_mutex);
5808 	mutex_exit(SD_MUTEX(un));
5809 }
5810 
5811 
5812 /*
5813  *    Function: sd_pm_timeout_handler
5814  *
5815  * Description: Callback to tell framework we are idle.
5816  *
5817  *     Context: timeout(9f) thread context.
5818  */
5819 
5820 static void
5821 sd_pm_timeout_handler(void *arg)
5822 {
5823 	struct sd_lun *un = arg;
5824 
5825 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5826 	mutex_enter(&un->un_pm_mutex);
5827 	un->un_pm_timeid = NULL;
5828 	mutex_exit(&un->un_pm_mutex);
5829 }
5830 
5831 
5832 /*
5833  *    Function: sdpower
5834  *
5835  * Description: PM entry point.
5836  *
5837  * Return Code: DDI_SUCCESS
5838  *		DDI_FAILURE
5839  *
5840  *     Context: Kernel thread context
5841  */
5842 
5843 static int
5844 sdpower(dev_info_t *devi, int component, int level)
5845 {
5846 	struct sd_lun	*un;
5847 	int		instance;
5848 	int		rval = DDI_SUCCESS;
5849 	uint_t		i, log_page_size, maxcycles, ncycles;
5850 	uchar_t		*log_page_data;
5851 	int		log_sense_page;
5852 	int		medium_present;
5853 	time_t		intvlp;
5854 	dev_t		dev;
5855 	struct pm_trans_data	sd_pm_tran_data;
5856 	uchar_t		save_state;
5857 	int		sval;
5858 	uchar_t		state_before_pm;
5859 	int		got_semaphore_here;
5860 
5861 	instance = ddi_get_instance(devi);
5862 
5863 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5864 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5865 	    component != 0) {
5866 		return (DDI_FAILURE);
5867 	}
5868 
5869 	dev = sd_make_device(SD_DEVINFO(un));
5870 
5871 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5872 
5873 	/*
5874 	 * Must synchronize power down with close.
5875 	 * Attempt to decrement/acquire the open/close semaphore,
5876 	 * but do NOT wait on it. If it's not greater than zero,
5877 	 * ie. it can't be decremented without waiting, then
5878 	 * someone else, either open or close, already has it
5879 	 * and the try returns 0. Use that knowledge here to determine
5880 	 * if it's OK to change the device power level.
5881 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5882 	 * here.
5883 	 */
5884 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5885 
5886 	mutex_enter(SD_MUTEX(un));
5887 
5888 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5889 	    un->un_ncmds_in_driver);
5890 
5891 	/*
5892 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5893 	 * already being processed in the driver, or if the semaphore was
5894 	 * not gotten here it indicates an open or close is being processed.
5895 	 * At the same time somebody is requesting to go low power which
5896 	 * can't happen, therefore we need to return failure.
5897 	 */
5898 	if ((level == SD_SPINDLE_OFF) &&
5899 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5900 		mutex_exit(SD_MUTEX(un));
5901 
5902 		if (got_semaphore_here != 0) {
5903 			sema_v(&un->un_semoclose);
5904 		}
5905 		SD_TRACE(SD_LOG_IO_PM, un,
5906 		    "sdpower: exit, device has queued cmds.\n");
5907 		return (DDI_FAILURE);
5908 	}
5909 
5910 	/*
5911 	 * if it is OFFLINE that means the disk is completely dead
5912 	 * in our case we have to put the disk in on or off by sending commands
5913 	 * Of course that will fail anyway so return back here.
5914 	 *
5915 	 * Power changes to a device that's OFFLINE or SUSPENDED
5916 	 * are not allowed.
5917 	 */
5918 	if ((un->un_state == SD_STATE_OFFLINE) ||
5919 	    (un->un_state == SD_STATE_SUSPENDED)) {
5920 		mutex_exit(SD_MUTEX(un));
5921 
5922 		if (got_semaphore_here != 0) {
5923 			sema_v(&un->un_semoclose);
5924 		}
5925 		SD_TRACE(SD_LOG_IO_PM, un,
5926 		    "sdpower: exit, device is off-line.\n");
5927 		return (DDI_FAILURE);
5928 	}
5929 
5930 	/*
5931 	 * Change the device's state to indicate it's power level
5932 	 * is being changed. Do this to prevent a power off in the
5933 	 * middle of commands, which is especially bad on devices
5934 	 * that are really powered off instead of just spun down.
5935 	 */
5936 	state_before_pm = un->un_state;
5937 	un->un_state = SD_STATE_PM_CHANGING;
5938 
5939 	mutex_exit(SD_MUTEX(un));
5940 
5941 	/*
5942 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5943 	 * bypass the following checking, otherwise, check the log
5944 	 * sense information for this device
5945 	 */
5946 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5947 		/*
5948 		 * Get the log sense information to understand whether the
5949 		 * the powercycle counts have gone beyond the threshhold.
5950 		 */
5951 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5952 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5953 
5954 		mutex_enter(SD_MUTEX(un));
5955 		log_sense_page = un->un_start_stop_cycle_page;
5956 		mutex_exit(SD_MUTEX(un));
5957 
5958 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5959 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5960 #ifdef	SDDEBUG
5961 		if (sd_force_pm_supported) {
5962 			/* Force a successful result */
5963 			rval = 0;
5964 		}
5965 #endif
5966 		if (rval != 0) {
5967 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5968 			    "Log Sense Failed\n");
5969 			kmem_free(log_page_data, log_page_size);
5970 			/* Cannot support power management on those drives */
5971 
5972 			if (got_semaphore_here != 0) {
5973 				sema_v(&un->un_semoclose);
5974 			}
5975 			/*
5976 			 * On exit put the state back to it's original value
5977 			 * and broadcast to anyone waiting for the power
5978 			 * change completion.
5979 			 */
5980 			mutex_enter(SD_MUTEX(un));
5981 			un->un_state = state_before_pm;
5982 			cv_broadcast(&un->un_suspend_cv);
5983 			mutex_exit(SD_MUTEX(un));
5984 			SD_TRACE(SD_LOG_IO_PM, un,
5985 			    "sdpower: exit, Log Sense Failed.\n");
5986 			return (DDI_FAILURE);
5987 		}
5988 
5989 		/*
5990 		 * From the page data - Convert the essential information to
5991 		 * pm_trans_data
5992 		 */
5993 		maxcycles =
5994 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5995 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5996 
5997 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5998 
5999 		ncycles =
6000 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6001 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6002 
6003 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6004 
6005 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6006 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6007 			    log_page_data[8+i];
6008 		}
6009 
6010 		kmem_free(log_page_data, log_page_size);
6011 
6012 		/*
6013 		 * Call pm_trans_check routine to get the Ok from
6014 		 * the global policy
6015 		 */
6016 
6017 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6018 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6019 
6020 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6021 #ifdef	SDDEBUG
6022 		if (sd_force_pm_supported) {
6023 			/* Force a successful result */
6024 			rval = 1;
6025 		}
6026 #endif
6027 		switch (rval) {
6028 		case 0:
6029 			/*
6030 			 * Not Ok to Power cycle or error in parameters passed
6031 			 * Would have given the advised time to consider power
6032 			 * cycle. Based on the new intvlp parameter we are
6033 			 * supposed to pretend we are busy so that pm framework
6034 			 * will never call our power entry point. Because of
6035 			 * that install a timeout handler and wait for the
6036 			 * recommended time to elapse so that power management
6037 			 * can be effective again.
6038 			 *
6039 			 * To effect this behavior, call pm_busy_component to
6040 			 * indicate to the framework this device is busy.
6041 			 * By not adjusting un_pm_count the rest of PM in
6042 			 * the driver will function normally, and independant
6043 			 * of this but because the framework is told the device
6044 			 * is busy it won't attempt powering down until it gets
6045 			 * a matching idle. The timeout handler sends this.
6046 			 * Note: sd_pm_entry can't be called here to do this
6047 			 * because sdpower may have been called as a result
6048 			 * of a call to pm_raise_power from within sd_pm_entry.
6049 			 *
6050 			 * If a timeout handler is already active then
6051 			 * don't install another.
6052 			 */
6053 			mutex_enter(&un->un_pm_mutex);
6054 			if (un->un_pm_timeid == NULL) {
6055 				un->un_pm_timeid =
6056 				    timeout(sd_pm_timeout_handler,
6057 				    un, intvlp * drv_usectohz(1000000));
6058 				mutex_exit(&un->un_pm_mutex);
6059 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6060 			} else {
6061 				mutex_exit(&un->un_pm_mutex);
6062 			}
6063 			if (got_semaphore_here != 0) {
6064 				sema_v(&un->un_semoclose);
6065 			}
6066 			/*
6067 			 * On exit put the state back to it's original value
6068 			 * and broadcast to anyone waiting for the power
6069 			 * change completion.
6070 			 */
6071 			mutex_enter(SD_MUTEX(un));
6072 			un->un_state = state_before_pm;
6073 			cv_broadcast(&un->un_suspend_cv);
6074 			mutex_exit(SD_MUTEX(un));
6075 
6076 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6077 			    "trans check Failed, not ok to power cycle.\n");
6078 			return (DDI_FAILURE);
6079 
6080 		case -1:
6081 			if (got_semaphore_here != 0) {
6082 				sema_v(&un->un_semoclose);
6083 			}
6084 			/*
6085 			 * On exit put the state back to it's original value
6086 			 * and broadcast to anyone waiting for the power
6087 			 * change completion.
6088 			 */
6089 			mutex_enter(SD_MUTEX(un));
6090 			un->un_state = state_before_pm;
6091 			cv_broadcast(&un->un_suspend_cv);
6092 			mutex_exit(SD_MUTEX(un));
6093 			SD_TRACE(SD_LOG_IO_PM, un,
6094 			    "sdpower: exit, trans check command Failed.\n");
6095 			return (DDI_FAILURE);
6096 		}
6097 	}
6098 
6099 	if (level == SD_SPINDLE_OFF) {
6100 		/*
6101 		 * Save the last state... if the STOP FAILS we need it
6102 		 * for restoring
6103 		 */
6104 		mutex_enter(SD_MUTEX(un));
6105 		save_state = un->un_last_state;
6106 		/*
6107 		 * There must not be any cmds. getting processed
6108 		 * in the driver when we get here. Power to the
6109 		 * device is potentially going off.
6110 		 */
6111 		ASSERT(un->un_ncmds_in_driver == 0);
6112 		mutex_exit(SD_MUTEX(un));
6113 
6114 		/*
6115 		 * For now suspend the device completely before spindle is
6116 		 * turned off
6117 		 */
6118 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6119 			if (got_semaphore_here != 0) {
6120 				sema_v(&un->un_semoclose);
6121 			}
6122 			/*
6123 			 * On exit put the state back to it's original value
6124 			 * and broadcast to anyone waiting for the power
6125 			 * change completion.
6126 			 */
6127 			mutex_enter(SD_MUTEX(un));
6128 			un->un_state = state_before_pm;
6129 			cv_broadcast(&un->un_suspend_cv);
6130 			mutex_exit(SD_MUTEX(un));
6131 			SD_TRACE(SD_LOG_IO_PM, un,
6132 			    "sdpower: exit, PM suspend Failed.\n");
6133 			return (DDI_FAILURE);
6134 		}
6135 	}
6136 
6137 	/*
6138 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6139 	 * close, or strategy. Dump no long uses this routine, it uses it's
6140 	 * own code so it can be done in polled mode.
6141 	 */
6142 
6143 	medium_present = TRUE;
6144 
6145 	/*
6146 	 * When powering up, issue a TUR in case the device is at unit
6147 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6148 	 * a deadlock on un_pm_busy_cv will occur.
6149 	 */
6150 	if (level == SD_SPINDLE_ON) {
6151 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6152 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6153 	}
6154 
6155 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6156 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6157 
6158 	sval = sd_send_scsi_START_STOP_UNIT(un,
6159 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6160 	    SD_PATH_DIRECT);
6161 	/* Command failed, check for media present. */
6162 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6163 		medium_present = FALSE;
6164 	}
6165 
6166 	/*
6167 	 * The conditions of interest here are:
6168 	 *   if a spindle off with media present fails,
6169 	 *	then restore the state and return an error.
6170 	 *   else if a spindle on fails,
6171 	 *	then return an error (there's no state to restore).
6172 	 * In all other cases we setup for the new state
6173 	 * and return success.
6174 	 */
6175 	switch (level) {
6176 	case SD_SPINDLE_OFF:
6177 		if ((medium_present == TRUE) && (sval != 0)) {
6178 			/* The stop command from above failed */
6179 			rval = DDI_FAILURE;
6180 			/*
6181 			 * The stop command failed, and we have media
6182 			 * present. Put the level back by calling the
6183 			 * sd_pm_resume() and set the state back to
6184 			 * it's previous value.
6185 			 */
6186 			(void) sd_ddi_pm_resume(un);
6187 			mutex_enter(SD_MUTEX(un));
6188 			un->un_last_state = save_state;
6189 			mutex_exit(SD_MUTEX(un));
6190 			break;
6191 		}
6192 		/*
6193 		 * The stop command from above succeeded.
6194 		 */
6195 		if (un->un_f_monitor_media_state) {
6196 			/*
6197 			 * Terminate watch thread in case of removable media
6198 			 * devices going into low power state. This is as per
6199 			 * the requirements of pm framework, otherwise commands
6200 			 * will be generated for the device (through watch
6201 			 * thread), even when the device is in low power state.
6202 			 */
6203 			mutex_enter(SD_MUTEX(un));
6204 			un->un_f_watcht_stopped = FALSE;
6205 			if (un->un_swr_token != NULL) {
6206 				opaque_t temp_token = un->un_swr_token;
6207 				un->un_f_watcht_stopped = TRUE;
6208 				un->un_swr_token = NULL;
6209 				mutex_exit(SD_MUTEX(un));
6210 				(void) scsi_watch_request_terminate(temp_token,
6211 				    SCSI_WATCH_TERMINATE_WAIT);
6212 			} else {
6213 				mutex_exit(SD_MUTEX(un));
6214 			}
6215 		}
6216 		break;
6217 
6218 	default:	/* The level requested is spindle on... */
6219 		/*
6220 		 * Legacy behavior: return success on a failed spinup
6221 		 * if there is no media in the drive.
6222 		 * Do this by looking at medium_present here.
6223 		 */
6224 		if ((sval != 0) && medium_present) {
6225 			/* The start command from above failed */
6226 			rval = DDI_FAILURE;
6227 			break;
6228 		}
6229 		/*
6230 		 * The start command from above succeeded
6231 		 * Resume the devices now that we have
6232 		 * started the disks
6233 		 */
6234 		(void) sd_ddi_pm_resume(un);
6235 
6236 		/*
6237 		 * Resume the watch thread since it was suspended
6238 		 * when the device went into low power mode.
6239 		 */
6240 		if (un->un_f_monitor_media_state) {
6241 			mutex_enter(SD_MUTEX(un));
6242 			if (un->un_f_watcht_stopped == TRUE) {
6243 				opaque_t temp_token;
6244 
6245 				un->un_f_watcht_stopped = FALSE;
6246 				mutex_exit(SD_MUTEX(un));
6247 				temp_token = scsi_watch_request_submit(
6248 				    SD_SCSI_DEVP(un),
6249 				    sd_check_media_time,
6250 				    SENSE_LENGTH, sd_media_watch_cb,
6251 				    (caddr_t)dev);
6252 				mutex_enter(SD_MUTEX(un));
6253 				un->un_swr_token = temp_token;
6254 			}
6255 			mutex_exit(SD_MUTEX(un));
6256 		}
6257 	}
6258 	if (got_semaphore_here != 0) {
6259 		sema_v(&un->un_semoclose);
6260 	}
6261 	/*
6262 	 * On exit put the state back to it's original value
6263 	 * and broadcast to anyone waiting for the power
6264 	 * change completion.
6265 	 */
6266 	mutex_enter(SD_MUTEX(un));
6267 	un->un_state = state_before_pm;
6268 	cv_broadcast(&un->un_suspend_cv);
6269 	mutex_exit(SD_MUTEX(un));
6270 
6271 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6272 
6273 	return (rval);
6274 }
6275 
6276 
6277 
6278 /*
6279  *    Function: sdattach
6280  *
6281  * Description: Driver's attach(9e) entry point function.
6282  *
6283  *   Arguments: devi - opaque device info handle
6284  *		cmd  - attach  type
6285  *
6286  * Return Code: DDI_SUCCESS
6287  *		DDI_FAILURE
6288  *
6289  *     Context: Kernel thread context
6290  */
6291 
6292 static int
6293 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6294 {
6295 	switch (cmd) {
6296 	case DDI_ATTACH:
6297 		return (sd_unit_attach(devi));
6298 	case DDI_RESUME:
6299 		return (sd_ddi_resume(devi));
6300 	default:
6301 		break;
6302 	}
6303 	return (DDI_FAILURE);
6304 }
6305 
6306 
6307 /*
6308  *    Function: sddetach
6309  *
6310  * Description: Driver's detach(9E) entry point function.
6311  *
6312  *   Arguments: devi - opaque device info handle
6313  *		cmd  - detach  type
6314  *
6315  * Return Code: DDI_SUCCESS
6316  *		DDI_FAILURE
6317  *
6318  *     Context: Kernel thread context
6319  */
6320 
6321 static int
6322 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6323 {
6324 	switch (cmd) {
6325 	case DDI_DETACH:
6326 		return (sd_unit_detach(devi));
6327 	case DDI_SUSPEND:
6328 		return (sd_ddi_suspend(devi));
6329 	default:
6330 		break;
6331 	}
6332 	return (DDI_FAILURE);
6333 }
6334 
6335 
6336 /*
6337  *     Function: sd_sync_with_callback
6338  *
6339  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6340  *		 state while the callback routine is active.
6341  *
6342  *    Arguments: un: softstate structure for the instance
6343  *
6344  *	Context: Kernel thread context
6345  */
6346 
6347 static void
6348 sd_sync_with_callback(struct sd_lun *un)
6349 {
6350 	ASSERT(un != NULL);
6351 
6352 	mutex_enter(SD_MUTEX(un));
6353 
6354 	ASSERT(un->un_in_callback >= 0);
6355 
6356 	while (un->un_in_callback > 0) {
6357 		mutex_exit(SD_MUTEX(un));
6358 		delay(2);
6359 		mutex_enter(SD_MUTEX(un));
6360 	}
6361 
6362 	mutex_exit(SD_MUTEX(un));
6363 }
6364 
6365 /*
6366  *    Function: sd_unit_attach
6367  *
6368  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6369  *		the soft state structure for the device and performs
6370  *		all necessary structure and device initializations.
6371  *
6372  *   Arguments: devi: the system's dev_info_t for the device.
6373  *
6374  * Return Code: DDI_SUCCESS if attach is successful.
6375  *		DDI_FAILURE if any part of the attach fails.
6376  *
6377  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6378  *		Kernel thread context only.  Can sleep.
6379  */
6380 
6381 static int
6382 sd_unit_attach(dev_info_t *devi)
6383 {
6384 	struct	scsi_device	*devp;
6385 	struct	sd_lun		*un;
6386 	char			*variantp;
6387 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6388 	int	instance;
6389 	int	rval;
6390 	int	wc_enabled;
6391 	int	tgt;
6392 	uint64_t	capacity;
6393 	uint_t		lbasize = 0;
6394 	dev_info_t	*pdip = ddi_get_parent(devi);
6395 	int		offbyone = 0;
6396 	int		geom_label_valid = 0;
6397 #if defined(__sparc)
6398 	int		max_xfer_size;
6399 #endif
6400 
6401 	/*
6402 	 * Retrieve the target driver's private data area. This was set
6403 	 * up by the HBA.
6404 	 */
6405 	devp = ddi_get_driver_private(devi);
6406 
6407 	/*
6408 	 * Retrieve the target ID of the device.
6409 	 */
6410 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6411 	    SCSI_ADDR_PROP_TARGET, -1);
6412 
6413 	/*
6414 	 * Since we have no idea what state things were left in by the last
6415 	 * user of the device, set up some 'default' settings, ie. turn 'em
6416 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6417 	 * Do this before the scsi_probe, which sends an inquiry.
6418 	 * This is a fix for bug (4430280).
6419 	 * Of special importance is wide-xfer. The drive could have been left
6420 	 * in wide transfer mode by the last driver to communicate with it,
6421 	 * this includes us. If that's the case, and if the following is not
6422 	 * setup properly or we don't re-negotiate with the drive prior to
6423 	 * transferring data to/from the drive, it causes bus parity errors,
6424 	 * data overruns, and unexpected interrupts. This first occurred when
6425 	 * the fix for bug (4378686) was made.
6426 	 */
6427 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6428 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6429 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6430 
6431 	/*
6432 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6433 	 * on a target. Setting it per lun instance actually sets the
6434 	 * capability of this target, which affects those luns already
6435 	 * attached on the same target. So during attach, we can only disable
6436 	 * this capability only when no other lun has been attached on this
6437 	 * target. By doing this, we assume a target has the same tagged-qing
6438 	 * capability for every lun. The condition can be removed when HBA
6439 	 * is changed to support per lun based tagged-qing capability.
6440 	 */
6441 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6442 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6443 	}
6444 
6445 	/*
6446 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6447 	 * This call will allocate and fill in the scsi_inquiry structure
6448 	 * and point the sd_inq member of the scsi_device structure to it.
6449 	 * If the attach succeeds, then this memory will not be de-allocated
6450 	 * (via scsi_unprobe()) until the instance is detached.
6451 	 */
6452 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6453 		goto probe_failed;
6454 	}
6455 
6456 	/*
6457 	 * Check the device type as specified in the inquiry data and
6458 	 * claim it if it is of a type that we support.
6459 	 */
6460 	switch (devp->sd_inq->inq_dtype) {
6461 	case DTYPE_DIRECT:
6462 		break;
6463 	case DTYPE_RODIRECT:
6464 		break;
6465 	case DTYPE_OPTICAL:
6466 		break;
6467 	case DTYPE_NOTPRESENT:
6468 	default:
6469 		/* Unsupported device type; fail the attach. */
6470 		goto probe_failed;
6471 	}
6472 
6473 	/*
6474 	 * Allocate the soft state structure for this unit.
6475 	 *
6476 	 * We rely upon this memory being set to all zeroes by
6477 	 * ddi_soft_state_zalloc().  We assume that any member of the
6478 	 * soft state structure that is not explicitly initialized by
6479 	 * this routine will have a value of zero.
6480 	 */
6481 	instance = ddi_get_instance(devp->sd_dev);
6482 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6483 		goto probe_failed;
6484 	}
6485 
6486 	/*
6487 	 * Retrieve a pointer to the newly-allocated soft state.
6488 	 *
6489 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6490 	 * was successful, unless something has gone horribly wrong and the
6491 	 * ddi's soft state internals are corrupt (in which case it is
6492 	 * probably better to halt here than just fail the attach....)
6493 	 */
6494 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6495 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6496 		    instance);
6497 		/*NOTREACHED*/
6498 	}
6499 
6500 	/*
6501 	 * Link the back ptr of the driver soft state to the scsi_device
6502 	 * struct for this lun.
6503 	 * Save a pointer to the softstate in the driver-private area of
6504 	 * the scsi_device struct.
6505 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6506 	 * we first set un->un_sd below.
6507 	 */
6508 	un->un_sd = devp;
6509 	devp->sd_private = (opaque_t)un;
6510 
6511 	/*
6512 	 * The following must be after devp is stored in the soft state struct.
6513 	 */
6514 #ifdef SDDEBUG
6515 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6516 	    "%s_unit_attach: un:0x%p instance:%d\n",
6517 	    ddi_driver_name(devi), un, instance);
6518 #endif
6519 
6520 	/*
6521 	 * Set up the device type and node type (for the minor nodes).
6522 	 * By default we assume that the device can at least support the
6523 	 * Common Command Set. Call it a CD-ROM if it reports itself
6524 	 * as a RODIRECT device.
6525 	 */
6526 	switch (devp->sd_inq->inq_dtype) {
6527 	case DTYPE_RODIRECT:
6528 		un->un_node_type = DDI_NT_CD_CHAN;
6529 		un->un_ctype	 = CTYPE_CDROM;
6530 		break;
6531 	case DTYPE_OPTICAL:
6532 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6533 		un->un_ctype	 = CTYPE_ROD;
6534 		break;
6535 	default:
6536 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6537 		un->un_ctype	 = CTYPE_CCS;
6538 		break;
6539 	}
6540 
6541 	/*
6542 	 * Try to read the interconnect type from the HBA.
6543 	 *
6544 	 * Note: This driver is currently compiled as two binaries, a parallel
6545 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6546 	 * differences are determined at compile time. In the future a single
6547 	 * binary will be provided and the inteconnect type will be used to
6548 	 * differentiate between fibre and parallel scsi behaviors. At that time
6549 	 * it will be necessary for all fibre channel HBAs to support this
6550 	 * property.
6551 	 *
6552 	 * set un_f_is_fiber to TRUE ( default fiber )
6553 	 */
6554 	un->un_f_is_fibre = TRUE;
6555 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6556 	case INTERCONNECT_SSA:
6557 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6558 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6559 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6560 		break;
6561 	case INTERCONNECT_PARALLEL:
6562 		un->un_f_is_fibre = FALSE;
6563 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6564 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6565 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6566 		break;
6567 	case INTERCONNECT_SATA:
6568 		un->un_f_is_fibre = FALSE;
6569 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6570 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6571 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6572 		break;
6573 	case INTERCONNECT_FIBRE:
6574 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6575 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6576 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6577 		break;
6578 	case INTERCONNECT_FABRIC:
6579 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6580 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6581 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6582 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6583 		break;
6584 	default:
6585 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6586 		/*
6587 		 * The HBA does not support the "interconnect-type" property
6588 		 * (or did not provide a recognized type).
6589 		 *
6590 		 * Note: This will be obsoleted when a single fibre channel
6591 		 * and parallel scsi driver is delivered. In the meantime the
6592 		 * interconnect type will be set to the platform default.If that
6593 		 * type is not parallel SCSI, it means that we should be
6594 		 * assuming "ssd" semantics. However, here this also means that
6595 		 * the FC HBA is not supporting the "interconnect-type" property
6596 		 * like we expect it to, so log this occurrence.
6597 		 */
6598 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6599 		if (!SD_IS_PARALLEL_SCSI(un)) {
6600 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6601 			    "sd_unit_attach: un:0x%p Assuming "
6602 			    "INTERCONNECT_FIBRE\n", un);
6603 		} else {
6604 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6605 			    "sd_unit_attach: un:0x%p Assuming "
6606 			    "INTERCONNECT_PARALLEL\n", un);
6607 			un->un_f_is_fibre = FALSE;
6608 		}
6609 #else
6610 		/*
6611 		 * Note: This source will be implemented when a single fibre
6612 		 * channel and parallel scsi driver is delivered. The default
6613 		 * will be to assume that if a device does not support the
6614 		 * "interconnect-type" property it is a parallel SCSI HBA and
6615 		 * we will set the interconnect type for parallel scsi.
6616 		 */
6617 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6618 		un->un_f_is_fibre = FALSE;
6619 #endif
6620 		break;
6621 	}
6622 
6623 	if (un->un_f_is_fibre == TRUE) {
6624 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6625 		    SCSI_VERSION_3) {
6626 			switch (un->un_interconnect_type) {
6627 			case SD_INTERCONNECT_FIBRE:
6628 			case SD_INTERCONNECT_SSA:
6629 				un->un_node_type = DDI_NT_BLOCK_WWN;
6630 				break;
6631 			default:
6632 				break;
6633 			}
6634 		}
6635 	}
6636 
6637 	/*
6638 	 * Initialize the Request Sense command for the target
6639 	 */
6640 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6641 		goto alloc_rqs_failed;
6642 	}
6643 
6644 	/*
6645 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6646 	 * with separate binary for sd and ssd.
6647 	 *
6648 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6649 	 * The hardcoded values will go away when Sparc uses 1 binary
6650 	 * for sd and ssd.  This hardcoded values need to match
6651 	 * SD_RETRY_COUNT in sddef.h
6652 	 * The value used is base on interconnect type.
6653 	 * fibre = 3, parallel = 5
6654 	 */
6655 #if defined(__i386) || defined(__amd64)
6656 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6657 #else
6658 	un->un_retry_count = SD_RETRY_COUNT;
6659 #endif
6660 
6661 	/*
6662 	 * Set the per disk retry count to the default number of retries
6663 	 * for disks and CDROMs. This value can be overridden by the
6664 	 * disk property list or an entry in sd.conf.
6665 	 */
6666 	un->un_notready_retry_count =
6667 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6668 	    : DISK_NOT_READY_RETRY_COUNT(un);
6669 
6670 	/*
6671 	 * Set the busy retry count to the default value of un_retry_count.
6672 	 * This can be overridden by entries in sd.conf or the device
6673 	 * config table.
6674 	 */
6675 	un->un_busy_retry_count = un->un_retry_count;
6676 
6677 	/*
6678 	 * Init the reset threshold for retries.  This number determines
6679 	 * how many retries must be performed before a reset can be issued
6680 	 * (for certain error conditions). This can be overridden by entries
6681 	 * in sd.conf or the device config table.
6682 	 */
6683 	un->un_reset_retry_count = (un->un_retry_count / 2);
6684 
6685 	/*
6686 	 * Set the victim_retry_count to the default un_retry_count
6687 	 */
6688 	un->un_victim_retry_count = (2 * un->un_retry_count);
6689 
6690 	/*
6691 	 * Set the reservation release timeout to the default value of
6692 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6693 	 * device config table.
6694 	 */
6695 	un->un_reserve_release_time = 5;
6696 
6697 	/*
6698 	 * Set up the default maximum transfer size. Note that this may
6699 	 * get updated later in the attach, when setting up default wide
6700 	 * operations for disks.
6701 	 */
6702 #if defined(__i386) || defined(__amd64)
6703 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6704 	un->un_partial_dma_supported = 1;
6705 #else
6706 	un->un_max_xfer_size = (uint_t)maxphys;
6707 #endif
6708 
6709 	/*
6710 	 * Get "allow bus device reset" property (defaults to "enabled" if
6711 	 * the property was not defined). This is to disable bus resets for
6712 	 * certain kinds of error recovery. Note: In the future when a run-time
6713 	 * fibre check is available the soft state flag should default to
6714 	 * enabled.
6715 	 */
6716 	if (un->un_f_is_fibre == TRUE) {
6717 		un->un_f_allow_bus_device_reset = TRUE;
6718 	} else {
6719 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6720 		    "allow-bus-device-reset", 1) != 0) {
6721 			un->un_f_allow_bus_device_reset = TRUE;
6722 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6723 			    "sd_unit_attach: un:0x%p Bus device reset "
6724 			    "enabled\n", un);
6725 		} else {
6726 			un->un_f_allow_bus_device_reset = FALSE;
6727 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6728 			    "sd_unit_attach: un:0x%p Bus device reset "
6729 			    "disabled\n", un);
6730 		}
6731 	}
6732 
6733 	/*
6734 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6735 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6736 	 *
6737 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6738 	 * property. The new "variant" property with a value of "atapi" has been
6739 	 * introduced so that future 'variants' of standard SCSI behavior (like
6740 	 * atapi) could be specified by the underlying HBA drivers by supplying
6741 	 * a new value for the "variant" property, instead of having to define a
6742 	 * new property.
6743 	 */
6744 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6745 		un->un_f_cfg_is_atapi = TRUE;
6746 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6747 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6748 	}
6749 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6750 	    &variantp) == DDI_PROP_SUCCESS) {
6751 		if (strcmp(variantp, "atapi") == 0) {
6752 			un->un_f_cfg_is_atapi = TRUE;
6753 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6754 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6755 		}
6756 		ddi_prop_free(variantp);
6757 	}
6758 
6759 	un->un_cmd_timeout	= SD_IO_TIME;
6760 
6761 	/* Info on current states, statuses, etc. (Updated frequently) */
6762 	un->un_state		= SD_STATE_NORMAL;
6763 	un->un_last_state	= SD_STATE_NORMAL;
6764 
6765 	/* Control & status info for command throttling */
6766 	un->un_throttle		= sd_max_throttle;
6767 	un->un_saved_throttle	= sd_max_throttle;
6768 	un->un_min_throttle	= sd_min_throttle;
6769 
6770 	if (un->un_f_is_fibre == TRUE) {
6771 		un->un_f_use_adaptive_throttle = TRUE;
6772 	} else {
6773 		un->un_f_use_adaptive_throttle = FALSE;
6774 	}
6775 
6776 	/* Removable media support. */
6777 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6778 	un->un_mediastate		= DKIO_NONE;
6779 	un->un_specified_mediastate	= DKIO_NONE;
6780 
6781 	/* CVs for suspend/resume (PM or DR) */
6782 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6783 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6784 
6785 	/* Power management support. */
6786 	un->un_power_level = SD_SPINDLE_UNINIT;
6787 
6788 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6789 	un->un_f_wcc_inprog = 0;
6790 
6791 	/*
6792 	 * The open/close semaphore is used to serialize threads executing
6793 	 * in the driver's open & close entry point routines for a given
6794 	 * instance.
6795 	 */
6796 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6797 
6798 	/*
6799 	 * The conf file entry and softstate variable is a forceful override,
6800 	 * meaning a non-zero value must be entered to change the default.
6801 	 */
6802 	un->un_f_disksort_disabled = FALSE;
6803 
6804 	/*
6805 	 * Retrieve the properties from the static driver table or the driver
6806 	 * configuration file (.conf) for this unit and update the soft state
6807 	 * for the device as needed for the indicated properties.
6808 	 * Note: the property configuration needs to occur here as some of the
6809 	 * following routines may have dependancies on soft state flags set
6810 	 * as part of the driver property configuration.
6811 	 */
6812 	sd_read_unit_properties(un);
6813 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6814 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6815 
6816 	/*
6817 	 * Only if a device has "hotpluggable" property, it is
6818 	 * treated as hotpluggable device. Otherwise, it is
6819 	 * regarded as non-hotpluggable one.
6820 	 */
6821 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6822 	    -1) != -1) {
6823 		un->un_f_is_hotpluggable = TRUE;
6824 	}
6825 
6826 	/*
6827 	 * set unit's attributes(flags) according to "hotpluggable" and
6828 	 * RMB bit in INQUIRY data.
6829 	 */
6830 	sd_set_unit_attributes(un, devi);
6831 
6832 	/*
6833 	 * By default, we mark the capacity, lbasize, and geometry
6834 	 * as invalid. Only if we successfully read a valid capacity
6835 	 * will we update the un_blockcount and un_tgt_blocksize with the
6836 	 * valid values (the geometry will be validated later).
6837 	 */
6838 	un->un_f_blockcount_is_valid	= FALSE;
6839 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6840 
6841 	/*
6842 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6843 	 * otherwise.
6844 	 */
6845 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6846 	un->un_blockcount = 0;
6847 
6848 	/*
6849 	 * Set up the per-instance info needed to determine the correct
6850 	 * CDBs and other info for issuing commands to the target.
6851 	 */
6852 	sd_init_cdb_limits(un);
6853 
6854 	/*
6855 	 * Set up the IO chains to use, based upon the target type.
6856 	 */
6857 	if (un->un_f_non_devbsize_supported) {
6858 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6859 	} else {
6860 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6861 	}
6862 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6863 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6864 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6865 
6866 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6867 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6868 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6869 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6870 
6871 
6872 	if (ISCD(un)) {
6873 		un->un_additional_codes = sd_additional_codes;
6874 	} else {
6875 		un->un_additional_codes = NULL;
6876 	}
6877 
6878 	/*
6879 	 * Create the kstats here so they can be available for attach-time
6880 	 * routines that send commands to the unit (either polled or via
6881 	 * sd_send_scsi_cmd).
6882 	 *
6883 	 * Note: This is a critical sequence that needs to be maintained:
6884 	 *	1) Instantiate the kstats here, before any routines using the
6885 	 *	   iopath (i.e. sd_send_scsi_cmd).
6886 	 *	2) Instantiate and initialize the partition stats
6887 	 *	   (sd_set_pstats).
6888 	 *	3) Initialize the error stats (sd_set_errstats), following
6889 	 *	   sd_validate_geometry(),sd_register_devid(),
6890 	 *	   and sd_cache_control().
6891 	 */
6892 
6893 	un->un_stats = kstat_create(sd_label, instance,
6894 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6895 	if (un->un_stats != NULL) {
6896 		un->un_stats->ks_lock = SD_MUTEX(un);
6897 		kstat_install(un->un_stats);
6898 	}
6899 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6900 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6901 
6902 	sd_create_errstats(un, instance);
6903 	if (un->un_errstats == NULL) {
6904 		goto create_errstats_failed;
6905 	}
6906 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6907 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6908 
6909 	/*
6910 	 * The following if/else code was relocated here from below as part
6911 	 * of the fix for bug (4430280). However with the default setup added
6912 	 * on entry to this routine, it's no longer absolutely necessary for
6913 	 * this to be before the call to sd_spin_up_unit.
6914 	 */
6915 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6916 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
6917 		    (devp->sd_inq->inq_ansi == 5)) &&
6918 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
6919 
6920 		/*
6921 		 * If tagged queueing is supported by the target
6922 		 * and by the host adapter then we will enable it
6923 		 */
6924 		un->un_tagflags = 0;
6925 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
6926 		    (un->un_f_arq_enabled == TRUE)) {
6927 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6928 			    1, 1) == 1) {
6929 				un->un_tagflags = FLAG_STAG;
6930 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6931 				    "sd_unit_attach: un:0x%p tag queueing "
6932 				    "enabled\n", un);
6933 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6934 			    "untagged-qing", 0) == 1) {
6935 				un->un_f_opt_queueing = TRUE;
6936 				un->un_saved_throttle = un->un_throttle =
6937 				    min(un->un_throttle, 3);
6938 			} else {
6939 				un->un_f_opt_queueing = FALSE;
6940 				un->un_saved_throttle = un->un_throttle = 1;
6941 			}
6942 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6943 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6944 			/* The Host Adapter supports internal queueing. */
6945 			un->un_f_opt_queueing = TRUE;
6946 			un->un_saved_throttle = un->un_throttle =
6947 			    min(un->un_throttle, 3);
6948 		} else {
6949 			un->un_f_opt_queueing = FALSE;
6950 			un->un_saved_throttle = un->un_throttle = 1;
6951 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6952 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6953 		}
6954 
6955 		/*
6956 		 * Enable large transfers for SATA/SAS drives
6957 		 */
6958 		if (SD_IS_SERIAL(un)) {
6959 			un->un_max_xfer_size =
6960 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6961 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6962 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6963 			    "sd_unit_attach: un:0x%p max transfer "
6964 			    "size=0x%x\n", un, un->un_max_xfer_size);
6965 
6966 		}
6967 
6968 		/* Setup or tear down default wide operations for disks */
6969 
6970 		/*
6971 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6972 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6973 		 * system and be set to different values. In the future this
6974 		 * code may need to be updated when the ssd module is
6975 		 * obsoleted and removed from the system. (4299588)
6976 		 */
6977 		if (SD_IS_PARALLEL_SCSI(un) &&
6978 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6979 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6980 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6981 			    1, 1) == 1) {
6982 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6983 				    "sd_unit_attach: un:0x%p Wide Transfer "
6984 				    "enabled\n", un);
6985 			}
6986 
6987 			/*
6988 			 * If tagged queuing has also been enabled, then
6989 			 * enable large xfers
6990 			 */
6991 			if (un->un_saved_throttle == sd_max_throttle) {
6992 				un->un_max_xfer_size =
6993 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6994 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6995 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6996 				    "sd_unit_attach: un:0x%p max transfer "
6997 				    "size=0x%x\n", un, un->un_max_xfer_size);
6998 			}
6999 		} else {
7000 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7001 			    0, 1) == 1) {
7002 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7003 				    "sd_unit_attach: un:0x%p "
7004 				    "Wide Transfer disabled\n", un);
7005 			}
7006 		}
7007 	} else {
7008 		un->un_tagflags = FLAG_STAG;
7009 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7010 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7011 	}
7012 
7013 	/*
7014 	 * If this target supports LUN reset, try to enable it.
7015 	 */
7016 	if (un->un_f_lun_reset_enabled) {
7017 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7018 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7019 			    "un:0x%p lun_reset capability set\n", un);
7020 		} else {
7021 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7022 			    "un:0x%p lun-reset capability not set\n", un);
7023 		}
7024 	}
7025 
7026 	/*
7027 	 * Adjust the maximum transfer size. This is to fix
7028 	 * the problem of partial DMA support on SPARC. Some
7029 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7030 	 * size, which requires partial DMA support on SPARC.
7031 	 * In the future the SPARC pci nexus driver may solve
7032 	 * the problem instead of this fix.
7033 	 */
7034 #if defined(__sparc)
7035 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7036 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7037 		un->un_max_xfer_size = max_xfer_size;
7038 		un->un_partial_dma_supported = 1;
7039 	}
7040 #endif
7041 
7042 	/*
7043 	 * Set PKT_DMA_PARTIAL flag.
7044 	 */
7045 	if (un->un_partial_dma_supported == 1) {
7046 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7047 	} else {
7048 		un->un_pkt_flags = 0;
7049 	}
7050 
7051 	/*
7052 	 * At this point in the attach, we have enough info in the
7053 	 * soft state to be able to issue commands to the target.
7054 	 *
7055 	 * All command paths used below MUST issue their commands as
7056 	 * SD_PATH_DIRECT. This is important as intermediate layers
7057 	 * are not all initialized yet (such as PM).
7058 	 */
7059 
7060 	/*
7061 	 * Send a TEST UNIT READY command to the device. This should clear
7062 	 * any outstanding UNIT ATTENTION that may be present.
7063 	 *
7064 	 * Note: Don't check for success, just track if there is a reservation,
7065 	 * this is a throw away command to clear any unit attentions.
7066 	 *
7067 	 * Note: This MUST be the first command issued to the target during
7068 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7069 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7070 	 * with attempts at spinning up a device with no media.
7071 	 */
7072 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7073 		reservation_flag = SD_TARGET_IS_RESERVED;
7074 	}
7075 
7076 	/*
7077 	 * If the device is NOT a removable media device, attempt to spin
7078 	 * it up (using the START_STOP_UNIT command) and read its capacity
7079 	 * (using the READ CAPACITY command).  Note, however, that either
7080 	 * of these could fail and in some cases we would continue with
7081 	 * the attach despite the failure (see below).
7082 	 */
7083 	if (un->un_f_descr_format_supported) {
7084 		switch (sd_spin_up_unit(un)) {
7085 		case 0:
7086 			/*
7087 			 * Spin-up was successful; now try to read the
7088 			 * capacity.  If successful then save the results
7089 			 * and mark the capacity & lbasize as valid.
7090 			 */
7091 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7092 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7093 
7094 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7095 			    &lbasize, SD_PATH_DIRECT)) {
7096 			case 0: {
7097 				if (capacity > DK_MAX_BLOCKS) {
7098 #ifdef _LP64
7099 					if (capacity + 1 >
7100 					    SD_GROUP1_MAX_ADDRESS) {
7101 						/*
7102 						 * Enable descriptor format
7103 						 * sense data so that we can
7104 						 * get 64 bit sense data
7105 						 * fields.
7106 						 */
7107 						sd_enable_descr_sense(un);
7108 					}
7109 #else
7110 					/* 32-bit kernels can't handle this */
7111 					scsi_log(SD_DEVINFO(un),
7112 					    sd_label, CE_WARN,
7113 					    "disk has %llu blocks, which "
7114 					    "is too large for a 32-bit "
7115 					    "kernel", capacity);
7116 
7117 #if defined(__i386) || defined(__amd64)
7118 					/*
7119 					 * 1TB disk was treated as (1T - 512)B
7120 					 * in the past, so that it might have
7121 					 * valid VTOC and solaris partitions,
7122 					 * we have to allow it to continue to
7123 					 * work.
7124 					 */
7125 					if (capacity -1 > DK_MAX_BLOCKS)
7126 #endif
7127 					goto spinup_failed;
7128 #endif
7129 				}
7130 
7131 				/*
7132 				 * Here it's not necessary to check the case:
7133 				 * the capacity of the device is bigger than
7134 				 * what the max hba cdb can support. Because
7135 				 * sd_send_scsi_READ_CAPACITY will retrieve
7136 				 * the capacity by sending USCSI command, which
7137 				 * is constrained by the max hba cdb. Actually,
7138 				 * sd_send_scsi_READ_CAPACITY will return
7139 				 * EINVAL when using bigger cdb than required
7140 				 * cdb length. Will handle this case in
7141 				 * "case EINVAL".
7142 				 */
7143 
7144 				/*
7145 				 * The following relies on
7146 				 * sd_send_scsi_READ_CAPACITY never
7147 				 * returning 0 for capacity and/or lbasize.
7148 				 */
7149 				sd_update_block_info(un, lbasize, capacity);
7150 
7151 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7152 				    "sd_unit_attach: un:0x%p capacity = %ld "
7153 				    "blocks; lbasize= %ld.\n", un,
7154 				    un->un_blockcount, un->un_tgt_blocksize);
7155 
7156 				break;
7157 			}
7158 			case EINVAL:
7159 				/*
7160 				 * In the case where the max-cdb-length property
7161 				 * is smaller than the required CDB length for
7162 				 * a SCSI device, a target driver can fail to
7163 				 * attach to that device.
7164 				 */
7165 				scsi_log(SD_DEVINFO(un),
7166 				    sd_label, CE_WARN,
7167 				    "disk capacity is too large "
7168 				    "for current cdb length");
7169 				goto spinup_failed;
7170 			case EACCES:
7171 				/*
7172 				 * Should never get here if the spin-up
7173 				 * succeeded, but code it in anyway.
7174 				 * From here, just continue with the attach...
7175 				 */
7176 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7177 				    "sd_unit_attach: un:0x%p "
7178 				    "sd_send_scsi_READ_CAPACITY "
7179 				    "returned reservation conflict\n", un);
7180 				reservation_flag = SD_TARGET_IS_RESERVED;
7181 				break;
7182 			default:
7183 				/*
7184 				 * Likewise, should never get here if the
7185 				 * spin-up succeeded. Just continue with
7186 				 * the attach...
7187 				 */
7188 				break;
7189 			}
7190 			break;
7191 		case EACCES:
7192 			/*
7193 			 * Device is reserved by another host.  In this case
7194 			 * we could not spin it up or read the capacity, but
7195 			 * we continue with the attach anyway.
7196 			 */
7197 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7198 			    "sd_unit_attach: un:0x%p spin-up reservation "
7199 			    "conflict.\n", un);
7200 			reservation_flag = SD_TARGET_IS_RESERVED;
7201 			break;
7202 		default:
7203 			/* Fail the attach if the spin-up failed. */
7204 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7205 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7206 			goto spinup_failed;
7207 		}
7208 	}
7209 
7210 	/*
7211 	 * Check to see if this is a MMC drive
7212 	 */
7213 	if (ISCD(un)) {
7214 		sd_set_mmc_caps(un);
7215 	}
7216 
7217 
7218 	/*
7219 	 * Add a zero-length attribute to tell the world we support
7220 	 * kernel ioctls (for layered drivers)
7221 	 */
7222 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7223 	    DDI_KERNEL_IOCTL, NULL, 0);
7224 
7225 	/*
7226 	 * Add a boolean property to tell the world we support
7227 	 * the B_FAILFAST flag (for layered drivers)
7228 	 */
7229 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7230 	    "ddi-failfast-supported", NULL, 0);
7231 
7232 	/*
7233 	 * Initialize power management
7234 	 */
7235 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7236 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7237 	sd_setup_pm(un, devi);
7238 	if (un->un_f_pm_is_enabled == FALSE) {
7239 		/*
7240 		 * For performance, point to a jump table that does
7241 		 * not include pm.
7242 		 * The direct and priority chains don't change with PM.
7243 		 *
7244 		 * Note: this is currently done based on individual device
7245 		 * capabilities. When an interface for determining system
7246 		 * power enabled state becomes available, or when additional
7247 		 * layers are added to the command chain, these values will
7248 		 * have to be re-evaluated for correctness.
7249 		 */
7250 		if (un->un_f_non_devbsize_supported) {
7251 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7252 		} else {
7253 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7254 		}
7255 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7256 	}
7257 
7258 	/*
7259 	 * This property is set to 0 by HA software to avoid retries
7260 	 * on a reserved disk. (The preferred property name is
7261 	 * "retry-on-reservation-conflict") (1189689)
7262 	 *
7263 	 * Note: The use of a global here can have unintended consequences. A
7264 	 * per instance variable is preferrable to match the capabilities of
7265 	 * different underlying hba's (4402600)
7266 	 */
7267 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7268 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7269 	    sd_retry_on_reservation_conflict);
7270 	if (sd_retry_on_reservation_conflict != 0) {
7271 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7272 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7273 		    sd_retry_on_reservation_conflict);
7274 	}
7275 
7276 	/* Set up options for QFULL handling. */
7277 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7278 	    "qfull-retries", -1)) != -1) {
7279 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7280 		    rval, 1);
7281 	}
7282 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7283 	    "qfull-retry-interval", -1)) != -1) {
7284 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7285 		    rval, 1);
7286 	}
7287 
7288 	/*
7289 	 * This just prints a message that announces the existence of the
7290 	 * device. The message is always printed in the system logfile, but
7291 	 * only appears on the console if the system is booted with the
7292 	 * -v (verbose) argument.
7293 	 */
7294 	ddi_report_dev(devi);
7295 
7296 	un->un_mediastate = DKIO_NONE;
7297 
7298 	cmlb_alloc_handle(&un->un_cmlbhandle);
7299 
7300 #if defined(__i386) || defined(__amd64)
7301 	/*
7302 	 * On x86, compensate for off-by-1 legacy error
7303 	 */
7304 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7305 	    (lbasize == un->un_sys_blocksize))
7306 		offbyone = CMLB_OFF_BY_ONE;
7307 #endif
7308 
7309 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7310 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7311 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7312 	    (void *)SD_PATH_DIRECT) != 0) {
7313 		goto cmlb_attach_failed;
7314 	}
7315 
7316 
7317 	/*
7318 	 * Read and validate the device's geometry (ie, disk label)
7319 	 * A new unformatted drive will not have a valid geometry, but
7320 	 * the driver needs to successfully attach to this device so
7321 	 * the drive can be formatted via ioctls.
7322 	 */
7323 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7324 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7325 
7326 	mutex_enter(SD_MUTEX(un));
7327 
7328 	/*
7329 	 * Read and initialize the devid for the unit.
7330 	 */
7331 	if (un->un_f_devid_supported) {
7332 		sd_register_devid(un, devi, reservation_flag);
7333 	}
7334 	mutex_exit(SD_MUTEX(un));
7335 
7336 #if (defined(__fibre))
7337 	/*
7338 	 * Register callbacks for fibre only.  You can't do this soley
7339 	 * on the basis of the devid_type because this is hba specific.
7340 	 * We need to query our hba capabilities to find out whether to
7341 	 * register or not.
7342 	 */
7343 	if (un->un_f_is_fibre) {
7344 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7345 			sd_init_event_callbacks(un);
7346 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7347 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7348 			    un);
7349 		}
7350 	}
7351 #endif
7352 
7353 	if (un->un_f_opt_disable_cache == TRUE) {
7354 		/*
7355 		 * Disable both read cache and write cache.  This is
7356 		 * the historic behavior of the keywords in the config file.
7357 		 */
7358 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7359 		    0) {
7360 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7361 			    "sd_unit_attach: un:0x%p Could not disable "
7362 			    "caching", un);
7363 			goto devid_failed;
7364 		}
7365 	}
7366 
7367 	/*
7368 	 * Check the value of the WCE bit now and
7369 	 * set un_f_write_cache_enabled accordingly.
7370 	 */
7371 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7372 	mutex_enter(SD_MUTEX(un));
7373 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7374 	mutex_exit(SD_MUTEX(un));
7375 
7376 	/*
7377 	 * Check the value of the NV_SUP bit and set
7378 	 * un_f_suppress_cache_flush accordingly.
7379 	 */
7380 	sd_get_nv_sup(un);
7381 
7382 	/*
7383 	 * Find out what type of reservation this disk supports.
7384 	 */
7385 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7386 	case 0:
7387 		/*
7388 		 * SCSI-3 reservations are supported.
7389 		 */
7390 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7392 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7393 		break;
7394 	case ENOTSUP:
7395 		/*
7396 		 * The PERSISTENT RESERVE IN command would not be recognized by
7397 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7398 		 */
7399 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7400 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7401 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7402 		break;
7403 	default:
7404 		/*
7405 		 * default to SCSI-3 reservations
7406 		 */
7407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7408 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7409 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7410 		break;
7411 	}
7412 
7413 	/*
7414 	 * Set the pstat and error stat values here, so data obtained during the
7415 	 * previous attach-time routines is available.
7416 	 *
7417 	 * Note: This is a critical sequence that needs to be maintained:
7418 	 *	1) Instantiate the kstats before any routines using the iopath
7419 	 *	   (i.e. sd_send_scsi_cmd).
7420 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7421 	 *	   stats (sd_set_pstats)here, following
7422 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7423 	 *	   sd_cache_control().
7424 	 */
7425 
7426 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7427 		sd_set_pstats(un);
7428 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7429 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7430 	}
7431 
7432 	sd_set_errstats(un);
7433 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7434 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7435 
7436 
7437 	/*
7438 	 * After successfully attaching an instance, we record the information
7439 	 * of how many luns have been attached on the relative target and
7440 	 * controller for parallel SCSI. This information is used when sd tries
7441 	 * to set the tagged queuing capability in HBA.
7442 	 */
7443 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7444 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7445 	}
7446 
7447 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7448 	    "sd_unit_attach: un:0x%p exit success\n", un);
7449 
7450 	return (DDI_SUCCESS);
7451 
7452 	/*
7453 	 * An error occurred during the attach; clean up & return failure.
7454 	 */
7455 
7456 devid_failed:
7457 
7458 setup_pm_failed:
7459 	ddi_remove_minor_node(devi, NULL);
7460 
7461 cmlb_attach_failed:
7462 	/*
7463 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7464 	 */
7465 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7466 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7467 
7468 	/*
7469 	 * Refer to the comments of setting tagged-qing in the beginning of
7470 	 * sd_unit_attach. We can only disable tagged queuing when there is
7471 	 * no lun attached on the target.
7472 	 */
7473 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7474 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7475 	}
7476 
7477 	if (un->un_f_is_fibre == FALSE) {
7478 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7479 	}
7480 
7481 spinup_failed:
7482 
7483 	mutex_enter(SD_MUTEX(un));
7484 
7485 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7486 	if (un->un_direct_priority_timeid != NULL) {
7487 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7488 		un->un_direct_priority_timeid = NULL;
7489 		mutex_exit(SD_MUTEX(un));
7490 		(void) untimeout(temp_id);
7491 		mutex_enter(SD_MUTEX(un));
7492 	}
7493 
7494 	/* Cancel any pending start/stop timeouts */
7495 	if (un->un_startstop_timeid != NULL) {
7496 		timeout_id_t temp_id = un->un_startstop_timeid;
7497 		un->un_startstop_timeid = NULL;
7498 		mutex_exit(SD_MUTEX(un));
7499 		(void) untimeout(temp_id);
7500 		mutex_enter(SD_MUTEX(un));
7501 	}
7502 
7503 	/* Cancel any pending reset-throttle timeouts */
7504 	if (un->un_reset_throttle_timeid != NULL) {
7505 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7506 		un->un_reset_throttle_timeid = NULL;
7507 		mutex_exit(SD_MUTEX(un));
7508 		(void) untimeout(temp_id);
7509 		mutex_enter(SD_MUTEX(un));
7510 	}
7511 
7512 	/* Cancel any pending retry timeouts */
7513 	if (un->un_retry_timeid != NULL) {
7514 		timeout_id_t temp_id = un->un_retry_timeid;
7515 		un->un_retry_timeid = NULL;
7516 		mutex_exit(SD_MUTEX(un));
7517 		(void) untimeout(temp_id);
7518 		mutex_enter(SD_MUTEX(un));
7519 	}
7520 
7521 	/* Cancel any pending delayed cv broadcast timeouts */
7522 	if (un->un_dcvb_timeid != NULL) {
7523 		timeout_id_t temp_id = un->un_dcvb_timeid;
7524 		un->un_dcvb_timeid = NULL;
7525 		mutex_exit(SD_MUTEX(un));
7526 		(void) untimeout(temp_id);
7527 		mutex_enter(SD_MUTEX(un));
7528 	}
7529 
7530 	mutex_exit(SD_MUTEX(un));
7531 
7532 	/* There should not be any in-progress I/O so ASSERT this check */
7533 	ASSERT(un->un_ncmds_in_transport == 0);
7534 	ASSERT(un->un_ncmds_in_driver == 0);
7535 
7536 	/* Do not free the softstate if the callback routine is active */
7537 	sd_sync_with_callback(un);
7538 
7539 	/*
7540 	 * Partition stats apparently are not used with removables. These would
7541 	 * not have been created during attach, so no need to clean them up...
7542 	 */
7543 	if (un->un_errstats != NULL) {
7544 		kstat_delete(un->un_errstats);
7545 		un->un_errstats = NULL;
7546 	}
7547 
7548 create_errstats_failed:
7549 
7550 	if (un->un_stats != NULL) {
7551 		kstat_delete(un->un_stats);
7552 		un->un_stats = NULL;
7553 	}
7554 
7555 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7556 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7557 
7558 	ddi_prop_remove_all(devi);
7559 	sema_destroy(&un->un_semoclose);
7560 	cv_destroy(&un->un_state_cv);
7561 
7562 getrbuf_failed:
7563 
7564 	sd_free_rqs(un);
7565 
7566 alloc_rqs_failed:
7567 
7568 	devp->sd_private = NULL;
7569 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7570 
7571 get_softstate_failed:
7572 	/*
7573 	 * Note: the man pages are unclear as to whether or not doing a
7574 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7575 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7576 	 * ddi_get_soft_state() fails.  The implication seems to be
7577 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7578 	 */
7579 	ddi_soft_state_free(sd_state, instance);
7580 
7581 probe_failed:
7582 	scsi_unprobe(devp);
7583 
7584 	return (DDI_FAILURE);
7585 }
7586 
7587 
7588 /*
7589  *    Function: sd_unit_detach
7590  *
7591  * Description: Performs DDI_DETACH processing for sddetach().
7592  *
7593  * Return Code: DDI_SUCCESS
7594  *		DDI_FAILURE
7595  *
7596  *     Context: Kernel thread context
7597  */
7598 
7599 static int
7600 sd_unit_detach(dev_info_t *devi)
7601 {
7602 	struct scsi_device	*devp;
7603 	struct sd_lun		*un;
7604 	int			i;
7605 	int			tgt;
7606 	dev_t			dev;
7607 	dev_info_t		*pdip = ddi_get_parent(devi);
7608 	int			instance = ddi_get_instance(devi);
7609 
7610 	mutex_enter(&sd_detach_mutex);
7611 
7612 	/*
7613 	 * Fail the detach for any of the following:
7614 	 *  - Unable to get the sd_lun struct for the instance
7615 	 *  - A layered driver has an outstanding open on the instance
7616 	 *  - Another thread is already detaching this instance
7617 	 *  - Another thread is currently performing an open
7618 	 */
7619 	devp = ddi_get_driver_private(devi);
7620 	if ((devp == NULL) ||
7621 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7622 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7623 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7624 		mutex_exit(&sd_detach_mutex);
7625 		return (DDI_FAILURE);
7626 	}
7627 
7628 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7629 
7630 	/*
7631 	 * Mark this instance as currently in a detach, to inhibit any
7632 	 * opens from a layered driver.
7633 	 */
7634 	un->un_detach_count++;
7635 	mutex_exit(&sd_detach_mutex);
7636 
7637 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7638 	    SCSI_ADDR_PROP_TARGET, -1);
7639 
7640 	dev = sd_make_device(SD_DEVINFO(un));
7641 
7642 #ifndef lint
7643 	_NOTE(COMPETING_THREADS_NOW);
7644 #endif
7645 
7646 	mutex_enter(SD_MUTEX(un));
7647 
7648 	/*
7649 	 * Fail the detach if there are any outstanding layered
7650 	 * opens on this device.
7651 	 */
7652 	for (i = 0; i < NDKMAP; i++) {
7653 		if (un->un_ocmap.lyropen[i] != 0) {
7654 			goto err_notclosed;
7655 		}
7656 	}
7657 
7658 	/*
7659 	 * Verify there are NO outstanding commands issued to this device.
7660 	 * ie, un_ncmds_in_transport == 0.
7661 	 * It's possible to have outstanding commands through the physio
7662 	 * code path, even though everything's closed.
7663 	 */
7664 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7665 	    (un->un_direct_priority_timeid != NULL) ||
7666 	    (un->un_state == SD_STATE_RWAIT)) {
7667 		mutex_exit(SD_MUTEX(un));
7668 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7669 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7670 		goto err_stillbusy;
7671 	}
7672 
7673 	/*
7674 	 * If we have the device reserved, release the reservation.
7675 	 */
7676 	if ((un->un_resvd_status & SD_RESERVE) &&
7677 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7678 		mutex_exit(SD_MUTEX(un));
7679 		/*
7680 		 * Note: sd_reserve_release sends a command to the device
7681 		 * via the sd_ioctlcmd() path, and can sleep.
7682 		 */
7683 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7684 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7685 			    "sd_dr_detach: Cannot release reservation \n");
7686 		}
7687 	} else {
7688 		mutex_exit(SD_MUTEX(un));
7689 	}
7690 
7691 	/*
7692 	 * Untimeout any reserve recover, throttle reset, restart unit
7693 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7694 	 * from getting nulled by their callback functions.
7695 	 */
7696 	mutex_enter(SD_MUTEX(un));
7697 	if (un->un_resvd_timeid != NULL) {
7698 		timeout_id_t temp_id = un->un_resvd_timeid;
7699 		un->un_resvd_timeid = NULL;
7700 		mutex_exit(SD_MUTEX(un));
7701 		(void) untimeout(temp_id);
7702 		mutex_enter(SD_MUTEX(un));
7703 	}
7704 
7705 	if (un->un_reset_throttle_timeid != NULL) {
7706 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7707 		un->un_reset_throttle_timeid = NULL;
7708 		mutex_exit(SD_MUTEX(un));
7709 		(void) untimeout(temp_id);
7710 		mutex_enter(SD_MUTEX(un));
7711 	}
7712 
7713 	if (un->un_startstop_timeid != NULL) {
7714 		timeout_id_t temp_id = un->un_startstop_timeid;
7715 		un->un_startstop_timeid = NULL;
7716 		mutex_exit(SD_MUTEX(un));
7717 		(void) untimeout(temp_id);
7718 		mutex_enter(SD_MUTEX(un));
7719 	}
7720 
7721 	if (un->un_dcvb_timeid != NULL) {
7722 		timeout_id_t temp_id = un->un_dcvb_timeid;
7723 		un->un_dcvb_timeid = NULL;
7724 		mutex_exit(SD_MUTEX(un));
7725 		(void) untimeout(temp_id);
7726 	} else {
7727 		mutex_exit(SD_MUTEX(un));
7728 	}
7729 
7730 	/* Remove any pending reservation reclaim requests for this device */
7731 	sd_rmv_resv_reclaim_req(dev);
7732 
7733 	mutex_enter(SD_MUTEX(un));
7734 
7735 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7736 	if (un->un_direct_priority_timeid != NULL) {
7737 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7738 		un->un_direct_priority_timeid = NULL;
7739 		mutex_exit(SD_MUTEX(un));
7740 		(void) untimeout(temp_id);
7741 		mutex_enter(SD_MUTEX(un));
7742 	}
7743 
7744 	/* Cancel any active multi-host disk watch thread requests */
7745 	if (un->un_mhd_token != NULL) {
7746 		mutex_exit(SD_MUTEX(un));
7747 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7748 		if (scsi_watch_request_terminate(un->un_mhd_token,
7749 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7750 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7751 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7752 			/*
7753 			 * Note: We are returning here after having removed
7754 			 * some driver timeouts above. This is consistent with
7755 			 * the legacy implementation but perhaps the watch
7756 			 * terminate call should be made with the wait flag set.
7757 			 */
7758 			goto err_stillbusy;
7759 		}
7760 		mutex_enter(SD_MUTEX(un));
7761 		un->un_mhd_token = NULL;
7762 	}
7763 
7764 	if (un->un_swr_token != NULL) {
7765 		mutex_exit(SD_MUTEX(un));
7766 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7767 		if (scsi_watch_request_terminate(un->un_swr_token,
7768 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7769 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7770 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7771 			/*
7772 			 * Note: We are returning here after having removed
7773 			 * some driver timeouts above. This is consistent with
7774 			 * the legacy implementation but perhaps the watch
7775 			 * terminate call should be made with the wait flag set.
7776 			 */
7777 			goto err_stillbusy;
7778 		}
7779 		mutex_enter(SD_MUTEX(un));
7780 		un->un_swr_token = NULL;
7781 	}
7782 
7783 	mutex_exit(SD_MUTEX(un));
7784 
7785 	/*
7786 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7787 	 * if we have not registered one.
7788 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7789 	 */
7790 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7791 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7792 
7793 	/*
7794 	 * protect the timeout pointers from getting nulled by
7795 	 * their callback functions during the cancellation process.
7796 	 * In such a scenario untimeout can be invoked with a null value.
7797 	 */
7798 	_NOTE(NO_COMPETING_THREADS_NOW);
7799 
7800 	mutex_enter(&un->un_pm_mutex);
7801 	if (un->un_pm_idle_timeid != NULL) {
7802 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7803 		un->un_pm_idle_timeid = NULL;
7804 		mutex_exit(&un->un_pm_mutex);
7805 
7806 		/*
7807 		 * Timeout is active; cancel it.
7808 		 * Note that it'll never be active on a device
7809 		 * that does not support PM therefore we don't
7810 		 * have to check before calling pm_idle_component.
7811 		 */
7812 		(void) untimeout(temp_id);
7813 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7814 		mutex_enter(&un->un_pm_mutex);
7815 	}
7816 
7817 	/*
7818 	 * Check whether there is already a timeout scheduled for power
7819 	 * management. If yes then don't lower the power here, that's.
7820 	 * the timeout handler's job.
7821 	 */
7822 	if (un->un_pm_timeid != NULL) {
7823 		timeout_id_t temp_id = un->un_pm_timeid;
7824 		un->un_pm_timeid = NULL;
7825 		mutex_exit(&un->un_pm_mutex);
7826 		/*
7827 		 * Timeout is active; cancel it.
7828 		 * Note that it'll never be active on a device
7829 		 * that does not support PM therefore we don't
7830 		 * have to check before calling pm_idle_component.
7831 		 */
7832 		(void) untimeout(temp_id);
7833 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7834 
7835 	} else {
7836 		mutex_exit(&un->un_pm_mutex);
7837 		if ((un->un_f_pm_is_enabled == TRUE) &&
7838 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7839 		    DDI_SUCCESS)) {
7840 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7841 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7842 			/*
7843 			 * Fix for bug: 4297749, item # 13
7844 			 * The above test now includes a check to see if PM is
7845 			 * supported by this device before call
7846 			 * pm_lower_power().
7847 			 * Note, the following is not dead code. The call to
7848 			 * pm_lower_power above will generate a call back into
7849 			 * our sdpower routine which might result in a timeout
7850 			 * handler getting activated. Therefore the following
7851 			 * code is valid and necessary.
7852 			 */
7853 			mutex_enter(&un->un_pm_mutex);
7854 			if (un->un_pm_timeid != NULL) {
7855 				timeout_id_t temp_id = un->un_pm_timeid;
7856 				un->un_pm_timeid = NULL;
7857 				mutex_exit(&un->un_pm_mutex);
7858 				(void) untimeout(temp_id);
7859 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7860 			} else {
7861 				mutex_exit(&un->un_pm_mutex);
7862 			}
7863 		}
7864 	}
7865 
7866 	/*
7867 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7868 	 * Relocated here from above to be after the call to
7869 	 * pm_lower_power, which was getting errors.
7870 	 */
7871 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7872 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7873 
7874 	/*
7875 	 * Currently, tagged queuing is supported per target based by HBA.
7876 	 * Setting this per lun instance actually sets the capability of this
7877 	 * target in HBA, which affects those luns already attached on the
7878 	 * same target. So during detach, we can only disable this capability
7879 	 * only when this is the only lun left on this target. By doing
7880 	 * this, we assume a target has the same tagged queuing capability
7881 	 * for every lun. The condition can be removed when HBA is changed to
7882 	 * support per lun based tagged queuing capability.
7883 	 */
7884 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7885 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7886 	}
7887 
7888 	if (un->un_f_is_fibre == FALSE) {
7889 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7890 	}
7891 
7892 	/*
7893 	 * Remove any event callbacks, fibre only
7894 	 */
7895 	if (un->un_f_is_fibre == TRUE) {
7896 		if ((un->un_insert_event != NULL) &&
7897 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7898 		    DDI_SUCCESS)) {
7899 			/*
7900 			 * Note: We are returning here after having done
7901 			 * substantial cleanup above. This is consistent
7902 			 * with the legacy implementation but this may not
7903 			 * be the right thing to do.
7904 			 */
7905 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7906 			    "sd_dr_detach: Cannot cancel insert event\n");
7907 			goto err_remove_event;
7908 		}
7909 		un->un_insert_event = NULL;
7910 
7911 		if ((un->un_remove_event != NULL) &&
7912 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7913 		    DDI_SUCCESS)) {
7914 			/*
7915 			 * Note: We are returning here after having done
7916 			 * substantial cleanup above. This is consistent
7917 			 * with the legacy implementation but this may not
7918 			 * be the right thing to do.
7919 			 */
7920 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7921 			    "sd_dr_detach: Cannot cancel remove event\n");
7922 			goto err_remove_event;
7923 		}
7924 		un->un_remove_event = NULL;
7925 	}
7926 
7927 	/* Do not free the softstate if the callback routine is active */
7928 	sd_sync_with_callback(un);
7929 
7930 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7931 	cmlb_free_handle(&un->un_cmlbhandle);
7932 
7933 	/*
7934 	 * Hold the detach mutex here, to make sure that no other threads ever
7935 	 * can access a (partially) freed soft state structure.
7936 	 */
7937 	mutex_enter(&sd_detach_mutex);
7938 
7939 	/*
7940 	 * Clean up the soft state struct.
7941 	 * Cleanup is done in reverse order of allocs/inits.
7942 	 * At this point there should be no competing threads anymore.
7943 	 */
7944 
7945 	/* Unregister and free device id. */
7946 	ddi_devid_unregister(devi);
7947 	if (un->un_devid) {
7948 		ddi_devid_free(un->un_devid);
7949 		un->un_devid = NULL;
7950 	}
7951 
7952 	/*
7953 	 * Destroy wmap cache if it exists.
7954 	 */
7955 	if (un->un_wm_cache != NULL) {
7956 		kmem_cache_destroy(un->un_wm_cache);
7957 		un->un_wm_cache = NULL;
7958 	}
7959 
7960 	/*
7961 	 * kstat cleanup is done in detach for all device types (4363169).
7962 	 * We do not want to fail detach if the device kstats are not deleted
7963 	 * since there is a confusion about the devo_refcnt for the device.
7964 	 * We just delete the kstats and let detach complete successfully.
7965 	 */
7966 	if (un->un_stats != NULL) {
7967 		kstat_delete(un->un_stats);
7968 		un->un_stats = NULL;
7969 	}
7970 	if (un->un_errstats != NULL) {
7971 		kstat_delete(un->un_errstats);
7972 		un->un_errstats = NULL;
7973 	}
7974 
7975 	/* Remove partition stats */
7976 	if (un->un_f_pkstats_enabled) {
7977 		for (i = 0; i < NSDMAP; i++) {
7978 			if (un->un_pstats[i] != NULL) {
7979 				kstat_delete(un->un_pstats[i]);
7980 				un->un_pstats[i] = NULL;
7981 			}
7982 		}
7983 	}
7984 
7985 	/* Remove xbuf registration */
7986 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7987 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7988 
7989 	/* Remove driver properties */
7990 	ddi_prop_remove_all(devi);
7991 
7992 	mutex_destroy(&un->un_pm_mutex);
7993 	cv_destroy(&un->un_pm_busy_cv);
7994 
7995 	cv_destroy(&un->un_wcc_cv);
7996 
7997 	/* Open/close semaphore */
7998 	sema_destroy(&un->un_semoclose);
7999 
8000 	/* Removable media condvar. */
8001 	cv_destroy(&un->un_state_cv);
8002 
8003 	/* Suspend/resume condvar. */
8004 	cv_destroy(&un->un_suspend_cv);
8005 	cv_destroy(&un->un_disk_busy_cv);
8006 
8007 	sd_free_rqs(un);
8008 
8009 	/* Free up soft state */
8010 	devp->sd_private = NULL;
8011 
8012 	bzero(un, sizeof (struct sd_lun));
8013 	ddi_soft_state_free(sd_state, instance);
8014 
8015 	mutex_exit(&sd_detach_mutex);
8016 
8017 	/* This frees up the INQUIRY data associated with the device. */
8018 	scsi_unprobe(devp);
8019 
8020 	/*
8021 	 * After successfully detaching an instance, we update the information
8022 	 * of how many luns have been attached in the relative target and
8023 	 * controller for parallel SCSI. This information is used when sd tries
8024 	 * to set the tagged queuing capability in HBA.
8025 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8026 	 * check if the device is parallel SCSI. However, we don't need to
8027 	 * check here because we've already checked during attach. No device
8028 	 * that is not parallel SCSI is in the chain.
8029 	 */
8030 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8031 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8032 	}
8033 
8034 	return (DDI_SUCCESS);
8035 
8036 err_notclosed:
8037 	mutex_exit(SD_MUTEX(un));
8038 
8039 err_stillbusy:
8040 	_NOTE(NO_COMPETING_THREADS_NOW);
8041 
8042 err_remove_event:
8043 	mutex_enter(&sd_detach_mutex);
8044 	un->un_detach_count--;
8045 	mutex_exit(&sd_detach_mutex);
8046 
8047 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8048 	return (DDI_FAILURE);
8049 }
8050 
8051 
8052 /*
8053  *    Function: sd_create_errstats
8054  *
8055  * Description: This routine instantiates the device error stats.
8056  *
8057  *		Note: During attach the stats are instantiated first so they are
8058  *		available for attach-time routines that utilize the driver
8059  *		iopath to send commands to the device. The stats are initialized
8060  *		separately so data obtained during some attach-time routines is
8061  *		available. (4362483)
8062  *
8063  *   Arguments: un - driver soft state (unit) structure
8064  *		instance - driver instance
8065  *
8066  *     Context: Kernel thread context
8067  */
8068 
8069 static void
8070 sd_create_errstats(struct sd_lun *un, int instance)
8071 {
8072 	struct	sd_errstats	*stp;
8073 	char	kstatmodule_err[KSTAT_STRLEN];
8074 	char	kstatname[KSTAT_STRLEN];
8075 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8076 
8077 	ASSERT(un != NULL);
8078 
8079 	if (un->un_errstats != NULL) {
8080 		return;
8081 	}
8082 
8083 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8084 	    "%serr", sd_label);
8085 	(void) snprintf(kstatname, sizeof (kstatname),
8086 	    "%s%d,err", sd_label, instance);
8087 
8088 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8089 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8090 
8091 	if (un->un_errstats == NULL) {
8092 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8093 		    "sd_create_errstats: Failed kstat_create\n");
8094 		return;
8095 	}
8096 
8097 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8098 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8099 	    KSTAT_DATA_UINT32);
8100 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8101 	    KSTAT_DATA_UINT32);
8102 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8103 	    KSTAT_DATA_UINT32);
8104 	kstat_named_init(&stp->sd_vid,		"Vendor",
8105 	    KSTAT_DATA_CHAR);
8106 	kstat_named_init(&stp->sd_pid,		"Product",
8107 	    KSTAT_DATA_CHAR);
8108 	kstat_named_init(&stp->sd_revision,	"Revision",
8109 	    KSTAT_DATA_CHAR);
8110 	kstat_named_init(&stp->sd_serial,	"Serial No",
8111 	    KSTAT_DATA_CHAR);
8112 	kstat_named_init(&stp->sd_capacity,	"Size",
8113 	    KSTAT_DATA_ULONGLONG);
8114 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8115 	    KSTAT_DATA_UINT32);
8116 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8117 	    KSTAT_DATA_UINT32);
8118 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8119 	    KSTAT_DATA_UINT32);
8120 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8121 	    KSTAT_DATA_UINT32);
8122 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8123 	    KSTAT_DATA_UINT32);
8124 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8125 	    KSTAT_DATA_UINT32);
8126 
8127 	un->un_errstats->ks_private = un;
8128 	un->un_errstats->ks_update  = nulldev;
8129 
8130 	kstat_install(un->un_errstats);
8131 }
8132 
8133 
8134 /*
8135  *    Function: sd_set_errstats
8136  *
8137  * Description: This routine sets the value of the vendor id, product id,
8138  *		revision, serial number, and capacity device error stats.
8139  *
8140  *		Note: During attach the stats are instantiated first so they are
8141  *		available for attach-time routines that utilize the driver
8142  *		iopath to send commands to the device. The stats are initialized
8143  *		separately so data obtained during some attach-time routines is
8144  *		available. (4362483)
8145  *
8146  *   Arguments: un - driver soft state (unit) structure
8147  *
8148  *     Context: Kernel thread context
8149  */
8150 
8151 static void
8152 sd_set_errstats(struct sd_lun *un)
8153 {
8154 	struct	sd_errstats	*stp;
8155 
8156 	ASSERT(un != NULL);
8157 	ASSERT(un->un_errstats != NULL);
8158 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8159 	ASSERT(stp != NULL);
8160 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8161 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8162 	(void) strncpy(stp->sd_revision.value.c,
8163 	    un->un_sd->sd_inq->inq_revision, 4);
8164 
8165 	/*
8166 	 * All the errstats are persistent across detach/attach,
8167 	 * so reset all the errstats here in case of the hot
8168 	 * replacement of disk drives, except for not changed
8169 	 * Sun qualified drives.
8170 	 */
8171 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8172 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8173 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8174 		stp->sd_softerrs.value.ui32 = 0;
8175 		stp->sd_harderrs.value.ui32 = 0;
8176 		stp->sd_transerrs.value.ui32 = 0;
8177 		stp->sd_rq_media_err.value.ui32 = 0;
8178 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8179 		stp->sd_rq_nodev_err.value.ui32 = 0;
8180 		stp->sd_rq_recov_err.value.ui32 = 0;
8181 		stp->sd_rq_illrq_err.value.ui32 = 0;
8182 		stp->sd_rq_pfa_err.value.ui32 = 0;
8183 	}
8184 
8185 	/*
8186 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8187 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8188 	 * (4376302))
8189 	 */
8190 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8191 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8192 		    sizeof (SD_INQUIRY(un)->inq_serial));
8193 	}
8194 
8195 	if (un->un_f_blockcount_is_valid != TRUE) {
8196 		/*
8197 		 * Set capacity error stat to 0 for no media. This ensures
8198 		 * a valid capacity is displayed in response to 'iostat -E'
8199 		 * when no media is present in the device.
8200 		 */
8201 		stp->sd_capacity.value.ui64 = 0;
8202 	} else {
8203 		/*
8204 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8205 		 * capacity.
8206 		 *
8207 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8208 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8209 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8210 		 */
8211 		stp->sd_capacity.value.ui64 = (uint64_t)
8212 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8213 	}
8214 }
8215 
8216 
8217 /*
8218  *    Function: sd_set_pstats
8219  *
8220  * Description: This routine instantiates and initializes the partition
8221  *              stats for each partition with more than zero blocks.
8222  *		(4363169)
8223  *
8224  *   Arguments: un - driver soft state (unit) structure
8225  *
8226  *     Context: Kernel thread context
8227  */
8228 
8229 static void
8230 sd_set_pstats(struct sd_lun *un)
8231 {
8232 	char	kstatname[KSTAT_STRLEN];
8233 	int	instance;
8234 	int	i;
8235 	diskaddr_t	nblks = 0;
8236 	char	*partname = NULL;
8237 
8238 	ASSERT(un != NULL);
8239 
8240 	instance = ddi_get_instance(SD_DEVINFO(un));
8241 
8242 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8243 	for (i = 0; i < NSDMAP; i++) {
8244 
8245 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8246 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8247 			continue;
8248 		mutex_enter(SD_MUTEX(un));
8249 
8250 		if ((un->un_pstats[i] == NULL) &&
8251 		    (nblks != 0)) {
8252 
8253 			(void) snprintf(kstatname, sizeof (kstatname),
8254 			    "%s%d,%s", sd_label, instance,
8255 			    partname);
8256 
8257 			un->un_pstats[i] = kstat_create(sd_label,
8258 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8259 			    1, KSTAT_FLAG_PERSISTENT);
8260 			if (un->un_pstats[i] != NULL) {
8261 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8262 				kstat_install(un->un_pstats[i]);
8263 			}
8264 		}
8265 		mutex_exit(SD_MUTEX(un));
8266 	}
8267 }
8268 
8269 
8270 #if (defined(__fibre))
8271 /*
8272  *    Function: sd_init_event_callbacks
8273  *
8274  * Description: This routine initializes the insertion and removal event
8275  *		callbacks. (fibre only)
8276  *
8277  *   Arguments: un - driver soft state (unit) structure
8278  *
8279  *     Context: Kernel thread context
8280  */
8281 
8282 static void
8283 sd_init_event_callbacks(struct sd_lun *un)
8284 {
8285 	ASSERT(un != NULL);
8286 
8287 	if ((un->un_insert_event == NULL) &&
8288 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8289 	    &un->un_insert_event) == DDI_SUCCESS)) {
8290 		/*
8291 		 * Add the callback for an insertion event
8292 		 */
8293 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8294 		    un->un_insert_event, sd_event_callback, (void *)un,
8295 		    &(un->un_insert_cb_id));
8296 	}
8297 
8298 	if ((un->un_remove_event == NULL) &&
8299 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8300 	    &un->un_remove_event) == DDI_SUCCESS)) {
8301 		/*
8302 		 * Add the callback for a removal event
8303 		 */
8304 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8305 		    un->un_remove_event, sd_event_callback, (void *)un,
8306 		    &(un->un_remove_cb_id));
8307 	}
8308 }
8309 
8310 
8311 /*
8312  *    Function: sd_event_callback
8313  *
8314  * Description: This routine handles insert/remove events (photon). The
8315  *		state is changed to OFFLINE which can be used to supress
8316  *		error msgs. (fibre only)
8317  *
8318  *   Arguments: un - driver soft state (unit) structure
8319  *
8320  *     Context: Callout thread context
8321  */
8322 /* ARGSUSED */
8323 static void
8324 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8325     void *bus_impldata)
8326 {
8327 	struct sd_lun *un = (struct sd_lun *)arg;
8328 
8329 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8330 	if (event == un->un_insert_event) {
8331 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8332 		mutex_enter(SD_MUTEX(un));
8333 		if (un->un_state == SD_STATE_OFFLINE) {
8334 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8335 				un->un_state = un->un_last_state;
8336 			} else {
8337 				/*
8338 				 * We have gone through SUSPEND/RESUME while
8339 				 * we were offline. Restore the last state
8340 				 */
8341 				un->un_state = un->un_save_state;
8342 			}
8343 		}
8344 		mutex_exit(SD_MUTEX(un));
8345 
8346 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8347 	} else if (event == un->un_remove_event) {
8348 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8349 		mutex_enter(SD_MUTEX(un));
8350 		/*
8351 		 * We need to handle an event callback that occurs during
8352 		 * the suspend operation, since we don't prevent it.
8353 		 */
8354 		if (un->un_state != SD_STATE_OFFLINE) {
8355 			if (un->un_state != SD_STATE_SUSPENDED) {
8356 				New_state(un, SD_STATE_OFFLINE);
8357 			} else {
8358 				un->un_last_state = SD_STATE_OFFLINE;
8359 			}
8360 		}
8361 		mutex_exit(SD_MUTEX(un));
8362 	} else {
8363 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8364 		    "!Unknown event\n");
8365 	}
8366 
8367 }
8368 #endif
8369 
8370 /*
8371  *    Function: sd_cache_control()
8372  *
8373  * Description: This routine is the driver entry point for setting
8374  *		read and write caching by modifying the WCE (write cache
8375  *		enable) and RCD (read cache disable) bits of mode
8376  *		page 8 (MODEPAGE_CACHING).
8377  *
8378  *   Arguments: un - driver soft state (unit) structure
8379  *		rcd_flag - flag for controlling the read cache
8380  *		wce_flag - flag for controlling the write cache
8381  *
8382  * Return Code: EIO
8383  *		code returned by sd_send_scsi_MODE_SENSE and
8384  *		sd_send_scsi_MODE_SELECT
8385  *
8386  *     Context: Kernel Thread
8387  */
8388 
8389 static int
8390 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8391 {
8392 	struct mode_caching	*mode_caching_page;
8393 	uchar_t			*header;
8394 	size_t			buflen;
8395 	int			hdrlen;
8396 	int			bd_len;
8397 	int			rval = 0;
8398 	struct mode_header_grp2	*mhp;
8399 
8400 	ASSERT(un != NULL);
8401 
8402 	/*
8403 	 * Do a test unit ready, otherwise a mode sense may not work if this
8404 	 * is the first command sent to the device after boot.
8405 	 */
8406 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8407 
8408 	if (un->un_f_cfg_is_atapi == TRUE) {
8409 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8410 	} else {
8411 		hdrlen = MODE_HEADER_LENGTH;
8412 	}
8413 
8414 	/*
8415 	 * Allocate memory for the retrieved mode page and its headers.  Set
8416 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8417 	 * we get all of the mode sense data otherwise, the mode select
8418 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8419 	 */
8420 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8421 	    sizeof (struct mode_cache_scsi3);
8422 
8423 	header = kmem_zalloc(buflen, KM_SLEEP);
8424 
8425 	/* Get the information from the device. */
8426 	if (un->un_f_cfg_is_atapi == TRUE) {
8427 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8428 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8429 	} else {
8430 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8431 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8432 	}
8433 	if (rval != 0) {
8434 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8435 		    "sd_cache_control: Mode Sense Failed\n");
8436 		kmem_free(header, buflen);
8437 		return (rval);
8438 	}
8439 
8440 	/*
8441 	 * Determine size of Block Descriptors in order to locate
8442 	 * the mode page data. ATAPI devices return 0, SCSI devices
8443 	 * should return MODE_BLK_DESC_LENGTH.
8444 	 */
8445 	if (un->un_f_cfg_is_atapi == TRUE) {
8446 		mhp	= (struct mode_header_grp2 *)header;
8447 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8448 	} else {
8449 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8450 	}
8451 
8452 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8453 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8454 		    "sd_cache_control: Mode Sense returned invalid "
8455 		    "block descriptor length\n");
8456 		kmem_free(header, buflen);
8457 		return (EIO);
8458 	}
8459 
8460 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8461 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8462 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8463 		    " caching page code mismatch %d\n",
8464 		    mode_caching_page->mode_page.code);
8465 		kmem_free(header, buflen);
8466 		return (EIO);
8467 	}
8468 
8469 	/* Check the relevant bits on successful mode sense. */
8470 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8471 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8472 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8473 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8474 
8475 		size_t sbuflen;
8476 		uchar_t save_pg;
8477 
8478 		/*
8479 		 * Construct select buffer length based on the
8480 		 * length of the sense data returned.
8481 		 */
8482 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8483 		    sizeof (struct mode_page) +
8484 		    (int)mode_caching_page->mode_page.length;
8485 
8486 		/*
8487 		 * Set the caching bits as requested.
8488 		 */
8489 		if (rcd_flag == SD_CACHE_ENABLE)
8490 			mode_caching_page->rcd = 0;
8491 		else if (rcd_flag == SD_CACHE_DISABLE)
8492 			mode_caching_page->rcd = 1;
8493 
8494 		if (wce_flag == SD_CACHE_ENABLE)
8495 			mode_caching_page->wce = 1;
8496 		else if (wce_flag == SD_CACHE_DISABLE)
8497 			mode_caching_page->wce = 0;
8498 
8499 		/*
8500 		 * Save the page if the mode sense says the
8501 		 * drive supports it.
8502 		 */
8503 		save_pg = mode_caching_page->mode_page.ps ?
8504 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8505 
8506 		/* Clear reserved bits before mode select. */
8507 		mode_caching_page->mode_page.ps = 0;
8508 
8509 		/*
8510 		 * Clear out mode header for mode select.
8511 		 * The rest of the retrieved page will be reused.
8512 		 */
8513 		bzero(header, hdrlen);
8514 
8515 		if (un->un_f_cfg_is_atapi == TRUE) {
8516 			mhp = (struct mode_header_grp2 *)header;
8517 			mhp->bdesc_length_hi = bd_len >> 8;
8518 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8519 		} else {
8520 			((struct mode_header *)header)->bdesc_length = bd_len;
8521 		}
8522 
8523 		/* Issue mode select to change the cache settings */
8524 		if (un->un_f_cfg_is_atapi == TRUE) {
8525 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8526 			    sbuflen, save_pg, SD_PATH_DIRECT);
8527 		} else {
8528 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8529 			    sbuflen, save_pg, SD_PATH_DIRECT);
8530 		}
8531 	}
8532 
8533 	kmem_free(header, buflen);
8534 	return (rval);
8535 }
8536 
8537 
8538 /*
8539  *    Function: sd_get_write_cache_enabled()
8540  *
8541  * Description: This routine is the driver entry point for determining if
8542  *		write caching is enabled.  It examines the WCE (write cache
8543  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8544  *
8545  *   Arguments: un - driver soft state (unit) structure
8546  *		is_enabled - pointer to int where write cache enabled state
8547  *		is returned (non-zero -> write cache enabled)
8548  *
8549  *
8550  * Return Code: EIO
8551  *		code returned by sd_send_scsi_MODE_SENSE
8552  *
8553  *     Context: Kernel Thread
8554  *
8555  * NOTE: If ioctl is added to disable write cache, this sequence should
8556  * be followed so that no locking is required for accesses to
8557  * un->un_f_write_cache_enabled:
8558  * 	do mode select to clear wce
8559  * 	do synchronize cache to flush cache
8560  * 	set un->un_f_write_cache_enabled = FALSE
8561  *
8562  * Conversely, an ioctl to enable the write cache should be done
8563  * in this order:
8564  * 	set un->un_f_write_cache_enabled = TRUE
8565  * 	do mode select to set wce
8566  */
8567 
8568 static int
8569 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8570 {
8571 	struct mode_caching	*mode_caching_page;
8572 	uchar_t			*header;
8573 	size_t			buflen;
8574 	int			hdrlen;
8575 	int			bd_len;
8576 	int			rval = 0;
8577 
8578 	ASSERT(un != NULL);
8579 	ASSERT(is_enabled != NULL);
8580 
8581 	/* in case of error, flag as enabled */
8582 	*is_enabled = TRUE;
8583 
8584 	/*
8585 	 * Do a test unit ready, otherwise a mode sense may not work if this
8586 	 * is the first command sent to the device after boot.
8587 	 */
8588 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8589 
8590 	if (un->un_f_cfg_is_atapi == TRUE) {
8591 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8592 	} else {
8593 		hdrlen = MODE_HEADER_LENGTH;
8594 	}
8595 
8596 	/*
8597 	 * Allocate memory for the retrieved mode page and its headers.  Set
8598 	 * a pointer to the page itself.
8599 	 */
8600 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8601 	header = kmem_zalloc(buflen, KM_SLEEP);
8602 
8603 	/* Get the information from the device. */
8604 	if (un->un_f_cfg_is_atapi == TRUE) {
8605 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8606 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8607 	} else {
8608 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8609 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8610 	}
8611 	if (rval != 0) {
8612 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8613 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8614 		kmem_free(header, buflen);
8615 		return (rval);
8616 	}
8617 
8618 	/*
8619 	 * Determine size of Block Descriptors in order to locate
8620 	 * the mode page data. ATAPI devices return 0, SCSI devices
8621 	 * should return MODE_BLK_DESC_LENGTH.
8622 	 */
8623 	if (un->un_f_cfg_is_atapi == TRUE) {
8624 		struct mode_header_grp2	*mhp;
8625 		mhp	= (struct mode_header_grp2 *)header;
8626 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8627 	} else {
8628 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8629 	}
8630 
8631 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8632 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8633 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8634 		    "block descriptor length\n");
8635 		kmem_free(header, buflen);
8636 		return (EIO);
8637 	}
8638 
8639 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8640 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8641 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8642 		    " caching page code mismatch %d\n",
8643 		    mode_caching_page->mode_page.code);
8644 		kmem_free(header, buflen);
8645 		return (EIO);
8646 	}
8647 	*is_enabled = mode_caching_page->wce;
8648 
8649 	kmem_free(header, buflen);
8650 	return (0);
8651 }
8652 
8653 /*
8654  *    Function: sd_get_nv_sup()
8655  *
8656  * Description: This routine is the driver entry point for
8657  * determining whether non-volatile cache is supported. This
8658  * determination process works as follows:
8659  *
8660  * 1. sd first queries sd.conf on whether
8661  * suppress_cache_flush bit is set for this device.
8662  *
8663  * 2. if not there, then queries the internal disk table.
8664  *
8665  * 3. if either sd.conf or internal disk table specifies
8666  * cache flush be suppressed, we don't bother checking
8667  * NV_SUP bit.
8668  *
8669  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8670  * the optional INQUIRY VPD page 0x86. If the device
8671  * supports VPD page 0x86, sd examines the NV_SUP
8672  * (non-volatile cache support) bit in the INQUIRY VPD page
8673  * 0x86:
8674  *   o If NV_SUP bit is set, sd assumes the device has a
8675  *   non-volatile cache and set the
8676  *   un_f_sync_nv_supported to TRUE.
8677  *   o Otherwise cache is not non-volatile,
8678  *   un_f_sync_nv_supported is set to FALSE.
8679  *
8680  * Arguments: un - driver soft state (unit) structure
8681  *
8682  * Return Code:
8683  *
8684  *     Context: Kernel Thread
8685  */
8686 
8687 static void
8688 sd_get_nv_sup(struct sd_lun *un)
8689 {
8690 	int		rval		= 0;
8691 	uchar_t		*inq86		= NULL;
8692 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8693 	size_t		inq86_resid	= 0;
8694 	struct		dk_callback *dkc;
8695 
8696 	ASSERT(un != NULL);
8697 
8698 	mutex_enter(SD_MUTEX(un));
8699 
8700 	/*
8701 	 * Be conservative on the device's support of
8702 	 * SYNC_NV bit: un_f_sync_nv_supported is
8703 	 * initialized to be false.
8704 	 */
8705 	un->un_f_sync_nv_supported = FALSE;
8706 
8707 	/*
8708 	 * If either sd.conf or internal disk table
8709 	 * specifies cache flush be suppressed, then
8710 	 * we don't bother checking NV_SUP bit.
8711 	 */
8712 	if (un->un_f_suppress_cache_flush == TRUE) {
8713 		mutex_exit(SD_MUTEX(un));
8714 		return;
8715 	}
8716 
8717 	if (sd_check_vpd_page_support(un) == 0 &&
8718 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8719 		mutex_exit(SD_MUTEX(un));
8720 		/* collect page 86 data if available */
8721 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8722 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8723 		    0x01, 0x86, &inq86_resid);
8724 
8725 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8726 			SD_TRACE(SD_LOG_COMMON, un,
8727 			    "sd_get_nv_sup: \
8728 			    successfully get VPD page: %x \
8729 			    PAGE LENGTH: %x BYTE 6: %x\n",
8730 			    inq86[1], inq86[3], inq86[6]);
8731 
8732 			mutex_enter(SD_MUTEX(un));
8733 			/*
8734 			 * check the value of NV_SUP bit: only if the device
8735 			 * reports NV_SUP bit to be 1, the
8736 			 * un_f_sync_nv_supported bit will be set to true.
8737 			 */
8738 			if (inq86[6] & SD_VPD_NV_SUP) {
8739 				un->un_f_sync_nv_supported = TRUE;
8740 			}
8741 			mutex_exit(SD_MUTEX(un));
8742 		}
8743 		kmem_free(inq86, inq86_len);
8744 	} else {
8745 		mutex_exit(SD_MUTEX(un));
8746 	}
8747 
8748 	/*
8749 	 * Send a SYNC CACHE command to check whether
8750 	 * SYNC_NV bit is supported. This command should have
8751 	 * un_f_sync_nv_supported set to correct value.
8752 	 */
8753 	mutex_enter(SD_MUTEX(un));
8754 	if (un->un_f_sync_nv_supported) {
8755 		mutex_exit(SD_MUTEX(un));
8756 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8757 		dkc->dkc_flag = FLUSH_VOLATILE;
8758 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8759 
8760 		/*
8761 		 * Send a TEST UNIT READY command to the device. This should
8762 		 * clear any outstanding UNIT ATTENTION that may be present.
8763 		 */
8764 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8765 
8766 		kmem_free(dkc, sizeof (struct dk_callback));
8767 	} else {
8768 		mutex_exit(SD_MUTEX(un));
8769 	}
8770 
8771 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8772 	    un_f_suppress_cache_flush is set to %d\n",
8773 	    un->un_f_suppress_cache_flush);
8774 }
8775 
8776 /*
8777  *    Function: sd_make_device
8778  *
8779  * Description: Utility routine to return the Solaris device number from
8780  *		the data in the device's dev_info structure.
8781  *
8782  * Return Code: The Solaris device number
8783  *
8784  *     Context: Any
8785  */
8786 
8787 static dev_t
8788 sd_make_device(dev_info_t *devi)
8789 {
8790 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8791 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8792 }
8793 
8794 
8795 /*
8796  *    Function: sd_pm_entry
8797  *
8798  * Description: Called at the start of a new command to manage power
8799  *		and busy status of a device. This includes determining whether
8800  *		the current power state of the device is sufficient for
8801  *		performing the command or whether it must be changed.
8802  *		The PM framework is notified appropriately.
8803  *		Only with a return status of DDI_SUCCESS will the
8804  *		component be busy to the framework.
8805  *
8806  *		All callers of sd_pm_entry must check the return status
8807  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8808  *		of DDI_FAILURE indicates the device failed to power up.
8809  *		In this case un_pm_count has been adjusted so the result
8810  *		on exit is still powered down, ie. count is less than 0.
8811  *		Calling sd_pm_exit with this count value hits an ASSERT.
8812  *
8813  * Return Code: DDI_SUCCESS or DDI_FAILURE
8814  *
8815  *     Context: Kernel thread context.
8816  */
8817 
8818 static int
8819 sd_pm_entry(struct sd_lun *un)
8820 {
8821 	int return_status = DDI_SUCCESS;
8822 
8823 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8824 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8825 
8826 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8827 
8828 	if (un->un_f_pm_is_enabled == FALSE) {
8829 		SD_TRACE(SD_LOG_IO_PM, un,
8830 		    "sd_pm_entry: exiting, PM not enabled\n");
8831 		return (return_status);
8832 	}
8833 
8834 	/*
8835 	 * Just increment a counter if PM is enabled. On the transition from
8836 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8837 	 * the count with each IO and mark the device as idle when the count
8838 	 * hits 0.
8839 	 *
8840 	 * If the count is less than 0 the device is powered down. If a powered
8841 	 * down device is successfully powered up then the count must be
8842 	 * incremented to reflect the power up. Note that it'll get incremented
8843 	 * a second time to become busy.
8844 	 *
8845 	 * Because the following has the potential to change the device state
8846 	 * and must release the un_pm_mutex to do so, only one thread can be
8847 	 * allowed through at a time.
8848 	 */
8849 
8850 	mutex_enter(&un->un_pm_mutex);
8851 	while (un->un_pm_busy == TRUE) {
8852 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8853 	}
8854 	un->un_pm_busy = TRUE;
8855 
8856 	if (un->un_pm_count < 1) {
8857 
8858 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8859 
8860 		/*
8861 		 * Indicate we are now busy so the framework won't attempt to
8862 		 * power down the device. This call will only fail if either
8863 		 * we passed a bad component number or the device has no
8864 		 * components. Neither of these should ever happen.
8865 		 */
8866 		mutex_exit(&un->un_pm_mutex);
8867 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8868 		ASSERT(return_status == DDI_SUCCESS);
8869 
8870 		mutex_enter(&un->un_pm_mutex);
8871 
8872 		if (un->un_pm_count < 0) {
8873 			mutex_exit(&un->un_pm_mutex);
8874 
8875 			SD_TRACE(SD_LOG_IO_PM, un,
8876 			    "sd_pm_entry: power up component\n");
8877 
8878 			/*
8879 			 * pm_raise_power will cause sdpower to be called
8880 			 * which brings the device power level to the
8881 			 * desired state, ON in this case. If successful,
8882 			 * un_pm_count and un_power_level will be updated
8883 			 * appropriately.
8884 			 */
8885 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8886 			    SD_SPINDLE_ON);
8887 
8888 			mutex_enter(&un->un_pm_mutex);
8889 
8890 			if (return_status != DDI_SUCCESS) {
8891 				/*
8892 				 * Power up failed.
8893 				 * Idle the device and adjust the count
8894 				 * so the result on exit is that we're
8895 				 * still powered down, ie. count is less than 0.
8896 				 */
8897 				SD_TRACE(SD_LOG_IO_PM, un,
8898 				    "sd_pm_entry: power up failed,"
8899 				    " idle the component\n");
8900 
8901 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8902 				un->un_pm_count--;
8903 			} else {
8904 				/*
8905 				 * Device is powered up, verify the
8906 				 * count is non-negative.
8907 				 * This is debug only.
8908 				 */
8909 				ASSERT(un->un_pm_count == 0);
8910 			}
8911 		}
8912 
8913 		if (return_status == DDI_SUCCESS) {
8914 			/*
8915 			 * For performance, now that the device has been tagged
8916 			 * as busy, and it's known to be powered up, update the
8917 			 * chain types to use jump tables that do not include
8918 			 * pm. This significantly lowers the overhead and
8919 			 * therefore improves performance.
8920 			 */
8921 
8922 			mutex_exit(&un->un_pm_mutex);
8923 			mutex_enter(SD_MUTEX(un));
8924 			SD_TRACE(SD_LOG_IO_PM, un,
8925 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8926 			    un->un_uscsi_chain_type);
8927 
8928 			if (un->un_f_non_devbsize_supported) {
8929 				un->un_buf_chain_type =
8930 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8931 			} else {
8932 				un->un_buf_chain_type =
8933 				    SD_CHAIN_INFO_DISK_NO_PM;
8934 			}
8935 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8936 
8937 			SD_TRACE(SD_LOG_IO_PM, un,
8938 			    "             changed  uscsi_chain_type to   %d\n",
8939 			    un->un_uscsi_chain_type);
8940 			mutex_exit(SD_MUTEX(un));
8941 			mutex_enter(&un->un_pm_mutex);
8942 
8943 			if (un->un_pm_idle_timeid == NULL) {
8944 				/* 300 ms. */
8945 				un->un_pm_idle_timeid =
8946 				    timeout(sd_pm_idletimeout_handler, un,
8947 				    (drv_usectohz((clock_t)300000)));
8948 				/*
8949 				 * Include an extra call to busy which keeps the
8950 				 * device busy with-respect-to the PM layer
8951 				 * until the timer fires, at which time it'll
8952 				 * get the extra idle call.
8953 				 */
8954 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8955 			}
8956 		}
8957 	}
8958 	un->un_pm_busy = FALSE;
8959 	/* Next... */
8960 	cv_signal(&un->un_pm_busy_cv);
8961 
8962 	un->un_pm_count++;
8963 
8964 	SD_TRACE(SD_LOG_IO_PM, un,
8965 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8966 
8967 	mutex_exit(&un->un_pm_mutex);
8968 
8969 	return (return_status);
8970 }
8971 
8972 
8973 /*
8974  *    Function: sd_pm_exit
8975  *
8976  * Description: Called at the completion of a command to manage busy
8977  *		status for the device. If the device becomes idle the
8978  *		PM framework is notified.
8979  *
8980  *     Context: Kernel thread context
8981  */
8982 
8983 static void
8984 sd_pm_exit(struct sd_lun *un)
8985 {
8986 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8987 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8988 
8989 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8990 
8991 	/*
8992 	 * After attach the following flag is only read, so don't
8993 	 * take the penalty of acquiring a mutex for it.
8994 	 */
8995 	if (un->un_f_pm_is_enabled == TRUE) {
8996 
8997 		mutex_enter(&un->un_pm_mutex);
8998 		un->un_pm_count--;
8999 
9000 		SD_TRACE(SD_LOG_IO_PM, un,
9001 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9002 
9003 		ASSERT(un->un_pm_count >= 0);
9004 		if (un->un_pm_count == 0) {
9005 			mutex_exit(&un->un_pm_mutex);
9006 
9007 			SD_TRACE(SD_LOG_IO_PM, un,
9008 			    "sd_pm_exit: idle component\n");
9009 
9010 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9011 
9012 		} else {
9013 			mutex_exit(&un->un_pm_mutex);
9014 		}
9015 	}
9016 
9017 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9018 }
9019 
9020 
9021 /*
9022  *    Function: sdopen
9023  *
9024  * Description: Driver's open(9e) entry point function.
9025  *
9026  *   Arguments: dev_i   - pointer to device number
9027  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9028  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9029  *		cred_p  - user credential pointer
9030  *
9031  * Return Code: EINVAL
9032  *		ENXIO
9033  *		EIO
9034  *		EROFS
9035  *		EBUSY
9036  *
9037  *     Context: Kernel thread context
9038  */
9039 /* ARGSUSED */
9040 static int
9041 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9042 {
9043 	struct sd_lun	*un;
9044 	int		nodelay;
9045 	int		part;
9046 	uint64_t	partmask;
9047 	int		instance;
9048 	dev_t		dev;
9049 	int		rval = EIO;
9050 	diskaddr_t	nblks = 0;
9051 	diskaddr_t	label_cap;
9052 
9053 	/* Validate the open type */
9054 	if (otyp >= OTYPCNT) {
9055 		return (EINVAL);
9056 	}
9057 
9058 	dev = *dev_p;
9059 	instance = SDUNIT(dev);
9060 	mutex_enter(&sd_detach_mutex);
9061 
9062 	/*
9063 	 * Fail the open if there is no softstate for the instance, or
9064 	 * if another thread somewhere is trying to detach the instance.
9065 	 */
9066 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9067 	    (un->un_detach_count != 0)) {
9068 		mutex_exit(&sd_detach_mutex);
9069 		/*
9070 		 * The probe cache only needs to be cleared when open (9e) fails
9071 		 * with ENXIO (4238046).
9072 		 */
9073 		/*
9074 		 * un-conditionally clearing probe cache is ok with
9075 		 * separate sd/ssd binaries
9076 		 * x86 platform can be an issue with both parallel
9077 		 * and fibre in 1 binary
9078 		 */
9079 		sd_scsi_clear_probe_cache();
9080 		return (ENXIO);
9081 	}
9082 
9083 	/*
9084 	 * The un_layer_count is to prevent another thread in specfs from
9085 	 * trying to detach the instance, which can happen when we are
9086 	 * called from a higher-layer driver instead of thru specfs.
9087 	 * This will not be needed when DDI provides a layered driver
9088 	 * interface that allows specfs to know that an instance is in
9089 	 * use by a layered driver & should not be detached.
9090 	 *
9091 	 * Note: the semantics for layered driver opens are exactly one
9092 	 * close for every open.
9093 	 */
9094 	if (otyp == OTYP_LYR) {
9095 		un->un_layer_count++;
9096 	}
9097 
9098 	/*
9099 	 * Keep a count of the current # of opens in progress. This is because
9100 	 * some layered drivers try to call us as a regular open. This can
9101 	 * cause problems that we cannot prevent, however by keeping this count
9102 	 * we can at least keep our open and detach routines from racing against
9103 	 * each other under such conditions.
9104 	 */
9105 	un->un_opens_in_progress++;
9106 	mutex_exit(&sd_detach_mutex);
9107 
9108 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9109 	part	 = SDPART(dev);
9110 	partmask = 1 << part;
9111 
9112 	/*
9113 	 * We use a semaphore here in order to serialize
9114 	 * open and close requests on the device.
9115 	 */
9116 	sema_p(&un->un_semoclose);
9117 
9118 	mutex_enter(SD_MUTEX(un));
9119 
9120 	/*
9121 	 * All device accesses go thru sdstrategy() where we check
9122 	 * on suspend status but there could be a scsi_poll command,
9123 	 * which bypasses sdstrategy(), so we need to check pm
9124 	 * status.
9125 	 */
9126 
9127 	if (!nodelay) {
9128 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9129 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9130 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9131 		}
9132 
9133 		mutex_exit(SD_MUTEX(un));
9134 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9135 			rval = EIO;
9136 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9137 			    "sdopen: sd_pm_entry failed\n");
9138 			goto open_failed_with_pm;
9139 		}
9140 		mutex_enter(SD_MUTEX(un));
9141 	}
9142 
9143 	/* check for previous exclusive open */
9144 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9145 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9146 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9147 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9148 
9149 	if (un->un_exclopen & (partmask)) {
9150 		goto excl_open_fail;
9151 	}
9152 
9153 	if (flag & FEXCL) {
9154 		int i;
9155 		if (un->un_ocmap.lyropen[part]) {
9156 			goto excl_open_fail;
9157 		}
9158 		for (i = 0; i < (OTYPCNT - 1); i++) {
9159 			if (un->un_ocmap.regopen[i] & (partmask)) {
9160 				goto excl_open_fail;
9161 			}
9162 		}
9163 	}
9164 
9165 	/*
9166 	 * Check the write permission if this is a removable media device,
9167 	 * NDELAY has not been set, and writable permission is requested.
9168 	 *
9169 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9170 	 * attempt will fail with EIO as part of the I/O processing. This is a
9171 	 * more permissive implementation that allows the open to succeed and
9172 	 * WRITE attempts to fail when appropriate.
9173 	 */
9174 	if (un->un_f_chk_wp_open) {
9175 		if ((flag & FWRITE) && (!nodelay)) {
9176 			mutex_exit(SD_MUTEX(un));
9177 			/*
9178 			 * Defer the check for write permission on writable
9179 			 * DVD drive till sdstrategy and will not fail open even
9180 			 * if FWRITE is set as the device can be writable
9181 			 * depending upon the media and the media can change
9182 			 * after the call to open().
9183 			 */
9184 			if (un->un_f_dvdram_writable_device == FALSE) {
9185 				if (ISCD(un) || sr_check_wp(dev)) {
9186 				rval = EROFS;
9187 				mutex_enter(SD_MUTEX(un));
9188 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9189 				    "write to cd or write protected media\n");
9190 				goto open_fail;
9191 				}
9192 			}
9193 			mutex_enter(SD_MUTEX(un));
9194 		}
9195 	}
9196 
9197 	/*
9198 	 * If opening in NDELAY/NONBLOCK mode, just return.
9199 	 * Check if disk is ready and has a valid geometry later.
9200 	 */
9201 	if (!nodelay) {
9202 		mutex_exit(SD_MUTEX(un));
9203 		rval = sd_ready_and_valid(un);
9204 		mutex_enter(SD_MUTEX(un));
9205 		/*
9206 		 * Fail if device is not ready or if the number of disk
9207 		 * blocks is zero or negative for non CD devices.
9208 		 */
9209 
9210 		nblks = 0;
9211 
9212 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9213 			/* if cmlb_partinfo fails, nblks remains 0 */
9214 			mutex_exit(SD_MUTEX(un));
9215 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9216 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9217 			mutex_enter(SD_MUTEX(un));
9218 		}
9219 
9220 		if ((rval != SD_READY_VALID) ||
9221 		    (!ISCD(un) && nblks <= 0)) {
9222 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9223 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9224 			    "device not ready or invalid disk block value\n");
9225 			goto open_fail;
9226 		}
9227 #if defined(__i386) || defined(__amd64)
9228 	} else {
9229 		uchar_t *cp;
9230 		/*
9231 		 * x86 requires special nodelay handling, so that p0 is
9232 		 * always defined and accessible.
9233 		 * Invalidate geometry only if device is not already open.
9234 		 */
9235 		cp = &un->un_ocmap.chkd[0];
9236 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9237 			if (*cp != (uchar_t)0) {
9238 				break;
9239 			}
9240 			cp++;
9241 		}
9242 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9243 			mutex_exit(SD_MUTEX(un));
9244 			cmlb_invalidate(un->un_cmlbhandle,
9245 			    (void *)SD_PATH_DIRECT);
9246 			mutex_enter(SD_MUTEX(un));
9247 		}
9248 
9249 #endif
9250 	}
9251 
9252 	if (otyp == OTYP_LYR) {
9253 		un->un_ocmap.lyropen[part]++;
9254 	} else {
9255 		un->un_ocmap.regopen[otyp] |= partmask;
9256 	}
9257 
9258 	/* Set up open and exclusive open flags */
9259 	if (flag & FEXCL) {
9260 		un->un_exclopen |= (partmask);
9261 	}
9262 
9263 	/*
9264 	 * If the lun is EFI labeled and lun capacity is greater than the
9265 	 * capacity contained in the label, log a sys-event to notify the
9266 	 * interested module.
9267 	 * To avoid an infinite loop of logging sys-event, we only log the
9268 	 * event when the lun is not opened in NDELAY mode. The event handler
9269 	 * should open the lun in NDELAY mode.
9270 	 */
9271 	if (!(flag & FNDELAY)) {
9272 		mutex_exit(SD_MUTEX(un));
9273 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9274 		    (void*)SD_PATH_DIRECT) == 0) {
9275 			mutex_enter(SD_MUTEX(un));
9276 			if (un->un_f_blockcount_is_valid &&
9277 			    un->un_blockcount > label_cap) {
9278 				mutex_exit(SD_MUTEX(un));
9279 				sd_log_lun_expansion_event(un,
9280 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9281 				mutex_enter(SD_MUTEX(un));
9282 			}
9283 		} else {
9284 			mutex_enter(SD_MUTEX(un));
9285 		}
9286 	}
9287 
9288 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9289 	    "open of part %d type %d\n", part, otyp);
9290 
9291 	mutex_exit(SD_MUTEX(un));
9292 	if (!nodelay) {
9293 		sd_pm_exit(un);
9294 	}
9295 
9296 	sema_v(&un->un_semoclose);
9297 
9298 	mutex_enter(&sd_detach_mutex);
9299 	un->un_opens_in_progress--;
9300 	mutex_exit(&sd_detach_mutex);
9301 
9302 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9303 	return (DDI_SUCCESS);
9304 
9305 excl_open_fail:
9306 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9307 	rval = EBUSY;
9308 
9309 open_fail:
9310 	mutex_exit(SD_MUTEX(un));
9311 
9312 	/*
9313 	 * On a failed open we must exit the pm management.
9314 	 */
9315 	if (!nodelay) {
9316 		sd_pm_exit(un);
9317 	}
9318 open_failed_with_pm:
9319 	sema_v(&un->un_semoclose);
9320 
9321 	mutex_enter(&sd_detach_mutex);
9322 	un->un_opens_in_progress--;
9323 	if (otyp == OTYP_LYR) {
9324 		un->un_layer_count--;
9325 	}
9326 	mutex_exit(&sd_detach_mutex);
9327 
9328 	return (rval);
9329 }
9330 
9331 
9332 /*
9333  *    Function: sdclose
9334  *
9335  * Description: Driver's close(9e) entry point function.
9336  *
9337  *   Arguments: dev    - device number
9338  *		flag   - file status flag, informational only
9339  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9340  *		cred_p - user credential pointer
9341  *
9342  * Return Code: ENXIO
9343  *
9344  *     Context: Kernel thread context
9345  */
9346 /* ARGSUSED */
9347 static int
9348 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9349 {
9350 	struct sd_lun	*un;
9351 	uchar_t		*cp;
9352 	int		part;
9353 	int		nodelay;
9354 	int		rval = 0;
9355 
9356 	/* Validate the open type */
9357 	if (otyp >= OTYPCNT) {
9358 		return (ENXIO);
9359 	}
9360 
9361 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9362 		return (ENXIO);
9363 	}
9364 
9365 	part = SDPART(dev);
9366 	nodelay = flag & (FNDELAY | FNONBLOCK);
9367 
9368 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9369 	    "sdclose: close of part %d type %d\n", part, otyp);
9370 
9371 	/*
9372 	 * We use a semaphore here in order to serialize
9373 	 * open and close requests on the device.
9374 	 */
9375 	sema_p(&un->un_semoclose);
9376 
9377 	mutex_enter(SD_MUTEX(un));
9378 
9379 	/* Don't proceed if power is being changed. */
9380 	while (un->un_state == SD_STATE_PM_CHANGING) {
9381 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9382 	}
9383 
9384 	if (un->un_exclopen & (1 << part)) {
9385 		un->un_exclopen &= ~(1 << part);
9386 	}
9387 
9388 	/* Update the open partition map */
9389 	if (otyp == OTYP_LYR) {
9390 		un->un_ocmap.lyropen[part] -= 1;
9391 	} else {
9392 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9393 	}
9394 
9395 	cp = &un->un_ocmap.chkd[0];
9396 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9397 		if (*cp != NULL) {
9398 			break;
9399 		}
9400 		cp++;
9401 	}
9402 
9403 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9404 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9405 
9406 		/*
9407 		 * We avoid persistance upon the last close, and set
9408 		 * the throttle back to the maximum.
9409 		 */
9410 		un->un_throttle = un->un_saved_throttle;
9411 
9412 		if (un->un_state == SD_STATE_OFFLINE) {
9413 			if (un->un_f_is_fibre == FALSE) {
9414 				scsi_log(SD_DEVINFO(un), sd_label,
9415 				    CE_WARN, "offline\n");
9416 			}
9417 			mutex_exit(SD_MUTEX(un));
9418 			cmlb_invalidate(un->un_cmlbhandle,
9419 			    (void *)SD_PATH_DIRECT);
9420 			mutex_enter(SD_MUTEX(un));
9421 
9422 		} else {
9423 			/*
9424 			 * Flush any outstanding writes in NVRAM cache.
9425 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9426 			 * cmd, it may not work for non-Pluto devices.
9427 			 * SYNCHRONIZE CACHE is not required for removables,
9428 			 * except DVD-RAM drives.
9429 			 *
9430 			 * Also note: because SYNCHRONIZE CACHE is currently
9431 			 * the only command issued here that requires the
9432 			 * drive be powered up, only do the power up before
9433 			 * sending the Sync Cache command. If additional
9434 			 * commands are added which require a powered up
9435 			 * drive, the following sequence may have to change.
9436 			 *
9437 			 * And finally, note that parallel SCSI on SPARC
9438 			 * only issues a Sync Cache to DVD-RAM, a newly
9439 			 * supported device.
9440 			 */
9441 #if defined(__i386) || defined(__amd64)
9442 			if (un->un_f_sync_cache_supported ||
9443 			    un->un_f_dvdram_writable_device == TRUE) {
9444 #else
9445 			if (un->un_f_dvdram_writable_device == TRUE) {
9446 #endif
9447 				mutex_exit(SD_MUTEX(un));
9448 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9449 					rval =
9450 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9451 					    NULL);
9452 					/* ignore error if not supported */
9453 					if (rval == ENOTSUP) {
9454 						rval = 0;
9455 					} else if (rval != 0) {
9456 						rval = EIO;
9457 					}
9458 					sd_pm_exit(un);
9459 				} else {
9460 					rval = EIO;
9461 				}
9462 				mutex_enter(SD_MUTEX(un));
9463 			}
9464 
9465 			/*
9466 			 * For devices which supports DOOR_LOCK, send an ALLOW
9467 			 * MEDIA REMOVAL command, but don't get upset if it
9468 			 * fails. We need to raise the power of the drive before
9469 			 * we can call sd_send_scsi_DOORLOCK()
9470 			 */
9471 			if (un->un_f_doorlock_supported) {
9472 				mutex_exit(SD_MUTEX(un));
9473 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9474 					rval = sd_send_scsi_DOORLOCK(un,
9475 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9476 
9477 					sd_pm_exit(un);
9478 					if (ISCD(un) && (rval != 0) &&
9479 					    (nodelay != 0)) {
9480 						rval = ENXIO;
9481 					}
9482 				} else {
9483 					rval = EIO;
9484 				}
9485 				mutex_enter(SD_MUTEX(un));
9486 			}
9487 
9488 			/*
9489 			 * If a device has removable media, invalidate all
9490 			 * parameters related to media, such as geometry,
9491 			 * blocksize, and blockcount.
9492 			 */
9493 			if (un->un_f_has_removable_media) {
9494 				sr_ejected(un);
9495 			}
9496 
9497 			/*
9498 			 * Destroy the cache (if it exists) which was
9499 			 * allocated for the write maps since this is
9500 			 * the last close for this media.
9501 			 */
9502 			if (un->un_wm_cache) {
9503 				/*
9504 				 * Check if there are pending commands.
9505 				 * and if there are give a warning and
9506 				 * do not destroy the cache.
9507 				 */
9508 				if (un->un_ncmds_in_driver > 0) {
9509 					scsi_log(SD_DEVINFO(un),
9510 					    sd_label, CE_WARN,
9511 					    "Unable to clean up memory "
9512 					    "because of pending I/O\n");
9513 				} else {
9514 					kmem_cache_destroy(
9515 					    un->un_wm_cache);
9516 					un->un_wm_cache = NULL;
9517 				}
9518 			}
9519 		}
9520 	}
9521 
9522 	mutex_exit(SD_MUTEX(un));
9523 	sema_v(&un->un_semoclose);
9524 
9525 	if (otyp == OTYP_LYR) {
9526 		mutex_enter(&sd_detach_mutex);
9527 		/*
9528 		 * The detach routine may run when the layer count
9529 		 * drops to zero.
9530 		 */
9531 		un->un_layer_count--;
9532 		mutex_exit(&sd_detach_mutex);
9533 	}
9534 
9535 	return (rval);
9536 }
9537 
9538 
9539 /*
9540  *    Function: sd_ready_and_valid
9541  *
9542  * Description: Test if device is ready and has a valid geometry.
9543  *
9544  *   Arguments: dev - device number
9545  *		un  - driver soft state (unit) structure
9546  *
9547  * Return Code: SD_READY_VALID		ready and valid label
9548  *		SD_NOT_READY_VALID	not ready, no label
9549  *		SD_RESERVED_BY_OTHERS	reservation conflict
9550  *
9551  *     Context: Never called at interrupt context.
9552  */
9553 
9554 static int
9555 sd_ready_and_valid(struct sd_lun *un)
9556 {
9557 	struct sd_errstats	*stp;
9558 	uint64_t		capacity;
9559 	uint_t			lbasize;
9560 	int			rval = SD_READY_VALID;
9561 	char			name_str[48];
9562 	int			is_valid;
9563 
9564 	ASSERT(un != NULL);
9565 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9566 
9567 	mutex_enter(SD_MUTEX(un));
9568 	/*
9569 	 * If a device has removable media, we must check if media is
9570 	 * ready when checking if this device is ready and valid.
9571 	 */
9572 	if (un->un_f_has_removable_media) {
9573 		mutex_exit(SD_MUTEX(un));
9574 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9575 			rval = SD_NOT_READY_VALID;
9576 			mutex_enter(SD_MUTEX(un));
9577 			goto done;
9578 		}
9579 
9580 		is_valid = SD_IS_VALID_LABEL(un);
9581 		mutex_enter(SD_MUTEX(un));
9582 		if (!is_valid ||
9583 		    (un->un_f_blockcount_is_valid == FALSE) ||
9584 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9585 
9586 			/* capacity has to be read every open. */
9587 			mutex_exit(SD_MUTEX(un));
9588 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9589 			    &lbasize, SD_PATH_DIRECT) != 0) {
9590 				cmlb_invalidate(un->un_cmlbhandle,
9591 				    (void *)SD_PATH_DIRECT);
9592 				mutex_enter(SD_MUTEX(un));
9593 				rval = SD_NOT_READY_VALID;
9594 				goto done;
9595 			} else {
9596 				mutex_enter(SD_MUTEX(un));
9597 				sd_update_block_info(un, lbasize, capacity);
9598 			}
9599 		}
9600 
9601 		/*
9602 		 * Check if the media in the device is writable or not.
9603 		 */
9604 		if (!is_valid && ISCD(un)) {
9605 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9606 		}
9607 
9608 	} else {
9609 		/*
9610 		 * Do a test unit ready to clear any unit attention from non-cd
9611 		 * devices.
9612 		 */
9613 		mutex_exit(SD_MUTEX(un));
9614 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9615 		mutex_enter(SD_MUTEX(un));
9616 	}
9617 
9618 
9619 	/*
9620 	 * If this is a non 512 block device, allocate space for
9621 	 * the wmap cache. This is being done here since every time
9622 	 * a media is changed this routine will be called and the
9623 	 * block size is a function of media rather than device.
9624 	 */
9625 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9626 		if (!(un->un_wm_cache)) {
9627 			(void) snprintf(name_str, sizeof (name_str),
9628 			    "%s%d_cache",
9629 			    ddi_driver_name(SD_DEVINFO(un)),
9630 			    ddi_get_instance(SD_DEVINFO(un)));
9631 			un->un_wm_cache = kmem_cache_create(
9632 			    name_str, sizeof (struct sd_w_map),
9633 			    8, sd_wm_cache_constructor,
9634 			    sd_wm_cache_destructor, NULL,
9635 			    (void *)un, NULL, 0);
9636 			if (!(un->un_wm_cache)) {
9637 					rval = ENOMEM;
9638 					goto done;
9639 			}
9640 		}
9641 	}
9642 
9643 	if (un->un_state == SD_STATE_NORMAL) {
9644 		/*
9645 		 * If the target is not yet ready here (defined by a TUR
9646 		 * failure), invalidate the geometry and print an 'offline'
9647 		 * message. This is a legacy message, as the state of the
9648 		 * target is not actually changed to SD_STATE_OFFLINE.
9649 		 *
9650 		 * If the TUR fails for EACCES (Reservation Conflict),
9651 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9652 		 * reservation conflict. If the TUR fails for other
9653 		 * reasons, SD_NOT_READY_VALID will be returned.
9654 		 */
9655 		int err;
9656 
9657 		mutex_exit(SD_MUTEX(un));
9658 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9659 		mutex_enter(SD_MUTEX(un));
9660 
9661 		if (err != 0) {
9662 			mutex_exit(SD_MUTEX(un));
9663 			cmlb_invalidate(un->un_cmlbhandle,
9664 			    (void *)SD_PATH_DIRECT);
9665 			mutex_enter(SD_MUTEX(un));
9666 			if (err == EACCES) {
9667 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9668 				    "reservation conflict\n");
9669 				rval = SD_RESERVED_BY_OTHERS;
9670 			} else {
9671 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9672 				    "drive offline\n");
9673 				rval = SD_NOT_READY_VALID;
9674 			}
9675 			goto done;
9676 		}
9677 	}
9678 
9679 	if (un->un_f_format_in_progress == FALSE) {
9680 		mutex_exit(SD_MUTEX(un));
9681 		if (cmlb_validate(un->un_cmlbhandle, 0,
9682 		    (void *)SD_PATH_DIRECT) != 0) {
9683 			rval = SD_NOT_READY_VALID;
9684 			mutex_enter(SD_MUTEX(un));
9685 			goto done;
9686 		}
9687 		if (un->un_f_pkstats_enabled) {
9688 			sd_set_pstats(un);
9689 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9690 			    "sd_ready_and_valid: un:0x%p pstats created and "
9691 			    "set\n", un);
9692 		}
9693 		mutex_enter(SD_MUTEX(un));
9694 	}
9695 
9696 	/*
9697 	 * If this device supports DOOR_LOCK command, try and send
9698 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9699 	 * if it fails. For a CD, however, it is an error
9700 	 */
9701 	if (un->un_f_doorlock_supported) {
9702 		mutex_exit(SD_MUTEX(un));
9703 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9704 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9705 			rval = SD_NOT_READY_VALID;
9706 			mutex_enter(SD_MUTEX(un));
9707 			goto done;
9708 		}
9709 		mutex_enter(SD_MUTEX(un));
9710 	}
9711 
9712 	/* The state has changed, inform the media watch routines */
9713 	un->un_mediastate = DKIO_INSERTED;
9714 	cv_broadcast(&un->un_state_cv);
9715 	rval = SD_READY_VALID;
9716 
9717 done:
9718 
9719 	/*
9720 	 * Initialize the capacity kstat value, if no media previously
9721 	 * (capacity kstat is 0) and a media has been inserted
9722 	 * (un_blockcount > 0).
9723 	 */
9724 	if (un->un_errstats != NULL) {
9725 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9726 		if ((stp->sd_capacity.value.ui64 == 0) &&
9727 		    (un->un_f_blockcount_is_valid == TRUE)) {
9728 			stp->sd_capacity.value.ui64 =
9729 			    (uint64_t)((uint64_t)un->un_blockcount *
9730 			    un->un_sys_blocksize);
9731 		}
9732 	}
9733 
9734 	mutex_exit(SD_MUTEX(un));
9735 	return (rval);
9736 }
9737 
9738 
9739 /*
9740  *    Function: sdmin
9741  *
9742  * Description: Routine to limit the size of a data transfer. Used in
9743  *		conjunction with physio(9F).
9744  *
9745  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9746  *
9747  *     Context: Kernel thread context.
9748  */
9749 
9750 static void
9751 sdmin(struct buf *bp)
9752 {
9753 	struct sd_lun	*un;
9754 	int		instance;
9755 
9756 	instance = SDUNIT(bp->b_edev);
9757 
9758 	un = ddi_get_soft_state(sd_state, instance);
9759 	ASSERT(un != NULL);
9760 
9761 	if (bp->b_bcount > un->un_max_xfer_size) {
9762 		bp->b_bcount = un->un_max_xfer_size;
9763 	}
9764 }
9765 
9766 
9767 /*
9768  *    Function: sdread
9769  *
9770  * Description: Driver's read(9e) entry point function.
9771  *
9772  *   Arguments: dev   - device number
9773  *		uio   - structure pointer describing where data is to be stored
9774  *			in user's space
9775  *		cred_p  - user credential pointer
9776  *
9777  * Return Code: ENXIO
9778  *		EIO
9779  *		EINVAL
9780  *		value returned by physio
9781  *
9782  *     Context: Kernel thread context.
9783  */
9784 /* ARGSUSED */
9785 static int
9786 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9787 {
9788 	struct sd_lun	*un = NULL;
9789 	int		secmask;
9790 	int		err;
9791 
9792 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9793 		return (ENXIO);
9794 	}
9795 
9796 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9797 
9798 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9799 		mutex_enter(SD_MUTEX(un));
9800 		/*
9801 		 * Because the call to sd_ready_and_valid will issue I/O we
9802 		 * must wait here if either the device is suspended or
9803 		 * if it's power level is changing.
9804 		 */
9805 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9806 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9807 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9808 		}
9809 		un->un_ncmds_in_driver++;
9810 		mutex_exit(SD_MUTEX(un));
9811 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9812 			mutex_enter(SD_MUTEX(un));
9813 			un->un_ncmds_in_driver--;
9814 			ASSERT(un->un_ncmds_in_driver >= 0);
9815 			mutex_exit(SD_MUTEX(un));
9816 			return (EIO);
9817 		}
9818 		mutex_enter(SD_MUTEX(un));
9819 		un->un_ncmds_in_driver--;
9820 		ASSERT(un->un_ncmds_in_driver >= 0);
9821 		mutex_exit(SD_MUTEX(un));
9822 	}
9823 
9824 	/*
9825 	 * Read requests are restricted to multiples of the system block size.
9826 	 */
9827 	secmask = un->un_sys_blocksize - 1;
9828 
9829 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9830 		SD_ERROR(SD_LOG_READ_WRITE, un,
9831 		    "sdread: file offset not modulo %d\n",
9832 		    un->un_sys_blocksize);
9833 		err = EINVAL;
9834 	} else if (uio->uio_iov->iov_len & (secmask)) {
9835 		SD_ERROR(SD_LOG_READ_WRITE, un,
9836 		    "sdread: transfer length not modulo %d\n",
9837 		    un->un_sys_blocksize);
9838 		err = EINVAL;
9839 	} else {
9840 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9841 	}
9842 	return (err);
9843 }
9844 
9845 
9846 /*
9847  *    Function: sdwrite
9848  *
9849  * Description: Driver's write(9e) entry point function.
9850  *
9851  *   Arguments: dev   - device number
9852  *		uio   - structure pointer describing where data is stored in
9853  *			user's space
9854  *		cred_p  - user credential pointer
9855  *
9856  * Return Code: ENXIO
9857  *		EIO
9858  *		EINVAL
9859  *		value returned by physio
9860  *
9861  *     Context: Kernel thread context.
9862  */
9863 /* ARGSUSED */
9864 static int
9865 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9866 {
9867 	struct sd_lun	*un = NULL;
9868 	int		secmask;
9869 	int		err;
9870 
9871 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9872 		return (ENXIO);
9873 	}
9874 
9875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9876 
9877 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9878 		mutex_enter(SD_MUTEX(un));
9879 		/*
9880 		 * Because the call to sd_ready_and_valid will issue I/O we
9881 		 * must wait here if either the device is suspended or
9882 		 * if it's power level is changing.
9883 		 */
9884 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9885 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9886 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9887 		}
9888 		un->un_ncmds_in_driver++;
9889 		mutex_exit(SD_MUTEX(un));
9890 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9891 			mutex_enter(SD_MUTEX(un));
9892 			un->un_ncmds_in_driver--;
9893 			ASSERT(un->un_ncmds_in_driver >= 0);
9894 			mutex_exit(SD_MUTEX(un));
9895 			return (EIO);
9896 		}
9897 		mutex_enter(SD_MUTEX(un));
9898 		un->un_ncmds_in_driver--;
9899 		ASSERT(un->un_ncmds_in_driver >= 0);
9900 		mutex_exit(SD_MUTEX(un));
9901 	}
9902 
9903 	/*
9904 	 * Write requests are restricted to multiples of the system block size.
9905 	 */
9906 	secmask = un->un_sys_blocksize - 1;
9907 
9908 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9909 		SD_ERROR(SD_LOG_READ_WRITE, un,
9910 		    "sdwrite: file offset not modulo %d\n",
9911 		    un->un_sys_blocksize);
9912 		err = EINVAL;
9913 	} else if (uio->uio_iov->iov_len & (secmask)) {
9914 		SD_ERROR(SD_LOG_READ_WRITE, un,
9915 		    "sdwrite: transfer length not modulo %d\n",
9916 		    un->un_sys_blocksize);
9917 		err = EINVAL;
9918 	} else {
9919 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9920 	}
9921 	return (err);
9922 }
9923 
9924 
9925 /*
9926  *    Function: sdaread
9927  *
9928  * Description: Driver's aread(9e) entry point function.
9929  *
9930  *   Arguments: dev   - device number
9931  *		aio   - structure pointer describing where data is to be stored
9932  *		cred_p  - user credential pointer
9933  *
9934  * Return Code: ENXIO
9935  *		EIO
9936  *		EINVAL
9937  *		value returned by aphysio
9938  *
9939  *     Context: Kernel thread context.
9940  */
9941 /* ARGSUSED */
9942 static int
9943 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9944 {
9945 	struct sd_lun	*un = NULL;
9946 	struct uio	*uio = aio->aio_uio;
9947 	int		secmask;
9948 	int		err;
9949 
9950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9951 		return (ENXIO);
9952 	}
9953 
9954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9955 
9956 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9957 		mutex_enter(SD_MUTEX(un));
9958 		/*
9959 		 * Because the call to sd_ready_and_valid will issue I/O we
9960 		 * must wait here if either the device is suspended or
9961 		 * if it's power level is changing.
9962 		 */
9963 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9964 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9965 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9966 		}
9967 		un->un_ncmds_in_driver++;
9968 		mutex_exit(SD_MUTEX(un));
9969 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9970 			mutex_enter(SD_MUTEX(un));
9971 			un->un_ncmds_in_driver--;
9972 			ASSERT(un->un_ncmds_in_driver >= 0);
9973 			mutex_exit(SD_MUTEX(un));
9974 			return (EIO);
9975 		}
9976 		mutex_enter(SD_MUTEX(un));
9977 		un->un_ncmds_in_driver--;
9978 		ASSERT(un->un_ncmds_in_driver >= 0);
9979 		mutex_exit(SD_MUTEX(un));
9980 	}
9981 
9982 	/*
9983 	 * Read requests are restricted to multiples of the system block size.
9984 	 */
9985 	secmask = un->un_sys_blocksize - 1;
9986 
9987 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9988 		SD_ERROR(SD_LOG_READ_WRITE, un,
9989 		    "sdaread: file offset not modulo %d\n",
9990 		    un->un_sys_blocksize);
9991 		err = EINVAL;
9992 	} else if (uio->uio_iov->iov_len & (secmask)) {
9993 		SD_ERROR(SD_LOG_READ_WRITE, un,
9994 		    "sdaread: transfer length not modulo %d\n",
9995 		    un->un_sys_blocksize);
9996 		err = EINVAL;
9997 	} else {
9998 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9999 	}
10000 	return (err);
10001 }
10002 
10003 
10004 /*
10005  *    Function: sdawrite
10006  *
10007  * Description: Driver's awrite(9e) entry point function.
10008  *
10009  *   Arguments: dev   - device number
10010  *		aio   - structure pointer describing where data is stored
10011  *		cred_p  - user credential pointer
10012  *
10013  * Return Code: ENXIO
10014  *		EIO
10015  *		EINVAL
10016  *		value returned by aphysio
10017  *
10018  *     Context: Kernel thread context.
10019  */
10020 /* ARGSUSED */
10021 static int
10022 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10023 {
10024 	struct sd_lun	*un = NULL;
10025 	struct uio	*uio = aio->aio_uio;
10026 	int		secmask;
10027 	int		err;
10028 
10029 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10030 		return (ENXIO);
10031 	}
10032 
10033 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10034 
10035 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10036 		mutex_enter(SD_MUTEX(un));
10037 		/*
10038 		 * Because the call to sd_ready_and_valid will issue I/O we
10039 		 * must wait here if either the device is suspended or
10040 		 * if it's power level is changing.
10041 		 */
10042 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10043 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10044 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10045 		}
10046 		un->un_ncmds_in_driver++;
10047 		mutex_exit(SD_MUTEX(un));
10048 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10049 			mutex_enter(SD_MUTEX(un));
10050 			un->un_ncmds_in_driver--;
10051 			ASSERT(un->un_ncmds_in_driver >= 0);
10052 			mutex_exit(SD_MUTEX(un));
10053 			return (EIO);
10054 		}
10055 		mutex_enter(SD_MUTEX(un));
10056 		un->un_ncmds_in_driver--;
10057 		ASSERT(un->un_ncmds_in_driver >= 0);
10058 		mutex_exit(SD_MUTEX(un));
10059 	}
10060 
10061 	/*
10062 	 * Write requests are restricted to multiples of the system block size.
10063 	 */
10064 	secmask = un->un_sys_blocksize - 1;
10065 
10066 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10067 		SD_ERROR(SD_LOG_READ_WRITE, un,
10068 		    "sdawrite: file offset not modulo %d\n",
10069 		    un->un_sys_blocksize);
10070 		err = EINVAL;
10071 	} else if (uio->uio_iov->iov_len & (secmask)) {
10072 		SD_ERROR(SD_LOG_READ_WRITE, un,
10073 		    "sdawrite: transfer length not modulo %d\n",
10074 		    un->un_sys_blocksize);
10075 		err = EINVAL;
10076 	} else {
10077 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10078 	}
10079 	return (err);
10080 }
10081 
10082 
10083 
10084 
10085 
10086 /*
10087  * Driver IO processing follows the following sequence:
10088  *
10089  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10090  *         |                |                     ^
10091  *         v                v                     |
10092  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10093  *         |                |                     |                   |
10094  *         v                |                     |                   |
10095  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10096  *         |                |                     ^                   ^
10097  *         v                v                     |                   |
10098  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10099  *         |                |                     |                   |
10100  *     +---+                |                     +------------+      +-------+
10101  *     |                    |                                  |              |
10102  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10103  *     |                    v                                  |              |
10104  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10105  *     |                    |                                  ^              |
10106  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10107  *     |                    v                                  |              |
10108  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10109  *     |                    |                                  ^              |
10110  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10111  *     |                    v                                  |              |
10112  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10113  *     |                    |                                  ^              |
10114  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10115  *     |                    v                                  |              |
10116  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10117  *     |                    |                                  ^              |
10118  *     |                    |                                  |              |
10119  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10120  *                          |                           ^
10121  *                          v                           |
10122  *                   sd_core_iostart()                  |
10123  *                          |                           |
10124  *                          |                           +------>(*destroypkt)()
10125  *                          +-> sd_start_cmds() <-+     |           |
10126  *                          |                     |     |           v
10127  *                          |                     |     |  scsi_destroy_pkt(9F)
10128  *                          |                     |     |
10129  *                          +->(*initpkt)()       +- sdintr()
10130  *                          |  |                        |  |
10131  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10132  *                          |  +-> scsi_setup_cdb(9F)   |
10133  *                          |                           |
10134  *                          +--> scsi_transport(9F)     |
10135  *                                     |                |
10136  *                                     +----> SCSA ---->+
10137  *
10138  *
10139  * This code is based upon the following presumptions:
10140  *
10141  *   - iostart and iodone functions operate on buf(9S) structures. These
10142  *     functions perform the necessary operations on the buf(9S) and pass
10143  *     them along to the next function in the chain by using the macros
10144  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10145  *     (for iodone side functions).
10146  *
10147  *   - The iostart side functions may sleep. The iodone side functions
10148  *     are called under interrupt context and may NOT sleep. Therefore
10149  *     iodone side functions also may not call iostart side functions.
10150  *     (NOTE: iostart side functions should NOT sleep for memory, as
10151  *     this could result in deadlock.)
10152  *
10153  *   - An iostart side function may call its corresponding iodone side
10154  *     function directly (if necessary).
10155  *
10156  *   - In the event of an error, an iostart side function can return a buf(9S)
10157  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10158  *     b_error in the usual way of course).
10159  *
10160  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10161  *     requests to the iostart side functions.  The iostart side functions in
10162  *     this case would be called under the context of a taskq thread, so it's
10163  *     OK for them to block/sleep/spin in this case.
10164  *
10165  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10166  *     pass them along to the next function in the chain.  The corresponding
10167  *     iodone side functions must coalesce the "shadow" bufs and return
10168  *     the "original" buf to the next higher layer.
10169  *
10170  *   - The b_private field of the buf(9S) struct holds a pointer to
10171  *     an sd_xbuf struct, which contains information needed to
10172  *     construct the scsi_pkt for the command.
10173  *
10174  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10175  *     layer must acquire & release the SD_MUTEX(un) as needed.
10176  */
10177 
10178 
10179 /*
10180  * Create taskq for all targets in the system. This is created at
10181  * _init(9E) and destroyed at _fini(9E).
10182  *
10183  * Note: here we set the minalloc to a reasonably high number to ensure that
10184  * we will have an adequate supply of task entries available at interrupt time.
10185  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10186  * sd_create_taskq().  Since we do not want to sleep for allocations at
10187  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10188  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10189  * requests any one instant in time.
10190  */
10191 #define	SD_TASKQ_NUMTHREADS	8
10192 #define	SD_TASKQ_MINALLOC	256
10193 #define	SD_TASKQ_MAXALLOC	256
10194 
10195 static taskq_t	*sd_tq = NULL;
10196 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10197 
10198 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10199 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10200 
10201 /*
10202  * The following task queue is being created for the write part of
10203  * read-modify-write of non-512 block size devices.
10204  * Limit the number of threads to 1 for now. This number has been chosen
10205  * considering the fact that it applies only to dvd ram drives/MO drives
10206  * currently. Performance for which is not main criteria at this stage.
10207  * Note: It needs to be explored if we can use a single taskq in future
10208  */
10209 #define	SD_WMR_TASKQ_NUMTHREADS	1
10210 static taskq_t	*sd_wmr_tq = NULL;
10211 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10212 
10213 /*
10214  *    Function: sd_taskq_create
10215  *
10216  * Description: Create taskq thread(s) and preallocate task entries
10217  *
10218  * Return Code: Returns a pointer to the allocated taskq_t.
10219  *
10220  *     Context: Can sleep. Requires blockable context.
10221  *
10222  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10223  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10224  *		- taskq_create() will block for memory, also it will panic
10225  *		  if it cannot create the requested number of threads.
10226  *		- Currently taskq_create() creates threads that cannot be
10227  *		  swapped.
10228  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10229  *		  supply of taskq entries at interrupt time (ie, so that we
10230  *		  do not have to sleep for memory)
10231  */
10232 
10233 static void
10234 sd_taskq_create(void)
10235 {
10236 	char	taskq_name[TASKQ_NAMELEN];
10237 
10238 	ASSERT(sd_tq == NULL);
10239 	ASSERT(sd_wmr_tq == NULL);
10240 
10241 	(void) snprintf(taskq_name, sizeof (taskq_name),
10242 	    "%s_drv_taskq", sd_label);
10243 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10244 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10245 	    TASKQ_PREPOPULATE));
10246 
10247 	(void) snprintf(taskq_name, sizeof (taskq_name),
10248 	    "%s_rmw_taskq", sd_label);
10249 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10250 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10251 	    TASKQ_PREPOPULATE));
10252 }
10253 
10254 
10255 /*
10256  *    Function: sd_taskq_delete
10257  *
10258  * Description: Complementary cleanup routine for sd_taskq_create().
10259  *
10260  *     Context: Kernel thread context.
10261  */
10262 
10263 static void
10264 sd_taskq_delete(void)
10265 {
10266 	ASSERT(sd_tq != NULL);
10267 	ASSERT(sd_wmr_tq != NULL);
10268 	taskq_destroy(sd_tq);
10269 	taskq_destroy(sd_wmr_tq);
10270 	sd_tq = NULL;
10271 	sd_wmr_tq = NULL;
10272 }
10273 
10274 
10275 /*
10276  *    Function: sdstrategy
10277  *
10278  * Description: Driver's strategy (9E) entry point function.
10279  *
10280  *   Arguments: bp - pointer to buf(9S)
10281  *
10282  * Return Code: Always returns zero
10283  *
10284  *     Context: Kernel thread context.
10285  */
10286 
10287 static int
10288 sdstrategy(struct buf *bp)
10289 {
10290 	struct sd_lun *un;
10291 
10292 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10293 	if (un == NULL) {
10294 		bioerror(bp, EIO);
10295 		bp->b_resid = bp->b_bcount;
10296 		biodone(bp);
10297 		return (0);
10298 	}
10299 	/* As was done in the past, fail new cmds. if state is dumping. */
10300 	if (un->un_state == SD_STATE_DUMPING) {
10301 		bioerror(bp, ENXIO);
10302 		bp->b_resid = bp->b_bcount;
10303 		biodone(bp);
10304 		return (0);
10305 	}
10306 
10307 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10308 
10309 	/*
10310 	 * Commands may sneak in while we released the mutex in
10311 	 * DDI_SUSPEND, we should block new commands. However, old
10312 	 * commands that are still in the driver at this point should
10313 	 * still be allowed to drain.
10314 	 */
10315 	mutex_enter(SD_MUTEX(un));
10316 	/*
10317 	 * Must wait here if either the device is suspended or
10318 	 * if it's power level is changing.
10319 	 */
10320 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10321 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10322 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10323 	}
10324 
10325 	un->un_ncmds_in_driver++;
10326 
10327 	/*
10328 	 * atapi: Since we are running the CD for now in PIO mode we need to
10329 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10330 	 * the HBA's init_pkt routine.
10331 	 */
10332 	if (un->un_f_cfg_is_atapi == TRUE) {
10333 		mutex_exit(SD_MUTEX(un));
10334 		bp_mapin(bp);
10335 		mutex_enter(SD_MUTEX(un));
10336 	}
10337 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10338 	    un->un_ncmds_in_driver);
10339 
10340 	mutex_exit(SD_MUTEX(un));
10341 
10342 	/*
10343 	 * This will (eventually) allocate the sd_xbuf area and
10344 	 * call sd_xbuf_strategy().  We just want to return the
10345 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10346 	 * imized tail call which saves us a stack frame.
10347 	 */
10348 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10349 }
10350 
10351 
10352 /*
10353  *    Function: sd_xbuf_strategy
10354  *
10355  * Description: Function for initiating IO operations via the
10356  *		ddi_xbuf_qstrategy() mechanism.
10357  *
10358  *     Context: Kernel thread context.
10359  */
10360 
10361 static void
10362 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10363 {
10364 	struct sd_lun *un = arg;
10365 
10366 	ASSERT(bp != NULL);
10367 	ASSERT(xp != NULL);
10368 	ASSERT(un != NULL);
10369 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10370 
10371 	/*
10372 	 * Initialize the fields in the xbuf and save a pointer to the
10373 	 * xbuf in bp->b_private.
10374 	 */
10375 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10376 
10377 	/* Send the buf down the iostart chain */
10378 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10379 }
10380 
10381 
10382 /*
10383  *    Function: sd_xbuf_init
10384  *
10385  * Description: Prepare the given sd_xbuf struct for use.
10386  *
10387  *   Arguments: un - ptr to softstate
10388  *		bp - ptr to associated buf(9S)
10389  *		xp - ptr to associated sd_xbuf
10390  *		chain_type - IO chain type to use:
10391  *			SD_CHAIN_NULL
10392  *			SD_CHAIN_BUFIO
10393  *			SD_CHAIN_USCSI
10394  *			SD_CHAIN_DIRECT
10395  *			SD_CHAIN_DIRECT_PRIORITY
10396  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10397  *			initialization; may be NULL if none.
10398  *
10399  *     Context: Kernel thread context
10400  */
10401 
10402 static void
10403 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10404 	uchar_t chain_type, void *pktinfop)
10405 {
10406 	int index;
10407 
10408 	ASSERT(un != NULL);
10409 	ASSERT(bp != NULL);
10410 	ASSERT(xp != NULL);
10411 
10412 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10413 	    bp, chain_type);
10414 
10415 	xp->xb_un	= un;
10416 	xp->xb_pktp	= NULL;
10417 	xp->xb_pktinfo	= pktinfop;
10418 	xp->xb_private	= bp->b_private;
10419 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10420 
10421 	/*
10422 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10423 	 * upon the specified chain type to use.
10424 	 */
10425 	switch (chain_type) {
10426 	case SD_CHAIN_NULL:
10427 		/*
10428 		 * Fall thru to just use the values for the buf type, even
10429 		 * tho for the NULL chain these values will never be used.
10430 		 */
10431 		/* FALLTHRU */
10432 	case SD_CHAIN_BUFIO:
10433 		index = un->un_buf_chain_type;
10434 		break;
10435 	case SD_CHAIN_USCSI:
10436 		index = un->un_uscsi_chain_type;
10437 		break;
10438 	case SD_CHAIN_DIRECT:
10439 		index = un->un_direct_chain_type;
10440 		break;
10441 	case SD_CHAIN_DIRECT_PRIORITY:
10442 		index = un->un_priority_chain_type;
10443 		break;
10444 	default:
10445 		/* We're really broken if we ever get here... */
10446 		panic("sd_xbuf_init: illegal chain type!");
10447 		/*NOTREACHED*/
10448 	}
10449 
10450 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10451 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10452 
10453 	/*
10454 	 * It might be a bit easier to simply bzero the entire xbuf above,
10455 	 * but it turns out that since we init a fair number of members anyway,
10456 	 * we save a fair number cycles by doing explicit assignment of zero.
10457 	 */
10458 	xp->xb_pkt_flags	= 0;
10459 	xp->xb_dma_resid	= 0;
10460 	xp->xb_retry_count	= 0;
10461 	xp->xb_victim_retry_count = 0;
10462 	xp->xb_ua_retry_count	= 0;
10463 	xp->xb_nr_retry_count	= 0;
10464 	xp->xb_sense_bp		= NULL;
10465 	xp->xb_sense_status	= 0;
10466 	xp->xb_sense_state	= 0;
10467 	xp->xb_sense_resid	= 0;
10468 
10469 	bp->b_private	= xp;
10470 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10471 	bp->b_resid	= 0;
10472 	bp->av_forw	= NULL;
10473 	bp->av_back	= NULL;
10474 	bioerror(bp, 0);
10475 
10476 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10477 }
10478 
10479 
10480 /*
10481  *    Function: sd_uscsi_strategy
10482  *
10483  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10484  *
10485  *   Arguments: bp - buf struct ptr
10486  *
10487  * Return Code: Always returns 0
10488  *
10489  *     Context: Kernel thread context
10490  */
10491 
10492 static int
10493 sd_uscsi_strategy(struct buf *bp)
10494 {
10495 	struct sd_lun		*un;
10496 	struct sd_uscsi_info	*uip;
10497 	struct sd_xbuf		*xp;
10498 	uchar_t			chain_type;
10499 
10500 	ASSERT(bp != NULL);
10501 
10502 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10503 	if (un == NULL) {
10504 		bioerror(bp, EIO);
10505 		bp->b_resid = bp->b_bcount;
10506 		biodone(bp);
10507 		return (0);
10508 	}
10509 
10510 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10511 
10512 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10513 
10514 	mutex_enter(SD_MUTEX(un));
10515 	/*
10516 	 * atapi: Since we are running the CD for now in PIO mode we need to
10517 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10518 	 * the HBA's init_pkt routine.
10519 	 */
10520 	if (un->un_f_cfg_is_atapi == TRUE) {
10521 		mutex_exit(SD_MUTEX(un));
10522 		bp_mapin(bp);
10523 		mutex_enter(SD_MUTEX(un));
10524 	}
10525 	un->un_ncmds_in_driver++;
10526 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10527 	    un->un_ncmds_in_driver);
10528 	mutex_exit(SD_MUTEX(un));
10529 
10530 	/*
10531 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10532 	 */
10533 	ASSERT(bp->b_private != NULL);
10534 	uip = (struct sd_uscsi_info *)bp->b_private;
10535 
10536 	switch (uip->ui_flags) {
10537 	case SD_PATH_DIRECT:
10538 		chain_type = SD_CHAIN_DIRECT;
10539 		break;
10540 	case SD_PATH_DIRECT_PRIORITY:
10541 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10542 		break;
10543 	default:
10544 		chain_type = SD_CHAIN_USCSI;
10545 		break;
10546 	}
10547 
10548 	/*
10549 	 * We may allocate extra buf for external USCSI commands. If the
10550 	 * application asks for bigger than 20-byte sense data via USCSI,
10551 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10552 	 */
10553 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10554 	    SENSE_LENGTH) {
10555 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10556 		    MAX_SENSE_LENGTH, KM_SLEEP);
10557 	} else {
10558 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10559 	}
10560 
10561 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10562 
10563 	/* Use the index obtained within xbuf_init */
10564 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10565 
10566 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10567 
10568 	return (0);
10569 }
10570 
10571 /*
10572  *    Function: sd_send_scsi_cmd
10573  *
10574  * Description: Runs a USCSI command for user (when called thru sdioctl),
10575  *		or for the driver
10576  *
10577  *   Arguments: dev - the dev_t for the device
10578  *		incmd - ptr to a valid uscsi_cmd struct
10579  *		flag - bit flag, indicating open settings, 32/64 bit type
10580  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10581  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10582  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10583  *			to use the USCSI "direct" chain and bypass the normal
10584  *			command waitq.
10585  *
10586  * Return Code: 0 -  successful completion of the given command
10587  *		EIO - scsi_uscsi_handle_command() failed
10588  *		ENXIO  - soft state not found for specified dev
10589  *		EINVAL
10590  *		EFAULT - copyin/copyout error
10591  *		return code of scsi_uscsi_handle_command():
10592  *			EIO
10593  *			ENXIO
10594  *			EACCES
10595  *
10596  *     Context: Waits for command to complete. Can sleep.
10597  */
10598 
10599 static int
10600 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10601 	enum uio_seg dataspace, int path_flag)
10602 {
10603 	struct sd_uscsi_info	*uip;
10604 	struct uscsi_cmd	*uscmd;
10605 	struct sd_lun	*un;
10606 	int	format = 0;
10607 	int	rval;
10608 
10609 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10610 	if (un == NULL) {
10611 		return (ENXIO);
10612 	}
10613 
10614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10615 
10616 #ifdef SDDEBUG
10617 	switch (dataspace) {
10618 	case UIO_USERSPACE:
10619 		SD_TRACE(SD_LOG_IO, un,
10620 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10621 		break;
10622 	case UIO_SYSSPACE:
10623 		SD_TRACE(SD_LOG_IO, un,
10624 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10625 		break;
10626 	default:
10627 		SD_TRACE(SD_LOG_IO, un,
10628 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10629 		break;
10630 	}
10631 #endif
10632 
10633 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10634 	    SD_ADDRESS(un), &uscmd);
10635 	if (rval != 0) {
10636 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10637 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10638 		return (rval);
10639 	}
10640 
10641 	if ((uscmd->uscsi_cdb != NULL) &&
10642 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10643 		mutex_enter(SD_MUTEX(un));
10644 		un->un_f_format_in_progress = TRUE;
10645 		mutex_exit(SD_MUTEX(un));
10646 		format = 1;
10647 	}
10648 
10649 	/*
10650 	 * Allocate an sd_uscsi_info struct and fill it with the info
10651 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10652 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10653 	 * since we allocate the buf here in this function, we do not
10654 	 * need to preserve the prior contents of b_private.
10655 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10656 	 */
10657 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10658 	uip->ui_flags = path_flag;
10659 	uip->ui_cmdp = uscmd;
10660 
10661 	/*
10662 	 * Commands sent with priority are intended for error recovery
10663 	 * situations, and do not have retries performed.
10664 	 */
10665 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10666 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10667 	}
10668 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10669 
10670 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10671 	    sd_uscsi_strategy, NULL, uip);
10672 
10673 #ifdef SDDEBUG
10674 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10675 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10676 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10677 	if (uscmd->uscsi_bufaddr != NULL) {
10678 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10679 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10680 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10681 		if (dataspace == UIO_SYSSPACE) {
10682 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10683 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10684 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10685 		}
10686 	}
10687 #endif
10688 
10689 	if (format == 1) {
10690 		mutex_enter(SD_MUTEX(un));
10691 		un->un_f_format_in_progress = FALSE;
10692 		mutex_exit(SD_MUTEX(un));
10693 	}
10694 
10695 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10696 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10697 
10698 	return (rval);
10699 }
10700 
10701 
10702 /*
10703  *    Function: sd_buf_iodone
10704  *
10705  * Description: Frees the sd_xbuf & returns the buf to its originator.
10706  *
10707  *     Context: May be called from interrupt context.
10708  */
10709 /* ARGSUSED */
10710 static void
10711 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10712 {
10713 	struct sd_xbuf *xp;
10714 
10715 	ASSERT(un != NULL);
10716 	ASSERT(bp != NULL);
10717 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10718 
10719 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10720 
10721 	xp = SD_GET_XBUF(bp);
10722 	ASSERT(xp != NULL);
10723 
10724 	mutex_enter(SD_MUTEX(un));
10725 
10726 	/*
10727 	 * Grab time when the cmd completed.
10728 	 * This is used for determining if the system has been
10729 	 * idle long enough to make it idle to the PM framework.
10730 	 * This is for lowering the overhead, and therefore improving
10731 	 * performance per I/O operation.
10732 	 */
10733 	un->un_pm_idle_time = ddi_get_time();
10734 
10735 	un->un_ncmds_in_driver--;
10736 	ASSERT(un->un_ncmds_in_driver >= 0);
10737 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10738 	    un->un_ncmds_in_driver);
10739 
10740 	mutex_exit(SD_MUTEX(un));
10741 
10742 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10743 	biodone(bp);				/* bp is gone after this */
10744 
10745 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10746 }
10747 
10748 
10749 /*
10750  *    Function: sd_uscsi_iodone
10751  *
10752  * Description: Frees the sd_xbuf & returns the buf to its originator.
10753  *
10754  *     Context: May be called from interrupt context.
10755  */
10756 /* ARGSUSED */
10757 static void
10758 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10759 {
10760 	struct sd_xbuf *xp;
10761 
10762 	ASSERT(un != NULL);
10763 	ASSERT(bp != NULL);
10764 
10765 	xp = SD_GET_XBUF(bp);
10766 	ASSERT(xp != NULL);
10767 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10768 
10769 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10770 
10771 	bp->b_private = xp->xb_private;
10772 
10773 	mutex_enter(SD_MUTEX(un));
10774 
10775 	/*
10776 	 * Grab time when the cmd completed.
10777 	 * This is used for determining if the system has been
10778 	 * idle long enough to make it idle to the PM framework.
10779 	 * This is for lowering the overhead, and therefore improving
10780 	 * performance per I/O operation.
10781 	 */
10782 	un->un_pm_idle_time = ddi_get_time();
10783 
10784 	un->un_ncmds_in_driver--;
10785 	ASSERT(un->un_ncmds_in_driver >= 0);
10786 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10787 	    un->un_ncmds_in_driver);
10788 
10789 	mutex_exit(SD_MUTEX(un));
10790 
10791 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10792 	    SENSE_LENGTH) {
10793 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10794 		    MAX_SENSE_LENGTH);
10795 	} else {
10796 		kmem_free(xp, sizeof (struct sd_xbuf));
10797 	}
10798 
10799 	biodone(bp);
10800 
10801 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10802 }
10803 
10804 
10805 /*
10806  *    Function: sd_mapblockaddr_iostart
10807  *
10808  * Description: Verify request lies within the partition limits for
10809  *		the indicated minor device.  Issue "overrun" buf if
10810  *		request would exceed partition range.  Converts
10811  *		partition-relative block address to absolute.
10812  *
10813  *     Context: Can sleep
10814  *
10815  *      Issues: This follows what the old code did, in terms of accessing
10816  *		some of the partition info in the unit struct without holding
10817  *		the mutext.  This is a general issue, if the partition info
10818  *		can be altered while IO is in progress... as soon as we send
10819  *		a buf, its partitioning can be invalid before it gets to the
10820  *		device.  Probably the right fix is to move partitioning out
10821  *		of the driver entirely.
10822  */
10823 
10824 static void
10825 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10826 {
10827 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10828 	daddr_t	blocknum;	/* Block number specified by the buf */
10829 	size_t	requested_nblocks;
10830 	size_t	available_nblocks;
10831 	int	partition;
10832 	diskaddr_t	partition_offset;
10833 	struct sd_xbuf *xp;
10834 
10835 
10836 	ASSERT(un != NULL);
10837 	ASSERT(bp != NULL);
10838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10839 
10840 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10841 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10842 
10843 	xp = SD_GET_XBUF(bp);
10844 	ASSERT(xp != NULL);
10845 
10846 	/*
10847 	 * If the geometry is not indicated as valid, attempt to access
10848 	 * the unit & verify the geometry/label. This can be the case for
10849 	 * removable-media devices, of if the device was opened in
10850 	 * NDELAY/NONBLOCK mode.
10851 	 */
10852 	if (!SD_IS_VALID_LABEL(un) &&
10853 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10854 		/*
10855 		 * For removable devices it is possible to start an I/O
10856 		 * without a media by opening the device in nodelay mode.
10857 		 * Also for writable CDs there can be many scenarios where
10858 		 * there is no geometry yet but volume manager is trying to
10859 		 * issue a read() just because it can see TOC on the CD. So
10860 		 * do not print a message for removables.
10861 		 */
10862 		if (!un->un_f_has_removable_media) {
10863 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10864 			    "i/o to invalid geometry\n");
10865 		}
10866 		bioerror(bp, EIO);
10867 		bp->b_resid = bp->b_bcount;
10868 		SD_BEGIN_IODONE(index, un, bp);
10869 		return;
10870 	}
10871 
10872 	partition = SDPART(bp->b_edev);
10873 
10874 	nblocks = 0;
10875 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10876 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10877 
10878 	/*
10879 	 * blocknum is the starting block number of the request. At this
10880 	 * point it is still relative to the start of the minor device.
10881 	 */
10882 	blocknum = xp->xb_blkno;
10883 
10884 	/*
10885 	 * Legacy: If the starting block number is one past the last block
10886 	 * in the partition, do not set B_ERROR in the buf.
10887 	 */
10888 	if (blocknum == nblocks)  {
10889 		goto error_exit;
10890 	}
10891 
10892 	/*
10893 	 * Confirm that the first block of the request lies within the
10894 	 * partition limits. Also the requested number of bytes must be
10895 	 * a multiple of the system block size.
10896 	 */
10897 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10898 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10899 		bp->b_flags |= B_ERROR;
10900 		goto error_exit;
10901 	}
10902 
10903 	/*
10904 	 * If the requsted # blocks exceeds the available # blocks, that
10905 	 * is an overrun of the partition.
10906 	 */
10907 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10908 	available_nblocks = (size_t)(nblocks - blocknum);
10909 	ASSERT(nblocks >= blocknum);
10910 
10911 	if (requested_nblocks > available_nblocks) {
10912 		/*
10913 		 * Allocate an "overrun" buf to allow the request to proceed
10914 		 * for the amount of space available in the partition. The
10915 		 * amount not transferred will be added into the b_resid
10916 		 * when the operation is complete. The overrun buf
10917 		 * replaces the original buf here, and the original buf
10918 		 * is saved inside the overrun buf, for later use.
10919 		 */
10920 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10921 		    (offset_t)(requested_nblocks - available_nblocks));
10922 		size_t count = bp->b_bcount - resid;
10923 		/*
10924 		 * Note: count is an unsigned entity thus it'll NEVER
10925 		 * be less than 0 so ASSERT the original values are
10926 		 * correct.
10927 		 */
10928 		ASSERT(bp->b_bcount >= resid);
10929 
10930 		bp = sd_bioclone_alloc(bp, count, blocknum,
10931 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10932 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10933 		ASSERT(xp != NULL);
10934 	}
10935 
10936 	/* At this point there should be no residual for this buf. */
10937 	ASSERT(bp->b_resid == 0);
10938 
10939 	/* Convert the block number to an absolute address. */
10940 	xp->xb_blkno += partition_offset;
10941 
10942 	SD_NEXT_IOSTART(index, un, bp);
10943 
10944 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10945 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10946 
10947 	return;
10948 
10949 error_exit:
10950 	bp->b_resid = bp->b_bcount;
10951 	SD_BEGIN_IODONE(index, un, bp);
10952 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10953 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10954 }
10955 
10956 
10957 /*
10958  *    Function: sd_mapblockaddr_iodone
10959  *
10960  * Description: Completion-side processing for partition management.
10961  *
10962  *     Context: May be called under interrupt context
10963  */
10964 
10965 static void
10966 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10967 {
10968 	/* int	partition; */	/* Not used, see below. */
10969 	ASSERT(un != NULL);
10970 	ASSERT(bp != NULL);
10971 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10972 
10973 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10974 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10975 
10976 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10977 		/*
10978 		 * We have an "overrun" buf to deal with...
10979 		 */
10980 		struct sd_xbuf	*xp;
10981 		struct buf	*obp;	/* ptr to the original buf */
10982 
10983 		xp = SD_GET_XBUF(bp);
10984 		ASSERT(xp != NULL);
10985 
10986 		/* Retrieve the pointer to the original buf */
10987 		obp = (struct buf *)xp->xb_private;
10988 		ASSERT(obp != NULL);
10989 
10990 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10991 		bioerror(obp, bp->b_error);
10992 
10993 		sd_bioclone_free(bp);
10994 
10995 		/*
10996 		 * Get back the original buf.
10997 		 * Note that since the restoration of xb_blkno below
10998 		 * was removed, the sd_xbuf is not needed.
10999 		 */
11000 		bp = obp;
11001 		/*
11002 		 * xp = SD_GET_XBUF(bp);
11003 		 * ASSERT(xp != NULL);
11004 		 */
11005 	}
11006 
11007 	/*
11008 	 * Convert sd->xb_blkno back to a minor-device relative value.
11009 	 * Note: this has been commented out, as it is not needed in the
11010 	 * current implementation of the driver (ie, since this function
11011 	 * is at the top of the layering chains, so the info will be
11012 	 * discarded) and it is in the "hot" IO path.
11013 	 *
11014 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
11015 	 * xp->xb_blkno -= un->un_offset[partition];
11016 	 */
11017 
11018 	SD_NEXT_IODONE(index, un, bp);
11019 
11020 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11021 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
11022 }
11023 
11024 
11025 /*
11026  *    Function: sd_mapblocksize_iostart
11027  *
11028  * Description: Convert between system block size (un->un_sys_blocksize)
11029  *		and target block size (un->un_tgt_blocksize).
11030  *
11031  *     Context: Can sleep to allocate resources.
11032  *
11033  * Assumptions: A higher layer has already performed any partition validation,
11034  *		and converted the xp->xb_blkno to an absolute value relative
11035  *		to the start of the device.
11036  *
11037  *		It is also assumed that the higher layer has implemented
11038  *		an "overrun" mechanism for the case where the request would
11039  *		read/write beyond the end of a partition.  In this case we
11040  *		assume (and ASSERT) that bp->b_resid == 0.
11041  *
11042  *		Note: The implementation for this routine assumes the target
11043  *		block size remains constant between allocation and transport.
11044  */
11045 
11046 static void
11047 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
11048 {
11049 	struct sd_mapblocksize_info	*bsp;
11050 	struct sd_xbuf			*xp;
11051 	offset_t first_byte;
11052 	daddr_t	start_block, end_block;
11053 	daddr_t	request_bytes;
11054 	ushort_t is_aligned = FALSE;
11055 
11056 	ASSERT(un != NULL);
11057 	ASSERT(bp != NULL);
11058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11059 	ASSERT(bp->b_resid == 0);
11060 
11061 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11062 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11063 
11064 	/*
11065 	 * For a non-writable CD, a write request is an error
11066 	 */
11067 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11068 	    (un->un_f_mmc_writable_media == FALSE)) {
11069 		bioerror(bp, EIO);
11070 		bp->b_resid = bp->b_bcount;
11071 		SD_BEGIN_IODONE(index, un, bp);
11072 		return;
11073 	}
11074 
11075 	/*
11076 	 * We do not need a shadow buf if the device is using
11077 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11078 	 * In this case there is no layer-private data block allocated.
11079 	 */
11080 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11081 	    (bp->b_bcount == 0)) {
11082 		goto done;
11083 	}
11084 
11085 #if defined(__i386) || defined(__amd64)
11086 	/* We do not support non-block-aligned transfers for ROD devices */
11087 	ASSERT(!ISROD(un));
11088 #endif
11089 
11090 	xp = SD_GET_XBUF(bp);
11091 	ASSERT(xp != NULL);
11092 
11093 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11094 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11095 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11096 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11097 	    "request start block:0x%x\n", xp->xb_blkno);
11098 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11099 	    "request len:0x%x\n", bp->b_bcount);
11100 
11101 	/*
11102 	 * Allocate the layer-private data area for the mapblocksize layer.
11103 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11104 	 * struct to store the pointer to their layer-private data block, but
11105 	 * each layer also has the responsibility of restoring the prior
11106 	 * contents of xb_private before returning the buf/xbuf to the
11107 	 * higher layer that sent it.
11108 	 *
11109 	 * Here we save the prior contents of xp->xb_private into the
11110 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11111 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11112 	 * the layer-private area and returning the buf/xbuf to the layer
11113 	 * that sent it.
11114 	 *
11115 	 * Note that here we use kmem_zalloc for the allocation as there are
11116 	 * parts of the mapblocksize code that expect certain fields to be
11117 	 * zero unless explicitly set to a required value.
11118 	 */
11119 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11120 	bsp->mbs_oprivate = xp->xb_private;
11121 	xp->xb_private = bsp;
11122 
11123 	/*
11124 	 * This treats the data on the disk (target) as an array of bytes.
11125 	 * first_byte is the byte offset, from the beginning of the device,
11126 	 * to the location of the request. This is converted from a
11127 	 * un->un_sys_blocksize block address to a byte offset, and then back
11128 	 * to a block address based upon a un->un_tgt_blocksize block size.
11129 	 *
11130 	 * xp->xb_blkno should be absolute upon entry into this function,
11131 	 * but, but it is based upon partitions that use the "system"
11132 	 * block size. It must be adjusted to reflect the block size of
11133 	 * the target.
11134 	 *
11135 	 * Note that end_block is actually the block that follows the last
11136 	 * block of the request, but that's what is needed for the computation.
11137 	 */
11138 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11139 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11140 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11141 	    un->un_tgt_blocksize;
11142 
11143 	/* request_bytes is rounded up to a multiple of the target block size */
11144 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11145 
11146 	/*
11147 	 * See if the starting address of the request and the request
11148 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11149 	 * then we do not need to allocate a shadow buf to handle the request.
11150 	 */
11151 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11152 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11153 		is_aligned = TRUE;
11154 	}
11155 
11156 	if ((bp->b_flags & B_READ) == 0) {
11157 		/*
11158 		 * Lock the range for a write operation. An aligned request is
11159 		 * considered a simple write; otherwise the request must be a
11160 		 * read-modify-write.
11161 		 */
11162 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11163 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11164 	}
11165 
11166 	/*
11167 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11168 	 * where the READ command is generated for a read-modify-write. (The
11169 	 * write phase is deferred until after the read completes.)
11170 	 */
11171 	if (is_aligned == FALSE) {
11172 
11173 		struct sd_mapblocksize_info	*shadow_bsp;
11174 		struct sd_xbuf	*shadow_xp;
11175 		struct buf	*shadow_bp;
11176 
11177 		/*
11178 		 * Allocate the shadow buf and it associated xbuf. Note that
11179 		 * after this call the xb_blkno value in both the original
11180 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11181 		 * same: absolute relative to the start of the device, and
11182 		 * adjusted for the target block size. The b_blkno in the
11183 		 * shadow buf will also be set to this value. We should never
11184 		 * change b_blkno in the original bp however.
11185 		 *
11186 		 * Note also that the shadow buf will always need to be a
11187 		 * READ command, regardless of whether the incoming command
11188 		 * is a READ or a WRITE.
11189 		 */
11190 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11191 		    xp->xb_blkno,
11192 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11193 
11194 		shadow_xp = SD_GET_XBUF(shadow_bp);
11195 
11196 		/*
11197 		 * Allocate the layer-private data for the shadow buf.
11198 		 * (No need to preserve xb_private in the shadow xbuf.)
11199 		 */
11200 		shadow_xp->xb_private = shadow_bsp =
11201 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11202 
11203 		/*
11204 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11205 		 * to figure out where the start of the user data is (based upon
11206 		 * the system block size) in the data returned by the READ
11207 		 * command (which will be based upon the target blocksize). Note
11208 		 * that this is only really used if the request is unaligned.
11209 		 */
11210 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11211 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11212 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11213 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11214 
11215 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11216 
11217 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11218 
11219 		/* Transfer the wmap (if any) to the shadow buf */
11220 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11221 		bsp->mbs_wmp = NULL;
11222 
11223 		/*
11224 		 * The shadow buf goes on from here in place of the
11225 		 * original buf.
11226 		 */
11227 		shadow_bsp->mbs_orig_bp = bp;
11228 		bp = shadow_bp;
11229 	}
11230 
11231 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11232 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11233 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11234 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11235 	    request_bytes);
11236 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11237 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11238 
11239 done:
11240 	SD_NEXT_IOSTART(index, un, bp);
11241 
11242 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11243 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11244 }
11245 
11246 
11247 /*
11248  *    Function: sd_mapblocksize_iodone
11249  *
11250  * Description: Completion side processing for block-size mapping.
11251  *
11252  *     Context: May be called under interrupt context
11253  */
11254 
11255 static void
11256 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11257 {
11258 	struct sd_mapblocksize_info	*bsp;
11259 	struct sd_xbuf	*xp;
11260 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11261 	struct buf	*orig_bp;	/* ptr to the original buf */
11262 	offset_t	shadow_end;
11263 	offset_t	request_end;
11264 	offset_t	shadow_start;
11265 	ssize_t		copy_offset;
11266 	size_t		copy_length;
11267 	size_t		shortfall;
11268 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11269 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11270 
11271 	ASSERT(un != NULL);
11272 	ASSERT(bp != NULL);
11273 
11274 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11275 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11276 
11277 	/*
11278 	 * There is no shadow buf or layer-private data if the target is
11279 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11280 	 */
11281 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11282 	    (bp->b_bcount == 0)) {
11283 		goto exit;
11284 	}
11285 
11286 	xp = SD_GET_XBUF(bp);
11287 	ASSERT(xp != NULL);
11288 
11289 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11290 	bsp = xp->xb_private;
11291 
11292 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11293 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11294 
11295 	if (is_write) {
11296 		/*
11297 		 * For a WRITE request we must free up the block range that
11298 		 * we have locked up.  This holds regardless of whether this is
11299 		 * an aligned write request or a read-modify-write request.
11300 		 */
11301 		sd_range_unlock(un, bsp->mbs_wmp);
11302 		bsp->mbs_wmp = NULL;
11303 	}
11304 
11305 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11306 		/*
11307 		 * An aligned read or write command will have no shadow buf;
11308 		 * there is not much else to do with it.
11309 		 */
11310 		goto done;
11311 	}
11312 
11313 	orig_bp = bsp->mbs_orig_bp;
11314 	ASSERT(orig_bp != NULL);
11315 	orig_xp = SD_GET_XBUF(orig_bp);
11316 	ASSERT(orig_xp != NULL);
11317 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11318 
11319 	if (!is_write && has_wmap) {
11320 		/*
11321 		 * A READ with a wmap means this is the READ phase of a
11322 		 * read-modify-write. If an error occurred on the READ then
11323 		 * we do not proceed with the WRITE phase or copy any data.
11324 		 * Just release the write maps and return with an error.
11325 		 */
11326 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11327 			orig_bp->b_resid = orig_bp->b_bcount;
11328 			bioerror(orig_bp, bp->b_error);
11329 			sd_range_unlock(un, bsp->mbs_wmp);
11330 			goto freebuf_done;
11331 		}
11332 	}
11333 
11334 	/*
11335 	 * Here is where we set up to copy the data from the shadow buf
11336 	 * into the space associated with the original buf.
11337 	 *
11338 	 * To deal with the conversion between block sizes, these
11339 	 * computations treat the data as an array of bytes, with the
11340 	 * first byte (byte 0) corresponding to the first byte in the
11341 	 * first block on the disk.
11342 	 */
11343 
11344 	/*
11345 	 * shadow_start and shadow_len indicate the location and size of
11346 	 * the data returned with the shadow IO request.
11347 	 */
11348 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11349 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11350 
11351 	/*
11352 	 * copy_offset gives the offset (in bytes) from the start of the first
11353 	 * block of the READ request to the beginning of the data.  We retrieve
11354 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11355 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11356 	 * data to be copied (in bytes).
11357 	 */
11358 	copy_offset  = bsp->mbs_copy_offset;
11359 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11360 	copy_length  = orig_bp->b_bcount;
11361 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11362 
11363 	/*
11364 	 * Set up the resid and error fields of orig_bp as appropriate.
11365 	 */
11366 	if (shadow_end >= request_end) {
11367 		/* We got all the requested data; set resid to zero */
11368 		orig_bp->b_resid = 0;
11369 	} else {
11370 		/*
11371 		 * We failed to get enough data to fully satisfy the original
11372 		 * request. Just copy back whatever data we got and set
11373 		 * up the residual and error code as required.
11374 		 *
11375 		 * 'shortfall' is the amount by which the data received with the
11376 		 * shadow buf has "fallen short" of the requested amount.
11377 		 */
11378 		shortfall = (size_t)(request_end - shadow_end);
11379 
11380 		if (shortfall > orig_bp->b_bcount) {
11381 			/*
11382 			 * We did not get enough data to even partially
11383 			 * fulfill the original request.  The residual is
11384 			 * equal to the amount requested.
11385 			 */
11386 			orig_bp->b_resid = orig_bp->b_bcount;
11387 		} else {
11388 			/*
11389 			 * We did not get all the data that we requested
11390 			 * from the device, but we will try to return what
11391 			 * portion we did get.
11392 			 */
11393 			orig_bp->b_resid = shortfall;
11394 		}
11395 		ASSERT(copy_length >= orig_bp->b_resid);
11396 		copy_length  -= orig_bp->b_resid;
11397 	}
11398 
11399 	/* Propagate the error code from the shadow buf to the original buf */
11400 	bioerror(orig_bp, bp->b_error);
11401 
11402 	if (is_write) {
11403 		goto freebuf_done;	/* No data copying for a WRITE */
11404 	}
11405 
11406 	if (has_wmap) {
11407 		/*
11408 		 * This is a READ command from the READ phase of a
11409 		 * read-modify-write request. We have to copy the data given
11410 		 * by the user OVER the data returned by the READ command,
11411 		 * then convert the command from a READ to a WRITE and send
11412 		 * it back to the target.
11413 		 */
11414 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11415 		    copy_length);
11416 
11417 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11418 
11419 		/*
11420 		 * Dispatch the WRITE command to the taskq thread, which
11421 		 * will in turn send the command to the target. When the
11422 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11423 		 * will get called again as part of the iodone chain
11424 		 * processing for it. Note that we will still be dealing
11425 		 * with the shadow buf at that point.
11426 		 */
11427 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11428 		    KM_NOSLEEP) != 0) {
11429 			/*
11430 			 * Dispatch was successful so we are done. Return
11431 			 * without going any higher up the iodone chain. Do
11432 			 * not free up any layer-private data until after the
11433 			 * WRITE completes.
11434 			 */
11435 			return;
11436 		}
11437 
11438 		/*
11439 		 * Dispatch of the WRITE command failed; set up the error
11440 		 * condition and send this IO back up the iodone chain.
11441 		 */
11442 		bioerror(orig_bp, EIO);
11443 		orig_bp->b_resid = orig_bp->b_bcount;
11444 
11445 	} else {
11446 		/*
11447 		 * This is a regular READ request (ie, not a RMW). Copy the
11448 		 * data from the shadow buf into the original buf. The
11449 		 * copy_offset compensates for any "misalignment" between the
11450 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11451 		 * original buf (with its un->un_sys_blocksize blocks).
11452 		 */
11453 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11454 		    copy_length);
11455 	}
11456 
11457 freebuf_done:
11458 
11459 	/*
11460 	 * At this point we still have both the shadow buf AND the original
11461 	 * buf to deal with, as well as the layer-private data area in each.
11462 	 * Local variables are as follows:
11463 	 *
11464 	 * bp -- points to shadow buf
11465 	 * xp -- points to xbuf of shadow buf
11466 	 * bsp -- points to layer-private data area of shadow buf
11467 	 * orig_bp -- points to original buf
11468 	 *
11469 	 * First free the shadow buf and its associated xbuf, then free the
11470 	 * layer-private data area from the shadow buf. There is no need to
11471 	 * restore xb_private in the shadow xbuf.
11472 	 */
11473 	sd_shadow_buf_free(bp);
11474 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11475 
11476 	/*
11477 	 * Now update the local variables to point to the original buf, xbuf,
11478 	 * and layer-private area.
11479 	 */
11480 	bp = orig_bp;
11481 	xp = SD_GET_XBUF(bp);
11482 	ASSERT(xp != NULL);
11483 	ASSERT(xp == orig_xp);
11484 	bsp = xp->xb_private;
11485 	ASSERT(bsp != NULL);
11486 
11487 done:
11488 	/*
11489 	 * Restore xb_private to whatever it was set to by the next higher
11490 	 * layer in the chain, then free the layer-private data area.
11491 	 */
11492 	xp->xb_private = bsp->mbs_oprivate;
11493 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11494 
11495 exit:
11496 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11497 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11498 
11499 	SD_NEXT_IODONE(index, un, bp);
11500 }
11501 
11502 
11503 /*
11504  *    Function: sd_checksum_iostart
11505  *
11506  * Description: A stub function for a layer that's currently not used.
11507  *		For now just a placeholder.
11508  *
11509  *     Context: Kernel thread context
11510  */
11511 
11512 static void
11513 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11514 {
11515 	ASSERT(un != NULL);
11516 	ASSERT(bp != NULL);
11517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11518 	SD_NEXT_IOSTART(index, un, bp);
11519 }
11520 
11521 
11522 /*
11523  *    Function: sd_checksum_iodone
11524  *
11525  * Description: A stub function for a layer that's currently not used.
11526  *		For now just a placeholder.
11527  *
11528  *     Context: May be called under interrupt context
11529  */
11530 
11531 static void
11532 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11533 {
11534 	ASSERT(un != NULL);
11535 	ASSERT(bp != NULL);
11536 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11537 	SD_NEXT_IODONE(index, un, bp);
11538 }
11539 
11540 
11541 /*
11542  *    Function: sd_checksum_uscsi_iostart
11543  *
11544  * Description: A stub function for a layer that's currently not used.
11545  *		For now just a placeholder.
11546  *
11547  *     Context: Kernel thread context
11548  */
11549 
11550 static void
11551 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11552 {
11553 	ASSERT(un != NULL);
11554 	ASSERT(bp != NULL);
11555 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11556 	SD_NEXT_IOSTART(index, un, bp);
11557 }
11558 
11559 
11560 /*
11561  *    Function: sd_checksum_uscsi_iodone
11562  *
11563  * Description: A stub function for a layer that's currently not used.
11564  *		For now just a placeholder.
11565  *
11566  *     Context: May be called under interrupt context
11567  */
11568 
11569 static void
11570 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11571 {
11572 	ASSERT(un != NULL);
11573 	ASSERT(bp != NULL);
11574 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11575 	SD_NEXT_IODONE(index, un, bp);
11576 }
11577 
11578 
11579 /*
11580  *    Function: sd_pm_iostart
11581  *
11582  * Description: iostart-side routine for Power mangement.
11583  *
11584  *     Context: Kernel thread context
11585  */
11586 
11587 static void
11588 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11589 {
11590 	ASSERT(un != NULL);
11591 	ASSERT(bp != NULL);
11592 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11593 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11594 
11595 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11596 
11597 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11598 		/*
11599 		 * Set up to return the failed buf back up the 'iodone'
11600 		 * side of the calling chain.
11601 		 */
11602 		bioerror(bp, EIO);
11603 		bp->b_resid = bp->b_bcount;
11604 
11605 		SD_BEGIN_IODONE(index, un, bp);
11606 
11607 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11608 		return;
11609 	}
11610 
11611 	SD_NEXT_IOSTART(index, un, bp);
11612 
11613 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11614 }
11615 
11616 
11617 /*
11618  *    Function: sd_pm_iodone
11619  *
11620  * Description: iodone-side routine for power mangement.
11621  *
11622  *     Context: may be called from interrupt context
11623  */
11624 
11625 static void
11626 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11627 {
11628 	ASSERT(un != NULL);
11629 	ASSERT(bp != NULL);
11630 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11631 
11632 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11633 
11634 	/*
11635 	 * After attach the following flag is only read, so don't
11636 	 * take the penalty of acquiring a mutex for it.
11637 	 */
11638 	if (un->un_f_pm_is_enabled == TRUE) {
11639 		sd_pm_exit(un);
11640 	}
11641 
11642 	SD_NEXT_IODONE(index, un, bp);
11643 
11644 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11645 }
11646 
11647 
11648 /*
11649  *    Function: sd_core_iostart
11650  *
11651  * Description: Primary driver function for enqueuing buf(9S) structs from
11652  *		the system and initiating IO to the target device
11653  *
11654  *     Context: Kernel thread context. Can sleep.
11655  *
11656  * Assumptions:  - The given xp->xb_blkno is absolute
11657  *		   (ie, relative to the start of the device).
11658  *		 - The IO is to be done using the native blocksize of
11659  *		   the device, as specified in un->un_tgt_blocksize.
11660  */
11661 /* ARGSUSED */
11662 static void
11663 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11664 {
11665 	struct sd_xbuf *xp;
11666 
11667 	ASSERT(un != NULL);
11668 	ASSERT(bp != NULL);
11669 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11670 	ASSERT(bp->b_resid == 0);
11671 
11672 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11673 
11674 	xp = SD_GET_XBUF(bp);
11675 	ASSERT(xp != NULL);
11676 
11677 	mutex_enter(SD_MUTEX(un));
11678 
11679 	/*
11680 	 * If we are currently in the failfast state, fail any new IO
11681 	 * that has B_FAILFAST set, then return.
11682 	 */
11683 	if ((bp->b_flags & B_FAILFAST) &&
11684 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11685 		mutex_exit(SD_MUTEX(un));
11686 		bioerror(bp, EIO);
11687 		bp->b_resid = bp->b_bcount;
11688 		SD_BEGIN_IODONE(index, un, bp);
11689 		return;
11690 	}
11691 
11692 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11693 		/*
11694 		 * Priority command -- transport it immediately.
11695 		 *
11696 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11697 		 * because all direct priority commands should be associated
11698 		 * with error recovery actions which we don't want to retry.
11699 		 */
11700 		sd_start_cmds(un, bp);
11701 	} else {
11702 		/*
11703 		 * Normal command -- add it to the wait queue, then start
11704 		 * transporting commands from the wait queue.
11705 		 */
11706 		sd_add_buf_to_waitq(un, bp);
11707 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11708 		sd_start_cmds(un, NULL);
11709 	}
11710 
11711 	mutex_exit(SD_MUTEX(un));
11712 
11713 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11714 }
11715 
11716 
11717 /*
11718  *    Function: sd_init_cdb_limits
11719  *
11720  * Description: This is to handle scsi_pkt initialization differences
11721  *		between the driver platforms.
11722  *
11723  *		Legacy behaviors:
11724  *
11725  *		If the block number or the sector count exceeds the
11726  *		capabilities of a Group 0 command, shift over to a
11727  *		Group 1 command. We don't blindly use Group 1
11728  *		commands because a) some drives (CDC Wren IVs) get a
11729  *		bit confused, and b) there is probably a fair amount
11730  *		of speed difference for a target to receive and decode
11731  *		a 10 byte command instead of a 6 byte command.
11732  *
11733  *		The xfer time difference of 6 vs 10 byte CDBs is
11734  *		still significant so this code is still worthwhile.
11735  *		10 byte CDBs are very inefficient with the fas HBA driver
11736  *		and older disks. Each CDB byte took 1 usec with some
11737  *		popular disks.
11738  *
11739  *     Context: Must be called at attach time
11740  */
11741 
11742 static void
11743 sd_init_cdb_limits(struct sd_lun *un)
11744 {
11745 	int hba_cdb_limit;
11746 
11747 	/*
11748 	 * Use CDB_GROUP1 commands for most devices except for
11749 	 * parallel SCSI fixed drives in which case we get better
11750 	 * performance using CDB_GROUP0 commands (where applicable).
11751 	 */
11752 	un->un_mincdb = SD_CDB_GROUP1;
11753 #if !defined(__fibre)
11754 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11755 	    !un->un_f_has_removable_media) {
11756 		un->un_mincdb = SD_CDB_GROUP0;
11757 	}
11758 #endif
11759 
11760 	/*
11761 	 * Try to read the max-cdb-length supported by HBA.
11762 	 */
11763 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11764 	if (0 >= un->un_max_hba_cdb) {
11765 		un->un_max_hba_cdb = CDB_GROUP4;
11766 		hba_cdb_limit = SD_CDB_GROUP4;
11767 	} else if (0 < un->un_max_hba_cdb &&
11768 	    un->un_max_hba_cdb < CDB_GROUP1) {
11769 		hba_cdb_limit = SD_CDB_GROUP0;
11770 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11771 	    un->un_max_hba_cdb < CDB_GROUP5) {
11772 		hba_cdb_limit = SD_CDB_GROUP1;
11773 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11774 	    un->un_max_hba_cdb < CDB_GROUP4) {
11775 		hba_cdb_limit = SD_CDB_GROUP5;
11776 	} else {
11777 		hba_cdb_limit = SD_CDB_GROUP4;
11778 	}
11779 
11780 	/*
11781 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11782 	 * commands for fixed disks unless we are building for a 32 bit
11783 	 * kernel.
11784 	 */
11785 #ifdef _LP64
11786 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11787 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11788 #else
11789 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11790 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11791 #endif
11792 
11793 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11794 	    ? sizeof (struct scsi_arq_status) : 1);
11795 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11796 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11797 }
11798 
11799 
11800 /*
11801  *    Function: sd_initpkt_for_buf
11802  *
11803  * Description: Allocate and initialize for transport a scsi_pkt struct,
11804  *		based upon the info specified in the given buf struct.
11805  *
11806  *		Assumes the xb_blkno in the request is absolute (ie,
11807  *		relative to the start of the device (NOT partition!).
11808  *		Also assumes that the request is using the native block
11809  *		size of the device (as returned by the READ CAPACITY
11810  *		command).
11811  *
11812  * Return Code: SD_PKT_ALLOC_SUCCESS
11813  *		SD_PKT_ALLOC_FAILURE
11814  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11815  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11816  *
11817  *     Context: Kernel thread and may be called from software interrupt context
11818  *		as part of a sdrunout callback. This function may not block or
11819  *		call routines that block
11820  */
11821 
11822 static int
11823 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11824 {
11825 	struct sd_xbuf	*xp;
11826 	struct scsi_pkt *pktp = NULL;
11827 	struct sd_lun	*un;
11828 	size_t		blockcount;
11829 	daddr_t		startblock;
11830 	int		rval;
11831 	int		cmd_flags;
11832 
11833 	ASSERT(bp != NULL);
11834 	ASSERT(pktpp != NULL);
11835 	xp = SD_GET_XBUF(bp);
11836 	ASSERT(xp != NULL);
11837 	un = SD_GET_UN(bp);
11838 	ASSERT(un != NULL);
11839 	ASSERT(mutex_owned(SD_MUTEX(un)));
11840 	ASSERT(bp->b_resid == 0);
11841 
11842 	SD_TRACE(SD_LOG_IO_CORE, un,
11843 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11844 
11845 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11846 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11847 		/*
11848 		 * Already have a scsi_pkt -- just need DMA resources.
11849 		 * We must recompute the CDB in case the mapping returns
11850 		 * a nonzero pkt_resid.
11851 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11852 		 * that is being retried, the unmap/remap of the DMA resouces
11853 		 * will result in the entire transfer starting over again
11854 		 * from the very first block.
11855 		 */
11856 		ASSERT(xp->xb_pktp != NULL);
11857 		pktp = xp->xb_pktp;
11858 	} else {
11859 		pktp = NULL;
11860 	}
11861 #endif /* __i386 || __amd64 */
11862 
11863 	startblock = xp->xb_blkno;	/* Absolute block num. */
11864 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11865 
11866 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11867 
11868 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11869 
11870 #else
11871 
11872 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11873 
11874 #endif
11875 
11876 	/*
11877 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11878 	 * call scsi_init_pkt, and build the CDB.
11879 	 */
11880 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11881 	    cmd_flags, sdrunout, (caddr_t)un,
11882 	    startblock, blockcount);
11883 
11884 	if (rval == 0) {
11885 		/*
11886 		 * Success.
11887 		 *
11888 		 * If partial DMA is being used and required for this transfer.
11889 		 * set it up here.
11890 		 */
11891 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11892 		    (pktp->pkt_resid != 0)) {
11893 
11894 			/*
11895 			 * Save the CDB length and pkt_resid for the
11896 			 * next xfer
11897 			 */
11898 			xp->xb_dma_resid = pktp->pkt_resid;
11899 
11900 			/* rezero resid */
11901 			pktp->pkt_resid = 0;
11902 
11903 		} else {
11904 			xp->xb_dma_resid = 0;
11905 		}
11906 
11907 		pktp->pkt_flags = un->un_tagflags;
11908 		pktp->pkt_time  = un->un_cmd_timeout;
11909 		pktp->pkt_comp  = sdintr;
11910 
11911 		pktp->pkt_private = bp;
11912 		*pktpp = pktp;
11913 
11914 		SD_TRACE(SD_LOG_IO_CORE, un,
11915 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11916 
11917 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11918 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11919 #endif
11920 
11921 		return (SD_PKT_ALLOC_SUCCESS);
11922 
11923 	}
11924 
11925 	/*
11926 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11927 	 * from sd_setup_rw_pkt.
11928 	 */
11929 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11930 
11931 	if (rval == SD_PKT_ALLOC_FAILURE) {
11932 		*pktpp = NULL;
11933 		/*
11934 		 * Set the driver state to RWAIT to indicate the driver
11935 		 * is waiting on resource allocations. The driver will not
11936 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11937 		 */
11938 		New_state(un, SD_STATE_RWAIT);
11939 
11940 		SD_ERROR(SD_LOG_IO_CORE, un,
11941 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11942 
11943 		if ((bp->b_flags & B_ERROR) != 0) {
11944 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11945 		}
11946 		return (SD_PKT_ALLOC_FAILURE);
11947 	} else {
11948 		/*
11949 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11950 		 *
11951 		 * This should never happen.  Maybe someone messed with the
11952 		 * kernel's minphys?
11953 		 */
11954 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11955 		    "Request rejected: too large for CDB: "
11956 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11957 		SD_ERROR(SD_LOG_IO_CORE, un,
11958 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11959 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11960 
11961 	}
11962 }
11963 
11964 
11965 /*
11966  *    Function: sd_destroypkt_for_buf
11967  *
11968  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11969  *
11970  *     Context: Kernel thread or interrupt context
11971  */
11972 
11973 static void
11974 sd_destroypkt_for_buf(struct buf *bp)
11975 {
11976 	ASSERT(bp != NULL);
11977 	ASSERT(SD_GET_UN(bp) != NULL);
11978 
11979 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11980 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11981 
11982 	ASSERT(SD_GET_PKTP(bp) != NULL);
11983 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11984 
11985 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11986 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11987 }
11988 
11989 /*
11990  *    Function: sd_setup_rw_pkt
11991  *
11992  * Description: Determines appropriate CDB group for the requested LBA
11993  *		and transfer length, calls scsi_init_pkt, and builds
11994  *		the CDB.  Do not use for partial DMA transfers except
11995  *		for the initial transfer since the CDB size must
11996  *		remain constant.
11997  *
11998  *     Context: Kernel thread and may be called from software interrupt
11999  *		context as part of a sdrunout callback. This function may not
12000  *		block or call routines that block
12001  */
12002 
12003 
12004 int
12005 sd_setup_rw_pkt(struct sd_lun *un,
12006     struct scsi_pkt **pktpp, struct buf *bp, int flags,
12007     int (*callback)(caddr_t), caddr_t callback_arg,
12008     diskaddr_t lba, uint32_t blockcount)
12009 {
12010 	struct scsi_pkt *return_pktp;
12011 	union scsi_cdb *cdbp;
12012 	struct sd_cdbinfo *cp = NULL;
12013 	int i;
12014 
12015 	/*
12016 	 * See which size CDB to use, based upon the request.
12017 	 */
12018 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
12019 
12020 		/*
12021 		 * Check lba and block count against sd_cdbtab limits.
12022 		 * In the partial DMA case, we have to use the same size
12023 		 * CDB for all the transfers.  Check lba + blockcount
12024 		 * against the max LBA so we know that segment of the
12025 		 * transfer can use the CDB we select.
12026 		 */
12027 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
12028 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
12029 
12030 			/*
12031 			 * The command will fit into the CDB type
12032 			 * specified by sd_cdbtab[i].
12033 			 */
12034 			cp = sd_cdbtab + i;
12035 
12036 			/*
12037 			 * Call scsi_init_pkt so we can fill in the
12038 			 * CDB.
12039 			 */
12040 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
12041 			    bp, cp->sc_grpcode, un->un_status_len, 0,
12042 			    flags, callback, callback_arg);
12043 
12044 			if (return_pktp != NULL) {
12045 
12046 				/*
12047 				 * Return new value of pkt
12048 				 */
12049 				*pktpp = return_pktp;
12050 
12051 				/*
12052 				 * To be safe, zero the CDB insuring there is
12053 				 * no leftover data from a previous command.
12054 				 */
12055 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12056 
12057 				/*
12058 				 * Handle partial DMA mapping
12059 				 */
12060 				if (return_pktp->pkt_resid != 0) {
12061 
12062 					/*
12063 					 * Not going to xfer as many blocks as
12064 					 * originally expected
12065 					 */
12066 					blockcount -=
12067 					    SD_BYTES2TGTBLOCKS(un,
12068 					    return_pktp->pkt_resid);
12069 				}
12070 
12071 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12072 
12073 				/*
12074 				 * Set command byte based on the CDB
12075 				 * type we matched.
12076 				 */
12077 				cdbp->scc_cmd = cp->sc_grpmask |
12078 				    ((bp->b_flags & B_READ) ?
12079 				    SCMD_READ : SCMD_WRITE);
12080 
12081 				SD_FILL_SCSI1_LUN(un, return_pktp);
12082 
12083 				/*
12084 				 * Fill in LBA and length
12085 				 */
12086 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12087 				    (cp->sc_grpcode == CDB_GROUP4) ||
12088 				    (cp->sc_grpcode == CDB_GROUP0) ||
12089 				    (cp->sc_grpcode == CDB_GROUP5));
12090 
12091 				if (cp->sc_grpcode == CDB_GROUP1) {
12092 					FORMG1ADDR(cdbp, lba);
12093 					FORMG1COUNT(cdbp, blockcount);
12094 					return (0);
12095 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12096 					FORMG4LONGADDR(cdbp, lba);
12097 					FORMG4COUNT(cdbp, blockcount);
12098 					return (0);
12099 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12100 					FORMG0ADDR(cdbp, lba);
12101 					FORMG0COUNT(cdbp, blockcount);
12102 					return (0);
12103 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12104 					FORMG5ADDR(cdbp, lba);
12105 					FORMG5COUNT(cdbp, blockcount);
12106 					return (0);
12107 				}
12108 
12109 				/*
12110 				 * It should be impossible to not match one
12111 				 * of the CDB types above, so we should never
12112 				 * reach this point.  Set the CDB command byte
12113 				 * to test-unit-ready to avoid writing
12114 				 * to somewhere we don't intend.
12115 				 */
12116 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12117 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12118 			} else {
12119 				/*
12120 				 * Couldn't get scsi_pkt
12121 				 */
12122 				return (SD_PKT_ALLOC_FAILURE);
12123 			}
12124 		}
12125 	}
12126 
12127 	/*
12128 	 * None of the available CDB types were suitable.  This really
12129 	 * should never happen:  on a 64 bit system we support
12130 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12131 	 * and on a 32 bit system we will refuse to bind to a device
12132 	 * larger than 2TB so addresses will never be larger than 32 bits.
12133 	 */
12134 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12135 }
12136 
12137 /*
12138  *    Function: sd_setup_next_rw_pkt
12139  *
12140  * Description: Setup packet for partial DMA transfers, except for the
12141  * 		initial transfer.  sd_setup_rw_pkt should be used for
12142  *		the initial transfer.
12143  *
12144  *     Context: Kernel thread and may be called from interrupt context.
12145  */
12146 
12147 int
12148 sd_setup_next_rw_pkt(struct sd_lun *un,
12149     struct scsi_pkt *pktp, struct buf *bp,
12150     diskaddr_t lba, uint32_t blockcount)
12151 {
12152 	uchar_t com;
12153 	union scsi_cdb *cdbp;
12154 	uchar_t cdb_group_id;
12155 
12156 	ASSERT(pktp != NULL);
12157 	ASSERT(pktp->pkt_cdbp != NULL);
12158 
12159 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12160 	com = cdbp->scc_cmd;
12161 	cdb_group_id = CDB_GROUPID(com);
12162 
12163 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12164 	    (cdb_group_id == CDB_GROUPID_1) ||
12165 	    (cdb_group_id == CDB_GROUPID_4) ||
12166 	    (cdb_group_id == CDB_GROUPID_5));
12167 
12168 	/*
12169 	 * Move pkt to the next portion of the xfer.
12170 	 * func is NULL_FUNC so we do not have to release
12171 	 * the disk mutex here.
12172 	 */
12173 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12174 	    NULL_FUNC, NULL) == pktp) {
12175 		/* Success.  Handle partial DMA */
12176 		if (pktp->pkt_resid != 0) {
12177 			blockcount -=
12178 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12179 		}
12180 
12181 		cdbp->scc_cmd = com;
12182 		SD_FILL_SCSI1_LUN(un, pktp);
12183 		if (cdb_group_id == CDB_GROUPID_1) {
12184 			FORMG1ADDR(cdbp, lba);
12185 			FORMG1COUNT(cdbp, blockcount);
12186 			return (0);
12187 		} else if (cdb_group_id == CDB_GROUPID_4) {
12188 			FORMG4LONGADDR(cdbp, lba);
12189 			FORMG4COUNT(cdbp, blockcount);
12190 			return (0);
12191 		} else if (cdb_group_id == CDB_GROUPID_0) {
12192 			FORMG0ADDR(cdbp, lba);
12193 			FORMG0COUNT(cdbp, blockcount);
12194 			return (0);
12195 		} else if (cdb_group_id == CDB_GROUPID_5) {
12196 			FORMG5ADDR(cdbp, lba);
12197 			FORMG5COUNT(cdbp, blockcount);
12198 			return (0);
12199 		}
12200 
12201 		/* Unreachable */
12202 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12203 	}
12204 
12205 	/*
12206 	 * Error setting up next portion of cmd transfer.
12207 	 * Something is definitely very wrong and this
12208 	 * should not happen.
12209 	 */
12210 	return (SD_PKT_ALLOC_FAILURE);
12211 }
12212 
12213 /*
12214  *    Function: sd_initpkt_for_uscsi
12215  *
12216  * Description: Allocate and initialize for transport a scsi_pkt struct,
12217  *		based upon the info specified in the given uscsi_cmd struct.
12218  *
12219  * Return Code: SD_PKT_ALLOC_SUCCESS
12220  *		SD_PKT_ALLOC_FAILURE
12221  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12222  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12223  *
12224  *     Context: Kernel thread and may be called from software interrupt context
12225  *		as part of a sdrunout callback. This function may not block or
12226  *		call routines that block
12227  */
12228 
12229 static int
12230 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12231 {
12232 	struct uscsi_cmd *uscmd;
12233 	struct sd_xbuf	*xp;
12234 	struct scsi_pkt	*pktp;
12235 	struct sd_lun	*un;
12236 	uint32_t	flags = 0;
12237 
12238 	ASSERT(bp != NULL);
12239 	ASSERT(pktpp != NULL);
12240 	xp = SD_GET_XBUF(bp);
12241 	ASSERT(xp != NULL);
12242 	un = SD_GET_UN(bp);
12243 	ASSERT(un != NULL);
12244 	ASSERT(mutex_owned(SD_MUTEX(un)));
12245 
12246 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12247 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12248 	ASSERT(uscmd != NULL);
12249 
12250 	SD_TRACE(SD_LOG_IO_CORE, un,
12251 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12252 
12253 	/*
12254 	 * Allocate the scsi_pkt for the command.
12255 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12256 	 *	 during scsi_init_pkt time and will continue to use the
12257 	 *	 same path as long as the same scsi_pkt is used without
12258 	 *	 intervening scsi_dma_free(). Since uscsi command does
12259 	 *	 not call scsi_dmafree() before retry failed command, it
12260 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12261 	 *	 set such that scsi_vhci can use other available path for
12262 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12263 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12264 	 */
12265 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12266 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12267 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12268 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12269 		    - sizeof (struct scsi_extended_sense)), 0,
12270 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12271 		    sdrunout, (caddr_t)un);
12272 	} else {
12273 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12274 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12275 		    sizeof (struct scsi_arq_status), 0,
12276 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12277 		    sdrunout, (caddr_t)un);
12278 	}
12279 
12280 	if (pktp == NULL) {
12281 		*pktpp = NULL;
12282 		/*
12283 		 * Set the driver state to RWAIT to indicate the driver
12284 		 * is waiting on resource allocations. The driver will not
12285 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12286 		 */
12287 		New_state(un, SD_STATE_RWAIT);
12288 
12289 		SD_ERROR(SD_LOG_IO_CORE, un,
12290 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12291 
12292 		if ((bp->b_flags & B_ERROR) != 0) {
12293 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12294 		}
12295 		return (SD_PKT_ALLOC_FAILURE);
12296 	}
12297 
12298 	/*
12299 	 * We do not do DMA breakup for USCSI commands, so return failure
12300 	 * here if all the needed DMA resources were not allocated.
12301 	 */
12302 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12303 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12304 		scsi_destroy_pkt(pktp);
12305 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12306 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12307 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12308 	}
12309 
12310 	/* Init the cdb from the given uscsi struct */
12311 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12312 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12313 
12314 	SD_FILL_SCSI1_LUN(un, pktp);
12315 
12316 	/*
12317 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12318 	 * for listing of the supported flags.
12319 	 */
12320 
12321 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12322 		flags |= FLAG_SILENT;
12323 	}
12324 
12325 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12326 		flags |= FLAG_DIAGNOSE;
12327 	}
12328 
12329 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12330 		flags |= FLAG_ISOLATE;
12331 	}
12332 
12333 	if (un->un_f_is_fibre == FALSE) {
12334 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12335 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12336 		}
12337 	}
12338 
12339 	/*
12340 	 * Set the pkt flags here so we save time later.
12341 	 * Note: These flags are NOT in the uscsi man page!!!
12342 	 */
12343 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12344 		flags |= FLAG_HEAD;
12345 	}
12346 
12347 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12348 		flags |= FLAG_NOINTR;
12349 	}
12350 
12351 	/*
12352 	 * For tagged queueing, things get a bit complicated.
12353 	 * Check first for head of queue and last for ordered queue.
12354 	 * If neither head nor order, use the default driver tag flags.
12355 	 */
12356 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12357 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12358 			flags |= FLAG_HTAG;
12359 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12360 			flags |= FLAG_OTAG;
12361 		} else {
12362 			flags |= un->un_tagflags & FLAG_TAGMASK;
12363 		}
12364 	}
12365 
12366 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12367 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12368 	}
12369 
12370 	pktp->pkt_flags = flags;
12371 
12372 	/* Copy the caller's CDB into the pkt... */
12373 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12374 
12375 	if (uscmd->uscsi_timeout == 0) {
12376 		pktp->pkt_time = un->un_uscsi_timeout;
12377 	} else {
12378 		pktp->pkt_time = uscmd->uscsi_timeout;
12379 	}
12380 
12381 	/* need it later to identify USCSI request in sdintr */
12382 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12383 
12384 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12385 
12386 	pktp->pkt_private = bp;
12387 	pktp->pkt_comp = sdintr;
12388 	*pktpp = pktp;
12389 
12390 	SD_TRACE(SD_LOG_IO_CORE, un,
12391 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12392 
12393 	return (SD_PKT_ALLOC_SUCCESS);
12394 }
12395 
12396 
12397 /*
12398  *    Function: sd_destroypkt_for_uscsi
12399  *
12400  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12401  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12402  *		struct.
12403  *
12404  *     Context: May be called under interrupt context
12405  */
12406 
12407 static void
12408 sd_destroypkt_for_uscsi(struct buf *bp)
12409 {
12410 	struct uscsi_cmd *uscmd;
12411 	struct sd_xbuf	*xp;
12412 	struct scsi_pkt	*pktp;
12413 	struct sd_lun	*un;
12414 
12415 	ASSERT(bp != NULL);
12416 	xp = SD_GET_XBUF(bp);
12417 	ASSERT(xp != NULL);
12418 	un = SD_GET_UN(bp);
12419 	ASSERT(un != NULL);
12420 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12421 	pktp = SD_GET_PKTP(bp);
12422 	ASSERT(pktp != NULL);
12423 
12424 	SD_TRACE(SD_LOG_IO_CORE, un,
12425 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12426 
12427 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12428 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12429 	ASSERT(uscmd != NULL);
12430 
12431 	/* Save the status and the residual into the uscsi_cmd struct */
12432 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12433 	uscmd->uscsi_resid  = bp->b_resid;
12434 
12435 	/*
12436 	 * If enabled, copy any saved sense data into the area specified
12437 	 * by the uscsi command.
12438 	 */
12439 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12440 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12441 		/*
12442 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12443 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12444 		 */
12445 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12446 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12447 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12448 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12449 			    MAX_SENSE_LENGTH);
12450 		} else {
12451 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12452 			    SENSE_LENGTH);
12453 		}
12454 	}
12455 
12456 	/* We are done with the scsi_pkt; free it now */
12457 	ASSERT(SD_GET_PKTP(bp) != NULL);
12458 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12459 
12460 	SD_TRACE(SD_LOG_IO_CORE, un,
12461 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12462 }
12463 
12464 
12465 /*
12466  *    Function: sd_bioclone_alloc
12467  *
12468  * Description: Allocate a buf(9S) and init it as per the given buf
12469  *		and the various arguments.  The associated sd_xbuf
12470  *		struct is (nearly) duplicated.  The struct buf *bp
12471  *		argument is saved in new_xp->xb_private.
12472  *
12473  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12474  *		datalen - size of data area for the shadow bp
12475  *		blkno - starting LBA
12476  *		func - function pointer for b_iodone in the shadow buf. (May
12477  *			be NULL if none.)
12478  *
12479  * Return Code: Pointer to allocates buf(9S) struct
12480  *
12481  *     Context: Can sleep.
12482  */
12483 
12484 static struct buf *
12485 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12486 	daddr_t blkno, int (*func)(struct buf *))
12487 {
12488 	struct	sd_lun	*un;
12489 	struct	sd_xbuf	*xp;
12490 	struct	sd_xbuf	*new_xp;
12491 	struct	buf	*new_bp;
12492 
12493 	ASSERT(bp != NULL);
12494 	xp = SD_GET_XBUF(bp);
12495 	ASSERT(xp != NULL);
12496 	un = SD_GET_UN(bp);
12497 	ASSERT(un != NULL);
12498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12499 
12500 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12501 	    NULL, KM_SLEEP);
12502 
12503 	new_bp->b_lblkno	= blkno;
12504 
12505 	/*
12506 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12507 	 * original xbuf into it.
12508 	 */
12509 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12510 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12511 
12512 	/*
12513 	 * The given bp is automatically saved in the xb_private member
12514 	 * of the new xbuf.  Callers are allowed to depend on this.
12515 	 */
12516 	new_xp->xb_private = bp;
12517 
12518 	new_bp->b_private  = new_xp;
12519 
12520 	return (new_bp);
12521 }
12522 
12523 /*
12524  *    Function: sd_shadow_buf_alloc
12525  *
12526  * Description: Allocate a buf(9S) and init it as per the given buf
12527  *		and the various arguments.  The associated sd_xbuf
12528  *		struct is (nearly) duplicated.  The struct buf *bp
12529  *		argument is saved in new_xp->xb_private.
12530  *
12531  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12532  *		datalen - size of data area for the shadow bp
12533  *		bflags - B_READ or B_WRITE (pseudo flag)
12534  *		blkno - starting LBA
12535  *		func - function pointer for b_iodone in the shadow buf. (May
12536  *			be NULL if none.)
12537  *
12538  * Return Code: Pointer to allocates buf(9S) struct
12539  *
12540  *     Context: Can sleep.
12541  */
12542 
12543 static struct buf *
12544 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12545 	daddr_t blkno, int (*func)(struct buf *))
12546 {
12547 	struct	sd_lun	*un;
12548 	struct	sd_xbuf	*xp;
12549 	struct	sd_xbuf	*new_xp;
12550 	struct	buf	*new_bp;
12551 
12552 	ASSERT(bp != NULL);
12553 	xp = SD_GET_XBUF(bp);
12554 	ASSERT(xp != NULL);
12555 	un = SD_GET_UN(bp);
12556 	ASSERT(un != NULL);
12557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12558 
12559 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12560 		bp_mapin(bp);
12561 	}
12562 
12563 	bflags &= (B_READ | B_WRITE);
12564 #if defined(__i386) || defined(__amd64)
12565 	new_bp = getrbuf(KM_SLEEP);
12566 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12567 	new_bp->b_bcount = datalen;
12568 	new_bp->b_flags = bflags |
12569 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12570 #else
12571 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12572 	    datalen, bflags, SLEEP_FUNC, NULL);
12573 #endif
12574 	new_bp->av_forw	= NULL;
12575 	new_bp->av_back	= NULL;
12576 	new_bp->b_dev	= bp->b_dev;
12577 	new_bp->b_blkno	= blkno;
12578 	new_bp->b_iodone = func;
12579 	new_bp->b_edev	= bp->b_edev;
12580 	new_bp->b_resid	= 0;
12581 
12582 	/* We need to preserve the B_FAILFAST flag */
12583 	if (bp->b_flags & B_FAILFAST) {
12584 		new_bp->b_flags |= B_FAILFAST;
12585 	}
12586 
12587 	/*
12588 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12589 	 * original xbuf into it.
12590 	 */
12591 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12592 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12593 
12594 	/* Need later to copy data between the shadow buf & original buf! */
12595 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12596 
12597 	/*
12598 	 * The given bp is automatically saved in the xb_private member
12599 	 * of the new xbuf.  Callers are allowed to depend on this.
12600 	 */
12601 	new_xp->xb_private = bp;
12602 
12603 	new_bp->b_private  = new_xp;
12604 
12605 	return (new_bp);
12606 }
12607 
12608 /*
12609  *    Function: sd_bioclone_free
12610  *
12611  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12612  *		in the larger than partition operation.
12613  *
12614  *     Context: May be called under interrupt context
12615  */
12616 
12617 static void
12618 sd_bioclone_free(struct buf *bp)
12619 {
12620 	struct sd_xbuf	*xp;
12621 
12622 	ASSERT(bp != NULL);
12623 	xp = SD_GET_XBUF(bp);
12624 	ASSERT(xp != NULL);
12625 
12626 	/*
12627 	 * Call bp_mapout() before freeing the buf,  in case a lower
12628 	 * layer or HBA  had done a bp_mapin().  we must do this here
12629 	 * as we are the "originator" of the shadow buf.
12630 	 */
12631 	bp_mapout(bp);
12632 
12633 	/*
12634 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12635 	 * never gets confused by a stale value in this field. (Just a little
12636 	 * extra defensiveness here.)
12637 	 */
12638 	bp->b_iodone = NULL;
12639 
12640 	freerbuf(bp);
12641 
12642 	kmem_free(xp, sizeof (struct sd_xbuf));
12643 }
12644 
12645 /*
12646  *    Function: sd_shadow_buf_free
12647  *
12648  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12649  *
12650  *     Context: May be called under interrupt context
12651  */
12652 
12653 static void
12654 sd_shadow_buf_free(struct buf *bp)
12655 {
12656 	struct sd_xbuf	*xp;
12657 
12658 	ASSERT(bp != NULL);
12659 	xp = SD_GET_XBUF(bp);
12660 	ASSERT(xp != NULL);
12661 
12662 #if defined(__sparc)
12663 	/*
12664 	 * Call bp_mapout() before freeing the buf,  in case a lower
12665 	 * layer or HBA  had done a bp_mapin().  we must do this here
12666 	 * as we are the "originator" of the shadow buf.
12667 	 */
12668 	bp_mapout(bp);
12669 #endif
12670 
12671 	/*
12672 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12673 	 * never gets confused by a stale value in this field. (Just a little
12674 	 * extra defensiveness here.)
12675 	 */
12676 	bp->b_iodone = NULL;
12677 
12678 #if defined(__i386) || defined(__amd64)
12679 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12680 	freerbuf(bp);
12681 #else
12682 	scsi_free_consistent_buf(bp);
12683 #endif
12684 
12685 	kmem_free(xp, sizeof (struct sd_xbuf));
12686 }
12687 
12688 
12689 /*
12690  *    Function: sd_print_transport_rejected_message
12691  *
12692  * Description: This implements the ludicrously complex rules for printing
12693  *		a "transport rejected" message.  This is to address the
12694  *		specific problem of having a flood of this error message
12695  *		produced when a failover occurs.
12696  *
12697  *     Context: Any.
12698  */
12699 
12700 static void
12701 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12702 	int code)
12703 {
12704 	ASSERT(un != NULL);
12705 	ASSERT(mutex_owned(SD_MUTEX(un)));
12706 	ASSERT(xp != NULL);
12707 
12708 	/*
12709 	 * Print the "transport rejected" message under the following
12710 	 * conditions:
12711 	 *
12712 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12713 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12714 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12715 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12716 	 *   scsi_transport(9F) (which indicates that the target might have
12717 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12718 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12719 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12720 	 *   from scsi_transport().
12721 	 *
12722 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12723 	 * the preceeding cases in order for the message to be printed.
12724 	 */
12725 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12726 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12727 		    (code != TRAN_FATAL_ERROR) ||
12728 		    (un->un_tran_fatal_count == 1)) {
12729 			switch (code) {
12730 			case TRAN_BADPKT:
12731 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12732 				    "transport rejected bad packet\n");
12733 				break;
12734 			case TRAN_FATAL_ERROR:
12735 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12736 				    "transport rejected fatal error\n");
12737 				break;
12738 			default:
12739 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12740 				    "transport rejected (%d)\n", code);
12741 				break;
12742 			}
12743 		}
12744 	}
12745 }
12746 
12747 
12748 /*
12749  *    Function: sd_add_buf_to_waitq
12750  *
12751  * Description: Add the given buf(9S) struct to the wait queue for the
12752  *		instance.  If sorting is enabled, then the buf is added
12753  *		to the queue via an elevator sort algorithm (a la
12754  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12755  *		If sorting is not enabled, then the buf is just added
12756  *		to the end of the wait queue.
12757  *
12758  * Return Code: void
12759  *
12760  *     Context: Does not sleep/block, therefore technically can be called
12761  *		from any context.  However if sorting is enabled then the
12762  *		execution time is indeterminate, and may take long if
12763  *		the wait queue grows large.
12764  */
12765 
12766 static void
12767 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12768 {
12769 	struct buf *ap;
12770 
12771 	ASSERT(bp != NULL);
12772 	ASSERT(un != NULL);
12773 	ASSERT(mutex_owned(SD_MUTEX(un)));
12774 
12775 	/* If the queue is empty, add the buf as the only entry & return. */
12776 	if (un->un_waitq_headp == NULL) {
12777 		ASSERT(un->un_waitq_tailp == NULL);
12778 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12779 		bp->av_forw = NULL;
12780 		return;
12781 	}
12782 
12783 	ASSERT(un->un_waitq_tailp != NULL);
12784 
12785 	/*
12786 	 * If sorting is disabled, just add the buf to the tail end of
12787 	 * the wait queue and return.
12788 	 */
12789 	if (un->un_f_disksort_disabled) {
12790 		un->un_waitq_tailp->av_forw = bp;
12791 		un->un_waitq_tailp = bp;
12792 		bp->av_forw = NULL;
12793 		return;
12794 	}
12795 
12796 	/*
12797 	 * Sort thru the list of requests currently on the wait queue
12798 	 * and add the new buf request at the appropriate position.
12799 	 *
12800 	 * The un->un_waitq_headp is an activity chain pointer on which
12801 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12802 	 * first queue holds those requests which are positioned after
12803 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12804 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12805 	 * Thus we implement a one way scan, retracting after reaching
12806 	 * the end of the drive to the first request on the second
12807 	 * queue, at which time it becomes the first queue.
12808 	 * A one-way scan is natural because of the way UNIX read-ahead
12809 	 * blocks are allocated.
12810 	 *
12811 	 * If we lie after the first request, then we must locate the
12812 	 * second request list and add ourselves to it.
12813 	 */
12814 	ap = un->un_waitq_headp;
12815 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12816 		while (ap->av_forw != NULL) {
12817 			/*
12818 			 * Look for an "inversion" in the (normally
12819 			 * ascending) block numbers. This indicates
12820 			 * the start of the second request list.
12821 			 */
12822 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12823 				/*
12824 				 * Search the second request list for the
12825 				 * first request at a larger block number.
12826 				 * We go before that; however if there is
12827 				 * no such request, we go at the end.
12828 				 */
12829 				do {
12830 					if (SD_GET_BLKNO(bp) <
12831 					    SD_GET_BLKNO(ap->av_forw)) {
12832 						goto insert;
12833 					}
12834 					ap = ap->av_forw;
12835 				} while (ap->av_forw != NULL);
12836 				goto insert;		/* after last */
12837 			}
12838 			ap = ap->av_forw;
12839 		}
12840 
12841 		/*
12842 		 * No inversions... we will go after the last, and
12843 		 * be the first request in the second request list.
12844 		 */
12845 		goto insert;
12846 	}
12847 
12848 	/*
12849 	 * Request is at/after the current request...
12850 	 * sort in the first request list.
12851 	 */
12852 	while (ap->av_forw != NULL) {
12853 		/*
12854 		 * We want to go after the current request (1) if
12855 		 * there is an inversion after it (i.e. it is the end
12856 		 * of the first request list), or (2) if the next
12857 		 * request is a larger block no. than our request.
12858 		 */
12859 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12860 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12861 			goto insert;
12862 		}
12863 		ap = ap->av_forw;
12864 	}
12865 
12866 	/*
12867 	 * Neither a second list nor a larger request, therefore
12868 	 * we go at the end of the first list (which is the same
12869 	 * as the end of the whole schebang).
12870 	 */
12871 insert:
12872 	bp->av_forw = ap->av_forw;
12873 	ap->av_forw = bp;
12874 
12875 	/*
12876 	 * If we inserted onto the tail end of the waitq, make sure the
12877 	 * tail pointer is updated.
12878 	 */
12879 	if (ap == un->un_waitq_tailp) {
12880 		un->un_waitq_tailp = bp;
12881 	}
12882 }
12883 
12884 
12885 /*
12886  *    Function: sd_start_cmds
12887  *
12888  * Description: Remove and transport cmds from the driver queues.
12889  *
12890  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12891  *
12892  *		immed_bp - ptr to a buf to be transported immediately. Only
12893  *		the immed_bp is transported; bufs on the waitq are not
12894  *		processed and the un_retry_bp is not checked.  If immed_bp is
12895  *		NULL, then normal queue processing is performed.
12896  *
12897  *     Context: May be called from kernel thread context, interrupt context,
12898  *		or runout callback context. This function may not block or
12899  *		call routines that block.
12900  */
12901 
12902 static void
12903 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12904 {
12905 	struct	sd_xbuf	*xp;
12906 	struct	buf	*bp;
12907 	void	(*statp)(kstat_io_t *);
12908 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12909 	void	(*saved_statp)(kstat_io_t *);
12910 #endif
12911 	int	rval;
12912 
12913 	ASSERT(un != NULL);
12914 	ASSERT(mutex_owned(SD_MUTEX(un)));
12915 	ASSERT(un->un_ncmds_in_transport >= 0);
12916 	ASSERT(un->un_throttle >= 0);
12917 
12918 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12919 
12920 	do {
12921 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12922 		saved_statp = NULL;
12923 #endif
12924 
12925 		/*
12926 		 * If we are syncing or dumping, fail the command to
12927 		 * avoid recursively calling back into scsi_transport().
12928 		 * The dump I/O itself uses a separate code path so this
12929 		 * only prevents non-dump I/O from being sent while dumping.
12930 		 * File system sync takes place before dumping begins.
12931 		 * During panic, filesystem I/O is allowed provided
12932 		 * un_in_callback is <= 1.  This is to prevent recursion
12933 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12934 		 * sd_start_cmds and so on.  See panic.c for more information
12935 		 * about the states the system can be in during panic.
12936 		 */
12937 		if ((un->un_state == SD_STATE_DUMPING) ||
12938 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12939 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12940 			    "sd_start_cmds: panicking\n");
12941 			goto exit;
12942 		}
12943 
12944 		if ((bp = immed_bp) != NULL) {
12945 			/*
12946 			 * We have a bp that must be transported immediately.
12947 			 * It's OK to transport the immed_bp here without doing
12948 			 * the throttle limit check because the immed_bp is
12949 			 * always used in a retry/recovery case. This means
12950 			 * that we know we are not at the throttle limit by
12951 			 * virtue of the fact that to get here we must have
12952 			 * already gotten a command back via sdintr(). This also
12953 			 * relies on (1) the command on un_retry_bp preventing
12954 			 * further commands from the waitq from being issued;
12955 			 * and (2) the code in sd_retry_command checking the
12956 			 * throttle limit before issuing a delayed or immediate
12957 			 * retry. This holds even if the throttle limit is
12958 			 * currently ratcheted down from its maximum value.
12959 			 */
12960 			statp = kstat_runq_enter;
12961 			if (bp == un->un_retry_bp) {
12962 				ASSERT((un->un_retry_statp == NULL) ||
12963 				    (un->un_retry_statp == kstat_waitq_enter) ||
12964 				    (un->un_retry_statp ==
12965 				    kstat_runq_back_to_waitq));
12966 				/*
12967 				 * If the waitq kstat was incremented when
12968 				 * sd_set_retry_bp() queued this bp for a retry,
12969 				 * then we must set up statp so that the waitq
12970 				 * count will get decremented correctly below.
12971 				 * Also we must clear un->un_retry_statp to
12972 				 * ensure that we do not act on a stale value
12973 				 * in this field.
12974 				 */
12975 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12976 				    (un->un_retry_statp ==
12977 				    kstat_runq_back_to_waitq)) {
12978 					statp = kstat_waitq_to_runq;
12979 				}
12980 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12981 				saved_statp = un->un_retry_statp;
12982 #endif
12983 				un->un_retry_statp = NULL;
12984 
12985 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12986 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12987 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12988 				    un, un->un_retry_bp, un->un_throttle,
12989 				    un->un_ncmds_in_transport);
12990 			} else {
12991 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12992 				    "processing priority bp:0x%p\n", bp);
12993 			}
12994 
12995 		} else if ((bp = un->un_waitq_headp) != NULL) {
12996 			/*
12997 			 * A command on the waitq is ready to go, but do not
12998 			 * send it if:
12999 			 *
13000 			 * (1) the throttle limit has been reached, or
13001 			 * (2) a retry is pending, or
13002 			 * (3) a START_STOP_UNIT callback pending, or
13003 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
13004 			 *	command is pending.
13005 			 *
13006 			 * For all of these conditions, IO processing will
13007 			 * restart after the condition is cleared.
13008 			 */
13009 			if (un->un_ncmds_in_transport >= un->un_throttle) {
13010 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13011 				    "sd_start_cmds: exiting, "
13012 				    "throttle limit reached!\n");
13013 				goto exit;
13014 			}
13015 			if (un->un_retry_bp != NULL) {
13016 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13017 				    "sd_start_cmds: exiting, retry pending!\n");
13018 				goto exit;
13019 			}
13020 			if (un->un_startstop_timeid != NULL) {
13021 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13022 				    "sd_start_cmds: exiting, "
13023 				    "START_STOP pending!\n");
13024 				goto exit;
13025 			}
13026 			if (un->un_direct_priority_timeid != NULL) {
13027 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13028 				    "sd_start_cmds: exiting, "
13029 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
13030 				goto exit;
13031 			}
13032 
13033 			/* Dequeue the command */
13034 			un->un_waitq_headp = bp->av_forw;
13035 			if (un->un_waitq_headp == NULL) {
13036 				un->un_waitq_tailp = NULL;
13037 			}
13038 			bp->av_forw = NULL;
13039 			statp = kstat_waitq_to_runq;
13040 			SD_TRACE(SD_LOG_IO_CORE, un,
13041 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
13042 
13043 		} else {
13044 			/* No work to do so bail out now */
13045 			SD_TRACE(SD_LOG_IO_CORE, un,
13046 			    "sd_start_cmds: no more work, exiting!\n");
13047 			goto exit;
13048 		}
13049 
13050 		/*
13051 		 * Reset the state to normal. This is the mechanism by which
13052 		 * the state transitions from either SD_STATE_RWAIT or
13053 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13054 		 * If state is SD_STATE_PM_CHANGING then this command is
13055 		 * part of the device power control and the state must
13056 		 * not be put back to normal. Doing so would would
13057 		 * allow new commands to proceed when they shouldn't,
13058 		 * the device may be going off.
13059 		 */
13060 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13061 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13062 			New_state(un, SD_STATE_NORMAL);
13063 		}
13064 
13065 		xp = SD_GET_XBUF(bp);
13066 		ASSERT(xp != NULL);
13067 
13068 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13069 		/*
13070 		 * Allocate the scsi_pkt if we need one, or attach DMA
13071 		 * resources if we have a scsi_pkt that needs them. The
13072 		 * latter should only occur for commands that are being
13073 		 * retried.
13074 		 */
13075 		if ((xp->xb_pktp == NULL) ||
13076 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13077 #else
13078 		if (xp->xb_pktp == NULL) {
13079 #endif
13080 			/*
13081 			 * There is no scsi_pkt allocated for this buf. Call
13082 			 * the initpkt function to allocate & init one.
13083 			 *
13084 			 * The scsi_init_pkt runout callback functionality is
13085 			 * implemented as follows:
13086 			 *
13087 			 * 1) The initpkt function always calls
13088 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13089 			 *    callback routine.
13090 			 * 2) A successful packet allocation is initialized and
13091 			 *    the I/O is transported.
13092 			 * 3) The I/O associated with an allocation resource
13093 			 *    failure is left on its queue to be retried via
13094 			 *    runout or the next I/O.
13095 			 * 4) The I/O associated with a DMA error is removed
13096 			 *    from the queue and failed with EIO. Processing of
13097 			 *    the transport queues is also halted to be
13098 			 *    restarted via runout or the next I/O.
13099 			 * 5) The I/O associated with a CDB size or packet
13100 			 *    size error is removed from the queue and failed
13101 			 *    with EIO. Processing of the transport queues is
13102 			 *    continued.
13103 			 *
13104 			 * Note: there is no interface for canceling a runout
13105 			 * callback. To prevent the driver from detaching or
13106 			 * suspending while a runout is pending the driver
13107 			 * state is set to SD_STATE_RWAIT
13108 			 *
13109 			 * Note: using the scsi_init_pkt callback facility can
13110 			 * result in an I/O request persisting at the head of
13111 			 * the list which cannot be satisfied even after
13112 			 * multiple retries. In the future the driver may
13113 			 * implement some kind of maximum runout count before
13114 			 * failing an I/O.
13115 			 *
13116 			 * Note: the use of funcp below may seem superfluous,
13117 			 * but it helps warlock figure out the correct
13118 			 * initpkt function calls (see [s]sd.wlcmd).
13119 			 */
13120 			struct scsi_pkt	*pktp;
13121 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13122 
13123 			ASSERT(bp != un->un_rqs_bp);
13124 
13125 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13126 			switch ((*funcp)(bp, &pktp)) {
13127 			case  SD_PKT_ALLOC_SUCCESS:
13128 				xp->xb_pktp = pktp;
13129 				SD_TRACE(SD_LOG_IO_CORE, un,
13130 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13131 				    pktp);
13132 				goto got_pkt;
13133 
13134 			case SD_PKT_ALLOC_FAILURE:
13135 				/*
13136 				 * Temporary (hopefully) resource depletion.
13137 				 * Since retries and RQS commands always have a
13138 				 * scsi_pkt allocated, these cases should never
13139 				 * get here. So the only cases this needs to
13140 				 * handle is a bp from the waitq (which we put
13141 				 * back onto the waitq for sdrunout), or a bp
13142 				 * sent as an immed_bp (which we just fail).
13143 				 */
13144 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13145 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13146 
13147 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13148 
13149 				if (bp == immed_bp) {
13150 					/*
13151 					 * If SD_XB_DMA_FREED is clear, then
13152 					 * this is a failure to allocate a
13153 					 * scsi_pkt, and we must fail the
13154 					 * command.
13155 					 */
13156 					if ((xp->xb_pkt_flags &
13157 					    SD_XB_DMA_FREED) == 0) {
13158 						break;
13159 					}
13160 
13161 					/*
13162 					 * If this immediate command is NOT our
13163 					 * un_retry_bp, then we must fail it.
13164 					 */
13165 					if (bp != un->un_retry_bp) {
13166 						break;
13167 					}
13168 
13169 					/*
13170 					 * We get here if this cmd is our
13171 					 * un_retry_bp that was DMAFREED, but
13172 					 * scsi_init_pkt() failed to reallocate
13173 					 * DMA resources when we attempted to
13174 					 * retry it. This can happen when an
13175 					 * mpxio failover is in progress, but
13176 					 * we don't want to just fail the
13177 					 * command in this case.
13178 					 *
13179 					 * Use timeout(9F) to restart it after
13180 					 * a 100ms delay.  We don't want to
13181 					 * let sdrunout() restart it, because
13182 					 * sdrunout() is just supposed to start
13183 					 * commands that are sitting on the
13184 					 * wait queue.  The un_retry_bp stays
13185 					 * set until the command completes, but
13186 					 * sdrunout can be called many times
13187 					 * before that happens.  Since sdrunout
13188 					 * cannot tell if the un_retry_bp is
13189 					 * already in the transport, it could
13190 					 * end up calling scsi_transport() for
13191 					 * the un_retry_bp multiple times.
13192 					 *
13193 					 * Also: don't schedule the callback
13194 					 * if some other callback is already
13195 					 * pending.
13196 					 */
13197 					if (un->un_retry_statp == NULL) {
13198 						/*
13199 						 * restore the kstat pointer to
13200 						 * keep kstat counts coherent
13201 						 * when we do retry the command.
13202 						 */
13203 						un->un_retry_statp =
13204 						    saved_statp;
13205 					}
13206 
13207 					if ((un->un_startstop_timeid == NULL) &&
13208 					    (un->un_retry_timeid == NULL) &&
13209 					    (un->un_direct_priority_timeid ==
13210 					    NULL)) {
13211 
13212 						un->un_retry_timeid =
13213 						    timeout(
13214 						    sd_start_retry_command,
13215 						    un, SD_RESTART_TIMEOUT);
13216 					}
13217 					goto exit;
13218 				}
13219 
13220 #else
13221 				if (bp == immed_bp) {
13222 					break;	/* Just fail the command */
13223 				}
13224 #endif
13225 
13226 				/* Add the buf back to the head of the waitq */
13227 				bp->av_forw = un->un_waitq_headp;
13228 				un->un_waitq_headp = bp;
13229 				if (un->un_waitq_tailp == NULL) {
13230 					un->un_waitq_tailp = bp;
13231 				}
13232 				goto exit;
13233 
13234 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13235 				/*
13236 				 * HBA DMA resource failure. Fail the command
13237 				 * and continue processing of the queues.
13238 				 */
13239 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13240 				    "sd_start_cmds: "
13241 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13242 				break;
13243 
13244 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13245 				/*
13246 				 * Note:x86: Partial DMA mapping not supported
13247 				 * for USCSI commands, and all the needed DMA
13248 				 * resources were not allocated.
13249 				 */
13250 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13251 				    "sd_start_cmds: "
13252 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13253 				break;
13254 
13255 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13256 				/*
13257 				 * Note:x86: Request cannot fit into CDB based
13258 				 * on lba and len.
13259 				 */
13260 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13261 				    "sd_start_cmds: "
13262 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13263 				break;
13264 
13265 			default:
13266 				/* Should NEVER get here! */
13267 				panic("scsi_initpkt error");
13268 				/*NOTREACHED*/
13269 			}
13270 
13271 			/*
13272 			 * Fatal error in allocating a scsi_pkt for this buf.
13273 			 * Update kstats & return the buf with an error code.
13274 			 * We must use sd_return_failed_command_no_restart() to
13275 			 * avoid a recursive call back into sd_start_cmds().
13276 			 * However this also means that we must keep processing
13277 			 * the waitq here in order to avoid stalling.
13278 			 */
13279 			if (statp == kstat_waitq_to_runq) {
13280 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13281 			}
13282 			sd_return_failed_command_no_restart(un, bp, EIO);
13283 			if (bp == immed_bp) {
13284 				/* immed_bp is gone by now, so clear this */
13285 				immed_bp = NULL;
13286 			}
13287 			continue;
13288 		}
13289 got_pkt:
13290 		if (bp == immed_bp) {
13291 			/* goto the head of the class.... */
13292 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13293 		}
13294 
13295 		un->un_ncmds_in_transport++;
13296 		SD_UPDATE_KSTATS(un, statp, bp);
13297 
13298 		/*
13299 		 * Call scsi_transport() to send the command to the target.
13300 		 * According to SCSA architecture, we must drop the mutex here
13301 		 * before calling scsi_transport() in order to avoid deadlock.
13302 		 * Note that the scsi_pkt's completion routine can be executed
13303 		 * (from interrupt context) even before the call to
13304 		 * scsi_transport() returns.
13305 		 */
13306 		SD_TRACE(SD_LOG_IO_CORE, un,
13307 		    "sd_start_cmds: calling scsi_transport()\n");
13308 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13309 
13310 		mutex_exit(SD_MUTEX(un));
13311 		rval = scsi_transport(xp->xb_pktp);
13312 		mutex_enter(SD_MUTEX(un));
13313 
13314 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13315 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13316 
13317 		switch (rval) {
13318 		case TRAN_ACCEPT:
13319 			/* Clear this with every pkt accepted by the HBA */
13320 			un->un_tran_fatal_count = 0;
13321 			break;	/* Success; try the next cmd (if any) */
13322 
13323 		case TRAN_BUSY:
13324 			un->un_ncmds_in_transport--;
13325 			ASSERT(un->un_ncmds_in_transport >= 0);
13326 
13327 			/*
13328 			 * Don't retry request sense, the sense data
13329 			 * is lost when another request is sent.
13330 			 * Free up the rqs buf and retry
13331 			 * the original failed cmd.  Update kstat.
13332 			 */
13333 			if (bp == un->un_rqs_bp) {
13334 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13335 				bp = sd_mark_rqs_idle(un, xp);
13336 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13337 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13338 				    kstat_waitq_enter);
13339 				goto exit;
13340 			}
13341 
13342 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13343 			/*
13344 			 * Free the DMA resources for the  scsi_pkt. This will
13345 			 * allow mpxio to select another path the next time
13346 			 * we call scsi_transport() with this scsi_pkt.
13347 			 * See sdintr() for the rationalization behind this.
13348 			 */
13349 			if ((un->un_f_is_fibre == TRUE) &&
13350 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13351 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13352 				scsi_dmafree(xp->xb_pktp);
13353 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13354 			}
13355 #endif
13356 
13357 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13358 				/*
13359 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13360 				 * are for error recovery situations. These do
13361 				 * not use the normal command waitq, so if they
13362 				 * get a TRAN_BUSY we cannot put them back onto
13363 				 * the waitq for later retry. One possible
13364 				 * problem is that there could already be some
13365 				 * other command on un_retry_bp that is waiting
13366 				 * for this one to complete, so we would be
13367 				 * deadlocked if we put this command back onto
13368 				 * the waitq for later retry (since un_retry_bp
13369 				 * must complete before the driver gets back to
13370 				 * commands on the waitq).
13371 				 *
13372 				 * To avoid deadlock we must schedule a callback
13373 				 * that will restart this command after a set
13374 				 * interval.  This should keep retrying for as
13375 				 * long as the underlying transport keeps
13376 				 * returning TRAN_BUSY (just like for other
13377 				 * commands).  Use the same timeout interval as
13378 				 * for the ordinary TRAN_BUSY retry.
13379 				 */
13380 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13381 				    "sd_start_cmds: scsi_transport() returned "
13382 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13383 
13384 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13385 				un->un_direct_priority_timeid =
13386 				    timeout(sd_start_direct_priority_command,
13387 				    bp, SD_BSY_TIMEOUT / 500);
13388 
13389 				goto exit;
13390 			}
13391 
13392 			/*
13393 			 * For TRAN_BUSY, we want to reduce the throttle value,
13394 			 * unless we are retrying a command.
13395 			 */
13396 			if (bp != un->un_retry_bp) {
13397 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13398 			}
13399 
13400 			/*
13401 			 * Set up the bp to be tried again 10 ms later.
13402 			 * Note:x86: Is there a timeout value in the sd_lun
13403 			 * for this condition?
13404 			 */
13405 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13406 			    kstat_runq_back_to_waitq);
13407 			goto exit;
13408 
13409 		case TRAN_FATAL_ERROR:
13410 			un->un_tran_fatal_count++;
13411 			/* FALLTHRU */
13412 
13413 		case TRAN_BADPKT:
13414 		default:
13415 			un->un_ncmds_in_transport--;
13416 			ASSERT(un->un_ncmds_in_transport >= 0);
13417 
13418 			/*
13419 			 * If this is our REQUEST SENSE command with a
13420 			 * transport error, we must get back the pointers
13421 			 * to the original buf, and mark the REQUEST
13422 			 * SENSE command as "available".
13423 			 */
13424 			if (bp == un->un_rqs_bp) {
13425 				bp = sd_mark_rqs_idle(un, xp);
13426 				xp = SD_GET_XBUF(bp);
13427 			} else {
13428 				/*
13429 				 * Legacy behavior: do not update transport
13430 				 * error count for request sense commands.
13431 				 */
13432 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13433 			}
13434 
13435 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13436 			sd_print_transport_rejected_message(un, xp, rval);
13437 
13438 			/*
13439 			 * We must use sd_return_failed_command_no_restart() to
13440 			 * avoid a recursive call back into sd_start_cmds().
13441 			 * However this also means that we must keep processing
13442 			 * the waitq here in order to avoid stalling.
13443 			 */
13444 			sd_return_failed_command_no_restart(un, bp, EIO);
13445 
13446 			/*
13447 			 * Notify any threads waiting in sd_ddi_suspend() that
13448 			 * a command completion has occurred.
13449 			 */
13450 			if (un->un_state == SD_STATE_SUSPENDED) {
13451 				cv_broadcast(&un->un_disk_busy_cv);
13452 			}
13453 
13454 			if (bp == immed_bp) {
13455 				/* immed_bp is gone by now, so clear this */
13456 				immed_bp = NULL;
13457 			}
13458 			break;
13459 		}
13460 
13461 	} while (immed_bp == NULL);
13462 
13463 exit:
13464 	ASSERT(mutex_owned(SD_MUTEX(un)));
13465 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13466 }
13467 
13468 
13469 /*
13470  *    Function: sd_return_command
13471  *
13472  * Description: Returns a command to its originator (with or without an
13473  *		error).  Also starts commands waiting to be transported
13474  *		to the target.
13475  *
13476  *     Context: May be called from interrupt, kernel, or timeout context
13477  */
13478 
13479 static void
13480 sd_return_command(struct sd_lun *un, struct buf *bp)
13481 {
13482 	struct sd_xbuf *xp;
13483 	struct scsi_pkt *pktp;
13484 
13485 	ASSERT(bp != NULL);
13486 	ASSERT(un != NULL);
13487 	ASSERT(mutex_owned(SD_MUTEX(un)));
13488 	ASSERT(bp != un->un_rqs_bp);
13489 	xp = SD_GET_XBUF(bp);
13490 	ASSERT(xp != NULL);
13491 
13492 	pktp = SD_GET_PKTP(bp);
13493 
13494 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13495 
13496 	/*
13497 	 * Note: check for the "sdrestart failed" case.
13498 	 */
13499 	if ((un->un_partial_dma_supported == 1) &&
13500 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13501 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13502 	    (xp->xb_pktp->pkt_resid == 0)) {
13503 
13504 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13505 			/*
13506 			 * Successfully set up next portion of cmd
13507 			 * transfer, try sending it
13508 			 */
13509 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13510 			    NULL, NULL, 0, (clock_t)0, NULL);
13511 			sd_start_cmds(un, NULL);
13512 			return;	/* Note:x86: need a return here? */
13513 		}
13514 	}
13515 
13516 	/*
13517 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13518 	 * can happen if upon being re-tried the failfast bp either
13519 	 * succeeded or encountered another error (possibly even a different
13520 	 * error than the one that precipitated the failfast state, but in
13521 	 * that case it would have had to exhaust retries as well). Regardless,
13522 	 * this should not occur whenever the instance is in the active
13523 	 * failfast state.
13524 	 */
13525 	if (bp == un->un_failfast_bp) {
13526 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13527 		un->un_failfast_bp = NULL;
13528 	}
13529 
13530 	/*
13531 	 * Clear the failfast state upon successful completion of ANY cmd.
13532 	 */
13533 	if (bp->b_error == 0) {
13534 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13535 	}
13536 
13537 	/*
13538 	 * This is used if the command was retried one or more times. Show that
13539 	 * we are done with it, and allow processing of the waitq to resume.
13540 	 */
13541 	if (bp == un->un_retry_bp) {
13542 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13543 		    "sd_return_command: un:0x%p: "
13544 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13545 		un->un_retry_bp = NULL;
13546 		un->un_retry_statp = NULL;
13547 	}
13548 
13549 	SD_UPDATE_RDWR_STATS(un, bp);
13550 	SD_UPDATE_PARTITION_STATS(un, bp);
13551 
13552 	switch (un->un_state) {
13553 	case SD_STATE_SUSPENDED:
13554 		/*
13555 		 * Notify any threads waiting in sd_ddi_suspend() that
13556 		 * a command completion has occurred.
13557 		 */
13558 		cv_broadcast(&un->un_disk_busy_cv);
13559 		break;
13560 	default:
13561 		sd_start_cmds(un, NULL);
13562 		break;
13563 	}
13564 
13565 	/* Return this command up the iodone chain to its originator. */
13566 	mutex_exit(SD_MUTEX(un));
13567 
13568 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13569 	xp->xb_pktp = NULL;
13570 
13571 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13572 
13573 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13574 	mutex_enter(SD_MUTEX(un));
13575 
13576 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13577 }
13578 
13579 
13580 /*
13581  *    Function: sd_return_failed_command
13582  *
13583  * Description: Command completion when an error occurred.
13584  *
13585  *     Context: May be called from interrupt context
13586  */
13587 
13588 static void
13589 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13590 {
13591 	ASSERT(bp != NULL);
13592 	ASSERT(un != NULL);
13593 	ASSERT(mutex_owned(SD_MUTEX(un)));
13594 
13595 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13596 	    "sd_return_failed_command: entry\n");
13597 
13598 	/*
13599 	 * b_resid could already be nonzero due to a partial data
13600 	 * transfer, so do not change it here.
13601 	 */
13602 	SD_BIOERROR(bp, errcode);
13603 
13604 	sd_return_command(un, bp);
13605 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13606 	    "sd_return_failed_command: exit\n");
13607 }
13608 
13609 
13610 /*
13611  *    Function: sd_return_failed_command_no_restart
13612  *
13613  * Description: Same as sd_return_failed_command, but ensures that no
13614  *		call back into sd_start_cmds will be issued.
13615  *
13616  *     Context: May be called from interrupt context
13617  */
13618 
13619 static void
13620 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13621 	int errcode)
13622 {
13623 	struct sd_xbuf *xp;
13624 
13625 	ASSERT(bp != NULL);
13626 	ASSERT(un != NULL);
13627 	ASSERT(mutex_owned(SD_MUTEX(un)));
13628 	xp = SD_GET_XBUF(bp);
13629 	ASSERT(xp != NULL);
13630 	ASSERT(errcode != 0);
13631 
13632 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13633 	    "sd_return_failed_command_no_restart: entry\n");
13634 
13635 	/*
13636 	 * b_resid could already be nonzero due to a partial data
13637 	 * transfer, so do not change it here.
13638 	 */
13639 	SD_BIOERROR(bp, errcode);
13640 
13641 	/*
13642 	 * If this is the failfast bp, clear it. This can happen if the
13643 	 * failfast bp encounterd a fatal error when we attempted to
13644 	 * re-try it (such as a scsi_transport(9F) failure).  However
13645 	 * we should NOT be in an active failfast state if the failfast
13646 	 * bp is not NULL.
13647 	 */
13648 	if (bp == un->un_failfast_bp) {
13649 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13650 		un->un_failfast_bp = NULL;
13651 	}
13652 
13653 	if (bp == un->un_retry_bp) {
13654 		/*
13655 		 * This command was retried one or more times. Show that we are
13656 		 * done with it, and allow processing of the waitq to resume.
13657 		 */
13658 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13659 		    "sd_return_failed_command_no_restart: "
13660 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13661 		un->un_retry_bp = NULL;
13662 		un->un_retry_statp = NULL;
13663 	}
13664 
13665 	SD_UPDATE_RDWR_STATS(un, bp);
13666 	SD_UPDATE_PARTITION_STATS(un, bp);
13667 
13668 	mutex_exit(SD_MUTEX(un));
13669 
13670 	if (xp->xb_pktp != NULL) {
13671 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13672 		xp->xb_pktp = NULL;
13673 	}
13674 
13675 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13676 
13677 	mutex_enter(SD_MUTEX(un));
13678 
13679 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13680 	    "sd_return_failed_command_no_restart: exit\n");
13681 }
13682 
13683 
13684 /*
13685  *    Function: sd_retry_command
13686  *
13687  * Description: queue up a command for retry, or (optionally) fail it
13688  *		if retry counts are exhausted.
13689  *
13690  *   Arguments: un - Pointer to the sd_lun struct for the target.
13691  *
13692  *		bp - Pointer to the buf for the command to be retried.
13693  *
13694  *		retry_check_flag - Flag to see which (if any) of the retry
13695  *		   counts should be decremented/checked. If the indicated
13696  *		   retry count is exhausted, then the command will not be
13697  *		   retried; it will be failed instead. This should use a
13698  *		   value equal to one of the following:
13699  *
13700  *			SD_RETRIES_NOCHECK
13701  *			SD_RESD_RETRIES_STANDARD
13702  *			SD_RETRIES_VICTIM
13703  *
13704  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13705  *		   if the check should be made to see of FLAG_ISOLATE is set
13706  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13707  *		   not retried, it is simply failed.
13708  *
13709  *		user_funcp - Ptr to function to call before dispatching the
13710  *		   command. May be NULL if no action needs to be performed.
13711  *		   (Primarily intended for printing messages.)
13712  *
13713  *		user_arg - Optional argument to be passed along to
13714  *		   the user_funcp call.
13715  *
13716  *		failure_code - errno return code to set in the bp if the
13717  *		   command is going to be failed.
13718  *
13719  *		retry_delay - Retry delay interval in (clock_t) units. May
13720  *		   be zero which indicates that the retry should be retried
13721  *		   immediately (ie, without an intervening delay).
13722  *
13723  *		statp - Ptr to kstat function to be updated if the command
13724  *		   is queued for a delayed retry. May be NULL if no kstat
13725  *		   update is desired.
13726  *
13727  *     Context: May be called from interrupt context.
13728  */
13729 
13730 static void
13731 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13732 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13733 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13734 	void (*statp)(kstat_io_t *))
13735 {
13736 	struct sd_xbuf	*xp;
13737 	struct scsi_pkt	*pktp;
13738 
13739 	ASSERT(un != NULL);
13740 	ASSERT(mutex_owned(SD_MUTEX(un)));
13741 	ASSERT(bp != NULL);
13742 	xp = SD_GET_XBUF(bp);
13743 	ASSERT(xp != NULL);
13744 	pktp = SD_GET_PKTP(bp);
13745 	ASSERT(pktp != NULL);
13746 
13747 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13748 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13749 
13750 	/*
13751 	 * If we are syncing or dumping, fail the command to avoid
13752 	 * recursively calling back into scsi_transport().
13753 	 */
13754 	if (ddi_in_panic()) {
13755 		goto fail_command_no_log;
13756 	}
13757 
13758 	/*
13759 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13760 	 * log an error and fail the command.
13761 	 */
13762 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13763 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13764 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13765 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13766 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13767 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13768 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13769 		goto fail_command;
13770 	}
13771 
13772 	/*
13773 	 * If we are suspended, then put the command onto head of the
13774 	 * wait queue since we don't want to start more commands, and
13775 	 * clear the un_retry_bp. Next time when we are resumed, will
13776 	 * handle the command in the wait queue.
13777 	 */
13778 	switch (un->un_state) {
13779 	case SD_STATE_SUSPENDED:
13780 	case SD_STATE_DUMPING:
13781 		bp->av_forw = un->un_waitq_headp;
13782 		un->un_waitq_headp = bp;
13783 		if (un->un_waitq_tailp == NULL) {
13784 			un->un_waitq_tailp = bp;
13785 		}
13786 		if (bp == un->un_retry_bp) {
13787 			un->un_retry_bp = NULL;
13788 			un->un_retry_statp = NULL;
13789 		}
13790 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13791 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13792 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13793 		return;
13794 	default:
13795 		break;
13796 	}
13797 
13798 	/*
13799 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13800 	 * is set; if it is then we do not want to retry the command.
13801 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13802 	 */
13803 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13804 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13805 			goto fail_command;
13806 		}
13807 	}
13808 
13809 
13810 	/*
13811 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13812 	 * command timeout or a selection timeout has occurred. This means
13813 	 * that we were unable to establish an kind of communication with
13814 	 * the target, and subsequent retries and/or commands are likely
13815 	 * to encounter similar results and take a long time to complete.
13816 	 *
13817 	 * If this is a failfast error condition, we need to update the
13818 	 * failfast state, even if this bp does not have B_FAILFAST set.
13819 	 */
13820 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13821 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13822 			ASSERT(un->un_failfast_bp == NULL);
13823 			/*
13824 			 * If we are already in the active failfast state, and
13825 			 * another failfast error condition has been detected,
13826 			 * then fail this command if it has B_FAILFAST set.
13827 			 * If B_FAILFAST is clear, then maintain the legacy
13828 			 * behavior of retrying heroically, even tho this will
13829 			 * take a lot more time to fail the command.
13830 			 */
13831 			if (bp->b_flags & B_FAILFAST) {
13832 				goto fail_command;
13833 			}
13834 		} else {
13835 			/*
13836 			 * We're not in the active failfast state, but we
13837 			 * have a failfast error condition, so we must begin
13838 			 * transition to the next state. We do this regardless
13839 			 * of whether or not this bp has B_FAILFAST set.
13840 			 */
13841 			if (un->un_failfast_bp == NULL) {
13842 				/*
13843 				 * This is the first bp to meet a failfast
13844 				 * condition so save it on un_failfast_bp &
13845 				 * do normal retry processing. Do not enter
13846 				 * active failfast state yet. This marks
13847 				 * entry into the "failfast pending" state.
13848 				 */
13849 				un->un_failfast_bp = bp;
13850 
13851 			} else if (un->un_failfast_bp == bp) {
13852 				/*
13853 				 * This is the second time *this* bp has
13854 				 * encountered a failfast error condition,
13855 				 * so enter active failfast state & flush
13856 				 * queues as appropriate.
13857 				 */
13858 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13859 				un->un_failfast_bp = NULL;
13860 				sd_failfast_flushq(un);
13861 
13862 				/*
13863 				 * Fail this bp now if B_FAILFAST set;
13864 				 * otherwise continue with retries. (It would
13865 				 * be pretty ironic if this bp succeeded on a
13866 				 * subsequent retry after we just flushed all
13867 				 * the queues).
13868 				 */
13869 				if (bp->b_flags & B_FAILFAST) {
13870 					goto fail_command;
13871 				}
13872 
13873 #if !defined(lint) && !defined(__lint)
13874 			} else {
13875 				/*
13876 				 * If neither of the preceeding conditionals
13877 				 * was true, it means that there is some
13878 				 * *other* bp that has met an inital failfast
13879 				 * condition and is currently either being
13880 				 * retried or is waiting to be retried. In
13881 				 * that case we should perform normal retry
13882 				 * processing on *this* bp, since there is a
13883 				 * chance that the current failfast condition
13884 				 * is transient and recoverable. If that does
13885 				 * not turn out to be the case, then retries
13886 				 * will be cleared when the wait queue is
13887 				 * flushed anyway.
13888 				 */
13889 #endif
13890 			}
13891 		}
13892 	} else {
13893 		/*
13894 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13895 		 * likely were able to at least establish some level of
13896 		 * communication with the target and subsequent commands
13897 		 * and/or retries are likely to get through to the target,
13898 		 * In this case we want to be aggressive about clearing
13899 		 * the failfast state. Note that this does not affect
13900 		 * the "failfast pending" condition.
13901 		 */
13902 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13903 	}
13904 
13905 
13906 	/*
13907 	 * Check the specified retry count to see if we can still do
13908 	 * any retries with this pkt before we should fail it.
13909 	 */
13910 	switch (retry_check_flag & SD_RETRIES_MASK) {
13911 	case SD_RETRIES_VICTIM:
13912 		/*
13913 		 * Check the victim retry count. If exhausted, then fall
13914 		 * thru & check against the standard retry count.
13915 		 */
13916 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13917 			/* Increment count & proceed with the retry */
13918 			xp->xb_victim_retry_count++;
13919 			break;
13920 		}
13921 		/* Victim retries exhausted, fall back to std. retries... */
13922 		/* FALLTHRU */
13923 
13924 	case SD_RETRIES_STANDARD:
13925 		if (xp->xb_retry_count >= un->un_retry_count) {
13926 			/* Retries exhausted, fail the command */
13927 			SD_TRACE(SD_LOG_IO_CORE, un,
13928 			    "sd_retry_command: retries exhausted!\n");
13929 			/*
13930 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13931 			 * commands with nonzero pkt_resid.
13932 			 */
13933 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13934 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13935 			    (pktp->pkt_resid != 0)) {
13936 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13937 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13938 					SD_UPDATE_B_RESID(bp, pktp);
13939 				}
13940 			}
13941 			goto fail_command;
13942 		}
13943 		xp->xb_retry_count++;
13944 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13945 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13946 		break;
13947 
13948 	case SD_RETRIES_UA:
13949 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13950 			/* Retries exhausted, fail the command */
13951 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13952 			    "Unit Attention retries exhausted. "
13953 			    "Check the target.\n");
13954 			goto fail_command;
13955 		}
13956 		xp->xb_ua_retry_count++;
13957 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13958 		    "sd_retry_command: retry count:%d\n",
13959 		    xp->xb_ua_retry_count);
13960 		break;
13961 
13962 	case SD_RETRIES_BUSY:
13963 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13964 			/* Retries exhausted, fail the command */
13965 			SD_TRACE(SD_LOG_IO_CORE, un,
13966 			    "sd_retry_command: retries exhausted!\n");
13967 			goto fail_command;
13968 		}
13969 		xp->xb_retry_count++;
13970 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13971 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13972 		break;
13973 
13974 	case SD_RETRIES_NOCHECK:
13975 	default:
13976 		/* No retry count to check. Just proceed with the retry */
13977 		break;
13978 	}
13979 
13980 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13981 
13982 	/*
13983 	 * If we were given a zero timeout, we must attempt to retry the
13984 	 * command immediately (ie, without a delay).
13985 	 */
13986 	if (retry_delay == 0) {
13987 		/*
13988 		 * Check some limiting conditions to see if we can actually
13989 		 * do the immediate retry.  If we cannot, then we must
13990 		 * fall back to queueing up a delayed retry.
13991 		 */
13992 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13993 			/*
13994 			 * We are at the throttle limit for the target,
13995 			 * fall back to delayed retry.
13996 			 */
13997 			retry_delay = SD_BSY_TIMEOUT;
13998 			statp = kstat_waitq_enter;
13999 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14000 			    "sd_retry_command: immed. retry hit "
14001 			    "throttle!\n");
14002 		} else {
14003 			/*
14004 			 * We're clear to proceed with the immediate retry.
14005 			 * First call the user-provided function (if any)
14006 			 */
14007 			if (user_funcp != NULL) {
14008 				(*user_funcp)(un, bp, user_arg,
14009 				    SD_IMMEDIATE_RETRY_ISSUED);
14010 #ifdef __lock_lint
14011 				sd_print_incomplete_msg(un, bp, user_arg,
14012 				    SD_IMMEDIATE_RETRY_ISSUED);
14013 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
14014 				    SD_IMMEDIATE_RETRY_ISSUED);
14015 				sd_print_sense_failed_msg(un, bp, user_arg,
14016 				    SD_IMMEDIATE_RETRY_ISSUED);
14017 #endif
14018 			}
14019 
14020 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14021 			    "sd_retry_command: issuing immediate retry\n");
14022 
14023 			/*
14024 			 * Call sd_start_cmds() to transport the command to
14025 			 * the target.
14026 			 */
14027 			sd_start_cmds(un, bp);
14028 
14029 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14030 			    "sd_retry_command exit\n");
14031 			return;
14032 		}
14033 	}
14034 
14035 	/*
14036 	 * Set up to retry the command after a delay.
14037 	 * First call the user-provided function (if any)
14038 	 */
14039 	if (user_funcp != NULL) {
14040 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
14041 	}
14042 
14043 	sd_set_retry_bp(un, bp, retry_delay, statp);
14044 
14045 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14046 	return;
14047 
14048 fail_command:
14049 
14050 	if (user_funcp != NULL) {
14051 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
14052 	}
14053 
14054 fail_command_no_log:
14055 
14056 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14057 	    "sd_retry_command: returning failed command\n");
14058 
14059 	sd_return_failed_command(un, bp, failure_code);
14060 
14061 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14062 }
14063 
14064 
14065 /*
14066  *    Function: sd_set_retry_bp
14067  *
14068  * Description: Set up the given bp for retry.
14069  *
14070  *   Arguments: un - ptr to associated softstate
14071  *		bp - ptr to buf(9S) for the command
14072  *		retry_delay - time interval before issuing retry (may be 0)
14073  *		statp - optional pointer to kstat function
14074  *
14075  *     Context: May be called under interrupt context
14076  */
14077 
14078 static void
14079 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14080 	void (*statp)(kstat_io_t *))
14081 {
14082 	ASSERT(un != NULL);
14083 	ASSERT(mutex_owned(SD_MUTEX(un)));
14084 	ASSERT(bp != NULL);
14085 
14086 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14087 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14088 
14089 	/*
14090 	 * Indicate that the command is being retried. This will not allow any
14091 	 * other commands on the wait queue to be transported to the target
14092 	 * until this command has been completed (success or failure). The
14093 	 * "retry command" is not transported to the target until the given
14094 	 * time delay expires, unless the user specified a 0 retry_delay.
14095 	 *
14096 	 * Note: the timeout(9F) callback routine is what actually calls
14097 	 * sd_start_cmds() to transport the command, with the exception of a
14098 	 * zero retry_delay. The only current implementor of a zero retry delay
14099 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14100 	 */
14101 	if (un->un_retry_bp == NULL) {
14102 		ASSERT(un->un_retry_statp == NULL);
14103 		un->un_retry_bp = bp;
14104 
14105 		/*
14106 		 * If the user has not specified a delay the command should
14107 		 * be queued and no timeout should be scheduled.
14108 		 */
14109 		if (retry_delay == 0) {
14110 			/*
14111 			 * Save the kstat pointer that will be used in the
14112 			 * call to SD_UPDATE_KSTATS() below, so that
14113 			 * sd_start_cmds() can correctly decrement the waitq
14114 			 * count when it is time to transport this command.
14115 			 */
14116 			un->un_retry_statp = statp;
14117 			goto done;
14118 		}
14119 	}
14120 
14121 	if (un->un_retry_bp == bp) {
14122 		/*
14123 		 * Save the kstat pointer that will be used in the call to
14124 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14125 		 * correctly decrement the waitq count when it is time to
14126 		 * transport this command.
14127 		 */
14128 		un->un_retry_statp = statp;
14129 
14130 		/*
14131 		 * Schedule a timeout if:
14132 		 *   1) The user has specified a delay.
14133 		 *   2) There is not a START_STOP_UNIT callback pending.
14134 		 *
14135 		 * If no delay has been specified, then it is up to the caller
14136 		 * to ensure that IO processing continues without stalling.
14137 		 * Effectively, this means that the caller will issue the
14138 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14139 		 * callback does this after the START STOP UNIT command has
14140 		 * completed. In either of these cases we should not schedule
14141 		 * a timeout callback here.  Also don't schedule the timeout if
14142 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14143 		 */
14144 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14145 		    (un->un_direct_priority_timeid == NULL)) {
14146 			un->un_retry_timeid =
14147 			    timeout(sd_start_retry_command, un, retry_delay);
14148 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14149 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14150 			    " bp:0x%p un_retry_timeid:0x%p\n",
14151 			    un, bp, un->un_retry_timeid);
14152 		}
14153 	} else {
14154 		/*
14155 		 * We only get in here if there is already another command
14156 		 * waiting to be retried.  In this case, we just put the
14157 		 * given command onto the wait queue, so it can be transported
14158 		 * after the current retry command has completed.
14159 		 *
14160 		 * Also we have to make sure that if the command at the head
14161 		 * of the wait queue is the un_failfast_bp, that we do not
14162 		 * put ahead of it any other commands that are to be retried.
14163 		 */
14164 		if ((un->un_failfast_bp != NULL) &&
14165 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14166 			/*
14167 			 * Enqueue this command AFTER the first command on
14168 			 * the wait queue (which is also un_failfast_bp).
14169 			 */
14170 			bp->av_forw = un->un_waitq_headp->av_forw;
14171 			un->un_waitq_headp->av_forw = bp;
14172 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14173 				un->un_waitq_tailp = bp;
14174 			}
14175 		} else {
14176 			/* Enqueue this command at the head of the waitq. */
14177 			bp->av_forw = un->un_waitq_headp;
14178 			un->un_waitq_headp = bp;
14179 			if (un->un_waitq_tailp == NULL) {
14180 				un->un_waitq_tailp = bp;
14181 			}
14182 		}
14183 
14184 		if (statp == NULL) {
14185 			statp = kstat_waitq_enter;
14186 		}
14187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14188 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14189 	}
14190 
14191 done:
14192 	if (statp != NULL) {
14193 		SD_UPDATE_KSTATS(un, statp, bp);
14194 	}
14195 
14196 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14197 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14198 }
14199 
14200 
14201 /*
14202  *    Function: sd_start_retry_command
14203  *
14204  * Description: Start the command that has been waiting on the target's
14205  *		retry queue.  Called from timeout(9F) context after the
14206  *		retry delay interval has expired.
14207  *
14208  *   Arguments: arg - pointer to associated softstate for the device.
14209  *
14210  *     Context: timeout(9F) thread context.  May not sleep.
14211  */
14212 
14213 static void
14214 sd_start_retry_command(void *arg)
14215 {
14216 	struct sd_lun *un = arg;
14217 
14218 	ASSERT(un != NULL);
14219 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14220 
14221 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14222 	    "sd_start_retry_command: entry\n");
14223 
14224 	mutex_enter(SD_MUTEX(un));
14225 
14226 	un->un_retry_timeid = NULL;
14227 
14228 	if (un->un_retry_bp != NULL) {
14229 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14230 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14231 		    un, un->un_retry_bp);
14232 		sd_start_cmds(un, un->un_retry_bp);
14233 	}
14234 
14235 	mutex_exit(SD_MUTEX(un));
14236 
14237 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14238 	    "sd_start_retry_command: exit\n");
14239 }
14240 
14241 
14242 /*
14243  *    Function: sd_start_direct_priority_command
14244  *
14245  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14246  *		received TRAN_BUSY when we called scsi_transport() to send it
14247  *		to the underlying HBA. This function is called from timeout(9F)
14248  *		context after the delay interval has expired.
14249  *
14250  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14251  *
14252  *     Context: timeout(9F) thread context.  May not sleep.
14253  */
14254 
14255 static void
14256 sd_start_direct_priority_command(void *arg)
14257 {
14258 	struct buf	*priority_bp = arg;
14259 	struct sd_lun	*un;
14260 
14261 	ASSERT(priority_bp != NULL);
14262 	un = SD_GET_UN(priority_bp);
14263 	ASSERT(un != NULL);
14264 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14265 
14266 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14267 	    "sd_start_direct_priority_command: entry\n");
14268 
14269 	mutex_enter(SD_MUTEX(un));
14270 	un->un_direct_priority_timeid = NULL;
14271 	sd_start_cmds(un, priority_bp);
14272 	mutex_exit(SD_MUTEX(un));
14273 
14274 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14275 	    "sd_start_direct_priority_command: exit\n");
14276 }
14277 
14278 
14279 /*
14280  *    Function: sd_send_request_sense_command
14281  *
14282  * Description: Sends a REQUEST SENSE command to the target
14283  *
14284  *     Context: May be called from interrupt context.
14285  */
14286 
14287 static void
14288 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14289 	struct scsi_pkt *pktp)
14290 {
14291 	ASSERT(bp != NULL);
14292 	ASSERT(un != NULL);
14293 	ASSERT(mutex_owned(SD_MUTEX(un)));
14294 
14295 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14296 	    "entry: buf:0x%p\n", bp);
14297 
14298 	/*
14299 	 * If we are syncing or dumping, then fail the command to avoid a
14300 	 * recursive callback into scsi_transport(). Also fail the command
14301 	 * if we are suspended (legacy behavior).
14302 	 */
14303 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14304 	    (un->un_state == SD_STATE_DUMPING)) {
14305 		sd_return_failed_command(un, bp, EIO);
14306 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14307 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14308 		return;
14309 	}
14310 
14311 	/*
14312 	 * Retry the failed command and don't issue the request sense if:
14313 	 *    1) the sense buf is busy
14314 	 *    2) we have 1 or more outstanding commands on the target
14315 	 *    (the sense data will be cleared or invalidated any way)
14316 	 *
14317 	 * Note: There could be an issue with not checking a retry limit here,
14318 	 * the problem is determining which retry limit to check.
14319 	 */
14320 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14321 		/* Don't retry if the command is flagged as non-retryable */
14322 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14323 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14324 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14325 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14326 			    "sd_send_request_sense_command: "
14327 			    "at full throttle, retrying exit\n");
14328 		} else {
14329 			sd_return_failed_command(un, bp, EIO);
14330 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14331 			    "sd_send_request_sense_command: "
14332 			    "at full throttle, non-retryable exit\n");
14333 		}
14334 		return;
14335 	}
14336 
14337 	sd_mark_rqs_busy(un, bp);
14338 	sd_start_cmds(un, un->un_rqs_bp);
14339 
14340 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14341 	    "sd_send_request_sense_command: exit\n");
14342 }
14343 
14344 
14345 /*
14346  *    Function: sd_mark_rqs_busy
14347  *
14348  * Description: Indicate that the request sense bp for this instance is
14349  *		in use.
14350  *
14351  *     Context: May be called under interrupt context
14352  */
14353 
14354 static void
14355 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14356 {
14357 	struct sd_xbuf	*sense_xp;
14358 
14359 	ASSERT(un != NULL);
14360 	ASSERT(bp != NULL);
14361 	ASSERT(mutex_owned(SD_MUTEX(un)));
14362 	ASSERT(un->un_sense_isbusy == 0);
14363 
14364 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14365 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14366 
14367 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14368 	ASSERT(sense_xp != NULL);
14369 
14370 	SD_INFO(SD_LOG_IO, un,
14371 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14372 
14373 	ASSERT(sense_xp->xb_pktp != NULL);
14374 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14375 	    == (FLAG_SENSING | FLAG_HEAD));
14376 
14377 	un->un_sense_isbusy = 1;
14378 	un->un_rqs_bp->b_resid = 0;
14379 	sense_xp->xb_pktp->pkt_resid  = 0;
14380 	sense_xp->xb_pktp->pkt_reason = 0;
14381 
14382 	/* So we can get back the bp at interrupt time! */
14383 	sense_xp->xb_sense_bp = bp;
14384 
14385 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14386 
14387 	/*
14388 	 * Mark this buf as awaiting sense data. (This is already set in
14389 	 * the pkt_flags for the RQS packet.)
14390 	 */
14391 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14392 
14393 	sense_xp->xb_retry_count	= 0;
14394 	sense_xp->xb_victim_retry_count = 0;
14395 	sense_xp->xb_ua_retry_count	= 0;
14396 	sense_xp->xb_nr_retry_count 	= 0;
14397 	sense_xp->xb_dma_resid  = 0;
14398 
14399 	/* Clean up the fields for auto-request sense */
14400 	sense_xp->xb_sense_status = 0;
14401 	sense_xp->xb_sense_state  = 0;
14402 	sense_xp->xb_sense_resid  = 0;
14403 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14404 
14405 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14406 }
14407 
14408 
14409 /*
14410  *    Function: sd_mark_rqs_idle
14411  *
14412  * Description: SD_MUTEX must be held continuously through this routine
14413  *		to prevent reuse of the rqs struct before the caller can
14414  *		complete it's processing.
14415  *
14416  * Return Code: Pointer to the RQS buf
14417  *
14418  *     Context: May be called under interrupt context
14419  */
14420 
14421 static struct buf *
14422 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14423 {
14424 	struct buf *bp;
14425 	ASSERT(un != NULL);
14426 	ASSERT(sense_xp != NULL);
14427 	ASSERT(mutex_owned(SD_MUTEX(un)));
14428 	ASSERT(un->un_sense_isbusy != 0);
14429 
14430 	un->un_sense_isbusy = 0;
14431 	bp = sense_xp->xb_sense_bp;
14432 	sense_xp->xb_sense_bp = NULL;
14433 
14434 	/* This pkt is no longer interested in getting sense data */
14435 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14436 
14437 	return (bp);
14438 }
14439 
14440 
14441 
14442 /*
14443  *    Function: sd_alloc_rqs
14444  *
14445  * Description: Set up the unit to receive auto request sense data
14446  *
14447  * Return Code: DDI_SUCCESS or DDI_FAILURE
14448  *
14449  *     Context: Called under attach(9E) context
14450  */
14451 
14452 static int
14453 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14454 {
14455 	struct sd_xbuf *xp;
14456 
14457 	ASSERT(un != NULL);
14458 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14459 	ASSERT(un->un_rqs_bp == NULL);
14460 	ASSERT(un->un_rqs_pktp == NULL);
14461 
14462 	/*
14463 	 * First allocate the required buf and scsi_pkt structs, then set up
14464 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14465 	 */
14466 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14467 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14468 	if (un->un_rqs_bp == NULL) {
14469 		return (DDI_FAILURE);
14470 	}
14471 
14472 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14473 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14474 
14475 	if (un->un_rqs_pktp == NULL) {
14476 		sd_free_rqs(un);
14477 		return (DDI_FAILURE);
14478 	}
14479 
14480 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14481 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14482 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14483 
14484 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14485 
14486 	/* Set up the other needed members in the ARQ scsi_pkt. */
14487 	un->un_rqs_pktp->pkt_comp   = sdintr;
14488 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14489 	un->un_rqs_pktp->pkt_flags |=
14490 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14491 
14492 	/*
14493 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14494 	 * provide any intpkt, destroypkt routines as we take care of
14495 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14496 	 */
14497 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14498 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14499 	xp->xb_pktp = un->un_rqs_pktp;
14500 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14501 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14502 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14503 
14504 	/*
14505 	 * Save the pointer to the request sense private bp so it can
14506 	 * be retrieved in sdintr.
14507 	 */
14508 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14509 	ASSERT(un->un_rqs_bp->b_private == xp);
14510 
14511 	/*
14512 	 * See if the HBA supports auto-request sense for the specified
14513 	 * target/lun. If it does, then try to enable it (if not already
14514 	 * enabled).
14515 	 *
14516 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14517 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14518 	 * return success.  However, in both of these cases ARQ is always
14519 	 * enabled and scsi_ifgetcap will always return true. The best approach
14520 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14521 	 *
14522 	 * The 3rd case is the HBA (adp) always return enabled on
14523 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14524 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14525 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14526 	 */
14527 
14528 	if (un->un_f_is_fibre == TRUE) {
14529 		un->un_f_arq_enabled = TRUE;
14530 	} else {
14531 #if defined(__i386) || defined(__amd64)
14532 		/*
14533 		 * Circumvent the Adaptec bug, remove this code when
14534 		 * the bug is fixed
14535 		 */
14536 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14537 #endif
14538 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14539 		case 0:
14540 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14541 			    "sd_alloc_rqs: HBA supports ARQ\n");
14542 			/*
14543 			 * ARQ is supported by this HBA but currently is not
14544 			 * enabled. Attempt to enable it and if successful then
14545 			 * mark this instance as ARQ enabled.
14546 			 */
14547 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14548 			    == 1) {
14549 				/* Successfully enabled ARQ in the HBA */
14550 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14551 				    "sd_alloc_rqs: ARQ enabled\n");
14552 				un->un_f_arq_enabled = TRUE;
14553 			} else {
14554 				/* Could not enable ARQ in the HBA */
14555 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14556 				    "sd_alloc_rqs: failed ARQ enable\n");
14557 				un->un_f_arq_enabled = FALSE;
14558 			}
14559 			break;
14560 		case 1:
14561 			/*
14562 			 * ARQ is supported by this HBA and is already enabled.
14563 			 * Just mark ARQ as enabled for this instance.
14564 			 */
14565 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14566 			    "sd_alloc_rqs: ARQ already enabled\n");
14567 			un->un_f_arq_enabled = TRUE;
14568 			break;
14569 		default:
14570 			/*
14571 			 * ARQ is not supported by this HBA; disable it for this
14572 			 * instance.
14573 			 */
14574 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14575 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14576 			un->un_f_arq_enabled = FALSE;
14577 			break;
14578 		}
14579 	}
14580 
14581 	return (DDI_SUCCESS);
14582 }
14583 
14584 
14585 /*
14586  *    Function: sd_free_rqs
14587  *
14588  * Description: Cleanup for the pre-instance RQS command.
14589  *
14590  *     Context: Kernel thread context
14591  */
14592 
14593 static void
14594 sd_free_rqs(struct sd_lun *un)
14595 {
14596 	ASSERT(un != NULL);
14597 
14598 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14599 
14600 	/*
14601 	 * If consistent memory is bound to a scsi_pkt, the pkt
14602 	 * has to be destroyed *before* freeing the consistent memory.
14603 	 * Don't change the sequence of this operations.
14604 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14605 	 * after it was freed in scsi_free_consistent_buf().
14606 	 */
14607 	if (un->un_rqs_pktp != NULL) {
14608 		scsi_destroy_pkt(un->un_rqs_pktp);
14609 		un->un_rqs_pktp = NULL;
14610 	}
14611 
14612 	if (un->un_rqs_bp != NULL) {
14613 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14614 		if (xp != NULL) {
14615 			kmem_free(xp, sizeof (struct sd_xbuf));
14616 		}
14617 		scsi_free_consistent_buf(un->un_rqs_bp);
14618 		un->un_rqs_bp = NULL;
14619 	}
14620 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14621 }
14622 
14623 
14624 
14625 /*
14626  *    Function: sd_reduce_throttle
14627  *
14628  * Description: Reduces the maximum # of outstanding commands on a
14629  *		target to the current number of outstanding commands.
14630  *		Queues a tiemout(9F) callback to restore the limit
14631  *		after a specified interval has elapsed.
14632  *		Typically used when we get a TRAN_BUSY return code
14633  *		back from scsi_transport().
14634  *
14635  *   Arguments: un - ptr to the sd_lun softstate struct
14636  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14637  *
14638  *     Context: May be called from interrupt context
14639  */
14640 
14641 static void
14642 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14643 {
14644 	ASSERT(un != NULL);
14645 	ASSERT(mutex_owned(SD_MUTEX(un)));
14646 	ASSERT(un->un_ncmds_in_transport >= 0);
14647 
14648 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14649 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14650 	    un, un->un_throttle, un->un_ncmds_in_transport);
14651 
14652 	if (un->un_throttle > 1) {
14653 		if (un->un_f_use_adaptive_throttle == TRUE) {
14654 			switch (throttle_type) {
14655 			case SD_THROTTLE_TRAN_BUSY:
14656 				if (un->un_busy_throttle == 0) {
14657 					un->un_busy_throttle = un->un_throttle;
14658 				}
14659 				break;
14660 			case SD_THROTTLE_QFULL:
14661 				un->un_busy_throttle = 0;
14662 				break;
14663 			default:
14664 				ASSERT(FALSE);
14665 			}
14666 
14667 			if (un->un_ncmds_in_transport > 0) {
14668 				un->un_throttle = un->un_ncmds_in_transport;
14669 			}
14670 
14671 		} else {
14672 			if (un->un_ncmds_in_transport == 0) {
14673 				un->un_throttle = 1;
14674 			} else {
14675 				un->un_throttle = un->un_ncmds_in_transport;
14676 			}
14677 		}
14678 	}
14679 
14680 	/* Reschedule the timeout if none is currently active */
14681 	if (un->un_reset_throttle_timeid == NULL) {
14682 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14683 		    un, SD_THROTTLE_RESET_INTERVAL);
14684 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14685 		    "sd_reduce_throttle: timeout scheduled!\n");
14686 	}
14687 
14688 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14689 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14690 }
14691 
14692 
14693 
14694 /*
14695  *    Function: sd_restore_throttle
14696  *
14697  * Description: Callback function for timeout(9F).  Resets the current
14698  *		value of un->un_throttle to its default.
14699  *
14700  *   Arguments: arg - pointer to associated softstate for the device.
14701  *
14702  *     Context: May be called from interrupt context
14703  */
14704 
14705 static void
14706 sd_restore_throttle(void *arg)
14707 {
14708 	struct sd_lun	*un = arg;
14709 
14710 	ASSERT(un != NULL);
14711 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14712 
14713 	mutex_enter(SD_MUTEX(un));
14714 
14715 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14716 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14717 
14718 	un->un_reset_throttle_timeid = NULL;
14719 
14720 	if (un->un_f_use_adaptive_throttle == TRUE) {
14721 		/*
14722 		 * If un_busy_throttle is nonzero, then it contains the
14723 		 * value that un_throttle was when we got a TRAN_BUSY back
14724 		 * from scsi_transport(). We want to revert back to this
14725 		 * value.
14726 		 *
14727 		 * In the QFULL case, the throttle limit will incrementally
14728 		 * increase until it reaches max throttle.
14729 		 */
14730 		if (un->un_busy_throttle > 0) {
14731 			un->un_throttle = un->un_busy_throttle;
14732 			un->un_busy_throttle = 0;
14733 		} else {
14734 			/*
14735 			 * increase throttle by 10% open gate slowly, schedule
14736 			 * another restore if saved throttle has not been
14737 			 * reached
14738 			 */
14739 			short throttle;
14740 			if (sd_qfull_throttle_enable) {
14741 				throttle = un->un_throttle +
14742 				    max((un->un_throttle / 10), 1);
14743 				un->un_throttle =
14744 				    (throttle < un->un_saved_throttle) ?
14745 				    throttle : un->un_saved_throttle;
14746 				if (un->un_throttle < un->un_saved_throttle) {
14747 					un->un_reset_throttle_timeid =
14748 					    timeout(sd_restore_throttle,
14749 					    un,
14750 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14751 				}
14752 			}
14753 		}
14754 
14755 		/*
14756 		 * If un_throttle has fallen below the low-water mark, we
14757 		 * restore the maximum value here (and allow it to ratchet
14758 		 * down again if necessary).
14759 		 */
14760 		if (un->un_throttle < un->un_min_throttle) {
14761 			un->un_throttle = un->un_saved_throttle;
14762 		}
14763 	} else {
14764 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14765 		    "restoring limit from 0x%x to 0x%x\n",
14766 		    un->un_throttle, un->un_saved_throttle);
14767 		un->un_throttle = un->un_saved_throttle;
14768 	}
14769 
14770 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14771 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14772 
14773 	sd_start_cmds(un, NULL);
14774 
14775 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14776 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14777 	    un, un->un_throttle);
14778 
14779 	mutex_exit(SD_MUTEX(un));
14780 
14781 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14782 }
14783 
14784 /*
14785  *    Function: sdrunout
14786  *
14787  * Description: Callback routine for scsi_init_pkt when a resource allocation
14788  *		fails.
14789  *
14790  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14791  *		soft state instance.
14792  *
14793  * Return Code: The scsi_init_pkt routine allows for the callback function to
14794  *		return a 0 indicating the callback should be rescheduled or a 1
14795  *		indicating not to reschedule. This routine always returns 1
14796  *		because the driver always provides a callback function to
14797  *		scsi_init_pkt. This results in a callback always being scheduled
14798  *		(via the scsi_init_pkt callback implementation) if a resource
14799  *		failure occurs.
14800  *
14801  *     Context: This callback function may not block or call routines that block
14802  *
14803  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14804  *		request persisting at the head of the list which cannot be
14805  *		satisfied even after multiple retries. In the future the driver
14806  *		may implement some time of maximum runout count before failing
14807  *		an I/O.
14808  */
14809 
14810 static int
14811 sdrunout(caddr_t arg)
14812 {
14813 	struct sd_lun	*un = (struct sd_lun *)arg;
14814 
14815 	ASSERT(un != NULL);
14816 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14817 
14818 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14819 
14820 	mutex_enter(SD_MUTEX(un));
14821 	sd_start_cmds(un, NULL);
14822 	mutex_exit(SD_MUTEX(un));
14823 	/*
14824 	 * This callback routine always returns 1 (i.e. do not reschedule)
14825 	 * because we always specify sdrunout as the callback handler for
14826 	 * scsi_init_pkt inside the call to sd_start_cmds.
14827 	 */
14828 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14829 	return (1);
14830 }
14831 
14832 
14833 /*
14834  *    Function: sdintr
14835  *
14836  * Description: Completion callback routine for scsi_pkt(9S) structs
14837  *		sent to the HBA driver via scsi_transport(9F).
14838  *
14839  *     Context: Interrupt context
14840  */
14841 
14842 static void
14843 sdintr(struct scsi_pkt *pktp)
14844 {
14845 	struct buf	*bp;
14846 	struct sd_xbuf	*xp;
14847 	struct sd_lun	*un;
14848 	size_t		actual_len;
14849 
14850 	ASSERT(pktp != NULL);
14851 	bp = (struct buf *)pktp->pkt_private;
14852 	ASSERT(bp != NULL);
14853 	xp = SD_GET_XBUF(bp);
14854 	ASSERT(xp != NULL);
14855 	ASSERT(xp->xb_pktp != NULL);
14856 	un = SD_GET_UN(bp);
14857 	ASSERT(un != NULL);
14858 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14859 
14860 #ifdef SD_FAULT_INJECTION
14861 
14862 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14863 	/* SD FaultInjection */
14864 	sd_faultinjection(pktp);
14865 
14866 #endif /* SD_FAULT_INJECTION */
14867 
14868 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14869 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14870 
14871 	mutex_enter(SD_MUTEX(un));
14872 
14873 	/* Reduce the count of the #commands currently in transport */
14874 	un->un_ncmds_in_transport--;
14875 	ASSERT(un->un_ncmds_in_transport >= 0);
14876 
14877 	/* Increment counter to indicate that the callback routine is active */
14878 	un->un_in_callback++;
14879 
14880 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14881 
14882 #ifdef	SDDEBUG
14883 	if (bp == un->un_retry_bp) {
14884 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14885 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14886 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14887 	}
14888 #endif
14889 
14890 	/*
14891 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14892 	 * state if needed.
14893 	 */
14894 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14895 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14896 		    "Command failed to complete...Device is gone\n");
14897 		if (un->un_mediastate != DKIO_DEV_GONE) {
14898 			un->un_mediastate = DKIO_DEV_GONE;
14899 			cv_broadcast(&un->un_state_cv);
14900 		}
14901 		sd_return_failed_command(un, bp, EIO);
14902 		goto exit;
14903 	}
14904 
14905 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14906 		SD_TRACE(SD_LOG_COMMON, un,
14907 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14908 	}
14909 
14910 	/*
14911 	 * First see if the pkt has auto-request sense data with it....
14912 	 * Look at the packet state first so we don't take a performance
14913 	 * hit looking at the arq enabled flag unless absolutely necessary.
14914 	 */
14915 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14916 	    (un->un_f_arq_enabled == TRUE)) {
14917 		/*
14918 		 * The HBA did an auto request sense for this command so check
14919 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14920 		 * driver command that should not be retried.
14921 		 */
14922 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14923 			/*
14924 			 * Save the relevant sense info into the xp for the
14925 			 * original cmd.
14926 			 */
14927 			struct scsi_arq_status *asp;
14928 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14929 			xp->xb_sense_status =
14930 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14931 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14932 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14933 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14934 				actual_len = MAX_SENSE_LENGTH -
14935 				    xp->xb_sense_resid;
14936 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14937 				    MAX_SENSE_LENGTH);
14938 			} else {
14939 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14940 					actual_len = MAX_SENSE_LENGTH -
14941 					    xp->xb_sense_resid;
14942 				} else {
14943 					actual_len = SENSE_LENGTH -
14944 					    xp->xb_sense_resid;
14945 				}
14946 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14947 					if ((((struct uscsi_cmd *)
14948 					    (xp->xb_pktinfo))->uscsi_rqlen) >
14949 					    actual_len) {
14950 						xp->xb_sense_resid =
14951 						    (((struct uscsi_cmd *)
14952 						    (xp->xb_pktinfo))->
14953 						    uscsi_rqlen) - actual_len;
14954 					} else {
14955 						xp->xb_sense_resid = 0;
14956 					}
14957 				}
14958 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14959 				    SENSE_LENGTH);
14960 			}
14961 
14962 			/* fail the command */
14963 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14964 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14965 			sd_return_failed_command(un, bp, EIO);
14966 			goto exit;
14967 		}
14968 
14969 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14970 		/*
14971 		 * We want to either retry or fail this command, so free
14972 		 * the DMA resources here.  If we retry the command then
14973 		 * the DMA resources will be reallocated in sd_start_cmds().
14974 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14975 		 * causes the *entire* transfer to start over again from the
14976 		 * beginning of the request, even for PARTIAL chunks that
14977 		 * have already transferred successfully.
14978 		 */
14979 		if ((un->un_f_is_fibre == TRUE) &&
14980 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14981 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14982 			scsi_dmafree(pktp);
14983 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14984 		}
14985 #endif
14986 
14987 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14988 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14989 
14990 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14991 		goto exit;
14992 	}
14993 
14994 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14995 	if (pktp->pkt_flags & FLAG_SENSING)  {
14996 		/* This pktp is from the unit's REQUEST_SENSE command */
14997 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14998 		    "sdintr: sd_handle_request_sense\n");
14999 		sd_handle_request_sense(un, bp, xp, pktp);
15000 		goto exit;
15001 	}
15002 
15003 	/*
15004 	 * Check to see if the command successfully completed as requested;
15005 	 * this is the most common case (and also the hot performance path).
15006 	 *
15007 	 * Requirements for successful completion are:
15008 	 * pkt_reason is CMD_CMPLT and packet status is status good.
15009 	 * In addition:
15010 	 * - A residual of zero indicates successful completion no matter what
15011 	 *   the command is.
15012 	 * - If the residual is not zero and the command is not a read or
15013 	 *   write, then it's still defined as successful completion. In other
15014 	 *   words, if the command is a read or write the residual must be
15015 	 *   zero for successful completion.
15016 	 * - If the residual is not zero and the command is a read or
15017 	 *   write, and it's a USCSICMD, then it's still defined as
15018 	 *   successful completion.
15019 	 */
15020 	if ((pktp->pkt_reason == CMD_CMPLT) &&
15021 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
15022 
15023 		/*
15024 		 * Since this command is returned with a good status, we
15025 		 * can reset the count for Sonoma failover.
15026 		 */
15027 		un->un_sonoma_failure_count = 0;
15028 
15029 		/*
15030 		 * Return all USCSI commands on good status
15031 		 */
15032 		if (pktp->pkt_resid == 0) {
15033 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15034 			    "sdintr: returning command for resid == 0\n");
15035 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
15036 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
15037 			SD_UPDATE_B_RESID(bp, pktp);
15038 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15039 			    "sdintr: returning command for resid != 0\n");
15040 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15041 			SD_UPDATE_B_RESID(bp, pktp);
15042 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15043 			    "sdintr: returning uscsi command\n");
15044 		} else {
15045 			goto not_successful;
15046 		}
15047 		sd_return_command(un, bp);
15048 
15049 		/*
15050 		 * Decrement counter to indicate that the callback routine
15051 		 * is done.
15052 		 */
15053 		un->un_in_callback--;
15054 		ASSERT(un->un_in_callback >= 0);
15055 		mutex_exit(SD_MUTEX(un));
15056 
15057 		return;
15058 	}
15059 
15060 not_successful:
15061 
15062 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15063 	/*
15064 	 * The following is based upon knowledge of the underlying transport
15065 	 * and its use of DMA resources.  This code should be removed when
15066 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15067 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15068 	 * and sd_start_cmds().
15069 	 *
15070 	 * Free any DMA resources associated with this command if there
15071 	 * is a chance it could be retried or enqueued for later retry.
15072 	 * If we keep the DMA binding then mpxio cannot reissue the
15073 	 * command on another path whenever a path failure occurs.
15074 	 *
15075 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15076 	 * causes the *entire* transfer to start over again from the
15077 	 * beginning of the request, even for PARTIAL chunks that
15078 	 * have already transferred successfully.
15079 	 *
15080 	 * This is only done for non-uscsi commands (and also skipped for the
15081 	 * driver's internal RQS command). Also just do this for Fibre Channel
15082 	 * devices as these are the only ones that support mpxio.
15083 	 */
15084 	if ((un->un_f_is_fibre == TRUE) &&
15085 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15086 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15087 		scsi_dmafree(pktp);
15088 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15089 	}
15090 #endif
15091 
15092 	/*
15093 	 * The command did not successfully complete as requested so check
15094 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15095 	 * driver command that should not be retried so just return. If
15096 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15097 	 */
15098 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15099 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15100 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15101 		/*
15102 		 * Issue a request sense if a check condition caused the error
15103 		 * (we handle the auto request sense case above), otherwise
15104 		 * just fail the command.
15105 		 */
15106 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15107 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15108 			sd_send_request_sense_command(un, bp, pktp);
15109 		} else {
15110 			sd_return_failed_command(un, bp, EIO);
15111 		}
15112 		goto exit;
15113 	}
15114 
15115 	/*
15116 	 * The command did not successfully complete as requested so process
15117 	 * the error, retry, and/or attempt recovery.
15118 	 */
15119 	switch (pktp->pkt_reason) {
15120 	case CMD_CMPLT:
15121 		switch (SD_GET_PKT_STATUS(pktp)) {
15122 		case STATUS_GOOD:
15123 			/*
15124 			 * The command completed successfully with a non-zero
15125 			 * residual
15126 			 */
15127 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15128 			    "sdintr: STATUS_GOOD \n");
15129 			sd_pkt_status_good(un, bp, xp, pktp);
15130 			break;
15131 
15132 		case STATUS_CHECK:
15133 		case STATUS_TERMINATED:
15134 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15135 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15136 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15137 			break;
15138 
15139 		case STATUS_BUSY:
15140 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15141 			    "sdintr: STATUS_BUSY\n");
15142 			sd_pkt_status_busy(un, bp, xp, pktp);
15143 			break;
15144 
15145 		case STATUS_RESERVATION_CONFLICT:
15146 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15147 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15148 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15149 			break;
15150 
15151 		case STATUS_QFULL:
15152 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15153 			    "sdintr: STATUS_QFULL\n");
15154 			sd_pkt_status_qfull(un, bp, xp, pktp);
15155 			break;
15156 
15157 		case STATUS_MET:
15158 		case STATUS_INTERMEDIATE:
15159 		case STATUS_SCSI2:
15160 		case STATUS_INTERMEDIATE_MET:
15161 		case STATUS_ACA_ACTIVE:
15162 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15163 			    "Unexpected SCSI status received: 0x%x\n",
15164 			    SD_GET_PKT_STATUS(pktp));
15165 			sd_return_failed_command(un, bp, EIO);
15166 			break;
15167 
15168 		default:
15169 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15170 			    "Invalid SCSI status received: 0x%x\n",
15171 			    SD_GET_PKT_STATUS(pktp));
15172 			sd_return_failed_command(un, bp, EIO);
15173 			break;
15174 
15175 		}
15176 		break;
15177 
15178 	case CMD_INCOMPLETE:
15179 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15180 		    "sdintr:  CMD_INCOMPLETE\n");
15181 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15182 		break;
15183 	case CMD_TRAN_ERR:
15184 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15185 		    "sdintr: CMD_TRAN_ERR\n");
15186 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15187 		break;
15188 	case CMD_RESET:
15189 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15190 		    "sdintr: CMD_RESET \n");
15191 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15192 		break;
15193 	case CMD_ABORTED:
15194 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15195 		    "sdintr: CMD_ABORTED \n");
15196 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15197 		break;
15198 	case CMD_TIMEOUT:
15199 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15200 		    "sdintr: CMD_TIMEOUT\n");
15201 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15202 		break;
15203 	case CMD_UNX_BUS_FREE:
15204 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15205 		    "sdintr: CMD_UNX_BUS_FREE \n");
15206 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15207 		break;
15208 	case CMD_TAG_REJECT:
15209 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15210 		    "sdintr: CMD_TAG_REJECT\n");
15211 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15212 		break;
15213 	default:
15214 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15215 		    "sdintr: default\n");
15216 		sd_pkt_reason_default(un, bp, xp, pktp);
15217 		break;
15218 	}
15219 
15220 exit:
15221 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15222 
15223 	/* Decrement counter to indicate that the callback routine is done. */
15224 	un->un_in_callback--;
15225 	ASSERT(un->un_in_callback >= 0);
15226 
15227 	/*
15228 	 * At this point, the pkt has been dispatched, ie, it is either
15229 	 * being re-tried or has been returned to its caller and should
15230 	 * not be referenced.
15231 	 */
15232 
15233 	mutex_exit(SD_MUTEX(un));
15234 }
15235 
15236 
15237 /*
15238  *    Function: sd_print_incomplete_msg
15239  *
15240  * Description: Prints the error message for a CMD_INCOMPLETE error.
15241  *
15242  *   Arguments: un - ptr to associated softstate for the device.
15243  *		bp - ptr to the buf(9S) for the command.
15244  *		arg - message string ptr
15245  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15246  *			or SD_NO_RETRY_ISSUED.
15247  *
15248  *     Context: May be called under interrupt context
15249  */
15250 
15251 static void
15252 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15253 {
15254 	struct scsi_pkt	*pktp;
15255 	char	*msgp;
15256 	char	*cmdp = arg;
15257 
15258 	ASSERT(un != NULL);
15259 	ASSERT(mutex_owned(SD_MUTEX(un)));
15260 	ASSERT(bp != NULL);
15261 	ASSERT(arg != NULL);
15262 	pktp = SD_GET_PKTP(bp);
15263 	ASSERT(pktp != NULL);
15264 
15265 	switch (code) {
15266 	case SD_DELAYED_RETRY_ISSUED:
15267 	case SD_IMMEDIATE_RETRY_ISSUED:
15268 		msgp = "retrying";
15269 		break;
15270 	case SD_NO_RETRY_ISSUED:
15271 	default:
15272 		msgp = "giving up";
15273 		break;
15274 	}
15275 
15276 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15277 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15278 		    "incomplete %s- %s\n", cmdp, msgp);
15279 	}
15280 }
15281 
15282 
15283 
15284 /*
15285  *    Function: sd_pkt_status_good
15286  *
15287  * Description: Processing for a STATUS_GOOD code in pkt_status.
15288  *
15289  *     Context: May be called under interrupt context
15290  */
15291 
15292 static void
15293 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15294 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15295 {
15296 	char	*cmdp;
15297 
15298 	ASSERT(un != NULL);
15299 	ASSERT(mutex_owned(SD_MUTEX(un)));
15300 	ASSERT(bp != NULL);
15301 	ASSERT(xp != NULL);
15302 	ASSERT(pktp != NULL);
15303 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15304 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15305 	ASSERT(pktp->pkt_resid != 0);
15306 
15307 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15308 
15309 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15310 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15311 	case SCMD_READ:
15312 		cmdp = "read";
15313 		break;
15314 	case SCMD_WRITE:
15315 		cmdp = "write";
15316 		break;
15317 	default:
15318 		SD_UPDATE_B_RESID(bp, pktp);
15319 		sd_return_command(un, bp);
15320 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15321 		return;
15322 	}
15323 
15324 	/*
15325 	 * See if we can retry the read/write, preferrably immediately.
15326 	 * If retries are exhaused, then sd_retry_command() will update
15327 	 * the b_resid count.
15328 	 */
15329 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15330 	    cmdp, EIO, (clock_t)0, NULL);
15331 
15332 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15333 }
15334 
15335 
15336 
15337 
15338 
15339 /*
15340  *    Function: sd_handle_request_sense
15341  *
15342  * Description: Processing for non-auto Request Sense command.
15343  *
15344  *   Arguments: un - ptr to associated softstate
15345  *		sense_bp - ptr to buf(9S) for the RQS command
15346  *		sense_xp - ptr to the sd_xbuf for the RQS command
15347  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15348  *
15349  *     Context: May be called under interrupt context
15350  */
15351 
15352 static void
15353 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15354 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15355 {
15356 	struct buf	*cmd_bp;	/* buf for the original command */
15357 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15358 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15359 	size_t		actual_len;	/* actual sense data length */
15360 
15361 	ASSERT(un != NULL);
15362 	ASSERT(mutex_owned(SD_MUTEX(un)));
15363 	ASSERT(sense_bp != NULL);
15364 	ASSERT(sense_xp != NULL);
15365 	ASSERT(sense_pktp != NULL);
15366 
15367 	/*
15368 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15369 	 * RQS command and not the original command.
15370 	 */
15371 	ASSERT(sense_pktp == un->un_rqs_pktp);
15372 	ASSERT(sense_bp   == un->un_rqs_bp);
15373 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15374 	    (FLAG_SENSING | FLAG_HEAD));
15375 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15376 	    FLAG_SENSING) == FLAG_SENSING);
15377 
15378 	/* These are the bp, xp, and pktp for the original command */
15379 	cmd_bp = sense_xp->xb_sense_bp;
15380 	cmd_xp = SD_GET_XBUF(cmd_bp);
15381 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15382 
15383 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15384 		/*
15385 		 * The REQUEST SENSE command failed.  Release the REQUEST
15386 		 * SENSE command for re-use, get back the bp for the original
15387 		 * command, and attempt to re-try the original command if
15388 		 * FLAG_DIAGNOSE is not set in the original packet.
15389 		 */
15390 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15391 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15392 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15393 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15394 			    NULL, NULL, EIO, (clock_t)0, NULL);
15395 			return;
15396 		}
15397 	}
15398 
15399 	/*
15400 	 * Save the relevant sense info into the xp for the original cmd.
15401 	 *
15402 	 * Note: if the request sense failed the state info will be zero
15403 	 * as set in sd_mark_rqs_busy()
15404 	 */
15405 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15406 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15407 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15408 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15409 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15410 	    SENSE_LENGTH)) {
15411 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15412 		    MAX_SENSE_LENGTH);
15413 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15414 	} else {
15415 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15416 		    SENSE_LENGTH);
15417 		if (actual_len < SENSE_LENGTH) {
15418 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15419 		} else {
15420 			cmd_xp->xb_sense_resid = 0;
15421 		}
15422 	}
15423 
15424 	/*
15425 	 *  Free up the RQS command....
15426 	 *  NOTE:
15427 	 *	Must do this BEFORE calling sd_validate_sense_data!
15428 	 *	sd_validate_sense_data may return the original command in
15429 	 *	which case the pkt will be freed and the flags can no
15430 	 *	longer be touched.
15431 	 *	SD_MUTEX is held through this process until the command
15432 	 *	is dispatched based upon the sense data, so there are
15433 	 *	no race conditions.
15434 	 */
15435 	(void) sd_mark_rqs_idle(un, sense_xp);
15436 
15437 	/*
15438 	 * For a retryable command see if we have valid sense data, if so then
15439 	 * turn it over to sd_decode_sense() to figure out the right course of
15440 	 * action. Just fail a non-retryable command.
15441 	 */
15442 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15443 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15444 		    SD_SENSE_DATA_IS_VALID) {
15445 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15446 		}
15447 	} else {
15448 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15449 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15450 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15451 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15452 		sd_return_failed_command(un, cmd_bp, EIO);
15453 	}
15454 }
15455 
15456 
15457 
15458 
15459 /*
15460  *    Function: sd_handle_auto_request_sense
15461  *
15462  * Description: Processing for auto-request sense information.
15463  *
15464  *   Arguments: un - ptr to associated softstate
15465  *		bp - ptr to buf(9S) for the command
15466  *		xp - ptr to the sd_xbuf for the command
15467  *		pktp - ptr to the scsi_pkt(9S) for the command
15468  *
15469  *     Context: May be called under interrupt context
15470  */
15471 
15472 static void
15473 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15474 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15475 {
15476 	struct scsi_arq_status *asp;
15477 	size_t actual_len;
15478 
15479 	ASSERT(un != NULL);
15480 	ASSERT(mutex_owned(SD_MUTEX(un)));
15481 	ASSERT(bp != NULL);
15482 	ASSERT(xp != NULL);
15483 	ASSERT(pktp != NULL);
15484 	ASSERT(pktp != un->un_rqs_pktp);
15485 	ASSERT(bp   != un->un_rqs_bp);
15486 
15487 	/*
15488 	 * For auto-request sense, we get a scsi_arq_status back from
15489 	 * the HBA, with the sense data in the sts_sensedata member.
15490 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15491 	 */
15492 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15493 
15494 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15495 		/*
15496 		 * The auto REQUEST SENSE failed; see if we can re-try
15497 		 * the original command.
15498 		 */
15499 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15500 		    "auto request sense failed (reason=%s)\n",
15501 		    scsi_rname(asp->sts_rqpkt_reason));
15502 
15503 		sd_reset_target(un, pktp);
15504 
15505 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15506 		    NULL, NULL, EIO, (clock_t)0, NULL);
15507 		return;
15508 	}
15509 
15510 	/* Save the relevant sense info into the xp for the original cmd. */
15511 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15512 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15513 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15514 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15515 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15516 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15517 		    MAX_SENSE_LENGTH);
15518 	} else {
15519 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15520 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15521 		} else {
15522 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15523 		}
15524 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15525 			if ((((struct uscsi_cmd *)
15526 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
15527 				xp->xb_sense_resid = (((struct uscsi_cmd *)
15528 				    (xp->xb_pktinfo))->uscsi_rqlen) -
15529 				    actual_len;
15530 			} else {
15531 				xp->xb_sense_resid = 0;
15532 			}
15533 		}
15534 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15535 	}
15536 
15537 	/*
15538 	 * See if we have valid sense data, if so then turn it over to
15539 	 * sd_decode_sense() to figure out the right course of action.
15540 	 */
15541 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15542 	    SD_SENSE_DATA_IS_VALID) {
15543 		sd_decode_sense(un, bp, xp, pktp);
15544 	}
15545 }
15546 
15547 
15548 /*
15549  *    Function: sd_print_sense_failed_msg
15550  *
15551  * Description: Print log message when RQS has failed.
15552  *
15553  *   Arguments: un - ptr to associated softstate
15554  *		bp - ptr to buf(9S) for the command
15555  *		arg - generic message string ptr
15556  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15557  *			or SD_NO_RETRY_ISSUED
15558  *
15559  *     Context: May be called from interrupt context
15560  */
15561 
15562 static void
15563 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15564 	int code)
15565 {
15566 	char	*msgp = arg;
15567 
15568 	ASSERT(un != NULL);
15569 	ASSERT(mutex_owned(SD_MUTEX(un)));
15570 	ASSERT(bp != NULL);
15571 
15572 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15573 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15574 	}
15575 }
15576 
15577 
15578 /*
15579  *    Function: sd_validate_sense_data
15580  *
15581  * Description: Check the given sense data for validity.
15582  *		If the sense data is not valid, the command will
15583  *		be either failed or retried!
15584  *
15585  * Return Code: SD_SENSE_DATA_IS_INVALID
15586  *		SD_SENSE_DATA_IS_VALID
15587  *
15588  *     Context: May be called from interrupt context
15589  */
15590 
15591 static int
15592 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15593 	size_t actual_len)
15594 {
15595 	struct scsi_extended_sense *esp;
15596 	struct	scsi_pkt *pktp;
15597 	char	*msgp = NULL;
15598 
15599 	ASSERT(un != NULL);
15600 	ASSERT(mutex_owned(SD_MUTEX(un)));
15601 	ASSERT(bp != NULL);
15602 	ASSERT(bp != un->un_rqs_bp);
15603 	ASSERT(xp != NULL);
15604 
15605 	pktp = SD_GET_PKTP(bp);
15606 	ASSERT(pktp != NULL);
15607 
15608 	/*
15609 	 * Check the status of the RQS command (auto or manual).
15610 	 */
15611 	switch (xp->xb_sense_status & STATUS_MASK) {
15612 	case STATUS_GOOD:
15613 		break;
15614 
15615 	case STATUS_RESERVATION_CONFLICT:
15616 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15617 		return (SD_SENSE_DATA_IS_INVALID);
15618 
15619 	case STATUS_BUSY:
15620 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15621 		    "Busy Status on REQUEST SENSE\n");
15622 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15623 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15624 		return (SD_SENSE_DATA_IS_INVALID);
15625 
15626 	case STATUS_QFULL:
15627 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15628 		    "QFULL Status on REQUEST SENSE\n");
15629 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15630 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15631 		return (SD_SENSE_DATA_IS_INVALID);
15632 
15633 	case STATUS_CHECK:
15634 	case STATUS_TERMINATED:
15635 		msgp = "Check Condition on REQUEST SENSE\n";
15636 		goto sense_failed;
15637 
15638 	default:
15639 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15640 		goto sense_failed;
15641 	}
15642 
15643 	/*
15644 	 * See if we got the minimum required amount of sense data.
15645 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15646 	 * or less.
15647 	 */
15648 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15649 	    (actual_len == 0)) {
15650 		msgp = "Request Sense couldn't get sense data\n";
15651 		goto sense_failed;
15652 	}
15653 
15654 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15655 		msgp = "Not enough sense information\n";
15656 		goto sense_failed;
15657 	}
15658 
15659 	/*
15660 	 * We require the extended sense data
15661 	 */
15662 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15663 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15664 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15665 			static char tmp[8];
15666 			static char buf[148];
15667 			char *p = (char *)(xp->xb_sense_data);
15668 			int i;
15669 
15670 			mutex_enter(&sd_sense_mutex);
15671 			(void) strcpy(buf, "undecodable sense information:");
15672 			for (i = 0; i < actual_len; i++) {
15673 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15674 				(void) strcpy(&buf[strlen(buf)], tmp);
15675 			}
15676 			i = strlen(buf);
15677 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15678 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15679 			mutex_exit(&sd_sense_mutex);
15680 		}
15681 		/* Note: Legacy behavior, fail the command with no retry */
15682 		sd_return_failed_command(un, bp, EIO);
15683 		return (SD_SENSE_DATA_IS_INVALID);
15684 	}
15685 
15686 	/*
15687 	 * Check that es_code is valid (es_class concatenated with es_code
15688 	 * make up the "response code" field.  es_class will always be 7, so
15689 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15690 	 * format.
15691 	 */
15692 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15693 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15694 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15695 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15696 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15697 		goto sense_failed;
15698 	}
15699 
15700 	return (SD_SENSE_DATA_IS_VALID);
15701 
15702 sense_failed:
15703 	/*
15704 	 * If the request sense failed (for whatever reason), attempt
15705 	 * to retry the original command.
15706 	 */
15707 #if defined(__i386) || defined(__amd64)
15708 	/*
15709 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15710 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15711 	 * for both SCSI/FC.
15712 	 * The SD_RETRY_DELAY value need to be adjusted here
15713 	 * when SD_RETRY_DELAY change in sddef.h
15714 	 */
15715 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15716 	    sd_print_sense_failed_msg, msgp, EIO,
15717 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15718 #else
15719 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15720 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15721 #endif
15722 
15723 	return (SD_SENSE_DATA_IS_INVALID);
15724 }
15725 
15726 
15727 
15728 /*
15729  *    Function: sd_decode_sense
15730  *
15731  * Description: Take recovery action(s) when SCSI Sense Data is received.
15732  *
15733  *     Context: Interrupt context.
15734  */
15735 
15736 static void
15737 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15738 	struct scsi_pkt *pktp)
15739 {
15740 	uint8_t sense_key;
15741 
15742 	ASSERT(un != NULL);
15743 	ASSERT(mutex_owned(SD_MUTEX(un)));
15744 	ASSERT(bp != NULL);
15745 	ASSERT(bp != un->un_rqs_bp);
15746 	ASSERT(xp != NULL);
15747 	ASSERT(pktp != NULL);
15748 
15749 	sense_key = scsi_sense_key(xp->xb_sense_data);
15750 
15751 	switch (sense_key) {
15752 	case KEY_NO_SENSE:
15753 		sd_sense_key_no_sense(un, bp, xp, pktp);
15754 		break;
15755 	case KEY_RECOVERABLE_ERROR:
15756 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15757 		    bp, xp, pktp);
15758 		break;
15759 	case KEY_NOT_READY:
15760 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15761 		    bp, xp, pktp);
15762 		break;
15763 	case KEY_MEDIUM_ERROR:
15764 	case KEY_HARDWARE_ERROR:
15765 		sd_sense_key_medium_or_hardware_error(un,
15766 		    xp->xb_sense_data, bp, xp, pktp);
15767 		break;
15768 	case KEY_ILLEGAL_REQUEST:
15769 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15770 		break;
15771 	case KEY_UNIT_ATTENTION:
15772 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15773 		    bp, xp, pktp);
15774 		break;
15775 	case KEY_WRITE_PROTECT:
15776 	case KEY_VOLUME_OVERFLOW:
15777 	case KEY_MISCOMPARE:
15778 		sd_sense_key_fail_command(un, bp, xp, pktp);
15779 		break;
15780 	case KEY_BLANK_CHECK:
15781 		sd_sense_key_blank_check(un, bp, xp, pktp);
15782 		break;
15783 	case KEY_ABORTED_COMMAND:
15784 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15785 		break;
15786 	case KEY_VENDOR_UNIQUE:
15787 	case KEY_COPY_ABORTED:
15788 	case KEY_EQUAL:
15789 	case KEY_RESERVED:
15790 	default:
15791 		sd_sense_key_default(un, xp->xb_sense_data,
15792 		    bp, xp, pktp);
15793 		break;
15794 	}
15795 }
15796 
15797 
15798 /*
15799  *    Function: sd_dump_memory
15800  *
15801  * Description: Debug logging routine to print the contents of a user provided
15802  *		buffer. The output of the buffer is broken up into 256 byte
15803  *		segments due to a size constraint of the scsi_log.
15804  *		implementation.
15805  *
15806  *   Arguments: un - ptr to softstate
15807  *		comp - component mask
15808  *		title - "title" string to preceed data when printed
15809  *		data - ptr to data block to be printed
15810  *		len - size of data block to be printed
15811  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15812  *
15813  *     Context: May be called from interrupt context
15814  */
15815 
15816 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15817 
15818 static char *sd_dump_format_string[] = {
15819 		" 0x%02x",
15820 		" %c"
15821 };
15822 
15823 static void
15824 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15825     int len, int fmt)
15826 {
15827 	int	i, j;
15828 	int	avail_count;
15829 	int	start_offset;
15830 	int	end_offset;
15831 	size_t	entry_len;
15832 	char	*bufp;
15833 	char	*local_buf;
15834 	char	*format_string;
15835 
15836 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15837 
15838 	/*
15839 	 * In the debug version of the driver, this function is called from a
15840 	 * number of places which are NOPs in the release driver.
15841 	 * The debug driver therefore has additional methods of filtering
15842 	 * debug output.
15843 	 */
15844 #ifdef SDDEBUG
15845 	/*
15846 	 * In the debug version of the driver we can reduce the amount of debug
15847 	 * messages by setting sd_error_level to something other than
15848 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15849 	 * sd_component_mask.
15850 	 */
15851 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15852 	    (sd_error_level != SCSI_ERR_ALL)) {
15853 		return;
15854 	}
15855 	if (((sd_component_mask & comp) == 0) ||
15856 	    (sd_error_level != SCSI_ERR_ALL)) {
15857 		return;
15858 	}
15859 #else
15860 	if (sd_error_level != SCSI_ERR_ALL) {
15861 		return;
15862 	}
15863 #endif
15864 
15865 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15866 	bufp = local_buf;
15867 	/*
15868 	 * Available length is the length of local_buf[], minus the
15869 	 * length of the title string, minus one for the ":", minus
15870 	 * one for the newline, minus one for the NULL terminator.
15871 	 * This gives the #bytes available for holding the printed
15872 	 * values from the given data buffer.
15873 	 */
15874 	if (fmt == SD_LOG_HEX) {
15875 		format_string = sd_dump_format_string[0];
15876 	} else /* SD_LOG_CHAR */ {
15877 		format_string = sd_dump_format_string[1];
15878 	}
15879 	/*
15880 	 * Available count is the number of elements from the given
15881 	 * data buffer that we can fit into the available length.
15882 	 * This is based upon the size of the format string used.
15883 	 * Make one entry and find it's size.
15884 	 */
15885 	(void) sprintf(bufp, format_string, data[0]);
15886 	entry_len = strlen(bufp);
15887 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15888 
15889 	j = 0;
15890 	while (j < len) {
15891 		bufp = local_buf;
15892 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15893 		start_offset = j;
15894 
15895 		end_offset = start_offset + avail_count;
15896 
15897 		(void) sprintf(bufp, "%s:", title);
15898 		bufp += strlen(bufp);
15899 		for (i = start_offset; ((i < end_offset) && (j < len));
15900 		    i++, j++) {
15901 			(void) sprintf(bufp, format_string, data[i]);
15902 			bufp += entry_len;
15903 		}
15904 		(void) sprintf(bufp, "\n");
15905 
15906 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15907 	}
15908 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15909 }
15910 
15911 /*
15912  *    Function: sd_print_sense_msg
15913  *
15914  * Description: Log a message based upon the given sense data.
15915  *
15916  *   Arguments: un - ptr to associated softstate
15917  *		bp - ptr to buf(9S) for the command
15918  *		arg - ptr to associate sd_sense_info struct
15919  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15920  *			or SD_NO_RETRY_ISSUED
15921  *
15922  *     Context: May be called from interrupt context
15923  */
15924 
15925 static void
15926 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15927 {
15928 	struct sd_xbuf	*xp;
15929 	struct scsi_pkt	*pktp;
15930 	uint8_t *sensep;
15931 	daddr_t request_blkno;
15932 	diskaddr_t err_blkno;
15933 	int severity;
15934 	int pfa_flag;
15935 	extern struct scsi_key_strings scsi_cmds[];
15936 
15937 	ASSERT(un != NULL);
15938 	ASSERT(mutex_owned(SD_MUTEX(un)));
15939 	ASSERT(bp != NULL);
15940 	xp = SD_GET_XBUF(bp);
15941 	ASSERT(xp != NULL);
15942 	pktp = SD_GET_PKTP(bp);
15943 	ASSERT(pktp != NULL);
15944 	ASSERT(arg != NULL);
15945 
15946 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15947 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15948 
15949 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15950 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15951 		severity = SCSI_ERR_RETRYABLE;
15952 	}
15953 
15954 	/* Use absolute block number for the request block number */
15955 	request_blkno = xp->xb_blkno;
15956 
15957 	/*
15958 	 * Now try to get the error block number from the sense data
15959 	 */
15960 	sensep = xp->xb_sense_data;
15961 
15962 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15963 	    (uint64_t *)&err_blkno)) {
15964 		/*
15965 		 * We retrieved the error block number from the information
15966 		 * portion of the sense data.
15967 		 *
15968 		 * For USCSI commands we are better off using the error
15969 		 * block no. as the requested block no. (This is the best
15970 		 * we can estimate.)
15971 		 */
15972 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15973 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15974 			request_blkno = err_blkno;
15975 		}
15976 	} else {
15977 		/*
15978 		 * Without the es_valid bit set (for fixed format) or an
15979 		 * information descriptor (for descriptor format) we cannot
15980 		 * be certain of the error blkno, so just use the
15981 		 * request_blkno.
15982 		 */
15983 		err_blkno = (diskaddr_t)request_blkno;
15984 	}
15985 
15986 	/*
15987 	 * The following will log the buffer contents for the release driver
15988 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15989 	 * level is set to verbose.
15990 	 */
15991 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15992 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15993 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15994 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15995 
15996 	if (pfa_flag == FALSE) {
15997 		/* This is normally only set for USCSI */
15998 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15999 			return;
16000 		}
16001 
16002 		if ((SD_IS_BUFIO(xp) == TRUE) &&
16003 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
16004 		    (severity < sd_error_level))) {
16005 			return;
16006 		}
16007 	}
16008 
16009 	/*
16010 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
16011 	 */
16012 	if ((SD_IS_LSI(un)) &&
16013 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
16014 	    (scsi_sense_asc(sensep) == 0x94) &&
16015 	    (scsi_sense_ascq(sensep) == 0x01)) {
16016 		un->un_sonoma_failure_count++;
16017 		if (un->un_sonoma_failure_count > 1) {
16018 			return;
16019 		}
16020 	}
16021 
16022 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
16023 	    request_blkno, err_blkno, scsi_cmds,
16024 	    (struct scsi_extended_sense *)sensep,
16025 	    un->un_additional_codes, NULL);
16026 }
16027 
16028 /*
16029  *    Function: sd_sense_key_no_sense
16030  *
16031  * Description: Recovery action when sense data was not received.
16032  *
16033  *     Context: May be called from interrupt context
16034  */
16035 
16036 static void
16037 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
16038 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16039 {
16040 	struct sd_sense_info	si;
16041 
16042 	ASSERT(un != NULL);
16043 	ASSERT(mutex_owned(SD_MUTEX(un)));
16044 	ASSERT(bp != NULL);
16045 	ASSERT(xp != NULL);
16046 	ASSERT(pktp != NULL);
16047 
16048 	si.ssi_severity = SCSI_ERR_FATAL;
16049 	si.ssi_pfa_flag = FALSE;
16050 
16051 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16052 
16053 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16054 	    &si, EIO, (clock_t)0, NULL);
16055 }
16056 
16057 
16058 /*
16059  *    Function: sd_sense_key_recoverable_error
16060  *
16061  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
16062  *
16063  *     Context: May be called from interrupt context
16064  */
16065 
16066 static void
16067 sd_sense_key_recoverable_error(struct sd_lun *un,
16068 	uint8_t *sense_datap,
16069 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16070 {
16071 	struct sd_sense_info	si;
16072 	uint8_t asc = scsi_sense_asc(sense_datap);
16073 
16074 	ASSERT(un != NULL);
16075 	ASSERT(mutex_owned(SD_MUTEX(un)));
16076 	ASSERT(bp != NULL);
16077 	ASSERT(xp != NULL);
16078 	ASSERT(pktp != NULL);
16079 
16080 	/*
16081 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16082 	 */
16083 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16084 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16085 		si.ssi_severity = SCSI_ERR_INFO;
16086 		si.ssi_pfa_flag = TRUE;
16087 	} else {
16088 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16089 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16090 		si.ssi_severity = SCSI_ERR_RECOVERED;
16091 		si.ssi_pfa_flag = FALSE;
16092 	}
16093 
16094 	if (pktp->pkt_resid == 0) {
16095 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16096 		sd_return_command(un, bp);
16097 		return;
16098 	}
16099 
16100 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16101 	    &si, EIO, (clock_t)0, NULL);
16102 }
16103 
16104 
16105 
16106 
16107 /*
16108  *    Function: sd_sense_key_not_ready
16109  *
16110  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16111  *
16112  *     Context: May be called from interrupt context
16113  */
16114 
16115 static void
16116 sd_sense_key_not_ready(struct sd_lun *un,
16117 	uint8_t *sense_datap,
16118 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16119 {
16120 	struct sd_sense_info	si;
16121 	uint8_t asc = scsi_sense_asc(sense_datap);
16122 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16123 
16124 	ASSERT(un != NULL);
16125 	ASSERT(mutex_owned(SD_MUTEX(un)));
16126 	ASSERT(bp != NULL);
16127 	ASSERT(xp != NULL);
16128 	ASSERT(pktp != NULL);
16129 
16130 	si.ssi_severity = SCSI_ERR_FATAL;
16131 	si.ssi_pfa_flag = FALSE;
16132 
16133 	/*
16134 	 * Update error stats after first NOT READY error. Disks may have
16135 	 * been powered down and may need to be restarted.  For CDROMs,
16136 	 * report NOT READY errors only if media is present.
16137 	 */
16138 	if ((ISCD(un) && (asc == 0x3A)) ||
16139 	    (xp->xb_nr_retry_count > 0)) {
16140 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16141 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16142 	}
16143 
16144 	/*
16145 	 * Just fail if the "not ready" retry limit has been reached.
16146 	 */
16147 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16148 		/* Special check for error message printing for removables. */
16149 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16150 		    (ascq >= 0x04)) {
16151 			si.ssi_severity = SCSI_ERR_ALL;
16152 		}
16153 		goto fail_command;
16154 	}
16155 
16156 	/*
16157 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16158 	 * what to do.
16159 	 */
16160 	switch (asc) {
16161 	case 0x04:	/* LOGICAL UNIT NOT READY */
16162 		/*
16163 		 * disk drives that don't spin up result in a very long delay
16164 		 * in format without warning messages. We will log a message
16165 		 * if the error level is set to verbose.
16166 		 */
16167 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16168 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16169 			    "logical unit not ready, resetting disk\n");
16170 		}
16171 
16172 		/*
16173 		 * There are different requirements for CDROMs and disks for
16174 		 * the number of retries.  If a CD-ROM is giving this, it is
16175 		 * probably reading TOC and is in the process of getting
16176 		 * ready, so we should keep on trying for a long time to make
16177 		 * sure that all types of media are taken in account (for
16178 		 * some media the drive takes a long time to read TOC).  For
16179 		 * disks we do not want to retry this too many times as this
16180 		 * can cause a long hang in format when the drive refuses to
16181 		 * spin up (a very common failure).
16182 		 */
16183 		switch (ascq) {
16184 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16185 			/*
16186 			 * Disk drives frequently refuse to spin up which
16187 			 * results in a very long hang in format without
16188 			 * warning messages.
16189 			 *
16190 			 * Note: This code preserves the legacy behavior of
16191 			 * comparing xb_nr_retry_count against zero for fibre
16192 			 * channel targets instead of comparing against the
16193 			 * un_reset_retry_count value.  The reason for this
16194 			 * discrepancy has been so utterly lost beneath the
16195 			 * Sands of Time that even Indiana Jones could not
16196 			 * find it.
16197 			 */
16198 			if (un->un_f_is_fibre == TRUE) {
16199 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16200 				    (xp->xb_nr_retry_count > 0)) &&
16201 				    (un->un_startstop_timeid == NULL)) {
16202 					scsi_log(SD_DEVINFO(un), sd_label,
16203 					    CE_WARN, "logical unit not ready, "
16204 					    "resetting disk\n");
16205 					sd_reset_target(un, pktp);
16206 				}
16207 			} else {
16208 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16209 				    (xp->xb_nr_retry_count >
16210 				    un->un_reset_retry_count)) &&
16211 				    (un->un_startstop_timeid == NULL)) {
16212 					scsi_log(SD_DEVINFO(un), sd_label,
16213 					    CE_WARN, "logical unit not ready, "
16214 					    "resetting disk\n");
16215 					sd_reset_target(un, pktp);
16216 				}
16217 			}
16218 			break;
16219 
16220 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16221 			/*
16222 			 * If the target is in the process of becoming
16223 			 * ready, just proceed with the retry. This can
16224 			 * happen with CD-ROMs that take a long time to
16225 			 * read TOC after a power cycle or reset.
16226 			 */
16227 			goto do_retry;
16228 
16229 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16230 			break;
16231 
16232 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16233 			/*
16234 			 * Retries cannot help here so just fail right away.
16235 			 */
16236 			goto fail_command;
16237 
16238 		case 0x88:
16239 			/*
16240 			 * Vendor-unique code for T3/T4: it indicates a
16241 			 * path problem in a mutipathed config, but as far as
16242 			 * the target driver is concerned it equates to a fatal
16243 			 * error, so we should just fail the command right away
16244 			 * (without printing anything to the console). If this
16245 			 * is not a T3/T4, fall thru to the default recovery
16246 			 * action.
16247 			 * T3/T4 is FC only, don't need to check is_fibre
16248 			 */
16249 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16250 				sd_return_failed_command(un, bp, EIO);
16251 				return;
16252 			}
16253 			/* FALLTHRU */
16254 
16255 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16256 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16257 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16258 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16259 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16260 		default:    /* Possible future codes in SCSI spec? */
16261 			/*
16262 			 * For removable-media devices, do not retry if
16263 			 * ASCQ > 2 as these result mostly from USCSI commands
16264 			 * on MMC devices issued to check status of an
16265 			 * operation initiated in immediate mode.  Also for
16266 			 * ASCQ >= 4 do not print console messages as these
16267 			 * mainly represent a user-initiated operation
16268 			 * instead of a system failure.
16269 			 */
16270 			if (un->un_f_has_removable_media) {
16271 				si.ssi_severity = SCSI_ERR_ALL;
16272 				goto fail_command;
16273 			}
16274 			break;
16275 		}
16276 
16277 		/*
16278 		 * As part of our recovery attempt for the NOT READY
16279 		 * condition, we issue a START STOP UNIT command. However
16280 		 * we want to wait for a short delay before attempting this
16281 		 * as there may still be more commands coming back from the
16282 		 * target with the check condition. To do this we use
16283 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16284 		 * the delay interval expires. (sd_start_stop_unit_callback()
16285 		 * dispatches sd_start_stop_unit_task(), which will issue
16286 		 * the actual START STOP UNIT command. The delay interval
16287 		 * is one-half of the delay that we will use to retry the
16288 		 * command that generated the NOT READY condition.
16289 		 *
16290 		 * Note that we could just dispatch sd_start_stop_unit_task()
16291 		 * from here and allow it to sleep for the delay interval,
16292 		 * but then we would be tying up the taskq thread
16293 		 * uncesessarily for the duration of the delay.
16294 		 *
16295 		 * Do not issue the START STOP UNIT if the current command
16296 		 * is already a START STOP UNIT.
16297 		 */
16298 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16299 			break;
16300 		}
16301 
16302 		/*
16303 		 * Do not schedule the timeout if one is already pending.
16304 		 */
16305 		if (un->un_startstop_timeid != NULL) {
16306 			SD_INFO(SD_LOG_ERROR, un,
16307 			    "sd_sense_key_not_ready: restart already issued to"
16308 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16309 			    ddi_get_instance(SD_DEVINFO(un)));
16310 			break;
16311 		}
16312 
16313 		/*
16314 		 * Schedule the START STOP UNIT command, then queue the command
16315 		 * for a retry.
16316 		 *
16317 		 * Note: A timeout is not scheduled for this retry because we
16318 		 * want the retry to be serial with the START_STOP_UNIT. The
16319 		 * retry will be started when the START_STOP_UNIT is completed
16320 		 * in sd_start_stop_unit_task.
16321 		 */
16322 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16323 		    un, SD_BSY_TIMEOUT / 2);
16324 		xp->xb_nr_retry_count++;
16325 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16326 		return;
16327 
16328 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16329 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16330 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16331 			    "unit does not respond to selection\n");
16332 		}
16333 		break;
16334 
16335 	case 0x3A:	/* MEDIUM NOT PRESENT */
16336 		if (sd_error_level >= SCSI_ERR_FATAL) {
16337 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16338 			    "Caddy not inserted in drive\n");
16339 		}
16340 
16341 		sr_ejected(un);
16342 		un->un_mediastate = DKIO_EJECTED;
16343 		/* The state has changed, inform the media watch routines */
16344 		cv_broadcast(&un->un_state_cv);
16345 		/* Just fail if no media is present in the drive. */
16346 		goto fail_command;
16347 
16348 	default:
16349 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16350 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16351 			    "Unit not Ready. Additional sense code 0x%x\n",
16352 			    asc);
16353 		}
16354 		break;
16355 	}
16356 
16357 do_retry:
16358 
16359 	/*
16360 	 * Retry the command, as some targets may report NOT READY for
16361 	 * several seconds after being reset.
16362 	 */
16363 	xp->xb_nr_retry_count++;
16364 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16365 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16366 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16367 
16368 	return;
16369 
16370 fail_command:
16371 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16372 	sd_return_failed_command(un, bp, EIO);
16373 }
16374 
16375 
16376 
16377 /*
16378  *    Function: sd_sense_key_medium_or_hardware_error
16379  *
16380  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16381  *		sense key.
16382  *
16383  *     Context: May be called from interrupt context
16384  */
16385 
16386 static void
16387 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16388 	uint8_t *sense_datap,
16389 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16390 {
16391 	struct sd_sense_info	si;
16392 	uint8_t sense_key = scsi_sense_key(sense_datap);
16393 	uint8_t asc = scsi_sense_asc(sense_datap);
16394 
16395 	ASSERT(un != NULL);
16396 	ASSERT(mutex_owned(SD_MUTEX(un)));
16397 	ASSERT(bp != NULL);
16398 	ASSERT(xp != NULL);
16399 	ASSERT(pktp != NULL);
16400 
16401 	si.ssi_severity = SCSI_ERR_FATAL;
16402 	si.ssi_pfa_flag = FALSE;
16403 
16404 	if (sense_key == KEY_MEDIUM_ERROR) {
16405 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16406 	}
16407 
16408 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16409 
16410 	if ((un->un_reset_retry_count != 0) &&
16411 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16412 		mutex_exit(SD_MUTEX(un));
16413 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16414 		if (un->un_f_allow_bus_device_reset == TRUE) {
16415 
16416 			boolean_t try_resetting_target = B_TRUE;
16417 
16418 			/*
16419 			 * We need to be able to handle specific ASC when we are
16420 			 * handling a KEY_HARDWARE_ERROR. In particular
16421 			 * taking the default action of resetting the target may
16422 			 * not be the appropriate way to attempt recovery.
16423 			 * Resetting a target because of a single LUN failure
16424 			 * victimizes all LUNs on that target.
16425 			 *
16426 			 * This is true for the LSI arrays, if an LSI
16427 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16428 			 * should trust it.
16429 			 */
16430 
16431 			if (sense_key == KEY_HARDWARE_ERROR) {
16432 				switch (asc) {
16433 				case 0x84:
16434 					if (SD_IS_LSI(un)) {
16435 						try_resetting_target = B_FALSE;
16436 					}
16437 					break;
16438 				default:
16439 					break;
16440 				}
16441 			}
16442 
16443 			if (try_resetting_target == B_TRUE) {
16444 				int reset_retval = 0;
16445 				if (un->un_f_lun_reset_enabled == TRUE) {
16446 					SD_TRACE(SD_LOG_IO_CORE, un,
16447 					    "sd_sense_key_medium_or_hardware_"
16448 					    "error: issuing RESET_LUN\n");
16449 					reset_retval =
16450 					    scsi_reset(SD_ADDRESS(un),
16451 					    RESET_LUN);
16452 				}
16453 				if (reset_retval == 0) {
16454 					SD_TRACE(SD_LOG_IO_CORE, un,
16455 					    "sd_sense_key_medium_or_hardware_"
16456 					    "error: issuing RESET_TARGET\n");
16457 					(void) scsi_reset(SD_ADDRESS(un),
16458 					    RESET_TARGET);
16459 				}
16460 			}
16461 		}
16462 		mutex_enter(SD_MUTEX(un));
16463 	}
16464 
16465 	/*
16466 	 * This really ought to be a fatal error, but we will retry anyway
16467 	 * as some drives report this as a spurious error.
16468 	 */
16469 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16470 	    &si, EIO, (clock_t)0, NULL);
16471 }
16472 
16473 
16474 
16475 /*
16476  *    Function: sd_sense_key_illegal_request
16477  *
16478  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16479  *
16480  *     Context: May be called from interrupt context
16481  */
16482 
16483 static void
16484 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16485 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16486 {
16487 	struct sd_sense_info	si;
16488 
16489 	ASSERT(un != NULL);
16490 	ASSERT(mutex_owned(SD_MUTEX(un)));
16491 	ASSERT(bp != NULL);
16492 	ASSERT(xp != NULL);
16493 	ASSERT(pktp != NULL);
16494 
16495 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16496 
16497 	si.ssi_severity = SCSI_ERR_INFO;
16498 	si.ssi_pfa_flag = FALSE;
16499 
16500 	/* Pointless to retry if the target thinks it's an illegal request */
16501 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16502 	sd_return_failed_command(un, bp, EIO);
16503 }
16504 
16505 
16506 
16507 
16508 /*
16509  *    Function: sd_sense_key_unit_attention
16510  *
16511  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16512  *
16513  *     Context: May be called from interrupt context
16514  */
16515 
16516 static void
16517 sd_sense_key_unit_attention(struct sd_lun *un,
16518 	uint8_t *sense_datap,
16519 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16520 {
16521 	/*
16522 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16523 	 * like Sonoma can return UNIT ATTENTION close to a minute
16524 	 * under certain conditions.
16525 	 */
16526 	int	retry_check_flag = SD_RETRIES_UA;
16527 	boolean_t	kstat_updated = B_FALSE;
16528 	struct	sd_sense_info		si;
16529 	uint8_t asc = scsi_sense_asc(sense_datap);
16530 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
16531 
16532 	ASSERT(un != NULL);
16533 	ASSERT(mutex_owned(SD_MUTEX(un)));
16534 	ASSERT(bp != NULL);
16535 	ASSERT(xp != NULL);
16536 	ASSERT(pktp != NULL);
16537 
16538 	si.ssi_severity = SCSI_ERR_INFO;
16539 	si.ssi_pfa_flag = FALSE;
16540 
16541 
16542 	switch (asc) {
16543 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16544 		if (sd_report_pfa != 0) {
16545 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16546 			si.ssi_pfa_flag = TRUE;
16547 			retry_check_flag = SD_RETRIES_STANDARD;
16548 			goto do_retry;
16549 		}
16550 
16551 		break;
16552 
16553 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16554 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16555 			un->un_resvd_status |=
16556 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16557 		}
16558 #ifdef _LP64
16559 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16560 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16561 			    un, KM_NOSLEEP) == 0) {
16562 				/*
16563 				 * If we can't dispatch the task we'll just
16564 				 * live without descriptor sense.  We can
16565 				 * try again on the next "unit attention"
16566 				 */
16567 				SD_ERROR(SD_LOG_ERROR, un,
16568 				    "sd_sense_key_unit_attention: "
16569 				    "Could not dispatch "
16570 				    "sd_reenable_dsense_task\n");
16571 			}
16572 		}
16573 #endif /* _LP64 */
16574 		/* FALLTHRU */
16575 
16576 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16577 		if (!un->un_f_has_removable_media) {
16578 			break;
16579 		}
16580 
16581 		/*
16582 		 * When we get a unit attention from a removable-media device,
16583 		 * it may be in a state that will take a long time to recover
16584 		 * (e.g., from a reset).  Since we are executing in interrupt
16585 		 * context here, we cannot wait around for the device to come
16586 		 * back. So hand this command off to sd_media_change_task()
16587 		 * for deferred processing under taskq thread context. (Note
16588 		 * that the command still may be failed if a problem is
16589 		 * encountered at a later time.)
16590 		 */
16591 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16592 		    KM_NOSLEEP) == 0) {
16593 			/*
16594 			 * Cannot dispatch the request so fail the command.
16595 			 */
16596 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16597 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16598 			si.ssi_severity = SCSI_ERR_FATAL;
16599 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16600 			sd_return_failed_command(un, bp, EIO);
16601 		}
16602 
16603 		/*
16604 		 * If failed to dispatch sd_media_change_task(), we already
16605 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16606 		 * we should update kstat later if it encounters an error. So,
16607 		 * we update kstat_updated flag here.
16608 		 */
16609 		kstat_updated = B_TRUE;
16610 
16611 		/*
16612 		 * Either the command has been successfully dispatched to a
16613 		 * task Q for retrying, or the dispatch failed. In either case
16614 		 * do NOT retry again by calling sd_retry_command. This sets up
16615 		 * two retries of the same command and when one completes and
16616 		 * frees the resources the other will access freed memory,
16617 		 * a bad thing.
16618 		 */
16619 		return;
16620 
16621 	default:
16622 		break;
16623 	}
16624 
16625 	/*
16626 	 * ASC  ASCQ
16627 	 *  2A   09	Capacity data has changed
16628 	 *  2A   01	Mode parameters changed
16629 	 *  3F   0E	Reported luns data has changed
16630 	 * Arrays that support logical unit expansion should report
16631 	 * capacity changes(2Ah/09). Mode parameters changed and
16632 	 * reported luns data has changed are the approximation.
16633 	 */
16634 	if (((asc == 0x2a) && (ascq == 0x09)) ||
16635 	    ((asc == 0x2a) && (ascq == 0x01)) ||
16636 	    ((asc == 0x3f) && (ascq == 0x0e))) {
16637 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
16638 		    KM_NOSLEEP) == 0) {
16639 			SD_ERROR(SD_LOG_ERROR, un,
16640 			    "sd_sense_key_unit_attention: "
16641 			    "Could not dispatch sd_target_change_task\n");
16642 		}
16643 	}
16644 
16645 	/*
16646 	 * Update kstat if we haven't done that.
16647 	 */
16648 	if (!kstat_updated) {
16649 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16650 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16651 	}
16652 
16653 do_retry:
16654 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16655 	    EIO, SD_UA_RETRY_DELAY, NULL);
16656 }
16657 
16658 
16659 
16660 /*
16661  *    Function: sd_sense_key_fail_command
16662  *
16663  * Description: Use to fail a command when we don't like the sense key that
16664  *		was returned.
16665  *
16666  *     Context: May be called from interrupt context
16667  */
16668 
16669 static void
16670 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16671 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16672 {
16673 	struct sd_sense_info	si;
16674 
16675 	ASSERT(un != NULL);
16676 	ASSERT(mutex_owned(SD_MUTEX(un)));
16677 	ASSERT(bp != NULL);
16678 	ASSERT(xp != NULL);
16679 	ASSERT(pktp != NULL);
16680 
16681 	si.ssi_severity = SCSI_ERR_FATAL;
16682 	si.ssi_pfa_flag = FALSE;
16683 
16684 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16685 	sd_return_failed_command(un, bp, EIO);
16686 }
16687 
16688 
16689 
16690 /*
16691  *    Function: sd_sense_key_blank_check
16692  *
16693  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16694  *		Has no monetary connotation.
16695  *
16696  *     Context: May be called from interrupt context
16697  */
16698 
16699 static void
16700 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16701 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16702 {
16703 	struct sd_sense_info	si;
16704 
16705 	ASSERT(un != NULL);
16706 	ASSERT(mutex_owned(SD_MUTEX(un)));
16707 	ASSERT(bp != NULL);
16708 	ASSERT(xp != NULL);
16709 	ASSERT(pktp != NULL);
16710 
16711 	/*
16712 	 * Blank check is not fatal for removable devices, therefore
16713 	 * it does not require a console message.
16714 	 */
16715 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16716 	    SCSI_ERR_FATAL;
16717 	si.ssi_pfa_flag = FALSE;
16718 
16719 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16720 	sd_return_failed_command(un, bp, EIO);
16721 }
16722 
16723 
16724 
16725 
16726 /*
16727  *    Function: sd_sense_key_aborted_command
16728  *
16729  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16730  *
16731  *     Context: May be called from interrupt context
16732  */
16733 
16734 static void
16735 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16736 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16737 {
16738 	struct sd_sense_info	si;
16739 
16740 	ASSERT(un != NULL);
16741 	ASSERT(mutex_owned(SD_MUTEX(un)));
16742 	ASSERT(bp != NULL);
16743 	ASSERT(xp != NULL);
16744 	ASSERT(pktp != NULL);
16745 
16746 	si.ssi_severity = SCSI_ERR_FATAL;
16747 	si.ssi_pfa_flag = FALSE;
16748 
16749 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16750 
16751 	/*
16752 	 * This really ought to be a fatal error, but we will retry anyway
16753 	 * as some drives report this as a spurious error.
16754 	 */
16755 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16756 	    &si, EIO, drv_usectohz(100000), NULL);
16757 }
16758 
16759 
16760 
16761 /*
16762  *    Function: sd_sense_key_default
16763  *
16764  * Description: Default recovery action for several SCSI sense keys (basically
16765  *		attempts a retry).
16766  *
16767  *     Context: May be called from interrupt context
16768  */
16769 
16770 static void
16771 sd_sense_key_default(struct sd_lun *un,
16772 	uint8_t *sense_datap,
16773 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16774 {
16775 	struct sd_sense_info	si;
16776 	uint8_t sense_key = scsi_sense_key(sense_datap);
16777 
16778 	ASSERT(un != NULL);
16779 	ASSERT(mutex_owned(SD_MUTEX(un)));
16780 	ASSERT(bp != NULL);
16781 	ASSERT(xp != NULL);
16782 	ASSERT(pktp != NULL);
16783 
16784 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16785 
16786 	/*
16787 	 * Undecoded sense key.	Attempt retries and hope that will fix
16788 	 * the problem.  Otherwise, we're dead.
16789 	 */
16790 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16791 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16792 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16793 	}
16794 
16795 	si.ssi_severity = SCSI_ERR_FATAL;
16796 	si.ssi_pfa_flag = FALSE;
16797 
16798 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16799 	    &si, EIO, (clock_t)0, NULL);
16800 }
16801 
16802 
16803 
16804 /*
16805  *    Function: sd_print_retry_msg
16806  *
16807  * Description: Print a message indicating the retry action being taken.
16808  *
16809  *   Arguments: un - ptr to associated softstate
16810  *		bp - ptr to buf(9S) for the command
16811  *		arg - not used.
16812  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16813  *			or SD_NO_RETRY_ISSUED
16814  *
16815  *     Context: May be called from interrupt context
16816  */
16817 /* ARGSUSED */
16818 static void
16819 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16820 {
16821 	struct sd_xbuf	*xp;
16822 	struct scsi_pkt *pktp;
16823 	char *reasonp;
16824 	char *msgp;
16825 
16826 	ASSERT(un != NULL);
16827 	ASSERT(mutex_owned(SD_MUTEX(un)));
16828 	ASSERT(bp != NULL);
16829 	pktp = SD_GET_PKTP(bp);
16830 	ASSERT(pktp != NULL);
16831 	xp = SD_GET_XBUF(bp);
16832 	ASSERT(xp != NULL);
16833 
16834 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16835 	mutex_enter(&un->un_pm_mutex);
16836 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16837 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16838 	    (pktp->pkt_flags & FLAG_SILENT)) {
16839 		mutex_exit(&un->un_pm_mutex);
16840 		goto update_pkt_reason;
16841 	}
16842 	mutex_exit(&un->un_pm_mutex);
16843 
16844 	/*
16845 	 * Suppress messages if they are all the same pkt_reason; with
16846 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16847 	 * If we are in panic, then suppress the retry messages.
16848 	 */
16849 	switch (flag) {
16850 	case SD_NO_RETRY_ISSUED:
16851 		msgp = "giving up";
16852 		break;
16853 	case SD_IMMEDIATE_RETRY_ISSUED:
16854 	case SD_DELAYED_RETRY_ISSUED:
16855 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16856 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16857 		    (sd_error_level != SCSI_ERR_ALL))) {
16858 			return;
16859 		}
16860 		msgp = "retrying command";
16861 		break;
16862 	default:
16863 		goto update_pkt_reason;
16864 	}
16865 
16866 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16867 	    scsi_rname(pktp->pkt_reason));
16868 
16869 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16870 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16871 
16872 update_pkt_reason:
16873 	/*
16874 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16875 	 * This is to prevent multiple console messages for the same failure
16876 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16877 	 * when the command is retried successfully because there still may be
16878 	 * more commands coming back with the same value of pktp->pkt_reason.
16879 	 */
16880 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16881 		un->un_last_pkt_reason = pktp->pkt_reason;
16882 	}
16883 }
16884 
16885 
16886 /*
16887  *    Function: sd_print_cmd_incomplete_msg
16888  *
16889  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16890  *
16891  *   Arguments: un - ptr to associated softstate
16892  *		bp - ptr to buf(9S) for the command
16893  *		arg - passed to sd_print_retry_msg()
16894  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16895  *			or SD_NO_RETRY_ISSUED
16896  *
16897  *     Context: May be called from interrupt context
16898  */
16899 
16900 static void
16901 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16902 	int code)
16903 {
16904 	dev_info_t	*dip;
16905 
16906 	ASSERT(un != NULL);
16907 	ASSERT(mutex_owned(SD_MUTEX(un)));
16908 	ASSERT(bp != NULL);
16909 
16910 	switch (code) {
16911 	case SD_NO_RETRY_ISSUED:
16912 		/* Command was failed. Someone turned off this target? */
16913 		if (un->un_state != SD_STATE_OFFLINE) {
16914 			/*
16915 			 * Suppress message if we are detaching and
16916 			 * device has been disconnected
16917 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16918 			 * private interface and not part of the DDI
16919 			 */
16920 			dip = un->un_sd->sd_dev;
16921 			if (!(DEVI_IS_DETACHING(dip) &&
16922 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16923 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16924 				"disk not responding to selection\n");
16925 			}
16926 			New_state(un, SD_STATE_OFFLINE);
16927 		}
16928 		break;
16929 
16930 	case SD_DELAYED_RETRY_ISSUED:
16931 	case SD_IMMEDIATE_RETRY_ISSUED:
16932 	default:
16933 		/* Command was successfully queued for retry */
16934 		sd_print_retry_msg(un, bp, arg, code);
16935 		break;
16936 	}
16937 }
16938 
16939 
16940 /*
16941  *    Function: sd_pkt_reason_cmd_incomplete
16942  *
16943  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16944  *
16945  *     Context: May be called from interrupt context
16946  */
16947 
16948 static void
16949 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16950 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16951 {
16952 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16953 
16954 	ASSERT(un != NULL);
16955 	ASSERT(mutex_owned(SD_MUTEX(un)));
16956 	ASSERT(bp != NULL);
16957 	ASSERT(xp != NULL);
16958 	ASSERT(pktp != NULL);
16959 
16960 	/* Do not do a reset if selection did not complete */
16961 	/* Note: Should this not just check the bit? */
16962 	if (pktp->pkt_state != STATE_GOT_BUS) {
16963 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16964 		sd_reset_target(un, pktp);
16965 	}
16966 
16967 	/*
16968 	 * If the target was not successfully selected, then set
16969 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16970 	 * with the target, and further retries and/or commands are
16971 	 * likely to take a long time.
16972 	 */
16973 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16974 		flag |= SD_RETRIES_FAILFAST;
16975 	}
16976 
16977 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16978 
16979 	sd_retry_command(un, bp, flag,
16980 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16981 }
16982 
16983 
16984 
16985 /*
16986  *    Function: sd_pkt_reason_cmd_tran_err
16987  *
16988  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16989  *
16990  *     Context: May be called from interrupt context
16991  */
16992 
16993 static void
16994 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16995 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16996 {
16997 	ASSERT(un != NULL);
16998 	ASSERT(mutex_owned(SD_MUTEX(un)));
16999 	ASSERT(bp != NULL);
17000 	ASSERT(xp != NULL);
17001 	ASSERT(pktp != NULL);
17002 
17003 	/*
17004 	 * Do not reset if we got a parity error, or if
17005 	 * selection did not complete.
17006 	 */
17007 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17008 	/* Note: Should this not just check the bit for pkt_state? */
17009 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
17010 	    (pktp->pkt_state != STATE_GOT_BUS)) {
17011 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
17012 		sd_reset_target(un, pktp);
17013 	}
17014 
17015 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17016 
17017 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17018 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17019 }
17020 
17021 
17022 
17023 /*
17024  *    Function: sd_pkt_reason_cmd_reset
17025  *
17026  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
17027  *
17028  *     Context: May be called from interrupt context
17029  */
17030 
17031 static void
17032 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
17033 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17034 {
17035 	ASSERT(un != NULL);
17036 	ASSERT(mutex_owned(SD_MUTEX(un)));
17037 	ASSERT(bp != NULL);
17038 	ASSERT(xp != NULL);
17039 	ASSERT(pktp != NULL);
17040 
17041 	/* The target may still be running the command, so try to reset. */
17042 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17043 	sd_reset_target(un, pktp);
17044 
17045 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17046 
17047 	/*
17048 	 * If pkt_reason is CMD_RESET chances are that this pkt got
17049 	 * reset because another target on this bus caused it. The target
17050 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17051 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17052 	 */
17053 
17054 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17055 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17056 }
17057 
17058 
17059 
17060 
17061 /*
17062  *    Function: sd_pkt_reason_cmd_aborted
17063  *
17064  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
17065  *
17066  *     Context: May be called from interrupt context
17067  */
17068 
17069 static void
17070 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
17071 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17072 {
17073 	ASSERT(un != NULL);
17074 	ASSERT(mutex_owned(SD_MUTEX(un)));
17075 	ASSERT(bp != NULL);
17076 	ASSERT(xp != NULL);
17077 	ASSERT(pktp != NULL);
17078 
17079 	/* The target may still be running the command, so try to reset. */
17080 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17081 	sd_reset_target(un, pktp);
17082 
17083 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17084 
17085 	/*
17086 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17087 	 * aborted because another target on this bus caused it. The target
17088 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17089 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17090 	 */
17091 
17092 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17093 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17094 }
17095 
17096 
17097 
17098 /*
17099  *    Function: sd_pkt_reason_cmd_timeout
17100  *
17101  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17102  *
17103  *     Context: May be called from interrupt context
17104  */
17105 
17106 static void
17107 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17108 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17109 {
17110 	ASSERT(un != NULL);
17111 	ASSERT(mutex_owned(SD_MUTEX(un)));
17112 	ASSERT(bp != NULL);
17113 	ASSERT(xp != NULL);
17114 	ASSERT(pktp != NULL);
17115 
17116 
17117 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17118 	sd_reset_target(un, pktp);
17119 
17120 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17121 
17122 	/*
17123 	 * A command timeout indicates that we could not establish
17124 	 * communication with the target, so set SD_RETRIES_FAILFAST
17125 	 * as further retries/commands are likely to take a long time.
17126 	 */
17127 	sd_retry_command(un, bp,
17128 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17129 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17130 }
17131 
17132 
17133 
17134 /*
17135  *    Function: sd_pkt_reason_cmd_unx_bus_free
17136  *
17137  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17138  *
17139  *     Context: May be called from interrupt context
17140  */
17141 
17142 static void
17143 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17144 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17145 {
17146 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17147 
17148 	ASSERT(un != NULL);
17149 	ASSERT(mutex_owned(SD_MUTEX(un)));
17150 	ASSERT(bp != NULL);
17151 	ASSERT(xp != NULL);
17152 	ASSERT(pktp != NULL);
17153 
17154 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17155 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17156 
17157 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17158 	    sd_print_retry_msg : NULL;
17159 
17160 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17161 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17162 }
17163 
17164 
17165 /*
17166  *    Function: sd_pkt_reason_cmd_tag_reject
17167  *
17168  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17169  *
17170  *     Context: May be called from interrupt context
17171  */
17172 
17173 static void
17174 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17175 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17176 {
17177 	ASSERT(un != NULL);
17178 	ASSERT(mutex_owned(SD_MUTEX(un)));
17179 	ASSERT(bp != NULL);
17180 	ASSERT(xp != NULL);
17181 	ASSERT(pktp != NULL);
17182 
17183 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17184 	pktp->pkt_flags = 0;
17185 	un->un_tagflags = 0;
17186 	if (un->un_f_opt_queueing == TRUE) {
17187 		un->un_throttle = min(un->un_throttle, 3);
17188 	} else {
17189 		un->un_throttle = 1;
17190 	}
17191 	mutex_exit(SD_MUTEX(un));
17192 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17193 	mutex_enter(SD_MUTEX(un));
17194 
17195 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17196 
17197 	/* Legacy behavior not to check retry counts here. */
17198 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17199 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17200 }
17201 
17202 
17203 /*
17204  *    Function: sd_pkt_reason_default
17205  *
17206  * Description: Default recovery actions for SCSA pkt_reason values that
17207  *		do not have more explicit recovery actions.
17208  *
17209  *     Context: May be called from interrupt context
17210  */
17211 
17212 static void
17213 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17214 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17215 {
17216 	ASSERT(un != NULL);
17217 	ASSERT(mutex_owned(SD_MUTEX(un)));
17218 	ASSERT(bp != NULL);
17219 	ASSERT(xp != NULL);
17220 	ASSERT(pktp != NULL);
17221 
17222 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17223 	sd_reset_target(un, pktp);
17224 
17225 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17226 
17227 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17228 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17229 }
17230 
17231 
17232 
17233 /*
17234  *    Function: sd_pkt_status_check_condition
17235  *
17236  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17237  *
17238  *     Context: May be called from interrupt context
17239  */
17240 
17241 static void
17242 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17243 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17244 {
17245 	ASSERT(un != NULL);
17246 	ASSERT(mutex_owned(SD_MUTEX(un)));
17247 	ASSERT(bp != NULL);
17248 	ASSERT(xp != NULL);
17249 	ASSERT(pktp != NULL);
17250 
17251 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17252 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17253 
17254 	/*
17255 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17256 	 * command will be retried after the request sense). Otherwise, retry
17257 	 * the command. Note: we are issuing the request sense even though the
17258 	 * retry limit may have been reached for the failed command.
17259 	 */
17260 	if (un->un_f_arq_enabled == FALSE) {
17261 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17262 		    "no ARQ, sending request sense command\n");
17263 		sd_send_request_sense_command(un, bp, pktp);
17264 	} else {
17265 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17266 		    "ARQ,retrying request sense command\n");
17267 #if defined(__i386) || defined(__amd64)
17268 		/*
17269 		 * The SD_RETRY_DELAY value need to be adjusted here
17270 		 * when SD_RETRY_DELAY change in sddef.h
17271 		 */
17272 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17273 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17274 		    NULL);
17275 #else
17276 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17277 		    EIO, SD_RETRY_DELAY, NULL);
17278 #endif
17279 	}
17280 
17281 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17282 }
17283 
17284 
17285 /*
17286  *    Function: sd_pkt_status_busy
17287  *
17288  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17289  *
17290  *     Context: May be called from interrupt context
17291  */
17292 
17293 static void
17294 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17295 	struct scsi_pkt *pktp)
17296 {
17297 	ASSERT(un != NULL);
17298 	ASSERT(mutex_owned(SD_MUTEX(un)));
17299 	ASSERT(bp != NULL);
17300 	ASSERT(xp != NULL);
17301 	ASSERT(pktp != NULL);
17302 
17303 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17304 	    "sd_pkt_status_busy: entry\n");
17305 
17306 	/* If retries are exhausted, just fail the command. */
17307 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17308 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17309 		    "device busy too long\n");
17310 		sd_return_failed_command(un, bp, EIO);
17311 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17312 		    "sd_pkt_status_busy: exit\n");
17313 		return;
17314 	}
17315 	xp->xb_retry_count++;
17316 
17317 	/*
17318 	 * Try to reset the target. However, we do not want to perform
17319 	 * more than one reset if the device continues to fail. The reset
17320 	 * will be performed when the retry count reaches the reset
17321 	 * threshold.  This threshold should be set such that at least
17322 	 * one retry is issued before the reset is performed.
17323 	 */
17324 	if (xp->xb_retry_count ==
17325 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17326 		int rval = 0;
17327 		mutex_exit(SD_MUTEX(un));
17328 		if (un->un_f_allow_bus_device_reset == TRUE) {
17329 			/*
17330 			 * First try to reset the LUN; if we cannot then
17331 			 * try to reset the target.
17332 			 */
17333 			if (un->un_f_lun_reset_enabled == TRUE) {
17334 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17335 				    "sd_pkt_status_busy: RESET_LUN\n");
17336 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17337 			}
17338 			if (rval == 0) {
17339 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17340 				    "sd_pkt_status_busy: RESET_TARGET\n");
17341 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17342 			}
17343 		}
17344 		if (rval == 0) {
17345 			/*
17346 			 * If the RESET_LUN and/or RESET_TARGET failed,
17347 			 * try RESET_ALL
17348 			 */
17349 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17350 			    "sd_pkt_status_busy: RESET_ALL\n");
17351 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17352 		}
17353 		mutex_enter(SD_MUTEX(un));
17354 		if (rval == 0) {
17355 			/*
17356 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17357 			 * At this point we give up & fail the command.
17358 			 */
17359 			sd_return_failed_command(un, bp, EIO);
17360 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17361 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17362 			return;
17363 		}
17364 	}
17365 
17366 	/*
17367 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17368 	 * we have already checked the retry counts above.
17369 	 */
17370 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17371 	    EIO, SD_BSY_TIMEOUT, NULL);
17372 
17373 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17374 	    "sd_pkt_status_busy: exit\n");
17375 }
17376 
17377 
17378 /*
17379  *    Function: sd_pkt_status_reservation_conflict
17380  *
17381  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17382  *		command status.
17383  *
17384  *     Context: May be called from interrupt context
17385  */
17386 
17387 static void
17388 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17389 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17390 {
17391 	ASSERT(un != NULL);
17392 	ASSERT(mutex_owned(SD_MUTEX(un)));
17393 	ASSERT(bp != NULL);
17394 	ASSERT(xp != NULL);
17395 	ASSERT(pktp != NULL);
17396 
17397 	/*
17398 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17399 	 * conflict could be due to various reasons like incorrect keys, not
17400 	 * registered or not reserved etc. So, we return EACCES to the caller.
17401 	 */
17402 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17403 		int cmd = SD_GET_PKT_OPCODE(pktp);
17404 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17405 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17406 			sd_return_failed_command(un, bp, EACCES);
17407 			return;
17408 		}
17409 	}
17410 
17411 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17412 
17413 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17414 		if (sd_failfast_enable != 0) {
17415 			/* By definition, we must panic here.... */
17416 			sd_panic_for_res_conflict(un);
17417 			/*NOTREACHED*/
17418 		}
17419 		SD_ERROR(SD_LOG_IO, un,
17420 		    "sd_handle_resv_conflict: Disk Reserved\n");
17421 		sd_return_failed_command(un, bp, EACCES);
17422 		return;
17423 	}
17424 
17425 	/*
17426 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17427 	 * property is set (default is 1). Retries will not succeed
17428 	 * on a disk reserved by another initiator. HA systems
17429 	 * may reset this via sd.conf to avoid these retries.
17430 	 *
17431 	 * Note: The legacy return code for this failure is EIO, however EACCES
17432 	 * seems more appropriate for a reservation conflict.
17433 	 */
17434 	if (sd_retry_on_reservation_conflict == 0) {
17435 		SD_ERROR(SD_LOG_IO, un,
17436 		    "sd_handle_resv_conflict: Device Reserved\n");
17437 		sd_return_failed_command(un, bp, EIO);
17438 		return;
17439 	}
17440 
17441 	/*
17442 	 * Retry the command if we can.
17443 	 *
17444 	 * Note: The legacy return code for this failure is EIO, however EACCES
17445 	 * seems more appropriate for a reservation conflict.
17446 	 */
17447 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17448 	    (clock_t)2, NULL);
17449 }
17450 
17451 
17452 
17453 /*
17454  *    Function: sd_pkt_status_qfull
17455  *
17456  * Description: Handle a QUEUE FULL condition from the target.  This can
17457  *		occur if the HBA does not handle the queue full condition.
17458  *		(Basically this means third-party HBAs as Sun HBAs will
17459  *		handle the queue full condition.)  Note that if there are
17460  *		some commands already in the transport, then the queue full
17461  *		has occurred because the queue for this nexus is actually
17462  *		full. If there are no commands in the transport, then the
17463  *		queue full is resulting from some other initiator or lun
17464  *		consuming all the resources at the target.
17465  *
17466  *     Context: May be called from interrupt context
17467  */
17468 
17469 static void
17470 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17471 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17472 {
17473 	ASSERT(un != NULL);
17474 	ASSERT(mutex_owned(SD_MUTEX(un)));
17475 	ASSERT(bp != NULL);
17476 	ASSERT(xp != NULL);
17477 	ASSERT(pktp != NULL);
17478 
17479 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17480 	    "sd_pkt_status_qfull: entry\n");
17481 
17482 	/*
17483 	 * Just lower the QFULL throttle and retry the command.  Note that
17484 	 * we do not limit the number of retries here.
17485 	 */
17486 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17487 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17488 	    SD_RESTART_TIMEOUT, NULL);
17489 
17490 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17491 	    "sd_pkt_status_qfull: exit\n");
17492 }
17493 
17494 
17495 /*
17496  *    Function: sd_reset_target
17497  *
17498  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17499  *		RESET_TARGET, or RESET_ALL.
17500  *
17501  *     Context: May be called under interrupt context.
17502  */
17503 
17504 static void
17505 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17506 {
17507 	int rval = 0;
17508 
17509 	ASSERT(un != NULL);
17510 	ASSERT(mutex_owned(SD_MUTEX(un)));
17511 	ASSERT(pktp != NULL);
17512 
17513 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17514 
17515 	/*
17516 	 * No need to reset if the transport layer has already done so.
17517 	 */
17518 	if ((pktp->pkt_statistics &
17519 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17520 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17521 		    "sd_reset_target: no reset\n");
17522 		return;
17523 	}
17524 
17525 	mutex_exit(SD_MUTEX(un));
17526 
17527 	if (un->un_f_allow_bus_device_reset == TRUE) {
17528 		if (un->un_f_lun_reset_enabled == TRUE) {
17529 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17530 			    "sd_reset_target: RESET_LUN\n");
17531 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17532 		}
17533 		if (rval == 0) {
17534 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17535 			    "sd_reset_target: RESET_TARGET\n");
17536 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17537 		}
17538 	}
17539 
17540 	if (rval == 0) {
17541 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17542 		    "sd_reset_target: RESET_ALL\n");
17543 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17544 	}
17545 
17546 	mutex_enter(SD_MUTEX(un));
17547 
17548 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17549 }
17550 
17551 /*
17552  *    Function: sd_target_change_task
17553  *
17554  * Description: Handle dynamic target change
17555  *
17556  *     Context: Executes in a taskq() thread context
17557  */
17558 static void
17559 sd_target_change_task(void *arg)
17560 {
17561 	struct sd_lun		*un = arg;
17562 	uint64_t		capacity;
17563 	diskaddr_t		label_cap;
17564 	uint_t			lbasize;
17565 
17566 	ASSERT(un != NULL);
17567 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17568 
17569 	if ((un->un_f_blockcount_is_valid == FALSE) ||
17570 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
17571 		return;
17572 	}
17573 
17574 	if (sd_send_scsi_READ_CAPACITY(un, &capacity,
17575 	    &lbasize, SD_PATH_DIRECT) != 0) {
17576 		SD_ERROR(SD_LOG_ERROR, un,
17577 		    "sd_target_change_task: fail to read capacity\n");
17578 		return;
17579 	}
17580 
17581 	mutex_enter(SD_MUTEX(un));
17582 	if (capacity <= un->un_blockcount) {
17583 		mutex_exit(SD_MUTEX(un));
17584 		return;
17585 	}
17586 
17587 	sd_update_block_info(un, lbasize, capacity);
17588 	mutex_exit(SD_MUTEX(un));
17589 
17590 	/*
17591 	 * If lun is EFI labeled and lun capacity is greater than the
17592 	 * capacity contained in the label, log a sys event.
17593 	 */
17594 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
17595 	    (void*)SD_PATH_DIRECT) == 0) {
17596 		mutex_enter(SD_MUTEX(un));
17597 		if (un->un_f_blockcount_is_valid &&
17598 		    un->un_blockcount > label_cap) {
17599 			mutex_exit(SD_MUTEX(un));
17600 			sd_log_lun_expansion_event(un, KM_SLEEP);
17601 		} else {
17602 			mutex_exit(SD_MUTEX(un));
17603 		}
17604 	}
17605 }
17606 
17607 /*
17608  *    Function: sd_log_lun_expansion_event
17609  *
17610  * Description: Log lun expansion sys event
17611  *
17612  *     Context: Never called from interrupt context
17613  */
17614 static void
17615 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
17616 {
17617 	int err;
17618 	char			*path;
17619 	nvlist_t		*dle_attr_list;
17620 
17621 	/* Allocate and build sysevent attribute list */
17622 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
17623 	if (err != 0) {
17624 		SD_ERROR(SD_LOG_ERROR, un,
17625 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17626 		return;
17627 	}
17628 
17629 	path = kmem_alloc(MAXPATHLEN, km_flag);
17630 	if (path == NULL) {
17631 		nvlist_free(dle_attr_list);
17632 		SD_ERROR(SD_LOG_ERROR, un,
17633 		    "sd_log_lun_expansion_event: fail to allocate space\n");
17634 		return;
17635 	}
17636 	/*
17637 	 * Add path attribute to identify the lun.
17638 	 * We are using minor node 'a' as the sysevent attribute.
17639 	 */
17640 	(void) snprintf(path, MAXPATHLEN, "/devices");
17641 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
17642 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
17643 	    ":a");
17644 
17645 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
17646 	if (err != 0) {
17647 		nvlist_free(dle_attr_list);
17648 		kmem_free(path, MAXPATHLEN);
17649 		SD_ERROR(SD_LOG_ERROR, un,
17650 		    "sd_log_lun_expansion_event: fail to add attribute\n");
17651 		return;
17652 	}
17653 
17654 	/* Log dynamic lun expansion sysevent */
17655 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
17656 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
17657 	if (err != DDI_SUCCESS) {
17658 		SD_ERROR(SD_LOG_ERROR, un,
17659 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
17660 	}
17661 
17662 	nvlist_free(dle_attr_list);
17663 	kmem_free(path, MAXPATHLEN);
17664 }
17665 
17666 /*
17667  *    Function: sd_media_change_task
17668  *
17669  * Description: Recovery action for CDROM to become available.
17670  *
17671  *     Context: Executes in a taskq() thread context
17672  */
17673 
17674 static void
17675 sd_media_change_task(void *arg)
17676 {
17677 	struct	scsi_pkt	*pktp = arg;
17678 	struct	sd_lun		*un;
17679 	struct	buf		*bp;
17680 	struct	sd_xbuf		*xp;
17681 	int	err		= 0;
17682 	int	retry_count	= 0;
17683 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17684 	struct	sd_sense_info	si;
17685 
17686 	ASSERT(pktp != NULL);
17687 	bp = (struct buf *)pktp->pkt_private;
17688 	ASSERT(bp != NULL);
17689 	xp = SD_GET_XBUF(bp);
17690 	ASSERT(xp != NULL);
17691 	un = SD_GET_UN(bp);
17692 	ASSERT(un != NULL);
17693 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17694 	ASSERT(un->un_f_monitor_media_state);
17695 
17696 	si.ssi_severity = SCSI_ERR_INFO;
17697 	si.ssi_pfa_flag = FALSE;
17698 
17699 	/*
17700 	 * When a reset is issued on a CDROM, it takes a long time to
17701 	 * recover. First few attempts to read capacity and other things
17702 	 * related to handling unit attention fail (with a ASC 0x4 and
17703 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17704 	 * to limit the retries in other cases of genuine failures like
17705 	 * no media in drive.
17706 	 */
17707 	while (retry_count++ < retry_limit) {
17708 		if ((err = sd_handle_mchange(un)) == 0) {
17709 			break;
17710 		}
17711 		if (err == EAGAIN) {
17712 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17713 		}
17714 		/* Sleep for 0.5 sec. & try again */
17715 		delay(drv_usectohz(500000));
17716 	}
17717 
17718 	/*
17719 	 * Dispatch (retry or fail) the original command here,
17720 	 * along with appropriate console messages....
17721 	 *
17722 	 * Must grab the mutex before calling sd_retry_command,
17723 	 * sd_print_sense_msg and sd_return_failed_command.
17724 	 */
17725 	mutex_enter(SD_MUTEX(un));
17726 	if (err != SD_CMD_SUCCESS) {
17727 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17728 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17729 		si.ssi_severity = SCSI_ERR_FATAL;
17730 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17731 		sd_return_failed_command(un, bp, EIO);
17732 	} else {
17733 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17734 		    &si, EIO, (clock_t)0, NULL);
17735 	}
17736 	mutex_exit(SD_MUTEX(un));
17737 }
17738 
17739 
17740 
17741 /*
17742  *    Function: sd_handle_mchange
17743  *
17744  * Description: Perform geometry validation & other recovery when CDROM
17745  *		has been removed from drive.
17746  *
17747  * Return Code: 0 for success
17748  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17749  *		sd_send_scsi_READ_CAPACITY()
17750  *
17751  *     Context: Executes in a taskq() thread context
17752  */
17753 
17754 static int
17755 sd_handle_mchange(struct sd_lun *un)
17756 {
17757 	uint64_t	capacity;
17758 	uint32_t	lbasize;
17759 	int		rval;
17760 
17761 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17762 	ASSERT(un->un_f_monitor_media_state);
17763 
17764 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17765 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17766 		return (rval);
17767 	}
17768 
17769 	mutex_enter(SD_MUTEX(un));
17770 	sd_update_block_info(un, lbasize, capacity);
17771 
17772 	if (un->un_errstats != NULL) {
17773 		struct	sd_errstats *stp =
17774 		    (struct sd_errstats *)un->un_errstats->ks_data;
17775 		stp->sd_capacity.value.ui64 = (uint64_t)
17776 		    ((uint64_t)un->un_blockcount *
17777 		    (uint64_t)un->un_tgt_blocksize);
17778 	}
17779 
17780 
17781 	/*
17782 	 * Check if the media in the device is writable or not
17783 	 */
17784 	if (ISCD(un))
17785 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17786 
17787 	/*
17788 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17789 	 * valid geometry.
17790 	 */
17791 	mutex_exit(SD_MUTEX(un));
17792 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17793 
17794 
17795 	if (cmlb_validate(un->un_cmlbhandle, 0,
17796 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17797 		return (EIO);
17798 	} else {
17799 		if (un->un_f_pkstats_enabled) {
17800 			sd_set_pstats(un);
17801 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17802 			    "sd_handle_mchange: un:0x%p pstats created and "
17803 			    "set\n", un);
17804 		}
17805 	}
17806 
17807 
17808 	/*
17809 	 * Try to lock the door
17810 	 */
17811 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17812 	    SD_PATH_DIRECT_PRIORITY));
17813 }
17814 
17815 
17816 /*
17817  *    Function: sd_send_scsi_DOORLOCK
17818  *
17819  * Description: Issue the scsi DOOR LOCK command
17820  *
17821  *   Arguments: un    - pointer to driver soft state (unit) structure for
17822  *			this target.
17823  *		flag  - SD_REMOVAL_ALLOW
17824  *			SD_REMOVAL_PREVENT
17825  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17826  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17827  *			to use the USCSI "direct" chain and bypass the normal
17828  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17829  *			command is issued as part of an error recovery action.
17830  *
17831  * Return Code: 0   - Success
17832  *		errno return code from sd_send_scsi_cmd()
17833  *
17834  *     Context: Can sleep.
17835  */
17836 
17837 static int
17838 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17839 {
17840 	union scsi_cdb		cdb;
17841 	struct uscsi_cmd	ucmd_buf;
17842 	struct scsi_extended_sense	sense_buf;
17843 	int			status;
17844 
17845 	ASSERT(un != NULL);
17846 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17847 
17848 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17849 
17850 	/* already determined doorlock is not supported, fake success */
17851 	if (un->un_f_doorlock_supported == FALSE) {
17852 		return (0);
17853 	}
17854 
17855 	/*
17856 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17857 	 * ignore the command so we can complete the eject
17858 	 * operation.
17859 	 */
17860 	if (flag == SD_REMOVAL_PREVENT) {
17861 		mutex_enter(SD_MUTEX(un));
17862 		if (un->un_f_ejecting == TRUE) {
17863 			mutex_exit(SD_MUTEX(un));
17864 			return (EAGAIN);
17865 		}
17866 		mutex_exit(SD_MUTEX(un));
17867 	}
17868 
17869 	bzero(&cdb, sizeof (cdb));
17870 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17871 
17872 	cdb.scc_cmd = SCMD_DOORLOCK;
17873 	cdb.cdb_opaque[4] = (uchar_t)flag;
17874 
17875 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17876 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17877 	ucmd_buf.uscsi_bufaddr	= NULL;
17878 	ucmd_buf.uscsi_buflen	= 0;
17879 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17880 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17881 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17882 	ucmd_buf.uscsi_timeout	= 15;
17883 
17884 	SD_TRACE(SD_LOG_IO, un,
17885 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17886 
17887 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17888 	    UIO_SYSSPACE, path_flag);
17889 
17890 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17891 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17892 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17893 		/* fake success and skip subsequent doorlock commands */
17894 		un->un_f_doorlock_supported = FALSE;
17895 		return (0);
17896 	}
17897 
17898 	return (status);
17899 }
17900 
17901 /*
17902  *    Function: sd_send_scsi_READ_CAPACITY
17903  *
17904  * Description: This routine uses the scsi READ CAPACITY command to determine
17905  *		the device capacity in number of blocks and the device native
17906  *		block size. If this function returns a failure, then the
17907  *		values in *capp and *lbap are undefined.  If the capacity
17908  *		returned is 0xffffffff then the lun is too large for a
17909  *		normal READ CAPACITY command and the results of a
17910  *		READ CAPACITY 16 will be used instead.
17911  *
17912  *   Arguments: un   - ptr to soft state struct for the target
17913  *		capp - ptr to unsigned 64-bit variable to receive the
17914  *			capacity value from the command.
17915  *		lbap - ptr to unsigned 32-bit varaible to receive the
17916  *			block size value from the command
17917  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17918  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17919  *			to use the USCSI "direct" chain and bypass the normal
17920  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17921  *			command is issued as part of an error recovery action.
17922  *
17923  * Return Code: 0   - Success
17924  *		EIO - IO error
17925  *		EACCES - Reservation conflict detected
17926  *		EAGAIN - Device is becoming ready
17927  *		errno return code from sd_send_scsi_cmd()
17928  *
17929  *     Context: Can sleep.  Blocks until command completes.
17930  */
17931 
17932 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17933 
17934 static int
17935 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17936 	int path_flag)
17937 {
17938 	struct	scsi_extended_sense	sense_buf;
17939 	struct	uscsi_cmd	ucmd_buf;
17940 	union	scsi_cdb	cdb;
17941 	uint32_t		*capacity_buf;
17942 	uint64_t		capacity;
17943 	uint32_t		lbasize;
17944 	int			status;
17945 
17946 	ASSERT(un != NULL);
17947 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17948 	ASSERT(capp != NULL);
17949 	ASSERT(lbap != NULL);
17950 
17951 	SD_TRACE(SD_LOG_IO, un,
17952 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17953 
17954 	/*
17955 	 * First send a READ_CAPACITY command to the target.
17956 	 * (This command is mandatory under SCSI-2.)
17957 	 *
17958 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17959 	 * Medium Indicator bit is cleared.  The address field must be
17960 	 * zero if the PMI bit is zero.
17961 	 */
17962 	bzero(&cdb, sizeof (cdb));
17963 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17964 
17965 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17966 
17967 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17968 
17969 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17970 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17971 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17972 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17973 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17974 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17975 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17976 	ucmd_buf.uscsi_timeout	= 60;
17977 
17978 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17979 	    UIO_SYSSPACE, path_flag);
17980 
17981 	switch (status) {
17982 	case 0:
17983 		/* Return failure if we did not get valid capacity data. */
17984 		if (ucmd_buf.uscsi_resid != 0) {
17985 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17986 			return (EIO);
17987 		}
17988 
17989 		/*
17990 		 * Read capacity and block size from the READ CAPACITY 10 data.
17991 		 * This data may be adjusted later due to device specific
17992 		 * issues.
17993 		 *
17994 		 * According to the SCSI spec, the READ CAPACITY 10
17995 		 * command returns the following:
17996 		 *
17997 		 *  bytes 0-3: Maximum logical block address available.
17998 		 *		(MSB in byte:0 & LSB in byte:3)
17999 		 *
18000 		 *  bytes 4-7: Block length in bytes
18001 		 *		(MSB in byte:4 & LSB in byte:7)
18002 		 *
18003 		 */
18004 		capacity = BE_32(capacity_buf[0]);
18005 		lbasize = BE_32(capacity_buf[1]);
18006 
18007 		/*
18008 		 * Done with capacity_buf
18009 		 */
18010 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18011 
18012 		/*
18013 		 * if the reported capacity is set to all 0xf's, then
18014 		 * this disk is too large and requires SBC-2 commands.
18015 		 * Reissue the request using READ CAPACITY 16.
18016 		 */
18017 		if (capacity == 0xffffffff) {
18018 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18019 			    &lbasize, path_flag);
18020 			if (status != 0) {
18021 				return (status);
18022 			}
18023 		}
18024 		break;	/* Success! */
18025 	case EIO:
18026 		switch (ucmd_buf.uscsi_status) {
18027 		case STATUS_RESERVATION_CONFLICT:
18028 			status = EACCES;
18029 			break;
18030 		case STATUS_CHECK:
18031 			/*
18032 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18033 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18034 			 */
18035 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18036 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18037 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18038 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18039 				return (EAGAIN);
18040 			}
18041 			break;
18042 		default:
18043 			break;
18044 		}
18045 		/* FALLTHRU */
18046 	default:
18047 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18048 		return (status);
18049 	}
18050 
18051 	/*
18052 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18053 	 * (2352 and 0 are common) so for these devices always force the value
18054 	 * to 2048 as required by the ATAPI specs.
18055 	 */
18056 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18057 		lbasize = 2048;
18058 	}
18059 
18060 	/*
18061 	 * Get the maximum LBA value from the READ CAPACITY data.
18062 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18063 	 * was cleared when issuing the command. This means that the LBA
18064 	 * returned from the device is the LBA of the last logical block
18065 	 * on the logical unit.  The actual logical block count will be
18066 	 * this value plus one.
18067 	 *
18068 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
18069 	 * so scale the capacity value to reflect this.
18070 	 */
18071 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
18072 
18073 	/*
18074 	 * Copy the values from the READ CAPACITY command into the space
18075 	 * provided by the caller.
18076 	 */
18077 	*capp = capacity;
18078 	*lbap = lbasize;
18079 
18080 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
18081 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18082 
18083 	/*
18084 	 * Both the lbasize and capacity from the device must be nonzero,
18085 	 * otherwise we assume that the values are not valid and return
18086 	 * failure to the caller. (4203735)
18087 	 */
18088 	if ((capacity == 0) || (lbasize == 0)) {
18089 		return (EIO);
18090 	}
18091 
18092 	return (0);
18093 }
18094 
18095 /*
18096  *    Function: sd_send_scsi_READ_CAPACITY_16
18097  *
18098  * Description: This routine uses the scsi READ CAPACITY 16 command to
18099  *		determine the device capacity in number of blocks and the
18100  *		device native block size.  If this function returns a failure,
18101  *		then the values in *capp and *lbap are undefined.
18102  *		This routine should always be called by
18103  *		sd_send_scsi_READ_CAPACITY which will appy any device
18104  *		specific adjustments to capacity and lbasize.
18105  *
18106  *   Arguments: un   - ptr to soft state struct for the target
18107  *		capp - ptr to unsigned 64-bit variable to receive the
18108  *			capacity value from the command.
18109  *		lbap - ptr to unsigned 32-bit varaible to receive the
18110  *			block size value from the command
18111  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18112  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18113  *			to use the USCSI "direct" chain and bypass the normal
18114  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
18115  *			this command is issued as part of an error recovery
18116  *			action.
18117  *
18118  * Return Code: 0   - Success
18119  *		EIO - IO error
18120  *		EACCES - Reservation conflict detected
18121  *		EAGAIN - Device is becoming ready
18122  *		errno return code from sd_send_scsi_cmd()
18123  *
18124  *     Context: Can sleep.  Blocks until command completes.
18125  */
18126 
18127 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
18128 
18129 static int
18130 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
18131 	uint32_t *lbap, int path_flag)
18132 {
18133 	struct	scsi_extended_sense	sense_buf;
18134 	struct	uscsi_cmd	ucmd_buf;
18135 	union	scsi_cdb	cdb;
18136 	uint64_t		*capacity16_buf;
18137 	uint64_t		capacity;
18138 	uint32_t		lbasize;
18139 	int			status;
18140 
18141 	ASSERT(un != NULL);
18142 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18143 	ASSERT(capp != NULL);
18144 	ASSERT(lbap != NULL);
18145 
18146 	SD_TRACE(SD_LOG_IO, un,
18147 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18148 
18149 	/*
18150 	 * First send a READ_CAPACITY_16 command to the target.
18151 	 *
18152 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
18153 	 * Medium Indicator bit is cleared.  The address field must be
18154 	 * zero if the PMI bit is zero.
18155 	 */
18156 	bzero(&cdb, sizeof (cdb));
18157 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18158 
18159 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
18160 
18161 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18162 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
18163 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
18164 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
18165 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18166 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18167 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18168 	ucmd_buf.uscsi_timeout	= 60;
18169 
18170 	/*
18171 	 * Read Capacity (16) is a Service Action In command.  One
18172 	 * command byte (0x9E) is overloaded for multiple operations,
18173 	 * with the second CDB byte specifying the desired operation
18174 	 */
18175 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
18176 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
18177 
18178 	/*
18179 	 * Fill in allocation length field
18180 	 */
18181 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
18182 
18183 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18184 	    UIO_SYSSPACE, path_flag);
18185 
18186 	switch (status) {
18187 	case 0:
18188 		/* Return failure if we did not get valid capacity data. */
18189 		if (ucmd_buf.uscsi_resid > 20) {
18190 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18191 			return (EIO);
18192 		}
18193 
18194 		/*
18195 		 * Read capacity and block size from the READ CAPACITY 10 data.
18196 		 * This data may be adjusted later due to device specific
18197 		 * issues.
18198 		 *
18199 		 * According to the SCSI spec, the READ CAPACITY 10
18200 		 * command returns the following:
18201 		 *
18202 		 *  bytes 0-7: Maximum logical block address available.
18203 		 *		(MSB in byte:0 & LSB in byte:7)
18204 		 *
18205 		 *  bytes 8-11: Block length in bytes
18206 		 *		(MSB in byte:8 & LSB in byte:11)
18207 		 *
18208 		 */
18209 		capacity = BE_64(capacity16_buf[0]);
18210 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18211 
18212 		/*
18213 		 * Done with capacity16_buf
18214 		 */
18215 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18216 
18217 		/*
18218 		 * if the reported capacity is set to all 0xf's, then
18219 		 * this disk is too large.  This could only happen with
18220 		 * a device that supports LBAs larger than 64 bits which
18221 		 * are not defined by any current T10 standards.
18222 		 */
18223 		if (capacity == 0xffffffffffffffff) {
18224 			return (EIO);
18225 		}
18226 		break;	/* Success! */
18227 	case EIO:
18228 		switch (ucmd_buf.uscsi_status) {
18229 		case STATUS_RESERVATION_CONFLICT:
18230 			status = EACCES;
18231 			break;
18232 		case STATUS_CHECK:
18233 			/*
18234 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18235 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18236 			 */
18237 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18238 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18239 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18240 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18241 				return (EAGAIN);
18242 			}
18243 			break;
18244 		default:
18245 			break;
18246 		}
18247 		/* FALLTHRU */
18248 	default:
18249 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18250 		return (status);
18251 	}
18252 
18253 	*capp = capacity;
18254 	*lbap = lbasize;
18255 
18256 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18257 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18258 
18259 	return (0);
18260 }
18261 
18262 
18263 /*
18264  *    Function: sd_send_scsi_START_STOP_UNIT
18265  *
18266  * Description: Issue a scsi START STOP UNIT command to the target.
18267  *
18268  *   Arguments: un    - pointer to driver soft state (unit) structure for
18269  *			this target.
18270  *		flag  - SD_TARGET_START
18271  *			SD_TARGET_STOP
18272  *			SD_TARGET_EJECT
18273  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18274  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18275  *			to use the USCSI "direct" chain and bypass the normal
18276  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18277  *			command is issued as part of an error recovery action.
18278  *
18279  * Return Code: 0   - Success
18280  *		EIO - IO error
18281  *		EACCES - Reservation conflict detected
18282  *		ENXIO  - Not Ready, medium not present
18283  *		errno return code from sd_send_scsi_cmd()
18284  *
18285  *     Context: Can sleep.
18286  */
18287 
18288 static int
18289 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18290 {
18291 	struct	scsi_extended_sense	sense_buf;
18292 	union scsi_cdb		cdb;
18293 	struct uscsi_cmd	ucmd_buf;
18294 	int			status;
18295 
18296 	ASSERT(un != NULL);
18297 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18298 
18299 	SD_TRACE(SD_LOG_IO, un,
18300 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18301 
18302 	if (un->un_f_check_start_stop &&
18303 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18304 	    (un->un_f_start_stop_supported != TRUE)) {
18305 		return (0);
18306 	}
18307 
18308 	/*
18309 	 * If we are performing an eject operation and
18310 	 * we receive any command other than SD_TARGET_EJECT
18311 	 * we should immediately return.
18312 	 */
18313 	if (flag != SD_TARGET_EJECT) {
18314 		mutex_enter(SD_MUTEX(un));
18315 		if (un->un_f_ejecting == TRUE) {
18316 			mutex_exit(SD_MUTEX(un));
18317 			return (EAGAIN);
18318 		}
18319 		mutex_exit(SD_MUTEX(un));
18320 	}
18321 
18322 	bzero(&cdb, sizeof (cdb));
18323 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18324 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18325 
18326 	cdb.scc_cmd = SCMD_START_STOP;
18327 	cdb.cdb_opaque[4] = (uchar_t)flag;
18328 
18329 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18330 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18331 	ucmd_buf.uscsi_bufaddr	= NULL;
18332 	ucmd_buf.uscsi_buflen	= 0;
18333 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18334 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18335 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18336 	ucmd_buf.uscsi_timeout	= 200;
18337 
18338 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18339 	    UIO_SYSSPACE, path_flag);
18340 
18341 	switch (status) {
18342 	case 0:
18343 		break;	/* Success! */
18344 	case EIO:
18345 		switch (ucmd_buf.uscsi_status) {
18346 		case STATUS_RESERVATION_CONFLICT:
18347 			status = EACCES;
18348 			break;
18349 		case STATUS_CHECK:
18350 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18351 				switch (scsi_sense_key(
18352 				    (uint8_t *)&sense_buf)) {
18353 				case KEY_ILLEGAL_REQUEST:
18354 					status = ENOTSUP;
18355 					break;
18356 				case KEY_NOT_READY:
18357 					if (scsi_sense_asc(
18358 					    (uint8_t *)&sense_buf)
18359 					    == 0x3A) {
18360 						status = ENXIO;
18361 					}
18362 					break;
18363 				default:
18364 					break;
18365 				}
18366 			}
18367 			break;
18368 		default:
18369 			break;
18370 		}
18371 		break;
18372 	default:
18373 		break;
18374 	}
18375 
18376 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18377 
18378 	return (status);
18379 }
18380 
18381 
18382 /*
18383  *    Function: sd_start_stop_unit_callback
18384  *
18385  * Description: timeout(9F) callback to begin recovery process for a
18386  *		device that has spun down.
18387  *
18388  *   Arguments: arg - pointer to associated softstate struct.
18389  *
18390  *     Context: Executes in a timeout(9F) thread context
18391  */
18392 
18393 static void
18394 sd_start_stop_unit_callback(void *arg)
18395 {
18396 	struct sd_lun	*un = arg;
18397 	ASSERT(un != NULL);
18398 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18399 
18400 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18401 
18402 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18403 }
18404 
18405 
18406 /*
18407  *    Function: sd_start_stop_unit_task
18408  *
18409  * Description: Recovery procedure when a drive is spun down.
18410  *
18411  *   Arguments: arg - pointer to associated softstate struct.
18412  *
18413  *     Context: Executes in a taskq() thread context
18414  */
18415 
18416 static void
18417 sd_start_stop_unit_task(void *arg)
18418 {
18419 	struct sd_lun	*un = arg;
18420 
18421 	ASSERT(un != NULL);
18422 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18423 
18424 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18425 
18426 	/*
18427 	 * Some unformatted drives report not ready error, no need to
18428 	 * restart if format has been initiated.
18429 	 */
18430 	mutex_enter(SD_MUTEX(un));
18431 	if (un->un_f_format_in_progress == TRUE) {
18432 		mutex_exit(SD_MUTEX(un));
18433 		return;
18434 	}
18435 	mutex_exit(SD_MUTEX(un));
18436 
18437 	/*
18438 	 * When a START STOP command is issued from here, it is part of a
18439 	 * failure recovery operation and must be issued before any other
18440 	 * commands, including any pending retries. Thus it must be sent
18441 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18442 	 * succeeds or not, we will start I/O after the attempt.
18443 	 */
18444 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18445 	    SD_PATH_DIRECT_PRIORITY);
18446 
18447 	/*
18448 	 * The above call blocks until the START_STOP_UNIT command completes.
18449 	 * Now that it has completed, we must re-try the original IO that
18450 	 * received the NOT READY condition in the first place. There are
18451 	 * three possible conditions here:
18452 	 *
18453 	 *  (1) The original IO is on un_retry_bp.
18454 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18455 	 *	is NULL.
18456 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18457 	 *	points to some other, unrelated bp.
18458 	 *
18459 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18460 	 * as the argument. If un_retry_bp is NULL, this will initiate
18461 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18462 	 * then this will process the bp on un_retry_bp. That may or may not
18463 	 * be the original IO, but that does not matter: the important thing
18464 	 * is to keep the IO processing going at this point.
18465 	 *
18466 	 * Note: This is a very specific error recovery sequence associated
18467 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18468 	 * serialize the I/O with completion of the spin-up.
18469 	 */
18470 	mutex_enter(SD_MUTEX(un));
18471 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18472 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18473 	    un, un->un_retry_bp);
18474 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18475 	sd_start_cmds(un, un->un_retry_bp);
18476 	mutex_exit(SD_MUTEX(un));
18477 
18478 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18479 }
18480 
18481 
18482 /*
18483  *    Function: sd_send_scsi_INQUIRY
18484  *
18485  * Description: Issue the scsi INQUIRY command.
18486  *
18487  *   Arguments: un
18488  *		bufaddr
18489  *		buflen
18490  *		evpd
18491  *		page_code
18492  *		page_length
18493  *
18494  * Return Code: 0   - Success
18495  *		errno return code from sd_send_scsi_cmd()
18496  *
18497  *     Context: Can sleep. Does not return until command is completed.
18498  */
18499 
18500 static int
18501 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18502 	uchar_t evpd, uchar_t page_code, size_t *residp)
18503 {
18504 	union scsi_cdb		cdb;
18505 	struct uscsi_cmd	ucmd_buf;
18506 	int			status;
18507 
18508 	ASSERT(un != NULL);
18509 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18510 	ASSERT(bufaddr != NULL);
18511 
18512 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18513 
18514 	bzero(&cdb, sizeof (cdb));
18515 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18516 	bzero(bufaddr, buflen);
18517 
18518 	cdb.scc_cmd = SCMD_INQUIRY;
18519 	cdb.cdb_opaque[1] = evpd;
18520 	cdb.cdb_opaque[2] = page_code;
18521 	FORMG0COUNT(&cdb, buflen);
18522 
18523 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18524 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18525 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18526 	ucmd_buf.uscsi_buflen	= buflen;
18527 	ucmd_buf.uscsi_rqbuf	= NULL;
18528 	ucmd_buf.uscsi_rqlen	= 0;
18529 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18530 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18531 
18532 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18533 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18534 
18535 	if ((status == 0) && (residp != NULL)) {
18536 		*residp = ucmd_buf.uscsi_resid;
18537 	}
18538 
18539 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18540 
18541 	return (status);
18542 }
18543 
18544 
18545 /*
18546  *    Function: sd_send_scsi_TEST_UNIT_READY
18547  *
18548  * Description: Issue the scsi TEST UNIT READY command.
18549  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18550  *		prevent retrying failed commands. Use this when the intent
18551  *		is either to check for device readiness, to clear a Unit
18552  *		Attention, or to clear any outstanding sense data.
18553  *		However under specific conditions the expected behavior
18554  *		is for retries to bring a device ready, so use the flag
18555  *		with caution.
18556  *
18557  *   Arguments: un
18558  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18559  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18560  *			0: dont check for media present, do retries on cmd.
18561  *
18562  * Return Code: 0   - Success
18563  *		EIO - IO error
18564  *		EACCES - Reservation conflict detected
18565  *		ENXIO  - Not Ready, medium not present
18566  *		errno return code from sd_send_scsi_cmd()
18567  *
18568  *     Context: Can sleep. Does not return until command is completed.
18569  */
18570 
18571 static int
18572 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18573 {
18574 	struct	scsi_extended_sense	sense_buf;
18575 	union scsi_cdb		cdb;
18576 	struct uscsi_cmd	ucmd_buf;
18577 	int			status;
18578 
18579 	ASSERT(un != NULL);
18580 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18581 
18582 	SD_TRACE(SD_LOG_IO, un,
18583 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18584 
18585 	/*
18586 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18587 	 * timeouts when they receive a TUR and the queue is not empty. Check
18588 	 * the configuration flag set during attach (indicating the drive has
18589 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18590 	 * TUR. If there are
18591 	 * pending commands return success, this is a bit arbitrary but is ok
18592 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18593 	 * configurations.
18594 	 */
18595 	if (un->un_f_cfg_tur_check == TRUE) {
18596 		mutex_enter(SD_MUTEX(un));
18597 		if (un->un_ncmds_in_transport != 0) {
18598 			mutex_exit(SD_MUTEX(un));
18599 			return (0);
18600 		}
18601 		mutex_exit(SD_MUTEX(un));
18602 	}
18603 
18604 	bzero(&cdb, sizeof (cdb));
18605 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18606 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18607 
18608 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18609 
18610 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18611 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18612 	ucmd_buf.uscsi_bufaddr	= NULL;
18613 	ucmd_buf.uscsi_buflen	= 0;
18614 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18615 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18616 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18617 
18618 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18619 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18620 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18621 	}
18622 	ucmd_buf.uscsi_timeout	= 60;
18623 
18624 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18625 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18626 	    SD_PATH_STANDARD));
18627 
18628 	switch (status) {
18629 	case 0:
18630 		break;	/* Success! */
18631 	case EIO:
18632 		switch (ucmd_buf.uscsi_status) {
18633 		case STATUS_RESERVATION_CONFLICT:
18634 			status = EACCES;
18635 			break;
18636 		case STATUS_CHECK:
18637 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18638 				break;
18639 			}
18640 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18641 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18642 			    KEY_NOT_READY) &&
18643 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18644 				status = ENXIO;
18645 			}
18646 			break;
18647 		default:
18648 			break;
18649 		}
18650 		break;
18651 	default:
18652 		break;
18653 	}
18654 
18655 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18656 
18657 	return (status);
18658 }
18659 
18660 
18661 /*
18662  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18663  *
18664  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18665  *
18666  *   Arguments: un
18667  *
18668  * Return Code: 0   - Success
18669  *		EACCES
18670  *		ENOTSUP
18671  *		errno return code from sd_send_scsi_cmd()
18672  *
18673  *     Context: Can sleep. Does not return until command is completed.
18674  */
18675 
18676 static int
18677 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18678 	uint16_t data_len, uchar_t *data_bufp)
18679 {
18680 	struct scsi_extended_sense	sense_buf;
18681 	union scsi_cdb		cdb;
18682 	struct uscsi_cmd	ucmd_buf;
18683 	int			status;
18684 	int			no_caller_buf = FALSE;
18685 
18686 	ASSERT(un != NULL);
18687 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18688 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18689 
18690 	SD_TRACE(SD_LOG_IO, un,
18691 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18692 
18693 	bzero(&cdb, sizeof (cdb));
18694 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18695 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18696 	if (data_bufp == NULL) {
18697 		/* Allocate a default buf if the caller did not give one */
18698 		ASSERT(data_len == 0);
18699 		data_len  = MHIOC_RESV_KEY_SIZE;
18700 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18701 		no_caller_buf = TRUE;
18702 	}
18703 
18704 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18705 	cdb.cdb_opaque[1] = usr_cmd;
18706 	FORMG1COUNT(&cdb, data_len);
18707 
18708 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18709 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18710 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18711 	ucmd_buf.uscsi_buflen	= data_len;
18712 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18713 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18714 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18715 	ucmd_buf.uscsi_timeout	= 60;
18716 
18717 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18718 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18719 
18720 	switch (status) {
18721 	case 0:
18722 		break;	/* Success! */
18723 	case EIO:
18724 		switch (ucmd_buf.uscsi_status) {
18725 		case STATUS_RESERVATION_CONFLICT:
18726 			status = EACCES;
18727 			break;
18728 		case STATUS_CHECK:
18729 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18730 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18731 			    KEY_ILLEGAL_REQUEST)) {
18732 				status = ENOTSUP;
18733 			}
18734 			break;
18735 		default:
18736 			break;
18737 		}
18738 		break;
18739 	default:
18740 		break;
18741 	}
18742 
18743 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18744 
18745 	if (no_caller_buf == TRUE) {
18746 		kmem_free(data_bufp, data_len);
18747 	}
18748 
18749 	return (status);
18750 }
18751 
18752 
18753 /*
18754  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18755  *
18756  * Description: This routine is the driver entry point for handling CD-ROM
18757  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18758  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18759  *		device.
18760  *
18761  *   Arguments: un  -   Pointer to soft state struct for the target.
18762  *		usr_cmd SCSI-3 reservation facility command (one of
18763  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18764  *			SD_SCSI3_PREEMPTANDABORT)
18765  *		usr_bufp - user provided pointer register, reserve descriptor or
18766  *			preempt and abort structure (mhioc_register_t,
18767  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18768  *
18769  * Return Code: 0   - Success
18770  *		EACCES
18771  *		ENOTSUP
18772  *		errno return code from sd_send_scsi_cmd()
18773  *
18774  *     Context: Can sleep. Does not return until command is completed.
18775  */
18776 
18777 static int
18778 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18779 	uchar_t	*usr_bufp)
18780 {
18781 	struct scsi_extended_sense	sense_buf;
18782 	union scsi_cdb		cdb;
18783 	struct uscsi_cmd	ucmd_buf;
18784 	int			status;
18785 	uchar_t			data_len = sizeof (sd_prout_t);
18786 	sd_prout_t		*prp;
18787 
18788 	ASSERT(un != NULL);
18789 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18790 	ASSERT(data_len == 24);	/* required by scsi spec */
18791 
18792 	SD_TRACE(SD_LOG_IO, un,
18793 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18794 
18795 	if (usr_bufp == NULL) {
18796 		return (EINVAL);
18797 	}
18798 
18799 	bzero(&cdb, sizeof (cdb));
18800 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18801 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18802 	prp = kmem_zalloc(data_len, KM_SLEEP);
18803 
18804 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18805 	cdb.cdb_opaque[1] = usr_cmd;
18806 	FORMG1COUNT(&cdb, data_len);
18807 
18808 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18809 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18810 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18811 	ucmd_buf.uscsi_buflen	= data_len;
18812 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18813 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18814 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18815 	ucmd_buf.uscsi_timeout	= 60;
18816 
18817 	switch (usr_cmd) {
18818 	case SD_SCSI3_REGISTER: {
18819 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18820 
18821 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18822 		bcopy(ptr->newkey.key, prp->service_key,
18823 		    MHIOC_RESV_KEY_SIZE);
18824 		prp->aptpl = ptr->aptpl;
18825 		break;
18826 	}
18827 	case SD_SCSI3_RESERVE:
18828 	case SD_SCSI3_RELEASE: {
18829 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18830 
18831 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18832 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18833 		cdb.cdb_opaque[2] = ptr->type;
18834 		break;
18835 	}
18836 	case SD_SCSI3_PREEMPTANDABORT: {
18837 		mhioc_preemptandabort_t *ptr =
18838 		    (mhioc_preemptandabort_t *)usr_bufp;
18839 
18840 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18841 		bcopy(ptr->victim_key.key, prp->service_key,
18842 		    MHIOC_RESV_KEY_SIZE);
18843 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18844 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18845 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18846 		break;
18847 	}
18848 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18849 	{
18850 		mhioc_registerandignorekey_t *ptr;
18851 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18852 		bcopy(ptr->newkey.key,
18853 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18854 		prp->aptpl = ptr->aptpl;
18855 		break;
18856 	}
18857 	default:
18858 		ASSERT(FALSE);
18859 		break;
18860 	}
18861 
18862 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18863 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18864 
18865 	switch (status) {
18866 	case 0:
18867 		break;	/* Success! */
18868 	case EIO:
18869 		switch (ucmd_buf.uscsi_status) {
18870 		case STATUS_RESERVATION_CONFLICT:
18871 			status = EACCES;
18872 			break;
18873 		case STATUS_CHECK:
18874 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18875 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18876 			    KEY_ILLEGAL_REQUEST)) {
18877 				status = ENOTSUP;
18878 			}
18879 			break;
18880 		default:
18881 			break;
18882 		}
18883 		break;
18884 	default:
18885 		break;
18886 	}
18887 
18888 	kmem_free(prp, data_len);
18889 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18890 	return (status);
18891 }
18892 
18893 
18894 /*
18895  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18896  *
18897  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18898  *
18899  *   Arguments: un - pointer to the target's soft state struct
18900  *              dkc - pointer to the callback structure
18901  *
18902  * Return Code: 0 - success
18903  *		errno-type error code
18904  *
18905  *     Context: kernel thread context only.
18906  *
18907  *  _______________________________________________________________
18908  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18909  * |FLUSH_VOLATILE|              | operation                       |
18910  * |______________|______________|_________________________________|
18911  * | 0            | NULL         | Synchronous flush on both       |
18912  * |              |              | volatile and non-volatile cache |
18913  * |______________|______________|_________________________________|
18914  * | 1            | NULL         | Synchronous flush on volatile   |
18915  * |              |              | cache; disk drivers may suppress|
18916  * |              |              | flush if disk table indicates   |
18917  * |              |              | non-volatile cache              |
18918  * |______________|______________|_________________________________|
18919  * | 0            | !NULL        | Asynchronous flush on both      |
18920  * |              |              | volatile and non-volatile cache;|
18921  * |______________|______________|_________________________________|
18922  * | 1            | !NULL        | Asynchronous flush on volatile  |
18923  * |              |              | cache; disk drivers may suppress|
18924  * |              |              | flush if disk table indicates   |
18925  * |              |              | non-volatile cache              |
18926  * |______________|______________|_________________________________|
18927  *
18928  */
18929 
18930 static int
18931 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18932 {
18933 	struct sd_uscsi_info	*uip;
18934 	struct uscsi_cmd	*uscmd;
18935 	union scsi_cdb		*cdb;
18936 	struct buf		*bp;
18937 	int			rval = 0;
18938 	int			is_async;
18939 
18940 	SD_TRACE(SD_LOG_IO, un,
18941 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18942 
18943 	ASSERT(un != NULL);
18944 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18945 
18946 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18947 		is_async = FALSE;
18948 	} else {
18949 		is_async = TRUE;
18950 	}
18951 
18952 	mutex_enter(SD_MUTEX(un));
18953 	/* check whether cache flush should be suppressed */
18954 	if (un->un_f_suppress_cache_flush == TRUE) {
18955 		mutex_exit(SD_MUTEX(un));
18956 		/*
18957 		 * suppress the cache flush if the device is told to do
18958 		 * so by sd.conf or disk table
18959 		 */
18960 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18961 		    skip the cache flush since suppress_cache_flush is %d!\n",
18962 		    un->un_f_suppress_cache_flush);
18963 
18964 		if (is_async == TRUE) {
18965 			/* invoke callback for asynchronous flush */
18966 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18967 		}
18968 		return (rval);
18969 	}
18970 	mutex_exit(SD_MUTEX(un));
18971 
18972 	/*
18973 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18974 	 * set properly
18975 	 */
18976 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18977 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18978 
18979 	mutex_enter(SD_MUTEX(un));
18980 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18981 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18982 		/*
18983 		 * if the device supports SYNC_NV bit, turn on
18984 		 * the SYNC_NV bit to only flush volatile cache
18985 		 */
18986 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18987 	}
18988 	mutex_exit(SD_MUTEX(un));
18989 
18990 	/*
18991 	 * First get some memory for the uscsi_cmd struct and cdb
18992 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18993 	 */
18994 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18995 	uscmd->uscsi_cdblen = CDB_GROUP1;
18996 	uscmd->uscsi_cdb = (caddr_t)cdb;
18997 	uscmd->uscsi_bufaddr = NULL;
18998 	uscmd->uscsi_buflen = 0;
18999 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
19000 	uscmd->uscsi_rqlen = SENSE_LENGTH;
19001 	uscmd->uscsi_rqresid = SENSE_LENGTH;
19002 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
19003 	uscmd->uscsi_timeout = sd_io_time;
19004 
19005 	/*
19006 	 * Allocate an sd_uscsi_info struct and fill it with the info
19007 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
19008 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
19009 	 * since we allocate the buf here in this function, we do not
19010 	 * need to preserve the prior contents of b_private.
19011 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
19012 	 */
19013 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
19014 	uip->ui_flags = SD_PATH_DIRECT;
19015 	uip->ui_cmdp  = uscmd;
19016 
19017 	bp = getrbuf(KM_SLEEP);
19018 	bp->b_private = uip;
19019 
19020 	/*
19021 	 * Setup buffer to carry uscsi request.
19022 	 */
19023 	bp->b_flags  = B_BUSY;
19024 	bp->b_bcount = 0;
19025 	bp->b_blkno  = 0;
19026 
19027 	if (is_async == TRUE) {
19028 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
19029 		uip->ui_dkc = *dkc;
19030 	}
19031 
19032 	bp->b_edev = SD_GET_DEV(un);
19033 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
19034 
19035 	(void) sd_uscsi_strategy(bp);
19036 
19037 	/*
19038 	 * If synchronous request, wait for completion
19039 	 * If async just return and let b_iodone callback
19040 	 * cleanup.
19041 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
19042 	 * but it was also incremented in sd_uscsi_strategy(), so
19043 	 * we should be ok.
19044 	 */
19045 	if (is_async == FALSE) {
19046 		(void) biowait(bp);
19047 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
19048 	}
19049 
19050 	return (rval);
19051 }
19052 
19053 
19054 static int
19055 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
19056 {
19057 	struct sd_uscsi_info *uip;
19058 	struct uscsi_cmd *uscmd;
19059 	uint8_t *sense_buf;
19060 	struct sd_lun *un;
19061 	int status;
19062 	union scsi_cdb *cdb;
19063 
19064 	uip = (struct sd_uscsi_info *)(bp->b_private);
19065 	ASSERT(uip != NULL);
19066 
19067 	uscmd = uip->ui_cmdp;
19068 	ASSERT(uscmd != NULL);
19069 
19070 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
19071 	ASSERT(sense_buf != NULL);
19072 
19073 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
19074 	ASSERT(un != NULL);
19075 
19076 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
19077 
19078 	status = geterror(bp);
19079 	switch (status) {
19080 	case 0:
19081 		break;	/* Success! */
19082 	case EIO:
19083 		switch (uscmd->uscsi_status) {
19084 		case STATUS_RESERVATION_CONFLICT:
19085 			/* Ignore reservation conflict */
19086 			status = 0;
19087 			goto done;
19088 
19089 		case STATUS_CHECK:
19090 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
19091 			    (scsi_sense_key(sense_buf) ==
19092 			    KEY_ILLEGAL_REQUEST)) {
19093 				/* Ignore Illegal Request error */
19094 				if (cdb->cdb_un.tag|SD_SYNC_NV_BIT) {
19095 					mutex_enter(SD_MUTEX(un));
19096 					un->un_f_sync_nv_supported = FALSE;
19097 					mutex_exit(SD_MUTEX(un));
19098 					status = 0;
19099 					SD_TRACE(SD_LOG_IO, un,
19100 					    "un_f_sync_nv_supported \
19101 					    is set to false.\n");
19102 					goto done;
19103 				}
19104 
19105 				mutex_enter(SD_MUTEX(un));
19106 				un->un_f_sync_cache_supported = FALSE;
19107 				mutex_exit(SD_MUTEX(un));
19108 				SD_TRACE(SD_LOG_IO, un,
19109 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
19110 				    un_f_sync_cache_supported set to false \
19111 				    with asc = %x, ascq = %x\n",
19112 				    scsi_sense_asc(sense_buf),
19113 				    scsi_sense_ascq(sense_buf));
19114 				status = ENOTSUP;
19115 				goto done;
19116 			}
19117 			break;
19118 		default:
19119 			break;
19120 		}
19121 		/* FALLTHRU */
19122 	default:
19123 		/*
19124 		 * Don't log an error message if this device
19125 		 * has removable media.
19126 		 */
19127 		if (!un->un_f_has_removable_media) {
19128 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19129 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19130 		}
19131 		break;
19132 	}
19133 
19134 done:
19135 	if (uip->ui_dkc.dkc_callback != NULL) {
19136 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
19137 	}
19138 
19139 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
19140 	freerbuf(bp);
19141 	kmem_free(uip, sizeof (struct sd_uscsi_info));
19142 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
19143 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
19144 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
19145 
19146 	return (status);
19147 }
19148 
19149 
19150 /*
19151  *    Function: sd_send_scsi_GET_CONFIGURATION
19152  *
19153  * Description: Issues the get configuration command to the device.
19154  *		Called from sd_check_for_writable_cd & sd_get_media_info
19155  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19156  *   Arguments: un
19157  *		ucmdbuf
19158  *		rqbuf
19159  *		rqbuflen
19160  *		bufaddr
19161  *		buflen
19162  *		path_flag
19163  *
19164  * Return Code: 0   - Success
19165  *		errno return code from sd_send_scsi_cmd()
19166  *
19167  *     Context: Can sleep. Does not return until command is completed.
19168  *
19169  */
19170 
19171 static int
19172 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19173 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
19174 	int path_flag)
19175 {
19176 	char	cdb[CDB_GROUP1];
19177 	int	status;
19178 
19179 	ASSERT(un != NULL);
19180 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19181 	ASSERT(bufaddr != NULL);
19182 	ASSERT(ucmdbuf != NULL);
19183 	ASSERT(rqbuf != NULL);
19184 
19185 	SD_TRACE(SD_LOG_IO, un,
19186 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19187 
19188 	bzero(cdb, sizeof (cdb));
19189 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19190 	bzero(rqbuf, rqbuflen);
19191 	bzero(bufaddr, buflen);
19192 
19193 	/*
19194 	 * Set up cdb field for the get configuration command.
19195 	 */
19196 	cdb[0] = SCMD_GET_CONFIGURATION;
19197 	cdb[1] = 0x02;  /* Requested Type */
19198 	cdb[8] = SD_PROFILE_HEADER_LEN;
19199 	ucmdbuf->uscsi_cdb = cdb;
19200 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19201 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19202 	ucmdbuf->uscsi_buflen = buflen;
19203 	ucmdbuf->uscsi_timeout = sd_io_time;
19204 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19205 	ucmdbuf->uscsi_rqlen = rqbuflen;
19206 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19207 
19208 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19209 	    UIO_SYSSPACE, path_flag);
19210 
19211 	switch (status) {
19212 	case 0:
19213 		break;  /* Success! */
19214 	case EIO:
19215 		switch (ucmdbuf->uscsi_status) {
19216 		case STATUS_RESERVATION_CONFLICT:
19217 			status = EACCES;
19218 			break;
19219 		default:
19220 			break;
19221 		}
19222 		break;
19223 	default:
19224 		break;
19225 	}
19226 
19227 	if (status == 0) {
19228 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19229 		    "sd_send_scsi_GET_CONFIGURATION: data",
19230 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19231 	}
19232 
19233 	SD_TRACE(SD_LOG_IO, un,
19234 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19235 
19236 	return (status);
19237 }
19238 
19239 /*
19240  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19241  *
19242  * Description: Issues the get configuration command to the device to
19243  *              retrieve a specific feature. Called from
19244  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19245  *   Arguments: un
19246  *              ucmdbuf
19247  *              rqbuf
19248  *              rqbuflen
19249  *              bufaddr
19250  *              buflen
19251  *		feature
19252  *
19253  * Return Code: 0   - Success
19254  *              errno return code from sd_send_scsi_cmd()
19255  *
19256  *     Context: Can sleep. Does not return until command is completed.
19257  *
19258  */
19259 static int
19260 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19261 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19262 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19263 {
19264 	char    cdb[CDB_GROUP1];
19265 	int	status;
19266 
19267 	ASSERT(un != NULL);
19268 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19269 	ASSERT(bufaddr != NULL);
19270 	ASSERT(ucmdbuf != NULL);
19271 	ASSERT(rqbuf != NULL);
19272 
19273 	SD_TRACE(SD_LOG_IO, un,
19274 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19275 
19276 	bzero(cdb, sizeof (cdb));
19277 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19278 	bzero(rqbuf, rqbuflen);
19279 	bzero(bufaddr, buflen);
19280 
19281 	/*
19282 	 * Set up cdb field for the get configuration command.
19283 	 */
19284 	cdb[0] = SCMD_GET_CONFIGURATION;
19285 	cdb[1] = 0x02;  /* Requested Type */
19286 	cdb[3] = feature;
19287 	cdb[8] = buflen;
19288 	ucmdbuf->uscsi_cdb = cdb;
19289 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19290 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19291 	ucmdbuf->uscsi_buflen = buflen;
19292 	ucmdbuf->uscsi_timeout = sd_io_time;
19293 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19294 	ucmdbuf->uscsi_rqlen = rqbuflen;
19295 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19296 
19297 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19298 	    UIO_SYSSPACE, path_flag);
19299 
19300 	switch (status) {
19301 	case 0:
19302 		break;  /* Success! */
19303 	case EIO:
19304 		switch (ucmdbuf->uscsi_status) {
19305 		case STATUS_RESERVATION_CONFLICT:
19306 			status = EACCES;
19307 			break;
19308 		default:
19309 			break;
19310 		}
19311 		break;
19312 	default:
19313 		break;
19314 	}
19315 
19316 	if (status == 0) {
19317 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19318 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19319 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19320 	}
19321 
19322 	SD_TRACE(SD_LOG_IO, un,
19323 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19324 
19325 	return (status);
19326 }
19327 
19328 
19329 /*
19330  *    Function: sd_send_scsi_MODE_SENSE
19331  *
19332  * Description: Utility function for issuing a scsi MODE SENSE command.
19333  *		Note: This routine uses a consistent implementation for Group0,
19334  *		Group1, and Group2 commands across all platforms. ATAPI devices
19335  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19336  *
19337  *   Arguments: un - pointer to the softstate struct for the target.
19338  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19339  *			  CDB_GROUP[1|2] (10 byte).
19340  *		bufaddr - buffer for page data retrieved from the target.
19341  *		buflen - size of page to be retrieved.
19342  *		page_code - page code of data to be retrieved from the target.
19343  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19344  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19345  *			to use the USCSI "direct" chain and bypass the normal
19346  *			command waitq.
19347  *
19348  * Return Code: 0   - Success
19349  *		errno return code from sd_send_scsi_cmd()
19350  *
19351  *     Context: Can sleep. Does not return until command is completed.
19352  */
19353 
19354 static int
19355 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19356 	size_t buflen,  uchar_t page_code, int path_flag)
19357 {
19358 	struct	scsi_extended_sense	sense_buf;
19359 	union scsi_cdb		cdb;
19360 	struct uscsi_cmd	ucmd_buf;
19361 	int			status;
19362 	int			headlen;
19363 
19364 	ASSERT(un != NULL);
19365 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19366 	ASSERT(bufaddr != NULL);
19367 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19368 	    (cdbsize == CDB_GROUP2));
19369 
19370 	SD_TRACE(SD_LOG_IO, un,
19371 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19372 
19373 	bzero(&cdb, sizeof (cdb));
19374 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19375 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19376 	bzero(bufaddr, buflen);
19377 
19378 	if (cdbsize == CDB_GROUP0) {
19379 		cdb.scc_cmd = SCMD_MODE_SENSE;
19380 		cdb.cdb_opaque[2] = page_code;
19381 		FORMG0COUNT(&cdb, buflen);
19382 		headlen = MODE_HEADER_LENGTH;
19383 	} else {
19384 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19385 		cdb.cdb_opaque[2] = page_code;
19386 		FORMG1COUNT(&cdb, buflen);
19387 		headlen = MODE_HEADER_LENGTH_GRP2;
19388 	}
19389 
19390 	ASSERT(headlen <= buflen);
19391 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19392 
19393 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19394 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19395 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19396 	ucmd_buf.uscsi_buflen	= buflen;
19397 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19398 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19399 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19400 	ucmd_buf.uscsi_timeout	= 60;
19401 
19402 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19403 	    UIO_SYSSPACE, path_flag);
19404 
19405 	switch (status) {
19406 	case 0:
19407 		/*
19408 		 * sr_check_wp() uses 0x3f page code and check the header of
19409 		 * mode page to determine if target device is write-protected.
19410 		 * But some USB devices return 0 bytes for 0x3f page code. For
19411 		 * this case, make sure that mode page header is returned at
19412 		 * least.
19413 		 */
19414 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19415 			status = EIO;
19416 		break;	/* Success! */
19417 	case EIO:
19418 		switch (ucmd_buf.uscsi_status) {
19419 		case STATUS_RESERVATION_CONFLICT:
19420 			status = EACCES;
19421 			break;
19422 		default:
19423 			break;
19424 		}
19425 		break;
19426 	default:
19427 		break;
19428 	}
19429 
19430 	if (status == 0) {
19431 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19432 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19433 	}
19434 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19435 
19436 	return (status);
19437 }
19438 
19439 
19440 /*
19441  *    Function: sd_send_scsi_MODE_SELECT
19442  *
19443  * Description: Utility function for issuing a scsi MODE SELECT command.
19444  *		Note: This routine uses a consistent implementation for Group0,
19445  *		Group1, and Group2 commands across all platforms. ATAPI devices
19446  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19447  *
19448  *   Arguments: un - pointer to the softstate struct for the target.
19449  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19450  *			  CDB_GROUP[1|2] (10 byte).
19451  *		bufaddr - buffer for page data retrieved from the target.
19452  *		buflen - size of page to be retrieved.
19453  *		save_page - boolean to determin if SP bit should be set.
19454  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19455  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19456  *			to use the USCSI "direct" chain and bypass the normal
19457  *			command waitq.
19458  *
19459  * Return Code: 0   - Success
19460  *		errno return code from sd_send_scsi_cmd()
19461  *
19462  *     Context: Can sleep. Does not return until command is completed.
19463  */
19464 
19465 static int
19466 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19467 	size_t buflen,  uchar_t save_page, int path_flag)
19468 {
19469 	struct	scsi_extended_sense	sense_buf;
19470 	union scsi_cdb		cdb;
19471 	struct uscsi_cmd	ucmd_buf;
19472 	int			status;
19473 
19474 	ASSERT(un != NULL);
19475 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19476 	ASSERT(bufaddr != NULL);
19477 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19478 	    (cdbsize == CDB_GROUP2));
19479 
19480 	SD_TRACE(SD_LOG_IO, un,
19481 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19482 
19483 	bzero(&cdb, sizeof (cdb));
19484 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19485 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19486 
19487 	/* Set the PF bit for many third party drives */
19488 	cdb.cdb_opaque[1] = 0x10;
19489 
19490 	/* Set the savepage(SP) bit if given */
19491 	if (save_page == SD_SAVE_PAGE) {
19492 		cdb.cdb_opaque[1] |= 0x01;
19493 	}
19494 
19495 	if (cdbsize == CDB_GROUP0) {
19496 		cdb.scc_cmd = SCMD_MODE_SELECT;
19497 		FORMG0COUNT(&cdb, buflen);
19498 	} else {
19499 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19500 		FORMG1COUNT(&cdb, buflen);
19501 	}
19502 
19503 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19504 
19505 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19506 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19507 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19508 	ucmd_buf.uscsi_buflen	= buflen;
19509 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19510 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19511 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19512 	ucmd_buf.uscsi_timeout	= 60;
19513 
19514 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19515 	    UIO_SYSSPACE, path_flag);
19516 
19517 	switch (status) {
19518 	case 0:
19519 		break;	/* Success! */
19520 	case EIO:
19521 		switch (ucmd_buf.uscsi_status) {
19522 		case STATUS_RESERVATION_CONFLICT:
19523 			status = EACCES;
19524 			break;
19525 		default:
19526 			break;
19527 		}
19528 		break;
19529 	default:
19530 		break;
19531 	}
19532 
19533 	if (status == 0) {
19534 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19535 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19536 	}
19537 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19538 
19539 	return (status);
19540 }
19541 
19542 
19543 /*
19544  *    Function: sd_send_scsi_RDWR
19545  *
19546  * Description: Issue a scsi READ or WRITE command with the given parameters.
19547  *
19548  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19549  *		cmd:	 SCMD_READ or SCMD_WRITE
19550  *		bufaddr: Address of caller's buffer to receive the RDWR data
19551  *		buflen:  Length of caller's buffer receive the RDWR data.
19552  *		start_block: Block number for the start of the RDWR operation.
19553  *			 (Assumes target-native block size.)
19554  *		residp:  Pointer to variable to receive the redisual of the
19555  *			 RDWR operation (may be NULL of no residual requested).
19556  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19557  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19558  *			to use the USCSI "direct" chain and bypass the normal
19559  *			command waitq.
19560  *
19561  * Return Code: 0   - Success
19562  *		errno return code from sd_send_scsi_cmd()
19563  *
19564  *     Context: Can sleep. Does not return until command is completed.
19565  */
19566 
19567 static int
19568 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19569 	size_t buflen, daddr_t start_block, int path_flag)
19570 {
19571 	struct	scsi_extended_sense	sense_buf;
19572 	union scsi_cdb		cdb;
19573 	struct uscsi_cmd	ucmd_buf;
19574 	uint32_t		block_count;
19575 	int			status;
19576 	int			cdbsize;
19577 	uchar_t			flag;
19578 
19579 	ASSERT(un != NULL);
19580 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19581 	ASSERT(bufaddr != NULL);
19582 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19583 
19584 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19585 
19586 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19587 		return (EINVAL);
19588 	}
19589 
19590 	mutex_enter(SD_MUTEX(un));
19591 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19592 	mutex_exit(SD_MUTEX(un));
19593 
19594 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19595 
19596 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19597 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19598 	    bufaddr, buflen, start_block, block_count);
19599 
19600 	bzero(&cdb, sizeof (cdb));
19601 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19602 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19603 
19604 	/* Compute CDB size to use */
19605 	if (start_block > 0xffffffff)
19606 		cdbsize = CDB_GROUP4;
19607 	else if ((start_block & 0xFFE00000) ||
19608 	    (un->un_f_cfg_is_atapi == TRUE))
19609 		cdbsize = CDB_GROUP1;
19610 	else
19611 		cdbsize = CDB_GROUP0;
19612 
19613 	switch (cdbsize) {
19614 	case CDB_GROUP0:	/* 6-byte CDBs */
19615 		cdb.scc_cmd = cmd;
19616 		FORMG0ADDR(&cdb, start_block);
19617 		FORMG0COUNT(&cdb, block_count);
19618 		break;
19619 	case CDB_GROUP1:	/* 10-byte CDBs */
19620 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19621 		FORMG1ADDR(&cdb, start_block);
19622 		FORMG1COUNT(&cdb, block_count);
19623 		break;
19624 	case CDB_GROUP4:	/* 16-byte CDBs */
19625 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19626 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19627 		FORMG4COUNT(&cdb, block_count);
19628 		break;
19629 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19630 	default:
19631 		/* All others reserved */
19632 		return (EINVAL);
19633 	}
19634 
19635 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19636 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19637 
19638 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19639 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19640 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19641 	ucmd_buf.uscsi_buflen	= buflen;
19642 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19643 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19644 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19645 	ucmd_buf.uscsi_timeout	= 60;
19646 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19647 	    UIO_SYSSPACE, path_flag);
19648 	switch (status) {
19649 	case 0:
19650 		break;	/* Success! */
19651 	case EIO:
19652 		switch (ucmd_buf.uscsi_status) {
19653 		case STATUS_RESERVATION_CONFLICT:
19654 			status = EACCES;
19655 			break;
19656 		default:
19657 			break;
19658 		}
19659 		break;
19660 	default:
19661 		break;
19662 	}
19663 
19664 	if (status == 0) {
19665 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19666 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19667 	}
19668 
19669 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19670 
19671 	return (status);
19672 }
19673 
19674 
19675 /*
19676  *    Function: sd_send_scsi_LOG_SENSE
19677  *
19678  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19679  *
19680  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19681  *
19682  * Return Code: 0   - Success
19683  *		errno return code from sd_send_scsi_cmd()
19684  *
19685  *     Context: Can sleep. Does not return until command is completed.
19686  */
19687 
19688 static int
19689 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19690 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19691 	int path_flag)
19692 
19693 {
19694 	struct	scsi_extended_sense	sense_buf;
19695 	union scsi_cdb		cdb;
19696 	struct uscsi_cmd	ucmd_buf;
19697 	int			status;
19698 
19699 	ASSERT(un != NULL);
19700 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19701 
19702 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19703 
19704 	bzero(&cdb, sizeof (cdb));
19705 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19706 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19707 
19708 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19709 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19710 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19711 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19712 	FORMG1COUNT(&cdb, buflen);
19713 
19714 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19715 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19716 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19717 	ucmd_buf.uscsi_buflen	= buflen;
19718 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19719 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19720 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19721 	ucmd_buf.uscsi_timeout	= 60;
19722 
19723 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19724 	    UIO_SYSSPACE, path_flag);
19725 
19726 	switch (status) {
19727 	case 0:
19728 		break;
19729 	case EIO:
19730 		switch (ucmd_buf.uscsi_status) {
19731 		case STATUS_RESERVATION_CONFLICT:
19732 			status = EACCES;
19733 			break;
19734 		case STATUS_CHECK:
19735 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19736 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19737 				KEY_ILLEGAL_REQUEST) &&
19738 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19739 				/*
19740 				 * ASC 0x24: INVALID FIELD IN CDB
19741 				 */
19742 				switch (page_code) {
19743 				case START_STOP_CYCLE_PAGE:
19744 					/*
19745 					 * The start stop cycle counter is
19746 					 * implemented as page 0x31 in earlier
19747 					 * generation disks. In new generation
19748 					 * disks the start stop cycle counter is
19749 					 * implemented as page 0xE. To properly
19750 					 * handle this case if an attempt for
19751 					 * log page 0xE is made and fails we
19752 					 * will try again using page 0x31.
19753 					 *
19754 					 * Network storage BU committed to
19755 					 * maintain the page 0x31 for this
19756 					 * purpose and will not have any other
19757 					 * page implemented with page code 0x31
19758 					 * until all disks transition to the
19759 					 * standard page.
19760 					 */
19761 					mutex_enter(SD_MUTEX(un));
19762 					un->un_start_stop_cycle_page =
19763 					    START_STOP_CYCLE_VU_PAGE;
19764 					cdb.cdb_opaque[2] =
19765 					    (char)(page_control << 6) |
19766 					    un->un_start_stop_cycle_page;
19767 					mutex_exit(SD_MUTEX(un));
19768 					status = sd_send_scsi_cmd(
19769 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19770 					    UIO_SYSSPACE, path_flag);
19771 
19772 					break;
19773 				case TEMPERATURE_PAGE:
19774 					status = ENOTTY;
19775 					break;
19776 				default:
19777 					break;
19778 				}
19779 			}
19780 			break;
19781 		default:
19782 			break;
19783 		}
19784 		break;
19785 	default:
19786 		break;
19787 	}
19788 
19789 	if (status == 0) {
19790 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19791 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19792 	}
19793 
19794 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19795 
19796 	return (status);
19797 }
19798 
19799 
19800 /*
19801  *    Function: sdioctl
19802  *
19803  * Description: Driver's ioctl(9e) entry point function.
19804  *
19805  *   Arguments: dev     - device number
19806  *		cmd     - ioctl operation to be performed
19807  *		arg     - user argument, contains data to be set or reference
19808  *			  parameter for get
19809  *		flag    - bit flag, indicating open settings, 32/64 bit type
19810  *		cred_p  - user credential pointer
19811  *		rval_p  - calling process return value (OPT)
19812  *
19813  * Return Code: EINVAL
19814  *		ENOTTY
19815  *		ENXIO
19816  *		EIO
19817  *		EFAULT
19818  *		ENOTSUP
19819  *		EPERM
19820  *
19821  *     Context: Called from the device switch at normal priority.
19822  */
19823 
19824 static int
19825 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19826 {
19827 	struct sd_lun	*un = NULL;
19828 	int		err = 0;
19829 	int		i = 0;
19830 	cred_t		*cr;
19831 	int		tmprval = EINVAL;
19832 	int 		is_valid;
19833 
19834 	/*
19835 	 * All device accesses go thru sdstrategy where we check on suspend
19836 	 * status
19837 	 */
19838 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19839 		return (ENXIO);
19840 	}
19841 
19842 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19843 
19844 
19845 	is_valid = SD_IS_VALID_LABEL(un);
19846 
19847 	/*
19848 	 * Moved this wait from sd_uscsi_strategy to here for
19849 	 * reasons of deadlock prevention. Internal driver commands,
19850 	 * specifically those to change a devices power level, result
19851 	 * in a call to sd_uscsi_strategy.
19852 	 */
19853 	mutex_enter(SD_MUTEX(un));
19854 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19855 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19856 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19857 	}
19858 	/*
19859 	 * Twiddling the counter here protects commands from now
19860 	 * through to the top of sd_uscsi_strategy. Without the
19861 	 * counter inc. a power down, for example, could get in
19862 	 * after the above check for state is made and before
19863 	 * execution gets to the top of sd_uscsi_strategy.
19864 	 * That would cause problems.
19865 	 */
19866 	un->un_ncmds_in_driver++;
19867 
19868 	if (!is_valid &&
19869 	    (flag & (FNDELAY | FNONBLOCK))) {
19870 		switch (cmd) {
19871 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19872 		case DKIOCGVTOC:
19873 		case DKIOCGAPART:
19874 		case DKIOCPARTINFO:
19875 		case DKIOCSGEOM:
19876 		case DKIOCSAPART:
19877 		case DKIOCGETEFI:
19878 		case DKIOCPARTITION:
19879 		case DKIOCSVTOC:
19880 		case DKIOCSETEFI:
19881 		case DKIOCGMBOOT:
19882 		case DKIOCSMBOOT:
19883 		case DKIOCG_PHYGEOM:
19884 		case DKIOCG_VIRTGEOM:
19885 			/* let cmlb handle it */
19886 			goto skip_ready_valid;
19887 
19888 		case CDROMPAUSE:
19889 		case CDROMRESUME:
19890 		case CDROMPLAYMSF:
19891 		case CDROMPLAYTRKIND:
19892 		case CDROMREADTOCHDR:
19893 		case CDROMREADTOCENTRY:
19894 		case CDROMSTOP:
19895 		case CDROMSTART:
19896 		case CDROMVOLCTRL:
19897 		case CDROMSUBCHNL:
19898 		case CDROMREADMODE2:
19899 		case CDROMREADMODE1:
19900 		case CDROMREADOFFSET:
19901 		case CDROMSBLKMODE:
19902 		case CDROMGBLKMODE:
19903 		case CDROMGDRVSPEED:
19904 		case CDROMSDRVSPEED:
19905 		case CDROMCDDA:
19906 		case CDROMCDXA:
19907 		case CDROMSUBCODE:
19908 			if (!ISCD(un)) {
19909 				un->un_ncmds_in_driver--;
19910 				ASSERT(un->un_ncmds_in_driver >= 0);
19911 				mutex_exit(SD_MUTEX(un));
19912 				return (ENOTTY);
19913 			}
19914 			break;
19915 		case FDEJECT:
19916 		case DKIOCEJECT:
19917 		case CDROMEJECT:
19918 			if (!un->un_f_eject_media_supported) {
19919 				un->un_ncmds_in_driver--;
19920 				ASSERT(un->un_ncmds_in_driver >= 0);
19921 				mutex_exit(SD_MUTEX(un));
19922 				return (ENOTTY);
19923 			}
19924 			break;
19925 		case DKIOCFLUSHWRITECACHE:
19926 			mutex_exit(SD_MUTEX(un));
19927 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19928 			if (err != 0) {
19929 				mutex_enter(SD_MUTEX(un));
19930 				un->un_ncmds_in_driver--;
19931 				ASSERT(un->un_ncmds_in_driver >= 0);
19932 				mutex_exit(SD_MUTEX(un));
19933 				return (EIO);
19934 			}
19935 			mutex_enter(SD_MUTEX(un));
19936 			/* FALLTHROUGH */
19937 		case DKIOCREMOVABLE:
19938 		case DKIOCHOTPLUGGABLE:
19939 		case DKIOCINFO:
19940 		case DKIOCGMEDIAINFO:
19941 		case MHIOCENFAILFAST:
19942 		case MHIOCSTATUS:
19943 		case MHIOCTKOWN:
19944 		case MHIOCRELEASE:
19945 		case MHIOCGRP_INKEYS:
19946 		case MHIOCGRP_INRESV:
19947 		case MHIOCGRP_REGISTER:
19948 		case MHIOCGRP_RESERVE:
19949 		case MHIOCGRP_PREEMPTANDABORT:
19950 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19951 		case CDROMCLOSETRAY:
19952 		case USCSICMD:
19953 			goto skip_ready_valid;
19954 		default:
19955 			break;
19956 		}
19957 
19958 		mutex_exit(SD_MUTEX(un));
19959 		err = sd_ready_and_valid(un);
19960 		mutex_enter(SD_MUTEX(un));
19961 
19962 		if (err != SD_READY_VALID) {
19963 			switch (cmd) {
19964 			case DKIOCSTATE:
19965 			case CDROMGDRVSPEED:
19966 			case CDROMSDRVSPEED:
19967 			case FDEJECT:	/* for eject command */
19968 			case DKIOCEJECT:
19969 			case CDROMEJECT:
19970 			case DKIOCREMOVABLE:
19971 			case DKIOCHOTPLUGGABLE:
19972 				break;
19973 			default:
19974 				if (un->un_f_has_removable_media) {
19975 					err = ENXIO;
19976 				} else {
19977 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19978 					if (err == SD_RESERVED_BY_OTHERS) {
19979 						err = EACCES;
19980 					} else {
19981 						err = EIO;
19982 					}
19983 				}
19984 				un->un_ncmds_in_driver--;
19985 				ASSERT(un->un_ncmds_in_driver >= 0);
19986 				mutex_exit(SD_MUTEX(un));
19987 				return (err);
19988 			}
19989 		}
19990 	}
19991 
19992 skip_ready_valid:
19993 	mutex_exit(SD_MUTEX(un));
19994 
19995 	switch (cmd) {
19996 	case DKIOCINFO:
19997 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19998 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19999 		break;
20000 
20001 	case DKIOCGMEDIAINFO:
20002 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20003 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20004 		break;
20005 
20006 	case DKIOCGGEOM:
20007 	case DKIOCGVTOC:
20008 	case DKIOCGAPART:
20009 	case DKIOCPARTINFO:
20010 	case DKIOCSGEOM:
20011 	case DKIOCSAPART:
20012 	case DKIOCGETEFI:
20013 	case DKIOCPARTITION:
20014 	case DKIOCSVTOC:
20015 	case DKIOCSETEFI:
20016 	case DKIOCGMBOOT:
20017 	case DKIOCSMBOOT:
20018 	case DKIOCG_PHYGEOM:
20019 	case DKIOCG_VIRTGEOM:
20020 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
20021 
20022 		/* TUR should spin up */
20023 
20024 		if (un->un_f_has_removable_media)
20025 			err = sd_send_scsi_TEST_UNIT_READY(un,
20026 			    SD_CHECK_FOR_MEDIA);
20027 		else
20028 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20029 
20030 		if (err != 0)
20031 			break;
20032 
20033 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
20034 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
20035 
20036 		if ((err == 0) &&
20037 		    ((cmd == DKIOCSETEFI) ||
20038 		    (un->un_f_pkstats_enabled) &&
20039 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
20040 
20041 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
20042 			    (void *)SD_PATH_DIRECT);
20043 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
20044 				sd_set_pstats(un);
20045 				SD_TRACE(SD_LOG_IO_PARTITION, un,
20046 				    "sd_ioctl: un:0x%p pstats created and "
20047 				    "set\n", un);
20048 			}
20049 		}
20050 
20051 		if ((cmd == DKIOCSVTOC) ||
20052 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
20053 
20054 			mutex_enter(SD_MUTEX(un));
20055 			if (un->un_f_devid_supported &&
20056 			    (un->un_f_opt_fab_devid == TRUE)) {
20057 				if (un->un_devid == NULL) {
20058 					sd_register_devid(un, SD_DEVINFO(un),
20059 					    SD_TARGET_IS_UNRESERVED);
20060 				} else {
20061 					/*
20062 					 * The device id for this disk
20063 					 * has been fabricated. The
20064 					 * device id must be preserved
20065 					 * by writing it back out to
20066 					 * disk.
20067 					 */
20068 					if (sd_write_deviceid(un) != 0) {
20069 						ddi_devid_free(un->un_devid);
20070 						un->un_devid = NULL;
20071 					}
20072 				}
20073 			}
20074 			mutex_exit(SD_MUTEX(un));
20075 		}
20076 
20077 		break;
20078 
20079 	case DKIOCLOCK:
20080 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20081 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20082 		    SD_PATH_STANDARD);
20083 		break;
20084 
20085 	case DKIOCUNLOCK:
20086 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20087 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20088 		    SD_PATH_STANDARD);
20089 		break;
20090 
20091 	case DKIOCSTATE: {
20092 		enum dkio_state		state;
20093 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20094 
20095 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20096 			err = EFAULT;
20097 		} else {
20098 			err = sd_check_media(dev, state);
20099 			if (err == 0) {
20100 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20101 				    sizeof (int), flag) != 0)
20102 					err = EFAULT;
20103 			}
20104 		}
20105 		break;
20106 	}
20107 
20108 	case DKIOCREMOVABLE:
20109 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20110 		i = un->un_f_has_removable_media ? 1 : 0;
20111 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20112 			err = EFAULT;
20113 		} else {
20114 			err = 0;
20115 		}
20116 		break;
20117 
20118 	case DKIOCHOTPLUGGABLE:
20119 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
20120 		i = un->un_f_is_hotpluggable ? 1 : 0;
20121 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20122 			err = EFAULT;
20123 		} else {
20124 			err = 0;
20125 		}
20126 		break;
20127 
20128 	case DKIOCGTEMPERATURE:
20129 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20130 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20131 		break;
20132 
20133 	case MHIOCENFAILFAST:
20134 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20135 		if ((err = drv_priv(cred_p)) == 0) {
20136 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20137 		}
20138 		break;
20139 
20140 	case MHIOCTKOWN:
20141 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20142 		if ((err = drv_priv(cred_p)) == 0) {
20143 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20144 		}
20145 		break;
20146 
20147 	case MHIOCRELEASE:
20148 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20149 		if ((err = drv_priv(cred_p)) == 0) {
20150 			err = sd_mhdioc_release(dev);
20151 		}
20152 		break;
20153 
20154 	case MHIOCSTATUS:
20155 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20156 		if ((err = drv_priv(cred_p)) == 0) {
20157 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20158 			case 0:
20159 				err = 0;
20160 				break;
20161 			case EACCES:
20162 				*rval_p = 1;
20163 				err = 0;
20164 				break;
20165 			default:
20166 				err = EIO;
20167 				break;
20168 			}
20169 		}
20170 		break;
20171 
20172 	case MHIOCQRESERVE:
20173 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20174 		if ((err = drv_priv(cred_p)) == 0) {
20175 			err = sd_reserve_release(dev, SD_RESERVE);
20176 		}
20177 		break;
20178 
20179 	case MHIOCREREGISTERDEVID:
20180 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20181 		if (drv_priv(cred_p) == EPERM) {
20182 			err = EPERM;
20183 		} else if (!un->un_f_devid_supported) {
20184 			err = ENOTTY;
20185 		} else {
20186 			err = sd_mhdioc_register_devid(dev);
20187 		}
20188 		break;
20189 
20190 	case MHIOCGRP_INKEYS:
20191 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20192 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20193 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20194 				err = ENOTSUP;
20195 			} else {
20196 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20197 				    flag);
20198 			}
20199 		}
20200 		break;
20201 
20202 	case MHIOCGRP_INRESV:
20203 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20204 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20205 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20206 				err = ENOTSUP;
20207 			} else {
20208 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20209 			}
20210 		}
20211 		break;
20212 
20213 	case MHIOCGRP_REGISTER:
20214 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20215 		if ((err = drv_priv(cred_p)) != EPERM) {
20216 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20217 				err = ENOTSUP;
20218 			} else if (arg != NULL) {
20219 				mhioc_register_t reg;
20220 				if (ddi_copyin((void *)arg, &reg,
20221 				    sizeof (mhioc_register_t), flag) != 0) {
20222 					err = EFAULT;
20223 				} else {
20224 					err =
20225 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20226 					    un, SD_SCSI3_REGISTER,
20227 					    (uchar_t *)&reg);
20228 				}
20229 			}
20230 		}
20231 		break;
20232 
20233 	case MHIOCGRP_RESERVE:
20234 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20235 		if ((err = drv_priv(cred_p)) != EPERM) {
20236 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20237 				err = ENOTSUP;
20238 			} else if (arg != NULL) {
20239 				mhioc_resv_desc_t resv_desc;
20240 				if (ddi_copyin((void *)arg, &resv_desc,
20241 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20242 					err = EFAULT;
20243 				} else {
20244 					err =
20245 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20246 					    un, SD_SCSI3_RESERVE,
20247 					    (uchar_t *)&resv_desc);
20248 				}
20249 			}
20250 		}
20251 		break;
20252 
20253 	case MHIOCGRP_PREEMPTANDABORT:
20254 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20255 		if ((err = drv_priv(cred_p)) != EPERM) {
20256 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20257 				err = ENOTSUP;
20258 			} else if (arg != NULL) {
20259 				mhioc_preemptandabort_t preempt_abort;
20260 				if (ddi_copyin((void *)arg, &preempt_abort,
20261 				    sizeof (mhioc_preemptandabort_t),
20262 				    flag) != 0) {
20263 					err = EFAULT;
20264 				} else {
20265 					err =
20266 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20267 					    un, SD_SCSI3_PREEMPTANDABORT,
20268 					    (uchar_t *)&preempt_abort);
20269 				}
20270 			}
20271 		}
20272 		break;
20273 
20274 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20275 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20276 		if ((err = drv_priv(cred_p)) != EPERM) {
20277 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20278 				err = ENOTSUP;
20279 			} else if (arg != NULL) {
20280 				mhioc_registerandignorekey_t r_and_i;
20281 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20282 				    sizeof (mhioc_registerandignorekey_t),
20283 				    flag) != 0) {
20284 					err = EFAULT;
20285 				} else {
20286 					err =
20287 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20288 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20289 					    (uchar_t *)&r_and_i);
20290 				}
20291 			}
20292 		}
20293 		break;
20294 
20295 	case USCSICMD:
20296 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20297 		cr = ddi_get_cred();
20298 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20299 			err = EPERM;
20300 		} else {
20301 			enum uio_seg	uioseg;
20302 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20303 			    UIO_USERSPACE;
20304 			if (un->un_f_format_in_progress == TRUE) {
20305 				err = EAGAIN;
20306 				break;
20307 			}
20308 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20309 			    flag, uioseg, SD_PATH_STANDARD);
20310 		}
20311 		break;
20312 
20313 	case CDROMPAUSE:
20314 	case CDROMRESUME:
20315 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20316 		if (!ISCD(un)) {
20317 			err = ENOTTY;
20318 		} else {
20319 			err = sr_pause_resume(dev, cmd);
20320 		}
20321 		break;
20322 
20323 	case CDROMPLAYMSF:
20324 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20325 		if (!ISCD(un)) {
20326 			err = ENOTTY;
20327 		} else {
20328 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20329 		}
20330 		break;
20331 
20332 	case CDROMPLAYTRKIND:
20333 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20334 #if defined(__i386) || defined(__amd64)
20335 		/*
20336 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20337 		 */
20338 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20339 #else
20340 		if (!ISCD(un)) {
20341 #endif
20342 			err = ENOTTY;
20343 		} else {
20344 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20345 		}
20346 		break;
20347 
20348 	case CDROMREADTOCHDR:
20349 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20350 		if (!ISCD(un)) {
20351 			err = ENOTTY;
20352 		} else {
20353 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20354 		}
20355 		break;
20356 
20357 	case CDROMREADTOCENTRY:
20358 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20359 		if (!ISCD(un)) {
20360 			err = ENOTTY;
20361 		} else {
20362 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20363 		}
20364 		break;
20365 
20366 	case CDROMSTOP:
20367 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20368 		if (!ISCD(un)) {
20369 			err = ENOTTY;
20370 		} else {
20371 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20372 			    SD_PATH_STANDARD);
20373 		}
20374 		break;
20375 
20376 	case CDROMSTART:
20377 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20378 		if (!ISCD(un)) {
20379 			err = ENOTTY;
20380 		} else {
20381 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20382 			    SD_PATH_STANDARD);
20383 		}
20384 		break;
20385 
20386 	case CDROMCLOSETRAY:
20387 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20388 		if (!ISCD(un)) {
20389 			err = ENOTTY;
20390 		} else {
20391 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20392 			    SD_PATH_STANDARD);
20393 		}
20394 		break;
20395 
20396 	case FDEJECT:	/* for eject command */
20397 	case DKIOCEJECT:
20398 	case CDROMEJECT:
20399 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20400 		if (!un->un_f_eject_media_supported) {
20401 			err = ENOTTY;
20402 		} else {
20403 			err = sr_eject(dev);
20404 		}
20405 		break;
20406 
20407 	case CDROMVOLCTRL:
20408 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20409 		if (!ISCD(un)) {
20410 			err = ENOTTY;
20411 		} else {
20412 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20413 		}
20414 		break;
20415 
20416 	case CDROMSUBCHNL:
20417 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20418 		if (!ISCD(un)) {
20419 			err = ENOTTY;
20420 		} else {
20421 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20422 		}
20423 		break;
20424 
20425 	case CDROMREADMODE2:
20426 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20427 		if (!ISCD(un)) {
20428 			err = ENOTTY;
20429 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20430 			/*
20431 			 * If the drive supports READ CD, use that instead of
20432 			 * switching the LBA size via a MODE SELECT
20433 			 * Block Descriptor
20434 			 */
20435 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20436 		} else {
20437 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20438 		}
20439 		break;
20440 
20441 	case CDROMREADMODE1:
20442 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20443 		if (!ISCD(un)) {
20444 			err = ENOTTY;
20445 		} else {
20446 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20447 		}
20448 		break;
20449 
20450 	case CDROMREADOFFSET:
20451 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20452 		if (!ISCD(un)) {
20453 			err = ENOTTY;
20454 		} else {
20455 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20456 			    flag);
20457 		}
20458 		break;
20459 
20460 	case CDROMSBLKMODE:
20461 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20462 		/*
20463 		 * There is no means of changing block size in case of atapi
20464 		 * drives, thus return ENOTTY if drive type is atapi
20465 		 */
20466 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20467 			err = ENOTTY;
20468 		} else if (un->un_f_mmc_cap == TRUE) {
20469 
20470 			/*
20471 			 * MMC Devices do not support changing the
20472 			 * logical block size
20473 			 *
20474 			 * Note: EINVAL is being returned instead of ENOTTY to
20475 			 * maintain consistancy with the original mmc
20476 			 * driver update.
20477 			 */
20478 			err = EINVAL;
20479 		} else {
20480 			mutex_enter(SD_MUTEX(un));
20481 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20482 			    (un->un_ncmds_in_transport > 0)) {
20483 				mutex_exit(SD_MUTEX(un));
20484 				err = EINVAL;
20485 			} else {
20486 				mutex_exit(SD_MUTEX(un));
20487 				err = sr_change_blkmode(dev, cmd, arg, flag);
20488 			}
20489 		}
20490 		break;
20491 
20492 	case CDROMGBLKMODE:
20493 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20494 		if (!ISCD(un)) {
20495 			err = ENOTTY;
20496 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20497 		    (un->un_f_blockcount_is_valid != FALSE)) {
20498 			/*
20499 			 * Drive is an ATAPI drive so return target block
20500 			 * size for ATAPI drives since we cannot change the
20501 			 * blocksize on ATAPI drives. Used primarily to detect
20502 			 * if an ATAPI cdrom is present.
20503 			 */
20504 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20505 			    sizeof (int), flag) != 0) {
20506 				err = EFAULT;
20507 			} else {
20508 				err = 0;
20509 			}
20510 
20511 		} else {
20512 			/*
20513 			 * Drive supports changing block sizes via a Mode
20514 			 * Select.
20515 			 */
20516 			err = sr_change_blkmode(dev, cmd, arg, flag);
20517 		}
20518 		break;
20519 
20520 	case CDROMGDRVSPEED:
20521 	case CDROMSDRVSPEED:
20522 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20523 		if (!ISCD(un)) {
20524 			err = ENOTTY;
20525 		} else if (un->un_f_mmc_cap == TRUE) {
20526 			/*
20527 			 * Note: In the future the driver implementation
20528 			 * for getting and
20529 			 * setting cd speed should entail:
20530 			 * 1) If non-mmc try the Toshiba mode page
20531 			 *    (sr_change_speed)
20532 			 * 2) If mmc but no support for Real Time Streaming try
20533 			 *    the SET CD SPEED (0xBB) command
20534 			 *   (sr_atapi_change_speed)
20535 			 * 3) If mmc and support for Real Time Streaming
20536 			 *    try the GET PERFORMANCE and SET STREAMING
20537 			 *    commands (not yet implemented, 4380808)
20538 			 */
20539 			/*
20540 			 * As per recent MMC spec, CD-ROM speed is variable
20541 			 * and changes with LBA. Since there is no such
20542 			 * things as drive speed now, fail this ioctl.
20543 			 *
20544 			 * Note: EINVAL is returned for consistancy of original
20545 			 * implementation which included support for getting
20546 			 * the drive speed of mmc devices but not setting
20547 			 * the drive speed. Thus EINVAL would be returned
20548 			 * if a set request was made for an mmc device.
20549 			 * We no longer support get or set speed for
20550 			 * mmc but need to remain consistent with regard
20551 			 * to the error code returned.
20552 			 */
20553 			err = EINVAL;
20554 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20555 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20556 		} else {
20557 			err = sr_change_speed(dev, cmd, arg, flag);
20558 		}
20559 		break;
20560 
20561 	case CDROMCDDA:
20562 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20563 		if (!ISCD(un)) {
20564 			err = ENOTTY;
20565 		} else {
20566 			err = sr_read_cdda(dev, (void *)arg, flag);
20567 		}
20568 		break;
20569 
20570 	case CDROMCDXA:
20571 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20572 		if (!ISCD(un)) {
20573 			err = ENOTTY;
20574 		} else {
20575 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20576 		}
20577 		break;
20578 
20579 	case CDROMSUBCODE:
20580 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20581 		if (!ISCD(un)) {
20582 			err = ENOTTY;
20583 		} else {
20584 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20585 		}
20586 		break;
20587 
20588 
20589 #ifdef SDDEBUG
20590 /* RESET/ABORTS testing ioctls */
20591 	case DKIOCRESET: {
20592 		int	reset_level;
20593 
20594 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20595 			err = EFAULT;
20596 		} else {
20597 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20598 			    "reset_level = 0x%lx\n", reset_level);
20599 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20600 				err = 0;
20601 			} else {
20602 				err = EIO;
20603 			}
20604 		}
20605 		break;
20606 	}
20607 
20608 	case DKIOCABORT:
20609 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20610 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20611 			err = 0;
20612 		} else {
20613 			err = EIO;
20614 		}
20615 		break;
20616 #endif
20617 
20618 #ifdef SD_FAULT_INJECTION
20619 /* SDIOC FaultInjection testing ioctls */
20620 	case SDIOCSTART:
20621 	case SDIOCSTOP:
20622 	case SDIOCINSERTPKT:
20623 	case SDIOCINSERTXB:
20624 	case SDIOCINSERTUN:
20625 	case SDIOCINSERTARQ:
20626 	case SDIOCPUSH:
20627 	case SDIOCRETRIEVE:
20628 	case SDIOCRUN:
20629 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20630 		    "SDIOC detected cmd:0x%X:\n", cmd);
20631 		/* call error generator */
20632 		sd_faultinjection_ioctl(cmd, arg, un);
20633 		err = 0;
20634 		break;
20635 
20636 #endif /* SD_FAULT_INJECTION */
20637 
20638 	case DKIOCFLUSHWRITECACHE:
20639 		{
20640 			struct dk_callback *dkc = (struct dk_callback *)arg;
20641 
20642 			mutex_enter(SD_MUTEX(un));
20643 			if (!un->un_f_sync_cache_supported ||
20644 			    !un->un_f_write_cache_enabled) {
20645 				err = un->un_f_sync_cache_supported ?
20646 				    0 : ENOTSUP;
20647 				mutex_exit(SD_MUTEX(un));
20648 				if ((flag & FKIOCTL) && dkc != NULL &&
20649 				    dkc->dkc_callback != NULL) {
20650 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20651 					    err);
20652 					/*
20653 					 * Did callback and reported error.
20654 					 * Since we did a callback, ioctl
20655 					 * should return 0.
20656 					 */
20657 					err = 0;
20658 				}
20659 				break;
20660 			}
20661 			mutex_exit(SD_MUTEX(un));
20662 
20663 			if ((flag & FKIOCTL) && dkc != NULL &&
20664 			    dkc->dkc_callback != NULL) {
20665 				/* async SYNC CACHE request */
20666 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20667 			} else {
20668 				/* synchronous SYNC CACHE request */
20669 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20670 			}
20671 		}
20672 		break;
20673 
20674 	case DKIOCGETWCE: {
20675 
20676 		int wce;
20677 
20678 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20679 			break;
20680 		}
20681 
20682 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20683 			err = EFAULT;
20684 		}
20685 		break;
20686 	}
20687 
20688 	case DKIOCSETWCE: {
20689 
20690 		int wce, sync_supported;
20691 
20692 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20693 			err = EFAULT;
20694 			break;
20695 		}
20696 
20697 		/*
20698 		 * Synchronize multiple threads trying to enable
20699 		 * or disable the cache via the un_f_wcc_cv
20700 		 * condition variable.
20701 		 */
20702 		mutex_enter(SD_MUTEX(un));
20703 
20704 		/*
20705 		 * Don't allow the cache to be enabled if the
20706 		 * config file has it disabled.
20707 		 */
20708 		if (un->un_f_opt_disable_cache && wce) {
20709 			mutex_exit(SD_MUTEX(un));
20710 			err = EINVAL;
20711 			break;
20712 		}
20713 
20714 		/*
20715 		 * Wait for write cache change in progress
20716 		 * bit to be clear before proceeding.
20717 		 */
20718 		while (un->un_f_wcc_inprog)
20719 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20720 
20721 		un->un_f_wcc_inprog = 1;
20722 
20723 		if (un->un_f_write_cache_enabled && wce == 0) {
20724 			/*
20725 			 * Disable the write cache.  Don't clear
20726 			 * un_f_write_cache_enabled until after
20727 			 * the mode select and flush are complete.
20728 			 */
20729 			sync_supported = un->un_f_sync_cache_supported;
20730 
20731 			/*
20732 			 * If cache flush is suppressed, we assume that the
20733 			 * controller firmware will take care of managing the
20734 			 * write cache for us: no need to explicitly
20735 			 * disable it.
20736 			 */
20737 			if (!un->un_f_suppress_cache_flush) {
20738 				mutex_exit(SD_MUTEX(un));
20739 				if ((err = sd_cache_control(un,
20740 				    SD_CACHE_NOCHANGE,
20741 				    SD_CACHE_DISABLE)) == 0 &&
20742 				    sync_supported) {
20743 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20744 					    NULL);
20745 				}
20746 			} else {
20747 				mutex_exit(SD_MUTEX(un));
20748 			}
20749 
20750 			mutex_enter(SD_MUTEX(un));
20751 			if (err == 0) {
20752 				un->un_f_write_cache_enabled = 0;
20753 			}
20754 
20755 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20756 			/*
20757 			 * Set un_f_write_cache_enabled first, so there is
20758 			 * no window where the cache is enabled, but the
20759 			 * bit says it isn't.
20760 			 */
20761 			un->un_f_write_cache_enabled = 1;
20762 
20763 			/*
20764 			 * If cache flush is suppressed, we assume that the
20765 			 * controller firmware will take care of managing the
20766 			 * write cache for us: no need to explicitly
20767 			 * enable it.
20768 			 */
20769 			if (!un->un_f_suppress_cache_flush) {
20770 				mutex_exit(SD_MUTEX(un));
20771 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20772 				    SD_CACHE_ENABLE);
20773 			} else {
20774 				mutex_exit(SD_MUTEX(un));
20775 			}
20776 
20777 			mutex_enter(SD_MUTEX(un));
20778 
20779 			if (err) {
20780 				un->un_f_write_cache_enabled = 0;
20781 			}
20782 		}
20783 
20784 		un->un_f_wcc_inprog = 0;
20785 		cv_broadcast(&un->un_wcc_cv);
20786 		mutex_exit(SD_MUTEX(un));
20787 		break;
20788 	}
20789 
20790 	default:
20791 		err = ENOTTY;
20792 		break;
20793 	}
20794 	mutex_enter(SD_MUTEX(un));
20795 	un->un_ncmds_in_driver--;
20796 	ASSERT(un->un_ncmds_in_driver >= 0);
20797 	mutex_exit(SD_MUTEX(un));
20798 
20799 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20800 	return (err);
20801 }
20802 
20803 
20804 /*
20805  *    Function: sd_dkio_ctrl_info
20806  *
20807  * Description: This routine is the driver entry point for handling controller
20808  *		information ioctl requests (DKIOCINFO).
20809  *
20810  *   Arguments: dev  - the device number
20811  *		arg  - pointer to user provided dk_cinfo structure
20812  *		       specifying the controller type and attributes.
20813  *		flag - this argument is a pass through to ddi_copyxxx()
20814  *		       directly from the mode argument of ioctl().
20815  *
20816  * Return Code: 0
20817  *		EFAULT
20818  *		ENXIO
20819  */
20820 
20821 static int
20822 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20823 {
20824 	struct sd_lun	*un = NULL;
20825 	struct dk_cinfo	*info;
20826 	dev_info_t	*pdip;
20827 	int		lun, tgt;
20828 
20829 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20830 		return (ENXIO);
20831 	}
20832 
20833 	info = (struct dk_cinfo *)
20834 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20835 
20836 	switch (un->un_ctype) {
20837 	case CTYPE_CDROM:
20838 		info->dki_ctype = DKC_CDROM;
20839 		break;
20840 	default:
20841 		info->dki_ctype = DKC_SCSI_CCS;
20842 		break;
20843 	}
20844 	pdip = ddi_get_parent(SD_DEVINFO(un));
20845 	info->dki_cnum = ddi_get_instance(pdip);
20846 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20847 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20848 	} else {
20849 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20850 		    DK_DEVLEN - 1);
20851 	}
20852 
20853 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20854 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20855 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20856 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20857 
20858 	/* Unit Information */
20859 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20860 	info->dki_slave = ((tgt << 3) | lun);
20861 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20862 	    DK_DEVLEN - 1);
20863 	info->dki_flags = DKI_FMTVOL;
20864 	info->dki_partition = SDPART(dev);
20865 
20866 	/* Max Transfer size of this device in blocks */
20867 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20868 	info->dki_addr = 0;
20869 	info->dki_space = 0;
20870 	info->dki_prio = 0;
20871 	info->dki_vec = 0;
20872 
20873 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20874 		kmem_free(info, sizeof (struct dk_cinfo));
20875 		return (EFAULT);
20876 	} else {
20877 		kmem_free(info, sizeof (struct dk_cinfo));
20878 		return (0);
20879 	}
20880 }
20881 
20882 
20883 /*
20884  *    Function: sd_get_media_info
20885  *
20886  * Description: This routine is the driver entry point for handling ioctl
20887  *		requests for the media type or command set profile used by the
20888  *		drive to operate on the media (DKIOCGMEDIAINFO).
20889  *
20890  *   Arguments: dev	- the device number
20891  *		arg	- pointer to user provided dk_minfo structure
20892  *			  specifying the media type, logical block size and
20893  *			  drive capacity.
20894  *		flag	- this argument is a pass through to ddi_copyxxx()
20895  *			  directly from the mode argument of ioctl().
20896  *
20897  * Return Code: 0
20898  *		EACCESS
20899  *		EFAULT
20900  *		ENXIO
20901  *		EIO
20902  */
20903 
20904 static int
20905 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20906 {
20907 	struct sd_lun		*un = NULL;
20908 	struct uscsi_cmd	com;
20909 	struct scsi_inquiry	*sinq;
20910 	struct dk_minfo		media_info;
20911 	u_longlong_t		media_capacity;
20912 	uint64_t		capacity;
20913 	uint_t			lbasize;
20914 	uchar_t			*out_data;
20915 	uchar_t			*rqbuf;
20916 	int			rval = 0;
20917 	int			rtn;
20918 
20919 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20920 	    (un->un_state == SD_STATE_OFFLINE)) {
20921 		return (ENXIO);
20922 	}
20923 
20924 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20925 
20926 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20927 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20928 
20929 	/* Issue a TUR to determine if the drive is ready with media present */
20930 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20931 	if (rval == ENXIO) {
20932 		goto done;
20933 	}
20934 
20935 	/* Now get configuration data */
20936 	if (ISCD(un)) {
20937 		media_info.dki_media_type = DK_CDROM;
20938 
20939 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20940 		if (un->un_f_mmc_cap == TRUE) {
20941 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20942 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20943 			    SD_PATH_STANDARD);
20944 
20945 			if (rtn) {
20946 				/*
20947 				 * Failed for other than an illegal request
20948 				 * or command not supported
20949 				 */
20950 				if ((com.uscsi_status == STATUS_CHECK) &&
20951 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20952 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20953 					    (rqbuf[12] != 0x20)) {
20954 						rval = EIO;
20955 						goto done;
20956 					}
20957 				}
20958 			} else {
20959 				/*
20960 				 * The GET CONFIGURATION command succeeded
20961 				 * so set the media type according to the
20962 				 * returned data
20963 				 */
20964 				media_info.dki_media_type = out_data[6];
20965 				media_info.dki_media_type <<= 8;
20966 				media_info.dki_media_type |= out_data[7];
20967 			}
20968 		}
20969 	} else {
20970 		/*
20971 		 * The profile list is not available, so we attempt to identify
20972 		 * the media type based on the inquiry data
20973 		 */
20974 		sinq = un->un_sd->sd_inq;
20975 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20976 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20977 			/* This is a direct access device  or optical disk */
20978 			media_info.dki_media_type = DK_FIXED_DISK;
20979 
20980 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20981 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20982 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20983 					media_info.dki_media_type = DK_ZIP;
20984 				} else if (
20985 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20986 					media_info.dki_media_type = DK_JAZ;
20987 				}
20988 			}
20989 		} else {
20990 			/*
20991 			 * Not a CD, direct access or optical disk so return
20992 			 * unknown media
20993 			 */
20994 			media_info.dki_media_type = DK_UNKNOWN;
20995 		}
20996 	}
20997 
20998 	/* Now read the capacity so we can provide the lbasize and capacity */
20999 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21000 	    SD_PATH_DIRECT)) {
21001 	case 0:
21002 		break;
21003 	case EACCES:
21004 		rval = EACCES;
21005 		goto done;
21006 	default:
21007 		rval = EIO;
21008 		goto done;
21009 	}
21010 
21011 	/*
21012 	 * If lun is expanded dynamically, update the un structure.
21013 	 */
21014 	mutex_enter(SD_MUTEX(un));
21015 	if ((un->un_f_blockcount_is_valid == TRUE) &&
21016 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
21017 	    (capacity > un->un_blockcount)) {
21018 		sd_update_block_info(un, lbasize, capacity);
21019 	}
21020 	mutex_exit(SD_MUTEX(un));
21021 
21022 	media_info.dki_lbsize = lbasize;
21023 	media_capacity = capacity;
21024 
21025 	/*
21026 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21027 	 * un->un_sys_blocksize chunks. So we need to convert it into
21028 	 * cap.lbasize chunks.
21029 	 */
21030 	media_capacity *= un->un_sys_blocksize;
21031 	media_capacity /= lbasize;
21032 	media_info.dki_capacity = media_capacity;
21033 
21034 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21035 		rval = EFAULT;
21036 		/* Put goto. Anybody might add some code below in future */
21037 		goto done;
21038 	}
21039 done:
21040 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21041 	kmem_free(rqbuf, SENSE_LENGTH);
21042 	return (rval);
21043 }
21044 
21045 
21046 /*
21047  *    Function: sd_check_media
21048  *
21049  * Description: This utility routine implements the functionality for the
21050  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
21051  *		driver state changes from that specified by the user
21052  *		(inserted or ejected). For example, if the user specifies
21053  *		DKIO_EJECTED and the current media state is inserted this
21054  *		routine will immediately return DKIO_INSERTED. However, if the
21055  *		current media state is not inserted the user thread will be
21056  *		blocked until the drive state changes. If DKIO_NONE is specified
21057  *		the user thread will block until a drive state change occurs.
21058  *
21059  *   Arguments: dev  - the device number
21060  *		state  - user pointer to a dkio_state, updated with the current
21061  *			drive state at return.
21062  *
21063  * Return Code: ENXIO
21064  *		EIO
21065  *		EAGAIN
21066  *		EINTR
21067  */
21068 
21069 static int
21070 sd_check_media(dev_t dev, enum dkio_state state)
21071 {
21072 	struct sd_lun		*un = NULL;
21073 	enum dkio_state		prev_state;
21074 	opaque_t		token = NULL;
21075 	int			rval = 0;
21076 
21077 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21078 		return (ENXIO);
21079 	}
21080 
21081 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
21082 
21083 	mutex_enter(SD_MUTEX(un));
21084 
21085 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
21086 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
21087 
21088 	prev_state = un->un_mediastate;
21089 
21090 	/* is there anything to do? */
21091 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
21092 		/*
21093 		 * submit the request to the scsi_watch service;
21094 		 * scsi_media_watch_cb() does the real work
21095 		 */
21096 		mutex_exit(SD_MUTEX(un));
21097 
21098 		/*
21099 		 * This change handles the case where a scsi watch request is
21100 		 * added to a device that is powered down. To accomplish this
21101 		 * we power up the device before adding the scsi watch request,
21102 		 * since the scsi watch sends a TUR directly to the device
21103 		 * which the device cannot handle if it is powered down.
21104 		 */
21105 		if (sd_pm_entry(un) != DDI_SUCCESS) {
21106 			mutex_enter(SD_MUTEX(un));
21107 			goto done;
21108 		}
21109 
21110 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
21111 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
21112 		    (caddr_t)dev);
21113 
21114 		sd_pm_exit(un);
21115 
21116 		mutex_enter(SD_MUTEX(un));
21117 		if (token == NULL) {
21118 			rval = EAGAIN;
21119 			goto done;
21120 		}
21121 
21122 		/*
21123 		 * This is a special case IOCTL that doesn't return
21124 		 * until the media state changes. Routine sdpower
21125 		 * knows about and handles this so don't count it
21126 		 * as an active cmd in the driver, which would
21127 		 * keep the device busy to the pm framework.
21128 		 * If the count isn't decremented the device can't
21129 		 * be powered down.
21130 		 */
21131 		un->un_ncmds_in_driver--;
21132 		ASSERT(un->un_ncmds_in_driver >= 0);
21133 
21134 		/*
21135 		 * if a prior request had been made, this will be the same
21136 		 * token, as scsi_watch was designed that way.
21137 		 */
21138 		un->un_swr_token = token;
21139 		un->un_specified_mediastate = state;
21140 
21141 		/*
21142 		 * now wait for media change
21143 		 * we will not be signalled unless mediastate == state but it is
21144 		 * still better to test for this condition, since there is a
21145 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
21146 		 */
21147 		SD_TRACE(SD_LOG_COMMON, un,
21148 		    "sd_check_media: waiting for media state change\n");
21149 		while (un->un_mediastate == state) {
21150 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
21151 				SD_TRACE(SD_LOG_COMMON, un,
21152 				    "sd_check_media: waiting for media state "
21153 				    "was interrupted\n");
21154 				un->un_ncmds_in_driver++;
21155 				rval = EINTR;
21156 				goto done;
21157 			}
21158 			SD_TRACE(SD_LOG_COMMON, un,
21159 			    "sd_check_media: received signal, state=%x\n",
21160 			    un->un_mediastate);
21161 		}
21162 		/*
21163 		 * Inc the counter to indicate the device once again
21164 		 * has an active outstanding cmd.
21165 		 */
21166 		un->un_ncmds_in_driver++;
21167 	}
21168 
21169 	/* invalidate geometry */
21170 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
21171 		sr_ejected(un);
21172 	}
21173 
21174 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
21175 		uint64_t	capacity;
21176 		uint_t		lbasize;
21177 
21178 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
21179 		mutex_exit(SD_MUTEX(un));
21180 		/*
21181 		 * Since the following routines use SD_PATH_DIRECT, we must
21182 		 * call PM directly before the upcoming disk accesses. This
21183 		 * may cause the disk to be power/spin up.
21184 		 */
21185 
21186 		if (sd_pm_entry(un) == DDI_SUCCESS) {
21187 			rval = sd_send_scsi_READ_CAPACITY(un,
21188 			    &capacity,
21189 			    &lbasize, SD_PATH_DIRECT);
21190 			if (rval != 0) {
21191 				sd_pm_exit(un);
21192 				mutex_enter(SD_MUTEX(un));
21193 				goto done;
21194 			}
21195 		} else {
21196 			rval = EIO;
21197 			mutex_enter(SD_MUTEX(un));
21198 			goto done;
21199 		}
21200 		mutex_enter(SD_MUTEX(un));
21201 
21202 		sd_update_block_info(un, lbasize, capacity);
21203 
21204 		/*
21205 		 *  Check if the media in the device is writable or not
21206 		 */
21207 		if (ISCD(un))
21208 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
21209 
21210 		mutex_exit(SD_MUTEX(un));
21211 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21212 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21213 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21214 			sd_set_pstats(un);
21215 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21216 			    "sd_check_media: un:0x%p pstats created and "
21217 			    "set\n", un);
21218 		}
21219 
21220 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21221 		    SD_PATH_DIRECT);
21222 		sd_pm_exit(un);
21223 
21224 		mutex_enter(SD_MUTEX(un));
21225 	}
21226 done:
21227 	un->un_f_watcht_stopped = FALSE;
21228 	if (un->un_swr_token) {
21229 		/*
21230 		 * Use of this local token and the mutex ensures that we avoid
21231 		 * some race conditions associated with terminating the
21232 		 * scsi watch.
21233 		 */
21234 		token = un->un_swr_token;
21235 		un->un_swr_token = (opaque_t)NULL;
21236 		mutex_exit(SD_MUTEX(un));
21237 		(void) scsi_watch_request_terminate(token,
21238 		    SCSI_WATCH_TERMINATE_WAIT);
21239 		mutex_enter(SD_MUTEX(un));
21240 	}
21241 
21242 	/*
21243 	 * Update the capacity kstat value, if no media previously
21244 	 * (capacity kstat is 0) and a media has been inserted
21245 	 * (un_f_blockcount_is_valid == TRUE)
21246 	 */
21247 	if (un->un_errstats) {
21248 		struct sd_errstats	*stp = NULL;
21249 
21250 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21251 		if ((stp->sd_capacity.value.ui64 == 0) &&
21252 		    (un->un_f_blockcount_is_valid == TRUE)) {
21253 			stp->sd_capacity.value.ui64 =
21254 			    (uint64_t)((uint64_t)un->un_blockcount *
21255 			    un->un_sys_blocksize);
21256 		}
21257 	}
21258 	mutex_exit(SD_MUTEX(un));
21259 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21260 	return (rval);
21261 }
21262 
21263 
21264 /*
21265  *    Function: sd_delayed_cv_broadcast
21266  *
21267  * Description: Delayed cv_broadcast to allow for target to recover from media
21268  *		insertion.
21269  *
21270  *   Arguments: arg - driver soft state (unit) structure
21271  */
21272 
21273 static void
21274 sd_delayed_cv_broadcast(void *arg)
21275 {
21276 	struct sd_lun *un = arg;
21277 
21278 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21279 
21280 	mutex_enter(SD_MUTEX(un));
21281 	un->un_dcvb_timeid = NULL;
21282 	cv_broadcast(&un->un_state_cv);
21283 	mutex_exit(SD_MUTEX(un));
21284 }
21285 
21286 
21287 /*
21288  *    Function: sd_media_watch_cb
21289  *
21290  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21291  *		routine processes the TUR sense data and updates the driver
21292  *		state if a transition has occurred. The user thread
21293  *		(sd_check_media) is then signalled.
21294  *
21295  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21296  *			among multiple watches that share this callback function
21297  *		resultp - scsi watch facility result packet containing scsi
21298  *			  packet, status byte and sense data
21299  *
21300  * Return Code: 0 for success, -1 for failure
21301  */
21302 
21303 static int
21304 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21305 {
21306 	struct sd_lun			*un;
21307 	struct scsi_status		*statusp = resultp->statusp;
21308 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21309 	enum dkio_state			state = DKIO_NONE;
21310 	dev_t				dev = (dev_t)arg;
21311 	uchar_t				actual_sense_length;
21312 	uint8_t				skey, asc, ascq;
21313 
21314 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21315 		return (-1);
21316 	}
21317 	actual_sense_length = resultp->actual_sense_length;
21318 
21319 	mutex_enter(SD_MUTEX(un));
21320 	SD_TRACE(SD_LOG_COMMON, un,
21321 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21322 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21323 
21324 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21325 		un->un_mediastate = DKIO_DEV_GONE;
21326 		cv_broadcast(&un->un_state_cv);
21327 		mutex_exit(SD_MUTEX(un));
21328 
21329 		return (0);
21330 	}
21331 
21332 	/*
21333 	 * If there was a check condition then sensep points to valid sense data
21334 	 * If status was not a check condition but a reservation or busy status
21335 	 * then the new state is DKIO_NONE
21336 	 */
21337 	if (sensep != NULL) {
21338 		skey = scsi_sense_key(sensep);
21339 		asc = scsi_sense_asc(sensep);
21340 		ascq = scsi_sense_ascq(sensep);
21341 
21342 		SD_INFO(SD_LOG_COMMON, un,
21343 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21344 		    skey, asc, ascq);
21345 		/* This routine only uses up to 13 bytes of sense data. */
21346 		if (actual_sense_length >= 13) {
21347 			if (skey == KEY_UNIT_ATTENTION) {
21348 				if (asc == 0x28) {
21349 					state = DKIO_INSERTED;
21350 				}
21351 			} else if (skey == KEY_NOT_READY) {
21352 				/*
21353 				 * if 02/04/02  means that the host
21354 				 * should send start command. Explicitly
21355 				 * leave the media state as is
21356 				 * (inserted) as the media is inserted
21357 				 * and host has stopped device for PM
21358 				 * reasons. Upon next true read/write
21359 				 * to this media will bring the
21360 				 * device to the right state good for
21361 				 * media access.
21362 				 */
21363 				if (asc == 0x3a) {
21364 					state = DKIO_EJECTED;
21365 				} else {
21366 					/*
21367 					 * If the drive is busy with an
21368 					 * operation or long write, keep the
21369 					 * media in an inserted state.
21370 					 */
21371 
21372 					if ((asc == 0x04) &&
21373 					    ((ascq == 0x02) ||
21374 					    (ascq == 0x07) ||
21375 					    (ascq == 0x08))) {
21376 						state = DKIO_INSERTED;
21377 					}
21378 				}
21379 			} else if (skey == KEY_NO_SENSE) {
21380 				if ((asc == 0x00) && (ascq == 0x00)) {
21381 					/*
21382 					 * Sense Data 00/00/00 does not provide
21383 					 * any information about the state of
21384 					 * the media. Ignore it.
21385 					 */
21386 					mutex_exit(SD_MUTEX(un));
21387 					return (0);
21388 				}
21389 			}
21390 		}
21391 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21392 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21393 		state = DKIO_INSERTED;
21394 	}
21395 
21396 	SD_TRACE(SD_LOG_COMMON, un,
21397 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21398 	    state, un->un_specified_mediastate);
21399 
21400 	/*
21401 	 * now signal the waiting thread if this is *not* the specified state;
21402 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21403 	 * to recover
21404 	 */
21405 	if (state != un->un_specified_mediastate) {
21406 		un->un_mediastate = state;
21407 		if (state == DKIO_INSERTED) {
21408 			/*
21409 			 * delay the signal to give the drive a chance
21410 			 * to do what it apparently needs to do
21411 			 */
21412 			SD_TRACE(SD_LOG_COMMON, un,
21413 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21414 			if (un->un_dcvb_timeid == NULL) {
21415 				un->un_dcvb_timeid =
21416 				    timeout(sd_delayed_cv_broadcast, un,
21417 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21418 			}
21419 		} else {
21420 			SD_TRACE(SD_LOG_COMMON, un,
21421 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21422 			cv_broadcast(&un->un_state_cv);
21423 		}
21424 	}
21425 	mutex_exit(SD_MUTEX(un));
21426 	return (0);
21427 }
21428 
21429 
21430 /*
21431  *    Function: sd_dkio_get_temp
21432  *
21433  * Description: This routine is the driver entry point for handling ioctl
21434  *		requests to get the disk temperature.
21435  *
21436  *   Arguments: dev  - the device number
21437  *		arg  - pointer to user provided dk_temperature structure.
21438  *		flag - this argument is a pass through to ddi_copyxxx()
21439  *		       directly from the mode argument of ioctl().
21440  *
21441  * Return Code: 0
21442  *		EFAULT
21443  *		ENXIO
21444  *		EAGAIN
21445  */
21446 
21447 static int
21448 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21449 {
21450 	struct sd_lun		*un = NULL;
21451 	struct dk_temperature	*dktemp = NULL;
21452 	uchar_t			*temperature_page;
21453 	int			rval = 0;
21454 	int			path_flag = SD_PATH_STANDARD;
21455 
21456 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21457 		return (ENXIO);
21458 	}
21459 
21460 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21461 
21462 	/* copyin the disk temp argument to get the user flags */
21463 	if (ddi_copyin((void *)arg, dktemp,
21464 	    sizeof (struct dk_temperature), flag) != 0) {
21465 		rval = EFAULT;
21466 		goto done;
21467 	}
21468 
21469 	/* Initialize the temperature to invalid. */
21470 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21471 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21472 
21473 	/*
21474 	 * Note: Investigate removing the "bypass pm" semantic.
21475 	 * Can we just bypass PM always?
21476 	 */
21477 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21478 		path_flag = SD_PATH_DIRECT;
21479 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21480 		mutex_enter(&un->un_pm_mutex);
21481 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21482 			/*
21483 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21484 			 * in low power mode, we can not wake it up, Need to
21485 			 * return EAGAIN.
21486 			 */
21487 			mutex_exit(&un->un_pm_mutex);
21488 			rval = EAGAIN;
21489 			goto done;
21490 		} else {
21491 			/*
21492 			 * Indicate to PM the device is busy. This is required
21493 			 * to avoid a race - i.e. the ioctl is issuing a
21494 			 * command and the pm framework brings down the device
21495 			 * to low power mode (possible power cut-off on some
21496 			 * platforms).
21497 			 */
21498 			mutex_exit(&un->un_pm_mutex);
21499 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21500 				rval = EAGAIN;
21501 				goto done;
21502 			}
21503 		}
21504 	}
21505 
21506 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21507 
21508 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21509 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21510 		goto done2;
21511 	}
21512 
21513 	/*
21514 	 * For the current temperature verify that the parameter length is 0x02
21515 	 * and the parameter code is 0x00
21516 	 */
21517 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21518 	    (temperature_page[5] == 0x00)) {
21519 		if (temperature_page[9] == 0xFF) {
21520 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21521 		} else {
21522 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21523 		}
21524 	}
21525 
21526 	/*
21527 	 * For the reference temperature verify that the parameter
21528 	 * length is 0x02 and the parameter code is 0x01
21529 	 */
21530 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21531 	    (temperature_page[11] == 0x01)) {
21532 		if (temperature_page[15] == 0xFF) {
21533 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21534 		} else {
21535 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21536 		}
21537 	}
21538 
21539 	/* Do the copyout regardless of the temperature commands status. */
21540 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21541 	    flag) != 0) {
21542 		rval = EFAULT;
21543 	}
21544 
21545 done2:
21546 	if (path_flag == SD_PATH_DIRECT) {
21547 		sd_pm_exit(un);
21548 	}
21549 
21550 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21551 done:
21552 	if (dktemp != NULL) {
21553 		kmem_free(dktemp, sizeof (struct dk_temperature));
21554 	}
21555 
21556 	return (rval);
21557 }
21558 
21559 
21560 /*
21561  *    Function: sd_log_page_supported
21562  *
21563  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21564  *		supported log pages.
21565  *
21566  *   Arguments: un -
21567  *		log_page -
21568  *
21569  * Return Code: -1 - on error (log sense is optional and may not be supported).
21570  *		0  - log page not found.
21571  *  		1  - log page found.
21572  */
21573 
21574 static int
21575 sd_log_page_supported(struct sd_lun *un, int log_page)
21576 {
21577 	uchar_t *log_page_data;
21578 	int	i;
21579 	int	match = 0;
21580 	int	log_size;
21581 
21582 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21583 
21584 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21585 	    SD_PATH_DIRECT) != 0) {
21586 		SD_ERROR(SD_LOG_COMMON, un,
21587 		    "sd_log_page_supported: failed log page retrieval\n");
21588 		kmem_free(log_page_data, 0xFF);
21589 		return (-1);
21590 	}
21591 	log_size = log_page_data[3];
21592 
21593 	/*
21594 	 * The list of supported log pages start from the fourth byte. Check
21595 	 * until we run out of log pages or a match is found.
21596 	 */
21597 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21598 		if (log_page_data[i] == log_page) {
21599 			match++;
21600 		}
21601 	}
21602 	kmem_free(log_page_data, 0xFF);
21603 	return (match);
21604 }
21605 
21606 
21607 /*
21608  *    Function: sd_mhdioc_failfast
21609  *
21610  * Description: This routine is the driver entry point for handling ioctl
21611  *		requests to enable/disable the multihost failfast option.
21612  *		(MHIOCENFAILFAST)
21613  *
21614  *   Arguments: dev	- the device number
21615  *		arg	- user specified probing interval.
21616  *		flag	- this argument is a pass through to ddi_copyxxx()
21617  *			  directly from the mode argument of ioctl().
21618  *
21619  * Return Code: 0
21620  *		EFAULT
21621  *		ENXIO
21622  */
21623 
21624 static int
21625 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21626 {
21627 	struct sd_lun	*un = NULL;
21628 	int		mh_time;
21629 	int		rval = 0;
21630 
21631 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21632 		return (ENXIO);
21633 	}
21634 
21635 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21636 		return (EFAULT);
21637 
21638 	if (mh_time) {
21639 		mutex_enter(SD_MUTEX(un));
21640 		un->un_resvd_status |= SD_FAILFAST;
21641 		mutex_exit(SD_MUTEX(un));
21642 		/*
21643 		 * If mh_time is INT_MAX, then this ioctl is being used for
21644 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21645 		 */
21646 		if (mh_time != INT_MAX) {
21647 			rval = sd_check_mhd(dev, mh_time);
21648 		}
21649 	} else {
21650 		(void) sd_check_mhd(dev, 0);
21651 		mutex_enter(SD_MUTEX(un));
21652 		un->un_resvd_status &= ~SD_FAILFAST;
21653 		mutex_exit(SD_MUTEX(un));
21654 	}
21655 	return (rval);
21656 }
21657 
21658 
21659 /*
21660  *    Function: sd_mhdioc_takeown
21661  *
21662  * Description: This routine is the driver entry point for handling ioctl
21663  *		requests to forcefully acquire exclusive access rights to the
21664  *		multihost disk (MHIOCTKOWN).
21665  *
21666  *   Arguments: dev	- the device number
21667  *		arg	- user provided structure specifying the delay
21668  *			  parameters in milliseconds
21669  *		flag	- this argument is a pass through to ddi_copyxxx()
21670  *			  directly from the mode argument of ioctl().
21671  *
21672  * Return Code: 0
21673  *		EFAULT
21674  *		ENXIO
21675  */
21676 
21677 static int
21678 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21679 {
21680 	struct sd_lun		*un = NULL;
21681 	struct mhioctkown	*tkown = NULL;
21682 	int			rval = 0;
21683 
21684 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21685 		return (ENXIO);
21686 	}
21687 
21688 	if (arg != NULL) {
21689 		tkown = (struct mhioctkown *)
21690 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21691 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21692 		if (rval != 0) {
21693 			rval = EFAULT;
21694 			goto error;
21695 		}
21696 	}
21697 
21698 	rval = sd_take_ownership(dev, tkown);
21699 	mutex_enter(SD_MUTEX(un));
21700 	if (rval == 0) {
21701 		un->un_resvd_status |= SD_RESERVE;
21702 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21703 			sd_reinstate_resv_delay =
21704 			    tkown->reinstate_resv_delay * 1000;
21705 		} else {
21706 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21707 		}
21708 		/*
21709 		 * Give the scsi_watch routine interval set by
21710 		 * the MHIOCENFAILFAST ioctl precedence here.
21711 		 */
21712 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21713 			mutex_exit(SD_MUTEX(un));
21714 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21715 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21716 			    "sd_mhdioc_takeown : %d\n",
21717 			    sd_reinstate_resv_delay);
21718 		} else {
21719 			mutex_exit(SD_MUTEX(un));
21720 		}
21721 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21722 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21723 	} else {
21724 		un->un_resvd_status &= ~SD_RESERVE;
21725 		mutex_exit(SD_MUTEX(un));
21726 	}
21727 
21728 error:
21729 	if (tkown != NULL) {
21730 		kmem_free(tkown, sizeof (struct mhioctkown));
21731 	}
21732 	return (rval);
21733 }
21734 
21735 
21736 /*
21737  *    Function: sd_mhdioc_release
21738  *
21739  * Description: This routine is the driver entry point for handling ioctl
21740  *		requests to release exclusive access rights to the multihost
21741  *		disk (MHIOCRELEASE).
21742  *
21743  *   Arguments: dev	- the device number
21744  *
21745  * Return Code: 0
21746  *		ENXIO
21747  */
21748 
21749 static int
21750 sd_mhdioc_release(dev_t dev)
21751 {
21752 	struct sd_lun		*un = NULL;
21753 	timeout_id_t		resvd_timeid_save;
21754 	int			resvd_status_save;
21755 	int			rval = 0;
21756 
21757 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21758 		return (ENXIO);
21759 	}
21760 
21761 	mutex_enter(SD_MUTEX(un));
21762 	resvd_status_save = un->un_resvd_status;
21763 	un->un_resvd_status &=
21764 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21765 	if (un->un_resvd_timeid) {
21766 		resvd_timeid_save = un->un_resvd_timeid;
21767 		un->un_resvd_timeid = NULL;
21768 		mutex_exit(SD_MUTEX(un));
21769 		(void) untimeout(resvd_timeid_save);
21770 	} else {
21771 		mutex_exit(SD_MUTEX(un));
21772 	}
21773 
21774 	/*
21775 	 * destroy any pending timeout thread that may be attempting to
21776 	 * reinstate reservation on this device.
21777 	 */
21778 	sd_rmv_resv_reclaim_req(dev);
21779 
21780 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21781 		mutex_enter(SD_MUTEX(un));
21782 		if ((un->un_mhd_token) &&
21783 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21784 			mutex_exit(SD_MUTEX(un));
21785 			(void) sd_check_mhd(dev, 0);
21786 		} else {
21787 			mutex_exit(SD_MUTEX(un));
21788 		}
21789 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21790 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21791 	} else {
21792 		/*
21793 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21794 		 */
21795 		mutex_enter(SD_MUTEX(un));
21796 		un->un_resvd_status = resvd_status_save;
21797 		mutex_exit(SD_MUTEX(un));
21798 	}
21799 	return (rval);
21800 }
21801 
21802 
21803 /*
21804  *    Function: sd_mhdioc_register_devid
21805  *
21806  * Description: This routine is the driver entry point for handling ioctl
21807  *		requests to register the device id (MHIOCREREGISTERDEVID).
21808  *
21809  *		Note: The implementation for this ioctl has been updated to
21810  *		be consistent with the original PSARC case (1999/357)
21811  *		(4375899, 4241671, 4220005)
21812  *
21813  *   Arguments: dev	- the device number
21814  *
21815  * Return Code: 0
21816  *		ENXIO
21817  */
21818 
21819 static int
21820 sd_mhdioc_register_devid(dev_t dev)
21821 {
21822 	struct sd_lun	*un = NULL;
21823 	int		rval = 0;
21824 
21825 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21826 		return (ENXIO);
21827 	}
21828 
21829 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21830 
21831 	mutex_enter(SD_MUTEX(un));
21832 
21833 	/* If a devid already exists, de-register it */
21834 	if (un->un_devid != NULL) {
21835 		ddi_devid_unregister(SD_DEVINFO(un));
21836 		/*
21837 		 * After unregister devid, needs to free devid memory
21838 		 */
21839 		ddi_devid_free(un->un_devid);
21840 		un->un_devid = NULL;
21841 	}
21842 
21843 	/* Check for reservation conflict */
21844 	mutex_exit(SD_MUTEX(un));
21845 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21846 	mutex_enter(SD_MUTEX(un));
21847 
21848 	switch (rval) {
21849 	case 0:
21850 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21851 		break;
21852 	case EACCES:
21853 		break;
21854 	default:
21855 		rval = EIO;
21856 	}
21857 
21858 	mutex_exit(SD_MUTEX(un));
21859 	return (rval);
21860 }
21861 
21862 
21863 /*
21864  *    Function: sd_mhdioc_inkeys
21865  *
21866  * Description: This routine is the driver entry point for handling ioctl
21867  *		requests to issue the SCSI-3 Persistent In Read Keys command
21868  *		to the device (MHIOCGRP_INKEYS).
21869  *
21870  *   Arguments: dev	- the device number
21871  *		arg	- user provided in_keys structure
21872  *		flag	- this argument is a pass through to ddi_copyxxx()
21873  *			  directly from the mode argument of ioctl().
21874  *
21875  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21876  *		ENXIO
21877  *		EFAULT
21878  */
21879 
21880 static int
21881 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21882 {
21883 	struct sd_lun		*un;
21884 	mhioc_inkeys_t		inkeys;
21885 	int			rval = 0;
21886 
21887 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21888 		return (ENXIO);
21889 	}
21890 
21891 #ifdef _MULTI_DATAMODEL
21892 	switch (ddi_model_convert_from(flag & FMODELS)) {
21893 	case DDI_MODEL_ILP32: {
21894 		struct mhioc_inkeys32	inkeys32;
21895 
21896 		if (ddi_copyin(arg, &inkeys32,
21897 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21898 			return (EFAULT);
21899 		}
21900 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21901 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21902 		    &inkeys, flag)) != 0) {
21903 			return (rval);
21904 		}
21905 		inkeys32.generation = inkeys.generation;
21906 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21907 		    flag) != 0) {
21908 			return (EFAULT);
21909 		}
21910 		break;
21911 	}
21912 	case DDI_MODEL_NONE:
21913 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21914 		    flag) != 0) {
21915 			return (EFAULT);
21916 		}
21917 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21918 		    &inkeys, flag)) != 0) {
21919 			return (rval);
21920 		}
21921 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21922 		    flag) != 0) {
21923 			return (EFAULT);
21924 		}
21925 		break;
21926 	}
21927 
21928 #else /* ! _MULTI_DATAMODEL */
21929 
21930 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21931 		return (EFAULT);
21932 	}
21933 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21934 	if (rval != 0) {
21935 		return (rval);
21936 	}
21937 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21938 		return (EFAULT);
21939 	}
21940 
21941 #endif /* _MULTI_DATAMODEL */
21942 
21943 	return (rval);
21944 }
21945 
21946 
21947 /*
21948  *    Function: sd_mhdioc_inresv
21949  *
21950  * Description: This routine is the driver entry point for handling ioctl
21951  *		requests to issue the SCSI-3 Persistent In Read Reservations
21952  *		command to the device (MHIOCGRP_INKEYS).
21953  *
21954  *   Arguments: dev	- the device number
21955  *		arg	- user provided in_resv structure
21956  *		flag	- this argument is a pass through to ddi_copyxxx()
21957  *			  directly from the mode argument of ioctl().
21958  *
21959  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21960  *		ENXIO
21961  *		EFAULT
21962  */
21963 
21964 static int
21965 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21966 {
21967 	struct sd_lun		*un;
21968 	mhioc_inresvs_t		inresvs;
21969 	int			rval = 0;
21970 
21971 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21972 		return (ENXIO);
21973 	}
21974 
21975 #ifdef _MULTI_DATAMODEL
21976 
21977 	switch (ddi_model_convert_from(flag & FMODELS)) {
21978 	case DDI_MODEL_ILP32: {
21979 		struct mhioc_inresvs32	inresvs32;
21980 
21981 		if (ddi_copyin(arg, &inresvs32,
21982 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21983 			return (EFAULT);
21984 		}
21985 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21986 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21987 		    &inresvs, flag)) != 0) {
21988 			return (rval);
21989 		}
21990 		inresvs32.generation = inresvs.generation;
21991 		if (ddi_copyout(&inresvs32, arg,
21992 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21993 			return (EFAULT);
21994 		}
21995 		break;
21996 	}
21997 	case DDI_MODEL_NONE:
21998 		if (ddi_copyin(arg, &inresvs,
21999 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22000 			return (EFAULT);
22001 		}
22002 		if ((rval = sd_persistent_reservation_in_read_resv(un,
22003 		    &inresvs, flag)) != 0) {
22004 			return (rval);
22005 		}
22006 		if (ddi_copyout(&inresvs, arg,
22007 		    sizeof (mhioc_inresvs_t), flag) != 0) {
22008 			return (EFAULT);
22009 		}
22010 		break;
22011 	}
22012 
22013 #else /* ! _MULTI_DATAMODEL */
22014 
22015 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
22016 		return (EFAULT);
22017 	}
22018 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
22019 	if (rval != 0) {
22020 		return (rval);
22021 	}
22022 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
22023 		return (EFAULT);
22024 	}
22025 
22026 #endif /* ! _MULTI_DATAMODEL */
22027 
22028 	return (rval);
22029 }
22030 
22031 
22032 /*
22033  * The following routines support the clustering functionality described below
22034  * and implement lost reservation reclaim functionality.
22035  *
22036  * Clustering
22037  * ----------
22038  * The clustering code uses two different, independent forms of SCSI
22039  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
22040  * Persistent Group Reservations. For any particular disk, it will use either
22041  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
22042  *
22043  * SCSI-2
22044  * The cluster software takes ownership of a multi-hosted disk by issuing the
22045  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
22046  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
22047  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
22048  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
22049  * driver. The meaning of failfast is that if the driver (on this host) ever
22050  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
22051  * it should immediately panic the host. The motivation for this ioctl is that
22052  * if this host does encounter reservation conflict, the underlying cause is
22053  * that some other host of the cluster has decided that this host is no longer
22054  * in the cluster and has seized control of the disks for itself. Since this
22055  * host is no longer in the cluster, it ought to panic itself. The
22056  * MHIOCENFAILFAST ioctl does two things:
22057  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
22058  *      error to panic the host
22059  *      (b) it sets up a periodic timer to test whether this host still has
22060  *      "access" (in that no other host has reserved the device):  if the
22061  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
22062  *      purpose of that periodic timer is to handle scenarios where the host is
22063  *      otherwise temporarily quiescent, temporarily doing no real i/o.
22064  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
22065  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
22066  * the device itself.
22067  *
22068  * SCSI-3 PGR
22069  * A direct semantic implementation of the SCSI-3 Persistent Reservation
22070  * facility is supported through the shared multihost disk ioctls
22071  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
22072  * MHIOCGRP_PREEMPTANDABORT)
22073  *
22074  * Reservation Reclaim:
22075  * --------------------
22076  * To support the lost reservation reclaim operations this driver creates a
22077  * single thread to handle reinstating reservations on all devices that have
22078  * lost reservations sd_resv_reclaim_requests are logged for all devices that
22079  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
22080  * and the reservation reclaim thread loops through the requests to regain the
22081  * lost reservations.
22082  */
22083 
22084 /*
22085  *    Function: sd_check_mhd()
22086  *
22087  * Description: This function sets up and submits a scsi watch request or
22088  *		terminates an existing watch request. This routine is used in
22089  *		support of reservation reclaim.
22090  *
22091  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
22092  *			 among multiple watches that share the callback function
22093  *		interval - the number of microseconds specifying the watch
22094  *			   interval for issuing TEST UNIT READY commands. If
22095  *			   set to 0 the watch should be terminated. If the
22096  *			   interval is set to 0 and if the device is required
22097  *			   to hold reservation while disabling failfast, the
22098  *			   watch is restarted with an interval of
22099  *			   reinstate_resv_delay.
22100  *
22101  * Return Code: 0	   - Successful submit/terminate of scsi watch request
22102  *		ENXIO      - Indicates an invalid device was specified
22103  *		EAGAIN     - Unable to submit the scsi watch request
22104  */
22105 
22106 static int
22107 sd_check_mhd(dev_t dev, int interval)
22108 {
22109 	struct sd_lun	*un;
22110 	opaque_t	token;
22111 
22112 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22113 		return (ENXIO);
22114 	}
22115 
22116 	/* is this a watch termination request? */
22117 	if (interval == 0) {
22118 		mutex_enter(SD_MUTEX(un));
22119 		/* if there is an existing watch task then terminate it */
22120 		if (un->un_mhd_token) {
22121 			token = un->un_mhd_token;
22122 			un->un_mhd_token = NULL;
22123 			mutex_exit(SD_MUTEX(un));
22124 			(void) scsi_watch_request_terminate(token,
22125 			    SCSI_WATCH_TERMINATE_WAIT);
22126 			mutex_enter(SD_MUTEX(un));
22127 		} else {
22128 			mutex_exit(SD_MUTEX(un));
22129 			/*
22130 			 * Note: If we return here we don't check for the
22131 			 * failfast case. This is the original legacy
22132 			 * implementation but perhaps we should be checking
22133 			 * the failfast case.
22134 			 */
22135 			return (0);
22136 		}
22137 		/*
22138 		 * If the device is required to hold reservation while
22139 		 * disabling failfast, we need to restart the scsi_watch
22140 		 * routine with an interval of reinstate_resv_delay.
22141 		 */
22142 		if (un->un_resvd_status & SD_RESERVE) {
22143 			interval = sd_reinstate_resv_delay/1000;
22144 		} else {
22145 			/* no failfast so bail */
22146 			mutex_exit(SD_MUTEX(un));
22147 			return (0);
22148 		}
22149 		mutex_exit(SD_MUTEX(un));
22150 	}
22151 
22152 	/*
22153 	 * adjust minimum time interval to 1 second,
22154 	 * and convert from msecs to usecs
22155 	 */
22156 	if (interval > 0 && interval < 1000) {
22157 		interval = 1000;
22158 	}
22159 	interval *= 1000;
22160 
22161 	/*
22162 	 * submit the request to the scsi_watch service
22163 	 */
22164 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
22165 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
22166 	if (token == NULL) {
22167 		return (EAGAIN);
22168 	}
22169 
22170 	/*
22171 	 * save token for termination later on
22172 	 */
22173 	mutex_enter(SD_MUTEX(un));
22174 	un->un_mhd_token = token;
22175 	mutex_exit(SD_MUTEX(un));
22176 	return (0);
22177 }
22178 
22179 
22180 /*
22181  *    Function: sd_mhd_watch_cb()
22182  *
22183  * Description: This function is the call back function used by the scsi watch
22184  *		facility. The scsi watch facility sends the "Test Unit Ready"
22185  *		and processes the status. If applicable (i.e. a "Unit Attention"
22186  *		status and automatic "Request Sense" not used) the scsi watch
22187  *		facility will send a "Request Sense" and retrieve the sense data
22188  *		to be passed to this callback function. In either case the
22189  *		automatic "Request Sense" or the facility submitting one, this
22190  *		callback is passed the status and sense data.
22191  *
22192  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22193  *			among multiple watches that share this callback function
22194  *		resultp - scsi watch facility result packet containing scsi
22195  *			  packet, status byte and sense data
22196  *
22197  * Return Code: 0 - continue the watch task
22198  *		non-zero - terminate the watch task
22199  */
22200 
22201 static int
22202 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22203 {
22204 	struct sd_lun			*un;
22205 	struct scsi_status		*statusp;
22206 	uint8_t				*sensep;
22207 	struct scsi_pkt			*pkt;
22208 	uchar_t				actual_sense_length;
22209 	dev_t  				dev = (dev_t)arg;
22210 
22211 	ASSERT(resultp != NULL);
22212 	statusp			= resultp->statusp;
22213 	sensep			= (uint8_t *)resultp->sensep;
22214 	pkt			= resultp->pkt;
22215 	actual_sense_length	= resultp->actual_sense_length;
22216 
22217 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22218 		return (ENXIO);
22219 	}
22220 
22221 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22222 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22223 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22224 
22225 	/* Begin processing of the status and/or sense data */
22226 	if (pkt->pkt_reason != CMD_CMPLT) {
22227 		/* Handle the incomplete packet */
22228 		sd_mhd_watch_incomplete(un, pkt);
22229 		return (0);
22230 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22231 		if (*((unsigned char *)statusp)
22232 		    == STATUS_RESERVATION_CONFLICT) {
22233 			/*
22234 			 * Handle a reservation conflict by panicking if
22235 			 * configured for failfast or by logging the conflict
22236 			 * and updating the reservation status
22237 			 */
22238 			mutex_enter(SD_MUTEX(un));
22239 			if ((un->un_resvd_status & SD_FAILFAST) &&
22240 			    (sd_failfast_enable)) {
22241 				sd_panic_for_res_conflict(un);
22242 				/*NOTREACHED*/
22243 			}
22244 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22245 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22246 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22247 			mutex_exit(SD_MUTEX(un));
22248 		}
22249 	}
22250 
22251 	if (sensep != NULL) {
22252 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22253 			mutex_enter(SD_MUTEX(un));
22254 			if ((scsi_sense_asc(sensep) ==
22255 			    SD_SCSI_RESET_SENSE_CODE) &&
22256 			    (un->un_resvd_status & SD_RESERVE)) {
22257 				/*
22258 				 * The additional sense code indicates a power
22259 				 * on or bus device reset has occurred; update
22260 				 * the reservation status.
22261 				 */
22262 				un->un_resvd_status |=
22263 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22264 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22265 				    "sd_mhd_watch_cb: Lost Reservation\n");
22266 			}
22267 		} else {
22268 			return (0);
22269 		}
22270 	} else {
22271 		mutex_enter(SD_MUTEX(un));
22272 	}
22273 
22274 	if ((un->un_resvd_status & SD_RESERVE) &&
22275 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22276 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22277 			/*
22278 			 * A reset occurred in between the last probe and this
22279 			 * one so if a timeout is pending cancel it.
22280 			 */
22281 			if (un->un_resvd_timeid) {
22282 				timeout_id_t temp_id = un->un_resvd_timeid;
22283 				un->un_resvd_timeid = NULL;
22284 				mutex_exit(SD_MUTEX(un));
22285 				(void) untimeout(temp_id);
22286 				mutex_enter(SD_MUTEX(un));
22287 			}
22288 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22289 		}
22290 		if (un->un_resvd_timeid == 0) {
22291 			/* Schedule a timeout to handle the lost reservation */
22292 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22293 			    (void *)dev,
22294 			    drv_usectohz(sd_reinstate_resv_delay));
22295 		}
22296 	}
22297 	mutex_exit(SD_MUTEX(un));
22298 	return (0);
22299 }
22300 
22301 
22302 /*
22303  *    Function: sd_mhd_watch_incomplete()
22304  *
22305  * Description: This function is used to find out why a scsi pkt sent by the
22306  *		scsi watch facility was not completed. Under some scenarios this
22307  *		routine will return. Otherwise it will send a bus reset to see
22308  *		if the drive is still online.
22309  *
22310  *   Arguments: un  - driver soft state (unit) structure
22311  *		pkt - incomplete scsi pkt
22312  */
22313 
22314 static void
22315 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22316 {
22317 	int	be_chatty;
22318 	int	perr;
22319 
22320 	ASSERT(pkt != NULL);
22321 	ASSERT(un != NULL);
22322 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22323 	perr		= (pkt->pkt_statistics & STAT_PERR);
22324 
22325 	mutex_enter(SD_MUTEX(un));
22326 	if (un->un_state == SD_STATE_DUMPING) {
22327 		mutex_exit(SD_MUTEX(un));
22328 		return;
22329 	}
22330 
22331 	switch (pkt->pkt_reason) {
22332 	case CMD_UNX_BUS_FREE:
22333 		/*
22334 		 * If we had a parity error that caused the target to drop BSY*,
22335 		 * don't be chatty about it.
22336 		 */
22337 		if (perr && be_chatty) {
22338 			be_chatty = 0;
22339 		}
22340 		break;
22341 	case CMD_TAG_REJECT:
22342 		/*
22343 		 * The SCSI-2 spec states that a tag reject will be sent by the
22344 		 * target if tagged queuing is not supported. A tag reject may
22345 		 * also be sent during certain initialization periods or to
22346 		 * control internal resources. For the latter case the target
22347 		 * may also return Queue Full.
22348 		 *
22349 		 * If this driver receives a tag reject from a target that is
22350 		 * going through an init period or controlling internal
22351 		 * resources tagged queuing will be disabled. This is a less
22352 		 * than optimal behavior but the driver is unable to determine
22353 		 * the target state and assumes tagged queueing is not supported
22354 		 */
22355 		pkt->pkt_flags = 0;
22356 		un->un_tagflags = 0;
22357 
22358 		if (un->un_f_opt_queueing == TRUE) {
22359 			un->un_throttle = min(un->un_throttle, 3);
22360 		} else {
22361 			un->un_throttle = 1;
22362 		}
22363 		mutex_exit(SD_MUTEX(un));
22364 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22365 		mutex_enter(SD_MUTEX(un));
22366 		break;
22367 	case CMD_INCOMPLETE:
22368 		/*
22369 		 * The transport stopped with an abnormal state, fallthrough and
22370 		 * reset the target and/or bus unless selection did not complete
22371 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22372 		 * go through a target/bus reset
22373 		 */
22374 		if (pkt->pkt_state == STATE_GOT_BUS) {
22375 			break;
22376 		}
22377 		/*FALLTHROUGH*/
22378 
22379 	case CMD_TIMEOUT:
22380 	default:
22381 		/*
22382 		 * The lun may still be running the command, so a lun reset
22383 		 * should be attempted. If the lun reset fails or cannot be
22384 		 * issued, than try a target reset. Lastly try a bus reset.
22385 		 */
22386 		if ((pkt->pkt_statistics &
22387 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22388 			int reset_retval = 0;
22389 			mutex_exit(SD_MUTEX(un));
22390 			if (un->un_f_allow_bus_device_reset == TRUE) {
22391 				if (un->un_f_lun_reset_enabled == TRUE) {
22392 					reset_retval =
22393 					    scsi_reset(SD_ADDRESS(un),
22394 					    RESET_LUN);
22395 				}
22396 				if (reset_retval == 0) {
22397 					reset_retval =
22398 					    scsi_reset(SD_ADDRESS(un),
22399 					    RESET_TARGET);
22400 				}
22401 			}
22402 			if (reset_retval == 0) {
22403 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22404 			}
22405 			mutex_enter(SD_MUTEX(un));
22406 		}
22407 		break;
22408 	}
22409 
22410 	/* A device/bus reset has occurred; update the reservation status. */
22411 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22412 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22413 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22414 			un->un_resvd_status |=
22415 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22416 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22417 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22418 		}
22419 	}
22420 
22421 	/*
22422 	 * The disk has been turned off; Update the device state.
22423 	 *
22424 	 * Note: Should we be offlining the disk here?
22425 	 */
22426 	if (pkt->pkt_state == STATE_GOT_BUS) {
22427 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22428 		    "Disk not responding to selection\n");
22429 		if (un->un_state != SD_STATE_OFFLINE) {
22430 			New_state(un, SD_STATE_OFFLINE);
22431 		}
22432 	} else if (be_chatty) {
22433 		/*
22434 		 * suppress messages if they are all the same pkt reason;
22435 		 * with TQ, many (up to 256) are returned with the same
22436 		 * pkt_reason
22437 		 */
22438 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22439 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22440 			    "sd_mhd_watch_incomplete: "
22441 			    "SCSI transport failed: reason '%s'\n",
22442 			    scsi_rname(pkt->pkt_reason));
22443 		}
22444 	}
22445 	un->un_last_pkt_reason = pkt->pkt_reason;
22446 	mutex_exit(SD_MUTEX(un));
22447 }
22448 
22449 
22450 /*
22451  *    Function: sd_sname()
22452  *
22453  * Description: This is a simple little routine to return a string containing
22454  *		a printable description of command status byte for use in
22455  *		logging.
22456  *
22457  *   Arguments: status - pointer to a status byte
22458  *
22459  * Return Code: char * - string containing status description.
22460  */
22461 
22462 static char *
22463 sd_sname(uchar_t status)
22464 {
22465 	switch (status & STATUS_MASK) {
22466 	case STATUS_GOOD:
22467 		return ("good status");
22468 	case STATUS_CHECK:
22469 		return ("check condition");
22470 	case STATUS_MET:
22471 		return ("condition met");
22472 	case STATUS_BUSY:
22473 		return ("busy");
22474 	case STATUS_INTERMEDIATE:
22475 		return ("intermediate");
22476 	case STATUS_INTERMEDIATE_MET:
22477 		return ("intermediate - condition met");
22478 	case STATUS_RESERVATION_CONFLICT:
22479 		return ("reservation_conflict");
22480 	case STATUS_TERMINATED:
22481 		return ("command terminated");
22482 	case STATUS_QFULL:
22483 		return ("queue full");
22484 	default:
22485 		return ("<unknown status>");
22486 	}
22487 }
22488 
22489 
22490 /*
22491  *    Function: sd_mhd_resvd_recover()
22492  *
22493  * Description: This function adds a reservation entry to the
22494  *		sd_resv_reclaim_request list and signals the reservation
22495  *		reclaim thread that there is work pending. If the reservation
22496  *		reclaim thread has not been previously created this function
22497  *		will kick it off.
22498  *
22499  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22500  *			among multiple watches that share this callback function
22501  *
22502  *     Context: This routine is called by timeout() and is run in interrupt
22503  *		context. It must not sleep or call other functions which may
22504  *		sleep.
22505  */
22506 
22507 static void
22508 sd_mhd_resvd_recover(void *arg)
22509 {
22510 	dev_t			dev = (dev_t)arg;
22511 	struct sd_lun		*un;
22512 	struct sd_thr_request	*sd_treq = NULL;
22513 	struct sd_thr_request	*sd_cur = NULL;
22514 	struct sd_thr_request	*sd_prev = NULL;
22515 	int			already_there = 0;
22516 
22517 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22518 		return;
22519 	}
22520 
22521 	mutex_enter(SD_MUTEX(un));
22522 	un->un_resvd_timeid = NULL;
22523 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22524 		/*
22525 		 * There was a reset so don't issue the reserve, allow the
22526 		 * sd_mhd_watch_cb callback function to notice this and
22527 		 * reschedule the timeout for reservation.
22528 		 */
22529 		mutex_exit(SD_MUTEX(un));
22530 		return;
22531 	}
22532 	mutex_exit(SD_MUTEX(un));
22533 
22534 	/*
22535 	 * Add this device to the sd_resv_reclaim_request list and the
22536 	 * sd_resv_reclaim_thread should take care of the rest.
22537 	 *
22538 	 * Note: We can't sleep in this context so if the memory allocation
22539 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22540 	 * reschedule the timeout for reservation.  (4378460)
22541 	 */
22542 	sd_treq = (struct sd_thr_request *)
22543 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22544 	if (sd_treq == NULL) {
22545 		return;
22546 	}
22547 
22548 	sd_treq->sd_thr_req_next = NULL;
22549 	sd_treq->dev = dev;
22550 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22551 	if (sd_tr.srq_thr_req_head == NULL) {
22552 		sd_tr.srq_thr_req_head = sd_treq;
22553 	} else {
22554 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22555 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22556 			if (sd_cur->dev == dev) {
22557 				/*
22558 				 * already in Queue so don't log
22559 				 * another request for the device
22560 				 */
22561 				already_there = 1;
22562 				break;
22563 			}
22564 			sd_prev = sd_cur;
22565 		}
22566 		if (!already_there) {
22567 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22568 			    "logging request for %lx\n", dev);
22569 			sd_prev->sd_thr_req_next = sd_treq;
22570 		} else {
22571 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22572 		}
22573 	}
22574 
22575 	/*
22576 	 * Create a kernel thread to do the reservation reclaim and free up this
22577 	 * thread. We cannot block this thread while we go away to do the
22578 	 * reservation reclaim
22579 	 */
22580 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22581 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22582 		    sd_resv_reclaim_thread, NULL,
22583 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22584 
22585 	/* Tell the reservation reclaim thread that it has work to do */
22586 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22587 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22588 }
22589 
22590 /*
22591  *    Function: sd_resv_reclaim_thread()
22592  *
22593  * Description: This function implements the reservation reclaim operations
22594  *
22595  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22596  *		      among multiple watches that share this callback function
22597  */
22598 
22599 static void
22600 sd_resv_reclaim_thread()
22601 {
22602 	struct sd_lun		*un;
22603 	struct sd_thr_request	*sd_mhreq;
22604 
22605 	/* Wait for work */
22606 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22607 	if (sd_tr.srq_thr_req_head == NULL) {
22608 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22609 		    &sd_tr.srq_resv_reclaim_mutex);
22610 	}
22611 
22612 	/* Loop while we have work */
22613 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22614 		un = ddi_get_soft_state(sd_state,
22615 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22616 		if (un == NULL) {
22617 			/*
22618 			 * softstate structure is NULL so just
22619 			 * dequeue the request and continue
22620 			 */
22621 			sd_tr.srq_thr_req_head =
22622 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22623 			kmem_free(sd_tr.srq_thr_cur_req,
22624 			    sizeof (struct sd_thr_request));
22625 			continue;
22626 		}
22627 
22628 		/* dequeue the request */
22629 		sd_mhreq = sd_tr.srq_thr_cur_req;
22630 		sd_tr.srq_thr_req_head =
22631 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22632 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22633 
22634 		/*
22635 		 * Reclaim reservation only if SD_RESERVE is still set. There
22636 		 * may have been a call to MHIOCRELEASE before we got here.
22637 		 */
22638 		mutex_enter(SD_MUTEX(un));
22639 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22640 			/*
22641 			 * Note: The SD_LOST_RESERVE flag is cleared before
22642 			 * reclaiming the reservation. If this is done after the
22643 			 * call to sd_reserve_release a reservation loss in the
22644 			 * window between pkt completion of reserve cmd and
22645 			 * mutex_enter below may not be recognized
22646 			 */
22647 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22648 			mutex_exit(SD_MUTEX(un));
22649 
22650 			if (sd_reserve_release(sd_mhreq->dev,
22651 			    SD_RESERVE) == 0) {
22652 				mutex_enter(SD_MUTEX(un));
22653 				un->un_resvd_status |= SD_RESERVE;
22654 				mutex_exit(SD_MUTEX(un));
22655 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22656 				    "sd_resv_reclaim_thread: "
22657 				    "Reservation Recovered\n");
22658 			} else {
22659 				mutex_enter(SD_MUTEX(un));
22660 				un->un_resvd_status |= SD_LOST_RESERVE;
22661 				mutex_exit(SD_MUTEX(un));
22662 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22663 				    "sd_resv_reclaim_thread: Failed "
22664 				    "Reservation Recovery\n");
22665 			}
22666 		} else {
22667 			mutex_exit(SD_MUTEX(un));
22668 		}
22669 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22670 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22671 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22672 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22673 		/*
22674 		 * wakeup the destroy thread if anyone is waiting on
22675 		 * us to complete.
22676 		 */
22677 		cv_signal(&sd_tr.srq_inprocess_cv);
22678 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22679 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22680 	}
22681 
22682 	/*
22683 	 * cleanup the sd_tr structure now that this thread will not exist
22684 	 */
22685 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22686 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22687 	sd_tr.srq_resv_reclaim_thread = NULL;
22688 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22689 	thread_exit();
22690 }
22691 
22692 
22693 /*
22694  *    Function: sd_rmv_resv_reclaim_req()
22695  *
22696  * Description: This function removes any pending reservation reclaim requests
22697  *		for the specified device.
22698  *
22699  *   Arguments: dev - the device 'dev_t'
22700  */
22701 
22702 static void
22703 sd_rmv_resv_reclaim_req(dev_t dev)
22704 {
22705 	struct sd_thr_request *sd_mhreq;
22706 	struct sd_thr_request *sd_prev;
22707 
22708 	/* Remove a reservation reclaim request from the list */
22709 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22710 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22711 		/*
22712 		 * We are attempting to reinstate reservation for
22713 		 * this device. We wait for sd_reserve_release()
22714 		 * to return before we return.
22715 		 */
22716 		cv_wait(&sd_tr.srq_inprocess_cv,
22717 		    &sd_tr.srq_resv_reclaim_mutex);
22718 	} else {
22719 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22720 		if (sd_mhreq && sd_mhreq->dev == dev) {
22721 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22722 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22723 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22724 			return;
22725 		}
22726 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22727 			if (sd_mhreq && sd_mhreq->dev == dev) {
22728 				break;
22729 			}
22730 			sd_prev = sd_mhreq;
22731 		}
22732 		if (sd_mhreq != NULL) {
22733 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22734 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22735 		}
22736 	}
22737 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22738 }
22739 
22740 
22741 /*
22742  *    Function: sd_mhd_reset_notify_cb()
22743  *
22744  * Description: This is a call back function for scsi_reset_notify. This
22745  *		function updates the softstate reserved status and logs the
22746  *		reset. The driver scsi watch facility callback function
22747  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22748  *		will reclaim the reservation.
22749  *
22750  *   Arguments: arg  - driver soft state (unit) structure
22751  */
22752 
22753 static void
22754 sd_mhd_reset_notify_cb(caddr_t arg)
22755 {
22756 	struct sd_lun *un = (struct sd_lun *)arg;
22757 
22758 	mutex_enter(SD_MUTEX(un));
22759 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22760 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22761 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22762 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22763 	}
22764 	mutex_exit(SD_MUTEX(un));
22765 }
22766 
22767 
22768 /*
22769  *    Function: sd_take_ownership()
22770  *
22771  * Description: This routine implements an algorithm to achieve a stable
22772  *		reservation on disks which don't implement priority reserve,
22773  *		and makes sure that other host lose re-reservation attempts.
22774  *		This algorithm contains of a loop that keeps issuing the RESERVE
22775  *		for some period of time (min_ownership_delay, default 6 seconds)
22776  *		During that loop, it looks to see if there has been a bus device
22777  *		reset or bus reset (both of which cause an existing reservation
22778  *		to be lost). If the reservation is lost issue RESERVE until a
22779  *		period of min_ownership_delay with no resets has gone by, or
22780  *		until max_ownership_delay has expired. This loop ensures that
22781  *		the host really did manage to reserve the device, in spite of
22782  *		resets. The looping for min_ownership_delay (default six
22783  *		seconds) is important to early generation clustering products,
22784  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22785  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22786  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22787  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22788  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22789  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22790  *		no longer "owns" the disk and will have panicked itself.  Thus,
22791  *		the host issuing the MHIOCTKOWN is assured (with timing
22792  *		dependencies) that by the time it actually starts to use the
22793  *		disk for real work, the old owner is no longer accessing it.
22794  *
22795  *		min_ownership_delay is the minimum amount of time for which the
22796  *		disk must be reserved continuously devoid of resets before the
22797  *		MHIOCTKOWN ioctl will return success.
22798  *
22799  *		max_ownership_delay indicates the amount of time by which the
22800  *		take ownership should succeed or timeout with an error.
22801  *
22802  *   Arguments: dev - the device 'dev_t'
22803  *		*p  - struct containing timing info.
22804  *
22805  * Return Code: 0 for success or error code
22806  */
22807 
22808 static int
22809 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22810 {
22811 	struct sd_lun	*un;
22812 	int		rval;
22813 	int		err;
22814 	int		reservation_count   = 0;
22815 	int		min_ownership_delay =  6000000; /* in usec */
22816 	int		max_ownership_delay = 30000000; /* in usec */
22817 	clock_t		start_time;	/* starting time of this algorithm */
22818 	clock_t		end_time;	/* time limit for giving up */
22819 	clock_t		ownership_time;	/* time limit for stable ownership */
22820 	clock_t		current_time;
22821 	clock_t		previous_current_time;
22822 
22823 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22824 		return (ENXIO);
22825 	}
22826 
22827 	/*
22828 	 * Attempt a device reservation. A priority reservation is requested.
22829 	 */
22830 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22831 	    != SD_SUCCESS) {
22832 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22833 		    "sd_take_ownership: return(1)=%d\n", rval);
22834 		return (rval);
22835 	}
22836 
22837 	/* Update the softstate reserved status to indicate the reservation */
22838 	mutex_enter(SD_MUTEX(un));
22839 	un->un_resvd_status |= SD_RESERVE;
22840 	un->un_resvd_status &=
22841 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22842 	mutex_exit(SD_MUTEX(un));
22843 
22844 	if (p != NULL) {
22845 		if (p->min_ownership_delay != 0) {
22846 			min_ownership_delay = p->min_ownership_delay * 1000;
22847 		}
22848 		if (p->max_ownership_delay != 0) {
22849 			max_ownership_delay = p->max_ownership_delay * 1000;
22850 		}
22851 	}
22852 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22853 	    "sd_take_ownership: min, max delays: %d, %d\n",
22854 	    min_ownership_delay, max_ownership_delay);
22855 
22856 	start_time = ddi_get_lbolt();
22857 	current_time	= start_time;
22858 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22859 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22860 
22861 	while (current_time - end_time < 0) {
22862 		delay(drv_usectohz(500000));
22863 
22864 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22865 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22866 				mutex_enter(SD_MUTEX(un));
22867 				rval = (un->un_resvd_status &
22868 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22869 				mutex_exit(SD_MUTEX(un));
22870 				break;
22871 			}
22872 		}
22873 		previous_current_time = current_time;
22874 		current_time = ddi_get_lbolt();
22875 		mutex_enter(SD_MUTEX(un));
22876 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22877 			ownership_time = ddi_get_lbolt() +
22878 			    drv_usectohz(min_ownership_delay);
22879 			reservation_count = 0;
22880 		} else {
22881 			reservation_count++;
22882 		}
22883 		un->un_resvd_status |= SD_RESERVE;
22884 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22885 		mutex_exit(SD_MUTEX(un));
22886 
22887 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22888 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22889 		    "reservation=%s\n", (current_time - previous_current_time),
22890 		    reservation_count ? "ok" : "reclaimed");
22891 
22892 		if (current_time - ownership_time >= 0 &&
22893 		    reservation_count >= 4) {
22894 			rval = 0; /* Achieved a stable ownership */
22895 			break;
22896 		}
22897 		if (current_time - end_time >= 0) {
22898 			rval = EACCES; /* No ownership in max possible time */
22899 			break;
22900 		}
22901 	}
22902 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22903 	    "sd_take_ownership: return(2)=%d\n", rval);
22904 	return (rval);
22905 }
22906 
22907 
22908 /*
22909  *    Function: sd_reserve_release()
22910  *
22911  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22912  *		PRIORITY RESERVE commands based on a user specified command type
22913  *
22914  *   Arguments: dev - the device 'dev_t'
22915  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22916  *		      SD_RESERVE, SD_RELEASE
22917  *
22918  * Return Code: 0 or Error Code
22919  */
22920 
22921 static int
22922 sd_reserve_release(dev_t dev, int cmd)
22923 {
22924 	struct uscsi_cmd	*com = NULL;
22925 	struct sd_lun		*un = NULL;
22926 	char			cdb[CDB_GROUP0];
22927 	int			rval;
22928 
22929 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22930 	    (cmd == SD_PRIORITY_RESERVE));
22931 
22932 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22933 		return (ENXIO);
22934 	}
22935 
22936 	/* instantiate and initialize the command and cdb */
22937 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22938 	bzero(cdb, CDB_GROUP0);
22939 	com->uscsi_flags   = USCSI_SILENT;
22940 	com->uscsi_timeout = un->un_reserve_release_time;
22941 	com->uscsi_cdblen  = CDB_GROUP0;
22942 	com->uscsi_cdb	   = cdb;
22943 	if (cmd == SD_RELEASE) {
22944 		cdb[0] = SCMD_RELEASE;
22945 	} else {
22946 		cdb[0] = SCMD_RESERVE;
22947 	}
22948 
22949 	/* Send the command. */
22950 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22951 	    SD_PATH_STANDARD);
22952 
22953 	/*
22954 	 * "break" a reservation that is held by another host, by issuing a
22955 	 * reset if priority reserve is desired, and we could not get the
22956 	 * device.
22957 	 */
22958 	if ((cmd == SD_PRIORITY_RESERVE) &&
22959 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22960 		/*
22961 		 * First try to reset the LUN. If we cannot, then try a target
22962 		 * reset, followed by a bus reset if the target reset fails.
22963 		 */
22964 		int reset_retval = 0;
22965 		if (un->un_f_lun_reset_enabled == TRUE) {
22966 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22967 		}
22968 		if (reset_retval == 0) {
22969 			/* The LUN reset either failed or was not issued */
22970 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22971 		}
22972 		if ((reset_retval == 0) &&
22973 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22974 			rval = EIO;
22975 			kmem_free(com, sizeof (*com));
22976 			return (rval);
22977 		}
22978 
22979 		bzero(com, sizeof (struct uscsi_cmd));
22980 		com->uscsi_flags   = USCSI_SILENT;
22981 		com->uscsi_cdb	   = cdb;
22982 		com->uscsi_cdblen  = CDB_GROUP0;
22983 		com->uscsi_timeout = 5;
22984 
22985 		/*
22986 		 * Reissue the last reserve command, this time without request
22987 		 * sense.  Assume that it is just a regular reserve command.
22988 		 */
22989 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22990 		    SD_PATH_STANDARD);
22991 	}
22992 
22993 	/* Return an error if still getting a reservation conflict. */
22994 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22995 		rval = EACCES;
22996 	}
22997 
22998 	kmem_free(com, sizeof (*com));
22999 	return (rval);
23000 }
23001 
23002 
23003 #define	SD_NDUMP_RETRIES	12
23004 /*
23005  *	System Crash Dump routine
23006  */
23007 
23008 static int
23009 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
23010 {
23011 	int		instance;
23012 	int		partition;
23013 	int		i;
23014 	int		err;
23015 	struct sd_lun	*un;
23016 	struct scsi_pkt *wr_pktp;
23017 	struct buf	*wr_bp;
23018 	struct buf	wr_buf;
23019 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
23020 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
23021 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
23022 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
23023 	size_t		io_start_offset;
23024 	int		doing_rmw = FALSE;
23025 	int		rval;
23026 	ssize_t		dma_resid;
23027 	daddr_t		oblkno;
23028 	diskaddr_t	nblks = 0;
23029 	diskaddr_t	start_block;
23030 
23031 	instance = SDUNIT(dev);
23032 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
23033 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
23034 		return (ENXIO);
23035 	}
23036 
23037 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
23038 
23039 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
23040 
23041 	partition = SDPART(dev);
23042 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
23043 
23044 	/* Validate blocks to dump at against partition size. */
23045 
23046 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
23047 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
23048 
23049 	if ((blkno + nblk) > nblks) {
23050 		SD_TRACE(SD_LOG_DUMP, un,
23051 		    "sddump: dump range larger than partition: "
23052 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
23053 		    blkno, nblk, nblks);
23054 		return (EINVAL);
23055 	}
23056 
23057 	mutex_enter(&un->un_pm_mutex);
23058 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23059 		struct scsi_pkt *start_pktp;
23060 
23061 		mutex_exit(&un->un_pm_mutex);
23062 
23063 		/*
23064 		 * use pm framework to power on HBA 1st
23065 		 */
23066 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
23067 
23068 		/*
23069 		 * Dump no long uses sdpower to power on a device, it's
23070 		 * in-line here so it can be done in polled mode.
23071 		 */
23072 
23073 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
23074 
23075 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
23076 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
23077 
23078 		if (start_pktp == NULL) {
23079 			/* We were not given a SCSI packet, fail. */
23080 			return (EIO);
23081 		}
23082 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
23083 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
23084 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
23085 		start_pktp->pkt_flags = FLAG_NOINTR;
23086 
23087 		mutex_enter(SD_MUTEX(un));
23088 		SD_FILL_SCSI1_LUN(un, start_pktp);
23089 		mutex_exit(SD_MUTEX(un));
23090 		/*
23091 		 * Scsi_poll returns 0 (success) if the command completes and
23092 		 * the status block is STATUS_GOOD.
23093 		 */
23094 		if (sd_scsi_poll(un, start_pktp) != 0) {
23095 			scsi_destroy_pkt(start_pktp);
23096 			return (EIO);
23097 		}
23098 		scsi_destroy_pkt(start_pktp);
23099 		(void) sd_ddi_pm_resume(un);
23100 	} else {
23101 		mutex_exit(&un->un_pm_mutex);
23102 	}
23103 
23104 	mutex_enter(SD_MUTEX(un));
23105 	un->un_throttle = 0;
23106 
23107 	/*
23108 	 * The first time through, reset the specific target device.
23109 	 * However, when cpr calls sddump we know that sd is in a
23110 	 * a good state so no bus reset is required.
23111 	 * Clear sense data via Request Sense cmd.
23112 	 * In sddump we don't care about allow_bus_device_reset anymore
23113 	 */
23114 
23115 	if ((un->un_state != SD_STATE_SUSPENDED) &&
23116 	    (un->un_state != SD_STATE_DUMPING)) {
23117 
23118 		New_state(un, SD_STATE_DUMPING);
23119 
23120 		if (un->un_f_is_fibre == FALSE) {
23121 			mutex_exit(SD_MUTEX(un));
23122 			/*
23123 			 * Attempt a bus reset for parallel scsi.
23124 			 *
23125 			 * Note: A bus reset is required because on some host
23126 			 * systems (i.e. E420R) a bus device reset is
23127 			 * insufficient to reset the state of the target.
23128 			 *
23129 			 * Note: Don't issue the reset for fibre-channel,
23130 			 * because this tends to hang the bus (loop) for
23131 			 * too long while everyone is logging out and in
23132 			 * and the deadman timer for dumping will fire
23133 			 * before the dump is complete.
23134 			 */
23135 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
23136 				mutex_enter(SD_MUTEX(un));
23137 				Restore_state(un);
23138 				mutex_exit(SD_MUTEX(un));
23139 				return (EIO);
23140 			}
23141 
23142 			/* Delay to give the device some recovery time. */
23143 			drv_usecwait(10000);
23144 
23145 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
23146 				SD_INFO(SD_LOG_DUMP, un,
23147 				    "sddump: sd_send_polled_RQS failed\n");
23148 			}
23149 			mutex_enter(SD_MUTEX(un));
23150 		}
23151 	}
23152 
23153 	/*
23154 	 * Convert the partition-relative block number to a
23155 	 * disk physical block number.
23156 	 */
23157 	blkno += start_block;
23158 
23159 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
23160 
23161 
23162 	/*
23163 	 * Check if the device has a non-512 block size.
23164 	 */
23165 	wr_bp = NULL;
23166 	if (NOT_DEVBSIZE(un)) {
23167 		tgt_byte_offset = blkno * un->un_sys_blocksize;
23168 		tgt_byte_count = nblk * un->un_sys_blocksize;
23169 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
23170 		    (tgt_byte_count % un->un_tgt_blocksize)) {
23171 			doing_rmw = TRUE;
23172 			/*
23173 			 * Calculate the block number and number of block
23174 			 * in terms of the media block size.
23175 			 */
23176 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23177 			tgt_nblk =
23178 			    ((tgt_byte_offset + tgt_byte_count +
23179 			    (un->un_tgt_blocksize - 1)) /
23180 			    un->un_tgt_blocksize) - tgt_blkno;
23181 
23182 			/*
23183 			 * Invoke the routine which is going to do read part
23184 			 * of read-modify-write.
23185 			 * Note that this routine returns a pointer to
23186 			 * a valid bp in wr_bp.
23187 			 */
23188 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
23189 			    &wr_bp);
23190 			if (err) {
23191 				mutex_exit(SD_MUTEX(un));
23192 				return (err);
23193 			}
23194 			/*
23195 			 * Offset is being calculated as -
23196 			 * (original block # * system block size) -
23197 			 * (new block # * target block size)
23198 			 */
23199 			io_start_offset =
23200 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
23201 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
23202 
23203 			ASSERT((io_start_offset >= 0) &&
23204 			    (io_start_offset < un->un_tgt_blocksize));
23205 			/*
23206 			 * Do the modify portion of read modify write.
23207 			 */
23208 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
23209 			    (size_t)nblk * un->un_sys_blocksize);
23210 		} else {
23211 			doing_rmw = FALSE;
23212 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23213 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23214 		}
23215 
23216 		/* Convert blkno and nblk to target blocks */
23217 		blkno = tgt_blkno;
23218 		nblk = tgt_nblk;
23219 	} else {
23220 		wr_bp = &wr_buf;
23221 		bzero(wr_bp, sizeof (struct buf));
23222 		wr_bp->b_flags		= B_BUSY;
23223 		wr_bp->b_un.b_addr	= addr;
23224 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23225 		wr_bp->b_resid		= 0;
23226 	}
23227 
23228 	mutex_exit(SD_MUTEX(un));
23229 
23230 	/*
23231 	 * Obtain a SCSI packet for the write command.
23232 	 * It should be safe to call the allocator here without
23233 	 * worrying about being locked for DVMA mapping because
23234 	 * the address we're passed is already a DVMA mapping
23235 	 *
23236 	 * We are also not going to worry about semaphore ownership
23237 	 * in the dump buffer. Dumping is single threaded at present.
23238 	 */
23239 
23240 	wr_pktp = NULL;
23241 
23242 	dma_resid = wr_bp->b_bcount;
23243 	oblkno = blkno;
23244 
23245 	while (dma_resid != 0) {
23246 
23247 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23248 		wr_bp->b_flags &= ~B_ERROR;
23249 
23250 		if (un->un_partial_dma_supported == 1) {
23251 			blkno = oblkno +
23252 			    ((wr_bp->b_bcount - dma_resid) /
23253 			    un->un_tgt_blocksize);
23254 			nblk = dma_resid / un->un_tgt_blocksize;
23255 
23256 			if (wr_pktp) {
23257 				/*
23258 				 * Partial DMA transfers after initial transfer
23259 				 */
23260 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23261 				    blkno, nblk);
23262 			} else {
23263 				/* Initial transfer */
23264 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23265 				    un->un_pkt_flags, NULL_FUNC, NULL,
23266 				    blkno, nblk);
23267 			}
23268 		} else {
23269 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23270 			    0, NULL_FUNC, NULL, blkno, nblk);
23271 		}
23272 
23273 		if (rval == 0) {
23274 			/* We were given a SCSI packet, continue. */
23275 			break;
23276 		}
23277 
23278 		if (i == 0) {
23279 			if (wr_bp->b_flags & B_ERROR) {
23280 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23281 				    "no resources for dumping; "
23282 				    "error code: 0x%x, retrying",
23283 				    geterror(wr_bp));
23284 			} else {
23285 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23286 				    "no resources for dumping; retrying");
23287 			}
23288 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23289 			if (wr_bp->b_flags & B_ERROR) {
23290 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23291 				    "no resources for dumping; error code: "
23292 				    "0x%x, retrying\n", geterror(wr_bp));
23293 			}
23294 		} else {
23295 			if (wr_bp->b_flags & B_ERROR) {
23296 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23297 				    "no resources for dumping; "
23298 				    "error code: 0x%x, retries failed, "
23299 				    "giving up.\n", geterror(wr_bp));
23300 			} else {
23301 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23302 				    "no resources for dumping; "
23303 				    "retries failed, giving up.\n");
23304 			}
23305 			mutex_enter(SD_MUTEX(un));
23306 			Restore_state(un);
23307 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23308 				mutex_exit(SD_MUTEX(un));
23309 				scsi_free_consistent_buf(wr_bp);
23310 			} else {
23311 				mutex_exit(SD_MUTEX(un));
23312 			}
23313 			return (EIO);
23314 		}
23315 		drv_usecwait(10000);
23316 	}
23317 
23318 	if (un->un_partial_dma_supported == 1) {
23319 		/*
23320 		 * save the resid from PARTIAL_DMA
23321 		 */
23322 		dma_resid = wr_pktp->pkt_resid;
23323 		if (dma_resid != 0)
23324 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23325 		wr_pktp->pkt_resid = 0;
23326 	} else {
23327 		dma_resid = 0;
23328 	}
23329 
23330 	/* SunBug 1222170 */
23331 	wr_pktp->pkt_flags = FLAG_NOINTR;
23332 
23333 	err = EIO;
23334 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23335 
23336 		/*
23337 		 * Scsi_poll returns 0 (success) if the command completes and
23338 		 * the status block is STATUS_GOOD.  We should only check
23339 		 * errors if this condition is not true.  Even then we should
23340 		 * send our own request sense packet only if we have a check
23341 		 * condition and auto request sense has not been performed by
23342 		 * the hba.
23343 		 */
23344 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23345 
23346 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23347 		    (wr_pktp->pkt_resid == 0)) {
23348 			err = SD_SUCCESS;
23349 			break;
23350 		}
23351 
23352 		/*
23353 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23354 		 */
23355 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23356 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23357 			    "Error while dumping state...Device is gone\n");
23358 			break;
23359 		}
23360 
23361 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23362 			SD_INFO(SD_LOG_DUMP, un,
23363 			    "sddump: write failed with CHECK, try # %d\n", i);
23364 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23365 				(void) sd_send_polled_RQS(un);
23366 			}
23367 
23368 			continue;
23369 		}
23370 
23371 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23372 			int reset_retval = 0;
23373 
23374 			SD_INFO(SD_LOG_DUMP, un,
23375 			    "sddump: write failed with BUSY, try # %d\n", i);
23376 
23377 			if (un->un_f_lun_reset_enabled == TRUE) {
23378 				reset_retval = scsi_reset(SD_ADDRESS(un),
23379 				    RESET_LUN);
23380 			}
23381 			if (reset_retval == 0) {
23382 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23383 			}
23384 			(void) sd_send_polled_RQS(un);
23385 
23386 		} else {
23387 			SD_INFO(SD_LOG_DUMP, un,
23388 			    "sddump: write failed with 0x%x, try # %d\n",
23389 			    SD_GET_PKT_STATUS(wr_pktp), i);
23390 			mutex_enter(SD_MUTEX(un));
23391 			sd_reset_target(un, wr_pktp);
23392 			mutex_exit(SD_MUTEX(un));
23393 		}
23394 
23395 		/*
23396 		 * If we are not getting anywhere with lun/target resets,
23397 		 * let's reset the bus.
23398 		 */
23399 		if (i == SD_NDUMP_RETRIES/2) {
23400 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23401 			(void) sd_send_polled_RQS(un);
23402 		}
23403 	}
23404 	}
23405 
23406 	scsi_destroy_pkt(wr_pktp);
23407 	mutex_enter(SD_MUTEX(un));
23408 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23409 		mutex_exit(SD_MUTEX(un));
23410 		scsi_free_consistent_buf(wr_bp);
23411 	} else {
23412 		mutex_exit(SD_MUTEX(un));
23413 	}
23414 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23415 	return (err);
23416 }
23417 
23418 /*
23419  *    Function: sd_scsi_poll()
23420  *
23421  * Description: This is a wrapper for the scsi_poll call.
23422  *
23423  *   Arguments: sd_lun - The unit structure
23424  *              scsi_pkt - The scsi packet being sent to the device.
23425  *
23426  * Return Code: 0 - Command completed successfully with good status
23427  *             -1 - Command failed.  This could indicate a check condition
23428  *                  or other status value requiring recovery action.
23429  *
23430  * NOTE: This code is only called off sddump().
23431  */
23432 
23433 static int
23434 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23435 {
23436 	int status;
23437 
23438 	ASSERT(un != NULL);
23439 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23440 	ASSERT(pktp != NULL);
23441 
23442 	status = SD_SUCCESS;
23443 
23444 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23445 		pktp->pkt_flags |= un->un_tagflags;
23446 		pktp->pkt_flags &= ~FLAG_NODISCON;
23447 	}
23448 
23449 	status = sd_ddi_scsi_poll(pktp);
23450 	/*
23451 	 * Scsi_poll returns 0 (success) if the command completes and the
23452 	 * status block is STATUS_GOOD.  We should only check errors if this
23453 	 * condition is not true.  Even then we should send our own request
23454 	 * sense packet only if we have a check condition and auto
23455 	 * request sense has not been performed by the hba.
23456 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23457 	 */
23458 	if ((status != SD_SUCCESS) &&
23459 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23460 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23461 	    (pktp->pkt_reason != CMD_DEV_GONE))
23462 		(void) sd_send_polled_RQS(un);
23463 
23464 	return (status);
23465 }
23466 
23467 /*
23468  *    Function: sd_send_polled_RQS()
23469  *
23470  * Description: This sends the request sense command to a device.
23471  *
23472  *   Arguments: sd_lun - The unit structure
23473  *
23474  * Return Code: 0 - Command completed successfully with good status
23475  *             -1 - Command failed.
23476  *
23477  */
23478 
23479 static int
23480 sd_send_polled_RQS(struct sd_lun *un)
23481 {
23482 	int	ret_val;
23483 	struct	scsi_pkt	*rqs_pktp;
23484 	struct	buf		*rqs_bp;
23485 
23486 	ASSERT(un != NULL);
23487 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23488 
23489 	ret_val = SD_SUCCESS;
23490 
23491 	rqs_pktp = un->un_rqs_pktp;
23492 	rqs_bp	 = un->un_rqs_bp;
23493 
23494 	mutex_enter(SD_MUTEX(un));
23495 
23496 	if (un->un_sense_isbusy) {
23497 		ret_val = SD_FAILURE;
23498 		mutex_exit(SD_MUTEX(un));
23499 		return (ret_val);
23500 	}
23501 
23502 	/*
23503 	 * If the request sense buffer (and packet) is not in use,
23504 	 * let's set the un_sense_isbusy and send our packet
23505 	 */
23506 	un->un_sense_isbusy 	= 1;
23507 	rqs_pktp->pkt_resid  	= 0;
23508 	rqs_pktp->pkt_reason 	= 0;
23509 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23510 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23511 
23512 	mutex_exit(SD_MUTEX(un));
23513 
23514 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23515 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23516 
23517 	/*
23518 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23519 	 * axle - it has a call into us!
23520 	 */
23521 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23522 		SD_INFO(SD_LOG_COMMON, un,
23523 		    "sd_send_polled_RQS: RQS failed\n");
23524 	}
23525 
23526 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23527 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23528 
23529 	mutex_enter(SD_MUTEX(un));
23530 	un->un_sense_isbusy = 0;
23531 	mutex_exit(SD_MUTEX(un));
23532 
23533 	return (ret_val);
23534 }
23535 
23536 /*
23537  * Defines needed for localized version of the scsi_poll routine.
23538  */
23539 #define	CSEC		10000			/* usecs */
23540 #define	SEC_TO_CSEC	(1000000/CSEC)
23541 
23542 /*
23543  *    Function: sd_ddi_scsi_poll()
23544  *
23545  * Description: Localized version of the scsi_poll routine.  The purpose is to
23546  *		send a scsi_pkt to a device as a polled command.  This version
23547  *		is to ensure more robust handling of transport errors.
23548  *		Specifically this routine cures not ready, coming ready
23549  *		transition for power up and reset of sonoma's.  This can take
23550  *		up to 45 seconds for power-on and 20 seconds for reset of a
23551  * 		sonoma lun.
23552  *
23553  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23554  *
23555  * Return Code: 0 - Command completed successfully with good status
23556  *             -1 - Command failed.
23557  *
23558  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
23559  * be fixed (removing this code), we need to determine how to handle the
23560  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
23561  *
23562  * NOTE: This code is only called off sddump().
23563  */
23564 static int
23565 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23566 {
23567 	int			rval = -1;
23568 	int			savef;
23569 	long			savet;
23570 	void			(*savec)();
23571 	int			timeout;
23572 	int			busy_count;
23573 	int			poll_delay;
23574 	int			rc;
23575 	uint8_t			*sensep;
23576 	struct scsi_arq_status	*arqstat;
23577 	extern int		do_polled_io;
23578 
23579 	ASSERT(pkt->pkt_scbp);
23580 
23581 	/*
23582 	 * save old flags..
23583 	 */
23584 	savef = pkt->pkt_flags;
23585 	savec = pkt->pkt_comp;
23586 	savet = pkt->pkt_time;
23587 
23588 	pkt->pkt_flags |= FLAG_NOINTR;
23589 
23590 	/*
23591 	 * XXX there is nothing in the SCSA spec that states that we should not
23592 	 * do a callback for polled cmds; however, removing this will break sd
23593 	 * and probably other target drivers
23594 	 */
23595 	pkt->pkt_comp = NULL;
23596 
23597 	/*
23598 	 * we don't like a polled command without timeout.
23599 	 * 60 seconds seems long enough.
23600 	 */
23601 	if (pkt->pkt_time == 0)
23602 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23603 
23604 	/*
23605 	 * Send polled cmd.
23606 	 *
23607 	 * We do some error recovery for various errors.  Tran_busy,
23608 	 * queue full, and non-dispatched commands are retried every 10 msec.
23609 	 * as they are typically transient failures.  Busy status and Not
23610 	 * Ready are retried every second as this status takes a while to
23611 	 * change.
23612 	 */
23613 	timeout = pkt->pkt_time * SEC_TO_CSEC;
23614 
23615 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23616 		/*
23617 		 * Initialize pkt status variables.
23618 		 */
23619 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23620 
23621 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23622 			if (rc != TRAN_BUSY) {
23623 				/* Transport failed - give up. */
23624 				break;
23625 			} else {
23626 				/* Transport busy - try again. */
23627 				poll_delay = 1 * CSEC;		/* 10 msec. */
23628 			}
23629 		} else {
23630 			/*
23631 			 * Transport accepted - check pkt status.
23632 			 */
23633 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23634 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23635 			    (rc == STATUS_CHECK) &&
23636 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
23637 				arqstat =
23638 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23639 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23640 			} else {
23641 				sensep = NULL;
23642 			}
23643 
23644 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23645 			    (rc == STATUS_GOOD)) {
23646 				/* No error - we're done */
23647 				rval = 0;
23648 				break;
23649 
23650 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23651 				/* Lost connection - give up */
23652 				break;
23653 
23654 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23655 			    (pkt->pkt_state == 0)) {
23656 				/* Pkt not dispatched - try again. */
23657 				poll_delay = 1 * CSEC;		/* 10 msec. */
23658 
23659 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23660 			    (rc == STATUS_QFULL)) {
23661 				/* Queue full - try again. */
23662 				poll_delay = 1 * CSEC;		/* 10 msec. */
23663 
23664 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23665 			    (rc == STATUS_BUSY)) {
23666 				/* Busy - try again. */
23667 				poll_delay = 100 * CSEC;	/* 1 sec. */
23668 				busy_count += (SEC_TO_CSEC - 1);
23669 
23670 			} else if ((sensep != NULL) &&
23671 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
23672 				/*
23673 				 * Unit Attention - try again.
23674 				 * Pretend it took 1 sec.
23675 				 * NOTE: 'continue' avoids poll_delay
23676 				 */
23677 				busy_count += (SEC_TO_CSEC - 1);
23678 				continue;
23679 
23680 			} else if ((sensep != NULL) &&
23681 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23682 			    (scsi_sense_asc(sensep) == 0x04) &&
23683 			    (scsi_sense_ascq(sensep) == 0x01)) {
23684 				/*
23685 				 * Not ready -> ready - try again.
23686 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
23687 				 * ...same as STATUS_BUSY
23688 				 */
23689 				poll_delay = 100 * CSEC;	/* 1 sec. */
23690 				busy_count += (SEC_TO_CSEC - 1);
23691 
23692 			} else {
23693 				/* BAD status - give up. */
23694 				break;
23695 			}
23696 		}
23697 
23698 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
23699 		    !do_polled_io) {
23700 			delay(drv_usectohz(poll_delay));
23701 		} else {
23702 			/* we busy wait during cpr_dump or interrupt threads */
23703 			drv_usecwait(poll_delay);
23704 		}
23705 	}
23706 
23707 	pkt->pkt_flags = savef;
23708 	pkt->pkt_comp = savec;
23709 	pkt->pkt_time = savet;
23710 
23711 	/* return on error */
23712 	if (rval)
23713 		return (rval);
23714 
23715 	/*
23716 	 * This is not a performance critical code path.
23717 	 *
23718 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
23719 	 * issues associated with looking at DMA memory prior to
23720 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
23721 	 */
23722 	scsi_sync_pkt(pkt);
23723 	return (0);
23724 }
23725 
23726 
23727 
23728 /*
23729  *    Function: sd_persistent_reservation_in_read_keys
23730  *
23731  * Description: This routine is the driver entry point for handling CD-ROM
23732  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23733  *		by sending the SCSI-3 PRIN commands to the device.
23734  *		Processes the read keys command response by copying the
23735  *		reservation key information into the user provided buffer.
23736  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23737  *
23738  *   Arguments: un   -  Pointer to soft state struct for the target.
23739  *		usrp -	user provided pointer to multihost Persistent In Read
23740  *			Keys structure (mhioc_inkeys_t)
23741  *		flag -	this argument is a pass through to ddi_copyxxx()
23742  *			directly from the mode argument of ioctl().
23743  *
23744  * Return Code: 0   - Success
23745  *		EACCES
23746  *		ENOTSUP
23747  *		errno return code from sd_send_scsi_cmd()
23748  *
23749  *     Context: Can sleep. Does not return until command is completed.
23750  */
23751 
23752 static int
23753 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23754     mhioc_inkeys_t *usrp, int flag)
23755 {
23756 #ifdef _MULTI_DATAMODEL
23757 	struct mhioc_key_list32	li32;
23758 #endif
23759 	sd_prin_readkeys_t	*in;
23760 	mhioc_inkeys_t		*ptr;
23761 	mhioc_key_list_t	li;
23762 	uchar_t			*data_bufp;
23763 	int 			data_len;
23764 	int			rval;
23765 	size_t			copysz;
23766 
23767 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23768 		return (EINVAL);
23769 	}
23770 	bzero(&li, sizeof (mhioc_key_list_t));
23771 
23772 	/*
23773 	 * Get the listsize from user
23774 	 */
23775 #ifdef _MULTI_DATAMODEL
23776 
23777 	switch (ddi_model_convert_from(flag & FMODELS)) {
23778 	case DDI_MODEL_ILP32:
23779 		copysz = sizeof (struct mhioc_key_list32);
23780 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23781 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23782 			    "sd_persistent_reservation_in_read_keys: "
23783 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23784 			rval = EFAULT;
23785 			goto done;
23786 		}
23787 		li.listsize = li32.listsize;
23788 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23789 		break;
23790 
23791 	case DDI_MODEL_NONE:
23792 		copysz = sizeof (mhioc_key_list_t);
23793 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23794 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23795 			    "sd_persistent_reservation_in_read_keys: "
23796 			    "failed ddi_copyin: mhioc_key_list_t\n");
23797 			rval = EFAULT;
23798 			goto done;
23799 		}
23800 		break;
23801 	}
23802 
23803 #else /* ! _MULTI_DATAMODEL */
23804 	copysz = sizeof (mhioc_key_list_t);
23805 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23806 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23807 		    "sd_persistent_reservation_in_read_keys: "
23808 		    "failed ddi_copyin: mhioc_key_list_t\n");
23809 		rval = EFAULT;
23810 		goto done;
23811 	}
23812 #endif
23813 
23814 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23815 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23816 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23817 
23818 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23819 	    data_len, data_bufp)) != 0) {
23820 		goto done;
23821 	}
23822 	in = (sd_prin_readkeys_t *)data_bufp;
23823 	ptr->generation = BE_32(in->generation);
23824 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23825 
23826 	/*
23827 	 * Return the min(listsize, listlen) keys
23828 	 */
23829 #ifdef _MULTI_DATAMODEL
23830 
23831 	switch (ddi_model_convert_from(flag & FMODELS)) {
23832 	case DDI_MODEL_ILP32:
23833 		li32.listlen = li.listlen;
23834 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23835 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23836 			    "sd_persistent_reservation_in_read_keys: "
23837 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23838 			rval = EFAULT;
23839 			goto done;
23840 		}
23841 		break;
23842 
23843 	case DDI_MODEL_NONE:
23844 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23845 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23846 			    "sd_persistent_reservation_in_read_keys: "
23847 			    "failed ddi_copyout: mhioc_key_list_t\n");
23848 			rval = EFAULT;
23849 			goto done;
23850 		}
23851 		break;
23852 	}
23853 
23854 #else /* ! _MULTI_DATAMODEL */
23855 
23856 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23857 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23858 		    "sd_persistent_reservation_in_read_keys: "
23859 		    "failed ddi_copyout: mhioc_key_list_t\n");
23860 		rval = EFAULT;
23861 		goto done;
23862 	}
23863 
23864 #endif /* _MULTI_DATAMODEL */
23865 
23866 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23867 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23868 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23869 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23870 		    "sd_persistent_reservation_in_read_keys: "
23871 		    "failed ddi_copyout: keylist\n");
23872 		rval = EFAULT;
23873 	}
23874 done:
23875 	kmem_free(data_bufp, data_len);
23876 	return (rval);
23877 }
23878 
23879 
23880 /*
23881  *    Function: sd_persistent_reservation_in_read_resv
23882  *
23883  * Description: This routine is the driver entry point for handling CD-ROM
23884  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23885  *		by sending the SCSI-3 PRIN commands to the device.
23886  *		Process the read persistent reservations command response by
23887  *		copying the reservation information into the user provided
23888  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23889  *
23890  *   Arguments: un   -  Pointer to soft state struct for the target.
23891  *		usrp -	user provided pointer to multihost Persistent In Read
23892  *			Keys structure (mhioc_inkeys_t)
23893  *		flag -	this argument is a pass through to ddi_copyxxx()
23894  *			directly from the mode argument of ioctl().
23895  *
23896  * Return Code: 0   - Success
23897  *		EACCES
23898  *		ENOTSUP
23899  *		errno return code from sd_send_scsi_cmd()
23900  *
23901  *     Context: Can sleep. Does not return until command is completed.
23902  */
23903 
23904 static int
23905 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23906     mhioc_inresvs_t *usrp, int flag)
23907 {
23908 #ifdef _MULTI_DATAMODEL
23909 	struct mhioc_resv_desc_list32 resvlist32;
23910 #endif
23911 	sd_prin_readresv_t	*in;
23912 	mhioc_inresvs_t		*ptr;
23913 	sd_readresv_desc_t	*readresv_ptr;
23914 	mhioc_resv_desc_list_t	resvlist;
23915 	mhioc_resv_desc_t 	resvdesc;
23916 	uchar_t			*data_bufp;
23917 	int 			data_len;
23918 	int			rval;
23919 	int			i;
23920 	size_t			copysz;
23921 	mhioc_resv_desc_t	*bufp;
23922 
23923 	if ((ptr = usrp) == NULL) {
23924 		return (EINVAL);
23925 	}
23926 
23927 	/*
23928 	 * Get the listsize from user
23929 	 */
23930 #ifdef _MULTI_DATAMODEL
23931 	switch (ddi_model_convert_from(flag & FMODELS)) {
23932 	case DDI_MODEL_ILP32:
23933 		copysz = sizeof (struct mhioc_resv_desc_list32);
23934 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23935 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23936 			    "sd_persistent_reservation_in_read_resv: "
23937 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23938 			rval = EFAULT;
23939 			goto done;
23940 		}
23941 		resvlist.listsize = resvlist32.listsize;
23942 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23943 		break;
23944 
23945 	case DDI_MODEL_NONE:
23946 		copysz = sizeof (mhioc_resv_desc_list_t);
23947 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23948 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23949 			    "sd_persistent_reservation_in_read_resv: "
23950 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23951 			rval = EFAULT;
23952 			goto done;
23953 		}
23954 		break;
23955 	}
23956 #else /* ! _MULTI_DATAMODEL */
23957 	copysz = sizeof (mhioc_resv_desc_list_t);
23958 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23959 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23960 		    "sd_persistent_reservation_in_read_resv: "
23961 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23962 		rval = EFAULT;
23963 		goto done;
23964 	}
23965 #endif /* ! _MULTI_DATAMODEL */
23966 
23967 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23968 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23969 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23970 
23971 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23972 	    data_len, data_bufp)) != 0) {
23973 		goto done;
23974 	}
23975 	in = (sd_prin_readresv_t *)data_bufp;
23976 	ptr->generation = BE_32(in->generation);
23977 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23978 
23979 	/*
23980 	 * Return the min(listsize, listlen( keys
23981 	 */
23982 #ifdef _MULTI_DATAMODEL
23983 
23984 	switch (ddi_model_convert_from(flag & FMODELS)) {
23985 	case DDI_MODEL_ILP32:
23986 		resvlist32.listlen = resvlist.listlen;
23987 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23988 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23989 			    "sd_persistent_reservation_in_read_resv: "
23990 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23991 			rval = EFAULT;
23992 			goto done;
23993 		}
23994 		break;
23995 
23996 	case DDI_MODEL_NONE:
23997 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23998 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23999 			    "sd_persistent_reservation_in_read_resv: "
24000 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24001 			rval = EFAULT;
24002 			goto done;
24003 		}
24004 		break;
24005 	}
24006 
24007 #else /* ! _MULTI_DATAMODEL */
24008 
24009 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
24010 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24011 		    "sd_persistent_reservation_in_read_resv: "
24012 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
24013 		rval = EFAULT;
24014 		goto done;
24015 	}
24016 
24017 #endif /* ! _MULTI_DATAMODEL */
24018 
24019 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
24020 	bufp = resvlist.list;
24021 	copysz = sizeof (mhioc_resv_desc_t);
24022 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
24023 	    i++, readresv_ptr++, bufp++) {
24024 
24025 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
24026 		    MHIOC_RESV_KEY_SIZE);
24027 		resvdesc.type  = readresv_ptr->type;
24028 		resvdesc.scope = readresv_ptr->scope;
24029 		resvdesc.scope_specific_addr =
24030 		    BE_32(readresv_ptr->scope_specific_addr);
24031 
24032 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
24033 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24034 			    "sd_persistent_reservation_in_read_resv: "
24035 			    "failed ddi_copyout: resvlist\n");
24036 			rval = EFAULT;
24037 			goto done;
24038 		}
24039 	}
24040 done:
24041 	kmem_free(data_bufp, data_len);
24042 	return (rval);
24043 }
24044 
24045 
24046 /*
24047  *    Function: sr_change_blkmode()
24048  *
24049  * Description: This routine is the driver entry point for handling CD-ROM
24050  *		block mode ioctl requests. Support for returning and changing
24051  *		the current block size in use by the device is implemented. The
24052  *		LBA size is changed via a MODE SELECT Block Descriptor.
24053  *
24054  *		This routine issues a mode sense with an allocation length of
24055  *		12 bytes for the mode page header and a single block descriptor.
24056  *
24057  *   Arguments: dev - the device 'dev_t'
24058  *		cmd - the request type; one of CDROMGBLKMODE (get) or
24059  *		      CDROMSBLKMODE (set)
24060  *		data - current block size or requested block size
24061  *		flag - this argument is a pass through to ddi_copyxxx() directly
24062  *		       from the mode argument of ioctl().
24063  *
24064  * Return Code: the code returned by sd_send_scsi_cmd()
24065  *		EINVAL if invalid arguments are provided
24066  *		EFAULT if ddi_copyxxx() fails
24067  *		ENXIO if fail ddi_get_soft_state
24068  *		EIO if invalid mode sense block descriptor length
24069  *
24070  */
24071 
24072 static int
24073 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
24074 {
24075 	struct sd_lun			*un = NULL;
24076 	struct mode_header		*sense_mhp, *select_mhp;
24077 	struct block_descriptor		*sense_desc, *select_desc;
24078 	int				current_bsize;
24079 	int				rval = EINVAL;
24080 	uchar_t				*sense = NULL;
24081 	uchar_t				*select = NULL;
24082 
24083 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
24084 
24085 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24086 		return (ENXIO);
24087 	}
24088 
24089 	/*
24090 	 * The block length is changed via the Mode Select block descriptor, the
24091 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
24092 	 * required as part of this routine. Therefore the mode sense allocation
24093 	 * length is specified to be the length of a mode page header and a
24094 	 * block descriptor.
24095 	 */
24096 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24097 
24098 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24099 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
24100 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24101 		    "sr_change_blkmode: Mode Sense Failed\n");
24102 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24103 		return (rval);
24104 	}
24105 
24106 	/* Check the block descriptor len to handle only 1 block descriptor */
24107 	sense_mhp = (struct mode_header *)sense;
24108 	if ((sense_mhp->bdesc_length == 0) ||
24109 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
24110 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24111 		    "sr_change_blkmode: Mode Sense returned invalid block"
24112 		    " descriptor length\n");
24113 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24114 		return (EIO);
24115 	}
24116 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
24117 	current_bsize = ((sense_desc->blksize_hi << 16) |
24118 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
24119 
24120 	/* Process command */
24121 	switch (cmd) {
24122 	case CDROMGBLKMODE:
24123 		/* Return the block size obtained during the mode sense */
24124 		if (ddi_copyout(&current_bsize, (void *)data,
24125 		    sizeof (int), flag) != 0)
24126 			rval = EFAULT;
24127 		break;
24128 	case CDROMSBLKMODE:
24129 		/* Validate the requested block size */
24130 		switch (data) {
24131 		case CDROM_BLK_512:
24132 		case CDROM_BLK_1024:
24133 		case CDROM_BLK_2048:
24134 		case CDROM_BLK_2056:
24135 		case CDROM_BLK_2336:
24136 		case CDROM_BLK_2340:
24137 		case CDROM_BLK_2352:
24138 		case CDROM_BLK_2368:
24139 		case CDROM_BLK_2448:
24140 		case CDROM_BLK_2646:
24141 		case CDROM_BLK_2647:
24142 			break;
24143 		default:
24144 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24145 			    "sr_change_blkmode: "
24146 			    "Block Size '%ld' Not Supported\n", data);
24147 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24148 			return (EINVAL);
24149 		}
24150 
24151 		/*
24152 		 * The current block size matches the requested block size so
24153 		 * there is no need to send the mode select to change the size
24154 		 */
24155 		if (current_bsize == data) {
24156 			break;
24157 		}
24158 
24159 		/* Build the select data for the requested block size */
24160 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
24161 		select_mhp = (struct mode_header *)select;
24162 		select_desc =
24163 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
24164 		/*
24165 		 * The LBA size is changed via the block descriptor, so the
24166 		 * descriptor is built according to the user data
24167 		 */
24168 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
24169 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
24170 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
24171 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
24172 
24173 		/* Send the mode select for the requested block size */
24174 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24175 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24176 		    SD_PATH_STANDARD)) != 0) {
24177 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24178 			    "sr_change_blkmode: Mode Select Failed\n");
24179 			/*
24180 			 * The mode select failed for the requested block size,
24181 			 * so reset the data for the original block size and
24182 			 * send it to the target. The error is indicated by the
24183 			 * return value for the failed mode select.
24184 			 */
24185 			select_desc->blksize_hi  = sense_desc->blksize_hi;
24186 			select_desc->blksize_mid = sense_desc->blksize_mid;
24187 			select_desc->blksize_lo  = sense_desc->blksize_lo;
24188 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
24189 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
24190 			    SD_PATH_STANDARD);
24191 		} else {
24192 			ASSERT(!mutex_owned(SD_MUTEX(un)));
24193 			mutex_enter(SD_MUTEX(un));
24194 			sd_update_block_info(un, (uint32_t)data, 0);
24195 			mutex_exit(SD_MUTEX(un));
24196 		}
24197 		break;
24198 	default:
24199 		/* should not reach here, but check anyway */
24200 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24201 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
24202 		rval = EINVAL;
24203 		break;
24204 	}
24205 
24206 	if (select) {
24207 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
24208 	}
24209 	if (sense) {
24210 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
24211 	}
24212 	return (rval);
24213 }
24214 
24215 
24216 /*
24217  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
24218  * implement driver support for getting and setting the CD speed. The command
24219  * set used will be based on the device type. If the device has not been
24220  * identified as MMC the Toshiba vendor specific mode page will be used. If
24221  * the device is MMC but does not support the Real Time Streaming feature
24222  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
24223  * be used to read the speed.
24224  */
24225 
24226 /*
24227  *    Function: sr_change_speed()
24228  *
24229  * Description: This routine is the driver entry point for handling CD-ROM
24230  *		drive speed ioctl requests for devices supporting the Toshiba
24231  *		vendor specific drive speed mode page. Support for returning
24232  *		and changing the current drive speed in use by the device is
24233  *		implemented.
24234  *
24235  *   Arguments: dev - the device 'dev_t'
24236  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24237  *		      CDROMSDRVSPEED (set)
24238  *		data - current drive speed or requested drive speed
24239  *		flag - this argument is a pass through to ddi_copyxxx() directly
24240  *		       from the mode argument of ioctl().
24241  *
24242  * Return Code: the code returned by sd_send_scsi_cmd()
24243  *		EINVAL if invalid arguments are provided
24244  *		EFAULT if ddi_copyxxx() fails
24245  *		ENXIO if fail ddi_get_soft_state
24246  *		EIO if invalid mode sense block descriptor length
24247  */
24248 
24249 static int
24250 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24251 {
24252 	struct sd_lun			*un = NULL;
24253 	struct mode_header		*sense_mhp, *select_mhp;
24254 	struct mode_speed		*sense_page, *select_page;
24255 	int				current_speed;
24256 	int				rval = EINVAL;
24257 	int				bd_len;
24258 	uchar_t				*sense = NULL;
24259 	uchar_t				*select = NULL;
24260 
24261 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24262 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24263 		return (ENXIO);
24264 	}
24265 
24266 	/*
24267 	 * Note: The drive speed is being modified here according to a Toshiba
24268 	 * vendor specific mode page (0x31).
24269 	 */
24270 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24271 
24272 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24273 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24274 	    SD_PATH_STANDARD)) != 0) {
24275 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24276 		    "sr_change_speed: Mode Sense Failed\n");
24277 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24278 		return (rval);
24279 	}
24280 	sense_mhp  = (struct mode_header *)sense;
24281 
24282 	/* Check the block descriptor len to handle only 1 block descriptor */
24283 	bd_len = sense_mhp->bdesc_length;
24284 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24285 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24286 		    "sr_change_speed: Mode Sense returned invalid block "
24287 		    "descriptor length\n");
24288 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24289 		return (EIO);
24290 	}
24291 
24292 	sense_page = (struct mode_speed *)
24293 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24294 	current_speed = sense_page->speed;
24295 
24296 	/* Process command */
24297 	switch (cmd) {
24298 	case CDROMGDRVSPEED:
24299 		/* Return the drive speed obtained during the mode sense */
24300 		if (current_speed == 0x2) {
24301 			current_speed = CDROM_TWELVE_SPEED;
24302 		}
24303 		if (ddi_copyout(&current_speed, (void *)data,
24304 		    sizeof (int), flag) != 0) {
24305 			rval = EFAULT;
24306 		}
24307 		break;
24308 	case CDROMSDRVSPEED:
24309 		/* Validate the requested drive speed */
24310 		switch ((uchar_t)data) {
24311 		case CDROM_TWELVE_SPEED:
24312 			data = 0x2;
24313 			/*FALLTHROUGH*/
24314 		case CDROM_NORMAL_SPEED:
24315 		case CDROM_DOUBLE_SPEED:
24316 		case CDROM_QUAD_SPEED:
24317 		case CDROM_MAXIMUM_SPEED:
24318 			break;
24319 		default:
24320 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24321 			    "sr_change_speed: "
24322 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24323 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24324 			return (EINVAL);
24325 		}
24326 
24327 		/*
24328 		 * The current drive speed matches the requested drive speed so
24329 		 * there is no need to send the mode select to change the speed
24330 		 */
24331 		if (current_speed == data) {
24332 			break;
24333 		}
24334 
24335 		/* Build the select data for the requested drive speed */
24336 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24337 		select_mhp = (struct mode_header *)select;
24338 		select_mhp->bdesc_length = 0;
24339 		select_page =
24340 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24341 		select_page =
24342 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24343 		select_page->mode_page.code = CDROM_MODE_SPEED;
24344 		select_page->mode_page.length = 2;
24345 		select_page->speed = (uchar_t)data;
24346 
24347 		/* Send the mode select for the requested block size */
24348 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24349 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24350 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24351 			/*
24352 			 * The mode select failed for the requested drive speed,
24353 			 * so reset the data for the original drive speed and
24354 			 * send it to the target. The error is indicated by the
24355 			 * return value for the failed mode select.
24356 			 */
24357 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24358 			    "sr_drive_speed: Mode Select Failed\n");
24359 			select_page->speed = sense_page->speed;
24360 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24361 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24362 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24363 		}
24364 		break;
24365 	default:
24366 		/* should not reach here, but check anyway */
24367 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24368 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24369 		rval = EINVAL;
24370 		break;
24371 	}
24372 
24373 	if (select) {
24374 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24375 	}
24376 	if (sense) {
24377 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24378 	}
24379 
24380 	return (rval);
24381 }
24382 
24383 
24384 /*
24385  *    Function: sr_atapi_change_speed()
24386  *
24387  * Description: This routine is the driver entry point for handling CD-ROM
24388  *		drive speed ioctl requests for MMC devices that do not support
24389  *		the Real Time Streaming feature (0x107).
24390  *
24391  *		Note: This routine will use the SET SPEED command which may not
24392  *		be supported by all devices.
24393  *
24394  *   Arguments: dev- the device 'dev_t'
24395  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24396  *		     CDROMSDRVSPEED (set)
24397  *		data- current drive speed or requested drive speed
24398  *		flag- this argument is a pass through to ddi_copyxxx() directly
24399  *		      from the mode argument of ioctl().
24400  *
24401  * Return Code: the code returned by sd_send_scsi_cmd()
24402  *		EINVAL if invalid arguments are provided
24403  *		EFAULT if ddi_copyxxx() fails
24404  *		ENXIO if fail ddi_get_soft_state
24405  *		EIO if invalid mode sense block descriptor length
24406  */
24407 
24408 static int
24409 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24410 {
24411 	struct sd_lun			*un;
24412 	struct uscsi_cmd		*com = NULL;
24413 	struct mode_header_grp2		*sense_mhp;
24414 	uchar_t				*sense_page;
24415 	uchar_t				*sense = NULL;
24416 	char				cdb[CDB_GROUP5];
24417 	int				bd_len;
24418 	int				current_speed = 0;
24419 	int				max_speed = 0;
24420 	int				rval;
24421 
24422 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24423 
24424 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24425 		return (ENXIO);
24426 	}
24427 
24428 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24429 
24430 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24431 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24432 	    SD_PATH_STANDARD)) != 0) {
24433 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24434 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24435 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24436 		return (rval);
24437 	}
24438 
24439 	/* Check the block descriptor len to handle only 1 block descriptor */
24440 	sense_mhp = (struct mode_header_grp2 *)sense;
24441 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24442 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24443 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24444 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24445 		    "block descriptor length\n");
24446 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24447 		return (EIO);
24448 	}
24449 
24450 	/* Calculate the current and maximum drive speeds */
24451 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24452 	current_speed = (sense_page[14] << 8) | sense_page[15];
24453 	max_speed = (sense_page[8] << 8) | sense_page[9];
24454 
24455 	/* Process the command */
24456 	switch (cmd) {
24457 	case CDROMGDRVSPEED:
24458 		current_speed /= SD_SPEED_1X;
24459 		if (ddi_copyout(&current_speed, (void *)data,
24460 		    sizeof (int), flag) != 0)
24461 			rval = EFAULT;
24462 		break;
24463 	case CDROMSDRVSPEED:
24464 		/* Convert the speed code to KB/sec */
24465 		switch ((uchar_t)data) {
24466 		case CDROM_NORMAL_SPEED:
24467 			current_speed = SD_SPEED_1X;
24468 			break;
24469 		case CDROM_DOUBLE_SPEED:
24470 			current_speed = 2 * SD_SPEED_1X;
24471 			break;
24472 		case CDROM_QUAD_SPEED:
24473 			current_speed = 4 * SD_SPEED_1X;
24474 			break;
24475 		case CDROM_TWELVE_SPEED:
24476 			current_speed = 12 * SD_SPEED_1X;
24477 			break;
24478 		case CDROM_MAXIMUM_SPEED:
24479 			current_speed = 0xffff;
24480 			break;
24481 		default:
24482 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24483 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24484 			    (uchar_t)data);
24485 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24486 			return (EINVAL);
24487 		}
24488 
24489 		/* Check the request against the drive's max speed. */
24490 		if (current_speed != 0xffff) {
24491 			if (current_speed > max_speed) {
24492 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24493 				return (EINVAL);
24494 			}
24495 		}
24496 
24497 		/*
24498 		 * Build and send the SET SPEED command
24499 		 *
24500 		 * Note: The SET SPEED (0xBB) command used in this routine is
24501 		 * obsolete per the SCSI MMC spec but still supported in the
24502 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24503 		 * therefore the command is still implemented in this routine.
24504 		 */
24505 		bzero(cdb, sizeof (cdb));
24506 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24507 		cdb[2] = (uchar_t)(current_speed >> 8);
24508 		cdb[3] = (uchar_t)current_speed;
24509 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24510 		com->uscsi_cdb	   = (caddr_t)cdb;
24511 		com->uscsi_cdblen  = CDB_GROUP5;
24512 		com->uscsi_bufaddr = NULL;
24513 		com->uscsi_buflen  = 0;
24514 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24515 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24516 		break;
24517 	default:
24518 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24519 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24520 		rval = EINVAL;
24521 	}
24522 
24523 	if (sense) {
24524 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24525 	}
24526 	if (com) {
24527 		kmem_free(com, sizeof (*com));
24528 	}
24529 	return (rval);
24530 }
24531 
24532 
24533 /*
24534  *    Function: sr_pause_resume()
24535  *
24536  * Description: This routine is the driver entry point for handling CD-ROM
24537  *		pause/resume ioctl requests. This only affects the audio play
24538  *		operation.
24539  *
24540  *   Arguments: dev - the device 'dev_t'
24541  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24542  *		      for setting the resume bit of the cdb.
24543  *
24544  * Return Code: the code returned by sd_send_scsi_cmd()
24545  *		EINVAL if invalid mode specified
24546  *
24547  */
24548 
24549 static int
24550 sr_pause_resume(dev_t dev, int cmd)
24551 {
24552 	struct sd_lun		*un;
24553 	struct uscsi_cmd	*com;
24554 	char			cdb[CDB_GROUP1];
24555 	int			rval;
24556 
24557 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24558 		return (ENXIO);
24559 	}
24560 
24561 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24562 	bzero(cdb, CDB_GROUP1);
24563 	cdb[0] = SCMD_PAUSE_RESUME;
24564 	switch (cmd) {
24565 	case CDROMRESUME:
24566 		cdb[8] = 1;
24567 		break;
24568 	case CDROMPAUSE:
24569 		cdb[8] = 0;
24570 		break;
24571 	default:
24572 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24573 		    " Command '%x' Not Supported\n", cmd);
24574 		rval = EINVAL;
24575 		goto done;
24576 	}
24577 
24578 	com->uscsi_cdb    = cdb;
24579 	com->uscsi_cdblen = CDB_GROUP1;
24580 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24581 
24582 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24583 	    SD_PATH_STANDARD);
24584 
24585 done:
24586 	kmem_free(com, sizeof (*com));
24587 	return (rval);
24588 }
24589 
24590 
24591 /*
24592  *    Function: sr_play_msf()
24593  *
24594  * Description: This routine is the driver entry point for handling CD-ROM
24595  *		ioctl requests to output the audio signals at the specified
24596  *		starting address and continue the audio play until the specified
24597  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24598  *		Frame (MSF) format.
24599  *
24600  *   Arguments: dev	- the device 'dev_t'
24601  *		data	- pointer to user provided audio msf structure,
24602  *		          specifying start/end addresses.
24603  *		flag	- this argument is a pass through to ddi_copyxxx()
24604  *		          directly from the mode argument of ioctl().
24605  *
24606  * Return Code: the code returned by sd_send_scsi_cmd()
24607  *		EFAULT if ddi_copyxxx() fails
24608  *		ENXIO if fail ddi_get_soft_state
24609  *		EINVAL if data pointer is NULL
24610  */
24611 
24612 static int
24613 sr_play_msf(dev_t dev, caddr_t data, int flag)
24614 {
24615 	struct sd_lun		*un;
24616 	struct uscsi_cmd	*com;
24617 	struct cdrom_msf	msf_struct;
24618 	struct cdrom_msf	*msf = &msf_struct;
24619 	char			cdb[CDB_GROUP1];
24620 	int			rval;
24621 
24622 	if (data == NULL) {
24623 		return (EINVAL);
24624 	}
24625 
24626 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24627 		return (ENXIO);
24628 	}
24629 
24630 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24631 		return (EFAULT);
24632 	}
24633 
24634 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24635 	bzero(cdb, CDB_GROUP1);
24636 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24637 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24638 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24639 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24640 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24641 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24642 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24643 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24644 	} else {
24645 		cdb[3] = msf->cdmsf_min0;
24646 		cdb[4] = msf->cdmsf_sec0;
24647 		cdb[5] = msf->cdmsf_frame0;
24648 		cdb[6] = msf->cdmsf_min1;
24649 		cdb[7] = msf->cdmsf_sec1;
24650 		cdb[8] = msf->cdmsf_frame1;
24651 	}
24652 	com->uscsi_cdb    = cdb;
24653 	com->uscsi_cdblen = CDB_GROUP1;
24654 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24655 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24656 	    SD_PATH_STANDARD);
24657 	kmem_free(com, sizeof (*com));
24658 	return (rval);
24659 }
24660 
24661 
24662 /*
24663  *    Function: sr_play_trkind()
24664  *
24665  * Description: This routine is the driver entry point for handling CD-ROM
24666  *		ioctl requests to output the audio signals at the specified
24667  *		starting address and continue the audio play until the specified
24668  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24669  *		format.
24670  *
24671  *   Arguments: dev	- the device 'dev_t'
24672  *		data	- pointer to user provided audio track/index structure,
24673  *		          specifying start/end addresses.
24674  *		flag	- this argument is a pass through to ddi_copyxxx()
24675  *		          directly from the mode argument of ioctl().
24676  *
24677  * Return Code: the code returned by sd_send_scsi_cmd()
24678  *		EFAULT if ddi_copyxxx() fails
24679  *		ENXIO if fail ddi_get_soft_state
24680  *		EINVAL if data pointer is NULL
24681  */
24682 
24683 static int
24684 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24685 {
24686 	struct cdrom_ti		ti_struct;
24687 	struct cdrom_ti		*ti = &ti_struct;
24688 	struct uscsi_cmd	*com = NULL;
24689 	char			cdb[CDB_GROUP1];
24690 	int			rval;
24691 
24692 	if (data == NULL) {
24693 		return (EINVAL);
24694 	}
24695 
24696 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24697 		return (EFAULT);
24698 	}
24699 
24700 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24701 	bzero(cdb, CDB_GROUP1);
24702 	cdb[0] = SCMD_PLAYAUDIO_TI;
24703 	cdb[4] = ti->cdti_trk0;
24704 	cdb[5] = ti->cdti_ind0;
24705 	cdb[7] = ti->cdti_trk1;
24706 	cdb[8] = ti->cdti_ind1;
24707 	com->uscsi_cdb    = cdb;
24708 	com->uscsi_cdblen = CDB_GROUP1;
24709 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24710 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24711 	    SD_PATH_STANDARD);
24712 	kmem_free(com, sizeof (*com));
24713 	return (rval);
24714 }
24715 
24716 
24717 /*
24718  *    Function: sr_read_all_subcodes()
24719  *
24720  * Description: This routine is the driver entry point for handling CD-ROM
24721  *		ioctl requests to return raw subcode data while the target is
24722  *		playing audio (CDROMSUBCODE).
24723  *
24724  *   Arguments: dev	- the device 'dev_t'
24725  *		data	- pointer to user provided cdrom subcode structure,
24726  *		          specifying the transfer length and address.
24727  *		flag	- this argument is a pass through to ddi_copyxxx()
24728  *		          directly from the mode argument of ioctl().
24729  *
24730  * Return Code: the code returned by sd_send_scsi_cmd()
24731  *		EFAULT if ddi_copyxxx() fails
24732  *		ENXIO if fail ddi_get_soft_state
24733  *		EINVAL if data pointer is NULL
24734  */
24735 
24736 static int
24737 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24738 {
24739 	struct sd_lun		*un = NULL;
24740 	struct uscsi_cmd	*com = NULL;
24741 	struct cdrom_subcode	*subcode = NULL;
24742 	int			rval;
24743 	size_t			buflen;
24744 	char			cdb[CDB_GROUP5];
24745 
24746 #ifdef _MULTI_DATAMODEL
24747 	/* To support ILP32 applications in an LP64 world */
24748 	struct cdrom_subcode32		cdrom_subcode32;
24749 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24750 #endif
24751 	if (data == NULL) {
24752 		return (EINVAL);
24753 	}
24754 
24755 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24756 		return (ENXIO);
24757 	}
24758 
24759 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24760 
24761 #ifdef _MULTI_DATAMODEL
24762 	switch (ddi_model_convert_from(flag & FMODELS)) {
24763 	case DDI_MODEL_ILP32:
24764 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24765 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24766 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24767 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24768 			return (EFAULT);
24769 		}
24770 		/* Convert the ILP32 uscsi data from the application to LP64 */
24771 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24772 		break;
24773 	case DDI_MODEL_NONE:
24774 		if (ddi_copyin(data, subcode,
24775 		    sizeof (struct cdrom_subcode), flag)) {
24776 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24777 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24778 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24779 			return (EFAULT);
24780 		}
24781 		break;
24782 	}
24783 #else /* ! _MULTI_DATAMODEL */
24784 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24785 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24786 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24787 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24788 		return (EFAULT);
24789 	}
24790 #endif /* _MULTI_DATAMODEL */
24791 
24792 	/*
24793 	 * Since MMC-2 expects max 3 bytes for length, check if the
24794 	 * length input is greater than 3 bytes
24795 	 */
24796 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24798 		    "sr_read_all_subcodes: "
24799 		    "cdrom transfer length too large: %d (limit %d)\n",
24800 		    subcode->cdsc_length, 0xFFFFFF);
24801 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24802 		return (EINVAL);
24803 	}
24804 
24805 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24806 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24807 	bzero(cdb, CDB_GROUP5);
24808 
24809 	if (un->un_f_mmc_cap == TRUE) {
24810 		cdb[0] = (char)SCMD_READ_CD;
24811 		cdb[2] = (char)0xff;
24812 		cdb[3] = (char)0xff;
24813 		cdb[4] = (char)0xff;
24814 		cdb[5] = (char)0xff;
24815 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24816 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24817 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24818 		cdb[10] = 1;
24819 	} else {
24820 		/*
24821 		 * Note: A vendor specific command (0xDF) is being used her to
24822 		 * request a read of all subcodes.
24823 		 */
24824 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24825 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24826 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24827 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24828 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24829 	}
24830 	com->uscsi_cdb	   = cdb;
24831 	com->uscsi_cdblen  = CDB_GROUP5;
24832 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24833 	com->uscsi_buflen  = buflen;
24834 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24835 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24836 	    SD_PATH_STANDARD);
24837 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24838 	kmem_free(com, sizeof (*com));
24839 	return (rval);
24840 }
24841 
24842 
24843 /*
24844  *    Function: sr_read_subchannel()
24845  *
24846  * Description: This routine is the driver entry point for handling CD-ROM
24847  *		ioctl requests to return the Q sub-channel data of the CD
24848  *		current position block. (CDROMSUBCHNL) The data includes the
24849  *		track number, index number, absolute CD-ROM address (LBA or MSF
24850  *		format per the user) , track relative CD-ROM address (LBA or MSF
24851  *		format per the user), control data and audio status.
24852  *
24853  *   Arguments: dev	- the device 'dev_t'
24854  *		data	- pointer to user provided cdrom sub-channel structure
24855  *		flag	- this argument is a pass through to ddi_copyxxx()
24856  *		          directly from the mode argument of ioctl().
24857  *
24858  * Return Code: the code returned by sd_send_scsi_cmd()
24859  *		EFAULT if ddi_copyxxx() fails
24860  *		ENXIO if fail ddi_get_soft_state
24861  *		EINVAL if data pointer is NULL
24862  */
24863 
24864 static int
24865 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24866 {
24867 	struct sd_lun		*un;
24868 	struct uscsi_cmd	*com;
24869 	struct cdrom_subchnl	subchanel;
24870 	struct cdrom_subchnl	*subchnl = &subchanel;
24871 	char			cdb[CDB_GROUP1];
24872 	caddr_t			buffer;
24873 	int			rval;
24874 
24875 	if (data == NULL) {
24876 		return (EINVAL);
24877 	}
24878 
24879 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24880 	    (un->un_state == SD_STATE_OFFLINE)) {
24881 		return (ENXIO);
24882 	}
24883 
24884 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24885 		return (EFAULT);
24886 	}
24887 
24888 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24889 	bzero(cdb, CDB_GROUP1);
24890 	cdb[0] = SCMD_READ_SUBCHANNEL;
24891 	/* Set the MSF bit based on the user requested address format */
24892 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24893 	/*
24894 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24895 	 * returned
24896 	 */
24897 	cdb[2] = 0x40;
24898 	/*
24899 	 * Set byte 3 to specify the return data format. A value of 0x01
24900 	 * indicates that the CD-ROM current position should be returned.
24901 	 */
24902 	cdb[3] = 0x01;
24903 	cdb[8] = 0x10;
24904 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24905 	com->uscsi_cdb	   = cdb;
24906 	com->uscsi_cdblen  = CDB_GROUP1;
24907 	com->uscsi_bufaddr = buffer;
24908 	com->uscsi_buflen  = 16;
24909 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24910 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24911 	    SD_PATH_STANDARD);
24912 	if (rval != 0) {
24913 		kmem_free(buffer, 16);
24914 		kmem_free(com, sizeof (*com));
24915 		return (rval);
24916 	}
24917 
24918 	/* Process the returned Q sub-channel data */
24919 	subchnl->cdsc_audiostatus = buffer[1];
24920 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24921 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24922 	subchnl->cdsc_trk	= buffer[6];
24923 	subchnl->cdsc_ind	= buffer[7];
24924 	if (subchnl->cdsc_format & CDROM_LBA) {
24925 		subchnl->cdsc_absaddr.lba =
24926 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24927 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24928 		subchnl->cdsc_reladdr.lba =
24929 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24930 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24931 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24932 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24933 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24934 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24935 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24936 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24937 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24938 	} else {
24939 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24940 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24941 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24942 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24943 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24944 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24945 	}
24946 	kmem_free(buffer, 16);
24947 	kmem_free(com, sizeof (*com));
24948 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24949 	    != 0) {
24950 		return (EFAULT);
24951 	}
24952 	return (rval);
24953 }
24954 
24955 
24956 /*
24957  *    Function: sr_read_tocentry()
24958  *
24959  * Description: This routine is the driver entry point for handling CD-ROM
24960  *		ioctl requests to read from the Table of Contents (TOC)
24961  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24962  *		fields, the starting address (LBA or MSF format per the user)
24963  *		and the data mode if the user specified track is a data track.
24964  *
24965  *		Note: The READ HEADER (0x44) command used in this routine is
24966  *		obsolete per the SCSI MMC spec but still supported in the
24967  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24968  *		therefore the command is still implemented in this routine.
24969  *
24970  *   Arguments: dev	- the device 'dev_t'
24971  *		data	- pointer to user provided toc entry structure,
24972  *			  specifying the track # and the address format
24973  *			  (LBA or MSF).
24974  *		flag	- this argument is a pass through to ddi_copyxxx()
24975  *		          directly from the mode argument of ioctl().
24976  *
24977  * Return Code: the code returned by sd_send_scsi_cmd()
24978  *		EFAULT if ddi_copyxxx() fails
24979  *		ENXIO if fail ddi_get_soft_state
24980  *		EINVAL if data pointer is NULL
24981  */
24982 
24983 static int
24984 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24985 {
24986 	struct sd_lun		*un = NULL;
24987 	struct uscsi_cmd	*com;
24988 	struct cdrom_tocentry	toc_entry;
24989 	struct cdrom_tocentry	*entry = &toc_entry;
24990 	caddr_t			buffer;
24991 	int			rval;
24992 	char			cdb[CDB_GROUP1];
24993 
24994 	if (data == NULL) {
24995 		return (EINVAL);
24996 	}
24997 
24998 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24999 	    (un->un_state == SD_STATE_OFFLINE)) {
25000 		return (ENXIO);
25001 	}
25002 
25003 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
25004 		return (EFAULT);
25005 	}
25006 
25007 	/* Validate the requested track and address format */
25008 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
25009 		return (EINVAL);
25010 	}
25011 
25012 	if (entry->cdte_track == 0) {
25013 		return (EINVAL);
25014 	}
25015 
25016 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
25017 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25018 	bzero(cdb, CDB_GROUP1);
25019 
25020 	cdb[0] = SCMD_READ_TOC;
25021 	/* Set the MSF bit based on the user requested address format  */
25022 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
25023 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25024 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
25025 	} else {
25026 		cdb[6] = entry->cdte_track;
25027 	}
25028 
25029 	/*
25030 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25031 	 * (4 byte TOC response header + 8 byte track descriptor)
25032 	 */
25033 	cdb[8] = 12;
25034 	com->uscsi_cdb	   = cdb;
25035 	com->uscsi_cdblen  = CDB_GROUP1;
25036 	com->uscsi_bufaddr = buffer;
25037 	com->uscsi_buflen  = 0x0C;
25038 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
25039 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25040 	    SD_PATH_STANDARD);
25041 	if (rval != 0) {
25042 		kmem_free(buffer, 12);
25043 		kmem_free(com, sizeof (*com));
25044 		return (rval);
25045 	}
25046 
25047 	/* Process the toc entry */
25048 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
25049 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
25050 	if (entry->cdte_format & CDROM_LBA) {
25051 		entry->cdte_addr.lba =
25052 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25053 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25054 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
25055 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
25056 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
25057 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
25058 		/*
25059 		 * Send a READ TOC command using the LBA address format to get
25060 		 * the LBA for the track requested so it can be used in the
25061 		 * READ HEADER request
25062 		 *
25063 		 * Note: The MSF bit of the READ HEADER command specifies the
25064 		 * output format. The block address specified in that command
25065 		 * must be in LBA format.
25066 		 */
25067 		cdb[1] = 0;
25068 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25069 		    SD_PATH_STANDARD);
25070 		if (rval != 0) {
25071 			kmem_free(buffer, 12);
25072 			kmem_free(com, sizeof (*com));
25073 			return (rval);
25074 		}
25075 	} else {
25076 		entry->cdte_addr.msf.minute	= buffer[9];
25077 		entry->cdte_addr.msf.second	= buffer[10];
25078 		entry->cdte_addr.msf.frame	= buffer[11];
25079 		/*
25080 		 * Send a READ TOC command using the LBA address format to get
25081 		 * the LBA for the track requested so it can be used in the
25082 		 * READ HEADER request
25083 		 *
25084 		 * Note: The MSF bit of the READ HEADER command specifies the
25085 		 * output format. The block address specified in that command
25086 		 * must be in LBA format.
25087 		 */
25088 		cdb[1] = 0;
25089 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25090 		    SD_PATH_STANDARD);
25091 		if (rval != 0) {
25092 			kmem_free(buffer, 12);
25093 			kmem_free(com, sizeof (*com));
25094 			return (rval);
25095 		}
25096 	}
25097 
25098 	/*
25099 	 * Build and send the READ HEADER command to determine the data mode of
25100 	 * the user specified track.
25101 	 */
25102 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
25103 	    (entry->cdte_track != CDROM_LEADOUT)) {
25104 		bzero(cdb, CDB_GROUP1);
25105 		cdb[0] = SCMD_READ_HEADER;
25106 		cdb[2] = buffer[8];
25107 		cdb[3] = buffer[9];
25108 		cdb[4] = buffer[10];
25109 		cdb[5] = buffer[11];
25110 		cdb[8] = 0x08;
25111 		com->uscsi_buflen = 0x08;
25112 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25113 		    SD_PATH_STANDARD);
25114 		if (rval == 0) {
25115 			entry->cdte_datamode = buffer[0];
25116 		} else {
25117 			/*
25118 			 * READ HEADER command failed, since this is
25119 			 * obsoleted in one spec, its better to return
25120 			 * -1 for an invlid track so that we can still
25121 			 * receive the rest of the TOC data.
25122 			 */
25123 			entry->cdte_datamode = (uchar_t)-1;
25124 		}
25125 	} else {
25126 		entry->cdte_datamode = (uchar_t)-1;
25127 	}
25128 
25129 	kmem_free(buffer, 12);
25130 	kmem_free(com, sizeof (*com));
25131 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
25132 		return (EFAULT);
25133 
25134 	return (rval);
25135 }
25136 
25137 
25138 /*
25139  *    Function: sr_read_tochdr()
25140  *
25141  * Description: This routine is the driver entry point for handling CD-ROM
25142  * 		ioctl requests to read the Table of Contents (TOC) header
25143  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
25144  *		and ending track numbers
25145  *
25146  *   Arguments: dev	- the device 'dev_t'
25147  *		data	- pointer to user provided toc header structure,
25148  *			  specifying the starting and ending track numbers.
25149  *		flag	- this argument is a pass through to ddi_copyxxx()
25150  *			  directly from the mode argument of ioctl().
25151  *
25152  * Return Code: the code returned by sd_send_scsi_cmd()
25153  *		EFAULT if ddi_copyxxx() fails
25154  *		ENXIO if fail ddi_get_soft_state
25155  *		EINVAL if data pointer is NULL
25156  */
25157 
25158 static int
25159 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
25160 {
25161 	struct sd_lun		*un;
25162 	struct uscsi_cmd	*com;
25163 	struct cdrom_tochdr	toc_header;
25164 	struct cdrom_tochdr	*hdr = &toc_header;
25165 	char			cdb[CDB_GROUP1];
25166 	int			rval;
25167 	caddr_t			buffer;
25168 
25169 	if (data == NULL) {
25170 		return (EINVAL);
25171 	}
25172 
25173 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25174 	    (un->un_state == SD_STATE_OFFLINE)) {
25175 		return (ENXIO);
25176 	}
25177 
25178 	buffer = kmem_zalloc(4, KM_SLEEP);
25179 	bzero(cdb, CDB_GROUP1);
25180 	cdb[0] = SCMD_READ_TOC;
25181 	/*
25182 	 * Specifying a track number of 0x00 in the READ TOC command indicates
25183 	 * that the TOC header should be returned
25184 	 */
25185 	cdb[6] = 0x00;
25186 	/*
25187 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
25188 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
25189 	 */
25190 	cdb[8] = 0x04;
25191 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25192 	com->uscsi_cdb	   = cdb;
25193 	com->uscsi_cdblen  = CDB_GROUP1;
25194 	com->uscsi_bufaddr = buffer;
25195 	com->uscsi_buflen  = 0x04;
25196 	com->uscsi_timeout = 300;
25197 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25198 
25199 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25200 	    SD_PATH_STANDARD);
25201 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
25202 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
25203 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
25204 	} else {
25205 		hdr->cdth_trk0 = buffer[2];
25206 		hdr->cdth_trk1 = buffer[3];
25207 	}
25208 	kmem_free(buffer, 4);
25209 	kmem_free(com, sizeof (*com));
25210 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
25211 		return (EFAULT);
25212 	}
25213 	return (rval);
25214 }
25215 
25216 
25217 /*
25218  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
25219  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
25220  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
25221  * digital audio and extended architecture digital audio. These modes are
25222  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
25223  * MMC specs.
25224  *
25225  * In addition to support for the various data formats these routines also
25226  * include support for devices that implement only the direct access READ
25227  * commands (0x08, 0x28), devices that implement the READ_CD commands
25228  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
25229  * READ CDXA commands (0xD8, 0xDB)
25230  */
25231 
25232 /*
25233  *    Function: sr_read_mode1()
25234  *
25235  * Description: This routine is the driver entry point for handling CD-ROM
25236  *		ioctl read mode1 requests (CDROMREADMODE1).
25237  *
25238  *   Arguments: dev	- the device 'dev_t'
25239  *		data	- pointer to user provided cd read structure specifying
25240  *			  the lba buffer address and length.
25241  *		flag	- this argument is a pass through to ddi_copyxxx()
25242  *			  directly from the mode argument of ioctl().
25243  *
25244  * Return Code: the code returned by sd_send_scsi_cmd()
25245  *		EFAULT if ddi_copyxxx() fails
25246  *		ENXIO if fail ddi_get_soft_state
25247  *		EINVAL if data pointer is NULL
25248  */
25249 
25250 static int
25251 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25252 {
25253 	struct sd_lun		*un;
25254 	struct cdrom_read	mode1_struct;
25255 	struct cdrom_read	*mode1 = &mode1_struct;
25256 	int			rval;
25257 #ifdef _MULTI_DATAMODEL
25258 	/* To support ILP32 applications in an LP64 world */
25259 	struct cdrom_read32	cdrom_read32;
25260 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25261 #endif /* _MULTI_DATAMODEL */
25262 
25263 	if (data == NULL) {
25264 		return (EINVAL);
25265 	}
25266 
25267 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25268 	    (un->un_state == SD_STATE_OFFLINE)) {
25269 		return (ENXIO);
25270 	}
25271 
25272 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25273 	    "sd_read_mode1: entry: un:0x%p\n", un);
25274 
25275 #ifdef _MULTI_DATAMODEL
25276 	switch (ddi_model_convert_from(flag & FMODELS)) {
25277 	case DDI_MODEL_ILP32:
25278 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25279 			return (EFAULT);
25280 		}
25281 		/* Convert the ILP32 uscsi data from the application to LP64 */
25282 		cdrom_read32tocdrom_read(cdrd32, mode1);
25283 		break;
25284 	case DDI_MODEL_NONE:
25285 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25286 			return (EFAULT);
25287 		}
25288 	}
25289 #else /* ! _MULTI_DATAMODEL */
25290 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25291 		return (EFAULT);
25292 	}
25293 #endif /* _MULTI_DATAMODEL */
25294 
25295 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25296 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25297 
25298 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25299 	    "sd_read_mode1: exit: un:0x%p\n", un);
25300 
25301 	return (rval);
25302 }
25303 
25304 
25305 /*
25306  *    Function: sr_read_cd_mode2()
25307  *
25308  * Description: This routine is the driver entry point for handling CD-ROM
25309  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25310  *		support the READ CD (0xBE) command or the 1st generation
25311  *		READ CD (0xD4) command.
25312  *
25313  *   Arguments: dev	- the device 'dev_t'
25314  *		data	- pointer to user provided cd read structure specifying
25315  *			  the lba buffer address and length.
25316  *		flag	- this argument is a pass through to ddi_copyxxx()
25317  *			  directly from the mode argument of ioctl().
25318  *
25319  * Return Code: the code returned by sd_send_scsi_cmd()
25320  *		EFAULT if ddi_copyxxx() fails
25321  *		ENXIO if fail ddi_get_soft_state
25322  *		EINVAL if data pointer is NULL
25323  */
25324 
25325 static int
25326 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25327 {
25328 	struct sd_lun		*un;
25329 	struct uscsi_cmd	*com;
25330 	struct cdrom_read	mode2_struct;
25331 	struct cdrom_read	*mode2 = &mode2_struct;
25332 	uchar_t			cdb[CDB_GROUP5];
25333 	int			nblocks;
25334 	int			rval;
25335 #ifdef _MULTI_DATAMODEL
25336 	/*  To support ILP32 applications in an LP64 world */
25337 	struct cdrom_read32	cdrom_read32;
25338 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25339 #endif /* _MULTI_DATAMODEL */
25340 
25341 	if (data == NULL) {
25342 		return (EINVAL);
25343 	}
25344 
25345 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25346 	    (un->un_state == SD_STATE_OFFLINE)) {
25347 		return (ENXIO);
25348 	}
25349 
25350 #ifdef _MULTI_DATAMODEL
25351 	switch (ddi_model_convert_from(flag & FMODELS)) {
25352 	case DDI_MODEL_ILP32:
25353 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25354 			return (EFAULT);
25355 		}
25356 		/* Convert the ILP32 uscsi data from the application to LP64 */
25357 		cdrom_read32tocdrom_read(cdrd32, mode2);
25358 		break;
25359 	case DDI_MODEL_NONE:
25360 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25361 			return (EFAULT);
25362 		}
25363 		break;
25364 	}
25365 
25366 #else /* ! _MULTI_DATAMODEL */
25367 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25368 		return (EFAULT);
25369 	}
25370 #endif /* _MULTI_DATAMODEL */
25371 
25372 	bzero(cdb, sizeof (cdb));
25373 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25374 		/* Read command supported by 1st generation atapi drives */
25375 		cdb[0] = SCMD_READ_CDD4;
25376 	} else {
25377 		/* Universal CD Access Command */
25378 		cdb[0] = SCMD_READ_CD;
25379 	}
25380 
25381 	/*
25382 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25383 	 */
25384 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25385 
25386 	/* set the start address */
25387 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25388 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25389 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25390 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25391 
25392 	/* set the transfer length */
25393 	nblocks = mode2->cdread_buflen / 2336;
25394 	cdb[6] = (uchar_t)(nblocks >> 16);
25395 	cdb[7] = (uchar_t)(nblocks >> 8);
25396 	cdb[8] = (uchar_t)nblocks;
25397 
25398 	/* set the filter bits */
25399 	cdb[9] = CDROM_READ_CD_USERDATA;
25400 
25401 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25402 	com->uscsi_cdb = (caddr_t)cdb;
25403 	com->uscsi_cdblen = sizeof (cdb);
25404 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25405 	com->uscsi_buflen = mode2->cdread_buflen;
25406 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25407 
25408 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25409 	    SD_PATH_STANDARD);
25410 	kmem_free(com, sizeof (*com));
25411 	return (rval);
25412 }
25413 
25414 
25415 /*
25416  *    Function: sr_read_mode2()
25417  *
25418  * Description: This routine is the driver entry point for handling CD-ROM
25419  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25420  *		do not support the READ CD (0xBE) command.
25421  *
25422  *   Arguments: dev	- the device 'dev_t'
25423  *		data	- pointer to user provided cd read structure specifying
25424  *			  the lba buffer address and length.
25425  *		flag	- this argument is a pass through to ddi_copyxxx()
25426  *			  directly from the mode argument of ioctl().
25427  *
25428  * Return Code: the code returned by sd_send_scsi_cmd()
25429  *		EFAULT if ddi_copyxxx() fails
25430  *		ENXIO if fail ddi_get_soft_state
25431  *		EINVAL if data pointer is NULL
25432  *		EIO if fail to reset block size
25433  *		EAGAIN if commands are in progress in the driver
25434  */
25435 
25436 static int
25437 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25438 {
25439 	struct sd_lun		*un;
25440 	struct cdrom_read	mode2_struct;
25441 	struct cdrom_read	*mode2 = &mode2_struct;
25442 	int			rval;
25443 	uint32_t		restore_blksize;
25444 	struct uscsi_cmd	*com;
25445 	uchar_t			cdb[CDB_GROUP0];
25446 	int			nblocks;
25447 
25448 #ifdef _MULTI_DATAMODEL
25449 	/* To support ILP32 applications in an LP64 world */
25450 	struct cdrom_read32	cdrom_read32;
25451 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25452 #endif /* _MULTI_DATAMODEL */
25453 
25454 	if (data == NULL) {
25455 		return (EINVAL);
25456 	}
25457 
25458 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25459 	    (un->un_state == SD_STATE_OFFLINE)) {
25460 		return (ENXIO);
25461 	}
25462 
25463 	/*
25464 	 * Because this routine will update the device and driver block size
25465 	 * being used we want to make sure there are no commands in progress.
25466 	 * If commands are in progress the user will have to try again.
25467 	 *
25468 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25469 	 * in sdioctl to protect commands from sdioctl through to the top of
25470 	 * sd_uscsi_strategy. See sdioctl for details.
25471 	 */
25472 	mutex_enter(SD_MUTEX(un));
25473 	if (un->un_ncmds_in_driver != 1) {
25474 		mutex_exit(SD_MUTEX(un));
25475 		return (EAGAIN);
25476 	}
25477 	mutex_exit(SD_MUTEX(un));
25478 
25479 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25480 	    "sd_read_mode2: entry: un:0x%p\n", un);
25481 
25482 #ifdef _MULTI_DATAMODEL
25483 	switch (ddi_model_convert_from(flag & FMODELS)) {
25484 	case DDI_MODEL_ILP32:
25485 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25486 			return (EFAULT);
25487 		}
25488 		/* Convert the ILP32 uscsi data from the application to LP64 */
25489 		cdrom_read32tocdrom_read(cdrd32, mode2);
25490 		break;
25491 	case DDI_MODEL_NONE:
25492 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25493 			return (EFAULT);
25494 		}
25495 		break;
25496 	}
25497 #else /* ! _MULTI_DATAMODEL */
25498 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25499 		return (EFAULT);
25500 	}
25501 #endif /* _MULTI_DATAMODEL */
25502 
25503 	/* Store the current target block size for restoration later */
25504 	restore_blksize = un->un_tgt_blocksize;
25505 
25506 	/* Change the device and soft state target block size to 2336 */
25507 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25508 		rval = EIO;
25509 		goto done;
25510 	}
25511 
25512 
25513 	bzero(cdb, sizeof (cdb));
25514 
25515 	/* set READ operation */
25516 	cdb[0] = SCMD_READ;
25517 
25518 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25519 	mode2->cdread_lba >>= 2;
25520 
25521 	/* set the start address */
25522 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25523 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25524 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25525 
25526 	/* set the transfer length */
25527 	nblocks = mode2->cdread_buflen / 2336;
25528 	cdb[4] = (uchar_t)nblocks & 0xFF;
25529 
25530 	/* build command */
25531 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25532 	com->uscsi_cdb = (caddr_t)cdb;
25533 	com->uscsi_cdblen = sizeof (cdb);
25534 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25535 	com->uscsi_buflen = mode2->cdread_buflen;
25536 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25537 
25538 	/*
25539 	 * Issue SCSI command with user space address for read buffer.
25540 	 *
25541 	 * This sends the command through main channel in the driver.
25542 	 *
25543 	 * Since this is accessed via an IOCTL call, we go through the
25544 	 * standard path, so that if the device was powered down, then
25545 	 * it would be 'awakened' to handle the command.
25546 	 */
25547 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25548 	    SD_PATH_STANDARD);
25549 
25550 	kmem_free(com, sizeof (*com));
25551 
25552 	/* Restore the device and soft state target block size */
25553 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25554 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25555 		    "can't do switch back to mode 1\n");
25556 		/*
25557 		 * If sd_send_scsi_READ succeeded we still need to report
25558 		 * an error because we failed to reset the block size
25559 		 */
25560 		if (rval == 0) {
25561 			rval = EIO;
25562 		}
25563 	}
25564 
25565 done:
25566 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25567 	    "sd_read_mode2: exit: un:0x%p\n", un);
25568 
25569 	return (rval);
25570 }
25571 
25572 
25573 /*
25574  *    Function: sr_sector_mode()
25575  *
25576  * Description: This utility function is used by sr_read_mode2 to set the target
25577  *		block size based on the user specified size. This is a legacy
25578  *		implementation based upon a vendor specific mode page
25579  *
25580  *   Arguments: dev	- the device 'dev_t'
25581  *		data	- flag indicating if block size is being set to 2336 or
25582  *			  512.
25583  *
25584  * Return Code: the code returned by sd_send_scsi_cmd()
25585  *		EFAULT if ddi_copyxxx() fails
25586  *		ENXIO if fail ddi_get_soft_state
25587  *		EINVAL if data pointer is NULL
25588  */
25589 
25590 static int
25591 sr_sector_mode(dev_t dev, uint32_t blksize)
25592 {
25593 	struct sd_lun	*un;
25594 	uchar_t		*sense;
25595 	uchar_t		*select;
25596 	int		rval;
25597 
25598 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25599 	    (un->un_state == SD_STATE_OFFLINE)) {
25600 		return (ENXIO);
25601 	}
25602 
25603 	sense = kmem_zalloc(20, KM_SLEEP);
25604 
25605 	/* Note: This is a vendor specific mode page (0x81) */
25606 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25607 	    SD_PATH_STANDARD)) != 0) {
25608 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25609 		    "sr_sector_mode: Mode Sense failed\n");
25610 		kmem_free(sense, 20);
25611 		return (rval);
25612 	}
25613 	select = kmem_zalloc(20, KM_SLEEP);
25614 	select[3] = 0x08;
25615 	select[10] = ((blksize >> 8) & 0xff);
25616 	select[11] = (blksize & 0xff);
25617 	select[12] = 0x01;
25618 	select[13] = 0x06;
25619 	select[14] = sense[14];
25620 	select[15] = sense[15];
25621 	if (blksize == SD_MODE2_BLKSIZE) {
25622 		select[14] |= 0x01;
25623 	}
25624 
25625 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25626 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25627 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25628 		    "sr_sector_mode: Mode Select failed\n");
25629 	} else {
25630 		/*
25631 		 * Only update the softstate block size if we successfully
25632 		 * changed the device block mode.
25633 		 */
25634 		mutex_enter(SD_MUTEX(un));
25635 		sd_update_block_info(un, blksize, 0);
25636 		mutex_exit(SD_MUTEX(un));
25637 	}
25638 	kmem_free(sense, 20);
25639 	kmem_free(select, 20);
25640 	return (rval);
25641 }
25642 
25643 
25644 /*
25645  *    Function: sr_read_cdda()
25646  *
25647  * Description: This routine is the driver entry point for handling CD-ROM
25648  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25649  *		the target supports CDDA these requests are handled via a vendor
25650  *		specific command (0xD8) If the target does not support CDDA
25651  *		these requests are handled via the READ CD command (0xBE).
25652  *
25653  *   Arguments: dev	- the device 'dev_t'
25654  *		data	- pointer to user provided CD-DA structure specifying
25655  *			  the track starting address, transfer length, and
25656  *			  subcode options.
25657  *		flag	- this argument is a pass through to ddi_copyxxx()
25658  *			  directly from the mode argument of ioctl().
25659  *
25660  * Return Code: the code returned by sd_send_scsi_cmd()
25661  *		EFAULT if ddi_copyxxx() fails
25662  *		ENXIO if fail ddi_get_soft_state
25663  *		EINVAL if invalid arguments are provided
25664  *		ENOTTY
25665  */
25666 
25667 static int
25668 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25669 {
25670 	struct sd_lun			*un;
25671 	struct uscsi_cmd		*com;
25672 	struct cdrom_cdda		*cdda;
25673 	int				rval;
25674 	size_t				buflen;
25675 	char				cdb[CDB_GROUP5];
25676 
25677 #ifdef _MULTI_DATAMODEL
25678 	/* To support ILP32 applications in an LP64 world */
25679 	struct cdrom_cdda32	cdrom_cdda32;
25680 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25681 #endif /* _MULTI_DATAMODEL */
25682 
25683 	if (data == NULL) {
25684 		return (EINVAL);
25685 	}
25686 
25687 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25688 		return (ENXIO);
25689 	}
25690 
25691 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25692 
25693 #ifdef _MULTI_DATAMODEL
25694 	switch (ddi_model_convert_from(flag & FMODELS)) {
25695 	case DDI_MODEL_ILP32:
25696 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25697 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25698 			    "sr_read_cdda: ddi_copyin Failed\n");
25699 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25700 			return (EFAULT);
25701 		}
25702 		/* Convert the ILP32 uscsi data from the application to LP64 */
25703 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25704 		break;
25705 	case DDI_MODEL_NONE:
25706 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25707 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25708 			    "sr_read_cdda: ddi_copyin Failed\n");
25709 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25710 			return (EFAULT);
25711 		}
25712 		break;
25713 	}
25714 #else /* ! _MULTI_DATAMODEL */
25715 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25716 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25717 		    "sr_read_cdda: ddi_copyin Failed\n");
25718 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25719 		return (EFAULT);
25720 	}
25721 #endif /* _MULTI_DATAMODEL */
25722 
25723 	/*
25724 	 * Since MMC-2 expects max 3 bytes for length, check if the
25725 	 * length input is greater than 3 bytes
25726 	 */
25727 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25728 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25729 		    "cdrom transfer length too large: %d (limit %d)\n",
25730 		    cdda->cdda_length, 0xFFFFFF);
25731 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25732 		return (EINVAL);
25733 	}
25734 
25735 	switch (cdda->cdda_subcode) {
25736 	case CDROM_DA_NO_SUBCODE:
25737 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25738 		break;
25739 	case CDROM_DA_SUBQ:
25740 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25741 		break;
25742 	case CDROM_DA_ALL_SUBCODE:
25743 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25744 		break;
25745 	case CDROM_DA_SUBCODE_ONLY:
25746 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25747 		break;
25748 	default:
25749 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25750 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25751 		    cdda->cdda_subcode);
25752 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25753 		return (EINVAL);
25754 	}
25755 
25756 	/* Build and send the command */
25757 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25758 	bzero(cdb, CDB_GROUP5);
25759 
25760 	if (un->un_f_cfg_cdda == TRUE) {
25761 		cdb[0] = (char)SCMD_READ_CD;
25762 		cdb[1] = 0x04;
25763 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25764 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25765 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25766 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25767 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25768 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25769 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25770 		cdb[9] = 0x10;
25771 		switch (cdda->cdda_subcode) {
25772 		case CDROM_DA_NO_SUBCODE :
25773 			cdb[10] = 0x0;
25774 			break;
25775 		case CDROM_DA_SUBQ :
25776 			cdb[10] = 0x2;
25777 			break;
25778 		case CDROM_DA_ALL_SUBCODE :
25779 			cdb[10] = 0x1;
25780 			break;
25781 		case CDROM_DA_SUBCODE_ONLY :
25782 			/* FALLTHROUGH */
25783 		default :
25784 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25785 			kmem_free(com, sizeof (*com));
25786 			return (ENOTTY);
25787 		}
25788 	} else {
25789 		cdb[0] = (char)SCMD_READ_CDDA;
25790 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25791 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25792 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25793 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25794 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25795 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25796 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25797 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25798 		cdb[10] = cdda->cdda_subcode;
25799 	}
25800 
25801 	com->uscsi_cdb = cdb;
25802 	com->uscsi_cdblen = CDB_GROUP5;
25803 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25804 	com->uscsi_buflen = buflen;
25805 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25806 
25807 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25808 	    SD_PATH_STANDARD);
25809 
25810 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25811 	kmem_free(com, sizeof (*com));
25812 	return (rval);
25813 }
25814 
25815 
25816 /*
25817  *    Function: sr_read_cdxa()
25818  *
25819  * Description: This routine is the driver entry point for handling CD-ROM
25820  *		ioctl requests to return CD-XA (Extended Architecture) data.
25821  *		(CDROMCDXA).
25822  *
25823  *   Arguments: dev	- the device 'dev_t'
25824  *		data	- pointer to user provided CD-XA structure specifying
25825  *			  the data starting address, transfer length, and format
25826  *		flag	- this argument is a pass through to ddi_copyxxx()
25827  *			  directly from the mode argument of ioctl().
25828  *
25829  * Return Code: the code returned by sd_send_scsi_cmd()
25830  *		EFAULT if ddi_copyxxx() fails
25831  *		ENXIO if fail ddi_get_soft_state
25832  *		EINVAL if data pointer is NULL
25833  */
25834 
25835 static int
25836 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25837 {
25838 	struct sd_lun		*un;
25839 	struct uscsi_cmd	*com;
25840 	struct cdrom_cdxa	*cdxa;
25841 	int			rval;
25842 	size_t			buflen;
25843 	char			cdb[CDB_GROUP5];
25844 	uchar_t			read_flags;
25845 
25846 #ifdef _MULTI_DATAMODEL
25847 	/* To support ILP32 applications in an LP64 world */
25848 	struct cdrom_cdxa32		cdrom_cdxa32;
25849 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25850 #endif /* _MULTI_DATAMODEL */
25851 
25852 	if (data == NULL) {
25853 		return (EINVAL);
25854 	}
25855 
25856 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25857 		return (ENXIO);
25858 	}
25859 
25860 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25861 
25862 #ifdef _MULTI_DATAMODEL
25863 	switch (ddi_model_convert_from(flag & FMODELS)) {
25864 	case DDI_MODEL_ILP32:
25865 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25866 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25867 			return (EFAULT);
25868 		}
25869 		/*
25870 		 * Convert the ILP32 uscsi data from the
25871 		 * application to LP64 for internal use.
25872 		 */
25873 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25874 		break;
25875 	case DDI_MODEL_NONE:
25876 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25877 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25878 			return (EFAULT);
25879 		}
25880 		break;
25881 	}
25882 #else /* ! _MULTI_DATAMODEL */
25883 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25884 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25885 		return (EFAULT);
25886 	}
25887 #endif /* _MULTI_DATAMODEL */
25888 
25889 	/*
25890 	 * Since MMC-2 expects max 3 bytes for length, check if the
25891 	 * length input is greater than 3 bytes
25892 	 */
25893 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25894 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25895 		    "cdrom transfer length too large: %d (limit %d)\n",
25896 		    cdxa->cdxa_length, 0xFFFFFF);
25897 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25898 		return (EINVAL);
25899 	}
25900 
25901 	switch (cdxa->cdxa_format) {
25902 	case CDROM_XA_DATA:
25903 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25904 		read_flags = 0x10;
25905 		break;
25906 	case CDROM_XA_SECTOR_DATA:
25907 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25908 		read_flags = 0xf8;
25909 		break;
25910 	case CDROM_XA_DATA_W_ERROR:
25911 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25912 		read_flags = 0xfc;
25913 		break;
25914 	default:
25915 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25916 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25917 		    cdxa->cdxa_format);
25918 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25919 		return (EINVAL);
25920 	}
25921 
25922 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25923 	bzero(cdb, CDB_GROUP5);
25924 	if (un->un_f_mmc_cap == TRUE) {
25925 		cdb[0] = (char)SCMD_READ_CD;
25926 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25927 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25928 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25929 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25930 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25931 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25932 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25933 		cdb[9] = (char)read_flags;
25934 	} else {
25935 		/*
25936 		 * Note: A vendor specific command (0xDB) is being used her to
25937 		 * request a read of all subcodes.
25938 		 */
25939 		cdb[0] = (char)SCMD_READ_CDXA;
25940 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25941 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25942 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25943 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25944 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25945 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25946 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25947 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25948 		cdb[10] = cdxa->cdxa_format;
25949 	}
25950 	com->uscsi_cdb	   = cdb;
25951 	com->uscsi_cdblen  = CDB_GROUP5;
25952 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25953 	com->uscsi_buflen  = buflen;
25954 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25955 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25956 	    SD_PATH_STANDARD);
25957 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25958 	kmem_free(com, sizeof (*com));
25959 	return (rval);
25960 }
25961 
25962 
25963 /*
25964  *    Function: sr_eject()
25965  *
25966  * Description: This routine is the driver entry point for handling CD-ROM
25967  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25968  *
25969  *   Arguments: dev	- the device 'dev_t'
25970  *
25971  * Return Code: the code returned by sd_send_scsi_cmd()
25972  */
25973 
25974 static int
25975 sr_eject(dev_t dev)
25976 {
25977 	struct sd_lun	*un;
25978 	int		rval;
25979 
25980 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25981 	    (un->un_state == SD_STATE_OFFLINE)) {
25982 		return (ENXIO);
25983 	}
25984 
25985 	/*
25986 	 * To prevent race conditions with the eject
25987 	 * command, keep track of an eject command as
25988 	 * it progresses. If we are already handling
25989 	 * an eject command in the driver for the given
25990 	 * unit and another request to eject is received
25991 	 * immediately return EAGAIN so we don't lose
25992 	 * the command if the current eject command fails.
25993 	 */
25994 	mutex_enter(SD_MUTEX(un));
25995 	if (un->un_f_ejecting == TRUE) {
25996 		mutex_exit(SD_MUTEX(un));
25997 		return (EAGAIN);
25998 	}
25999 	un->un_f_ejecting = TRUE;
26000 	mutex_exit(SD_MUTEX(un));
26001 
26002 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
26003 	    SD_PATH_STANDARD)) != 0) {
26004 		mutex_enter(SD_MUTEX(un));
26005 		un->un_f_ejecting = FALSE;
26006 		mutex_exit(SD_MUTEX(un));
26007 		return (rval);
26008 	}
26009 
26010 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
26011 	    SD_PATH_STANDARD);
26012 
26013 	if (rval == 0) {
26014 		mutex_enter(SD_MUTEX(un));
26015 		sr_ejected(un);
26016 		un->un_mediastate = DKIO_EJECTED;
26017 		un->un_f_ejecting = FALSE;
26018 		cv_broadcast(&un->un_state_cv);
26019 		mutex_exit(SD_MUTEX(un));
26020 	} else {
26021 		mutex_enter(SD_MUTEX(un));
26022 		un->un_f_ejecting = FALSE;
26023 		mutex_exit(SD_MUTEX(un));
26024 	}
26025 	return (rval);
26026 }
26027 
26028 
26029 /*
26030  *    Function: sr_ejected()
26031  *
26032  * Description: This routine updates the soft state structure to invalidate the
26033  *		geometry information after the media has been ejected or a
26034  *		media eject has been detected.
26035  *
26036  *   Arguments: un - driver soft state (unit) structure
26037  */
26038 
26039 static void
26040 sr_ejected(struct sd_lun *un)
26041 {
26042 	struct sd_errstats *stp;
26043 
26044 	ASSERT(un != NULL);
26045 	ASSERT(mutex_owned(SD_MUTEX(un)));
26046 
26047 	un->un_f_blockcount_is_valid	= FALSE;
26048 	un->un_f_tgt_blocksize_is_valid	= FALSE;
26049 	mutex_exit(SD_MUTEX(un));
26050 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
26051 	mutex_enter(SD_MUTEX(un));
26052 
26053 	if (un->un_errstats != NULL) {
26054 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
26055 		stp->sd_capacity.value.ui64 = 0;
26056 	}
26057 
26058 	/* remove "capacity-of-device" properties */
26059 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26060 	    "device-nblocks");
26061 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
26062 	    "device-blksize");
26063 }
26064 
26065 
26066 /*
26067  *    Function: sr_check_wp()
26068  *
26069  * Description: This routine checks the write protection of a removable
26070  *      media disk and hotpluggable devices via the write protect bit of
26071  *      the Mode Page Header device specific field. Some devices choke
26072  *      on unsupported mode page. In order to workaround this issue,
26073  *      this routine has been implemented to use 0x3f mode page(request
26074  *      for all pages) for all device types.
26075  *
26076  *   Arguments: dev		- the device 'dev_t'
26077  *
26078  * Return Code: int indicating if the device is write protected (1) or not (0)
26079  *
26080  *     Context: Kernel thread.
26081  *
26082  */
26083 
26084 static int
26085 sr_check_wp(dev_t dev)
26086 {
26087 	struct sd_lun	*un;
26088 	uchar_t		device_specific;
26089 	uchar_t		*sense;
26090 	int		hdrlen;
26091 	int		rval = FALSE;
26092 
26093 	/*
26094 	 * Note: The return codes for this routine should be reworked to
26095 	 * properly handle the case of a NULL softstate.
26096 	 */
26097 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26098 		return (FALSE);
26099 	}
26100 
26101 	if (un->un_f_cfg_is_atapi == TRUE) {
26102 		/*
26103 		 * The mode page contents are not required; set the allocation
26104 		 * length for the mode page header only
26105 		 */
26106 		hdrlen = MODE_HEADER_LENGTH_GRP2;
26107 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26108 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
26109 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26110 			goto err_exit;
26111 		device_specific =
26112 		    ((struct mode_header_grp2 *)sense)->device_specific;
26113 	} else {
26114 		hdrlen = MODE_HEADER_LENGTH;
26115 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
26116 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
26117 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
26118 			goto err_exit;
26119 		device_specific =
26120 		    ((struct mode_header *)sense)->device_specific;
26121 	}
26122 
26123 	/*
26124 	 * Write protect mode sense failed; not all disks
26125 	 * understand this query. Return FALSE assuming that
26126 	 * these devices are not writable.
26127 	 */
26128 	if (device_specific & WRITE_PROTECT) {
26129 		rval = TRUE;
26130 	}
26131 
26132 err_exit:
26133 	kmem_free(sense, hdrlen);
26134 	return (rval);
26135 }
26136 
26137 /*
26138  *    Function: sr_volume_ctrl()
26139  *
26140  * Description: This routine is the driver entry point for handling CD-ROM
26141  *		audio output volume ioctl requests. (CDROMVOLCTRL)
26142  *
26143  *   Arguments: dev	- the device 'dev_t'
26144  *		data	- pointer to user audio volume control structure
26145  *		flag	- this argument is a pass through to ddi_copyxxx()
26146  *			  directly from the mode argument of ioctl().
26147  *
26148  * Return Code: the code returned by sd_send_scsi_cmd()
26149  *		EFAULT if ddi_copyxxx() fails
26150  *		ENXIO if fail ddi_get_soft_state
26151  *		EINVAL if data pointer is NULL
26152  *
26153  */
26154 
26155 static int
26156 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
26157 {
26158 	struct sd_lun		*un;
26159 	struct cdrom_volctrl    volume;
26160 	struct cdrom_volctrl    *vol = &volume;
26161 	uchar_t			*sense_page;
26162 	uchar_t			*select_page;
26163 	uchar_t			*sense;
26164 	uchar_t			*select;
26165 	int			sense_buflen;
26166 	int			select_buflen;
26167 	int			rval;
26168 
26169 	if (data == NULL) {
26170 		return (EINVAL);
26171 	}
26172 
26173 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26174 	    (un->un_state == SD_STATE_OFFLINE)) {
26175 		return (ENXIO);
26176 	}
26177 
26178 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
26179 		return (EFAULT);
26180 	}
26181 
26182 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26183 		struct mode_header_grp2		*sense_mhp;
26184 		struct mode_header_grp2		*select_mhp;
26185 		int				bd_len;
26186 
26187 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
26188 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
26189 		    MODEPAGE_AUDIO_CTRL_LEN;
26190 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26191 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26192 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26193 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26194 		    SD_PATH_STANDARD)) != 0) {
26195 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
26196 			    "sr_volume_ctrl: Mode Sense Failed\n");
26197 			kmem_free(sense, sense_buflen);
26198 			kmem_free(select, select_buflen);
26199 			return (rval);
26200 		}
26201 		sense_mhp = (struct mode_header_grp2 *)sense;
26202 		select_mhp = (struct mode_header_grp2 *)select;
26203 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
26204 		    sense_mhp->bdesc_length_lo;
26205 		if (bd_len > MODE_BLK_DESC_LENGTH) {
26206 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26207 			    "sr_volume_ctrl: Mode Sense returned invalid "
26208 			    "block descriptor length\n");
26209 			kmem_free(sense, sense_buflen);
26210 			kmem_free(select, select_buflen);
26211 			return (EIO);
26212 		}
26213 		sense_page = (uchar_t *)
26214 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26215 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
26216 		select_mhp->length_msb = 0;
26217 		select_mhp->length_lsb = 0;
26218 		select_mhp->bdesc_length_hi = 0;
26219 		select_mhp->bdesc_length_lo = 0;
26220 	} else {
26221 		struct mode_header		*sense_mhp, *select_mhp;
26222 
26223 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26224 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
26225 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
26226 		select = kmem_zalloc(select_buflen, KM_SLEEP);
26227 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26228 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
26229 		    SD_PATH_STANDARD)) != 0) {
26230 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26231 			    "sr_volume_ctrl: Mode Sense Failed\n");
26232 			kmem_free(sense, sense_buflen);
26233 			kmem_free(select, select_buflen);
26234 			return (rval);
26235 		}
26236 		sense_mhp  = (struct mode_header *)sense;
26237 		select_mhp = (struct mode_header *)select;
26238 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26239 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26240 			    "sr_volume_ctrl: Mode Sense returned invalid "
26241 			    "block descriptor length\n");
26242 			kmem_free(sense, sense_buflen);
26243 			kmem_free(select, select_buflen);
26244 			return (EIO);
26245 		}
26246 		sense_page = (uchar_t *)
26247 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26248 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26249 		select_mhp->length = 0;
26250 		select_mhp->bdesc_length = 0;
26251 	}
26252 	/*
26253 	 * Note: An audio control data structure could be created and overlayed
26254 	 * on the following in place of the array indexing method implemented.
26255 	 */
26256 
26257 	/* Build the select data for the user volume data */
26258 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26259 	select_page[1] = 0xE;
26260 	/* Set the immediate bit */
26261 	select_page[2] = 0x04;
26262 	/* Zero out reserved fields */
26263 	select_page[3] = 0x00;
26264 	select_page[4] = 0x00;
26265 	/* Return sense data for fields not to be modified */
26266 	select_page[5] = sense_page[5];
26267 	select_page[6] = sense_page[6];
26268 	select_page[7] = sense_page[7];
26269 	/* Set the user specified volume levels for channel 0 and 1 */
26270 	select_page[8] = 0x01;
26271 	select_page[9] = vol->channel0;
26272 	select_page[10] = 0x02;
26273 	select_page[11] = vol->channel1;
26274 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26275 	select_page[12] = sense_page[12];
26276 	select_page[13] = sense_page[13];
26277 	select_page[14] = sense_page[14];
26278 	select_page[15] = sense_page[15];
26279 
26280 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26281 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26282 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26283 	} else {
26284 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26285 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26286 	}
26287 
26288 	kmem_free(sense, sense_buflen);
26289 	kmem_free(select, select_buflen);
26290 	return (rval);
26291 }
26292 
26293 
26294 /*
26295  *    Function: sr_read_sony_session_offset()
26296  *
26297  * Description: This routine is the driver entry point for handling CD-ROM
26298  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26299  *		The address of the first track in the last session of a
26300  *		multi-session CD-ROM is returned
26301  *
26302  *		Note: This routine uses a vendor specific key value in the
26303  *		command control field without implementing any vendor check here
26304  *		or in the ioctl routine.
26305  *
26306  *   Arguments: dev	- the device 'dev_t'
26307  *		data	- pointer to an int to hold the requested address
26308  *		flag	- this argument is a pass through to ddi_copyxxx()
26309  *			  directly from the mode argument of ioctl().
26310  *
26311  * Return Code: the code returned by sd_send_scsi_cmd()
26312  *		EFAULT if ddi_copyxxx() fails
26313  *		ENXIO if fail ddi_get_soft_state
26314  *		EINVAL if data pointer is NULL
26315  */
26316 
26317 static int
26318 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26319 {
26320 	struct sd_lun		*un;
26321 	struct uscsi_cmd	*com;
26322 	caddr_t			buffer;
26323 	char			cdb[CDB_GROUP1];
26324 	int			session_offset = 0;
26325 	int			rval;
26326 
26327 	if (data == NULL) {
26328 		return (EINVAL);
26329 	}
26330 
26331 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26332 	    (un->un_state == SD_STATE_OFFLINE)) {
26333 		return (ENXIO);
26334 	}
26335 
26336 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26337 	bzero(cdb, CDB_GROUP1);
26338 	cdb[0] = SCMD_READ_TOC;
26339 	/*
26340 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26341 	 * (4 byte TOC response header + 8 byte response data)
26342 	 */
26343 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26344 	/* Byte 9 is the control byte. A vendor specific value is used */
26345 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26346 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26347 	com->uscsi_cdb = cdb;
26348 	com->uscsi_cdblen = CDB_GROUP1;
26349 	com->uscsi_bufaddr = buffer;
26350 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26351 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26352 
26353 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26354 	    SD_PATH_STANDARD);
26355 	if (rval != 0) {
26356 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26357 		kmem_free(com, sizeof (*com));
26358 		return (rval);
26359 	}
26360 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26361 		session_offset =
26362 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26363 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26364 		/*
26365 		 * Offset returned offset in current lbasize block's. Convert to
26366 		 * 2k block's to return to the user
26367 		 */
26368 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26369 			session_offset >>= 2;
26370 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26371 			session_offset >>= 1;
26372 		}
26373 	}
26374 
26375 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26376 		rval = EFAULT;
26377 	}
26378 
26379 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26380 	kmem_free(com, sizeof (*com));
26381 	return (rval);
26382 }
26383 
26384 
26385 /*
26386  *    Function: sd_wm_cache_constructor()
26387  *
26388  * Description: Cache Constructor for the wmap cache for the read/modify/write
26389  * 		devices.
26390  *
26391  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26392  *		un	- sd_lun structure for the device.
26393  *		flag	- the km flags passed to constructor
26394  *
26395  * Return Code: 0 on success.
26396  *		-1 on failure.
26397  */
26398 
26399 /*ARGSUSED*/
26400 static int
26401 sd_wm_cache_constructor(void *wm, void *un, int flags)
26402 {
26403 	bzero(wm, sizeof (struct sd_w_map));
26404 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26405 	return (0);
26406 }
26407 
26408 
26409 /*
26410  *    Function: sd_wm_cache_destructor()
26411  *
26412  * Description: Cache destructor for the wmap cache for the read/modify/write
26413  * 		devices.
26414  *
26415  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26416  *		un	- sd_lun structure for the device.
26417  */
26418 /*ARGSUSED*/
26419 static void
26420 sd_wm_cache_destructor(void *wm, void *un)
26421 {
26422 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26423 }
26424 
26425 
26426 /*
26427  *    Function: sd_range_lock()
26428  *
26429  * Description: Lock the range of blocks specified as parameter to ensure
26430  *		that read, modify write is atomic and no other i/o writes
26431  *		to the same location. The range is specified in terms
26432  *		of start and end blocks. Block numbers are the actual
26433  *		media block numbers and not system.
26434  *
26435  *   Arguments: un	- sd_lun structure for the device.
26436  *		startb - The starting block number
26437  *		endb - The end block number
26438  *		typ - type of i/o - simple/read_modify_write
26439  *
26440  * Return Code: wm  - pointer to the wmap structure.
26441  *
26442  *     Context: This routine can sleep.
26443  */
26444 
26445 static struct sd_w_map *
26446 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26447 {
26448 	struct sd_w_map *wmp = NULL;
26449 	struct sd_w_map *sl_wmp = NULL;
26450 	struct sd_w_map *tmp_wmp;
26451 	wm_state state = SD_WM_CHK_LIST;
26452 
26453 
26454 	ASSERT(un != NULL);
26455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26456 
26457 	mutex_enter(SD_MUTEX(un));
26458 
26459 	while (state != SD_WM_DONE) {
26460 
26461 		switch (state) {
26462 		case SD_WM_CHK_LIST:
26463 			/*
26464 			 * This is the starting state. Check the wmap list
26465 			 * to see if the range is currently available.
26466 			 */
26467 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26468 				/*
26469 				 * If this is a simple write and no rmw
26470 				 * i/o is pending then try to lock the
26471 				 * range as the range should be available.
26472 				 */
26473 				state = SD_WM_LOCK_RANGE;
26474 			} else {
26475 				tmp_wmp = sd_get_range(un, startb, endb);
26476 				if (tmp_wmp != NULL) {
26477 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26478 						/*
26479 						 * Should not keep onlist wmps
26480 						 * while waiting this macro
26481 						 * will also do wmp = NULL;
26482 						 */
26483 						FREE_ONLIST_WMAP(un, wmp);
26484 					}
26485 					/*
26486 					 * sl_wmp is the wmap on which wait
26487 					 * is done, since the tmp_wmp points
26488 					 * to the inuse wmap, set sl_wmp to
26489 					 * tmp_wmp and change the state to sleep
26490 					 */
26491 					sl_wmp = tmp_wmp;
26492 					state = SD_WM_WAIT_MAP;
26493 				} else {
26494 					state = SD_WM_LOCK_RANGE;
26495 				}
26496 
26497 			}
26498 			break;
26499 
26500 		case SD_WM_LOCK_RANGE:
26501 			ASSERT(un->un_wm_cache);
26502 			/*
26503 			 * The range need to be locked, try to get a wmap.
26504 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26505 			 * if possible as we will have to release the sd mutex
26506 			 * if we have to sleep.
26507 			 */
26508 			if (wmp == NULL)
26509 				wmp = kmem_cache_alloc(un->un_wm_cache,
26510 				    KM_NOSLEEP);
26511 			if (wmp == NULL) {
26512 				mutex_exit(SD_MUTEX(un));
26513 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26514 				    (sd_lun::un_wm_cache))
26515 				wmp = kmem_cache_alloc(un->un_wm_cache,
26516 				    KM_SLEEP);
26517 				mutex_enter(SD_MUTEX(un));
26518 				/*
26519 				 * we released the mutex so recheck and go to
26520 				 * check list state.
26521 				 */
26522 				state = SD_WM_CHK_LIST;
26523 			} else {
26524 				/*
26525 				 * We exit out of state machine since we
26526 				 * have the wmap. Do the housekeeping first.
26527 				 * place the wmap on the wmap list if it is not
26528 				 * on it already and then set the state to done.
26529 				 */
26530 				wmp->wm_start = startb;
26531 				wmp->wm_end = endb;
26532 				wmp->wm_flags = typ | SD_WM_BUSY;
26533 				if (typ & SD_WTYPE_RMW) {
26534 					un->un_rmw_count++;
26535 				}
26536 				/*
26537 				 * If not already on the list then link
26538 				 */
26539 				if (!ONLIST(un, wmp)) {
26540 					wmp->wm_next = un->un_wm;
26541 					wmp->wm_prev = NULL;
26542 					if (wmp->wm_next)
26543 						wmp->wm_next->wm_prev = wmp;
26544 					un->un_wm = wmp;
26545 				}
26546 				state = SD_WM_DONE;
26547 			}
26548 			break;
26549 
26550 		case SD_WM_WAIT_MAP:
26551 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26552 			/*
26553 			 * Wait is done on sl_wmp, which is set in the
26554 			 * check_list state.
26555 			 */
26556 			sl_wmp->wm_wanted_count++;
26557 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26558 			sl_wmp->wm_wanted_count--;
26559 			/*
26560 			 * We can reuse the memory from the completed sl_wmp
26561 			 * lock range for our new lock, but only if noone is
26562 			 * waiting for it.
26563 			 */
26564 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26565 			if (sl_wmp->wm_wanted_count == 0) {
26566 				if (wmp != NULL)
26567 					CHK_N_FREEWMP(un, wmp);
26568 				wmp = sl_wmp;
26569 			}
26570 			sl_wmp = NULL;
26571 			/*
26572 			 * After waking up, need to recheck for availability of
26573 			 * range.
26574 			 */
26575 			state = SD_WM_CHK_LIST;
26576 			break;
26577 
26578 		default:
26579 			panic("sd_range_lock: "
26580 			    "Unknown state %d in sd_range_lock", state);
26581 			/*NOTREACHED*/
26582 		} /* switch(state) */
26583 
26584 	} /* while(state != SD_WM_DONE) */
26585 
26586 	mutex_exit(SD_MUTEX(un));
26587 
26588 	ASSERT(wmp != NULL);
26589 
26590 	return (wmp);
26591 }
26592 
26593 
26594 /*
26595  *    Function: sd_get_range()
26596  *
26597  * Description: Find if there any overlapping I/O to this one
26598  *		Returns the write-map of 1st such I/O, NULL otherwise.
26599  *
26600  *   Arguments: un	- sd_lun structure for the device.
26601  *		startb - The starting block number
26602  *		endb - The end block number
26603  *
26604  * Return Code: wm  - pointer to the wmap structure.
26605  */
26606 
26607 static struct sd_w_map *
26608 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26609 {
26610 	struct sd_w_map *wmp;
26611 
26612 	ASSERT(un != NULL);
26613 
26614 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26615 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26616 			continue;
26617 		}
26618 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26619 			break;
26620 		}
26621 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26622 			break;
26623 		}
26624 	}
26625 
26626 	return (wmp);
26627 }
26628 
26629 
26630 /*
26631  *    Function: sd_free_inlist_wmap()
26632  *
26633  * Description: Unlink and free a write map struct.
26634  *
26635  *   Arguments: un      - sd_lun structure for the device.
26636  *		wmp	- sd_w_map which needs to be unlinked.
26637  */
26638 
26639 static void
26640 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26641 {
26642 	ASSERT(un != NULL);
26643 
26644 	if (un->un_wm == wmp) {
26645 		un->un_wm = wmp->wm_next;
26646 	} else {
26647 		wmp->wm_prev->wm_next = wmp->wm_next;
26648 	}
26649 
26650 	if (wmp->wm_next) {
26651 		wmp->wm_next->wm_prev = wmp->wm_prev;
26652 	}
26653 
26654 	wmp->wm_next = wmp->wm_prev = NULL;
26655 
26656 	kmem_cache_free(un->un_wm_cache, wmp);
26657 }
26658 
26659 
26660 /*
26661  *    Function: sd_range_unlock()
26662  *
26663  * Description: Unlock the range locked by wm.
26664  *		Free write map if nobody else is waiting on it.
26665  *
26666  *   Arguments: un      - sd_lun structure for the device.
26667  *              wmp     - sd_w_map which needs to be unlinked.
26668  */
26669 
26670 static void
26671 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26672 {
26673 	ASSERT(un != NULL);
26674 	ASSERT(wm != NULL);
26675 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26676 
26677 	mutex_enter(SD_MUTEX(un));
26678 
26679 	if (wm->wm_flags & SD_WTYPE_RMW) {
26680 		un->un_rmw_count--;
26681 	}
26682 
26683 	if (wm->wm_wanted_count) {
26684 		wm->wm_flags = 0;
26685 		/*
26686 		 * Broadcast that the wmap is available now.
26687 		 */
26688 		cv_broadcast(&wm->wm_avail);
26689 	} else {
26690 		/*
26691 		 * If no one is waiting on the map, it should be free'ed.
26692 		 */
26693 		sd_free_inlist_wmap(un, wm);
26694 	}
26695 
26696 	mutex_exit(SD_MUTEX(un));
26697 }
26698 
26699 
26700 /*
26701  *    Function: sd_read_modify_write_task
26702  *
26703  * Description: Called from a taskq thread to initiate the write phase of
26704  *		a read-modify-write request.  This is used for targets where
26705  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26706  *
26707  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26708  *
26709  *     Context: Called under taskq thread context.
26710  */
26711 
26712 static void
26713 sd_read_modify_write_task(void *arg)
26714 {
26715 	struct sd_mapblocksize_info	*bsp;
26716 	struct buf	*bp;
26717 	struct sd_xbuf	*xp;
26718 	struct sd_lun	*un;
26719 
26720 	bp = arg;	/* The bp is given in arg */
26721 	ASSERT(bp != NULL);
26722 
26723 	/* Get the pointer to the layer-private data struct */
26724 	xp = SD_GET_XBUF(bp);
26725 	ASSERT(xp != NULL);
26726 	bsp = xp->xb_private;
26727 	ASSERT(bsp != NULL);
26728 
26729 	un = SD_GET_UN(bp);
26730 	ASSERT(un != NULL);
26731 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26732 
26733 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26734 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26735 
26736 	/*
26737 	 * This is the write phase of a read-modify-write request, called
26738 	 * under the context of a taskq thread in response to the completion
26739 	 * of the read portion of the rmw request completing under interrupt
26740 	 * context. The write request must be sent from here down the iostart
26741 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26742 	 * we use the layer index saved in the layer-private data area.
26743 	 */
26744 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26745 
26746 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26747 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26748 }
26749 
26750 
26751 /*
26752  *    Function: sddump_do_read_of_rmw()
26753  *
26754  * Description: This routine will be called from sddump, If sddump is called
26755  *		with an I/O which not aligned on device blocksize boundary
26756  *		then the write has to be converted to read-modify-write.
26757  *		Do the read part here in order to keep sddump simple.
26758  *		Note - That the sd_mutex is held across the call to this
26759  *		routine.
26760  *
26761  *   Arguments: un	- sd_lun
26762  *		blkno	- block number in terms of media block size.
26763  *		nblk	- number of blocks.
26764  *		bpp	- pointer to pointer to the buf structure. On return
26765  *			from this function, *bpp points to the valid buffer
26766  *			to which the write has to be done.
26767  *
26768  * Return Code: 0 for success or errno-type return code
26769  */
26770 
26771 static int
26772 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26773 	struct buf **bpp)
26774 {
26775 	int err;
26776 	int i;
26777 	int rval;
26778 	struct buf *bp;
26779 	struct scsi_pkt *pkt = NULL;
26780 	uint32_t target_blocksize;
26781 
26782 	ASSERT(un != NULL);
26783 	ASSERT(mutex_owned(SD_MUTEX(un)));
26784 
26785 	target_blocksize = un->un_tgt_blocksize;
26786 
26787 	mutex_exit(SD_MUTEX(un));
26788 
26789 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26790 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26791 	if (bp == NULL) {
26792 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26793 		    "no resources for dumping; giving up");
26794 		err = ENOMEM;
26795 		goto done;
26796 	}
26797 
26798 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26799 	    blkno, nblk);
26800 	if (rval != 0) {
26801 		scsi_free_consistent_buf(bp);
26802 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26803 		    "no resources for dumping; giving up");
26804 		err = ENOMEM;
26805 		goto done;
26806 	}
26807 
26808 	pkt->pkt_flags |= FLAG_NOINTR;
26809 
26810 	err = EIO;
26811 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26812 
26813 		/*
26814 		 * Scsi_poll returns 0 (success) if the command completes and
26815 		 * the status block is STATUS_GOOD.  We should only check
26816 		 * errors if this condition is not true.  Even then we should
26817 		 * send our own request sense packet only if we have a check
26818 		 * condition and auto request sense has not been performed by
26819 		 * the hba.
26820 		 */
26821 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26822 
26823 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26824 			err = 0;
26825 			break;
26826 		}
26827 
26828 		/*
26829 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26830 		 * no need to read RQS data.
26831 		 */
26832 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26833 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26834 			    "Error while dumping state with rmw..."
26835 			    "Device is gone\n");
26836 			break;
26837 		}
26838 
26839 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26840 			SD_INFO(SD_LOG_DUMP, un,
26841 			    "sddump: read failed with CHECK, try # %d\n", i);
26842 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26843 				(void) sd_send_polled_RQS(un);
26844 			}
26845 
26846 			continue;
26847 		}
26848 
26849 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26850 			int reset_retval = 0;
26851 
26852 			SD_INFO(SD_LOG_DUMP, un,
26853 			    "sddump: read failed with BUSY, try # %d\n", i);
26854 
26855 			if (un->un_f_lun_reset_enabled == TRUE) {
26856 				reset_retval = scsi_reset(SD_ADDRESS(un),
26857 				    RESET_LUN);
26858 			}
26859 			if (reset_retval == 0) {
26860 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26861 			}
26862 			(void) sd_send_polled_RQS(un);
26863 
26864 		} else {
26865 			SD_INFO(SD_LOG_DUMP, un,
26866 			    "sddump: read failed with 0x%x, try # %d\n",
26867 			    SD_GET_PKT_STATUS(pkt), i);
26868 			mutex_enter(SD_MUTEX(un));
26869 			sd_reset_target(un, pkt);
26870 			mutex_exit(SD_MUTEX(un));
26871 		}
26872 
26873 		/*
26874 		 * If we are not getting anywhere with lun/target resets,
26875 		 * let's reset the bus.
26876 		 */
26877 		if (i > SD_NDUMP_RETRIES/2) {
26878 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26879 			(void) sd_send_polled_RQS(un);
26880 		}
26881 
26882 	}
26883 	scsi_destroy_pkt(pkt);
26884 
26885 	if (err != 0) {
26886 		scsi_free_consistent_buf(bp);
26887 		*bpp = NULL;
26888 	} else {
26889 		*bpp = bp;
26890 	}
26891 
26892 done:
26893 	mutex_enter(SD_MUTEX(un));
26894 	return (err);
26895 }
26896 
26897 
26898 /*
26899  *    Function: sd_failfast_flushq
26900  *
26901  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26902  *		in b_flags and move them onto the failfast queue, then kick
26903  *		off a thread to return all bp's on the failfast queue to
26904  *		their owners with an error set.
26905  *
26906  *   Arguments: un - pointer to the soft state struct for the instance.
26907  *
26908  *     Context: may execute in interrupt context.
26909  */
26910 
26911 static void
26912 sd_failfast_flushq(struct sd_lun *un)
26913 {
26914 	struct buf *bp;
26915 	struct buf *next_waitq_bp;
26916 	struct buf *prev_waitq_bp = NULL;
26917 
26918 	ASSERT(un != NULL);
26919 	ASSERT(mutex_owned(SD_MUTEX(un)));
26920 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26921 	ASSERT(un->un_failfast_bp == NULL);
26922 
26923 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26924 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26925 
26926 	/*
26927 	 * Check if we should flush all bufs when entering failfast state, or
26928 	 * just those with B_FAILFAST set.
26929 	 */
26930 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26931 		/*
26932 		 * Move *all* bp's on the wait queue to the failfast flush
26933 		 * queue, including those that do NOT have B_FAILFAST set.
26934 		 */
26935 		if (un->un_failfast_headp == NULL) {
26936 			ASSERT(un->un_failfast_tailp == NULL);
26937 			un->un_failfast_headp = un->un_waitq_headp;
26938 		} else {
26939 			ASSERT(un->un_failfast_tailp != NULL);
26940 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26941 		}
26942 
26943 		un->un_failfast_tailp = un->un_waitq_tailp;
26944 
26945 		/* update kstat for each bp moved out of the waitq */
26946 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26947 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26948 		}
26949 
26950 		/* empty the waitq */
26951 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26952 
26953 	} else {
26954 		/*
26955 		 * Go thru the wait queue, pick off all entries with
26956 		 * B_FAILFAST set, and move these onto the failfast queue.
26957 		 */
26958 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26959 			/*
26960 			 * Save the pointer to the next bp on the wait queue,
26961 			 * so we get to it on the next iteration of this loop.
26962 			 */
26963 			next_waitq_bp = bp->av_forw;
26964 
26965 			/*
26966 			 * If this bp from the wait queue does NOT have
26967 			 * B_FAILFAST set, just move on to the next element
26968 			 * in the wait queue. Note, this is the only place
26969 			 * where it is correct to set prev_waitq_bp.
26970 			 */
26971 			if ((bp->b_flags & B_FAILFAST) == 0) {
26972 				prev_waitq_bp = bp;
26973 				continue;
26974 			}
26975 
26976 			/*
26977 			 * Remove the bp from the wait queue.
26978 			 */
26979 			if (bp == un->un_waitq_headp) {
26980 				/* The bp is the first element of the waitq. */
26981 				un->un_waitq_headp = next_waitq_bp;
26982 				if (un->un_waitq_headp == NULL) {
26983 					/* The wait queue is now empty */
26984 					un->un_waitq_tailp = NULL;
26985 				}
26986 			} else {
26987 				/*
26988 				 * The bp is either somewhere in the middle
26989 				 * or at the end of the wait queue.
26990 				 */
26991 				ASSERT(un->un_waitq_headp != NULL);
26992 				ASSERT(prev_waitq_bp != NULL);
26993 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26994 				    == 0);
26995 				if (bp == un->un_waitq_tailp) {
26996 					/* bp is the last entry on the waitq. */
26997 					ASSERT(next_waitq_bp == NULL);
26998 					un->un_waitq_tailp = prev_waitq_bp;
26999 				}
27000 				prev_waitq_bp->av_forw = next_waitq_bp;
27001 			}
27002 			bp->av_forw = NULL;
27003 
27004 			/*
27005 			 * update kstat since the bp is moved out of
27006 			 * the waitq
27007 			 */
27008 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
27009 
27010 			/*
27011 			 * Now put the bp onto the failfast queue.
27012 			 */
27013 			if (un->un_failfast_headp == NULL) {
27014 				/* failfast queue is currently empty */
27015 				ASSERT(un->un_failfast_tailp == NULL);
27016 				un->un_failfast_headp =
27017 				    un->un_failfast_tailp = bp;
27018 			} else {
27019 				/* Add the bp to the end of the failfast q */
27020 				ASSERT(un->un_failfast_tailp != NULL);
27021 				ASSERT(un->un_failfast_tailp->b_flags &
27022 				    B_FAILFAST);
27023 				un->un_failfast_tailp->av_forw = bp;
27024 				un->un_failfast_tailp = bp;
27025 			}
27026 		}
27027 	}
27028 
27029 	/*
27030 	 * Now return all bp's on the failfast queue to their owners.
27031 	 */
27032 	while ((bp = un->un_failfast_headp) != NULL) {
27033 
27034 		un->un_failfast_headp = bp->av_forw;
27035 		if (un->un_failfast_headp == NULL) {
27036 			un->un_failfast_tailp = NULL;
27037 		}
27038 
27039 		/*
27040 		 * We want to return the bp with a failure error code, but
27041 		 * we do not want a call to sd_start_cmds() to occur here,
27042 		 * so use sd_return_failed_command_no_restart() instead of
27043 		 * sd_return_failed_command().
27044 		 */
27045 		sd_return_failed_command_no_restart(un, bp, EIO);
27046 	}
27047 
27048 	/* Flush the xbuf queues if required. */
27049 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
27050 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
27051 	}
27052 
27053 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
27054 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
27055 }
27056 
27057 
27058 /*
27059  *    Function: sd_failfast_flushq_callback
27060  *
27061  * Description: Return TRUE if the given bp meets the criteria for failfast
27062  *		flushing. Used with ddi_xbuf_flushq(9F).
27063  *
27064  *   Arguments: bp - ptr to buf struct to be examined.
27065  *
27066  *     Context: Any
27067  */
27068 
27069 static int
27070 sd_failfast_flushq_callback(struct buf *bp)
27071 {
27072 	/*
27073 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
27074 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
27075 	 */
27076 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
27077 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
27078 }
27079 
27080 
27081 
27082 /*
27083  * Function: sd_setup_next_xfer
27084  *
27085  * Description: Prepare next I/O operation using DMA_PARTIAL
27086  *
27087  */
27088 
27089 static int
27090 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
27091     struct scsi_pkt *pkt, struct sd_xbuf *xp)
27092 {
27093 	ssize_t	num_blks_not_xfered;
27094 	daddr_t	strt_blk_num;
27095 	ssize_t	bytes_not_xfered;
27096 	int	rval;
27097 
27098 	ASSERT(pkt->pkt_resid == 0);
27099 
27100 	/*
27101 	 * Calculate next block number and amount to be transferred.
27102 	 *
27103 	 * How much data NOT transfered to the HBA yet.
27104 	 */
27105 	bytes_not_xfered = xp->xb_dma_resid;
27106 
27107 	/*
27108 	 * figure how many blocks NOT transfered to the HBA yet.
27109 	 */
27110 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
27111 
27112 	/*
27113 	 * set starting block number to the end of what WAS transfered.
27114 	 */
27115 	strt_blk_num = xp->xb_blkno +
27116 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
27117 
27118 	/*
27119 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
27120 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
27121 	 * the disk mutex here.
27122 	 */
27123 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
27124 	    strt_blk_num, num_blks_not_xfered);
27125 
27126 	if (rval == 0) {
27127 
27128 		/*
27129 		 * Success.
27130 		 *
27131 		 * Adjust things if there are still more blocks to be
27132 		 * transfered.
27133 		 */
27134 		xp->xb_dma_resid = pkt->pkt_resid;
27135 		pkt->pkt_resid = 0;
27136 
27137 		return (1);
27138 	}
27139 
27140 	/*
27141 	 * There's really only one possible return value from
27142 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
27143 	 * returns NULL.
27144 	 */
27145 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
27146 
27147 	bp->b_resid = bp->b_bcount;
27148 	bp->b_flags |= B_ERROR;
27149 
27150 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27151 	    "Error setting up next portion of DMA transfer\n");
27152 
27153 	return (0);
27154 }
27155 
27156 /*
27157  *    Function: sd_panic_for_res_conflict
27158  *
27159  * Description: Call panic with a string formatted with "Reservation Conflict"
27160  *		and a human readable identifier indicating the SD instance
27161  *		that experienced the reservation conflict.
27162  *
27163  *   Arguments: un - pointer to the soft state struct for the instance.
27164  *
27165  *     Context: may execute in interrupt context.
27166  */
27167 
27168 #define	SD_RESV_CONFLICT_FMT_LEN 40
27169 void
27170 sd_panic_for_res_conflict(struct sd_lun *un)
27171 {
27172 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
27173 	char path_str[MAXPATHLEN];
27174 
27175 	(void) snprintf(panic_str, sizeof (panic_str),
27176 	    "Reservation Conflict\nDisk: %s",
27177 	    ddi_pathname(SD_DEVINFO(un), path_str));
27178 
27179 	panic(panic_str);
27180 }
27181 
27182 /*
27183  * Note: The following sd_faultinjection_ioctl( ) routines implement
27184  * driver support for handling fault injection for error analysis
27185  * causing faults in multiple layers of the driver.
27186  *
27187  */
27188 
27189 #ifdef SD_FAULT_INJECTION
27190 static uint_t   sd_fault_injection_on = 0;
27191 
27192 /*
27193  *    Function: sd_faultinjection_ioctl()
27194  *
27195  * Description: This routine is the driver entry point for handling
27196  *              faultinjection ioctls to inject errors into the
27197  *              layer model
27198  *
27199  *   Arguments: cmd	- the ioctl cmd received
27200  *		arg	- the arguments from user and returns
27201  */
27202 
27203 static void
27204 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
27205 
27206 	uint_t i;
27207 	uint_t rval;
27208 
27209 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
27210 
27211 	mutex_enter(SD_MUTEX(un));
27212 
27213 	switch (cmd) {
27214 	case SDIOCRUN:
27215 		/* Allow pushed faults to be injected */
27216 		SD_INFO(SD_LOG_SDTEST, un,
27217 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
27218 
27219 		sd_fault_injection_on = 1;
27220 
27221 		SD_INFO(SD_LOG_IOERR, un,
27222 		    "sd_faultinjection_ioctl: run finished\n");
27223 		break;
27224 
27225 	case SDIOCSTART:
27226 		/* Start Injection Session */
27227 		SD_INFO(SD_LOG_SDTEST, un,
27228 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
27229 
27230 		sd_fault_injection_on = 0;
27231 		un->sd_injection_mask = 0xFFFFFFFF;
27232 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27233 			un->sd_fi_fifo_pkt[i] = NULL;
27234 			un->sd_fi_fifo_xb[i] = NULL;
27235 			un->sd_fi_fifo_un[i] = NULL;
27236 			un->sd_fi_fifo_arq[i] = NULL;
27237 		}
27238 		un->sd_fi_fifo_start = 0;
27239 		un->sd_fi_fifo_end = 0;
27240 
27241 		mutex_enter(&(un->un_fi_mutex));
27242 		un->sd_fi_log[0] = '\0';
27243 		un->sd_fi_buf_len = 0;
27244 		mutex_exit(&(un->un_fi_mutex));
27245 
27246 		SD_INFO(SD_LOG_IOERR, un,
27247 		    "sd_faultinjection_ioctl: start finished\n");
27248 		break;
27249 
27250 	case SDIOCSTOP:
27251 		/* Stop Injection Session */
27252 		SD_INFO(SD_LOG_SDTEST, un,
27253 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27254 		sd_fault_injection_on = 0;
27255 		un->sd_injection_mask = 0x0;
27256 
27257 		/* Empty stray or unuseds structs from fifo */
27258 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27259 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27260 				kmem_free(un->sd_fi_fifo_pkt[i],
27261 				    sizeof (struct sd_fi_pkt));
27262 			}
27263 			if (un->sd_fi_fifo_xb[i] != NULL) {
27264 				kmem_free(un->sd_fi_fifo_xb[i],
27265 				    sizeof (struct sd_fi_xb));
27266 			}
27267 			if (un->sd_fi_fifo_un[i] != NULL) {
27268 				kmem_free(un->sd_fi_fifo_un[i],
27269 				    sizeof (struct sd_fi_un));
27270 			}
27271 			if (un->sd_fi_fifo_arq[i] != NULL) {
27272 				kmem_free(un->sd_fi_fifo_arq[i],
27273 				    sizeof (struct sd_fi_arq));
27274 			}
27275 			un->sd_fi_fifo_pkt[i] = NULL;
27276 			un->sd_fi_fifo_un[i] = NULL;
27277 			un->sd_fi_fifo_xb[i] = NULL;
27278 			un->sd_fi_fifo_arq[i] = NULL;
27279 		}
27280 		un->sd_fi_fifo_start = 0;
27281 		un->sd_fi_fifo_end = 0;
27282 
27283 		SD_INFO(SD_LOG_IOERR, un,
27284 		    "sd_faultinjection_ioctl: stop finished\n");
27285 		break;
27286 
27287 	case SDIOCINSERTPKT:
27288 		/* Store a packet struct to be pushed onto fifo */
27289 		SD_INFO(SD_LOG_SDTEST, un,
27290 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27291 
27292 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27293 
27294 		sd_fault_injection_on = 0;
27295 
27296 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27297 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27298 			kmem_free(un->sd_fi_fifo_pkt[i],
27299 			    sizeof (struct sd_fi_pkt));
27300 		}
27301 		if (arg != NULL) {
27302 			un->sd_fi_fifo_pkt[i] =
27303 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27304 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27305 				/* Alloc failed don't store anything */
27306 				break;
27307 			}
27308 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27309 			    sizeof (struct sd_fi_pkt), 0);
27310 			if (rval == -1) {
27311 				kmem_free(un->sd_fi_fifo_pkt[i],
27312 				    sizeof (struct sd_fi_pkt));
27313 				un->sd_fi_fifo_pkt[i] = NULL;
27314 			}
27315 		} else {
27316 			SD_INFO(SD_LOG_IOERR, un,
27317 			    "sd_faultinjection_ioctl: pkt null\n");
27318 		}
27319 		break;
27320 
27321 	case SDIOCINSERTXB:
27322 		/* Store a xb struct to be pushed onto fifo */
27323 		SD_INFO(SD_LOG_SDTEST, un,
27324 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27325 
27326 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27327 
27328 		sd_fault_injection_on = 0;
27329 
27330 		if (un->sd_fi_fifo_xb[i] != NULL) {
27331 			kmem_free(un->sd_fi_fifo_xb[i],
27332 			    sizeof (struct sd_fi_xb));
27333 			un->sd_fi_fifo_xb[i] = NULL;
27334 		}
27335 		if (arg != NULL) {
27336 			un->sd_fi_fifo_xb[i] =
27337 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27338 			if (un->sd_fi_fifo_xb[i] == NULL) {
27339 				/* Alloc failed don't store anything */
27340 				break;
27341 			}
27342 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27343 			    sizeof (struct sd_fi_xb), 0);
27344 
27345 			if (rval == -1) {
27346 				kmem_free(un->sd_fi_fifo_xb[i],
27347 				    sizeof (struct sd_fi_xb));
27348 				un->sd_fi_fifo_xb[i] = NULL;
27349 			}
27350 		} else {
27351 			SD_INFO(SD_LOG_IOERR, un,
27352 			    "sd_faultinjection_ioctl: xb null\n");
27353 		}
27354 		break;
27355 
27356 	case SDIOCINSERTUN:
27357 		/* Store a un struct to be pushed onto fifo */
27358 		SD_INFO(SD_LOG_SDTEST, un,
27359 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27360 
27361 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27362 
27363 		sd_fault_injection_on = 0;
27364 
27365 		if (un->sd_fi_fifo_un[i] != NULL) {
27366 			kmem_free(un->sd_fi_fifo_un[i],
27367 			    sizeof (struct sd_fi_un));
27368 			un->sd_fi_fifo_un[i] = NULL;
27369 		}
27370 		if (arg != NULL) {
27371 			un->sd_fi_fifo_un[i] =
27372 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27373 			if (un->sd_fi_fifo_un[i] == NULL) {
27374 				/* Alloc failed don't store anything */
27375 				break;
27376 			}
27377 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27378 			    sizeof (struct sd_fi_un), 0);
27379 			if (rval == -1) {
27380 				kmem_free(un->sd_fi_fifo_un[i],
27381 				    sizeof (struct sd_fi_un));
27382 				un->sd_fi_fifo_un[i] = NULL;
27383 			}
27384 
27385 		} else {
27386 			SD_INFO(SD_LOG_IOERR, un,
27387 			    "sd_faultinjection_ioctl: un null\n");
27388 		}
27389 
27390 		break;
27391 
27392 	case SDIOCINSERTARQ:
27393 		/* Store a arq struct to be pushed onto fifo */
27394 		SD_INFO(SD_LOG_SDTEST, un,
27395 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27396 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27397 
27398 		sd_fault_injection_on = 0;
27399 
27400 		if (un->sd_fi_fifo_arq[i] != NULL) {
27401 			kmem_free(un->sd_fi_fifo_arq[i],
27402 			    sizeof (struct sd_fi_arq));
27403 			un->sd_fi_fifo_arq[i] = NULL;
27404 		}
27405 		if (arg != NULL) {
27406 			un->sd_fi_fifo_arq[i] =
27407 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27408 			if (un->sd_fi_fifo_arq[i] == NULL) {
27409 				/* Alloc failed don't store anything */
27410 				break;
27411 			}
27412 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27413 			    sizeof (struct sd_fi_arq), 0);
27414 			if (rval == -1) {
27415 				kmem_free(un->sd_fi_fifo_arq[i],
27416 				    sizeof (struct sd_fi_arq));
27417 				un->sd_fi_fifo_arq[i] = NULL;
27418 			}
27419 
27420 		} else {
27421 			SD_INFO(SD_LOG_IOERR, un,
27422 			    "sd_faultinjection_ioctl: arq null\n");
27423 		}
27424 
27425 		break;
27426 
27427 	case SDIOCPUSH:
27428 		/* Push stored xb, pkt, un, and arq onto fifo */
27429 		sd_fault_injection_on = 0;
27430 
27431 		if (arg != NULL) {
27432 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27433 			if (rval != -1 &&
27434 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27435 				un->sd_fi_fifo_end += i;
27436 			}
27437 		} else {
27438 			SD_INFO(SD_LOG_IOERR, un,
27439 			    "sd_faultinjection_ioctl: push arg null\n");
27440 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27441 				un->sd_fi_fifo_end++;
27442 			}
27443 		}
27444 		SD_INFO(SD_LOG_IOERR, un,
27445 		    "sd_faultinjection_ioctl: push to end=%d\n",
27446 		    un->sd_fi_fifo_end);
27447 		break;
27448 
27449 	case SDIOCRETRIEVE:
27450 		/* Return buffer of log from Injection session */
27451 		SD_INFO(SD_LOG_SDTEST, un,
27452 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27453 
27454 		sd_fault_injection_on = 0;
27455 
27456 		mutex_enter(&(un->un_fi_mutex));
27457 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27458 		    un->sd_fi_buf_len+1, 0);
27459 		mutex_exit(&(un->un_fi_mutex));
27460 
27461 		if (rval == -1) {
27462 			/*
27463 			 * arg is possibly invalid setting
27464 			 * it to NULL for return
27465 			 */
27466 			arg = NULL;
27467 		}
27468 		break;
27469 	}
27470 
27471 	mutex_exit(SD_MUTEX(un));
27472 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27473 			    " exit\n");
27474 }
27475 
27476 
27477 /*
27478  *    Function: sd_injection_log()
27479  *
27480  * Description: This routine adds buff to the already existing injection log
27481  *              for retrieval via faultinjection_ioctl for use in fault
27482  *              detection and recovery
27483  *
27484  *   Arguments: buf - the string to add to the log
27485  */
27486 
27487 static void
27488 sd_injection_log(char *buf, struct sd_lun *un)
27489 {
27490 	uint_t len;
27491 
27492 	ASSERT(un != NULL);
27493 	ASSERT(buf != NULL);
27494 
27495 	mutex_enter(&(un->un_fi_mutex));
27496 
27497 	len = min(strlen(buf), 255);
27498 	/* Add logged value to Injection log to be returned later */
27499 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27500 		uint_t	offset = strlen((char *)un->sd_fi_log);
27501 		char *destp = (char *)un->sd_fi_log + offset;
27502 		int i;
27503 		for (i = 0; i < len; i++) {
27504 			*destp++ = *buf++;
27505 		}
27506 		un->sd_fi_buf_len += len;
27507 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27508 	}
27509 
27510 	mutex_exit(&(un->un_fi_mutex));
27511 }
27512 
27513 
27514 /*
27515  *    Function: sd_faultinjection()
27516  *
27517  * Description: This routine takes the pkt and changes its
27518  *		content based on error injection scenerio.
27519  *
27520  *   Arguments: pktp	- packet to be changed
27521  */
27522 
27523 static void
27524 sd_faultinjection(struct scsi_pkt *pktp)
27525 {
27526 	uint_t i;
27527 	struct sd_fi_pkt *fi_pkt;
27528 	struct sd_fi_xb *fi_xb;
27529 	struct sd_fi_un *fi_un;
27530 	struct sd_fi_arq *fi_arq;
27531 	struct buf *bp;
27532 	struct sd_xbuf *xb;
27533 	struct sd_lun *un;
27534 
27535 	ASSERT(pktp != NULL);
27536 
27537 	/* pull bp xb and un from pktp */
27538 	bp = (struct buf *)pktp->pkt_private;
27539 	xb = SD_GET_XBUF(bp);
27540 	un = SD_GET_UN(bp);
27541 
27542 	ASSERT(un != NULL);
27543 
27544 	mutex_enter(SD_MUTEX(un));
27545 
27546 	SD_TRACE(SD_LOG_SDTEST, un,
27547 	    "sd_faultinjection: entry Injection from sdintr\n");
27548 
27549 	/* if injection is off return */
27550 	if (sd_fault_injection_on == 0 ||
27551 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27552 		mutex_exit(SD_MUTEX(un));
27553 		return;
27554 	}
27555 
27556 
27557 	/* take next set off fifo */
27558 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27559 
27560 	fi_pkt = un->sd_fi_fifo_pkt[i];
27561 	fi_xb = un->sd_fi_fifo_xb[i];
27562 	fi_un = un->sd_fi_fifo_un[i];
27563 	fi_arq = un->sd_fi_fifo_arq[i];
27564 
27565 
27566 	/* set variables accordingly */
27567 	/* set pkt if it was on fifo */
27568 	if (fi_pkt != NULL) {
27569 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27570 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27571 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27572 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27573 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27574 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27575 
27576 	}
27577 
27578 	/* set xb if it was on fifo */
27579 	if (fi_xb != NULL) {
27580 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27581 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27582 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27583 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27584 		    "xb_victim_retry_count");
27585 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27586 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27587 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27588 
27589 		/* copy in block data from sense */
27590 		if (fi_xb->xb_sense_data[0] != -1) {
27591 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27592 			    SENSE_LENGTH);
27593 		}
27594 
27595 		/* copy in extended sense codes */
27596 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27597 		    "es_code");
27598 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27599 		    "es_key");
27600 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27601 		    "es_add_code");
27602 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27603 		    es_qual_code, "es_qual_code");
27604 	}
27605 
27606 	/* set un if it was on fifo */
27607 	if (fi_un != NULL) {
27608 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27609 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27610 		SD_CONDSET(un, un, un_reset_retry_count,
27611 		    "un_reset_retry_count");
27612 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27613 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27614 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27615 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27616 		    "un_f_allow_bus_device_reset");
27617 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27618 
27619 	}
27620 
27621 	/* copy in auto request sense if it was on fifo */
27622 	if (fi_arq != NULL) {
27623 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27624 	}
27625 
27626 	/* free structs */
27627 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27628 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27629 	}
27630 	if (un->sd_fi_fifo_xb[i] != NULL) {
27631 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27632 	}
27633 	if (un->sd_fi_fifo_un[i] != NULL) {
27634 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27635 	}
27636 	if (un->sd_fi_fifo_arq[i] != NULL) {
27637 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27638 	}
27639 
27640 	/*
27641 	 * kmem_free does not gurantee to set to NULL
27642 	 * since we uses these to determine if we set
27643 	 * values or not lets confirm they are always
27644 	 * NULL after free
27645 	 */
27646 	un->sd_fi_fifo_pkt[i] = NULL;
27647 	un->sd_fi_fifo_un[i] = NULL;
27648 	un->sd_fi_fifo_xb[i] = NULL;
27649 	un->sd_fi_fifo_arq[i] = NULL;
27650 
27651 	un->sd_fi_fifo_start++;
27652 
27653 	mutex_exit(SD_MUTEX(un));
27654 
27655 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27656 }
27657 
27658 #endif /* SD_FAULT_INJECTION */
27659 
27660 /*
27661  * This routine is invoked in sd_unit_attach(). Before calling it, the
27662  * properties in conf file should be processed already, and "hotpluggable"
27663  * property was processed also.
27664  *
27665  * The sd driver distinguishes 3 different type of devices: removable media,
27666  * non-removable media, and hotpluggable. Below the differences are defined:
27667  *
27668  * 1. Device ID
27669  *
27670  *     The device ID of a device is used to identify this device. Refer to
27671  *     ddi_devid_register(9F).
27672  *
27673  *     For a non-removable media disk device which can provide 0x80 or 0x83
27674  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27675  *     device ID is created to identify this device. For other non-removable
27676  *     media devices, a default device ID is created only if this device has
27677  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27678  *
27679  *     -------------------------------------------------------
27680  *     removable media   hotpluggable  | Can Have Device ID
27681  *     -------------------------------------------------------
27682  *         false             false     |     Yes
27683  *         false             true      |     Yes
27684  *         true                x       |     No
27685  *     ------------------------------------------------------
27686  *
27687  *
27688  * 2. SCSI group 4 commands
27689  *
27690  *     In SCSI specs, only some commands in group 4 command set can use
27691  *     8-byte addresses that can be used to access >2TB storage spaces.
27692  *     Other commands have no such capability. Without supporting group4,
27693  *     it is impossible to make full use of storage spaces of a disk with
27694  *     capacity larger than 2TB.
27695  *
27696  *     -----------------------------------------------
27697  *     removable media   hotpluggable   LP64  |  Group
27698  *     -----------------------------------------------
27699  *           false          false       false |   1
27700  *           false          false       true  |   4
27701  *           false          true        false |   1
27702  *           false          true        true  |   4
27703  *           true             x           x   |   5
27704  *     -----------------------------------------------
27705  *
27706  *
27707  * 3. Check for VTOC Label
27708  *
27709  *     If a direct-access disk has no EFI label, sd will check if it has a
27710  *     valid VTOC label. Now, sd also does that check for removable media
27711  *     and hotpluggable devices.
27712  *
27713  *     --------------------------------------------------------------
27714  *     Direct-Access   removable media    hotpluggable |  Check Label
27715  *     -------------------------------------------------------------
27716  *         false          false           false        |   No
27717  *         false          false           true         |   No
27718  *         false          true            false        |   Yes
27719  *         false          true            true         |   Yes
27720  *         true            x                x          |   Yes
27721  *     --------------------------------------------------------------
27722  *
27723  *
27724  * 4. Building default VTOC label
27725  *
27726  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27727  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27728  *     create default VTOC for them. Currently sd creates default VTOC label
27729  *     for all devices on x86 platform (VTOC_16), but only for removable
27730  *     media devices on SPARC (VTOC_8).
27731  *
27732  *     -----------------------------------------------------------
27733  *       removable media hotpluggable platform   |   Default Label
27734  *     -----------------------------------------------------------
27735  *             false          false    sparc     |     No
27736  *             false          true      x86      |     Yes
27737  *             false          true     sparc     |     Yes
27738  *             true             x        x       |     Yes
27739  *     ----------------------------------------------------------
27740  *
27741  *
27742  * 5. Supported blocksizes of target devices
27743  *
27744  *     Sd supports non-512-byte blocksize for removable media devices only.
27745  *     For other devices, only 512-byte blocksize is supported. This may be
27746  *     changed in near future because some RAID devices require non-512-byte
27747  *     blocksize
27748  *
27749  *     -----------------------------------------------------------
27750  *     removable media    hotpluggable    | non-512-byte blocksize
27751  *     -----------------------------------------------------------
27752  *           false          false         |   No
27753  *           false          true          |   No
27754  *           true             x           |   Yes
27755  *     -----------------------------------------------------------
27756  *
27757  *
27758  * 6. Automatic mount & unmount
27759  *
27760  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27761  *     if a device is removable media device. It return 1 for removable media
27762  *     devices, and 0 for others.
27763  *
27764  *     The automatic mounting subsystem should distinguish between the types
27765  *     of devices and apply automounting policies to each.
27766  *
27767  *
27768  * 7. fdisk partition management
27769  *
27770  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27771  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27772  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27773  *     fdisk partitions on both x86 and SPARC platform.
27774  *
27775  *     -----------------------------------------------------------
27776  *       platform   removable media  USB/1394  |  fdisk supported
27777  *     -----------------------------------------------------------
27778  *        x86         X               X        |       true
27779  *     ------------------------------------------------------------
27780  *        sparc       X               X        |       false
27781  *     ------------------------------------------------------------
27782  *
27783  *
27784  * 8. MBOOT/MBR
27785  *
27786  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27787  *     read/write mboot for removable media devices on sparc platform.
27788  *
27789  *     -----------------------------------------------------------
27790  *       platform   removable media  USB/1394  |  mboot supported
27791  *     -----------------------------------------------------------
27792  *        x86         X               X        |       true
27793  *     ------------------------------------------------------------
27794  *        sparc      false           false     |       false
27795  *        sparc      false           true      |       true
27796  *        sparc      true            false     |       true
27797  *        sparc      true            true      |       true
27798  *     ------------------------------------------------------------
27799  *
27800  *
27801  * 9.  error handling during opening device
27802  *
27803  *     If failed to open a disk device, an errno is returned. For some kinds
27804  *     of errors, different errno is returned depending on if this device is
27805  *     a removable media device. This brings USB/1394 hard disks in line with
27806  *     expected hard disk behavior. It is not expected that this breaks any
27807  *     application.
27808  *
27809  *     ------------------------------------------------------
27810  *       removable media    hotpluggable   |  errno
27811  *     ------------------------------------------------------
27812  *             false          false        |   EIO
27813  *             false          true         |   EIO
27814  *             true             x          |   ENXIO
27815  *     ------------------------------------------------------
27816  *
27817  *
27818  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27819  *
27820  *     These IOCTLs are applicable only to removable media devices.
27821  *
27822  *     -----------------------------------------------------------
27823  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27824  *     -----------------------------------------------------------
27825  *             false          false        |     No
27826  *             false          true         |     No
27827  *             true            x           |     Yes
27828  *     -----------------------------------------------------------
27829  *
27830  *
27831  * 12. Kstats for partitions
27832  *
27833  *     sd creates partition kstat for non-removable media devices. USB and
27834  *     Firewire hard disks now have partition kstats
27835  *
27836  *      ------------------------------------------------------
27837  *       removable media    hotpluggable   |   kstat
27838  *      ------------------------------------------------------
27839  *             false          false        |    Yes
27840  *             false          true         |    Yes
27841  *             true             x          |    No
27842  *       ------------------------------------------------------
27843  *
27844  *
27845  * 13. Removable media & hotpluggable properties
27846  *
27847  *     Sd driver creates a "removable-media" property for removable media
27848  *     devices. Parent nexus drivers create a "hotpluggable" property if
27849  *     it supports hotplugging.
27850  *
27851  *     ---------------------------------------------------------------------
27852  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27853  *     ---------------------------------------------------------------------
27854  *       false            false       |    No                   No
27855  *       false            true        |    No                   Yes
27856  *       true             false       |    Yes                  No
27857  *       true             true        |    Yes                  Yes
27858  *     ---------------------------------------------------------------------
27859  *
27860  *
27861  * 14. Power Management
27862  *
27863  *     sd only power manages removable media devices or devices that support
27864  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27865  *
27866  *     A parent nexus that supports hotplugging can also set "pm-capable"
27867  *     if the disk can be power managed.
27868  *
27869  *     ------------------------------------------------------------
27870  *       removable media hotpluggable pm-capable  |   power manage
27871  *     ------------------------------------------------------------
27872  *             false          false     false     |     No
27873  *             false          false     true      |     Yes
27874  *             false          true      false     |     No
27875  *             false          true      true      |     Yes
27876  *             true             x        x        |     Yes
27877  *     ------------------------------------------------------------
27878  *
27879  *      USB and firewire hard disks can now be power managed independently
27880  *      of the framebuffer
27881  *
27882  *
27883  * 15. Support for USB disks with capacity larger than 1TB
27884  *
27885  *     Currently, sd doesn't permit a fixed disk device with capacity
27886  *     larger than 1TB to be used in a 32-bit operating system environment.
27887  *     However, sd doesn't do that for removable media devices. Instead, it
27888  *     assumes that removable media devices cannot have a capacity larger
27889  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27890  *     supported, which can cause some unexpected results.
27891  *
27892  *     ---------------------------------------------------------------------
27893  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27894  *     ---------------------------------------------------------------------
27895  *             false          false  |   true         |     no
27896  *             false          true   |   true         |     no
27897  *             true           false  |   true         |     Yes
27898  *             true           true   |   true         |     Yes
27899  *     ---------------------------------------------------------------------
27900  *
27901  *
27902  * 16. Check write-protection at open time
27903  *
27904  *     When a removable media device is being opened for writing without NDELAY
27905  *     flag, sd will check if this device is writable. If attempting to open
27906  *     without NDELAY flag a write-protected device, this operation will abort.
27907  *
27908  *     ------------------------------------------------------------
27909  *       removable media    USB/1394   |   WP Check
27910  *     ------------------------------------------------------------
27911  *             false          false    |     No
27912  *             false          true     |     No
27913  *             true           false    |     Yes
27914  *             true           true     |     Yes
27915  *     ------------------------------------------------------------
27916  *
27917  *
27918  * 17. syslog when corrupted VTOC is encountered
27919  *
27920  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27921  *      for fixed SCSI disks.
27922  *     ------------------------------------------------------------
27923  *       removable media    USB/1394   |   print syslog
27924  *     ------------------------------------------------------------
27925  *             false          false    |     Yes
27926  *             false          true     |     No
27927  *             true           false    |     No
27928  *             true           true     |     No
27929  *     ------------------------------------------------------------
27930  */
27931 static void
27932 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27933 {
27934 	int	pm_capable_prop;
27935 
27936 	ASSERT(un->un_sd);
27937 	ASSERT(un->un_sd->sd_inq);
27938 
27939 	/*
27940 	 * Enable SYNC CACHE support for all devices.
27941 	 */
27942 	un->un_f_sync_cache_supported = TRUE;
27943 
27944 	if (un->un_sd->sd_inq->inq_rmb) {
27945 		/*
27946 		 * The media of this device is removable. And for this kind
27947 		 * of devices, it is possible to change medium after opening
27948 		 * devices. Thus we should support this operation.
27949 		 */
27950 		un->un_f_has_removable_media = TRUE;
27951 
27952 		/*
27953 		 * support non-512-byte blocksize of removable media devices
27954 		 */
27955 		un->un_f_non_devbsize_supported = TRUE;
27956 
27957 		/*
27958 		 * Assume that all removable media devices support DOOR_LOCK
27959 		 */
27960 		un->un_f_doorlock_supported = TRUE;
27961 
27962 		/*
27963 		 * For a removable media device, it is possible to be opened
27964 		 * with NDELAY flag when there is no media in drive, in this
27965 		 * case we don't care if device is writable. But if without
27966 		 * NDELAY flag, we need to check if media is write-protected.
27967 		 */
27968 		un->un_f_chk_wp_open = TRUE;
27969 
27970 		/*
27971 		 * need to start a SCSI watch thread to monitor media state,
27972 		 * when media is being inserted or ejected, notify syseventd.
27973 		 */
27974 		un->un_f_monitor_media_state = TRUE;
27975 
27976 		/*
27977 		 * Some devices don't support START_STOP_UNIT command.
27978 		 * Therefore, we'd better check if a device supports it
27979 		 * before sending it.
27980 		 */
27981 		un->un_f_check_start_stop = TRUE;
27982 
27983 		/*
27984 		 * support eject media ioctl:
27985 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27986 		 */
27987 		un->un_f_eject_media_supported = TRUE;
27988 
27989 		/*
27990 		 * Because many removable-media devices don't support
27991 		 * LOG_SENSE, we couldn't use this command to check if
27992 		 * a removable media device support power-management.
27993 		 * We assume that they support power-management via
27994 		 * START_STOP_UNIT command and can be spun up and down
27995 		 * without limitations.
27996 		 */
27997 		un->un_f_pm_supported = TRUE;
27998 
27999 		/*
28000 		 * Need to create a zero length (Boolean) property
28001 		 * removable-media for the removable media devices.
28002 		 * Note that the return value of the property is not being
28003 		 * checked, since if unable to create the property
28004 		 * then do not want the attach to fail altogether. Consistent
28005 		 * with other property creation in attach.
28006 		 */
28007 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
28008 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
28009 
28010 	} else {
28011 		/*
28012 		 * create device ID for device
28013 		 */
28014 		un->un_f_devid_supported = TRUE;
28015 
28016 		/*
28017 		 * Spin up non-removable-media devices once it is attached
28018 		 */
28019 		un->un_f_attach_spinup = TRUE;
28020 
28021 		/*
28022 		 * According to SCSI specification, Sense data has two kinds of
28023 		 * format: fixed format, and descriptor format. At present, we
28024 		 * don't support descriptor format sense data for removable
28025 		 * media.
28026 		 */
28027 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
28028 			un->un_f_descr_format_supported = TRUE;
28029 		}
28030 
28031 		/*
28032 		 * kstats are created only for non-removable media devices.
28033 		 *
28034 		 * Set this in sd.conf to 0 in order to disable kstats.  The
28035 		 * default is 1, so they are enabled by default.
28036 		 */
28037 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
28038 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
28039 		    "enable-partition-kstats", 1));
28040 
28041 		/*
28042 		 * Check if HBA has set the "pm-capable" property.
28043 		 * If "pm-capable" exists and is non-zero then we can
28044 		 * power manage the device without checking the start/stop
28045 		 * cycle count log sense page.
28046 		 *
28047 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
28048 		 * then we should not power manage the device.
28049 		 *
28050 		 * If "pm-capable" doesn't exist then pm_capable_prop will
28051 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
28052 		 * sd will check the start/stop cycle count log sense page
28053 		 * and power manage the device if the cycle count limit has
28054 		 * not been exceeded.
28055 		 */
28056 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
28057 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
28058 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
28059 			un->un_f_log_sense_supported = TRUE;
28060 		} else {
28061 			/*
28062 			 * pm-capable property exists.
28063 			 *
28064 			 * Convert "TRUE" values for pm_capable_prop to
28065 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
28066 			 * later. "TRUE" values are any values except
28067 			 * SD_PM_CAPABLE_FALSE (0) and
28068 			 * SD_PM_CAPABLE_UNDEFINED (-1)
28069 			 */
28070 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
28071 				un->un_f_log_sense_supported = FALSE;
28072 			} else {
28073 				un->un_f_pm_supported = TRUE;
28074 			}
28075 
28076 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
28077 			    "sd_unit_attach: un:0x%p pm-capable "
28078 			    "property set to %d.\n", un, un->un_f_pm_supported);
28079 		}
28080 	}
28081 
28082 	if (un->un_f_is_hotpluggable) {
28083 
28084 		/*
28085 		 * Have to watch hotpluggable devices as well, since
28086 		 * that's the only way for userland applications to
28087 		 * detect hot removal while device is busy/mounted.
28088 		 */
28089 		un->un_f_monitor_media_state = TRUE;
28090 
28091 		un->un_f_check_start_stop = TRUE;
28092 
28093 	}
28094 }
28095 
28096 /*
28097  * sd_tg_rdwr:
28098  * Provides rdwr access for cmlb via sd_tgops. The start_block is
28099  * in sys block size, req_length in bytes.
28100  *
28101  */
28102 static int
28103 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
28104     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
28105 {
28106 	struct sd_lun *un;
28107 	int path_flag = (int)(uintptr_t)tg_cookie;
28108 	char *dkl = NULL;
28109 	diskaddr_t real_addr = start_block;
28110 	diskaddr_t first_byte, end_block;
28111 
28112 	size_t	buffer_size = reqlength;
28113 	int rval;
28114 	diskaddr_t	cap;
28115 	uint32_t	lbasize;
28116 
28117 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28118 	if (un == NULL)
28119 		return (ENXIO);
28120 
28121 	if (cmd != TG_READ && cmd != TG_WRITE)
28122 		return (EINVAL);
28123 
28124 	mutex_enter(SD_MUTEX(un));
28125 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
28126 		mutex_exit(SD_MUTEX(un));
28127 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28128 		    &lbasize, path_flag);
28129 		if (rval != 0)
28130 			return (rval);
28131 		mutex_enter(SD_MUTEX(un));
28132 		sd_update_block_info(un, lbasize, cap);
28133 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
28134 			mutex_exit(SD_MUTEX(un));
28135 			return (EIO);
28136 		}
28137 	}
28138 
28139 	if (NOT_DEVBSIZE(un)) {
28140 		/*
28141 		 * sys_blocksize != tgt_blocksize, need to re-adjust
28142 		 * blkno and save the index to beginning of dk_label
28143 		 */
28144 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
28145 		real_addr = first_byte / un->un_tgt_blocksize;
28146 
28147 		end_block = (first_byte + reqlength +
28148 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
28149 
28150 		/* round up buffer size to multiple of target block size */
28151 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
28152 
28153 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
28154 		    "label_addr: 0x%x allocation size: 0x%x\n",
28155 		    real_addr, buffer_size);
28156 
28157 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
28158 		    (reqlength % un->un_tgt_blocksize) != 0)
28159 			/* the request is not aligned */
28160 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
28161 	}
28162 
28163 	/*
28164 	 * The MMC standard allows READ CAPACITY to be
28165 	 * inaccurate by a bounded amount (in the interest of
28166 	 * response latency).  As a result, failed READs are
28167 	 * commonplace (due to the reading of metadata and not
28168 	 * data). Depending on the per-Vendor/drive Sense data,
28169 	 * the failed READ can cause many (unnecessary) retries.
28170 	 */
28171 
28172 	if (ISCD(un) && (cmd == TG_READ) &&
28173 	    (un->un_f_blockcount_is_valid == TRUE) &&
28174 	    ((start_block == (un->un_blockcount - 1))||
28175 	    (start_block == (un->un_blockcount - 2)))) {
28176 			path_flag = SD_PATH_DIRECT_PRIORITY;
28177 	}
28178 
28179 	mutex_exit(SD_MUTEX(un));
28180 	if (cmd == TG_READ) {
28181 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
28182 		    buffer_size, real_addr, path_flag);
28183 		if (dkl != NULL)
28184 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
28185 			    real_addr), bufaddr, reqlength);
28186 	} else {
28187 		if (dkl) {
28188 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
28189 			    real_addr, path_flag);
28190 			if (rval) {
28191 				kmem_free(dkl, buffer_size);
28192 				return (rval);
28193 			}
28194 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
28195 			    real_addr), reqlength);
28196 		}
28197 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
28198 		    buffer_size, real_addr, path_flag);
28199 	}
28200 
28201 	if (dkl != NULL)
28202 		kmem_free(dkl, buffer_size);
28203 
28204 	return (rval);
28205 }
28206 
28207 
28208 static int
28209 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
28210 {
28211 
28212 	struct sd_lun *un;
28213 	diskaddr_t	cap;
28214 	uint32_t	lbasize;
28215 	int		path_flag = (int)(uintptr_t)tg_cookie;
28216 	int		ret = 0;
28217 
28218 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
28219 	if (un == NULL)
28220 		return (ENXIO);
28221 
28222 	switch (cmd) {
28223 	case TG_GETPHYGEOM:
28224 	case TG_GETVIRTGEOM:
28225 	case TG_GETCAPACITY:
28226 	case  TG_GETBLOCKSIZE:
28227 		mutex_enter(SD_MUTEX(un));
28228 
28229 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28230 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28231 			cap = un->un_blockcount;
28232 			lbasize = un->un_tgt_blocksize;
28233 			mutex_exit(SD_MUTEX(un));
28234 		} else {
28235 			mutex_exit(SD_MUTEX(un));
28236 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28237 			    &lbasize, path_flag);
28238 			if (ret != 0)
28239 				return (ret);
28240 			mutex_enter(SD_MUTEX(un));
28241 			sd_update_block_info(un, lbasize, cap);
28242 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28243 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28244 				mutex_exit(SD_MUTEX(un));
28245 				return (EIO);
28246 			}
28247 			mutex_exit(SD_MUTEX(un));
28248 		}
28249 
28250 		if (cmd == TG_GETCAPACITY) {
28251 			*(diskaddr_t *)arg = cap;
28252 			return (0);
28253 		}
28254 
28255 		if (cmd == TG_GETBLOCKSIZE) {
28256 			*(uint32_t *)arg = lbasize;
28257 			return (0);
28258 		}
28259 
28260 		if (cmd == TG_GETPHYGEOM)
28261 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28262 			    cap, lbasize, path_flag);
28263 		else
28264 			/* TG_GETVIRTGEOM */
28265 			ret = sd_get_virtual_geometry(un,
28266 			    (cmlb_geom_t *)arg, cap, lbasize);
28267 
28268 		return (ret);
28269 
28270 	case TG_GETATTR:
28271 		mutex_enter(SD_MUTEX(un));
28272 		((tg_attribute_t *)arg)->media_is_writable =
28273 		    un->un_f_mmc_writable_media;
28274 		mutex_exit(SD_MUTEX(un));
28275 		return (0);
28276 	default:
28277 		return (ENOTTY);
28278 
28279 	}
28280 
28281 }
28282