xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 72888e72)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 static struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower,		/* power */
1689 	ddi_quiesce_not_needed,		/* quiesce */
1690 };
1691 
1692 
1693 /*
1694  * This is the loadable module wrapper.
1695  */
1696 #include <sys/modctl.h>
1697 
1698 static struct modldrv modldrv = {
1699 	&mod_driverops,		/* Type of module. This one is a driver */
1700 	SD_MODULE_NAME,		/* Module name. */
1701 	&sd_ops			/* driver ops */
1702 };
1703 
1704 
1705 static struct modlinkage modlinkage = {
1706 	MODREV_1,
1707 	&modldrv,
1708 	NULL
1709 };
1710 
1711 static cmlb_tg_ops_t sd_tgops = {
1712 	TG_DK_OPS_VERSION_1,
1713 	sd_tg_rdwr,
1714 	sd_tg_getinfo
1715 	};
1716 
1717 static struct scsi_asq_key_strings sd_additional_codes[] = {
1718 	0x81, 0, "Logical Unit is Reserved",
1719 	0x85, 0, "Audio Address Not Valid",
1720 	0xb6, 0, "Media Load Mechanism Failed",
1721 	0xB9, 0, "Audio Play Operation Aborted",
1722 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1723 	0x53, 2, "Medium removal prevented",
1724 	0x6f, 0, "Authentication failed during key exchange",
1725 	0x6f, 1, "Key not present",
1726 	0x6f, 2, "Key not established",
1727 	0x6f, 3, "Read without proper authentication",
1728 	0x6f, 4, "Mismatched region to this logical unit",
1729 	0x6f, 5, "Region reset count error",
1730 	0xffff, 0x0, NULL
1731 };
1732 
1733 
1734 /*
1735  * Struct for passing printing information for sense data messages
1736  */
1737 struct sd_sense_info {
1738 	int	ssi_severity;
1739 	int	ssi_pfa_flag;
1740 };
1741 
1742 /*
1743  * Table of function pointers for iostart-side routines. Separate "chains"
1744  * of layered function calls are formed by placing the function pointers
1745  * sequentially in the desired order. Functions are called according to an
1746  * incrementing table index ordering. The last function in each chain must
1747  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1748  * in the sd_iodone_chain[] array.
1749  *
1750  * Note: It may seem more natural to organize both the iostart and iodone
1751  * functions together, into an array of structures (or some similar
1752  * organization) with a common index, rather than two separate arrays which
1753  * must be maintained in synchronization. The purpose of this division is
1754  * to achieve improved performance: individual arrays allows for more
1755  * effective cache line utilization on certain platforms.
1756  */
1757 
1758 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1759 
1760 
1761 static sd_chain_t sd_iostart_chain[] = {
1762 
1763 	/* Chain for buf IO for disk drive targets (PM enabled) */
1764 	sd_mapblockaddr_iostart,	/* Index: 0 */
1765 	sd_pm_iostart,			/* Index: 1 */
1766 	sd_core_iostart,		/* Index: 2 */
1767 
1768 	/* Chain for buf IO for disk drive targets (PM disabled) */
1769 	sd_mapblockaddr_iostart,	/* Index: 3 */
1770 	sd_core_iostart,		/* Index: 4 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM enabled) */
1773 	sd_mapblockaddr_iostart,	/* Index: 5 */
1774 	sd_mapblocksize_iostart,	/* Index: 6 */
1775 	sd_pm_iostart,			/* Index: 7 */
1776 	sd_core_iostart,		/* Index: 8 */
1777 
1778 	/* Chain for buf IO for removable-media targets (PM disabled) */
1779 	sd_mapblockaddr_iostart,	/* Index: 9 */
1780 	sd_mapblocksize_iostart,	/* Index: 10 */
1781 	sd_core_iostart,		/* Index: 11 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1784 	sd_mapblockaddr_iostart,	/* Index: 12 */
1785 	sd_checksum_iostart,		/* Index: 13 */
1786 	sd_pm_iostart,			/* Index: 14 */
1787 	sd_core_iostart,		/* Index: 15 */
1788 
1789 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1790 	sd_mapblockaddr_iostart,	/* Index: 16 */
1791 	sd_checksum_iostart,		/* Index: 17 */
1792 	sd_core_iostart,		/* Index: 18 */
1793 
1794 	/* Chain for USCSI commands (all targets) */
1795 	sd_pm_iostart,			/* Index: 19 */
1796 	sd_core_iostart,		/* Index: 20 */
1797 
1798 	/* Chain for checksumming USCSI commands (all targets) */
1799 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1800 	sd_pm_iostart,			/* Index: 22 */
1801 	sd_core_iostart,		/* Index: 23 */
1802 
1803 	/* Chain for "direct" USCSI commands (all targets) */
1804 	sd_core_iostart,		/* Index: 24 */
1805 
1806 	/* Chain for "direct priority" USCSI commands (all targets) */
1807 	sd_core_iostart,		/* Index: 25 */
1808 };
1809 
1810 /*
1811  * Macros to locate the first function of each iostart chain in the
1812  * sd_iostart_chain[] array. These are located by the index in the array.
1813  */
1814 #define	SD_CHAIN_DISK_IOSTART			0
1815 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1816 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1817 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1818 #define	SD_CHAIN_CHKSUM_IOSTART			12
1819 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1820 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1821 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1822 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1824 
1825 
1826 /*
1827  * Table of function pointers for the iodone-side routines for the driver-
1828  * internal layering mechanism.  The calling sequence for iodone routines
1829  * uses a decrementing table index, so the last routine called in a chain
1830  * must be at the lowest array index location for that chain.  The last
1831  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1832  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1833  * of the functions in an iodone side chain must correspond to the ordering
1834  * of the iostart routines for that chain.  Note that there is no iodone
1835  * side routine that corresponds to sd_core_iostart(), so there is no
1836  * entry in the table for this.
1837  */
1838 
1839 static sd_chain_t sd_iodone_chain[] = {
1840 
1841 	/* Chain for buf IO for disk drive targets (PM enabled) */
1842 	sd_buf_iodone,			/* Index: 0 */
1843 	sd_mapblockaddr_iodone,		/* Index: 1 */
1844 	sd_pm_iodone,			/* Index: 2 */
1845 
1846 	/* Chain for buf IO for disk drive targets (PM disabled) */
1847 	sd_buf_iodone,			/* Index: 3 */
1848 	sd_mapblockaddr_iodone,		/* Index: 4 */
1849 
1850 	/* Chain for buf IO for removable-media targets (PM enabled) */
1851 	sd_buf_iodone,			/* Index: 5 */
1852 	sd_mapblockaddr_iodone,		/* Index: 6 */
1853 	sd_mapblocksize_iodone,		/* Index: 7 */
1854 	sd_pm_iodone,			/* Index: 8 */
1855 
1856 	/* Chain for buf IO for removable-media targets (PM disabled) */
1857 	sd_buf_iodone,			/* Index: 9 */
1858 	sd_mapblockaddr_iodone,		/* Index: 10 */
1859 	sd_mapblocksize_iodone,		/* Index: 11 */
1860 
1861 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1862 	sd_buf_iodone,			/* Index: 12 */
1863 	sd_mapblockaddr_iodone,		/* Index: 13 */
1864 	sd_checksum_iodone,		/* Index: 14 */
1865 	sd_pm_iodone,			/* Index: 15 */
1866 
1867 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1868 	sd_buf_iodone,			/* Index: 16 */
1869 	sd_mapblockaddr_iodone,		/* Index: 17 */
1870 	sd_checksum_iodone,		/* Index: 18 */
1871 
1872 	/* Chain for USCSI commands (non-checksum targets) */
1873 	sd_uscsi_iodone,		/* Index: 19 */
1874 	sd_pm_iodone,			/* Index: 20 */
1875 
1876 	/* Chain for USCSI commands (checksum targets) */
1877 	sd_uscsi_iodone,		/* Index: 21 */
1878 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1879 	sd_pm_iodone,			/* Index: 22 */
1880 
1881 	/* Chain for "direct" USCSI commands (all targets) */
1882 	sd_uscsi_iodone,		/* Index: 24 */
1883 
1884 	/* Chain for "direct priority" USCSI commands (all targets) */
1885 	sd_uscsi_iodone,		/* Index: 25 */
1886 };
1887 
1888 
1889 /*
1890  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1891  * each iodone-side chain. These are located by the array index, but as the
1892  * iodone side functions are called in a decrementing-index order, the
1893  * highest index number in each chain must be specified (as these correspond
1894  * to the first function in the iodone chain that will be called by the core
1895  * at IO completion time).
1896  */
1897 
1898 #define	SD_CHAIN_DISK_IODONE			2
1899 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1900 #define	SD_CHAIN_RMMEDIA_IODONE			8
1901 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1902 #define	SD_CHAIN_CHKSUM_IODONE			15
1903 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1904 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1905 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1906 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1907 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1908 
1909 
1910 
1911 
1912 /*
1913  * Array to map a layering chain index to the appropriate initpkt routine.
1914  * The redundant entries are present so that the index used for accessing
1915  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1916  * with this table as well.
1917  */
1918 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1919 
1920 static sd_initpkt_t	sd_initpkt_map[] = {
1921 
1922 	/* Chain for buf IO for disk drive targets (PM enabled) */
1923 	sd_initpkt_for_buf,		/* Index: 0 */
1924 	sd_initpkt_for_buf,		/* Index: 1 */
1925 	sd_initpkt_for_buf,		/* Index: 2 */
1926 
1927 	/* Chain for buf IO for disk drive targets (PM disabled) */
1928 	sd_initpkt_for_buf,		/* Index: 3 */
1929 	sd_initpkt_for_buf,		/* Index: 4 */
1930 
1931 	/* Chain for buf IO for removable-media targets (PM enabled) */
1932 	sd_initpkt_for_buf,		/* Index: 5 */
1933 	sd_initpkt_for_buf,		/* Index: 6 */
1934 	sd_initpkt_for_buf,		/* Index: 7 */
1935 	sd_initpkt_for_buf,		/* Index: 8 */
1936 
1937 	/* Chain for buf IO for removable-media targets (PM disabled) */
1938 	sd_initpkt_for_buf,		/* Index: 9 */
1939 	sd_initpkt_for_buf,		/* Index: 10 */
1940 	sd_initpkt_for_buf,		/* Index: 11 */
1941 
1942 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1943 	sd_initpkt_for_buf,		/* Index: 12 */
1944 	sd_initpkt_for_buf,		/* Index: 13 */
1945 	sd_initpkt_for_buf,		/* Index: 14 */
1946 	sd_initpkt_for_buf,		/* Index: 15 */
1947 
1948 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1949 	sd_initpkt_for_buf,		/* Index: 16 */
1950 	sd_initpkt_for_buf,		/* Index: 17 */
1951 	sd_initpkt_for_buf,		/* Index: 18 */
1952 
1953 	/* Chain for USCSI commands (non-checksum targets) */
1954 	sd_initpkt_for_uscsi,		/* Index: 19 */
1955 	sd_initpkt_for_uscsi,		/* Index: 20 */
1956 
1957 	/* Chain for USCSI commands (checksum targets) */
1958 	sd_initpkt_for_uscsi,		/* Index: 21 */
1959 	sd_initpkt_for_uscsi,		/* Index: 22 */
1960 	sd_initpkt_for_uscsi,		/* Index: 22 */
1961 
1962 	/* Chain for "direct" USCSI commands (all targets) */
1963 	sd_initpkt_for_uscsi,		/* Index: 24 */
1964 
1965 	/* Chain for "direct priority" USCSI commands (all targets) */
1966 	sd_initpkt_for_uscsi,		/* Index: 25 */
1967 
1968 };
1969 
1970 
1971 /*
1972  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1973  * The redundant entries are present so that the index used for accessing
1974  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1975  * with this table as well.
1976  */
1977 typedef void (*sd_destroypkt_t)(struct buf *);
1978 
1979 static sd_destroypkt_t	sd_destroypkt_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	sd_destroypkt_for_buf,		/* Index: 0 */
1983 	sd_destroypkt_for_buf,		/* Index: 1 */
1984 	sd_destroypkt_for_buf,		/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	sd_destroypkt_for_buf,		/* Index: 3 */
1988 	sd_destroypkt_for_buf,		/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	sd_destroypkt_for_buf,		/* Index: 5 */
1992 	sd_destroypkt_for_buf,		/* Index: 6 */
1993 	sd_destroypkt_for_buf,		/* Index: 7 */
1994 	sd_destroypkt_for_buf,		/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	sd_destroypkt_for_buf,		/* Index: 9 */
1998 	sd_destroypkt_for_buf,		/* Index: 10 */
1999 	sd_destroypkt_for_buf,		/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	sd_destroypkt_for_buf,		/* Index: 12 */
2003 	sd_destroypkt_for_buf,		/* Index: 13 */
2004 	sd_destroypkt_for_buf,		/* Index: 14 */
2005 	sd_destroypkt_for_buf,		/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	sd_destroypkt_for_buf,		/* Index: 16 */
2009 	sd_destroypkt_for_buf,		/* Index: 17 */
2010 	sd_destroypkt_for_buf,		/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2014 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2018 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2019 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2026 
2027 };
2028 
2029 
2030 
2031 /*
2032  * Array to map a layering chain index to the appropriate chain "type".
2033  * The chain type indicates a specific property/usage of the chain.
2034  * The redundant entries are present so that the index used for accessing
2035  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2036  * with this table as well.
2037  */
2038 
2039 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2040 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2041 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2042 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2043 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2044 						/* (for error recovery) */
2045 
2046 static int sd_chain_type_map[] = {
2047 
2048 	/* Chain for buf IO for disk drive targets (PM enabled) */
2049 	SD_CHAIN_BUFIO,			/* Index: 0 */
2050 	SD_CHAIN_BUFIO,			/* Index: 1 */
2051 	SD_CHAIN_BUFIO,			/* Index: 2 */
2052 
2053 	/* Chain for buf IO for disk drive targets (PM disabled) */
2054 	SD_CHAIN_BUFIO,			/* Index: 3 */
2055 	SD_CHAIN_BUFIO,			/* Index: 4 */
2056 
2057 	/* Chain for buf IO for removable-media targets (PM enabled) */
2058 	SD_CHAIN_BUFIO,			/* Index: 5 */
2059 	SD_CHAIN_BUFIO,			/* Index: 6 */
2060 	SD_CHAIN_BUFIO,			/* Index: 7 */
2061 	SD_CHAIN_BUFIO,			/* Index: 8 */
2062 
2063 	/* Chain for buf IO for removable-media targets (PM disabled) */
2064 	SD_CHAIN_BUFIO,			/* Index: 9 */
2065 	SD_CHAIN_BUFIO,			/* Index: 10 */
2066 	SD_CHAIN_BUFIO,			/* Index: 11 */
2067 
2068 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2069 	SD_CHAIN_BUFIO,			/* Index: 12 */
2070 	SD_CHAIN_BUFIO,			/* Index: 13 */
2071 	SD_CHAIN_BUFIO,			/* Index: 14 */
2072 	SD_CHAIN_BUFIO,			/* Index: 15 */
2073 
2074 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2075 	SD_CHAIN_BUFIO,			/* Index: 16 */
2076 	SD_CHAIN_BUFIO,			/* Index: 17 */
2077 	SD_CHAIN_BUFIO,			/* Index: 18 */
2078 
2079 	/* Chain for USCSI commands (non-checksum targets) */
2080 	SD_CHAIN_USCSI,			/* Index: 19 */
2081 	SD_CHAIN_USCSI,			/* Index: 20 */
2082 
2083 	/* Chain for USCSI commands (checksum targets) */
2084 	SD_CHAIN_USCSI,			/* Index: 21 */
2085 	SD_CHAIN_USCSI,			/* Index: 22 */
2086 	SD_CHAIN_USCSI,			/* Index: 22 */
2087 
2088 	/* Chain for "direct" USCSI commands (all targets) */
2089 	SD_CHAIN_DIRECT,		/* Index: 24 */
2090 
2091 	/* Chain for "direct priority" USCSI commands (all targets) */
2092 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2093 };
2094 
2095 
2096 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2097 #define	SD_IS_BUFIO(xp)			\
2098 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2099 
2100 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2101 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2102 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2103 
2104 
2105 
2106 /*
2107  * Struct, array, and macros to map a specific chain to the appropriate
2108  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2109  *
2110  * The sd_chain_index_map[] array is used at attach time to set the various
2111  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2112  * chain to be used with the instance. This allows different instances to use
2113  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2114  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2115  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2116  * dynamically & without the use of locking; and (2) a layer may update the
2117  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2118  * to allow for deferred processing of an IO within the same chain from a
2119  * different execution context.
2120  */
2121 
2122 struct sd_chain_index {
2123 	int	sci_iostart_index;
2124 	int	sci_iodone_index;
2125 };
2126 
2127 static struct sd_chain_index	sd_chain_index_map[] = {
2128 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2129 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2130 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2131 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2132 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2133 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2134 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2135 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2136 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2137 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2138 };
2139 
2140 
2141 /*
2142  * The following are indexes into the sd_chain_index_map[] array.
2143  */
2144 
2145 /* un->un_buf_chain_type must be set to one of these */
2146 #define	SD_CHAIN_INFO_DISK		0
2147 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2148 #define	SD_CHAIN_INFO_RMMEDIA		2
2149 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2150 #define	SD_CHAIN_INFO_CHKSUM		4
2151 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2152 
2153 /* un->un_uscsi_chain_type must be set to one of these */
2154 #define	SD_CHAIN_INFO_USCSI_CMD		6
2155 /* USCSI with PM disabled is the same as DIRECT */
2156 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2157 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2158 
2159 /* un->un_direct_chain_type must be set to one of these */
2160 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2161 
2162 /* un->un_priority_chain_type must be set to one of these */
2163 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2164 
2165 /* size for devid inquiries */
2166 #define	MAX_INQUIRY_SIZE		0xF0
2167 
2168 /*
2169  * Macros used by functions to pass a given buf(9S) struct along to the
2170  * next function in the layering chain for further processing.
2171  *
2172  * In the following macros, passing more than three arguments to the called
2173  * routines causes the optimizer for the SPARC compiler to stop doing tail
2174  * call elimination which results in significant performance degradation.
2175  */
2176 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2177 	((*(sd_iostart_chain[index]))(index, un, bp))
2178 
2179 #define	SD_BEGIN_IODONE(index, un, bp)	\
2180 	((*(sd_iodone_chain[index]))(index, un, bp))
2181 
2182 #define	SD_NEXT_IOSTART(index, un, bp)				\
2183 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2184 
2185 #define	SD_NEXT_IODONE(index, un, bp)				\
2186 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2187 
2188 /*
2189  *    Function: _init
2190  *
2191  * Description: This is the driver _init(9E) entry point.
2192  *
2193  * Return Code: Returns the value from mod_install(9F) or
2194  *		ddi_soft_state_init(9F) as appropriate.
2195  *
2196  *     Context: Called when driver module loaded.
2197  */
2198 
2199 int
2200 _init(void)
2201 {
2202 	int	err;
2203 
2204 	/* establish driver name from module name */
2205 	sd_label = (char *)mod_modname(&modlinkage);
2206 
2207 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2208 	    SD_MAXUNIT);
2209 
2210 	if (err != 0) {
2211 		return (err);
2212 	}
2213 
2214 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2217 
2218 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2219 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2220 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2221 
2222 	/*
2223 	 * it's ok to init here even for fibre device
2224 	 */
2225 	sd_scsi_probe_cache_init();
2226 
2227 	sd_scsi_target_lun_init();
2228 
2229 	/*
2230 	 * Creating taskq before mod_install ensures that all callers (threads)
2231 	 * that enter the module after a successful mod_install encounter
2232 	 * a valid taskq.
2233 	 */
2234 	sd_taskq_create();
2235 
2236 	err = mod_install(&modlinkage);
2237 	if (err != 0) {
2238 		/* delete taskq if install fails */
2239 		sd_taskq_delete();
2240 
2241 		mutex_destroy(&sd_detach_mutex);
2242 		mutex_destroy(&sd_log_mutex);
2243 		mutex_destroy(&sd_label_mutex);
2244 
2245 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2246 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2247 		cv_destroy(&sd_tr.srq_inprocess_cv);
2248 
2249 		sd_scsi_probe_cache_fini();
2250 
2251 		sd_scsi_target_lun_fini();
2252 
2253 		ddi_soft_state_fini(&sd_state);
2254 		return (err);
2255 	}
2256 
2257 	return (err);
2258 }
2259 
2260 
2261 /*
2262  *    Function: _fini
2263  *
2264  * Description: This is the driver _fini(9E) entry point.
2265  *
2266  * Return Code: Returns the value from mod_remove(9F)
2267  *
2268  *     Context: Called when driver module is unloaded.
2269  */
2270 
2271 int
2272 _fini(void)
2273 {
2274 	int err;
2275 
2276 	if ((err = mod_remove(&modlinkage)) != 0) {
2277 		return (err);
2278 	}
2279 
2280 	sd_taskq_delete();
2281 
2282 	mutex_destroy(&sd_detach_mutex);
2283 	mutex_destroy(&sd_log_mutex);
2284 	mutex_destroy(&sd_label_mutex);
2285 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2286 
2287 	sd_scsi_probe_cache_fini();
2288 
2289 	sd_scsi_target_lun_fini();
2290 
2291 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2292 	cv_destroy(&sd_tr.srq_inprocess_cv);
2293 
2294 	ddi_soft_state_fini(&sd_state);
2295 
2296 	return (err);
2297 }
2298 
2299 
2300 /*
2301  *    Function: _info
2302  *
2303  * Description: This is the driver _info(9E) entry point.
2304  *
2305  *   Arguments: modinfop - pointer to the driver modinfo structure
2306  *
2307  * Return Code: Returns the value from mod_info(9F).
2308  *
2309  *     Context: Kernel thread context
2310  */
2311 
2312 int
2313 _info(struct modinfo *modinfop)
2314 {
2315 	return (mod_info(&modlinkage, modinfop));
2316 }
2317 
2318 
2319 /*
2320  * The following routines implement the driver message logging facility.
2321  * They provide component- and level- based debug output filtering.
2322  * Output may also be restricted to messages for a single instance by
2323  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2324  * to NULL, then messages for all instances are printed.
2325  *
2326  * These routines have been cloned from each other due to the language
2327  * constraints of macros and variable argument list processing.
2328  */
2329 
2330 
2331 /*
2332  *    Function: sd_log_err
2333  *
2334  * Description: This routine is called by the SD_ERROR macro for debug
2335  *		logging of error conditions.
2336  *
2337  *   Arguments: comp - driver component being logged
2338  *		dev  - pointer to driver info structure
2339  *		fmt  - error string and format to be logged
2340  */
2341 
2342 static void
2343 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2344 {
2345 	va_list		ap;
2346 	dev_info_t	*dev;
2347 
2348 	ASSERT(un != NULL);
2349 	dev = SD_DEVINFO(un);
2350 	ASSERT(dev != NULL);
2351 
2352 	/*
2353 	 * Filter messages based on the global component and level masks.
2354 	 * Also print if un matches the value of sd_debug_un, or if
2355 	 * sd_debug_un is set to NULL.
2356 	 */
2357 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2358 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2359 		mutex_enter(&sd_log_mutex);
2360 		va_start(ap, fmt);
2361 		(void) vsprintf(sd_log_buf, fmt, ap);
2362 		va_end(ap);
2363 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2364 		mutex_exit(&sd_log_mutex);
2365 	}
2366 #ifdef SD_FAULT_INJECTION
2367 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2368 	if (un->sd_injection_mask & comp) {
2369 		mutex_enter(&sd_log_mutex);
2370 		va_start(ap, fmt);
2371 		(void) vsprintf(sd_log_buf, fmt, ap);
2372 		va_end(ap);
2373 		sd_injection_log(sd_log_buf, un);
2374 		mutex_exit(&sd_log_mutex);
2375 	}
2376 #endif
2377 }
2378 
2379 
2380 /*
2381  *    Function: sd_log_info
2382  *
2383  * Description: This routine is called by the SD_INFO macro for debug
2384  *		logging of general purpose informational conditions.
2385  *
2386  *   Arguments: comp - driver component being logged
2387  *		dev  - pointer to driver info structure
2388  *		fmt  - info string and format to be logged
2389  */
2390 
2391 static void
2392 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2393 {
2394 	va_list		ap;
2395 	dev_info_t	*dev;
2396 
2397 	ASSERT(un != NULL);
2398 	dev = SD_DEVINFO(un);
2399 	ASSERT(dev != NULL);
2400 
2401 	/*
2402 	 * Filter messages based on the global component and level masks.
2403 	 * Also print if un matches the value of sd_debug_un, or if
2404 	 * sd_debug_un is set to NULL.
2405 	 */
2406 	if ((sd_component_mask & component) &&
2407 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2408 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #ifdef SD_FAULT_INJECTION
2417 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2418 	if (un->sd_injection_mask & component) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		sd_injection_log(sd_log_buf, un);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #endif
2427 }
2428 
2429 
2430 /*
2431  *    Function: sd_log_trace
2432  *
2433  * Description: This routine is called by the SD_TRACE macro for debug
2434  *		logging of trace conditions (i.e. function entry/exit).
2435  *
2436  *   Arguments: comp - driver component being logged
2437  *		dev  - pointer to driver info structure
2438  *		fmt  - trace string and format to be logged
2439  */
2440 
2441 static void
2442 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2443 {
2444 	va_list		ap;
2445 	dev_info_t	*dev;
2446 
2447 	ASSERT(un != NULL);
2448 	dev = SD_DEVINFO(un);
2449 	ASSERT(dev != NULL);
2450 
2451 	/*
2452 	 * Filter messages based on the global component and level masks.
2453 	 * Also print if un matches the value of sd_debug_un, or if
2454 	 * sd_debug_un is set to NULL.
2455 	 */
2456 	if ((sd_component_mask & component) &&
2457 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2458 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2459 		mutex_enter(&sd_log_mutex);
2460 		va_start(ap, fmt);
2461 		(void) vsprintf(sd_log_buf, fmt, ap);
2462 		va_end(ap);
2463 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2464 		mutex_exit(&sd_log_mutex);
2465 	}
2466 #ifdef SD_FAULT_INJECTION
2467 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2468 	if (un->sd_injection_mask & component) {
2469 		mutex_enter(&sd_log_mutex);
2470 		va_start(ap, fmt);
2471 		(void) vsprintf(sd_log_buf, fmt, ap);
2472 		va_end(ap);
2473 		sd_injection_log(sd_log_buf, un);
2474 		mutex_exit(&sd_log_mutex);
2475 	}
2476 #endif
2477 }
2478 
2479 
2480 /*
2481  *    Function: sdprobe
2482  *
2483  * Description: This is the driver probe(9e) entry point function.
2484  *
2485  *   Arguments: devi - opaque device info handle
2486  *
2487  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2488  *              DDI_PROBE_FAILURE: If the probe failed.
2489  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2490  *				   but may be present in the future.
2491  */
2492 
2493 static int
2494 sdprobe(dev_info_t *devi)
2495 {
2496 	struct scsi_device	*devp;
2497 	int			rval;
2498 	int			instance;
2499 
2500 	/*
2501 	 * if it wasn't for pln, sdprobe could actually be nulldev
2502 	 * in the "__fibre" case.
2503 	 */
2504 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2505 		return (DDI_PROBE_DONTCARE);
2506 	}
2507 
2508 	devp = ddi_get_driver_private(devi);
2509 
2510 	if (devp == NULL) {
2511 		/* Ooops... nexus driver is mis-configured... */
2512 		return (DDI_PROBE_FAILURE);
2513 	}
2514 
2515 	instance = ddi_get_instance(devi);
2516 
2517 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2518 		return (DDI_PROBE_PARTIAL);
2519 	}
2520 
2521 	/*
2522 	 * Call the SCSA utility probe routine to see if we actually
2523 	 * have a target at this SCSI nexus.
2524 	 */
2525 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2526 	case SCSIPROBE_EXISTS:
2527 		switch (devp->sd_inq->inq_dtype) {
2528 		case DTYPE_DIRECT:
2529 			rval = DDI_PROBE_SUCCESS;
2530 			break;
2531 		case DTYPE_RODIRECT:
2532 			/* CDs etc. Can be removable media */
2533 			rval = DDI_PROBE_SUCCESS;
2534 			break;
2535 		case DTYPE_OPTICAL:
2536 			/*
2537 			 * Rewritable optical driver HP115AA
2538 			 * Can also be removable media
2539 			 */
2540 
2541 			/*
2542 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2543 			 * pre solaris 9 sparc sd behavior is required
2544 			 *
2545 			 * If first time through and sd_dtype_optical_bind
2546 			 * has not been set in /etc/system check properties
2547 			 */
2548 
2549 			if (sd_dtype_optical_bind  < 0) {
2550 				sd_dtype_optical_bind = ddi_prop_get_int
2551 				    (DDI_DEV_T_ANY, devi, 0,
2552 				    "optical-device-bind", 1);
2553 			}
2554 
2555 			if (sd_dtype_optical_bind == 0) {
2556 				rval = DDI_PROBE_FAILURE;
2557 			} else {
2558 				rval = DDI_PROBE_SUCCESS;
2559 			}
2560 			break;
2561 
2562 		case DTYPE_NOTPRESENT:
2563 		default:
2564 			rval = DDI_PROBE_FAILURE;
2565 			break;
2566 		}
2567 		break;
2568 	default:
2569 		rval = DDI_PROBE_PARTIAL;
2570 		break;
2571 	}
2572 
2573 	/*
2574 	 * This routine checks for resource allocation prior to freeing,
2575 	 * so it will take care of the "smart probing" case where a
2576 	 * scsi_probe() may or may not have been issued and will *not*
2577 	 * free previously-freed resources.
2578 	 */
2579 	scsi_unprobe(devp);
2580 	return (rval);
2581 }
2582 
2583 
2584 /*
2585  *    Function: sdinfo
2586  *
2587  * Description: This is the driver getinfo(9e) entry point function.
2588  * 		Given the device number, return the devinfo pointer from
2589  *		the scsi_device structure or the instance number
2590  *		associated with the dev_t.
2591  *
2592  *   Arguments: dip     - pointer to device info structure
2593  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2594  *			  DDI_INFO_DEVT2INSTANCE)
2595  *		arg     - driver dev_t
2596  *		resultp - user buffer for request response
2597  *
2598  * Return Code: DDI_SUCCESS
2599  *              DDI_FAILURE
2600  */
2601 /* ARGSUSED */
2602 static int
2603 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2604 {
2605 	struct sd_lun	*un;
2606 	dev_t		dev;
2607 	int		instance;
2608 	int		error;
2609 
2610 	switch (infocmd) {
2611 	case DDI_INFO_DEVT2DEVINFO:
2612 		dev = (dev_t)arg;
2613 		instance = SDUNIT(dev);
2614 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2615 			return (DDI_FAILURE);
2616 		}
2617 		*result = (void *) SD_DEVINFO(un);
2618 		error = DDI_SUCCESS;
2619 		break;
2620 	case DDI_INFO_DEVT2INSTANCE:
2621 		dev = (dev_t)arg;
2622 		instance = SDUNIT(dev);
2623 		*result = (void *)(uintptr_t)instance;
2624 		error = DDI_SUCCESS;
2625 		break;
2626 	default:
2627 		error = DDI_FAILURE;
2628 	}
2629 	return (error);
2630 }
2631 
2632 /*
2633  *    Function: sd_prop_op
2634  *
2635  * Description: This is the driver prop_op(9e) entry point function.
2636  *		Return the number of blocks for the partition in question
2637  *		or forward the request to the property facilities.
2638  *
2639  *   Arguments: dev       - device number
2640  *		dip       - pointer to device info structure
2641  *		prop_op   - property operator
2642  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2643  *		name      - pointer to property name
2644  *		valuep    - pointer or address of the user buffer
2645  *		lengthp   - property length
2646  *
2647  * Return Code: DDI_PROP_SUCCESS
2648  *              DDI_PROP_NOT_FOUND
2649  *              DDI_PROP_UNDEFINED
2650  *              DDI_PROP_NO_MEMORY
2651  *              DDI_PROP_BUF_TOO_SMALL
2652  */
2653 
2654 static int
2655 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2656 	char *name, caddr_t valuep, int *lengthp)
2657 {
2658 	struct sd_lun	*un;
2659 
2660 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2661 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2662 		    name, valuep, lengthp));
2663 
2664 	return (cmlb_prop_op(un->un_cmlbhandle,
2665 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2666 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2667 }
2668 
2669 /*
2670  * The following functions are for smart probing:
2671  * sd_scsi_probe_cache_init()
2672  * sd_scsi_probe_cache_fini()
2673  * sd_scsi_clear_probe_cache()
2674  * sd_scsi_probe_with_cache()
2675  */
2676 
2677 /*
2678  *    Function: sd_scsi_probe_cache_init
2679  *
2680  * Description: Initializes the probe response cache mutex and head pointer.
2681  *
2682  *     Context: Kernel thread context
2683  */
2684 
2685 static void
2686 sd_scsi_probe_cache_init(void)
2687 {
2688 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2689 	sd_scsi_probe_cache_head = NULL;
2690 }
2691 
2692 
2693 /*
2694  *    Function: sd_scsi_probe_cache_fini
2695  *
2696  * Description: Frees all resources associated with the probe response cache.
2697  *
2698  *     Context: Kernel thread context
2699  */
2700 
2701 static void
2702 sd_scsi_probe_cache_fini(void)
2703 {
2704 	struct sd_scsi_probe_cache *cp;
2705 	struct sd_scsi_probe_cache *ncp;
2706 
2707 	/* Clean up our smart probing linked list */
2708 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2709 		ncp = cp->next;
2710 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2711 	}
2712 	sd_scsi_probe_cache_head = NULL;
2713 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2714 }
2715 
2716 
2717 /*
2718  *    Function: sd_scsi_clear_probe_cache
2719  *
2720  * Description: This routine clears the probe response cache. This is
2721  *		done when open() returns ENXIO so that when deferred
2722  *		attach is attempted (possibly after a device has been
2723  *		turned on) we will retry the probe. Since we don't know
2724  *		which target we failed to open, we just clear the
2725  *		entire cache.
2726  *
2727  *     Context: Kernel thread context
2728  */
2729 
2730 static void
2731 sd_scsi_clear_probe_cache(void)
2732 {
2733 	struct sd_scsi_probe_cache	*cp;
2734 	int				i;
2735 
2736 	mutex_enter(&sd_scsi_probe_cache_mutex);
2737 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2738 		/*
2739 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2740 		 * force probing to be performed the next time
2741 		 * sd_scsi_probe_with_cache is called.
2742 		 */
2743 		for (i = 0; i < NTARGETS_WIDE; i++) {
2744 			cp->cache[i] = SCSIPROBE_EXISTS;
2745 		}
2746 	}
2747 	mutex_exit(&sd_scsi_probe_cache_mutex);
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_scsi_probe_with_cache
2753  *
2754  * Description: This routine implements support for a scsi device probe
2755  *		with cache. The driver maintains a cache of the target
2756  *		responses to scsi probes. If we get no response from a
2757  *		target during a probe inquiry, we remember that, and we
2758  *		avoid additional calls to scsi_probe on non-zero LUNs
2759  *		on the same target until the cache is cleared. By doing
2760  *		so we avoid the 1/4 sec selection timeout for nonzero
2761  *		LUNs. lun0 of a target is always probed.
2762  *
2763  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2764  *              waitfunc - indicates what the allocator routines should
2765  *			   do when resources are not available. This value
2766  *			   is passed on to scsi_probe() when that routine
2767  *			   is called.
2768  *
2769  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2770  *		otherwise the value returned by scsi_probe(9F).
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2777 {
2778 	struct sd_scsi_probe_cache	*cp;
2779 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2780 	int		lun, tgt;
2781 
2782 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2783 	    SCSI_ADDR_PROP_LUN, 0);
2784 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2785 	    SCSI_ADDR_PROP_TARGET, -1);
2786 
2787 	/* Make sure caching enabled and target in range */
2788 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2789 		/* do it the old way (no cache) */
2790 		return (scsi_probe(devp, waitfn));
2791 	}
2792 
2793 	mutex_enter(&sd_scsi_probe_cache_mutex);
2794 
2795 	/* Find the cache for this scsi bus instance */
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		if (cp->pdip == pdip) {
2798 			break;
2799 		}
2800 	}
2801 
2802 	/* If we can't find a cache for this pdip, create one */
2803 	if (cp == NULL) {
2804 		int i;
2805 
2806 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2807 		    KM_SLEEP);
2808 		cp->pdip = pdip;
2809 		cp->next = sd_scsi_probe_cache_head;
2810 		sd_scsi_probe_cache_head = cp;
2811 		for (i = 0; i < NTARGETS_WIDE; i++) {
2812 			cp->cache[i] = SCSIPROBE_EXISTS;
2813 		}
2814 	}
2815 
2816 	mutex_exit(&sd_scsi_probe_cache_mutex);
2817 
2818 	/* Recompute the cache for this target if LUN zero */
2819 	if (lun == 0) {
2820 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2821 	}
2822 
2823 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2824 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2825 		return (SCSIPROBE_NORESP);
2826 	}
2827 
2828 	/* Do the actual probe; save & return the result */
2829 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2830 }
2831 
2832 
2833 /*
2834  *    Function: sd_scsi_target_lun_init
2835  *
2836  * Description: Initializes the attached lun chain mutex and head pointer.
2837  *
2838  *     Context: Kernel thread context
2839  */
2840 
2841 static void
2842 sd_scsi_target_lun_init(void)
2843 {
2844 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2845 	sd_scsi_target_lun_head = NULL;
2846 }
2847 
2848 
2849 /*
2850  *    Function: sd_scsi_target_lun_fini
2851  *
2852  * Description: Frees all resources associated with the attached lun
2853  *              chain
2854  *
2855  *     Context: Kernel thread context
2856  */
2857 
2858 static void
2859 sd_scsi_target_lun_fini(void)
2860 {
2861 	struct sd_scsi_hba_tgt_lun	*cp;
2862 	struct sd_scsi_hba_tgt_lun	*ncp;
2863 
2864 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2865 		ncp = cp->next;
2866 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2867 	}
2868 	sd_scsi_target_lun_head = NULL;
2869 	mutex_destroy(&sd_scsi_target_lun_mutex);
2870 }
2871 
2872 
2873 /*
2874  *    Function: sd_scsi_get_target_lun_count
2875  *
2876  * Description: This routine will check in the attached lun chain to see
2877  * 		how many luns are attached on the required SCSI controller
2878  * 		and target. Currently, some capabilities like tagged queue
2879  *		are supported per target based by HBA. So all luns in a
2880  *		target have the same capabilities. Based on this assumption,
2881  * 		sd should only set these capabilities once per target. This
2882  *		function is called when sd needs to decide how many luns
2883  *		already attached on a target.
2884  *
2885  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2886  *			  controller device.
2887  *              target	- The target ID on the controller's SCSI bus.
2888  *
2889  * Return Code: The number of luns attached on the required target and
2890  *		controller.
2891  *		-1 if target ID is not in parallel SCSI scope or the given
2892  * 		dip is not in the chain.
2893  *
2894  *     Context: Kernel thread context
2895  */
2896 
2897 static int
2898 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2899 {
2900 	struct sd_scsi_hba_tgt_lun	*cp;
2901 
2902 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2903 		return (-1);
2904 	}
2905 
2906 	mutex_enter(&sd_scsi_target_lun_mutex);
2907 
2908 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2909 		if (cp->pdip == dip) {
2910 			break;
2911 		}
2912 	}
2913 
2914 	mutex_exit(&sd_scsi_target_lun_mutex);
2915 
2916 	if (cp == NULL) {
2917 		return (-1);
2918 	}
2919 
2920 	return (cp->nlun[target]);
2921 }
2922 
2923 
2924 /*
2925  *    Function: sd_scsi_update_lun_on_target
2926  *
2927  * Description: This routine is used to update the attached lun chain when a
2928  *		lun is attached or detached on a target.
2929  *
2930  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2931  *                        controller device.
2932  *              target  - The target ID on the controller's SCSI bus.
2933  *		flag	- Indicate the lun is attached or detached.
2934  *
2935  *     Context: Kernel thread context
2936  */
2937 
2938 static void
2939 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2940 {
2941 	struct sd_scsi_hba_tgt_lun	*cp;
2942 
2943 	mutex_enter(&sd_scsi_target_lun_mutex);
2944 
2945 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2946 		if (cp->pdip == dip) {
2947 			break;
2948 		}
2949 	}
2950 
2951 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2952 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2953 		    KM_SLEEP);
2954 		cp->pdip = dip;
2955 		cp->next = sd_scsi_target_lun_head;
2956 		sd_scsi_target_lun_head = cp;
2957 	}
2958 
2959 	mutex_exit(&sd_scsi_target_lun_mutex);
2960 
2961 	if (cp != NULL) {
2962 		if (flag == SD_SCSI_LUN_ATTACH) {
2963 			cp->nlun[target] ++;
2964 		} else {
2965 			cp->nlun[target] --;
2966 		}
2967 	}
2968 }
2969 
2970 
2971 /*
2972  *    Function: sd_spin_up_unit
2973  *
2974  * Description: Issues the following commands to spin-up the device:
2975  *		START STOP UNIT, and INQUIRY.
2976  *
2977  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
2978  *                      structure for this target.
2979  *
2980  * Return Code: 0 - success
2981  *		EIO - failure
2982  *		EACCES - reservation conflict
2983  *
2984  *     Context: Kernel thread context
2985  */
2986 
2987 static int
2988 sd_spin_up_unit(sd_ssc_t *ssc)
2989 {
2990 	size_t	resid		= 0;
2991 	int	has_conflict	= FALSE;
2992 	uchar_t *bufaddr;
2993 	int 	status;
2994 	struct sd_lun	*un;
2995 
2996 	ASSERT(ssc != NULL);
2997 	un = ssc->ssc_un;
2998 	ASSERT(un != NULL);
2999 
3000 	/*
3001 	 * Send a throwaway START UNIT command.
3002 	 *
3003 	 * If we fail on this, we don't care presently what precisely
3004 	 * is wrong.  EMC's arrays will also fail this with a check
3005 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3006 	 * we don't want to fail the attach because it may become
3007 	 * "active" later.
3008 	 */
3009 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3010 	    SD_PATH_DIRECT);
3011 
3012 	if (status != 0) {
3013 		if (status == EACCES)
3014 			has_conflict = TRUE;
3015 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3016 	}
3017 
3018 	/*
3019 	 * Send another INQUIRY command to the target. This is necessary for
3020 	 * non-removable media direct access devices because their INQUIRY data
3021 	 * may not be fully qualified until they are spun up (perhaps via the
3022 	 * START command above).  Note: This seems to be needed for some
3023 	 * legacy devices only.) The INQUIRY command should succeed even if a
3024 	 * Reservation Conflict is present.
3025 	 */
3026 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3027 
3028 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3029 	    != 0) {
3030 		kmem_free(bufaddr, SUN_INQSIZE);
3031 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3032 		return (EIO);
3033 	}
3034 
3035 	/*
3036 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3037 	 * Note that this routine does not return a failure here even if the
3038 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3039 	 */
3040 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3041 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3042 	}
3043 
3044 	kmem_free(bufaddr, SUN_INQSIZE);
3045 
3046 	/* If we hit a reservation conflict above, tell the caller. */
3047 	if (has_conflict == TRUE) {
3048 		return (EACCES);
3049 	}
3050 
3051 	return (0);
3052 }
3053 
3054 #ifdef _LP64
3055 /*
3056  *    Function: sd_enable_descr_sense
3057  *
3058  * Description: This routine attempts to select descriptor sense format
3059  *		using the Control mode page.  Devices that support 64 bit
3060  *		LBAs (for >2TB luns) should also implement descriptor
3061  *		sense data so we will call this function whenever we see
3062  *		a lun larger than 2TB.  If for some reason the device
3063  *		supports 64 bit LBAs but doesn't support descriptor sense
3064  *		presumably the mode select will fail.  Everything will
3065  *		continue to work normally except that we will not get
3066  *		complete sense data for commands that fail with an LBA
3067  *		larger than 32 bits.
3068  *
3069  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3070  *                      structure for this target.
3071  *
3072  *     Context: Kernel thread context only
3073  */
3074 
3075 static void
3076 sd_enable_descr_sense(sd_ssc_t *ssc)
3077 {
3078 	uchar_t			*header;
3079 	struct mode_control_scsi3 *ctrl_bufp;
3080 	size_t			buflen;
3081 	size_t			bd_len;
3082 	int			status;
3083 	struct sd_lun		*un;
3084 
3085 	ASSERT(ssc != NULL);
3086 	un = ssc->ssc_un;
3087 	ASSERT(un != NULL);
3088 
3089 	/*
3090 	 * Read MODE SENSE page 0xA, Control Mode Page
3091 	 */
3092 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3093 	    sizeof (struct mode_control_scsi3);
3094 	header = kmem_zalloc(buflen, KM_SLEEP);
3095 
3096 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3097 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3098 
3099 	if (status != 0) {
3100 		SD_ERROR(SD_LOG_COMMON, un,
3101 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3102 		goto eds_exit;
3103 	}
3104 
3105 	/*
3106 	 * Determine size of Block Descriptors in order to locate
3107 	 * the mode page data. ATAPI devices return 0, SCSI devices
3108 	 * should return MODE_BLK_DESC_LENGTH.
3109 	 */
3110 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3111 
3112 	/* Clear the mode data length field for MODE SELECT */
3113 	((struct mode_header *)header)->length = 0;
3114 
3115 	ctrl_bufp = (struct mode_control_scsi3 *)
3116 	    (header + MODE_HEADER_LENGTH + bd_len);
3117 
3118 	/*
3119 	 * If the page length is smaller than the expected value,
3120 	 * the target device doesn't support D_SENSE. Bail out here.
3121 	 */
3122 	if (ctrl_bufp->mode_page.length <
3123 	    sizeof (struct mode_control_scsi3) - 2) {
3124 		SD_ERROR(SD_LOG_COMMON, un,
3125 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3126 		goto eds_exit;
3127 	}
3128 
3129 	/*
3130 	 * Clear PS bit for MODE SELECT
3131 	 */
3132 	ctrl_bufp->mode_page.ps = 0;
3133 
3134 	/*
3135 	 * Set D_SENSE to enable descriptor sense format.
3136 	 */
3137 	ctrl_bufp->d_sense = 1;
3138 
3139 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3140 
3141 	/*
3142 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3143 	 */
3144 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3145 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3146 
3147 	if (status != 0) {
3148 		SD_INFO(SD_LOG_COMMON, un,
3149 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3150 	} else {
3151 		kmem_free(header, buflen);
3152 		return;
3153 	}
3154 
3155 eds_exit:
3156 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3157 	kmem_free(header, buflen);
3158 }
3159 
3160 /*
3161  *    Function: sd_reenable_dsense_task
3162  *
3163  * Description: Re-enable descriptor sense after device or bus reset
3164  *
3165  *     Context: Executes in a taskq() thread context
3166  */
3167 static void
3168 sd_reenable_dsense_task(void *arg)
3169 {
3170 	struct	sd_lun	*un = arg;
3171 	sd_ssc_t	*ssc;
3172 
3173 	ASSERT(un != NULL);
3174 
3175 	ssc = sd_ssc_init(un);
3176 	sd_enable_descr_sense(ssc);
3177 	sd_ssc_fini(ssc);
3178 }
3179 #endif /* _LP64 */
3180 
3181 /*
3182  *    Function: sd_set_mmc_caps
3183  *
3184  * Description: This routine determines if the device is MMC compliant and if
3185  *		the device supports CDDA via a mode sense of the CDVD
3186  *		capabilities mode page. Also checks if the device is a
3187  *		dvdram writable device.
3188  *
3189  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3190  *                      structure for this target.
3191  *
3192  *     Context: Kernel thread context only
3193  */
3194 
3195 static void
3196 sd_set_mmc_caps(sd_ssc_t *ssc)
3197 {
3198 	struct mode_header_grp2		*sense_mhp;
3199 	uchar_t				*sense_page;
3200 	caddr_t				buf;
3201 	int				bd_len;
3202 	int				status;
3203 	struct uscsi_cmd		com;
3204 	int				rtn;
3205 	uchar_t				*out_data_rw, *out_data_hd;
3206 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3207 	struct sd_lun			*un;
3208 
3209 	ASSERT(ssc != NULL);
3210 	un = ssc->ssc_un;
3211 	ASSERT(un != NULL);
3212 
3213 	/*
3214 	 * The flags which will be set in this function are - mmc compliant,
3215 	 * dvdram writable device, cdda support. Initialize them to FALSE
3216 	 * and if a capability is detected - it will be set to TRUE.
3217 	 */
3218 	un->un_f_mmc_cap = FALSE;
3219 	un->un_f_dvdram_writable_device = FALSE;
3220 	un->un_f_cfg_cdda = FALSE;
3221 
3222 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3223 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3224 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3225 
3226 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3227 
3228 	if (status != 0) {
3229 		/* command failed; just return */
3230 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3231 		return;
3232 	}
3233 	/*
3234 	 * If the mode sense request for the CDROM CAPABILITIES
3235 	 * page (0x2A) succeeds the device is assumed to be MMC.
3236 	 */
3237 	un->un_f_mmc_cap = TRUE;
3238 
3239 	/* Get to the page data */
3240 	sense_mhp = (struct mode_header_grp2 *)buf;
3241 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3242 	    sense_mhp->bdesc_length_lo;
3243 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3244 		/*
3245 		 * We did not get back the expected block descriptor
3246 		 * length so we cannot determine if the device supports
3247 		 * CDDA. However, we still indicate the device is MMC
3248 		 * according to the successful response to the page
3249 		 * 0x2A mode sense request.
3250 		 */
3251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3252 		    "sd_set_mmc_caps: Mode Sense returned "
3253 		    "invalid block descriptor length\n");
3254 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3255 		return;
3256 	}
3257 
3258 	/* See if read CDDA is supported */
3259 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3260 	    bd_len);
3261 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3262 
3263 	/* See if writing DVD RAM is supported. */
3264 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3265 	if (un->un_f_dvdram_writable_device == TRUE) {
3266 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * If the device presents DVD or CD capabilities in the mode
3272 	 * page, we can return here since a RRD will not have
3273 	 * these capabilities.
3274 	 */
3275 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3276 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3277 		return;
3278 	}
3279 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3280 
3281 	/*
3282 	 * If un->un_f_dvdram_writable_device is still FALSE,
3283 	 * check for a Removable Rigid Disk (RRD).  A RRD
3284 	 * device is identified by the features RANDOM_WRITABLE and
3285 	 * HARDWARE_DEFECT_MANAGEMENT.
3286 	 */
3287 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3288 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3289 
3290 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3291 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3292 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3293 
3294 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3295 
3296 	if (rtn != 0) {
3297 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3298 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3299 		return;
3300 	}
3301 
3302 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3303 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3304 
3305 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3306 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3307 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3308 
3309 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3310 
3311 	if (rtn == 0) {
3312 		/*
3313 		 * We have good information, check for random writable
3314 		 * and hardware defect features.
3315 		 */
3316 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3317 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3318 			un->un_f_dvdram_writable_device = TRUE;
3319 		}
3320 	}
3321 
3322 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3323 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3324 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3325 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3326 }
3327 
3328 /*
3329  *    Function: sd_check_for_writable_cd
3330  *
3331  * Description: This routine determines if the media in the device is
3332  *		writable or not. It uses the get configuration command (0x46)
3333  *		to determine if the media is writable
3334  *
3335  *   Arguments: un - driver soft state (unit) structure
3336  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3337  *                           chain and the normal command waitq, or
3338  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3339  *                           "direct" chain and bypass the normal command
3340  *                           waitq.
3341  *
3342  *     Context: Never called at interrupt context.
3343  */
3344 
3345 static void
3346 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3347 {
3348 	struct uscsi_cmd		com;
3349 	uchar_t				*out_data;
3350 	uchar_t				*rqbuf;
3351 	int				rtn;
3352 	uchar_t				*out_data_rw, *out_data_hd;
3353 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3354 	struct mode_header_grp2		*sense_mhp;
3355 	uchar_t				*sense_page;
3356 	caddr_t				buf;
3357 	int				bd_len;
3358 	int				status;
3359 	struct sd_lun			*un;
3360 
3361 	ASSERT(ssc != NULL);
3362 	un = ssc->ssc_un;
3363 	ASSERT(un != NULL);
3364 	ASSERT(mutex_owned(SD_MUTEX(un)));
3365 
3366 	/*
3367 	 * Initialize the writable media to false, if configuration info.
3368 	 * tells us otherwise then only we will set it.
3369 	 */
3370 	un->un_f_mmc_writable_media = FALSE;
3371 	mutex_exit(SD_MUTEX(un));
3372 
3373 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3374 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3375 
3376 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3377 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3378 
3379 	if (rtn != 0)
3380 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3381 
3382 	mutex_enter(SD_MUTEX(un));
3383 	if (rtn == 0) {
3384 		/*
3385 		 * We have good information, check for writable DVD.
3386 		 */
3387 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3388 			un->un_f_mmc_writable_media = TRUE;
3389 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3390 			kmem_free(rqbuf, SENSE_LENGTH);
3391 			return;
3392 		}
3393 	}
3394 
3395 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3396 	kmem_free(rqbuf, SENSE_LENGTH);
3397 
3398 	/*
3399 	 * Determine if this is a RRD type device.
3400 	 */
3401 	mutex_exit(SD_MUTEX(un));
3402 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3403 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3404 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3405 
3406 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3407 
3408 	mutex_enter(SD_MUTEX(un));
3409 	if (status != 0) {
3410 		/* command failed; just return */
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/* Get to the page data */
3416 	sense_mhp = (struct mode_header_grp2 *)buf;
3417 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3418 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3419 		/*
3420 		 * We did not get back the expected block descriptor length so
3421 		 * we cannot check the mode page.
3422 		 */
3423 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3424 		    "sd_check_for_writable_cd: Mode Sense returned "
3425 		    "invalid block descriptor length\n");
3426 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3427 		return;
3428 	}
3429 
3430 	/*
3431 	 * If the device presents DVD or CD capabilities in the mode
3432 	 * page, we can return here since a RRD device will not have
3433 	 * these capabilities.
3434 	 */
3435 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3436 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3437 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3438 		return;
3439 	}
3440 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3441 
3442 	/*
3443 	 * If un->un_f_mmc_writable_media is still FALSE,
3444 	 * check for RRD type media.  A RRD device is identified
3445 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3446 	 */
3447 	mutex_exit(SD_MUTEX(un));
3448 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3449 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3450 
3451 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3452 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3453 	    RANDOM_WRITABLE, path_flag);
3454 
3455 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3456 	if (rtn != 0) {
3457 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3458 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3459 		mutex_enter(SD_MUTEX(un));
3460 		return;
3461 	}
3462 
3463 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3464 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3465 
3466 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3467 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3468 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3469 
3470 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3471 	mutex_enter(SD_MUTEX(un));
3472 	if (rtn == 0) {
3473 		/*
3474 		 * We have good information, check for random writable
3475 		 * and hardware defect features as current.
3476 		 */
3477 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3478 		    (out_data_rw[10] & 0x1) &&
3479 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3480 		    (out_data_hd[10] & 0x1)) {
3481 			un->un_f_mmc_writable_media = TRUE;
3482 		}
3483 	}
3484 
3485 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3486 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3487 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3488 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3489 }
3490 
3491 /*
3492  *    Function: sd_read_unit_properties
3493  *
3494  * Description: The following implements a property lookup mechanism.
3495  *		Properties for particular disks (keyed on vendor, model
3496  *		and rev numbers) are sought in the sd.conf file via
3497  *		sd_process_sdconf_file(), and if not found there, are
3498  *		looked for in a list hardcoded in this driver via
3499  *		sd_process_sdconf_table() Once located the properties
3500  *		are used to update the driver unit structure.
3501  *
3502  *   Arguments: un - driver soft state (unit) structure
3503  */
3504 
3505 static void
3506 sd_read_unit_properties(struct sd_lun *un)
3507 {
3508 	/*
3509 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3510 	 * the "sd-config-list" property (from the sd.conf file) or if
3511 	 * there was not a match for the inquiry vid/pid. If this event
3512 	 * occurs the static driver configuration table is searched for
3513 	 * a match.
3514 	 */
3515 	ASSERT(un != NULL);
3516 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3517 		sd_process_sdconf_table(un);
3518 	}
3519 
3520 	/* check for LSI device */
3521 	sd_is_lsi(un);
3522 
3523 
3524 }
3525 
3526 
3527 /*
3528  *    Function: sd_process_sdconf_file
3529  *
3530  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3531  *		driver's config file (ie, sd.conf) and update the driver
3532  *		soft state structure accordingly.
3533  *
3534  *   Arguments: un - driver soft state (unit) structure
3535  *
3536  * Return Code: SD_SUCCESS - The properties were successfully set according
3537  *			     to the driver configuration file.
3538  *		SD_FAILURE - The driver config list was not obtained or
3539  *			     there was no vid/pid match. This indicates that
3540  *			     the static config table should be used.
3541  *
3542  * The config file has a property, "sd-config-list". Currently we support
3543  * two kinds of formats. For both formats, the value of this property
3544  * is a list of duplets:
3545  *
3546  *  sd-config-list=
3547  *	<duplet>,
3548  *	[,<duplet>]*;
3549  *
3550  * For the improved format, where
3551  *
3552  *     <duplet>:= "<vid+pid>","<tunable-list>"
3553  *
3554  * and
3555  *
3556  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3557  *     <tunable> =        <name> : <value>
3558  *
3559  * The <vid+pid> is the string that is returned by the target device on a
3560  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3561  * to apply to all target devices with the specified <vid+pid>.
3562  *
3563  * Each <tunable> is a "<name> : <value>" pair.
3564  *
3565  * For the old format, the structure of each duplet is as follows:
3566  *
3567  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3568  *
3569  * The first entry of the duplet is the device ID string (the concatenated
3570  * vid & pid; not to be confused with a device_id).  This is defined in
3571  * the same way as in the sd_disk_table.
3572  *
3573  * The second part of the duplet is a string that identifies a
3574  * data-property-name-list. The data-property-name-list is defined as
3575  * follows:
3576  *
3577  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3578  *
3579  * The syntax of <data-property-name> depends on the <version> field.
3580  *
3581  * If version = SD_CONF_VERSION_1 we have the following syntax:
3582  *
3583  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3584  *
3585  * where the prop0 value will be used to set prop0 if bit0 set in the
3586  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3587  *
3588  */
3589 
3590 static int
3591 sd_process_sdconf_file(struct sd_lun *un)
3592 {
3593 	char	**config_list = NULL;
3594 	uint_t	nelements;
3595 	char	*vidptr;
3596 	int	vidlen;
3597 	char	*dnlist_ptr;
3598 	char	*dataname_ptr;
3599 	char	*dataname_lasts;
3600 	int	*data_list = NULL;
3601 	uint_t	data_list_len;
3602 	int	rval = SD_FAILURE;
3603 	int	i;
3604 
3605 	ASSERT(un != NULL);
3606 
3607 	/* Obtain the configuration list associated with the .conf file */
3608 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3609 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3610 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3611 		return (SD_FAILURE);
3612 	}
3613 
3614 	/*
3615 	 * Compare vids in each duplet to the inquiry vid - if a match is
3616 	 * made, get the data value and update the soft state structure
3617 	 * accordingly.
3618 	 *
3619 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3620 	 * otherwise.
3621 	 */
3622 	if (nelements & 1) {
3623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3624 		    "sd-config-list should show as pairs of strings.\n");
3625 		if (config_list)
3626 			ddi_prop_free(config_list);
3627 		return (SD_FAILURE);
3628 	}
3629 
3630 	for (i = 0; i < nelements; i += 2) {
3631 		/*
3632 		 * Note: The assumption here is that each vid entry is on
3633 		 * a unique line from its associated duplet.
3634 		 */
3635 		vidptr = config_list[i];
3636 		vidlen = (int)strlen(vidptr);
3637 		if ((vidlen == 0) ||
3638 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3639 			continue;
3640 		}
3641 
3642 		/*
3643 		 * dnlist contains 1 or more blank separated
3644 		 * data-property-name entries
3645 		 */
3646 		dnlist_ptr = config_list[i + 1];
3647 
3648 		if (strchr(dnlist_ptr, ':') != NULL) {
3649 			/*
3650 			 * Decode the improved format sd-config-list.
3651 			 */
3652 			sd_nvpair_str_decode(un, dnlist_ptr);
3653 		} else {
3654 			/*
3655 			 * The old format sd-config-list, loop through all
3656 			 * data-property-name entries in the
3657 			 * data-property-name-list
3658 			 * setting the properties for each.
3659 			 */
3660 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3661 			    &dataname_lasts); dataname_ptr != NULL;
3662 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3663 			    &dataname_lasts)) {
3664 				int version;
3665 
3666 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 				    "sd_process_sdconf_file: disk:%s, "
3668 				    "data:%s\n", vidptr, dataname_ptr);
3669 
3670 				/* Get the data list */
3671 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3672 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3673 				    &data_list_len) != DDI_PROP_SUCCESS) {
3674 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 					    "sd_process_sdconf_file: data "
3676 					    "property (%s) has no value\n",
3677 					    dataname_ptr);
3678 					continue;
3679 				}
3680 
3681 				version = data_list[0];
3682 
3683 				if (version == SD_CONF_VERSION_1) {
3684 					sd_tunables values;
3685 
3686 					/* Set the properties */
3687 					if (sd_chk_vers1_data(un, data_list[1],
3688 					    &data_list[2], data_list_len,
3689 					    dataname_ptr) == SD_SUCCESS) {
3690 						sd_get_tunables_from_conf(un,
3691 						    data_list[1], &data_list[2],
3692 						    &values);
3693 						sd_set_vers1_properties(un,
3694 						    data_list[1], &values);
3695 						rval = SD_SUCCESS;
3696 					} else {
3697 						rval = SD_FAILURE;
3698 					}
3699 				} else {
3700 					scsi_log(SD_DEVINFO(un), sd_label,
3701 					    CE_WARN, "data property %s version "
3702 					    "0x%x is invalid.",
3703 					    dataname_ptr, version);
3704 					rval = SD_FAILURE;
3705 				}
3706 				if (data_list)
3707 					ddi_prop_free(data_list);
3708 			}
3709 		}
3710 	}
3711 
3712 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3713 	if (config_list) {
3714 		ddi_prop_free(config_list);
3715 	}
3716 
3717 	return (rval);
3718 }
3719 
3720 /*
3721  *    Function: sd_nvpair_str_decode()
3722  *
3723  * Description: Parse the improved format sd-config-list to get
3724  *    each entry of tunable, which includes a name-value pair.
3725  *    Then call sd_set_properties() to set the property.
3726  *
3727  *   Arguments: un - driver soft state (unit) structure
3728  *    nvpair_str - the tunable list
3729  */
3730 static void
3731 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3732 {
3733 	char	*nv, *name, *value, *token;
3734 	char	*nv_lasts, *v_lasts, *x_lasts;
3735 
3736 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3737 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3738 		token = sd_strtok_r(nv, ":", &v_lasts);
3739 		name  = sd_strtok_r(token, " \t", &x_lasts);
3740 		token = sd_strtok_r(NULL, ":", &v_lasts);
3741 		value = sd_strtok_r(token, " \t", &x_lasts);
3742 		if (name == NULL || value == NULL) {
3743 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3744 			    "sd_nvpair_str_decode: "
3745 			    "name or value is not valid!\n");
3746 		} else {
3747 			sd_set_properties(un, name, value);
3748 		}
3749 	}
3750 }
3751 
3752 /*
3753  *    Function: sd_strtok_r()
3754  *
3755  * Description: This function uses strpbrk and strspn to break
3756  *    string into tokens on sequentially subsequent calls. Return
3757  *    NULL when no non-separator characters remain. The first
3758  *    argument is NULL for subsequent calls.
3759  */
3760 static char *
3761 sd_strtok_r(char *string, const char *sepset, char **lasts)
3762 {
3763 	char	*q, *r;
3764 
3765 	/* First or subsequent call */
3766 	if (string == NULL)
3767 		string = *lasts;
3768 
3769 	if (string == NULL)
3770 		return (NULL);
3771 
3772 	/* Skip leading separators */
3773 	q = string + strspn(string, sepset);
3774 
3775 	if (*q == '\0')
3776 		return (NULL);
3777 
3778 	if ((r = strpbrk(q, sepset)) == NULL)
3779 		*lasts = NULL;
3780 	else {
3781 		*r = '\0';
3782 		*lasts = r + 1;
3783 	}
3784 	return (q);
3785 }
3786 
3787 /*
3788  *    Function: sd_set_properties()
3789  *
3790  * Description: Set device properties based on the improved
3791  *    format sd-config-list.
3792  *
3793  *   Arguments: un - driver soft state (unit) structure
3794  *    name  - supported tunable name
3795  *    value - tunable value
3796  */
3797 static void
3798 sd_set_properties(struct sd_lun *un, char *name, char *value)
3799 {
3800 	char	*endptr = NULL;
3801 	long	val = 0;
3802 
3803 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3804 		if (strcasecmp(value, "true") == 0) {
3805 			un->un_f_suppress_cache_flush = TRUE;
3806 		} else if (strcasecmp(value, "false") == 0) {
3807 			un->un_f_suppress_cache_flush = FALSE;
3808 		} else {
3809 			goto value_invalid;
3810 		}
3811 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3812 		    "suppress_cache_flush flag set to %d\n",
3813 		    un->un_f_suppress_cache_flush);
3814 		return;
3815 	}
3816 
3817 	if (strcasecmp(name, "controller-type") == 0) {
3818 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3819 			un->un_ctype = val;
3820 		} else {
3821 			goto value_invalid;
3822 		}
3823 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3824 		    "ctype set to %d\n", un->un_ctype);
3825 		return;
3826 	}
3827 
3828 	if (strcasecmp(name, "delay-busy") == 0) {
3829 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3830 			un->un_busy_timeout = drv_usectohz(val / 1000);
3831 		} else {
3832 			goto value_invalid;
3833 		}
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3835 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3836 		return;
3837 	}
3838 
3839 	if (strcasecmp(name, "disksort") == 0) {
3840 		if (strcasecmp(value, "true") == 0) {
3841 			un->un_f_disksort_disabled = FALSE;
3842 		} else if (strcasecmp(value, "false") == 0) {
3843 			un->un_f_disksort_disabled = TRUE;
3844 		} else {
3845 			goto value_invalid;
3846 		}
3847 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3848 		    "disksort disabled flag set to %d\n",
3849 		    un->un_f_disksort_disabled);
3850 		return;
3851 	}
3852 
3853 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3854 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3855 			un->un_reserve_release_time = val;
3856 		} else {
3857 			goto value_invalid;
3858 		}
3859 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3860 		    "reservation release timeout set to %d\n",
3861 		    un->un_reserve_release_time);
3862 		return;
3863 	}
3864 
3865 	if (strcasecmp(name, "reset-lun") == 0) {
3866 		if (strcasecmp(value, "true") == 0) {
3867 			un->un_f_lun_reset_enabled = TRUE;
3868 		} else if (strcasecmp(value, "false") == 0) {
3869 			un->un_f_lun_reset_enabled = FALSE;
3870 		} else {
3871 			goto value_invalid;
3872 		}
3873 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3874 		    "lun reset enabled flag set to %d\n",
3875 		    un->un_f_lun_reset_enabled);
3876 		return;
3877 	}
3878 
3879 	if (strcasecmp(name, "retries-busy") == 0) {
3880 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3881 			un->un_busy_retry_count = val;
3882 		} else {
3883 			goto value_invalid;
3884 		}
3885 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3886 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3887 		return;
3888 	}
3889 
3890 	if (strcasecmp(name, "retries-timeout") == 0) {
3891 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3892 			un->un_retry_count = val;
3893 		} else {
3894 			goto value_invalid;
3895 		}
3896 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3897 		    "timeout retry count set to %d\n", un->un_retry_count);
3898 		return;
3899 	}
3900 
3901 	if (strcasecmp(name, "retries-notready") == 0) {
3902 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3903 			un->un_notready_retry_count = val;
3904 		} else {
3905 			goto value_invalid;
3906 		}
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3908 		    "notready retry count set to %d\n",
3909 		    un->un_notready_retry_count);
3910 		return;
3911 	}
3912 
3913 	if (strcasecmp(name, "retries-reset") == 0) {
3914 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3915 			un->un_reset_retry_count = val;
3916 		} else {
3917 			goto value_invalid;
3918 		}
3919 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 		return;
3923 	}
3924 
3925 	if (strcasecmp(name, "throttle-max") == 0) {
3926 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3927 			un->un_saved_throttle = un->un_throttle = val;
3928 		} else {
3929 			goto value_invalid;
3930 		}
3931 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3932 		    "throttle set to %d\n", un->un_throttle);
3933 	}
3934 
3935 	if (strcasecmp(name, "throttle-min") == 0) {
3936 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3937 			un->un_min_throttle = val;
3938 		} else {
3939 			goto value_invalid;
3940 		}
3941 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3942 		    "min throttle set to %d\n", un->un_min_throttle);
3943 	}
3944 
3945 	/*
3946 	 * Validate the throttle values.
3947 	 * If any of the numbers are invalid, set everything to defaults.
3948 	 */
3949 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3950 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3951 	    (un->un_min_throttle > un->un_throttle)) {
3952 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3953 		un->un_min_throttle = sd_min_throttle;
3954 	}
3955 	return;
3956 
3957 value_invalid:
3958 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3959 	    "value of prop %s is invalid\n", name);
3960 }
3961 
3962 /*
3963  *    Function: sd_get_tunables_from_conf()
3964  *
3965  *
3966  *    This function reads the data list from the sd.conf file and pulls
3967  *    the values that can have numeric values as arguments and places
3968  *    the values in the appropriate sd_tunables member.
3969  *    Since the order of the data list members varies across platforms
3970  *    This function reads them from the data list in a platform specific
3971  *    order and places them into the correct sd_tunable member that is
3972  *    consistent across all platforms.
3973  */
3974 static void
3975 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3976     sd_tunables *values)
3977 {
3978 	int i;
3979 	int mask;
3980 
3981 	bzero(values, sizeof (sd_tunables));
3982 
3983 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3984 
3985 		mask = 1 << i;
3986 		if (mask > flags) {
3987 			break;
3988 		}
3989 
3990 		switch (mask & flags) {
3991 		case 0:	/* This mask bit not set in flags */
3992 			continue;
3993 		case SD_CONF_BSET_THROTTLE:
3994 			values->sdt_throttle = data_list[i];
3995 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3996 			    "sd_get_tunables_from_conf: throttle = %d\n",
3997 			    values->sdt_throttle);
3998 			break;
3999 		case SD_CONF_BSET_CTYPE:
4000 			values->sdt_ctype = data_list[i];
4001 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 			    "sd_get_tunables_from_conf: ctype = %d\n",
4003 			    values->sdt_ctype);
4004 			break;
4005 		case SD_CONF_BSET_NRR_COUNT:
4006 			values->sdt_not_rdy_retries = data_list[i];
4007 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4008 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4009 			    values->sdt_not_rdy_retries);
4010 			break;
4011 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4012 			values->sdt_busy_retries = data_list[i];
4013 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4014 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4015 			    values->sdt_busy_retries);
4016 			break;
4017 		case SD_CONF_BSET_RST_RETRIES:
4018 			values->sdt_reset_retries = data_list[i];
4019 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4021 			    values->sdt_reset_retries);
4022 			break;
4023 		case SD_CONF_BSET_RSV_REL_TIME:
4024 			values->sdt_reserv_rel_time = data_list[i];
4025 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4027 			    values->sdt_reserv_rel_time);
4028 			break;
4029 		case SD_CONF_BSET_MIN_THROTTLE:
4030 			values->sdt_min_throttle = data_list[i];
4031 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4033 			    values->sdt_min_throttle);
4034 			break;
4035 		case SD_CONF_BSET_DISKSORT_DISABLED:
4036 			values->sdt_disk_sort_dis = data_list[i];
4037 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4039 			    values->sdt_disk_sort_dis);
4040 			break;
4041 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4042 			values->sdt_lun_reset_enable = data_list[i];
4043 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4044 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4045 			    "\n", values->sdt_lun_reset_enable);
4046 			break;
4047 		case SD_CONF_BSET_CACHE_IS_NV:
4048 			values->sdt_suppress_cache_flush = data_list[i];
4049 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 			    "sd_get_tunables_from_conf: \
4051 			    suppress_cache_flush = %d"
4052 			    "\n", values->sdt_suppress_cache_flush);
4053 			break;
4054 		}
4055 	}
4056 }
4057 
4058 /*
4059  *    Function: sd_process_sdconf_table
4060  *
4061  * Description: Search the static configuration table for a match on the
4062  *		inquiry vid/pid and update the driver soft state structure
4063  *		according to the table property values for the device.
4064  *
4065  *		The form of a configuration table entry is:
4066  *		  <vid+pid>,<flags>,<property-data>
4067  *		  "SEAGATE ST42400N",1,0x40000,
4068  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4069  *
4070  *   Arguments: un - driver soft state (unit) structure
4071  */
4072 
4073 static void
4074 sd_process_sdconf_table(struct sd_lun *un)
4075 {
4076 	char	*id = NULL;
4077 	int	table_index;
4078 	int	idlen;
4079 
4080 	ASSERT(un != NULL);
4081 	for (table_index = 0; table_index < sd_disk_table_size;
4082 	    table_index++) {
4083 		id = sd_disk_table[table_index].device_id;
4084 		idlen = strlen(id);
4085 		if (idlen == 0) {
4086 			continue;
4087 		}
4088 
4089 		/*
4090 		 * The static configuration table currently does not
4091 		 * implement version 10 properties. Additionally,
4092 		 * multiple data-property-name entries are not
4093 		 * implemented in the static configuration table.
4094 		 */
4095 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4097 			    "sd_process_sdconf_table: disk %s\n", id);
4098 			sd_set_vers1_properties(un,
4099 			    sd_disk_table[table_index].flags,
4100 			    sd_disk_table[table_index].properties);
4101 			break;
4102 		}
4103 	}
4104 }
4105 
4106 
4107 /*
4108  *    Function: sd_sdconf_id_match
4109  *
4110  * Description: This local function implements a case sensitive vid/pid
4111  *		comparison as well as the boundary cases of wild card and
4112  *		multiple blanks.
4113  *
4114  *		Note: An implicit assumption made here is that the scsi
4115  *		inquiry structure will always keep the vid, pid and
4116  *		revision strings in consecutive sequence, so they can be
4117  *		read as a single string. If this assumption is not the
4118  *		case, a separate string, to be used for the check, needs
4119  *		to be built with these strings concatenated.
4120  *
4121  *   Arguments: un - driver soft state (unit) structure
4122  *		id - table or config file vid/pid
4123  *		idlen  - length of the vid/pid (bytes)
4124  *
4125  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4126  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4127  */
4128 
4129 static int
4130 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4131 {
4132 	struct scsi_inquiry	*sd_inq;
4133 	int 			rval = SD_SUCCESS;
4134 
4135 	ASSERT(un != NULL);
4136 	sd_inq = un->un_sd->sd_inq;
4137 	ASSERT(id != NULL);
4138 
4139 	/*
4140 	 * We use the inq_vid as a pointer to a buffer containing the
4141 	 * vid and pid and use the entire vid/pid length of the table
4142 	 * entry for the comparison. This works because the inq_pid
4143 	 * data member follows inq_vid in the scsi_inquiry structure.
4144 	 */
4145 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4146 		/*
4147 		 * The user id string is compared to the inquiry vid/pid
4148 		 * using a case insensitive comparison and ignoring
4149 		 * multiple spaces.
4150 		 */
4151 		rval = sd_blank_cmp(un, id, idlen);
4152 		if (rval != SD_SUCCESS) {
4153 			/*
4154 			 * User id strings that start and end with a "*"
4155 			 * are a special case. These do not have a
4156 			 * specific vendor, and the product string can
4157 			 * appear anywhere in the 16 byte PID portion of
4158 			 * the inquiry data. This is a simple strstr()
4159 			 * type search for the user id in the inquiry data.
4160 			 */
4161 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4162 				char	*pidptr = &id[1];
4163 				int	i;
4164 				int	j;
4165 				int	pidstrlen = idlen - 2;
4166 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4167 				    pidstrlen;
4168 
4169 				if (j < 0) {
4170 					return (SD_FAILURE);
4171 				}
4172 				for (i = 0; i < j; i++) {
4173 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4174 					    pidptr, pidstrlen) == 0) {
4175 						rval = SD_SUCCESS;
4176 						break;
4177 					}
4178 				}
4179 			}
4180 		}
4181 	}
4182 	return (rval);
4183 }
4184 
4185 
4186 /*
4187  *    Function: sd_blank_cmp
4188  *
4189  * Description: If the id string starts and ends with a space, treat
4190  *		multiple consecutive spaces as equivalent to a single
4191  *		space. For example, this causes a sd_disk_table entry
4192  *		of " NEC CDROM " to match a device's id string of
4193  *		"NEC       CDROM".
4194  *
4195  *		Note: The success exit condition for this routine is if
4196  *		the pointer to the table entry is '\0' and the cnt of
4197  *		the inquiry length is zero. This will happen if the inquiry
4198  *		string returned by the device is padded with spaces to be
4199  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4200  *		SCSI spec states that the inquiry string is to be padded with
4201  *		spaces.
4202  *
4203  *   Arguments: un - driver soft state (unit) structure
4204  *		id - table or config file vid/pid
4205  *		idlen  - length of the vid/pid (bytes)
4206  *
4207  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4208  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4209  */
4210 
4211 static int
4212 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4213 {
4214 	char		*p1;
4215 	char		*p2;
4216 	int		cnt;
4217 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4218 	    sizeof (SD_INQUIRY(un)->inq_pid);
4219 
4220 	ASSERT(un != NULL);
4221 	p2 = un->un_sd->sd_inq->inq_vid;
4222 	ASSERT(id != NULL);
4223 	p1 = id;
4224 
4225 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4226 		/*
4227 		 * Note: string p1 is terminated by a NUL but string p2
4228 		 * isn't.  The end of p2 is determined by cnt.
4229 		 */
4230 		for (;;) {
4231 			/* skip over any extra blanks in both strings */
4232 			while ((*p1 != '\0') && (*p1 == ' ')) {
4233 				p1++;
4234 			}
4235 			while ((cnt != 0) && (*p2 == ' ')) {
4236 				p2++;
4237 				cnt--;
4238 			}
4239 
4240 			/* compare the two strings */
4241 			if ((cnt == 0) ||
4242 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4243 				break;
4244 			}
4245 			while ((cnt > 0) &&
4246 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4247 				p1++;
4248 				p2++;
4249 				cnt--;
4250 			}
4251 		}
4252 	}
4253 
4254 	/* return SD_SUCCESS if both strings match */
4255 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4256 }
4257 
4258 
4259 /*
4260  *    Function: sd_chk_vers1_data
4261  *
4262  * Description: Verify the version 1 device properties provided by the
4263  *		user via the configuration file
4264  *
4265  *   Arguments: un	     - driver soft state (unit) structure
4266  *		flags	     - integer mask indicating properties to be set
4267  *		prop_list    - integer list of property values
4268  *		list_len     - number of the elements
4269  *
4270  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4271  *		SD_FAILURE - Indicates the user provided data is invalid
4272  */
4273 
4274 static int
4275 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4276     int list_len, char *dataname_ptr)
4277 {
4278 	int i;
4279 	int mask = 1;
4280 	int index = 0;
4281 
4282 	ASSERT(un != NULL);
4283 
4284 	/* Check for a NULL property name and list */
4285 	if (dataname_ptr == NULL) {
4286 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4287 		    "sd_chk_vers1_data: NULL data property name.");
4288 		return (SD_FAILURE);
4289 	}
4290 	if (prop_list == NULL) {
4291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4292 		    "sd_chk_vers1_data: %s NULL data property list.",
4293 		    dataname_ptr);
4294 		return (SD_FAILURE);
4295 	}
4296 
4297 	/* Display a warning if undefined bits are set in the flags */
4298 	if (flags & ~SD_CONF_BIT_MASK) {
4299 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4300 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4301 		    "Properties not set.",
4302 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4303 		return (SD_FAILURE);
4304 	}
4305 
4306 	/*
4307 	 * Verify the length of the list by identifying the highest bit set
4308 	 * in the flags and validating that the property list has a length
4309 	 * up to the index of this bit.
4310 	 */
4311 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4312 		if (flags & mask) {
4313 			index++;
4314 		}
4315 		mask = 1 << i;
4316 	}
4317 	if (list_len < (index + 2)) {
4318 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4319 		    "sd_chk_vers1_data: "
4320 		    "Data property list %s size is incorrect. "
4321 		    "Properties not set.", dataname_ptr);
4322 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4323 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4324 		return (SD_FAILURE);
4325 	}
4326 	return (SD_SUCCESS);
4327 }
4328 
4329 
4330 /*
4331  *    Function: sd_set_vers1_properties
4332  *
4333  * Description: Set version 1 device properties based on a property list
4334  *		retrieved from the driver configuration file or static
4335  *		configuration table. Version 1 properties have the format:
4336  *
4337  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4338  *
4339  *		where the prop0 value will be used to set prop0 if bit0
4340  *		is set in the flags
4341  *
4342  *   Arguments: un	     - driver soft state (unit) structure
4343  *		flags	     - integer mask indicating properties to be set
4344  *		prop_list    - integer list of property values
4345  */
4346 
4347 static void
4348 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4349 {
4350 	ASSERT(un != NULL);
4351 
4352 	/*
4353 	 * Set the flag to indicate cache is to be disabled. An attempt
4354 	 * to disable the cache via sd_cache_control() will be made
4355 	 * later during attach once the basic initialization is complete.
4356 	 */
4357 	if (flags & SD_CONF_BSET_NOCACHE) {
4358 		un->un_f_opt_disable_cache = TRUE;
4359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360 		    "sd_set_vers1_properties: caching disabled flag set\n");
4361 	}
4362 
4363 	/* CD-specific configuration parameters */
4364 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4365 		un->un_f_cfg_playmsf_bcd = TRUE;
4366 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4367 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4368 	}
4369 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4370 		un->un_f_cfg_readsub_bcd = TRUE;
4371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4372 		    "sd_set_vers1_properties: readsub_bcd set\n");
4373 	}
4374 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4375 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4376 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4377 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4378 	}
4379 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4380 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4382 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4383 	}
4384 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4385 		un->un_f_cfg_no_read_header = TRUE;
4386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4387 		    "sd_set_vers1_properties: no_read_header set\n");
4388 	}
4389 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4390 		un->un_f_cfg_read_cd_xd4 = TRUE;
4391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4392 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4393 	}
4394 
4395 	/* Support for devices which do not have valid/unique serial numbers */
4396 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4397 		un->un_f_opt_fab_devid = TRUE;
4398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4399 		    "sd_set_vers1_properties: fab_devid bit set\n");
4400 	}
4401 
4402 	/* Support for user throttle configuration */
4403 	if (flags & SD_CONF_BSET_THROTTLE) {
4404 		ASSERT(prop_list != NULL);
4405 		un->un_saved_throttle = un->un_throttle =
4406 		    prop_list->sdt_throttle;
4407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4408 		    "sd_set_vers1_properties: throttle set to %d\n",
4409 		    prop_list->sdt_throttle);
4410 	}
4411 
4412 	/* Set the per disk retry count according to the conf file or table. */
4413 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4414 		ASSERT(prop_list != NULL);
4415 		if (prop_list->sdt_not_rdy_retries) {
4416 			un->un_notready_retry_count =
4417 			    prop_list->sdt_not_rdy_retries;
4418 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4419 			    "sd_set_vers1_properties: not ready retry count"
4420 			    " set to %d\n", un->un_notready_retry_count);
4421 		}
4422 	}
4423 
4424 	/* The controller type is reported for generic disk driver ioctls */
4425 	if (flags & SD_CONF_BSET_CTYPE) {
4426 		ASSERT(prop_list != NULL);
4427 		switch (prop_list->sdt_ctype) {
4428 		case CTYPE_CDROM:
4429 			un->un_ctype = prop_list->sdt_ctype;
4430 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4431 			    "sd_set_vers1_properties: ctype set to "
4432 			    "CTYPE_CDROM\n");
4433 			break;
4434 		case CTYPE_CCS:
4435 			un->un_ctype = prop_list->sdt_ctype;
4436 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4437 			    "sd_set_vers1_properties: ctype set to "
4438 			    "CTYPE_CCS\n");
4439 			break;
4440 		case CTYPE_ROD:		/* RW optical */
4441 			un->un_ctype = prop_list->sdt_ctype;
4442 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4443 			    "sd_set_vers1_properties: ctype set to "
4444 			    "CTYPE_ROD\n");
4445 			break;
4446 		default:
4447 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4448 			    "sd_set_vers1_properties: Could not set "
4449 			    "invalid ctype value (%d)",
4450 			    prop_list->sdt_ctype);
4451 		}
4452 	}
4453 
4454 	/* Purple failover timeout */
4455 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4456 		ASSERT(prop_list != NULL);
4457 		un->un_busy_retry_count =
4458 		    prop_list->sdt_busy_retries;
4459 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4460 		    "sd_set_vers1_properties: "
4461 		    "busy retry count set to %d\n",
4462 		    un->un_busy_retry_count);
4463 	}
4464 
4465 	/* Purple reset retry count */
4466 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4467 		ASSERT(prop_list != NULL);
4468 		un->un_reset_retry_count =
4469 		    prop_list->sdt_reset_retries;
4470 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4471 		    "sd_set_vers1_properties: "
4472 		    "reset retry count set to %d\n",
4473 		    un->un_reset_retry_count);
4474 	}
4475 
4476 	/* Purple reservation release timeout */
4477 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4478 		ASSERT(prop_list != NULL);
4479 		un->un_reserve_release_time =
4480 		    prop_list->sdt_reserv_rel_time;
4481 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4482 		    "sd_set_vers1_properties: "
4483 		    "reservation release timeout set to %d\n",
4484 		    un->un_reserve_release_time);
4485 	}
4486 
4487 	/*
4488 	 * Driver flag telling the driver to verify that no commands are pending
4489 	 * for a device before issuing a Test Unit Ready. This is a workaround
4490 	 * for a firmware bug in some Seagate eliteI drives.
4491 	 */
4492 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4493 		un->un_f_cfg_tur_check = TRUE;
4494 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4495 		    "sd_set_vers1_properties: tur queue check set\n");
4496 	}
4497 
4498 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4499 		un->un_min_throttle = prop_list->sdt_min_throttle;
4500 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4501 		    "sd_set_vers1_properties: min throttle set to %d\n",
4502 		    un->un_min_throttle);
4503 	}
4504 
4505 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4506 		un->un_f_disksort_disabled =
4507 		    (prop_list->sdt_disk_sort_dis != 0) ?
4508 		    TRUE : FALSE;
4509 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4510 		    "sd_set_vers1_properties: disksort disabled "
4511 		    "flag set to %d\n",
4512 		    prop_list->sdt_disk_sort_dis);
4513 	}
4514 
4515 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4516 		un->un_f_lun_reset_enabled =
4517 		    (prop_list->sdt_lun_reset_enable != 0) ?
4518 		    TRUE : FALSE;
4519 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4520 		    "sd_set_vers1_properties: lun reset enabled "
4521 		    "flag set to %d\n",
4522 		    prop_list->sdt_lun_reset_enable);
4523 	}
4524 
4525 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4526 		un->un_f_suppress_cache_flush =
4527 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4528 		    TRUE : FALSE;
4529 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4530 		    "sd_set_vers1_properties: suppress_cache_flush "
4531 		    "flag set to %d\n",
4532 		    prop_list->sdt_suppress_cache_flush);
4533 	}
4534 
4535 	/*
4536 	 * Validate the throttle values.
4537 	 * If any of the numbers are invalid, set everything to defaults.
4538 	 */
4539 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4540 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4541 	    (un->un_min_throttle > un->un_throttle)) {
4542 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4543 		un->un_min_throttle = sd_min_throttle;
4544 	}
4545 }
4546 
4547 /*
4548  *   Function: sd_is_lsi()
4549  *
4550  *   Description: Check for lsi devices, step through the static device
4551  *	table to match vid/pid.
4552  *
4553  *   Args: un - ptr to sd_lun
4554  *
4555  *   Notes:  When creating new LSI property, need to add the new LSI property
4556  *		to this function.
4557  */
4558 static void
4559 sd_is_lsi(struct sd_lun *un)
4560 {
4561 	char	*id = NULL;
4562 	int	table_index;
4563 	int	idlen;
4564 	void	*prop;
4565 
4566 	ASSERT(un != NULL);
4567 	for (table_index = 0; table_index < sd_disk_table_size;
4568 	    table_index++) {
4569 		id = sd_disk_table[table_index].device_id;
4570 		idlen = strlen(id);
4571 		if (idlen == 0) {
4572 			continue;
4573 		}
4574 
4575 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4576 			prop = sd_disk_table[table_index].properties;
4577 			if (prop == &lsi_properties ||
4578 			    prop == &lsi_oem_properties ||
4579 			    prop == &lsi_properties_scsi ||
4580 			    prop == &symbios_properties) {
4581 				un->un_f_cfg_is_lsi = TRUE;
4582 			}
4583 			break;
4584 		}
4585 	}
4586 }
4587 
4588 /*
4589  *    Function: sd_get_physical_geometry
4590  *
4591  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4592  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4593  *		target, and use this information to initialize the physical
4594  *		geometry cache specified by pgeom_p.
4595  *
4596  *		MODE SENSE is an optional command, so failure in this case
4597  *		does not necessarily denote an error. We want to use the
4598  *		MODE SENSE commands to derive the physical geometry of the
4599  *		device, but if either command fails, the logical geometry is
4600  *		used as the fallback for disk label geometry in cmlb.
4601  *
4602  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4603  *		have already been initialized for the current target and
4604  *		that the current values be passed as args so that we don't
4605  *		end up ever trying to use -1 as a valid value. This could
4606  *		happen if either value is reset while we're not holding
4607  *		the mutex.
4608  *
4609  *   Arguments: un - driver soft state (unit) structure
4610  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4611  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4612  *			to use the USCSI "direct" chain and bypass the normal
4613  *			command waitq.
4614  *
4615  *     Context: Kernel thread only (can sleep).
4616  */
4617 
4618 static int
4619 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4620 	diskaddr_t capacity, int lbasize, int path_flag)
4621 {
4622 	struct	mode_format	*page3p;
4623 	struct	mode_geometry	*page4p;
4624 	struct	mode_header	*headerp;
4625 	int	sector_size;
4626 	int	nsect;
4627 	int	nhead;
4628 	int	ncyl;
4629 	int	intrlv;
4630 	int	spc;
4631 	diskaddr_t	modesense_capacity;
4632 	int	rpm;
4633 	int	bd_len;
4634 	int	mode_header_length;
4635 	uchar_t	*p3bufp;
4636 	uchar_t	*p4bufp;
4637 	int	cdbsize;
4638 	int 	ret = EIO;
4639 	sd_ssc_t *ssc;
4640 	int	status;
4641 
4642 	ASSERT(un != NULL);
4643 
4644 	if (lbasize == 0) {
4645 		if (ISCD(un)) {
4646 			lbasize = 2048;
4647 		} else {
4648 			lbasize = un->un_sys_blocksize;
4649 		}
4650 	}
4651 	pgeom_p->g_secsize = (unsigned short)lbasize;
4652 
4653 	/*
4654 	 * If the unit is a cd/dvd drive MODE SENSE page three
4655 	 * and MODE SENSE page four are reserved (see SBC spec
4656 	 * and MMC spec). To prevent soft errors just return
4657 	 * using the default LBA size.
4658 	 */
4659 	if (ISCD(un))
4660 		return (ret);
4661 
4662 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4663 
4664 	/*
4665 	 * Retrieve MODE SENSE page 3 - Format Device Page
4666 	 */
4667 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4668 	ssc = sd_ssc_init(un);
4669 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4670 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4671 	if (status != 0) {
4672 		SD_ERROR(SD_LOG_COMMON, un,
4673 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4674 		goto page3_exit;
4675 	}
4676 
4677 	/*
4678 	 * Determine size of Block Descriptors in order to locate the mode
4679 	 * page data.  ATAPI devices return 0, SCSI devices should return
4680 	 * MODE_BLK_DESC_LENGTH.
4681 	 */
4682 	headerp = (struct mode_header *)p3bufp;
4683 	if (un->un_f_cfg_is_atapi == TRUE) {
4684 		struct mode_header_grp2 *mhp =
4685 		    (struct mode_header_grp2 *)headerp;
4686 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4687 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4688 	} else {
4689 		mode_header_length = MODE_HEADER_LENGTH;
4690 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4691 	}
4692 
4693 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4694 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4695 		    "sd_get_physical_geometry: received unexpected bd_len "
4696 		    "of %d, page3\n", bd_len);
4697 		status = EIO;
4698 		goto page3_exit;
4699 	}
4700 
4701 	page3p = (struct mode_format *)
4702 	    ((caddr_t)headerp + mode_header_length + bd_len);
4703 
4704 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4705 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4706 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
4707 		    "%d\n", page3p->mode_page.code);
4708 		status = EIO;
4709 		goto page3_exit;
4710 	}
4711 
4712 	/*
4713 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4714 	 * complete successfully; otherwise, revert to the logical geometry.
4715 	 * So, we need to save everything in temporary variables.
4716 	 */
4717 	sector_size = BE_16(page3p->data_bytes_sect);
4718 
4719 	/*
4720 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4721 	 */
4722 	if (sector_size == 0) {
4723 		sector_size = un->un_sys_blocksize;
4724 	} else {
4725 		sector_size &= ~(un->un_sys_blocksize - 1);
4726 	}
4727 
4728 	nsect  = BE_16(page3p->sect_track);
4729 	intrlv = BE_16(page3p->interleave);
4730 
4731 	SD_INFO(SD_LOG_COMMON, un,
4732 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4733 	SD_INFO(SD_LOG_COMMON, un,
4734 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4735 	    page3p->mode_page.code, nsect, sector_size);
4736 	SD_INFO(SD_LOG_COMMON, un,
4737 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4738 	    BE_16(page3p->track_skew),
4739 	    BE_16(page3p->cylinder_skew));
4740 
4741 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4742 
4743 	/*
4744 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4745 	 */
4746 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4747 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4748 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4749 	if (status != 0) {
4750 		SD_ERROR(SD_LOG_COMMON, un,
4751 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4752 		goto page4_exit;
4753 	}
4754 
4755 	/*
4756 	 * Determine size of Block Descriptors in order to locate the mode
4757 	 * page data.  ATAPI devices return 0, SCSI devices should return
4758 	 * MODE_BLK_DESC_LENGTH.
4759 	 */
4760 	headerp = (struct mode_header *)p4bufp;
4761 	if (un->un_f_cfg_is_atapi == TRUE) {
4762 		struct mode_header_grp2 *mhp =
4763 		    (struct mode_header_grp2 *)headerp;
4764 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4765 	} else {
4766 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4767 	}
4768 
4769 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4770 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4771 		    "sd_get_physical_geometry: received unexpected bd_len of "
4772 		    "%d, page4\n", bd_len);
4773 		status = EIO;
4774 		goto page4_exit;
4775 	}
4776 
4777 	page4p = (struct mode_geometry *)
4778 	    ((caddr_t)headerp + mode_header_length + bd_len);
4779 
4780 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4781 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4782 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
4783 		    "%d\n", page4p->mode_page.code);
4784 		status = EIO;
4785 		goto page4_exit;
4786 	}
4787 
4788 	/*
4789 	 * Stash the data now, after we know that both commands completed.
4790 	 */
4791 
4792 
4793 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4794 	spc   = nhead * nsect;
4795 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4796 	rpm   = BE_16(page4p->rpm);
4797 
4798 	modesense_capacity = spc * ncyl;
4799 
4800 	SD_INFO(SD_LOG_COMMON, un,
4801 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4802 	SD_INFO(SD_LOG_COMMON, un,
4803 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4804 	SD_INFO(SD_LOG_COMMON, un,
4805 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4806 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4807 	    (void *)pgeom_p, capacity);
4808 
4809 	/*
4810 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4811 	 * the product of C * H * S returned by MODE SENSE >= that returned
4812 	 * by read capacity. This is an idiosyncrasy of the original x86
4813 	 * disk subsystem.
4814 	 */
4815 	if (modesense_capacity >= capacity) {
4816 		SD_INFO(SD_LOG_COMMON, un,
4817 		    "sd_get_physical_geometry: adjusting acyl; "
4818 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4819 		    (modesense_capacity - capacity + spc - 1) / spc);
4820 		if (sector_size != 0) {
4821 			/* 1243403: NEC D38x7 drives don't support sec size */
4822 			pgeom_p->g_secsize = (unsigned short)sector_size;
4823 		}
4824 		pgeom_p->g_nsect    = (unsigned short)nsect;
4825 		pgeom_p->g_nhead    = (unsigned short)nhead;
4826 		pgeom_p->g_capacity = capacity;
4827 		pgeom_p->g_acyl	    =
4828 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4829 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4830 	}
4831 
4832 	pgeom_p->g_rpm    = (unsigned short)rpm;
4833 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4834 	ret = 0;
4835 
4836 	SD_INFO(SD_LOG_COMMON, un,
4837 	    "sd_get_physical_geometry: mode sense geometry:\n");
4838 	SD_INFO(SD_LOG_COMMON, un,
4839 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4840 	    nsect, sector_size, intrlv);
4841 	SD_INFO(SD_LOG_COMMON, un,
4842 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4843 	    nhead, ncyl, rpm, modesense_capacity);
4844 	SD_INFO(SD_LOG_COMMON, un,
4845 	    "sd_get_physical_geometry: (cached)\n");
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4848 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4849 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4850 	SD_INFO(SD_LOG_COMMON, un,
4851 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4852 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4853 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4854 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4855 
4856 page4_exit:
4857 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4858 
4859 page3_exit:
4860 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4861 
4862 	if (status != 0) {
4863 		if (status == EIO) {
4864 			/*
4865 			 * Some disks do not support mode sense(6), we
4866 			 * should ignore this kind of error(sense key is
4867 			 * 0x5 - illegal request).
4868 			 */
4869 			uint8_t *sensep;
4870 			int senlen;
4871 
4872 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4873 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4874 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4875 
4876 			if (senlen > 0 &&
4877 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4878 				sd_ssc_assessment(ssc,
4879 				    SD_FMT_IGNORE_COMPROMISE);
4880 			} else {
4881 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4882 			}
4883 		} else {
4884 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4885 		}
4886 	}
4887 	sd_ssc_fini(ssc);
4888 	return (ret);
4889 }
4890 
4891 /*
4892  *    Function: sd_get_virtual_geometry
4893  *
4894  * Description: Ask the controller to tell us about the target device.
4895  *
4896  *   Arguments: un - pointer to softstate
4897  *		capacity - disk capacity in #blocks
4898  *		lbasize - disk block size in bytes
4899  *
4900  *     Context: Kernel thread only
4901  */
4902 
4903 static int
4904 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4905     diskaddr_t capacity, int lbasize)
4906 {
4907 	uint_t	geombuf;
4908 	int	spc;
4909 
4910 	ASSERT(un != NULL);
4911 
4912 	/* Set sector size, and total number of sectors */
4913 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4914 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4915 
4916 	/* Let the HBA tell us its geometry */
4917 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4918 
4919 	/* A value of -1 indicates an undefined "geometry" property */
4920 	if (geombuf == (-1)) {
4921 		return (EINVAL);
4922 	}
4923 
4924 	/* Initialize the logical geometry cache. */
4925 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4926 	lgeom_p->g_nsect   = geombuf & 0xffff;
4927 	lgeom_p->g_secsize = un->un_sys_blocksize;
4928 
4929 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4930 
4931 	/*
4932 	 * Note: The driver originally converted the capacity value from
4933 	 * target blocks to system blocks. However, the capacity value passed
4934 	 * to this routine is already in terms of system blocks (this scaling
4935 	 * is done when the READ CAPACITY command is issued and processed).
4936 	 * This 'error' may have gone undetected because the usage of g_ncyl
4937 	 * (which is based upon g_capacity) is very limited within the driver
4938 	 */
4939 	lgeom_p->g_capacity = capacity;
4940 
4941 	/*
4942 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4943 	 * hba may return zero values if the device has been removed.
4944 	 */
4945 	if (spc == 0) {
4946 		lgeom_p->g_ncyl = 0;
4947 	} else {
4948 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4949 	}
4950 	lgeom_p->g_acyl = 0;
4951 
4952 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4953 	return (0);
4954 
4955 }
4956 /*
4957  *    Function: sd_update_block_info
4958  *
4959  * Description: Calculate a byte count to sector count bitshift value
4960  *		from sector size.
4961  *
4962  *   Arguments: un: unit struct.
4963  *		lbasize: new target sector size
4964  *		capacity: new target capacity, ie. block count
4965  *
4966  *     Context: Kernel thread context
4967  */
4968 
4969 static void
4970 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4971 {
4972 	if (lbasize != 0) {
4973 		un->un_tgt_blocksize = lbasize;
4974 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4975 	}
4976 
4977 	if (capacity != 0) {
4978 		un->un_blockcount		= capacity;
4979 		un->un_f_blockcount_is_valid	= TRUE;
4980 	}
4981 }
4982 
4983 
4984 /*
4985  *    Function: sd_register_devid
4986  *
4987  * Description: This routine will obtain the device id information from the
4988  *		target, obtain the serial number, and register the device
4989  *		id with the ddi framework.
4990  *
4991  *   Arguments: devi - the system's dev_info_t for the device.
4992  *		un - driver soft state (unit) structure
4993  *		reservation_flag - indicates if a reservation conflict
4994  *		occurred during attach
4995  *
4996  *     Context: Kernel Thread
4997  */
4998 static void
4999 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5000 {
5001 	int		rval		= 0;
5002 	uchar_t		*inq80		= NULL;
5003 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5004 	size_t		inq80_resid	= 0;
5005 	uchar_t		*inq83		= NULL;
5006 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5007 	size_t		inq83_resid	= 0;
5008 	int		dlen, len;
5009 	char		*sn;
5010 	struct sd_lun	*un;
5011 
5012 	ASSERT(ssc != NULL);
5013 	un = ssc->ssc_un;
5014 	ASSERT(un != NULL);
5015 	ASSERT(mutex_owned(SD_MUTEX(un)));
5016 	ASSERT((SD_DEVINFO(un)) == devi);
5017 
5018 	/*
5019 	 * If transport has already registered a devid for this target
5020 	 * then that takes precedence over the driver's determination
5021 	 * of the devid.
5022 	 */
5023 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5024 		ASSERT(un->un_devid);
5025 		return; /* use devid registered by the transport */
5026 	}
5027 
5028 	/*
5029 	 * This is the case of antiquated Sun disk drives that have the
5030 	 * FAB_DEVID property set in the disk_table.  These drives
5031 	 * manage the devid's by storing them in last 2 available sectors
5032 	 * on the drive and have them fabricated by the ddi layer by calling
5033 	 * ddi_devid_init and passing the DEVID_FAB flag.
5034 	 */
5035 	if (un->un_f_opt_fab_devid == TRUE) {
5036 		/*
5037 		 * Depending on EINVAL isn't reliable, since a reserved disk
5038 		 * may result in invalid geometry, so check to make sure a
5039 		 * reservation conflict did not occur during attach.
5040 		 */
5041 		if ((sd_get_devid(ssc) == EINVAL) &&
5042 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5043 			/*
5044 			 * The devid is invalid AND there is no reservation
5045 			 * conflict.  Fabricate a new devid.
5046 			 */
5047 			(void) sd_create_devid(ssc);
5048 		}
5049 
5050 		/* Register the devid if it exists */
5051 		if (un->un_devid != NULL) {
5052 			(void) ddi_devid_register(SD_DEVINFO(un),
5053 			    un->un_devid);
5054 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5055 			    "sd_register_devid: Devid Fabricated\n");
5056 		}
5057 		return;
5058 	}
5059 
5060 	/*
5061 	 * We check the availability of the World Wide Name (0x83) and Unit
5062 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5063 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5064 	 * 0x83 is available, that is the best choice.  Our next choice is
5065 	 * 0x80.  If neither are available, we munge the devid from the device
5066 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5067 	 * to fabricate a devid for non-Sun qualified disks.
5068 	 */
5069 	if (sd_check_vpd_page_support(ssc) == 0) {
5070 		/* collect page 80 data if available */
5071 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5072 
5073 			mutex_exit(SD_MUTEX(un));
5074 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5075 
5076 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5077 			    0x01, 0x80, &inq80_resid);
5078 
5079 			if (rval != 0) {
5080 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5081 				kmem_free(inq80, inq80_len);
5082 				inq80 = NULL;
5083 				inq80_len = 0;
5084 			} else if (ddi_prop_exists(
5085 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5086 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5087 			    INQUIRY_SERIAL_NO) == 0) {
5088 				/*
5089 				 * If we don't already have a serial number
5090 				 * property, do quick verify of data returned
5091 				 * and define property.
5092 				 */
5093 				dlen = inq80_len - inq80_resid;
5094 				len = (size_t)inq80[3];
5095 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5096 					/*
5097 					 * Ensure sn termination, skip leading
5098 					 * blanks, and create property
5099 					 * 'inquiry-serial-no'.
5100 					 */
5101 					sn = (char *)&inq80[4];
5102 					sn[len] = 0;
5103 					while (*sn && (*sn == ' '))
5104 						sn++;
5105 					if (*sn) {
5106 						(void) ddi_prop_update_string(
5107 						    DDI_DEV_T_NONE,
5108 						    SD_DEVINFO(un),
5109 						    INQUIRY_SERIAL_NO, sn);
5110 					}
5111 				}
5112 			}
5113 			mutex_enter(SD_MUTEX(un));
5114 		}
5115 
5116 		/* collect page 83 data if available */
5117 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5118 			mutex_exit(SD_MUTEX(un));
5119 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5120 
5121 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5122 			    0x01, 0x83, &inq83_resid);
5123 
5124 			if (rval != 0) {
5125 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5126 				kmem_free(inq83, inq83_len);
5127 				inq83 = NULL;
5128 				inq83_len = 0;
5129 			}
5130 			mutex_enter(SD_MUTEX(un));
5131 		}
5132 	}
5133 
5134 	/* encode best devid possible based on data available */
5135 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5136 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5137 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5138 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5139 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5140 
5141 		/* devid successfully encoded, register devid */
5142 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5143 
5144 	} else {
5145 		/*
5146 		 * Unable to encode a devid based on data available.
5147 		 * This is not a Sun qualified disk.  Older Sun disk
5148 		 * drives that have the SD_FAB_DEVID property
5149 		 * set in the disk_table and non Sun qualified
5150 		 * disks are treated in the same manner.  These
5151 		 * drives manage the devid's by storing them in
5152 		 * last 2 available sectors on the drive and
5153 		 * have them fabricated by the ddi layer by
5154 		 * calling ddi_devid_init and passing the
5155 		 * DEVID_FAB flag.
5156 		 * Create a fabricate devid only if there's no
5157 		 * fabricate devid existed.
5158 		 */
5159 		if (sd_get_devid(ssc) == EINVAL) {
5160 			(void) sd_create_devid(ssc);
5161 		}
5162 		un->un_f_opt_fab_devid = TRUE;
5163 
5164 		/* Register the devid if it exists */
5165 		if (un->un_devid != NULL) {
5166 			(void) ddi_devid_register(SD_DEVINFO(un),
5167 			    un->un_devid);
5168 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5169 			    "sd_register_devid: devid fabricated using "
5170 			    "ddi framework\n");
5171 		}
5172 	}
5173 
5174 	/* clean up resources */
5175 	if (inq80 != NULL) {
5176 		kmem_free(inq80, inq80_len);
5177 	}
5178 	if (inq83 != NULL) {
5179 		kmem_free(inq83, inq83_len);
5180 	}
5181 }
5182 
5183 
5184 
5185 /*
5186  *    Function: sd_get_devid
5187  *
5188  * Description: This routine will return 0 if a valid device id has been
5189  *		obtained from the target and stored in the soft state. If a
5190  *		valid device id has not been previously read and stored, a
5191  *		read attempt will be made.
5192  *
5193  *   Arguments: un - driver soft state (unit) structure
5194  *
5195  * Return Code: 0 if we successfully get the device id
5196  *
5197  *     Context: Kernel Thread
5198  */
5199 
5200 static int
5201 sd_get_devid(sd_ssc_t *ssc)
5202 {
5203 	struct dk_devid		*dkdevid;
5204 	ddi_devid_t		tmpid;
5205 	uint_t			*ip;
5206 	size_t			sz;
5207 	diskaddr_t		blk;
5208 	int			status;
5209 	int			chksum;
5210 	int			i;
5211 	size_t			buffer_size;
5212 	struct sd_lun		*un;
5213 
5214 	ASSERT(ssc != NULL);
5215 	un = ssc->ssc_un;
5216 	ASSERT(un != NULL);
5217 	ASSERT(mutex_owned(SD_MUTEX(un)));
5218 
5219 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5220 	    un);
5221 
5222 	if (un->un_devid != NULL) {
5223 		return (0);
5224 	}
5225 
5226 	mutex_exit(SD_MUTEX(un));
5227 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5228 	    (void *)SD_PATH_DIRECT) != 0) {
5229 		mutex_enter(SD_MUTEX(un));
5230 		return (EINVAL);
5231 	}
5232 
5233 	/*
5234 	 * Read and verify device id, stored in the reserved cylinders at the
5235 	 * end of the disk. Backup label is on the odd sectors of the last
5236 	 * track of the last cylinder. Device id will be on track of the next
5237 	 * to last cylinder.
5238 	 */
5239 	mutex_enter(SD_MUTEX(un));
5240 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5241 	mutex_exit(SD_MUTEX(un));
5242 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5243 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5244 	    SD_PATH_DIRECT);
5245 
5246 	if (status != 0) {
5247 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5248 		goto error;
5249 	}
5250 
5251 	/* Validate the revision */
5252 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5253 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5254 		status = EINVAL;
5255 		goto error;
5256 	}
5257 
5258 	/* Calculate the checksum */
5259 	chksum = 0;
5260 	ip = (uint_t *)dkdevid;
5261 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5262 	    i++) {
5263 		chksum ^= ip[i];
5264 	}
5265 
5266 	/* Compare the checksums */
5267 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5268 		status = EINVAL;
5269 		goto error;
5270 	}
5271 
5272 	/* Validate the device id */
5273 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5274 		status = EINVAL;
5275 		goto error;
5276 	}
5277 
5278 	/*
5279 	 * Store the device id in the driver soft state
5280 	 */
5281 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5282 	tmpid = kmem_alloc(sz, KM_SLEEP);
5283 
5284 	mutex_enter(SD_MUTEX(un));
5285 
5286 	un->un_devid = tmpid;
5287 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5288 
5289 	kmem_free(dkdevid, buffer_size);
5290 
5291 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5292 
5293 	return (status);
5294 error:
5295 	mutex_enter(SD_MUTEX(un));
5296 	kmem_free(dkdevid, buffer_size);
5297 	return (status);
5298 }
5299 
5300 
5301 /*
5302  *    Function: sd_create_devid
5303  *
5304  * Description: This routine will fabricate the device id and write it
5305  *		to the disk.
5306  *
5307  *   Arguments: un - driver soft state (unit) structure
5308  *
5309  * Return Code: value of the fabricated device id
5310  *
5311  *     Context: Kernel Thread
5312  */
5313 
5314 static ddi_devid_t
5315 sd_create_devid(sd_ssc_t *ssc)
5316 {
5317 	struct sd_lun	*un;
5318 
5319 	ASSERT(ssc != NULL);
5320 	un = ssc->ssc_un;
5321 	ASSERT(un != NULL);
5322 
5323 	/* Fabricate the devid */
5324 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5325 	    == DDI_FAILURE) {
5326 		return (NULL);
5327 	}
5328 
5329 	/* Write the devid to disk */
5330 	if (sd_write_deviceid(ssc) != 0) {
5331 		ddi_devid_free(un->un_devid);
5332 		un->un_devid = NULL;
5333 	}
5334 
5335 	return (un->un_devid);
5336 }
5337 
5338 
5339 /*
5340  *    Function: sd_write_deviceid
5341  *
5342  * Description: This routine will write the device id to the disk
5343  *		reserved sector.
5344  *
5345  *   Arguments: un - driver soft state (unit) structure
5346  *
5347  * Return Code: EINVAL
5348  *		value returned by sd_send_scsi_cmd
5349  *
5350  *     Context: Kernel Thread
5351  */
5352 
5353 static int
5354 sd_write_deviceid(sd_ssc_t *ssc)
5355 {
5356 	struct dk_devid		*dkdevid;
5357 	diskaddr_t		blk;
5358 	uint_t			*ip, chksum;
5359 	int			status;
5360 	int			i;
5361 	struct sd_lun		*un;
5362 
5363 	ASSERT(ssc != NULL);
5364 	un = ssc->ssc_un;
5365 	ASSERT(un != NULL);
5366 	ASSERT(mutex_owned(SD_MUTEX(un)));
5367 
5368 	mutex_exit(SD_MUTEX(un));
5369 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5370 	    (void *)SD_PATH_DIRECT) != 0) {
5371 		mutex_enter(SD_MUTEX(un));
5372 		return (-1);
5373 	}
5374 
5375 
5376 	/* Allocate the buffer */
5377 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5378 
5379 	/* Fill in the revision */
5380 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5381 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5382 
5383 	/* Copy in the device id */
5384 	mutex_enter(SD_MUTEX(un));
5385 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5386 	    ddi_devid_sizeof(un->un_devid));
5387 	mutex_exit(SD_MUTEX(un));
5388 
5389 	/* Calculate the checksum */
5390 	chksum = 0;
5391 	ip = (uint_t *)dkdevid;
5392 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5393 	    i++) {
5394 		chksum ^= ip[i];
5395 	}
5396 
5397 	/* Fill-in checksum */
5398 	DKD_FORMCHKSUM(chksum, dkdevid);
5399 
5400 	/* Write the reserved sector */
5401 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5402 	    SD_PATH_DIRECT);
5403 	if (status != 0)
5404 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5405 
5406 	kmem_free(dkdevid, un->un_sys_blocksize);
5407 
5408 	mutex_enter(SD_MUTEX(un));
5409 	return (status);
5410 }
5411 
5412 
5413 /*
5414  *    Function: sd_check_vpd_page_support
5415  *
5416  * Description: This routine sends an inquiry command with the EVPD bit set and
5417  *		a page code of 0x00 to the device. It is used to determine which
5418  *		vital product pages are available to find the devid. We are
5419  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5420  *		device does not support that command.
5421  *
5422  *   Arguments: un  - driver soft state (unit) structure
5423  *
5424  * Return Code: 0 - success
5425  *		1 - check condition
5426  *
5427  *     Context: This routine can sleep.
5428  */
5429 
5430 static int
5431 sd_check_vpd_page_support(sd_ssc_t *ssc)
5432 {
5433 	uchar_t	*page_list	= NULL;
5434 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5435 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5436 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5437 	int    	rval		= 0;
5438 	int	counter;
5439 	struct sd_lun		*un;
5440 
5441 	ASSERT(ssc != NULL);
5442 	un = ssc->ssc_un;
5443 	ASSERT(un != NULL);
5444 	ASSERT(mutex_owned(SD_MUTEX(un)));
5445 
5446 	mutex_exit(SD_MUTEX(un));
5447 
5448 	/*
5449 	 * We'll set the page length to the maximum to save figuring it out
5450 	 * with an additional call.
5451 	 */
5452 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5453 
5454 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5455 	    page_code, NULL);
5456 
5457 	if (rval != 0)
5458 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5459 
5460 	mutex_enter(SD_MUTEX(un));
5461 
5462 	/*
5463 	 * Now we must validate that the device accepted the command, as some
5464 	 * drives do not support it.  If the drive does support it, we will
5465 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5466 	 * not, we return -1.
5467 	 */
5468 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5469 		/* Loop to find one of the 2 pages we need */
5470 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5471 
5472 		/*
5473 		 * Pages are returned in ascending order, and 0x83 is what we
5474 		 * are hoping for.
5475 		 */
5476 		while ((page_list[counter] <= 0x86) &&
5477 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5478 		    VPD_HEAD_OFFSET))) {
5479 			/*
5480 			 * Add 3 because page_list[3] is the number of
5481 			 * pages minus 3
5482 			 */
5483 
5484 			switch (page_list[counter]) {
5485 			case 0x00:
5486 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5487 				break;
5488 			case 0x80:
5489 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5490 				break;
5491 			case 0x81:
5492 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5493 				break;
5494 			case 0x82:
5495 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5496 				break;
5497 			case 0x83:
5498 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5499 				break;
5500 			case 0x86:
5501 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5502 				break;
5503 			}
5504 			counter++;
5505 		}
5506 
5507 	} else {
5508 		rval = -1;
5509 
5510 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5511 		    "sd_check_vpd_page_support: This drive does not implement "
5512 		    "VPD pages.\n");
5513 	}
5514 
5515 	kmem_free(page_list, page_length);
5516 
5517 	return (rval);
5518 }
5519 
5520 
5521 /*
5522  *    Function: sd_setup_pm
5523  *
5524  * Description: Initialize Power Management on the device
5525  *
5526  *     Context: Kernel Thread
5527  */
5528 
5529 static void
5530 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5531 {
5532 	uint_t		log_page_size;
5533 	uchar_t		*log_page_data;
5534 	int		rval = 0;
5535 	struct sd_lun	*un;
5536 
5537 	ASSERT(ssc != NULL);
5538 	un = ssc->ssc_un;
5539 	ASSERT(un != NULL);
5540 
5541 	/*
5542 	 * Since we are called from attach, holding a mutex for
5543 	 * un is unnecessary. Because some of the routines called
5544 	 * from here require SD_MUTEX to not be held, assert this
5545 	 * right up front.
5546 	 */
5547 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5548 	/*
5549 	 * Since the sd device does not have the 'reg' property,
5550 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5551 	 * The following code is to tell cpr that this device
5552 	 * DOES need to be suspended and resumed.
5553 	 */
5554 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5555 	    "pm-hardware-state", "needs-suspend-resume");
5556 
5557 	/*
5558 	 * This complies with the new power management framework
5559 	 * for certain desktop machines. Create the pm_components
5560 	 * property as a string array property.
5561 	 */
5562 	if (un->un_f_pm_supported) {
5563 		/*
5564 		 * not all devices have a motor, try it first.
5565 		 * some devices may return ILLEGAL REQUEST, some
5566 		 * will hang
5567 		 * The following START_STOP_UNIT is used to check if target
5568 		 * device has a motor.
5569 		 */
5570 		un->un_f_start_stop_supported = TRUE;
5571 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5572 		    SD_PATH_DIRECT);
5573 
5574 		if (rval != 0) {
5575 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5576 			un->un_f_start_stop_supported = FALSE;
5577 		}
5578 
5579 		/*
5580 		 * create pm properties anyways otherwise the parent can't
5581 		 * go to sleep
5582 		 */
5583 		(void) sd_create_pm_components(devi, un);
5584 		un->un_f_pm_is_enabled = TRUE;
5585 		return;
5586 	}
5587 
5588 	if (!un->un_f_log_sense_supported) {
5589 		un->un_power_level = SD_SPINDLE_ON;
5590 		un->un_f_pm_is_enabled = FALSE;
5591 		return;
5592 	}
5593 
5594 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5595 
5596 #ifdef	SDDEBUG
5597 	if (sd_force_pm_supported) {
5598 		/* Force a successful result */
5599 		rval = 1;
5600 	}
5601 #endif
5602 
5603 	/*
5604 	 * If the start-stop cycle counter log page is not supported
5605 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5606 	 * then we should not create the pm_components property.
5607 	 */
5608 	if (rval == -1) {
5609 		/*
5610 		 * Error.
5611 		 * Reading log sense failed, most likely this is
5612 		 * an older drive that does not support log sense.
5613 		 * If this fails auto-pm is not supported.
5614 		 */
5615 		un->un_power_level = SD_SPINDLE_ON;
5616 		un->un_f_pm_is_enabled = FALSE;
5617 
5618 	} else if (rval == 0) {
5619 		/*
5620 		 * Page not found.
5621 		 * The start stop cycle counter is implemented as page
5622 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5623 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5624 		 */
5625 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5626 			/*
5627 			 * Page found, use this one.
5628 			 */
5629 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5630 			un->un_f_pm_is_enabled = TRUE;
5631 		} else {
5632 			/*
5633 			 * Error or page not found.
5634 			 * auto-pm is not supported for this device.
5635 			 */
5636 			un->un_power_level = SD_SPINDLE_ON;
5637 			un->un_f_pm_is_enabled = FALSE;
5638 		}
5639 	} else {
5640 		/*
5641 		 * Page found, use it.
5642 		 */
5643 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5644 		un->un_f_pm_is_enabled = TRUE;
5645 	}
5646 
5647 
5648 	if (un->un_f_pm_is_enabled == TRUE) {
5649 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5650 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5651 
5652 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5653 		    log_page_size, un->un_start_stop_cycle_page,
5654 		    0x01, 0, SD_PATH_DIRECT);
5655 
5656 		if (rval != 0) {
5657 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5658 		}
5659 
5660 #ifdef	SDDEBUG
5661 		if (sd_force_pm_supported) {
5662 			/* Force a successful result */
5663 			rval = 0;
5664 		}
5665 #endif
5666 
5667 		/*
5668 		 * If the Log sense for Page( Start/stop cycle counter page)
5669 		 * succeeds, then power management is supported and we can
5670 		 * enable auto-pm.
5671 		 */
5672 		if (rval == 0)  {
5673 			(void) sd_create_pm_components(devi, un);
5674 		} else {
5675 			un->un_power_level = SD_SPINDLE_ON;
5676 			un->un_f_pm_is_enabled = FALSE;
5677 		}
5678 
5679 		kmem_free(log_page_data, log_page_size);
5680 	}
5681 }
5682 
5683 
5684 /*
5685  *    Function: sd_create_pm_components
5686  *
5687  * Description: Initialize PM property.
5688  *
5689  *     Context: Kernel thread context
5690  */
5691 
5692 static void
5693 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5694 {
5695 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5696 
5697 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5698 
5699 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5700 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5701 		/*
5702 		 * When components are initially created they are idle,
5703 		 * power up any non-removables.
5704 		 * Note: the return value of pm_raise_power can't be used
5705 		 * for determining if PM should be enabled for this device.
5706 		 * Even if you check the return values and remove this
5707 		 * property created above, the PM framework will not honor the
5708 		 * change after the first call to pm_raise_power. Hence,
5709 		 * removal of that property does not help if pm_raise_power
5710 		 * fails. In the case of removable media, the start/stop
5711 		 * will fail if the media is not present.
5712 		 */
5713 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5714 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5715 			mutex_enter(SD_MUTEX(un));
5716 			un->un_power_level = SD_SPINDLE_ON;
5717 			mutex_enter(&un->un_pm_mutex);
5718 			/* Set to on and not busy. */
5719 			un->un_pm_count = 0;
5720 		} else {
5721 			mutex_enter(SD_MUTEX(un));
5722 			un->un_power_level = SD_SPINDLE_OFF;
5723 			mutex_enter(&un->un_pm_mutex);
5724 			/* Set to off. */
5725 			un->un_pm_count = -1;
5726 		}
5727 		mutex_exit(&un->un_pm_mutex);
5728 		mutex_exit(SD_MUTEX(un));
5729 	} else {
5730 		un->un_power_level = SD_SPINDLE_ON;
5731 		un->un_f_pm_is_enabled = FALSE;
5732 	}
5733 }
5734 
5735 
5736 /*
5737  *    Function: sd_ddi_suspend
5738  *
5739  * Description: Performs system power-down operations. This includes
5740  *		setting the drive state to indicate its suspended so
5741  *		that no new commands will be accepted. Also, wait for
5742  *		all commands that are in transport or queued to a timer
5743  *		for retry to complete. All timeout threads are cancelled.
5744  *
5745  * Return Code: DDI_FAILURE or DDI_SUCCESS
5746  *
5747  *     Context: Kernel thread context
5748  */
5749 
5750 static int
5751 sd_ddi_suspend(dev_info_t *devi)
5752 {
5753 	struct	sd_lun	*un;
5754 	clock_t		wait_cmds_complete;
5755 
5756 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5757 	if (un == NULL) {
5758 		return (DDI_FAILURE);
5759 	}
5760 
5761 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5762 
5763 	mutex_enter(SD_MUTEX(un));
5764 
5765 	/* Return success if the device is already suspended. */
5766 	if (un->un_state == SD_STATE_SUSPENDED) {
5767 		mutex_exit(SD_MUTEX(un));
5768 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5769 		    "device already suspended, exiting\n");
5770 		return (DDI_SUCCESS);
5771 	}
5772 
5773 	/* Return failure if the device is being used by HA */
5774 	if (un->un_resvd_status &
5775 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5776 		mutex_exit(SD_MUTEX(un));
5777 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5778 		    "device in use by HA, exiting\n");
5779 		return (DDI_FAILURE);
5780 	}
5781 
5782 	/*
5783 	 * Return failure if the device is in a resource wait
5784 	 * or power changing state.
5785 	 */
5786 	if ((un->un_state == SD_STATE_RWAIT) ||
5787 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5788 		mutex_exit(SD_MUTEX(un));
5789 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5790 		    "device in resource wait state, exiting\n");
5791 		return (DDI_FAILURE);
5792 	}
5793 
5794 
5795 	un->un_save_state = un->un_last_state;
5796 	New_state(un, SD_STATE_SUSPENDED);
5797 
5798 	/*
5799 	 * Wait for all commands that are in transport or queued to a timer
5800 	 * for retry to complete.
5801 	 *
5802 	 * While waiting, no new commands will be accepted or sent because of
5803 	 * the new state we set above.
5804 	 *
5805 	 * Wait till current operation has completed. If we are in the resource
5806 	 * wait state (with an intr outstanding) then we need to wait till the
5807 	 * intr completes and starts the next cmd. We want to wait for
5808 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5809 	 */
5810 	wait_cmds_complete = ddi_get_lbolt() +
5811 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5812 
5813 	while (un->un_ncmds_in_transport != 0) {
5814 		/*
5815 		 * Fail if commands do not finish in the specified time.
5816 		 */
5817 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5818 		    wait_cmds_complete) == -1) {
5819 			/*
5820 			 * Undo the state changes made above. Everything
5821 			 * must go back to it's original value.
5822 			 */
5823 			Restore_state(un);
5824 			un->un_last_state = un->un_save_state;
5825 			/* Wake up any threads that might be waiting. */
5826 			cv_broadcast(&un->un_suspend_cv);
5827 			mutex_exit(SD_MUTEX(un));
5828 			SD_ERROR(SD_LOG_IO_PM, un,
5829 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5830 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5831 			return (DDI_FAILURE);
5832 		}
5833 	}
5834 
5835 	/*
5836 	 * Cancel SCSI watch thread and timeouts, if any are active
5837 	 */
5838 
5839 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5840 		opaque_t temp_token = un->un_swr_token;
5841 		mutex_exit(SD_MUTEX(un));
5842 		scsi_watch_suspend(temp_token);
5843 		mutex_enter(SD_MUTEX(un));
5844 	}
5845 
5846 	if (un->un_reset_throttle_timeid != NULL) {
5847 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5848 		un->un_reset_throttle_timeid = NULL;
5849 		mutex_exit(SD_MUTEX(un));
5850 		(void) untimeout(temp_id);
5851 		mutex_enter(SD_MUTEX(un));
5852 	}
5853 
5854 	if (un->un_dcvb_timeid != NULL) {
5855 		timeout_id_t temp_id = un->un_dcvb_timeid;
5856 		un->un_dcvb_timeid = NULL;
5857 		mutex_exit(SD_MUTEX(un));
5858 		(void) untimeout(temp_id);
5859 		mutex_enter(SD_MUTEX(un));
5860 	}
5861 
5862 	mutex_enter(&un->un_pm_mutex);
5863 	if (un->un_pm_timeid != NULL) {
5864 		timeout_id_t temp_id = un->un_pm_timeid;
5865 		un->un_pm_timeid = NULL;
5866 		mutex_exit(&un->un_pm_mutex);
5867 		mutex_exit(SD_MUTEX(un));
5868 		(void) untimeout(temp_id);
5869 		mutex_enter(SD_MUTEX(un));
5870 	} else {
5871 		mutex_exit(&un->un_pm_mutex);
5872 	}
5873 
5874 	if (un->un_retry_timeid != NULL) {
5875 		timeout_id_t temp_id = un->un_retry_timeid;
5876 		un->un_retry_timeid = NULL;
5877 		mutex_exit(SD_MUTEX(un));
5878 		(void) untimeout(temp_id);
5879 		mutex_enter(SD_MUTEX(un));
5880 
5881 		if (un->un_retry_bp != NULL) {
5882 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5883 			un->un_waitq_headp = un->un_retry_bp;
5884 			if (un->un_waitq_tailp == NULL) {
5885 				un->un_waitq_tailp = un->un_retry_bp;
5886 			}
5887 			un->un_retry_bp = NULL;
5888 			un->un_retry_statp = NULL;
5889 		}
5890 	}
5891 
5892 	if (un->un_direct_priority_timeid != NULL) {
5893 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5894 		un->un_direct_priority_timeid = NULL;
5895 		mutex_exit(SD_MUTEX(un));
5896 		(void) untimeout(temp_id);
5897 		mutex_enter(SD_MUTEX(un));
5898 	}
5899 
5900 	if (un->un_f_is_fibre == TRUE) {
5901 		/*
5902 		 * Remove callbacks for insert and remove events
5903 		 */
5904 		if (un->un_insert_event != NULL) {
5905 			mutex_exit(SD_MUTEX(un));
5906 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5907 			mutex_enter(SD_MUTEX(un));
5908 			un->un_insert_event = NULL;
5909 		}
5910 
5911 		if (un->un_remove_event != NULL) {
5912 			mutex_exit(SD_MUTEX(un));
5913 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5914 			mutex_enter(SD_MUTEX(un));
5915 			un->un_remove_event = NULL;
5916 		}
5917 	}
5918 
5919 	mutex_exit(SD_MUTEX(un));
5920 
5921 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5922 
5923 	return (DDI_SUCCESS);
5924 }
5925 
5926 
5927 /*
5928  *    Function: sd_ddi_pm_suspend
5929  *
5930  * Description: Set the drive state to low power.
5931  *		Someone else is required to actually change the drive
5932  *		power level.
5933  *
5934  *   Arguments: un - driver soft state (unit) structure
5935  *
5936  * Return Code: DDI_FAILURE or DDI_SUCCESS
5937  *
5938  *     Context: Kernel thread context
5939  */
5940 
5941 static int
5942 sd_ddi_pm_suspend(struct sd_lun *un)
5943 {
5944 	ASSERT(un != NULL);
5945 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5946 
5947 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5948 	mutex_enter(SD_MUTEX(un));
5949 
5950 	/*
5951 	 * Exit if power management is not enabled for this device, or if
5952 	 * the device is being used by HA.
5953 	 */
5954 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5955 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5956 		mutex_exit(SD_MUTEX(un));
5957 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5958 		return (DDI_SUCCESS);
5959 	}
5960 
5961 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5962 	    un->un_ncmds_in_driver);
5963 
5964 	/*
5965 	 * See if the device is not busy, ie.:
5966 	 *    - we have no commands in the driver for this device
5967 	 *    - not waiting for resources
5968 	 */
5969 	if ((un->un_ncmds_in_driver == 0) &&
5970 	    (un->un_state != SD_STATE_RWAIT)) {
5971 		/*
5972 		 * The device is not busy, so it is OK to go to low power state.
5973 		 * Indicate low power, but rely on someone else to actually
5974 		 * change it.
5975 		 */
5976 		mutex_enter(&un->un_pm_mutex);
5977 		un->un_pm_count = -1;
5978 		mutex_exit(&un->un_pm_mutex);
5979 		un->un_power_level = SD_SPINDLE_OFF;
5980 	}
5981 
5982 	mutex_exit(SD_MUTEX(un));
5983 
5984 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5985 
5986 	return (DDI_SUCCESS);
5987 }
5988 
5989 
5990 /*
5991  *    Function: sd_ddi_resume
5992  *
5993  * Description: Performs system power-up operations..
5994  *
5995  * Return Code: DDI_SUCCESS
5996  *		DDI_FAILURE
5997  *
5998  *     Context: Kernel thread context
5999  */
6000 
6001 static int
6002 sd_ddi_resume(dev_info_t *devi)
6003 {
6004 	struct	sd_lun	*un;
6005 
6006 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6007 	if (un == NULL) {
6008 		return (DDI_FAILURE);
6009 	}
6010 
6011 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6012 
6013 	mutex_enter(SD_MUTEX(un));
6014 	Restore_state(un);
6015 
6016 	/*
6017 	 * Restore the state which was saved to give the
6018 	 * the right state in un_last_state
6019 	 */
6020 	un->un_last_state = un->un_save_state;
6021 	/*
6022 	 * Note: throttle comes back at full.
6023 	 * Also note: this MUST be done before calling pm_raise_power
6024 	 * otherwise the system can get hung in biowait. The scenario where
6025 	 * this'll happen is under cpr suspend. Writing of the system
6026 	 * state goes through sddump, which writes 0 to un_throttle. If
6027 	 * writing the system state then fails, example if the partition is
6028 	 * too small, then cpr attempts a resume. If throttle isn't restored
6029 	 * from the saved value until after calling pm_raise_power then
6030 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6031 	 * in biowait.
6032 	 */
6033 	un->un_throttle = un->un_saved_throttle;
6034 
6035 	/*
6036 	 * The chance of failure is very rare as the only command done in power
6037 	 * entry point is START command when you transition from 0->1 or
6038 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6039 	 * which suspend was done. Ignore the return value as the resume should
6040 	 * not be failed. In the case of removable media the media need not be
6041 	 * inserted and hence there is a chance that raise power will fail with
6042 	 * media not present.
6043 	 */
6044 	if (un->un_f_attach_spinup) {
6045 		mutex_exit(SD_MUTEX(un));
6046 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6047 		mutex_enter(SD_MUTEX(un));
6048 	}
6049 
6050 	/*
6051 	 * Don't broadcast to the suspend cv and therefore possibly
6052 	 * start I/O until after power has been restored.
6053 	 */
6054 	cv_broadcast(&un->un_suspend_cv);
6055 	cv_broadcast(&un->un_state_cv);
6056 
6057 	/* restart thread */
6058 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6059 		scsi_watch_resume(un->un_swr_token);
6060 	}
6061 
6062 #if (defined(__fibre))
6063 	if (un->un_f_is_fibre == TRUE) {
6064 		/*
6065 		 * Add callbacks for insert and remove events
6066 		 */
6067 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6068 			sd_init_event_callbacks(un);
6069 		}
6070 	}
6071 #endif
6072 
6073 	/*
6074 	 * Transport any pending commands to the target.
6075 	 *
6076 	 * If this is a low-activity device commands in queue will have to wait
6077 	 * until new commands come in, which may take awhile. Also, we
6078 	 * specifically don't check un_ncmds_in_transport because we know that
6079 	 * there really are no commands in progress after the unit was
6080 	 * suspended and we could have reached the throttle level, been
6081 	 * suspended, and have no new commands coming in for awhile. Highly
6082 	 * unlikely, but so is the low-activity disk scenario.
6083 	 */
6084 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6085 
6086 	sd_start_cmds(un, NULL);
6087 	mutex_exit(SD_MUTEX(un));
6088 
6089 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6090 
6091 	return (DDI_SUCCESS);
6092 }
6093 
6094 
6095 /*
6096  *    Function: sd_ddi_pm_resume
6097  *
6098  * Description: Set the drive state to powered on.
6099  *		Someone else is required to actually change the drive
6100  *		power level.
6101  *
6102  *   Arguments: un - driver soft state (unit) structure
6103  *
6104  * Return Code: DDI_SUCCESS
6105  *
6106  *     Context: Kernel thread context
6107  */
6108 
6109 static int
6110 sd_ddi_pm_resume(struct sd_lun *un)
6111 {
6112 	ASSERT(un != NULL);
6113 
6114 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6115 	mutex_enter(SD_MUTEX(un));
6116 	un->un_power_level = SD_SPINDLE_ON;
6117 
6118 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6119 	mutex_enter(&un->un_pm_mutex);
6120 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6121 		un->un_pm_count++;
6122 		ASSERT(un->un_pm_count == 0);
6123 		/*
6124 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6125 		 * un_suspend_cv is for a system resume, not a power management
6126 		 * device resume. (4297749)
6127 		 *	 cv_broadcast(&un->un_suspend_cv);
6128 		 */
6129 	}
6130 	mutex_exit(&un->un_pm_mutex);
6131 	mutex_exit(SD_MUTEX(un));
6132 
6133 	return (DDI_SUCCESS);
6134 }
6135 
6136 
6137 /*
6138  *    Function: sd_pm_idletimeout_handler
6139  *
6140  * Description: A timer routine that's active only while a device is busy.
6141  *		The purpose is to extend slightly the pm framework's busy
6142  *		view of the device to prevent busy/idle thrashing for
6143  *		back-to-back commands. Do this by comparing the current time
6144  *		to the time at which the last command completed and when the
6145  *		difference is greater than sd_pm_idletime, call
6146  *		pm_idle_component. In addition to indicating idle to the pm
6147  *		framework, update the chain type to again use the internal pm
6148  *		layers of the driver.
6149  *
6150  *   Arguments: arg - driver soft state (unit) structure
6151  *
6152  *     Context: Executes in a timeout(9F) thread context
6153  */
6154 
6155 static void
6156 sd_pm_idletimeout_handler(void *arg)
6157 {
6158 	struct sd_lun *un = arg;
6159 
6160 	time_t	now;
6161 
6162 	mutex_enter(&sd_detach_mutex);
6163 	if (un->un_detach_count != 0) {
6164 		/* Abort if the instance is detaching */
6165 		mutex_exit(&sd_detach_mutex);
6166 		return;
6167 	}
6168 	mutex_exit(&sd_detach_mutex);
6169 
6170 	now = ddi_get_time();
6171 	/*
6172 	 * Grab both mutexes, in the proper order, since we're accessing
6173 	 * both PM and softstate variables.
6174 	 */
6175 	mutex_enter(SD_MUTEX(un));
6176 	mutex_enter(&un->un_pm_mutex);
6177 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6178 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6179 		/*
6180 		 * Update the chain types.
6181 		 * This takes affect on the next new command received.
6182 		 */
6183 		if (un->un_f_non_devbsize_supported) {
6184 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6185 		} else {
6186 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6187 		}
6188 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6189 
6190 		SD_TRACE(SD_LOG_IO_PM, un,
6191 		    "sd_pm_idletimeout_handler: idling device\n");
6192 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6193 		un->un_pm_idle_timeid = NULL;
6194 	} else {
6195 		un->un_pm_idle_timeid =
6196 		    timeout(sd_pm_idletimeout_handler, un,
6197 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6198 	}
6199 	mutex_exit(&un->un_pm_mutex);
6200 	mutex_exit(SD_MUTEX(un));
6201 }
6202 
6203 
6204 /*
6205  *    Function: sd_pm_timeout_handler
6206  *
6207  * Description: Callback to tell framework we are idle.
6208  *
6209  *     Context: timeout(9f) thread context.
6210  */
6211 
6212 static void
6213 sd_pm_timeout_handler(void *arg)
6214 {
6215 	struct sd_lun *un = arg;
6216 
6217 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6218 	mutex_enter(&un->un_pm_mutex);
6219 	un->un_pm_timeid = NULL;
6220 	mutex_exit(&un->un_pm_mutex);
6221 }
6222 
6223 
6224 /*
6225  *    Function: sdpower
6226  *
6227  * Description: PM entry point.
6228  *
6229  * Return Code: DDI_SUCCESS
6230  *		DDI_FAILURE
6231  *
6232  *     Context: Kernel thread context
6233  */
6234 
6235 static int
6236 sdpower(dev_info_t *devi, int component, int level)
6237 {
6238 	struct sd_lun	*un;
6239 	int		instance;
6240 	int		rval = DDI_SUCCESS;
6241 	uint_t		i, log_page_size, maxcycles, ncycles;
6242 	uchar_t		*log_page_data;
6243 	int		log_sense_page;
6244 	int		medium_present;
6245 	time_t		intvlp;
6246 	dev_t		dev;
6247 	struct pm_trans_data	sd_pm_tran_data;
6248 	uchar_t		save_state;
6249 	int		sval;
6250 	uchar_t		state_before_pm;
6251 	int		got_semaphore_here;
6252 	sd_ssc_t	*ssc;
6253 
6254 	instance = ddi_get_instance(devi);
6255 
6256 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6257 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6258 	    component != 0) {
6259 		return (DDI_FAILURE);
6260 	}
6261 
6262 	dev = sd_make_device(SD_DEVINFO(un));
6263 	ssc = sd_ssc_init(un);
6264 
6265 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6266 
6267 	/*
6268 	 * Must synchronize power down with close.
6269 	 * Attempt to decrement/acquire the open/close semaphore,
6270 	 * but do NOT wait on it. If it's not greater than zero,
6271 	 * ie. it can't be decremented without waiting, then
6272 	 * someone else, either open or close, already has it
6273 	 * and the try returns 0. Use that knowledge here to determine
6274 	 * if it's OK to change the device power level.
6275 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6276 	 * here.
6277 	 */
6278 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6279 
6280 	mutex_enter(SD_MUTEX(un));
6281 
6282 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6283 	    un->un_ncmds_in_driver);
6284 
6285 	/*
6286 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6287 	 * already being processed in the driver, or if the semaphore was
6288 	 * not gotten here it indicates an open or close is being processed.
6289 	 * At the same time somebody is requesting to go low power which
6290 	 * can't happen, therefore we need to return failure.
6291 	 */
6292 	if ((level == SD_SPINDLE_OFF) &&
6293 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6294 		mutex_exit(SD_MUTEX(un));
6295 
6296 		if (got_semaphore_here != 0) {
6297 			sema_v(&un->un_semoclose);
6298 		}
6299 		SD_TRACE(SD_LOG_IO_PM, un,
6300 		    "sdpower: exit, device has queued cmds.\n");
6301 
6302 		goto sdpower_failed;
6303 	}
6304 
6305 	/*
6306 	 * if it is OFFLINE that means the disk is completely dead
6307 	 * in our case we have to put the disk in on or off by sending commands
6308 	 * Of course that will fail anyway so return back here.
6309 	 *
6310 	 * Power changes to a device that's OFFLINE or SUSPENDED
6311 	 * are not allowed.
6312 	 */
6313 	if ((un->un_state == SD_STATE_OFFLINE) ||
6314 	    (un->un_state == SD_STATE_SUSPENDED)) {
6315 		mutex_exit(SD_MUTEX(un));
6316 
6317 		if (got_semaphore_here != 0) {
6318 			sema_v(&un->un_semoclose);
6319 		}
6320 		SD_TRACE(SD_LOG_IO_PM, un,
6321 		    "sdpower: exit, device is off-line.\n");
6322 
6323 		goto sdpower_failed;
6324 	}
6325 
6326 	/*
6327 	 * Change the device's state to indicate it's power level
6328 	 * is being changed. Do this to prevent a power off in the
6329 	 * middle of commands, which is especially bad on devices
6330 	 * that are really powered off instead of just spun down.
6331 	 */
6332 	state_before_pm = un->un_state;
6333 	un->un_state = SD_STATE_PM_CHANGING;
6334 
6335 	mutex_exit(SD_MUTEX(un));
6336 
6337 	/*
6338 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6339 	 * bypass the following checking, otherwise, check the log
6340 	 * sense information for this device
6341 	 */
6342 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6343 		/*
6344 		 * Get the log sense information to understand whether the
6345 		 * the powercycle counts have gone beyond the threshhold.
6346 		 */
6347 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6348 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6349 
6350 		mutex_enter(SD_MUTEX(un));
6351 		log_sense_page = un->un_start_stop_cycle_page;
6352 		mutex_exit(SD_MUTEX(un));
6353 
6354 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6355 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6356 
6357 		if (rval != 0) {
6358 			if (rval == EIO)
6359 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6360 			else
6361 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6362 		}
6363 
6364 #ifdef	SDDEBUG
6365 		if (sd_force_pm_supported) {
6366 			/* Force a successful result */
6367 			rval = 0;
6368 		}
6369 #endif
6370 		if (rval != 0) {
6371 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6372 			    "Log Sense Failed\n");
6373 
6374 			kmem_free(log_page_data, log_page_size);
6375 			/* Cannot support power management on those drives */
6376 
6377 			if (got_semaphore_here != 0) {
6378 				sema_v(&un->un_semoclose);
6379 			}
6380 			/*
6381 			 * On exit put the state back to it's original value
6382 			 * and broadcast to anyone waiting for the power
6383 			 * change completion.
6384 			 */
6385 			mutex_enter(SD_MUTEX(un));
6386 			un->un_state = state_before_pm;
6387 			cv_broadcast(&un->un_suspend_cv);
6388 			mutex_exit(SD_MUTEX(un));
6389 			SD_TRACE(SD_LOG_IO_PM, un,
6390 			    "sdpower: exit, Log Sense Failed.\n");
6391 
6392 			goto sdpower_failed;
6393 		}
6394 
6395 		/*
6396 		 * From the page data - Convert the essential information to
6397 		 * pm_trans_data
6398 		 */
6399 		maxcycles =
6400 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6401 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6402 
6403 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6404 
6405 		ncycles =
6406 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6407 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6408 
6409 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6410 
6411 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6412 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6413 			    log_page_data[8+i];
6414 		}
6415 
6416 		kmem_free(log_page_data, log_page_size);
6417 
6418 		/*
6419 		 * Call pm_trans_check routine to get the Ok from
6420 		 * the global policy
6421 		 */
6422 
6423 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6424 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6425 
6426 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6427 #ifdef	SDDEBUG
6428 		if (sd_force_pm_supported) {
6429 			/* Force a successful result */
6430 			rval = 1;
6431 		}
6432 #endif
6433 		switch (rval) {
6434 		case 0:
6435 			/*
6436 			 * Not Ok to Power cycle or error in parameters passed
6437 			 * Would have given the advised time to consider power
6438 			 * cycle. Based on the new intvlp parameter we are
6439 			 * supposed to pretend we are busy so that pm framework
6440 			 * will never call our power entry point. Because of
6441 			 * that install a timeout handler and wait for the
6442 			 * recommended time to elapse so that power management
6443 			 * can be effective again.
6444 			 *
6445 			 * To effect this behavior, call pm_busy_component to
6446 			 * indicate to the framework this device is busy.
6447 			 * By not adjusting un_pm_count the rest of PM in
6448 			 * the driver will function normally, and independent
6449 			 * of this but because the framework is told the device
6450 			 * is busy it won't attempt powering down until it gets
6451 			 * a matching idle. The timeout handler sends this.
6452 			 * Note: sd_pm_entry can't be called here to do this
6453 			 * because sdpower may have been called as a result
6454 			 * of a call to pm_raise_power from within sd_pm_entry.
6455 			 *
6456 			 * If a timeout handler is already active then
6457 			 * don't install another.
6458 			 */
6459 			mutex_enter(&un->un_pm_mutex);
6460 			if (un->un_pm_timeid == NULL) {
6461 				un->un_pm_timeid =
6462 				    timeout(sd_pm_timeout_handler,
6463 				    un, intvlp * drv_usectohz(1000000));
6464 				mutex_exit(&un->un_pm_mutex);
6465 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6466 			} else {
6467 				mutex_exit(&un->un_pm_mutex);
6468 			}
6469 			if (got_semaphore_here != 0) {
6470 				sema_v(&un->un_semoclose);
6471 			}
6472 			/*
6473 			 * On exit put the state back to it's original value
6474 			 * and broadcast to anyone waiting for the power
6475 			 * change completion.
6476 			 */
6477 			mutex_enter(SD_MUTEX(un));
6478 			un->un_state = state_before_pm;
6479 			cv_broadcast(&un->un_suspend_cv);
6480 			mutex_exit(SD_MUTEX(un));
6481 
6482 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6483 			    "trans check Failed, not ok to power cycle.\n");
6484 
6485 			goto sdpower_failed;
6486 		case -1:
6487 			if (got_semaphore_here != 0) {
6488 				sema_v(&un->un_semoclose);
6489 			}
6490 			/*
6491 			 * On exit put the state back to it's original value
6492 			 * and broadcast to anyone waiting for the power
6493 			 * change completion.
6494 			 */
6495 			mutex_enter(SD_MUTEX(un));
6496 			un->un_state = state_before_pm;
6497 			cv_broadcast(&un->un_suspend_cv);
6498 			mutex_exit(SD_MUTEX(un));
6499 			SD_TRACE(SD_LOG_IO_PM, un,
6500 			    "sdpower: exit, trans check command Failed.\n");
6501 
6502 			goto sdpower_failed;
6503 		}
6504 	}
6505 
6506 	if (level == SD_SPINDLE_OFF) {
6507 		/*
6508 		 * Save the last state... if the STOP FAILS we need it
6509 		 * for restoring
6510 		 */
6511 		mutex_enter(SD_MUTEX(un));
6512 		save_state = un->un_last_state;
6513 		/*
6514 		 * There must not be any cmds. getting processed
6515 		 * in the driver when we get here. Power to the
6516 		 * device is potentially going off.
6517 		 */
6518 		ASSERT(un->un_ncmds_in_driver == 0);
6519 		mutex_exit(SD_MUTEX(un));
6520 
6521 		/*
6522 		 * For now suspend the device completely before spindle is
6523 		 * turned off
6524 		 */
6525 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6526 			if (got_semaphore_here != 0) {
6527 				sema_v(&un->un_semoclose);
6528 			}
6529 			/*
6530 			 * On exit put the state back to it's original value
6531 			 * and broadcast to anyone waiting for the power
6532 			 * change completion.
6533 			 */
6534 			mutex_enter(SD_MUTEX(un));
6535 			un->un_state = state_before_pm;
6536 			cv_broadcast(&un->un_suspend_cv);
6537 			mutex_exit(SD_MUTEX(un));
6538 			SD_TRACE(SD_LOG_IO_PM, un,
6539 			    "sdpower: exit, PM suspend Failed.\n");
6540 
6541 			goto sdpower_failed;
6542 		}
6543 	}
6544 
6545 	/*
6546 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6547 	 * close, or strategy. Dump no long uses this routine, it uses it's
6548 	 * own code so it can be done in polled mode.
6549 	 */
6550 
6551 	medium_present = TRUE;
6552 
6553 	/*
6554 	 * When powering up, issue a TUR in case the device is at unit
6555 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6556 	 * a deadlock on un_pm_busy_cv will occur.
6557 	 */
6558 	if (level == SD_SPINDLE_ON) {
6559 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6560 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6561 		if (sval != 0)
6562 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6563 	}
6564 
6565 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6566 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6567 
6568 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6569 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6570 	    SD_PATH_DIRECT);
6571 	if (sval != 0) {
6572 		if (sval == EIO)
6573 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6574 		else
6575 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6576 	}
6577 
6578 	/* Command failed, check for media present. */
6579 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6580 		medium_present = FALSE;
6581 	}
6582 
6583 	/*
6584 	 * The conditions of interest here are:
6585 	 *   if a spindle off with media present fails,
6586 	 *	then restore the state and return an error.
6587 	 *   else if a spindle on fails,
6588 	 *	then return an error (there's no state to restore).
6589 	 * In all other cases we setup for the new state
6590 	 * and return success.
6591 	 */
6592 	switch (level) {
6593 	case SD_SPINDLE_OFF:
6594 		if ((medium_present == TRUE) && (sval != 0)) {
6595 			/* The stop command from above failed */
6596 			rval = DDI_FAILURE;
6597 			/*
6598 			 * The stop command failed, and we have media
6599 			 * present. Put the level back by calling the
6600 			 * sd_pm_resume() and set the state back to
6601 			 * it's previous value.
6602 			 */
6603 			(void) sd_ddi_pm_resume(un);
6604 			mutex_enter(SD_MUTEX(un));
6605 			un->un_last_state = save_state;
6606 			mutex_exit(SD_MUTEX(un));
6607 			break;
6608 		}
6609 		/*
6610 		 * The stop command from above succeeded.
6611 		 */
6612 		if (un->un_f_monitor_media_state) {
6613 			/*
6614 			 * Terminate watch thread in case of removable media
6615 			 * devices going into low power state. This is as per
6616 			 * the requirements of pm framework, otherwise commands
6617 			 * will be generated for the device (through watch
6618 			 * thread), even when the device is in low power state.
6619 			 */
6620 			mutex_enter(SD_MUTEX(un));
6621 			un->un_f_watcht_stopped = FALSE;
6622 			if (un->un_swr_token != NULL) {
6623 				opaque_t temp_token = un->un_swr_token;
6624 				un->un_f_watcht_stopped = TRUE;
6625 				un->un_swr_token = NULL;
6626 				mutex_exit(SD_MUTEX(un));
6627 				(void) scsi_watch_request_terminate(temp_token,
6628 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6629 			} else {
6630 				mutex_exit(SD_MUTEX(un));
6631 			}
6632 		}
6633 		break;
6634 
6635 	default:	/* The level requested is spindle on... */
6636 		/*
6637 		 * Legacy behavior: return success on a failed spinup
6638 		 * if there is no media in the drive.
6639 		 * Do this by looking at medium_present here.
6640 		 */
6641 		if ((sval != 0) && medium_present) {
6642 			/* The start command from above failed */
6643 			rval = DDI_FAILURE;
6644 			break;
6645 		}
6646 		/*
6647 		 * The start command from above succeeded
6648 		 * Resume the devices now that we have
6649 		 * started the disks
6650 		 */
6651 		(void) sd_ddi_pm_resume(un);
6652 
6653 		/*
6654 		 * Resume the watch thread since it was suspended
6655 		 * when the device went into low power mode.
6656 		 */
6657 		if (un->un_f_monitor_media_state) {
6658 			mutex_enter(SD_MUTEX(un));
6659 			if (un->un_f_watcht_stopped == TRUE) {
6660 				opaque_t temp_token;
6661 
6662 				un->un_f_watcht_stopped = FALSE;
6663 				mutex_exit(SD_MUTEX(un));
6664 				temp_token = scsi_watch_request_submit(
6665 				    SD_SCSI_DEVP(un),
6666 				    sd_check_media_time,
6667 				    SENSE_LENGTH, sd_media_watch_cb,
6668 				    (caddr_t)dev);
6669 				mutex_enter(SD_MUTEX(un));
6670 				un->un_swr_token = temp_token;
6671 			}
6672 			mutex_exit(SD_MUTEX(un));
6673 		}
6674 	}
6675 	if (got_semaphore_here != 0) {
6676 		sema_v(&un->un_semoclose);
6677 	}
6678 	/*
6679 	 * On exit put the state back to it's original value
6680 	 * and broadcast to anyone waiting for the power
6681 	 * change completion.
6682 	 */
6683 	mutex_enter(SD_MUTEX(un));
6684 	un->un_state = state_before_pm;
6685 	cv_broadcast(&un->un_suspend_cv);
6686 	mutex_exit(SD_MUTEX(un));
6687 
6688 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6689 
6690 	sd_ssc_fini(ssc);
6691 	return (rval);
6692 
6693 sdpower_failed:
6694 
6695 	sd_ssc_fini(ssc);
6696 	return (DDI_FAILURE);
6697 }
6698 
6699 
6700 
6701 /*
6702  *    Function: sdattach
6703  *
6704  * Description: Driver's attach(9e) entry point function.
6705  *
6706  *   Arguments: devi - opaque device info handle
6707  *		cmd  - attach  type
6708  *
6709  * Return Code: DDI_SUCCESS
6710  *		DDI_FAILURE
6711  *
6712  *     Context: Kernel thread context
6713  */
6714 
6715 static int
6716 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6717 {
6718 	switch (cmd) {
6719 	case DDI_ATTACH:
6720 		return (sd_unit_attach(devi));
6721 	case DDI_RESUME:
6722 		return (sd_ddi_resume(devi));
6723 	default:
6724 		break;
6725 	}
6726 	return (DDI_FAILURE);
6727 }
6728 
6729 
6730 /*
6731  *    Function: sddetach
6732  *
6733  * Description: Driver's detach(9E) entry point function.
6734  *
6735  *   Arguments: devi - opaque device info handle
6736  *		cmd  - detach  type
6737  *
6738  * Return Code: DDI_SUCCESS
6739  *		DDI_FAILURE
6740  *
6741  *     Context: Kernel thread context
6742  */
6743 
6744 static int
6745 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6746 {
6747 	switch (cmd) {
6748 	case DDI_DETACH:
6749 		return (sd_unit_detach(devi));
6750 	case DDI_SUSPEND:
6751 		return (sd_ddi_suspend(devi));
6752 	default:
6753 		break;
6754 	}
6755 	return (DDI_FAILURE);
6756 }
6757 
6758 
6759 /*
6760  *     Function: sd_sync_with_callback
6761  *
6762  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6763  *		 state while the callback routine is active.
6764  *
6765  *    Arguments: un: softstate structure for the instance
6766  *
6767  *	Context: Kernel thread context
6768  */
6769 
6770 static void
6771 sd_sync_with_callback(struct sd_lun *un)
6772 {
6773 	ASSERT(un != NULL);
6774 
6775 	mutex_enter(SD_MUTEX(un));
6776 
6777 	ASSERT(un->un_in_callback >= 0);
6778 
6779 	while (un->un_in_callback > 0) {
6780 		mutex_exit(SD_MUTEX(un));
6781 		delay(2);
6782 		mutex_enter(SD_MUTEX(un));
6783 	}
6784 
6785 	mutex_exit(SD_MUTEX(un));
6786 }
6787 
6788 /*
6789  *    Function: sd_unit_attach
6790  *
6791  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6792  *		the soft state structure for the device and performs
6793  *		all necessary structure and device initializations.
6794  *
6795  *   Arguments: devi: the system's dev_info_t for the device.
6796  *
6797  * Return Code: DDI_SUCCESS if attach is successful.
6798  *		DDI_FAILURE if any part of the attach fails.
6799  *
6800  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6801  *		Kernel thread context only.  Can sleep.
6802  */
6803 
6804 static int
6805 sd_unit_attach(dev_info_t *devi)
6806 {
6807 	struct	scsi_device	*devp;
6808 	struct	sd_lun		*un;
6809 	char			*variantp;
6810 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6811 	int	instance;
6812 	int	rval;
6813 	int	wc_enabled;
6814 	int	tgt;
6815 	uint64_t	capacity;
6816 	uint_t		lbasize = 0;
6817 	dev_info_t	*pdip = ddi_get_parent(devi);
6818 	int		offbyone = 0;
6819 	int		geom_label_valid = 0;
6820 	sd_ssc_t	*ssc;
6821 	int		status;
6822 	struct sd_fm_internal	*sfip = NULL;
6823 	int		max_xfer_size;
6824 
6825 	/*
6826 	 * Retrieve the target driver's private data area. This was set
6827 	 * up by the HBA.
6828 	 */
6829 	devp = ddi_get_driver_private(devi);
6830 
6831 	/*
6832 	 * Retrieve the target ID of the device.
6833 	 */
6834 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6835 	    SCSI_ADDR_PROP_TARGET, -1);
6836 
6837 	/*
6838 	 * Since we have no idea what state things were left in by the last
6839 	 * user of the device, set up some 'default' settings, ie. turn 'em
6840 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6841 	 * Do this before the scsi_probe, which sends an inquiry.
6842 	 * This is a fix for bug (4430280).
6843 	 * Of special importance is wide-xfer. The drive could have been left
6844 	 * in wide transfer mode by the last driver to communicate with it,
6845 	 * this includes us. If that's the case, and if the following is not
6846 	 * setup properly or we don't re-negotiate with the drive prior to
6847 	 * transferring data to/from the drive, it causes bus parity errors,
6848 	 * data overruns, and unexpected interrupts. This first occurred when
6849 	 * the fix for bug (4378686) was made.
6850 	 */
6851 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6852 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6853 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6854 
6855 	/*
6856 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6857 	 * on a target. Setting it per lun instance actually sets the
6858 	 * capability of this target, which affects those luns already
6859 	 * attached on the same target. So during attach, we can only disable
6860 	 * this capability only when no other lun has been attached on this
6861 	 * target. By doing this, we assume a target has the same tagged-qing
6862 	 * capability for every lun. The condition can be removed when HBA
6863 	 * is changed to support per lun based tagged-qing capability.
6864 	 */
6865 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6866 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6867 	}
6868 
6869 	/*
6870 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6871 	 * This call will allocate and fill in the scsi_inquiry structure
6872 	 * and point the sd_inq member of the scsi_device structure to it.
6873 	 * If the attach succeeds, then this memory will not be de-allocated
6874 	 * (via scsi_unprobe()) until the instance is detached.
6875 	 */
6876 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6877 		goto probe_failed;
6878 	}
6879 
6880 	/*
6881 	 * Check the device type as specified in the inquiry data and
6882 	 * claim it if it is of a type that we support.
6883 	 */
6884 	switch (devp->sd_inq->inq_dtype) {
6885 	case DTYPE_DIRECT:
6886 		break;
6887 	case DTYPE_RODIRECT:
6888 		break;
6889 	case DTYPE_OPTICAL:
6890 		break;
6891 	case DTYPE_NOTPRESENT:
6892 	default:
6893 		/* Unsupported device type; fail the attach. */
6894 		goto probe_failed;
6895 	}
6896 
6897 	/*
6898 	 * Allocate the soft state structure for this unit.
6899 	 *
6900 	 * We rely upon this memory being set to all zeroes by
6901 	 * ddi_soft_state_zalloc().  We assume that any member of the
6902 	 * soft state structure that is not explicitly initialized by
6903 	 * this routine will have a value of zero.
6904 	 */
6905 	instance = ddi_get_instance(devp->sd_dev);
6906 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6907 		goto probe_failed;
6908 	}
6909 
6910 	/*
6911 	 * Retrieve a pointer to the newly-allocated soft state.
6912 	 *
6913 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6914 	 * was successful, unless something has gone horribly wrong and the
6915 	 * ddi's soft state internals are corrupt (in which case it is
6916 	 * probably better to halt here than just fail the attach....)
6917 	 */
6918 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6919 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6920 		    instance);
6921 		/*NOTREACHED*/
6922 	}
6923 
6924 	/*
6925 	 * Link the back ptr of the driver soft state to the scsi_device
6926 	 * struct for this lun.
6927 	 * Save a pointer to the softstate in the driver-private area of
6928 	 * the scsi_device struct.
6929 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6930 	 * we first set un->un_sd below.
6931 	 */
6932 	un->un_sd = devp;
6933 	devp->sd_private = (opaque_t)un;
6934 
6935 	/*
6936 	 * The following must be after devp is stored in the soft state struct.
6937 	 */
6938 #ifdef SDDEBUG
6939 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6940 	    "%s_unit_attach: un:0x%p instance:%d\n",
6941 	    ddi_driver_name(devi), un, instance);
6942 #endif
6943 
6944 	/*
6945 	 * Set up the device type and node type (for the minor nodes).
6946 	 * By default we assume that the device can at least support the
6947 	 * Common Command Set. Call it a CD-ROM if it reports itself
6948 	 * as a RODIRECT device.
6949 	 */
6950 	switch (devp->sd_inq->inq_dtype) {
6951 	case DTYPE_RODIRECT:
6952 		un->un_node_type = DDI_NT_CD_CHAN;
6953 		un->un_ctype	 = CTYPE_CDROM;
6954 		break;
6955 	case DTYPE_OPTICAL:
6956 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6957 		un->un_ctype	 = CTYPE_ROD;
6958 		break;
6959 	default:
6960 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6961 		un->un_ctype	 = CTYPE_CCS;
6962 		break;
6963 	}
6964 
6965 	/*
6966 	 * Try to read the interconnect type from the HBA.
6967 	 *
6968 	 * Note: This driver is currently compiled as two binaries, a parallel
6969 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6970 	 * differences are determined at compile time. In the future a single
6971 	 * binary will be provided and the interconnect type will be used to
6972 	 * differentiate between fibre and parallel scsi behaviors. At that time
6973 	 * it will be necessary for all fibre channel HBAs to support this
6974 	 * property.
6975 	 *
6976 	 * set un_f_is_fiber to TRUE ( default fiber )
6977 	 */
6978 	un->un_f_is_fibre = TRUE;
6979 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6980 	case INTERCONNECT_SSA:
6981 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6982 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6983 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6984 		break;
6985 	case INTERCONNECT_PARALLEL:
6986 		un->un_f_is_fibre = FALSE;
6987 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6988 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6989 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6990 		break;
6991 	case INTERCONNECT_SATA:
6992 		un->un_f_is_fibre = FALSE;
6993 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6994 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6995 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6996 		break;
6997 	case INTERCONNECT_FIBRE:
6998 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6999 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7000 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7001 		break;
7002 	case INTERCONNECT_FABRIC:
7003 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7004 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7005 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7006 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7007 		break;
7008 	default:
7009 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7010 		/*
7011 		 * The HBA does not support the "interconnect-type" property
7012 		 * (or did not provide a recognized type).
7013 		 *
7014 		 * Note: This will be obsoleted when a single fibre channel
7015 		 * and parallel scsi driver is delivered. In the meantime the
7016 		 * interconnect type will be set to the platform default.If that
7017 		 * type is not parallel SCSI, it means that we should be
7018 		 * assuming "ssd" semantics. However, here this also means that
7019 		 * the FC HBA is not supporting the "interconnect-type" property
7020 		 * like we expect it to, so log this occurrence.
7021 		 */
7022 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7023 		if (!SD_IS_PARALLEL_SCSI(un)) {
7024 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7025 			    "sd_unit_attach: un:0x%p Assuming "
7026 			    "INTERCONNECT_FIBRE\n", un);
7027 		} else {
7028 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7029 			    "sd_unit_attach: un:0x%p Assuming "
7030 			    "INTERCONNECT_PARALLEL\n", un);
7031 			un->un_f_is_fibre = FALSE;
7032 		}
7033 #else
7034 		/*
7035 		 * Note: This source will be implemented when a single fibre
7036 		 * channel and parallel scsi driver is delivered. The default
7037 		 * will be to assume that if a device does not support the
7038 		 * "interconnect-type" property it is a parallel SCSI HBA and
7039 		 * we will set the interconnect type for parallel scsi.
7040 		 */
7041 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7042 		un->un_f_is_fibre = FALSE;
7043 #endif
7044 		break;
7045 	}
7046 
7047 	if (un->un_f_is_fibre == TRUE) {
7048 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7049 		    SCSI_VERSION_3) {
7050 			switch (un->un_interconnect_type) {
7051 			case SD_INTERCONNECT_FIBRE:
7052 			case SD_INTERCONNECT_SSA:
7053 				un->un_node_type = DDI_NT_BLOCK_WWN;
7054 				break;
7055 			default:
7056 				break;
7057 			}
7058 		}
7059 	}
7060 
7061 	/*
7062 	 * Initialize the Request Sense command for the target
7063 	 */
7064 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7065 		goto alloc_rqs_failed;
7066 	}
7067 
7068 	/*
7069 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7070 	 * with separate binary for sd and ssd.
7071 	 *
7072 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7073 	 * The hardcoded values will go away when Sparc uses 1 binary
7074 	 * for sd and ssd.  This hardcoded values need to match
7075 	 * SD_RETRY_COUNT in sddef.h
7076 	 * The value used is base on interconnect type.
7077 	 * fibre = 3, parallel = 5
7078 	 */
7079 #if defined(__i386) || defined(__amd64)
7080 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7081 #else
7082 	un->un_retry_count = SD_RETRY_COUNT;
7083 #endif
7084 
7085 	/*
7086 	 * Set the per disk retry count to the default number of retries
7087 	 * for disks and CDROMs. This value can be overridden by the
7088 	 * disk property list or an entry in sd.conf.
7089 	 */
7090 	un->un_notready_retry_count =
7091 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7092 	    : DISK_NOT_READY_RETRY_COUNT(un);
7093 
7094 	/*
7095 	 * Set the busy retry count to the default value of un_retry_count.
7096 	 * This can be overridden by entries in sd.conf or the device
7097 	 * config table.
7098 	 */
7099 	un->un_busy_retry_count = un->un_retry_count;
7100 
7101 	/*
7102 	 * Init the reset threshold for retries.  This number determines
7103 	 * how many retries must be performed before a reset can be issued
7104 	 * (for certain error conditions). This can be overridden by entries
7105 	 * in sd.conf or the device config table.
7106 	 */
7107 	un->un_reset_retry_count = (un->un_retry_count / 2);
7108 
7109 	/*
7110 	 * Set the victim_retry_count to the default un_retry_count
7111 	 */
7112 	un->un_victim_retry_count = (2 * un->un_retry_count);
7113 
7114 	/*
7115 	 * Set the reservation release timeout to the default value of
7116 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7117 	 * device config table.
7118 	 */
7119 	un->un_reserve_release_time = 5;
7120 
7121 	/*
7122 	 * Set up the default maximum transfer size. Note that this may
7123 	 * get updated later in the attach, when setting up default wide
7124 	 * operations for disks.
7125 	 */
7126 #if defined(__i386) || defined(__amd64)
7127 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7128 	un->un_partial_dma_supported = 1;
7129 #else
7130 	un->un_max_xfer_size = (uint_t)maxphys;
7131 #endif
7132 
7133 	/*
7134 	 * Get "allow bus device reset" property (defaults to "enabled" if
7135 	 * the property was not defined). This is to disable bus resets for
7136 	 * certain kinds of error recovery. Note: In the future when a run-time
7137 	 * fibre check is available the soft state flag should default to
7138 	 * enabled.
7139 	 */
7140 	if (un->un_f_is_fibre == TRUE) {
7141 		un->un_f_allow_bus_device_reset = TRUE;
7142 	} else {
7143 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7144 		    "allow-bus-device-reset", 1) != 0) {
7145 			un->un_f_allow_bus_device_reset = TRUE;
7146 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7147 			    "sd_unit_attach: un:0x%p Bus device reset "
7148 			    "enabled\n", un);
7149 		} else {
7150 			un->un_f_allow_bus_device_reset = FALSE;
7151 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7152 			    "sd_unit_attach: un:0x%p Bus device reset "
7153 			    "disabled\n", un);
7154 		}
7155 	}
7156 
7157 	/*
7158 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7159 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7160 	 *
7161 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7162 	 * property. The new "variant" property with a value of "atapi" has been
7163 	 * introduced so that future 'variants' of standard SCSI behavior (like
7164 	 * atapi) could be specified by the underlying HBA drivers by supplying
7165 	 * a new value for the "variant" property, instead of having to define a
7166 	 * new property.
7167 	 */
7168 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7169 		un->un_f_cfg_is_atapi = TRUE;
7170 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7171 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7172 	}
7173 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7174 	    &variantp) == DDI_PROP_SUCCESS) {
7175 		if (strcmp(variantp, "atapi") == 0) {
7176 			un->un_f_cfg_is_atapi = TRUE;
7177 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7178 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7179 		}
7180 		ddi_prop_free(variantp);
7181 	}
7182 
7183 	un->un_cmd_timeout	= SD_IO_TIME;
7184 
7185 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7186 
7187 	/* Info on current states, statuses, etc. (Updated frequently) */
7188 	un->un_state		= SD_STATE_NORMAL;
7189 	un->un_last_state	= SD_STATE_NORMAL;
7190 
7191 	/* Control & status info for command throttling */
7192 	un->un_throttle		= sd_max_throttle;
7193 	un->un_saved_throttle	= sd_max_throttle;
7194 	un->un_min_throttle	= sd_min_throttle;
7195 
7196 	if (un->un_f_is_fibre == TRUE) {
7197 		un->un_f_use_adaptive_throttle = TRUE;
7198 	} else {
7199 		un->un_f_use_adaptive_throttle = FALSE;
7200 	}
7201 
7202 	/* Removable media support. */
7203 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7204 	un->un_mediastate		= DKIO_NONE;
7205 	un->un_specified_mediastate	= DKIO_NONE;
7206 
7207 	/* CVs for suspend/resume (PM or DR) */
7208 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7209 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7210 
7211 	/* Power management support. */
7212 	un->un_power_level = SD_SPINDLE_UNINIT;
7213 
7214 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7215 	un->un_f_wcc_inprog = 0;
7216 
7217 	/*
7218 	 * The open/close semaphore is used to serialize threads executing
7219 	 * in the driver's open & close entry point routines for a given
7220 	 * instance.
7221 	 */
7222 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7223 
7224 	/*
7225 	 * The conf file entry and softstate variable is a forceful override,
7226 	 * meaning a non-zero value must be entered to change the default.
7227 	 */
7228 	un->un_f_disksort_disabled = FALSE;
7229 
7230 	/*
7231 	 * Retrieve the properties from the static driver table or the driver
7232 	 * configuration file (.conf) for this unit and update the soft state
7233 	 * for the device as needed for the indicated properties.
7234 	 * Note: the property configuration needs to occur here as some of the
7235 	 * following routines may have dependencies on soft state flags set
7236 	 * as part of the driver property configuration.
7237 	 */
7238 	sd_read_unit_properties(un);
7239 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7240 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7241 
7242 	/*
7243 	 * Only if a device has "hotpluggable" property, it is
7244 	 * treated as hotpluggable device. Otherwise, it is
7245 	 * regarded as non-hotpluggable one.
7246 	 */
7247 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7248 	    -1) != -1) {
7249 		un->un_f_is_hotpluggable = TRUE;
7250 	}
7251 
7252 	/*
7253 	 * set unit's attributes(flags) according to "hotpluggable" and
7254 	 * RMB bit in INQUIRY data.
7255 	 */
7256 	sd_set_unit_attributes(un, devi);
7257 
7258 	/*
7259 	 * By default, we mark the capacity, lbasize, and geometry
7260 	 * as invalid. Only if we successfully read a valid capacity
7261 	 * will we update the un_blockcount and un_tgt_blocksize with the
7262 	 * valid values (the geometry will be validated later).
7263 	 */
7264 	un->un_f_blockcount_is_valid	= FALSE;
7265 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7266 
7267 	/*
7268 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7269 	 * otherwise.
7270 	 */
7271 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7272 	un->un_blockcount = 0;
7273 
7274 	/*
7275 	 * Set up the per-instance info needed to determine the correct
7276 	 * CDBs and other info for issuing commands to the target.
7277 	 */
7278 	sd_init_cdb_limits(un);
7279 
7280 	/*
7281 	 * Set up the IO chains to use, based upon the target type.
7282 	 */
7283 	if (un->un_f_non_devbsize_supported) {
7284 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7285 	} else {
7286 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7287 	}
7288 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7289 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7290 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7291 
7292 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7293 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7294 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7295 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7296 
7297 
7298 	if (ISCD(un)) {
7299 		un->un_additional_codes = sd_additional_codes;
7300 	} else {
7301 		un->un_additional_codes = NULL;
7302 	}
7303 
7304 	/*
7305 	 * Create the kstats here so they can be available for attach-time
7306 	 * routines that send commands to the unit (either polled or via
7307 	 * sd_send_scsi_cmd).
7308 	 *
7309 	 * Note: This is a critical sequence that needs to be maintained:
7310 	 *	1) Instantiate the kstats here, before any routines using the
7311 	 *	   iopath (i.e. sd_send_scsi_cmd).
7312 	 *	2) Instantiate and initialize the partition stats
7313 	 *	   (sd_set_pstats).
7314 	 *	3) Initialize the error stats (sd_set_errstats), following
7315 	 *	   sd_validate_geometry(),sd_register_devid(),
7316 	 *	   and sd_cache_control().
7317 	 */
7318 
7319 	un->un_stats = kstat_create(sd_label, instance,
7320 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7321 	if (un->un_stats != NULL) {
7322 		un->un_stats->ks_lock = SD_MUTEX(un);
7323 		kstat_install(un->un_stats);
7324 	}
7325 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7326 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7327 
7328 	sd_create_errstats(un, instance);
7329 	if (un->un_errstats == NULL) {
7330 		goto create_errstats_failed;
7331 	}
7332 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7333 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7334 
7335 	/*
7336 	 * The following if/else code was relocated here from below as part
7337 	 * of the fix for bug (4430280). However with the default setup added
7338 	 * on entry to this routine, it's no longer absolutely necessary for
7339 	 * this to be before the call to sd_spin_up_unit.
7340 	 */
7341 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7342 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7343 		    (devp->sd_inq->inq_ansi == 5)) &&
7344 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7345 
7346 		/*
7347 		 * If tagged queueing is supported by the target
7348 		 * and by the host adapter then we will enable it
7349 		 */
7350 		un->un_tagflags = 0;
7351 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7352 		    (un->un_f_arq_enabled == TRUE)) {
7353 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7354 			    1, 1) == 1) {
7355 				un->un_tagflags = FLAG_STAG;
7356 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7357 				    "sd_unit_attach: un:0x%p tag queueing "
7358 				    "enabled\n", un);
7359 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7360 			    "untagged-qing", 0) == 1) {
7361 				un->un_f_opt_queueing = TRUE;
7362 				un->un_saved_throttle = un->un_throttle =
7363 				    min(un->un_throttle, 3);
7364 			} else {
7365 				un->un_f_opt_queueing = FALSE;
7366 				un->un_saved_throttle = un->un_throttle = 1;
7367 			}
7368 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7369 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7370 			/* The Host Adapter supports internal queueing. */
7371 			un->un_f_opt_queueing = TRUE;
7372 			un->un_saved_throttle = un->un_throttle =
7373 			    min(un->un_throttle, 3);
7374 		} else {
7375 			un->un_f_opt_queueing = FALSE;
7376 			un->un_saved_throttle = un->un_throttle = 1;
7377 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7378 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7379 		}
7380 
7381 		/*
7382 		 * Enable large transfers for SATA/SAS drives
7383 		 */
7384 		if (SD_IS_SERIAL(un)) {
7385 			un->un_max_xfer_size =
7386 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7387 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7388 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7389 			    "sd_unit_attach: un:0x%p max transfer "
7390 			    "size=0x%x\n", un, un->un_max_xfer_size);
7391 
7392 		}
7393 
7394 		/* Setup or tear down default wide operations for disks */
7395 
7396 		/*
7397 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7398 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7399 		 * system and be set to different values. In the future this
7400 		 * code may need to be updated when the ssd module is
7401 		 * obsoleted and removed from the system. (4299588)
7402 		 */
7403 		if (SD_IS_PARALLEL_SCSI(un) &&
7404 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7405 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7406 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7407 			    1, 1) == 1) {
7408 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7409 				    "sd_unit_attach: un:0x%p Wide Transfer "
7410 				    "enabled\n", un);
7411 			}
7412 
7413 			/*
7414 			 * If tagged queuing has also been enabled, then
7415 			 * enable large xfers
7416 			 */
7417 			if (un->un_saved_throttle == sd_max_throttle) {
7418 				un->un_max_xfer_size =
7419 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7420 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7421 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7422 				    "sd_unit_attach: un:0x%p max transfer "
7423 				    "size=0x%x\n", un, un->un_max_xfer_size);
7424 			}
7425 		} else {
7426 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7427 			    0, 1) == 1) {
7428 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7429 				    "sd_unit_attach: un:0x%p "
7430 				    "Wide Transfer disabled\n", un);
7431 			}
7432 		}
7433 	} else {
7434 		un->un_tagflags = FLAG_STAG;
7435 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7436 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7437 	}
7438 
7439 	/*
7440 	 * If this target supports LUN reset, try to enable it.
7441 	 */
7442 	if (un->un_f_lun_reset_enabled) {
7443 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7444 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7445 			    "un:0x%p lun_reset capability set\n", un);
7446 		} else {
7447 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7448 			    "un:0x%p lun-reset capability not set\n", un);
7449 		}
7450 	}
7451 
7452 	/*
7453 	 * Adjust the maximum transfer size. This is to fix
7454 	 * the problem of partial DMA support on SPARC. Some
7455 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7456 	 * size, which requires partial DMA support on SPARC.
7457 	 * In the future the SPARC pci nexus driver may solve
7458 	 * the problem instead of this fix.
7459 	 */
7460 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7461 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7462 		/* We need DMA partial even on sparc to ensure sddump() works */
7463 		un->un_max_xfer_size = max_xfer_size;
7464 		if (un->un_partial_dma_supported == 0)
7465 			un->un_partial_dma_supported = 1;
7466 	}
7467 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7468 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7469 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7470 		    un->un_max_xfer_size) == 1) {
7471 			un->un_buf_breakup_supported = 1;
7472 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7473 			    "un:0x%p Buf breakup enabled\n", un);
7474 		}
7475 	}
7476 
7477 	/*
7478 	 * Set PKT_DMA_PARTIAL flag.
7479 	 */
7480 	if (un->un_partial_dma_supported == 1) {
7481 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7482 	} else {
7483 		un->un_pkt_flags = 0;
7484 	}
7485 
7486 	/* Initialize sd_ssc_t for internal uscsi commands */
7487 	ssc = sd_ssc_init(un);
7488 	scsi_fm_init(devp);
7489 
7490 	/*
7491 	 * Allocate memory for SCSI FMA stuffs.
7492 	 */
7493 	un->un_fm_private =
7494 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7495 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7496 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7497 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7498 	sfip->fm_ssc.ssc_un = un;
7499 
7500 	if (ISCD(un) ||
7501 	    un->un_f_has_removable_media ||
7502 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7503 		/*
7504 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7505 		 * Their log are unchanged.
7506 		 */
7507 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7508 	} else {
7509 		/*
7510 		 * If enter here, it should be non-CDROM and FM-capable
7511 		 * device, and it will not keep the old scsi_log as before
7512 		 * in /var/adm/messages. However, the property
7513 		 * "fm-scsi-log" will control whether the FM telemetry will
7514 		 * be logged in /var/adm/messages.
7515 		 */
7516 		int fm_scsi_log;
7517 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7518 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7519 
7520 		if (fm_scsi_log)
7521 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7522 		else
7523 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7524 	}
7525 
7526 	/*
7527 	 * At this point in the attach, we have enough info in the
7528 	 * soft state to be able to issue commands to the target.
7529 	 *
7530 	 * All command paths used below MUST issue their commands as
7531 	 * SD_PATH_DIRECT. This is important as intermediate layers
7532 	 * are not all initialized yet (such as PM).
7533 	 */
7534 
7535 	/*
7536 	 * Send a TEST UNIT READY command to the device. This should clear
7537 	 * any outstanding UNIT ATTENTION that may be present.
7538 	 *
7539 	 * Note: Don't check for success, just track if there is a reservation,
7540 	 * this is a throw away command to clear any unit attentions.
7541 	 *
7542 	 * Note: This MUST be the first command issued to the target during
7543 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7544 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7545 	 * with attempts at spinning up a device with no media.
7546 	 */
7547 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7548 	if (status != 0) {
7549 		if (status == EACCES)
7550 			reservation_flag = SD_TARGET_IS_RESERVED;
7551 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7552 	}
7553 
7554 	/*
7555 	 * If the device is NOT a removable media device, attempt to spin
7556 	 * it up (using the START_STOP_UNIT command) and read its capacity
7557 	 * (using the READ CAPACITY command).  Note, however, that either
7558 	 * of these could fail and in some cases we would continue with
7559 	 * the attach despite the failure (see below).
7560 	 */
7561 	if (un->un_f_descr_format_supported) {
7562 
7563 		switch (sd_spin_up_unit(ssc)) {
7564 		case 0:
7565 			/*
7566 			 * Spin-up was successful; now try to read the
7567 			 * capacity.  If successful then save the results
7568 			 * and mark the capacity & lbasize as valid.
7569 			 */
7570 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7571 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7572 
7573 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7574 			    &lbasize, SD_PATH_DIRECT);
7575 
7576 			switch (status) {
7577 			case 0: {
7578 				if (capacity > DK_MAX_BLOCKS) {
7579 #ifdef _LP64
7580 					if ((capacity + 1) >
7581 					    SD_GROUP1_MAX_ADDRESS) {
7582 						/*
7583 						 * Enable descriptor format
7584 						 * sense data so that we can
7585 						 * get 64 bit sense data
7586 						 * fields.
7587 						 */
7588 						sd_enable_descr_sense(ssc);
7589 					}
7590 #else
7591 					/* 32-bit kernels can't handle this */
7592 					scsi_log(SD_DEVINFO(un),
7593 					    sd_label, CE_WARN,
7594 					    "disk has %llu blocks, which "
7595 					    "is too large for a 32-bit "
7596 					    "kernel", capacity);
7597 
7598 #if defined(__i386) || defined(__amd64)
7599 					/*
7600 					 * 1TB disk was treated as (1T - 512)B
7601 					 * in the past, so that it might have
7602 					 * valid VTOC and solaris partitions,
7603 					 * we have to allow it to continue to
7604 					 * work.
7605 					 */
7606 					if (capacity -1 > DK_MAX_BLOCKS)
7607 #endif
7608 					goto spinup_failed;
7609 #endif
7610 				}
7611 
7612 				/*
7613 				 * Here it's not necessary to check the case:
7614 				 * the capacity of the device is bigger than
7615 				 * what the max hba cdb can support. Because
7616 				 * sd_send_scsi_READ_CAPACITY will retrieve
7617 				 * the capacity by sending USCSI command, which
7618 				 * is constrained by the max hba cdb. Actually,
7619 				 * sd_send_scsi_READ_CAPACITY will return
7620 				 * EINVAL when using bigger cdb than required
7621 				 * cdb length. Will handle this case in
7622 				 * "case EINVAL".
7623 				 */
7624 
7625 				/*
7626 				 * The following relies on
7627 				 * sd_send_scsi_READ_CAPACITY never
7628 				 * returning 0 for capacity and/or lbasize.
7629 				 */
7630 				sd_update_block_info(un, lbasize, capacity);
7631 
7632 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7633 				    "sd_unit_attach: un:0x%p capacity = %ld "
7634 				    "blocks; lbasize= %ld.\n", un,
7635 				    un->un_blockcount, un->un_tgt_blocksize);
7636 
7637 				break;
7638 			}
7639 			case EINVAL:
7640 				/*
7641 				 * In the case where the max-cdb-length property
7642 				 * is smaller than the required CDB length for
7643 				 * a SCSI device, a target driver can fail to
7644 				 * attach to that device.
7645 				 */
7646 				scsi_log(SD_DEVINFO(un),
7647 				    sd_label, CE_WARN,
7648 				    "disk capacity is too large "
7649 				    "for current cdb length");
7650 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7651 
7652 				goto spinup_failed;
7653 			case EACCES:
7654 				/*
7655 				 * Should never get here if the spin-up
7656 				 * succeeded, but code it in anyway.
7657 				 * From here, just continue with the attach...
7658 				 */
7659 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7660 				    "sd_unit_attach: un:0x%p "
7661 				    "sd_send_scsi_READ_CAPACITY "
7662 				    "returned reservation conflict\n", un);
7663 				reservation_flag = SD_TARGET_IS_RESERVED;
7664 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7665 				break;
7666 			default:
7667 				/*
7668 				 * Likewise, should never get here if the
7669 				 * spin-up succeeded. Just continue with
7670 				 * the attach...
7671 				 */
7672 				if (status == EIO)
7673 					sd_ssc_assessment(ssc,
7674 					    SD_FMT_STATUS_CHECK);
7675 				else
7676 					sd_ssc_assessment(ssc,
7677 					    SD_FMT_IGNORE);
7678 				break;
7679 			}
7680 			break;
7681 		case EACCES:
7682 			/*
7683 			 * Device is reserved by another host.  In this case
7684 			 * we could not spin it up or read the capacity, but
7685 			 * we continue with the attach anyway.
7686 			 */
7687 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7688 			    "sd_unit_attach: un:0x%p spin-up reservation "
7689 			    "conflict.\n", un);
7690 			reservation_flag = SD_TARGET_IS_RESERVED;
7691 			break;
7692 		default:
7693 			/* Fail the attach if the spin-up failed. */
7694 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7695 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7696 			goto spinup_failed;
7697 		}
7698 
7699 	}
7700 
7701 	/*
7702 	 * Check to see if this is a MMC drive
7703 	 */
7704 	if (ISCD(un)) {
7705 		sd_set_mmc_caps(ssc);
7706 	}
7707 
7708 
7709 	/*
7710 	 * Add a zero-length attribute to tell the world we support
7711 	 * kernel ioctls (for layered drivers)
7712 	 */
7713 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7714 	    DDI_KERNEL_IOCTL, NULL, 0);
7715 
7716 	/*
7717 	 * Add a boolean property to tell the world we support
7718 	 * the B_FAILFAST flag (for layered drivers)
7719 	 */
7720 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7721 	    "ddi-failfast-supported", NULL, 0);
7722 
7723 	/*
7724 	 * Initialize power management
7725 	 */
7726 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7727 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7728 	sd_setup_pm(ssc, devi);
7729 	if (un->un_f_pm_is_enabled == FALSE) {
7730 		/*
7731 		 * For performance, point to a jump table that does
7732 		 * not include pm.
7733 		 * The direct and priority chains don't change with PM.
7734 		 *
7735 		 * Note: this is currently done based on individual device
7736 		 * capabilities. When an interface for determining system
7737 		 * power enabled state becomes available, or when additional
7738 		 * layers are added to the command chain, these values will
7739 		 * have to be re-evaluated for correctness.
7740 		 */
7741 		if (un->un_f_non_devbsize_supported) {
7742 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7743 		} else {
7744 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7745 		}
7746 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7747 	}
7748 
7749 	/*
7750 	 * This property is set to 0 by HA software to avoid retries
7751 	 * on a reserved disk. (The preferred property name is
7752 	 * "retry-on-reservation-conflict") (1189689)
7753 	 *
7754 	 * Note: The use of a global here can have unintended consequences. A
7755 	 * per instance variable is preferable to match the capabilities of
7756 	 * different underlying hba's (4402600)
7757 	 */
7758 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7759 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7760 	    sd_retry_on_reservation_conflict);
7761 	if (sd_retry_on_reservation_conflict != 0) {
7762 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7763 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7764 		    sd_retry_on_reservation_conflict);
7765 	}
7766 
7767 	/* Set up options for QFULL handling. */
7768 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7769 	    "qfull-retries", -1)) != -1) {
7770 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7771 		    rval, 1);
7772 	}
7773 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7774 	    "qfull-retry-interval", -1)) != -1) {
7775 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7776 		    rval, 1);
7777 	}
7778 
7779 	/*
7780 	 * This just prints a message that announces the existence of the
7781 	 * device. The message is always printed in the system logfile, but
7782 	 * only appears on the console if the system is booted with the
7783 	 * -v (verbose) argument.
7784 	 */
7785 	ddi_report_dev(devi);
7786 
7787 	un->un_mediastate = DKIO_NONE;
7788 
7789 	cmlb_alloc_handle(&un->un_cmlbhandle);
7790 
7791 #if defined(__i386) || defined(__amd64)
7792 	/*
7793 	 * On x86, compensate for off-by-1 legacy error
7794 	 */
7795 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7796 	    (lbasize == un->un_sys_blocksize))
7797 		offbyone = CMLB_OFF_BY_ONE;
7798 #endif
7799 
7800 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7801 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7802 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7803 	    (void *)SD_PATH_DIRECT) != 0) {
7804 		goto cmlb_attach_failed;
7805 	}
7806 
7807 
7808 	/*
7809 	 * Read and validate the device's geometry (ie, disk label)
7810 	 * A new unformatted drive will not have a valid geometry, but
7811 	 * the driver needs to successfully attach to this device so
7812 	 * the drive can be formatted via ioctls.
7813 	 */
7814 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7815 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7816 
7817 	mutex_enter(SD_MUTEX(un));
7818 
7819 	/*
7820 	 * Read and initialize the devid for the unit.
7821 	 */
7822 	if (un->un_f_devid_supported) {
7823 		sd_register_devid(ssc, devi, reservation_flag);
7824 	}
7825 	mutex_exit(SD_MUTEX(un));
7826 
7827 #if (defined(__fibre))
7828 	/*
7829 	 * Register callbacks for fibre only.  You can't do this solely
7830 	 * on the basis of the devid_type because this is hba specific.
7831 	 * We need to query our hba capabilities to find out whether to
7832 	 * register or not.
7833 	 */
7834 	if (un->un_f_is_fibre) {
7835 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7836 			sd_init_event_callbacks(un);
7837 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7838 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7839 			    un);
7840 		}
7841 	}
7842 #endif
7843 
7844 	if (un->un_f_opt_disable_cache == TRUE) {
7845 		/*
7846 		 * Disable both read cache and write cache.  This is
7847 		 * the historic behavior of the keywords in the config file.
7848 		 */
7849 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7850 		    0) {
7851 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7852 			    "sd_unit_attach: un:0x%p Could not disable "
7853 			    "caching", un);
7854 			goto devid_failed;
7855 		}
7856 	}
7857 
7858 	/*
7859 	 * Check the value of the WCE bit now and
7860 	 * set un_f_write_cache_enabled accordingly.
7861 	 */
7862 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7863 	mutex_enter(SD_MUTEX(un));
7864 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7865 	mutex_exit(SD_MUTEX(un));
7866 
7867 	/*
7868 	 * Check the value of the NV_SUP bit and set
7869 	 * un_f_suppress_cache_flush accordingly.
7870 	 */
7871 	sd_get_nv_sup(ssc);
7872 
7873 	/*
7874 	 * Find out what type of reservation this disk supports.
7875 	 */
7876 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7877 
7878 	switch (status) {
7879 	case 0:
7880 		/*
7881 		 * SCSI-3 reservations are supported.
7882 		 */
7883 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7884 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7885 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7886 		break;
7887 	case ENOTSUP:
7888 		/*
7889 		 * The PERSISTENT RESERVE IN command would not be recognized by
7890 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7891 		 */
7892 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7893 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7894 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7895 
7896 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7897 		break;
7898 	default:
7899 		/*
7900 		 * default to SCSI-3 reservations
7901 		 */
7902 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7903 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7904 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7905 
7906 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7907 		break;
7908 	}
7909 
7910 	/*
7911 	 * Set the pstat and error stat values here, so data obtained during the
7912 	 * previous attach-time routines is available.
7913 	 *
7914 	 * Note: This is a critical sequence that needs to be maintained:
7915 	 *	1) Instantiate the kstats before any routines using the iopath
7916 	 *	   (i.e. sd_send_scsi_cmd).
7917 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7918 	 *	   stats (sd_set_pstats)here, following
7919 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7920 	 *	   sd_cache_control().
7921 	 */
7922 
7923 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7924 		sd_set_pstats(un);
7925 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7926 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7927 	}
7928 
7929 	sd_set_errstats(un);
7930 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7931 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7932 
7933 
7934 	/*
7935 	 * After successfully attaching an instance, we record the information
7936 	 * of how many luns have been attached on the relative target and
7937 	 * controller for parallel SCSI. This information is used when sd tries
7938 	 * to set the tagged queuing capability in HBA.
7939 	 */
7940 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7941 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7942 	}
7943 
7944 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7945 	    "sd_unit_attach: un:0x%p exit success\n", un);
7946 
7947 	/* Uninitialize sd_ssc_t pointer */
7948 	sd_ssc_fini(ssc);
7949 
7950 	return (DDI_SUCCESS);
7951 
7952 	/*
7953 	 * An error occurred during the attach; clean up & return failure.
7954 	 */
7955 
7956 devid_failed:
7957 
7958 setup_pm_failed:
7959 	ddi_remove_minor_node(devi, NULL);
7960 
7961 cmlb_attach_failed:
7962 	/*
7963 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7964 	 */
7965 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7966 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7967 
7968 	/*
7969 	 * Refer to the comments of setting tagged-qing in the beginning of
7970 	 * sd_unit_attach. We can only disable tagged queuing when there is
7971 	 * no lun attached on the target.
7972 	 */
7973 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7974 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7975 	}
7976 
7977 	if (un->un_f_is_fibre == FALSE) {
7978 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7979 	}
7980 
7981 spinup_failed:
7982 
7983 	/* Uninitialize sd_ssc_t pointer */
7984 	sd_ssc_fini(ssc);
7985 
7986 	mutex_enter(SD_MUTEX(un));
7987 
7988 	/* Deallocate SCSI FMA memory spaces */
7989 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
7990 
7991 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7992 	if (un->un_direct_priority_timeid != NULL) {
7993 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7994 		un->un_direct_priority_timeid = NULL;
7995 		mutex_exit(SD_MUTEX(un));
7996 		(void) untimeout(temp_id);
7997 		mutex_enter(SD_MUTEX(un));
7998 	}
7999 
8000 	/* Cancel any pending start/stop timeouts */
8001 	if (un->un_startstop_timeid != NULL) {
8002 		timeout_id_t temp_id = un->un_startstop_timeid;
8003 		un->un_startstop_timeid = NULL;
8004 		mutex_exit(SD_MUTEX(un));
8005 		(void) untimeout(temp_id);
8006 		mutex_enter(SD_MUTEX(un));
8007 	}
8008 
8009 	/* Cancel any pending reset-throttle timeouts */
8010 	if (un->un_reset_throttle_timeid != NULL) {
8011 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8012 		un->un_reset_throttle_timeid = NULL;
8013 		mutex_exit(SD_MUTEX(un));
8014 		(void) untimeout(temp_id);
8015 		mutex_enter(SD_MUTEX(un));
8016 	}
8017 
8018 	/* Cancel any pending retry timeouts */
8019 	if (un->un_retry_timeid != NULL) {
8020 		timeout_id_t temp_id = un->un_retry_timeid;
8021 		un->un_retry_timeid = NULL;
8022 		mutex_exit(SD_MUTEX(un));
8023 		(void) untimeout(temp_id);
8024 		mutex_enter(SD_MUTEX(un));
8025 	}
8026 
8027 	/* Cancel any pending delayed cv broadcast timeouts */
8028 	if (un->un_dcvb_timeid != NULL) {
8029 		timeout_id_t temp_id = un->un_dcvb_timeid;
8030 		un->un_dcvb_timeid = NULL;
8031 		mutex_exit(SD_MUTEX(un));
8032 		(void) untimeout(temp_id);
8033 		mutex_enter(SD_MUTEX(un));
8034 	}
8035 
8036 	mutex_exit(SD_MUTEX(un));
8037 
8038 	/* There should not be any in-progress I/O so ASSERT this check */
8039 	ASSERT(un->un_ncmds_in_transport == 0);
8040 	ASSERT(un->un_ncmds_in_driver == 0);
8041 
8042 	/* Do not free the softstate if the callback routine is active */
8043 	sd_sync_with_callback(un);
8044 
8045 	/*
8046 	 * Partition stats apparently are not used with removables. These would
8047 	 * not have been created during attach, so no need to clean them up...
8048 	 */
8049 	if (un->un_errstats != NULL) {
8050 		kstat_delete(un->un_errstats);
8051 		un->un_errstats = NULL;
8052 	}
8053 
8054 create_errstats_failed:
8055 
8056 	if (un->un_stats != NULL) {
8057 		kstat_delete(un->un_stats);
8058 		un->un_stats = NULL;
8059 	}
8060 
8061 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8062 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8063 
8064 	ddi_prop_remove_all(devi);
8065 	sema_destroy(&un->un_semoclose);
8066 	cv_destroy(&un->un_state_cv);
8067 
8068 getrbuf_failed:
8069 
8070 	sd_free_rqs(un);
8071 
8072 alloc_rqs_failed:
8073 
8074 	devp->sd_private = NULL;
8075 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8076 
8077 get_softstate_failed:
8078 	/*
8079 	 * Note: the man pages are unclear as to whether or not doing a
8080 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8081 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8082 	 * ddi_get_soft_state() fails.  The implication seems to be
8083 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8084 	 */
8085 	ddi_soft_state_free(sd_state, instance);
8086 
8087 probe_failed:
8088 	scsi_unprobe(devp);
8089 
8090 	return (DDI_FAILURE);
8091 }
8092 
8093 
8094 /*
8095  *    Function: sd_unit_detach
8096  *
8097  * Description: Performs DDI_DETACH processing for sddetach().
8098  *
8099  * Return Code: DDI_SUCCESS
8100  *		DDI_FAILURE
8101  *
8102  *     Context: Kernel thread context
8103  */
8104 
8105 static int
8106 sd_unit_detach(dev_info_t *devi)
8107 {
8108 	struct scsi_device	*devp;
8109 	struct sd_lun		*un;
8110 	int			i;
8111 	int			tgt;
8112 	dev_t			dev;
8113 	dev_info_t		*pdip = ddi_get_parent(devi);
8114 	int			instance = ddi_get_instance(devi);
8115 
8116 	mutex_enter(&sd_detach_mutex);
8117 
8118 	/*
8119 	 * Fail the detach for any of the following:
8120 	 *  - Unable to get the sd_lun struct for the instance
8121 	 *  - A layered driver has an outstanding open on the instance
8122 	 *  - Another thread is already detaching this instance
8123 	 *  - Another thread is currently performing an open
8124 	 */
8125 	devp = ddi_get_driver_private(devi);
8126 	if ((devp == NULL) ||
8127 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8128 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8129 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8130 		mutex_exit(&sd_detach_mutex);
8131 		return (DDI_FAILURE);
8132 	}
8133 
8134 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8135 
8136 	/*
8137 	 * Mark this instance as currently in a detach, to inhibit any
8138 	 * opens from a layered driver.
8139 	 */
8140 	un->un_detach_count++;
8141 	mutex_exit(&sd_detach_mutex);
8142 
8143 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8144 	    SCSI_ADDR_PROP_TARGET, -1);
8145 
8146 	dev = sd_make_device(SD_DEVINFO(un));
8147 
8148 #ifndef lint
8149 	_NOTE(COMPETING_THREADS_NOW);
8150 #endif
8151 
8152 	mutex_enter(SD_MUTEX(un));
8153 
8154 	/*
8155 	 * Fail the detach if there are any outstanding layered
8156 	 * opens on this device.
8157 	 */
8158 	for (i = 0; i < NDKMAP; i++) {
8159 		if (un->un_ocmap.lyropen[i] != 0) {
8160 			goto err_notclosed;
8161 		}
8162 	}
8163 
8164 	/*
8165 	 * Verify there are NO outstanding commands issued to this device.
8166 	 * ie, un_ncmds_in_transport == 0.
8167 	 * It's possible to have outstanding commands through the physio
8168 	 * code path, even though everything's closed.
8169 	 */
8170 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8171 	    (un->un_direct_priority_timeid != NULL) ||
8172 	    (un->un_state == SD_STATE_RWAIT)) {
8173 		mutex_exit(SD_MUTEX(un));
8174 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8175 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8176 		goto err_stillbusy;
8177 	}
8178 
8179 	/*
8180 	 * If we have the device reserved, release the reservation.
8181 	 */
8182 	if ((un->un_resvd_status & SD_RESERVE) &&
8183 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8184 		mutex_exit(SD_MUTEX(un));
8185 		/*
8186 		 * Note: sd_reserve_release sends a command to the device
8187 		 * via the sd_ioctlcmd() path, and can sleep.
8188 		 */
8189 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8190 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8191 			    "sd_dr_detach: Cannot release reservation \n");
8192 		}
8193 	} else {
8194 		mutex_exit(SD_MUTEX(un));
8195 	}
8196 
8197 	/*
8198 	 * Untimeout any reserve recover, throttle reset, restart unit
8199 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8200 	 * from getting nulled by their callback functions.
8201 	 */
8202 	mutex_enter(SD_MUTEX(un));
8203 	if (un->un_resvd_timeid != NULL) {
8204 		timeout_id_t temp_id = un->un_resvd_timeid;
8205 		un->un_resvd_timeid = NULL;
8206 		mutex_exit(SD_MUTEX(un));
8207 		(void) untimeout(temp_id);
8208 		mutex_enter(SD_MUTEX(un));
8209 	}
8210 
8211 	if (un->un_reset_throttle_timeid != NULL) {
8212 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8213 		un->un_reset_throttle_timeid = NULL;
8214 		mutex_exit(SD_MUTEX(un));
8215 		(void) untimeout(temp_id);
8216 		mutex_enter(SD_MUTEX(un));
8217 	}
8218 
8219 	if (un->un_startstop_timeid != NULL) {
8220 		timeout_id_t temp_id = un->un_startstop_timeid;
8221 		un->un_startstop_timeid = NULL;
8222 		mutex_exit(SD_MUTEX(un));
8223 		(void) untimeout(temp_id);
8224 		mutex_enter(SD_MUTEX(un));
8225 	}
8226 
8227 	if (un->un_dcvb_timeid != NULL) {
8228 		timeout_id_t temp_id = un->un_dcvb_timeid;
8229 		un->un_dcvb_timeid = NULL;
8230 		mutex_exit(SD_MUTEX(un));
8231 		(void) untimeout(temp_id);
8232 	} else {
8233 		mutex_exit(SD_MUTEX(un));
8234 	}
8235 
8236 	/* Remove any pending reservation reclaim requests for this device */
8237 	sd_rmv_resv_reclaim_req(dev);
8238 
8239 	mutex_enter(SD_MUTEX(un));
8240 
8241 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8242 	if (un->un_direct_priority_timeid != NULL) {
8243 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8244 		un->un_direct_priority_timeid = NULL;
8245 		mutex_exit(SD_MUTEX(un));
8246 		(void) untimeout(temp_id);
8247 		mutex_enter(SD_MUTEX(un));
8248 	}
8249 
8250 	/* Cancel any active multi-host disk watch thread requests */
8251 	if (un->un_mhd_token != NULL) {
8252 		mutex_exit(SD_MUTEX(un));
8253 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8254 		if (scsi_watch_request_terminate(un->un_mhd_token,
8255 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8256 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8257 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8258 			/*
8259 			 * Note: We are returning here after having removed
8260 			 * some driver timeouts above. This is consistent with
8261 			 * the legacy implementation but perhaps the watch
8262 			 * terminate call should be made with the wait flag set.
8263 			 */
8264 			goto err_stillbusy;
8265 		}
8266 		mutex_enter(SD_MUTEX(un));
8267 		un->un_mhd_token = NULL;
8268 	}
8269 
8270 	if (un->un_swr_token != NULL) {
8271 		mutex_exit(SD_MUTEX(un));
8272 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8273 		if (scsi_watch_request_terminate(un->un_swr_token,
8274 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8275 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8276 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8277 			/*
8278 			 * Note: We are returning here after having removed
8279 			 * some driver timeouts above. This is consistent with
8280 			 * the legacy implementation but perhaps the watch
8281 			 * terminate call should be made with the wait flag set.
8282 			 */
8283 			goto err_stillbusy;
8284 		}
8285 		mutex_enter(SD_MUTEX(un));
8286 		un->un_swr_token = NULL;
8287 	}
8288 
8289 	mutex_exit(SD_MUTEX(un));
8290 
8291 	/*
8292 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8293 	 * if we have not registered one.
8294 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8295 	 */
8296 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8297 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8298 
8299 	/*
8300 	 * protect the timeout pointers from getting nulled by
8301 	 * their callback functions during the cancellation process.
8302 	 * In such a scenario untimeout can be invoked with a null value.
8303 	 */
8304 	_NOTE(NO_COMPETING_THREADS_NOW);
8305 
8306 	mutex_enter(&un->un_pm_mutex);
8307 	if (un->un_pm_idle_timeid != NULL) {
8308 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8309 		un->un_pm_idle_timeid = NULL;
8310 		mutex_exit(&un->un_pm_mutex);
8311 
8312 		/*
8313 		 * Timeout is active; cancel it.
8314 		 * Note that it'll never be active on a device
8315 		 * that does not support PM therefore we don't
8316 		 * have to check before calling pm_idle_component.
8317 		 */
8318 		(void) untimeout(temp_id);
8319 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8320 		mutex_enter(&un->un_pm_mutex);
8321 	}
8322 
8323 	/*
8324 	 * Check whether there is already a timeout scheduled for power
8325 	 * management. If yes then don't lower the power here, that's.
8326 	 * the timeout handler's job.
8327 	 */
8328 	if (un->un_pm_timeid != NULL) {
8329 		timeout_id_t temp_id = un->un_pm_timeid;
8330 		un->un_pm_timeid = NULL;
8331 		mutex_exit(&un->un_pm_mutex);
8332 		/*
8333 		 * Timeout is active; cancel it.
8334 		 * Note that it'll never be active on a device
8335 		 * that does not support PM therefore we don't
8336 		 * have to check before calling pm_idle_component.
8337 		 */
8338 		(void) untimeout(temp_id);
8339 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8340 
8341 	} else {
8342 		mutex_exit(&un->un_pm_mutex);
8343 		if ((un->un_f_pm_is_enabled == TRUE) &&
8344 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8345 		    DDI_SUCCESS)) {
8346 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8347 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8348 			/*
8349 			 * Fix for bug: 4297749, item # 13
8350 			 * The above test now includes a check to see if PM is
8351 			 * supported by this device before call
8352 			 * pm_lower_power().
8353 			 * Note, the following is not dead code. The call to
8354 			 * pm_lower_power above will generate a call back into
8355 			 * our sdpower routine which might result in a timeout
8356 			 * handler getting activated. Therefore the following
8357 			 * code is valid and necessary.
8358 			 */
8359 			mutex_enter(&un->un_pm_mutex);
8360 			if (un->un_pm_timeid != NULL) {
8361 				timeout_id_t temp_id = un->un_pm_timeid;
8362 				un->un_pm_timeid = NULL;
8363 				mutex_exit(&un->un_pm_mutex);
8364 				(void) untimeout(temp_id);
8365 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8366 			} else {
8367 				mutex_exit(&un->un_pm_mutex);
8368 			}
8369 		}
8370 	}
8371 
8372 	/*
8373 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8374 	 * Relocated here from above to be after the call to
8375 	 * pm_lower_power, which was getting errors.
8376 	 */
8377 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8378 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8379 
8380 	/*
8381 	 * Currently, tagged queuing is supported per target based by HBA.
8382 	 * Setting this per lun instance actually sets the capability of this
8383 	 * target in HBA, which affects those luns already attached on the
8384 	 * same target. So during detach, we can only disable this capability
8385 	 * only when this is the only lun left on this target. By doing
8386 	 * this, we assume a target has the same tagged queuing capability
8387 	 * for every lun. The condition can be removed when HBA is changed to
8388 	 * support per lun based tagged queuing capability.
8389 	 */
8390 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8391 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8392 	}
8393 
8394 	if (un->un_f_is_fibre == FALSE) {
8395 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8396 	}
8397 
8398 	/*
8399 	 * Remove any event callbacks, fibre only
8400 	 */
8401 	if (un->un_f_is_fibre == TRUE) {
8402 		if ((un->un_insert_event != NULL) &&
8403 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8404 		    DDI_SUCCESS)) {
8405 			/*
8406 			 * Note: We are returning here after having done
8407 			 * substantial cleanup above. This is consistent
8408 			 * with the legacy implementation but this may not
8409 			 * be the right thing to do.
8410 			 */
8411 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8412 			    "sd_dr_detach: Cannot cancel insert event\n");
8413 			goto err_remove_event;
8414 		}
8415 		un->un_insert_event = NULL;
8416 
8417 		if ((un->un_remove_event != NULL) &&
8418 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8419 		    DDI_SUCCESS)) {
8420 			/*
8421 			 * Note: We are returning here after having done
8422 			 * substantial cleanup above. This is consistent
8423 			 * with the legacy implementation but this may not
8424 			 * be the right thing to do.
8425 			 */
8426 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8427 			    "sd_dr_detach: Cannot cancel remove event\n");
8428 			goto err_remove_event;
8429 		}
8430 		un->un_remove_event = NULL;
8431 	}
8432 
8433 	/* Do not free the softstate if the callback routine is active */
8434 	sd_sync_with_callback(un);
8435 
8436 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8437 	cmlb_free_handle(&un->un_cmlbhandle);
8438 
8439 	/*
8440 	 * Hold the detach mutex here, to make sure that no other threads ever
8441 	 * can access a (partially) freed soft state structure.
8442 	 */
8443 	mutex_enter(&sd_detach_mutex);
8444 
8445 	/*
8446 	 * Clean up the soft state struct.
8447 	 * Cleanup is done in reverse order of allocs/inits.
8448 	 * At this point there should be no competing threads anymore.
8449 	 */
8450 
8451 	scsi_fm_fini(devp);
8452 
8453 	/*
8454 	 * Deallocate memory for SCSI FMA.
8455 	 */
8456 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8457 
8458 	/* Unregister and free device id. */
8459 	ddi_devid_unregister(devi);
8460 	if (un->un_devid) {
8461 		ddi_devid_free(un->un_devid);
8462 		un->un_devid = NULL;
8463 	}
8464 
8465 	/*
8466 	 * Destroy wmap cache if it exists.
8467 	 */
8468 	if (un->un_wm_cache != NULL) {
8469 		kmem_cache_destroy(un->un_wm_cache);
8470 		un->un_wm_cache = NULL;
8471 	}
8472 
8473 	/*
8474 	 * kstat cleanup is done in detach for all device types (4363169).
8475 	 * We do not want to fail detach if the device kstats are not deleted
8476 	 * since there is a confusion about the devo_refcnt for the device.
8477 	 * We just delete the kstats and let detach complete successfully.
8478 	 */
8479 	if (un->un_stats != NULL) {
8480 		kstat_delete(un->un_stats);
8481 		un->un_stats = NULL;
8482 	}
8483 	if (un->un_errstats != NULL) {
8484 		kstat_delete(un->un_errstats);
8485 		un->un_errstats = NULL;
8486 	}
8487 
8488 	/* Remove partition stats */
8489 	if (un->un_f_pkstats_enabled) {
8490 		for (i = 0; i < NSDMAP; i++) {
8491 			if (un->un_pstats[i] != NULL) {
8492 				kstat_delete(un->un_pstats[i]);
8493 				un->un_pstats[i] = NULL;
8494 			}
8495 		}
8496 	}
8497 
8498 	/* Remove xbuf registration */
8499 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8500 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8501 
8502 	/* Remove driver properties */
8503 	ddi_prop_remove_all(devi);
8504 
8505 	mutex_destroy(&un->un_pm_mutex);
8506 	cv_destroy(&un->un_pm_busy_cv);
8507 
8508 	cv_destroy(&un->un_wcc_cv);
8509 
8510 	/* Open/close semaphore */
8511 	sema_destroy(&un->un_semoclose);
8512 
8513 	/* Removable media condvar. */
8514 	cv_destroy(&un->un_state_cv);
8515 
8516 	/* Suspend/resume condvar. */
8517 	cv_destroy(&un->un_suspend_cv);
8518 	cv_destroy(&un->un_disk_busy_cv);
8519 
8520 	sd_free_rqs(un);
8521 
8522 	/* Free up soft state */
8523 	devp->sd_private = NULL;
8524 
8525 	bzero(un, sizeof (struct sd_lun));
8526 	ddi_soft_state_free(sd_state, instance);
8527 
8528 	mutex_exit(&sd_detach_mutex);
8529 
8530 	/* This frees up the INQUIRY data associated with the device. */
8531 	scsi_unprobe(devp);
8532 
8533 	/*
8534 	 * After successfully detaching an instance, we update the information
8535 	 * of how many luns have been attached in the relative target and
8536 	 * controller for parallel SCSI. This information is used when sd tries
8537 	 * to set the tagged queuing capability in HBA.
8538 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8539 	 * check if the device is parallel SCSI. However, we don't need to
8540 	 * check here because we've already checked during attach. No device
8541 	 * that is not parallel SCSI is in the chain.
8542 	 */
8543 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8544 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8545 	}
8546 
8547 	return (DDI_SUCCESS);
8548 
8549 err_notclosed:
8550 	mutex_exit(SD_MUTEX(un));
8551 
8552 err_stillbusy:
8553 	_NOTE(NO_COMPETING_THREADS_NOW);
8554 
8555 err_remove_event:
8556 	mutex_enter(&sd_detach_mutex);
8557 	un->un_detach_count--;
8558 	mutex_exit(&sd_detach_mutex);
8559 
8560 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8561 	return (DDI_FAILURE);
8562 }
8563 
8564 
8565 /*
8566  *    Function: sd_create_errstats
8567  *
8568  * Description: This routine instantiates the device error stats.
8569  *
8570  *		Note: During attach the stats are instantiated first so they are
8571  *		available for attach-time routines that utilize the driver
8572  *		iopath to send commands to the device. The stats are initialized
8573  *		separately so data obtained during some attach-time routines is
8574  *		available. (4362483)
8575  *
8576  *   Arguments: un - driver soft state (unit) structure
8577  *		instance - driver instance
8578  *
8579  *     Context: Kernel thread context
8580  */
8581 
8582 static void
8583 sd_create_errstats(struct sd_lun *un, int instance)
8584 {
8585 	struct	sd_errstats	*stp;
8586 	char	kstatmodule_err[KSTAT_STRLEN];
8587 	char	kstatname[KSTAT_STRLEN];
8588 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8589 
8590 	ASSERT(un != NULL);
8591 
8592 	if (un->un_errstats != NULL) {
8593 		return;
8594 	}
8595 
8596 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8597 	    "%serr", sd_label);
8598 	(void) snprintf(kstatname, sizeof (kstatname),
8599 	    "%s%d,err", sd_label, instance);
8600 
8601 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8602 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8603 
8604 	if (un->un_errstats == NULL) {
8605 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8606 		    "sd_create_errstats: Failed kstat_create\n");
8607 		return;
8608 	}
8609 
8610 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8611 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8612 	    KSTAT_DATA_UINT32);
8613 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8614 	    KSTAT_DATA_UINT32);
8615 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8616 	    KSTAT_DATA_UINT32);
8617 	kstat_named_init(&stp->sd_vid,		"Vendor",
8618 	    KSTAT_DATA_CHAR);
8619 	kstat_named_init(&stp->sd_pid,		"Product",
8620 	    KSTAT_DATA_CHAR);
8621 	kstat_named_init(&stp->sd_revision,	"Revision",
8622 	    KSTAT_DATA_CHAR);
8623 	kstat_named_init(&stp->sd_serial,	"Serial No",
8624 	    KSTAT_DATA_CHAR);
8625 	kstat_named_init(&stp->sd_capacity,	"Size",
8626 	    KSTAT_DATA_ULONGLONG);
8627 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8628 	    KSTAT_DATA_UINT32);
8629 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8630 	    KSTAT_DATA_UINT32);
8631 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8632 	    KSTAT_DATA_UINT32);
8633 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8634 	    KSTAT_DATA_UINT32);
8635 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8636 	    KSTAT_DATA_UINT32);
8637 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8638 	    KSTAT_DATA_UINT32);
8639 
8640 	un->un_errstats->ks_private = un;
8641 	un->un_errstats->ks_update  = nulldev;
8642 
8643 	kstat_install(un->un_errstats);
8644 }
8645 
8646 
8647 /*
8648  *    Function: sd_set_errstats
8649  *
8650  * Description: This routine sets the value of the vendor id, product id,
8651  *		revision, serial number, and capacity device error stats.
8652  *
8653  *		Note: During attach the stats are instantiated first so they are
8654  *		available for attach-time routines that utilize the driver
8655  *		iopath to send commands to the device. The stats are initialized
8656  *		separately so data obtained during some attach-time routines is
8657  *		available. (4362483)
8658  *
8659  *   Arguments: un - driver soft state (unit) structure
8660  *
8661  *     Context: Kernel thread context
8662  */
8663 
8664 static void
8665 sd_set_errstats(struct sd_lun *un)
8666 {
8667 	struct	sd_errstats	*stp;
8668 
8669 	ASSERT(un != NULL);
8670 	ASSERT(un->un_errstats != NULL);
8671 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8672 	ASSERT(stp != NULL);
8673 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8674 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8675 	(void) strncpy(stp->sd_revision.value.c,
8676 	    un->un_sd->sd_inq->inq_revision, 4);
8677 
8678 	/*
8679 	 * All the errstats are persistent across detach/attach,
8680 	 * so reset all the errstats here in case of the hot
8681 	 * replacement of disk drives, except for not changed
8682 	 * Sun qualified drives.
8683 	 */
8684 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8685 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8686 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8687 		stp->sd_softerrs.value.ui32 = 0;
8688 		stp->sd_harderrs.value.ui32 = 0;
8689 		stp->sd_transerrs.value.ui32 = 0;
8690 		stp->sd_rq_media_err.value.ui32 = 0;
8691 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8692 		stp->sd_rq_nodev_err.value.ui32 = 0;
8693 		stp->sd_rq_recov_err.value.ui32 = 0;
8694 		stp->sd_rq_illrq_err.value.ui32 = 0;
8695 		stp->sd_rq_pfa_err.value.ui32 = 0;
8696 	}
8697 
8698 	/*
8699 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8700 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8701 	 * (4376302))
8702 	 */
8703 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8704 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8705 		    sizeof (SD_INQUIRY(un)->inq_serial));
8706 	}
8707 
8708 	if (un->un_f_blockcount_is_valid != TRUE) {
8709 		/*
8710 		 * Set capacity error stat to 0 for no media. This ensures
8711 		 * a valid capacity is displayed in response to 'iostat -E'
8712 		 * when no media is present in the device.
8713 		 */
8714 		stp->sd_capacity.value.ui64 = 0;
8715 	} else {
8716 		/*
8717 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8718 		 * capacity.
8719 		 *
8720 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8721 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8722 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8723 		 */
8724 		stp->sd_capacity.value.ui64 = (uint64_t)
8725 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8726 	}
8727 }
8728 
8729 
8730 /*
8731  *    Function: sd_set_pstats
8732  *
8733  * Description: This routine instantiates and initializes the partition
8734  *              stats for each partition with more than zero blocks.
8735  *		(4363169)
8736  *
8737  *   Arguments: un - driver soft state (unit) structure
8738  *
8739  *     Context: Kernel thread context
8740  */
8741 
8742 static void
8743 sd_set_pstats(struct sd_lun *un)
8744 {
8745 	char	kstatname[KSTAT_STRLEN];
8746 	int	instance;
8747 	int	i;
8748 	diskaddr_t	nblks = 0;
8749 	char	*partname = NULL;
8750 
8751 	ASSERT(un != NULL);
8752 
8753 	instance = ddi_get_instance(SD_DEVINFO(un));
8754 
8755 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8756 	for (i = 0; i < NSDMAP; i++) {
8757 
8758 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8759 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8760 			continue;
8761 		mutex_enter(SD_MUTEX(un));
8762 
8763 		if ((un->un_pstats[i] == NULL) &&
8764 		    (nblks != 0)) {
8765 
8766 			(void) snprintf(kstatname, sizeof (kstatname),
8767 			    "%s%d,%s", sd_label, instance,
8768 			    partname);
8769 
8770 			un->un_pstats[i] = kstat_create(sd_label,
8771 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8772 			    1, KSTAT_FLAG_PERSISTENT);
8773 			if (un->un_pstats[i] != NULL) {
8774 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8775 				kstat_install(un->un_pstats[i]);
8776 			}
8777 		}
8778 		mutex_exit(SD_MUTEX(un));
8779 	}
8780 }
8781 
8782 
8783 #if (defined(__fibre))
8784 /*
8785  *    Function: sd_init_event_callbacks
8786  *
8787  * Description: This routine initializes the insertion and removal event
8788  *		callbacks. (fibre only)
8789  *
8790  *   Arguments: un - driver soft state (unit) structure
8791  *
8792  *     Context: Kernel thread context
8793  */
8794 
8795 static void
8796 sd_init_event_callbacks(struct sd_lun *un)
8797 {
8798 	ASSERT(un != NULL);
8799 
8800 	if ((un->un_insert_event == NULL) &&
8801 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8802 	    &un->un_insert_event) == DDI_SUCCESS)) {
8803 		/*
8804 		 * Add the callback for an insertion event
8805 		 */
8806 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8807 		    un->un_insert_event, sd_event_callback, (void *)un,
8808 		    &(un->un_insert_cb_id));
8809 	}
8810 
8811 	if ((un->un_remove_event == NULL) &&
8812 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8813 	    &un->un_remove_event) == DDI_SUCCESS)) {
8814 		/*
8815 		 * Add the callback for a removal event
8816 		 */
8817 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8818 		    un->un_remove_event, sd_event_callback, (void *)un,
8819 		    &(un->un_remove_cb_id));
8820 	}
8821 }
8822 
8823 
8824 /*
8825  *    Function: sd_event_callback
8826  *
8827  * Description: This routine handles insert/remove events (photon). The
8828  *		state is changed to OFFLINE which can be used to supress
8829  *		error msgs. (fibre only)
8830  *
8831  *   Arguments: un - driver soft state (unit) structure
8832  *
8833  *     Context: Callout thread context
8834  */
8835 /* ARGSUSED */
8836 static void
8837 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8838     void *bus_impldata)
8839 {
8840 	struct sd_lun *un = (struct sd_lun *)arg;
8841 
8842 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8843 	if (event == un->un_insert_event) {
8844 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8845 		mutex_enter(SD_MUTEX(un));
8846 		if (un->un_state == SD_STATE_OFFLINE) {
8847 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8848 				un->un_state = un->un_last_state;
8849 			} else {
8850 				/*
8851 				 * We have gone through SUSPEND/RESUME while
8852 				 * we were offline. Restore the last state
8853 				 */
8854 				un->un_state = un->un_save_state;
8855 			}
8856 		}
8857 		mutex_exit(SD_MUTEX(un));
8858 
8859 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8860 	} else if (event == un->un_remove_event) {
8861 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8862 		mutex_enter(SD_MUTEX(un));
8863 		/*
8864 		 * We need to handle an event callback that occurs during
8865 		 * the suspend operation, since we don't prevent it.
8866 		 */
8867 		if (un->un_state != SD_STATE_OFFLINE) {
8868 			if (un->un_state != SD_STATE_SUSPENDED) {
8869 				New_state(un, SD_STATE_OFFLINE);
8870 			} else {
8871 				un->un_last_state = SD_STATE_OFFLINE;
8872 			}
8873 		}
8874 		mutex_exit(SD_MUTEX(un));
8875 	} else {
8876 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8877 		    "!Unknown event\n");
8878 	}
8879 
8880 }
8881 #endif
8882 
8883 /*
8884  *    Function: sd_cache_control()
8885  *
8886  * Description: This routine is the driver entry point for setting
8887  *		read and write caching by modifying the WCE (write cache
8888  *		enable) and RCD (read cache disable) bits of mode
8889  *		page 8 (MODEPAGE_CACHING).
8890  *
8891  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8892  *                      structure for this target.
8893  *		rcd_flag - flag for controlling the read cache
8894  *		wce_flag - flag for controlling the write cache
8895  *
8896  * Return Code: EIO
8897  *		code returned by sd_send_scsi_MODE_SENSE and
8898  *		sd_send_scsi_MODE_SELECT
8899  *
8900  *     Context: Kernel Thread
8901  */
8902 
8903 static int
8904 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8905 {
8906 	struct mode_caching	*mode_caching_page;
8907 	uchar_t			*header;
8908 	size_t			buflen;
8909 	int			hdrlen;
8910 	int			bd_len;
8911 	int			rval = 0;
8912 	struct mode_header_grp2	*mhp;
8913 	struct sd_lun		*un;
8914 	int			status;
8915 
8916 	ASSERT(ssc != NULL);
8917 	un = ssc->ssc_un;
8918 	ASSERT(un != NULL);
8919 
8920 	/*
8921 	 * Do a test unit ready, otherwise a mode sense may not work if this
8922 	 * is the first command sent to the device after boot.
8923 	 */
8924 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8925 	if (status != 0)
8926 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8927 
8928 	if (un->un_f_cfg_is_atapi == TRUE) {
8929 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8930 	} else {
8931 		hdrlen = MODE_HEADER_LENGTH;
8932 	}
8933 
8934 	/*
8935 	 * Allocate memory for the retrieved mode page and its headers.  Set
8936 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8937 	 * we get all of the mode sense data otherwise, the mode select
8938 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8939 	 */
8940 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8941 	    sizeof (struct mode_cache_scsi3);
8942 
8943 	header = kmem_zalloc(buflen, KM_SLEEP);
8944 
8945 	/* Get the information from the device. */
8946 	if (un->un_f_cfg_is_atapi == TRUE) {
8947 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8948 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8949 	} else {
8950 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8951 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8952 	}
8953 
8954 	if (rval != 0) {
8955 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8956 		    "sd_cache_control: Mode Sense Failed\n");
8957 		goto mode_sense_failed;
8958 	}
8959 
8960 	/*
8961 	 * Determine size of Block Descriptors in order to locate
8962 	 * the mode page data. ATAPI devices return 0, SCSI devices
8963 	 * should return MODE_BLK_DESC_LENGTH.
8964 	 */
8965 	if (un->un_f_cfg_is_atapi == TRUE) {
8966 		mhp	= (struct mode_header_grp2 *)header;
8967 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8968 	} else {
8969 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8970 	}
8971 
8972 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8973 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
8974 		    "sd_cache_control: Mode Sense returned invalid block "
8975 		    "descriptor length\n");
8976 		rval = EIO;
8977 		goto mode_sense_failed;
8978 	}
8979 
8980 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8981 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8982 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
8983 		    "sd_cache_control: Mode Sense caching page code mismatch "
8984 		    "%d\n", mode_caching_page->mode_page.code);
8985 		rval = EIO;
8986 		goto mode_sense_failed;
8987 	}
8988 
8989 	/* Check the relevant bits on successful mode sense. */
8990 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8991 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8992 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8993 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8994 
8995 		size_t sbuflen;
8996 		uchar_t save_pg;
8997 
8998 		/*
8999 		 * Construct select buffer length based on the
9000 		 * length of the sense data returned.
9001 		 */
9002 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
9003 		    sizeof (struct mode_page) +
9004 		    (int)mode_caching_page->mode_page.length;
9005 
9006 		/*
9007 		 * Set the caching bits as requested.
9008 		 */
9009 		if (rcd_flag == SD_CACHE_ENABLE)
9010 			mode_caching_page->rcd = 0;
9011 		else if (rcd_flag == SD_CACHE_DISABLE)
9012 			mode_caching_page->rcd = 1;
9013 
9014 		if (wce_flag == SD_CACHE_ENABLE)
9015 			mode_caching_page->wce = 1;
9016 		else if (wce_flag == SD_CACHE_DISABLE)
9017 			mode_caching_page->wce = 0;
9018 
9019 		/*
9020 		 * Save the page if the mode sense says the
9021 		 * drive supports it.
9022 		 */
9023 		save_pg = mode_caching_page->mode_page.ps ?
9024 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9025 
9026 		/* Clear reserved bits before mode select. */
9027 		mode_caching_page->mode_page.ps = 0;
9028 
9029 		/*
9030 		 * Clear out mode header for mode select.
9031 		 * The rest of the retrieved page will be reused.
9032 		 */
9033 		bzero(header, hdrlen);
9034 
9035 		if (un->un_f_cfg_is_atapi == TRUE) {
9036 			mhp = (struct mode_header_grp2 *)header;
9037 			mhp->bdesc_length_hi = bd_len >> 8;
9038 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9039 		} else {
9040 			((struct mode_header *)header)->bdesc_length = bd_len;
9041 		}
9042 
9043 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9044 
9045 		/* Issue mode select to change the cache settings */
9046 		if (un->un_f_cfg_is_atapi == TRUE) {
9047 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9048 			    sbuflen, save_pg, SD_PATH_DIRECT);
9049 		} else {
9050 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9051 			    sbuflen, save_pg, SD_PATH_DIRECT);
9052 		}
9053 
9054 	}
9055 
9056 
9057 mode_sense_failed:
9058 
9059 	kmem_free(header, buflen);
9060 
9061 	if (rval != 0) {
9062 		if (rval == EIO)
9063 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9064 		else
9065 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9066 	}
9067 	return (rval);
9068 }
9069 
9070 
9071 /*
9072  *    Function: sd_get_write_cache_enabled()
9073  *
9074  * Description: This routine is the driver entry point for determining if
9075  *		write caching is enabled.  It examines the WCE (write cache
9076  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9077  *
9078  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9079  *                      structure for this target.
9080  *		is_enabled - pointer to int where write cache enabled state
9081  *		is returned (non-zero -> write cache enabled)
9082  *
9083  *
9084  * Return Code: EIO
9085  *		code returned by sd_send_scsi_MODE_SENSE
9086  *
9087  *     Context: Kernel Thread
9088  *
9089  * NOTE: If ioctl is added to disable write cache, this sequence should
9090  * be followed so that no locking is required for accesses to
9091  * un->un_f_write_cache_enabled:
9092  * 	do mode select to clear wce
9093  * 	do synchronize cache to flush cache
9094  * 	set un->un_f_write_cache_enabled = FALSE
9095  *
9096  * Conversely, an ioctl to enable the write cache should be done
9097  * in this order:
9098  * 	set un->un_f_write_cache_enabled = TRUE
9099  * 	do mode select to set wce
9100  */
9101 
9102 static int
9103 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9104 {
9105 	struct mode_caching	*mode_caching_page;
9106 	uchar_t			*header;
9107 	size_t			buflen;
9108 	int			hdrlen;
9109 	int			bd_len;
9110 	int			rval = 0;
9111 	struct sd_lun		*un;
9112 	int			status;
9113 
9114 	ASSERT(ssc != NULL);
9115 	un = ssc->ssc_un;
9116 	ASSERT(un != NULL);
9117 	ASSERT(is_enabled != NULL);
9118 
9119 	/* in case of error, flag as enabled */
9120 	*is_enabled = TRUE;
9121 
9122 	/*
9123 	 * Do a test unit ready, otherwise a mode sense may not work if this
9124 	 * is the first command sent to the device after boot.
9125 	 */
9126 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9127 
9128 	if (status != 0)
9129 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9130 
9131 	if (un->un_f_cfg_is_atapi == TRUE) {
9132 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9133 	} else {
9134 		hdrlen = MODE_HEADER_LENGTH;
9135 	}
9136 
9137 	/*
9138 	 * Allocate memory for the retrieved mode page and its headers.  Set
9139 	 * a pointer to the page itself.
9140 	 */
9141 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9142 	header = kmem_zalloc(buflen, KM_SLEEP);
9143 
9144 	/* Get the information from the device. */
9145 	if (un->un_f_cfg_is_atapi == TRUE) {
9146 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9147 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9148 	} else {
9149 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9150 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9151 	}
9152 
9153 	if (rval != 0) {
9154 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9155 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9156 		goto mode_sense_failed;
9157 	}
9158 
9159 	/*
9160 	 * Determine size of Block Descriptors in order to locate
9161 	 * the mode page data. ATAPI devices return 0, SCSI devices
9162 	 * should return MODE_BLK_DESC_LENGTH.
9163 	 */
9164 	if (un->un_f_cfg_is_atapi == TRUE) {
9165 		struct mode_header_grp2	*mhp;
9166 		mhp	= (struct mode_header_grp2 *)header;
9167 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9168 	} else {
9169 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9170 	}
9171 
9172 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9173 		/* FMA should make upset complain here */
9174 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9175 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9176 		    "block descriptor length\n");
9177 		rval = EIO;
9178 		goto mode_sense_failed;
9179 	}
9180 
9181 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9182 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9183 		/* FMA could make upset complain here */
9184 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9185 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9186 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9187 		rval = EIO;
9188 		goto mode_sense_failed;
9189 	}
9190 	*is_enabled = mode_caching_page->wce;
9191 
9192 mode_sense_failed:
9193 	if (rval == 0) {
9194 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9195 	} else if (rval == EIO) {
9196 		/*
9197 		 * Some disks do not support mode sense(6), we
9198 		 * should ignore this kind of error(sense key is
9199 		 * 0x5 - illegal request).
9200 		 */
9201 		uint8_t *sensep;
9202 		int senlen;
9203 
9204 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9205 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9206 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9207 
9208 		if (senlen > 0 &&
9209 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9210 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9211 		} else {
9212 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9213 		}
9214 	} else {
9215 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9216 	}
9217 	kmem_free(header, buflen);
9218 	return (rval);
9219 }
9220 
9221 /*
9222  *    Function: sd_get_nv_sup()
9223  *
9224  * Description: This routine is the driver entry point for
9225  * determining whether non-volatile cache is supported. This
9226  * determination process works as follows:
9227  *
9228  * 1. sd first queries sd.conf on whether
9229  * suppress_cache_flush bit is set for this device.
9230  *
9231  * 2. if not there, then queries the internal disk table.
9232  *
9233  * 3. if either sd.conf or internal disk table specifies
9234  * cache flush be suppressed, we don't bother checking
9235  * NV_SUP bit.
9236  *
9237  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9238  * the optional INQUIRY VPD page 0x86. If the device
9239  * supports VPD page 0x86, sd examines the NV_SUP
9240  * (non-volatile cache support) bit in the INQUIRY VPD page
9241  * 0x86:
9242  *   o If NV_SUP bit is set, sd assumes the device has a
9243  *   non-volatile cache and set the
9244  *   un_f_sync_nv_supported to TRUE.
9245  *   o Otherwise cache is not non-volatile,
9246  *   un_f_sync_nv_supported is set to FALSE.
9247  *
9248  * Arguments: un - driver soft state (unit) structure
9249  *
9250  * Return Code:
9251  *
9252  *     Context: Kernel Thread
9253  */
9254 
9255 static void
9256 sd_get_nv_sup(sd_ssc_t *ssc)
9257 {
9258 	int		rval		= 0;
9259 	uchar_t		*inq86		= NULL;
9260 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9261 	size_t		inq86_resid	= 0;
9262 	struct		dk_callback *dkc;
9263 	struct sd_lun	*un;
9264 
9265 	ASSERT(ssc != NULL);
9266 	un = ssc->ssc_un;
9267 	ASSERT(un != NULL);
9268 
9269 	mutex_enter(SD_MUTEX(un));
9270 
9271 	/*
9272 	 * Be conservative on the device's support of
9273 	 * SYNC_NV bit: un_f_sync_nv_supported is
9274 	 * initialized to be false.
9275 	 */
9276 	un->un_f_sync_nv_supported = FALSE;
9277 
9278 	/*
9279 	 * If either sd.conf or internal disk table
9280 	 * specifies cache flush be suppressed, then
9281 	 * we don't bother checking NV_SUP bit.
9282 	 */
9283 	if (un->un_f_suppress_cache_flush == TRUE) {
9284 		mutex_exit(SD_MUTEX(un));
9285 		return;
9286 	}
9287 
9288 	if (sd_check_vpd_page_support(ssc) == 0 &&
9289 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9290 		mutex_exit(SD_MUTEX(un));
9291 		/* collect page 86 data if available */
9292 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9293 
9294 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9295 		    0x01, 0x86, &inq86_resid);
9296 
9297 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9298 			SD_TRACE(SD_LOG_COMMON, un,
9299 			    "sd_get_nv_sup: \
9300 			    successfully get VPD page: %x \
9301 			    PAGE LENGTH: %x BYTE 6: %x\n",
9302 			    inq86[1], inq86[3], inq86[6]);
9303 
9304 			mutex_enter(SD_MUTEX(un));
9305 			/*
9306 			 * check the value of NV_SUP bit: only if the device
9307 			 * reports NV_SUP bit to be 1, the
9308 			 * un_f_sync_nv_supported bit will be set to true.
9309 			 */
9310 			if (inq86[6] & SD_VPD_NV_SUP) {
9311 				un->un_f_sync_nv_supported = TRUE;
9312 			}
9313 			mutex_exit(SD_MUTEX(un));
9314 		} else if (rval != 0) {
9315 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9316 		}
9317 
9318 		kmem_free(inq86, inq86_len);
9319 	} else {
9320 		mutex_exit(SD_MUTEX(un));
9321 	}
9322 
9323 	/*
9324 	 * Send a SYNC CACHE command to check whether
9325 	 * SYNC_NV bit is supported. This command should have
9326 	 * un_f_sync_nv_supported set to correct value.
9327 	 */
9328 	mutex_enter(SD_MUTEX(un));
9329 	if (un->un_f_sync_nv_supported) {
9330 		mutex_exit(SD_MUTEX(un));
9331 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9332 		dkc->dkc_flag = FLUSH_VOLATILE;
9333 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9334 
9335 		/*
9336 		 * Send a TEST UNIT READY command to the device. This should
9337 		 * clear any outstanding UNIT ATTENTION that may be present.
9338 		 */
9339 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9340 		if (rval != 0)
9341 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9342 
9343 		kmem_free(dkc, sizeof (struct dk_callback));
9344 	} else {
9345 		mutex_exit(SD_MUTEX(un));
9346 	}
9347 
9348 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9349 	    un_f_suppress_cache_flush is set to %d\n",
9350 	    un->un_f_suppress_cache_flush);
9351 }
9352 
9353 /*
9354  *    Function: sd_make_device
9355  *
9356  * Description: Utility routine to return the Solaris device number from
9357  *		the data in the device's dev_info structure.
9358  *
9359  * Return Code: The Solaris device number
9360  *
9361  *     Context: Any
9362  */
9363 
9364 static dev_t
9365 sd_make_device(dev_info_t *devi)
9366 {
9367 	return (makedevice(ddi_driver_major(devi),
9368 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9369 }
9370 
9371 
9372 /*
9373  *    Function: sd_pm_entry
9374  *
9375  * Description: Called at the start of a new command to manage power
9376  *		and busy status of a device. This includes determining whether
9377  *		the current power state of the device is sufficient for
9378  *		performing the command or whether it must be changed.
9379  *		The PM framework is notified appropriately.
9380  *		Only with a return status of DDI_SUCCESS will the
9381  *		component be busy to the framework.
9382  *
9383  *		All callers of sd_pm_entry must check the return status
9384  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9385  *		of DDI_FAILURE indicates the device failed to power up.
9386  *		In this case un_pm_count has been adjusted so the result
9387  *		on exit is still powered down, ie. count is less than 0.
9388  *		Calling sd_pm_exit with this count value hits an ASSERT.
9389  *
9390  * Return Code: DDI_SUCCESS or DDI_FAILURE
9391  *
9392  *     Context: Kernel thread context.
9393  */
9394 
9395 static int
9396 sd_pm_entry(struct sd_lun *un)
9397 {
9398 	int return_status = DDI_SUCCESS;
9399 
9400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9401 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9402 
9403 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9404 
9405 	if (un->un_f_pm_is_enabled == FALSE) {
9406 		SD_TRACE(SD_LOG_IO_PM, un,
9407 		    "sd_pm_entry: exiting, PM not enabled\n");
9408 		return (return_status);
9409 	}
9410 
9411 	/*
9412 	 * Just increment a counter if PM is enabled. On the transition from
9413 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9414 	 * the count with each IO and mark the device as idle when the count
9415 	 * hits 0.
9416 	 *
9417 	 * If the count is less than 0 the device is powered down. If a powered
9418 	 * down device is successfully powered up then the count must be
9419 	 * incremented to reflect the power up. Note that it'll get incremented
9420 	 * a second time to become busy.
9421 	 *
9422 	 * Because the following has the potential to change the device state
9423 	 * and must release the un_pm_mutex to do so, only one thread can be
9424 	 * allowed through at a time.
9425 	 */
9426 
9427 	mutex_enter(&un->un_pm_mutex);
9428 	while (un->un_pm_busy == TRUE) {
9429 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9430 	}
9431 	un->un_pm_busy = TRUE;
9432 
9433 	if (un->un_pm_count < 1) {
9434 
9435 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9436 
9437 		/*
9438 		 * Indicate we are now busy so the framework won't attempt to
9439 		 * power down the device. This call will only fail if either
9440 		 * we passed a bad component number or the device has no
9441 		 * components. Neither of these should ever happen.
9442 		 */
9443 		mutex_exit(&un->un_pm_mutex);
9444 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9445 		ASSERT(return_status == DDI_SUCCESS);
9446 
9447 		mutex_enter(&un->un_pm_mutex);
9448 
9449 		if (un->un_pm_count < 0) {
9450 			mutex_exit(&un->un_pm_mutex);
9451 
9452 			SD_TRACE(SD_LOG_IO_PM, un,
9453 			    "sd_pm_entry: power up component\n");
9454 
9455 			/*
9456 			 * pm_raise_power will cause sdpower to be called
9457 			 * which brings the device power level to the
9458 			 * desired state, ON in this case. If successful,
9459 			 * un_pm_count and un_power_level will be updated
9460 			 * appropriately.
9461 			 */
9462 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9463 			    SD_SPINDLE_ON);
9464 
9465 			mutex_enter(&un->un_pm_mutex);
9466 
9467 			if (return_status != DDI_SUCCESS) {
9468 				/*
9469 				 * Power up failed.
9470 				 * Idle the device and adjust the count
9471 				 * so the result on exit is that we're
9472 				 * still powered down, ie. count is less than 0.
9473 				 */
9474 				SD_TRACE(SD_LOG_IO_PM, un,
9475 				    "sd_pm_entry: power up failed,"
9476 				    " idle the component\n");
9477 
9478 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9479 				un->un_pm_count--;
9480 			} else {
9481 				/*
9482 				 * Device is powered up, verify the
9483 				 * count is non-negative.
9484 				 * This is debug only.
9485 				 */
9486 				ASSERT(un->un_pm_count == 0);
9487 			}
9488 		}
9489 
9490 		if (return_status == DDI_SUCCESS) {
9491 			/*
9492 			 * For performance, now that the device has been tagged
9493 			 * as busy, and it's known to be powered up, update the
9494 			 * chain types to use jump tables that do not include
9495 			 * pm. This significantly lowers the overhead and
9496 			 * therefore improves performance.
9497 			 */
9498 
9499 			mutex_exit(&un->un_pm_mutex);
9500 			mutex_enter(SD_MUTEX(un));
9501 			SD_TRACE(SD_LOG_IO_PM, un,
9502 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9503 			    un->un_uscsi_chain_type);
9504 
9505 			if (un->un_f_non_devbsize_supported) {
9506 				un->un_buf_chain_type =
9507 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9508 			} else {
9509 				un->un_buf_chain_type =
9510 				    SD_CHAIN_INFO_DISK_NO_PM;
9511 			}
9512 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9513 
9514 			SD_TRACE(SD_LOG_IO_PM, un,
9515 			    "             changed  uscsi_chain_type to   %d\n",
9516 			    un->un_uscsi_chain_type);
9517 			mutex_exit(SD_MUTEX(un));
9518 			mutex_enter(&un->un_pm_mutex);
9519 
9520 			if (un->un_pm_idle_timeid == NULL) {
9521 				/* 300 ms. */
9522 				un->un_pm_idle_timeid =
9523 				    timeout(sd_pm_idletimeout_handler, un,
9524 				    (drv_usectohz((clock_t)300000)));
9525 				/*
9526 				 * Include an extra call to busy which keeps the
9527 				 * device busy with-respect-to the PM layer
9528 				 * until the timer fires, at which time it'll
9529 				 * get the extra idle call.
9530 				 */
9531 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9532 			}
9533 		}
9534 	}
9535 	un->un_pm_busy = FALSE;
9536 	/* Next... */
9537 	cv_signal(&un->un_pm_busy_cv);
9538 
9539 	un->un_pm_count++;
9540 
9541 	SD_TRACE(SD_LOG_IO_PM, un,
9542 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9543 
9544 	mutex_exit(&un->un_pm_mutex);
9545 
9546 	return (return_status);
9547 }
9548 
9549 
9550 /*
9551  *    Function: sd_pm_exit
9552  *
9553  * Description: Called at the completion of a command to manage busy
9554  *		status for the device. If the device becomes idle the
9555  *		PM framework is notified.
9556  *
9557  *     Context: Kernel thread context
9558  */
9559 
9560 static void
9561 sd_pm_exit(struct sd_lun *un)
9562 {
9563 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9564 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9565 
9566 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9567 
9568 	/*
9569 	 * After attach the following flag is only read, so don't
9570 	 * take the penalty of acquiring a mutex for it.
9571 	 */
9572 	if (un->un_f_pm_is_enabled == TRUE) {
9573 
9574 		mutex_enter(&un->un_pm_mutex);
9575 		un->un_pm_count--;
9576 
9577 		SD_TRACE(SD_LOG_IO_PM, un,
9578 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9579 
9580 		ASSERT(un->un_pm_count >= 0);
9581 		if (un->un_pm_count == 0) {
9582 			mutex_exit(&un->un_pm_mutex);
9583 
9584 			SD_TRACE(SD_LOG_IO_PM, un,
9585 			    "sd_pm_exit: idle component\n");
9586 
9587 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9588 
9589 		} else {
9590 			mutex_exit(&un->un_pm_mutex);
9591 		}
9592 	}
9593 
9594 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9595 }
9596 
9597 
9598 /*
9599  *    Function: sdopen
9600  *
9601  * Description: Driver's open(9e) entry point function.
9602  *
9603  *   Arguments: dev_i   - pointer to device number
9604  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9605  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9606  *		cred_p  - user credential pointer
9607  *
9608  * Return Code: EINVAL
9609  *		ENXIO
9610  *		EIO
9611  *		EROFS
9612  *		EBUSY
9613  *
9614  *     Context: Kernel thread context
9615  */
9616 /* ARGSUSED */
9617 static int
9618 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9619 {
9620 	struct sd_lun	*un;
9621 	int		nodelay;
9622 	int		part;
9623 	uint64_t	partmask;
9624 	int		instance;
9625 	dev_t		dev;
9626 	int		rval = EIO;
9627 	diskaddr_t	nblks = 0;
9628 	diskaddr_t	label_cap;
9629 
9630 	/* Validate the open type */
9631 	if (otyp >= OTYPCNT) {
9632 		return (EINVAL);
9633 	}
9634 
9635 	dev = *dev_p;
9636 	instance = SDUNIT(dev);
9637 	mutex_enter(&sd_detach_mutex);
9638 
9639 	/*
9640 	 * Fail the open if there is no softstate for the instance, or
9641 	 * if another thread somewhere is trying to detach the instance.
9642 	 */
9643 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9644 	    (un->un_detach_count != 0)) {
9645 		mutex_exit(&sd_detach_mutex);
9646 		/*
9647 		 * The probe cache only needs to be cleared when open (9e) fails
9648 		 * with ENXIO (4238046).
9649 		 */
9650 		/*
9651 		 * un-conditionally clearing probe cache is ok with
9652 		 * separate sd/ssd binaries
9653 		 * x86 platform can be an issue with both parallel
9654 		 * and fibre in 1 binary
9655 		 */
9656 		sd_scsi_clear_probe_cache();
9657 		return (ENXIO);
9658 	}
9659 
9660 	/*
9661 	 * The un_layer_count is to prevent another thread in specfs from
9662 	 * trying to detach the instance, which can happen when we are
9663 	 * called from a higher-layer driver instead of thru specfs.
9664 	 * This will not be needed when DDI provides a layered driver
9665 	 * interface that allows specfs to know that an instance is in
9666 	 * use by a layered driver & should not be detached.
9667 	 *
9668 	 * Note: the semantics for layered driver opens are exactly one
9669 	 * close for every open.
9670 	 */
9671 	if (otyp == OTYP_LYR) {
9672 		un->un_layer_count++;
9673 	}
9674 
9675 	/*
9676 	 * Keep a count of the current # of opens in progress. This is because
9677 	 * some layered drivers try to call us as a regular open. This can
9678 	 * cause problems that we cannot prevent, however by keeping this count
9679 	 * we can at least keep our open and detach routines from racing against
9680 	 * each other under such conditions.
9681 	 */
9682 	un->un_opens_in_progress++;
9683 	mutex_exit(&sd_detach_mutex);
9684 
9685 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9686 	part	 = SDPART(dev);
9687 	partmask = 1 << part;
9688 
9689 	/*
9690 	 * We use a semaphore here in order to serialize
9691 	 * open and close requests on the device.
9692 	 */
9693 	sema_p(&un->un_semoclose);
9694 
9695 	mutex_enter(SD_MUTEX(un));
9696 
9697 	/*
9698 	 * All device accesses go thru sdstrategy() where we check
9699 	 * on suspend status but there could be a scsi_poll command,
9700 	 * which bypasses sdstrategy(), so we need to check pm
9701 	 * status.
9702 	 */
9703 
9704 	if (!nodelay) {
9705 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9706 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9707 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9708 		}
9709 
9710 		mutex_exit(SD_MUTEX(un));
9711 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9712 			rval = EIO;
9713 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9714 			    "sdopen: sd_pm_entry failed\n");
9715 			goto open_failed_with_pm;
9716 		}
9717 		mutex_enter(SD_MUTEX(un));
9718 	}
9719 
9720 	/* check for previous exclusive open */
9721 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9722 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9723 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9724 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9725 
9726 	if (un->un_exclopen & (partmask)) {
9727 		goto excl_open_fail;
9728 	}
9729 
9730 	if (flag & FEXCL) {
9731 		int i;
9732 		if (un->un_ocmap.lyropen[part]) {
9733 			goto excl_open_fail;
9734 		}
9735 		for (i = 0; i < (OTYPCNT - 1); i++) {
9736 			if (un->un_ocmap.regopen[i] & (partmask)) {
9737 				goto excl_open_fail;
9738 			}
9739 		}
9740 	}
9741 
9742 	/*
9743 	 * Check the write permission if this is a removable media device,
9744 	 * NDELAY has not been set, and writable permission is requested.
9745 	 *
9746 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9747 	 * attempt will fail with EIO as part of the I/O processing. This is a
9748 	 * more permissive implementation that allows the open to succeed and
9749 	 * WRITE attempts to fail when appropriate.
9750 	 */
9751 	if (un->un_f_chk_wp_open) {
9752 		if ((flag & FWRITE) && (!nodelay)) {
9753 			mutex_exit(SD_MUTEX(un));
9754 			/*
9755 			 * Defer the check for write permission on writable
9756 			 * DVD drive till sdstrategy and will not fail open even
9757 			 * if FWRITE is set as the device can be writable
9758 			 * depending upon the media and the media can change
9759 			 * after the call to open().
9760 			 */
9761 			if (un->un_f_dvdram_writable_device == FALSE) {
9762 				if (ISCD(un) || sr_check_wp(dev)) {
9763 				rval = EROFS;
9764 				mutex_enter(SD_MUTEX(un));
9765 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9766 				    "write to cd or write protected media\n");
9767 				goto open_fail;
9768 				}
9769 			}
9770 			mutex_enter(SD_MUTEX(un));
9771 		}
9772 	}
9773 
9774 	/*
9775 	 * If opening in NDELAY/NONBLOCK mode, just return.
9776 	 * Check if disk is ready and has a valid geometry later.
9777 	 */
9778 	if (!nodelay) {
9779 		sd_ssc_t	*ssc;
9780 
9781 		mutex_exit(SD_MUTEX(un));
9782 		ssc = sd_ssc_init(un);
9783 		rval = sd_ready_and_valid(ssc, part);
9784 		sd_ssc_fini(ssc);
9785 		mutex_enter(SD_MUTEX(un));
9786 		/*
9787 		 * Fail if device is not ready or if the number of disk
9788 		 * blocks is zero or negative for non CD devices.
9789 		 */
9790 
9791 		nblks = 0;
9792 
9793 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9794 			/* if cmlb_partinfo fails, nblks remains 0 */
9795 			mutex_exit(SD_MUTEX(un));
9796 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9797 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9798 			mutex_enter(SD_MUTEX(un));
9799 		}
9800 
9801 		if ((rval != SD_READY_VALID) ||
9802 		    (!ISCD(un) && nblks <= 0)) {
9803 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9804 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9805 			    "device not ready or invalid disk block value\n");
9806 			goto open_fail;
9807 		}
9808 #if defined(__i386) || defined(__amd64)
9809 	} else {
9810 		uchar_t *cp;
9811 		/*
9812 		 * x86 requires special nodelay handling, so that p0 is
9813 		 * always defined and accessible.
9814 		 * Invalidate geometry only if device is not already open.
9815 		 */
9816 		cp = &un->un_ocmap.chkd[0];
9817 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9818 			if (*cp != (uchar_t)0) {
9819 				break;
9820 			}
9821 			cp++;
9822 		}
9823 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9824 			mutex_exit(SD_MUTEX(un));
9825 			cmlb_invalidate(un->un_cmlbhandle,
9826 			    (void *)SD_PATH_DIRECT);
9827 			mutex_enter(SD_MUTEX(un));
9828 		}
9829 
9830 #endif
9831 	}
9832 
9833 	if (otyp == OTYP_LYR) {
9834 		un->un_ocmap.lyropen[part]++;
9835 	} else {
9836 		un->un_ocmap.regopen[otyp] |= partmask;
9837 	}
9838 
9839 	/* Set up open and exclusive open flags */
9840 	if (flag & FEXCL) {
9841 		un->un_exclopen |= (partmask);
9842 	}
9843 
9844 	/*
9845 	 * If the lun is EFI labeled and lun capacity is greater than the
9846 	 * capacity contained in the label, log a sys-event to notify the
9847 	 * interested module.
9848 	 * To avoid an infinite loop of logging sys-event, we only log the
9849 	 * event when the lun is not opened in NDELAY mode. The event handler
9850 	 * should open the lun in NDELAY mode.
9851 	 */
9852 	if (!(flag & FNDELAY)) {
9853 		mutex_exit(SD_MUTEX(un));
9854 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9855 		    (void*)SD_PATH_DIRECT) == 0) {
9856 			mutex_enter(SD_MUTEX(un));
9857 			if (un->un_f_blockcount_is_valid &&
9858 			    un->un_blockcount > label_cap) {
9859 				mutex_exit(SD_MUTEX(un));
9860 				sd_log_lun_expansion_event(un,
9861 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9862 				mutex_enter(SD_MUTEX(un));
9863 			}
9864 		} else {
9865 			mutex_enter(SD_MUTEX(un));
9866 		}
9867 	}
9868 
9869 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9870 	    "open of part %d type %d\n", part, otyp);
9871 
9872 	mutex_exit(SD_MUTEX(un));
9873 	if (!nodelay) {
9874 		sd_pm_exit(un);
9875 	}
9876 
9877 	sema_v(&un->un_semoclose);
9878 
9879 	mutex_enter(&sd_detach_mutex);
9880 	un->un_opens_in_progress--;
9881 	mutex_exit(&sd_detach_mutex);
9882 
9883 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9884 	return (DDI_SUCCESS);
9885 
9886 excl_open_fail:
9887 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9888 	rval = EBUSY;
9889 
9890 open_fail:
9891 	mutex_exit(SD_MUTEX(un));
9892 
9893 	/*
9894 	 * On a failed open we must exit the pm management.
9895 	 */
9896 	if (!nodelay) {
9897 		sd_pm_exit(un);
9898 	}
9899 open_failed_with_pm:
9900 	sema_v(&un->un_semoclose);
9901 
9902 	mutex_enter(&sd_detach_mutex);
9903 	un->un_opens_in_progress--;
9904 	if (otyp == OTYP_LYR) {
9905 		un->un_layer_count--;
9906 	}
9907 	mutex_exit(&sd_detach_mutex);
9908 
9909 	return (rval);
9910 }
9911 
9912 
9913 /*
9914  *    Function: sdclose
9915  *
9916  * Description: Driver's close(9e) entry point function.
9917  *
9918  *   Arguments: dev    - device number
9919  *		flag   - file status flag, informational only
9920  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9921  *		cred_p - user credential pointer
9922  *
9923  * Return Code: ENXIO
9924  *
9925  *     Context: Kernel thread context
9926  */
9927 /* ARGSUSED */
9928 static int
9929 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9930 {
9931 	struct sd_lun	*un;
9932 	uchar_t		*cp;
9933 	int		part;
9934 	int		nodelay;
9935 	int		rval = 0;
9936 
9937 	/* Validate the open type */
9938 	if (otyp >= OTYPCNT) {
9939 		return (ENXIO);
9940 	}
9941 
9942 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9943 		return (ENXIO);
9944 	}
9945 
9946 	part = SDPART(dev);
9947 	nodelay = flag & (FNDELAY | FNONBLOCK);
9948 
9949 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9950 	    "sdclose: close of part %d type %d\n", part, otyp);
9951 
9952 	/*
9953 	 * We use a semaphore here in order to serialize
9954 	 * open and close requests on the device.
9955 	 */
9956 	sema_p(&un->un_semoclose);
9957 
9958 	mutex_enter(SD_MUTEX(un));
9959 
9960 	/* Don't proceed if power is being changed. */
9961 	while (un->un_state == SD_STATE_PM_CHANGING) {
9962 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9963 	}
9964 
9965 	if (un->un_exclopen & (1 << part)) {
9966 		un->un_exclopen &= ~(1 << part);
9967 	}
9968 
9969 	/* Update the open partition map */
9970 	if (otyp == OTYP_LYR) {
9971 		un->un_ocmap.lyropen[part] -= 1;
9972 	} else {
9973 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9974 	}
9975 
9976 	cp = &un->un_ocmap.chkd[0];
9977 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9978 		if (*cp != NULL) {
9979 			break;
9980 		}
9981 		cp++;
9982 	}
9983 
9984 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9985 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9986 
9987 		/*
9988 		 * We avoid persistance upon the last close, and set
9989 		 * the throttle back to the maximum.
9990 		 */
9991 		un->un_throttle = un->un_saved_throttle;
9992 
9993 		if (un->un_state == SD_STATE_OFFLINE) {
9994 			if (un->un_f_is_fibre == FALSE) {
9995 				scsi_log(SD_DEVINFO(un), sd_label,
9996 				    CE_WARN, "offline\n");
9997 			}
9998 			mutex_exit(SD_MUTEX(un));
9999 			cmlb_invalidate(un->un_cmlbhandle,
10000 			    (void *)SD_PATH_DIRECT);
10001 			mutex_enter(SD_MUTEX(un));
10002 
10003 		} else {
10004 			/*
10005 			 * Flush any outstanding writes in NVRAM cache.
10006 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10007 			 * cmd, it may not work for non-Pluto devices.
10008 			 * SYNCHRONIZE CACHE is not required for removables,
10009 			 * except DVD-RAM drives.
10010 			 *
10011 			 * Also note: because SYNCHRONIZE CACHE is currently
10012 			 * the only command issued here that requires the
10013 			 * drive be powered up, only do the power up before
10014 			 * sending the Sync Cache command. If additional
10015 			 * commands are added which require a powered up
10016 			 * drive, the following sequence may have to change.
10017 			 *
10018 			 * And finally, note that parallel SCSI on SPARC
10019 			 * only issues a Sync Cache to DVD-RAM, a newly
10020 			 * supported device.
10021 			 */
10022 #if defined(__i386) || defined(__amd64)
10023 			if ((un->un_f_sync_cache_supported &&
10024 			    un->un_f_sync_cache_required) ||
10025 			    un->un_f_dvdram_writable_device == TRUE) {
10026 #else
10027 			if (un->un_f_dvdram_writable_device == TRUE) {
10028 #endif
10029 				mutex_exit(SD_MUTEX(un));
10030 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10031 					rval =
10032 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10033 					    NULL);
10034 					/* ignore error if not supported */
10035 					if (rval == ENOTSUP) {
10036 						rval = 0;
10037 					} else if (rval != 0) {
10038 						rval = EIO;
10039 					}
10040 					sd_pm_exit(un);
10041 				} else {
10042 					rval = EIO;
10043 				}
10044 				mutex_enter(SD_MUTEX(un));
10045 			}
10046 
10047 			/*
10048 			 * For devices which supports DOOR_LOCK, send an ALLOW
10049 			 * MEDIA REMOVAL command, but don't get upset if it
10050 			 * fails. We need to raise the power of the drive before
10051 			 * we can call sd_send_scsi_DOORLOCK()
10052 			 */
10053 			if (un->un_f_doorlock_supported) {
10054 				mutex_exit(SD_MUTEX(un));
10055 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10056 					sd_ssc_t	*ssc;
10057 
10058 					ssc = sd_ssc_init(un);
10059 					rval = sd_send_scsi_DOORLOCK(ssc,
10060 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10061 					if (rval != 0)
10062 						sd_ssc_assessment(ssc,
10063 						    SD_FMT_IGNORE);
10064 					sd_ssc_fini(ssc);
10065 
10066 					sd_pm_exit(un);
10067 					if (ISCD(un) && (rval != 0) &&
10068 					    (nodelay != 0)) {
10069 						rval = ENXIO;
10070 					}
10071 				} else {
10072 					rval = EIO;
10073 				}
10074 				mutex_enter(SD_MUTEX(un));
10075 			}
10076 
10077 			/*
10078 			 * If a device has removable media, invalidate all
10079 			 * parameters related to media, such as geometry,
10080 			 * blocksize, and blockcount.
10081 			 */
10082 			if (un->un_f_has_removable_media) {
10083 				sr_ejected(un);
10084 			}
10085 
10086 			/*
10087 			 * Destroy the cache (if it exists) which was
10088 			 * allocated for the write maps since this is
10089 			 * the last close for this media.
10090 			 */
10091 			if (un->un_wm_cache) {
10092 				/*
10093 				 * Check if there are pending commands.
10094 				 * and if there are give a warning and
10095 				 * do not destroy the cache.
10096 				 */
10097 				if (un->un_ncmds_in_driver > 0) {
10098 					scsi_log(SD_DEVINFO(un),
10099 					    sd_label, CE_WARN,
10100 					    "Unable to clean up memory "
10101 					    "because of pending I/O\n");
10102 				} else {
10103 					kmem_cache_destroy(
10104 					    un->un_wm_cache);
10105 					un->un_wm_cache = NULL;
10106 				}
10107 			}
10108 		}
10109 	}
10110 
10111 	mutex_exit(SD_MUTEX(un));
10112 	sema_v(&un->un_semoclose);
10113 
10114 	if (otyp == OTYP_LYR) {
10115 		mutex_enter(&sd_detach_mutex);
10116 		/*
10117 		 * The detach routine may run when the layer count
10118 		 * drops to zero.
10119 		 */
10120 		un->un_layer_count--;
10121 		mutex_exit(&sd_detach_mutex);
10122 	}
10123 
10124 	return (rval);
10125 }
10126 
10127 
10128 /*
10129  *    Function: sd_ready_and_valid
10130  *
10131  * Description: Test if device is ready and has a valid geometry.
10132  *
10133  *   Arguments: ssc - sd_ssc_t will contain un
10134  *		un  - driver soft state (unit) structure
10135  *
10136  * Return Code: SD_READY_VALID		ready and valid label
10137  *		SD_NOT_READY_VALID	not ready, no label
10138  *		SD_RESERVED_BY_OTHERS	reservation conflict
10139  *
10140  *     Context: Never called at interrupt context.
10141  */
10142 
10143 static int
10144 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10145 {
10146 	struct sd_errstats	*stp;
10147 	uint64_t		capacity;
10148 	uint_t			lbasize;
10149 	int			rval = SD_READY_VALID;
10150 	char			name_str[48];
10151 	int			is_valid;
10152 	struct sd_lun		*un;
10153 	int			status;
10154 
10155 	ASSERT(ssc != NULL);
10156 	un = ssc->ssc_un;
10157 	ASSERT(un != NULL);
10158 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10159 
10160 	mutex_enter(SD_MUTEX(un));
10161 	/*
10162 	 * If a device has removable media, we must check if media is
10163 	 * ready when checking if this device is ready and valid.
10164 	 */
10165 	if (un->un_f_has_removable_media) {
10166 		mutex_exit(SD_MUTEX(un));
10167 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10168 
10169 		if (status != 0) {
10170 			rval = SD_NOT_READY_VALID;
10171 			mutex_enter(SD_MUTEX(un));
10172 
10173 			/* Ignore all failed status for removalbe media */
10174 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10175 
10176 			goto done;
10177 		}
10178 
10179 		is_valid = SD_IS_VALID_LABEL(un);
10180 		mutex_enter(SD_MUTEX(un));
10181 		if (!is_valid ||
10182 		    (un->un_f_blockcount_is_valid == FALSE) ||
10183 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10184 
10185 			/* capacity has to be read every open. */
10186 			mutex_exit(SD_MUTEX(un));
10187 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10188 			    &lbasize, SD_PATH_DIRECT);
10189 
10190 			if (status != 0) {
10191 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10192 
10193 				cmlb_invalidate(un->un_cmlbhandle,
10194 				    (void *)SD_PATH_DIRECT);
10195 				mutex_enter(SD_MUTEX(un));
10196 				rval = SD_NOT_READY_VALID;
10197 
10198 				goto done;
10199 			} else {
10200 				mutex_enter(SD_MUTEX(un));
10201 				sd_update_block_info(un, lbasize, capacity);
10202 			}
10203 		}
10204 
10205 		/*
10206 		 * Check if the media in the device is writable or not.
10207 		 */
10208 		if (!is_valid && ISCD(un)) {
10209 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10210 		}
10211 
10212 	} else {
10213 		/*
10214 		 * Do a test unit ready to clear any unit attention from non-cd
10215 		 * devices.
10216 		 */
10217 		mutex_exit(SD_MUTEX(un));
10218 
10219 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10220 		if (status != 0) {
10221 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10222 		}
10223 
10224 		mutex_enter(SD_MUTEX(un));
10225 	}
10226 
10227 
10228 	/*
10229 	 * If this is a non 512 block device, allocate space for
10230 	 * the wmap cache. This is being done here since every time
10231 	 * a media is changed this routine will be called and the
10232 	 * block size is a function of media rather than device.
10233 	 */
10234 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10235 		if (!(un->un_wm_cache)) {
10236 			(void) snprintf(name_str, sizeof (name_str),
10237 			    "%s%d_cache",
10238 			    ddi_driver_name(SD_DEVINFO(un)),
10239 			    ddi_get_instance(SD_DEVINFO(un)));
10240 			un->un_wm_cache = kmem_cache_create(
10241 			    name_str, sizeof (struct sd_w_map),
10242 			    8, sd_wm_cache_constructor,
10243 			    sd_wm_cache_destructor, NULL,
10244 			    (void *)un, NULL, 0);
10245 			if (!(un->un_wm_cache)) {
10246 				rval = ENOMEM;
10247 				goto done;
10248 			}
10249 		}
10250 	}
10251 
10252 	if (un->un_state == SD_STATE_NORMAL) {
10253 		/*
10254 		 * If the target is not yet ready here (defined by a TUR
10255 		 * failure), invalidate the geometry and print an 'offline'
10256 		 * message. This is a legacy message, as the state of the
10257 		 * target is not actually changed to SD_STATE_OFFLINE.
10258 		 *
10259 		 * If the TUR fails for EACCES (Reservation Conflict),
10260 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10261 		 * reservation conflict. If the TUR fails for other
10262 		 * reasons, SD_NOT_READY_VALID will be returned.
10263 		 */
10264 		int err;
10265 
10266 		mutex_exit(SD_MUTEX(un));
10267 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10268 		mutex_enter(SD_MUTEX(un));
10269 
10270 		if (err != 0) {
10271 			mutex_exit(SD_MUTEX(un));
10272 			cmlb_invalidate(un->un_cmlbhandle,
10273 			    (void *)SD_PATH_DIRECT);
10274 			mutex_enter(SD_MUTEX(un));
10275 			if (err == EACCES) {
10276 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10277 				    "reservation conflict\n");
10278 				rval = SD_RESERVED_BY_OTHERS;
10279 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10280 			} else {
10281 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10282 				    "drive offline\n");
10283 				rval = SD_NOT_READY_VALID;
10284 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10285 			}
10286 			goto done;
10287 		}
10288 	}
10289 
10290 	if (un->un_f_format_in_progress == FALSE) {
10291 		mutex_exit(SD_MUTEX(un));
10292 
10293 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10294 		    (void *)SD_PATH_DIRECT);
10295 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10296 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10297 			rval = SD_NOT_READY_VALID;
10298 			mutex_enter(SD_MUTEX(un));
10299 
10300 			goto done;
10301 		}
10302 		if (un->un_f_pkstats_enabled) {
10303 			sd_set_pstats(un);
10304 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10305 			    "sd_ready_and_valid: un:0x%p pstats created and "
10306 			    "set\n", un);
10307 		}
10308 		mutex_enter(SD_MUTEX(un));
10309 	}
10310 
10311 	/*
10312 	 * If this device supports DOOR_LOCK command, try and send
10313 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10314 	 * if it fails. For a CD, however, it is an error
10315 	 */
10316 	if (un->un_f_doorlock_supported) {
10317 		mutex_exit(SD_MUTEX(un));
10318 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10319 		    SD_PATH_DIRECT);
10320 
10321 		if ((status != 0) && ISCD(un)) {
10322 			rval = SD_NOT_READY_VALID;
10323 			mutex_enter(SD_MUTEX(un));
10324 
10325 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10326 
10327 			goto done;
10328 		} else if (status != 0)
10329 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10330 		mutex_enter(SD_MUTEX(un));
10331 	}
10332 
10333 	/* The state has changed, inform the media watch routines */
10334 	un->un_mediastate = DKIO_INSERTED;
10335 	cv_broadcast(&un->un_state_cv);
10336 	rval = SD_READY_VALID;
10337 
10338 done:
10339 
10340 	/*
10341 	 * Initialize the capacity kstat value, if no media previously
10342 	 * (capacity kstat is 0) and a media has been inserted
10343 	 * (un_blockcount > 0).
10344 	 */
10345 	if (un->un_errstats != NULL) {
10346 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10347 		if ((stp->sd_capacity.value.ui64 == 0) &&
10348 		    (un->un_f_blockcount_is_valid == TRUE)) {
10349 			stp->sd_capacity.value.ui64 =
10350 			    (uint64_t)((uint64_t)un->un_blockcount *
10351 			    un->un_sys_blocksize);
10352 		}
10353 	}
10354 
10355 	mutex_exit(SD_MUTEX(un));
10356 	return (rval);
10357 }
10358 
10359 
10360 /*
10361  *    Function: sdmin
10362  *
10363  * Description: Routine to limit the size of a data transfer. Used in
10364  *		conjunction with physio(9F).
10365  *
10366  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10367  *
10368  *     Context: Kernel thread context.
10369  */
10370 
10371 static void
10372 sdmin(struct buf *bp)
10373 {
10374 	struct sd_lun	*un;
10375 	int		instance;
10376 
10377 	instance = SDUNIT(bp->b_edev);
10378 
10379 	un = ddi_get_soft_state(sd_state, instance);
10380 	ASSERT(un != NULL);
10381 
10382 	/*
10383 	 * We depend on DMA partial or buf breakup to restrict
10384 	 * IO size if any of them enabled.
10385 	 */
10386 	if (un->un_partial_dma_supported ||
10387 	    un->un_buf_breakup_supported) {
10388 		return;
10389 	}
10390 
10391 	if (bp->b_bcount > un->un_max_xfer_size) {
10392 		bp->b_bcount = un->un_max_xfer_size;
10393 	}
10394 }
10395 
10396 
10397 /*
10398  *    Function: sdread
10399  *
10400  * Description: Driver's read(9e) entry point function.
10401  *
10402  *   Arguments: dev   - device number
10403  *		uio   - structure pointer describing where data is to be stored
10404  *			in user's space
10405  *		cred_p  - user credential pointer
10406  *
10407  * Return Code: ENXIO
10408  *		EIO
10409  *		EINVAL
10410  *		value returned by physio
10411  *
10412  *     Context: Kernel thread context.
10413  */
10414 /* ARGSUSED */
10415 static int
10416 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10417 {
10418 	struct sd_lun	*un = NULL;
10419 	int		secmask;
10420 	int		err = 0;
10421 	sd_ssc_t	*ssc;
10422 
10423 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10424 		return (ENXIO);
10425 	}
10426 
10427 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10428 
10429 
10430 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10431 		mutex_enter(SD_MUTEX(un));
10432 		/*
10433 		 * Because the call to sd_ready_and_valid will issue I/O we
10434 		 * must wait here if either the device is suspended or
10435 		 * if it's power level is changing.
10436 		 */
10437 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10438 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10439 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10440 		}
10441 		un->un_ncmds_in_driver++;
10442 		mutex_exit(SD_MUTEX(un));
10443 
10444 		/* Initialize sd_ssc_t for internal uscsi commands */
10445 		ssc = sd_ssc_init(un);
10446 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10447 			err = EIO;
10448 		} else {
10449 			err = 0;
10450 		}
10451 		sd_ssc_fini(ssc);
10452 
10453 		mutex_enter(SD_MUTEX(un));
10454 		un->un_ncmds_in_driver--;
10455 		ASSERT(un->un_ncmds_in_driver >= 0);
10456 		mutex_exit(SD_MUTEX(un));
10457 		if (err != 0)
10458 			return (err);
10459 	}
10460 
10461 	/*
10462 	 * Read requests are restricted to multiples of the system block size.
10463 	 */
10464 	secmask = un->un_sys_blocksize - 1;
10465 
10466 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10467 		SD_ERROR(SD_LOG_READ_WRITE, un,
10468 		    "sdread: file offset not modulo %d\n",
10469 		    un->un_sys_blocksize);
10470 		err = EINVAL;
10471 	} else if (uio->uio_iov->iov_len & (secmask)) {
10472 		SD_ERROR(SD_LOG_READ_WRITE, un,
10473 		    "sdread: transfer length not modulo %d\n",
10474 		    un->un_sys_blocksize);
10475 		err = EINVAL;
10476 	} else {
10477 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10478 	}
10479 
10480 	return (err);
10481 }
10482 
10483 
10484 /*
10485  *    Function: sdwrite
10486  *
10487  * Description: Driver's write(9e) entry point function.
10488  *
10489  *   Arguments: dev   - device number
10490  *		uio   - structure pointer describing where data is stored in
10491  *			user's space
10492  *		cred_p  - user credential pointer
10493  *
10494  * Return Code: ENXIO
10495  *		EIO
10496  *		EINVAL
10497  *		value returned by physio
10498  *
10499  *     Context: Kernel thread context.
10500  */
10501 /* ARGSUSED */
10502 static int
10503 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10504 {
10505 	struct sd_lun	*un = NULL;
10506 	int		secmask;
10507 	int		err = 0;
10508 	sd_ssc_t	*ssc;
10509 
10510 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10511 		return (ENXIO);
10512 	}
10513 
10514 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10515 
10516 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10517 		mutex_enter(SD_MUTEX(un));
10518 		/*
10519 		 * Because the call to sd_ready_and_valid will issue I/O we
10520 		 * must wait here if either the device is suspended or
10521 		 * if it's power level is changing.
10522 		 */
10523 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10524 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10525 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10526 		}
10527 		un->un_ncmds_in_driver++;
10528 		mutex_exit(SD_MUTEX(un));
10529 
10530 		/* Initialize sd_ssc_t for internal uscsi commands */
10531 		ssc = sd_ssc_init(un);
10532 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10533 			err = EIO;
10534 		} else {
10535 			err = 0;
10536 		}
10537 		sd_ssc_fini(ssc);
10538 
10539 		mutex_enter(SD_MUTEX(un));
10540 		un->un_ncmds_in_driver--;
10541 		ASSERT(un->un_ncmds_in_driver >= 0);
10542 		mutex_exit(SD_MUTEX(un));
10543 		if (err != 0)
10544 			return (err);
10545 	}
10546 
10547 	/*
10548 	 * Write requests are restricted to multiples of the system block size.
10549 	 */
10550 	secmask = un->un_sys_blocksize - 1;
10551 
10552 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10553 		SD_ERROR(SD_LOG_READ_WRITE, un,
10554 		    "sdwrite: file offset not modulo %d\n",
10555 		    un->un_sys_blocksize);
10556 		err = EINVAL;
10557 	} else if (uio->uio_iov->iov_len & (secmask)) {
10558 		SD_ERROR(SD_LOG_READ_WRITE, un,
10559 		    "sdwrite: transfer length not modulo %d\n",
10560 		    un->un_sys_blocksize);
10561 		err = EINVAL;
10562 	} else {
10563 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10564 	}
10565 
10566 	return (err);
10567 }
10568 
10569 
10570 /*
10571  *    Function: sdaread
10572  *
10573  * Description: Driver's aread(9e) entry point function.
10574  *
10575  *   Arguments: dev   - device number
10576  *		aio   - structure pointer describing where data is to be stored
10577  *		cred_p  - user credential pointer
10578  *
10579  * Return Code: ENXIO
10580  *		EIO
10581  *		EINVAL
10582  *		value returned by aphysio
10583  *
10584  *     Context: Kernel thread context.
10585  */
10586 /* ARGSUSED */
10587 static int
10588 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10589 {
10590 	struct sd_lun	*un = NULL;
10591 	struct uio	*uio = aio->aio_uio;
10592 	int		secmask;
10593 	int		err = 0;
10594 	sd_ssc_t	*ssc;
10595 
10596 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10597 		return (ENXIO);
10598 	}
10599 
10600 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10601 
10602 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10603 		mutex_enter(SD_MUTEX(un));
10604 		/*
10605 		 * Because the call to sd_ready_and_valid will issue I/O we
10606 		 * must wait here if either the device is suspended or
10607 		 * if it's power level is changing.
10608 		 */
10609 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10610 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10611 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10612 		}
10613 		un->un_ncmds_in_driver++;
10614 		mutex_exit(SD_MUTEX(un));
10615 
10616 		/* Initialize sd_ssc_t for internal uscsi commands */
10617 		ssc = sd_ssc_init(un);
10618 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10619 			err = EIO;
10620 		} else {
10621 			err = 0;
10622 		}
10623 		sd_ssc_fini(ssc);
10624 
10625 		mutex_enter(SD_MUTEX(un));
10626 		un->un_ncmds_in_driver--;
10627 		ASSERT(un->un_ncmds_in_driver >= 0);
10628 		mutex_exit(SD_MUTEX(un));
10629 		if (err != 0)
10630 			return (err);
10631 	}
10632 
10633 	/*
10634 	 * Read requests are restricted to multiples of the system block size.
10635 	 */
10636 	secmask = un->un_sys_blocksize - 1;
10637 
10638 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10639 		SD_ERROR(SD_LOG_READ_WRITE, un,
10640 		    "sdaread: file offset not modulo %d\n",
10641 		    un->un_sys_blocksize);
10642 		err = EINVAL;
10643 	} else if (uio->uio_iov->iov_len & (secmask)) {
10644 		SD_ERROR(SD_LOG_READ_WRITE, un,
10645 		    "sdaread: transfer length not modulo %d\n",
10646 		    un->un_sys_blocksize);
10647 		err = EINVAL;
10648 	} else {
10649 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10650 	}
10651 
10652 	return (err);
10653 }
10654 
10655 
10656 /*
10657  *    Function: sdawrite
10658  *
10659  * Description: Driver's awrite(9e) entry point function.
10660  *
10661  *   Arguments: dev   - device number
10662  *		aio   - structure pointer describing where data is stored
10663  *		cred_p  - user credential pointer
10664  *
10665  * Return Code: ENXIO
10666  *		EIO
10667  *		EINVAL
10668  *		value returned by aphysio
10669  *
10670  *     Context: Kernel thread context.
10671  */
10672 /* ARGSUSED */
10673 static int
10674 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10675 {
10676 	struct sd_lun	*un = NULL;
10677 	struct uio	*uio = aio->aio_uio;
10678 	int		secmask;
10679 	int		err = 0;
10680 	sd_ssc_t	*ssc;
10681 
10682 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10683 		return (ENXIO);
10684 	}
10685 
10686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10687 
10688 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10689 		mutex_enter(SD_MUTEX(un));
10690 		/*
10691 		 * Because the call to sd_ready_and_valid will issue I/O we
10692 		 * must wait here if either the device is suspended or
10693 		 * if it's power level is changing.
10694 		 */
10695 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10696 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10697 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10698 		}
10699 		un->un_ncmds_in_driver++;
10700 		mutex_exit(SD_MUTEX(un));
10701 
10702 		/* Initialize sd_ssc_t for internal uscsi commands */
10703 		ssc = sd_ssc_init(un);
10704 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10705 			err = EIO;
10706 		} else {
10707 			err = 0;
10708 		}
10709 		sd_ssc_fini(ssc);
10710 
10711 		mutex_enter(SD_MUTEX(un));
10712 		un->un_ncmds_in_driver--;
10713 		ASSERT(un->un_ncmds_in_driver >= 0);
10714 		mutex_exit(SD_MUTEX(un));
10715 		if (err != 0)
10716 			return (err);
10717 	}
10718 
10719 	/*
10720 	 * Write requests are restricted to multiples of the system block size.
10721 	 */
10722 	secmask = un->un_sys_blocksize - 1;
10723 
10724 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10725 		SD_ERROR(SD_LOG_READ_WRITE, un,
10726 		    "sdawrite: file offset not modulo %d\n",
10727 		    un->un_sys_blocksize);
10728 		err = EINVAL;
10729 	} else if (uio->uio_iov->iov_len & (secmask)) {
10730 		SD_ERROR(SD_LOG_READ_WRITE, un,
10731 		    "sdawrite: transfer length not modulo %d\n",
10732 		    un->un_sys_blocksize);
10733 		err = EINVAL;
10734 	} else {
10735 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10736 	}
10737 
10738 	return (err);
10739 }
10740 
10741 
10742 
10743 
10744 
10745 /*
10746  * Driver IO processing follows the following sequence:
10747  *
10748  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10749  *         |                |                     ^
10750  *         v                v                     |
10751  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10752  *         |                |                     |                   |
10753  *         v                |                     |                   |
10754  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10755  *         |                |                     ^                   ^
10756  *         v                v                     |                   |
10757  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10758  *         |                |                     |                   |
10759  *     +---+                |                     +------------+      +-------+
10760  *     |                    |                                  |              |
10761  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10762  *     |                    v                                  |              |
10763  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10764  *     |                    |                                  ^              |
10765  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10766  *     |                    v                                  |              |
10767  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10768  *     |                    |                                  ^              |
10769  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10770  *     |                    v                                  |              |
10771  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10772  *     |                    |                                  ^              |
10773  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10774  *     |                    v                                  |              |
10775  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10776  *     |                    |                                  ^              |
10777  *     |                    |                                  |              |
10778  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10779  *                          |                           ^
10780  *                          v                           |
10781  *                   sd_core_iostart()                  |
10782  *                          |                           |
10783  *                          |                           +------>(*destroypkt)()
10784  *                          +-> sd_start_cmds() <-+     |           |
10785  *                          |                     |     |           v
10786  *                          |                     |     |  scsi_destroy_pkt(9F)
10787  *                          |                     |     |
10788  *                          +->(*initpkt)()       +- sdintr()
10789  *                          |  |                        |  |
10790  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10791  *                          |  +-> scsi_setup_cdb(9F)   |
10792  *                          |                           |
10793  *                          +--> scsi_transport(9F)     |
10794  *                                     |                |
10795  *                                     +----> SCSA ---->+
10796  *
10797  *
10798  * This code is based upon the following presumptions:
10799  *
10800  *   - iostart and iodone functions operate on buf(9S) structures. These
10801  *     functions perform the necessary operations on the buf(9S) and pass
10802  *     them along to the next function in the chain by using the macros
10803  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10804  *     (for iodone side functions).
10805  *
10806  *   - The iostart side functions may sleep. The iodone side functions
10807  *     are called under interrupt context and may NOT sleep. Therefore
10808  *     iodone side functions also may not call iostart side functions.
10809  *     (NOTE: iostart side functions should NOT sleep for memory, as
10810  *     this could result in deadlock.)
10811  *
10812  *   - An iostart side function may call its corresponding iodone side
10813  *     function directly (if necessary).
10814  *
10815  *   - In the event of an error, an iostart side function can return a buf(9S)
10816  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10817  *     b_error in the usual way of course).
10818  *
10819  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10820  *     requests to the iostart side functions.  The iostart side functions in
10821  *     this case would be called under the context of a taskq thread, so it's
10822  *     OK for them to block/sleep/spin in this case.
10823  *
10824  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10825  *     pass them along to the next function in the chain.  The corresponding
10826  *     iodone side functions must coalesce the "shadow" bufs and return
10827  *     the "original" buf to the next higher layer.
10828  *
10829  *   - The b_private field of the buf(9S) struct holds a pointer to
10830  *     an sd_xbuf struct, which contains information needed to
10831  *     construct the scsi_pkt for the command.
10832  *
10833  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10834  *     layer must acquire & release the SD_MUTEX(un) as needed.
10835  */
10836 
10837 
10838 /*
10839  * Create taskq for all targets in the system. This is created at
10840  * _init(9E) and destroyed at _fini(9E).
10841  *
10842  * Note: here we set the minalloc to a reasonably high number to ensure that
10843  * we will have an adequate supply of task entries available at interrupt time.
10844  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10845  * sd_create_taskq().  Since we do not want to sleep for allocations at
10846  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10847  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10848  * requests any one instant in time.
10849  */
10850 #define	SD_TASKQ_NUMTHREADS	8
10851 #define	SD_TASKQ_MINALLOC	256
10852 #define	SD_TASKQ_MAXALLOC	256
10853 
10854 static taskq_t	*sd_tq = NULL;
10855 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10856 
10857 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10858 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10859 
10860 /*
10861  * The following task queue is being created for the write part of
10862  * read-modify-write of non-512 block size devices.
10863  * Limit the number of threads to 1 for now. This number has been chosen
10864  * considering the fact that it applies only to dvd ram drives/MO drives
10865  * currently. Performance for which is not main criteria at this stage.
10866  * Note: It needs to be explored if we can use a single taskq in future
10867  */
10868 #define	SD_WMR_TASKQ_NUMTHREADS	1
10869 static taskq_t	*sd_wmr_tq = NULL;
10870 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10871 
10872 /*
10873  *    Function: sd_taskq_create
10874  *
10875  * Description: Create taskq thread(s) and preallocate task entries
10876  *
10877  * Return Code: Returns a pointer to the allocated taskq_t.
10878  *
10879  *     Context: Can sleep. Requires blockable context.
10880  *
10881  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10882  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10883  *		- taskq_create() will block for memory, also it will panic
10884  *		  if it cannot create the requested number of threads.
10885  *		- Currently taskq_create() creates threads that cannot be
10886  *		  swapped.
10887  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10888  *		  supply of taskq entries at interrupt time (ie, so that we
10889  *		  do not have to sleep for memory)
10890  */
10891 
10892 static void
10893 sd_taskq_create(void)
10894 {
10895 	char	taskq_name[TASKQ_NAMELEN];
10896 
10897 	ASSERT(sd_tq == NULL);
10898 	ASSERT(sd_wmr_tq == NULL);
10899 
10900 	(void) snprintf(taskq_name, sizeof (taskq_name),
10901 	    "%s_drv_taskq", sd_label);
10902 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10903 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10904 	    TASKQ_PREPOPULATE));
10905 
10906 	(void) snprintf(taskq_name, sizeof (taskq_name),
10907 	    "%s_rmw_taskq", sd_label);
10908 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10909 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10910 	    TASKQ_PREPOPULATE));
10911 }
10912 
10913 
10914 /*
10915  *    Function: sd_taskq_delete
10916  *
10917  * Description: Complementary cleanup routine for sd_taskq_create().
10918  *
10919  *     Context: Kernel thread context.
10920  */
10921 
10922 static void
10923 sd_taskq_delete(void)
10924 {
10925 	ASSERT(sd_tq != NULL);
10926 	ASSERT(sd_wmr_tq != NULL);
10927 	taskq_destroy(sd_tq);
10928 	taskq_destroy(sd_wmr_tq);
10929 	sd_tq = NULL;
10930 	sd_wmr_tq = NULL;
10931 }
10932 
10933 
10934 /*
10935  *    Function: sdstrategy
10936  *
10937  * Description: Driver's strategy (9E) entry point function.
10938  *
10939  *   Arguments: bp - pointer to buf(9S)
10940  *
10941  * Return Code: Always returns zero
10942  *
10943  *     Context: Kernel thread context.
10944  */
10945 
10946 static int
10947 sdstrategy(struct buf *bp)
10948 {
10949 	struct sd_lun *un;
10950 
10951 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10952 	if (un == NULL) {
10953 		bioerror(bp, EIO);
10954 		bp->b_resid = bp->b_bcount;
10955 		biodone(bp);
10956 		return (0);
10957 	}
10958 	/* As was done in the past, fail new cmds. if state is dumping. */
10959 	if (un->un_state == SD_STATE_DUMPING) {
10960 		bioerror(bp, ENXIO);
10961 		bp->b_resid = bp->b_bcount;
10962 		biodone(bp);
10963 		return (0);
10964 	}
10965 
10966 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10967 
10968 	/*
10969 	 * Commands may sneak in while we released the mutex in
10970 	 * DDI_SUSPEND, we should block new commands. However, old
10971 	 * commands that are still in the driver at this point should
10972 	 * still be allowed to drain.
10973 	 */
10974 	mutex_enter(SD_MUTEX(un));
10975 	/*
10976 	 * Must wait here if either the device is suspended or
10977 	 * if it's power level is changing.
10978 	 */
10979 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10980 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10981 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10982 	}
10983 
10984 	un->un_ncmds_in_driver++;
10985 
10986 	/*
10987 	 * atapi: Since we are running the CD for now in PIO mode we need to
10988 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10989 	 * the HBA's init_pkt routine.
10990 	 */
10991 	if (un->un_f_cfg_is_atapi == TRUE) {
10992 		mutex_exit(SD_MUTEX(un));
10993 		bp_mapin(bp);
10994 		mutex_enter(SD_MUTEX(un));
10995 	}
10996 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10997 	    un->un_ncmds_in_driver);
10998 
10999 	if (bp->b_flags & B_WRITE)
11000 		un->un_f_sync_cache_required = TRUE;
11001 
11002 	mutex_exit(SD_MUTEX(un));
11003 
11004 	/*
11005 	 * This will (eventually) allocate the sd_xbuf area and
11006 	 * call sd_xbuf_strategy().  We just want to return the
11007 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11008 	 * imized tail call which saves us a stack frame.
11009 	 */
11010 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11011 }
11012 
11013 
11014 /*
11015  *    Function: sd_xbuf_strategy
11016  *
11017  * Description: Function for initiating IO operations via the
11018  *		ddi_xbuf_qstrategy() mechanism.
11019  *
11020  *     Context: Kernel thread context.
11021  */
11022 
11023 static void
11024 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11025 {
11026 	struct sd_lun *un = arg;
11027 
11028 	ASSERT(bp != NULL);
11029 	ASSERT(xp != NULL);
11030 	ASSERT(un != NULL);
11031 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11032 
11033 	/*
11034 	 * Initialize the fields in the xbuf and save a pointer to the
11035 	 * xbuf in bp->b_private.
11036 	 */
11037 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11038 
11039 	/* Send the buf down the iostart chain */
11040 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11041 }
11042 
11043 
11044 /*
11045  *    Function: sd_xbuf_init
11046  *
11047  * Description: Prepare the given sd_xbuf struct for use.
11048  *
11049  *   Arguments: un - ptr to softstate
11050  *		bp - ptr to associated buf(9S)
11051  *		xp - ptr to associated sd_xbuf
11052  *		chain_type - IO chain type to use:
11053  *			SD_CHAIN_NULL
11054  *			SD_CHAIN_BUFIO
11055  *			SD_CHAIN_USCSI
11056  *			SD_CHAIN_DIRECT
11057  *			SD_CHAIN_DIRECT_PRIORITY
11058  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11059  *			initialization; may be NULL if none.
11060  *
11061  *     Context: Kernel thread context
11062  */
11063 
11064 static void
11065 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11066 	uchar_t chain_type, void *pktinfop)
11067 {
11068 	int index;
11069 
11070 	ASSERT(un != NULL);
11071 	ASSERT(bp != NULL);
11072 	ASSERT(xp != NULL);
11073 
11074 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11075 	    bp, chain_type);
11076 
11077 	xp->xb_un	= un;
11078 	xp->xb_pktp	= NULL;
11079 	xp->xb_pktinfo	= pktinfop;
11080 	xp->xb_private	= bp->b_private;
11081 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11082 
11083 	/*
11084 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11085 	 * upon the specified chain type to use.
11086 	 */
11087 	switch (chain_type) {
11088 	case SD_CHAIN_NULL:
11089 		/*
11090 		 * Fall thru to just use the values for the buf type, even
11091 		 * tho for the NULL chain these values will never be used.
11092 		 */
11093 		/* FALLTHRU */
11094 	case SD_CHAIN_BUFIO:
11095 		index = un->un_buf_chain_type;
11096 		break;
11097 	case SD_CHAIN_USCSI:
11098 		index = un->un_uscsi_chain_type;
11099 		break;
11100 	case SD_CHAIN_DIRECT:
11101 		index = un->un_direct_chain_type;
11102 		break;
11103 	case SD_CHAIN_DIRECT_PRIORITY:
11104 		index = un->un_priority_chain_type;
11105 		break;
11106 	default:
11107 		/* We're really broken if we ever get here... */
11108 		panic("sd_xbuf_init: illegal chain type!");
11109 		/*NOTREACHED*/
11110 	}
11111 
11112 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11113 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11114 
11115 	/*
11116 	 * It might be a bit easier to simply bzero the entire xbuf above,
11117 	 * but it turns out that since we init a fair number of members anyway,
11118 	 * we save a fair number cycles by doing explicit assignment of zero.
11119 	 */
11120 	xp->xb_pkt_flags	= 0;
11121 	xp->xb_dma_resid	= 0;
11122 	xp->xb_retry_count	= 0;
11123 	xp->xb_victim_retry_count = 0;
11124 	xp->xb_ua_retry_count	= 0;
11125 	xp->xb_nr_retry_count	= 0;
11126 	xp->xb_sense_bp		= NULL;
11127 	xp->xb_sense_status	= 0;
11128 	xp->xb_sense_state	= 0;
11129 	xp->xb_sense_resid	= 0;
11130 	xp->xb_ena		= 0;
11131 
11132 	bp->b_private	= xp;
11133 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11134 	bp->b_resid	= 0;
11135 	bp->av_forw	= NULL;
11136 	bp->av_back	= NULL;
11137 	bioerror(bp, 0);
11138 
11139 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11140 }
11141 
11142 
11143 /*
11144  *    Function: sd_uscsi_strategy
11145  *
11146  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11147  *
11148  *   Arguments: bp - buf struct ptr
11149  *
11150  * Return Code: Always returns 0
11151  *
11152  *     Context: Kernel thread context
11153  */
11154 
11155 static int
11156 sd_uscsi_strategy(struct buf *bp)
11157 {
11158 	struct sd_lun		*un;
11159 	struct sd_uscsi_info	*uip;
11160 	struct sd_xbuf		*xp;
11161 	uchar_t			chain_type;
11162 	uchar_t			cmd;
11163 
11164 	ASSERT(bp != NULL);
11165 
11166 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11167 	if (un == NULL) {
11168 		bioerror(bp, EIO);
11169 		bp->b_resid = bp->b_bcount;
11170 		biodone(bp);
11171 		return (0);
11172 	}
11173 
11174 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11175 
11176 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11177 
11178 	/*
11179 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11180 	 */
11181 	ASSERT(bp->b_private != NULL);
11182 	uip = (struct sd_uscsi_info *)bp->b_private;
11183 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11184 
11185 	mutex_enter(SD_MUTEX(un));
11186 	/*
11187 	 * atapi: Since we are running the CD for now in PIO mode we need to
11188 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11189 	 * the HBA's init_pkt routine.
11190 	 */
11191 	if (un->un_f_cfg_is_atapi == TRUE) {
11192 		mutex_exit(SD_MUTEX(un));
11193 		bp_mapin(bp);
11194 		mutex_enter(SD_MUTEX(un));
11195 	}
11196 	un->un_ncmds_in_driver++;
11197 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11198 	    un->un_ncmds_in_driver);
11199 
11200 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11201 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11202 		un->un_f_sync_cache_required = TRUE;
11203 
11204 	mutex_exit(SD_MUTEX(un));
11205 
11206 	switch (uip->ui_flags) {
11207 	case SD_PATH_DIRECT:
11208 		chain_type = SD_CHAIN_DIRECT;
11209 		break;
11210 	case SD_PATH_DIRECT_PRIORITY:
11211 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11212 		break;
11213 	default:
11214 		chain_type = SD_CHAIN_USCSI;
11215 		break;
11216 	}
11217 
11218 	/*
11219 	 * We may allocate extra buf for external USCSI commands. If the
11220 	 * application asks for bigger than 20-byte sense data via USCSI,
11221 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11222 	 */
11223 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11224 	    SENSE_LENGTH) {
11225 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11226 		    MAX_SENSE_LENGTH, KM_SLEEP);
11227 	} else {
11228 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11229 	}
11230 
11231 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11232 
11233 	/* Use the index obtained within xbuf_init */
11234 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11235 
11236 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11237 
11238 	return (0);
11239 }
11240 
11241 /*
11242  *    Function: sd_send_scsi_cmd
11243  *
11244  * Description: Runs a USCSI command for user (when called thru sdioctl),
11245  *		or for the driver
11246  *
11247  *   Arguments: dev - the dev_t for the device
11248  *		incmd - ptr to a valid uscsi_cmd struct
11249  *		flag - bit flag, indicating open settings, 32/64 bit type
11250  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11251  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11252  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11253  *			to use the USCSI "direct" chain and bypass the normal
11254  *			command waitq.
11255  *
11256  * Return Code: 0 -  successful completion of the given command
11257  *		EIO - scsi_uscsi_handle_command() failed
11258  *		ENXIO  - soft state not found for specified dev
11259  *		EINVAL
11260  *		EFAULT - copyin/copyout error
11261  *		return code of scsi_uscsi_handle_command():
11262  *			EIO
11263  *			ENXIO
11264  *			EACCES
11265  *
11266  *     Context: Waits for command to complete. Can sleep.
11267  */
11268 
11269 static int
11270 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11271 	enum uio_seg dataspace, int path_flag)
11272 {
11273 	struct sd_lun	*un;
11274 	sd_ssc_t	*ssc;
11275 	int		rval;
11276 
11277 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11278 	if (un == NULL) {
11279 		return (ENXIO);
11280 	}
11281 
11282 	/*
11283 	 * Using sd_ssc_send to handle uscsi cmd
11284 	 */
11285 	ssc = sd_ssc_init(un);
11286 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11287 	sd_ssc_fini(ssc);
11288 
11289 	return (rval);
11290 }
11291 
11292 /*
11293  *    Function: sd_ssc_init
11294  *
11295  * Description: Uscsi end-user call this function to initialize necessary
11296  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11297  *
11298  *              The return value of sd_send_scsi_cmd will be treated as a
11299  *              fault in various conditions. Even it is not Zero, some
11300  *              callers may ignore the return value. That is to say, we can
11301  *              not make an accurate assessment in sdintr, since if a
11302  *              command is failed in sdintr it does not mean the caller of
11303  *              sd_send_scsi_cmd will treat it as a real failure.
11304  *
11305  *              To avoid printing too many error logs for a failed uscsi
11306  *              packet that the caller may not treat it as a failure, the
11307  *              sd will keep silent for handling all uscsi commands.
11308  *
11309  *              During detach->attach and attach-open, for some types of
11310  *              problems, the driver should be providing information about
11311  *              the problem encountered. Device use USCSI_SILENT, which
11312  *              suppresses all driver information. The result is that no
11313  *              information about the problem is available. Being
11314  *              completely silent during this time is inappropriate. The
11315  *              driver needs a more selective filter than USCSI_SILENT, so
11316  *              that information related to faults is provided.
11317  *
11318  *              To make the accurate accessment, the caller  of
11319  *              sd_send_scsi_USCSI_CMD should take the ownership and
11320  *              get necessary information to print error messages.
11321  *
11322  *              If we want to print necessary info of uscsi command, we need to
11323  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11324  *              assessment. We use sd_ssc_init to alloc necessary
11325  *              structs for sending an uscsi command and we are also
11326  *              responsible for free the memory by calling
11327  *              sd_ssc_fini.
11328  *
11329  *              The calling secquences will look like:
11330  *              sd_ssc_init->
11331  *
11332  *                  ...
11333  *
11334  *                  sd_send_scsi_USCSI_CMD->
11335  *                      sd_ssc_send-> - - - sdintr
11336  *                  ...
11337  *
11338  *                  if we think the return value should be treated as a
11339  *                  failure, we make the accessment here and print out
11340  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11341  *
11342  *                  ...
11343  *
11344  *              sd_ssc_fini
11345  *
11346  *
11347  *   Arguments: un - pointer to driver soft state (unit) structure for this
11348  *                   target.
11349  *
11350  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11351  *                         uscsi_cmd and sd_uscsi_info.
11352  *                  NULL - if can not alloc memory for sd_ssc_t struct
11353  *
11354  *     Context: Kernel Thread.
11355  */
11356 static sd_ssc_t *
11357 sd_ssc_init(struct sd_lun *un)
11358 {
11359 	sd_ssc_t		*ssc;
11360 	struct uscsi_cmd	*ucmdp;
11361 	struct sd_uscsi_info	*uip;
11362 
11363 	ASSERT(un != NULL);
11364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11365 
11366 	/*
11367 	 * Allocate sd_ssc_t structure
11368 	 */
11369 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11370 
11371 	/*
11372 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11373 	 */
11374 	ucmdp = scsi_uscsi_alloc();
11375 
11376 	/*
11377 	 * Allocate sd_uscsi_info structure
11378 	 */
11379 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11380 
11381 	ssc->ssc_uscsi_cmd = ucmdp;
11382 	ssc->ssc_uscsi_info = uip;
11383 	ssc->ssc_un = un;
11384 
11385 	return (ssc);
11386 }
11387 
11388 /*
11389  * Function: sd_ssc_fini
11390  *
11391  * Description: To free sd_ssc_t and it's hanging off
11392  *
11393  * Arguments: ssc - struct pointer of sd_ssc_t.
11394  */
11395 static void
11396 sd_ssc_fini(sd_ssc_t *ssc)
11397 {
11398 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11399 
11400 	if (ssc->ssc_uscsi_info != NULL) {
11401 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11402 		ssc->ssc_uscsi_info = NULL;
11403 	}
11404 
11405 	kmem_free(ssc, sizeof (sd_ssc_t));
11406 	ssc = NULL;
11407 }
11408 
11409 /*
11410  * Function: sd_ssc_send
11411  *
11412  * Description: Runs a USCSI command for user when called through sdioctl,
11413  *              or for the driver.
11414  *
11415  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11416  *                    sd_uscsi_info in.
11417  *		incmd - ptr to a valid uscsi_cmd struct
11418  *		flag - bit flag, indicating open settings, 32/64 bit type
11419  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11420  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11421  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11422  *			to use the USCSI "direct" chain and bypass the normal
11423  *			command waitq.
11424  *
11425  * Return Code: 0 -  successful completion of the given command
11426  *		EIO - scsi_uscsi_handle_command() failed
11427  *		ENXIO  - soft state not found for specified dev
11428  *		EINVAL
11429  *		EFAULT - copyin/copyout error
11430  *		return code of scsi_uscsi_handle_command():
11431  *			EIO
11432  *			ENXIO
11433  *			EACCES
11434  *
11435  *     Context: Kernel Thread;
11436  *              Waits for command to complete. Can sleep.
11437  */
11438 static int
11439 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11440 	enum uio_seg dataspace, int path_flag)
11441 {
11442 	struct sd_uscsi_info	*uip;
11443 	struct uscsi_cmd	*uscmd;
11444 	struct sd_lun		*un;
11445 	dev_t			dev;
11446 
11447 	int	format = 0;
11448 	int	rval;
11449 
11450 	ASSERT(ssc != NULL);
11451 	un = ssc->ssc_un;
11452 	ASSERT(un != NULL);
11453 	uscmd = ssc->ssc_uscsi_cmd;
11454 	ASSERT(uscmd != NULL);
11455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11456 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11457 		/*
11458 		 * If enter here, it indicates that the previous uscsi
11459 		 * command has not been processed by sd_ssc_assessment.
11460 		 * This is violating our rules of FMA telemetry processing.
11461 		 * We should print out this message and the last undisposed
11462 		 * uscsi command.
11463 		 */
11464 		if (uscmd->uscsi_cdb != NULL) {
11465 			SD_INFO(SD_LOG_SDTEST, un,
11466 			    "sd_ssc_send is missing the alternative "
11467 			    "sd_ssc_assessment when running command 0x%x.\n",
11468 			    uscmd->uscsi_cdb[0]);
11469 		}
11470 		/*
11471 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11472 		 * the initial status.
11473 		 */
11474 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11475 	}
11476 
11477 	/*
11478 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11479 	 * followed to avoid missing FMA telemetries.
11480 	 */
11481 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11482 
11483 #ifdef SDDEBUG
11484 	switch (dataspace) {
11485 	case UIO_USERSPACE:
11486 		SD_TRACE(SD_LOG_IO, un,
11487 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11488 		break;
11489 	case UIO_SYSSPACE:
11490 		SD_TRACE(SD_LOG_IO, un,
11491 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11492 		break;
11493 	default:
11494 		SD_TRACE(SD_LOG_IO, un,
11495 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11496 		break;
11497 	}
11498 #endif
11499 
11500 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11501 	    SD_ADDRESS(un), &uscmd);
11502 	if (rval != 0) {
11503 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11504 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11505 		return (rval);
11506 	}
11507 
11508 	if ((uscmd->uscsi_cdb != NULL) &&
11509 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11510 		mutex_enter(SD_MUTEX(un));
11511 		un->un_f_format_in_progress = TRUE;
11512 		mutex_exit(SD_MUTEX(un));
11513 		format = 1;
11514 	}
11515 
11516 	/*
11517 	 * Allocate an sd_uscsi_info struct and fill it with the info
11518 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11519 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11520 	 * since we allocate the buf here in this function, we do not
11521 	 * need to preserve the prior contents of b_private.
11522 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11523 	 */
11524 	uip = ssc->ssc_uscsi_info;
11525 	uip->ui_flags = path_flag;
11526 	uip->ui_cmdp = uscmd;
11527 
11528 	/*
11529 	 * Commands sent with priority are intended for error recovery
11530 	 * situations, and do not have retries performed.
11531 	 */
11532 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11533 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11534 	}
11535 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11536 
11537 	dev = SD_GET_DEV(un);
11538 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11539 	    sd_uscsi_strategy, NULL, uip);
11540 
11541 	/*
11542 	 * mark ssc_flags right after handle_cmd to make sure
11543 	 * the uscsi has been sent
11544 	 */
11545 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11546 
11547 #ifdef SDDEBUG
11548 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11549 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11550 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11551 	if (uscmd->uscsi_bufaddr != NULL) {
11552 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11553 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11554 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11555 		if (dataspace == UIO_SYSSPACE) {
11556 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11557 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11558 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11559 		}
11560 	}
11561 #endif
11562 
11563 	if (format == 1) {
11564 		mutex_enter(SD_MUTEX(un));
11565 		un->un_f_format_in_progress = FALSE;
11566 		mutex_exit(SD_MUTEX(un));
11567 	}
11568 
11569 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11570 
11571 	return (rval);
11572 }
11573 
11574 /*
11575  *     Function: sd_ssc_print
11576  *
11577  * Description: Print information available to the console.
11578  *
11579  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11580  *                    sd_uscsi_info in.
11581  *            sd_severity - log level.
11582  *     Context: Kernel thread or interrupt context.
11583  */
11584 static void
11585 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11586 {
11587 	struct uscsi_cmd	*ucmdp;
11588 	struct scsi_device	*devp;
11589 	dev_info_t 		*devinfo;
11590 	uchar_t			*sensep;
11591 	int			senlen;
11592 	union scsi_cdb		*cdbp;
11593 	uchar_t			com;
11594 	extern struct scsi_key_strings scsi_cmds[];
11595 
11596 	ASSERT(ssc != NULL);
11597 	ASSERT(ssc->ssc_un != NULL);
11598 
11599 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
11600 		return;
11601 	ucmdp = ssc->ssc_uscsi_cmd;
11602 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11603 	devinfo = SD_DEVINFO(ssc->ssc_un);
11604 	ASSERT(ucmdp != NULL);
11605 	ASSERT(devp != NULL);
11606 	ASSERT(devinfo != NULL);
11607 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11608 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11609 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11610 
11611 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11612 	if (cdbp == NULL)
11613 		return;
11614 	/* We don't print log if no sense data available. */
11615 	if (senlen == 0)
11616 		sensep = NULL;
11617 	com = cdbp->scc_cmd;
11618 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11619 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11620 }
11621 
11622 /*
11623  *     Function: sd_ssc_assessment
11624  *
11625  * Description: We use this function to make an assessment at the point
11626  *              where SD driver may encounter a potential error.
11627  *
11628  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11629  *                  sd_uscsi_info in.
11630  *            tp_assess - a hint of strategy for ereport posting.
11631  *            Possible values of tp_assess include:
11632  *                SD_FMT_IGNORE - we don't post any ereport because we're
11633  *                sure that it is ok to ignore the underlying problems.
11634  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11635  *                but it might be not correct to ignore the underlying hardware
11636  *                error.
11637  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11638  *                payload driver-assessment of value "fail" or
11639  *                "fatal"(depending on what information we have here). This
11640  *                assessment value is usually set when SD driver think there
11641  *                is a potential error occurred(Typically, when return value
11642  *                of the SCSI command is EIO).
11643  *                SD_FMT_STANDARD - we will post an ereport with the payload
11644  *                driver-assessment of value "info". This assessment value is
11645  *                set when the SCSI command returned successfully and with
11646  *                sense data sent back.
11647  *
11648  *     Context: Kernel thread.
11649  */
11650 static void
11651 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11652 {
11653 	int senlen = 0;
11654 	struct uscsi_cmd *ucmdp = NULL;
11655 	struct sd_lun *un;
11656 
11657 	ASSERT(ssc != NULL);
11658 	un = ssc->ssc_un;
11659 	ASSERT(un != NULL);
11660 	ucmdp = ssc->ssc_uscsi_cmd;
11661 	ASSERT(ucmdp != NULL);
11662 
11663 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11664 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11665 	} else {
11666 		/*
11667 		 * If enter here, it indicates that we have a wrong
11668 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
11669 		 * both of which should be called in a pair in case of
11670 		 * loss of FMA telemetries.
11671 		 */
11672 		if (ucmdp->uscsi_cdb != NULL) {
11673 			SD_INFO(SD_LOG_SDTEST, un,
11674 			    "sd_ssc_assessment is missing the "
11675 			    "alternative sd_ssc_send when running 0x%x, "
11676 			    "or there are superfluous sd_ssc_assessment for "
11677 			    "the same sd_ssc_send.\n",
11678 			    ucmdp->uscsi_cdb[0]);
11679 		}
11680 		/*
11681 		 * Set the ssc_flags to the initial value to avoid passing
11682 		 * down dirty flags to the following sd_ssc_send function.
11683 		 */
11684 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11685 		return;
11686 	}
11687 
11688 	/*
11689 	 * Only handle an issued command which is waiting for assessment.
11690 	 * A command which is not issued will not have
11691 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
11692 	 */
11693 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11694 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11695 		return;
11696 	} else {
11697 		/*
11698 		 * For an issued command, we should clear this flag in
11699 		 * order to make the sd_ssc_t structure be used off
11700 		 * multiple uscsi commands.
11701 		 */
11702 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11703 	}
11704 
11705 	/*
11706 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
11707 	 * commands here. And we should clear the ssc_flags before return.
11708 	 */
11709 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11710 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11711 		return;
11712 	}
11713 
11714 	switch (tp_assess) {
11715 	case SD_FMT_IGNORE:
11716 	case SD_FMT_IGNORE_COMPROMISE:
11717 		break;
11718 	case SD_FMT_STATUS_CHECK:
11719 		/*
11720 		 * For a failed command(including the succeeded command
11721 		 * with invalid data sent back).
11722 		 */
11723 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11724 		break;
11725 	case SD_FMT_STANDARD:
11726 		/*
11727 		 * Always for the succeeded commands probably with sense
11728 		 * data sent back.
11729 		 * Limitation:
11730 		 *	We can only handle a succeeded command with sense
11731 		 *	data sent back when auto-request-sense is enabled.
11732 		 */
11733 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11734 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11735 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11736 		    (un->un_f_arq_enabled == TRUE) &&
11737 		    senlen > 0 &&
11738 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11739 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11740 		}
11741 		break;
11742 	default:
11743 		/*
11744 		 * Should not have other type of assessment.
11745 		 */
11746 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11747 		    "sd_ssc_assessment got wrong "
11748 		    "sd_type_assessment %d.\n", tp_assess);
11749 		break;
11750 	}
11751 	/*
11752 	 * Clear up the ssc_flags before return.
11753 	 */
11754 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11755 }
11756 
11757 /*
11758  *    Function: sd_ssc_post
11759  *
11760  * Description: 1. read the driver property to get fm-scsi-log flag.
11761  *              2. print log if fm_log_capable is non-zero.
11762  *              3. call sd_ssc_ereport_post to post ereport if possible.
11763  *
11764  *    Context: May be called from kernel thread or interrupt context.
11765  */
11766 static void
11767 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11768 {
11769 	struct sd_lun	*un;
11770 	int		sd_severity;
11771 
11772 	ASSERT(ssc != NULL);
11773 	un = ssc->ssc_un;
11774 	ASSERT(un != NULL);
11775 
11776 	/*
11777 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
11778 	 * by directly called from sdintr context.
11779 	 * We don't handle a non-disk drive(CD-ROM, removable media).
11780 	 * Clear the ssc_flags before return in case we've set
11781 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
11782 	 * driver.
11783 	 */
11784 	if (ISCD(un) || un->un_f_has_removable_media) {
11785 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11786 		return;
11787 	}
11788 
11789 	switch (sd_assess) {
11790 		case SD_FM_DRV_FATAL:
11791 			sd_severity = SCSI_ERR_FATAL;
11792 			break;
11793 		case SD_FM_DRV_RECOVERY:
11794 			sd_severity = SCSI_ERR_RECOVERED;
11795 			break;
11796 		case SD_FM_DRV_RETRY:
11797 			sd_severity = SCSI_ERR_RETRYABLE;
11798 			break;
11799 		case SD_FM_DRV_NOTICE:
11800 			sd_severity = SCSI_ERR_INFO;
11801 			break;
11802 		default:
11803 			sd_severity = SCSI_ERR_UNKNOWN;
11804 	}
11805 	/* print log */
11806 	sd_ssc_print(ssc, sd_severity);
11807 
11808 	/* always post ereport */
11809 	sd_ssc_ereport_post(ssc, sd_assess);
11810 }
11811 
11812 /*
11813  *    Function: sd_ssc_set_info
11814  *
11815  * Description: Mark ssc_flags and set ssc_info which would be the
11816  *              payload of uderr ereport. This function will cause
11817  *              sd_ssc_ereport_post to post uderr ereport only.
11818  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
11819  *              the function will also call SD_ERROR or scsi_log for a
11820  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
11821  *
11822  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11823  *                  sd_uscsi_info in.
11824  *            ssc_flags - indicate the sub-category of a uderr.
11825  *            comp - this argument is meaningful only when
11826  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
11827  *                   values include:
11828  *                   > 0, SD_ERROR is used with comp as the driver logging
11829  *                   component;
11830  *                   = 0, scsi-log is used to log error telemetries;
11831  *                   < 0, no log available for this telemetry.
11832  *
11833  *    Context: Kernel thread or interrupt context
11834  */
11835 static void
11836 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
11837 {
11838 	va_list	ap;
11839 
11840 	ASSERT(ssc != NULL);
11841 	ASSERT(ssc->ssc_un != NULL);
11842 
11843 	ssc->ssc_flags |= ssc_flags;
11844 	va_start(ap, fmt);
11845 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11846 	va_end(ap);
11847 
11848 	/*
11849 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
11850 	 * with invalid data sent back. For non-uscsi command, the
11851 	 * following code will be bypassed.
11852 	 */
11853 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
11854 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
11855 			/*
11856 			 * If the error belong to certain component and we
11857 			 * do not want it to show up on the console, we
11858 			 * will use SD_ERROR, otherwise scsi_log is
11859 			 * preferred.
11860 			 */
11861 			if (comp > 0) {
11862 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
11863 			} else if (comp == 0) {
11864 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
11865 				    CE_WARN, ssc->ssc_info);
11866 			}
11867 		}
11868 	}
11869 }
11870 
11871 /*
11872  *    Function: sd_buf_iodone
11873  *
11874  * Description: Frees the sd_xbuf & returns the buf to its originator.
11875  *
11876  *     Context: May be called from interrupt context.
11877  */
11878 /* ARGSUSED */
11879 static void
11880 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11881 {
11882 	struct sd_xbuf *xp;
11883 
11884 	ASSERT(un != NULL);
11885 	ASSERT(bp != NULL);
11886 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11887 
11888 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11889 
11890 	xp = SD_GET_XBUF(bp);
11891 	ASSERT(xp != NULL);
11892 
11893 	/* xbuf is gone after this */
11894 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
11895 		mutex_enter(SD_MUTEX(un));
11896 
11897 		/*
11898 		 * Grab time when the cmd completed.
11899 		 * This is used for determining if the system has been
11900 		 * idle long enough to make it idle to the PM framework.
11901 		 * This is for lowering the overhead, and therefore improving
11902 		 * performance per I/O operation.
11903 		 */
11904 		un->un_pm_idle_time = ddi_get_time();
11905 
11906 		un->un_ncmds_in_driver--;
11907 		ASSERT(un->un_ncmds_in_driver >= 0);
11908 		SD_INFO(SD_LOG_IO, un,
11909 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11910 		    un->un_ncmds_in_driver);
11911 
11912 		mutex_exit(SD_MUTEX(un));
11913 	}
11914 
11915 	biodone(bp);				/* bp is gone after this */
11916 
11917 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11918 }
11919 
11920 
11921 /*
11922  *    Function: sd_uscsi_iodone
11923  *
11924  * Description: Frees the sd_xbuf & returns the buf to its originator.
11925  *
11926  *     Context: May be called from interrupt context.
11927  */
11928 /* ARGSUSED */
11929 static void
11930 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11931 {
11932 	struct sd_xbuf *xp;
11933 
11934 	ASSERT(un != NULL);
11935 	ASSERT(bp != NULL);
11936 
11937 	xp = SD_GET_XBUF(bp);
11938 	ASSERT(xp != NULL);
11939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11940 
11941 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11942 
11943 	bp->b_private = xp->xb_private;
11944 
11945 	mutex_enter(SD_MUTEX(un));
11946 
11947 	/*
11948 	 * Grab time when the cmd completed.
11949 	 * This is used for determining if the system has been
11950 	 * idle long enough to make it idle to the PM framework.
11951 	 * This is for lowering the overhead, and therefore improving
11952 	 * performance per I/O operation.
11953 	 */
11954 	un->un_pm_idle_time = ddi_get_time();
11955 
11956 	un->un_ncmds_in_driver--;
11957 	ASSERT(un->un_ncmds_in_driver >= 0);
11958 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11959 	    un->un_ncmds_in_driver);
11960 
11961 	mutex_exit(SD_MUTEX(un));
11962 
11963 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
11964 	    SENSE_LENGTH) {
11965 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
11966 		    MAX_SENSE_LENGTH);
11967 	} else {
11968 		kmem_free(xp, sizeof (struct sd_xbuf));
11969 	}
11970 
11971 	biodone(bp);
11972 
11973 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11974 }
11975 
11976 
11977 /*
11978  *    Function: sd_mapblockaddr_iostart
11979  *
11980  * Description: Verify request lies within the partition limits for
11981  *		the indicated minor device.  Issue "overrun" buf if
11982  *		request would exceed partition range.  Converts
11983  *		partition-relative block address to absolute.
11984  *
11985  *     Context: Can sleep
11986  *
11987  *      Issues: This follows what the old code did, in terms of accessing
11988  *		some of the partition info in the unit struct without holding
11989  *		the mutext.  This is a general issue, if the partition info
11990  *		can be altered while IO is in progress... as soon as we send
11991  *		a buf, its partitioning can be invalid before it gets to the
11992  *		device.  Probably the right fix is to move partitioning out
11993  *		of the driver entirely.
11994  */
11995 
11996 static void
11997 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11998 {
11999 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12000 	daddr_t	blocknum;	/* Block number specified by the buf */
12001 	size_t	requested_nblocks;
12002 	size_t	available_nblocks;
12003 	int	partition;
12004 	diskaddr_t	partition_offset;
12005 	struct sd_xbuf *xp;
12006 
12007 	ASSERT(un != NULL);
12008 	ASSERT(bp != NULL);
12009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12010 
12011 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12012 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12013 
12014 	xp = SD_GET_XBUF(bp);
12015 	ASSERT(xp != NULL);
12016 
12017 	/*
12018 	 * If the geometry is not indicated as valid, attempt to access
12019 	 * the unit & verify the geometry/label. This can be the case for
12020 	 * removable-media devices, of if the device was opened in
12021 	 * NDELAY/NONBLOCK mode.
12022 	 */
12023 	partition = SDPART(bp->b_edev);
12024 
12025 	if (!SD_IS_VALID_LABEL(un)) {
12026 		sd_ssc_t *ssc;
12027 		/*
12028 		 * Initialize sd_ssc_t for internal uscsi commands
12029 		 * In case of potential porformance issue, we need
12030 		 * to alloc memory only if there is invalid label
12031 		 */
12032 		ssc = sd_ssc_init(un);
12033 
12034 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12035 			/*
12036 			 * For removable devices it is possible to start an
12037 			 * I/O without a media by opening the device in nodelay
12038 			 * mode. Also for writable CDs there can be many
12039 			 * scenarios where there is no geometry yet but volume
12040 			 * manager is trying to issue a read() just because
12041 			 * it can see TOC on the CD. So do not print a message
12042 			 * for removables.
12043 			 */
12044 			if (!un->un_f_has_removable_media) {
12045 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12046 				    "i/o to invalid geometry\n");
12047 			}
12048 			bioerror(bp, EIO);
12049 			bp->b_resid = bp->b_bcount;
12050 			SD_BEGIN_IODONE(index, un, bp);
12051 
12052 			sd_ssc_fini(ssc);
12053 			return;
12054 		}
12055 		sd_ssc_fini(ssc);
12056 	}
12057 
12058 	nblocks = 0;
12059 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12060 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12061 
12062 	/*
12063 	 * blocknum is the starting block number of the request. At this
12064 	 * point it is still relative to the start of the minor device.
12065 	 */
12066 	blocknum = xp->xb_blkno;
12067 
12068 	/*
12069 	 * Legacy: If the starting block number is one past the last block
12070 	 * in the partition, do not set B_ERROR in the buf.
12071 	 */
12072 	if (blocknum == nblocks)  {
12073 		goto error_exit;
12074 	}
12075 
12076 	/*
12077 	 * Confirm that the first block of the request lies within the
12078 	 * partition limits. Also the requested number of bytes must be
12079 	 * a multiple of the system block size.
12080 	 */
12081 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12082 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12083 		bp->b_flags |= B_ERROR;
12084 		goto error_exit;
12085 	}
12086 
12087 	/*
12088 	 * If the requsted # blocks exceeds the available # blocks, that
12089 	 * is an overrun of the partition.
12090 	 */
12091 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12092 	available_nblocks = (size_t)(nblocks - blocknum);
12093 	ASSERT(nblocks >= blocknum);
12094 
12095 	if (requested_nblocks > available_nblocks) {
12096 		/*
12097 		 * Allocate an "overrun" buf to allow the request to proceed
12098 		 * for the amount of space available in the partition. The
12099 		 * amount not transferred will be added into the b_resid
12100 		 * when the operation is complete. The overrun buf
12101 		 * replaces the original buf here, and the original buf
12102 		 * is saved inside the overrun buf, for later use.
12103 		 */
12104 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12105 		    (offset_t)(requested_nblocks - available_nblocks));
12106 		size_t count = bp->b_bcount - resid;
12107 		/*
12108 		 * Note: count is an unsigned entity thus it'll NEVER
12109 		 * be less than 0 so ASSERT the original values are
12110 		 * correct.
12111 		 */
12112 		ASSERT(bp->b_bcount >= resid);
12113 
12114 		bp = sd_bioclone_alloc(bp, count, blocknum,
12115 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12116 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12117 		ASSERT(xp != NULL);
12118 	}
12119 
12120 	/* At this point there should be no residual for this buf. */
12121 	ASSERT(bp->b_resid == 0);
12122 
12123 	/* Convert the block number to an absolute address. */
12124 	xp->xb_blkno += partition_offset;
12125 
12126 	SD_NEXT_IOSTART(index, un, bp);
12127 
12128 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12129 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12130 
12131 	return;
12132 
12133 error_exit:
12134 	bp->b_resid = bp->b_bcount;
12135 	SD_BEGIN_IODONE(index, un, bp);
12136 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12137 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12138 }
12139 
12140 
12141 /*
12142  *    Function: sd_mapblockaddr_iodone
12143  *
12144  * Description: Completion-side processing for partition management.
12145  *
12146  *     Context: May be called under interrupt context
12147  */
12148 
12149 static void
12150 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12151 {
12152 	/* int	partition; */	/* Not used, see below. */
12153 	ASSERT(un != NULL);
12154 	ASSERT(bp != NULL);
12155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12156 
12157 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12158 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12159 
12160 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12161 		/*
12162 		 * We have an "overrun" buf to deal with...
12163 		 */
12164 		struct sd_xbuf	*xp;
12165 		struct buf	*obp;	/* ptr to the original buf */
12166 
12167 		xp = SD_GET_XBUF(bp);
12168 		ASSERT(xp != NULL);
12169 
12170 		/* Retrieve the pointer to the original buf */
12171 		obp = (struct buf *)xp->xb_private;
12172 		ASSERT(obp != NULL);
12173 
12174 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12175 		bioerror(obp, bp->b_error);
12176 
12177 		sd_bioclone_free(bp);
12178 
12179 		/*
12180 		 * Get back the original buf.
12181 		 * Note that since the restoration of xb_blkno below
12182 		 * was removed, the sd_xbuf is not needed.
12183 		 */
12184 		bp = obp;
12185 		/*
12186 		 * xp = SD_GET_XBUF(bp);
12187 		 * ASSERT(xp != NULL);
12188 		 */
12189 	}
12190 
12191 	/*
12192 	 * Convert sd->xb_blkno back to a minor-device relative value.
12193 	 * Note: this has been commented out, as it is not needed in the
12194 	 * current implementation of the driver (ie, since this function
12195 	 * is at the top of the layering chains, so the info will be
12196 	 * discarded) and it is in the "hot" IO path.
12197 	 *
12198 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12199 	 * xp->xb_blkno -= un->un_offset[partition];
12200 	 */
12201 
12202 	SD_NEXT_IODONE(index, un, bp);
12203 
12204 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12205 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12206 }
12207 
12208 
12209 /*
12210  *    Function: sd_mapblocksize_iostart
12211  *
12212  * Description: Convert between system block size (un->un_sys_blocksize)
12213  *		and target block size (un->un_tgt_blocksize).
12214  *
12215  *     Context: Can sleep to allocate resources.
12216  *
12217  * Assumptions: A higher layer has already performed any partition validation,
12218  *		and converted the xp->xb_blkno to an absolute value relative
12219  *		to the start of the device.
12220  *
12221  *		It is also assumed that the higher layer has implemented
12222  *		an "overrun" mechanism for the case where the request would
12223  *		read/write beyond the end of a partition.  In this case we
12224  *		assume (and ASSERT) that bp->b_resid == 0.
12225  *
12226  *		Note: The implementation for this routine assumes the target
12227  *		block size remains constant between allocation and transport.
12228  */
12229 
12230 static void
12231 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12232 {
12233 	struct sd_mapblocksize_info	*bsp;
12234 	struct sd_xbuf			*xp;
12235 	offset_t first_byte;
12236 	daddr_t	start_block, end_block;
12237 	daddr_t	request_bytes;
12238 	ushort_t is_aligned = FALSE;
12239 
12240 	ASSERT(un != NULL);
12241 	ASSERT(bp != NULL);
12242 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12243 	ASSERT(bp->b_resid == 0);
12244 
12245 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12246 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12247 
12248 	/*
12249 	 * For a non-writable CD, a write request is an error
12250 	 */
12251 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12252 	    (un->un_f_mmc_writable_media == FALSE)) {
12253 		bioerror(bp, EIO);
12254 		bp->b_resid = bp->b_bcount;
12255 		SD_BEGIN_IODONE(index, un, bp);
12256 		return;
12257 	}
12258 
12259 	/*
12260 	 * We do not need a shadow buf if the device is using
12261 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12262 	 * In this case there is no layer-private data block allocated.
12263 	 */
12264 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12265 	    (bp->b_bcount == 0)) {
12266 		goto done;
12267 	}
12268 
12269 #if defined(__i386) || defined(__amd64)
12270 	/* We do not support non-block-aligned transfers for ROD devices */
12271 	ASSERT(!ISROD(un));
12272 #endif
12273 
12274 	xp = SD_GET_XBUF(bp);
12275 	ASSERT(xp != NULL);
12276 
12277 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12278 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12279 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12280 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12281 	    "request start block:0x%x\n", xp->xb_blkno);
12282 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12283 	    "request len:0x%x\n", bp->b_bcount);
12284 
12285 	/*
12286 	 * Allocate the layer-private data area for the mapblocksize layer.
12287 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12288 	 * struct to store the pointer to their layer-private data block, but
12289 	 * each layer also has the responsibility of restoring the prior
12290 	 * contents of xb_private before returning the buf/xbuf to the
12291 	 * higher layer that sent it.
12292 	 *
12293 	 * Here we save the prior contents of xp->xb_private into the
12294 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12295 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12296 	 * the layer-private area and returning the buf/xbuf to the layer
12297 	 * that sent it.
12298 	 *
12299 	 * Note that here we use kmem_zalloc for the allocation as there are
12300 	 * parts of the mapblocksize code that expect certain fields to be
12301 	 * zero unless explicitly set to a required value.
12302 	 */
12303 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12304 	bsp->mbs_oprivate = xp->xb_private;
12305 	xp->xb_private = bsp;
12306 
12307 	/*
12308 	 * This treats the data on the disk (target) as an array of bytes.
12309 	 * first_byte is the byte offset, from the beginning of the device,
12310 	 * to the location of the request. This is converted from a
12311 	 * un->un_sys_blocksize block address to a byte offset, and then back
12312 	 * to a block address based upon a un->un_tgt_blocksize block size.
12313 	 *
12314 	 * xp->xb_blkno should be absolute upon entry into this function,
12315 	 * but, but it is based upon partitions that use the "system"
12316 	 * block size. It must be adjusted to reflect the block size of
12317 	 * the target.
12318 	 *
12319 	 * Note that end_block is actually the block that follows the last
12320 	 * block of the request, but that's what is needed for the computation.
12321 	 */
12322 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12323 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12324 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12325 	    un->un_tgt_blocksize;
12326 
12327 	/* request_bytes is rounded up to a multiple of the target block size */
12328 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12329 
12330 	/*
12331 	 * See if the starting address of the request and the request
12332 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12333 	 * then we do not need to allocate a shadow buf to handle the request.
12334 	 */
12335 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12336 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12337 		is_aligned = TRUE;
12338 	}
12339 
12340 	if ((bp->b_flags & B_READ) == 0) {
12341 		/*
12342 		 * Lock the range for a write operation. An aligned request is
12343 		 * considered a simple write; otherwise the request must be a
12344 		 * read-modify-write.
12345 		 */
12346 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12347 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12348 	}
12349 
12350 	/*
12351 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12352 	 * where the READ command is generated for a read-modify-write. (The
12353 	 * write phase is deferred until after the read completes.)
12354 	 */
12355 	if (is_aligned == FALSE) {
12356 
12357 		struct sd_mapblocksize_info	*shadow_bsp;
12358 		struct sd_xbuf	*shadow_xp;
12359 		struct buf	*shadow_bp;
12360 
12361 		/*
12362 		 * Allocate the shadow buf and it associated xbuf. Note that
12363 		 * after this call the xb_blkno value in both the original
12364 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12365 		 * same: absolute relative to the start of the device, and
12366 		 * adjusted for the target block size. The b_blkno in the
12367 		 * shadow buf will also be set to this value. We should never
12368 		 * change b_blkno in the original bp however.
12369 		 *
12370 		 * Note also that the shadow buf will always need to be a
12371 		 * READ command, regardless of whether the incoming command
12372 		 * is a READ or a WRITE.
12373 		 */
12374 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12375 		    xp->xb_blkno,
12376 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12377 
12378 		shadow_xp = SD_GET_XBUF(shadow_bp);
12379 
12380 		/*
12381 		 * Allocate the layer-private data for the shadow buf.
12382 		 * (No need to preserve xb_private in the shadow xbuf.)
12383 		 */
12384 		shadow_xp->xb_private = shadow_bsp =
12385 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12386 
12387 		/*
12388 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12389 		 * to figure out where the start of the user data is (based upon
12390 		 * the system block size) in the data returned by the READ
12391 		 * command (which will be based upon the target blocksize). Note
12392 		 * that this is only really used if the request is unaligned.
12393 		 */
12394 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12395 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12396 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12397 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12398 
12399 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12400 
12401 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12402 
12403 		/* Transfer the wmap (if any) to the shadow buf */
12404 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12405 		bsp->mbs_wmp = NULL;
12406 
12407 		/*
12408 		 * The shadow buf goes on from here in place of the
12409 		 * original buf.
12410 		 */
12411 		shadow_bsp->mbs_orig_bp = bp;
12412 		bp = shadow_bp;
12413 	}
12414 
12415 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12416 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12417 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12418 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12419 	    request_bytes);
12420 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12421 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12422 
12423 done:
12424 	SD_NEXT_IOSTART(index, un, bp);
12425 
12426 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12427 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12428 }
12429 
12430 
12431 /*
12432  *    Function: sd_mapblocksize_iodone
12433  *
12434  * Description: Completion side processing for block-size mapping.
12435  *
12436  *     Context: May be called under interrupt context
12437  */
12438 
12439 static void
12440 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12441 {
12442 	struct sd_mapblocksize_info	*bsp;
12443 	struct sd_xbuf	*xp;
12444 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12445 	struct buf	*orig_bp;	/* ptr to the original buf */
12446 	offset_t	shadow_end;
12447 	offset_t	request_end;
12448 	offset_t	shadow_start;
12449 	ssize_t		copy_offset;
12450 	size_t		copy_length;
12451 	size_t		shortfall;
12452 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12453 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12454 
12455 	ASSERT(un != NULL);
12456 	ASSERT(bp != NULL);
12457 
12458 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12459 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12460 
12461 	/*
12462 	 * There is no shadow buf or layer-private data if the target is
12463 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12464 	 */
12465 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12466 	    (bp->b_bcount == 0)) {
12467 		goto exit;
12468 	}
12469 
12470 	xp = SD_GET_XBUF(bp);
12471 	ASSERT(xp != NULL);
12472 
12473 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12474 	bsp = xp->xb_private;
12475 
12476 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12477 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12478 
12479 	if (is_write) {
12480 		/*
12481 		 * For a WRITE request we must free up the block range that
12482 		 * we have locked up.  This holds regardless of whether this is
12483 		 * an aligned write request or a read-modify-write request.
12484 		 */
12485 		sd_range_unlock(un, bsp->mbs_wmp);
12486 		bsp->mbs_wmp = NULL;
12487 	}
12488 
12489 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12490 		/*
12491 		 * An aligned read or write command will have no shadow buf;
12492 		 * there is not much else to do with it.
12493 		 */
12494 		goto done;
12495 	}
12496 
12497 	orig_bp = bsp->mbs_orig_bp;
12498 	ASSERT(orig_bp != NULL);
12499 	orig_xp = SD_GET_XBUF(orig_bp);
12500 	ASSERT(orig_xp != NULL);
12501 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12502 
12503 	if (!is_write && has_wmap) {
12504 		/*
12505 		 * A READ with a wmap means this is the READ phase of a
12506 		 * read-modify-write. If an error occurred on the READ then
12507 		 * we do not proceed with the WRITE phase or copy any data.
12508 		 * Just release the write maps and return with an error.
12509 		 */
12510 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12511 			orig_bp->b_resid = orig_bp->b_bcount;
12512 			bioerror(orig_bp, bp->b_error);
12513 			sd_range_unlock(un, bsp->mbs_wmp);
12514 			goto freebuf_done;
12515 		}
12516 	}
12517 
12518 	/*
12519 	 * Here is where we set up to copy the data from the shadow buf
12520 	 * into the space associated with the original buf.
12521 	 *
12522 	 * To deal with the conversion between block sizes, these
12523 	 * computations treat the data as an array of bytes, with the
12524 	 * first byte (byte 0) corresponding to the first byte in the
12525 	 * first block on the disk.
12526 	 */
12527 
12528 	/*
12529 	 * shadow_start and shadow_len indicate the location and size of
12530 	 * the data returned with the shadow IO request.
12531 	 */
12532 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12533 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12534 
12535 	/*
12536 	 * copy_offset gives the offset (in bytes) from the start of the first
12537 	 * block of the READ request to the beginning of the data.  We retrieve
12538 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12539 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12540 	 * data to be copied (in bytes).
12541 	 */
12542 	copy_offset  = bsp->mbs_copy_offset;
12543 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12544 	copy_length  = orig_bp->b_bcount;
12545 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12546 
12547 	/*
12548 	 * Set up the resid and error fields of orig_bp as appropriate.
12549 	 */
12550 	if (shadow_end >= request_end) {
12551 		/* We got all the requested data; set resid to zero */
12552 		orig_bp->b_resid = 0;
12553 	} else {
12554 		/*
12555 		 * We failed to get enough data to fully satisfy the original
12556 		 * request. Just copy back whatever data we got and set
12557 		 * up the residual and error code as required.
12558 		 *
12559 		 * 'shortfall' is the amount by which the data received with the
12560 		 * shadow buf has "fallen short" of the requested amount.
12561 		 */
12562 		shortfall = (size_t)(request_end - shadow_end);
12563 
12564 		if (shortfall > orig_bp->b_bcount) {
12565 			/*
12566 			 * We did not get enough data to even partially
12567 			 * fulfill the original request.  The residual is
12568 			 * equal to the amount requested.
12569 			 */
12570 			orig_bp->b_resid = orig_bp->b_bcount;
12571 		} else {
12572 			/*
12573 			 * We did not get all the data that we requested
12574 			 * from the device, but we will try to return what
12575 			 * portion we did get.
12576 			 */
12577 			orig_bp->b_resid = shortfall;
12578 		}
12579 		ASSERT(copy_length >= orig_bp->b_resid);
12580 		copy_length  -= orig_bp->b_resid;
12581 	}
12582 
12583 	/* Propagate the error code from the shadow buf to the original buf */
12584 	bioerror(orig_bp, bp->b_error);
12585 
12586 	if (is_write) {
12587 		goto freebuf_done;	/* No data copying for a WRITE */
12588 	}
12589 
12590 	if (has_wmap) {
12591 		/*
12592 		 * This is a READ command from the READ phase of a
12593 		 * read-modify-write request. We have to copy the data given
12594 		 * by the user OVER the data returned by the READ command,
12595 		 * then convert the command from a READ to a WRITE and send
12596 		 * it back to the target.
12597 		 */
12598 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12599 		    copy_length);
12600 
12601 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12602 
12603 		/*
12604 		 * Dispatch the WRITE command to the taskq thread, which
12605 		 * will in turn send the command to the target. When the
12606 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12607 		 * will get called again as part of the iodone chain
12608 		 * processing for it. Note that we will still be dealing
12609 		 * with the shadow buf at that point.
12610 		 */
12611 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12612 		    KM_NOSLEEP) != 0) {
12613 			/*
12614 			 * Dispatch was successful so we are done. Return
12615 			 * without going any higher up the iodone chain. Do
12616 			 * not free up any layer-private data until after the
12617 			 * WRITE completes.
12618 			 */
12619 			return;
12620 		}
12621 
12622 		/*
12623 		 * Dispatch of the WRITE command failed; set up the error
12624 		 * condition and send this IO back up the iodone chain.
12625 		 */
12626 		bioerror(orig_bp, EIO);
12627 		orig_bp->b_resid = orig_bp->b_bcount;
12628 
12629 	} else {
12630 		/*
12631 		 * This is a regular READ request (ie, not a RMW). Copy the
12632 		 * data from the shadow buf into the original buf. The
12633 		 * copy_offset compensates for any "misalignment" between the
12634 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12635 		 * original buf (with its un->un_sys_blocksize blocks).
12636 		 */
12637 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12638 		    copy_length);
12639 	}
12640 
12641 freebuf_done:
12642 
12643 	/*
12644 	 * At this point we still have both the shadow buf AND the original
12645 	 * buf to deal with, as well as the layer-private data area in each.
12646 	 * Local variables are as follows:
12647 	 *
12648 	 * bp -- points to shadow buf
12649 	 * xp -- points to xbuf of shadow buf
12650 	 * bsp -- points to layer-private data area of shadow buf
12651 	 * orig_bp -- points to original buf
12652 	 *
12653 	 * First free the shadow buf and its associated xbuf, then free the
12654 	 * layer-private data area from the shadow buf. There is no need to
12655 	 * restore xb_private in the shadow xbuf.
12656 	 */
12657 	sd_shadow_buf_free(bp);
12658 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12659 
12660 	/*
12661 	 * Now update the local variables to point to the original buf, xbuf,
12662 	 * and layer-private area.
12663 	 */
12664 	bp = orig_bp;
12665 	xp = SD_GET_XBUF(bp);
12666 	ASSERT(xp != NULL);
12667 	ASSERT(xp == orig_xp);
12668 	bsp = xp->xb_private;
12669 	ASSERT(bsp != NULL);
12670 
12671 done:
12672 	/*
12673 	 * Restore xb_private to whatever it was set to by the next higher
12674 	 * layer in the chain, then free the layer-private data area.
12675 	 */
12676 	xp->xb_private = bsp->mbs_oprivate;
12677 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12678 
12679 exit:
12680 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12681 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12682 
12683 	SD_NEXT_IODONE(index, un, bp);
12684 }
12685 
12686 
12687 /*
12688  *    Function: sd_checksum_iostart
12689  *
12690  * Description: A stub function for a layer that's currently not used.
12691  *		For now just a placeholder.
12692  *
12693  *     Context: Kernel thread context
12694  */
12695 
12696 static void
12697 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12698 {
12699 	ASSERT(un != NULL);
12700 	ASSERT(bp != NULL);
12701 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12702 	SD_NEXT_IOSTART(index, un, bp);
12703 }
12704 
12705 
12706 /*
12707  *    Function: sd_checksum_iodone
12708  *
12709  * Description: A stub function for a layer that's currently not used.
12710  *		For now just a placeholder.
12711  *
12712  *     Context: May be called under interrupt context
12713  */
12714 
12715 static void
12716 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12717 {
12718 	ASSERT(un != NULL);
12719 	ASSERT(bp != NULL);
12720 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12721 	SD_NEXT_IODONE(index, un, bp);
12722 }
12723 
12724 
12725 /*
12726  *    Function: sd_checksum_uscsi_iostart
12727  *
12728  * Description: A stub function for a layer that's currently not used.
12729  *		For now just a placeholder.
12730  *
12731  *     Context: Kernel thread context
12732  */
12733 
12734 static void
12735 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12736 {
12737 	ASSERT(un != NULL);
12738 	ASSERT(bp != NULL);
12739 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12740 	SD_NEXT_IOSTART(index, un, bp);
12741 }
12742 
12743 
12744 /*
12745  *    Function: sd_checksum_uscsi_iodone
12746  *
12747  * Description: A stub function for a layer that's currently not used.
12748  *		For now just a placeholder.
12749  *
12750  *     Context: May be called under interrupt context
12751  */
12752 
12753 static void
12754 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12755 {
12756 	ASSERT(un != NULL);
12757 	ASSERT(bp != NULL);
12758 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12759 	SD_NEXT_IODONE(index, un, bp);
12760 }
12761 
12762 
12763 /*
12764  *    Function: sd_pm_iostart
12765  *
12766  * Description: iostart-side routine for Power mangement.
12767  *
12768  *     Context: Kernel thread context
12769  */
12770 
12771 static void
12772 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12773 {
12774 	ASSERT(un != NULL);
12775 	ASSERT(bp != NULL);
12776 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12777 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12778 
12779 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12780 
12781 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12782 		/*
12783 		 * Set up to return the failed buf back up the 'iodone'
12784 		 * side of the calling chain.
12785 		 */
12786 		bioerror(bp, EIO);
12787 		bp->b_resid = bp->b_bcount;
12788 
12789 		SD_BEGIN_IODONE(index, un, bp);
12790 
12791 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12792 		return;
12793 	}
12794 
12795 	SD_NEXT_IOSTART(index, un, bp);
12796 
12797 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12798 }
12799 
12800 
12801 /*
12802  *    Function: sd_pm_iodone
12803  *
12804  * Description: iodone-side routine for power mangement.
12805  *
12806  *     Context: may be called from interrupt context
12807  */
12808 
12809 static void
12810 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12811 {
12812 	ASSERT(un != NULL);
12813 	ASSERT(bp != NULL);
12814 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12815 
12816 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12817 
12818 	/*
12819 	 * After attach the following flag is only read, so don't
12820 	 * take the penalty of acquiring a mutex for it.
12821 	 */
12822 	if (un->un_f_pm_is_enabled == TRUE) {
12823 		sd_pm_exit(un);
12824 	}
12825 
12826 	SD_NEXT_IODONE(index, un, bp);
12827 
12828 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12829 }
12830 
12831 
12832 /*
12833  *    Function: sd_core_iostart
12834  *
12835  * Description: Primary driver function for enqueuing buf(9S) structs from
12836  *		the system and initiating IO to the target device
12837  *
12838  *     Context: Kernel thread context. Can sleep.
12839  *
12840  * Assumptions:  - The given xp->xb_blkno is absolute
12841  *		   (ie, relative to the start of the device).
12842  *		 - The IO is to be done using the native blocksize of
12843  *		   the device, as specified in un->un_tgt_blocksize.
12844  */
12845 /* ARGSUSED */
12846 static void
12847 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12848 {
12849 	struct sd_xbuf *xp;
12850 
12851 	ASSERT(un != NULL);
12852 	ASSERT(bp != NULL);
12853 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12854 	ASSERT(bp->b_resid == 0);
12855 
12856 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12857 
12858 	xp = SD_GET_XBUF(bp);
12859 	ASSERT(xp != NULL);
12860 
12861 	mutex_enter(SD_MUTEX(un));
12862 
12863 	/*
12864 	 * If we are currently in the failfast state, fail any new IO
12865 	 * that has B_FAILFAST set, then return.
12866 	 */
12867 	if ((bp->b_flags & B_FAILFAST) &&
12868 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12869 		mutex_exit(SD_MUTEX(un));
12870 		bioerror(bp, EIO);
12871 		bp->b_resid = bp->b_bcount;
12872 		SD_BEGIN_IODONE(index, un, bp);
12873 		return;
12874 	}
12875 
12876 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12877 		/*
12878 		 * Priority command -- transport it immediately.
12879 		 *
12880 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12881 		 * because all direct priority commands should be associated
12882 		 * with error recovery actions which we don't want to retry.
12883 		 */
12884 		sd_start_cmds(un, bp);
12885 	} else {
12886 		/*
12887 		 * Normal command -- add it to the wait queue, then start
12888 		 * transporting commands from the wait queue.
12889 		 */
12890 		sd_add_buf_to_waitq(un, bp);
12891 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12892 		sd_start_cmds(un, NULL);
12893 	}
12894 
12895 	mutex_exit(SD_MUTEX(un));
12896 
12897 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12898 }
12899 
12900 
12901 /*
12902  *    Function: sd_init_cdb_limits
12903  *
12904  * Description: This is to handle scsi_pkt initialization differences
12905  *		between the driver platforms.
12906  *
12907  *		Legacy behaviors:
12908  *
12909  *		If the block number or the sector count exceeds the
12910  *		capabilities of a Group 0 command, shift over to a
12911  *		Group 1 command. We don't blindly use Group 1
12912  *		commands because a) some drives (CDC Wren IVs) get a
12913  *		bit confused, and b) there is probably a fair amount
12914  *		of speed difference for a target to receive and decode
12915  *		a 10 byte command instead of a 6 byte command.
12916  *
12917  *		The xfer time difference of 6 vs 10 byte CDBs is
12918  *		still significant so this code is still worthwhile.
12919  *		10 byte CDBs are very inefficient with the fas HBA driver
12920  *		and older disks. Each CDB byte took 1 usec with some
12921  *		popular disks.
12922  *
12923  *     Context: Must be called at attach time
12924  */
12925 
12926 static void
12927 sd_init_cdb_limits(struct sd_lun *un)
12928 {
12929 	int hba_cdb_limit;
12930 
12931 	/*
12932 	 * Use CDB_GROUP1 commands for most devices except for
12933 	 * parallel SCSI fixed drives in which case we get better
12934 	 * performance using CDB_GROUP0 commands (where applicable).
12935 	 */
12936 	un->un_mincdb = SD_CDB_GROUP1;
12937 #if !defined(__fibre)
12938 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12939 	    !un->un_f_has_removable_media) {
12940 		un->un_mincdb = SD_CDB_GROUP0;
12941 	}
12942 #endif
12943 
12944 	/*
12945 	 * Try to read the max-cdb-length supported by HBA.
12946 	 */
12947 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12948 	if (0 >= un->un_max_hba_cdb) {
12949 		un->un_max_hba_cdb = CDB_GROUP4;
12950 		hba_cdb_limit = SD_CDB_GROUP4;
12951 	} else if (0 < un->un_max_hba_cdb &&
12952 	    un->un_max_hba_cdb < CDB_GROUP1) {
12953 		hba_cdb_limit = SD_CDB_GROUP0;
12954 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12955 	    un->un_max_hba_cdb < CDB_GROUP5) {
12956 		hba_cdb_limit = SD_CDB_GROUP1;
12957 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
12958 	    un->un_max_hba_cdb < CDB_GROUP4) {
12959 		hba_cdb_limit = SD_CDB_GROUP5;
12960 	} else {
12961 		hba_cdb_limit = SD_CDB_GROUP4;
12962 	}
12963 
12964 	/*
12965 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12966 	 * commands for fixed disks unless we are building for a 32 bit
12967 	 * kernel.
12968 	 */
12969 #ifdef _LP64
12970 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12971 	    min(hba_cdb_limit, SD_CDB_GROUP4);
12972 #else
12973 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12974 	    min(hba_cdb_limit, SD_CDB_GROUP1);
12975 #endif
12976 
12977 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12978 	    ? sizeof (struct scsi_arq_status) : 1);
12979 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12980 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12981 }
12982 
12983 
12984 /*
12985  *    Function: sd_initpkt_for_buf
12986  *
12987  * Description: Allocate and initialize for transport a scsi_pkt struct,
12988  *		based upon the info specified in the given buf struct.
12989  *
12990  *		Assumes the xb_blkno in the request is absolute (ie,
12991  *		relative to the start of the device (NOT partition!).
12992  *		Also assumes that the request is using the native block
12993  *		size of the device (as returned by the READ CAPACITY
12994  *		command).
12995  *
12996  * Return Code: SD_PKT_ALLOC_SUCCESS
12997  *		SD_PKT_ALLOC_FAILURE
12998  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12999  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13000  *
13001  *     Context: Kernel thread and may be called from software interrupt context
13002  *		as part of a sdrunout callback. This function may not block or
13003  *		call routines that block
13004  */
13005 
13006 static int
13007 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13008 {
13009 	struct sd_xbuf	*xp;
13010 	struct scsi_pkt *pktp = NULL;
13011 	struct sd_lun	*un;
13012 	size_t		blockcount;
13013 	daddr_t		startblock;
13014 	int		rval;
13015 	int		cmd_flags;
13016 
13017 	ASSERT(bp != NULL);
13018 	ASSERT(pktpp != NULL);
13019 	xp = SD_GET_XBUF(bp);
13020 	ASSERT(xp != NULL);
13021 	un = SD_GET_UN(bp);
13022 	ASSERT(un != NULL);
13023 	ASSERT(mutex_owned(SD_MUTEX(un)));
13024 	ASSERT(bp->b_resid == 0);
13025 
13026 	SD_TRACE(SD_LOG_IO_CORE, un,
13027 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13028 
13029 	mutex_exit(SD_MUTEX(un));
13030 
13031 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13032 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13033 		/*
13034 		 * Already have a scsi_pkt -- just need DMA resources.
13035 		 * We must recompute the CDB in case the mapping returns
13036 		 * a nonzero pkt_resid.
13037 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13038 		 * that is being retried, the unmap/remap of the DMA resouces
13039 		 * will result in the entire transfer starting over again
13040 		 * from the very first block.
13041 		 */
13042 		ASSERT(xp->xb_pktp != NULL);
13043 		pktp = xp->xb_pktp;
13044 	} else {
13045 		pktp = NULL;
13046 	}
13047 #endif /* __i386 || __amd64 */
13048 
13049 	startblock = xp->xb_blkno;	/* Absolute block num. */
13050 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13051 
13052 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13053 
13054 	/*
13055 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13056 	 * call scsi_init_pkt, and build the CDB.
13057 	 */
13058 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13059 	    cmd_flags, sdrunout, (caddr_t)un,
13060 	    startblock, blockcount);
13061 
13062 	if (rval == 0) {
13063 		/*
13064 		 * Success.
13065 		 *
13066 		 * If partial DMA is being used and required for this transfer.
13067 		 * set it up here.
13068 		 */
13069 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13070 		    (pktp->pkt_resid != 0)) {
13071 
13072 			/*
13073 			 * Save the CDB length and pkt_resid for the
13074 			 * next xfer
13075 			 */
13076 			xp->xb_dma_resid = pktp->pkt_resid;
13077 
13078 			/* rezero resid */
13079 			pktp->pkt_resid = 0;
13080 
13081 		} else {
13082 			xp->xb_dma_resid = 0;
13083 		}
13084 
13085 		pktp->pkt_flags = un->un_tagflags;
13086 		pktp->pkt_time  = un->un_cmd_timeout;
13087 		pktp->pkt_comp  = sdintr;
13088 
13089 		pktp->pkt_private = bp;
13090 		*pktpp = pktp;
13091 
13092 		SD_TRACE(SD_LOG_IO_CORE, un,
13093 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13094 
13095 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13096 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13097 #endif
13098 
13099 		mutex_enter(SD_MUTEX(un));
13100 		return (SD_PKT_ALLOC_SUCCESS);
13101 
13102 	}
13103 
13104 	/*
13105 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13106 	 * from sd_setup_rw_pkt.
13107 	 */
13108 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13109 
13110 	if (rval == SD_PKT_ALLOC_FAILURE) {
13111 		*pktpp = NULL;
13112 		/*
13113 		 * Set the driver state to RWAIT to indicate the driver
13114 		 * is waiting on resource allocations. The driver will not
13115 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13116 		 */
13117 		mutex_enter(SD_MUTEX(un));
13118 		New_state(un, SD_STATE_RWAIT);
13119 
13120 		SD_ERROR(SD_LOG_IO_CORE, un,
13121 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13122 
13123 		if ((bp->b_flags & B_ERROR) != 0) {
13124 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13125 		}
13126 		return (SD_PKT_ALLOC_FAILURE);
13127 	} else {
13128 		/*
13129 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13130 		 *
13131 		 * This should never happen.  Maybe someone messed with the
13132 		 * kernel's minphys?
13133 		 */
13134 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13135 		    "Request rejected: too large for CDB: "
13136 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13137 		SD_ERROR(SD_LOG_IO_CORE, un,
13138 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13139 		mutex_enter(SD_MUTEX(un));
13140 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13141 
13142 	}
13143 }
13144 
13145 
13146 /*
13147  *    Function: sd_destroypkt_for_buf
13148  *
13149  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13150  *
13151  *     Context: Kernel thread or interrupt context
13152  */
13153 
13154 static void
13155 sd_destroypkt_for_buf(struct buf *bp)
13156 {
13157 	ASSERT(bp != NULL);
13158 	ASSERT(SD_GET_UN(bp) != NULL);
13159 
13160 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13161 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13162 
13163 	ASSERT(SD_GET_PKTP(bp) != NULL);
13164 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13165 
13166 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13167 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13168 }
13169 
13170 /*
13171  *    Function: sd_setup_rw_pkt
13172  *
13173  * Description: Determines appropriate CDB group for the requested LBA
13174  *		and transfer length, calls scsi_init_pkt, and builds
13175  *		the CDB.  Do not use for partial DMA transfers except
13176  *		for the initial transfer since the CDB size must
13177  *		remain constant.
13178  *
13179  *     Context: Kernel thread and may be called from software interrupt
13180  *		context as part of a sdrunout callback. This function may not
13181  *		block or call routines that block
13182  */
13183 
13184 
13185 int
13186 sd_setup_rw_pkt(struct sd_lun *un,
13187     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13188     int (*callback)(caddr_t), caddr_t callback_arg,
13189     diskaddr_t lba, uint32_t blockcount)
13190 {
13191 	struct scsi_pkt *return_pktp;
13192 	union scsi_cdb *cdbp;
13193 	struct sd_cdbinfo *cp = NULL;
13194 	int i;
13195 
13196 	/*
13197 	 * See which size CDB to use, based upon the request.
13198 	 */
13199 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13200 
13201 		/*
13202 		 * Check lba and block count against sd_cdbtab limits.
13203 		 * In the partial DMA case, we have to use the same size
13204 		 * CDB for all the transfers.  Check lba + blockcount
13205 		 * against the max LBA so we know that segment of the
13206 		 * transfer can use the CDB we select.
13207 		 */
13208 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13209 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13210 
13211 			/*
13212 			 * The command will fit into the CDB type
13213 			 * specified by sd_cdbtab[i].
13214 			 */
13215 			cp = sd_cdbtab + i;
13216 
13217 			/*
13218 			 * Call scsi_init_pkt so we can fill in the
13219 			 * CDB.
13220 			 */
13221 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13222 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13223 			    flags, callback, callback_arg);
13224 
13225 			if (return_pktp != NULL) {
13226 
13227 				/*
13228 				 * Return new value of pkt
13229 				 */
13230 				*pktpp = return_pktp;
13231 
13232 				/*
13233 				 * To be safe, zero the CDB insuring there is
13234 				 * no leftover data from a previous command.
13235 				 */
13236 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13237 
13238 				/*
13239 				 * Handle partial DMA mapping
13240 				 */
13241 				if (return_pktp->pkt_resid != 0) {
13242 
13243 					/*
13244 					 * Not going to xfer as many blocks as
13245 					 * originally expected
13246 					 */
13247 					blockcount -=
13248 					    SD_BYTES2TGTBLOCKS(un,
13249 					    return_pktp->pkt_resid);
13250 				}
13251 
13252 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13253 
13254 				/*
13255 				 * Set command byte based on the CDB
13256 				 * type we matched.
13257 				 */
13258 				cdbp->scc_cmd = cp->sc_grpmask |
13259 				    ((bp->b_flags & B_READ) ?
13260 				    SCMD_READ : SCMD_WRITE);
13261 
13262 				SD_FILL_SCSI1_LUN(un, return_pktp);
13263 
13264 				/*
13265 				 * Fill in LBA and length
13266 				 */
13267 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13268 				    (cp->sc_grpcode == CDB_GROUP4) ||
13269 				    (cp->sc_grpcode == CDB_GROUP0) ||
13270 				    (cp->sc_grpcode == CDB_GROUP5));
13271 
13272 				if (cp->sc_grpcode == CDB_GROUP1) {
13273 					FORMG1ADDR(cdbp, lba);
13274 					FORMG1COUNT(cdbp, blockcount);
13275 					return (0);
13276 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13277 					FORMG4LONGADDR(cdbp, lba);
13278 					FORMG4COUNT(cdbp, blockcount);
13279 					return (0);
13280 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13281 					FORMG0ADDR(cdbp, lba);
13282 					FORMG0COUNT(cdbp, blockcount);
13283 					return (0);
13284 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13285 					FORMG5ADDR(cdbp, lba);
13286 					FORMG5COUNT(cdbp, blockcount);
13287 					return (0);
13288 				}
13289 
13290 				/*
13291 				 * It should be impossible to not match one
13292 				 * of the CDB types above, so we should never
13293 				 * reach this point.  Set the CDB command byte
13294 				 * to test-unit-ready to avoid writing
13295 				 * to somewhere we don't intend.
13296 				 */
13297 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13298 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13299 			} else {
13300 				/*
13301 				 * Couldn't get scsi_pkt
13302 				 */
13303 				return (SD_PKT_ALLOC_FAILURE);
13304 			}
13305 		}
13306 	}
13307 
13308 	/*
13309 	 * None of the available CDB types were suitable.  This really
13310 	 * should never happen:  on a 64 bit system we support
13311 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13312 	 * and on a 32 bit system we will refuse to bind to a device
13313 	 * larger than 2TB so addresses will never be larger than 32 bits.
13314 	 */
13315 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13316 }
13317 
13318 /*
13319  *    Function: sd_setup_next_rw_pkt
13320  *
13321  * Description: Setup packet for partial DMA transfers, except for the
13322  * 		initial transfer.  sd_setup_rw_pkt should be used for
13323  *		the initial transfer.
13324  *
13325  *     Context: Kernel thread and may be called from interrupt context.
13326  */
13327 
13328 int
13329 sd_setup_next_rw_pkt(struct sd_lun *un,
13330     struct scsi_pkt *pktp, struct buf *bp,
13331     diskaddr_t lba, uint32_t blockcount)
13332 {
13333 	uchar_t com;
13334 	union scsi_cdb *cdbp;
13335 	uchar_t cdb_group_id;
13336 
13337 	ASSERT(pktp != NULL);
13338 	ASSERT(pktp->pkt_cdbp != NULL);
13339 
13340 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13341 	com = cdbp->scc_cmd;
13342 	cdb_group_id = CDB_GROUPID(com);
13343 
13344 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13345 	    (cdb_group_id == CDB_GROUPID_1) ||
13346 	    (cdb_group_id == CDB_GROUPID_4) ||
13347 	    (cdb_group_id == CDB_GROUPID_5));
13348 
13349 	/*
13350 	 * Move pkt to the next portion of the xfer.
13351 	 * func is NULL_FUNC so we do not have to release
13352 	 * the disk mutex here.
13353 	 */
13354 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13355 	    NULL_FUNC, NULL) == pktp) {
13356 		/* Success.  Handle partial DMA */
13357 		if (pktp->pkt_resid != 0) {
13358 			blockcount -=
13359 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13360 		}
13361 
13362 		cdbp->scc_cmd = com;
13363 		SD_FILL_SCSI1_LUN(un, pktp);
13364 		if (cdb_group_id == CDB_GROUPID_1) {
13365 			FORMG1ADDR(cdbp, lba);
13366 			FORMG1COUNT(cdbp, blockcount);
13367 			return (0);
13368 		} else if (cdb_group_id == CDB_GROUPID_4) {
13369 			FORMG4LONGADDR(cdbp, lba);
13370 			FORMG4COUNT(cdbp, blockcount);
13371 			return (0);
13372 		} else if (cdb_group_id == CDB_GROUPID_0) {
13373 			FORMG0ADDR(cdbp, lba);
13374 			FORMG0COUNT(cdbp, blockcount);
13375 			return (0);
13376 		} else if (cdb_group_id == CDB_GROUPID_5) {
13377 			FORMG5ADDR(cdbp, lba);
13378 			FORMG5COUNT(cdbp, blockcount);
13379 			return (0);
13380 		}
13381 
13382 		/* Unreachable */
13383 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13384 	}
13385 
13386 	/*
13387 	 * Error setting up next portion of cmd transfer.
13388 	 * Something is definitely very wrong and this
13389 	 * should not happen.
13390 	 */
13391 	return (SD_PKT_ALLOC_FAILURE);
13392 }
13393 
13394 /*
13395  *    Function: sd_initpkt_for_uscsi
13396  *
13397  * Description: Allocate and initialize for transport a scsi_pkt struct,
13398  *		based upon the info specified in the given uscsi_cmd struct.
13399  *
13400  * Return Code: SD_PKT_ALLOC_SUCCESS
13401  *		SD_PKT_ALLOC_FAILURE
13402  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13403  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13404  *
13405  *     Context: Kernel thread and may be called from software interrupt context
13406  *		as part of a sdrunout callback. This function may not block or
13407  *		call routines that block
13408  */
13409 
13410 static int
13411 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13412 {
13413 	struct uscsi_cmd *uscmd;
13414 	struct sd_xbuf	*xp;
13415 	struct scsi_pkt	*pktp;
13416 	struct sd_lun	*un;
13417 	uint32_t	flags = 0;
13418 
13419 	ASSERT(bp != NULL);
13420 	ASSERT(pktpp != NULL);
13421 	xp = SD_GET_XBUF(bp);
13422 	ASSERT(xp != NULL);
13423 	un = SD_GET_UN(bp);
13424 	ASSERT(un != NULL);
13425 	ASSERT(mutex_owned(SD_MUTEX(un)));
13426 
13427 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13428 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13429 	ASSERT(uscmd != NULL);
13430 
13431 	SD_TRACE(SD_LOG_IO_CORE, un,
13432 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13433 
13434 	/*
13435 	 * Allocate the scsi_pkt for the command.
13436 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13437 	 *	 during scsi_init_pkt time and will continue to use the
13438 	 *	 same path as long as the same scsi_pkt is used without
13439 	 *	 intervening scsi_dma_free(). Since uscsi command does
13440 	 *	 not call scsi_dmafree() before retry failed command, it
13441 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13442 	 *	 set such that scsi_vhci can use other available path for
13443 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13444 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13445 	 */
13446 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13447 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13448 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13449 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13450 		    - sizeof (struct scsi_extended_sense)), 0,
13451 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13452 		    sdrunout, (caddr_t)un);
13453 	} else {
13454 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13455 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13456 		    sizeof (struct scsi_arq_status), 0,
13457 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13458 		    sdrunout, (caddr_t)un);
13459 	}
13460 
13461 	if (pktp == NULL) {
13462 		*pktpp = NULL;
13463 		/*
13464 		 * Set the driver state to RWAIT to indicate the driver
13465 		 * is waiting on resource allocations. The driver will not
13466 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13467 		 */
13468 		New_state(un, SD_STATE_RWAIT);
13469 
13470 		SD_ERROR(SD_LOG_IO_CORE, un,
13471 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13472 
13473 		if ((bp->b_flags & B_ERROR) != 0) {
13474 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13475 		}
13476 		return (SD_PKT_ALLOC_FAILURE);
13477 	}
13478 
13479 	/*
13480 	 * We do not do DMA breakup for USCSI commands, so return failure
13481 	 * here if all the needed DMA resources were not allocated.
13482 	 */
13483 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13484 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13485 		scsi_destroy_pkt(pktp);
13486 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13487 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13488 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13489 	}
13490 
13491 	/* Init the cdb from the given uscsi struct */
13492 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13493 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13494 
13495 	SD_FILL_SCSI1_LUN(un, pktp);
13496 
13497 	/*
13498 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13499 	 * for listing of the supported flags.
13500 	 */
13501 
13502 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13503 		flags |= FLAG_SILENT;
13504 	}
13505 
13506 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13507 		flags |= FLAG_DIAGNOSE;
13508 	}
13509 
13510 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13511 		flags |= FLAG_ISOLATE;
13512 	}
13513 
13514 	if (un->un_f_is_fibre == FALSE) {
13515 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13516 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13517 		}
13518 	}
13519 
13520 	/*
13521 	 * Set the pkt flags here so we save time later.
13522 	 * Note: These flags are NOT in the uscsi man page!!!
13523 	 */
13524 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13525 		flags |= FLAG_HEAD;
13526 	}
13527 
13528 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13529 		flags |= FLAG_NOINTR;
13530 	}
13531 
13532 	/*
13533 	 * For tagged queueing, things get a bit complicated.
13534 	 * Check first for head of queue and last for ordered queue.
13535 	 * If neither head nor order, use the default driver tag flags.
13536 	 */
13537 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13538 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13539 			flags |= FLAG_HTAG;
13540 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13541 			flags |= FLAG_OTAG;
13542 		} else {
13543 			flags |= un->un_tagflags & FLAG_TAGMASK;
13544 		}
13545 	}
13546 
13547 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13548 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13549 	}
13550 
13551 	pktp->pkt_flags = flags;
13552 
13553 	/* Transfer uscsi information to scsi_pkt */
13554 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13555 
13556 	/* Copy the caller's CDB into the pkt... */
13557 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13558 
13559 	if (uscmd->uscsi_timeout == 0) {
13560 		pktp->pkt_time = un->un_uscsi_timeout;
13561 	} else {
13562 		pktp->pkt_time = uscmd->uscsi_timeout;
13563 	}
13564 
13565 	/* need it later to identify USCSI request in sdintr */
13566 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13567 
13568 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13569 
13570 	pktp->pkt_private = bp;
13571 	pktp->pkt_comp = sdintr;
13572 	*pktpp = pktp;
13573 
13574 	SD_TRACE(SD_LOG_IO_CORE, un,
13575 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13576 
13577 	return (SD_PKT_ALLOC_SUCCESS);
13578 }
13579 
13580 
13581 /*
13582  *    Function: sd_destroypkt_for_uscsi
13583  *
13584  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13585  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13586  *		struct.
13587  *
13588  *     Context: May be called under interrupt context
13589  */
13590 
13591 static void
13592 sd_destroypkt_for_uscsi(struct buf *bp)
13593 {
13594 	struct uscsi_cmd *uscmd;
13595 	struct sd_xbuf	*xp;
13596 	struct scsi_pkt	*pktp;
13597 	struct sd_lun	*un;
13598 	struct sd_uscsi_info *suip;
13599 
13600 	ASSERT(bp != NULL);
13601 	xp = SD_GET_XBUF(bp);
13602 	ASSERT(xp != NULL);
13603 	un = SD_GET_UN(bp);
13604 	ASSERT(un != NULL);
13605 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13606 	pktp = SD_GET_PKTP(bp);
13607 	ASSERT(pktp != NULL);
13608 
13609 	SD_TRACE(SD_LOG_IO_CORE, un,
13610 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13611 
13612 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13613 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13614 	ASSERT(uscmd != NULL);
13615 
13616 	/* Save the status and the residual into the uscsi_cmd struct */
13617 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13618 	uscmd->uscsi_resid  = bp->b_resid;
13619 
13620 	/* Transfer scsi_pkt information to uscsi */
13621 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13622 
13623 	/*
13624 	 * If enabled, copy any saved sense data into the area specified
13625 	 * by the uscsi command.
13626 	 */
13627 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13628 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13629 		/*
13630 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13631 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13632 		 */
13633 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13634 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13635 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13636 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13637 			    MAX_SENSE_LENGTH);
13638 		} else {
13639 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13640 			    SENSE_LENGTH);
13641 		}
13642 	}
13643 	/*
13644 	 * The following assignments are for SCSI FMA.
13645 	 */
13646 	ASSERT(xp->xb_private != NULL);
13647 	suip = (struct sd_uscsi_info *)xp->xb_private;
13648 	suip->ui_pkt_reason = pktp->pkt_reason;
13649 	suip->ui_pkt_state = pktp->pkt_state;
13650 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13651 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13652 
13653 	/* We are done with the scsi_pkt; free it now */
13654 	ASSERT(SD_GET_PKTP(bp) != NULL);
13655 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13656 
13657 	SD_TRACE(SD_LOG_IO_CORE, un,
13658 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13659 }
13660 
13661 
13662 /*
13663  *    Function: sd_bioclone_alloc
13664  *
13665  * Description: Allocate a buf(9S) and init it as per the given buf
13666  *		and the various arguments.  The associated sd_xbuf
13667  *		struct is (nearly) duplicated.  The struct buf *bp
13668  *		argument is saved in new_xp->xb_private.
13669  *
13670  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13671  *		datalen - size of data area for the shadow bp
13672  *		blkno - starting LBA
13673  *		func - function pointer for b_iodone in the shadow buf. (May
13674  *			be NULL if none.)
13675  *
13676  * Return Code: Pointer to allocates buf(9S) struct
13677  *
13678  *     Context: Can sleep.
13679  */
13680 
13681 static struct buf *
13682 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13683 	daddr_t blkno, int (*func)(struct buf *))
13684 {
13685 	struct	sd_lun	*un;
13686 	struct	sd_xbuf	*xp;
13687 	struct	sd_xbuf	*new_xp;
13688 	struct	buf	*new_bp;
13689 
13690 	ASSERT(bp != NULL);
13691 	xp = SD_GET_XBUF(bp);
13692 	ASSERT(xp != NULL);
13693 	un = SD_GET_UN(bp);
13694 	ASSERT(un != NULL);
13695 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13696 
13697 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13698 	    NULL, KM_SLEEP);
13699 
13700 	new_bp->b_lblkno	= blkno;
13701 
13702 	/*
13703 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13704 	 * original xbuf into it.
13705 	 */
13706 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13707 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13708 
13709 	/*
13710 	 * The given bp is automatically saved in the xb_private member
13711 	 * of the new xbuf.  Callers are allowed to depend on this.
13712 	 */
13713 	new_xp->xb_private = bp;
13714 
13715 	new_bp->b_private  = new_xp;
13716 
13717 	return (new_bp);
13718 }
13719 
13720 /*
13721  *    Function: sd_shadow_buf_alloc
13722  *
13723  * Description: Allocate a buf(9S) and init it as per the given buf
13724  *		and the various arguments.  The associated sd_xbuf
13725  *		struct is (nearly) duplicated.  The struct buf *bp
13726  *		argument is saved in new_xp->xb_private.
13727  *
13728  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13729  *		datalen - size of data area for the shadow bp
13730  *		bflags - B_READ or B_WRITE (pseudo flag)
13731  *		blkno - starting LBA
13732  *		func - function pointer for b_iodone in the shadow buf. (May
13733  *			be NULL if none.)
13734  *
13735  * Return Code: Pointer to allocates buf(9S) struct
13736  *
13737  *     Context: Can sleep.
13738  */
13739 
13740 static struct buf *
13741 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13742 	daddr_t blkno, int (*func)(struct buf *))
13743 {
13744 	struct	sd_lun	*un;
13745 	struct	sd_xbuf	*xp;
13746 	struct	sd_xbuf	*new_xp;
13747 	struct	buf	*new_bp;
13748 
13749 	ASSERT(bp != NULL);
13750 	xp = SD_GET_XBUF(bp);
13751 	ASSERT(xp != NULL);
13752 	un = SD_GET_UN(bp);
13753 	ASSERT(un != NULL);
13754 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13755 
13756 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13757 		bp_mapin(bp);
13758 	}
13759 
13760 	bflags &= (B_READ | B_WRITE);
13761 #if defined(__i386) || defined(__amd64)
13762 	new_bp = getrbuf(KM_SLEEP);
13763 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13764 	new_bp->b_bcount = datalen;
13765 	new_bp->b_flags = bflags |
13766 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13767 #else
13768 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13769 	    datalen, bflags, SLEEP_FUNC, NULL);
13770 #endif
13771 	new_bp->av_forw	= NULL;
13772 	new_bp->av_back	= NULL;
13773 	new_bp->b_dev	= bp->b_dev;
13774 	new_bp->b_blkno	= blkno;
13775 	new_bp->b_iodone = func;
13776 	new_bp->b_edev	= bp->b_edev;
13777 	new_bp->b_resid	= 0;
13778 
13779 	/* We need to preserve the B_FAILFAST flag */
13780 	if (bp->b_flags & B_FAILFAST) {
13781 		new_bp->b_flags |= B_FAILFAST;
13782 	}
13783 
13784 	/*
13785 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13786 	 * original xbuf into it.
13787 	 */
13788 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13789 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13790 
13791 	/* Need later to copy data between the shadow buf & original buf! */
13792 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13793 
13794 	/*
13795 	 * The given bp is automatically saved in the xb_private member
13796 	 * of the new xbuf.  Callers are allowed to depend on this.
13797 	 */
13798 	new_xp->xb_private = bp;
13799 
13800 	new_bp->b_private  = new_xp;
13801 
13802 	return (new_bp);
13803 }
13804 
13805 /*
13806  *    Function: sd_bioclone_free
13807  *
13808  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13809  *		in the larger than partition operation.
13810  *
13811  *     Context: May be called under interrupt context
13812  */
13813 
13814 static void
13815 sd_bioclone_free(struct buf *bp)
13816 {
13817 	struct sd_xbuf	*xp;
13818 
13819 	ASSERT(bp != NULL);
13820 	xp = SD_GET_XBUF(bp);
13821 	ASSERT(xp != NULL);
13822 
13823 	/*
13824 	 * Call bp_mapout() before freeing the buf,  in case a lower
13825 	 * layer or HBA  had done a bp_mapin().  we must do this here
13826 	 * as we are the "originator" of the shadow buf.
13827 	 */
13828 	bp_mapout(bp);
13829 
13830 	/*
13831 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13832 	 * never gets confused by a stale value in this field. (Just a little
13833 	 * extra defensiveness here.)
13834 	 */
13835 	bp->b_iodone = NULL;
13836 
13837 	freerbuf(bp);
13838 
13839 	kmem_free(xp, sizeof (struct sd_xbuf));
13840 }
13841 
13842 /*
13843  *    Function: sd_shadow_buf_free
13844  *
13845  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13846  *
13847  *     Context: May be called under interrupt context
13848  */
13849 
13850 static void
13851 sd_shadow_buf_free(struct buf *bp)
13852 {
13853 	struct sd_xbuf	*xp;
13854 
13855 	ASSERT(bp != NULL);
13856 	xp = SD_GET_XBUF(bp);
13857 	ASSERT(xp != NULL);
13858 
13859 #if defined(__sparc)
13860 	/*
13861 	 * Call bp_mapout() before freeing the buf,  in case a lower
13862 	 * layer or HBA  had done a bp_mapin().  we must do this here
13863 	 * as we are the "originator" of the shadow buf.
13864 	 */
13865 	bp_mapout(bp);
13866 #endif
13867 
13868 	/*
13869 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13870 	 * never gets confused by a stale value in this field. (Just a little
13871 	 * extra defensiveness here.)
13872 	 */
13873 	bp->b_iodone = NULL;
13874 
13875 #if defined(__i386) || defined(__amd64)
13876 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13877 	freerbuf(bp);
13878 #else
13879 	scsi_free_consistent_buf(bp);
13880 #endif
13881 
13882 	kmem_free(xp, sizeof (struct sd_xbuf));
13883 }
13884 
13885 
13886 /*
13887  *    Function: sd_print_transport_rejected_message
13888  *
13889  * Description: This implements the ludicrously complex rules for printing
13890  *		a "transport rejected" message.  This is to address the
13891  *		specific problem of having a flood of this error message
13892  *		produced when a failover occurs.
13893  *
13894  *     Context: Any.
13895  */
13896 
13897 static void
13898 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13899 	int code)
13900 {
13901 	ASSERT(un != NULL);
13902 	ASSERT(mutex_owned(SD_MUTEX(un)));
13903 	ASSERT(xp != NULL);
13904 
13905 	/*
13906 	 * Print the "transport rejected" message under the following
13907 	 * conditions:
13908 	 *
13909 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13910 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13911 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13912 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13913 	 *   scsi_transport(9F) (which indicates that the target might have
13914 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13915 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13916 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13917 	 *   from scsi_transport().
13918 	 *
13919 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13920 	 * the preceeding cases in order for the message to be printed.
13921 	 */
13922 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
13923 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
13924 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13925 		    (code != TRAN_FATAL_ERROR) ||
13926 		    (un->un_tran_fatal_count == 1)) {
13927 			switch (code) {
13928 			case TRAN_BADPKT:
13929 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13930 				    "transport rejected bad packet\n");
13931 				break;
13932 			case TRAN_FATAL_ERROR:
13933 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13934 				    "transport rejected fatal error\n");
13935 				break;
13936 			default:
13937 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13938 				    "transport rejected (%d)\n", code);
13939 				break;
13940 			}
13941 		}
13942 	}
13943 }
13944 
13945 
13946 /*
13947  *    Function: sd_add_buf_to_waitq
13948  *
13949  * Description: Add the given buf(9S) struct to the wait queue for the
13950  *		instance.  If sorting is enabled, then the buf is added
13951  *		to the queue via an elevator sort algorithm (a la
13952  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13953  *		If sorting is not enabled, then the buf is just added
13954  *		to the end of the wait queue.
13955  *
13956  * Return Code: void
13957  *
13958  *     Context: Does not sleep/block, therefore technically can be called
13959  *		from any context.  However if sorting is enabled then the
13960  *		execution time is indeterminate, and may take long if
13961  *		the wait queue grows large.
13962  */
13963 
13964 static void
13965 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13966 {
13967 	struct buf *ap;
13968 
13969 	ASSERT(bp != NULL);
13970 	ASSERT(un != NULL);
13971 	ASSERT(mutex_owned(SD_MUTEX(un)));
13972 
13973 	/* If the queue is empty, add the buf as the only entry & return. */
13974 	if (un->un_waitq_headp == NULL) {
13975 		ASSERT(un->un_waitq_tailp == NULL);
13976 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13977 		bp->av_forw = NULL;
13978 		return;
13979 	}
13980 
13981 	ASSERT(un->un_waitq_tailp != NULL);
13982 
13983 	/*
13984 	 * If sorting is disabled, just add the buf to the tail end of
13985 	 * the wait queue and return.
13986 	 */
13987 	if (un->un_f_disksort_disabled) {
13988 		un->un_waitq_tailp->av_forw = bp;
13989 		un->un_waitq_tailp = bp;
13990 		bp->av_forw = NULL;
13991 		return;
13992 	}
13993 
13994 	/*
13995 	 * Sort thru the list of requests currently on the wait queue
13996 	 * and add the new buf request at the appropriate position.
13997 	 *
13998 	 * The un->un_waitq_headp is an activity chain pointer on which
13999 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14000 	 * first queue holds those requests which are positioned after
14001 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14002 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14003 	 * Thus we implement a one way scan, retracting after reaching
14004 	 * the end of the drive to the first request on the second
14005 	 * queue, at which time it becomes the first queue.
14006 	 * A one-way scan is natural because of the way UNIX read-ahead
14007 	 * blocks are allocated.
14008 	 *
14009 	 * If we lie after the first request, then we must locate the
14010 	 * second request list and add ourselves to it.
14011 	 */
14012 	ap = un->un_waitq_headp;
14013 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14014 		while (ap->av_forw != NULL) {
14015 			/*
14016 			 * Look for an "inversion" in the (normally
14017 			 * ascending) block numbers. This indicates
14018 			 * the start of the second request list.
14019 			 */
14020 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14021 				/*
14022 				 * Search the second request list for the
14023 				 * first request at a larger block number.
14024 				 * We go before that; however if there is
14025 				 * no such request, we go at the end.
14026 				 */
14027 				do {
14028 					if (SD_GET_BLKNO(bp) <
14029 					    SD_GET_BLKNO(ap->av_forw)) {
14030 						goto insert;
14031 					}
14032 					ap = ap->av_forw;
14033 				} while (ap->av_forw != NULL);
14034 				goto insert;		/* after last */
14035 			}
14036 			ap = ap->av_forw;
14037 		}
14038 
14039 		/*
14040 		 * No inversions... we will go after the last, and
14041 		 * be the first request in the second request list.
14042 		 */
14043 		goto insert;
14044 	}
14045 
14046 	/*
14047 	 * Request is at/after the current request...
14048 	 * sort in the first request list.
14049 	 */
14050 	while (ap->av_forw != NULL) {
14051 		/*
14052 		 * We want to go after the current request (1) if
14053 		 * there is an inversion after it (i.e. it is the end
14054 		 * of the first request list), or (2) if the next
14055 		 * request is a larger block no. than our request.
14056 		 */
14057 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14058 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14059 			goto insert;
14060 		}
14061 		ap = ap->av_forw;
14062 	}
14063 
14064 	/*
14065 	 * Neither a second list nor a larger request, therefore
14066 	 * we go at the end of the first list (which is the same
14067 	 * as the end of the whole schebang).
14068 	 */
14069 insert:
14070 	bp->av_forw = ap->av_forw;
14071 	ap->av_forw = bp;
14072 
14073 	/*
14074 	 * If we inserted onto the tail end of the waitq, make sure the
14075 	 * tail pointer is updated.
14076 	 */
14077 	if (ap == un->un_waitq_tailp) {
14078 		un->un_waitq_tailp = bp;
14079 	}
14080 }
14081 
14082 
14083 /*
14084  *    Function: sd_start_cmds
14085  *
14086  * Description: Remove and transport cmds from the driver queues.
14087  *
14088  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14089  *
14090  *		immed_bp - ptr to a buf to be transported immediately. Only
14091  *		the immed_bp is transported; bufs on the waitq are not
14092  *		processed and the un_retry_bp is not checked.  If immed_bp is
14093  *		NULL, then normal queue processing is performed.
14094  *
14095  *     Context: May be called from kernel thread context, interrupt context,
14096  *		or runout callback context. This function may not block or
14097  *		call routines that block.
14098  */
14099 
14100 static void
14101 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14102 {
14103 	struct	sd_xbuf	*xp;
14104 	struct	buf	*bp;
14105 	void	(*statp)(kstat_io_t *);
14106 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14107 	void	(*saved_statp)(kstat_io_t *);
14108 #endif
14109 	int	rval;
14110 	struct sd_fm_internal *sfip = NULL;
14111 
14112 	ASSERT(un != NULL);
14113 	ASSERT(mutex_owned(SD_MUTEX(un)));
14114 	ASSERT(un->un_ncmds_in_transport >= 0);
14115 	ASSERT(un->un_throttle >= 0);
14116 
14117 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14118 
14119 	do {
14120 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14121 		saved_statp = NULL;
14122 #endif
14123 
14124 		/*
14125 		 * If we are syncing or dumping, fail the command to
14126 		 * avoid recursively calling back into scsi_transport().
14127 		 * The dump I/O itself uses a separate code path so this
14128 		 * only prevents non-dump I/O from being sent while dumping.
14129 		 * File system sync takes place before dumping begins.
14130 		 * During panic, filesystem I/O is allowed provided
14131 		 * un_in_callback is <= 1.  This is to prevent recursion
14132 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14133 		 * sd_start_cmds and so on.  See panic.c for more information
14134 		 * about the states the system can be in during panic.
14135 		 */
14136 		if ((un->un_state == SD_STATE_DUMPING) ||
14137 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14138 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14139 			    "sd_start_cmds: panicking\n");
14140 			goto exit;
14141 		}
14142 
14143 		if ((bp = immed_bp) != NULL) {
14144 			/*
14145 			 * We have a bp that must be transported immediately.
14146 			 * It's OK to transport the immed_bp here without doing
14147 			 * the throttle limit check because the immed_bp is
14148 			 * always used in a retry/recovery case. This means
14149 			 * that we know we are not at the throttle limit by
14150 			 * virtue of the fact that to get here we must have
14151 			 * already gotten a command back via sdintr(). This also
14152 			 * relies on (1) the command on un_retry_bp preventing
14153 			 * further commands from the waitq from being issued;
14154 			 * and (2) the code in sd_retry_command checking the
14155 			 * throttle limit before issuing a delayed or immediate
14156 			 * retry. This holds even if the throttle limit is
14157 			 * currently ratcheted down from its maximum value.
14158 			 */
14159 			statp = kstat_runq_enter;
14160 			if (bp == un->un_retry_bp) {
14161 				ASSERT((un->un_retry_statp == NULL) ||
14162 				    (un->un_retry_statp == kstat_waitq_enter) ||
14163 				    (un->un_retry_statp ==
14164 				    kstat_runq_back_to_waitq));
14165 				/*
14166 				 * If the waitq kstat was incremented when
14167 				 * sd_set_retry_bp() queued this bp for a retry,
14168 				 * then we must set up statp so that the waitq
14169 				 * count will get decremented correctly below.
14170 				 * Also we must clear un->un_retry_statp to
14171 				 * ensure that we do not act on a stale value
14172 				 * in this field.
14173 				 */
14174 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14175 				    (un->un_retry_statp ==
14176 				    kstat_runq_back_to_waitq)) {
14177 					statp = kstat_waitq_to_runq;
14178 				}
14179 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14180 				saved_statp = un->un_retry_statp;
14181 #endif
14182 				un->un_retry_statp = NULL;
14183 
14184 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14185 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14186 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14187 				    un, un->un_retry_bp, un->un_throttle,
14188 				    un->un_ncmds_in_transport);
14189 			} else {
14190 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14191 				    "processing priority bp:0x%p\n", bp);
14192 			}
14193 
14194 		} else if ((bp = un->un_waitq_headp) != NULL) {
14195 			/*
14196 			 * A command on the waitq is ready to go, but do not
14197 			 * send it if:
14198 			 *
14199 			 * (1) the throttle limit has been reached, or
14200 			 * (2) a retry is pending, or
14201 			 * (3) a START_STOP_UNIT callback pending, or
14202 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14203 			 *	command is pending.
14204 			 *
14205 			 * For all of these conditions, IO processing will
14206 			 * restart after the condition is cleared.
14207 			 */
14208 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14209 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14210 				    "sd_start_cmds: exiting, "
14211 				    "throttle limit reached!\n");
14212 				goto exit;
14213 			}
14214 			if (un->un_retry_bp != NULL) {
14215 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14216 				    "sd_start_cmds: exiting, retry pending!\n");
14217 				goto exit;
14218 			}
14219 			if (un->un_startstop_timeid != NULL) {
14220 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14221 				    "sd_start_cmds: exiting, "
14222 				    "START_STOP pending!\n");
14223 				goto exit;
14224 			}
14225 			if (un->un_direct_priority_timeid != NULL) {
14226 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14227 				    "sd_start_cmds: exiting, "
14228 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14229 				goto exit;
14230 			}
14231 
14232 			/* Dequeue the command */
14233 			un->un_waitq_headp = bp->av_forw;
14234 			if (un->un_waitq_headp == NULL) {
14235 				un->un_waitq_tailp = NULL;
14236 			}
14237 			bp->av_forw = NULL;
14238 			statp = kstat_waitq_to_runq;
14239 			SD_TRACE(SD_LOG_IO_CORE, un,
14240 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14241 
14242 		} else {
14243 			/* No work to do so bail out now */
14244 			SD_TRACE(SD_LOG_IO_CORE, un,
14245 			    "sd_start_cmds: no more work, exiting!\n");
14246 			goto exit;
14247 		}
14248 
14249 		/*
14250 		 * Reset the state to normal. This is the mechanism by which
14251 		 * the state transitions from either SD_STATE_RWAIT or
14252 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14253 		 * If state is SD_STATE_PM_CHANGING then this command is
14254 		 * part of the device power control and the state must
14255 		 * not be put back to normal. Doing so would would
14256 		 * allow new commands to proceed when they shouldn't,
14257 		 * the device may be going off.
14258 		 */
14259 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14260 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14261 			New_state(un, SD_STATE_NORMAL);
14262 		}
14263 
14264 		xp = SD_GET_XBUF(bp);
14265 		ASSERT(xp != NULL);
14266 
14267 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14268 		/*
14269 		 * Allocate the scsi_pkt if we need one, or attach DMA
14270 		 * resources if we have a scsi_pkt that needs them. The
14271 		 * latter should only occur for commands that are being
14272 		 * retried.
14273 		 */
14274 		if ((xp->xb_pktp == NULL) ||
14275 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14276 #else
14277 		if (xp->xb_pktp == NULL) {
14278 #endif
14279 			/*
14280 			 * There is no scsi_pkt allocated for this buf. Call
14281 			 * the initpkt function to allocate & init one.
14282 			 *
14283 			 * The scsi_init_pkt runout callback functionality is
14284 			 * implemented as follows:
14285 			 *
14286 			 * 1) The initpkt function always calls
14287 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14288 			 *    callback routine.
14289 			 * 2) A successful packet allocation is initialized and
14290 			 *    the I/O is transported.
14291 			 * 3) The I/O associated with an allocation resource
14292 			 *    failure is left on its queue to be retried via
14293 			 *    runout or the next I/O.
14294 			 * 4) The I/O associated with a DMA error is removed
14295 			 *    from the queue and failed with EIO. Processing of
14296 			 *    the transport queues is also halted to be
14297 			 *    restarted via runout or the next I/O.
14298 			 * 5) The I/O associated with a CDB size or packet
14299 			 *    size error is removed from the queue and failed
14300 			 *    with EIO. Processing of the transport queues is
14301 			 *    continued.
14302 			 *
14303 			 * Note: there is no interface for canceling a runout
14304 			 * callback. To prevent the driver from detaching or
14305 			 * suspending while a runout is pending the driver
14306 			 * state is set to SD_STATE_RWAIT
14307 			 *
14308 			 * Note: using the scsi_init_pkt callback facility can
14309 			 * result in an I/O request persisting at the head of
14310 			 * the list which cannot be satisfied even after
14311 			 * multiple retries. In the future the driver may
14312 			 * implement some kind of maximum runout count before
14313 			 * failing an I/O.
14314 			 *
14315 			 * Note: the use of funcp below may seem superfluous,
14316 			 * but it helps warlock figure out the correct
14317 			 * initpkt function calls (see [s]sd.wlcmd).
14318 			 */
14319 			struct scsi_pkt	*pktp;
14320 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14321 
14322 			ASSERT(bp != un->un_rqs_bp);
14323 
14324 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14325 			switch ((*funcp)(bp, &pktp)) {
14326 			case  SD_PKT_ALLOC_SUCCESS:
14327 				xp->xb_pktp = pktp;
14328 				SD_TRACE(SD_LOG_IO_CORE, un,
14329 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14330 				    pktp);
14331 				goto got_pkt;
14332 
14333 			case SD_PKT_ALLOC_FAILURE:
14334 				/*
14335 				 * Temporary (hopefully) resource depletion.
14336 				 * Since retries and RQS commands always have a
14337 				 * scsi_pkt allocated, these cases should never
14338 				 * get here. So the only cases this needs to
14339 				 * handle is a bp from the waitq (which we put
14340 				 * back onto the waitq for sdrunout), or a bp
14341 				 * sent as an immed_bp (which we just fail).
14342 				 */
14343 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14344 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14345 
14346 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14347 
14348 				if (bp == immed_bp) {
14349 					/*
14350 					 * If SD_XB_DMA_FREED is clear, then
14351 					 * this is a failure to allocate a
14352 					 * scsi_pkt, and we must fail the
14353 					 * command.
14354 					 */
14355 					if ((xp->xb_pkt_flags &
14356 					    SD_XB_DMA_FREED) == 0) {
14357 						break;
14358 					}
14359 
14360 					/*
14361 					 * If this immediate command is NOT our
14362 					 * un_retry_bp, then we must fail it.
14363 					 */
14364 					if (bp != un->un_retry_bp) {
14365 						break;
14366 					}
14367 
14368 					/*
14369 					 * We get here if this cmd is our
14370 					 * un_retry_bp that was DMAFREED, but
14371 					 * scsi_init_pkt() failed to reallocate
14372 					 * DMA resources when we attempted to
14373 					 * retry it. This can happen when an
14374 					 * mpxio failover is in progress, but
14375 					 * we don't want to just fail the
14376 					 * command in this case.
14377 					 *
14378 					 * Use timeout(9F) to restart it after
14379 					 * a 100ms delay.  We don't want to
14380 					 * let sdrunout() restart it, because
14381 					 * sdrunout() is just supposed to start
14382 					 * commands that are sitting on the
14383 					 * wait queue.  The un_retry_bp stays
14384 					 * set until the command completes, but
14385 					 * sdrunout can be called many times
14386 					 * before that happens.  Since sdrunout
14387 					 * cannot tell if the un_retry_bp is
14388 					 * already in the transport, it could
14389 					 * end up calling scsi_transport() for
14390 					 * the un_retry_bp multiple times.
14391 					 *
14392 					 * Also: don't schedule the callback
14393 					 * if some other callback is already
14394 					 * pending.
14395 					 */
14396 					if (un->un_retry_statp == NULL) {
14397 						/*
14398 						 * restore the kstat pointer to
14399 						 * keep kstat counts coherent
14400 						 * when we do retry the command.
14401 						 */
14402 						un->un_retry_statp =
14403 						    saved_statp;
14404 					}
14405 
14406 					if ((un->un_startstop_timeid == NULL) &&
14407 					    (un->un_retry_timeid == NULL) &&
14408 					    (un->un_direct_priority_timeid ==
14409 					    NULL)) {
14410 
14411 						un->un_retry_timeid =
14412 						    timeout(
14413 						    sd_start_retry_command,
14414 						    un, SD_RESTART_TIMEOUT);
14415 					}
14416 					goto exit;
14417 				}
14418 
14419 #else
14420 				if (bp == immed_bp) {
14421 					break;	/* Just fail the command */
14422 				}
14423 #endif
14424 
14425 				/* Add the buf back to the head of the waitq */
14426 				bp->av_forw = un->un_waitq_headp;
14427 				un->un_waitq_headp = bp;
14428 				if (un->un_waitq_tailp == NULL) {
14429 					un->un_waitq_tailp = bp;
14430 				}
14431 				goto exit;
14432 
14433 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14434 				/*
14435 				 * HBA DMA resource failure. Fail the command
14436 				 * and continue processing of the queues.
14437 				 */
14438 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14439 				    "sd_start_cmds: "
14440 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14441 				break;
14442 
14443 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14444 				/*
14445 				 * Note:x86: Partial DMA mapping not supported
14446 				 * for USCSI commands, and all the needed DMA
14447 				 * resources were not allocated.
14448 				 */
14449 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14450 				    "sd_start_cmds: "
14451 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14452 				break;
14453 
14454 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14455 				/*
14456 				 * Note:x86: Request cannot fit into CDB based
14457 				 * on lba and len.
14458 				 */
14459 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14460 				    "sd_start_cmds: "
14461 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14462 				break;
14463 
14464 			default:
14465 				/* Should NEVER get here! */
14466 				panic("scsi_initpkt error");
14467 				/*NOTREACHED*/
14468 			}
14469 
14470 			/*
14471 			 * Fatal error in allocating a scsi_pkt for this buf.
14472 			 * Update kstats & return the buf with an error code.
14473 			 * We must use sd_return_failed_command_no_restart() to
14474 			 * avoid a recursive call back into sd_start_cmds().
14475 			 * However this also means that we must keep processing
14476 			 * the waitq here in order to avoid stalling.
14477 			 */
14478 			if (statp == kstat_waitq_to_runq) {
14479 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14480 			}
14481 			sd_return_failed_command_no_restart(un, bp, EIO);
14482 			if (bp == immed_bp) {
14483 				/* immed_bp is gone by now, so clear this */
14484 				immed_bp = NULL;
14485 			}
14486 			continue;
14487 		}
14488 got_pkt:
14489 		if (bp == immed_bp) {
14490 			/* goto the head of the class.... */
14491 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14492 		}
14493 
14494 		un->un_ncmds_in_transport++;
14495 		SD_UPDATE_KSTATS(un, statp, bp);
14496 
14497 		/*
14498 		 * Call scsi_transport() to send the command to the target.
14499 		 * According to SCSA architecture, we must drop the mutex here
14500 		 * before calling scsi_transport() in order to avoid deadlock.
14501 		 * Note that the scsi_pkt's completion routine can be executed
14502 		 * (from interrupt context) even before the call to
14503 		 * scsi_transport() returns.
14504 		 */
14505 		SD_TRACE(SD_LOG_IO_CORE, un,
14506 		    "sd_start_cmds: calling scsi_transport()\n");
14507 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14508 
14509 		mutex_exit(SD_MUTEX(un));
14510 		rval = scsi_transport(xp->xb_pktp);
14511 		mutex_enter(SD_MUTEX(un));
14512 
14513 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14514 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14515 
14516 		switch (rval) {
14517 		case TRAN_ACCEPT:
14518 			/* Clear this with every pkt accepted by the HBA */
14519 			un->un_tran_fatal_count = 0;
14520 			break;	/* Success; try the next cmd (if any) */
14521 
14522 		case TRAN_BUSY:
14523 			un->un_ncmds_in_transport--;
14524 			ASSERT(un->un_ncmds_in_transport >= 0);
14525 
14526 			/*
14527 			 * Don't retry request sense, the sense data
14528 			 * is lost when another request is sent.
14529 			 * Free up the rqs buf and retry
14530 			 * the original failed cmd.  Update kstat.
14531 			 */
14532 			if (bp == un->un_rqs_bp) {
14533 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14534 				bp = sd_mark_rqs_idle(un, xp);
14535 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14536 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14537 				    kstat_waitq_enter);
14538 				goto exit;
14539 			}
14540 
14541 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14542 			/*
14543 			 * Free the DMA resources for the  scsi_pkt. This will
14544 			 * allow mpxio to select another path the next time
14545 			 * we call scsi_transport() with this scsi_pkt.
14546 			 * See sdintr() for the rationalization behind this.
14547 			 */
14548 			if ((un->un_f_is_fibre == TRUE) &&
14549 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14550 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14551 				scsi_dmafree(xp->xb_pktp);
14552 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14553 			}
14554 #endif
14555 
14556 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14557 				/*
14558 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14559 				 * are for error recovery situations. These do
14560 				 * not use the normal command waitq, so if they
14561 				 * get a TRAN_BUSY we cannot put them back onto
14562 				 * the waitq for later retry. One possible
14563 				 * problem is that there could already be some
14564 				 * other command on un_retry_bp that is waiting
14565 				 * for this one to complete, so we would be
14566 				 * deadlocked if we put this command back onto
14567 				 * the waitq for later retry (since un_retry_bp
14568 				 * must complete before the driver gets back to
14569 				 * commands on the waitq).
14570 				 *
14571 				 * To avoid deadlock we must schedule a callback
14572 				 * that will restart this command after a set
14573 				 * interval.  This should keep retrying for as
14574 				 * long as the underlying transport keeps
14575 				 * returning TRAN_BUSY (just like for other
14576 				 * commands).  Use the same timeout interval as
14577 				 * for the ordinary TRAN_BUSY retry.
14578 				 */
14579 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14580 				    "sd_start_cmds: scsi_transport() returned "
14581 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14582 
14583 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14584 				un->un_direct_priority_timeid =
14585 				    timeout(sd_start_direct_priority_command,
14586 				    bp, un->un_busy_timeout / 500);
14587 
14588 				goto exit;
14589 			}
14590 
14591 			/*
14592 			 * For TRAN_BUSY, we want to reduce the throttle value,
14593 			 * unless we are retrying a command.
14594 			 */
14595 			if (bp != un->un_retry_bp) {
14596 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14597 			}
14598 
14599 			/*
14600 			 * Set up the bp to be tried again 10 ms later.
14601 			 * Note:x86: Is there a timeout value in the sd_lun
14602 			 * for this condition?
14603 			 */
14604 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14605 			    kstat_runq_back_to_waitq);
14606 			goto exit;
14607 
14608 		case TRAN_FATAL_ERROR:
14609 			un->un_tran_fatal_count++;
14610 			/* FALLTHRU */
14611 
14612 		case TRAN_BADPKT:
14613 		default:
14614 			un->un_ncmds_in_transport--;
14615 			ASSERT(un->un_ncmds_in_transport >= 0);
14616 
14617 			/*
14618 			 * If this is our REQUEST SENSE command with a
14619 			 * transport error, we must get back the pointers
14620 			 * to the original buf, and mark the REQUEST
14621 			 * SENSE command as "available".
14622 			 */
14623 			if (bp == un->un_rqs_bp) {
14624 				bp = sd_mark_rqs_idle(un, xp);
14625 				xp = SD_GET_XBUF(bp);
14626 			} else {
14627 				/*
14628 				 * Legacy behavior: do not update transport
14629 				 * error count for request sense commands.
14630 				 */
14631 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14632 			}
14633 
14634 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14635 			sd_print_transport_rejected_message(un, xp, rval);
14636 
14637 			/*
14638 			 * This command will be terminated by SD driver due
14639 			 * to a fatal transport error. We should post
14640 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14641 			 * of "fail" for any command to indicate this
14642 			 * situation.
14643 			 */
14644 			if (xp->xb_ena > 0) {
14645 				ASSERT(un->un_fm_private != NULL);
14646 				sfip = un->un_fm_private;
14647 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14648 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14649 				    xp->xb_pktp, bp, xp);
14650 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14651 			}
14652 
14653 			/*
14654 			 * We must use sd_return_failed_command_no_restart() to
14655 			 * avoid a recursive call back into sd_start_cmds().
14656 			 * However this also means that we must keep processing
14657 			 * the waitq here in order to avoid stalling.
14658 			 */
14659 			sd_return_failed_command_no_restart(un, bp, EIO);
14660 
14661 			/*
14662 			 * Notify any threads waiting in sd_ddi_suspend() that
14663 			 * a command completion has occurred.
14664 			 */
14665 			if (un->un_state == SD_STATE_SUSPENDED) {
14666 				cv_broadcast(&un->un_disk_busy_cv);
14667 			}
14668 
14669 			if (bp == immed_bp) {
14670 				/* immed_bp is gone by now, so clear this */
14671 				immed_bp = NULL;
14672 			}
14673 			break;
14674 		}
14675 
14676 	} while (immed_bp == NULL);
14677 
14678 exit:
14679 	ASSERT(mutex_owned(SD_MUTEX(un)));
14680 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14681 }
14682 
14683 
14684 /*
14685  *    Function: sd_return_command
14686  *
14687  * Description: Returns a command to its originator (with or without an
14688  *		error).  Also starts commands waiting to be transported
14689  *		to the target.
14690  *
14691  *     Context: May be called from interrupt, kernel, or timeout context
14692  */
14693 
14694 static void
14695 sd_return_command(struct sd_lun *un, struct buf *bp)
14696 {
14697 	struct sd_xbuf *xp;
14698 	struct scsi_pkt *pktp;
14699 	struct sd_fm_internal *sfip;
14700 
14701 	ASSERT(bp != NULL);
14702 	ASSERT(un != NULL);
14703 	ASSERT(mutex_owned(SD_MUTEX(un)));
14704 	ASSERT(bp != un->un_rqs_bp);
14705 	xp = SD_GET_XBUF(bp);
14706 	ASSERT(xp != NULL);
14707 
14708 	pktp = SD_GET_PKTP(bp);
14709 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14710 	ASSERT(sfip != NULL);
14711 
14712 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14713 
14714 	/*
14715 	 * Note: check for the "sdrestart failed" case.
14716 	 */
14717 	if ((un->un_partial_dma_supported == 1) &&
14718 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14719 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14720 	    (xp->xb_pktp->pkt_resid == 0)) {
14721 
14722 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14723 			/*
14724 			 * Successfully set up next portion of cmd
14725 			 * transfer, try sending it
14726 			 */
14727 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14728 			    NULL, NULL, 0, (clock_t)0, NULL);
14729 			sd_start_cmds(un, NULL);
14730 			return;	/* Note:x86: need a return here? */
14731 		}
14732 	}
14733 
14734 	/*
14735 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14736 	 * can happen if upon being re-tried the failfast bp either
14737 	 * succeeded or encountered another error (possibly even a different
14738 	 * error than the one that precipitated the failfast state, but in
14739 	 * that case it would have had to exhaust retries as well). Regardless,
14740 	 * this should not occur whenever the instance is in the active
14741 	 * failfast state.
14742 	 */
14743 	if (bp == un->un_failfast_bp) {
14744 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14745 		un->un_failfast_bp = NULL;
14746 	}
14747 
14748 	/*
14749 	 * Clear the failfast state upon successful completion of ANY cmd.
14750 	 */
14751 	if (bp->b_error == 0) {
14752 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14753 		/*
14754 		 * If this is a successful command, but used to be retried,
14755 		 * we will take it as a recovered command and post an
14756 		 * ereport with driver-assessment of "recovered".
14757 		 */
14758 		if (xp->xb_ena > 0) {
14759 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14760 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14761 		}
14762 	} else {
14763 		/*
14764 		 * If this is a failed non-USCSI command we will post an
14765 		 * ereport with driver-assessment set accordingly("fail" or
14766 		 * "fatal").
14767 		 */
14768 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14769 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14770 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14771 		}
14772 	}
14773 
14774 	/*
14775 	 * This is used if the command was retried one or more times. Show that
14776 	 * we are done with it, and allow processing of the waitq to resume.
14777 	 */
14778 	if (bp == un->un_retry_bp) {
14779 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14780 		    "sd_return_command: un:0x%p: "
14781 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14782 		un->un_retry_bp = NULL;
14783 		un->un_retry_statp = NULL;
14784 	}
14785 
14786 	SD_UPDATE_RDWR_STATS(un, bp);
14787 	SD_UPDATE_PARTITION_STATS(un, bp);
14788 
14789 	switch (un->un_state) {
14790 	case SD_STATE_SUSPENDED:
14791 		/*
14792 		 * Notify any threads waiting in sd_ddi_suspend() that
14793 		 * a command completion has occurred.
14794 		 */
14795 		cv_broadcast(&un->un_disk_busy_cv);
14796 		break;
14797 	default:
14798 		sd_start_cmds(un, NULL);
14799 		break;
14800 	}
14801 
14802 	/* Return this command up the iodone chain to its originator. */
14803 	mutex_exit(SD_MUTEX(un));
14804 
14805 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14806 	xp->xb_pktp = NULL;
14807 
14808 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14809 
14810 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14811 	mutex_enter(SD_MUTEX(un));
14812 
14813 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14814 }
14815 
14816 
14817 /*
14818  *    Function: sd_return_failed_command
14819  *
14820  * Description: Command completion when an error occurred.
14821  *
14822  *     Context: May be called from interrupt context
14823  */
14824 
14825 static void
14826 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14827 {
14828 	ASSERT(bp != NULL);
14829 	ASSERT(un != NULL);
14830 	ASSERT(mutex_owned(SD_MUTEX(un)));
14831 
14832 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14833 	    "sd_return_failed_command: entry\n");
14834 
14835 	/*
14836 	 * b_resid could already be nonzero due to a partial data
14837 	 * transfer, so do not change it here.
14838 	 */
14839 	SD_BIOERROR(bp, errcode);
14840 
14841 	sd_return_command(un, bp);
14842 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14843 	    "sd_return_failed_command: exit\n");
14844 }
14845 
14846 
14847 /*
14848  *    Function: sd_return_failed_command_no_restart
14849  *
14850  * Description: Same as sd_return_failed_command, but ensures that no
14851  *		call back into sd_start_cmds will be issued.
14852  *
14853  *     Context: May be called from interrupt context
14854  */
14855 
14856 static void
14857 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14858 	int errcode)
14859 {
14860 	struct sd_xbuf *xp;
14861 
14862 	ASSERT(bp != NULL);
14863 	ASSERT(un != NULL);
14864 	ASSERT(mutex_owned(SD_MUTEX(un)));
14865 	xp = SD_GET_XBUF(bp);
14866 	ASSERT(xp != NULL);
14867 	ASSERT(errcode != 0);
14868 
14869 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14870 	    "sd_return_failed_command_no_restart: entry\n");
14871 
14872 	/*
14873 	 * b_resid could already be nonzero due to a partial data
14874 	 * transfer, so do not change it here.
14875 	 */
14876 	SD_BIOERROR(bp, errcode);
14877 
14878 	/*
14879 	 * If this is the failfast bp, clear it. This can happen if the
14880 	 * failfast bp encounterd a fatal error when we attempted to
14881 	 * re-try it (such as a scsi_transport(9F) failure).  However
14882 	 * we should NOT be in an active failfast state if the failfast
14883 	 * bp is not NULL.
14884 	 */
14885 	if (bp == un->un_failfast_bp) {
14886 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14887 		un->un_failfast_bp = NULL;
14888 	}
14889 
14890 	if (bp == un->un_retry_bp) {
14891 		/*
14892 		 * This command was retried one or more times. Show that we are
14893 		 * done with it, and allow processing of the waitq to resume.
14894 		 */
14895 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14896 		    "sd_return_failed_command_no_restart: "
14897 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14898 		un->un_retry_bp = NULL;
14899 		un->un_retry_statp = NULL;
14900 	}
14901 
14902 	SD_UPDATE_RDWR_STATS(un, bp);
14903 	SD_UPDATE_PARTITION_STATS(un, bp);
14904 
14905 	mutex_exit(SD_MUTEX(un));
14906 
14907 	if (xp->xb_pktp != NULL) {
14908 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14909 		xp->xb_pktp = NULL;
14910 	}
14911 
14912 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14913 
14914 	mutex_enter(SD_MUTEX(un));
14915 
14916 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14917 	    "sd_return_failed_command_no_restart: exit\n");
14918 }
14919 
14920 
14921 /*
14922  *    Function: sd_retry_command
14923  *
14924  * Description: queue up a command for retry, or (optionally) fail it
14925  *		if retry counts are exhausted.
14926  *
14927  *   Arguments: un - Pointer to the sd_lun struct for the target.
14928  *
14929  *		bp - Pointer to the buf for the command to be retried.
14930  *
14931  *		retry_check_flag - Flag to see which (if any) of the retry
14932  *		   counts should be decremented/checked. If the indicated
14933  *		   retry count is exhausted, then the command will not be
14934  *		   retried; it will be failed instead. This should use a
14935  *		   value equal to one of the following:
14936  *
14937  *			SD_RETRIES_NOCHECK
14938  *			SD_RESD_RETRIES_STANDARD
14939  *			SD_RETRIES_VICTIM
14940  *
14941  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14942  *		   if the check should be made to see of FLAG_ISOLATE is set
14943  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14944  *		   not retried, it is simply failed.
14945  *
14946  *		user_funcp - Ptr to function to call before dispatching the
14947  *		   command. May be NULL if no action needs to be performed.
14948  *		   (Primarily intended for printing messages.)
14949  *
14950  *		user_arg - Optional argument to be passed along to
14951  *		   the user_funcp call.
14952  *
14953  *		failure_code - errno return code to set in the bp if the
14954  *		   command is going to be failed.
14955  *
14956  *		retry_delay - Retry delay interval in (clock_t) units. May
14957  *		   be zero which indicates that the retry should be retried
14958  *		   immediately (ie, without an intervening delay).
14959  *
14960  *		statp - Ptr to kstat function to be updated if the command
14961  *		   is queued for a delayed retry. May be NULL if no kstat
14962  *		   update is desired.
14963  *
14964  *     Context: May be called from interrupt context.
14965  */
14966 
14967 static void
14968 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14969 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14970 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14971 	void (*statp)(kstat_io_t *))
14972 {
14973 	struct sd_xbuf	*xp;
14974 	struct scsi_pkt	*pktp;
14975 	struct sd_fm_internal *sfip;
14976 
14977 	ASSERT(un != NULL);
14978 	ASSERT(mutex_owned(SD_MUTEX(un)));
14979 	ASSERT(bp != NULL);
14980 	xp = SD_GET_XBUF(bp);
14981 	ASSERT(xp != NULL);
14982 	pktp = SD_GET_PKTP(bp);
14983 	ASSERT(pktp != NULL);
14984 
14985 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14986 	ASSERT(sfip != NULL);
14987 
14988 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14989 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14990 
14991 	/*
14992 	 * If we are syncing or dumping, fail the command to avoid
14993 	 * recursively calling back into scsi_transport().
14994 	 */
14995 	if (ddi_in_panic()) {
14996 		goto fail_command_no_log;
14997 	}
14998 
14999 	/*
15000 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15001 	 * log an error and fail the command.
15002 	 */
15003 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15004 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15005 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15006 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15007 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15008 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15009 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15010 		goto fail_command;
15011 	}
15012 
15013 	/*
15014 	 * If we are suspended, then put the command onto head of the
15015 	 * wait queue since we don't want to start more commands, and
15016 	 * clear the un_retry_bp. Next time when we are resumed, will
15017 	 * handle the command in the wait queue.
15018 	 */
15019 	switch (un->un_state) {
15020 	case SD_STATE_SUSPENDED:
15021 	case SD_STATE_DUMPING:
15022 		bp->av_forw = un->un_waitq_headp;
15023 		un->un_waitq_headp = bp;
15024 		if (un->un_waitq_tailp == NULL) {
15025 			un->un_waitq_tailp = bp;
15026 		}
15027 		if (bp == un->un_retry_bp) {
15028 			un->un_retry_bp = NULL;
15029 			un->un_retry_statp = NULL;
15030 		}
15031 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15032 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15033 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15034 		return;
15035 	default:
15036 		break;
15037 	}
15038 
15039 	/*
15040 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15041 	 * is set; if it is then we do not want to retry the command.
15042 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15043 	 */
15044 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15045 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15046 			goto fail_command;
15047 		}
15048 	}
15049 
15050 
15051 	/*
15052 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15053 	 * command timeout or a selection timeout has occurred. This means
15054 	 * that we were unable to establish an kind of communication with
15055 	 * the target, and subsequent retries and/or commands are likely
15056 	 * to encounter similar results and take a long time to complete.
15057 	 *
15058 	 * If this is a failfast error condition, we need to update the
15059 	 * failfast state, even if this bp does not have B_FAILFAST set.
15060 	 */
15061 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15062 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15063 			ASSERT(un->un_failfast_bp == NULL);
15064 			/*
15065 			 * If we are already in the active failfast state, and
15066 			 * another failfast error condition has been detected,
15067 			 * then fail this command if it has B_FAILFAST set.
15068 			 * If B_FAILFAST is clear, then maintain the legacy
15069 			 * behavior of retrying heroically, even tho this will
15070 			 * take a lot more time to fail the command.
15071 			 */
15072 			if (bp->b_flags & B_FAILFAST) {
15073 				goto fail_command;
15074 			}
15075 		} else {
15076 			/*
15077 			 * We're not in the active failfast state, but we
15078 			 * have a failfast error condition, so we must begin
15079 			 * transition to the next state. We do this regardless
15080 			 * of whether or not this bp has B_FAILFAST set.
15081 			 */
15082 			if (un->un_failfast_bp == NULL) {
15083 				/*
15084 				 * This is the first bp to meet a failfast
15085 				 * condition so save it on un_failfast_bp &
15086 				 * do normal retry processing. Do not enter
15087 				 * active failfast state yet. This marks
15088 				 * entry into the "failfast pending" state.
15089 				 */
15090 				un->un_failfast_bp = bp;
15091 
15092 			} else if (un->un_failfast_bp == bp) {
15093 				/*
15094 				 * This is the second time *this* bp has
15095 				 * encountered a failfast error condition,
15096 				 * so enter active failfast state & flush
15097 				 * queues as appropriate.
15098 				 */
15099 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15100 				un->un_failfast_bp = NULL;
15101 				sd_failfast_flushq(un);
15102 
15103 				/*
15104 				 * Fail this bp now if B_FAILFAST set;
15105 				 * otherwise continue with retries. (It would
15106 				 * be pretty ironic if this bp succeeded on a
15107 				 * subsequent retry after we just flushed all
15108 				 * the queues).
15109 				 */
15110 				if (bp->b_flags & B_FAILFAST) {
15111 					goto fail_command;
15112 				}
15113 
15114 #if !defined(lint) && !defined(__lint)
15115 			} else {
15116 				/*
15117 				 * If neither of the preceeding conditionals
15118 				 * was true, it means that there is some
15119 				 * *other* bp that has met an inital failfast
15120 				 * condition and is currently either being
15121 				 * retried or is waiting to be retried. In
15122 				 * that case we should perform normal retry
15123 				 * processing on *this* bp, since there is a
15124 				 * chance that the current failfast condition
15125 				 * is transient and recoverable. If that does
15126 				 * not turn out to be the case, then retries
15127 				 * will be cleared when the wait queue is
15128 				 * flushed anyway.
15129 				 */
15130 #endif
15131 			}
15132 		}
15133 	} else {
15134 		/*
15135 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15136 		 * likely were able to at least establish some level of
15137 		 * communication with the target and subsequent commands
15138 		 * and/or retries are likely to get through to the target,
15139 		 * In this case we want to be aggressive about clearing
15140 		 * the failfast state. Note that this does not affect
15141 		 * the "failfast pending" condition.
15142 		 */
15143 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15144 	}
15145 
15146 
15147 	/*
15148 	 * Check the specified retry count to see if we can still do
15149 	 * any retries with this pkt before we should fail it.
15150 	 */
15151 	switch (retry_check_flag & SD_RETRIES_MASK) {
15152 	case SD_RETRIES_VICTIM:
15153 		/*
15154 		 * Check the victim retry count. If exhausted, then fall
15155 		 * thru & check against the standard retry count.
15156 		 */
15157 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15158 			/* Increment count & proceed with the retry */
15159 			xp->xb_victim_retry_count++;
15160 			break;
15161 		}
15162 		/* Victim retries exhausted, fall back to std. retries... */
15163 		/* FALLTHRU */
15164 
15165 	case SD_RETRIES_STANDARD:
15166 		if (xp->xb_retry_count >= un->un_retry_count) {
15167 			/* Retries exhausted, fail the command */
15168 			SD_TRACE(SD_LOG_IO_CORE, un,
15169 			    "sd_retry_command: retries exhausted!\n");
15170 			/*
15171 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15172 			 * commands with nonzero pkt_resid.
15173 			 */
15174 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15175 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15176 			    (pktp->pkt_resid != 0)) {
15177 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15178 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15179 					SD_UPDATE_B_RESID(bp, pktp);
15180 				}
15181 			}
15182 			goto fail_command;
15183 		}
15184 		xp->xb_retry_count++;
15185 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15186 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15187 		break;
15188 
15189 	case SD_RETRIES_UA:
15190 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15191 			/* Retries exhausted, fail the command */
15192 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15193 			    "Unit Attention retries exhausted. "
15194 			    "Check the target.\n");
15195 			goto fail_command;
15196 		}
15197 		xp->xb_ua_retry_count++;
15198 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15199 		    "sd_retry_command: retry count:%d\n",
15200 		    xp->xb_ua_retry_count);
15201 		break;
15202 
15203 	case SD_RETRIES_BUSY:
15204 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15205 			/* Retries exhausted, fail the command */
15206 			SD_TRACE(SD_LOG_IO_CORE, un,
15207 			    "sd_retry_command: retries exhausted!\n");
15208 			goto fail_command;
15209 		}
15210 		xp->xb_retry_count++;
15211 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15212 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15213 		break;
15214 
15215 	case SD_RETRIES_NOCHECK:
15216 	default:
15217 		/* No retry count to check. Just proceed with the retry */
15218 		break;
15219 	}
15220 
15221 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15222 
15223 	/*
15224 	 * If this is a non-USCSI command being retried
15225 	 * during execution last time, we should post an ereport with
15226 	 * driver-assessment of the value "retry".
15227 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15228 	 * hardware errors, we bypass ereport posting.
15229 	 */
15230 	if (failure_code != 0) {
15231 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15232 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15233 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15234 		}
15235 	}
15236 
15237 	/*
15238 	 * If we were given a zero timeout, we must attempt to retry the
15239 	 * command immediately (ie, without a delay).
15240 	 */
15241 	if (retry_delay == 0) {
15242 		/*
15243 		 * Check some limiting conditions to see if we can actually
15244 		 * do the immediate retry.  If we cannot, then we must
15245 		 * fall back to queueing up a delayed retry.
15246 		 */
15247 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15248 			/*
15249 			 * We are at the throttle limit for the target,
15250 			 * fall back to delayed retry.
15251 			 */
15252 			retry_delay = un->un_busy_timeout;
15253 			statp = kstat_waitq_enter;
15254 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15255 			    "sd_retry_command: immed. retry hit "
15256 			    "throttle!\n");
15257 		} else {
15258 			/*
15259 			 * We're clear to proceed with the immediate retry.
15260 			 * First call the user-provided function (if any)
15261 			 */
15262 			if (user_funcp != NULL) {
15263 				(*user_funcp)(un, bp, user_arg,
15264 				    SD_IMMEDIATE_RETRY_ISSUED);
15265 #ifdef __lock_lint
15266 				sd_print_incomplete_msg(un, bp, user_arg,
15267 				    SD_IMMEDIATE_RETRY_ISSUED);
15268 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15269 				    SD_IMMEDIATE_RETRY_ISSUED);
15270 				sd_print_sense_failed_msg(un, bp, user_arg,
15271 				    SD_IMMEDIATE_RETRY_ISSUED);
15272 #endif
15273 			}
15274 
15275 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15276 			    "sd_retry_command: issuing immediate retry\n");
15277 
15278 			/*
15279 			 * Call sd_start_cmds() to transport the command to
15280 			 * the target.
15281 			 */
15282 			sd_start_cmds(un, bp);
15283 
15284 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15285 			    "sd_retry_command exit\n");
15286 			return;
15287 		}
15288 	}
15289 
15290 	/*
15291 	 * Set up to retry the command after a delay.
15292 	 * First call the user-provided function (if any)
15293 	 */
15294 	if (user_funcp != NULL) {
15295 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15296 	}
15297 
15298 	sd_set_retry_bp(un, bp, retry_delay, statp);
15299 
15300 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15301 	return;
15302 
15303 fail_command:
15304 
15305 	if (user_funcp != NULL) {
15306 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15307 	}
15308 
15309 fail_command_no_log:
15310 
15311 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15312 	    "sd_retry_command: returning failed command\n");
15313 
15314 	sd_return_failed_command(un, bp, failure_code);
15315 
15316 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15317 }
15318 
15319 
15320 /*
15321  *    Function: sd_set_retry_bp
15322  *
15323  * Description: Set up the given bp for retry.
15324  *
15325  *   Arguments: un - ptr to associated softstate
15326  *		bp - ptr to buf(9S) for the command
15327  *		retry_delay - time interval before issuing retry (may be 0)
15328  *		statp - optional pointer to kstat function
15329  *
15330  *     Context: May be called under interrupt context
15331  */
15332 
15333 static void
15334 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15335 	void (*statp)(kstat_io_t *))
15336 {
15337 	ASSERT(un != NULL);
15338 	ASSERT(mutex_owned(SD_MUTEX(un)));
15339 	ASSERT(bp != NULL);
15340 
15341 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15342 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15343 
15344 	/*
15345 	 * Indicate that the command is being retried. This will not allow any
15346 	 * other commands on the wait queue to be transported to the target
15347 	 * until this command has been completed (success or failure). The
15348 	 * "retry command" is not transported to the target until the given
15349 	 * time delay expires, unless the user specified a 0 retry_delay.
15350 	 *
15351 	 * Note: the timeout(9F) callback routine is what actually calls
15352 	 * sd_start_cmds() to transport the command, with the exception of a
15353 	 * zero retry_delay. The only current implementor of a zero retry delay
15354 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15355 	 */
15356 	if (un->un_retry_bp == NULL) {
15357 		ASSERT(un->un_retry_statp == NULL);
15358 		un->un_retry_bp = bp;
15359 
15360 		/*
15361 		 * If the user has not specified a delay the command should
15362 		 * be queued and no timeout should be scheduled.
15363 		 */
15364 		if (retry_delay == 0) {
15365 			/*
15366 			 * Save the kstat pointer that will be used in the
15367 			 * call to SD_UPDATE_KSTATS() below, so that
15368 			 * sd_start_cmds() can correctly decrement the waitq
15369 			 * count when it is time to transport this command.
15370 			 */
15371 			un->un_retry_statp = statp;
15372 			goto done;
15373 		}
15374 	}
15375 
15376 	if (un->un_retry_bp == bp) {
15377 		/*
15378 		 * Save the kstat pointer that will be used in the call to
15379 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15380 		 * correctly decrement the waitq count when it is time to
15381 		 * transport this command.
15382 		 */
15383 		un->un_retry_statp = statp;
15384 
15385 		/*
15386 		 * Schedule a timeout if:
15387 		 *   1) The user has specified a delay.
15388 		 *   2) There is not a START_STOP_UNIT callback pending.
15389 		 *
15390 		 * If no delay has been specified, then it is up to the caller
15391 		 * to ensure that IO processing continues without stalling.
15392 		 * Effectively, this means that the caller will issue the
15393 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15394 		 * callback does this after the START STOP UNIT command has
15395 		 * completed. In either of these cases we should not schedule
15396 		 * a timeout callback here.  Also don't schedule the timeout if
15397 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15398 		 */
15399 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15400 		    (un->un_direct_priority_timeid == NULL)) {
15401 			un->un_retry_timeid =
15402 			    timeout(sd_start_retry_command, un, retry_delay);
15403 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15404 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15405 			    " bp:0x%p un_retry_timeid:0x%p\n",
15406 			    un, bp, un->un_retry_timeid);
15407 		}
15408 	} else {
15409 		/*
15410 		 * We only get in here if there is already another command
15411 		 * waiting to be retried.  In this case, we just put the
15412 		 * given command onto the wait queue, so it can be transported
15413 		 * after the current retry command has completed.
15414 		 *
15415 		 * Also we have to make sure that if the command at the head
15416 		 * of the wait queue is the un_failfast_bp, that we do not
15417 		 * put ahead of it any other commands that are to be retried.
15418 		 */
15419 		if ((un->un_failfast_bp != NULL) &&
15420 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15421 			/*
15422 			 * Enqueue this command AFTER the first command on
15423 			 * the wait queue (which is also un_failfast_bp).
15424 			 */
15425 			bp->av_forw = un->un_waitq_headp->av_forw;
15426 			un->un_waitq_headp->av_forw = bp;
15427 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15428 				un->un_waitq_tailp = bp;
15429 			}
15430 		} else {
15431 			/* Enqueue this command at the head of the waitq. */
15432 			bp->av_forw = un->un_waitq_headp;
15433 			un->un_waitq_headp = bp;
15434 			if (un->un_waitq_tailp == NULL) {
15435 				un->un_waitq_tailp = bp;
15436 			}
15437 		}
15438 
15439 		if (statp == NULL) {
15440 			statp = kstat_waitq_enter;
15441 		}
15442 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15443 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15444 	}
15445 
15446 done:
15447 	if (statp != NULL) {
15448 		SD_UPDATE_KSTATS(un, statp, bp);
15449 	}
15450 
15451 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15452 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15453 }
15454 
15455 
15456 /*
15457  *    Function: sd_start_retry_command
15458  *
15459  * Description: Start the command that has been waiting on the target's
15460  *		retry queue.  Called from timeout(9F) context after the
15461  *		retry delay interval has expired.
15462  *
15463  *   Arguments: arg - pointer to associated softstate for the device.
15464  *
15465  *     Context: timeout(9F) thread context.  May not sleep.
15466  */
15467 
15468 static void
15469 sd_start_retry_command(void *arg)
15470 {
15471 	struct sd_lun *un = arg;
15472 
15473 	ASSERT(un != NULL);
15474 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15475 
15476 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15477 	    "sd_start_retry_command: entry\n");
15478 
15479 	mutex_enter(SD_MUTEX(un));
15480 
15481 	un->un_retry_timeid = NULL;
15482 
15483 	if (un->un_retry_bp != NULL) {
15484 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15485 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15486 		    un, un->un_retry_bp);
15487 		sd_start_cmds(un, un->un_retry_bp);
15488 	}
15489 
15490 	mutex_exit(SD_MUTEX(un));
15491 
15492 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15493 	    "sd_start_retry_command: exit\n");
15494 }
15495 
15496 
15497 /*
15498  *    Function: sd_start_direct_priority_command
15499  *
15500  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15501  *		received TRAN_BUSY when we called scsi_transport() to send it
15502  *		to the underlying HBA. This function is called from timeout(9F)
15503  *		context after the delay interval has expired.
15504  *
15505  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15506  *
15507  *     Context: timeout(9F) thread context.  May not sleep.
15508  */
15509 
15510 static void
15511 sd_start_direct_priority_command(void *arg)
15512 {
15513 	struct buf	*priority_bp = arg;
15514 	struct sd_lun	*un;
15515 
15516 	ASSERT(priority_bp != NULL);
15517 	un = SD_GET_UN(priority_bp);
15518 	ASSERT(un != NULL);
15519 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15520 
15521 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15522 	    "sd_start_direct_priority_command: entry\n");
15523 
15524 	mutex_enter(SD_MUTEX(un));
15525 	un->un_direct_priority_timeid = NULL;
15526 	sd_start_cmds(un, priority_bp);
15527 	mutex_exit(SD_MUTEX(un));
15528 
15529 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15530 	    "sd_start_direct_priority_command: exit\n");
15531 }
15532 
15533 
15534 /*
15535  *    Function: sd_send_request_sense_command
15536  *
15537  * Description: Sends a REQUEST SENSE command to the target
15538  *
15539  *     Context: May be called from interrupt context.
15540  */
15541 
15542 static void
15543 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15544 	struct scsi_pkt *pktp)
15545 {
15546 	ASSERT(bp != NULL);
15547 	ASSERT(un != NULL);
15548 	ASSERT(mutex_owned(SD_MUTEX(un)));
15549 
15550 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15551 	    "entry: buf:0x%p\n", bp);
15552 
15553 	/*
15554 	 * If we are syncing or dumping, then fail the command to avoid a
15555 	 * recursive callback into scsi_transport(). Also fail the command
15556 	 * if we are suspended (legacy behavior).
15557 	 */
15558 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15559 	    (un->un_state == SD_STATE_DUMPING)) {
15560 		sd_return_failed_command(un, bp, EIO);
15561 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15562 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15563 		return;
15564 	}
15565 
15566 	/*
15567 	 * Retry the failed command and don't issue the request sense if:
15568 	 *    1) the sense buf is busy
15569 	 *    2) we have 1 or more outstanding commands on the target
15570 	 *    (the sense data will be cleared or invalidated any way)
15571 	 *
15572 	 * Note: There could be an issue with not checking a retry limit here,
15573 	 * the problem is determining which retry limit to check.
15574 	 */
15575 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15576 		/* Don't retry if the command is flagged as non-retryable */
15577 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15578 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15579 			    NULL, NULL, 0, un->un_busy_timeout,
15580 			    kstat_waitq_enter);
15581 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15582 			    "sd_send_request_sense_command: "
15583 			    "at full throttle, retrying exit\n");
15584 		} else {
15585 			sd_return_failed_command(un, bp, EIO);
15586 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15587 			    "sd_send_request_sense_command: "
15588 			    "at full throttle, non-retryable exit\n");
15589 		}
15590 		return;
15591 	}
15592 
15593 	sd_mark_rqs_busy(un, bp);
15594 	sd_start_cmds(un, un->un_rqs_bp);
15595 
15596 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15597 	    "sd_send_request_sense_command: exit\n");
15598 }
15599 
15600 
15601 /*
15602  *    Function: sd_mark_rqs_busy
15603  *
15604  * Description: Indicate that the request sense bp for this instance is
15605  *		in use.
15606  *
15607  *     Context: May be called under interrupt context
15608  */
15609 
15610 static void
15611 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15612 {
15613 	struct sd_xbuf	*sense_xp;
15614 
15615 	ASSERT(un != NULL);
15616 	ASSERT(bp != NULL);
15617 	ASSERT(mutex_owned(SD_MUTEX(un)));
15618 	ASSERT(un->un_sense_isbusy == 0);
15619 
15620 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15621 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15622 
15623 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15624 	ASSERT(sense_xp != NULL);
15625 
15626 	SD_INFO(SD_LOG_IO, un,
15627 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15628 
15629 	ASSERT(sense_xp->xb_pktp != NULL);
15630 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15631 	    == (FLAG_SENSING | FLAG_HEAD));
15632 
15633 	un->un_sense_isbusy = 1;
15634 	un->un_rqs_bp->b_resid = 0;
15635 	sense_xp->xb_pktp->pkt_resid  = 0;
15636 	sense_xp->xb_pktp->pkt_reason = 0;
15637 
15638 	/* So we can get back the bp at interrupt time! */
15639 	sense_xp->xb_sense_bp = bp;
15640 
15641 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15642 
15643 	/*
15644 	 * Mark this buf as awaiting sense data. (This is already set in
15645 	 * the pkt_flags for the RQS packet.)
15646 	 */
15647 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15648 
15649 	/* Request sense down same path */
15650 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15651 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15652 		sense_xp->xb_pktp->pkt_path_instance =
15653 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15654 
15655 	sense_xp->xb_retry_count	= 0;
15656 	sense_xp->xb_victim_retry_count = 0;
15657 	sense_xp->xb_ua_retry_count	= 0;
15658 	sense_xp->xb_nr_retry_count 	= 0;
15659 	sense_xp->xb_dma_resid  = 0;
15660 
15661 	/* Clean up the fields for auto-request sense */
15662 	sense_xp->xb_sense_status = 0;
15663 	sense_xp->xb_sense_state  = 0;
15664 	sense_xp->xb_sense_resid  = 0;
15665 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15666 
15667 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15668 }
15669 
15670 
15671 /*
15672  *    Function: sd_mark_rqs_idle
15673  *
15674  * Description: SD_MUTEX must be held continuously through this routine
15675  *		to prevent reuse of the rqs struct before the caller can
15676  *		complete it's processing.
15677  *
15678  * Return Code: Pointer to the RQS buf
15679  *
15680  *     Context: May be called under interrupt context
15681  */
15682 
15683 static struct buf *
15684 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15685 {
15686 	struct buf *bp;
15687 	ASSERT(un != NULL);
15688 	ASSERT(sense_xp != NULL);
15689 	ASSERT(mutex_owned(SD_MUTEX(un)));
15690 	ASSERT(un->un_sense_isbusy != 0);
15691 
15692 	un->un_sense_isbusy = 0;
15693 	bp = sense_xp->xb_sense_bp;
15694 	sense_xp->xb_sense_bp = NULL;
15695 
15696 	/* This pkt is no longer interested in getting sense data */
15697 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15698 
15699 	return (bp);
15700 }
15701 
15702 
15703 
15704 /*
15705  *    Function: sd_alloc_rqs
15706  *
15707  * Description: Set up the unit to receive auto request sense data
15708  *
15709  * Return Code: DDI_SUCCESS or DDI_FAILURE
15710  *
15711  *     Context: Called under attach(9E) context
15712  */
15713 
15714 static int
15715 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15716 {
15717 	struct sd_xbuf *xp;
15718 
15719 	ASSERT(un != NULL);
15720 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15721 	ASSERT(un->un_rqs_bp == NULL);
15722 	ASSERT(un->un_rqs_pktp == NULL);
15723 
15724 	/*
15725 	 * First allocate the required buf and scsi_pkt structs, then set up
15726 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15727 	 */
15728 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15729 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15730 	if (un->un_rqs_bp == NULL) {
15731 		return (DDI_FAILURE);
15732 	}
15733 
15734 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15735 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15736 
15737 	if (un->un_rqs_pktp == NULL) {
15738 		sd_free_rqs(un);
15739 		return (DDI_FAILURE);
15740 	}
15741 
15742 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15743 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15744 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15745 
15746 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15747 
15748 	/* Set up the other needed members in the ARQ scsi_pkt. */
15749 	un->un_rqs_pktp->pkt_comp   = sdintr;
15750 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15751 	un->un_rqs_pktp->pkt_flags |=
15752 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15753 
15754 	/*
15755 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15756 	 * provide any intpkt, destroypkt routines as we take care of
15757 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15758 	 */
15759 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15760 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15761 	xp->xb_pktp = un->un_rqs_pktp;
15762 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15763 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15764 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15765 
15766 	/*
15767 	 * Save the pointer to the request sense private bp so it can
15768 	 * be retrieved in sdintr.
15769 	 */
15770 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15771 	ASSERT(un->un_rqs_bp->b_private == xp);
15772 
15773 	/*
15774 	 * See if the HBA supports auto-request sense for the specified
15775 	 * target/lun. If it does, then try to enable it (if not already
15776 	 * enabled).
15777 	 *
15778 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15779 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15780 	 * return success.  However, in both of these cases ARQ is always
15781 	 * enabled and scsi_ifgetcap will always return true. The best approach
15782 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15783 	 *
15784 	 * The 3rd case is the HBA (adp) always return enabled on
15785 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15786 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15787 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15788 	 */
15789 
15790 	if (un->un_f_is_fibre == TRUE) {
15791 		un->un_f_arq_enabled = TRUE;
15792 	} else {
15793 #if defined(__i386) || defined(__amd64)
15794 		/*
15795 		 * Circumvent the Adaptec bug, remove this code when
15796 		 * the bug is fixed
15797 		 */
15798 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15799 #endif
15800 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15801 		case 0:
15802 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15803 			    "sd_alloc_rqs: HBA supports ARQ\n");
15804 			/*
15805 			 * ARQ is supported by this HBA but currently is not
15806 			 * enabled. Attempt to enable it and if successful then
15807 			 * mark this instance as ARQ enabled.
15808 			 */
15809 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15810 			    == 1) {
15811 				/* Successfully enabled ARQ in the HBA */
15812 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15813 				    "sd_alloc_rqs: ARQ enabled\n");
15814 				un->un_f_arq_enabled = TRUE;
15815 			} else {
15816 				/* Could not enable ARQ in the HBA */
15817 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15818 				    "sd_alloc_rqs: failed ARQ enable\n");
15819 				un->un_f_arq_enabled = FALSE;
15820 			}
15821 			break;
15822 		case 1:
15823 			/*
15824 			 * ARQ is supported by this HBA and is already enabled.
15825 			 * Just mark ARQ as enabled for this instance.
15826 			 */
15827 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15828 			    "sd_alloc_rqs: ARQ already enabled\n");
15829 			un->un_f_arq_enabled = TRUE;
15830 			break;
15831 		default:
15832 			/*
15833 			 * ARQ is not supported by this HBA; disable it for this
15834 			 * instance.
15835 			 */
15836 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15837 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15838 			un->un_f_arq_enabled = FALSE;
15839 			break;
15840 		}
15841 	}
15842 
15843 	return (DDI_SUCCESS);
15844 }
15845 
15846 
15847 /*
15848  *    Function: sd_free_rqs
15849  *
15850  * Description: Cleanup for the pre-instance RQS command.
15851  *
15852  *     Context: Kernel thread context
15853  */
15854 
15855 static void
15856 sd_free_rqs(struct sd_lun *un)
15857 {
15858 	ASSERT(un != NULL);
15859 
15860 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15861 
15862 	/*
15863 	 * If consistent memory is bound to a scsi_pkt, the pkt
15864 	 * has to be destroyed *before* freeing the consistent memory.
15865 	 * Don't change the sequence of this operations.
15866 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15867 	 * after it was freed in scsi_free_consistent_buf().
15868 	 */
15869 	if (un->un_rqs_pktp != NULL) {
15870 		scsi_destroy_pkt(un->un_rqs_pktp);
15871 		un->un_rqs_pktp = NULL;
15872 	}
15873 
15874 	if (un->un_rqs_bp != NULL) {
15875 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15876 		if (xp != NULL) {
15877 			kmem_free(xp, sizeof (struct sd_xbuf));
15878 		}
15879 		scsi_free_consistent_buf(un->un_rqs_bp);
15880 		un->un_rqs_bp = NULL;
15881 	}
15882 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15883 }
15884 
15885 
15886 
15887 /*
15888  *    Function: sd_reduce_throttle
15889  *
15890  * Description: Reduces the maximum # of outstanding commands on a
15891  *		target to the current number of outstanding commands.
15892  *		Queues a tiemout(9F) callback to restore the limit
15893  *		after a specified interval has elapsed.
15894  *		Typically used when we get a TRAN_BUSY return code
15895  *		back from scsi_transport().
15896  *
15897  *   Arguments: un - ptr to the sd_lun softstate struct
15898  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15899  *
15900  *     Context: May be called from interrupt context
15901  */
15902 
15903 static void
15904 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15905 {
15906 	ASSERT(un != NULL);
15907 	ASSERT(mutex_owned(SD_MUTEX(un)));
15908 	ASSERT(un->un_ncmds_in_transport >= 0);
15909 
15910 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15911 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15912 	    un, un->un_throttle, un->un_ncmds_in_transport);
15913 
15914 	if (un->un_throttle > 1) {
15915 		if (un->un_f_use_adaptive_throttle == TRUE) {
15916 			switch (throttle_type) {
15917 			case SD_THROTTLE_TRAN_BUSY:
15918 				if (un->un_busy_throttle == 0) {
15919 					un->un_busy_throttle = un->un_throttle;
15920 				}
15921 				break;
15922 			case SD_THROTTLE_QFULL:
15923 				un->un_busy_throttle = 0;
15924 				break;
15925 			default:
15926 				ASSERT(FALSE);
15927 			}
15928 
15929 			if (un->un_ncmds_in_transport > 0) {
15930 				un->un_throttle = un->un_ncmds_in_transport;
15931 			}
15932 
15933 		} else {
15934 			if (un->un_ncmds_in_transport == 0) {
15935 				un->un_throttle = 1;
15936 			} else {
15937 				un->un_throttle = un->un_ncmds_in_transport;
15938 			}
15939 		}
15940 	}
15941 
15942 	/* Reschedule the timeout if none is currently active */
15943 	if (un->un_reset_throttle_timeid == NULL) {
15944 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15945 		    un, SD_THROTTLE_RESET_INTERVAL);
15946 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15947 		    "sd_reduce_throttle: timeout scheduled!\n");
15948 	}
15949 
15950 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15951 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15952 }
15953 
15954 
15955 
15956 /*
15957  *    Function: sd_restore_throttle
15958  *
15959  * Description: Callback function for timeout(9F).  Resets the current
15960  *		value of un->un_throttle to its default.
15961  *
15962  *   Arguments: arg - pointer to associated softstate for the device.
15963  *
15964  *     Context: May be called from interrupt context
15965  */
15966 
15967 static void
15968 sd_restore_throttle(void *arg)
15969 {
15970 	struct sd_lun	*un = arg;
15971 
15972 	ASSERT(un != NULL);
15973 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15974 
15975 	mutex_enter(SD_MUTEX(un));
15976 
15977 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15978 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15979 
15980 	un->un_reset_throttle_timeid = NULL;
15981 
15982 	if (un->un_f_use_adaptive_throttle == TRUE) {
15983 		/*
15984 		 * If un_busy_throttle is nonzero, then it contains the
15985 		 * value that un_throttle was when we got a TRAN_BUSY back
15986 		 * from scsi_transport(). We want to revert back to this
15987 		 * value.
15988 		 *
15989 		 * In the QFULL case, the throttle limit will incrementally
15990 		 * increase until it reaches max throttle.
15991 		 */
15992 		if (un->un_busy_throttle > 0) {
15993 			un->un_throttle = un->un_busy_throttle;
15994 			un->un_busy_throttle = 0;
15995 		} else {
15996 			/*
15997 			 * increase throttle by 10% open gate slowly, schedule
15998 			 * another restore if saved throttle has not been
15999 			 * reached
16000 			 */
16001 			short throttle;
16002 			if (sd_qfull_throttle_enable) {
16003 				throttle = un->un_throttle +
16004 				    max((un->un_throttle / 10), 1);
16005 				un->un_throttle =
16006 				    (throttle < un->un_saved_throttle) ?
16007 				    throttle : un->un_saved_throttle;
16008 				if (un->un_throttle < un->un_saved_throttle) {
16009 					un->un_reset_throttle_timeid =
16010 					    timeout(sd_restore_throttle,
16011 					    un,
16012 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16013 				}
16014 			}
16015 		}
16016 
16017 		/*
16018 		 * If un_throttle has fallen below the low-water mark, we
16019 		 * restore the maximum value here (and allow it to ratchet
16020 		 * down again if necessary).
16021 		 */
16022 		if (un->un_throttle < un->un_min_throttle) {
16023 			un->un_throttle = un->un_saved_throttle;
16024 		}
16025 	} else {
16026 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16027 		    "restoring limit from 0x%x to 0x%x\n",
16028 		    un->un_throttle, un->un_saved_throttle);
16029 		un->un_throttle = un->un_saved_throttle;
16030 	}
16031 
16032 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16033 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16034 
16035 	sd_start_cmds(un, NULL);
16036 
16037 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16038 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16039 	    un, un->un_throttle);
16040 
16041 	mutex_exit(SD_MUTEX(un));
16042 
16043 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16044 }
16045 
16046 /*
16047  *    Function: sdrunout
16048  *
16049  * Description: Callback routine for scsi_init_pkt when a resource allocation
16050  *		fails.
16051  *
16052  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16053  *		soft state instance.
16054  *
16055  * Return Code: The scsi_init_pkt routine allows for the callback function to
16056  *		return a 0 indicating the callback should be rescheduled or a 1
16057  *		indicating not to reschedule. This routine always returns 1
16058  *		because the driver always provides a callback function to
16059  *		scsi_init_pkt. This results in a callback always being scheduled
16060  *		(via the scsi_init_pkt callback implementation) if a resource
16061  *		failure occurs.
16062  *
16063  *     Context: This callback function may not block or call routines that block
16064  *
16065  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16066  *		request persisting at the head of the list which cannot be
16067  *		satisfied even after multiple retries. In the future the driver
16068  *		may implement some time of maximum runout count before failing
16069  *		an I/O.
16070  */
16071 
16072 static int
16073 sdrunout(caddr_t arg)
16074 {
16075 	struct sd_lun	*un = (struct sd_lun *)arg;
16076 
16077 	ASSERT(un != NULL);
16078 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16079 
16080 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16081 
16082 	mutex_enter(SD_MUTEX(un));
16083 	sd_start_cmds(un, NULL);
16084 	mutex_exit(SD_MUTEX(un));
16085 	/*
16086 	 * This callback routine always returns 1 (i.e. do not reschedule)
16087 	 * because we always specify sdrunout as the callback handler for
16088 	 * scsi_init_pkt inside the call to sd_start_cmds.
16089 	 */
16090 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16091 	return (1);
16092 }
16093 
16094 
16095 /*
16096  *    Function: sdintr
16097  *
16098  * Description: Completion callback routine for scsi_pkt(9S) structs
16099  *		sent to the HBA driver via scsi_transport(9F).
16100  *
16101  *     Context: Interrupt context
16102  */
16103 
16104 static void
16105 sdintr(struct scsi_pkt *pktp)
16106 {
16107 	struct buf	*bp;
16108 	struct sd_xbuf	*xp;
16109 	struct sd_lun	*un;
16110 	size_t		actual_len;
16111 	sd_ssc_t	*sscp;
16112 
16113 	ASSERT(pktp != NULL);
16114 	bp = (struct buf *)pktp->pkt_private;
16115 	ASSERT(bp != NULL);
16116 	xp = SD_GET_XBUF(bp);
16117 	ASSERT(xp != NULL);
16118 	ASSERT(xp->xb_pktp != NULL);
16119 	un = SD_GET_UN(bp);
16120 	ASSERT(un != NULL);
16121 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16122 
16123 #ifdef SD_FAULT_INJECTION
16124 
16125 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16126 	/* SD FaultInjection */
16127 	sd_faultinjection(pktp);
16128 
16129 #endif /* SD_FAULT_INJECTION */
16130 
16131 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16132 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16133 
16134 	mutex_enter(SD_MUTEX(un));
16135 
16136 	ASSERT(un->un_fm_private != NULL);
16137 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16138 	ASSERT(sscp != NULL);
16139 
16140 	/* Reduce the count of the #commands currently in transport */
16141 	un->un_ncmds_in_transport--;
16142 	ASSERT(un->un_ncmds_in_transport >= 0);
16143 
16144 	/* Increment counter to indicate that the callback routine is active */
16145 	un->un_in_callback++;
16146 
16147 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16148 
16149 #ifdef	SDDEBUG
16150 	if (bp == un->un_retry_bp) {
16151 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16152 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16153 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16154 	}
16155 #endif
16156 
16157 	/*
16158 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16159 	 * state if needed.
16160 	 */
16161 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16162 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16163 		    "Command failed to complete...Device is gone\n");
16164 		if (un->un_mediastate != DKIO_DEV_GONE) {
16165 			un->un_mediastate = DKIO_DEV_GONE;
16166 			cv_broadcast(&un->un_state_cv);
16167 		}
16168 		sd_return_failed_command(un, bp, EIO);
16169 		goto exit;
16170 	}
16171 
16172 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16173 		SD_TRACE(SD_LOG_COMMON, un,
16174 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16175 	}
16176 
16177 	/*
16178 	 * First see if the pkt has auto-request sense data with it....
16179 	 * Look at the packet state first so we don't take a performance
16180 	 * hit looking at the arq enabled flag unless absolutely necessary.
16181 	 */
16182 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16183 	    (un->un_f_arq_enabled == TRUE)) {
16184 		/*
16185 		 * The HBA did an auto request sense for this command so check
16186 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16187 		 * driver command that should not be retried.
16188 		 */
16189 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16190 			/*
16191 			 * Save the relevant sense info into the xp for the
16192 			 * original cmd.
16193 			 */
16194 			struct scsi_arq_status *asp;
16195 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16196 			xp->xb_sense_status =
16197 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16198 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16199 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16200 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16201 				actual_len = MAX_SENSE_LENGTH -
16202 				    xp->xb_sense_resid;
16203 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16204 				    MAX_SENSE_LENGTH);
16205 			} else {
16206 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16207 					actual_len = MAX_SENSE_LENGTH -
16208 					    xp->xb_sense_resid;
16209 				} else {
16210 					actual_len = SENSE_LENGTH -
16211 					    xp->xb_sense_resid;
16212 				}
16213 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16214 					if ((((struct uscsi_cmd *)
16215 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16216 					    actual_len) {
16217 						xp->xb_sense_resid =
16218 						    (((struct uscsi_cmd *)
16219 						    (xp->xb_pktinfo))->
16220 						    uscsi_rqlen) - actual_len;
16221 					} else {
16222 						xp->xb_sense_resid = 0;
16223 					}
16224 				}
16225 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16226 				    SENSE_LENGTH);
16227 			}
16228 
16229 			/* fail the command */
16230 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16231 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16232 			sd_return_failed_command(un, bp, EIO);
16233 			goto exit;
16234 		}
16235 
16236 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16237 		/*
16238 		 * We want to either retry or fail this command, so free
16239 		 * the DMA resources here.  If we retry the command then
16240 		 * the DMA resources will be reallocated in sd_start_cmds().
16241 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16242 		 * causes the *entire* transfer to start over again from the
16243 		 * beginning of the request, even for PARTIAL chunks that
16244 		 * have already transferred successfully.
16245 		 */
16246 		if ((un->un_f_is_fibre == TRUE) &&
16247 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16248 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16249 			scsi_dmafree(pktp);
16250 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16251 		}
16252 #endif
16253 
16254 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16255 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16256 
16257 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16258 		goto exit;
16259 	}
16260 
16261 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16262 	if (pktp->pkt_flags & FLAG_SENSING)  {
16263 		/* This pktp is from the unit's REQUEST_SENSE command */
16264 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16265 		    "sdintr: sd_handle_request_sense\n");
16266 		sd_handle_request_sense(un, bp, xp, pktp);
16267 		goto exit;
16268 	}
16269 
16270 	/*
16271 	 * Check to see if the command successfully completed as requested;
16272 	 * this is the most common case (and also the hot performance path).
16273 	 *
16274 	 * Requirements for successful completion are:
16275 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16276 	 * In addition:
16277 	 * - A residual of zero indicates successful completion no matter what
16278 	 *   the command is.
16279 	 * - If the residual is not zero and the command is not a read or
16280 	 *   write, then it's still defined as successful completion. In other
16281 	 *   words, if the command is a read or write the residual must be
16282 	 *   zero for successful completion.
16283 	 * - If the residual is not zero and the command is a read or
16284 	 *   write, and it's a USCSICMD, then it's still defined as
16285 	 *   successful completion.
16286 	 */
16287 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16288 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16289 
16290 		/*
16291 		 * Since this command is returned with a good status, we
16292 		 * can reset the count for Sonoma failover.
16293 		 */
16294 		un->un_sonoma_failure_count = 0;
16295 
16296 		/*
16297 		 * Return all USCSI commands on good status
16298 		 */
16299 		if (pktp->pkt_resid == 0) {
16300 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16301 			    "sdintr: returning command for resid == 0\n");
16302 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16303 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16304 			SD_UPDATE_B_RESID(bp, pktp);
16305 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16306 			    "sdintr: returning command for resid != 0\n");
16307 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16308 			SD_UPDATE_B_RESID(bp, pktp);
16309 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16310 			    "sdintr: returning uscsi command\n");
16311 		} else {
16312 			goto not_successful;
16313 		}
16314 		sd_return_command(un, bp);
16315 
16316 		/*
16317 		 * Decrement counter to indicate that the callback routine
16318 		 * is done.
16319 		 */
16320 		un->un_in_callback--;
16321 		ASSERT(un->un_in_callback >= 0);
16322 		mutex_exit(SD_MUTEX(un));
16323 
16324 		return;
16325 	}
16326 
16327 not_successful:
16328 
16329 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16330 	/*
16331 	 * The following is based upon knowledge of the underlying transport
16332 	 * and its use of DMA resources.  This code should be removed when
16333 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16334 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16335 	 * and sd_start_cmds().
16336 	 *
16337 	 * Free any DMA resources associated with this command if there
16338 	 * is a chance it could be retried or enqueued for later retry.
16339 	 * If we keep the DMA binding then mpxio cannot reissue the
16340 	 * command on another path whenever a path failure occurs.
16341 	 *
16342 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16343 	 * causes the *entire* transfer to start over again from the
16344 	 * beginning of the request, even for PARTIAL chunks that
16345 	 * have already transferred successfully.
16346 	 *
16347 	 * This is only done for non-uscsi commands (and also skipped for the
16348 	 * driver's internal RQS command). Also just do this for Fibre Channel
16349 	 * devices as these are the only ones that support mpxio.
16350 	 */
16351 	if ((un->un_f_is_fibre == TRUE) &&
16352 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16353 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16354 		scsi_dmafree(pktp);
16355 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16356 	}
16357 #endif
16358 
16359 	/*
16360 	 * The command did not successfully complete as requested so check
16361 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16362 	 * driver command that should not be retried so just return. If
16363 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16364 	 */
16365 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16366 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16367 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16368 		/*
16369 		 * Issue a request sense if a check condition caused the error
16370 		 * (we handle the auto request sense case above), otherwise
16371 		 * just fail the command.
16372 		 */
16373 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16374 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16375 			sd_send_request_sense_command(un, bp, pktp);
16376 		} else {
16377 			sd_return_failed_command(un, bp, EIO);
16378 		}
16379 		goto exit;
16380 	}
16381 
16382 	/*
16383 	 * The command did not successfully complete as requested so process
16384 	 * the error, retry, and/or attempt recovery.
16385 	 */
16386 	switch (pktp->pkt_reason) {
16387 	case CMD_CMPLT:
16388 		switch (SD_GET_PKT_STATUS(pktp)) {
16389 		case STATUS_GOOD:
16390 			/*
16391 			 * The command completed successfully with a non-zero
16392 			 * residual
16393 			 */
16394 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16395 			    "sdintr: STATUS_GOOD \n");
16396 			sd_pkt_status_good(un, bp, xp, pktp);
16397 			break;
16398 
16399 		case STATUS_CHECK:
16400 		case STATUS_TERMINATED:
16401 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16402 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16403 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16404 			break;
16405 
16406 		case STATUS_BUSY:
16407 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16408 			    "sdintr: STATUS_BUSY\n");
16409 			sd_pkt_status_busy(un, bp, xp, pktp);
16410 			break;
16411 
16412 		case STATUS_RESERVATION_CONFLICT:
16413 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16414 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16415 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16416 			break;
16417 
16418 		case STATUS_QFULL:
16419 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16420 			    "sdintr: STATUS_QFULL\n");
16421 			sd_pkt_status_qfull(un, bp, xp, pktp);
16422 			break;
16423 
16424 		case STATUS_MET:
16425 		case STATUS_INTERMEDIATE:
16426 		case STATUS_SCSI2:
16427 		case STATUS_INTERMEDIATE_MET:
16428 		case STATUS_ACA_ACTIVE:
16429 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16430 			    "Unexpected SCSI status received: 0x%x\n",
16431 			    SD_GET_PKT_STATUS(pktp));
16432 			/*
16433 			 * Mark the ssc_flags when detected invalid status
16434 			 * code for non-USCSI command.
16435 			 */
16436 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16437 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16438 				    0, "stat-code");
16439 			}
16440 			sd_return_failed_command(un, bp, EIO);
16441 			break;
16442 
16443 		default:
16444 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16445 			    "Invalid SCSI status received: 0x%x\n",
16446 			    SD_GET_PKT_STATUS(pktp));
16447 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16448 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16449 				    0, "stat-code");
16450 			}
16451 			sd_return_failed_command(un, bp, EIO);
16452 			break;
16453 
16454 		}
16455 		break;
16456 
16457 	case CMD_INCOMPLETE:
16458 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16459 		    "sdintr:  CMD_INCOMPLETE\n");
16460 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16461 		break;
16462 	case CMD_TRAN_ERR:
16463 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16464 		    "sdintr: CMD_TRAN_ERR\n");
16465 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16466 		break;
16467 	case CMD_RESET:
16468 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16469 		    "sdintr: CMD_RESET \n");
16470 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16471 		break;
16472 	case CMD_ABORTED:
16473 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16474 		    "sdintr: CMD_ABORTED \n");
16475 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16476 		break;
16477 	case CMD_TIMEOUT:
16478 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16479 		    "sdintr: CMD_TIMEOUT\n");
16480 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16481 		break;
16482 	case CMD_UNX_BUS_FREE:
16483 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16484 		    "sdintr: CMD_UNX_BUS_FREE \n");
16485 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16486 		break;
16487 	case CMD_TAG_REJECT:
16488 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16489 		    "sdintr: CMD_TAG_REJECT\n");
16490 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16491 		break;
16492 	default:
16493 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16494 		    "sdintr: default\n");
16495 		/*
16496 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16497 		 */
16498 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16499 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16500 			    0, "pkt-reason");
16501 		}
16502 		sd_pkt_reason_default(un, bp, xp, pktp);
16503 		break;
16504 	}
16505 
16506 exit:
16507 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16508 
16509 	/* Decrement counter to indicate that the callback routine is done. */
16510 	un->un_in_callback--;
16511 	ASSERT(un->un_in_callback >= 0);
16512 
16513 	/*
16514 	 * At this point, the pkt has been dispatched, ie, it is either
16515 	 * being re-tried or has been returned to its caller and should
16516 	 * not be referenced.
16517 	 */
16518 
16519 	mutex_exit(SD_MUTEX(un));
16520 }
16521 
16522 
16523 /*
16524  *    Function: sd_print_incomplete_msg
16525  *
16526  * Description: Prints the error message for a CMD_INCOMPLETE error.
16527  *
16528  *   Arguments: un - ptr to associated softstate for the device.
16529  *		bp - ptr to the buf(9S) for the command.
16530  *		arg - message string ptr
16531  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16532  *			or SD_NO_RETRY_ISSUED.
16533  *
16534  *     Context: May be called under interrupt context
16535  */
16536 
16537 static void
16538 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16539 {
16540 	struct scsi_pkt	*pktp;
16541 	char	*msgp;
16542 	char	*cmdp = arg;
16543 
16544 	ASSERT(un != NULL);
16545 	ASSERT(mutex_owned(SD_MUTEX(un)));
16546 	ASSERT(bp != NULL);
16547 	ASSERT(arg != NULL);
16548 	pktp = SD_GET_PKTP(bp);
16549 	ASSERT(pktp != NULL);
16550 
16551 	switch (code) {
16552 	case SD_DELAYED_RETRY_ISSUED:
16553 	case SD_IMMEDIATE_RETRY_ISSUED:
16554 		msgp = "retrying";
16555 		break;
16556 	case SD_NO_RETRY_ISSUED:
16557 	default:
16558 		msgp = "giving up";
16559 		break;
16560 	}
16561 
16562 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16563 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16564 		    "incomplete %s- %s\n", cmdp, msgp);
16565 	}
16566 }
16567 
16568 
16569 
16570 /*
16571  *    Function: sd_pkt_status_good
16572  *
16573  * Description: Processing for a STATUS_GOOD code in pkt_status.
16574  *
16575  *     Context: May be called under interrupt context
16576  */
16577 
16578 static void
16579 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16580 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16581 {
16582 	char	*cmdp;
16583 
16584 	ASSERT(un != NULL);
16585 	ASSERT(mutex_owned(SD_MUTEX(un)));
16586 	ASSERT(bp != NULL);
16587 	ASSERT(xp != NULL);
16588 	ASSERT(pktp != NULL);
16589 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16590 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16591 	ASSERT(pktp->pkt_resid != 0);
16592 
16593 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16594 
16595 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16596 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16597 	case SCMD_READ:
16598 		cmdp = "read";
16599 		break;
16600 	case SCMD_WRITE:
16601 		cmdp = "write";
16602 		break;
16603 	default:
16604 		SD_UPDATE_B_RESID(bp, pktp);
16605 		sd_return_command(un, bp);
16606 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16607 		return;
16608 	}
16609 
16610 	/*
16611 	 * See if we can retry the read/write, preferrably immediately.
16612 	 * If retries are exhaused, then sd_retry_command() will update
16613 	 * the b_resid count.
16614 	 */
16615 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16616 	    cmdp, EIO, (clock_t)0, NULL);
16617 
16618 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16619 }
16620 
16621 
16622 
16623 
16624 
16625 /*
16626  *    Function: sd_handle_request_sense
16627  *
16628  * Description: Processing for non-auto Request Sense command.
16629  *
16630  *   Arguments: un - ptr to associated softstate
16631  *		sense_bp - ptr to buf(9S) for the RQS command
16632  *		sense_xp - ptr to the sd_xbuf for the RQS command
16633  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16634  *
16635  *     Context: May be called under interrupt context
16636  */
16637 
16638 static void
16639 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16640 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16641 {
16642 	struct buf	*cmd_bp;	/* buf for the original command */
16643 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16644 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16645 	size_t		actual_len;	/* actual sense data length */
16646 
16647 	ASSERT(un != NULL);
16648 	ASSERT(mutex_owned(SD_MUTEX(un)));
16649 	ASSERT(sense_bp != NULL);
16650 	ASSERT(sense_xp != NULL);
16651 	ASSERT(sense_pktp != NULL);
16652 
16653 	/*
16654 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16655 	 * RQS command and not the original command.
16656 	 */
16657 	ASSERT(sense_pktp == un->un_rqs_pktp);
16658 	ASSERT(sense_bp   == un->un_rqs_bp);
16659 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16660 	    (FLAG_SENSING | FLAG_HEAD));
16661 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16662 	    FLAG_SENSING) == FLAG_SENSING);
16663 
16664 	/* These are the bp, xp, and pktp for the original command */
16665 	cmd_bp = sense_xp->xb_sense_bp;
16666 	cmd_xp = SD_GET_XBUF(cmd_bp);
16667 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16668 
16669 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16670 		/*
16671 		 * The REQUEST SENSE command failed.  Release the REQUEST
16672 		 * SENSE command for re-use, get back the bp for the original
16673 		 * command, and attempt to re-try the original command if
16674 		 * FLAG_DIAGNOSE is not set in the original packet.
16675 		 */
16676 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16677 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16678 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16679 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16680 			    NULL, NULL, EIO, (clock_t)0, NULL);
16681 			return;
16682 		}
16683 	}
16684 
16685 	/*
16686 	 * Save the relevant sense info into the xp for the original cmd.
16687 	 *
16688 	 * Note: if the request sense failed the state info will be zero
16689 	 * as set in sd_mark_rqs_busy()
16690 	 */
16691 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16692 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16693 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16694 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16695 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16696 	    SENSE_LENGTH)) {
16697 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16698 		    MAX_SENSE_LENGTH);
16699 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16700 	} else {
16701 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16702 		    SENSE_LENGTH);
16703 		if (actual_len < SENSE_LENGTH) {
16704 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16705 		} else {
16706 			cmd_xp->xb_sense_resid = 0;
16707 		}
16708 	}
16709 
16710 	/*
16711 	 *  Free up the RQS command....
16712 	 *  NOTE:
16713 	 *	Must do this BEFORE calling sd_validate_sense_data!
16714 	 *	sd_validate_sense_data may return the original command in
16715 	 *	which case the pkt will be freed and the flags can no
16716 	 *	longer be touched.
16717 	 *	SD_MUTEX is held through this process until the command
16718 	 *	is dispatched based upon the sense data, so there are
16719 	 *	no race conditions.
16720 	 */
16721 	(void) sd_mark_rqs_idle(un, sense_xp);
16722 
16723 	/*
16724 	 * For a retryable command see if we have valid sense data, if so then
16725 	 * turn it over to sd_decode_sense() to figure out the right course of
16726 	 * action. Just fail a non-retryable command.
16727 	 */
16728 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16729 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16730 		    SD_SENSE_DATA_IS_VALID) {
16731 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16732 		}
16733 	} else {
16734 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16735 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16736 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16737 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16738 		sd_return_failed_command(un, cmd_bp, EIO);
16739 	}
16740 }
16741 
16742 
16743 
16744 
16745 /*
16746  *    Function: sd_handle_auto_request_sense
16747  *
16748  * Description: Processing for auto-request sense information.
16749  *
16750  *   Arguments: un - ptr to associated softstate
16751  *		bp - ptr to buf(9S) for the command
16752  *		xp - ptr to the sd_xbuf for the command
16753  *		pktp - ptr to the scsi_pkt(9S) for the command
16754  *
16755  *     Context: May be called under interrupt context
16756  */
16757 
16758 static void
16759 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16760 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16761 {
16762 	struct scsi_arq_status *asp;
16763 	size_t actual_len;
16764 
16765 	ASSERT(un != NULL);
16766 	ASSERT(mutex_owned(SD_MUTEX(un)));
16767 	ASSERT(bp != NULL);
16768 	ASSERT(xp != NULL);
16769 	ASSERT(pktp != NULL);
16770 	ASSERT(pktp != un->un_rqs_pktp);
16771 	ASSERT(bp   != un->un_rqs_bp);
16772 
16773 	/*
16774 	 * For auto-request sense, we get a scsi_arq_status back from
16775 	 * the HBA, with the sense data in the sts_sensedata member.
16776 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16777 	 */
16778 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16779 
16780 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16781 		/*
16782 		 * The auto REQUEST SENSE failed; see if we can re-try
16783 		 * the original command.
16784 		 */
16785 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16786 		    "auto request sense failed (reason=%s)\n",
16787 		    scsi_rname(asp->sts_rqpkt_reason));
16788 
16789 		sd_reset_target(un, pktp);
16790 
16791 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16792 		    NULL, NULL, EIO, (clock_t)0, NULL);
16793 		return;
16794 	}
16795 
16796 	/* Save the relevant sense info into the xp for the original cmd. */
16797 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16798 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16799 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16800 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16801 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16802 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16803 		    MAX_SENSE_LENGTH);
16804 	} else {
16805 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16806 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16807 		} else {
16808 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16809 		}
16810 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16811 			if ((((struct uscsi_cmd *)
16812 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16813 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16814 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16815 				    actual_len;
16816 			} else {
16817 				xp->xb_sense_resid = 0;
16818 			}
16819 		}
16820 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16821 	}
16822 
16823 	/*
16824 	 * See if we have valid sense data, if so then turn it over to
16825 	 * sd_decode_sense() to figure out the right course of action.
16826 	 */
16827 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16828 	    SD_SENSE_DATA_IS_VALID) {
16829 		sd_decode_sense(un, bp, xp, pktp);
16830 	}
16831 }
16832 
16833 
16834 /*
16835  *    Function: sd_print_sense_failed_msg
16836  *
16837  * Description: Print log message when RQS has failed.
16838  *
16839  *   Arguments: un - ptr to associated softstate
16840  *		bp - ptr to buf(9S) for the command
16841  *		arg - generic message string ptr
16842  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16843  *			or SD_NO_RETRY_ISSUED
16844  *
16845  *     Context: May be called from interrupt context
16846  */
16847 
16848 static void
16849 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16850 	int code)
16851 {
16852 	char	*msgp = arg;
16853 
16854 	ASSERT(un != NULL);
16855 	ASSERT(mutex_owned(SD_MUTEX(un)));
16856 	ASSERT(bp != NULL);
16857 
16858 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16859 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16860 	}
16861 }
16862 
16863 
16864 /*
16865  *    Function: sd_validate_sense_data
16866  *
16867  * Description: Check the given sense data for validity.
16868  *		If the sense data is not valid, the command will
16869  *		be either failed or retried!
16870  *
16871  * Return Code: SD_SENSE_DATA_IS_INVALID
16872  *		SD_SENSE_DATA_IS_VALID
16873  *
16874  *     Context: May be called from interrupt context
16875  */
16876 
16877 static int
16878 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16879 	size_t actual_len)
16880 {
16881 	struct scsi_extended_sense *esp;
16882 	struct	scsi_pkt *pktp;
16883 	char	*msgp = NULL;
16884 	sd_ssc_t *sscp;
16885 
16886 	ASSERT(un != NULL);
16887 	ASSERT(mutex_owned(SD_MUTEX(un)));
16888 	ASSERT(bp != NULL);
16889 	ASSERT(bp != un->un_rqs_bp);
16890 	ASSERT(xp != NULL);
16891 	ASSERT(un->un_fm_private != NULL);
16892 
16893 	pktp = SD_GET_PKTP(bp);
16894 	ASSERT(pktp != NULL);
16895 
16896 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16897 	ASSERT(sscp != NULL);
16898 
16899 	/*
16900 	 * Check the status of the RQS command (auto or manual).
16901 	 */
16902 	switch (xp->xb_sense_status & STATUS_MASK) {
16903 	case STATUS_GOOD:
16904 		break;
16905 
16906 	case STATUS_RESERVATION_CONFLICT:
16907 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16908 		return (SD_SENSE_DATA_IS_INVALID);
16909 
16910 	case STATUS_BUSY:
16911 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16912 		    "Busy Status on REQUEST SENSE\n");
16913 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16914 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16915 		return (SD_SENSE_DATA_IS_INVALID);
16916 
16917 	case STATUS_QFULL:
16918 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16919 		    "QFULL Status on REQUEST SENSE\n");
16920 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16921 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16922 		return (SD_SENSE_DATA_IS_INVALID);
16923 
16924 	case STATUS_CHECK:
16925 	case STATUS_TERMINATED:
16926 		msgp = "Check Condition on REQUEST SENSE\n";
16927 		goto sense_failed;
16928 
16929 	default:
16930 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16931 		goto sense_failed;
16932 	}
16933 
16934 	/*
16935 	 * See if we got the minimum required amount of sense data.
16936 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16937 	 * or less.
16938 	 */
16939 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16940 	    (actual_len == 0)) {
16941 		msgp = "Request Sense couldn't get sense data\n";
16942 		goto sense_failed;
16943 	}
16944 
16945 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16946 		msgp = "Not enough sense information\n";
16947 		/* Mark the ssc_flags for detecting invalid sense data */
16948 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16949 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16950 			    "sense-data");
16951 		}
16952 		goto sense_failed;
16953 	}
16954 
16955 	/*
16956 	 * We require the extended sense data
16957 	 */
16958 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16959 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16960 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16961 			static char tmp[8];
16962 			static char buf[148];
16963 			char *p = (char *)(xp->xb_sense_data);
16964 			int i;
16965 
16966 			mutex_enter(&sd_sense_mutex);
16967 			(void) strcpy(buf, "undecodable sense information:");
16968 			for (i = 0; i < actual_len; i++) {
16969 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16970 				(void) strcpy(&buf[strlen(buf)], tmp);
16971 			}
16972 			i = strlen(buf);
16973 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16974 
16975 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
16976 				scsi_log(SD_DEVINFO(un), sd_label,
16977 				    CE_WARN, buf);
16978 			}
16979 			mutex_exit(&sd_sense_mutex);
16980 		}
16981 
16982 		/* Mark the ssc_flags for detecting invalid sense data */
16983 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16984 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16985 			    "sense-data");
16986 		}
16987 
16988 		/* Note: Legacy behavior, fail the command with no retry */
16989 		sd_return_failed_command(un, bp, EIO);
16990 		return (SD_SENSE_DATA_IS_INVALID);
16991 	}
16992 
16993 	/*
16994 	 * Check that es_code is valid (es_class concatenated with es_code
16995 	 * make up the "response code" field.  es_class will always be 7, so
16996 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16997 	 * format.
16998 	 */
16999 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17000 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17001 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17002 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17003 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17004 		/* Mark the ssc_flags for detecting invalid sense data */
17005 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17006 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17007 			    "sense-data");
17008 		}
17009 		goto sense_failed;
17010 	}
17011 
17012 	return (SD_SENSE_DATA_IS_VALID);
17013 
17014 sense_failed:
17015 	/*
17016 	 * If the request sense failed (for whatever reason), attempt
17017 	 * to retry the original command.
17018 	 */
17019 #if defined(__i386) || defined(__amd64)
17020 	/*
17021 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17022 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17023 	 * for both SCSI/FC.
17024 	 * The SD_RETRY_DELAY value need to be adjusted here
17025 	 * when SD_RETRY_DELAY change in sddef.h
17026 	 */
17027 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17028 	    sd_print_sense_failed_msg, msgp, EIO,
17029 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17030 #else
17031 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17032 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17033 #endif
17034 
17035 	return (SD_SENSE_DATA_IS_INVALID);
17036 }
17037 
17038 /*
17039  *    Function: sd_decode_sense
17040  *
17041  * Description: Take recovery action(s) when SCSI Sense Data is received.
17042  *
17043  *     Context: Interrupt context.
17044  */
17045 
17046 static void
17047 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17048 	struct scsi_pkt *pktp)
17049 {
17050 	uint8_t sense_key;
17051 
17052 	ASSERT(un != NULL);
17053 	ASSERT(mutex_owned(SD_MUTEX(un)));
17054 	ASSERT(bp != NULL);
17055 	ASSERT(bp != un->un_rqs_bp);
17056 	ASSERT(xp != NULL);
17057 	ASSERT(pktp != NULL);
17058 
17059 	sense_key = scsi_sense_key(xp->xb_sense_data);
17060 
17061 	switch (sense_key) {
17062 	case KEY_NO_SENSE:
17063 		sd_sense_key_no_sense(un, bp, xp, pktp);
17064 		break;
17065 	case KEY_RECOVERABLE_ERROR:
17066 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17067 		    bp, xp, pktp);
17068 		break;
17069 	case KEY_NOT_READY:
17070 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17071 		    bp, xp, pktp);
17072 		break;
17073 	case KEY_MEDIUM_ERROR:
17074 	case KEY_HARDWARE_ERROR:
17075 		sd_sense_key_medium_or_hardware_error(un,
17076 		    xp->xb_sense_data, bp, xp, pktp);
17077 		break;
17078 	case KEY_ILLEGAL_REQUEST:
17079 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17080 		break;
17081 	case KEY_UNIT_ATTENTION:
17082 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17083 		    bp, xp, pktp);
17084 		break;
17085 	case KEY_WRITE_PROTECT:
17086 	case KEY_VOLUME_OVERFLOW:
17087 	case KEY_MISCOMPARE:
17088 		sd_sense_key_fail_command(un, bp, xp, pktp);
17089 		break;
17090 	case KEY_BLANK_CHECK:
17091 		sd_sense_key_blank_check(un, bp, xp, pktp);
17092 		break;
17093 	case KEY_ABORTED_COMMAND:
17094 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17095 		break;
17096 	case KEY_VENDOR_UNIQUE:
17097 	case KEY_COPY_ABORTED:
17098 	case KEY_EQUAL:
17099 	case KEY_RESERVED:
17100 	default:
17101 		sd_sense_key_default(un, xp->xb_sense_data,
17102 		    bp, xp, pktp);
17103 		break;
17104 	}
17105 }
17106 
17107 
17108 /*
17109  *    Function: sd_dump_memory
17110  *
17111  * Description: Debug logging routine to print the contents of a user provided
17112  *		buffer. The output of the buffer is broken up into 256 byte
17113  *		segments due to a size constraint of the scsi_log.
17114  *		implementation.
17115  *
17116  *   Arguments: un - ptr to softstate
17117  *		comp - component mask
17118  *		title - "title" string to preceed data when printed
17119  *		data - ptr to data block to be printed
17120  *		len - size of data block to be printed
17121  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17122  *
17123  *     Context: May be called from interrupt context
17124  */
17125 
17126 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17127 
17128 static char *sd_dump_format_string[] = {
17129 		" 0x%02x",
17130 		" %c"
17131 };
17132 
17133 static void
17134 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17135     int len, int fmt)
17136 {
17137 	int	i, j;
17138 	int	avail_count;
17139 	int	start_offset;
17140 	int	end_offset;
17141 	size_t	entry_len;
17142 	char	*bufp;
17143 	char	*local_buf;
17144 	char	*format_string;
17145 
17146 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17147 
17148 	/*
17149 	 * In the debug version of the driver, this function is called from a
17150 	 * number of places which are NOPs in the release driver.
17151 	 * The debug driver therefore has additional methods of filtering
17152 	 * debug output.
17153 	 */
17154 #ifdef SDDEBUG
17155 	/*
17156 	 * In the debug version of the driver we can reduce the amount of debug
17157 	 * messages by setting sd_error_level to something other than
17158 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17159 	 * sd_component_mask.
17160 	 */
17161 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17162 	    (sd_error_level != SCSI_ERR_ALL)) {
17163 		return;
17164 	}
17165 	if (((sd_component_mask & comp) == 0) ||
17166 	    (sd_error_level != SCSI_ERR_ALL)) {
17167 		return;
17168 	}
17169 #else
17170 	if (sd_error_level != SCSI_ERR_ALL) {
17171 		return;
17172 	}
17173 #endif
17174 
17175 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17176 	bufp = local_buf;
17177 	/*
17178 	 * Available length is the length of local_buf[], minus the
17179 	 * length of the title string, minus one for the ":", minus
17180 	 * one for the newline, minus one for the NULL terminator.
17181 	 * This gives the #bytes available for holding the printed
17182 	 * values from the given data buffer.
17183 	 */
17184 	if (fmt == SD_LOG_HEX) {
17185 		format_string = sd_dump_format_string[0];
17186 	} else /* SD_LOG_CHAR */ {
17187 		format_string = sd_dump_format_string[1];
17188 	}
17189 	/*
17190 	 * Available count is the number of elements from the given
17191 	 * data buffer that we can fit into the available length.
17192 	 * This is based upon the size of the format string used.
17193 	 * Make one entry and find it's size.
17194 	 */
17195 	(void) sprintf(bufp, format_string, data[0]);
17196 	entry_len = strlen(bufp);
17197 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17198 
17199 	j = 0;
17200 	while (j < len) {
17201 		bufp = local_buf;
17202 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17203 		start_offset = j;
17204 
17205 		end_offset = start_offset + avail_count;
17206 
17207 		(void) sprintf(bufp, "%s:", title);
17208 		bufp += strlen(bufp);
17209 		for (i = start_offset; ((i < end_offset) && (j < len));
17210 		    i++, j++) {
17211 			(void) sprintf(bufp, format_string, data[i]);
17212 			bufp += entry_len;
17213 		}
17214 		(void) sprintf(bufp, "\n");
17215 
17216 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17217 	}
17218 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17219 }
17220 
17221 /*
17222  *    Function: sd_print_sense_msg
17223  *
17224  * Description: Log a message based upon the given sense data.
17225  *
17226  *   Arguments: un - ptr to associated softstate
17227  *		bp - ptr to buf(9S) for the command
17228  *		arg - ptr to associate sd_sense_info struct
17229  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17230  *			or SD_NO_RETRY_ISSUED
17231  *
17232  *     Context: May be called from interrupt context
17233  */
17234 
17235 static void
17236 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17237 {
17238 	struct sd_xbuf	*xp;
17239 	struct scsi_pkt	*pktp;
17240 	uint8_t *sensep;
17241 	daddr_t request_blkno;
17242 	diskaddr_t err_blkno;
17243 	int severity;
17244 	int pfa_flag;
17245 	extern struct scsi_key_strings scsi_cmds[];
17246 
17247 	ASSERT(un != NULL);
17248 	ASSERT(mutex_owned(SD_MUTEX(un)));
17249 	ASSERT(bp != NULL);
17250 	xp = SD_GET_XBUF(bp);
17251 	ASSERT(xp != NULL);
17252 	pktp = SD_GET_PKTP(bp);
17253 	ASSERT(pktp != NULL);
17254 	ASSERT(arg != NULL);
17255 
17256 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17257 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17258 
17259 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17260 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17261 		severity = SCSI_ERR_RETRYABLE;
17262 	}
17263 
17264 	/* Use absolute block number for the request block number */
17265 	request_blkno = xp->xb_blkno;
17266 
17267 	/*
17268 	 * Now try to get the error block number from the sense data
17269 	 */
17270 	sensep = xp->xb_sense_data;
17271 
17272 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17273 	    (uint64_t *)&err_blkno)) {
17274 		/*
17275 		 * We retrieved the error block number from the information
17276 		 * portion of the sense data.
17277 		 *
17278 		 * For USCSI commands we are better off using the error
17279 		 * block no. as the requested block no. (This is the best
17280 		 * we can estimate.)
17281 		 */
17282 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17283 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17284 			request_blkno = err_blkno;
17285 		}
17286 	} else {
17287 		/*
17288 		 * Without the es_valid bit set (for fixed format) or an
17289 		 * information descriptor (for descriptor format) we cannot
17290 		 * be certain of the error blkno, so just use the
17291 		 * request_blkno.
17292 		 */
17293 		err_blkno = (diskaddr_t)request_blkno;
17294 	}
17295 
17296 	/*
17297 	 * The following will log the buffer contents for the release driver
17298 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17299 	 * level is set to verbose.
17300 	 */
17301 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17302 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17303 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17304 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17305 
17306 	if (pfa_flag == FALSE) {
17307 		/* This is normally only set for USCSI */
17308 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17309 			return;
17310 		}
17311 
17312 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17313 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17314 		    (severity < sd_error_level))) {
17315 			return;
17316 		}
17317 	}
17318 	/*
17319 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17320 	 */
17321 	if ((SD_IS_LSI(un)) &&
17322 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17323 	    (scsi_sense_asc(sensep) == 0x94) &&
17324 	    (scsi_sense_ascq(sensep) == 0x01)) {
17325 		un->un_sonoma_failure_count++;
17326 		if (un->un_sonoma_failure_count > 1) {
17327 			return;
17328 		}
17329 	}
17330 
17331 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
17332 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
17333 	    (pktp->pkt_resid == 0))) {
17334 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17335 		    request_blkno, err_blkno, scsi_cmds,
17336 		    (struct scsi_extended_sense *)sensep,
17337 		    un->un_additional_codes, NULL);
17338 	}
17339 }
17340 
17341 /*
17342  *    Function: sd_sense_key_no_sense
17343  *
17344  * Description: Recovery action when sense data was not received.
17345  *
17346  *     Context: May be called from interrupt context
17347  */
17348 
17349 static void
17350 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17351 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17352 {
17353 	struct sd_sense_info	si;
17354 
17355 	ASSERT(un != NULL);
17356 	ASSERT(mutex_owned(SD_MUTEX(un)));
17357 	ASSERT(bp != NULL);
17358 	ASSERT(xp != NULL);
17359 	ASSERT(pktp != NULL);
17360 
17361 	si.ssi_severity = SCSI_ERR_FATAL;
17362 	si.ssi_pfa_flag = FALSE;
17363 
17364 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17365 
17366 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17367 	    &si, EIO, (clock_t)0, NULL);
17368 }
17369 
17370 
17371 /*
17372  *    Function: sd_sense_key_recoverable_error
17373  *
17374  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17375  *
17376  *     Context: May be called from interrupt context
17377  */
17378 
17379 static void
17380 sd_sense_key_recoverable_error(struct sd_lun *un,
17381 	uint8_t *sense_datap,
17382 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17383 {
17384 	struct sd_sense_info	si;
17385 	uint8_t asc = scsi_sense_asc(sense_datap);
17386 
17387 	ASSERT(un != NULL);
17388 	ASSERT(mutex_owned(SD_MUTEX(un)));
17389 	ASSERT(bp != NULL);
17390 	ASSERT(xp != NULL);
17391 	ASSERT(pktp != NULL);
17392 
17393 	/*
17394 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17395 	 */
17396 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17397 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17398 		si.ssi_severity = SCSI_ERR_INFO;
17399 		si.ssi_pfa_flag = TRUE;
17400 	} else {
17401 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17402 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17403 		si.ssi_severity = SCSI_ERR_RECOVERED;
17404 		si.ssi_pfa_flag = FALSE;
17405 	}
17406 
17407 	if (pktp->pkt_resid == 0) {
17408 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17409 		sd_return_command(un, bp);
17410 		return;
17411 	}
17412 
17413 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17414 	    &si, EIO, (clock_t)0, NULL);
17415 }
17416 
17417 
17418 
17419 
17420 /*
17421  *    Function: sd_sense_key_not_ready
17422  *
17423  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17424  *
17425  *     Context: May be called from interrupt context
17426  */
17427 
17428 static void
17429 sd_sense_key_not_ready(struct sd_lun *un,
17430 	uint8_t *sense_datap,
17431 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17432 {
17433 	struct sd_sense_info	si;
17434 	uint8_t asc = scsi_sense_asc(sense_datap);
17435 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17436 
17437 	ASSERT(un != NULL);
17438 	ASSERT(mutex_owned(SD_MUTEX(un)));
17439 	ASSERT(bp != NULL);
17440 	ASSERT(xp != NULL);
17441 	ASSERT(pktp != NULL);
17442 
17443 	si.ssi_severity = SCSI_ERR_FATAL;
17444 	si.ssi_pfa_flag = FALSE;
17445 
17446 	/*
17447 	 * Update error stats after first NOT READY error. Disks may have
17448 	 * been powered down and may need to be restarted.  For CDROMs,
17449 	 * report NOT READY errors only if media is present.
17450 	 */
17451 	if ((ISCD(un) && (asc == 0x3A)) ||
17452 	    (xp->xb_nr_retry_count > 0)) {
17453 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17454 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17455 	}
17456 
17457 	/*
17458 	 * Just fail if the "not ready" retry limit has been reached.
17459 	 */
17460 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17461 		/* Special check for error message printing for removables. */
17462 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17463 		    (ascq >= 0x04)) {
17464 			si.ssi_severity = SCSI_ERR_ALL;
17465 		}
17466 		goto fail_command;
17467 	}
17468 
17469 	/*
17470 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17471 	 * what to do.
17472 	 */
17473 	switch (asc) {
17474 	case 0x04:	/* LOGICAL UNIT NOT READY */
17475 		/*
17476 		 * disk drives that don't spin up result in a very long delay
17477 		 * in format without warning messages. We will log a message
17478 		 * if the error level is set to verbose.
17479 		 */
17480 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17481 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17482 			    "logical unit not ready, resetting disk\n");
17483 		}
17484 
17485 		/*
17486 		 * There are different requirements for CDROMs and disks for
17487 		 * the number of retries.  If a CD-ROM is giving this, it is
17488 		 * probably reading TOC and is in the process of getting
17489 		 * ready, so we should keep on trying for a long time to make
17490 		 * sure that all types of media are taken in account (for
17491 		 * some media the drive takes a long time to read TOC).  For
17492 		 * disks we do not want to retry this too many times as this
17493 		 * can cause a long hang in format when the drive refuses to
17494 		 * spin up (a very common failure).
17495 		 */
17496 		switch (ascq) {
17497 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17498 			/*
17499 			 * Disk drives frequently refuse to spin up which
17500 			 * results in a very long hang in format without
17501 			 * warning messages.
17502 			 *
17503 			 * Note: This code preserves the legacy behavior of
17504 			 * comparing xb_nr_retry_count against zero for fibre
17505 			 * channel targets instead of comparing against the
17506 			 * un_reset_retry_count value.  The reason for this
17507 			 * discrepancy has been so utterly lost beneath the
17508 			 * Sands of Time that even Indiana Jones could not
17509 			 * find it.
17510 			 */
17511 			if (un->un_f_is_fibre == TRUE) {
17512 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17513 				    (xp->xb_nr_retry_count > 0)) &&
17514 				    (un->un_startstop_timeid == NULL)) {
17515 					scsi_log(SD_DEVINFO(un), sd_label,
17516 					    CE_WARN, "logical unit not ready, "
17517 					    "resetting disk\n");
17518 					sd_reset_target(un, pktp);
17519 				}
17520 			} else {
17521 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17522 				    (xp->xb_nr_retry_count >
17523 				    un->un_reset_retry_count)) &&
17524 				    (un->un_startstop_timeid == NULL)) {
17525 					scsi_log(SD_DEVINFO(un), sd_label,
17526 					    CE_WARN, "logical unit not ready, "
17527 					    "resetting disk\n");
17528 					sd_reset_target(un, pktp);
17529 				}
17530 			}
17531 			break;
17532 
17533 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17534 			/*
17535 			 * If the target is in the process of becoming
17536 			 * ready, just proceed with the retry. This can
17537 			 * happen with CD-ROMs that take a long time to
17538 			 * read TOC after a power cycle or reset.
17539 			 */
17540 			goto do_retry;
17541 
17542 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17543 			break;
17544 
17545 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17546 			/*
17547 			 * Retries cannot help here so just fail right away.
17548 			 */
17549 			goto fail_command;
17550 
17551 		case 0x88:
17552 			/*
17553 			 * Vendor-unique code for T3/T4: it indicates a
17554 			 * path problem in a mutipathed config, but as far as
17555 			 * the target driver is concerned it equates to a fatal
17556 			 * error, so we should just fail the command right away
17557 			 * (without printing anything to the console). If this
17558 			 * is not a T3/T4, fall thru to the default recovery
17559 			 * action.
17560 			 * T3/T4 is FC only, don't need to check is_fibre
17561 			 */
17562 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17563 				sd_return_failed_command(un, bp, EIO);
17564 				return;
17565 			}
17566 			/* FALLTHRU */
17567 
17568 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17569 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17570 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17571 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17572 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17573 		default:    /* Possible future codes in SCSI spec? */
17574 			/*
17575 			 * For removable-media devices, do not retry if
17576 			 * ASCQ > 2 as these result mostly from USCSI commands
17577 			 * on MMC devices issued to check status of an
17578 			 * operation initiated in immediate mode.  Also for
17579 			 * ASCQ >= 4 do not print console messages as these
17580 			 * mainly represent a user-initiated operation
17581 			 * instead of a system failure.
17582 			 */
17583 			if (un->un_f_has_removable_media) {
17584 				si.ssi_severity = SCSI_ERR_ALL;
17585 				goto fail_command;
17586 			}
17587 			break;
17588 		}
17589 
17590 		/*
17591 		 * As part of our recovery attempt for the NOT READY
17592 		 * condition, we issue a START STOP UNIT command. However
17593 		 * we want to wait for a short delay before attempting this
17594 		 * as there may still be more commands coming back from the
17595 		 * target with the check condition. To do this we use
17596 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17597 		 * the delay interval expires. (sd_start_stop_unit_callback()
17598 		 * dispatches sd_start_stop_unit_task(), which will issue
17599 		 * the actual START STOP UNIT command. The delay interval
17600 		 * is one-half of the delay that we will use to retry the
17601 		 * command that generated the NOT READY condition.
17602 		 *
17603 		 * Note that we could just dispatch sd_start_stop_unit_task()
17604 		 * from here and allow it to sleep for the delay interval,
17605 		 * but then we would be tying up the taskq thread
17606 		 * uncesessarily for the duration of the delay.
17607 		 *
17608 		 * Do not issue the START STOP UNIT if the current command
17609 		 * is already a START STOP UNIT.
17610 		 */
17611 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17612 			break;
17613 		}
17614 
17615 		/*
17616 		 * Do not schedule the timeout if one is already pending.
17617 		 */
17618 		if (un->un_startstop_timeid != NULL) {
17619 			SD_INFO(SD_LOG_ERROR, un,
17620 			    "sd_sense_key_not_ready: restart already issued to"
17621 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17622 			    ddi_get_instance(SD_DEVINFO(un)));
17623 			break;
17624 		}
17625 
17626 		/*
17627 		 * Schedule the START STOP UNIT command, then queue the command
17628 		 * for a retry.
17629 		 *
17630 		 * Note: A timeout is not scheduled for this retry because we
17631 		 * want the retry to be serial with the START_STOP_UNIT. The
17632 		 * retry will be started when the START_STOP_UNIT is completed
17633 		 * in sd_start_stop_unit_task.
17634 		 */
17635 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17636 		    un, un->un_busy_timeout / 2);
17637 		xp->xb_nr_retry_count++;
17638 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17639 		return;
17640 
17641 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17642 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17643 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17644 			    "unit does not respond to selection\n");
17645 		}
17646 		break;
17647 
17648 	case 0x3A:	/* MEDIUM NOT PRESENT */
17649 		if (sd_error_level >= SCSI_ERR_FATAL) {
17650 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17651 			    "Caddy not inserted in drive\n");
17652 		}
17653 
17654 		sr_ejected(un);
17655 		un->un_mediastate = DKIO_EJECTED;
17656 		/* The state has changed, inform the media watch routines */
17657 		cv_broadcast(&un->un_state_cv);
17658 		/* Just fail if no media is present in the drive. */
17659 		goto fail_command;
17660 
17661 	default:
17662 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17663 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17664 			    "Unit not Ready. Additional sense code 0x%x\n",
17665 			    asc);
17666 		}
17667 		break;
17668 	}
17669 
17670 do_retry:
17671 
17672 	/*
17673 	 * Retry the command, as some targets may report NOT READY for
17674 	 * several seconds after being reset.
17675 	 */
17676 	xp->xb_nr_retry_count++;
17677 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17678 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17679 	    &si, EIO, un->un_busy_timeout, NULL);
17680 
17681 	return;
17682 
17683 fail_command:
17684 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17685 	sd_return_failed_command(un, bp, EIO);
17686 }
17687 
17688 
17689 
17690 /*
17691  *    Function: sd_sense_key_medium_or_hardware_error
17692  *
17693  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17694  *		sense key.
17695  *
17696  *     Context: May be called from interrupt context
17697  */
17698 
17699 static void
17700 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17701 	uint8_t *sense_datap,
17702 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17703 {
17704 	struct sd_sense_info	si;
17705 	uint8_t sense_key = scsi_sense_key(sense_datap);
17706 	uint8_t asc = scsi_sense_asc(sense_datap);
17707 
17708 	ASSERT(un != NULL);
17709 	ASSERT(mutex_owned(SD_MUTEX(un)));
17710 	ASSERT(bp != NULL);
17711 	ASSERT(xp != NULL);
17712 	ASSERT(pktp != NULL);
17713 
17714 	si.ssi_severity = SCSI_ERR_FATAL;
17715 	si.ssi_pfa_flag = FALSE;
17716 
17717 	if (sense_key == KEY_MEDIUM_ERROR) {
17718 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17719 	}
17720 
17721 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17722 
17723 	if ((un->un_reset_retry_count != 0) &&
17724 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17725 		mutex_exit(SD_MUTEX(un));
17726 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17727 		if (un->un_f_allow_bus_device_reset == TRUE) {
17728 
17729 			boolean_t try_resetting_target = B_TRUE;
17730 
17731 			/*
17732 			 * We need to be able to handle specific ASC when we are
17733 			 * handling a KEY_HARDWARE_ERROR. In particular
17734 			 * taking the default action of resetting the target may
17735 			 * not be the appropriate way to attempt recovery.
17736 			 * Resetting a target because of a single LUN failure
17737 			 * victimizes all LUNs on that target.
17738 			 *
17739 			 * This is true for the LSI arrays, if an LSI
17740 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17741 			 * should trust it.
17742 			 */
17743 
17744 			if (sense_key == KEY_HARDWARE_ERROR) {
17745 				switch (asc) {
17746 				case 0x84:
17747 					if (SD_IS_LSI(un)) {
17748 						try_resetting_target = B_FALSE;
17749 					}
17750 					break;
17751 				default:
17752 					break;
17753 				}
17754 			}
17755 
17756 			if (try_resetting_target == B_TRUE) {
17757 				int reset_retval = 0;
17758 				if (un->un_f_lun_reset_enabled == TRUE) {
17759 					SD_TRACE(SD_LOG_IO_CORE, un,
17760 					    "sd_sense_key_medium_or_hardware_"
17761 					    "error: issuing RESET_LUN\n");
17762 					reset_retval =
17763 					    scsi_reset(SD_ADDRESS(un),
17764 					    RESET_LUN);
17765 				}
17766 				if (reset_retval == 0) {
17767 					SD_TRACE(SD_LOG_IO_CORE, un,
17768 					    "sd_sense_key_medium_or_hardware_"
17769 					    "error: issuing RESET_TARGET\n");
17770 					(void) scsi_reset(SD_ADDRESS(un),
17771 					    RESET_TARGET);
17772 				}
17773 			}
17774 		}
17775 		mutex_enter(SD_MUTEX(un));
17776 	}
17777 
17778 	/*
17779 	 * This really ought to be a fatal error, but we will retry anyway
17780 	 * as some drives report this as a spurious error.
17781 	 */
17782 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17783 	    &si, EIO, (clock_t)0, NULL);
17784 }
17785 
17786 
17787 
17788 /*
17789  *    Function: sd_sense_key_illegal_request
17790  *
17791  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17792  *
17793  *     Context: May be called from interrupt context
17794  */
17795 
17796 static void
17797 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17798 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17799 {
17800 	struct sd_sense_info	si;
17801 
17802 	ASSERT(un != NULL);
17803 	ASSERT(mutex_owned(SD_MUTEX(un)));
17804 	ASSERT(bp != NULL);
17805 	ASSERT(xp != NULL);
17806 	ASSERT(pktp != NULL);
17807 
17808 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17809 
17810 	si.ssi_severity = SCSI_ERR_INFO;
17811 	si.ssi_pfa_flag = FALSE;
17812 
17813 	/* Pointless to retry if the target thinks it's an illegal request */
17814 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17815 	sd_return_failed_command(un, bp, EIO);
17816 }
17817 
17818 
17819 
17820 
17821 /*
17822  *    Function: sd_sense_key_unit_attention
17823  *
17824  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17825  *
17826  *     Context: May be called from interrupt context
17827  */
17828 
17829 static void
17830 sd_sense_key_unit_attention(struct sd_lun *un,
17831 	uint8_t *sense_datap,
17832 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17833 {
17834 	/*
17835 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17836 	 * like Sonoma can return UNIT ATTENTION close to a minute
17837 	 * under certain conditions.
17838 	 */
17839 	int	retry_check_flag = SD_RETRIES_UA;
17840 	boolean_t	kstat_updated = B_FALSE;
17841 	struct	sd_sense_info		si;
17842 	uint8_t asc = scsi_sense_asc(sense_datap);
17843 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17844 
17845 	ASSERT(un != NULL);
17846 	ASSERT(mutex_owned(SD_MUTEX(un)));
17847 	ASSERT(bp != NULL);
17848 	ASSERT(xp != NULL);
17849 	ASSERT(pktp != NULL);
17850 
17851 	si.ssi_severity = SCSI_ERR_INFO;
17852 	si.ssi_pfa_flag = FALSE;
17853 
17854 
17855 	switch (asc) {
17856 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17857 		if (sd_report_pfa != 0) {
17858 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17859 			si.ssi_pfa_flag = TRUE;
17860 			retry_check_flag = SD_RETRIES_STANDARD;
17861 			goto do_retry;
17862 		}
17863 
17864 		break;
17865 
17866 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17867 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17868 			un->un_resvd_status |=
17869 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17870 		}
17871 #ifdef _LP64
17872 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17873 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17874 			    un, KM_NOSLEEP) == 0) {
17875 				/*
17876 				 * If we can't dispatch the task we'll just
17877 				 * live without descriptor sense.  We can
17878 				 * try again on the next "unit attention"
17879 				 */
17880 				SD_ERROR(SD_LOG_ERROR, un,
17881 				    "sd_sense_key_unit_attention: "
17882 				    "Could not dispatch "
17883 				    "sd_reenable_dsense_task\n");
17884 			}
17885 		}
17886 #endif /* _LP64 */
17887 		/* FALLTHRU */
17888 
17889 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17890 		if (!un->un_f_has_removable_media) {
17891 			break;
17892 		}
17893 
17894 		/*
17895 		 * When we get a unit attention from a removable-media device,
17896 		 * it may be in a state that will take a long time to recover
17897 		 * (e.g., from a reset).  Since we are executing in interrupt
17898 		 * context here, we cannot wait around for the device to come
17899 		 * back. So hand this command off to sd_media_change_task()
17900 		 * for deferred processing under taskq thread context. (Note
17901 		 * that the command still may be failed if a problem is
17902 		 * encountered at a later time.)
17903 		 */
17904 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17905 		    KM_NOSLEEP) == 0) {
17906 			/*
17907 			 * Cannot dispatch the request so fail the command.
17908 			 */
17909 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17910 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17911 			si.ssi_severity = SCSI_ERR_FATAL;
17912 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17913 			sd_return_failed_command(un, bp, EIO);
17914 		}
17915 
17916 		/*
17917 		 * If failed to dispatch sd_media_change_task(), we already
17918 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17919 		 * we should update kstat later if it encounters an error. So,
17920 		 * we update kstat_updated flag here.
17921 		 */
17922 		kstat_updated = B_TRUE;
17923 
17924 		/*
17925 		 * Either the command has been successfully dispatched to a
17926 		 * task Q for retrying, or the dispatch failed. In either case
17927 		 * do NOT retry again by calling sd_retry_command. This sets up
17928 		 * two retries of the same command and when one completes and
17929 		 * frees the resources the other will access freed memory,
17930 		 * a bad thing.
17931 		 */
17932 		return;
17933 
17934 	default:
17935 		break;
17936 	}
17937 
17938 	/*
17939 	 * ASC  ASCQ
17940 	 *  2A   09	Capacity data has changed
17941 	 *  2A   01	Mode parameters changed
17942 	 *  3F   0E	Reported luns data has changed
17943 	 * Arrays that support logical unit expansion should report
17944 	 * capacity changes(2Ah/09). Mode parameters changed and
17945 	 * reported luns data has changed are the approximation.
17946 	 */
17947 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17948 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17949 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17950 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17951 		    KM_NOSLEEP) == 0) {
17952 			SD_ERROR(SD_LOG_ERROR, un,
17953 			    "sd_sense_key_unit_attention: "
17954 			    "Could not dispatch sd_target_change_task\n");
17955 		}
17956 	}
17957 
17958 	/*
17959 	 * Update kstat if we haven't done that.
17960 	 */
17961 	if (!kstat_updated) {
17962 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17963 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17964 	}
17965 
17966 do_retry:
17967 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17968 	    EIO, SD_UA_RETRY_DELAY, NULL);
17969 }
17970 
17971 
17972 
17973 /*
17974  *    Function: sd_sense_key_fail_command
17975  *
17976  * Description: Use to fail a command when we don't like the sense key that
17977  *		was returned.
17978  *
17979  *     Context: May be called from interrupt context
17980  */
17981 
17982 static void
17983 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17984 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17985 {
17986 	struct sd_sense_info	si;
17987 
17988 	ASSERT(un != NULL);
17989 	ASSERT(mutex_owned(SD_MUTEX(un)));
17990 	ASSERT(bp != NULL);
17991 	ASSERT(xp != NULL);
17992 	ASSERT(pktp != NULL);
17993 
17994 	si.ssi_severity = SCSI_ERR_FATAL;
17995 	si.ssi_pfa_flag = FALSE;
17996 
17997 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17998 	sd_return_failed_command(un, bp, EIO);
17999 }
18000 
18001 
18002 
18003 /*
18004  *    Function: sd_sense_key_blank_check
18005  *
18006  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18007  *		Has no monetary connotation.
18008  *
18009  *     Context: May be called from interrupt context
18010  */
18011 
18012 static void
18013 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18014 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18015 {
18016 	struct sd_sense_info	si;
18017 
18018 	ASSERT(un != NULL);
18019 	ASSERT(mutex_owned(SD_MUTEX(un)));
18020 	ASSERT(bp != NULL);
18021 	ASSERT(xp != NULL);
18022 	ASSERT(pktp != NULL);
18023 
18024 	/*
18025 	 * Blank check is not fatal for removable devices, therefore
18026 	 * it does not require a console message.
18027 	 */
18028 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18029 	    SCSI_ERR_FATAL;
18030 	si.ssi_pfa_flag = FALSE;
18031 
18032 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18033 	sd_return_failed_command(un, bp, EIO);
18034 }
18035 
18036 
18037 
18038 
18039 /*
18040  *    Function: sd_sense_key_aborted_command
18041  *
18042  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18043  *
18044  *     Context: May be called from interrupt context
18045  */
18046 
18047 static void
18048 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18049 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18050 {
18051 	struct sd_sense_info	si;
18052 
18053 	ASSERT(un != NULL);
18054 	ASSERT(mutex_owned(SD_MUTEX(un)));
18055 	ASSERT(bp != NULL);
18056 	ASSERT(xp != NULL);
18057 	ASSERT(pktp != NULL);
18058 
18059 	si.ssi_severity = SCSI_ERR_FATAL;
18060 	si.ssi_pfa_flag = FALSE;
18061 
18062 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18063 
18064 	/*
18065 	 * This really ought to be a fatal error, but we will retry anyway
18066 	 * as some drives report this as a spurious error.
18067 	 */
18068 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18069 	    &si, EIO, drv_usectohz(100000), NULL);
18070 }
18071 
18072 
18073 
18074 /*
18075  *    Function: sd_sense_key_default
18076  *
18077  * Description: Default recovery action for several SCSI sense keys (basically
18078  *		attempts a retry).
18079  *
18080  *     Context: May be called from interrupt context
18081  */
18082 
18083 static void
18084 sd_sense_key_default(struct sd_lun *un,
18085 	uint8_t *sense_datap,
18086 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18087 {
18088 	struct sd_sense_info	si;
18089 	uint8_t sense_key = scsi_sense_key(sense_datap);
18090 
18091 	ASSERT(un != NULL);
18092 	ASSERT(mutex_owned(SD_MUTEX(un)));
18093 	ASSERT(bp != NULL);
18094 	ASSERT(xp != NULL);
18095 	ASSERT(pktp != NULL);
18096 
18097 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18098 
18099 	/*
18100 	 * Undecoded sense key.	Attempt retries and hope that will fix
18101 	 * the problem.  Otherwise, we're dead.
18102 	 */
18103 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18104 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18105 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18106 	}
18107 
18108 	si.ssi_severity = SCSI_ERR_FATAL;
18109 	si.ssi_pfa_flag = FALSE;
18110 
18111 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18112 	    &si, EIO, (clock_t)0, NULL);
18113 }
18114 
18115 
18116 
18117 /*
18118  *    Function: sd_print_retry_msg
18119  *
18120  * Description: Print a message indicating the retry action being taken.
18121  *
18122  *   Arguments: un - ptr to associated softstate
18123  *		bp - ptr to buf(9S) for the command
18124  *		arg - not used.
18125  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18126  *			or SD_NO_RETRY_ISSUED
18127  *
18128  *     Context: May be called from interrupt context
18129  */
18130 /* ARGSUSED */
18131 static void
18132 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18133 {
18134 	struct sd_xbuf	*xp;
18135 	struct scsi_pkt *pktp;
18136 	char *reasonp;
18137 	char *msgp;
18138 
18139 	ASSERT(un != NULL);
18140 	ASSERT(mutex_owned(SD_MUTEX(un)));
18141 	ASSERT(bp != NULL);
18142 	pktp = SD_GET_PKTP(bp);
18143 	ASSERT(pktp != NULL);
18144 	xp = SD_GET_XBUF(bp);
18145 	ASSERT(xp != NULL);
18146 
18147 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18148 	mutex_enter(&un->un_pm_mutex);
18149 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18150 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18151 	    (pktp->pkt_flags & FLAG_SILENT)) {
18152 		mutex_exit(&un->un_pm_mutex);
18153 		goto update_pkt_reason;
18154 	}
18155 	mutex_exit(&un->un_pm_mutex);
18156 
18157 	/*
18158 	 * Suppress messages if they are all the same pkt_reason; with
18159 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18160 	 * If we are in panic, then suppress the retry messages.
18161 	 */
18162 	switch (flag) {
18163 	case SD_NO_RETRY_ISSUED:
18164 		msgp = "giving up";
18165 		break;
18166 	case SD_IMMEDIATE_RETRY_ISSUED:
18167 	case SD_DELAYED_RETRY_ISSUED:
18168 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18169 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18170 		    (sd_error_level != SCSI_ERR_ALL))) {
18171 			return;
18172 		}
18173 		msgp = "retrying command";
18174 		break;
18175 	default:
18176 		goto update_pkt_reason;
18177 	}
18178 
18179 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18180 	    scsi_rname(pktp->pkt_reason));
18181 
18182 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18183 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18184 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18185 	}
18186 
18187 update_pkt_reason:
18188 	/*
18189 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18190 	 * This is to prevent multiple console messages for the same failure
18191 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18192 	 * when the command is retried successfully because there still may be
18193 	 * more commands coming back with the same value of pktp->pkt_reason.
18194 	 */
18195 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18196 		un->un_last_pkt_reason = pktp->pkt_reason;
18197 	}
18198 }
18199 
18200 
18201 /*
18202  *    Function: sd_print_cmd_incomplete_msg
18203  *
18204  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18205  *
18206  *   Arguments: un - ptr to associated softstate
18207  *		bp - ptr to buf(9S) for the command
18208  *		arg - passed to sd_print_retry_msg()
18209  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18210  *			or SD_NO_RETRY_ISSUED
18211  *
18212  *     Context: May be called from interrupt context
18213  */
18214 
18215 static void
18216 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18217 	int code)
18218 {
18219 	dev_info_t	*dip;
18220 
18221 	ASSERT(un != NULL);
18222 	ASSERT(mutex_owned(SD_MUTEX(un)));
18223 	ASSERT(bp != NULL);
18224 
18225 	switch (code) {
18226 	case SD_NO_RETRY_ISSUED:
18227 		/* Command was failed. Someone turned off this target? */
18228 		if (un->un_state != SD_STATE_OFFLINE) {
18229 			/*
18230 			 * Suppress message if we are detaching and
18231 			 * device has been disconnected
18232 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18233 			 * private interface and not part of the DDI
18234 			 */
18235 			dip = un->un_sd->sd_dev;
18236 			if (!(DEVI_IS_DETACHING(dip) &&
18237 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18238 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18239 				"disk not responding to selection\n");
18240 			}
18241 			New_state(un, SD_STATE_OFFLINE);
18242 		}
18243 		break;
18244 
18245 	case SD_DELAYED_RETRY_ISSUED:
18246 	case SD_IMMEDIATE_RETRY_ISSUED:
18247 	default:
18248 		/* Command was successfully queued for retry */
18249 		sd_print_retry_msg(un, bp, arg, code);
18250 		break;
18251 	}
18252 }
18253 
18254 
18255 /*
18256  *    Function: sd_pkt_reason_cmd_incomplete
18257  *
18258  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18259  *
18260  *     Context: May be called from interrupt context
18261  */
18262 
18263 static void
18264 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18265 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18266 {
18267 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18268 
18269 	ASSERT(un != NULL);
18270 	ASSERT(mutex_owned(SD_MUTEX(un)));
18271 	ASSERT(bp != NULL);
18272 	ASSERT(xp != NULL);
18273 	ASSERT(pktp != NULL);
18274 
18275 	/* Do not do a reset if selection did not complete */
18276 	/* Note: Should this not just check the bit? */
18277 	if (pktp->pkt_state != STATE_GOT_BUS) {
18278 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18279 		sd_reset_target(un, pktp);
18280 	}
18281 
18282 	/*
18283 	 * If the target was not successfully selected, then set
18284 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18285 	 * with the target, and further retries and/or commands are
18286 	 * likely to take a long time.
18287 	 */
18288 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18289 		flag |= SD_RETRIES_FAILFAST;
18290 	}
18291 
18292 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18293 
18294 	sd_retry_command(un, bp, flag,
18295 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18296 }
18297 
18298 
18299 
18300 /*
18301  *    Function: sd_pkt_reason_cmd_tran_err
18302  *
18303  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18304  *
18305  *     Context: May be called from interrupt context
18306  */
18307 
18308 static void
18309 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18310 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18311 {
18312 	ASSERT(un != NULL);
18313 	ASSERT(mutex_owned(SD_MUTEX(un)));
18314 	ASSERT(bp != NULL);
18315 	ASSERT(xp != NULL);
18316 	ASSERT(pktp != NULL);
18317 
18318 	/*
18319 	 * Do not reset if we got a parity error, or if
18320 	 * selection did not complete.
18321 	 */
18322 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18323 	/* Note: Should this not just check the bit for pkt_state? */
18324 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18325 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18326 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18327 		sd_reset_target(un, pktp);
18328 	}
18329 
18330 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18331 
18332 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18333 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18334 }
18335 
18336 
18337 
18338 /*
18339  *    Function: sd_pkt_reason_cmd_reset
18340  *
18341  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18342  *
18343  *     Context: May be called from interrupt context
18344  */
18345 
18346 static void
18347 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18348 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18349 {
18350 	ASSERT(un != NULL);
18351 	ASSERT(mutex_owned(SD_MUTEX(un)));
18352 	ASSERT(bp != NULL);
18353 	ASSERT(xp != NULL);
18354 	ASSERT(pktp != NULL);
18355 
18356 	/* The target may still be running the command, so try to reset. */
18357 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18358 	sd_reset_target(un, pktp);
18359 
18360 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18361 
18362 	/*
18363 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18364 	 * reset because another target on this bus caused it. The target
18365 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18366 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18367 	 */
18368 
18369 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18370 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18371 }
18372 
18373 
18374 
18375 
18376 /*
18377  *    Function: sd_pkt_reason_cmd_aborted
18378  *
18379  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18380  *
18381  *     Context: May be called from interrupt context
18382  */
18383 
18384 static void
18385 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18386 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18387 {
18388 	ASSERT(un != NULL);
18389 	ASSERT(mutex_owned(SD_MUTEX(un)));
18390 	ASSERT(bp != NULL);
18391 	ASSERT(xp != NULL);
18392 	ASSERT(pktp != NULL);
18393 
18394 	/* The target may still be running the command, so try to reset. */
18395 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18396 	sd_reset_target(un, pktp);
18397 
18398 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18399 
18400 	/*
18401 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18402 	 * aborted because another target on this bus caused it. The target
18403 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18404 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18405 	 */
18406 
18407 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18408 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18409 }
18410 
18411 
18412 
18413 /*
18414  *    Function: sd_pkt_reason_cmd_timeout
18415  *
18416  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18417  *
18418  *     Context: May be called from interrupt context
18419  */
18420 
18421 static void
18422 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18423 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18424 {
18425 	ASSERT(un != NULL);
18426 	ASSERT(mutex_owned(SD_MUTEX(un)));
18427 	ASSERT(bp != NULL);
18428 	ASSERT(xp != NULL);
18429 	ASSERT(pktp != NULL);
18430 
18431 
18432 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18433 	sd_reset_target(un, pktp);
18434 
18435 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18436 
18437 	/*
18438 	 * A command timeout indicates that we could not establish
18439 	 * communication with the target, so set SD_RETRIES_FAILFAST
18440 	 * as further retries/commands are likely to take a long time.
18441 	 */
18442 	sd_retry_command(un, bp,
18443 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18444 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18445 }
18446 
18447 
18448 
18449 /*
18450  *    Function: sd_pkt_reason_cmd_unx_bus_free
18451  *
18452  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18453  *
18454  *     Context: May be called from interrupt context
18455  */
18456 
18457 static void
18458 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18459 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18460 {
18461 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18462 
18463 	ASSERT(un != NULL);
18464 	ASSERT(mutex_owned(SD_MUTEX(un)));
18465 	ASSERT(bp != NULL);
18466 	ASSERT(xp != NULL);
18467 	ASSERT(pktp != NULL);
18468 
18469 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18470 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18471 
18472 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18473 	    sd_print_retry_msg : NULL;
18474 
18475 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18476 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18477 }
18478 
18479 
18480 /*
18481  *    Function: sd_pkt_reason_cmd_tag_reject
18482  *
18483  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18484  *
18485  *     Context: May be called from interrupt context
18486  */
18487 
18488 static void
18489 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18490 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18491 {
18492 	ASSERT(un != NULL);
18493 	ASSERT(mutex_owned(SD_MUTEX(un)));
18494 	ASSERT(bp != NULL);
18495 	ASSERT(xp != NULL);
18496 	ASSERT(pktp != NULL);
18497 
18498 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18499 	pktp->pkt_flags = 0;
18500 	un->un_tagflags = 0;
18501 	if (un->un_f_opt_queueing == TRUE) {
18502 		un->un_throttle = min(un->un_throttle, 3);
18503 	} else {
18504 		un->un_throttle = 1;
18505 	}
18506 	mutex_exit(SD_MUTEX(un));
18507 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18508 	mutex_enter(SD_MUTEX(un));
18509 
18510 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18511 
18512 	/* Legacy behavior not to check retry counts here. */
18513 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18514 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18515 }
18516 
18517 
18518 /*
18519  *    Function: sd_pkt_reason_default
18520  *
18521  * Description: Default recovery actions for SCSA pkt_reason values that
18522  *		do not have more explicit recovery actions.
18523  *
18524  *     Context: May be called from interrupt context
18525  */
18526 
18527 static void
18528 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18529 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18530 {
18531 	ASSERT(un != NULL);
18532 	ASSERT(mutex_owned(SD_MUTEX(un)));
18533 	ASSERT(bp != NULL);
18534 	ASSERT(xp != NULL);
18535 	ASSERT(pktp != NULL);
18536 
18537 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18538 	sd_reset_target(un, pktp);
18539 
18540 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18541 
18542 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18543 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18544 }
18545 
18546 
18547 
18548 /*
18549  *    Function: sd_pkt_status_check_condition
18550  *
18551  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18552  *
18553  *     Context: May be called from interrupt context
18554  */
18555 
18556 static void
18557 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18558 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18559 {
18560 	ASSERT(un != NULL);
18561 	ASSERT(mutex_owned(SD_MUTEX(un)));
18562 	ASSERT(bp != NULL);
18563 	ASSERT(xp != NULL);
18564 	ASSERT(pktp != NULL);
18565 
18566 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18567 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18568 
18569 	/*
18570 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18571 	 * command will be retried after the request sense). Otherwise, retry
18572 	 * the command. Note: we are issuing the request sense even though the
18573 	 * retry limit may have been reached for the failed command.
18574 	 */
18575 	if (un->un_f_arq_enabled == FALSE) {
18576 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18577 		    "no ARQ, sending request sense command\n");
18578 		sd_send_request_sense_command(un, bp, pktp);
18579 	} else {
18580 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18581 		    "ARQ,retrying request sense command\n");
18582 #if defined(__i386) || defined(__amd64)
18583 		/*
18584 		 * The SD_RETRY_DELAY value need to be adjusted here
18585 		 * when SD_RETRY_DELAY change in sddef.h
18586 		 */
18587 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18588 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18589 		    NULL);
18590 #else
18591 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18592 		    EIO, SD_RETRY_DELAY, NULL);
18593 #endif
18594 	}
18595 
18596 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18597 }
18598 
18599 
18600 /*
18601  *    Function: sd_pkt_status_busy
18602  *
18603  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18604  *
18605  *     Context: May be called from interrupt context
18606  */
18607 
18608 static void
18609 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18610 	struct scsi_pkt *pktp)
18611 {
18612 	ASSERT(un != NULL);
18613 	ASSERT(mutex_owned(SD_MUTEX(un)));
18614 	ASSERT(bp != NULL);
18615 	ASSERT(xp != NULL);
18616 	ASSERT(pktp != NULL);
18617 
18618 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18619 	    "sd_pkt_status_busy: entry\n");
18620 
18621 	/* If retries are exhausted, just fail the command. */
18622 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18624 		    "device busy too long\n");
18625 		sd_return_failed_command(un, bp, EIO);
18626 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18627 		    "sd_pkt_status_busy: exit\n");
18628 		return;
18629 	}
18630 	xp->xb_retry_count++;
18631 
18632 	/*
18633 	 * Try to reset the target. However, we do not want to perform
18634 	 * more than one reset if the device continues to fail. The reset
18635 	 * will be performed when the retry count reaches the reset
18636 	 * threshold.  This threshold should be set such that at least
18637 	 * one retry is issued before the reset is performed.
18638 	 */
18639 	if (xp->xb_retry_count ==
18640 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18641 		int rval = 0;
18642 		mutex_exit(SD_MUTEX(un));
18643 		if (un->un_f_allow_bus_device_reset == TRUE) {
18644 			/*
18645 			 * First try to reset the LUN; if we cannot then
18646 			 * try to reset the target.
18647 			 */
18648 			if (un->un_f_lun_reset_enabled == TRUE) {
18649 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18650 				    "sd_pkt_status_busy: RESET_LUN\n");
18651 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18652 			}
18653 			if (rval == 0) {
18654 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18655 				    "sd_pkt_status_busy: RESET_TARGET\n");
18656 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18657 			}
18658 		}
18659 		if (rval == 0) {
18660 			/*
18661 			 * If the RESET_LUN and/or RESET_TARGET failed,
18662 			 * try RESET_ALL
18663 			 */
18664 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18665 			    "sd_pkt_status_busy: RESET_ALL\n");
18666 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18667 		}
18668 		mutex_enter(SD_MUTEX(un));
18669 		if (rval == 0) {
18670 			/*
18671 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18672 			 * At this point we give up & fail the command.
18673 			 */
18674 			sd_return_failed_command(un, bp, EIO);
18675 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18676 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18677 			return;
18678 		}
18679 	}
18680 
18681 	/*
18682 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18683 	 * we have already checked the retry counts above.
18684 	 */
18685 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18686 	    EIO, un->un_busy_timeout, NULL);
18687 
18688 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18689 	    "sd_pkt_status_busy: exit\n");
18690 }
18691 
18692 
18693 /*
18694  *    Function: sd_pkt_status_reservation_conflict
18695  *
18696  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18697  *		command status.
18698  *
18699  *     Context: May be called from interrupt context
18700  */
18701 
18702 static void
18703 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18704 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18705 {
18706 	ASSERT(un != NULL);
18707 	ASSERT(mutex_owned(SD_MUTEX(un)));
18708 	ASSERT(bp != NULL);
18709 	ASSERT(xp != NULL);
18710 	ASSERT(pktp != NULL);
18711 
18712 	/*
18713 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18714 	 * conflict could be due to various reasons like incorrect keys, not
18715 	 * registered or not reserved etc. So, we return EACCES to the caller.
18716 	 */
18717 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18718 		int cmd = SD_GET_PKT_OPCODE(pktp);
18719 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18720 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18721 			sd_return_failed_command(un, bp, EACCES);
18722 			return;
18723 		}
18724 	}
18725 
18726 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18727 
18728 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18729 		if (sd_failfast_enable != 0) {
18730 			/* By definition, we must panic here.... */
18731 			sd_panic_for_res_conflict(un);
18732 			/*NOTREACHED*/
18733 		}
18734 		SD_ERROR(SD_LOG_IO, un,
18735 		    "sd_handle_resv_conflict: Disk Reserved\n");
18736 		sd_return_failed_command(un, bp, EACCES);
18737 		return;
18738 	}
18739 
18740 	/*
18741 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18742 	 * property is set (default is 1). Retries will not succeed
18743 	 * on a disk reserved by another initiator. HA systems
18744 	 * may reset this via sd.conf to avoid these retries.
18745 	 *
18746 	 * Note: The legacy return code for this failure is EIO, however EACCES
18747 	 * seems more appropriate for a reservation conflict.
18748 	 */
18749 	if (sd_retry_on_reservation_conflict == 0) {
18750 		SD_ERROR(SD_LOG_IO, un,
18751 		    "sd_handle_resv_conflict: Device Reserved\n");
18752 		sd_return_failed_command(un, bp, EIO);
18753 		return;
18754 	}
18755 
18756 	/*
18757 	 * Retry the command if we can.
18758 	 *
18759 	 * Note: The legacy return code for this failure is EIO, however EACCES
18760 	 * seems more appropriate for a reservation conflict.
18761 	 */
18762 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18763 	    (clock_t)2, NULL);
18764 }
18765 
18766 
18767 
18768 /*
18769  *    Function: sd_pkt_status_qfull
18770  *
18771  * Description: Handle a QUEUE FULL condition from the target.  This can
18772  *		occur if the HBA does not handle the queue full condition.
18773  *		(Basically this means third-party HBAs as Sun HBAs will
18774  *		handle the queue full condition.)  Note that if there are
18775  *		some commands already in the transport, then the queue full
18776  *		has occurred because the queue for this nexus is actually
18777  *		full. If there are no commands in the transport, then the
18778  *		queue full is resulting from some other initiator or lun
18779  *		consuming all the resources at the target.
18780  *
18781  *     Context: May be called from interrupt context
18782  */
18783 
18784 static void
18785 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18786 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18787 {
18788 	ASSERT(un != NULL);
18789 	ASSERT(mutex_owned(SD_MUTEX(un)));
18790 	ASSERT(bp != NULL);
18791 	ASSERT(xp != NULL);
18792 	ASSERT(pktp != NULL);
18793 
18794 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18795 	    "sd_pkt_status_qfull: entry\n");
18796 
18797 	/*
18798 	 * Just lower the QFULL throttle and retry the command.  Note that
18799 	 * we do not limit the number of retries here.
18800 	 */
18801 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18802 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18803 	    SD_RESTART_TIMEOUT, NULL);
18804 
18805 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18806 	    "sd_pkt_status_qfull: exit\n");
18807 }
18808 
18809 
18810 /*
18811  *    Function: sd_reset_target
18812  *
18813  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18814  *		RESET_TARGET, or RESET_ALL.
18815  *
18816  *     Context: May be called under interrupt context.
18817  */
18818 
18819 static void
18820 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18821 {
18822 	int rval = 0;
18823 
18824 	ASSERT(un != NULL);
18825 	ASSERT(mutex_owned(SD_MUTEX(un)));
18826 	ASSERT(pktp != NULL);
18827 
18828 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18829 
18830 	/*
18831 	 * No need to reset if the transport layer has already done so.
18832 	 */
18833 	if ((pktp->pkt_statistics &
18834 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18835 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18836 		    "sd_reset_target: no reset\n");
18837 		return;
18838 	}
18839 
18840 	mutex_exit(SD_MUTEX(un));
18841 
18842 	if (un->un_f_allow_bus_device_reset == TRUE) {
18843 		if (un->un_f_lun_reset_enabled == TRUE) {
18844 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18845 			    "sd_reset_target: RESET_LUN\n");
18846 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18847 		}
18848 		if (rval == 0) {
18849 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18850 			    "sd_reset_target: RESET_TARGET\n");
18851 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18852 		}
18853 	}
18854 
18855 	if (rval == 0) {
18856 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18857 		    "sd_reset_target: RESET_ALL\n");
18858 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18859 	}
18860 
18861 	mutex_enter(SD_MUTEX(un));
18862 
18863 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18864 }
18865 
18866 /*
18867  *    Function: sd_target_change_task
18868  *
18869  * Description: Handle dynamic target change
18870  *
18871  *     Context: Executes in a taskq() thread context
18872  */
18873 static void
18874 sd_target_change_task(void *arg)
18875 {
18876 	struct sd_lun		*un = arg;
18877 	uint64_t		capacity;
18878 	diskaddr_t		label_cap;
18879 	uint_t			lbasize;
18880 	sd_ssc_t		*ssc;
18881 
18882 	ASSERT(un != NULL);
18883 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18884 
18885 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18886 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18887 		return;
18888 	}
18889 
18890 	ssc = sd_ssc_init(un);
18891 
18892 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18893 	    &lbasize, SD_PATH_DIRECT) != 0) {
18894 		SD_ERROR(SD_LOG_ERROR, un,
18895 		    "sd_target_change_task: fail to read capacity\n");
18896 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18897 		goto task_exit;
18898 	}
18899 
18900 	mutex_enter(SD_MUTEX(un));
18901 	if (capacity <= un->un_blockcount) {
18902 		mutex_exit(SD_MUTEX(un));
18903 		goto task_exit;
18904 	}
18905 
18906 	sd_update_block_info(un, lbasize, capacity);
18907 	mutex_exit(SD_MUTEX(un));
18908 
18909 	/*
18910 	 * If lun is EFI labeled and lun capacity is greater than the
18911 	 * capacity contained in the label, log a sys event.
18912 	 */
18913 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18914 	    (void*)SD_PATH_DIRECT) == 0) {
18915 		mutex_enter(SD_MUTEX(un));
18916 		if (un->un_f_blockcount_is_valid &&
18917 		    un->un_blockcount > label_cap) {
18918 			mutex_exit(SD_MUTEX(un));
18919 			sd_log_lun_expansion_event(un, KM_SLEEP);
18920 		} else {
18921 			mutex_exit(SD_MUTEX(un));
18922 		}
18923 	}
18924 
18925 task_exit:
18926 	sd_ssc_fini(ssc);
18927 }
18928 
18929 /*
18930  *    Function: sd_log_lun_expansion_event
18931  *
18932  * Description: Log lun expansion sys event
18933  *
18934  *     Context: Never called from interrupt context
18935  */
18936 static void
18937 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18938 {
18939 	int err;
18940 	char			*path;
18941 	nvlist_t		*dle_attr_list;
18942 
18943 	/* Allocate and build sysevent attribute list */
18944 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18945 	if (err != 0) {
18946 		SD_ERROR(SD_LOG_ERROR, un,
18947 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18948 		return;
18949 	}
18950 
18951 	path = kmem_alloc(MAXPATHLEN, km_flag);
18952 	if (path == NULL) {
18953 		nvlist_free(dle_attr_list);
18954 		SD_ERROR(SD_LOG_ERROR, un,
18955 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18956 		return;
18957 	}
18958 	/*
18959 	 * Add path attribute to identify the lun.
18960 	 * We are using minor node 'a' as the sysevent attribute.
18961 	 */
18962 	(void) snprintf(path, MAXPATHLEN, "/devices");
18963 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
18964 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
18965 	    ":a");
18966 
18967 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
18968 	if (err != 0) {
18969 		nvlist_free(dle_attr_list);
18970 		kmem_free(path, MAXPATHLEN);
18971 		SD_ERROR(SD_LOG_ERROR, un,
18972 		    "sd_log_lun_expansion_event: fail to add attribute\n");
18973 		return;
18974 	}
18975 
18976 	/* Log dynamic lun expansion sysevent */
18977 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
18978 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
18979 	if (err != DDI_SUCCESS) {
18980 		SD_ERROR(SD_LOG_ERROR, un,
18981 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
18982 	}
18983 
18984 	nvlist_free(dle_attr_list);
18985 	kmem_free(path, MAXPATHLEN);
18986 }
18987 
18988 /*
18989  *    Function: sd_media_change_task
18990  *
18991  * Description: Recovery action for CDROM to become available.
18992  *
18993  *     Context: Executes in a taskq() thread context
18994  */
18995 
18996 static void
18997 sd_media_change_task(void *arg)
18998 {
18999 	struct	scsi_pkt	*pktp = arg;
19000 	struct	sd_lun		*un;
19001 	struct	buf		*bp;
19002 	struct	sd_xbuf		*xp;
19003 	int	err		= 0;
19004 	int	retry_count	= 0;
19005 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19006 	struct	sd_sense_info	si;
19007 
19008 	ASSERT(pktp != NULL);
19009 	bp = (struct buf *)pktp->pkt_private;
19010 	ASSERT(bp != NULL);
19011 	xp = SD_GET_XBUF(bp);
19012 	ASSERT(xp != NULL);
19013 	un = SD_GET_UN(bp);
19014 	ASSERT(un != NULL);
19015 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19016 	ASSERT(un->un_f_monitor_media_state);
19017 
19018 	si.ssi_severity = SCSI_ERR_INFO;
19019 	si.ssi_pfa_flag = FALSE;
19020 
19021 	/*
19022 	 * When a reset is issued on a CDROM, it takes a long time to
19023 	 * recover. First few attempts to read capacity and other things
19024 	 * related to handling unit attention fail (with a ASC 0x4 and
19025 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19026 	 * to limit the retries in other cases of genuine failures like
19027 	 * no media in drive.
19028 	 */
19029 	while (retry_count++ < retry_limit) {
19030 		if ((err = sd_handle_mchange(un)) == 0) {
19031 			break;
19032 		}
19033 		if (err == EAGAIN) {
19034 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19035 		}
19036 		/* Sleep for 0.5 sec. & try again */
19037 		delay(drv_usectohz(500000));
19038 	}
19039 
19040 	/*
19041 	 * Dispatch (retry or fail) the original command here,
19042 	 * along with appropriate console messages....
19043 	 *
19044 	 * Must grab the mutex before calling sd_retry_command,
19045 	 * sd_print_sense_msg and sd_return_failed_command.
19046 	 */
19047 	mutex_enter(SD_MUTEX(un));
19048 	if (err != SD_CMD_SUCCESS) {
19049 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19050 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19051 		si.ssi_severity = SCSI_ERR_FATAL;
19052 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19053 		sd_return_failed_command(un, bp, EIO);
19054 	} else {
19055 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19056 		    &si, EIO, (clock_t)0, NULL);
19057 	}
19058 	mutex_exit(SD_MUTEX(un));
19059 }
19060 
19061 
19062 
19063 /*
19064  *    Function: sd_handle_mchange
19065  *
19066  * Description: Perform geometry validation & other recovery when CDROM
19067  *		has been removed from drive.
19068  *
19069  * Return Code: 0 for success
19070  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19071  *		sd_send_scsi_READ_CAPACITY()
19072  *
19073  *     Context: Executes in a taskq() thread context
19074  */
19075 
19076 static int
19077 sd_handle_mchange(struct sd_lun *un)
19078 {
19079 	uint64_t	capacity;
19080 	uint32_t	lbasize;
19081 	int		rval;
19082 	sd_ssc_t	*ssc;
19083 
19084 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19085 	ASSERT(un->un_f_monitor_media_state);
19086 
19087 	ssc = sd_ssc_init(un);
19088 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19089 	    SD_PATH_DIRECT_PRIORITY);
19090 
19091 	if (rval != 0)
19092 		goto failed;
19093 
19094 	mutex_enter(SD_MUTEX(un));
19095 	sd_update_block_info(un, lbasize, capacity);
19096 
19097 	if (un->un_errstats != NULL) {
19098 		struct	sd_errstats *stp =
19099 		    (struct sd_errstats *)un->un_errstats->ks_data;
19100 		stp->sd_capacity.value.ui64 = (uint64_t)
19101 		    ((uint64_t)un->un_blockcount *
19102 		    (uint64_t)un->un_tgt_blocksize);
19103 	}
19104 
19105 	/*
19106 	 * Check if the media in the device is writable or not
19107 	 */
19108 	if (ISCD(un)) {
19109 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19110 	}
19111 
19112 	/*
19113 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19114 	 * valid geometry.
19115 	 */
19116 	mutex_exit(SD_MUTEX(un));
19117 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19118 
19119 
19120 	if (cmlb_validate(un->un_cmlbhandle, 0,
19121 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19122 		sd_ssc_fini(ssc);
19123 		return (EIO);
19124 	} else {
19125 		if (un->un_f_pkstats_enabled) {
19126 			sd_set_pstats(un);
19127 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19128 			    "sd_handle_mchange: un:0x%p pstats created and "
19129 			    "set\n", un);
19130 		}
19131 	}
19132 
19133 	/*
19134 	 * Try to lock the door
19135 	 */
19136 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19137 	    SD_PATH_DIRECT_PRIORITY);
19138 failed:
19139 	if (rval != 0)
19140 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19141 	sd_ssc_fini(ssc);
19142 	return (rval);
19143 }
19144 
19145 
19146 /*
19147  *    Function: sd_send_scsi_DOORLOCK
19148  *
19149  * Description: Issue the scsi DOOR LOCK command
19150  *
19151  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19152  *                      structure for this target.
19153  *		flag  - SD_REMOVAL_ALLOW
19154  *			SD_REMOVAL_PREVENT
19155  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19156  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19157  *			to use the USCSI "direct" chain and bypass the normal
19158  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19159  *			command is issued as part of an error recovery action.
19160  *
19161  * Return Code: 0   - Success
19162  *		errno return code from sd_ssc_send()
19163  *
19164  *     Context: Can sleep.
19165  */
19166 
19167 static int
19168 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19169 {
19170 	struct scsi_extended_sense	sense_buf;
19171 	union scsi_cdb		cdb;
19172 	struct uscsi_cmd	ucmd_buf;
19173 	int			status;
19174 	struct sd_lun		*un;
19175 
19176 	ASSERT(ssc != NULL);
19177 	un = ssc->ssc_un;
19178 	ASSERT(un != NULL);
19179 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19180 
19181 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19182 
19183 	/* already determined doorlock is not supported, fake success */
19184 	if (un->un_f_doorlock_supported == FALSE) {
19185 		return (0);
19186 	}
19187 
19188 	/*
19189 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19190 	 * ignore the command so we can complete the eject
19191 	 * operation.
19192 	 */
19193 	if (flag == SD_REMOVAL_PREVENT) {
19194 		mutex_enter(SD_MUTEX(un));
19195 		if (un->un_f_ejecting == TRUE) {
19196 			mutex_exit(SD_MUTEX(un));
19197 			return (EAGAIN);
19198 		}
19199 		mutex_exit(SD_MUTEX(un));
19200 	}
19201 
19202 	bzero(&cdb, sizeof (cdb));
19203 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19204 
19205 	cdb.scc_cmd = SCMD_DOORLOCK;
19206 	cdb.cdb_opaque[4] = (uchar_t)flag;
19207 
19208 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19209 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19210 	ucmd_buf.uscsi_bufaddr	= NULL;
19211 	ucmd_buf.uscsi_buflen	= 0;
19212 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19213 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19214 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19215 	ucmd_buf.uscsi_timeout	= 15;
19216 
19217 	SD_TRACE(SD_LOG_IO, un,
19218 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19219 
19220 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19221 	    UIO_SYSSPACE, path_flag);
19222 
19223 	if (status == 0)
19224 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19225 
19226 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19227 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19228 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19229 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19230 
19231 		/* fake success and skip subsequent doorlock commands */
19232 		un->un_f_doorlock_supported = FALSE;
19233 		return (0);
19234 	}
19235 
19236 	return (status);
19237 }
19238 
19239 /*
19240  *    Function: sd_send_scsi_READ_CAPACITY
19241  *
19242  * Description: This routine uses the scsi READ CAPACITY command to determine
19243  *		the device capacity in number of blocks and the device native
19244  *		block size. If this function returns a failure, then the
19245  *		values in *capp and *lbap are undefined.  If the capacity
19246  *		returned is 0xffffffff then the lun is too large for a
19247  *		normal READ CAPACITY command and the results of a
19248  *		READ CAPACITY 16 will be used instead.
19249  *
19250  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19251  *		capp - ptr to unsigned 64-bit variable to receive the
19252  *			capacity value from the command.
19253  *		lbap - ptr to unsigned 32-bit varaible to receive the
19254  *			block size value from the command
19255  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19256  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19257  *			to use the USCSI "direct" chain and bypass the normal
19258  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19259  *			command is issued as part of an error recovery action.
19260  *
19261  * Return Code: 0   - Success
19262  *		EIO - IO error
19263  *		EACCES - Reservation conflict detected
19264  *		EAGAIN - Device is becoming ready
19265  *		errno return code from sd_ssc_send()
19266  *
19267  *     Context: Can sleep.  Blocks until command completes.
19268  */
19269 
19270 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19271 
19272 static int
19273 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19274 	int path_flag)
19275 {
19276 	struct	scsi_extended_sense	sense_buf;
19277 	struct	uscsi_cmd	ucmd_buf;
19278 	union	scsi_cdb	cdb;
19279 	uint32_t		*capacity_buf;
19280 	uint64_t		capacity;
19281 	uint32_t		lbasize;
19282 	int			status;
19283 	struct sd_lun		*un;
19284 
19285 	ASSERT(ssc != NULL);
19286 
19287 	un = ssc->ssc_un;
19288 	ASSERT(un != NULL);
19289 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19290 	ASSERT(capp != NULL);
19291 	ASSERT(lbap != NULL);
19292 
19293 	SD_TRACE(SD_LOG_IO, un,
19294 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19295 
19296 	/*
19297 	 * First send a READ_CAPACITY command to the target.
19298 	 * (This command is mandatory under SCSI-2.)
19299 	 *
19300 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19301 	 * Medium Indicator bit is cleared.  The address field must be
19302 	 * zero if the PMI bit is zero.
19303 	 */
19304 	bzero(&cdb, sizeof (cdb));
19305 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19306 
19307 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19308 
19309 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19310 
19311 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19312 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19313 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19314 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19315 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19316 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19317 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19318 	ucmd_buf.uscsi_timeout	= 60;
19319 
19320 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19321 	    UIO_SYSSPACE, path_flag);
19322 
19323 	switch (status) {
19324 	case 0:
19325 		/* Return failure if we did not get valid capacity data. */
19326 		if (ucmd_buf.uscsi_resid != 0) {
19327 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19328 			    "sd_send_scsi_READ_CAPACITY received invalid "
19329 			    "capacity data");
19330 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19331 			return (EIO);
19332 		}
19333 		/*
19334 		 * Read capacity and block size from the READ CAPACITY 10 data.
19335 		 * This data may be adjusted later due to device specific
19336 		 * issues.
19337 		 *
19338 		 * According to the SCSI spec, the READ CAPACITY 10
19339 		 * command returns the following:
19340 		 *
19341 		 *  bytes 0-3: Maximum logical block address available.
19342 		 *		(MSB in byte:0 & LSB in byte:3)
19343 		 *
19344 		 *  bytes 4-7: Block length in bytes
19345 		 *		(MSB in byte:4 & LSB in byte:7)
19346 		 *
19347 		 */
19348 		capacity = BE_32(capacity_buf[0]);
19349 		lbasize = BE_32(capacity_buf[1]);
19350 
19351 		/*
19352 		 * Done with capacity_buf
19353 		 */
19354 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19355 
19356 		/*
19357 		 * if the reported capacity is set to all 0xf's, then
19358 		 * this disk is too large and requires SBC-2 commands.
19359 		 * Reissue the request using READ CAPACITY 16.
19360 		 */
19361 		if (capacity == 0xffffffff) {
19362 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19363 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19364 			    &lbasize, path_flag);
19365 			if (status != 0) {
19366 				return (status);
19367 			}
19368 		}
19369 		break;	/* Success! */
19370 	case EIO:
19371 		switch (ucmd_buf.uscsi_status) {
19372 		case STATUS_RESERVATION_CONFLICT:
19373 			status = EACCES;
19374 			break;
19375 		case STATUS_CHECK:
19376 			/*
19377 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19378 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19379 			 */
19380 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19381 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19382 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19383 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19384 				return (EAGAIN);
19385 			}
19386 			break;
19387 		default:
19388 			break;
19389 		}
19390 		/* FALLTHRU */
19391 	default:
19392 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19393 		return (status);
19394 	}
19395 
19396 	/*
19397 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19398 	 * (2352 and 0 are common) so for these devices always force the value
19399 	 * to 2048 as required by the ATAPI specs.
19400 	 */
19401 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19402 		lbasize = 2048;
19403 	}
19404 
19405 	/*
19406 	 * Get the maximum LBA value from the READ CAPACITY data.
19407 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19408 	 * was cleared when issuing the command. This means that the LBA
19409 	 * returned from the device is the LBA of the last logical block
19410 	 * on the logical unit.  The actual logical block count will be
19411 	 * this value plus one.
19412 	 *
19413 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19414 	 * so scale the capacity value to reflect this.
19415 	 */
19416 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19417 
19418 	/*
19419 	 * Copy the values from the READ CAPACITY command into the space
19420 	 * provided by the caller.
19421 	 */
19422 	*capp = capacity;
19423 	*lbap = lbasize;
19424 
19425 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19426 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19427 
19428 	/*
19429 	 * Both the lbasize and capacity from the device must be nonzero,
19430 	 * otherwise we assume that the values are not valid and return
19431 	 * failure to the caller. (4203735)
19432 	 */
19433 	if ((capacity == 0) || (lbasize == 0)) {
19434 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19435 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19436 		    "capacity %llu lbasize %d", capacity, lbasize);
19437 		return (EIO);
19438 	}
19439 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19440 	return (0);
19441 }
19442 
19443 /*
19444  *    Function: sd_send_scsi_READ_CAPACITY_16
19445  *
19446  * Description: This routine uses the scsi READ CAPACITY 16 command to
19447  *		determine the device capacity in number of blocks and the
19448  *		device native block size.  If this function returns a failure,
19449  *		then the values in *capp and *lbap are undefined.
19450  *		This routine should always be called by
19451  *		sd_send_scsi_READ_CAPACITY which will appy any device
19452  *		specific adjustments to capacity and lbasize.
19453  *
19454  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19455  *		capp - ptr to unsigned 64-bit variable to receive the
19456  *			capacity value from the command.
19457  *		lbap - ptr to unsigned 32-bit varaible to receive the
19458  *			block size value from the command
19459  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19460  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19461  *			to use the USCSI "direct" chain and bypass the normal
19462  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19463  *			this command is issued as part of an error recovery
19464  *			action.
19465  *
19466  * Return Code: 0   - Success
19467  *		EIO - IO error
19468  *		EACCES - Reservation conflict detected
19469  *		EAGAIN - Device is becoming ready
19470  *		errno return code from sd_ssc_send()
19471  *
19472  *     Context: Can sleep.  Blocks until command completes.
19473  */
19474 
19475 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19476 
19477 static int
19478 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19479 	uint32_t *lbap, int path_flag)
19480 {
19481 	struct	scsi_extended_sense	sense_buf;
19482 	struct	uscsi_cmd	ucmd_buf;
19483 	union	scsi_cdb	cdb;
19484 	uint64_t		*capacity16_buf;
19485 	uint64_t		capacity;
19486 	uint32_t		lbasize;
19487 	int			status;
19488 	struct sd_lun		*un;
19489 
19490 	ASSERT(ssc != NULL);
19491 
19492 	un = ssc->ssc_un;
19493 	ASSERT(un != NULL);
19494 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19495 	ASSERT(capp != NULL);
19496 	ASSERT(lbap != NULL);
19497 
19498 	SD_TRACE(SD_LOG_IO, un,
19499 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19500 
19501 	/*
19502 	 * First send a READ_CAPACITY_16 command to the target.
19503 	 *
19504 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19505 	 * Medium Indicator bit is cleared.  The address field must be
19506 	 * zero if the PMI bit is zero.
19507 	 */
19508 	bzero(&cdb, sizeof (cdb));
19509 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19510 
19511 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19512 
19513 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19514 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19515 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19516 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19517 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19518 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19519 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19520 	ucmd_buf.uscsi_timeout	= 60;
19521 
19522 	/*
19523 	 * Read Capacity (16) is a Service Action In command.  One
19524 	 * command byte (0x9E) is overloaded for multiple operations,
19525 	 * with the second CDB byte specifying the desired operation
19526 	 */
19527 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19528 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19529 
19530 	/*
19531 	 * Fill in allocation length field
19532 	 */
19533 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19534 
19535 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19536 	    UIO_SYSSPACE, path_flag);
19537 
19538 	switch (status) {
19539 	case 0:
19540 		/* Return failure if we did not get valid capacity data. */
19541 		if (ucmd_buf.uscsi_resid > 20) {
19542 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19543 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
19544 			    "capacity data");
19545 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19546 			return (EIO);
19547 		}
19548 
19549 		/*
19550 		 * Read capacity and block size from the READ CAPACITY 10 data.
19551 		 * This data may be adjusted later due to device specific
19552 		 * issues.
19553 		 *
19554 		 * According to the SCSI spec, the READ CAPACITY 10
19555 		 * command returns the following:
19556 		 *
19557 		 *  bytes 0-7: Maximum logical block address available.
19558 		 *		(MSB in byte:0 & LSB in byte:7)
19559 		 *
19560 		 *  bytes 8-11: Block length in bytes
19561 		 *		(MSB in byte:8 & LSB in byte:11)
19562 		 *
19563 		 */
19564 		capacity = BE_64(capacity16_buf[0]);
19565 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19566 
19567 		/*
19568 		 * Done with capacity16_buf
19569 		 */
19570 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19571 
19572 		/*
19573 		 * if the reported capacity is set to all 0xf's, then
19574 		 * this disk is too large.  This could only happen with
19575 		 * a device that supports LBAs larger than 64 bits which
19576 		 * are not defined by any current T10 standards.
19577 		 */
19578 		if (capacity == 0xffffffffffffffff) {
19579 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19580 			    "disk is too large");
19581 			return (EIO);
19582 		}
19583 		break;	/* Success! */
19584 	case EIO:
19585 		switch (ucmd_buf.uscsi_status) {
19586 		case STATUS_RESERVATION_CONFLICT:
19587 			status = EACCES;
19588 			break;
19589 		case STATUS_CHECK:
19590 			/*
19591 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19592 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19593 			 */
19594 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19595 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19596 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19597 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19598 				return (EAGAIN);
19599 			}
19600 			break;
19601 		default:
19602 			break;
19603 		}
19604 		/* FALLTHRU */
19605 	default:
19606 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19607 		return (status);
19608 	}
19609 
19610 	*capp = capacity;
19611 	*lbap = lbasize;
19612 
19613 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19614 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19615 
19616 	return (0);
19617 }
19618 
19619 
19620 /*
19621  *    Function: sd_send_scsi_START_STOP_UNIT
19622  *
19623  * Description: Issue a scsi START STOP UNIT command to the target.
19624  *
19625  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19626  *                       structure for this target.
19627  *		flag  - SD_TARGET_START
19628  *			SD_TARGET_STOP
19629  *			SD_TARGET_EJECT
19630  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19631  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19632  *			to use the USCSI "direct" chain and bypass the normal
19633  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19634  *			command is issued as part of an error recovery action.
19635  *
19636  * Return Code: 0   - Success
19637  *		EIO - IO error
19638  *		EACCES - Reservation conflict detected
19639  *		ENXIO  - Not Ready, medium not present
19640  *		errno return code from sd_ssc_send()
19641  *
19642  *     Context: Can sleep.
19643  */
19644 
19645 static int
19646 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19647 {
19648 	struct	scsi_extended_sense	sense_buf;
19649 	union scsi_cdb		cdb;
19650 	struct uscsi_cmd	ucmd_buf;
19651 	int			status;
19652 	struct sd_lun		*un;
19653 
19654 	ASSERT(ssc != NULL);
19655 	un = ssc->ssc_un;
19656 	ASSERT(un != NULL);
19657 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19658 
19659 	SD_TRACE(SD_LOG_IO, un,
19660 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19661 
19662 	if (un->un_f_check_start_stop &&
19663 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19664 	    (un->un_f_start_stop_supported != TRUE)) {
19665 		return (0);
19666 	}
19667 
19668 	/*
19669 	 * If we are performing an eject operation and
19670 	 * we receive any command other than SD_TARGET_EJECT
19671 	 * we should immediately return.
19672 	 */
19673 	if (flag != SD_TARGET_EJECT) {
19674 		mutex_enter(SD_MUTEX(un));
19675 		if (un->un_f_ejecting == TRUE) {
19676 			mutex_exit(SD_MUTEX(un));
19677 			return (EAGAIN);
19678 		}
19679 		mutex_exit(SD_MUTEX(un));
19680 	}
19681 
19682 	bzero(&cdb, sizeof (cdb));
19683 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19684 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19685 
19686 	cdb.scc_cmd = SCMD_START_STOP;
19687 	cdb.cdb_opaque[4] = (uchar_t)flag;
19688 
19689 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19690 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19691 	ucmd_buf.uscsi_bufaddr	= NULL;
19692 	ucmd_buf.uscsi_buflen	= 0;
19693 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19694 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19695 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19696 	ucmd_buf.uscsi_timeout	= 200;
19697 
19698 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19699 	    UIO_SYSSPACE, path_flag);
19700 
19701 	switch (status) {
19702 	case 0:
19703 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19704 		break;	/* Success! */
19705 	case EIO:
19706 		switch (ucmd_buf.uscsi_status) {
19707 		case STATUS_RESERVATION_CONFLICT:
19708 			status = EACCES;
19709 			break;
19710 		case STATUS_CHECK:
19711 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19712 				switch (scsi_sense_key(
19713 				    (uint8_t *)&sense_buf)) {
19714 				case KEY_ILLEGAL_REQUEST:
19715 					status = ENOTSUP;
19716 					break;
19717 				case KEY_NOT_READY:
19718 					if (scsi_sense_asc(
19719 					    (uint8_t *)&sense_buf)
19720 					    == 0x3A) {
19721 						status = ENXIO;
19722 					}
19723 					break;
19724 				default:
19725 					break;
19726 				}
19727 			}
19728 			break;
19729 		default:
19730 			break;
19731 		}
19732 		break;
19733 	default:
19734 		break;
19735 	}
19736 
19737 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19738 
19739 	return (status);
19740 }
19741 
19742 
19743 /*
19744  *    Function: sd_start_stop_unit_callback
19745  *
19746  * Description: timeout(9F) callback to begin recovery process for a
19747  *		device that has spun down.
19748  *
19749  *   Arguments: arg - pointer to associated softstate struct.
19750  *
19751  *     Context: Executes in a timeout(9F) thread context
19752  */
19753 
19754 static void
19755 sd_start_stop_unit_callback(void *arg)
19756 {
19757 	struct sd_lun	*un = arg;
19758 	ASSERT(un != NULL);
19759 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19760 
19761 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19762 
19763 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19764 }
19765 
19766 
19767 /*
19768  *    Function: sd_start_stop_unit_task
19769  *
19770  * Description: Recovery procedure when a drive is spun down.
19771  *
19772  *   Arguments: arg - pointer to associated softstate struct.
19773  *
19774  *     Context: Executes in a taskq() thread context
19775  */
19776 
19777 static void
19778 sd_start_stop_unit_task(void *arg)
19779 {
19780 	struct sd_lun	*un = arg;
19781 	sd_ssc_t	*ssc;
19782 	int		rval;
19783 
19784 	ASSERT(un != NULL);
19785 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19786 
19787 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19788 
19789 	/*
19790 	 * Some unformatted drives report not ready error, no need to
19791 	 * restart if format has been initiated.
19792 	 */
19793 	mutex_enter(SD_MUTEX(un));
19794 	if (un->un_f_format_in_progress == TRUE) {
19795 		mutex_exit(SD_MUTEX(un));
19796 		return;
19797 	}
19798 	mutex_exit(SD_MUTEX(un));
19799 
19800 	/*
19801 	 * When a START STOP command is issued from here, it is part of a
19802 	 * failure recovery operation and must be issued before any other
19803 	 * commands, including any pending retries. Thus it must be sent
19804 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19805 	 * succeeds or not, we will start I/O after the attempt.
19806 	 */
19807 	ssc = sd_ssc_init(un);
19808 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19809 	    SD_PATH_DIRECT_PRIORITY);
19810 	if (rval != 0)
19811 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19812 	sd_ssc_fini(ssc);
19813 	/*
19814 	 * The above call blocks until the START_STOP_UNIT command completes.
19815 	 * Now that it has completed, we must re-try the original IO that
19816 	 * received the NOT READY condition in the first place. There are
19817 	 * three possible conditions here:
19818 	 *
19819 	 *  (1) The original IO is on un_retry_bp.
19820 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19821 	 *	is NULL.
19822 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19823 	 *	points to some other, unrelated bp.
19824 	 *
19825 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19826 	 * as the argument. If un_retry_bp is NULL, this will initiate
19827 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19828 	 * then this will process the bp on un_retry_bp. That may or may not
19829 	 * be the original IO, but that does not matter: the important thing
19830 	 * is to keep the IO processing going at this point.
19831 	 *
19832 	 * Note: This is a very specific error recovery sequence associated
19833 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19834 	 * serialize the I/O with completion of the spin-up.
19835 	 */
19836 	mutex_enter(SD_MUTEX(un));
19837 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19838 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19839 	    un, un->un_retry_bp);
19840 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19841 	sd_start_cmds(un, un->un_retry_bp);
19842 	mutex_exit(SD_MUTEX(un));
19843 
19844 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19845 }
19846 
19847 
19848 /*
19849  *    Function: sd_send_scsi_INQUIRY
19850  *
19851  * Description: Issue the scsi INQUIRY command.
19852  *
19853  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19854  *                      structure for this target.
19855  *		bufaddr
19856  *		buflen
19857  *		evpd
19858  *		page_code
19859  *		page_length
19860  *
19861  * Return Code: 0   - Success
19862  *		errno return code from sd_ssc_send()
19863  *
19864  *     Context: Can sleep. Does not return until command is completed.
19865  */
19866 
19867 static int
19868 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19869 	uchar_t evpd, uchar_t page_code, size_t *residp)
19870 {
19871 	union scsi_cdb		cdb;
19872 	struct uscsi_cmd	ucmd_buf;
19873 	int			status;
19874 	struct sd_lun		*un;
19875 
19876 	ASSERT(ssc != NULL);
19877 	un = ssc->ssc_un;
19878 	ASSERT(un != NULL);
19879 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19880 	ASSERT(bufaddr != NULL);
19881 
19882 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19883 
19884 	bzero(&cdb, sizeof (cdb));
19885 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19886 	bzero(bufaddr, buflen);
19887 
19888 	cdb.scc_cmd = SCMD_INQUIRY;
19889 	cdb.cdb_opaque[1] = evpd;
19890 	cdb.cdb_opaque[2] = page_code;
19891 	FORMG0COUNT(&cdb, buflen);
19892 
19893 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19894 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19895 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19896 	ucmd_buf.uscsi_buflen	= buflen;
19897 	ucmd_buf.uscsi_rqbuf	= NULL;
19898 	ucmd_buf.uscsi_rqlen	= 0;
19899 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19900 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19901 
19902 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19903 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19904 
19905 	/*
19906 	 * Only handle status == 0, the upper-level caller
19907 	 * will put different assessment based on the context.
19908 	 */
19909 	if (status == 0)
19910 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19911 
19912 	if ((status == 0) && (residp != NULL)) {
19913 		*residp = ucmd_buf.uscsi_resid;
19914 	}
19915 
19916 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19917 
19918 	return (status);
19919 }
19920 
19921 
19922 /*
19923  *    Function: sd_send_scsi_TEST_UNIT_READY
19924  *
19925  * Description: Issue the scsi TEST UNIT READY command.
19926  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19927  *		prevent retrying failed commands. Use this when the intent
19928  *		is either to check for device readiness, to clear a Unit
19929  *		Attention, or to clear any outstanding sense data.
19930  *		However under specific conditions the expected behavior
19931  *		is for retries to bring a device ready, so use the flag
19932  *		with caution.
19933  *
19934  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19935  *                      structure for this target.
19936  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19937  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19938  *			0: dont check for media present, do retries on cmd.
19939  *
19940  * Return Code: 0   - Success
19941  *		EIO - IO error
19942  *		EACCES - Reservation conflict detected
19943  *		ENXIO  - Not Ready, medium not present
19944  *		errno return code from sd_ssc_send()
19945  *
19946  *     Context: Can sleep. Does not return until command is completed.
19947  */
19948 
19949 static int
19950 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19951 {
19952 	struct	scsi_extended_sense	sense_buf;
19953 	union scsi_cdb		cdb;
19954 	struct uscsi_cmd	ucmd_buf;
19955 	int			status;
19956 	struct sd_lun		*un;
19957 
19958 	ASSERT(ssc != NULL);
19959 	un = ssc->ssc_un;
19960 	ASSERT(un != NULL);
19961 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19962 
19963 	SD_TRACE(SD_LOG_IO, un,
19964 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19965 
19966 	/*
19967 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19968 	 * timeouts when they receive a TUR and the queue is not empty. Check
19969 	 * the configuration flag set during attach (indicating the drive has
19970 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19971 	 * TUR. If there are
19972 	 * pending commands return success, this is a bit arbitrary but is ok
19973 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19974 	 * configurations.
19975 	 */
19976 	if (un->un_f_cfg_tur_check == TRUE) {
19977 		mutex_enter(SD_MUTEX(un));
19978 		if (un->un_ncmds_in_transport != 0) {
19979 			mutex_exit(SD_MUTEX(un));
19980 			return (0);
19981 		}
19982 		mutex_exit(SD_MUTEX(un));
19983 	}
19984 
19985 	bzero(&cdb, sizeof (cdb));
19986 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19987 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19988 
19989 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19990 
19991 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19992 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19993 	ucmd_buf.uscsi_bufaddr	= NULL;
19994 	ucmd_buf.uscsi_buflen	= 0;
19995 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19996 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19997 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19998 
19999 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20000 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20001 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20002 	}
20003 	ucmd_buf.uscsi_timeout	= 60;
20004 
20005 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20006 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20007 	    SD_PATH_STANDARD));
20008 
20009 	switch (status) {
20010 	case 0:
20011 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20012 		break;	/* Success! */
20013 	case EIO:
20014 		switch (ucmd_buf.uscsi_status) {
20015 		case STATUS_RESERVATION_CONFLICT:
20016 			status = EACCES;
20017 			break;
20018 		case STATUS_CHECK:
20019 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20020 				break;
20021 			}
20022 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20023 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20024 			    KEY_NOT_READY) &&
20025 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20026 				status = ENXIO;
20027 			}
20028 			break;
20029 		default:
20030 			break;
20031 		}
20032 		break;
20033 	default:
20034 		break;
20035 	}
20036 
20037 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20038 
20039 	return (status);
20040 }
20041 
20042 /*
20043  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20044  *
20045  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20046  *
20047  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20048  *                      structure for this target.
20049  *
20050  * Return Code: 0   - Success
20051  *		EACCES
20052  *		ENOTSUP
20053  *		errno return code from sd_ssc_send()
20054  *
20055  *     Context: Can sleep. Does not return until command is completed.
20056  */
20057 
20058 static int
20059 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20060 	uint16_t data_len, uchar_t *data_bufp)
20061 {
20062 	struct scsi_extended_sense	sense_buf;
20063 	union scsi_cdb		cdb;
20064 	struct uscsi_cmd	ucmd_buf;
20065 	int			status;
20066 	int			no_caller_buf = FALSE;
20067 	struct sd_lun		*un;
20068 
20069 	ASSERT(ssc != NULL);
20070 	un = ssc->ssc_un;
20071 	ASSERT(un != NULL);
20072 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20073 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20074 
20075 	SD_TRACE(SD_LOG_IO, un,
20076 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20077 
20078 	bzero(&cdb, sizeof (cdb));
20079 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20080 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20081 	if (data_bufp == NULL) {
20082 		/* Allocate a default buf if the caller did not give one */
20083 		ASSERT(data_len == 0);
20084 		data_len  = MHIOC_RESV_KEY_SIZE;
20085 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20086 		no_caller_buf = TRUE;
20087 	}
20088 
20089 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20090 	cdb.cdb_opaque[1] = usr_cmd;
20091 	FORMG1COUNT(&cdb, data_len);
20092 
20093 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20094 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20095 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20096 	ucmd_buf.uscsi_buflen	= data_len;
20097 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20098 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20099 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20100 	ucmd_buf.uscsi_timeout	= 60;
20101 
20102 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20103 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20104 
20105 	switch (status) {
20106 	case 0:
20107 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20108 
20109 		break;	/* Success! */
20110 	case EIO:
20111 		switch (ucmd_buf.uscsi_status) {
20112 		case STATUS_RESERVATION_CONFLICT:
20113 			status = EACCES;
20114 			break;
20115 		case STATUS_CHECK:
20116 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20117 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20118 			    KEY_ILLEGAL_REQUEST)) {
20119 				status = ENOTSUP;
20120 			}
20121 			break;
20122 		default:
20123 			break;
20124 		}
20125 		break;
20126 	default:
20127 		break;
20128 	}
20129 
20130 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20131 
20132 	if (no_caller_buf == TRUE) {
20133 		kmem_free(data_bufp, data_len);
20134 	}
20135 
20136 	return (status);
20137 }
20138 
20139 
20140 /*
20141  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20142  *
20143  * Description: This routine is the driver entry point for handling CD-ROM
20144  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20145  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20146  *		device.
20147  *
20148  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20149  *                      for the target.
20150  *		usr_cmd SCSI-3 reservation facility command (one of
20151  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20152  *			SD_SCSI3_PREEMPTANDABORT)
20153  *		usr_bufp - user provided pointer register, reserve descriptor or
20154  *			preempt and abort structure (mhioc_register_t,
20155  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20156  *
20157  * Return Code: 0   - Success
20158  *		EACCES
20159  *		ENOTSUP
20160  *		errno return code from sd_ssc_send()
20161  *
20162  *     Context: Can sleep. Does not return until command is completed.
20163  */
20164 
20165 static int
20166 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20167 	uchar_t	*usr_bufp)
20168 {
20169 	struct scsi_extended_sense	sense_buf;
20170 	union scsi_cdb		cdb;
20171 	struct uscsi_cmd	ucmd_buf;
20172 	int			status;
20173 	uchar_t			data_len = sizeof (sd_prout_t);
20174 	sd_prout_t		*prp;
20175 	struct sd_lun		*un;
20176 
20177 	ASSERT(ssc != NULL);
20178 	un = ssc->ssc_un;
20179 	ASSERT(un != NULL);
20180 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20181 	ASSERT(data_len == 24);	/* required by scsi spec */
20182 
20183 	SD_TRACE(SD_LOG_IO, un,
20184 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20185 
20186 	if (usr_bufp == NULL) {
20187 		return (EINVAL);
20188 	}
20189 
20190 	bzero(&cdb, sizeof (cdb));
20191 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20192 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20193 	prp = kmem_zalloc(data_len, KM_SLEEP);
20194 
20195 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20196 	cdb.cdb_opaque[1] = usr_cmd;
20197 	FORMG1COUNT(&cdb, data_len);
20198 
20199 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20200 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20201 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20202 	ucmd_buf.uscsi_buflen	= data_len;
20203 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20204 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20205 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20206 	ucmd_buf.uscsi_timeout	= 60;
20207 
20208 	switch (usr_cmd) {
20209 	case SD_SCSI3_REGISTER: {
20210 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20211 
20212 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20213 		bcopy(ptr->newkey.key, prp->service_key,
20214 		    MHIOC_RESV_KEY_SIZE);
20215 		prp->aptpl = ptr->aptpl;
20216 		break;
20217 	}
20218 	case SD_SCSI3_RESERVE:
20219 	case SD_SCSI3_RELEASE: {
20220 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20221 
20222 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20223 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20224 		cdb.cdb_opaque[2] = ptr->type;
20225 		break;
20226 	}
20227 	case SD_SCSI3_PREEMPTANDABORT: {
20228 		mhioc_preemptandabort_t *ptr =
20229 		    (mhioc_preemptandabort_t *)usr_bufp;
20230 
20231 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20232 		bcopy(ptr->victim_key.key, prp->service_key,
20233 		    MHIOC_RESV_KEY_SIZE);
20234 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20235 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20236 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20237 		break;
20238 	}
20239 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20240 	{
20241 		mhioc_registerandignorekey_t *ptr;
20242 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20243 		bcopy(ptr->newkey.key,
20244 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20245 		prp->aptpl = ptr->aptpl;
20246 		break;
20247 	}
20248 	default:
20249 		ASSERT(FALSE);
20250 		break;
20251 	}
20252 
20253 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20254 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20255 
20256 	switch (status) {
20257 	case 0:
20258 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20259 		break;	/* Success! */
20260 	case EIO:
20261 		switch (ucmd_buf.uscsi_status) {
20262 		case STATUS_RESERVATION_CONFLICT:
20263 			status = EACCES;
20264 			break;
20265 		case STATUS_CHECK:
20266 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20267 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20268 			    KEY_ILLEGAL_REQUEST)) {
20269 				status = ENOTSUP;
20270 			}
20271 			break;
20272 		default:
20273 			break;
20274 		}
20275 		break;
20276 	default:
20277 		break;
20278 	}
20279 
20280 	kmem_free(prp, data_len);
20281 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20282 	return (status);
20283 }
20284 
20285 
20286 /*
20287  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20288  *
20289  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20290  *
20291  *   Arguments: un - pointer to the target's soft state struct
20292  *              dkc - pointer to the callback structure
20293  *
20294  * Return Code: 0 - success
20295  *		errno-type error code
20296  *
20297  *     Context: kernel thread context only.
20298  *
20299  *  _______________________________________________________________
20300  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20301  * |FLUSH_VOLATILE|              | operation                       |
20302  * |______________|______________|_________________________________|
20303  * | 0            | NULL         | Synchronous flush on both       |
20304  * |              |              | volatile and non-volatile cache |
20305  * |______________|______________|_________________________________|
20306  * | 1            | NULL         | Synchronous flush on volatile   |
20307  * |              |              | cache; disk drivers may suppress|
20308  * |              |              | flush if disk table indicates   |
20309  * |              |              | non-volatile cache              |
20310  * |______________|______________|_________________________________|
20311  * | 0            | !NULL        | Asynchronous flush on both      |
20312  * |              |              | volatile and non-volatile cache;|
20313  * |______________|______________|_________________________________|
20314  * | 1            | !NULL        | Asynchronous flush on volatile  |
20315  * |              |              | cache; disk drivers may suppress|
20316  * |              |              | flush if disk table indicates   |
20317  * |              |              | non-volatile cache              |
20318  * |______________|______________|_________________________________|
20319  *
20320  */
20321 
20322 static int
20323 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20324 {
20325 	struct sd_uscsi_info	*uip;
20326 	struct uscsi_cmd	*uscmd;
20327 	union scsi_cdb		*cdb;
20328 	struct buf		*bp;
20329 	int			rval = 0;
20330 	int			is_async;
20331 
20332 	SD_TRACE(SD_LOG_IO, un,
20333 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20334 
20335 	ASSERT(un != NULL);
20336 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20337 
20338 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20339 		is_async = FALSE;
20340 	} else {
20341 		is_async = TRUE;
20342 	}
20343 
20344 	mutex_enter(SD_MUTEX(un));
20345 	/* check whether cache flush should be suppressed */
20346 	if (un->un_f_suppress_cache_flush == TRUE) {
20347 		mutex_exit(SD_MUTEX(un));
20348 		/*
20349 		 * suppress the cache flush if the device is told to do
20350 		 * so by sd.conf or disk table
20351 		 */
20352 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20353 		    skip the cache flush since suppress_cache_flush is %d!\n",
20354 		    un->un_f_suppress_cache_flush);
20355 
20356 		if (is_async == TRUE) {
20357 			/* invoke callback for asynchronous flush */
20358 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20359 		}
20360 		return (rval);
20361 	}
20362 	mutex_exit(SD_MUTEX(un));
20363 
20364 	/*
20365 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20366 	 * set properly
20367 	 */
20368 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20369 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20370 
20371 	mutex_enter(SD_MUTEX(un));
20372 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20373 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20374 		/*
20375 		 * if the device supports SYNC_NV bit, turn on
20376 		 * the SYNC_NV bit to only flush volatile cache
20377 		 */
20378 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20379 	}
20380 	mutex_exit(SD_MUTEX(un));
20381 
20382 	/*
20383 	 * First get some memory for the uscsi_cmd struct and cdb
20384 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20385 	 */
20386 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20387 	uscmd->uscsi_cdblen = CDB_GROUP1;
20388 	uscmd->uscsi_cdb = (caddr_t)cdb;
20389 	uscmd->uscsi_bufaddr = NULL;
20390 	uscmd->uscsi_buflen = 0;
20391 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20392 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20393 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20394 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20395 	uscmd->uscsi_timeout = sd_io_time;
20396 
20397 	/*
20398 	 * Allocate an sd_uscsi_info struct and fill it with the info
20399 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20400 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20401 	 * since we allocate the buf here in this function, we do not
20402 	 * need to preserve the prior contents of b_private.
20403 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20404 	 */
20405 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20406 	uip->ui_flags = SD_PATH_DIRECT;
20407 	uip->ui_cmdp  = uscmd;
20408 
20409 	bp = getrbuf(KM_SLEEP);
20410 	bp->b_private = uip;
20411 
20412 	/*
20413 	 * Setup buffer to carry uscsi request.
20414 	 */
20415 	bp->b_flags  = B_BUSY;
20416 	bp->b_bcount = 0;
20417 	bp->b_blkno  = 0;
20418 
20419 	if (is_async == TRUE) {
20420 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20421 		uip->ui_dkc = *dkc;
20422 	}
20423 
20424 	bp->b_edev = SD_GET_DEV(un);
20425 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20426 
20427 	/*
20428 	 * Unset un_f_sync_cache_required flag
20429 	 */
20430 	mutex_enter(SD_MUTEX(un));
20431 	un->un_f_sync_cache_required = FALSE;
20432 	mutex_exit(SD_MUTEX(un));
20433 
20434 	(void) sd_uscsi_strategy(bp);
20435 
20436 	/*
20437 	 * If synchronous request, wait for completion
20438 	 * If async just return and let b_iodone callback
20439 	 * cleanup.
20440 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20441 	 * but it was also incremented in sd_uscsi_strategy(), so
20442 	 * we should be ok.
20443 	 */
20444 	if (is_async == FALSE) {
20445 		(void) biowait(bp);
20446 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20447 	}
20448 
20449 	return (rval);
20450 }
20451 
20452 
20453 static int
20454 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20455 {
20456 	struct sd_uscsi_info *uip;
20457 	struct uscsi_cmd *uscmd;
20458 	uint8_t *sense_buf;
20459 	struct sd_lun *un;
20460 	int status;
20461 	union scsi_cdb *cdb;
20462 
20463 	uip = (struct sd_uscsi_info *)(bp->b_private);
20464 	ASSERT(uip != NULL);
20465 
20466 	uscmd = uip->ui_cmdp;
20467 	ASSERT(uscmd != NULL);
20468 
20469 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20470 	ASSERT(sense_buf != NULL);
20471 
20472 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20473 	ASSERT(un != NULL);
20474 
20475 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20476 
20477 	status = geterror(bp);
20478 	switch (status) {
20479 	case 0:
20480 		break;	/* Success! */
20481 	case EIO:
20482 		switch (uscmd->uscsi_status) {
20483 		case STATUS_RESERVATION_CONFLICT:
20484 			/* Ignore reservation conflict */
20485 			status = 0;
20486 			goto done;
20487 
20488 		case STATUS_CHECK:
20489 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20490 			    (scsi_sense_key(sense_buf) ==
20491 			    KEY_ILLEGAL_REQUEST)) {
20492 				/* Ignore Illegal Request error */
20493 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20494 					mutex_enter(SD_MUTEX(un));
20495 					un->un_f_sync_nv_supported = FALSE;
20496 					mutex_exit(SD_MUTEX(un));
20497 					status = 0;
20498 					SD_TRACE(SD_LOG_IO, un,
20499 					    "un_f_sync_nv_supported \
20500 					    is set to false.\n");
20501 					goto done;
20502 				}
20503 
20504 				mutex_enter(SD_MUTEX(un));
20505 				un->un_f_sync_cache_supported = FALSE;
20506 				mutex_exit(SD_MUTEX(un));
20507 				SD_TRACE(SD_LOG_IO, un,
20508 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20509 				    un_f_sync_cache_supported set to false \
20510 				    with asc = %x, ascq = %x\n",
20511 				    scsi_sense_asc(sense_buf),
20512 				    scsi_sense_ascq(sense_buf));
20513 				status = ENOTSUP;
20514 				goto done;
20515 			}
20516 			break;
20517 		default:
20518 			break;
20519 		}
20520 		/* FALLTHRU */
20521 	default:
20522 		/*
20523 		 * Turn on the un_f_sync_cache_required flag
20524 		 * since the SYNC CACHE command failed
20525 		 */
20526 		mutex_enter(SD_MUTEX(un));
20527 		un->un_f_sync_cache_required = TRUE;
20528 		mutex_exit(SD_MUTEX(un));
20529 
20530 		/*
20531 		 * Don't log an error message if this device
20532 		 * has removable media.
20533 		 */
20534 		if (!un->un_f_has_removable_media) {
20535 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20536 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20537 		}
20538 		break;
20539 	}
20540 
20541 done:
20542 	if (uip->ui_dkc.dkc_callback != NULL) {
20543 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20544 	}
20545 
20546 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20547 	freerbuf(bp);
20548 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20549 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20550 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20551 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20552 
20553 	return (status);
20554 }
20555 
20556 
20557 /*
20558  *    Function: sd_send_scsi_GET_CONFIGURATION
20559  *
20560  * Description: Issues the get configuration command to the device.
20561  *		Called from sd_check_for_writable_cd & sd_get_media_info
20562  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20563  *   Arguments: ssc
20564  *		ucmdbuf
20565  *		rqbuf
20566  *		rqbuflen
20567  *		bufaddr
20568  *		buflen
20569  *		path_flag
20570  *
20571  * Return Code: 0   - Success
20572  *		errno return code from sd_ssc_send()
20573  *
20574  *     Context: Can sleep. Does not return until command is completed.
20575  *
20576  */
20577 
20578 static int
20579 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20580 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20581 	int path_flag)
20582 {
20583 	char	cdb[CDB_GROUP1];
20584 	int	status;
20585 	struct sd_lun	*un;
20586 
20587 	ASSERT(ssc != NULL);
20588 	un = ssc->ssc_un;
20589 	ASSERT(un != NULL);
20590 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20591 	ASSERT(bufaddr != NULL);
20592 	ASSERT(ucmdbuf != NULL);
20593 	ASSERT(rqbuf != NULL);
20594 
20595 	SD_TRACE(SD_LOG_IO, un,
20596 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20597 
20598 	bzero(cdb, sizeof (cdb));
20599 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20600 	bzero(rqbuf, rqbuflen);
20601 	bzero(bufaddr, buflen);
20602 
20603 	/*
20604 	 * Set up cdb field for the get configuration command.
20605 	 */
20606 	cdb[0] = SCMD_GET_CONFIGURATION;
20607 	cdb[1] = 0x02;  /* Requested Type */
20608 	cdb[8] = SD_PROFILE_HEADER_LEN;
20609 	ucmdbuf->uscsi_cdb = cdb;
20610 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20611 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20612 	ucmdbuf->uscsi_buflen = buflen;
20613 	ucmdbuf->uscsi_timeout = sd_io_time;
20614 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20615 	ucmdbuf->uscsi_rqlen = rqbuflen;
20616 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20617 
20618 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20619 	    UIO_SYSSPACE, path_flag);
20620 
20621 	switch (status) {
20622 	case 0:
20623 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20624 		break;  /* Success! */
20625 	case EIO:
20626 		switch (ucmdbuf->uscsi_status) {
20627 		case STATUS_RESERVATION_CONFLICT:
20628 			status = EACCES;
20629 			break;
20630 		default:
20631 			break;
20632 		}
20633 		break;
20634 	default:
20635 		break;
20636 	}
20637 
20638 	if (status == 0) {
20639 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20640 		    "sd_send_scsi_GET_CONFIGURATION: data",
20641 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20642 	}
20643 
20644 	SD_TRACE(SD_LOG_IO, un,
20645 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20646 
20647 	return (status);
20648 }
20649 
20650 /*
20651  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20652  *
20653  * Description: Issues the get configuration command to the device to
20654  *              retrieve a specific feature. Called from
20655  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20656  *   Arguments: ssc
20657  *              ucmdbuf
20658  *              rqbuf
20659  *              rqbuflen
20660  *              bufaddr
20661  *              buflen
20662  *		feature
20663  *
20664  * Return Code: 0   - Success
20665  *              errno return code from sd_ssc_send()
20666  *
20667  *     Context: Can sleep. Does not return until command is completed.
20668  *
20669  */
20670 static int
20671 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20672 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20673 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20674 {
20675 	char    cdb[CDB_GROUP1];
20676 	int	status;
20677 	struct sd_lun	*un;
20678 
20679 	ASSERT(ssc != NULL);
20680 	un = ssc->ssc_un;
20681 	ASSERT(un != NULL);
20682 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20683 	ASSERT(bufaddr != NULL);
20684 	ASSERT(ucmdbuf != NULL);
20685 	ASSERT(rqbuf != NULL);
20686 
20687 	SD_TRACE(SD_LOG_IO, un,
20688 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20689 
20690 	bzero(cdb, sizeof (cdb));
20691 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20692 	bzero(rqbuf, rqbuflen);
20693 	bzero(bufaddr, buflen);
20694 
20695 	/*
20696 	 * Set up cdb field for the get configuration command.
20697 	 */
20698 	cdb[0] = SCMD_GET_CONFIGURATION;
20699 	cdb[1] = 0x02;  /* Requested Type */
20700 	cdb[3] = feature;
20701 	cdb[8] = buflen;
20702 	ucmdbuf->uscsi_cdb = cdb;
20703 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20704 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20705 	ucmdbuf->uscsi_buflen = buflen;
20706 	ucmdbuf->uscsi_timeout = sd_io_time;
20707 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20708 	ucmdbuf->uscsi_rqlen = rqbuflen;
20709 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20710 
20711 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20712 	    UIO_SYSSPACE, path_flag);
20713 
20714 	switch (status) {
20715 	case 0:
20716 
20717 		break;  /* Success! */
20718 	case EIO:
20719 		switch (ucmdbuf->uscsi_status) {
20720 		case STATUS_RESERVATION_CONFLICT:
20721 			status = EACCES;
20722 			break;
20723 		default:
20724 			break;
20725 		}
20726 		break;
20727 	default:
20728 		break;
20729 	}
20730 
20731 	if (status == 0) {
20732 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20733 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20734 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20735 	}
20736 
20737 	SD_TRACE(SD_LOG_IO, un,
20738 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20739 
20740 	return (status);
20741 }
20742 
20743 
20744 /*
20745  *    Function: sd_send_scsi_MODE_SENSE
20746  *
20747  * Description: Utility function for issuing a scsi MODE SENSE command.
20748  *		Note: This routine uses a consistent implementation for Group0,
20749  *		Group1, and Group2 commands across all platforms. ATAPI devices
20750  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20751  *
20752  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20753  *                      structure for this target.
20754  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20755  *			  CDB_GROUP[1|2] (10 byte).
20756  *		bufaddr - buffer for page data retrieved from the target.
20757  *		buflen - size of page to be retrieved.
20758  *		page_code - page code of data to be retrieved from the target.
20759  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20760  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20761  *			to use the USCSI "direct" chain and bypass the normal
20762  *			command waitq.
20763  *
20764  * Return Code: 0   - Success
20765  *		errno return code from sd_ssc_send()
20766  *
20767  *     Context: Can sleep. Does not return until command is completed.
20768  */
20769 
20770 static int
20771 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20772 	size_t buflen,  uchar_t page_code, int path_flag)
20773 {
20774 	struct	scsi_extended_sense	sense_buf;
20775 	union scsi_cdb		cdb;
20776 	struct uscsi_cmd	ucmd_buf;
20777 	int			status;
20778 	int			headlen;
20779 	struct sd_lun		*un;
20780 
20781 	ASSERT(ssc != NULL);
20782 	un = ssc->ssc_un;
20783 	ASSERT(un != NULL);
20784 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20785 	ASSERT(bufaddr != NULL);
20786 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20787 	    (cdbsize == CDB_GROUP2));
20788 
20789 	SD_TRACE(SD_LOG_IO, un,
20790 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20791 
20792 	bzero(&cdb, sizeof (cdb));
20793 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20794 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20795 	bzero(bufaddr, buflen);
20796 
20797 	if (cdbsize == CDB_GROUP0) {
20798 		cdb.scc_cmd = SCMD_MODE_SENSE;
20799 		cdb.cdb_opaque[2] = page_code;
20800 		FORMG0COUNT(&cdb, buflen);
20801 		headlen = MODE_HEADER_LENGTH;
20802 	} else {
20803 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20804 		cdb.cdb_opaque[2] = page_code;
20805 		FORMG1COUNT(&cdb, buflen);
20806 		headlen = MODE_HEADER_LENGTH_GRP2;
20807 	}
20808 
20809 	ASSERT(headlen <= buflen);
20810 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20811 
20812 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20813 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20814 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20815 	ucmd_buf.uscsi_buflen	= buflen;
20816 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20817 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20818 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20819 	ucmd_buf.uscsi_timeout	= 60;
20820 
20821 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20822 	    UIO_SYSSPACE, path_flag);
20823 
20824 	switch (status) {
20825 	case 0:
20826 		/*
20827 		 * sr_check_wp() uses 0x3f page code and check the header of
20828 		 * mode page to determine if target device is write-protected.
20829 		 * But some USB devices return 0 bytes for 0x3f page code. For
20830 		 * this case, make sure that mode page header is returned at
20831 		 * least.
20832 		 */
20833 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20834 			status = EIO;
20835 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20836 			    "mode page header is not returned");
20837 		}
20838 		break;	/* Success! */
20839 	case EIO:
20840 		switch (ucmd_buf.uscsi_status) {
20841 		case STATUS_RESERVATION_CONFLICT:
20842 			status = EACCES;
20843 			break;
20844 		default:
20845 			break;
20846 		}
20847 		break;
20848 	default:
20849 		break;
20850 	}
20851 
20852 	if (status == 0) {
20853 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20854 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20855 	}
20856 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20857 
20858 	return (status);
20859 }
20860 
20861 
20862 /*
20863  *    Function: sd_send_scsi_MODE_SELECT
20864  *
20865  * Description: Utility function for issuing a scsi MODE SELECT command.
20866  *		Note: This routine uses a consistent implementation for Group0,
20867  *		Group1, and Group2 commands across all platforms. ATAPI devices
20868  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20869  *
20870  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20871  *                      structure for this target.
20872  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20873  *			  CDB_GROUP[1|2] (10 byte).
20874  *		bufaddr - buffer for page data retrieved from the target.
20875  *		buflen - size of page to be retrieved.
20876  *		save_page - boolean to determin if SP bit should be set.
20877  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20878  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20879  *			to use the USCSI "direct" chain and bypass the normal
20880  *			command waitq.
20881  *
20882  * Return Code: 0   - Success
20883  *		errno return code from sd_ssc_send()
20884  *
20885  *     Context: Can sleep. Does not return until command is completed.
20886  */
20887 
20888 static int
20889 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20890 	size_t buflen,  uchar_t save_page, int path_flag)
20891 {
20892 	struct	scsi_extended_sense	sense_buf;
20893 	union scsi_cdb		cdb;
20894 	struct uscsi_cmd	ucmd_buf;
20895 	int			status;
20896 	struct sd_lun		*un;
20897 
20898 	ASSERT(ssc != NULL);
20899 	un = ssc->ssc_un;
20900 	ASSERT(un != NULL);
20901 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20902 	ASSERT(bufaddr != NULL);
20903 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20904 	    (cdbsize == CDB_GROUP2));
20905 
20906 	SD_TRACE(SD_LOG_IO, un,
20907 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20908 
20909 	bzero(&cdb, sizeof (cdb));
20910 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20911 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20912 
20913 	/* Set the PF bit for many third party drives */
20914 	cdb.cdb_opaque[1] = 0x10;
20915 
20916 	/* Set the savepage(SP) bit if given */
20917 	if (save_page == SD_SAVE_PAGE) {
20918 		cdb.cdb_opaque[1] |= 0x01;
20919 	}
20920 
20921 	if (cdbsize == CDB_GROUP0) {
20922 		cdb.scc_cmd = SCMD_MODE_SELECT;
20923 		FORMG0COUNT(&cdb, buflen);
20924 	} else {
20925 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20926 		FORMG1COUNT(&cdb, buflen);
20927 	}
20928 
20929 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20930 
20931 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20932 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20933 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20934 	ucmd_buf.uscsi_buflen	= buflen;
20935 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20936 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20937 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20938 	ucmd_buf.uscsi_timeout	= 60;
20939 
20940 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20941 	    UIO_SYSSPACE, path_flag);
20942 
20943 	switch (status) {
20944 	case 0:
20945 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20946 		break;	/* Success! */
20947 	case EIO:
20948 		switch (ucmd_buf.uscsi_status) {
20949 		case STATUS_RESERVATION_CONFLICT:
20950 			status = EACCES;
20951 			break;
20952 		default:
20953 			break;
20954 		}
20955 		break;
20956 	default:
20957 		break;
20958 	}
20959 
20960 	if (status == 0) {
20961 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20962 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20963 	}
20964 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20965 
20966 	return (status);
20967 }
20968 
20969 
20970 /*
20971  *    Function: sd_send_scsi_RDWR
20972  *
20973  * Description: Issue a scsi READ or WRITE command with the given parameters.
20974  *
20975  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20976  *                      structure for this target.
20977  *		cmd:	 SCMD_READ or SCMD_WRITE
20978  *		bufaddr: Address of caller's buffer to receive the RDWR data
20979  *		buflen:  Length of caller's buffer receive the RDWR data.
20980  *		start_block: Block number for the start of the RDWR operation.
20981  *			 (Assumes target-native block size.)
20982  *		residp:  Pointer to variable to receive the redisual of the
20983  *			 RDWR operation (may be NULL of no residual requested).
20984  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20985  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20986  *			to use the USCSI "direct" chain and bypass the normal
20987  *			command waitq.
20988  *
20989  * Return Code: 0   - Success
20990  *		errno return code from sd_ssc_send()
20991  *
20992  *     Context: Can sleep. Does not return until command is completed.
20993  */
20994 
20995 static int
20996 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
20997 	size_t buflen, daddr_t start_block, int path_flag)
20998 {
20999 	struct	scsi_extended_sense	sense_buf;
21000 	union scsi_cdb		cdb;
21001 	struct uscsi_cmd	ucmd_buf;
21002 	uint32_t		block_count;
21003 	int			status;
21004 	int			cdbsize;
21005 	uchar_t			flag;
21006 	struct sd_lun		*un;
21007 
21008 	ASSERT(ssc != NULL);
21009 	un = ssc->ssc_un;
21010 	ASSERT(un != NULL);
21011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21012 	ASSERT(bufaddr != NULL);
21013 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21014 
21015 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21016 
21017 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21018 		return (EINVAL);
21019 	}
21020 
21021 	mutex_enter(SD_MUTEX(un));
21022 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21023 	mutex_exit(SD_MUTEX(un));
21024 
21025 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21026 
21027 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21028 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21029 	    bufaddr, buflen, start_block, block_count);
21030 
21031 	bzero(&cdb, sizeof (cdb));
21032 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21033 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21034 
21035 	/* Compute CDB size to use */
21036 	if (start_block > 0xffffffff)
21037 		cdbsize = CDB_GROUP4;
21038 	else if ((start_block & 0xFFE00000) ||
21039 	    (un->un_f_cfg_is_atapi == TRUE))
21040 		cdbsize = CDB_GROUP1;
21041 	else
21042 		cdbsize = CDB_GROUP0;
21043 
21044 	switch (cdbsize) {
21045 	case CDB_GROUP0:	/* 6-byte CDBs */
21046 		cdb.scc_cmd = cmd;
21047 		FORMG0ADDR(&cdb, start_block);
21048 		FORMG0COUNT(&cdb, block_count);
21049 		break;
21050 	case CDB_GROUP1:	/* 10-byte CDBs */
21051 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21052 		FORMG1ADDR(&cdb, start_block);
21053 		FORMG1COUNT(&cdb, block_count);
21054 		break;
21055 	case CDB_GROUP4:	/* 16-byte CDBs */
21056 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21057 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21058 		FORMG4COUNT(&cdb, block_count);
21059 		break;
21060 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21061 	default:
21062 		/* All others reserved */
21063 		return (EINVAL);
21064 	}
21065 
21066 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21067 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21068 
21069 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21070 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21071 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21072 	ucmd_buf.uscsi_buflen	= buflen;
21073 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21074 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21075 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21076 	ucmd_buf.uscsi_timeout	= 60;
21077 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21078 	    UIO_SYSSPACE, path_flag);
21079 
21080 	switch (status) {
21081 	case 0:
21082 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21083 		break;	/* Success! */
21084 	case EIO:
21085 		switch (ucmd_buf.uscsi_status) {
21086 		case STATUS_RESERVATION_CONFLICT:
21087 			status = EACCES;
21088 			break;
21089 		default:
21090 			break;
21091 		}
21092 		break;
21093 	default:
21094 		break;
21095 	}
21096 
21097 	if (status == 0) {
21098 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21099 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21100 	}
21101 
21102 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21103 
21104 	return (status);
21105 }
21106 
21107 
21108 /*
21109  *    Function: sd_send_scsi_LOG_SENSE
21110  *
21111  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21112  *
21113  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21114  *                      structure for this target.
21115  *
21116  * Return Code: 0   - Success
21117  *		errno return code from sd_ssc_send()
21118  *
21119  *     Context: Can sleep. Does not return until command is completed.
21120  */
21121 
21122 static int
21123 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21124 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21125 	int path_flag)
21126 
21127 {
21128 	struct scsi_extended_sense	sense_buf;
21129 	union scsi_cdb		cdb;
21130 	struct uscsi_cmd	ucmd_buf;
21131 	int			status;
21132 	struct sd_lun		*un;
21133 
21134 	ASSERT(ssc != NULL);
21135 	un = ssc->ssc_un;
21136 	ASSERT(un != NULL);
21137 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21138 
21139 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21140 
21141 	bzero(&cdb, sizeof (cdb));
21142 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21143 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21144 
21145 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21146 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21147 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21148 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21149 	FORMG1COUNT(&cdb, buflen);
21150 
21151 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21152 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21153 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21154 	ucmd_buf.uscsi_buflen	= buflen;
21155 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21156 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21157 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21158 	ucmd_buf.uscsi_timeout	= 60;
21159 
21160 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21161 	    UIO_SYSSPACE, path_flag);
21162 
21163 	switch (status) {
21164 	case 0:
21165 		break;
21166 	case EIO:
21167 		switch (ucmd_buf.uscsi_status) {
21168 		case STATUS_RESERVATION_CONFLICT:
21169 			status = EACCES;
21170 			break;
21171 		case STATUS_CHECK:
21172 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21173 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21174 				KEY_ILLEGAL_REQUEST) &&
21175 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21176 				/*
21177 				 * ASC 0x24: INVALID FIELD IN CDB
21178 				 */
21179 				switch (page_code) {
21180 				case START_STOP_CYCLE_PAGE:
21181 					/*
21182 					 * The start stop cycle counter is
21183 					 * implemented as page 0x31 in earlier
21184 					 * generation disks. In new generation
21185 					 * disks the start stop cycle counter is
21186 					 * implemented as page 0xE. To properly
21187 					 * handle this case if an attempt for
21188 					 * log page 0xE is made and fails we
21189 					 * will try again using page 0x31.
21190 					 *
21191 					 * Network storage BU committed to
21192 					 * maintain the page 0x31 for this
21193 					 * purpose and will not have any other
21194 					 * page implemented with page code 0x31
21195 					 * until all disks transition to the
21196 					 * standard page.
21197 					 */
21198 					mutex_enter(SD_MUTEX(un));
21199 					un->un_start_stop_cycle_page =
21200 					    START_STOP_CYCLE_VU_PAGE;
21201 					cdb.cdb_opaque[2] =
21202 					    (char)(page_control << 6) |
21203 					    un->un_start_stop_cycle_page;
21204 					mutex_exit(SD_MUTEX(un));
21205 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21206 					status = sd_ssc_send(
21207 					    ssc, &ucmd_buf, FKIOCTL,
21208 					    UIO_SYSSPACE, path_flag);
21209 
21210 					break;
21211 				case TEMPERATURE_PAGE:
21212 					status = ENOTTY;
21213 					break;
21214 				default:
21215 					break;
21216 				}
21217 			}
21218 			break;
21219 		default:
21220 			break;
21221 		}
21222 		break;
21223 	default:
21224 		break;
21225 	}
21226 
21227 	if (status == 0) {
21228 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21229 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21230 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21231 	}
21232 
21233 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21234 
21235 	return (status);
21236 }
21237 
21238 
21239 /*
21240  *    Function: sdioctl
21241  *
21242  * Description: Driver's ioctl(9e) entry point function.
21243  *
21244  *   Arguments: dev     - device number
21245  *		cmd     - ioctl operation to be performed
21246  *		arg     - user argument, contains data to be set or reference
21247  *			  parameter for get
21248  *		flag    - bit flag, indicating open settings, 32/64 bit type
21249  *		cred_p  - user credential pointer
21250  *		rval_p  - calling process return value (OPT)
21251  *
21252  * Return Code: EINVAL
21253  *		ENOTTY
21254  *		ENXIO
21255  *		EIO
21256  *		EFAULT
21257  *		ENOTSUP
21258  *		EPERM
21259  *
21260  *     Context: Called from the device switch at normal priority.
21261  */
21262 
21263 static int
21264 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21265 {
21266 	struct sd_lun	*un = NULL;
21267 	int		err = 0;
21268 	int		i = 0;
21269 	cred_t		*cr;
21270 	int		tmprval = EINVAL;
21271 	int 		is_valid;
21272 	sd_ssc_t	*ssc;
21273 
21274 	/*
21275 	 * All device accesses go thru sdstrategy where we check on suspend
21276 	 * status
21277 	 */
21278 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21279 		return (ENXIO);
21280 	}
21281 
21282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21283 
21284 	/* Initialize sd_ssc_t for internal uscsi commands */
21285 	ssc = sd_ssc_init(un);
21286 
21287 	is_valid = SD_IS_VALID_LABEL(un);
21288 
21289 	/*
21290 	 * Moved this wait from sd_uscsi_strategy to here for
21291 	 * reasons of deadlock prevention. Internal driver commands,
21292 	 * specifically those to change a devices power level, result
21293 	 * in a call to sd_uscsi_strategy.
21294 	 */
21295 	mutex_enter(SD_MUTEX(un));
21296 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21297 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21298 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21299 	}
21300 	/*
21301 	 * Twiddling the counter here protects commands from now
21302 	 * through to the top of sd_uscsi_strategy. Without the
21303 	 * counter inc. a power down, for example, could get in
21304 	 * after the above check for state is made and before
21305 	 * execution gets to the top of sd_uscsi_strategy.
21306 	 * That would cause problems.
21307 	 */
21308 	un->un_ncmds_in_driver++;
21309 
21310 	if (!is_valid &&
21311 	    (flag & (FNDELAY | FNONBLOCK))) {
21312 		switch (cmd) {
21313 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21314 		case DKIOCGVTOC:
21315 		case DKIOCGEXTVTOC:
21316 		case DKIOCGAPART:
21317 		case DKIOCPARTINFO:
21318 		case DKIOCEXTPARTINFO:
21319 		case DKIOCSGEOM:
21320 		case DKIOCSAPART:
21321 		case DKIOCGETEFI:
21322 		case DKIOCPARTITION:
21323 		case DKIOCSVTOC:
21324 		case DKIOCSEXTVTOC:
21325 		case DKIOCSETEFI:
21326 		case DKIOCGMBOOT:
21327 		case DKIOCSMBOOT:
21328 		case DKIOCG_PHYGEOM:
21329 		case DKIOCG_VIRTGEOM:
21330 			/* let cmlb handle it */
21331 			goto skip_ready_valid;
21332 
21333 		case CDROMPAUSE:
21334 		case CDROMRESUME:
21335 		case CDROMPLAYMSF:
21336 		case CDROMPLAYTRKIND:
21337 		case CDROMREADTOCHDR:
21338 		case CDROMREADTOCENTRY:
21339 		case CDROMSTOP:
21340 		case CDROMSTART:
21341 		case CDROMVOLCTRL:
21342 		case CDROMSUBCHNL:
21343 		case CDROMREADMODE2:
21344 		case CDROMREADMODE1:
21345 		case CDROMREADOFFSET:
21346 		case CDROMSBLKMODE:
21347 		case CDROMGBLKMODE:
21348 		case CDROMGDRVSPEED:
21349 		case CDROMSDRVSPEED:
21350 		case CDROMCDDA:
21351 		case CDROMCDXA:
21352 		case CDROMSUBCODE:
21353 			if (!ISCD(un)) {
21354 				un->un_ncmds_in_driver--;
21355 				ASSERT(un->un_ncmds_in_driver >= 0);
21356 				mutex_exit(SD_MUTEX(un));
21357 				err = ENOTTY;
21358 				goto done_without_assess;
21359 			}
21360 			break;
21361 		case FDEJECT:
21362 		case DKIOCEJECT:
21363 		case CDROMEJECT:
21364 			if (!un->un_f_eject_media_supported) {
21365 				un->un_ncmds_in_driver--;
21366 				ASSERT(un->un_ncmds_in_driver >= 0);
21367 				mutex_exit(SD_MUTEX(un));
21368 				err = ENOTTY;
21369 				goto done_without_assess;
21370 			}
21371 			break;
21372 		case DKIOCFLUSHWRITECACHE:
21373 			mutex_exit(SD_MUTEX(un));
21374 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21375 			if (err != 0) {
21376 				mutex_enter(SD_MUTEX(un));
21377 				un->un_ncmds_in_driver--;
21378 				ASSERT(un->un_ncmds_in_driver >= 0);
21379 				mutex_exit(SD_MUTEX(un));
21380 				err = EIO;
21381 				goto done_quick_assess;
21382 			}
21383 			mutex_enter(SD_MUTEX(un));
21384 			/* FALLTHROUGH */
21385 		case DKIOCREMOVABLE:
21386 		case DKIOCHOTPLUGGABLE:
21387 		case DKIOCINFO:
21388 		case DKIOCGMEDIAINFO:
21389 		case MHIOCENFAILFAST:
21390 		case MHIOCSTATUS:
21391 		case MHIOCTKOWN:
21392 		case MHIOCRELEASE:
21393 		case MHIOCGRP_INKEYS:
21394 		case MHIOCGRP_INRESV:
21395 		case MHIOCGRP_REGISTER:
21396 		case MHIOCGRP_RESERVE:
21397 		case MHIOCGRP_PREEMPTANDABORT:
21398 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21399 		case CDROMCLOSETRAY:
21400 		case USCSICMD:
21401 			goto skip_ready_valid;
21402 		default:
21403 			break;
21404 		}
21405 
21406 		mutex_exit(SD_MUTEX(un));
21407 		err = sd_ready_and_valid(ssc, SDPART(dev));
21408 		mutex_enter(SD_MUTEX(un));
21409 
21410 		if (err != SD_READY_VALID) {
21411 			switch (cmd) {
21412 			case DKIOCSTATE:
21413 			case CDROMGDRVSPEED:
21414 			case CDROMSDRVSPEED:
21415 			case FDEJECT:	/* for eject command */
21416 			case DKIOCEJECT:
21417 			case CDROMEJECT:
21418 			case DKIOCREMOVABLE:
21419 			case DKIOCHOTPLUGGABLE:
21420 				break;
21421 			default:
21422 				if (un->un_f_has_removable_media) {
21423 					err = ENXIO;
21424 				} else {
21425 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21426 					if (err == SD_RESERVED_BY_OTHERS) {
21427 						err = EACCES;
21428 					} else {
21429 						err = EIO;
21430 					}
21431 				}
21432 				un->un_ncmds_in_driver--;
21433 				ASSERT(un->un_ncmds_in_driver >= 0);
21434 				mutex_exit(SD_MUTEX(un));
21435 
21436 				goto done_without_assess;
21437 			}
21438 		}
21439 	}
21440 
21441 skip_ready_valid:
21442 	mutex_exit(SD_MUTEX(un));
21443 
21444 	switch (cmd) {
21445 	case DKIOCINFO:
21446 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21447 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21448 		break;
21449 
21450 	case DKIOCGMEDIAINFO:
21451 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21452 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21453 		break;
21454 
21455 	case DKIOCGGEOM:
21456 	case DKIOCGVTOC:
21457 	case DKIOCGEXTVTOC:
21458 	case DKIOCGAPART:
21459 	case DKIOCPARTINFO:
21460 	case DKIOCEXTPARTINFO:
21461 	case DKIOCSGEOM:
21462 	case DKIOCSAPART:
21463 	case DKIOCGETEFI:
21464 	case DKIOCPARTITION:
21465 	case DKIOCSVTOC:
21466 	case DKIOCSEXTVTOC:
21467 	case DKIOCSETEFI:
21468 	case DKIOCGMBOOT:
21469 	case DKIOCSMBOOT:
21470 	case DKIOCG_PHYGEOM:
21471 	case DKIOCG_VIRTGEOM:
21472 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21473 
21474 		/* TUR should spin up */
21475 
21476 		if (un->un_f_has_removable_media)
21477 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21478 			    SD_CHECK_FOR_MEDIA);
21479 
21480 		else
21481 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21482 
21483 		if (err != 0)
21484 			goto done_with_assess;
21485 
21486 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21487 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21488 
21489 		if ((err == 0) &&
21490 		    ((cmd == DKIOCSETEFI) ||
21491 		    (un->un_f_pkstats_enabled) &&
21492 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
21493 		    cmd == DKIOCSEXTVTOC))) {
21494 
21495 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21496 			    (void *)SD_PATH_DIRECT);
21497 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21498 				sd_set_pstats(un);
21499 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21500 				    "sd_ioctl: un:0x%p pstats created and "
21501 				    "set\n", un);
21502 			}
21503 		}
21504 
21505 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
21506 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21507 
21508 			mutex_enter(SD_MUTEX(un));
21509 			if (un->un_f_devid_supported &&
21510 			    (un->un_f_opt_fab_devid == TRUE)) {
21511 				if (un->un_devid == NULL) {
21512 					sd_register_devid(ssc, SD_DEVINFO(un),
21513 					    SD_TARGET_IS_UNRESERVED);
21514 				} else {
21515 					/*
21516 					 * The device id for this disk
21517 					 * has been fabricated. The
21518 					 * device id must be preserved
21519 					 * by writing it back out to
21520 					 * disk.
21521 					 */
21522 					if (sd_write_deviceid(ssc) != 0) {
21523 						ddi_devid_free(un->un_devid);
21524 						un->un_devid = NULL;
21525 					}
21526 				}
21527 			}
21528 			mutex_exit(SD_MUTEX(un));
21529 		}
21530 
21531 		break;
21532 
21533 	case DKIOCLOCK:
21534 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21535 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21536 		    SD_PATH_STANDARD);
21537 		goto done_with_assess;
21538 
21539 	case DKIOCUNLOCK:
21540 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21541 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21542 		    SD_PATH_STANDARD);
21543 		goto done_with_assess;
21544 
21545 	case DKIOCSTATE: {
21546 		enum dkio_state		state;
21547 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21548 
21549 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21550 			err = EFAULT;
21551 		} else {
21552 			err = sd_check_media(dev, state);
21553 			if (err == 0) {
21554 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21555 				    sizeof (int), flag) != 0)
21556 					err = EFAULT;
21557 			}
21558 		}
21559 		break;
21560 	}
21561 
21562 	case DKIOCREMOVABLE:
21563 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21564 		i = un->un_f_has_removable_media ? 1 : 0;
21565 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21566 			err = EFAULT;
21567 		} else {
21568 			err = 0;
21569 		}
21570 		break;
21571 
21572 	case DKIOCHOTPLUGGABLE:
21573 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21574 		i = un->un_f_is_hotpluggable ? 1 : 0;
21575 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21576 			err = EFAULT;
21577 		} else {
21578 			err = 0;
21579 		}
21580 		break;
21581 
21582 	case DKIOCGTEMPERATURE:
21583 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21584 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21585 		break;
21586 
21587 	case MHIOCENFAILFAST:
21588 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21589 		if ((err = drv_priv(cred_p)) == 0) {
21590 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21591 		}
21592 		break;
21593 
21594 	case MHIOCTKOWN:
21595 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21596 		if ((err = drv_priv(cred_p)) == 0) {
21597 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21598 		}
21599 		break;
21600 
21601 	case MHIOCRELEASE:
21602 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21603 		if ((err = drv_priv(cred_p)) == 0) {
21604 			err = sd_mhdioc_release(dev);
21605 		}
21606 		break;
21607 
21608 	case MHIOCSTATUS:
21609 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21610 		if ((err = drv_priv(cred_p)) == 0) {
21611 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21612 			case 0:
21613 				err = 0;
21614 				break;
21615 			case EACCES:
21616 				*rval_p = 1;
21617 				err = 0;
21618 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21619 				break;
21620 			default:
21621 				err = EIO;
21622 				goto done_with_assess;
21623 			}
21624 		}
21625 		break;
21626 
21627 	case MHIOCQRESERVE:
21628 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21629 		if ((err = drv_priv(cred_p)) == 0) {
21630 			err = sd_reserve_release(dev, SD_RESERVE);
21631 		}
21632 		break;
21633 
21634 	case MHIOCREREGISTERDEVID:
21635 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21636 		if (drv_priv(cred_p) == EPERM) {
21637 			err = EPERM;
21638 		} else if (!un->un_f_devid_supported) {
21639 			err = ENOTTY;
21640 		} else {
21641 			err = sd_mhdioc_register_devid(dev);
21642 		}
21643 		break;
21644 
21645 	case MHIOCGRP_INKEYS:
21646 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21647 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21648 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21649 				err = ENOTSUP;
21650 			} else {
21651 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21652 				    flag);
21653 			}
21654 		}
21655 		break;
21656 
21657 	case MHIOCGRP_INRESV:
21658 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21659 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21660 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21661 				err = ENOTSUP;
21662 			} else {
21663 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21664 			}
21665 		}
21666 		break;
21667 
21668 	case MHIOCGRP_REGISTER:
21669 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21670 		if ((err = drv_priv(cred_p)) != EPERM) {
21671 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21672 				err = ENOTSUP;
21673 			} else if (arg != NULL) {
21674 				mhioc_register_t reg;
21675 				if (ddi_copyin((void *)arg, &reg,
21676 				    sizeof (mhioc_register_t), flag) != 0) {
21677 					err = EFAULT;
21678 				} else {
21679 					err =
21680 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21681 					    ssc, SD_SCSI3_REGISTER,
21682 					    (uchar_t *)&reg);
21683 					if (err != 0)
21684 						goto done_with_assess;
21685 				}
21686 			}
21687 		}
21688 		break;
21689 
21690 	case MHIOCGRP_RESERVE:
21691 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21692 		if ((err = drv_priv(cred_p)) != EPERM) {
21693 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21694 				err = ENOTSUP;
21695 			} else if (arg != NULL) {
21696 				mhioc_resv_desc_t resv_desc;
21697 				if (ddi_copyin((void *)arg, &resv_desc,
21698 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21699 					err = EFAULT;
21700 				} else {
21701 					err =
21702 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21703 					    ssc, SD_SCSI3_RESERVE,
21704 					    (uchar_t *)&resv_desc);
21705 					if (err != 0)
21706 						goto done_with_assess;
21707 				}
21708 			}
21709 		}
21710 		break;
21711 
21712 	case MHIOCGRP_PREEMPTANDABORT:
21713 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21714 		if ((err = drv_priv(cred_p)) != EPERM) {
21715 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21716 				err = ENOTSUP;
21717 			} else if (arg != NULL) {
21718 				mhioc_preemptandabort_t preempt_abort;
21719 				if (ddi_copyin((void *)arg, &preempt_abort,
21720 				    sizeof (mhioc_preemptandabort_t),
21721 				    flag) != 0) {
21722 					err = EFAULT;
21723 				} else {
21724 					err =
21725 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21726 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21727 					    (uchar_t *)&preempt_abort);
21728 					if (err != 0)
21729 						goto done_with_assess;
21730 				}
21731 			}
21732 		}
21733 		break;
21734 
21735 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21736 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21737 		if ((err = drv_priv(cred_p)) != EPERM) {
21738 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21739 				err = ENOTSUP;
21740 			} else if (arg != NULL) {
21741 				mhioc_registerandignorekey_t r_and_i;
21742 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21743 				    sizeof (mhioc_registerandignorekey_t),
21744 				    flag) != 0) {
21745 					err = EFAULT;
21746 				} else {
21747 					err =
21748 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21749 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21750 					    (uchar_t *)&r_and_i);
21751 					if (err != 0)
21752 						goto done_with_assess;
21753 				}
21754 			}
21755 		}
21756 		break;
21757 
21758 	case USCSICMD:
21759 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21760 		cr = ddi_get_cred();
21761 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21762 			err = EPERM;
21763 		} else {
21764 			enum uio_seg	uioseg;
21765 
21766 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21767 			    UIO_USERSPACE;
21768 			if (un->un_f_format_in_progress == TRUE) {
21769 				err = EAGAIN;
21770 				break;
21771 			}
21772 
21773 			err = sd_ssc_send(ssc,
21774 			    (struct uscsi_cmd *)arg,
21775 			    flag, uioseg, SD_PATH_STANDARD);
21776 			if (err != 0)
21777 				goto done_with_assess;
21778 			else
21779 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21780 		}
21781 		break;
21782 
21783 	case CDROMPAUSE:
21784 	case CDROMRESUME:
21785 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21786 		if (!ISCD(un)) {
21787 			err = ENOTTY;
21788 		} else {
21789 			err = sr_pause_resume(dev, cmd);
21790 		}
21791 		break;
21792 
21793 	case CDROMPLAYMSF:
21794 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21795 		if (!ISCD(un)) {
21796 			err = ENOTTY;
21797 		} else {
21798 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21799 		}
21800 		break;
21801 
21802 	case CDROMPLAYTRKIND:
21803 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21804 #if defined(__i386) || defined(__amd64)
21805 		/*
21806 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21807 		 */
21808 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21809 #else
21810 		if (!ISCD(un)) {
21811 #endif
21812 			err = ENOTTY;
21813 		} else {
21814 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21815 		}
21816 		break;
21817 
21818 	case CDROMREADTOCHDR:
21819 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21820 		if (!ISCD(un)) {
21821 			err = ENOTTY;
21822 		} else {
21823 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21824 		}
21825 		break;
21826 
21827 	case CDROMREADTOCENTRY:
21828 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21829 		if (!ISCD(un)) {
21830 			err = ENOTTY;
21831 		} else {
21832 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21833 		}
21834 		break;
21835 
21836 	case CDROMSTOP:
21837 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21838 		if (!ISCD(un)) {
21839 			err = ENOTTY;
21840 		} else {
21841 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21842 			    SD_PATH_STANDARD);
21843 			goto done_with_assess;
21844 		}
21845 		break;
21846 
21847 	case CDROMSTART:
21848 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21849 		if (!ISCD(un)) {
21850 			err = ENOTTY;
21851 		} else {
21852 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21853 			    SD_PATH_STANDARD);
21854 			goto done_with_assess;
21855 		}
21856 		break;
21857 
21858 	case CDROMCLOSETRAY:
21859 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21860 		if (!ISCD(un)) {
21861 			err = ENOTTY;
21862 		} else {
21863 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21864 			    SD_PATH_STANDARD);
21865 			goto done_with_assess;
21866 		}
21867 		break;
21868 
21869 	case FDEJECT:	/* for eject command */
21870 	case DKIOCEJECT:
21871 	case CDROMEJECT:
21872 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21873 		if (!un->un_f_eject_media_supported) {
21874 			err = ENOTTY;
21875 		} else {
21876 			err = sr_eject(dev);
21877 		}
21878 		break;
21879 
21880 	case CDROMVOLCTRL:
21881 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21882 		if (!ISCD(un)) {
21883 			err = ENOTTY;
21884 		} else {
21885 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21886 		}
21887 		break;
21888 
21889 	case CDROMSUBCHNL:
21890 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21891 		if (!ISCD(un)) {
21892 			err = ENOTTY;
21893 		} else {
21894 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21895 		}
21896 		break;
21897 
21898 	case CDROMREADMODE2:
21899 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21900 		if (!ISCD(un)) {
21901 			err = ENOTTY;
21902 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21903 			/*
21904 			 * If the drive supports READ CD, use that instead of
21905 			 * switching the LBA size via a MODE SELECT
21906 			 * Block Descriptor
21907 			 */
21908 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21909 		} else {
21910 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21911 		}
21912 		break;
21913 
21914 	case CDROMREADMODE1:
21915 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21916 		if (!ISCD(un)) {
21917 			err = ENOTTY;
21918 		} else {
21919 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21920 		}
21921 		break;
21922 
21923 	case CDROMREADOFFSET:
21924 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21925 		if (!ISCD(un)) {
21926 			err = ENOTTY;
21927 		} else {
21928 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21929 			    flag);
21930 		}
21931 		break;
21932 
21933 	case CDROMSBLKMODE:
21934 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21935 		/*
21936 		 * There is no means of changing block size in case of atapi
21937 		 * drives, thus return ENOTTY if drive type is atapi
21938 		 */
21939 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21940 			err = ENOTTY;
21941 		} else if (un->un_f_mmc_cap == TRUE) {
21942 
21943 			/*
21944 			 * MMC Devices do not support changing the
21945 			 * logical block size
21946 			 *
21947 			 * Note: EINVAL is being returned instead of ENOTTY to
21948 			 * maintain consistancy with the original mmc
21949 			 * driver update.
21950 			 */
21951 			err = EINVAL;
21952 		} else {
21953 			mutex_enter(SD_MUTEX(un));
21954 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21955 			    (un->un_ncmds_in_transport > 0)) {
21956 				mutex_exit(SD_MUTEX(un));
21957 				err = EINVAL;
21958 			} else {
21959 				mutex_exit(SD_MUTEX(un));
21960 				err = sr_change_blkmode(dev, cmd, arg, flag);
21961 			}
21962 		}
21963 		break;
21964 
21965 	case CDROMGBLKMODE:
21966 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21967 		if (!ISCD(un)) {
21968 			err = ENOTTY;
21969 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21970 		    (un->un_f_blockcount_is_valid != FALSE)) {
21971 			/*
21972 			 * Drive is an ATAPI drive so return target block
21973 			 * size for ATAPI drives since we cannot change the
21974 			 * blocksize on ATAPI drives. Used primarily to detect
21975 			 * if an ATAPI cdrom is present.
21976 			 */
21977 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21978 			    sizeof (int), flag) != 0) {
21979 				err = EFAULT;
21980 			} else {
21981 				err = 0;
21982 			}
21983 
21984 		} else {
21985 			/*
21986 			 * Drive supports changing block sizes via a Mode
21987 			 * Select.
21988 			 */
21989 			err = sr_change_blkmode(dev, cmd, arg, flag);
21990 		}
21991 		break;
21992 
21993 	case CDROMGDRVSPEED:
21994 	case CDROMSDRVSPEED:
21995 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21996 		if (!ISCD(un)) {
21997 			err = ENOTTY;
21998 		} else if (un->un_f_mmc_cap == TRUE) {
21999 			/*
22000 			 * Note: In the future the driver implementation
22001 			 * for getting and
22002 			 * setting cd speed should entail:
22003 			 * 1) If non-mmc try the Toshiba mode page
22004 			 *    (sr_change_speed)
22005 			 * 2) If mmc but no support for Real Time Streaming try
22006 			 *    the SET CD SPEED (0xBB) command
22007 			 *   (sr_atapi_change_speed)
22008 			 * 3) If mmc and support for Real Time Streaming
22009 			 *    try the GET PERFORMANCE and SET STREAMING
22010 			 *    commands (not yet implemented, 4380808)
22011 			 */
22012 			/*
22013 			 * As per recent MMC spec, CD-ROM speed is variable
22014 			 * and changes with LBA. Since there is no such
22015 			 * things as drive speed now, fail this ioctl.
22016 			 *
22017 			 * Note: EINVAL is returned for consistancy of original
22018 			 * implementation which included support for getting
22019 			 * the drive speed of mmc devices but not setting
22020 			 * the drive speed. Thus EINVAL would be returned
22021 			 * if a set request was made for an mmc device.
22022 			 * We no longer support get or set speed for
22023 			 * mmc but need to remain consistent with regard
22024 			 * to the error code returned.
22025 			 */
22026 			err = EINVAL;
22027 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22028 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22029 		} else {
22030 			err = sr_change_speed(dev, cmd, arg, flag);
22031 		}
22032 		break;
22033 
22034 	case CDROMCDDA:
22035 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22036 		if (!ISCD(un)) {
22037 			err = ENOTTY;
22038 		} else {
22039 			err = sr_read_cdda(dev, (void *)arg, flag);
22040 		}
22041 		break;
22042 
22043 	case CDROMCDXA:
22044 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22045 		if (!ISCD(un)) {
22046 			err = ENOTTY;
22047 		} else {
22048 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22049 		}
22050 		break;
22051 
22052 	case CDROMSUBCODE:
22053 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22054 		if (!ISCD(un)) {
22055 			err = ENOTTY;
22056 		} else {
22057 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22058 		}
22059 		break;
22060 
22061 
22062 #ifdef SDDEBUG
22063 /* RESET/ABORTS testing ioctls */
22064 	case DKIOCRESET: {
22065 		int	reset_level;
22066 
22067 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22068 			err = EFAULT;
22069 		} else {
22070 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22071 			    "reset_level = 0x%lx\n", reset_level);
22072 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22073 				err = 0;
22074 			} else {
22075 				err = EIO;
22076 			}
22077 		}
22078 		break;
22079 	}
22080 
22081 	case DKIOCABORT:
22082 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22083 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22084 			err = 0;
22085 		} else {
22086 			err = EIO;
22087 		}
22088 		break;
22089 #endif
22090 
22091 #ifdef SD_FAULT_INJECTION
22092 /* SDIOC FaultInjection testing ioctls */
22093 	case SDIOCSTART:
22094 	case SDIOCSTOP:
22095 	case SDIOCINSERTPKT:
22096 	case SDIOCINSERTXB:
22097 	case SDIOCINSERTUN:
22098 	case SDIOCINSERTARQ:
22099 	case SDIOCPUSH:
22100 	case SDIOCRETRIEVE:
22101 	case SDIOCRUN:
22102 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22103 		    "SDIOC detected cmd:0x%X:\n", cmd);
22104 		/* call error generator */
22105 		sd_faultinjection_ioctl(cmd, arg, un);
22106 		err = 0;
22107 		break;
22108 
22109 #endif /* SD_FAULT_INJECTION */
22110 
22111 	case DKIOCFLUSHWRITECACHE:
22112 		{
22113 			struct dk_callback *dkc = (struct dk_callback *)arg;
22114 
22115 			mutex_enter(SD_MUTEX(un));
22116 			if (!un->un_f_sync_cache_supported ||
22117 			    !un->un_f_write_cache_enabled) {
22118 				err = un->un_f_sync_cache_supported ?
22119 				    0 : ENOTSUP;
22120 				mutex_exit(SD_MUTEX(un));
22121 				if ((flag & FKIOCTL) && dkc != NULL &&
22122 				    dkc->dkc_callback != NULL) {
22123 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22124 					    err);
22125 					/*
22126 					 * Did callback and reported error.
22127 					 * Since we did a callback, ioctl
22128 					 * should return 0.
22129 					 */
22130 					err = 0;
22131 				}
22132 				break;
22133 			}
22134 			mutex_exit(SD_MUTEX(un));
22135 
22136 			if ((flag & FKIOCTL) && dkc != NULL &&
22137 			    dkc->dkc_callback != NULL) {
22138 				/* async SYNC CACHE request */
22139 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22140 			} else {
22141 				/* synchronous SYNC CACHE request */
22142 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22143 			}
22144 		}
22145 		break;
22146 
22147 	case DKIOCGETWCE: {
22148 
22149 		int wce;
22150 
22151 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22152 			break;
22153 		}
22154 
22155 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22156 			err = EFAULT;
22157 		}
22158 		break;
22159 	}
22160 
22161 	case DKIOCSETWCE: {
22162 
22163 		int wce, sync_supported;
22164 
22165 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22166 			err = EFAULT;
22167 			break;
22168 		}
22169 
22170 		/*
22171 		 * Synchronize multiple threads trying to enable
22172 		 * or disable the cache via the un_f_wcc_cv
22173 		 * condition variable.
22174 		 */
22175 		mutex_enter(SD_MUTEX(un));
22176 
22177 		/*
22178 		 * Don't allow the cache to be enabled if the
22179 		 * config file has it disabled.
22180 		 */
22181 		if (un->un_f_opt_disable_cache && wce) {
22182 			mutex_exit(SD_MUTEX(un));
22183 			err = EINVAL;
22184 			break;
22185 		}
22186 
22187 		/*
22188 		 * Wait for write cache change in progress
22189 		 * bit to be clear before proceeding.
22190 		 */
22191 		while (un->un_f_wcc_inprog)
22192 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22193 
22194 		un->un_f_wcc_inprog = 1;
22195 
22196 		if (un->un_f_write_cache_enabled && wce == 0) {
22197 			/*
22198 			 * Disable the write cache.  Don't clear
22199 			 * un_f_write_cache_enabled until after
22200 			 * the mode select and flush are complete.
22201 			 */
22202 			sync_supported = un->un_f_sync_cache_supported;
22203 
22204 			/*
22205 			 * If cache flush is suppressed, we assume that the
22206 			 * controller firmware will take care of managing the
22207 			 * write cache for us: no need to explicitly
22208 			 * disable it.
22209 			 */
22210 			if (!un->un_f_suppress_cache_flush) {
22211 				mutex_exit(SD_MUTEX(un));
22212 				if ((err = sd_cache_control(ssc,
22213 				    SD_CACHE_NOCHANGE,
22214 				    SD_CACHE_DISABLE)) == 0 &&
22215 				    sync_supported) {
22216 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22217 					    NULL);
22218 				}
22219 			} else {
22220 				mutex_exit(SD_MUTEX(un));
22221 			}
22222 
22223 			mutex_enter(SD_MUTEX(un));
22224 			if (err == 0) {
22225 				un->un_f_write_cache_enabled = 0;
22226 			}
22227 
22228 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22229 			/*
22230 			 * Set un_f_write_cache_enabled first, so there is
22231 			 * no window where the cache is enabled, but the
22232 			 * bit says it isn't.
22233 			 */
22234 			un->un_f_write_cache_enabled = 1;
22235 
22236 			/*
22237 			 * If cache flush is suppressed, we assume that the
22238 			 * controller firmware will take care of managing the
22239 			 * write cache for us: no need to explicitly
22240 			 * enable it.
22241 			 */
22242 			if (!un->un_f_suppress_cache_flush) {
22243 				mutex_exit(SD_MUTEX(un));
22244 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22245 				    SD_CACHE_ENABLE);
22246 			} else {
22247 				mutex_exit(SD_MUTEX(un));
22248 			}
22249 
22250 			mutex_enter(SD_MUTEX(un));
22251 
22252 			if (err) {
22253 				un->un_f_write_cache_enabled = 0;
22254 			}
22255 		}
22256 
22257 		un->un_f_wcc_inprog = 0;
22258 		cv_broadcast(&un->un_wcc_cv);
22259 		mutex_exit(SD_MUTEX(un));
22260 		break;
22261 	}
22262 
22263 	default:
22264 		err = ENOTTY;
22265 		break;
22266 	}
22267 	mutex_enter(SD_MUTEX(un));
22268 	un->un_ncmds_in_driver--;
22269 	ASSERT(un->un_ncmds_in_driver >= 0);
22270 	mutex_exit(SD_MUTEX(un));
22271 
22272 
22273 done_without_assess:
22274 	sd_ssc_fini(ssc);
22275 
22276 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22277 	return (err);
22278 
22279 done_with_assess:
22280 	mutex_enter(SD_MUTEX(un));
22281 	un->un_ncmds_in_driver--;
22282 	ASSERT(un->un_ncmds_in_driver >= 0);
22283 	mutex_exit(SD_MUTEX(un));
22284 
22285 done_quick_assess:
22286 	if (err != 0)
22287 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22288 	/* Uninitialize sd_ssc_t pointer */
22289 	sd_ssc_fini(ssc);
22290 
22291 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22292 	return (err);
22293 }
22294 
22295 
22296 /*
22297  *    Function: sd_dkio_ctrl_info
22298  *
22299  * Description: This routine is the driver entry point for handling controller
22300  *		information ioctl requests (DKIOCINFO).
22301  *
22302  *   Arguments: dev  - the device number
22303  *		arg  - pointer to user provided dk_cinfo structure
22304  *		       specifying the controller type and attributes.
22305  *		flag - this argument is a pass through to ddi_copyxxx()
22306  *		       directly from the mode argument of ioctl().
22307  *
22308  * Return Code: 0
22309  *		EFAULT
22310  *		ENXIO
22311  */
22312 
22313 static int
22314 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22315 {
22316 	struct sd_lun	*un = NULL;
22317 	struct dk_cinfo	*info;
22318 	dev_info_t	*pdip;
22319 	int		lun, tgt;
22320 
22321 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22322 		return (ENXIO);
22323 	}
22324 
22325 	info = (struct dk_cinfo *)
22326 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22327 
22328 	switch (un->un_ctype) {
22329 	case CTYPE_CDROM:
22330 		info->dki_ctype = DKC_CDROM;
22331 		break;
22332 	default:
22333 		info->dki_ctype = DKC_SCSI_CCS;
22334 		break;
22335 	}
22336 	pdip = ddi_get_parent(SD_DEVINFO(un));
22337 	info->dki_cnum = ddi_get_instance(pdip);
22338 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22339 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22340 	} else {
22341 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22342 		    DK_DEVLEN - 1);
22343 	}
22344 
22345 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22346 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22347 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22348 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22349 
22350 	/* Unit Information */
22351 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22352 	info->dki_slave = ((tgt << 3) | lun);
22353 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22354 	    DK_DEVLEN - 1);
22355 	info->dki_flags = DKI_FMTVOL;
22356 	info->dki_partition = SDPART(dev);
22357 
22358 	/* Max Transfer size of this device in blocks */
22359 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22360 	info->dki_addr = 0;
22361 	info->dki_space = 0;
22362 	info->dki_prio = 0;
22363 	info->dki_vec = 0;
22364 
22365 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22366 		kmem_free(info, sizeof (struct dk_cinfo));
22367 		return (EFAULT);
22368 	} else {
22369 		kmem_free(info, sizeof (struct dk_cinfo));
22370 		return (0);
22371 	}
22372 }
22373 
22374 
22375 /*
22376  *    Function: sd_get_media_info
22377  *
22378  * Description: This routine is the driver entry point for handling ioctl
22379  *		requests for the media type or command set profile used by the
22380  *		drive to operate on the media (DKIOCGMEDIAINFO).
22381  *
22382  *   Arguments: dev	- the device number
22383  *		arg	- pointer to user provided dk_minfo structure
22384  *			  specifying the media type, logical block size and
22385  *			  drive capacity.
22386  *		flag	- this argument is a pass through to ddi_copyxxx()
22387  *			  directly from the mode argument of ioctl().
22388  *
22389  * Return Code: 0
22390  *		EACCESS
22391  *		EFAULT
22392  *		ENXIO
22393  *		EIO
22394  */
22395 
22396 static int
22397 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22398 {
22399 	struct sd_lun		*un = NULL;
22400 	struct uscsi_cmd	com;
22401 	struct scsi_inquiry	*sinq;
22402 	struct dk_minfo		media_info;
22403 	u_longlong_t		media_capacity;
22404 	uint64_t		capacity;
22405 	uint_t			lbasize;
22406 	uchar_t			*out_data;
22407 	uchar_t			*rqbuf;
22408 	int			rval = 0;
22409 	int			rtn;
22410 	sd_ssc_t		*ssc;
22411 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22412 	    (un->un_state == SD_STATE_OFFLINE)) {
22413 		return (ENXIO);
22414 	}
22415 
22416 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22417 
22418 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22419 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22420 
22421 	/* Issue a TUR to determine if the drive is ready with media present */
22422 	ssc = sd_ssc_init(un);
22423 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22424 	if (rval == ENXIO) {
22425 		goto done;
22426 	} else if (rval != 0) {
22427 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22428 	}
22429 
22430 	/* Now get configuration data */
22431 	if (ISCD(un)) {
22432 		media_info.dki_media_type = DK_CDROM;
22433 
22434 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22435 		if (un->un_f_mmc_cap == TRUE) {
22436 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22437 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22438 			    SD_PATH_STANDARD);
22439 
22440 			if (rtn) {
22441 				/*
22442 				 * We ignore all failures for CD and need to
22443 				 * put the assessment before processing code
22444 				 * to avoid missing assessment for FMA.
22445 				 */
22446 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22447 				/*
22448 				 * Failed for other than an illegal request
22449 				 * or command not supported
22450 				 */
22451 				if ((com.uscsi_status == STATUS_CHECK) &&
22452 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22453 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22454 					    (rqbuf[12] != 0x20)) {
22455 						rval = EIO;
22456 						goto no_assessment;
22457 					}
22458 				}
22459 			} else {
22460 				/*
22461 				 * The GET CONFIGURATION command succeeded
22462 				 * so set the media type according to the
22463 				 * returned data
22464 				 */
22465 				media_info.dki_media_type = out_data[6];
22466 				media_info.dki_media_type <<= 8;
22467 				media_info.dki_media_type |= out_data[7];
22468 			}
22469 		}
22470 	} else {
22471 		/*
22472 		 * The profile list is not available, so we attempt to identify
22473 		 * the media type based on the inquiry data
22474 		 */
22475 		sinq = un->un_sd->sd_inq;
22476 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22477 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22478 			/* This is a direct access device  or optical disk */
22479 			media_info.dki_media_type = DK_FIXED_DISK;
22480 
22481 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22482 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22483 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22484 					media_info.dki_media_type = DK_ZIP;
22485 				} else if (
22486 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22487 					media_info.dki_media_type = DK_JAZ;
22488 				}
22489 			}
22490 		} else {
22491 			/*
22492 			 * Not a CD, direct access or optical disk so return
22493 			 * unknown media
22494 			 */
22495 			media_info.dki_media_type = DK_UNKNOWN;
22496 		}
22497 	}
22498 
22499 	/* Now read the capacity so we can provide the lbasize and capacity */
22500 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22501 	    SD_PATH_DIRECT);
22502 	switch (rval) {
22503 	case 0:
22504 		break;
22505 	case EACCES:
22506 		rval = EACCES;
22507 		goto done;
22508 	default:
22509 		rval = EIO;
22510 		goto done;
22511 	}
22512 
22513 	/*
22514 	 * If lun is expanded dynamically, update the un structure.
22515 	 */
22516 	mutex_enter(SD_MUTEX(un));
22517 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22518 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22519 	    (capacity > un->un_blockcount)) {
22520 		sd_update_block_info(un, lbasize, capacity);
22521 	}
22522 	mutex_exit(SD_MUTEX(un));
22523 
22524 	media_info.dki_lbsize = lbasize;
22525 	media_capacity = capacity;
22526 
22527 	/*
22528 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22529 	 * un->un_sys_blocksize chunks. So we need to convert it into
22530 	 * cap.lbasize chunks.
22531 	 */
22532 	media_capacity *= un->un_sys_blocksize;
22533 	media_capacity /= lbasize;
22534 	media_info.dki_capacity = media_capacity;
22535 
22536 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22537 		rval = EFAULT;
22538 		/* Put goto. Anybody might add some code below in future */
22539 		goto no_assessment;
22540 	}
22541 done:
22542 	if (rval != 0) {
22543 		if (rval == EIO)
22544 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22545 		else
22546 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22547 	}
22548 no_assessment:
22549 	sd_ssc_fini(ssc);
22550 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22551 	kmem_free(rqbuf, SENSE_LENGTH);
22552 	return (rval);
22553 }
22554 
22555 
22556 /*
22557  *    Function: sd_check_media
22558  *
22559  * Description: This utility routine implements the functionality for the
22560  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22561  *		driver state changes from that specified by the user
22562  *		(inserted or ejected). For example, if the user specifies
22563  *		DKIO_EJECTED and the current media state is inserted this
22564  *		routine will immediately return DKIO_INSERTED. However, if the
22565  *		current media state is not inserted the user thread will be
22566  *		blocked until the drive state changes. If DKIO_NONE is specified
22567  *		the user thread will block until a drive state change occurs.
22568  *
22569  *   Arguments: dev  - the device number
22570  *		state  - user pointer to a dkio_state, updated with the current
22571  *			drive state at return.
22572  *
22573  * Return Code: ENXIO
22574  *		EIO
22575  *		EAGAIN
22576  *		EINTR
22577  */
22578 
22579 static int
22580 sd_check_media(dev_t dev, enum dkio_state state)
22581 {
22582 	struct sd_lun		*un = NULL;
22583 	enum dkio_state		prev_state;
22584 	opaque_t		token = NULL;
22585 	int			rval = 0;
22586 	sd_ssc_t		*ssc;
22587 	dev_t			sub_dev;
22588 
22589 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22590 		return (ENXIO);
22591 	}
22592 
22593 	/*
22594 	 * sub_dev is used when submitting request to scsi watch.
22595 	 * All submissions are unified to use same device number.
22596 	 */
22597 	sub_dev = sd_make_device(SD_DEVINFO(un));
22598 
22599 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22600 
22601 	ssc = sd_ssc_init(un);
22602 
22603 	mutex_enter(SD_MUTEX(un));
22604 
22605 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22606 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22607 
22608 	prev_state = un->un_mediastate;
22609 
22610 	/* is there anything to do? */
22611 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22612 		/*
22613 		 * submit the request to the scsi_watch service;
22614 		 * scsi_media_watch_cb() does the real work
22615 		 */
22616 		mutex_exit(SD_MUTEX(un));
22617 
22618 		/*
22619 		 * This change handles the case where a scsi watch request is
22620 		 * added to a device that is powered down. To accomplish this
22621 		 * we power up the device before adding the scsi watch request,
22622 		 * since the scsi watch sends a TUR directly to the device
22623 		 * which the device cannot handle if it is powered down.
22624 		 */
22625 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22626 			mutex_enter(SD_MUTEX(un));
22627 			goto done;
22628 		}
22629 
22630 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22631 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22632 		    (caddr_t)sub_dev);
22633 
22634 		sd_pm_exit(un);
22635 
22636 		mutex_enter(SD_MUTEX(un));
22637 		if (token == NULL) {
22638 			rval = EAGAIN;
22639 			goto done;
22640 		}
22641 
22642 		/*
22643 		 * This is a special case IOCTL that doesn't return
22644 		 * until the media state changes. Routine sdpower
22645 		 * knows about and handles this so don't count it
22646 		 * as an active cmd in the driver, which would
22647 		 * keep the device busy to the pm framework.
22648 		 * If the count isn't decremented the device can't
22649 		 * be powered down.
22650 		 */
22651 		un->un_ncmds_in_driver--;
22652 		ASSERT(un->un_ncmds_in_driver >= 0);
22653 
22654 		/*
22655 		 * if a prior request had been made, this will be the same
22656 		 * token, as scsi_watch was designed that way.
22657 		 */
22658 		un->un_swr_token = token;
22659 		un->un_specified_mediastate = state;
22660 
22661 		/*
22662 		 * now wait for media change
22663 		 * we will not be signalled unless mediastate == state but it is
22664 		 * still better to test for this condition, since there is a
22665 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22666 		 */
22667 		SD_TRACE(SD_LOG_COMMON, un,
22668 		    "sd_check_media: waiting for media state change\n");
22669 		while (un->un_mediastate == state) {
22670 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22671 				SD_TRACE(SD_LOG_COMMON, un,
22672 				    "sd_check_media: waiting for media state "
22673 				    "was interrupted\n");
22674 				un->un_ncmds_in_driver++;
22675 				rval = EINTR;
22676 				goto done;
22677 			}
22678 			SD_TRACE(SD_LOG_COMMON, un,
22679 			    "sd_check_media: received signal, state=%x\n",
22680 			    un->un_mediastate);
22681 		}
22682 		/*
22683 		 * Inc the counter to indicate the device once again
22684 		 * has an active outstanding cmd.
22685 		 */
22686 		un->un_ncmds_in_driver++;
22687 	}
22688 
22689 	/* invalidate geometry */
22690 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22691 		sr_ejected(un);
22692 	}
22693 
22694 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22695 		uint64_t	capacity;
22696 		uint_t		lbasize;
22697 
22698 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22699 		mutex_exit(SD_MUTEX(un));
22700 		/*
22701 		 * Since the following routines use SD_PATH_DIRECT, we must
22702 		 * call PM directly before the upcoming disk accesses. This
22703 		 * may cause the disk to be power/spin up.
22704 		 */
22705 
22706 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22707 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22708 			    &capacity, &lbasize, SD_PATH_DIRECT);
22709 			if (rval != 0) {
22710 				sd_pm_exit(un);
22711 				if (rval == EIO)
22712 					sd_ssc_assessment(ssc,
22713 					    SD_FMT_STATUS_CHECK);
22714 				else
22715 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22716 				mutex_enter(SD_MUTEX(un));
22717 				goto done;
22718 			}
22719 		} else {
22720 			rval = EIO;
22721 			mutex_enter(SD_MUTEX(un));
22722 			goto done;
22723 		}
22724 		mutex_enter(SD_MUTEX(un));
22725 
22726 		sd_update_block_info(un, lbasize, capacity);
22727 
22728 		/*
22729 		 *  Check if the media in the device is writable or not
22730 		 */
22731 		if (ISCD(un)) {
22732 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22733 		}
22734 
22735 		mutex_exit(SD_MUTEX(un));
22736 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22737 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22738 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22739 			sd_set_pstats(un);
22740 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22741 			    "sd_check_media: un:0x%p pstats created and "
22742 			    "set\n", un);
22743 		}
22744 
22745 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22746 		    SD_PATH_DIRECT);
22747 
22748 		sd_pm_exit(un);
22749 
22750 		if (rval != 0) {
22751 			if (rval == EIO)
22752 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22753 			else
22754 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22755 		}
22756 
22757 		mutex_enter(SD_MUTEX(un));
22758 	}
22759 done:
22760 	sd_ssc_fini(ssc);
22761 	un->un_f_watcht_stopped = FALSE;
22762 	if (token != NULL && un->un_swr_token != NULL) {
22763 		/*
22764 		 * Use of this local token and the mutex ensures that we avoid
22765 		 * some race conditions associated with terminating the
22766 		 * scsi watch.
22767 		 */
22768 		token = un->un_swr_token;
22769 		mutex_exit(SD_MUTEX(un));
22770 		(void) scsi_watch_request_terminate(token,
22771 		    SCSI_WATCH_TERMINATE_WAIT);
22772 		if (scsi_watch_get_ref_count(token) == 0) {
22773 			mutex_enter(SD_MUTEX(un));
22774 			un->un_swr_token = (opaque_t)NULL;
22775 		} else {
22776 			mutex_enter(SD_MUTEX(un));
22777 		}
22778 	}
22779 
22780 	/*
22781 	 * Update the capacity kstat value, if no media previously
22782 	 * (capacity kstat is 0) and a media has been inserted
22783 	 * (un_f_blockcount_is_valid == TRUE)
22784 	 */
22785 	if (un->un_errstats) {
22786 		struct sd_errstats	*stp = NULL;
22787 
22788 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22789 		if ((stp->sd_capacity.value.ui64 == 0) &&
22790 		    (un->un_f_blockcount_is_valid == TRUE)) {
22791 			stp->sd_capacity.value.ui64 =
22792 			    (uint64_t)((uint64_t)un->un_blockcount *
22793 			    un->un_sys_blocksize);
22794 		}
22795 	}
22796 	mutex_exit(SD_MUTEX(un));
22797 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22798 	return (rval);
22799 }
22800 
22801 
22802 /*
22803  *    Function: sd_delayed_cv_broadcast
22804  *
22805  * Description: Delayed cv_broadcast to allow for target to recover from media
22806  *		insertion.
22807  *
22808  *   Arguments: arg - driver soft state (unit) structure
22809  */
22810 
22811 static void
22812 sd_delayed_cv_broadcast(void *arg)
22813 {
22814 	struct sd_lun *un = arg;
22815 
22816 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22817 
22818 	mutex_enter(SD_MUTEX(un));
22819 	un->un_dcvb_timeid = NULL;
22820 	cv_broadcast(&un->un_state_cv);
22821 	mutex_exit(SD_MUTEX(un));
22822 }
22823 
22824 
22825 /*
22826  *    Function: sd_media_watch_cb
22827  *
22828  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22829  *		routine processes the TUR sense data and updates the driver
22830  *		state if a transition has occurred. The user thread
22831  *		(sd_check_media) is then signalled.
22832  *
22833  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22834  *			among multiple watches that share this callback function
22835  *		resultp - scsi watch facility result packet containing scsi
22836  *			  packet, status byte and sense data
22837  *
22838  * Return Code: 0 for success, -1 for failure
22839  */
22840 
22841 static int
22842 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22843 {
22844 	struct sd_lun			*un;
22845 	struct scsi_status		*statusp = resultp->statusp;
22846 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22847 	enum dkio_state			state = DKIO_NONE;
22848 	dev_t				dev = (dev_t)arg;
22849 	uchar_t				actual_sense_length;
22850 	uint8_t				skey, asc, ascq;
22851 
22852 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22853 		return (-1);
22854 	}
22855 	actual_sense_length = resultp->actual_sense_length;
22856 
22857 	mutex_enter(SD_MUTEX(un));
22858 	SD_TRACE(SD_LOG_COMMON, un,
22859 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22860 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22861 
22862 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22863 		un->un_mediastate = DKIO_DEV_GONE;
22864 		cv_broadcast(&un->un_state_cv);
22865 		mutex_exit(SD_MUTEX(un));
22866 
22867 		return (0);
22868 	}
22869 
22870 	/*
22871 	 * If there was a check condition then sensep points to valid sense data
22872 	 * If status was not a check condition but a reservation or busy status
22873 	 * then the new state is DKIO_NONE
22874 	 */
22875 	if (sensep != NULL) {
22876 		skey = scsi_sense_key(sensep);
22877 		asc = scsi_sense_asc(sensep);
22878 		ascq = scsi_sense_ascq(sensep);
22879 
22880 		SD_INFO(SD_LOG_COMMON, un,
22881 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22882 		    skey, asc, ascq);
22883 		/* This routine only uses up to 13 bytes of sense data. */
22884 		if (actual_sense_length >= 13) {
22885 			if (skey == KEY_UNIT_ATTENTION) {
22886 				if (asc == 0x28) {
22887 					state = DKIO_INSERTED;
22888 				}
22889 			} else if (skey == KEY_NOT_READY) {
22890 				/*
22891 				 * Sense data of 02/06/00 means that the
22892 				 * drive could not read the media (No
22893 				 * reference position found). In this case
22894 				 * to prevent a hang on the DKIOCSTATE IOCTL
22895 				 * we set the media state to DKIO_INSERTED.
22896 				 */
22897 				if (asc == 0x06 && ascq == 0x00)
22898 					state = DKIO_INSERTED;
22899 
22900 				/*
22901 				 * if 02/04/02  means that the host
22902 				 * should send start command. Explicitly
22903 				 * leave the media state as is
22904 				 * (inserted) as the media is inserted
22905 				 * and host has stopped device for PM
22906 				 * reasons. Upon next true read/write
22907 				 * to this media will bring the
22908 				 * device to the right state good for
22909 				 * media access.
22910 				 */
22911 				if (asc == 0x3a) {
22912 					state = DKIO_EJECTED;
22913 				} else {
22914 					/*
22915 					 * If the drive is busy with an
22916 					 * operation or long write, keep the
22917 					 * media in an inserted state.
22918 					 */
22919 
22920 					if ((asc == 0x04) &&
22921 					    ((ascq == 0x02) ||
22922 					    (ascq == 0x07) ||
22923 					    (ascq == 0x08))) {
22924 						state = DKIO_INSERTED;
22925 					}
22926 				}
22927 			} else if (skey == KEY_NO_SENSE) {
22928 				if ((asc == 0x00) && (ascq == 0x00)) {
22929 					/*
22930 					 * Sense Data 00/00/00 does not provide
22931 					 * any information about the state of
22932 					 * the media. Ignore it.
22933 					 */
22934 					mutex_exit(SD_MUTEX(un));
22935 					return (0);
22936 				}
22937 			}
22938 		}
22939 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22940 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22941 		state = DKIO_INSERTED;
22942 	}
22943 
22944 	SD_TRACE(SD_LOG_COMMON, un,
22945 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22946 	    state, un->un_specified_mediastate);
22947 
22948 	/*
22949 	 * now signal the waiting thread if this is *not* the specified state;
22950 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22951 	 * to recover
22952 	 */
22953 	if (state != un->un_specified_mediastate) {
22954 		un->un_mediastate = state;
22955 		if (state == DKIO_INSERTED) {
22956 			/*
22957 			 * delay the signal to give the drive a chance
22958 			 * to do what it apparently needs to do
22959 			 */
22960 			SD_TRACE(SD_LOG_COMMON, un,
22961 			    "sd_media_watch_cb: delayed cv_broadcast\n");
22962 			if (un->un_dcvb_timeid == NULL) {
22963 				un->un_dcvb_timeid =
22964 				    timeout(sd_delayed_cv_broadcast, un,
22965 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
22966 			}
22967 		} else {
22968 			SD_TRACE(SD_LOG_COMMON, un,
22969 			    "sd_media_watch_cb: immediate cv_broadcast\n");
22970 			cv_broadcast(&un->un_state_cv);
22971 		}
22972 	}
22973 	mutex_exit(SD_MUTEX(un));
22974 	return (0);
22975 }
22976 
22977 
22978 /*
22979  *    Function: sd_dkio_get_temp
22980  *
22981  * Description: This routine is the driver entry point for handling ioctl
22982  *		requests to get the disk temperature.
22983  *
22984  *   Arguments: dev  - the device number
22985  *		arg  - pointer to user provided dk_temperature structure.
22986  *		flag - this argument is a pass through to ddi_copyxxx()
22987  *		       directly from the mode argument of ioctl().
22988  *
22989  * Return Code: 0
22990  *		EFAULT
22991  *		ENXIO
22992  *		EAGAIN
22993  */
22994 
22995 static int
22996 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
22997 {
22998 	struct sd_lun		*un = NULL;
22999 	struct dk_temperature	*dktemp = NULL;
23000 	uchar_t			*temperature_page;
23001 	int			rval = 0;
23002 	int			path_flag = SD_PATH_STANDARD;
23003 	sd_ssc_t		*ssc;
23004 
23005 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23006 		return (ENXIO);
23007 	}
23008 
23009 	ssc = sd_ssc_init(un);
23010 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23011 
23012 	/* copyin the disk temp argument to get the user flags */
23013 	if (ddi_copyin((void *)arg, dktemp,
23014 	    sizeof (struct dk_temperature), flag) != 0) {
23015 		rval = EFAULT;
23016 		goto done;
23017 	}
23018 
23019 	/* Initialize the temperature to invalid. */
23020 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23021 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23022 
23023 	/*
23024 	 * Note: Investigate removing the "bypass pm" semantic.
23025 	 * Can we just bypass PM always?
23026 	 */
23027 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23028 		path_flag = SD_PATH_DIRECT;
23029 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23030 		mutex_enter(&un->un_pm_mutex);
23031 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23032 			/*
23033 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23034 			 * in low power mode, we can not wake it up, Need to
23035 			 * return EAGAIN.
23036 			 */
23037 			mutex_exit(&un->un_pm_mutex);
23038 			rval = EAGAIN;
23039 			goto done;
23040 		} else {
23041 			/*
23042 			 * Indicate to PM the device is busy. This is required
23043 			 * to avoid a race - i.e. the ioctl is issuing a
23044 			 * command and the pm framework brings down the device
23045 			 * to low power mode (possible power cut-off on some
23046 			 * platforms).
23047 			 */
23048 			mutex_exit(&un->un_pm_mutex);
23049 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23050 				rval = EAGAIN;
23051 				goto done;
23052 			}
23053 		}
23054 	}
23055 
23056 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23057 
23058 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
23059 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
23060 	if (rval != 0)
23061 		goto done2;
23062 
23063 	/*
23064 	 * For the current temperature verify that the parameter length is 0x02
23065 	 * and the parameter code is 0x00
23066 	 */
23067 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23068 	    (temperature_page[5] == 0x00)) {
23069 		if (temperature_page[9] == 0xFF) {
23070 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23071 		} else {
23072 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23073 		}
23074 	}
23075 
23076 	/*
23077 	 * For the reference temperature verify that the parameter
23078 	 * length is 0x02 and the parameter code is 0x01
23079 	 */
23080 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23081 	    (temperature_page[11] == 0x01)) {
23082 		if (temperature_page[15] == 0xFF) {
23083 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23084 		} else {
23085 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23086 		}
23087 	}
23088 
23089 	/* Do the copyout regardless of the temperature commands status. */
23090 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23091 	    flag) != 0) {
23092 		rval = EFAULT;
23093 		goto done1;
23094 	}
23095 
23096 done2:
23097 	if (rval != 0) {
23098 		if (rval == EIO)
23099 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23100 		else
23101 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23102 	}
23103 done1:
23104 	if (path_flag == SD_PATH_DIRECT) {
23105 		sd_pm_exit(un);
23106 	}
23107 
23108 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23109 done:
23110 	sd_ssc_fini(ssc);
23111 	if (dktemp != NULL) {
23112 		kmem_free(dktemp, sizeof (struct dk_temperature));
23113 	}
23114 
23115 	return (rval);
23116 }
23117 
23118 
23119 /*
23120  *    Function: sd_log_page_supported
23121  *
23122  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23123  *		supported log pages.
23124  *
23125  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
23126  *                      structure for this target.
23127  *		log_page -
23128  *
23129  * Return Code: -1 - on error (log sense is optional and may not be supported).
23130  *		0  - log page not found.
23131  *  		1  - log page found.
23132  */
23133 
23134 static int
23135 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23136 {
23137 	uchar_t *log_page_data;
23138 	int	i;
23139 	int	match = 0;
23140 	int	log_size;
23141 	int	status = 0;
23142 	struct sd_lun	*un;
23143 
23144 	ASSERT(ssc != NULL);
23145 	un = ssc->ssc_un;
23146 	ASSERT(un != NULL);
23147 
23148 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23149 
23150 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23151 	    SD_PATH_DIRECT);
23152 
23153 	if (status != 0) {
23154 		if (status == EIO) {
23155 			/*
23156 			 * Some disks do not support log sense, we
23157 			 * should ignore this kind of error(sense key is
23158 			 * 0x5 - illegal request).
23159 			 */
23160 			uint8_t *sensep;
23161 			int senlen;
23162 
23163 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23164 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23165 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23166 
23167 			if (senlen > 0 &&
23168 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23169 				sd_ssc_assessment(ssc,
23170 				    SD_FMT_IGNORE_COMPROMISE);
23171 			} else {
23172 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23173 			}
23174 		} else {
23175 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23176 		}
23177 
23178 		SD_ERROR(SD_LOG_COMMON, un,
23179 		    "sd_log_page_supported: failed log page retrieval\n");
23180 		kmem_free(log_page_data, 0xFF);
23181 		return (-1);
23182 	}
23183 
23184 	log_size = log_page_data[3];
23185 
23186 	/*
23187 	 * The list of supported log pages start from the fourth byte. Check
23188 	 * until we run out of log pages or a match is found.
23189 	 */
23190 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23191 		if (log_page_data[i] == log_page) {
23192 			match++;
23193 		}
23194 	}
23195 	kmem_free(log_page_data, 0xFF);
23196 	return (match);
23197 }
23198 
23199 
23200 /*
23201  *    Function: sd_mhdioc_failfast
23202  *
23203  * Description: This routine is the driver entry point for handling ioctl
23204  *		requests to enable/disable the multihost failfast option.
23205  *		(MHIOCENFAILFAST)
23206  *
23207  *   Arguments: dev	- the device number
23208  *		arg	- user specified probing interval.
23209  *		flag	- this argument is a pass through to ddi_copyxxx()
23210  *			  directly from the mode argument of ioctl().
23211  *
23212  * Return Code: 0
23213  *		EFAULT
23214  *		ENXIO
23215  */
23216 
23217 static int
23218 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23219 {
23220 	struct sd_lun	*un = NULL;
23221 	int		mh_time;
23222 	int		rval = 0;
23223 
23224 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23225 		return (ENXIO);
23226 	}
23227 
23228 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23229 		return (EFAULT);
23230 
23231 	if (mh_time) {
23232 		mutex_enter(SD_MUTEX(un));
23233 		un->un_resvd_status |= SD_FAILFAST;
23234 		mutex_exit(SD_MUTEX(un));
23235 		/*
23236 		 * If mh_time is INT_MAX, then this ioctl is being used for
23237 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23238 		 */
23239 		if (mh_time != INT_MAX) {
23240 			rval = sd_check_mhd(dev, mh_time);
23241 		}
23242 	} else {
23243 		(void) sd_check_mhd(dev, 0);
23244 		mutex_enter(SD_MUTEX(un));
23245 		un->un_resvd_status &= ~SD_FAILFAST;
23246 		mutex_exit(SD_MUTEX(un));
23247 	}
23248 	return (rval);
23249 }
23250 
23251 
23252 /*
23253  *    Function: sd_mhdioc_takeown
23254  *
23255  * Description: This routine is the driver entry point for handling ioctl
23256  *		requests to forcefully acquire exclusive access rights to the
23257  *		multihost disk (MHIOCTKOWN).
23258  *
23259  *   Arguments: dev	- the device number
23260  *		arg	- user provided structure specifying the delay
23261  *			  parameters in milliseconds
23262  *		flag	- this argument is a pass through to ddi_copyxxx()
23263  *			  directly from the mode argument of ioctl().
23264  *
23265  * Return Code: 0
23266  *		EFAULT
23267  *		ENXIO
23268  */
23269 
23270 static int
23271 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23272 {
23273 	struct sd_lun		*un = NULL;
23274 	struct mhioctkown	*tkown = NULL;
23275 	int			rval = 0;
23276 
23277 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23278 		return (ENXIO);
23279 	}
23280 
23281 	if (arg != NULL) {
23282 		tkown = (struct mhioctkown *)
23283 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23284 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23285 		if (rval != 0) {
23286 			rval = EFAULT;
23287 			goto error;
23288 		}
23289 	}
23290 
23291 	rval = sd_take_ownership(dev, tkown);
23292 	mutex_enter(SD_MUTEX(un));
23293 	if (rval == 0) {
23294 		un->un_resvd_status |= SD_RESERVE;
23295 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23296 			sd_reinstate_resv_delay =
23297 			    tkown->reinstate_resv_delay * 1000;
23298 		} else {
23299 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23300 		}
23301 		/*
23302 		 * Give the scsi_watch routine interval set by
23303 		 * the MHIOCENFAILFAST ioctl precedence here.
23304 		 */
23305 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23306 			mutex_exit(SD_MUTEX(un));
23307 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23308 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23309 			    "sd_mhdioc_takeown : %d\n",
23310 			    sd_reinstate_resv_delay);
23311 		} else {
23312 			mutex_exit(SD_MUTEX(un));
23313 		}
23314 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23315 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23316 	} else {
23317 		un->un_resvd_status &= ~SD_RESERVE;
23318 		mutex_exit(SD_MUTEX(un));
23319 	}
23320 
23321 error:
23322 	if (tkown != NULL) {
23323 		kmem_free(tkown, sizeof (struct mhioctkown));
23324 	}
23325 	return (rval);
23326 }
23327 
23328 
23329 /*
23330  *    Function: sd_mhdioc_release
23331  *
23332  * Description: This routine is the driver entry point for handling ioctl
23333  *		requests to release exclusive access rights to the multihost
23334  *		disk (MHIOCRELEASE).
23335  *
23336  *   Arguments: dev	- the device number
23337  *
23338  * Return Code: 0
23339  *		ENXIO
23340  */
23341 
23342 static int
23343 sd_mhdioc_release(dev_t dev)
23344 {
23345 	struct sd_lun		*un = NULL;
23346 	timeout_id_t		resvd_timeid_save;
23347 	int			resvd_status_save;
23348 	int			rval = 0;
23349 
23350 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23351 		return (ENXIO);
23352 	}
23353 
23354 	mutex_enter(SD_MUTEX(un));
23355 	resvd_status_save = un->un_resvd_status;
23356 	un->un_resvd_status &=
23357 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23358 	if (un->un_resvd_timeid) {
23359 		resvd_timeid_save = un->un_resvd_timeid;
23360 		un->un_resvd_timeid = NULL;
23361 		mutex_exit(SD_MUTEX(un));
23362 		(void) untimeout(resvd_timeid_save);
23363 	} else {
23364 		mutex_exit(SD_MUTEX(un));
23365 	}
23366 
23367 	/*
23368 	 * destroy any pending timeout thread that may be attempting to
23369 	 * reinstate reservation on this device.
23370 	 */
23371 	sd_rmv_resv_reclaim_req(dev);
23372 
23373 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23374 		mutex_enter(SD_MUTEX(un));
23375 		if ((un->un_mhd_token) &&
23376 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23377 			mutex_exit(SD_MUTEX(un));
23378 			(void) sd_check_mhd(dev, 0);
23379 		} else {
23380 			mutex_exit(SD_MUTEX(un));
23381 		}
23382 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23383 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23384 	} else {
23385 		/*
23386 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23387 		 */
23388 		mutex_enter(SD_MUTEX(un));
23389 		un->un_resvd_status = resvd_status_save;
23390 		mutex_exit(SD_MUTEX(un));
23391 	}
23392 	return (rval);
23393 }
23394 
23395 
23396 /*
23397  *    Function: sd_mhdioc_register_devid
23398  *
23399  * Description: This routine is the driver entry point for handling ioctl
23400  *		requests to register the device id (MHIOCREREGISTERDEVID).
23401  *
23402  *		Note: The implementation for this ioctl has been updated to
23403  *		be consistent with the original PSARC case (1999/357)
23404  *		(4375899, 4241671, 4220005)
23405  *
23406  *   Arguments: dev	- the device number
23407  *
23408  * Return Code: 0
23409  *		ENXIO
23410  */
23411 
23412 static int
23413 sd_mhdioc_register_devid(dev_t dev)
23414 {
23415 	struct sd_lun	*un = NULL;
23416 	int		rval = 0;
23417 	sd_ssc_t	*ssc;
23418 
23419 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23420 		return (ENXIO);
23421 	}
23422 
23423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23424 
23425 	mutex_enter(SD_MUTEX(un));
23426 
23427 	/* If a devid already exists, de-register it */
23428 	if (un->un_devid != NULL) {
23429 		ddi_devid_unregister(SD_DEVINFO(un));
23430 		/*
23431 		 * After unregister devid, needs to free devid memory
23432 		 */
23433 		ddi_devid_free(un->un_devid);
23434 		un->un_devid = NULL;
23435 	}
23436 
23437 	/* Check for reservation conflict */
23438 	mutex_exit(SD_MUTEX(un));
23439 	ssc = sd_ssc_init(un);
23440 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23441 	mutex_enter(SD_MUTEX(un));
23442 
23443 	switch (rval) {
23444 	case 0:
23445 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23446 		break;
23447 	case EACCES:
23448 		break;
23449 	default:
23450 		rval = EIO;
23451 	}
23452 
23453 	mutex_exit(SD_MUTEX(un));
23454 	if (rval != 0) {
23455 		if (rval == EIO)
23456 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23457 		else
23458 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23459 	}
23460 	sd_ssc_fini(ssc);
23461 	return (rval);
23462 }
23463 
23464 
23465 /*
23466  *    Function: sd_mhdioc_inkeys
23467  *
23468  * Description: This routine is the driver entry point for handling ioctl
23469  *		requests to issue the SCSI-3 Persistent In Read Keys command
23470  *		to the device (MHIOCGRP_INKEYS).
23471  *
23472  *   Arguments: dev	- the device number
23473  *		arg	- user provided in_keys structure
23474  *		flag	- this argument is a pass through to ddi_copyxxx()
23475  *			  directly from the mode argument of ioctl().
23476  *
23477  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23478  *		ENXIO
23479  *		EFAULT
23480  */
23481 
23482 static int
23483 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23484 {
23485 	struct sd_lun		*un;
23486 	mhioc_inkeys_t		inkeys;
23487 	int			rval = 0;
23488 
23489 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23490 		return (ENXIO);
23491 	}
23492 
23493 #ifdef _MULTI_DATAMODEL
23494 	switch (ddi_model_convert_from(flag & FMODELS)) {
23495 	case DDI_MODEL_ILP32: {
23496 		struct mhioc_inkeys32	inkeys32;
23497 
23498 		if (ddi_copyin(arg, &inkeys32,
23499 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23500 			return (EFAULT);
23501 		}
23502 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23503 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23504 		    &inkeys, flag)) != 0) {
23505 			return (rval);
23506 		}
23507 		inkeys32.generation = inkeys.generation;
23508 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23509 		    flag) != 0) {
23510 			return (EFAULT);
23511 		}
23512 		break;
23513 	}
23514 	case DDI_MODEL_NONE:
23515 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23516 		    flag) != 0) {
23517 			return (EFAULT);
23518 		}
23519 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23520 		    &inkeys, flag)) != 0) {
23521 			return (rval);
23522 		}
23523 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23524 		    flag) != 0) {
23525 			return (EFAULT);
23526 		}
23527 		break;
23528 	}
23529 
23530 #else /* ! _MULTI_DATAMODEL */
23531 
23532 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23533 		return (EFAULT);
23534 	}
23535 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23536 	if (rval != 0) {
23537 		return (rval);
23538 	}
23539 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23540 		return (EFAULT);
23541 	}
23542 
23543 #endif /* _MULTI_DATAMODEL */
23544 
23545 	return (rval);
23546 }
23547 
23548 
23549 /*
23550  *    Function: sd_mhdioc_inresv
23551  *
23552  * Description: This routine is the driver entry point for handling ioctl
23553  *		requests to issue the SCSI-3 Persistent In Read Reservations
23554  *		command to the device (MHIOCGRP_INKEYS).
23555  *
23556  *   Arguments: dev	- the device number
23557  *		arg	- user provided in_resv structure
23558  *		flag	- this argument is a pass through to ddi_copyxxx()
23559  *			  directly from the mode argument of ioctl().
23560  *
23561  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23562  *		ENXIO
23563  *		EFAULT
23564  */
23565 
23566 static int
23567 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23568 {
23569 	struct sd_lun		*un;
23570 	mhioc_inresvs_t		inresvs;
23571 	int			rval = 0;
23572 
23573 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23574 		return (ENXIO);
23575 	}
23576 
23577 #ifdef _MULTI_DATAMODEL
23578 
23579 	switch (ddi_model_convert_from(flag & FMODELS)) {
23580 	case DDI_MODEL_ILP32: {
23581 		struct mhioc_inresvs32	inresvs32;
23582 
23583 		if (ddi_copyin(arg, &inresvs32,
23584 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23585 			return (EFAULT);
23586 		}
23587 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23588 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23589 		    &inresvs, flag)) != 0) {
23590 			return (rval);
23591 		}
23592 		inresvs32.generation = inresvs.generation;
23593 		if (ddi_copyout(&inresvs32, arg,
23594 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23595 			return (EFAULT);
23596 		}
23597 		break;
23598 	}
23599 	case DDI_MODEL_NONE:
23600 		if (ddi_copyin(arg, &inresvs,
23601 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23602 			return (EFAULT);
23603 		}
23604 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23605 		    &inresvs, flag)) != 0) {
23606 			return (rval);
23607 		}
23608 		if (ddi_copyout(&inresvs, arg,
23609 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23610 			return (EFAULT);
23611 		}
23612 		break;
23613 	}
23614 
23615 #else /* ! _MULTI_DATAMODEL */
23616 
23617 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23618 		return (EFAULT);
23619 	}
23620 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23621 	if (rval != 0) {
23622 		return (rval);
23623 	}
23624 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23625 		return (EFAULT);
23626 	}
23627 
23628 #endif /* ! _MULTI_DATAMODEL */
23629 
23630 	return (rval);
23631 }
23632 
23633 
23634 /*
23635  * The following routines support the clustering functionality described below
23636  * and implement lost reservation reclaim functionality.
23637  *
23638  * Clustering
23639  * ----------
23640  * The clustering code uses two different, independent forms of SCSI
23641  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23642  * Persistent Group Reservations. For any particular disk, it will use either
23643  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23644  *
23645  * SCSI-2
23646  * The cluster software takes ownership of a multi-hosted disk by issuing the
23647  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23648  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23649  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23650  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23651  * driver. The meaning of failfast is that if the driver (on this host) ever
23652  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23653  * it should immediately panic the host. The motivation for this ioctl is that
23654  * if this host does encounter reservation conflict, the underlying cause is
23655  * that some other host of the cluster has decided that this host is no longer
23656  * in the cluster and has seized control of the disks for itself. Since this
23657  * host is no longer in the cluster, it ought to panic itself. The
23658  * MHIOCENFAILFAST ioctl does two things:
23659  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23660  *      error to panic the host
23661  *      (b) it sets up a periodic timer to test whether this host still has
23662  *      "access" (in that no other host has reserved the device):  if the
23663  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23664  *      purpose of that periodic timer is to handle scenarios where the host is
23665  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23666  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23667  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23668  * the device itself.
23669  *
23670  * SCSI-3 PGR
23671  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23672  * facility is supported through the shared multihost disk ioctls
23673  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23674  * MHIOCGRP_PREEMPTANDABORT)
23675  *
23676  * Reservation Reclaim:
23677  * --------------------
23678  * To support the lost reservation reclaim operations this driver creates a
23679  * single thread to handle reinstating reservations on all devices that have
23680  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23681  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23682  * and the reservation reclaim thread loops through the requests to regain the
23683  * lost reservations.
23684  */
23685 
23686 /*
23687  *    Function: sd_check_mhd()
23688  *
23689  * Description: This function sets up and submits a scsi watch request or
23690  *		terminates an existing watch request. This routine is used in
23691  *		support of reservation reclaim.
23692  *
23693  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23694  *			 among multiple watches that share the callback function
23695  *		interval - the number of microseconds specifying the watch
23696  *			   interval for issuing TEST UNIT READY commands. If
23697  *			   set to 0 the watch should be terminated. If the
23698  *			   interval is set to 0 and if the device is required
23699  *			   to hold reservation while disabling failfast, the
23700  *			   watch is restarted with an interval of
23701  *			   reinstate_resv_delay.
23702  *
23703  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23704  *		ENXIO      - Indicates an invalid device was specified
23705  *		EAGAIN     - Unable to submit the scsi watch request
23706  */
23707 
23708 static int
23709 sd_check_mhd(dev_t dev, int interval)
23710 {
23711 	struct sd_lun	*un;
23712 	opaque_t	token;
23713 
23714 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23715 		return (ENXIO);
23716 	}
23717 
23718 	/* is this a watch termination request? */
23719 	if (interval == 0) {
23720 		mutex_enter(SD_MUTEX(un));
23721 		/* if there is an existing watch task then terminate it */
23722 		if (un->un_mhd_token) {
23723 			token = un->un_mhd_token;
23724 			un->un_mhd_token = NULL;
23725 			mutex_exit(SD_MUTEX(un));
23726 			(void) scsi_watch_request_terminate(token,
23727 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23728 			mutex_enter(SD_MUTEX(un));
23729 		} else {
23730 			mutex_exit(SD_MUTEX(un));
23731 			/*
23732 			 * Note: If we return here we don't check for the
23733 			 * failfast case. This is the original legacy
23734 			 * implementation but perhaps we should be checking
23735 			 * the failfast case.
23736 			 */
23737 			return (0);
23738 		}
23739 		/*
23740 		 * If the device is required to hold reservation while
23741 		 * disabling failfast, we need to restart the scsi_watch
23742 		 * routine with an interval of reinstate_resv_delay.
23743 		 */
23744 		if (un->un_resvd_status & SD_RESERVE) {
23745 			interval = sd_reinstate_resv_delay/1000;
23746 		} else {
23747 			/* no failfast so bail */
23748 			mutex_exit(SD_MUTEX(un));
23749 			return (0);
23750 		}
23751 		mutex_exit(SD_MUTEX(un));
23752 	}
23753 
23754 	/*
23755 	 * adjust minimum time interval to 1 second,
23756 	 * and convert from msecs to usecs
23757 	 */
23758 	if (interval > 0 && interval < 1000) {
23759 		interval = 1000;
23760 	}
23761 	interval *= 1000;
23762 
23763 	/*
23764 	 * submit the request to the scsi_watch service
23765 	 */
23766 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23767 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23768 	if (token == NULL) {
23769 		return (EAGAIN);
23770 	}
23771 
23772 	/*
23773 	 * save token for termination later on
23774 	 */
23775 	mutex_enter(SD_MUTEX(un));
23776 	un->un_mhd_token = token;
23777 	mutex_exit(SD_MUTEX(un));
23778 	return (0);
23779 }
23780 
23781 
23782 /*
23783  *    Function: sd_mhd_watch_cb()
23784  *
23785  * Description: This function is the call back function used by the scsi watch
23786  *		facility. The scsi watch facility sends the "Test Unit Ready"
23787  *		and processes the status. If applicable (i.e. a "Unit Attention"
23788  *		status and automatic "Request Sense" not used) the scsi watch
23789  *		facility will send a "Request Sense" and retrieve the sense data
23790  *		to be passed to this callback function. In either case the
23791  *		automatic "Request Sense" or the facility submitting one, this
23792  *		callback is passed the status and sense data.
23793  *
23794  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23795  *			among multiple watches that share this callback function
23796  *		resultp - scsi watch facility result packet containing scsi
23797  *			  packet, status byte and sense data
23798  *
23799  * Return Code: 0 - continue the watch task
23800  *		non-zero - terminate the watch task
23801  */
23802 
23803 static int
23804 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23805 {
23806 	struct sd_lun			*un;
23807 	struct scsi_status		*statusp;
23808 	uint8_t				*sensep;
23809 	struct scsi_pkt			*pkt;
23810 	uchar_t				actual_sense_length;
23811 	dev_t  				dev = (dev_t)arg;
23812 
23813 	ASSERT(resultp != NULL);
23814 	statusp			= resultp->statusp;
23815 	sensep			= (uint8_t *)resultp->sensep;
23816 	pkt			= resultp->pkt;
23817 	actual_sense_length	= resultp->actual_sense_length;
23818 
23819 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23820 		return (ENXIO);
23821 	}
23822 
23823 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23824 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23825 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23826 
23827 	/* Begin processing of the status and/or sense data */
23828 	if (pkt->pkt_reason != CMD_CMPLT) {
23829 		/* Handle the incomplete packet */
23830 		sd_mhd_watch_incomplete(un, pkt);
23831 		return (0);
23832 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23833 		if (*((unsigned char *)statusp)
23834 		    == STATUS_RESERVATION_CONFLICT) {
23835 			/*
23836 			 * Handle a reservation conflict by panicking if
23837 			 * configured for failfast or by logging the conflict
23838 			 * and updating the reservation status
23839 			 */
23840 			mutex_enter(SD_MUTEX(un));
23841 			if ((un->un_resvd_status & SD_FAILFAST) &&
23842 			    (sd_failfast_enable)) {
23843 				sd_panic_for_res_conflict(un);
23844 				/*NOTREACHED*/
23845 			}
23846 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23847 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23848 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23849 			mutex_exit(SD_MUTEX(un));
23850 		}
23851 	}
23852 
23853 	if (sensep != NULL) {
23854 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23855 			mutex_enter(SD_MUTEX(un));
23856 			if ((scsi_sense_asc(sensep) ==
23857 			    SD_SCSI_RESET_SENSE_CODE) &&
23858 			    (un->un_resvd_status & SD_RESERVE)) {
23859 				/*
23860 				 * The additional sense code indicates a power
23861 				 * on or bus device reset has occurred; update
23862 				 * the reservation status.
23863 				 */
23864 				un->un_resvd_status |=
23865 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23866 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23867 				    "sd_mhd_watch_cb: Lost Reservation\n");
23868 			}
23869 		} else {
23870 			return (0);
23871 		}
23872 	} else {
23873 		mutex_enter(SD_MUTEX(un));
23874 	}
23875 
23876 	if ((un->un_resvd_status & SD_RESERVE) &&
23877 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23878 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23879 			/*
23880 			 * A reset occurred in between the last probe and this
23881 			 * one so if a timeout is pending cancel it.
23882 			 */
23883 			if (un->un_resvd_timeid) {
23884 				timeout_id_t temp_id = un->un_resvd_timeid;
23885 				un->un_resvd_timeid = NULL;
23886 				mutex_exit(SD_MUTEX(un));
23887 				(void) untimeout(temp_id);
23888 				mutex_enter(SD_MUTEX(un));
23889 			}
23890 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23891 		}
23892 		if (un->un_resvd_timeid == 0) {
23893 			/* Schedule a timeout to handle the lost reservation */
23894 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23895 			    (void *)dev,
23896 			    drv_usectohz(sd_reinstate_resv_delay));
23897 		}
23898 	}
23899 	mutex_exit(SD_MUTEX(un));
23900 	return (0);
23901 }
23902 
23903 
23904 /*
23905  *    Function: sd_mhd_watch_incomplete()
23906  *
23907  * Description: This function is used to find out why a scsi pkt sent by the
23908  *		scsi watch facility was not completed. Under some scenarios this
23909  *		routine will return. Otherwise it will send a bus reset to see
23910  *		if the drive is still online.
23911  *
23912  *   Arguments: un  - driver soft state (unit) structure
23913  *		pkt - incomplete scsi pkt
23914  */
23915 
23916 static void
23917 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23918 {
23919 	int	be_chatty;
23920 	int	perr;
23921 
23922 	ASSERT(pkt != NULL);
23923 	ASSERT(un != NULL);
23924 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23925 	perr		= (pkt->pkt_statistics & STAT_PERR);
23926 
23927 	mutex_enter(SD_MUTEX(un));
23928 	if (un->un_state == SD_STATE_DUMPING) {
23929 		mutex_exit(SD_MUTEX(un));
23930 		return;
23931 	}
23932 
23933 	switch (pkt->pkt_reason) {
23934 	case CMD_UNX_BUS_FREE:
23935 		/*
23936 		 * If we had a parity error that caused the target to drop BSY*,
23937 		 * don't be chatty about it.
23938 		 */
23939 		if (perr && be_chatty) {
23940 			be_chatty = 0;
23941 		}
23942 		break;
23943 	case CMD_TAG_REJECT:
23944 		/*
23945 		 * The SCSI-2 spec states that a tag reject will be sent by the
23946 		 * target if tagged queuing is not supported. A tag reject may
23947 		 * also be sent during certain initialization periods or to
23948 		 * control internal resources. For the latter case the target
23949 		 * may also return Queue Full.
23950 		 *
23951 		 * If this driver receives a tag reject from a target that is
23952 		 * going through an init period or controlling internal
23953 		 * resources tagged queuing will be disabled. This is a less
23954 		 * than optimal behavior but the driver is unable to determine
23955 		 * the target state and assumes tagged queueing is not supported
23956 		 */
23957 		pkt->pkt_flags = 0;
23958 		un->un_tagflags = 0;
23959 
23960 		if (un->un_f_opt_queueing == TRUE) {
23961 			un->un_throttle = min(un->un_throttle, 3);
23962 		} else {
23963 			un->un_throttle = 1;
23964 		}
23965 		mutex_exit(SD_MUTEX(un));
23966 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
23967 		mutex_enter(SD_MUTEX(un));
23968 		break;
23969 	case CMD_INCOMPLETE:
23970 		/*
23971 		 * The transport stopped with an abnormal state, fallthrough and
23972 		 * reset the target and/or bus unless selection did not complete
23973 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
23974 		 * go through a target/bus reset
23975 		 */
23976 		if (pkt->pkt_state == STATE_GOT_BUS) {
23977 			break;
23978 		}
23979 		/*FALLTHROUGH*/
23980 
23981 	case CMD_TIMEOUT:
23982 	default:
23983 		/*
23984 		 * The lun may still be running the command, so a lun reset
23985 		 * should be attempted. If the lun reset fails or cannot be
23986 		 * issued, than try a target reset. Lastly try a bus reset.
23987 		 */
23988 		if ((pkt->pkt_statistics &
23989 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
23990 			int reset_retval = 0;
23991 			mutex_exit(SD_MUTEX(un));
23992 			if (un->un_f_allow_bus_device_reset == TRUE) {
23993 				if (un->un_f_lun_reset_enabled == TRUE) {
23994 					reset_retval =
23995 					    scsi_reset(SD_ADDRESS(un),
23996 					    RESET_LUN);
23997 				}
23998 				if (reset_retval == 0) {
23999 					reset_retval =
24000 					    scsi_reset(SD_ADDRESS(un),
24001 					    RESET_TARGET);
24002 				}
24003 			}
24004 			if (reset_retval == 0) {
24005 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24006 			}
24007 			mutex_enter(SD_MUTEX(un));
24008 		}
24009 		break;
24010 	}
24011 
24012 	/* A device/bus reset has occurred; update the reservation status. */
24013 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24014 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24015 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24016 			un->un_resvd_status |=
24017 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24018 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24019 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24020 		}
24021 	}
24022 
24023 	/*
24024 	 * The disk has been turned off; Update the device state.
24025 	 *
24026 	 * Note: Should we be offlining the disk here?
24027 	 */
24028 	if (pkt->pkt_state == STATE_GOT_BUS) {
24029 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24030 		    "Disk not responding to selection\n");
24031 		if (un->un_state != SD_STATE_OFFLINE) {
24032 			New_state(un, SD_STATE_OFFLINE);
24033 		}
24034 	} else if (be_chatty) {
24035 		/*
24036 		 * suppress messages if they are all the same pkt reason;
24037 		 * with TQ, many (up to 256) are returned with the same
24038 		 * pkt_reason
24039 		 */
24040 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24041 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24042 			    "sd_mhd_watch_incomplete: "
24043 			    "SCSI transport failed: reason '%s'\n",
24044 			    scsi_rname(pkt->pkt_reason));
24045 		}
24046 	}
24047 	un->un_last_pkt_reason = pkt->pkt_reason;
24048 	mutex_exit(SD_MUTEX(un));
24049 }
24050 
24051 
24052 /*
24053  *    Function: sd_sname()
24054  *
24055  * Description: This is a simple little routine to return a string containing
24056  *		a printable description of command status byte for use in
24057  *		logging.
24058  *
24059  *   Arguments: status - pointer to a status byte
24060  *
24061  * Return Code: char * - string containing status description.
24062  */
24063 
24064 static char *
24065 sd_sname(uchar_t status)
24066 {
24067 	switch (status & STATUS_MASK) {
24068 	case STATUS_GOOD:
24069 		return ("good status");
24070 	case STATUS_CHECK:
24071 		return ("check condition");
24072 	case STATUS_MET:
24073 		return ("condition met");
24074 	case STATUS_BUSY:
24075 		return ("busy");
24076 	case STATUS_INTERMEDIATE:
24077 		return ("intermediate");
24078 	case STATUS_INTERMEDIATE_MET:
24079 		return ("intermediate - condition met");
24080 	case STATUS_RESERVATION_CONFLICT:
24081 		return ("reservation_conflict");
24082 	case STATUS_TERMINATED:
24083 		return ("command terminated");
24084 	case STATUS_QFULL:
24085 		return ("queue full");
24086 	default:
24087 		return ("<unknown status>");
24088 	}
24089 }
24090 
24091 
24092 /*
24093  *    Function: sd_mhd_resvd_recover()
24094  *
24095  * Description: This function adds a reservation entry to the
24096  *		sd_resv_reclaim_request list and signals the reservation
24097  *		reclaim thread that there is work pending. If the reservation
24098  *		reclaim thread has not been previously created this function
24099  *		will kick it off.
24100  *
24101  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24102  *			among multiple watches that share this callback function
24103  *
24104  *     Context: This routine is called by timeout() and is run in interrupt
24105  *		context. It must not sleep or call other functions which may
24106  *		sleep.
24107  */
24108 
24109 static void
24110 sd_mhd_resvd_recover(void *arg)
24111 {
24112 	dev_t			dev = (dev_t)arg;
24113 	struct sd_lun		*un;
24114 	struct sd_thr_request	*sd_treq = NULL;
24115 	struct sd_thr_request	*sd_cur = NULL;
24116 	struct sd_thr_request	*sd_prev = NULL;
24117 	int			already_there = 0;
24118 
24119 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24120 		return;
24121 	}
24122 
24123 	mutex_enter(SD_MUTEX(un));
24124 	un->un_resvd_timeid = NULL;
24125 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24126 		/*
24127 		 * There was a reset so don't issue the reserve, allow the
24128 		 * sd_mhd_watch_cb callback function to notice this and
24129 		 * reschedule the timeout for reservation.
24130 		 */
24131 		mutex_exit(SD_MUTEX(un));
24132 		return;
24133 	}
24134 	mutex_exit(SD_MUTEX(un));
24135 
24136 	/*
24137 	 * Add this device to the sd_resv_reclaim_request list and the
24138 	 * sd_resv_reclaim_thread should take care of the rest.
24139 	 *
24140 	 * Note: We can't sleep in this context so if the memory allocation
24141 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24142 	 * reschedule the timeout for reservation.  (4378460)
24143 	 */
24144 	sd_treq = (struct sd_thr_request *)
24145 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24146 	if (sd_treq == NULL) {
24147 		return;
24148 	}
24149 
24150 	sd_treq->sd_thr_req_next = NULL;
24151 	sd_treq->dev = dev;
24152 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24153 	if (sd_tr.srq_thr_req_head == NULL) {
24154 		sd_tr.srq_thr_req_head = sd_treq;
24155 	} else {
24156 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24157 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24158 			if (sd_cur->dev == dev) {
24159 				/*
24160 				 * already in Queue so don't log
24161 				 * another request for the device
24162 				 */
24163 				already_there = 1;
24164 				break;
24165 			}
24166 			sd_prev = sd_cur;
24167 		}
24168 		if (!already_there) {
24169 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24170 			    "logging request for %lx\n", dev);
24171 			sd_prev->sd_thr_req_next = sd_treq;
24172 		} else {
24173 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24174 		}
24175 	}
24176 
24177 	/*
24178 	 * Create a kernel thread to do the reservation reclaim and free up this
24179 	 * thread. We cannot block this thread while we go away to do the
24180 	 * reservation reclaim
24181 	 */
24182 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24183 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24184 		    sd_resv_reclaim_thread, NULL,
24185 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24186 
24187 	/* Tell the reservation reclaim thread that it has work to do */
24188 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24189 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24190 }
24191 
24192 /*
24193  *    Function: sd_resv_reclaim_thread()
24194  *
24195  * Description: This function implements the reservation reclaim operations
24196  *
24197  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24198  *		      among multiple watches that share this callback function
24199  */
24200 
24201 static void
24202 sd_resv_reclaim_thread()
24203 {
24204 	struct sd_lun		*un;
24205 	struct sd_thr_request	*sd_mhreq;
24206 
24207 	/* Wait for work */
24208 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24209 	if (sd_tr.srq_thr_req_head == NULL) {
24210 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24211 		    &sd_tr.srq_resv_reclaim_mutex);
24212 	}
24213 
24214 	/* Loop while we have work */
24215 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24216 		un = ddi_get_soft_state(sd_state,
24217 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24218 		if (un == NULL) {
24219 			/*
24220 			 * softstate structure is NULL so just
24221 			 * dequeue the request and continue
24222 			 */
24223 			sd_tr.srq_thr_req_head =
24224 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24225 			kmem_free(sd_tr.srq_thr_cur_req,
24226 			    sizeof (struct sd_thr_request));
24227 			continue;
24228 		}
24229 
24230 		/* dequeue the request */
24231 		sd_mhreq = sd_tr.srq_thr_cur_req;
24232 		sd_tr.srq_thr_req_head =
24233 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24234 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24235 
24236 		/*
24237 		 * Reclaim reservation only if SD_RESERVE is still set. There
24238 		 * may have been a call to MHIOCRELEASE before we got here.
24239 		 */
24240 		mutex_enter(SD_MUTEX(un));
24241 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24242 			/*
24243 			 * Note: The SD_LOST_RESERVE flag is cleared before
24244 			 * reclaiming the reservation. If this is done after the
24245 			 * call to sd_reserve_release a reservation loss in the
24246 			 * window between pkt completion of reserve cmd and
24247 			 * mutex_enter below may not be recognized
24248 			 */
24249 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24250 			mutex_exit(SD_MUTEX(un));
24251 
24252 			if (sd_reserve_release(sd_mhreq->dev,
24253 			    SD_RESERVE) == 0) {
24254 				mutex_enter(SD_MUTEX(un));
24255 				un->un_resvd_status |= SD_RESERVE;
24256 				mutex_exit(SD_MUTEX(un));
24257 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24258 				    "sd_resv_reclaim_thread: "
24259 				    "Reservation Recovered\n");
24260 			} else {
24261 				mutex_enter(SD_MUTEX(un));
24262 				un->un_resvd_status |= SD_LOST_RESERVE;
24263 				mutex_exit(SD_MUTEX(un));
24264 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24265 				    "sd_resv_reclaim_thread: Failed "
24266 				    "Reservation Recovery\n");
24267 			}
24268 		} else {
24269 			mutex_exit(SD_MUTEX(un));
24270 		}
24271 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24272 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24273 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24274 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24275 		/*
24276 		 * wakeup the destroy thread if anyone is waiting on
24277 		 * us to complete.
24278 		 */
24279 		cv_signal(&sd_tr.srq_inprocess_cv);
24280 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24281 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24282 	}
24283 
24284 	/*
24285 	 * cleanup the sd_tr structure now that this thread will not exist
24286 	 */
24287 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24288 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24289 	sd_tr.srq_resv_reclaim_thread = NULL;
24290 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24291 	thread_exit();
24292 }
24293 
24294 
24295 /*
24296  *    Function: sd_rmv_resv_reclaim_req()
24297  *
24298  * Description: This function removes any pending reservation reclaim requests
24299  *		for the specified device.
24300  *
24301  *   Arguments: dev - the device 'dev_t'
24302  */
24303 
24304 static void
24305 sd_rmv_resv_reclaim_req(dev_t dev)
24306 {
24307 	struct sd_thr_request *sd_mhreq;
24308 	struct sd_thr_request *sd_prev;
24309 
24310 	/* Remove a reservation reclaim request from the list */
24311 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24312 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24313 		/*
24314 		 * We are attempting to reinstate reservation for
24315 		 * this device. We wait for sd_reserve_release()
24316 		 * to return before we return.
24317 		 */
24318 		cv_wait(&sd_tr.srq_inprocess_cv,
24319 		    &sd_tr.srq_resv_reclaim_mutex);
24320 	} else {
24321 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24322 		if (sd_mhreq && sd_mhreq->dev == dev) {
24323 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24324 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24325 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24326 			return;
24327 		}
24328 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24329 			if (sd_mhreq && sd_mhreq->dev == dev) {
24330 				break;
24331 			}
24332 			sd_prev = sd_mhreq;
24333 		}
24334 		if (sd_mhreq != NULL) {
24335 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24336 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24337 		}
24338 	}
24339 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24340 }
24341 
24342 
24343 /*
24344  *    Function: sd_mhd_reset_notify_cb()
24345  *
24346  * Description: This is a call back function for scsi_reset_notify. This
24347  *		function updates the softstate reserved status and logs the
24348  *		reset. The driver scsi watch facility callback function
24349  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24350  *		will reclaim the reservation.
24351  *
24352  *   Arguments: arg  - driver soft state (unit) structure
24353  */
24354 
24355 static void
24356 sd_mhd_reset_notify_cb(caddr_t arg)
24357 {
24358 	struct sd_lun *un = (struct sd_lun *)arg;
24359 
24360 	mutex_enter(SD_MUTEX(un));
24361 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24362 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24363 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24364 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24365 	}
24366 	mutex_exit(SD_MUTEX(un));
24367 }
24368 
24369 
24370 /*
24371  *    Function: sd_take_ownership()
24372  *
24373  * Description: This routine implements an algorithm to achieve a stable
24374  *		reservation on disks which don't implement priority reserve,
24375  *		and makes sure that other host lose re-reservation attempts.
24376  *		This algorithm contains of a loop that keeps issuing the RESERVE
24377  *		for some period of time (min_ownership_delay, default 6 seconds)
24378  *		During that loop, it looks to see if there has been a bus device
24379  *		reset or bus reset (both of which cause an existing reservation
24380  *		to be lost). If the reservation is lost issue RESERVE until a
24381  *		period of min_ownership_delay with no resets has gone by, or
24382  *		until max_ownership_delay has expired. This loop ensures that
24383  *		the host really did manage to reserve the device, in spite of
24384  *		resets. The looping for min_ownership_delay (default six
24385  *		seconds) is important to early generation clustering products,
24386  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24387  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24388  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24389  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24390  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24391  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24392  *		no longer "owns" the disk and will have panicked itself.  Thus,
24393  *		the host issuing the MHIOCTKOWN is assured (with timing
24394  *		dependencies) that by the time it actually starts to use the
24395  *		disk for real work, the old owner is no longer accessing it.
24396  *
24397  *		min_ownership_delay is the minimum amount of time for which the
24398  *		disk must be reserved continuously devoid of resets before the
24399  *		MHIOCTKOWN ioctl will return success.
24400  *
24401  *		max_ownership_delay indicates the amount of time by which the
24402  *		take ownership should succeed or timeout with an error.
24403  *
24404  *   Arguments: dev - the device 'dev_t'
24405  *		*p  - struct containing timing info.
24406  *
24407  * Return Code: 0 for success or error code
24408  */
24409 
24410 static int
24411 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24412 {
24413 	struct sd_lun	*un;
24414 	int		rval;
24415 	int		err;
24416 	int		reservation_count   = 0;
24417 	int		min_ownership_delay =  6000000; /* in usec */
24418 	int		max_ownership_delay = 30000000; /* in usec */
24419 	clock_t		start_time;	/* starting time of this algorithm */
24420 	clock_t		end_time;	/* time limit for giving up */
24421 	clock_t		ownership_time;	/* time limit for stable ownership */
24422 	clock_t		current_time;
24423 	clock_t		previous_current_time;
24424 
24425 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24426 		return (ENXIO);
24427 	}
24428 
24429 	/*
24430 	 * Attempt a device reservation. A priority reservation is requested.
24431 	 */
24432 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24433 	    != SD_SUCCESS) {
24434 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24435 		    "sd_take_ownership: return(1)=%d\n", rval);
24436 		return (rval);
24437 	}
24438 
24439 	/* Update the softstate reserved status to indicate the reservation */
24440 	mutex_enter(SD_MUTEX(un));
24441 	un->un_resvd_status |= SD_RESERVE;
24442 	un->un_resvd_status &=
24443 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24444 	mutex_exit(SD_MUTEX(un));
24445 
24446 	if (p != NULL) {
24447 		if (p->min_ownership_delay != 0) {
24448 			min_ownership_delay = p->min_ownership_delay * 1000;
24449 		}
24450 		if (p->max_ownership_delay != 0) {
24451 			max_ownership_delay = p->max_ownership_delay * 1000;
24452 		}
24453 	}
24454 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24455 	    "sd_take_ownership: min, max delays: %d, %d\n",
24456 	    min_ownership_delay, max_ownership_delay);
24457 
24458 	start_time = ddi_get_lbolt();
24459 	current_time	= start_time;
24460 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24461 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24462 
24463 	while (current_time - end_time < 0) {
24464 		delay(drv_usectohz(500000));
24465 
24466 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24467 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24468 				mutex_enter(SD_MUTEX(un));
24469 				rval = (un->un_resvd_status &
24470 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24471 				mutex_exit(SD_MUTEX(un));
24472 				break;
24473 			}
24474 		}
24475 		previous_current_time = current_time;
24476 		current_time = ddi_get_lbolt();
24477 		mutex_enter(SD_MUTEX(un));
24478 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24479 			ownership_time = ddi_get_lbolt() +
24480 			    drv_usectohz(min_ownership_delay);
24481 			reservation_count = 0;
24482 		} else {
24483 			reservation_count++;
24484 		}
24485 		un->un_resvd_status |= SD_RESERVE;
24486 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24487 		mutex_exit(SD_MUTEX(un));
24488 
24489 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24490 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24491 		    "reservation=%s\n", (current_time - previous_current_time),
24492 		    reservation_count ? "ok" : "reclaimed");
24493 
24494 		if (current_time - ownership_time >= 0 &&
24495 		    reservation_count >= 4) {
24496 			rval = 0; /* Achieved a stable ownership */
24497 			break;
24498 		}
24499 		if (current_time - end_time >= 0) {
24500 			rval = EACCES; /* No ownership in max possible time */
24501 			break;
24502 		}
24503 	}
24504 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24505 	    "sd_take_ownership: return(2)=%d\n", rval);
24506 	return (rval);
24507 }
24508 
24509 
24510 /*
24511  *    Function: sd_reserve_release()
24512  *
24513  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24514  *		PRIORITY RESERVE commands based on a user specified command type
24515  *
24516  *   Arguments: dev - the device 'dev_t'
24517  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24518  *		      SD_RESERVE, SD_RELEASE
24519  *
24520  * Return Code: 0 or Error Code
24521  */
24522 
24523 static int
24524 sd_reserve_release(dev_t dev, int cmd)
24525 {
24526 	struct uscsi_cmd	*com = NULL;
24527 	struct sd_lun		*un = NULL;
24528 	char			cdb[CDB_GROUP0];
24529 	int			rval;
24530 
24531 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24532 	    (cmd == SD_PRIORITY_RESERVE));
24533 
24534 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24535 		return (ENXIO);
24536 	}
24537 
24538 	/* instantiate and initialize the command and cdb */
24539 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24540 	bzero(cdb, CDB_GROUP0);
24541 	com->uscsi_flags   = USCSI_SILENT;
24542 	com->uscsi_timeout = un->un_reserve_release_time;
24543 	com->uscsi_cdblen  = CDB_GROUP0;
24544 	com->uscsi_cdb	   = cdb;
24545 	if (cmd == SD_RELEASE) {
24546 		cdb[0] = SCMD_RELEASE;
24547 	} else {
24548 		cdb[0] = SCMD_RESERVE;
24549 	}
24550 
24551 	/* Send the command. */
24552 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24553 	    SD_PATH_STANDARD);
24554 
24555 	/*
24556 	 * "break" a reservation that is held by another host, by issuing a
24557 	 * reset if priority reserve is desired, and we could not get the
24558 	 * device.
24559 	 */
24560 	if ((cmd == SD_PRIORITY_RESERVE) &&
24561 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24562 		/*
24563 		 * First try to reset the LUN. If we cannot, then try a target
24564 		 * reset, followed by a bus reset if the target reset fails.
24565 		 */
24566 		int reset_retval = 0;
24567 		if (un->un_f_lun_reset_enabled == TRUE) {
24568 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24569 		}
24570 		if (reset_retval == 0) {
24571 			/* The LUN reset either failed or was not issued */
24572 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24573 		}
24574 		if ((reset_retval == 0) &&
24575 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24576 			rval = EIO;
24577 			kmem_free(com, sizeof (*com));
24578 			return (rval);
24579 		}
24580 
24581 		bzero(com, sizeof (struct uscsi_cmd));
24582 		com->uscsi_flags   = USCSI_SILENT;
24583 		com->uscsi_cdb	   = cdb;
24584 		com->uscsi_cdblen  = CDB_GROUP0;
24585 		com->uscsi_timeout = 5;
24586 
24587 		/*
24588 		 * Reissue the last reserve command, this time without request
24589 		 * sense.  Assume that it is just a regular reserve command.
24590 		 */
24591 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24592 		    SD_PATH_STANDARD);
24593 	}
24594 
24595 	/* Return an error if still getting a reservation conflict. */
24596 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24597 		rval = EACCES;
24598 	}
24599 
24600 	kmem_free(com, sizeof (*com));
24601 	return (rval);
24602 }
24603 
24604 
24605 #define	SD_NDUMP_RETRIES	12
24606 /*
24607  *	System Crash Dump routine
24608  */
24609 
24610 static int
24611 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24612 {
24613 	int		instance;
24614 	int		partition;
24615 	int		i;
24616 	int		err;
24617 	struct sd_lun	*un;
24618 	struct scsi_pkt *wr_pktp;
24619 	struct buf	*wr_bp;
24620 	struct buf	wr_buf;
24621 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24622 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24623 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24624 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24625 	size_t		io_start_offset;
24626 	int		doing_rmw = FALSE;
24627 	int		rval;
24628 	ssize_t		dma_resid;
24629 	daddr_t		oblkno;
24630 	diskaddr_t	nblks = 0;
24631 	diskaddr_t	start_block;
24632 
24633 	instance = SDUNIT(dev);
24634 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24635 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24636 		return (ENXIO);
24637 	}
24638 
24639 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24640 
24641 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24642 
24643 	partition = SDPART(dev);
24644 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24645 
24646 	/* Validate blocks to dump at against partition size. */
24647 
24648 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24649 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24650 
24651 	if ((blkno + nblk) > nblks) {
24652 		SD_TRACE(SD_LOG_DUMP, un,
24653 		    "sddump: dump range larger than partition: "
24654 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24655 		    blkno, nblk, nblks);
24656 		return (EINVAL);
24657 	}
24658 
24659 	mutex_enter(&un->un_pm_mutex);
24660 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24661 		struct scsi_pkt *start_pktp;
24662 
24663 		mutex_exit(&un->un_pm_mutex);
24664 
24665 		/*
24666 		 * use pm framework to power on HBA 1st
24667 		 */
24668 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24669 
24670 		/*
24671 		 * Dump no long uses sdpower to power on a device, it's
24672 		 * in-line here so it can be done in polled mode.
24673 		 */
24674 
24675 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24676 
24677 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24678 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24679 
24680 		if (start_pktp == NULL) {
24681 			/* We were not given a SCSI packet, fail. */
24682 			return (EIO);
24683 		}
24684 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24685 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24686 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24687 		start_pktp->pkt_flags = FLAG_NOINTR;
24688 
24689 		mutex_enter(SD_MUTEX(un));
24690 		SD_FILL_SCSI1_LUN(un, start_pktp);
24691 		mutex_exit(SD_MUTEX(un));
24692 		/*
24693 		 * Scsi_poll returns 0 (success) if the command completes and
24694 		 * the status block is STATUS_GOOD.
24695 		 */
24696 		if (sd_scsi_poll(un, start_pktp) != 0) {
24697 			scsi_destroy_pkt(start_pktp);
24698 			return (EIO);
24699 		}
24700 		scsi_destroy_pkt(start_pktp);
24701 		(void) sd_ddi_pm_resume(un);
24702 	} else {
24703 		mutex_exit(&un->un_pm_mutex);
24704 	}
24705 
24706 	mutex_enter(SD_MUTEX(un));
24707 	un->un_throttle = 0;
24708 
24709 	/*
24710 	 * The first time through, reset the specific target device.
24711 	 * However, when cpr calls sddump we know that sd is in a
24712 	 * a good state so no bus reset is required.
24713 	 * Clear sense data via Request Sense cmd.
24714 	 * In sddump we don't care about allow_bus_device_reset anymore
24715 	 */
24716 
24717 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24718 	    (un->un_state != SD_STATE_DUMPING)) {
24719 
24720 		New_state(un, SD_STATE_DUMPING);
24721 
24722 		if (un->un_f_is_fibre == FALSE) {
24723 			mutex_exit(SD_MUTEX(un));
24724 			/*
24725 			 * Attempt a bus reset for parallel scsi.
24726 			 *
24727 			 * Note: A bus reset is required because on some host
24728 			 * systems (i.e. E420R) a bus device reset is
24729 			 * insufficient to reset the state of the target.
24730 			 *
24731 			 * Note: Don't issue the reset for fibre-channel,
24732 			 * because this tends to hang the bus (loop) for
24733 			 * too long while everyone is logging out and in
24734 			 * and the deadman timer for dumping will fire
24735 			 * before the dump is complete.
24736 			 */
24737 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24738 				mutex_enter(SD_MUTEX(un));
24739 				Restore_state(un);
24740 				mutex_exit(SD_MUTEX(un));
24741 				return (EIO);
24742 			}
24743 
24744 			/* Delay to give the device some recovery time. */
24745 			drv_usecwait(10000);
24746 
24747 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24748 				SD_INFO(SD_LOG_DUMP, un,
24749 				    "sddump: sd_send_polled_RQS failed\n");
24750 			}
24751 			mutex_enter(SD_MUTEX(un));
24752 		}
24753 	}
24754 
24755 	/*
24756 	 * Convert the partition-relative block number to a
24757 	 * disk physical block number.
24758 	 */
24759 	blkno += start_block;
24760 
24761 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24762 
24763 
24764 	/*
24765 	 * Check if the device has a non-512 block size.
24766 	 */
24767 	wr_bp = NULL;
24768 	if (NOT_DEVBSIZE(un)) {
24769 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24770 		tgt_byte_count = nblk * un->un_sys_blocksize;
24771 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24772 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24773 			doing_rmw = TRUE;
24774 			/*
24775 			 * Calculate the block number and number of block
24776 			 * in terms of the media block size.
24777 			 */
24778 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24779 			tgt_nblk =
24780 			    ((tgt_byte_offset + tgt_byte_count +
24781 			    (un->un_tgt_blocksize - 1)) /
24782 			    un->un_tgt_blocksize) - tgt_blkno;
24783 
24784 			/*
24785 			 * Invoke the routine which is going to do read part
24786 			 * of read-modify-write.
24787 			 * Note that this routine returns a pointer to
24788 			 * a valid bp in wr_bp.
24789 			 */
24790 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24791 			    &wr_bp);
24792 			if (err) {
24793 				mutex_exit(SD_MUTEX(un));
24794 				return (err);
24795 			}
24796 			/*
24797 			 * Offset is being calculated as -
24798 			 * (original block # * system block size) -
24799 			 * (new block # * target block size)
24800 			 */
24801 			io_start_offset =
24802 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24803 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24804 
24805 			ASSERT((io_start_offset >= 0) &&
24806 			    (io_start_offset < un->un_tgt_blocksize));
24807 			/*
24808 			 * Do the modify portion of read modify write.
24809 			 */
24810 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24811 			    (size_t)nblk * un->un_sys_blocksize);
24812 		} else {
24813 			doing_rmw = FALSE;
24814 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24815 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24816 		}
24817 
24818 		/* Convert blkno and nblk to target blocks */
24819 		blkno = tgt_blkno;
24820 		nblk = tgt_nblk;
24821 	} else {
24822 		wr_bp = &wr_buf;
24823 		bzero(wr_bp, sizeof (struct buf));
24824 		wr_bp->b_flags		= B_BUSY;
24825 		wr_bp->b_un.b_addr	= addr;
24826 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24827 		wr_bp->b_resid		= 0;
24828 	}
24829 
24830 	mutex_exit(SD_MUTEX(un));
24831 
24832 	/*
24833 	 * Obtain a SCSI packet for the write command.
24834 	 * It should be safe to call the allocator here without
24835 	 * worrying about being locked for DVMA mapping because
24836 	 * the address we're passed is already a DVMA mapping
24837 	 *
24838 	 * We are also not going to worry about semaphore ownership
24839 	 * in the dump buffer. Dumping is single threaded at present.
24840 	 */
24841 
24842 	wr_pktp = NULL;
24843 
24844 	dma_resid = wr_bp->b_bcount;
24845 	oblkno = blkno;
24846 
24847 	while (dma_resid != 0) {
24848 
24849 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24850 		wr_bp->b_flags &= ~B_ERROR;
24851 
24852 		if (un->un_partial_dma_supported == 1) {
24853 			blkno = oblkno +
24854 			    ((wr_bp->b_bcount - dma_resid) /
24855 			    un->un_tgt_blocksize);
24856 			nblk = dma_resid / un->un_tgt_blocksize;
24857 
24858 			if (wr_pktp) {
24859 				/*
24860 				 * Partial DMA transfers after initial transfer
24861 				 */
24862 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24863 				    blkno, nblk);
24864 			} else {
24865 				/* Initial transfer */
24866 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24867 				    un->un_pkt_flags, NULL_FUNC, NULL,
24868 				    blkno, nblk);
24869 			}
24870 		} else {
24871 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24872 			    0, NULL_FUNC, NULL, blkno, nblk);
24873 		}
24874 
24875 		if (rval == 0) {
24876 			/* We were given a SCSI packet, continue. */
24877 			break;
24878 		}
24879 
24880 		if (i == 0) {
24881 			if (wr_bp->b_flags & B_ERROR) {
24882 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24883 				    "no resources for dumping; "
24884 				    "error code: 0x%x, retrying",
24885 				    geterror(wr_bp));
24886 			} else {
24887 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24888 				    "no resources for dumping; retrying");
24889 			}
24890 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24891 			if (wr_bp->b_flags & B_ERROR) {
24892 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24893 				    "no resources for dumping; error code: "
24894 				    "0x%x, retrying\n", geterror(wr_bp));
24895 			}
24896 		} else {
24897 			if (wr_bp->b_flags & B_ERROR) {
24898 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24899 				    "no resources for dumping; "
24900 				    "error code: 0x%x, retries failed, "
24901 				    "giving up.\n", geterror(wr_bp));
24902 			} else {
24903 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24904 				    "no resources for dumping; "
24905 				    "retries failed, giving up.\n");
24906 			}
24907 			mutex_enter(SD_MUTEX(un));
24908 			Restore_state(un);
24909 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24910 				mutex_exit(SD_MUTEX(un));
24911 				scsi_free_consistent_buf(wr_bp);
24912 			} else {
24913 				mutex_exit(SD_MUTEX(un));
24914 			}
24915 			return (EIO);
24916 		}
24917 		drv_usecwait(10000);
24918 	}
24919 
24920 	if (un->un_partial_dma_supported == 1) {
24921 		/*
24922 		 * save the resid from PARTIAL_DMA
24923 		 */
24924 		dma_resid = wr_pktp->pkt_resid;
24925 		if (dma_resid != 0)
24926 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24927 		wr_pktp->pkt_resid = 0;
24928 	} else {
24929 		dma_resid = 0;
24930 	}
24931 
24932 	/* SunBug 1222170 */
24933 	wr_pktp->pkt_flags = FLAG_NOINTR;
24934 
24935 	err = EIO;
24936 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24937 
24938 		/*
24939 		 * Scsi_poll returns 0 (success) if the command completes and
24940 		 * the status block is STATUS_GOOD.  We should only check
24941 		 * errors if this condition is not true.  Even then we should
24942 		 * send our own request sense packet only if we have a check
24943 		 * condition and auto request sense has not been performed by
24944 		 * the hba.
24945 		 */
24946 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24947 
24948 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24949 		    (wr_pktp->pkt_resid == 0)) {
24950 			err = SD_SUCCESS;
24951 			break;
24952 		}
24953 
24954 		/*
24955 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24956 		 */
24957 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
24958 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24959 			    "Error while dumping state...Device is gone\n");
24960 			break;
24961 		}
24962 
24963 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
24964 			SD_INFO(SD_LOG_DUMP, un,
24965 			    "sddump: write failed with CHECK, try # %d\n", i);
24966 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
24967 				(void) sd_send_polled_RQS(un);
24968 			}
24969 
24970 			continue;
24971 		}
24972 
24973 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
24974 			int reset_retval = 0;
24975 
24976 			SD_INFO(SD_LOG_DUMP, un,
24977 			    "sddump: write failed with BUSY, try # %d\n", i);
24978 
24979 			if (un->un_f_lun_reset_enabled == TRUE) {
24980 				reset_retval = scsi_reset(SD_ADDRESS(un),
24981 				    RESET_LUN);
24982 			}
24983 			if (reset_retval == 0) {
24984 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24985 			}
24986 			(void) sd_send_polled_RQS(un);
24987 
24988 		} else {
24989 			SD_INFO(SD_LOG_DUMP, un,
24990 			    "sddump: write failed with 0x%x, try # %d\n",
24991 			    SD_GET_PKT_STATUS(wr_pktp), i);
24992 			mutex_enter(SD_MUTEX(un));
24993 			sd_reset_target(un, wr_pktp);
24994 			mutex_exit(SD_MUTEX(un));
24995 		}
24996 
24997 		/*
24998 		 * If we are not getting anywhere with lun/target resets,
24999 		 * let's reset the bus.
25000 		 */
25001 		if (i == SD_NDUMP_RETRIES/2) {
25002 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25003 			(void) sd_send_polled_RQS(un);
25004 		}
25005 	}
25006 	}
25007 
25008 	scsi_destroy_pkt(wr_pktp);
25009 	mutex_enter(SD_MUTEX(un));
25010 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25011 		mutex_exit(SD_MUTEX(un));
25012 		scsi_free_consistent_buf(wr_bp);
25013 	} else {
25014 		mutex_exit(SD_MUTEX(un));
25015 	}
25016 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25017 	return (err);
25018 }
25019 
25020 /*
25021  *    Function: sd_scsi_poll()
25022  *
25023  * Description: This is a wrapper for the scsi_poll call.
25024  *
25025  *   Arguments: sd_lun - The unit structure
25026  *              scsi_pkt - The scsi packet being sent to the device.
25027  *
25028  * Return Code: 0 - Command completed successfully with good status
25029  *             -1 - Command failed.  This could indicate a check condition
25030  *                  or other status value requiring recovery action.
25031  *
25032  * NOTE: This code is only called off sddump().
25033  */
25034 
25035 static int
25036 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25037 {
25038 	int status;
25039 
25040 	ASSERT(un != NULL);
25041 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25042 	ASSERT(pktp != NULL);
25043 
25044 	status = SD_SUCCESS;
25045 
25046 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25047 		pktp->pkt_flags |= un->un_tagflags;
25048 		pktp->pkt_flags &= ~FLAG_NODISCON;
25049 	}
25050 
25051 	status = sd_ddi_scsi_poll(pktp);
25052 	/*
25053 	 * Scsi_poll returns 0 (success) if the command completes and the
25054 	 * status block is STATUS_GOOD.  We should only check errors if this
25055 	 * condition is not true.  Even then we should send our own request
25056 	 * sense packet only if we have a check condition and auto
25057 	 * request sense has not been performed by the hba.
25058 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25059 	 */
25060 	if ((status != SD_SUCCESS) &&
25061 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25062 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25063 	    (pktp->pkt_reason != CMD_DEV_GONE))
25064 		(void) sd_send_polled_RQS(un);
25065 
25066 	return (status);
25067 }
25068 
25069 /*
25070  *    Function: sd_send_polled_RQS()
25071  *
25072  * Description: This sends the request sense command to a device.
25073  *
25074  *   Arguments: sd_lun - The unit structure
25075  *
25076  * Return Code: 0 - Command completed successfully with good status
25077  *             -1 - Command failed.
25078  *
25079  */
25080 
25081 static int
25082 sd_send_polled_RQS(struct sd_lun *un)
25083 {
25084 	int	ret_val;
25085 	struct	scsi_pkt	*rqs_pktp;
25086 	struct	buf		*rqs_bp;
25087 
25088 	ASSERT(un != NULL);
25089 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25090 
25091 	ret_val = SD_SUCCESS;
25092 
25093 	rqs_pktp = un->un_rqs_pktp;
25094 	rqs_bp	 = un->un_rqs_bp;
25095 
25096 	mutex_enter(SD_MUTEX(un));
25097 
25098 	if (un->un_sense_isbusy) {
25099 		ret_val = SD_FAILURE;
25100 		mutex_exit(SD_MUTEX(un));
25101 		return (ret_val);
25102 	}
25103 
25104 	/*
25105 	 * If the request sense buffer (and packet) is not in use,
25106 	 * let's set the un_sense_isbusy and send our packet
25107 	 */
25108 	un->un_sense_isbusy 	= 1;
25109 	rqs_pktp->pkt_resid  	= 0;
25110 	rqs_pktp->pkt_reason 	= 0;
25111 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25112 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25113 
25114 	mutex_exit(SD_MUTEX(un));
25115 
25116 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25117 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25118 
25119 	/*
25120 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25121 	 * axle - it has a call into us!
25122 	 */
25123 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25124 		SD_INFO(SD_LOG_COMMON, un,
25125 		    "sd_send_polled_RQS: RQS failed\n");
25126 	}
25127 
25128 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25129 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25130 
25131 	mutex_enter(SD_MUTEX(un));
25132 	un->un_sense_isbusy = 0;
25133 	mutex_exit(SD_MUTEX(un));
25134 
25135 	return (ret_val);
25136 }
25137 
25138 /*
25139  * Defines needed for localized version of the scsi_poll routine.
25140  */
25141 #define	CSEC		10000			/* usecs */
25142 #define	SEC_TO_CSEC	(1000000/CSEC)
25143 
25144 /*
25145  *    Function: sd_ddi_scsi_poll()
25146  *
25147  * Description: Localized version of the scsi_poll routine.  The purpose is to
25148  *		send a scsi_pkt to a device as a polled command.  This version
25149  *		is to ensure more robust handling of transport errors.
25150  *		Specifically this routine cures not ready, coming ready
25151  *		transition for power up and reset of sonoma's.  This can take
25152  *		up to 45 seconds for power-on and 20 seconds for reset of a
25153  * 		sonoma lun.
25154  *
25155  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25156  *
25157  * Return Code: 0 - Command completed successfully with good status
25158  *             -1 - Command failed.
25159  *
25160  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25161  * be fixed (removing this code), we need to determine how to handle the
25162  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25163  *
25164  * NOTE: This code is only called off sddump().
25165  */
25166 static int
25167 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25168 {
25169 	int			rval = -1;
25170 	int			savef;
25171 	long			savet;
25172 	void			(*savec)();
25173 	int			timeout;
25174 	int			busy_count;
25175 	int			poll_delay;
25176 	int			rc;
25177 	uint8_t			*sensep;
25178 	struct scsi_arq_status	*arqstat;
25179 	extern int		do_polled_io;
25180 
25181 	ASSERT(pkt->pkt_scbp);
25182 
25183 	/*
25184 	 * save old flags..
25185 	 */
25186 	savef = pkt->pkt_flags;
25187 	savec = pkt->pkt_comp;
25188 	savet = pkt->pkt_time;
25189 
25190 	pkt->pkt_flags |= FLAG_NOINTR;
25191 
25192 	/*
25193 	 * XXX there is nothing in the SCSA spec that states that we should not
25194 	 * do a callback for polled cmds; however, removing this will break sd
25195 	 * and probably other target drivers
25196 	 */
25197 	pkt->pkt_comp = NULL;
25198 
25199 	/*
25200 	 * we don't like a polled command without timeout.
25201 	 * 60 seconds seems long enough.
25202 	 */
25203 	if (pkt->pkt_time == 0)
25204 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25205 
25206 	/*
25207 	 * Send polled cmd.
25208 	 *
25209 	 * We do some error recovery for various errors.  Tran_busy,
25210 	 * queue full, and non-dispatched commands are retried every 10 msec.
25211 	 * as they are typically transient failures.  Busy status and Not
25212 	 * Ready are retried every second as this status takes a while to
25213 	 * change.
25214 	 */
25215 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25216 
25217 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25218 		/*
25219 		 * Initialize pkt status variables.
25220 		 */
25221 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25222 
25223 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25224 			if (rc != TRAN_BUSY) {
25225 				/* Transport failed - give up. */
25226 				break;
25227 			} else {
25228 				/* Transport busy - try again. */
25229 				poll_delay = 1 * CSEC;		/* 10 msec. */
25230 			}
25231 		} else {
25232 			/*
25233 			 * Transport accepted - check pkt status.
25234 			 */
25235 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25236 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25237 			    (rc == STATUS_CHECK) &&
25238 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25239 				arqstat =
25240 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25241 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25242 			} else {
25243 				sensep = NULL;
25244 			}
25245 
25246 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25247 			    (rc == STATUS_GOOD)) {
25248 				/* No error - we're done */
25249 				rval = 0;
25250 				break;
25251 
25252 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25253 				/* Lost connection - give up */
25254 				break;
25255 
25256 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25257 			    (pkt->pkt_state == 0)) {
25258 				/* Pkt not dispatched - try again. */
25259 				poll_delay = 1 * CSEC;		/* 10 msec. */
25260 
25261 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25262 			    (rc == STATUS_QFULL)) {
25263 				/* Queue full - try again. */
25264 				poll_delay = 1 * CSEC;		/* 10 msec. */
25265 
25266 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25267 			    (rc == STATUS_BUSY)) {
25268 				/* Busy - try again. */
25269 				poll_delay = 100 * CSEC;	/* 1 sec. */
25270 				busy_count += (SEC_TO_CSEC - 1);
25271 
25272 			} else if ((sensep != NULL) &&
25273 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25274 				/*
25275 				 * Unit Attention - try again.
25276 				 * Pretend it took 1 sec.
25277 				 * NOTE: 'continue' avoids poll_delay
25278 				 */
25279 				busy_count += (SEC_TO_CSEC - 1);
25280 				continue;
25281 
25282 			} else if ((sensep != NULL) &&
25283 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25284 			    (scsi_sense_asc(sensep) == 0x04) &&
25285 			    (scsi_sense_ascq(sensep) == 0x01)) {
25286 				/*
25287 				 * Not ready -> ready - try again.
25288 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25289 				 * ...same as STATUS_BUSY
25290 				 */
25291 				poll_delay = 100 * CSEC;	/* 1 sec. */
25292 				busy_count += (SEC_TO_CSEC - 1);
25293 
25294 			} else {
25295 				/* BAD status - give up. */
25296 				break;
25297 			}
25298 		}
25299 
25300 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25301 		    !do_polled_io) {
25302 			delay(drv_usectohz(poll_delay));
25303 		} else {
25304 			/* we busy wait during cpr_dump or interrupt threads */
25305 			drv_usecwait(poll_delay);
25306 		}
25307 	}
25308 
25309 	pkt->pkt_flags = savef;
25310 	pkt->pkt_comp = savec;
25311 	pkt->pkt_time = savet;
25312 
25313 	/* return on error */
25314 	if (rval)
25315 		return (rval);
25316 
25317 	/*
25318 	 * This is not a performance critical code path.
25319 	 *
25320 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25321 	 * issues associated with looking at DMA memory prior to
25322 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25323 	 */
25324 	scsi_sync_pkt(pkt);
25325 	return (0);
25326 }
25327 
25328 
25329 
25330 /*
25331  *    Function: sd_persistent_reservation_in_read_keys
25332  *
25333  * Description: This routine is the driver entry point for handling CD-ROM
25334  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25335  *		by sending the SCSI-3 PRIN commands to the device.
25336  *		Processes the read keys command response by copying the
25337  *		reservation key information into the user provided buffer.
25338  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25339  *
25340  *   Arguments: un   -  Pointer to soft state struct for the target.
25341  *		usrp -	user provided pointer to multihost Persistent In Read
25342  *			Keys structure (mhioc_inkeys_t)
25343  *		flag -	this argument is a pass through to ddi_copyxxx()
25344  *			directly from the mode argument of ioctl().
25345  *
25346  * Return Code: 0   - Success
25347  *		EACCES
25348  *		ENOTSUP
25349  *		errno return code from sd_send_scsi_cmd()
25350  *
25351  *     Context: Can sleep. Does not return until command is completed.
25352  */
25353 
25354 static int
25355 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25356     mhioc_inkeys_t *usrp, int flag)
25357 {
25358 #ifdef _MULTI_DATAMODEL
25359 	struct mhioc_key_list32	li32;
25360 #endif
25361 	sd_prin_readkeys_t	*in;
25362 	mhioc_inkeys_t		*ptr;
25363 	mhioc_key_list_t	li;
25364 	uchar_t			*data_bufp;
25365 	int 			data_len;
25366 	int			rval = 0;
25367 	size_t			copysz;
25368 	sd_ssc_t		*ssc;
25369 
25370 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25371 		return (EINVAL);
25372 	}
25373 	bzero(&li, sizeof (mhioc_key_list_t));
25374 
25375 	ssc = sd_ssc_init(un);
25376 
25377 	/*
25378 	 * Get the listsize from user
25379 	 */
25380 #ifdef _MULTI_DATAMODEL
25381 
25382 	switch (ddi_model_convert_from(flag & FMODELS)) {
25383 	case DDI_MODEL_ILP32:
25384 		copysz = sizeof (struct mhioc_key_list32);
25385 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25386 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25387 			    "sd_persistent_reservation_in_read_keys: "
25388 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25389 			rval = EFAULT;
25390 			goto done;
25391 		}
25392 		li.listsize = li32.listsize;
25393 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25394 		break;
25395 
25396 	case DDI_MODEL_NONE:
25397 		copysz = sizeof (mhioc_key_list_t);
25398 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25399 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25400 			    "sd_persistent_reservation_in_read_keys: "
25401 			    "failed ddi_copyin: mhioc_key_list_t\n");
25402 			rval = EFAULT;
25403 			goto done;
25404 		}
25405 		break;
25406 	}
25407 
25408 #else /* ! _MULTI_DATAMODEL */
25409 	copysz = sizeof (mhioc_key_list_t);
25410 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25411 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25412 		    "sd_persistent_reservation_in_read_keys: "
25413 		    "failed ddi_copyin: mhioc_key_list_t\n");
25414 		rval = EFAULT;
25415 		goto done;
25416 	}
25417 #endif
25418 
25419 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25420 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25421 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25422 
25423 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25424 	    data_len, data_bufp);
25425 	if (rval != 0) {
25426 		if (rval == EIO)
25427 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25428 		else
25429 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25430 		goto done;
25431 	}
25432 	in = (sd_prin_readkeys_t *)data_bufp;
25433 	ptr->generation = BE_32(in->generation);
25434 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25435 
25436 	/*
25437 	 * Return the min(listsize, listlen) keys
25438 	 */
25439 #ifdef _MULTI_DATAMODEL
25440 
25441 	switch (ddi_model_convert_from(flag & FMODELS)) {
25442 	case DDI_MODEL_ILP32:
25443 		li32.listlen = li.listlen;
25444 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25445 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25446 			    "sd_persistent_reservation_in_read_keys: "
25447 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25448 			rval = EFAULT;
25449 			goto done;
25450 		}
25451 		break;
25452 
25453 	case DDI_MODEL_NONE:
25454 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25455 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25456 			    "sd_persistent_reservation_in_read_keys: "
25457 			    "failed ddi_copyout: mhioc_key_list_t\n");
25458 			rval = EFAULT;
25459 			goto done;
25460 		}
25461 		break;
25462 	}
25463 
25464 #else /* ! _MULTI_DATAMODEL */
25465 
25466 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25467 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25468 		    "sd_persistent_reservation_in_read_keys: "
25469 		    "failed ddi_copyout: mhioc_key_list_t\n");
25470 		rval = EFAULT;
25471 		goto done;
25472 	}
25473 
25474 #endif /* _MULTI_DATAMODEL */
25475 
25476 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25477 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25478 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25479 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25480 		    "sd_persistent_reservation_in_read_keys: "
25481 		    "failed ddi_copyout: keylist\n");
25482 		rval = EFAULT;
25483 	}
25484 done:
25485 	sd_ssc_fini(ssc);
25486 	kmem_free(data_bufp, data_len);
25487 	return (rval);
25488 }
25489 
25490 
25491 /*
25492  *    Function: sd_persistent_reservation_in_read_resv
25493  *
25494  * Description: This routine is the driver entry point for handling CD-ROM
25495  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25496  *		by sending the SCSI-3 PRIN commands to the device.
25497  *		Process the read persistent reservations command response by
25498  *		copying the reservation information into the user provided
25499  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25500  *
25501  *   Arguments: un   -  Pointer to soft state struct for the target.
25502  *		usrp -	user provided pointer to multihost Persistent In Read
25503  *			Keys structure (mhioc_inkeys_t)
25504  *		flag -	this argument is a pass through to ddi_copyxxx()
25505  *			directly from the mode argument of ioctl().
25506  *
25507  * Return Code: 0   - Success
25508  *		EACCES
25509  *		ENOTSUP
25510  *		errno return code from sd_send_scsi_cmd()
25511  *
25512  *     Context: Can sleep. Does not return until command is completed.
25513  */
25514 
25515 static int
25516 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25517     mhioc_inresvs_t *usrp, int flag)
25518 {
25519 #ifdef _MULTI_DATAMODEL
25520 	struct mhioc_resv_desc_list32 resvlist32;
25521 #endif
25522 	sd_prin_readresv_t	*in;
25523 	mhioc_inresvs_t		*ptr;
25524 	sd_readresv_desc_t	*readresv_ptr;
25525 	mhioc_resv_desc_list_t	resvlist;
25526 	mhioc_resv_desc_t 	resvdesc;
25527 	uchar_t			*data_bufp = NULL;
25528 	int 			data_len;
25529 	int			rval = 0;
25530 	int			i;
25531 	size_t			copysz;
25532 	mhioc_resv_desc_t	*bufp;
25533 	sd_ssc_t		*ssc;
25534 
25535 	if ((ptr = usrp) == NULL) {
25536 		return (EINVAL);
25537 	}
25538 
25539 	ssc = sd_ssc_init(un);
25540 
25541 	/*
25542 	 * Get the listsize from user
25543 	 */
25544 #ifdef _MULTI_DATAMODEL
25545 	switch (ddi_model_convert_from(flag & FMODELS)) {
25546 	case DDI_MODEL_ILP32:
25547 		copysz = sizeof (struct mhioc_resv_desc_list32);
25548 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25549 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25550 			    "sd_persistent_reservation_in_read_resv: "
25551 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25552 			rval = EFAULT;
25553 			goto done;
25554 		}
25555 		resvlist.listsize = resvlist32.listsize;
25556 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25557 		break;
25558 
25559 	case DDI_MODEL_NONE:
25560 		copysz = sizeof (mhioc_resv_desc_list_t);
25561 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25562 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25563 			    "sd_persistent_reservation_in_read_resv: "
25564 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25565 			rval = EFAULT;
25566 			goto done;
25567 		}
25568 		break;
25569 	}
25570 #else /* ! _MULTI_DATAMODEL */
25571 	copysz = sizeof (mhioc_resv_desc_list_t);
25572 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25573 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25574 		    "sd_persistent_reservation_in_read_resv: "
25575 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25576 		rval = EFAULT;
25577 		goto done;
25578 	}
25579 #endif /* ! _MULTI_DATAMODEL */
25580 
25581 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25582 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25583 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25584 
25585 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25586 	    data_len, data_bufp);
25587 	if (rval != 0) {
25588 		if (rval == EIO)
25589 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25590 		else
25591 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25592 		goto done;
25593 	}
25594 	in = (sd_prin_readresv_t *)data_bufp;
25595 	ptr->generation = BE_32(in->generation);
25596 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25597 
25598 	/*
25599 	 * Return the min(listsize, listlen( keys
25600 	 */
25601 #ifdef _MULTI_DATAMODEL
25602 
25603 	switch (ddi_model_convert_from(flag & FMODELS)) {
25604 	case DDI_MODEL_ILP32:
25605 		resvlist32.listlen = resvlist.listlen;
25606 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25607 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25608 			    "sd_persistent_reservation_in_read_resv: "
25609 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25610 			rval = EFAULT;
25611 			goto done;
25612 		}
25613 		break;
25614 
25615 	case DDI_MODEL_NONE:
25616 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25617 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25618 			    "sd_persistent_reservation_in_read_resv: "
25619 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25620 			rval = EFAULT;
25621 			goto done;
25622 		}
25623 		break;
25624 	}
25625 
25626 #else /* ! _MULTI_DATAMODEL */
25627 
25628 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25629 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25630 		    "sd_persistent_reservation_in_read_resv: "
25631 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25632 		rval = EFAULT;
25633 		goto done;
25634 	}
25635 
25636 #endif /* ! _MULTI_DATAMODEL */
25637 
25638 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25639 	bufp = resvlist.list;
25640 	copysz = sizeof (mhioc_resv_desc_t);
25641 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25642 	    i++, readresv_ptr++, bufp++) {
25643 
25644 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25645 		    MHIOC_RESV_KEY_SIZE);
25646 		resvdesc.type  = readresv_ptr->type;
25647 		resvdesc.scope = readresv_ptr->scope;
25648 		resvdesc.scope_specific_addr =
25649 		    BE_32(readresv_ptr->scope_specific_addr);
25650 
25651 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25652 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25653 			    "sd_persistent_reservation_in_read_resv: "
25654 			    "failed ddi_copyout: resvlist\n");
25655 			rval = EFAULT;
25656 			goto done;
25657 		}
25658 	}
25659 done:
25660 	sd_ssc_fini(ssc);
25661 	/* only if data_bufp is allocated, we need to free it */
25662 	if (data_bufp) {
25663 		kmem_free(data_bufp, data_len);
25664 	}
25665 	return (rval);
25666 }
25667 
25668 
25669 /*
25670  *    Function: sr_change_blkmode()
25671  *
25672  * Description: This routine is the driver entry point for handling CD-ROM
25673  *		block mode ioctl requests. Support for returning and changing
25674  *		the current block size in use by the device is implemented. The
25675  *		LBA size is changed via a MODE SELECT Block Descriptor.
25676  *
25677  *		This routine issues a mode sense with an allocation length of
25678  *		12 bytes for the mode page header and a single block descriptor.
25679  *
25680  *   Arguments: dev - the device 'dev_t'
25681  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25682  *		      CDROMSBLKMODE (set)
25683  *		data - current block size or requested block size
25684  *		flag - this argument is a pass through to ddi_copyxxx() directly
25685  *		       from the mode argument of ioctl().
25686  *
25687  * Return Code: the code returned by sd_send_scsi_cmd()
25688  *		EINVAL if invalid arguments are provided
25689  *		EFAULT if ddi_copyxxx() fails
25690  *		ENXIO if fail ddi_get_soft_state
25691  *		EIO if invalid mode sense block descriptor length
25692  *
25693  */
25694 
25695 static int
25696 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25697 {
25698 	struct sd_lun			*un = NULL;
25699 	struct mode_header		*sense_mhp, *select_mhp;
25700 	struct block_descriptor		*sense_desc, *select_desc;
25701 	int				current_bsize;
25702 	int				rval = EINVAL;
25703 	uchar_t				*sense = NULL;
25704 	uchar_t				*select = NULL;
25705 	sd_ssc_t			*ssc;
25706 
25707 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25708 
25709 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25710 		return (ENXIO);
25711 	}
25712 
25713 	/*
25714 	 * The block length is changed via the Mode Select block descriptor, the
25715 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25716 	 * required as part of this routine. Therefore the mode sense allocation
25717 	 * length is specified to be the length of a mode page header and a
25718 	 * block descriptor.
25719 	 */
25720 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25721 
25722 	ssc = sd_ssc_init(un);
25723 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25724 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25725 	sd_ssc_fini(ssc);
25726 	if (rval != 0) {
25727 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25728 		    "sr_change_blkmode: Mode Sense Failed\n");
25729 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25730 		return (rval);
25731 	}
25732 
25733 	/* Check the block descriptor len to handle only 1 block descriptor */
25734 	sense_mhp = (struct mode_header *)sense;
25735 	if ((sense_mhp->bdesc_length == 0) ||
25736 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25737 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25738 		    "sr_change_blkmode: Mode Sense returned invalid block"
25739 		    " descriptor length\n");
25740 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25741 		return (EIO);
25742 	}
25743 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25744 	current_bsize = ((sense_desc->blksize_hi << 16) |
25745 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25746 
25747 	/* Process command */
25748 	switch (cmd) {
25749 	case CDROMGBLKMODE:
25750 		/* Return the block size obtained during the mode sense */
25751 		if (ddi_copyout(&current_bsize, (void *)data,
25752 		    sizeof (int), flag) != 0)
25753 			rval = EFAULT;
25754 		break;
25755 	case CDROMSBLKMODE:
25756 		/* Validate the requested block size */
25757 		switch (data) {
25758 		case CDROM_BLK_512:
25759 		case CDROM_BLK_1024:
25760 		case CDROM_BLK_2048:
25761 		case CDROM_BLK_2056:
25762 		case CDROM_BLK_2336:
25763 		case CDROM_BLK_2340:
25764 		case CDROM_BLK_2352:
25765 		case CDROM_BLK_2368:
25766 		case CDROM_BLK_2448:
25767 		case CDROM_BLK_2646:
25768 		case CDROM_BLK_2647:
25769 			break;
25770 		default:
25771 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25772 			    "sr_change_blkmode: "
25773 			    "Block Size '%ld' Not Supported\n", data);
25774 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25775 			return (EINVAL);
25776 		}
25777 
25778 		/*
25779 		 * The current block size matches the requested block size so
25780 		 * there is no need to send the mode select to change the size
25781 		 */
25782 		if (current_bsize == data) {
25783 			break;
25784 		}
25785 
25786 		/* Build the select data for the requested block size */
25787 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25788 		select_mhp = (struct mode_header *)select;
25789 		select_desc =
25790 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25791 		/*
25792 		 * The LBA size is changed via the block descriptor, so the
25793 		 * descriptor is built according to the user data
25794 		 */
25795 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25796 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25797 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25798 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25799 
25800 		/* Send the mode select for the requested block size */
25801 		ssc = sd_ssc_init(un);
25802 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25803 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25804 		    SD_PATH_STANDARD);
25805 		sd_ssc_fini(ssc);
25806 		if (rval != 0) {
25807 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25808 			    "sr_change_blkmode: Mode Select Failed\n");
25809 			/*
25810 			 * The mode select failed for the requested block size,
25811 			 * so reset the data for the original block size and
25812 			 * send it to the target. The error is indicated by the
25813 			 * return value for the failed mode select.
25814 			 */
25815 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25816 			select_desc->blksize_mid = sense_desc->blksize_mid;
25817 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25818 			ssc = sd_ssc_init(un);
25819 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25820 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25821 			    SD_PATH_STANDARD);
25822 			sd_ssc_fini(ssc);
25823 		} else {
25824 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25825 			mutex_enter(SD_MUTEX(un));
25826 			sd_update_block_info(un, (uint32_t)data, 0);
25827 			mutex_exit(SD_MUTEX(un));
25828 		}
25829 		break;
25830 	default:
25831 		/* should not reach here, but check anyway */
25832 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25833 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25834 		rval = EINVAL;
25835 		break;
25836 	}
25837 
25838 	if (select) {
25839 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25840 	}
25841 	if (sense) {
25842 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25843 	}
25844 	return (rval);
25845 }
25846 
25847 
25848 /*
25849  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25850  * implement driver support for getting and setting the CD speed. The command
25851  * set used will be based on the device type. If the device has not been
25852  * identified as MMC the Toshiba vendor specific mode page will be used. If
25853  * the device is MMC but does not support the Real Time Streaming feature
25854  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25855  * be used to read the speed.
25856  */
25857 
25858 /*
25859  *    Function: sr_change_speed()
25860  *
25861  * Description: This routine is the driver entry point for handling CD-ROM
25862  *		drive speed ioctl requests for devices supporting the Toshiba
25863  *		vendor specific drive speed mode page. Support for returning
25864  *		and changing the current drive speed in use by the device is
25865  *		implemented.
25866  *
25867  *   Arguments: dev - the device 'dev_t'
25868  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25869  *		      CDROMSDRVSPEED (set)
25870  *		data - current drive speed or requested drive speed
25871  *		flag - this argument is a pass through to ddi_copyxxx() directly
25872  *		       from the mode argument of ioctl().
25873  *
25874  * Return Code: the code returned by sd_send_scsi_cmd()
25875  *		EINVAL if invalid arguments are provided
25876  *		EFAULT if ddi_copyxxx() fails
25877  *		ENXIO if fail ddi_get_soft_state
25878  *		EIO if invalid mode sense block descriptor length
25879  */
25880 
25881 static int
25882 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25883 {
25884 	struct sd_lun			*un = NULL;
25885 	struct mode_header		*sense_mhp, *select_mhp;
25886 	struct mode_speed		*sense_page, *select_page;
25887 	int				current_speed;
25888 	int				rval = EINVAL;
25889 	int				bd_len;
25890 	uchar_t				*sense = NULL;
25891 	uchar_t				*select = NULL;
25892 	sd_ssc_t			*ssc;
25893 
25894 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25895 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25896 		return (ENXIO);
25897 	}
25898 
25899 	/*
25900 	 * Note: The drive speed is being modified here according to a Toshiba
25901 	 * vendor specific mode page (0x31).
25902 	 */
25903 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25904 
25905 	ssc = sd_ssc_init(un);
25906 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25907 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25908 	    SD_PATH_STANDARD);
25909 	sd_ssc_fini(ssc);
25910 	if (rval != 0) {
25911 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25912 		    "sr_change_speed: Mode Sense Failed\n");
25913 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25914 		return (rval);
25915 	}
25916 	sense_mhp  = (struct mode_header *)sense;
25917 
25918 	/* Check the block descriptor len to handle only 1 block descriptor */
25919 	bd_len = sense_mhp->bdesc_length;
25920 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25921 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25922 		    "sr_change_speed: Mode Sense returned invalid block "
25923 		    "descriptor length\n");
25924 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25925 		return (EIO);
25926 	}
25927 
25928 	sense_page = (struct mode_speed *)
25929 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25930 	current_speed = sense_page->speed;
25931 
25932 	/* Process command */
25933 	switch (cmd) {
25934 	case CDROMGDRVSPEED:
25935 		/* Return the drive speed obtained during the mode sense */
25936 		if (current_speed == 0x2) {
25937 			current_speed = CDROM_TWELVE_SPEED;
25938 		}
25939 		if (ddi_copyout(&current_speed, (void *)data,
25940 		    sizeof (int), flag) != 0) {
25941 			rval = EFAULT;
25942 		}
25943 		break;
25944 	case CDROMSDRVSPEED:
25945 		/* Validate the requested drive speed */
25946 		switch ((uchar_t)data) {
25947 		case CDROM_TWELVE_SPEED:
25948 			data = 0x2;
25949 			/*FALLTHROUGH*/
25950 		case CDROM_NORMAL_SPEED:
25951 		case CDROM_DOUBLE_SPEED:
25952 		case CDROM_QUAD_SPEED:
25953 		case CDROM_MAXIMUM_SPEED:
25954 			break;
25955 		default:
25956 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25957 			    "sr_change_speed: "
25958 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
25959 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25960 			return (EINVAL);
25961 		}
25962 
25963 		/*
25964 		 * The current drive speed matches the requested drive speed so
25965 		 * there is no need to send the mode select to change the speed
25966 		 */
25967 		if (current_speed == data) {
25968 			break;
25969 		}
25970 
25971 		/* Build the select data for the requested drive speed */
25972 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25973 		select_mhp = (struct mode_header *)select;
25974 		select_mhp->bdesc_length = 0;
25975 		select_page =
25976 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25977 		select_page =
25978 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25979 		select_page->mode_page.code = CDROM_MODE_SPEED;
25980 		select_page->mode_page.length = 2;
25981 		select_page->speed = (uchar_t)data;
25982 
25983 		/* Send the mode select for the requested block size */
25984 		ssc = sd_ssc_init(un);
25985 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25986 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25987 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25988 		sd_ssc_fini(ssc);
25989 		if (rval != 0) {
25990 			/*
25991 			 * The mode select failed for the requested drive speed,
25992 			 * so reset the data for the original drive speed and
25993 			 * send it to the target. The error is indicated by the
25994 			 * return value for the failed mode select.
25995 			 */
25996 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25997 			    "sr_drive_speed: Mode Select Failed\n");
25998 			select_page->speed = sense_page->speed;
25999 			ssc = sd_ssc_init(un);
26000 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
26001 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26002 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26003 			sd_ssc_fini(ssc);
26004 		}
26005 		break;
26006 	default:
26007 		/* should not reach here, but check anyway */
26008 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26009 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26010 		rval = EINVAL;
26011 		break;
26012 	}
26013 
26014 	if (select) {
26015 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26016 	}
26017 	if (sense) {
26018 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26019 	}
26020 
26021 	return (rval);
26022 }
26023 
26024 
26025 /*
26026  *    Function: sr_atapi_change_speed()
26027  *
26028  * Description: This routine is the driver entry point for handling CD-ROM
26029  *		drive speed ioctl requests for MMC devices that do not support
26030  *		the Real Time Streaming feature (0x107).
26031  *
26032  *		Note: This routine will use the SET SPEED command which may not
26033  *		be supported by all devices.
26034  *
26035  *   Arguments: dev- the device 'dev_t'
26036  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26037  *		     CDROMSDRVSPEED (set)
26038  *		data- current drive speed or requested drive speed
26039  *		flag- this argument is a pass through to ddi_copyxxx() directly
26040  *		      from the mode argument of ioctl().
26041  *
26042  * Return Code: the code returned by sd_send_scsi_cmd()
26043  *		EINVAL if invalid arguments are provided
26044  *		EFAULT if ddi_copyxxx() fails
26045  *		ENXIO if fail ddi_get_soft_state
26046  *		EIO if invalid mode sense block descriptor length
26047  */
26048 
26049 static int
26050 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26051 {
26052 	struct sd_lun			*un;
26053 	struct uscsi_cmd		*com = NULL;
26054 	struct mode_header_grp2		*sense_mhp;
26055 	uchar_t				*sense_page;
26056 	uchar_t				*sense = NULL;
26057 	char				cdb[CDB_GROUP5];
26058 	int				bd_len;
26059 	int				current_speed = 0;
26060 	int				max_speed = 0;
26061 	int				rval;
26062 	sd_ssc_t			*ssc;
26063 
26064 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26065 
26066 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26067 		return (ENXIO);
26068 	}
26069 
26070 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26071 
26072 	ssc = sd_ssc_init(un);
26073 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
26074 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26075 	    SD_PATH_STANDARD);
26076 	sd_ssc_fini(ssc);
26077 	if (rval != 0) {
26078 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26079 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26080 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26081 		return (rval);
26082 	}
26083 
26084 	/* Check the block descriptor len to handle only 1 block descriptor */
26085 	sense_mhp = (struct mode_header_grp2 *)sense;
26086 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26087 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26088 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26089 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26090 		    "block descriptor length\n");
26091 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26092 		return (EIO);
26093 	}
26094 
26095 	/* Calculate the current and maximum drive speeds */
26096 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26097 	current_speed = (sense_page[14] << 8) | sense_page[15];
26098 	max_speed = (sense_page[8] << 8) | sense_page[9];
26099 
26100 	/* Process the command */
26101 	switch (cmd) {
26102 	case CDROMGDRVSPEED:
26103 		current_speed /= SD_SPEED_1X;
26104 		if (ddi_copyout(&current_speed, (void *)data,
26105 		    sizeof (int), flag) != 0)
26106 			rval = EFAULT;
26107 		break;
26108 	case CDROMSDRVSPEED:
26109 		/* Convert the speed code to KB/sec */
26110 		switch ((uchar_t)data) {
26111 		case CDROM_NORMAL_SPEED:
26112 			current_speed = SD_SPEED_1X;
26113 			break;
26114 		case CDROM_DOUBLE_SPEED:
26115 			current_speed = 2 * SD_SPEED_1X;
26116 			break;
26117 		case CDROM_QUAD_SPEED:
26118 			current_speed = 4 * SD_SPEED_1X;
26119 			break;
26120 		case CDROM_TWELVE_SPEED:
26121 			current_speed = 12 * SD_SPEED_1X;
26122 			break;
26123 		case CDROM_MAXIMUM_SPEED:
26124 			current_speed = 0xffff;
26125 			break;
26126 		default:
26127 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26128 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26129 			    (uchar_t)data);
26130 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26131 			return (EINVAL);
26132 		}
26133 
26134 		/* Check the request against the drive's max speed. */
26135 		if (current_speed != 0xffff) {
26136 			if (current_speed > max_speed) {
26137 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26138 				return (EINVAL);
26139 			}
26140 		}
26141 
26142 		/*
26143 		 * Build and send the SET SPEED command
26144 		 *
26145 		 * Note: The SET SPEED (0xBB) command used in this routine is
26146 		 * obsolete per the SCSI MMC spec but still supported in the
26147 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26148 		 * therefore the command is still implemented in this routine.
26149 		 */
26150 		bzero(cdb, sizeof (cdb));
26151 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26152 		cdb[2] = (uchar_t)(current_speed >> 8);
26153 		cdb[3] = (uchar_t)current_speed;
26154 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26155 		com->uscsi_cdb	   = (caddr_t)cdb;
26156 		com->uscsi_cdblen  = CDB_GROUP5;
26157 		com->uscsi_bufaddr = NULL;
26158 		com->uscsi_buflen  = 0;
26159 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26160 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26161 		break;
26162 	default:
26163 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26164 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26165 		rval = EINVAL;
26166 	}
26167 
26168 	if (sense) {
26169 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26170 	}
26171 	if (com) {
26172 		kmem_free(com, sizeof (*com));
26173 	}
26174 	return (rval);
26175 }
26176 
26177 
26178 /*
26179  *    Function: sr_pause_resume()
26180  *
26181  * Description: This routine is the driver entry point for handling CD-ROM
26182  *		pause/resume ioctl requests. This only affects the audio play
26183  *		operation.
26184  *
26185  *   Arguments: dev - the device 'dev_t'
26186  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26187  *		      for setting the resume bit of the cdb.
26188  *
26189  * Return Code: the code returned by sd_send_scsi_cmd()
26190  *		EINVAL if invalid mode specified
26191  *
26192  */
26193 
26194 static int
26195 sr_pause_resume(dev_t dev, int cmd)
26196 {
26197 	struct sd_lun		*un;
26198 	struct uscsi_cmd	*com;
26199 	char			cdb[CDB_GROUP1];
26200 	int			rval;
26201 
26202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26203 		return (ENXIO);
26204 	}
26205 
26206 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26207 	bzero(cdb, CDB_GROUP1);
26208 	cdb[0] = SCMD_PAUSE_RESUME;
26209 	switch (cmd) {
26210 	case CDROMRESUME:
26211 		cdb[8] = 1;
26212 		break;
26213 	case CDROMPAUSE:
26214 		cdb[8] = 0;
26215 		break;
26216 	default:
26217 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26218 		    " Command '%x' Not Supported\n", cmd);
26219 		rval = EINVAL;
26220 		goto done;
26221 	}
26222 
26223 	com->uscsi_cdb    = cdb;
26224 	com->uscsi_cdblen = CDB_GROUP1;
26225 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26226 
26227 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26228 	    SD_PATH_STANDARD);
26229 
26230 done:
26231 	kmem_free(com, sizeof (*com));
26232 	return (rval);
26233 }
26234 
26235 
26236 /*
26237  *    Function: sr_play_msf()
26238  *
26239  * Description: This routine is the driver entry point for handling CD-ROM
26240  *		ioctl requests to output the audio signals at the specified
26241  *		starting address and continue the audio play until the specified
26242  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26243  *		Frame (MSF) format.
26244  *
26245  *   Arguments: dev	- the device 'dev_t'
26246  *		data	- pointer to user provided audio msf structure,
26247  *		          specifying start/end addresses.
26248  *		flag	- this argument is a pass through to ddi_copyxxx()
26249  *		          directly from the mode argument of ioctl().
26250  *
26251  * Return Code: the code returned by sd_send_scsi_cmd()
26252  *		EFAULT if ddi_copyxxx() fails
26253  *		ENXIO if fail ddi_get_soft_state
26254  *		EINVAL if data pointer is NULL
26255  */
26256 
26257 static int
26258 sr_play_msf(dev_t dev, caddr_t data, int flag)
26259 {
26260 	struct sd_lun		*un;
26261 	struct uscsi_cmd	*com;
26262 	struct cdrom_msf	msf_struct;
26263 	struct cdrom_msf	*msf = &msf_struct;
26264 	char			cdb[CDB_GROUP1];
26265 	int			rval;
26266 
26267 	if (data == NULL) {
26268 		return (EINVAL);
26269 	}
26270 
26271 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26272 		return (ENXIO);
26273 	}
26274 
26275 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26276 		return (EFAULT);
26277 	}
26278 
26279 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26280 	bzero(cdb, CDB_GROUP1);
26281 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26282 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26283 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26284 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26285 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26286 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26287 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26288 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26289 	} else {
26290 		cdb[3] = msf->cdmsf_min0;
26291 		cdb[4] = msf->cdmsf_sec0;
26292 		cdb[5] = msf->cdmsf_frame0;
26293 		cdb[6] = msf->cdmsf_min1;
26294 		cdb[7] = msf->cdmsf_sec1;
26295 		cdb[8] = msf->cdmsf_frame1;
26296 	}
26297 	com->uscsi_cdb    = cdb;
26298 	com->uscsi_cdblen = CDB_GROUP1;
26299 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26300 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26301 	    SD_PATH_STANDARD);
26302 	kmem_free(com, sizeof (*com));
26303 	return (rval);
26304 }
26305 
26306 
26307 /*
26308  *    Function: sr_play_trkind()
26309  *
26310  * Description: This routine is the driver entry point for handling CD-ROM
26311  *		ioctl requests to output the audio signals at the specified
26312  *		starting address and continue the audio play until the specified
26313  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26314  *		format.
26315  *
26316  *   Arguments: dev	- the device 'dev_t'
26317  *		data	- pointer to user provided audio track/index structure,
26318  *		          specifying start/end addresses.
26319  *		flag	- this argument is a pass through to ddi_copyxxx()
26320  *		          directly from the mode argument of ioctl().
26321  *
26322  * Return Code: the code returned by sd_send_scsi_cmd()
26323  *		EFAULT if ddi_copyxxx() fails
26324  *		ENXIO if fail ddi_get_soft_state
26325  *		EINVAL if data pointer is NULL
26326  */
26327 
26328 static int
26329 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26330 {
26331 	struct cdrom_ti		ti_struct;
26332 	struct cdrom_ti		*ti = &ti_struct;
26333 	struct uscsi_cmd	*com = NULL;
26334 	char			cdb[CDB_GROUP1];
26335 	int			rval;
26336 
26337 	if (data == NULL) {
26338 		return (EINVAL);
26339 	}
26340 
26341 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26342 		return (EFAULT);
26343 	}
26344 
26345 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26346 	bzero(cdb, CDB_GROUP1);
26347 	cdb[0] = SCMD_PLAYAUDIO_TI;
26348 	cdb[4] = ti->cdti_trk0;
26349 	cdb[5] = ti->cdti_ind0;
26350 	cdb[7] = ti->cdti_trk1;
26351 	cdb[8] = ti->cdti_ind1;
26352 	com->uscsi_cdb    = cdb;
26353 	com->uscsi_cdblen = CDB_GROUP1;
26354 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26355 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26356 	    SD_PATH_STANDARD);
26357 	kmem_free(com, sizeof (*com));
26358 	return (rval);
26359 }
26360 
26361 
26362 /*
26363  *    Function: sr_read_all_subcodes()
26364  *
26365  * Description: This routine is the driver entry point for handling CD-ROM
26366  *		ioctl requests to return raw subcode data while the target is
26367  *		playing audio (CDROMSUBCODE).
26368  *
26369  *   Arguments: dev	- the device 'dev_t'
26370  *		data	- pointer to user provided cdrom subcode structure,
26371  *		          specifying the transfer length and address.
26372  *		flag	- this argument is a pass through to ddi_copyxxx()
26373  *		          directly from the mode argument of ioctl().
26374  *
26375  * Return Code: the code returned by sd_send_scsi_cmd()
26376  *		EFAULT if ddi_copyxxx() fails
26377  *		ENXIO if fail ddi_get_soft_state
26378  *		EINVAL if data pointer is NULL
26379  */
26380 
26381 static int
26382 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26383 {
26384 	struct sd_lun		*un = NULL;
26385 	struct uscsi_cmd	*com = NULL;
26386 	struct cdrom_subcode	*subcode = NULL;
26387 	int			rval;
26388 	size_t			buflen;
26389 	char			cdb[CDB_GROUP5];
26390 
26391 #ifdef _MULTI_DATAMODEL
26392 	/* To support ILP32 applications in an LP64 world */
26393 	struct cdrom_subcode32		cdrom_subcode32;
26394 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26395 #endif
26396 	if (data == NULL) {
26397 		return (EINVAL);
26398 	}
26399 
26400 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26401 		return (ENXIO);
26402 	}
26403 
26404 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26405 
26406 #ifdef _MULTI_DATAMODEL
26407 	switch (ddi_model_convert_from(flag & FMODELS)) {
26408 	case DDI_MODEL_ILP32:
26409 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26410 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26411 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26412 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26413 			return (EFAULT);
26414 		}
26415 		/* Convert the ILP32 uscsi data from the application to LP64 */
26416 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26417 		break;
26418 	case DDI_MODEL_NONE:
26419 		if (ddi_copyin(data, subcode,
26420 		    sizeof (struct cdrom_subcode), flag)) {
26421 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26422 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26423 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26424 			return (EFAULT);
26425 		}
26426 		break;
26427 	}
26428 #else /* ! _MULTI_DATAMODEL */
26429 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26430 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26431 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26432 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26433 		return (EFAULT);
26434 	}
26435 #endif /* _MULTI_DATAMODEL */
26436 
26437 	/*
26438 	 * Since MMC-2 expects max 3 bytes for length, check if the
26439 	 * length input is greater than 3 bytes
26440 	 */
26441 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26442 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26443 		    "sr_read_all_subcodes: "
26444 		    "cdrom transfer length too large: %d (limit %d)\n",
26445 		    subcode->cdsc_length, 0xFFFFFF);
26446 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26447 		return (EINVAL);
26448 	}
26449 
26450 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26451 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26452 	bzero(cdb, CDB_GROUP5);
26453 
26454 	if (un->un_f_mmc_cap == TRUE) {
26455 		cdb[0] = (char)SCMD_READ_CD;
26456 		cdb[2] = (char)0xff;
26457 		cdb[3] = (char)0xff;
26458 		cdb[4] = (char)0xff;
26459 		cdb[5] = (char)0xff;
26460 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26461 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26462 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26463 		cdb[10] = 1;
26464 	} else {
26465 		/*
26466 		 * Note: A vendor specific command (0xDF) is being used her to
26467 		 * request a read of all subcodes.
26468 		 */
26469 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26470 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26471 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26472 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26473 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26474 	}
26475 	com->uscsi_cdb	   = cdb;
26476 	com->uscsi_cdblen  = CDB_GROUP5;
26477 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26478 	com->uscsi_buflen  = buflen;
26479 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26480 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26481 	    SD_PATH_STANDARD);
26482 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26483 	kmem_free(com, sizeof (*com));
26484 	return (rval);
26485 }
26486 
26487 
26488 /*
26489  *    Function: sr_read_subchannel()
26490  *
26491  * Description: This routine is the driver entry point for handling CD-ROM
26492  *		ioctl requests to return the Q sub-channel data of the CD
26493  *		current position block. (CDROMSUBCHNL) The data includes the
26494  *		track number, index number, absolute CD-ROM address (LBA or MSF
26495  *		format per the user) , track relative CD-ROM address (LBA or MSF
26496  *		format per the user), control data and audio status.
26497  *
26498  *   Arguments: dev	- the device 'dev_t'
26499  *		data	- pointer to user provided cdrom sub-channel structure
26500  *		flag	- this argument is a pass through to ddi_copyxxx()
26501  *		          directly from the mode argument of ioctl().
26502  *
26503  * Return Code: the code returned by sd_send_scsi_cmd()
26504  *		EFAULT if ddi_copyxxx() fails
26505  *		ENXIO if fail ddi_get_soft_state
26506  *		EINVAL if data pointer is NULL
26507  */
26508 
26509 static int
26510 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26511 {
26512 	struct sd_lun		*un;
26513 	struct uscsi_cmd	*com;
26514 	struct cdrom_subchnl	subchanel;
26515 	struct cdrom_subchnl	*subchnl = &subchanel;
26516 	char			cdb[CDB_GROUP1];
26517 	caddr_t			buffer;
26518 	int			rval;
26519 
26520 	if (data == NULL) {
26521 		return (EINVAL);
26522 	}
26523 
26524 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26525 	    (un->un_state == SD_STATE_OFFLINE)) {
26526 		return (ENXIO);
26527 	}
26528 
26529 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26530 		return (EFAULT);
26531 	}
26532 
26533 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26534 	bzero(cdb, CDB_GROUP1);
26535 	cdb[0] = SCMD_READ_SUBCHANNEL;
26536 	/* Set the MSF bit based on the user requested address format */
26537 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26538 	/*
26539 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26540 	 * returned
26541 	 */
26542 	cdb[2] = 0x40;
26543 	/*
26544 	 * Set byte 3 to specify the return data format. A value of 0x01
26545 	 * indicates that the CD-ROM current position should be returned.
26546 	 */
26547 	cdb[3] = 0x01;
26548 	cdb[8] = 0x10;
26549 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26550 	com->uscsi_cdb	   = cdb;
26551 	com->uscsi_cdblen  = CDB_GROUP1;
26552 	com->uscsi_bufaddr = buffer;
26553 	com->uscsi_buflen  = 16;
26554 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26555 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26556 	    SD_PATH_STANDARD);
26557 	if (rval != 0) {
26558 		kmem_free(buffer, 16);
26559 		kmem_free(com, sizeof (*com));
26560 		return (rval);
26561 	}
26562 
26563 	/* Process the returned Q sub-channel data */
26564 	subchnl->cdsc_audiostatus = buffer[1];
26565 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26566 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26567 	subchnl->cdsc_trk	= buffer[6];
26568 	subchnl->cdsc_ind	= buffer[7];
26569 	if (subchnl->cdsc_format & CDROM_LBA) {
26570 		subchnl->cdsc_absaddr.lba =
26571 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26572 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26573 		subchnl->cdsc_reladdr.lba =
26574 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26575 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26576 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26577 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26578 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26579 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26580 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26581 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26582 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26583 	} else {
26584 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26585 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26586 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26587 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26588 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26589 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26590 	}
26591 	kmem_free(buffer, 16);
26592 	kmem_free(com, sizeof (*com));
26593 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26594 	    != 0) {
26595 		return (EFAULT);
26596 	}
26597 	return (rval);
26598 }
26599 
26600 
26601 /*
26602  *    Function: sr_read_tocentry()
26603  *
26604  * Description: This routine is the driver entry point for handling CD-ROM
26605  *		ioctl requests to read from the Table of Contents (TOC)
26606  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26607  *		fields, the starting address (LBA or MSF format per the user)
26608  *		and the data mode if the user specified track is a data track.
26609  *
26610  *		Note: The READ HEADER (0x44) command used in this routine is
26611  *		obsolete per the SCSI MMC spec but still supported in the
26612  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26613  *		therefore the command is still implemented in this routine.
26614  *
26615  *   Arguments: dev	- the device 'dev_t'
26616  *		data	- pointer to user provided toc entry structure,
26617  *			  specifying the track # and the address format
26618  *			  (LBA or MSF).
26619  *		flag	- this argument is a pass through to ddi_copyxxx()
26620  *		          directly from the mode argument of ioctl().
26621  *
26622  * Return Code: the code returned by sd_send_scsi_cmd()
26623  *		EFAULT if ddi_copyxxx() fails
26624  *		ENXIO if fail ddi_get_soft_state
26625  *		EINVAL if data pointer is NULL
26626  */
26627 
26628 static int
26629 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26630 {
26631 	struct sd_lun		*un = NULL;
26632 	struct uscsi_cmd	*com;
26633 	struct cdrom_tocentry	toc_entry;
26634 	struct cdrom_tocentry	*entry = &toc_entry;
26635 	caddr_t			buffer;
26636 	int			rval;
26637 	char			cdb[CDB_GROUP1];
26638 
26639 	if (data == NULL) {
26640 		return (EINVAL);
26641 	}
26642 
26643 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26644 	    (un->un_state == SD_STATE_OFFLINE)) {
26645 		return (ENXIO);
26646 	}
26647 
26648 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26649 		return (EFAULT);
26650 	}
26651 
26652 	/* Validate the requested track and address format */
26653 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26654 		return (EINVAL);
26655 	}
26656 
26657 	if (entry->cdte_track == 0) {
26658 		return (EINVAL);
26659 	}
26660 
26661 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26662 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26663 	bzero(cdb, CDB_GROUP1);
26664 
26665 	cdb[0] = SCMD_READ_TOC;
26666 	/* Set the MSF bit based on the user requested address format  */
26667 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26668 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26669 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26670 	} else {
26671 		cdb[6] = entry->cdte_track;
26672 	}
26673 
26674 	/*
26675 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26676 	 * (4 byte TOC response header + 8 byte track descriptor)
26677 	 */
26678 	cdb[8] = 12;
26679 	com->uscsi_cdb	   = cdb;
26680 	com->uscsi_cdblen  = CDB_GROUP1;
26681 	com->uscsi_bufaddr = buffer;
26682 	com->uscsi_buflen  = 0x0C;
26683 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26684 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26685 	    SD_PATH_STANDARD);
26686 	if (rval != 0) {
26687 		kmem_free(buffer, 12);
26688 		kmem_free(com, sizeof (*com));
26689 		return (rval);
26690 	}
26691 
26692 	/* Process the toc entry */
26693 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26694 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26695 	if (entry->cdte_format & CDROM_LBA) {
26696 		entry->cdte_addr.lba =
26697 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26698 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26699 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26700 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26701 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26702 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26703 		/*
26704 		 * Send a READ TOC command using the LBA address format to get
26705 		 * the LBA for the track requested so it can be used in the
26706 		 * READ HEADER request
26707 		 *
26708 		 * Note: The MSF bit of the READ HEADER command specifies the
26709 		 * output format. The block address specified in that command
26710 		 * must be in LBA format.
26711 		 */
26712 		cdb[1] = 0;
26713 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26714 		    SD_PATH_STANDARD);
26715 		if (rval != 0) {
26716 			kmem_free(buffer, 12);
26717 			kmem_free(com, sizeof (*com));
26718 			return (rval);
26719 		}
26720 	} else {
26721 		entry->cdte_addr.msf.minute	= buffer[9];
26722 		entry->cdte_addr.msf.second	= buffer[10];
26723 		entry->cdte_addr.msf.frame	= buffer[11];
26724 		/*
26725 		 * Send a READ TOC command using the LBA address format to get
26726 		 * the LBA for the track requested so it can be used in the
26727 		 * READ HEADER request
26728 		 *
26729 		 * Note: The MSF bit of the READ HEADER command specifies the
26730 		 * output format. The block address specified in that command
26731 		 * must be in LBA format.
26732 		 */
26733 		cdb[1] = 0;
26734 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26735 		    SD_PATH_STANDARD);
26736 		if (rval != 0) {
26737 			kmem_free(buffer, 12);
26738 			kmem_free(com, sizeof (*com));
26739 			return (rval);
26740 		}
26741 	}
26742 
26743 	/*
26744 	 * Build and send the READ HEADER command to determine the data mode of
26745 	 * the user specified track.
26746 	 */
26747 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26748 	    (entry->cdte_track != CDROM_LEADOUT)) {
26749 		bzero(cdb, CDB_GROUP1);
26750 		cdb[0] = SCMD_READ_HEADER;
26751 		cdb[2] = buffer[8];
26752 		cdb[3] = buffer[9];
26753 		cdb[4] = buffer[10];
26754 		cdb[5] = buffer[11];
26755 		cdb[8] = 0x08;
26756 		com->uscsi_buflen = 0x08;
26757 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26758 		    SD_PATH_STANDARD);
26759 		if (rval == 0) {
26760 			entry->cdte_datamode = buffer[0];
26761 		} else {
26762 			/*
26763 			 * READ HEADER command failed, since this is
26764 			 * obsoleted in one spec, its better to return
26765 			 * -1 for an invlid track so that we can still
26766 			 * receive the rest of the TOC data.
26767 			 */
26768 			entry->cdte_datamode = (uchar_t)-1;
26769 		}
26770 	} else {
26771 		entry->cdte_datamode = (uchar_t)-1;
26772 	}
26773 
26774 	kmem_free(buffer, 12);
26775 	kmem_free(com, sizeof (*com));
26776 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26777 		return (EFAULT);
26778 
26779 	return (rval);
26780 }
26781 
26782 
26783 /*
26784  *    Function: sr_read_tochdr()
26785  *
26786  * Description: This routine is the driver entry point for handling CD-ROM
26787  * 		ioctl requests to read the Table of Contents (TOC) header
26788  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26789  *		and ending track numbers
26790  *
26791  *   Arguments: dev	- the device 'dev_t'
26792  *		data	- pointer to user provided toc header structure,
26793  *			  specifying the starting and ending track numbers.
26794  *		flag	- this argument is a pass through to ddi_copyxxx()
26795  *			  directly from the mode argument of ioctl().
26796  *
26797  * Return Code: the code returned by sd_send_scsi_cmd()
26798  *		EFAULT if ddi_copyxxx() fails
26799  *		ENXIO if fail ddi_get_soft_state
26800  *		EINVAL if data pointer is NULL
26801  */
26802 
26803 static int
26804 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26805 {
26806 	struct sd_lun		*un;
26807 	struct uscsi_cmd	*com;
26808 	struct cdrom_tochdr	toc_header;
26809 	struct cdrom_tochdr	*hdr = &toc_header;
26810 	char			cdb[CDB_GROUP1];
26811 	int			rval;
26812 	caddr_t			buffer;
26813 
26814 	if (data == NULL) {
26815 		return (EINVAL);
26816 	}
26817 
26818 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26819 	    (un->un_state == SD_STATE_OFFLINE)) {
26820 		return (ENXIO);
26821 	}
26822 
26823 	buffer = kmem_zalloc(4, KM_SLEEP);
26824 	bzero(cdb, CDB_GROUP1);
26825 	cdb[0] = SCMD_READ_TOC;
26826 	/*
26827 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26828 	 * that the TOC header should be returned
26829 	 */
26830 	cdb[6] = 0x00;
26831 	/*
26832 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26833 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26834 	 */
26835 	cdb[8] = 0x04;
26836 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26837 	com->uscsi_cdb	   = cdb;
26838 	com->uscsi_cdblen  = CDB_GROUP1;
26839 	com->uscsi_bufaddr = buffer;
26840 	com->uscsi_buflen  = 0x04;
26841 	com->uscsi_timeout = 300;
26842 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26843 
26844 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26845 	    SD_PATH_STANDARD);
26846 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26847 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26848 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26849 	} else {
26850 		hdr->cdth_trk0 = buffer[2];
26851 		hdr->cdth_trk1 = buffer[3];
26852 	}
26853 	kmem_free(buffer, 4);
26854 	kmem_free(com, sizeof (*com));
26855 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26856 		return (EFAULT);
26857 	}
26858 	return (rval);
26859 }
26860 
26861 
26862 /*
26863  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26864  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26865  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26866  * digital audio and extended architecture digital audio. These modes are
26867  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26868  * MMC specs.
26869  *
26870  * In addition to support for the various data formats these routines also
26871  * include support for devices that implement only the direct access READ
26872  * commands (0x08, 0x28), devices that implement the READ_CD commands
26873  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26874  * READ CDXA commands (0xD8, 0xDB)
26875  */
26876 
26877 /*
26878  *    Function: sr_read_mode1()
26879  *
26880  * Description: This routine is the driver entry point for handling CD-ROM
26881  *		ioctl read mode1 requests (CDROMREADMODE1).
26882  *
26883  *   Arguments: dev	- the device 'dev_t'
26884  *		data	- pointer to user provided cd read structure specifying
26885  *			  the lba buffer address and length.
26886  *		flag	- this argument is a pass through to ddi_copyxxx()
26887  *			  directly from the mode argument of ioctl().
26888  *
26889  * Return Code: the code returned by sd_send_scsi_cmd()
26890  *		EFAULT if ddi_copyxxx() fails
26891  *		ENXIO if fail ddi_get_soft_state
26892  *		EINVAL if data pointer is NULL
26893  */
26894 
26895 static int
26896 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26897 {
26898 	struct sd_lun		*un;
26899 	struct cdrom_read	mode1_struct;
26900 	struct cdrom_read	*mode1 = &mode1_struct;
26901 	int			rval;
26902 	sd_ssc_t		*ssc;
26903 
26904 #ifdef _MULTI_DATAMODEL
26905 	/* To support ILP32 applications in an LP64 world */
26906 	struct cdrom_read32	cdrom_read32;
26907 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26908 #endif /* _MULTI_DATAMODEL */
26909 
26910 	if (data == NULL) {
26911 		return (EINVAL);
26912 	}
26913 
26914 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26915 	    (un->un_state == SD_STATE_OFFLINE)) {
26916 		return (ENXIO);
26917 	}
26918 
26919 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26920 	    "sd_read_mode1: entry: un:0x%p\n", un);
26921 
26922 #ifdef _MULTI_DATAMODEL
26923 	switch (ddi_model_convert_from(flag & FMODELS)) {
26924 	case DDI_MODEL_ILP32:
26925 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26926 			return (EFAULT);
26927 		}
26928 		/* Convert the ILP32 uscsi data from the application to LP64 */
26929 		cdrom_read32tocdrom_read(cdrd32, mode1);
26930 		break;
26931 	case DDI_MODEL_NONE:
26932 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26933 			return (EFAULT);
26934 		}
26935 	}
26936 #else /* ! _MULTI_DATAMODEL */
26937 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26938 		return (EFAULT);
26939 	}
26940 #endif /* _MULTI_DATAMODEL */
26941 
26942 	ssc = sd_ssc_init(un);
26943 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26944 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26945 	sd_ssc_fini(ssc);
26946 
26947 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26948 	    "sd_read_mode1: exit: un:0x%p\n", un);
26949 
26950 	return (rval);
26951 }
26952 
26953 
26954 /*
26955  *    Function: sr_read_cd_mode2()
26956  *
26957  * Description: This routine is the driver entry point for handling CD-ROM
26958  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26959  *		support the READ CD (0xBE) command or the 1st generation
26960  *		READ CD (0xD4) command.
26961  *
26962  *   Arguments: dev	- the device 'dev_t'
26963  *		data	- pointer to user provided cd read structure specifying
26964  *			  the lba buffer address and length.
26965  *		flag	- this argument is a pass through to ddi_copyxxx()
26966  *			  directly from the mode argument of ioctl().
26967  *
26968  * Return Code: the code returned by sd_send_scsi_cmd()
26969  *		EFAULT if ddi_copyxxx() fails
26970  *		ENXIO if fail ddi_get_soft_state
26971  *		EINVAL if data pointer is NULL
26972  */
26973 
26974 static int
26975 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
26976 {
26977 	struct sd_lun		*un;
26978 	struct uscsi_cmd	*com;
26979 	struct cdrom_read	mode2_struct;
26980 	struct cdrom_read	*mode2 = &mode2_struct;
26981 	uchar_t			cdb[CDB_GROUP5];
26982 	int			nblocks;
26983 	int			rval;
26984 #ifdef _MULTI_DATAMODEL
26985 	/*  To support ILP32 applications in an LP64 world */
26986 	struct cdrom_read32	cdrom_read32;
26987 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26988 #endif /* _MULTI_DATAMODEL */
26989 
26990 	if (data == NULL) {
26991 		return (EINVAL);
26992 	}
26993 
26994 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26995 	    (un->un_state == SD_STATE_OFFLINE)) {
26996 		return (ENXIO);
26997 	}
26998 
26999 #ifdef _MULTI_DATAMODEL
27000 	switch (ddi_model_convert_from(flag & FMODELS)) {
27001 	case DDI_MODEL_ILP32:
27002 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27003 			return (EFAULT);
27004 		}
27005 		/* Convert the ILP32 uscsi data from the application to LP64 */
27006 		cdrom_read32tocdrom_read(cdrd32, mode2);
27007 		break;
27008 	case DDI_MODEL_NONE:
27009 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27010 			return (EFAULT);
27011 		}
27012 		break;
27013 	}
27014 
27015 #else /* ! _MULTI_DATAMODEL */
27016 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27017 		return (EFAULT);
27018 	}
27019 #endif /* _MULTI_DATAMODEL */
27020 
27021 	bzero(cdb, sizeof (cdb));
27022 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27023 		/* Read command supported by 1st generation atapi drives */
27024 		cdb[0] = SCMD_READ_CDD4;
27025 	} else {
27026 		/* Universal CD Access Command */
27027 		cdb[0] = SCMD_READ_CD;
27028 	}
27029 
27030 	/*
27031 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27032 	 */
27033 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27034 
27035 	/* set the start address */
27036 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27037 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27038 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27039 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27040 
27041 	/* set the transfer length */
27042 	nblocks = mode2->cdread_buflen / 2336;
27043 	cdb[6] = (uchar_t)(nblocks >> 16);
27044 	cdb[7] = (uchar_t)(nblocks >> 8);
27045 	cdb[8] = (uchar_t)nblocks;
27046 
27047 	/* set the filter bits */
27048 	cdb[9] = CDROM_READ_CD_USERDATA;
27049 
27050 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27051 	com->uscsi_cdb = (caddr_t)cdb;
27052 	com->uscsi_cdblen = sizeof (cdb);
27053 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27054 	com->uscsi_buflen = mode2->cdread_buflen;
27055 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27056 
27057 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27058 	    SD_PATH_STANDARD);
27059 	kmem_free(com, sizeof (*com));
27060 	return (rval);
27061 }
27062 
27063 
27064 /*
27065  *    Function: sr_read_mode2()
27066  *
27067  * Description: This routine is the driver entry point for handling CD-ROM
27068  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27069  *		do not support the READ CD (0xBE) command.
27070  *
27071  *   Arguments: dev	- the device 'dev_t'
27072  *		data	- pointer to user provided cd read structure specifying
27073  *			  the lba buffer address and length.
27074  *		flag	- this argument is a pass through to ddi_copyxxx()
27075  *			  directly from the mode argument of ioctl().
27076  *
27077  * Return Code: the code returned by sd_send_scsi_cmd()
27078  *		EFAULT if ddi_copyxxx() fails
27079  *		ENXIO if fail ddi_get_soft_state
27080  *		EINVAL if data pointer is NULL
27081  *		EIO if fail to reset block size
27082  *		EAGAIN if commands are in progress in the driver
27083  */
27084 
27085 static int
27086 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27087 {
27088 	struct sd_lun		*un;
27089 	struct cdrom_read	mode2_struct;
27090 	struct cdrom_read	*mode2 = &mode2_struct;
27091 	int			rval;
27092 	uint32_t		restore_blksize;
27093 	struct uscsi_cmd	*com;
27094 	uchar_t			cdb[CDB_GROUP0];
27095 	int			nblocks;
27096 
27097 #ifdef _MULTI_DATAMODEL
27098 	/* To support ILP32 applications in an LP64 world */
27099 	struct cdrom_read32	cdrom_read32;
27100 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27101 #endif /* _MULTI_DATAMODEL */
27102 
27103 	if (data == NULL) {
27104 		return (EINVAL);
27105 	}
27106 
27107 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27108 	    (un->un_state == SD_STATE_OFFLINE)) {
27109 		return (ENXIO);
27110 	}
27111 
27112 	/*
27113 	 * Because this routine will update the device and driver block size
27114 	 * being used we want to make sure there are no commands in progress.
27115 	 * If commands are in progress the user will have to try again.
27116 	 *
27117 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27118 	 * in sdioctl to protect commands from sdioctl through to the top of
27119 	 * sd_uscsi_strategy. See sdioctl for details.
27120 	 */
27121 	mutex_enter(SD_MUTEX(un));
27122 	if (un->un_ncmds_in_driver != 1) {
27123 		mutex_exit(SD_MUTEX(un));
27124 		return (EAGAIN);
27125 	}
27126 	mutex_exit(SD_MUTEX(un));
27127 
27128 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27129 	    "sd_read_mode2: entry: un:0x%p\n", un);
27130 
27131 #ifdef _MULTI_DATAMODEL
27132 	switch (ddi_model_convert_from(flag & FMODELS)) {
27133 	case DDI_MODEL_ILP32:
27134 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27135 			return (EFAULT);
27136 		}
27137 		/* Convert the ILP32 uscsi data from the application to LP64 */
27138 		cdrom_read32tocdrom_read(cdrd32, mode2);
27139 		break;
27140 	case DDI_MODEL_NONE:
27141 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27142 			return (EFAULT);
27143 		}
27144 		break;
27145 	}
27146 #else /* ! _MULTI_DATAMODEL */
27147 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27148 		return (EFAULT);
27149 	}
27150 #endif /* _MULTI_DATAMODEL */
27151 
27152 	/* Store the current target block size for restoration later */
27153 	restore_blksize = un->un_tgt_blocksize;
27154 
27155 	/* Change the device and soft state target block size to 2336 */
27156 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27157 		rval = EIO;
27158 		goto done;
27159 	}
27160 
27161 
27162 	bzero(cdb, sizeof (cdb));
27163 
27164 	/* set READ operation */
27165 	cdb[0] = SCMD_READ;
27166 
27167 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27168 	mode2->cdread_lba >>= 2;
27169 
27170 	/* set the start address */
27171 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27172 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27173 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27174 
27175 	/* set the transfer length */
27176 	nblocks = mode2->cdread_buflen / 2336;
27177 	cdb[4] = (uchar_t)nblocks & 0xFF;
27178 
27179 	/* build command */
27180 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27181 	com->uscsi_cdb = (caddr_t)cdb;
27182 	com->uscsi_cdblen = sizeof (cdb);
27183 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27184 	com->uscsi_buflen = mode2->cdread_buflen;
27185 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27186 
27187 	/*
27188 	 * Issue SCSI command with user space address for read buffer.
27189 	 *
27190 	 * This sends the command through main channel in the driver.
27191 	 *
27192 	 * Since this is accessed via an IOCTL call, we go through the
27193 	 * standard path, so that if the device was powered down, then
27194 	 * it would be 'awakened' to handle the command.
27195 	 */
27196 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27197 	    SD_PATH_STANDARD);
27198 
27199 	kmem_free(com, sizeof (*com));
27200 
27201 	/* Restore the device and soft state target block size */
27202 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27203 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27204 		    "can't do switch back to mode 1\n");
27205 		/*
27206 		 * If sd_send_scsi_READ succeeded we still need to report
27207 		 * an error because we failed to reset the block size
27208 		 */
27209 		if (rval == 0) {
27210 			rval = EIO;
27211 		}
27212 	}
27213 
27214 done:
27215 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27216 	    "sd_read_mode2: exit: un:0x%p\n", un);
27217 
27218 	return (rval);
27219 }
27220 
27221 
27222 /*
27223  *    Function: sr_sector_mode()
27224  *
27225  * Description: This utility function is used by sr_read_mode2 to set the target
27226  *		block size based on the user specified size. This is a legacy
27227  *		implementation based upon a vendor specific mode page
27228  *
27229  *   Arguments: dev	- the device 'dev_t'
27230  *		data	- flag indicating if block size is being set to 2336 or
27231  *			  512.
27232  *
27233  * Return Code: the code returned by sd_send_scsi_cmd()
27234  *		EFAULT if ddi_copyxxx() fails
27235  *		ENXIO if fail ddi_get_soft_state
27236  *		EINVAL if data pointer is NULL
27237  */
27238 
27239 static int
27240 sr_sector_mode(dev_t dev, uint32_t blksize)
27241 {
27242 	struct sd_lun	*un;
27243 	uchar_t		*sense;
27244 	uchar_t		*select;
27245 	int		rval;
27246 	sd_ssc_t	*ssc;
27247 
27248 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27249 	    (un->un_state == SD_STATE_OFFLINE)) {
27250 		return (ENXIO);
27251 	}
27252 
27253 	sense = kmem_zalloc(20, KM_SLEEP);
27254 
27255 	/* Note: This is a vendor specific mode page (0x81) */
27256 	ssc = sd_ssc_init(un);
27257 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27258 	    SD_PATH_STANDARD);
27259 	sd_ssc_fini(ssc);
27260 	if (rval != 0) {
27261 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27262 		    "sr_sector_mode: Mode Sense failed\n");
27263 		kmem_free(sense, 20);
27264 		return (rval);
27265 	}
27266 	select = kmem_zalloc(20, KM_SLEEP);
27267 	select[3] = 0x08;
27268 	select[10] = ((blksize >> 8) & 0xff);
27269 	select[11] = (blksize & 0xff);
27270 	select[12] = 0x01;
27271 	select[13] = 0x06;
27272 	select[14] = sense[14];
27273 	select[15] = sense[15];
27274 	if (blksize == SD_MODE2_BLKSIZE) {
27275 		select[14] |= 0x01;
27276 	}
27277 
27278 	ssc = sd_ssc_init(un);
27279 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27280 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27281 	sd_ssc_fini(ssc);
27282 	if (rval != 0) {
27283 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27284 		    "sr_sector_mode: Mode Select failed\n");
27285 	} else {
27286 		/*
27287 		 * Only update the softstate block size if we successfully
27288 		 * changed the device block mode.
27289 		 */
27290 		mutex_enter(SD_MUTEX(un));
27291 		sd_update_block_info(un, blksize, 0);
27292 		mutex_exit(SD_MUTEX(un));
27293 	}
27294 	kmem_free(sense, 20);
27295 	kmem_free(select, 20);
27296 	return (rval);
27297 }
27298 
27299 
27300 /*
27301  *    Function: sr_read_cdda()
27302  *
27303  * Description: This routine is the driver entry point for handling CD-ROM
27304  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27305  *		the target supports CDDA these requests are handled via a vendor
27306  *		specific command (0xD8) If the target does not support CDDA
27307  *		these requests are handled via the READ CD command (0xBE).
27308  *
27309  *   Arguments: dev	- the device 'dev_t'
27310  *		data	- pointer to user provided CD-DA structure specifying
27311  *			  the track starting address, transfer length, and
27312  *			  subcode options.
27313  *		flag	- this argument is a pass through to ddi_copyxxx()
27314  *			  directly from the mode argument of ioctl().
27315  *
27316  * Return Code: the code returned by sd_send_scsi_cmd()
27317  *		EFAULT if ddi_copyxxx() fails
27318  *		ENXIO if fail ddi_get_soft_state
27319  *		EINVAL if invalid arguments are provided
27320  *		ENOTTY
27321  */
27322 
27323 static int
27324 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27325 {
27326 	struct sd_lun			*un;
27327 	struct uscsi_cmd		*com;
27328 	struct cdrom_cdda		*cdda;
27329 	int				rval;
27330 	size_t				buflen;
27331 	char				cdb[CDB_GROUP5];
27332 
27333 #ifdef _MULTI_DATAMODEL
27334 	/* To support ILP32 applications in an LP64 world */
27335 	struct cdrom_cdda32	cdrom_cdda32;
27336 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27337 #endif /* _MULTI_DATAMODEL */
27338 
27339 	if (data == NULL) {
27340 		return (EINVAL);
27341 	}
27342 
27343 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27344 		return (ENXIO);
27345 	}
27346 
27347 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27348 
27349 #ifdef _MULTI_DATAMODEL
27350 	switch (ddi_model_convert_from(flag & FMODELS)) {
27351 	case DDI_MODEL_ILP32:
27352 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27353 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27354 			    "sr_read_cdda: ddi_copyin Failed\n");
27355 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27356 			return (EFAULT);
27357 		}
27358 		/* Convert the ILP32 uscsi data from the application to LP64 */
27359 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27360 		break;
27361 	case DDI_MODEL_NONE:
27362 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27363 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27364 			    "sr_read_cdda: ddi_copyin Failed\n");
27365 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27366 			return (EFAULT);
27367 		}
27368 		break;
27369 	}
27370 #else /* ! _MULTI_DATAMODEL */
27371 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27372 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27373 		    "sr_read_cdda: ddi_copyin Failed\n");
27374 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27375 		return (EFAULT);
27376 	}
27377 #endif /* _MULTI_DATAMODEL */
27378 
27379 	/*
27380 	 * Since MMC-2 expects max 3 bytes for length, check if the
27381 	 * length input is greater than 3 bytes
27382 	 */
27383 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27384 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27385 		    "cdrom transfer length too large: %d (limit %d)\n",
27386 		    cdda->cdda_length, 0xFFFFFF);
27387 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27388 		return (EINVAL);
27389 	}
27390 
27391 	switch (cdda->cdda_subcode) {
27392 	case CDROM_DA_NO_SUBCODE:
27393 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27394 		break;
27395 	case CDROM_DA_SUBQ:
27396 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27397 		break;
27398 	case CDROM_DA_ALL_SUBCODE:
27399 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27400 		break;
27401 	case CDROM_DA_SUBCODE_ONLY:
27402 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27403 		break;
27404 	default:
27405 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27406 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27407 		    cdda->cdda_subcode);
27408 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27409 		return (EINVAL);
27410 	}
27411 
27412 	/* Build and send the command */
27413 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27414 	bzero(cdb, CDB_GROUP5);
27415 
27416 	if (un->un_f_cfg_cdda == TRUE) {
27417 		cdb[0] = (char)SCMD_READ_CD;
27418 		cdb[1] = 0x04;
27419 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27420 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27421 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27422 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27423 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27424 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27425 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27426 		cdb[9] = 0x10;
27427 		switch (cdda->cdda_subcode) {
27428 		case CDROM_DA_NO_SUBCODE :
27429 			cdb[10] = 0x0;
27430 			break;
27431 		case CDROM_DA_SUBQ :
27432 			cdb[10] = 0x2;
27433 			break;
27434 		case CDROM_DA_ALL_SUBCODE :
27435 			cdb[10] = 0x1;
27436 			break;
27437 		case CDROM_DA_SUBCODE_ONLY :
27438 			/* FALLTHROUGH */
27439 		default :
27440 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27441 			kmem_free(com, sizeof (*com));
27442 			return (ENOTTY);
27443 		}
27444 	} else {
27445 		cdb[0] = (char)SCMD_READ_CDDA;
27446 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27447 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27448 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27449 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27450 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27451 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27452 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27453 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27454 		cdb[10] = cdda->cdda_subcode;
27455 	}
27456 
27457 	com->uscsi_cdb = cdb;
27458 	com->uscsi_cdblen = CDB_GROUP5;
27459 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27460 	com->uscsi_buflen = buflen;
27461 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27462 
27463 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27464 	    SD_PATH_STANDARD);
27465 
27466 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27467 	kmem_free(com, sizeof (*com));
27468 	return (rval);
27469 }
27470 
27471 
27472 /*
27473  *    Function: sr_read_cdxa()
27474  *
27475  * Description: This routine is the driver entry point for handling CD-ROM
27476  *		ioctl requests to return CD-XA (Extended Architecture) data.
27477  *		(CDROMCDXA).
27478  *
27479  *   Arguments: dev	- the device 'dev_t'
27480  *		data	- pointer to user provided CD-XA structure specifying
27481  *			  the data starting address, transfer length, and format
27482  *		flag	- this argument is a pass through to ddi_copyxxx()
27483  *			  directly from the mode argument of ioctl().
27484  *
27485  * Return Code: the code returned by sd_send_scsi_cmd()
27486  *		EFAULT if ddi_copyxxx() fails
27487  *		ENXIO if fail ddi_get_soft_state
27488  *		EINVAL if data pointer is NULL
27489  */
27490 
27491 static int
27492 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27493 {
27494 	struct sd_lun		*un;
27495 	struct uscsi_cmd	*com;
27496 	struct cdrom_cdxa	*cdxa;
27497 	int			rval;
27498 	size_t			buflen;
27499 	char			cdb[CDB_GROUP5];
27500 	uchar_t			read_flags;
27501 
27502 #ifdef _MULTI_DATAMODEL
27503 	/* To support ILP32 applications in an LP64 world */
27504 	struct cdrom_cdxa32		cdrom_cdxa32;
27505 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27506 #endif /* _MULTI_DATAMODEL */
27507 
27508 	if (data == NULL) {
27509 		return (EINVAL);
27510 	}
27511 
27512 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27513 		return (ENXIO);
27514 	}
27515 
27516 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27517 
27518 #ifdef _MULTI_DATAMODEL
27519 	switch (ddi_model_convert_from(flag & FMODELS)) {
27520 	case DDI_MODEL_ILP32:
27521 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27522 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27523 			return (EFAULT);
27524 		}
27525 		/*
27526 		 * Convert the ILP32 uscsi data from the
27527 		 * application to LP64 for internal use.
27528 		 */
27529 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27530 		break;
27531 	case DDI_MODEL_NONE:
27532 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27533 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27534 			return (EFAULT);
27535 		}
27536 		break;
27537 	}
27538 #else /* ! _MULTI_DATAMODEL */
27539 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27540 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27541 		return (EFAULT);
27542 	}
27543 #endif /* _MULTI_DATAMODEL */
27544 
27545 	/*
27546 	 * Since MMC-2 expects max 3 bytes for length, check if the
27547 	 * length input is greater than 3 bytes
27548 	 */
27549 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27550 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27551 		    "cdrom transfer length too large: %d (limit %d)\n",
27552 		    cdxa->cdxa_length, 0xFFFFFF);
27553 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27554 		return (EINVAL);
27555 	}
27556 
27557 	switch (cdxa->cdxa_format) {
27558 	case CDROM_XA_DATA:
27559 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27560 		read_flags = 0x10;
27561 		break;
27562 	case CDROM_XA_SECTOR_DATA:
27563 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27564 		read_flags = 0xf8;
27565 		break;
27566 	case CDROM_XA_DATA_W_ERROR:
27567 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27568 		read_flags = 0xfc;
27569 		break;
27570 	default:
27571 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27572 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27573 		    cdxa->cdxa_format);
27574 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27575 		return (EINVAL);
27576 	}
27577 
27578 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27579 	bzero(cdb, CDB_GROUP5);
27580 	if (un->un_f_mmc_cap == TRUE) {
27581 		cdb[0] = (char)SCMD_READ_CD;
27582 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27583 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27584 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27585 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27586 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27587 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27588 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27589 		cdb[9] = (char)read_flags;
27590 	} else {
27591 		/*
27592 		 * Note: A vendor specific command (0xDB) is being used her to
27593 		 * request a read of all subcodes.
27594 		 */
27595 		cdb[0] = (char)SCMD_READ_CDXA;
27596 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27597 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27598 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27599 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27600 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27601 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27602 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27603 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27604 		cdb[10] = cdxa->cdxa_format;
27605 	}
27606 	com->uscsi_cdb	   = cdb;
27607 	com->uscsi_cdblen  = CDB_GROUP5;
27608 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27609 	com->uscsi_buflen  = buflen;
27610 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27611 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27612 	    SD_PATH_STANDARD);
27613 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27614 	kmem_free(com, sizeof (*com));
27615 	return (rval);
27616 }
27617 
27618 
27619 /*
27620  *    Function: sr_eject()
27621  *
27622  * Description: This routine is the driver entry point for handling CD-ROM
27623  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27624  *
27625  *   Arguments: dev	- the device 'dev_t'
27626  *
27627  * Return Code: the code returned by sd_send_scsi_cmd()
27628  */
27629 
27630 static int
27631 sr_eject(dev_t dev)
27632 {
27633 	struct sd_lun	*un;
27634 	int		rval;
27635 	sd_ssc_t	*ssc;
27636 
27637 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27638 	    (un->un_state == SD_STATE_OFFLINE)) {
27639 		return (ENXIO);
27640 	}
27641 
27642 	/*
27643 	 * To prevent race conditions with the eject
27644 	 * command, keep track of an eject command as
27645 	 * it progresses. If we are already handling
27646 	 * an eject command in the driver for the given
27647 	 * unit and another request to eject is received
27648 	 * immediately return EAGAIN so we don't lose
27649 	 * the command if the current eject command fails.
27650 	 */
27651 	mutex_enter(SD_MUTEX(un));
27652 	if (un->un_f_ejecting == TRUE) {
27653 		mutex_exit(SD_MUTEX(un));
27654 		return (EAGAIN);
27655 	}
27656 	un->un_f_ejecting = TRUE;
27657 	mutex_exit(SD_MUTEX(un));
27658 
27659 	ssc = sd_ssc_init(un);
27660 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27661 	    SD_PATH_STANDARD);
27662 	sd_ssc_fini(ssc);
27663 
27664 	if (rval != 0) {
27665 		mutex_enter(SD_MUTEX(un));
27666 		un->un_f_ejecting = FALSE;
27667 		mutex_exit(SD_MUTEX(un));
27668 		return (rval);
27669 	}
27670 
27671 	ssc = sd_ssc_init(un);
27672 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27673 	    SD_PATH_STANDARD);
27674 	sd_ssc_fini(ssc);
27675 
27676 	if (rval == 0) {
27677 		mutex_enter(SD_MUTEX(un));
27678 		sr_ejected(un);
27679 		un->un_mediastate = DKIO_EJECTED;
27680 		un->un_f_ejecting = FALSE;
27681 		cv_broadcast(&un->un_state_cv);
27682 		mutex_exit(SD_MUTEX(un));
27683 	} else {
27684 		mutex_enter(SD_MUTEX(un));
27685 		un->un_f_ejecting = FALSE;
27686 		mutex_exit(SD_MUTEX(un));
27687 	}
27688 	return (rval);
27689 }
27690 
27691 
27692 /*
27693  *    Function: sr_ejected()
27694  *
27695  * Description: This routine updates the soft state structure to invalidate the
27696  *		geometry information after the media has been ejected or a
27697  *		media eject has been detected.
27698  *
27699  *   Arguments: un - driver soft state (unit) structure
27700  */
27701 
27702 static void
27703 sr_ejected(struct sd_lun *un)
27704 {
27705 	struct sd_errstats *stp;
27706 
27707 	ASSERT(un != NULL);
27708 	ASSERT(mutex_owned(SD_MUTEX(un)));
27709 
27710 	un->un_f_blockcount_is_valid	= FALSE;
27711 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27712 	mutex_exit(SD_MUTEX(un));
27713 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27714 	mutex_enter(SD_MUTEX(un));
27715 
27716 	if (un->un_errstats != NULL) {
27717 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27718 		stp->sd_capacity.value.ui64 = 0;
27719 	}
27720 }
27721 
27722 
27723 /*
27724  *    Function: sr_check_wp()
27725  *
27726  * Description: This routine checks the write protection of a removable
27727  *      media disk and hotpluggable devices via the write protect bit of
27728  *      the Mode Page Header device specific field. Some devices choke
27729  *      on unsupported mode page. In order to workaround this issue,
27730  *      this routine has been implemented to use 0x3f mode page(request
27731  *      for all pages) for all device types.
27732  *
27733  *   Arguments: dev             - the device 'dev_t'
27734  *
27735  * Return Code: int indicating if the device is write protected (1) or not (0)
27736  *
27737  *     Context: Kernel thread.
27738  *
27739  */
27740 
27741 static int
27742 sr_check_wp(dev_t dev)
27743 {
27744 	struct sd_lun	*un;
27745 	uchar_t		device_specific;
27746 	uchar_t		*sense;
27747 	int		hdrlen;
27748 	int		rval = FALSE;
27749 	int		status;
27750 	sd_ssc_t	*ssc;
27751 
27752 	/*
27753 	 * Note: The return codes for this routine should be reworked to
27754 	 * properly handle the case of a NULL softstate.
27755 	 */
27756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27757 		return (FALSE);
27758 	}
27759 
27760 	if (un->un_f_cfg_is_atapi == TRUE) {
27761 		/*
27762 		 * The mode page contents are not required; set the allocation
27763 		 * length for the mode page header only
27764 		 */
27765 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27766 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27767 		ssc = sd_ssc_init(un);
27768 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27769 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27770 		sd_ssc_fini(ssc);
27771 		if (status != 0)
27772 			goto err_exit;
27773 		device_specific =
27774 		    ((struct mode_header_grp2 *)sense)->device_specific;
27775 	} else {
27776 		hdrlen = MODE_HEADER_LENGTH;
27777 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27778 		ssc = sd_ssc_init(un);
27779 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27780 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27781 		sd_ssc_fini(ssc);
27782 		if (status != 0)
27783 			goto err_exit;
27784 		device_specific =
27785 		    ((struct mode_header *)sense)->device_specific;
27786 	}
27787 
27788 
27789 	/*
27790 	 * Write protect mode sense failed; not all disks
27791 	 * understand this query. Return FALSE assuming that
27792 	 * these devices are not writable.
27793 	 */
27794 	if (device_specific & WRITE_PROTECT) {
27795 		rval = TRUE;
27796 	}
27797 
27798 err_exit:
27799 	kmem_free(sense, hdrlen);
27800 	return (rval);
27801 }
27802 
27803 /*
27804  *    Function: sr_volume_ctrl()
27805  *
27806  * Description: This routine is the driver entry point for handling CD-ROM
27807  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27808  *
27809  *   Arguments: dev	- the device 'dev_t'
27810  *		data	- pointer to user audio volume control structure
27811  *		flag	- this argument is a pass through to ddi_copyxxx()
27812  *			  directly from the mode argument of ioctl().
27813  *
27814  * Return Code: the code returned by sd_send_scsi_cmd()
27815  *		EFAULT if ddi_copyxxx() fails
27816  *		ENXIO if fail ddi_get_soft_state
27817  *		EINVAL if data pointer is NULL
27818  *
27819  */
27820 
27821 static int
27822 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27823 {
27824 	struct sd_lun		*un;
27825 	struct cdrom_volctrl    volume;
27826 	struct cdrom_volctrl    *vol = &volume;
27827 	uchar_t			*sense_page;
27828 	uchar_t			*select_page;
27829 	uchar_t			*sense;
27830 	uchar_t			*select;
27831 	int			sense_buflen;
27832 	int			select_buflen;
27833 	int			rval;
27834 	sd_ssc_t		*ssc;
27835 
27836 	if (data == NULL) {
27837 		return (EINVAL);
27838 	}
27839 
27840 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27841 	    (un->un_state == SD_STATE_OFFLINE)) {
27842 		return (ENXIO);
27843 	}
27844 
27845 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27846 		return (EFAULT);
27847 	}
27848 
27849 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27850 		struct mode_header_grp2		*sense_mhp;
27851 		struct mode_header_grp2		*select_mhp;
27852 		int				bd_len;
27853 
27854 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27855 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27856 		    MODEPAGE_AUDIO_CTRL_LEN;
27857 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27858 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27859 		ssc = sd_ssc_init(un);
27860 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27861 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27862 		    SD_PATH_STANDARD);
27863 		sd_ssc_fini(ssc);
27864 
27865 		if (rval != 0) {
27866 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27867 			    "sr_volume_ctrl: Mode Sense Failed\n");
27868 			kmem_free(sense, sense_buflen);
27869 			kmem_free(select, select_buflen);
27870 			return (rval);
27871 		}
27872 		sense_mhp = (struct mode_header_grp2 *)sense;
27873 		select_mhp = (struct mode_header_grp2 *)select;
27874 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27875 		    sense_mhp->bdesc_length_lo;
27876 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27877 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27878 			    "sr_volume_ctrl: Mode Sense returned invalid "
27879 			    "block descriptor length\n");
27880 			kmem_free(sense, sense_buflen);
27881 			kmem_free(select, select_buflen);
27882 			return (EIO);
27883 		}
27884 		sense_page = (uchar_t *)
27885 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27886 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27887 		select_mhp->length_msb = 0;
27888 		select_mhp->length_lsb = 0;
27889 		select_mhp->bdesc_length_hi = 0;
27890 		select_mhp->bdesc_length_lo = 0;
27891 	} else {
27892 		struct mode_header		*sense_mhp, *select_mhp;
27893 
27894 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27895 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27896 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27897 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27898 		ssc = sd_ssc_init(un);
27899 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27900 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27901 		    SD_PATH_STANDARD);
27902 		sd_ssc_fini(ssc);
27903 
27904 		if (rval != 0) {
27905 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27906 			    "sr_volume_ctrl: Mode Sense Failed\n");
27907 			kmem_free(sense, sense_buflen);
27908 			kmem_free(select, select_buflen);
27909 			return (rval);
27910 		}
27911 		sense_mhp  = (struct mode_header *)sense;
27912 		select_mhp = (struct mode_header *)select;
27913 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27914 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27915 			    "sr_volume_ctrl: Mode Sense returned invalid "
27916 			    "block descriptor length\n");
27917 			kmem_free(sense, sense_buflen);
27918 			kmem_free(select, select_buflen);
27919 			return (EIO);
27920 		}
27921 		sense_page = (uchar_t *)
27922 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27923 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27924 		select_mhp->length = 0;
27925 		select_mhp->bdesc_length = 0;
27926 	}
27927 	/*
27928 	 * Note: An audio control data structure could be created and overlayed
27929 	 * on the following in place of the array indexing method implemented.
27930 	 */
27931 
27932 	/* Build the select data for the user volume data */
27933 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27934 	select_page[1] = 0xE;
27935 	/* Set the immediate bit */
27936 	select_page[2] = 0x04;
27937 	/* Zero out reserved fields */
27938 	select_page[3] = 0x00;
27939 	select_page[4] = 0x00;
27940 	/* Return sense data for fields not to be modified */
27941 	select_page[5] = sense_page[5];
27942 	select_page[6] = sense_page[6];
27943 	select_page[7] = sense_page[7];
27944 	/* Set the user specified volume levels for channel 0 and 1 */
27945 	select_page[8] = 0x01;
27946 	select_page[9] = vol->channel0;
27947 	select_page[10] = 0x02;
27948 	select_page[11] = vol->channel1;
27949 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27950 	select_page[12] = sense_page[12];
27951 	select_page[13] = sense_page[13];
27952 	select_page[14] = sense_page[14];
27953 	select_page[15] = sense_page[15];
27954 
27955 	ssc = sd_ssc_init(un);
27956 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27957 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
27958 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27959 	} else {
27960 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27961 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27962 	}
27963 	sd_ssc_fini(ssc);
27964 
27965 	kmem_free(sense, sense_buflen);
27966 	kmem_free(select, select_buflen);
27967 	return (rval);
27968 }
27969 
27970 
27971 /*
27972  *    Function: sr_read_sony_session_offset()
27973  *
27974  * Description: This routine is the driver entry point for handling CD-ROM
27975  *		ioctl requests for session offset information. (CDROMREADOFFSET)
27976  *		The address of the first track in the last session of a
27977  *		multi-session CD-ROM is returned
27978  *
27979  *		Note: This routine uses a vendor specific key value in the
27980  *		command control field without implementing any vendor check here
27981  *		or in the ioctl routine.
27982  *
27983  *   Arguments: dev	- the device 'dev_t'
27984  *		data	- pointer to an int to hold the requested address
27985  *		flag	- this argument is a pass through to ddi_copyxxx()
27986  *			  directly from the mode argument of ioctl().
27987  *
27988  * Return Code: the code returned by sd_send_scsi_cmd()
27989  *		EFAULT if ddi_copyxxx() fails
27990  *		ENXIO if fail ddi_get_soft_state
27991  *		EINVAL if data pointer is NULL
27992  */
27993 
27994 static int
27995 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
27996 {
27997 	struct sd_lun		*un;
27998 	struct uscsi_cmd	*com;
27999 	caddr_t			buffer;
28000 	char			cdb[CDB_GROUP1];
28001 	int			session_offset = 0;
28002 	int			rval;
28003 
28004 	if (data == NULL) {
28005 		return (EINVAL);
28006 	}
28007 
28008 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28009 	    (un->un_state == SD_STATE_OFFLINE)) {
28010 		return (ENXIO);
28011 	}
28012 
28013 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28014 	bzero(cdb, CDB_GROUP1);
28015 	cdb[0] = SCMD_READ_TOC;
28016 	/*
28017 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28018 	 * (4 byte TOC response header + 8 byte response data)
28019 	 */
28020 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28021 	/* Byte 9 is the control byte. A vendor specific value is used */
28022 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28023 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28024 	com->uscsi_cdb = cdb;
28025 	com->uscsi_cdblen = CDB_GROUP1;
28026 	com->uscsi_bufaddr = buffer;
28027 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28028 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28029 
28030 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28031 	    SD_PATH_STANDARD);
28032 	if (rval != 0) {
28033 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28034 		kmem_free(com, sizeof (*com));
28035 		return (rval);
28036 	}
28037 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28038 		session_offset =
28039 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28040 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28041 		/*
28042 		 * Offset returned offset in current lbasize block's. Convert to
28043 		 * 2k block's to return to the user
28044 		 */
28045 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28046 			session_offset >>= 2;
28047 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28048 			session_offset >>= 1;
28049 		}
28050 	}
28051 
28052 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28053 		rval = EFAULT;
28054 	}
28055 
28056 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28057 	kmem_free(com, sizeof (*com));
28058 	return (rval);
28059 }
28060 
28061 
28062 /*
28063  *    Function: sd_wm_cache_constructor()
28064  *
28065  * Description: Cache Constructor for the wmap cache for the read/modify/write
28066  * 		devices.
28067  *
28068  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28069  *		un	- sd_lun structure for the device.
28070  *		flag	- the km flags passed to constructor
28071  *
28072  * Return Code: 0 on success.
28073  *		-1 on failure.
28074  */
28075 
28076 /*ARGSUSED*/
28077 static int
28078 sd_wm_cache_constructor(void *wm, void *un, int flags)
28079 {
28080 	bzero(wm, sizeof (struct sd_w_map));
28081 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28082 	return (0);
28083 }
28084 
28085 
28086 /*
28087  *    Function: sd_wm_cache_destructor()
28088  *
28089  * Description: Cache destructor for the wmap cache for the read/modify/write
28090  * 		devices.
28091  *
28092  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28093  *		un	- sd_lun structure for the device.
28094  */
28095 /*ARGSUSED*/
28096 static void
28097 sd_wm_cache_destructor(void *wm, void *un)
28098 {
28099 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28100 }
28101 
28102 
28103 /*
28104  *    Function: sd_range_lock()
28105  *
28106  * Description: Lock the range of blocks specified as parameter to ensure
28107  *		that read, modify write is atomic and no other i/o writes
28108  *		to the same location. The range is specified in terms
28109  *		of start and end blocks. Block numbers are the actual
28110  *		media block numbers and not system.
28111  *
28112  *   Arguments: un	- sd_lun structure for the device.
28113  *		startb - The starting block number
28114  *		endb - The end block number
28115  *		typ - type of i/o - simple/read_modify_write
28116  *
28117  * Return Code: wm  - pointer to the wmap structure.
28118  *
28119  *     Context: This routine can sleep.
28120  */
28121 
28122 static struct sd_w_map *
28123 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28124 {
28125 	struct sd_w_map *wmp = NULL;
28126 	struct sd_w_map *sl_wmp = NULL;
28127 	struct sd_w_map *tmp_wmp;
28128 	wm_state state = SD_WM_CHK_LIST;
28129 
28130 
28131 	ASSERT(un != NULL);
28132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28133 
28134 	mutex_enter(SD_MUTEX(un));
28135 
28136 	while (state != SD_WM_DONE) {
28137 
28138 		switch (state) {
28139 		case SD_WM_CHK_LIST:
28140 			/*
28141 			 * This is the starting state. Check the wmap list
28142 			 * to see if the range is currently available.
28143 			 */
28144 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28145 				/*
28146 				 * If this is a simple write and no rmw
28147 				 * i/o is pending then try to lock the
28148 				 * range as the range should be available.
28149 				 */
28150 				state = SD_WM_LOCK_RANGE;
28151 			} else {
28152 				tmp_wmp = sd_get_range(un, startb, endb);
28153 				if (tmp_wmp != NULL) {
28154 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28155 						/*
28156 						 * Should not keep onlist wmps
28157 						 * while waiting this macro
28158 						 * will also do wmp = NULL;
28159 						 */
28160 						FREE_ONLIST_WMAP(un, wmp);
28161 					}
28162 					/*
28163 					 * sl_wmp is the wmap on which wait
28164 					 * is done, since the tmp_wmp points
28165 					 * to the inuse wmap, set sl_wmp to
28166 					 * tmp_wmp and change the state to sleep
28167 					 */
28168 					sl_wmp = tmp_wmp;
28169 					state = SD_WM_WAIT_MAP;
28170 				} else {
28171 					state = SD_WM_LOCK_RANGE;
28172 				}
28173 
28174 			}
28175 			break;
28176 
28177 		case SD_WM_LOCK_RANGE:
28178 			ASSERT(un->un_wm_cache);
28179 			/*
28180 			 * The range need to be locked, try to get a wmap.
28181 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28182 			 * if possible as we will have to release the sd mutex
28183 			 * if we have to sleep.
28184 			 */
28185 			if (wmp == NULL)
28186 				wmp = kmem_cache_alloc(un->un_wm_cache,
28187 				    KM_NOSLEEP);
28188 			if (wmp == NULL) {
28189 				mutex_exit(SD_MUTEX(un));
28190 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28191 				    (sd_lun::un_wm_cache))
28192 				wmp = kmem_cache_alloc(un->un_wm_cache,
28193 				    KM_SLEEP);
28194 				mutex_enter(SD_MUTEX(un));
28195 				/*
28196 				 * we released the mutex so recheck and go to
28197 				 * check list state.
28198 				 */
28199 				state = SD_WM_CHK_LIST;
28200 			} else {
28201 				/*
28202 				 * We exit out of state machine since we
28203 				 * have the wmap. Do the housekeeping first.
28204 				 * place the wmap on the wmap list if it is not
28205 				 * on it already and then set the state to done.
28206 				 */
28207 				wmp->wm_start = startb;
28208 				wmp->wm_end = endb;
28209 				wmp->wm_flags = typ | SD_WM_BUSY;
28210 				if (typ & SD_WTYPE_RMW) {
28211 					un->un_rmw_count++;
28212 				}
28213 				/*
28214 				 * If not already on the list then link
28215 				 */
28216 				if (!ONLIST(un, wmp)) {
28217 					wmp->wm_next = un->un_wm;
28218 					wmp->wm_prev = NULL;
28219 					if (wmp->wm_next)
28220 						wmp->wm_next->wm_prev = wmp;
28221 					un->un_wm = wmp;
28222 				}
28223 				state = SD_WM_DONE;
28224 			}
28225 			break;
28226 
28227 		case SD_WM_WAIT_MAP:
28228 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28229 			/*
28230 			 * Wait is done on sl_wmp, which is set in the
28231 			 * check_list state.
28232 			 */
28233 			sl_wmp->wm_wanted_count++;
28234 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28235 			sl_wmp->wm_wanted_count--;
28236 			/*
28237 			 * We can reuse the memory from the completed sl_wmp
28238 			 * lock range for our new lock, but only if noone is
28239 			 * waiting for it.
28240 			 */
28241 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28242 			if (sl_wmp->wm_wanted_count == 0) {
28243 				if (wmp != NULL)
28244 					CHK_N_FREEWMP(un, wmp);
28245 				wmp = sl_wmp;
28246 			}
28247 			sl_wmp = NULL;
28248 			/*
28249 			 * After waking up, need to recheck for availability of
28250 			 * range.
28251 			 */
28252 			state = SD_WM_CHK_LIST;
28253 			break;
28254 
28255 		default:
28256 			panic("sd_range_lock: "
28257 			    "Unknown state %d in sd_range_lock", state);
28258 			/*NOTREACHED*/
28259 		} /* switch(state) */
28260 
28261 	} /* while(state != SD_WM_DONE) */
28262 
28263 	mutex_exit(SD_MUTEX(un));
28264 
28265 	ASSERT(wmp != NULL);
28266 
28267 	return (wmp);
28268 }
28269 
28270 
28271 /*
28272  *    Function: sd_get_range()
28273  *
28274  * Description: Find if there any overlapping I/O to this one
28275  *		Returns the write-map of 1st such I/O, NULL otherwise.
28276  *
28277  *   Arguments: un	- sd_lun structure for the device.
28278  *		startb - The starting block number
28279  *		endb - The end block number
28280  *
28281  * Return Code: wm  - pointer to the wmap structure.
28282  */
28283 
28284 static struct sd_w_map *
28285 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28286 {
28287 	struct sd_w_map *wmp;
28288 
28289 	ASSERT(un != NULL);
28290 
28291 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28292 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28293 			continue;
28294 		}
28295 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28296 			break;
28297 		}
28298 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28299 			break;
28300 		}
28301 	}
28302 
28303 	return (wmp);
28304 }
28305 
28306 
28307 /*
28308  *    Function: sd_free_inlist_wmap()
28309  *
28310  * Description: Unlink and free a write map struct.
28311  *
28312  *   Arguments: un      - sd_lun structure for the device.
28313  *		wmp	- sd_w_map which needs to be unlinked.
28314  */
28315 
28316 static void
28317 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28318 {
28319 	ASSERT(un != NULL);
28320 
28321 	if (un->un_wm == wmp) {
28322 		un->un_wm = wmp->wm_next;
28323 	} else {
28324 		wmp->wm_prev->wm_next = wmp->wm_next;
28325 	}
28326 
28327 	if (wmp->wm_next) {
28328 		wmp->wm_next->wm_prev = wmp->wm_prev;
28329 	}
28330 
28331 	wmp->wm_next = wmp->wm_prev = NULL;
28332 
28333 	kmem_cache_free(un->un_wm_cache, wmp);
28334 }
28335 
28336 
28337 /*
28338  *    Function: sd_range_unlock()
28339  *
28340  * Description: Unlock the range locked by wm.
28341  *		Free write map if nobody else is waiting on it.
28342  *
28343  *   Arguments: un      - sd_lun structure for the device.
28344  *              wmp     - sd_w_map which needs to be unlinked.
28345  */
28346 
28347 static void
28348 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28349 {
28350 	ASSERT(un != NULL);
28351 	ASSERT(wm != NULL);
28352 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28353 
28354 	mutex_enter(SD_MUTEX(un));
28355 
28356 	if (wm->wm_flags & SD_WTYPE_RMW) {
28357 		un->un_rmw_count--;
28358 	}
28359 
28360 	if (wm->wm_wanted_count) {
28361 		wm->wm_flags = 0;
28362 		/*
28363 		 * Broadcast that the wmap is available now.
28364 		 */
28365 		cv_broadcast(&wm->wm_avail);
28366 	} else {
28367 		/*
28368 		 * If no one is waiting on the map, it should be free'ed.
28369 		 */
28370 		sd_free_inlist_wmap(un, wm);
28371 	}
28372 
28373 	mutex_exit(SD_MUTEX(un));
28374 }
28375 
28376 
28377 /*
28378  *    Function: sd_read_modify_write_task
28379  *
28380  * Description: Called from a taskq thread to initiate the write phase of
28381  *		a read-modify-write request.  This is used for targets where
28382  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28383  *
28384  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28385  *
28386  *     Context: Called under taskq thread context.
28387  */
28388 
28389 static void
28390 sd_read_modify_write_task(void *arg)
28391 {
28392 	struct sd_mapblocksize_info	*bsp;
28393 	struct buf	*bp;
28394 	struct sd_xbuf	*xp;
28395 	struct sd_lun	*un;
28396 
28397 	bp = arg;	/* The bp is given in arg */
28398 	ASSERT(bp != NULL);
28399 
28400 	/* Get the pointer to the layer-private data struct */
28401 	xp = SD_GET_XBUF(bp);
28402 	ASSERT(xp != NULL);
28403 	bsp = xp->xb_private;
28404 	ASSERT(bsp != NULL);
28405 
28406 	un = SD_GET_UN(bp);
28407 	ASSERT(un != NULL);
28408 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28409 
28410 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28411 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28412 
28413 	/*
28414 	 * This is the write phase of a read-modify-write request, called
28415 	 * under the context of a taskq thread in response to the completion
28416 	 * of the read portion of the rmw request completing under interrupt
28417 	 * context. The write request must be sent from here down the iostart
28418 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28419 	 * we use the layer index saved in the layer-private data area.
28420 	 */
28421 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28422 
28423 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28424 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28425 }
28426 
28427 
28428 /*
28429  *    Function: sddump_do_read_of_rmw()
28430  *
28431  * Description: This routine will be called from sddump, If sddump is called
28432  *		with an I/O which not aligned on device blocksize boundary
28433  *		then the write has to be converted to read-modify-write.
28434  *		Do the read part here in order to keep sddump simple.
28435  *		Note - That the sd_mutex is held across the call to this
28436  *		routine.
28437  *
28438  *   Arguments: un	- sd_lun
28439  *		blkno	- block number in terms of media block size.
28440  *		nblk	- number of blocks.
28441  *		bpp	- pointer to pointer to the buf structure. On return
28442  *			from this function, *bpp points to the valid buffer
28443  *			to which the write has to be done.
28444  *
28445  * Return Code: 0 for success or errno-type return code
28446  */
28447 
28448 static int
28449 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28450 	struct buf **bpp)
28451 {
28452 	int err;
28453 	int i;
28454 	int rval;
28455 	struct buf *bp;
28456 	struct scsi_pkt *pkt = NULL;
28457 	uint32_t target_blocksize;
28458 
28459 	ASSERT(un != NULL);
28460 	ASSERT(mutex_owned(SD_MUTEX(un)));
28461 
28462 	target_blocksize = un->un_tgt_blocksize;
28463 
28464 	mutex_exit(SD_MUTEX(un));
28465 
28466 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28467 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28468 	if (bp == NULL) {
28469 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28470 		    "no resources for dumping; giving up");
28471 		err = ENOMEM;
28472 		goto done;
28473 	}
28474 
28475 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28476 	    blkno, nblk);
28477 	if (rval != 0) {
28478 		scsi_free_consistent_buf(bp);
28479 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28480 		    "no resources for dumping; giving up");
28481 		err = ENOMEM;
28482 		goto done;
28483 	}
28484 
28485 	pkt->pkt_flags |= FLAG_NOINTR;
28486 
28487 	err = EIO;
28488 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28489 
28490 		/*
28491 		 * Scsi_poll returns 0 (success) if the command completes and
28492 		 * the status block is STATUS_GOOD.  We should only check
28493 		 * errors if this condition is not true.  Even then we should
28494 		 * send our own request sense packet only if we have a check
28495 		 * condition and auto request sense has not been performed by
28496 		 * the hba.
28497 		 */
28498 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28499 
28500 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28501 			err = 0;
28502 			break;
28503 		}
28504 
28505 		/*
28506 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28507 		 * no need to read RQS data.
28508 		 */
28509 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28510 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28511 			    "Error while dumping state with rmw..."
28512 			    "Device is gone\n");
28513 			break;
28514 		}
28515 
28516 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28517 			SD_INFO(SD_LOG_DUMP, un,
28518 			    "sddump: read failed with CHECK, try # %d\n", i);
28519 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28520 				(void) sd_send_polled_RQS(un);
28521 			}
28522 
28523 			continue;
28524 		}
28525 
28526 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28527 			int reset_retval = 0;
28528 
28529 			SD_INFO(SD_LOG_DUMP, un,
28530 			    "sddump: read failed with BUSY, try # %d\n", i);
28531 
28532 			if (un->un_f_lun_reset_enabled == TRUE) {
28533 				reset_retval = scsi_reset(SD_ADDRESS(un),
28534 				    RESET_LUN);
28535 			}
28536 			if (reset_retval == 0) {
28537 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28538 			}
28539 			(void) sd_send_polled_RQS(un);
28540 
28541 		} else {
28542 			SD_INFO(SD_LOG_DUMP, un,
28543 			    "sddump: read failed with 0x%x, try # %d\n",
28544 			    SD_GET_PKT_STATUS(pkt), i);
28545 			mutex_enter(SD_MUTEX(un));
28546 			sd_reset_target(un, pkt);
28547 			mutex_exit(SD_MUTEX(un));
28548 		}
28549 
28550 		/*
28551 		 * If we are not getting anywhere with lun/target resets,
28552 		 * let's reset the bus.
28553 		 */
28554 		if (i > SD_NDUMP_RETRIES/2) {
28555 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28556 			(void) sd_send_polled_RQS(un);
28557 		}
28558 
28559 	}
28560 	scsi_destroy_pkt(pkt);
28561 
28562 	if (err != 0) {
28563 		scsi_free_consistent_buf(bp);
28564 		*bpp = NULL;
28565 	} else {
28566 		*bpp = bp;
28567 	}
28568 
28569 done:
28570 	mutex_enter(SD_MUTEX(un));
28571 	return (err);
28572 }
28573 
28574 
28575 /*
28576  *    Function: sd_failfast_flushq
28577  *
28578  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28579  *		in b_flags and move them onto the failfast queue, then kick
28580  *		off a thread to return all bp's on the failfast queue to
28581  *		their owners with an error set.
28582  *
28583  *   Arguments: un - pointer to the soft state struct for the instance.
28584  *
28585  *     Context: may execute in interrupt context.
28586  */
28587 
28588 static void
28589 sd_failfast_flushq(struct sd_lun *un)
28590 {
28591 	struct buf *bp;
28592 	struct buf *next_waitq_bp;
28593 	struct buf *prev_waitq_bp = NULL;
28594 
28595 	ASSERT(un != NULL);
28596 	ASSERT(mutex_owned(SD_MUTEX(un)));
28597 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28598 	ASSERT(un->un_failfast_bp == NULL);
28599 
28600 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28601 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28602 
28603 	/*
28604 	 * Check if we should flush all bufs when entering failfast state, or
28605 	 * just those with B_FAILFAST set.
28606 	 */
28607 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28608 		/*
28609 		 * Move *all* bp's on the wait queue to the failfast flush
28610 		 * queue, including those that do NOT have B_FAILFAST set.
28611 		 */
28612 		if (un->un_failfast_headp == NULL) {
28613 			ASSERT(un->un_failfast_tailp == NULL);
28614 			un->un_failfast_headp = un->un_waitq_headp;
28615 		} else {
28616 			ASSERT(un->un_failfast_tailp != NULL);
28617 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28618 		}
28619 
28620 		un->un_failfast_tailp = un->un_waitq_tailp;
28621 
28622 		/* update kstat for each bp moved out of the waitq */
28623 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28624 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28625 		}
28626 
28627 		/* empty the waitq */
28628 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28629 
28630 	} else {
28631 		/*
28632 		 * Go thru the wait queue, pick off all entries with
28633 		 * B_FAILFAST set, and move these onto the failfast queue.
28634 		 */
28635 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28636 			/*
28637 			 * Save the pointer to the next bp on the wait queue,
28638 			 * so we get to it on the next iteration of this loop.
28639 			 */
28640 			next_waitq_bp = bp->av_forw;
28641 
28642 			/*
28643 			 * If this bp from the wait queue does NOT have
28644 			 * B_FAILFAST set, just move on to the next element
28645 			 * in the wait queue. Note, this is the only place
28646 			 * where it is correct to set prev_waitq_bp.
28647 			 */
28648 			if ((bp->b_flags & B_FAILFAST) == 0) {
28649 				prev_waitq_bp = bp;
28650 				continue;
28651 			}
28652 
28653 			/*
28654 			 * Remove the bp from the wait queue.
28655 			 */
28656 			if (bp == un->un_waitq_headp) {
28657 				/* The bp is the first element of the waitq. */
28658 				un->un_waitq_headp = next_waitq_bp;
28659 				if (un->un_waitq_headp == NULL) {
28660 					/* The wait queue is now empty */
28661 					un->un_waitq_tailp = NULL;
28662 				}
28663 			} else {
28664 				/*
28665 				 * The bp is either somewhere in the middle
28666 				 * or at the end of the wait queue.
28667 				 */
28668 				ASSERT(un->un_waitq_headp != NULL);
28669 				ASSERT(prev_waitq_bp != NULL);
28670 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28671 				    == 0);
28672 				if (bp == un->un_waitq_tailp) {
28673 					/* bp is the last entry on the waitq. */
28674 					ASSERT(next_waitq_bp == NULL);
28675 					un->un_waitq_tailp = prev_waitq_bp;
28676 				}
28677 				prev_waitq_bp->av_forw = next_waitq_bp;
28678 			}
28679 			bp->av_forw = NULL;
28680 
28681 			/*
28682 			 * update kstat since the bp is moved out of
28683 			 * the waitq
28684 			 */
28685 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28686 
28687 			/*
28688 			 * Now put the bp onto the failfast queue.
28689 			 */
28690 			if (un->un_failfast_headp == NULL) {
28691 				/* failfast queue is currently empty */
28692 				ASSERT(un->un_failfast_tailp == NULL);
28693 				un->un_failfast_headp =
28694 				    un->un_failfast_tailp = bp;
28695 			} else {
28696 				/* Add the bp to the end of the failfast q */
28697 				ASSERT(un->un_failfast_tailp != NULL);
28698 				ASSERT(un->un_failfast_tailp->b_flags &
28699 				    B_FAILFAST);
28700 				un->un_failfast_tailp->av_forw = bp;
28701 				un->un_failfast_tailp = bp;
28702 			}
28703 		}
28704 	}
28705 
28706 	/*
28707 	 * Now return all bp's on the failfast queue to their owners.
28708 	 */
28709 	while ((bp = un->un_failfast_headp) != NULL) {
28710 
28711 		un->un_failfast_headp = bp->av_forw;
28712 		if (un->un_failfast_headp == NULL) {
28713 			un->un_failfast_tailp = NULL;
28714 		}
28715 
28716 		/*
28717 		 * We want to return the bp with a failure error code, but
28718 		 * we do not want a call to sd_start_cmds() to occur here,
28719 		 * so use sd_return_failed_command_no_restart() instead of
28720 		 * sd_return_failed_command().
28721 		 */
28722 		sd_return_failed_command_no_restart(un, bp, EIO);
28723 	}
28724 
28725 	/* Flush the xbuf queues if required. */
28726 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28727 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28728 	}
28729 
28730 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28731 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28732 }
28733 
28734 
28735 /*
28736  *    Function: sd_failfast_flushq_callback
28737  *
28738  * Description: Return TRUE if the given bp meets the criteria for failfast
28739  *		flushing. Used with ddi_xbuf_flushq(9F).
28740  *
28741  *   Arguments: bp - ptr to buf struct to be examined.
28742  *
28743  *     Context: Any
28744  */
28745 
28746 static int
28747 sd_failfast_flushq_callback(struct buf *bp)
28748 {
28749 	/*
28750 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28751 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28752 	 */
28753 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28754 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28755 }
28756 
28757 
28758 
28759 /*
28760  * Function: sd_setup_next_xfer
28761  *
28762  * Description: Prepare next I/O operation using DMA_PARTIAL
28763  *
28764  */
28765 
28766 static int
28767 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28768     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28769 {
28770 	ssize_t	num_blks_not_xfered;
28771 	daddr_t	strt_blk_num;
28772 	ssize_t	bytes_not_xfered;
28773 	int	rval;
28774 
28775 	ASSERT(pkt->pkt_resid == 0);
28776 
28777 	/*
28778 	 * Calculate next block number and amount to be transferred.
28779 	 *
28780 	 * How much data NOT transfered to the HBA yet.
28781 	 */
28782 	bytes_not_xfered = xp->xb_dma_resid;
28783 
28784 	/*
28785 	 * figure how many blocks NOT transfered to the HBA yet.
28786 	 */
28787 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28788 
28789 	/*
28790 	 * set starting block number to the end of what WAS transfered.
28791 	 */
28792 	strt_blk_num = xp->xb_blkno +
28793 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28794 
28795 	/*
28796 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28797 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28798 	 * the disk mutex here.
28799 	 */
28800 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28801 	    strt_blk_num, num_blks_not_xfered);
28802 
28803 	if (rval == 0) {
28804 
28805 		/*
28806 		 * Success.
28807 		 *
28808 		 * Adjust things if there are still more blocks to be
28809 		 * transfered.
28810 		 */
28811 		xp->xb_dma_resid = pkt->pkt_resid;
28812 		pkt->pkt_resid = 0;
28813 
28814 		return (1);
28815 	}
28816 
28817 	/*
28818 	 * There's really only one possible return value from
28819 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28820 	 * returns NULL.
28821 	 */
28822 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28823 
28824 	bp->b_resid = bp->b_bcount;
28825 	bp->b_flags |= B_ERROR;
28826 
28827 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28828 	    "Error setting up next portion of DMA transfer\n");
28829 
28830 	return (0);
28831 }
28832 
28833 /*
28834  *    Function: sd_panic_for_res_conflict
28835  *
28836  * Description: Call panic with a string formatted with "Reservation Conflict"
28837  *		and a human readable identifier indicating the SD instance
28838  *		that experienced the reservation conflict.
28839  *
28840  *   Arguments: un - pointer to the soft state struct for the instance.
28841  *
28842  *     Context: may execute in interrupt context.
28843  */
28844 
28845 #define	SD_RESV_CONFLICT_FMT_LEN 40
28846 void
28847 sd_panic_for_res_conflict(struct sd_lun *un)
28848 {
28849 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28850 	char path_str[MAXPATHLEN];
28851 
28852 	(void) snprintf(panic_str, sizeof (panic_str),
28853 	    "Reservation Conflict\nDisk: %s",
28854 	    ddi_pathname(SD_DEVINFO(un), path_str));
28855 
28856 	panic(panic_str);
28857 }
28858 
28859 /*
28860  * Note: The following sd_faultinjection_ioctl( ) routines implement
28861  * driver support for handling fault injection for error analysis
28862  * causing faults in multiple layers of the driver.
28863  *
28864  */
28865 
28866 #ifdef SD_FAULT_INJECTION
28867 static uint_t   sd_fault_injection_on = 0;
28868 
28869 /*
28870  *    Function: sd_faultinjection_ioctl()
28871  *
28872  * Description: This routine is the driver entry point for handling
28873  *              faultinjection ioctls to inject errors into the
28874  *              layer model
28875  *
28876  *   Arguments: cmd	- the ioctl cmd received
28877  *		arg	- the arguments from user and returns
28878  */
28879 
28880 static void
28881 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28882 
28883 	uint_t i = 0;
28884 	uint_t rval;
28885 
28886 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28887 
28888 	mutex_enter(SD_MUTEX(un));
28889 
28890 	switch (cmd) {
28891 	case SDIOCRUN:
28892 		/* Allow pushed faults to be injected */
28893 		SD_INFO(SD_LOG_SDTEST, un,
28894 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28895 
28896 		sd_fault_injection_on = 1;
28897 
28898 		SD_INFO(SD_LOG_IOERR, un,
28899 		    "sd_faultinjection_ioctl: run finished\n");
28900 		break;
28901 
28902 	case SDIOCSTART:
28903 		/* Start Injection Session */
28904 		SD_INFO(SD_LOG_SDTEST, un,
28905 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28906 
28907 		sd_fault_injection_on = 0;
28908 		un->sd_injection_mask = 0xFFFFFFFF;
28909 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28910 			un->sd_fi_fifo_pkt[i] = NULL;
28911 			un->sd_fi_fifo_xb[i] = NULL;
28912 			un->sd_fi_fifo_un[i] = NULL;
28913 			un->sd_fi_fifo_arq[i] = NULL;
28914 		}
28915 		un->sd_fi_fifo_start = 0;
28916 		un->sd_fi_fifo_end = 0;
28917 
28918 		mutex_enter(&(un->un_fi_mutex));
28919 		un->sd_fi_log[0] = '\0';
28920 		un->sd_fi_buf_len = 0;
28921 		mutex_exit(&(un->un_fi_mutex));
28922 
28923 		SD_INFO(SD_LOG_IOERR, un,
28924 		    "sd_faultinjection_ioctl: start finished\n");
28925 		break;
28926 
28927 	case SDIOCSTOP:
28928 		/* Stop Injection Session */
28929 		SD_INFO(SD_LOG_SDTEST, un,
28930 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28931 		sd_fault_injection_on = 0;
28932 		un->sd_injection_mask = 0x0;
28933 
28934 		/* Empty stray or unuseds structs from fifo */
28935 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28936 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28937 				kmem_free(un->sd_fi_fifo_pkt[i],
28938 				    sizeof (struct sd_fi_pkt));
28939 			}
28940 			if (un->sd_fi_fifo_xb[i] != NULL) {
28941 				kmem_free(un->sd_fi_fifo_xb[i],
28942 				    sizeof (struct sd_fi_xb));
28943 			}
28944 			if (un->sd_fi_fifo_un[i] != NULL) {
28945 				kmem_free(un->sd_fi_fifo_un[i],
28946 				    sizeof (struct sd_fi_un));
28947 			}
28948 			if (un->sd_fi_fifo_arq[i] != NULL) {
28949 				kmem_free(un->sd_fi_fifo_arq[i],
28950 				    sizeof (struct sd_fi_arq));
28951 			}
28952 			un->sd_fi_fifo_pkt[i] = NULL;
28953 			un->sd_fi_fifo_un[i] = NULL;
28954 			un->sd_fi_fifo_xb[i] = NULL;
28955 			un->sd_fi_fifo_arq[i] = NULL;
28956 		}
28957 		un->sd_fi_fifo_start = 0;
28958 		un->sd_fi_fifo_end = 0;
28959 
28960 		SD_INFO(SD_LOG_IOERR, un,
28961 		    "sd_faultinjection_ioctl: stop finished\n");
28962 		break;
28963 
28964 	case SDIOCINSERTPKT:
28965 		/* Store a packet struct to be pushed onto fifo */
28966 		SD_INFO(SD_LOG_SDTEST, un,
28967 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
28968 
28969 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28970 
28971 		sd_fault_injection_on = 0;
28972 
28973 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
28974 		if (un->sd_fi_fifo_pkt[i] != NULL) {
28975 			kmem_free(un->sd_fi_fifo_pkt[i],
28976 			    sizeof (struct sd_fi_pkt));
28977 		}
28978 		if (arg != NULL) {
28979 			un->sd_fi_fifo_pkt[i] =
28980 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
28981 			if (un->sd_fi_fifo_pkt[i] == NULL) {
28982 				/* Alloc failed don't store anything */
28983 				break;
28984 			}
28985 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
28986 			    sizeof (struct sd_fi_pkt), 0);
28987 			if (rval == -1) {
28988 				kmem_free(un->sd_fi_fifo_pkt[i],
28989 				    sizeof (struct sd_fi_pkt));
28990 				un->sd_fi_fifo_pkt[i] = NULL;
28991 			}
28992 		} else {
28993 			SD_INFO(SD_LOG_IOERR, un,
28994 			    "sd_faultinjection_ioctl: pkt null\n");
28995 		}
28996 		break;
28997 
28998 	case SDIOCINSERTXB:
28999 		/* Store a xb struct to be pushed onto fifo */
29000 		SD_INFO(SD_LOG_SDTEST, un,
29001 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29002 
29003 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29004 
29005 		sd_fault_injection_on = 0;
29006 
29007 		if (un->sd_fi_fifo_xb[i] != NULL) {
29008 			kmem_free(un->sd_fi_fifo_xb[i],
29009 			    sizeof (struct sd_fi_xb));
29010 			un->sd_fi_fifo_xb[i] = NULL;
29011 		}
29012 		if (arg != NULL) {
29013 			un->sd_fi_fifo_xb[i] =
29014 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29015 			if (un->sd_fi_fifo_xb[i] == NULL) {
29016 				/* Alloc failed don't store anything */
29017 				break;
29018 			}
29019 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29020 			    sizeof (struct sd_fi_xb), 0);
29021 
29022 			if (rval == -1) {
29023 				kmem_free(un->sd_fi_fifo_xb[i],
29024 				    sizeof (struct sd_fi_xb));
29025 				un->sd_fi_fifo_xb[i] = NULL;
29026 			}
29027 		} else {
29028 			SD_INFO(SD_LOG_IOERR, un,
29029 			    "sd_faultinjection_ioctl: xb null\n");
29030 		}
29031 		break;
29032 
29033 	case SDIOCINSERTUN:
29034 		/* Store a un struct to be pushed onto fifo */
29035 		SD_INFO(SD_LOG_SDTEST, un,
29036 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29037 
29038 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29039 
29040 		sd_fault_injection_on = 0;
29041 
29042 		if (un->sd_fi_fifo_un[i] != NULL) {
29043 			kmem_free(un->sd_fi_fifo_un[i],
29044 			    sizeof (struct sd_fi_un));
29045 			un->sd_fi_fifo_un[i] = NULL;
29046 		}
29047 		if (arg != NULL) {
29048 			un->sd_fi_fifo_un[i] =
29049 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29050 			if (un->sd_fi_fifo_un[i] == NULL) {
29051 				/* Alloc failed don't store anything */
29052 				break;
29053 			}
29054 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29055 			    sizeof (struct sd_fi_un), 0);
29056 			if (rval == -1) {
29057 				kmem_free(un->sd_fi_fifo_un[i],
29058 				    sizeof (struct sd_fi_un));
29059 				un->sd_fi_fifo_un[i] = NULL;
29060 			}
29061 
29062 		} else {
29063 			SD_INFO(SD_LOG_IOERR, un,
29064 			    "sd_faultinjection_ioctl: un null\n");
29065 		}
29066 
29067 		break;
29068 
29069 	case SDIOCINSERTARQ:
29070 		/* Store a arq struct to be pushed onto fifo */
29071 		SD_INFO(SD_LOG_SDTEST, un,
29072 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29073 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29074 
29075 		sd_fault_injection_on = 0;
29076 
29077 		if (un->sd_fi_fifo_arq[i] != NULL) {
29078 			kmem_free(un->sd_fi_fifo_arq[i],
29079 			    sizeof (struct sd_fi_arq));
29080 			un->sd_fi_fifo_arq[i] = NULL;
29081 		}
29082 		if (arg != NULL) {
29083 			un->sd_fi_fifo_arq[i] =
29084 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29085 			if (un->sd_fi_fifo_arq[i] == NULL) {
29086 				/* Alloc failed don't store anything */
29087 				break;
29088 			}
29089 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29090 			    sizeof (struct sd_fi_arq), 0);
29091 			if (rval == -1) {
29092 				kmem_free(un->sd_fi_fifo_arq[i],
29093 				    sizeof (struct sd_fi_arq));
29094 				un->sd_fi_fifo_arq[i] = NULL;
29095 			}
29096 
29097 		} else {
29098 			SD_INFO(SD_LOG_IOERR, un,
29099 			    "sd_faultinjection_ioctl: arq null\n");
29100 		}
29101 
29102 		break;
29103 
29104 	case SDIOCPUSH:
29105 		/* Push stored xb, pkt, un, and arq onto fifo */
29106 		sd_fault_injection_on = 0;
29107 
29108 		if (arg != NULL) {
29109 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29110 			if (rval != -1 &&
29111 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29112 				un->sd_fi_fifo_end += i;
29113 			}
29114 		} else {
29115 			SD_INFO(SD_LOG_IOERR, un,
29116 			    "sd_faultinjection_ioctl: push arg null\n");
29117 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29118 				un->sd_fi_fifo_end++;
29119 			}
29120 		}
29121 		SD_INFO(SD_LOG_IOERR, un,
29122 		    "sd_faultinjection_ioctl: push to end=%d\n",
29123 		    un->sd_fi_fifo_end);
29124 		break;
29125 
29126 	case SDIOCRETRIEVE:
29127 		/* Return buffer of log from Injection session */
29128 		SD_INFO(SD_LOG_SDTEST, un,
29129 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29130 
29131 		sd_fault_injection_on = 0;
29132 
29133 		mutex_enter(&(un->un_fi_mutex));
29134 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29135 		    un->sd_fi_buf_len+1, 0);
29136 		mutex_exit(&(un->un_fi_mutex));
29137 
29138 		if (rval == -1) {
29139 			/*
29140 			 * arg is possibly invalid setting
29141 			 * it to NULL for return
29142 			 */
29143 			arg = NULL;
29144 		}
29145 		break;
29146 	}
29147 
29148 	mutex_exit(SD_MUTEX(un));
29149 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29150 			    " exit\n");
29151 }
29152 
29153 
29154 /*
29155  *    Function: sd_injection_log()
29156  *
29157  * Description: This routine adds buff to the already existing injection log
29158  *              for retrieval via faultinjection_ioctl for use in fault
29159  *              detection and recovery
29160  *
29161  *   Arguments: buf - the string to add to the log
29162  */
29163 
29164 static void
29165 sd_injection_log(char *buf, struct sd_lun *un)
29166 {
29167 	uint_t len;
29168 
29169 	ASSERT(un != NULL);
29170 	ASSERT(buf != NULL);
29171 
29172 	mutex_enter(&(un->un_fi_mutex));
29173 
29174 	len = min(strlen(buf), 255);
29175 	/* Add logged value to Injection log to be returned later */
29176 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29177 		uint_t	offset = strlen((char *)un->sd_fi_log);
29178 		char *destp = (char *)un->sd_fi_log + offset;
29179 		int i;
29180 		for (i = 0; i < len; i++) {
29181 			*destp++ = *buf++;
29182 		}
29183 		un->sd_fi_buf_len += len;
29184 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29185 	}
29186 
29187 	mutex_exit(&(un->un_fi_mutex));
29188 }
29189 
29190 
29191 /*
29192  *    Function: sd_faultinjection()
29193  *
29194  * Description: This routine takes the pkt and changes its
29195  *		content based on error injection scenerio.
29196  *
29197  *   Arguments: pktp	- packet to be changed
29198  */
29199 
29200 static void
29201 sd_faultinjection(struct scsi_pkt *pktp)
29202 {
29203 	uint_t i;
29204 	struct sd_fi_pkt *fi_pkt;
29205 	struct sd_fi_xb *fi_xb;
29206 	struct sd_fi_un *fi_un;
29207 	struct sd_fi_arq *fi_arq;
29208 	struct buf *bp;
29209 	struct sd_xbuf *xb;
29210 	struct sd_lun *un;
29211 
29212 	ASSERT(pktp != NULL);
29213 
29214 	/* pull bp xb and un from pktp */
29215 	bp = (struct buf *)pktp->pkt_private;
29216 	xb = SD_GET_XBUF(bp);
29217 	un = SD_GET_UN(bp);
29218 
29219 	ASSERT(un != NULL);
29220 
29221 	mutex_enter(SD_MUTEX(un));
29222 
29223 	SD_TRACE(SD_LOG_SDTEST, un,
29224 	    "sd_faultinjection: entry Injection from sdintr\n");
29225 
29226 	/* if injection is off return */
29227 	if (sd_fault_injection_on == 0 ||
29228 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29229 		mutex_exit(SD_MUTEX(un));
29230 		return;
29231 	}
29232 
29233 	SD_INFO(SD_LOG_SDTEST, un,
29234 	    "sd_faultinjection: is working for copying\n");
29235 
29236 	/* take next set off fifo */
29237 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29238 
29239 	fi_pkt = un->sd_fi_fifo_pkt[i];
29240 	fi_xb = un->sd_fi_fifo_xb[i];
29241 	fi_un = un->sd_fi_fifo_un[i];
29242 	fi_arq = un->sd_fi_fifo_arq[i];
29243 
29244 
29245 	/* set variables accordingly */
29246 	/* set pkt if it was on fifo */
29247 	if (fi_pkt != NULL) {
29248 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29249 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29250 		if (fi_pkt->pkt_cdbp != 0xff)
29251 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29252 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29253 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29254 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29255 
29256 	}
29257 	/* set xb if it was on fifo */
29258 	if (fi_xb != NULL) {
29259 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29260 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29261 		if (fi_xb->xb_retry_count != 0)
29262 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29263 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29264 		    "xb_victim_retry_count");
29265 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29266 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29267 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29268 
29269 		/* copy in block data from sense */
29270 		/*
29271 		 * if (fi_xb->xb_sense_data[0] != -1) {
29272 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29273 		 *	SENSE_LENGTH);
29274 		 * }
29275 		 */
29276 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29277 
29278 		/* copy in extended sense codes */
29279 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29280 		    xb, es_code, "es_code");
29281 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29282 		    xb, es_key, "es_key");
29283 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29284 		    xb, es_add_code, "es_add_code");
29285 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29286 		    xb, es_qual_code, "es_qual_code");
29287 		struct scsi_extended_sense *esp;
29288 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29289 		esp->es_class = CLASS_EXTENDED_SENSE;
29290 	}
29291 
29292 	/* set un if it was on fifo */
29293 	if (fi_un != NULL) {
29294 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29295 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29296 		SD_CONDSET(un, un, un_reset_retry_count,
29297 		    "un_reset_retry_count");
29298 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29299 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29300 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29301 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29302 		    "un_f_allow_bus_device_reset");
29303 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29304 
29305 	}
29306 
29307 	/* copy in auto request sense if it was on fifo */
29308 	if (fi_arq != NULL) {
29309 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29310 	}
29311 
29312 	/* free structs */
29313 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29314 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29315 	}
29316 	if (un->sd_fi_fifo_xb[i] != NULL) {
29317 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29318 	}
29319 	if (un->sd_fi_fifo_un[i] != NULL) {
29320 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29321 	}
29322 	if (un->sd_fi_fifo_arq[i] != NULL) {
29323 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29324 	}
29325 
29326 	/*
29327 	 * kmem_free does not gurantee to set to NULL
29328 	 * since we uses these to determine if we set
29329 	 * values or not lets confirm they are always
29330 	 * NULL after free
29331 	 */
29332 	un->sd_fi_fifo_pkt[i] = NULL;
29333 	un->sd_fi_fifo_un[i] = NULL;
29334 	un->sd_fi_fifo_xb[i] = NULL;
29335 	un->sd_fi_fifo_arq[i] = NULL;
29336 
29337 	un->sd_fi_fifo_start++;
29338 
29339 	mutex_exit(SD_MUTEX(un));
29340 
29341 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29342 }
29343 
29344 #endif /* SD_FAULT_INJECTION */
29345 
29346 /*
29347  * This routine is invoked in sd_unit_attach(). Before calling it, the
29348  * properties in conf file should be processed already, and "hotpluggable"
29349  * property was processed also.
29350  *
29351  * The sd driver distinguishes 3 different type of devices: removable media,
29352  * non-removable media, and hotpluggable. Below the differences are defined:
29353  *
29354  * 1. Device ID
29355  *
29356  *     The device ID of a device is used to identify this device. Refer to
29357  *     ddi_devid_register(9F).
29358  *
29359  *     For a non-removable media disk device which can provide 0x80 or 0x83
29360  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29361  *     device ID is created to identify this device. For other non-removable
29362  *     media devices, a default device ID is created only if this device has
29363  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29364  *
29365  *     -------------------------------------------------------
29366  *     removable media   hotpluggable  | Can Have Device ID
29367  *     -------------------------------------------------------
29368  *         false             false     |     Yes
29369  *         false             true      |     Yes
29370  *         true                x       |     No
29371  *     ------------------------------------------------------
29372  *
29373  *
29374  * 2. SCSI group 4 commands
29375  *
29376  *     In SCSI specs, only some commands in group 4 command set can use
29377  *     8-byte addresses that can be used to access >2TB storage spaces.
29378  *     Other commands have no such capability. Without supporting group4,
29379  *     it is impossible to make full use of storage spaces of a disk with
29380  *     capacity larger than 2TB.
29381  *
29382  *     -----------------------------------------------
29383  *     removable media   hotpluggable   LP64  |  Group
29384  *     -----------------------------------------------
29385  *           false          false       false |   1
29386  *           false          false       true  |   4
29387  *           false          true        false |   1
29388  *           false          true        true  |   4
29389  *           true             x           x   |   5
29390  *     -----------------------------------------------
29391  *
29392  *
29393  * 3. Check for VTOC Label
29394  *
29395  *     If a direct-access disk has no EFI label, sd will check if it has a
29396  *     valid VTOC label. Now, sd also does that check for removable media
29397  *     and hotpluggable devices.
29398  *
29399  *     --------------------------------------------------------------
29400  *     Direct-Access   removable media    hotpluggable |  Check Label
29401  *     -------------------------------------------------------------
29402  *         false          false           false        |   No
29403  *         false          false           true         |   No
29404  *         false          true            false        |   Yes
29405  *         false          true            true         |   Yes
29406  *         true            x                x          |   Yes
29407  *     --------------------------------------------------------------
29408  *
29409  *
29410  * 4. Building default VTOC label
29411  *
29412  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29413  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29414  *     create default VTOC for them. Currently sd creates default VTOC label
29415  *     for all devices on x86 platform (VTOC_16), but only for removable
29416  *     media devices on SPARC (VTOC_8).
29417  *
29418  *     -----------------------------------------------------------
29419  *       removable media hotpluggable platform   |   Default Label
29420  *     -----------------------------------------------------------
29421  *             false          false    sparc     |     No
29422  *             false          true      x86      |     Yes
29423  *             false          true     sparc     |     Yes
29424  *             true             x        x       |     Yes
29425  *     ----------------------------------------------------------
29426  *
29427  *
29428  * 5. Supported blocksizes of target devices
29429  *
29430  *     Sd supports non-512-byte blocksize for removable media devices only.
29431  *     For other devices, only 512-byte blocksize is supported. This may be
29432  *     changed in near future because some RAID devices require non-512-byte
29433  *     blocksize
29434  *
29435  *     -----------------------------------------------------------
29436  *     removable media    hotpluggable    | non-512-byte blocksize
29437  *     -----------------------------------------------------------
29438  *           false          false         |   No
29439  *           false          true          |   No
29440  *           true             x           |   Yes
29441  *     -----------------------------------------------------------
29442  *
29443  *
29444  * 6. Automatic mount & unmount
29445  *
29446  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29447  *     if a device is removable media device. It return 1 for removable media
29448  *     devices, and 0 for others.
29449  *
29450  *     The automatic mounting subsystem should distinguish between the types
29451  *     of devices and apply automounting policies to each.
29452  *
29453  *
29454  * 7. fdisk partition management
29455  *
29456  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29457  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29458  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29459  *     fdisk partitions on both x86 and SPARC platform.
29460  *
29461  *     -----------------------------------------------------------
29462  *       platform   removable media  USB/1394  |  fdisk supported
29463  *     -----------------------------------------------------------
29464  *        x86         X               X        |       true
29465  *     ------------------------------------------------------------
29466  *        sparc       X               X        |       false
29467  *     ------------------------------------------------------------
29468  *
29469  *
29470  * 8. MBOOT/MBR
29471  *
29472  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29473  *     read/write mboot for removable media devices on sparc platform.
29474  *
29475  *     -----------------------------------------------------------
29476  *       platform   removable media  USB/1394  |  mboot supported
29477  *     -----------------------------------------------------------
29478  *        x86         X               X        |       true
29479  *     ------------------------------------------------------------
29480  *        sparc      false           false     |       false
29481  *        sparc      false           true      |       true
29482  *        sparc      true            false     |       true
29483  *        sparc      true            true      |       true
29484  *     ------------------------------------------------------------
29485  *
29486  *
29487  * 9.  error handling during opening device
29488  *
29489  *     If failed to open a disk device, an errno is returned. For some kinds
29490  *     of errors, different errno is returned depending on if this device is
29491  *     a removable media device. This brings USB/1394 hard disks in line with
29492  *     expected hard disk behavior. It is not expected that this breaks any
29493  *     application.
29494  *
29495  *     ------------------------------------------------------
29496  *       removable media    hotpluggable   |  errno
29497  *     ------------------------------------------------------
29498  *             false          false        |   EIO
29499  *             false          true         |   EIO
29500  *             true             x          |   ENXIO
29501  *     ------------------------------------------------------
29502  *
29503  *
29504  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29505  *
29506  *     These IOCTLs are applicable only to removable media devices.
29507  *
29508  *     -----------------------------------------------------------
29509  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29510  *     -----------------------------------------------------------
29511  *             false          false        |     No
29512  *             false          true         |     No
29513  *             true            x           |     Yes
29514  *     -----------------------------------------------------------
29515  *
29516  *
29517  * 12. Kstats for partitions
29518  *
29519  *     sd creates partition kstat for non-removable media devices. USB and
29520  *     Firewire hard disks now have partition kstats
29521  *
29522  *      ------------------------------------------------------
29523  *       removable media    hotpluggable   |   kstat
29524  *      ------------------------------------------------------
29525  *             false          false        |    Yes
29526  *             false          true         |    Yes
29527  *             true             x          |    No
29528  *       ------------------------------------------------------
29529  *
29530  *
29531  * 13. Removable media & hotpluggable properties
29532  *
29533  *     Sd driver creates a "removable-media" property for removable media
29534  *     devices. Parent nexus drivers create a "hotpluggable" property if
29535  *     it supports hotplugging.
29536  *
29537  *     ---------------------------------------------------------------------
29538  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29539  *     ---------------------------------------------------------------------
29540  *       false            false       |    No                   No
29541  *       false            true        |    No                   Yes
29542  *       true             false       |    Yes                  No
29543  *       true             true        |    Yes                  Yes
29544  *     ---------------------------------------------------------------------
29545  *
29546  *
29547  * 14. Power Management
29548  *
29549  *     sd only power manages removable media devices or devices that support
29550  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29551  *
29552  *     A parent nexus that supports hotplugging can also set "pm-capable"
29553  *     if the disk can be power managed.
29554  *
29555  *     ------------------------------------------------------------
29556  *       removable media hotpluggable pm-capable  |   power manage
29557  *     ------------------------------------------------------------
29558  *             false          false     false     |     No
29559  *             false          false     true      |     Yes
29560  *             false          true      false     |     No
29561  *             false          true      true      |     Yes
29562  *             true             x        x        |     Yes
29563  *     ------------------------------------------------------------
29564  *
29565  *      USB and firewire hard disks can now be power managed independently
29566  *      of the framebuffer
29567  *
29568  *
29569  * 15. Support for USB disks with capacity larger than 1TB
29570  *
29571  *     Currently, sd doesn't permit a fixed disk device with capacity
29572  *     larger than 1TB to be used in a 32-bit operating system environment.
29573  *     However, sd doesn't do that for removable media devices. Instead, it
29574  *     assumes that removable media devices cannot have a capacity larger
29575  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29576  *     supported, which can cause some unexpected results.
29577  *
29578  *     ---------------------------------------------------------------------
29579  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29580  *     ---------------------------------------------------------------------
29581  *             false          false  |   true         |     no
29582  *             false          true   |   true         |     no
29583  *             true           false  |   true         |     Yes
29584  *             true           true   |   true         |     Yes
29585  *     ---------------------------------------------------------------------
29586  *
29587  *
29588  * 16. Check write-protection at open time
29589  *
29590  *     When a removable media device is being opened for writing without NDELAY
29591  *     flag, sd will check if this device is writable. If attempting to open
29592  *     without NDELAY flag a write-protected device, this operation will abort.
29593  *
29594  *     ------------------------------------------------------------
29595  *       removable media    USB/1394   |   WP Check
29596  *     ------------------------------------------------------------
29597  *             false          false    |     No
29598  *             false          true     |     No
29599  *             true           false    |     Yes
29600  *             true           true     |     Yes
29601  *     ------------------------------------------------------------
29602  *
29603  *
29604  * 17. syslog when corrupted VTOC is encountered
29605  *
29606  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29607  *      for fixed SCSI disks.
29608  *     ------------------------------------------------------------
29609  *       removable media    USB/1394   |   print syslog
29610  *     ------------------------------------------------------------
29611  *             false          false    |     Yes
29612  *             false          true     |     No
29613  *             true           false    |     No
29614  *             true           true     |     No
29615  *     ------------------------------------------------------------
29616  */
29617 static void
29618 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29619 {
29620 	int	pm_capable_prop;
29621 
29622 	ASSERT(un->un_sd);
29623 	ASSERT(un->un_sd->sd_inq);
29624 
29625 	/*
29626 	 * Enable SYNC CACHE support for all devices.
29627 	 */
29628 	un->un_f_sync_cache_supported = TRUE;
29629 
29630 	/*
29631 	 * Set the sync cache required flag to false.
29632 	 * This would ensure that there is no SYNC CACHE
29633 	 * sent when there are no writes
29634 	 */
29635 	un->un_f_sync_cache_required = FALSE;
29636 
29637 	if (un->un_sd->sd_inq->inq_rmb) {
29638 		/*
29639 		 * The media of this device is removable. And for this kind
29640 		 * of devices, it is possible to change medium after opening
29641 		 * devices. Thus we should support this operation.
29642 		 */
29643 		un->un_f_has_removable_media = TRUE;
29644 
29645 		/*
29646 		 * support non-512-byte blocksize of removable media devices
29647 		 */
29648 		un->un_f_non_devbsize_supported = TRUE;
29649 
29650 		/*
29651 		 * Assume that all removable media devices support DOOR_LOCK
29652 		 */
29653 		un->un_f_doorlock_supported = TRUE;
29654 
29655 		/*
29656 		 * For a removable media device, it is possible to be opened
29657 		 * with NDELAY flag when there is no media in drive, in this
29658 		 * case we don't care if device is writable. But if without
29659 		 * NDELAY flag, we need to check if media is write-protected.
29660 		 */
29661 		un->un_f_chk_wp_open = TRUE;
29662 
29663 		/*
29664 		 * need to start a SCSI watch thread to monitor media state,
29665 		 * when media is being inserted or ejected, notify syseventd.
29666 		 */
29667 		un->un_f_monitor_media_state = TRUE;
29668 
29669 		/*
29670 		 * Some devices don't support START_STOP_UNIT command.
29671 		 * Therefore, we'd better check if a device supports it
29672 		 * before sending it.
29673 		 */
29674 		un->un_f_check_start_stop = TRUE;
29675 
29676 		/*
29677 		 * support eject media ioctl:
29678 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29679 		 */
29680 		un->un_f_eject_media_supported = TRUE;
29681 
29682 		/*
29683 		 * Because many removable-media devices don't support
29684 		 * LOG_SENSE, we couldn't use this command to check if
29685 		 * a removable media device support power-management.
29686 		 * We assume that they support power-management via
29687 		 * START_STOP_UNIT command and can be spun up and down
29688 		 * without limitations.
29689 		 */
29690 		un->un_f_pm_supported = TRUE;
29691 
29692 		/*
29693 		 * Need to create a zero length (Boolean) property
29694 		 * removable-media for the removable media devices.
29695 		 * Note that the return value of the property is not being
29696 		 * checked, since if unable to create the property
29697 		 * then do not want the attach to fail altogether. Consistent
29698 		 * with other property creation in attach.
29699 		 */
29700 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29701 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29702 
29703 	} else {
29704 		/*
29705 		 * create device ID for device
29706 		 */
29707 		un->un_f_devid_supported = TRUE;
29708 
29709 		/*
29710 		 * Spin up non-removable-media devices once it is attached
29711 		 */
29712 		un->un_f_attach_spinup = TRUE;
29713 
29714 		/*
29715 		 * According to SCSI specification, Sense data has two kinds of
29716 		 * format: fixed format, and descriptor format. At present, we
29717 		 * don't support descriptor format sense data for removable
29718 		 * media.
29719 		 */
29720 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29721 			un->un_f_descr_format_supported = TRUE;
29722 		}
29723 
29724 		/*
29725 		 * kstats are created only for non-removable media devices.
29726 		 *
29727 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29728 		 * default is 1, so they are enabled by default.
29729 		 */
29730 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29731 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29732 		    "enable-partition-kstats", 1));
29733 
29734 		/*
29735 		 * Check if HBA has set the "pm-capable" property.
29736 		 * If "pm-capable" exists and is non-zero then we can
29737 		 * power manage the device without checking the start/stop
29738 		 * cycle count log sense page.
29739 		 *
29740 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29741 		 * then we should not power manage the device.
29742 		 *
29743 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29744 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29745 		 * sd will check the start/stop cycle count log sense page
29746 		 * and power manage the device if the cycle count limit has
29747 		 * not been exceeded.
29748 		 */
29749 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29750 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29751 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29752 			un->un_f_log_sense_supported = TRUE;
29753 		} else {
29754 			/*
29755 			 * pm-capable property exists.
29756 			 *
29757 			 * Convert "TRUE" values for pm_capable_prop to
29758 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29759 			 * later. "TRUE" values are any values except
29760 			 * SD_PM_CAPABLE_FALSE (0) and
29761 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29762 			 */
29763 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29764 				un->un_f_log_sense_supported = FALSE;
29765 			} else {
29766 				un->un_f_pm_supported = TRUE;
29767 			}
29768 
29769 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29770 			    "sd_unit_attach: un:0x%p pm-capable "
29771 			    "property set to %d.\n", un, un->un_f_pm_supported);
29772 		}
29773 	}
29774 
29775 	if (un->un_f_is_hotpluggable) {
29776 
29777 		/*
29778 		 * Have to watch hotpluggable devices as well, since
29779 		 * that's the only way for userland applications to
29780 		 * detect hot removal while device is busy/mounted.
29781 		 */
29782 		un->un_f_monitor_media_state = TRUE;
29783 
29784 		un->un_f_check_start_stop = TRUE;
29785 
29786 	}
29787 }
29788 
29789 /*
29790  * sd_tg_rdwr:
29791  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29792  * in sys block size, req_length in bytes.
29793  *
29794  */
29795 static int
29796 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29797     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29798 {
29799 	struct sd_lun *un;
29800 	int path_flag = (int)(uintptr_t)tg_cookie;
29801 	char *dkl = NULL;
29802 	diskaddr_t real_addr = start_block;
29803 	diskaddr_t first_byte, end_block;
29804 
29805 	size_t	buffer_size = reqlength;
29806 	int rval = 0;
29807 	diskaddr_t	cap;
29808 	uint32_t	lbasize;
29809 	sd_ssc_t	*ssc;
29810 
29811 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29812 	if (un == NULL)
29813 		return (ENXIO);
29814 
29815 	if (cmd != TG_READ && cmd != TG_WRITE)
29816 		return (EINVAL);
29817 
29818 	ssc = sd_ssc_init(un);
29819 	mutex_enter(SD_MUTEX(un));
29820 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29821 		mutex_exit(SD_MUTEX(un));
29822 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29823 		    &lbasize, path_flag);
29824 		if (rval != 0)
29825 			goto done1;
29826 		mutex_enter(SD_MUTEX(un));
29827 		sd_update_block_info(un, lbasize, cap);
29828 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29829 			mutex_exit(SD_MUTEX(un));
29830 			rval = EIO;
29831 			goto done;
29832 		}
29833 	}
29834 
29835 	if (NOT_DEVBSIZE(un)) {
29836 		/*
29837 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29838 		 * blkno and save the index to beginning of dk_label
29839 		 */
29840 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29841 		real_addr = first_byte / un->un_tgt_blocksize;
29842 
29843 		end_block = (first_byte + reqlength +
29844 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29845 
29846 		/* round up buffer size to multiple of target block size */
29847 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29848 
29849 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29850 		    "label_addr: 0x%x allocation size: 0x%x\n",
29851 		    real_addr, buffer_size);
29852 
29853 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29854 		    (reqlength % un->un_tgt_blocksize) != 0)
29855 			/* the request is not aligned */
29856 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29857 	}
29858 
29859 	/*
29860 	 * The MMC standard allows READ CAPACITY to be
29861 	 * inaccurate by a bounded amount (in the interest of
29862 	 * response latency).  As a result, failed READs are
29863 	 * commonplace (due to the reading of metadata and not
29864 	 * data). Depending on the per-Vendor/drive Sense data,
29865 	 * the failed READ can cause many (unnecessary) retries.
29866 	 */
29867 
29868 	if (ISCD(un) && (cmd == TG_READ) &&
29869 	    (un->un_f_blockcount_is_valid == TRUE) &&
29870 	    ((start_block == (un->un_blockcount - 1))||
29871 	    (start_block == (un->un_blockcount - 2)))) {
29872 			path_flag = SD_PATH_DIRECT_PRIORITY;
29873 	}
29874 
29875 	mutex_exit(SD_MUTEX(un));
29876 	if (cmd == TG_READ) {
29877 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29878 		    buffer_size, real_addr, path_flag);
29879 		if (dkl != NULL)
29880 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29881 			    real_addr), bufaddr, reqlength);
29882 	} else {
29883 		if (dkl) {
29884 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29885 			    real_addr, path_flag);
29886 			if (rval) {
29887 				goto done1;
29888 			}
29889 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29890 			    real_addr), reqlength);
29891 		}
29892 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29893 		    buffer_size, real_addr, path_flag);
29894 	}
29895 
29896 done1:
29897 	if (dkl != NULL)
29898 		kmem_free(dkl, buffer_size);
29899 
29900 	if (rval != 0) {
29901 		if (rval == EIO)
29902 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29903 		else
29904 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29905 	}
29906 done:
29907 	sd_ssc_fini(ssc);
29908 	return (rval);
29909 }
29910 
29911 
29912 static int
29913 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29914 {
29915 
29916 	struct sd_lun *un;
29917 	diskaddr_t	cap;
29918 	uint32_t	lbasize;
29919 	int		path_flag = (int)(uintptr_t)tg_cookie;
29920 	int		ret = 0;
29921 
29922 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29923 	if (un == NULL)
29924 		return (ENXIO);
29925 
29926 	switch (cmd) {
29927 	case TG_GETPHYGEOM:
29928 	case TG_GETVIRTGEOM:
29929 	case TG_GETCAPACITY:
29930 	case TG_GETBLOCKSIZE:
29931 		mutex_enter(SD_MUTEX(un));
29932 
29933 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29934 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29935 			cap = un->un_blockcount;
29936 			lbasize = un->un_tgt_blocksize;
29937 			mutex_exit(SD_MUTEX(un));
29938 		} else {
29939 			sd_ssc_t	*ssc;
29940 			mutex_exit(SD_MUTEX(un));
29941 			ssc = sd_ssc_init(un);
29942 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29943 			    &lbasize, path_flag);
29944 			if (ret != 0) {
29945 				if (ret == EIO)
29946 					sd_ssc_assessment(ssc,
29947 					    SD_FMT_STATUS_CHECK);
29948 				else
29949 					sd_ssc_assessment(ssc,
29950 					    SD_FMT_IGNORE);
29951 				sd_ssc_fini(ssc);
29952 				return (ret);
29953 			}
29954 			sd_ssc_fini(ssc);
29955 			mutex_enter(SD_MUTEX(un));
29956 			sd_update_block_info(un, lbasize, cap);
29957 			if ((un->un_f_blockcount_is_valid == FALSE) ||
29958 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
29959 				mutex_exit(SD_MUTEX(un));
29960 				return (EIO);
29961 			}
29962 			mutex_exit(SD_MUTEX(un));
29963 		}
29964 
29965 		if (cmd == TG_GETCAPACITY) {
29966 			*(diskaddr_t *)arg = cap;
29967 			return (0);
29968 		}
29969 
29970 		if (cmd == TG_GETBLOCKSIZE) {
29971 			*(uint32_t *)arg = lbasize;
29972 			return (0);
29973 		}
29974 
29975 		if (cmd == TG_GETPHYGEOM)
29976 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
29977 			    cap, lbasize, path_flag);
29978 		else
29979 			/* TG_GETVIRTGEOM */
29980 			ret = sd_get_virtual_geometry(un,
29981 			    (cmlb_geom_t *)arg, cap, lbasize);
29982 
29983 		return (ret);
29984 
29985 	case TG_GETATTR:
29986 		mutex_enter(SD_MUTEX(un));
29987 		((tg_attribute_t *)arg)->media_is_writable =
29988 		    un->un_f_mmc_writable_media;
29989 		mutex_exit(SD_MUTEX(un));
29990 		return (0);
29991 	default:
29992 		return (ENOTTY);
29993 
29994 	}
29995 }
29996 
29997 /*
29998  *    Function: sd_ssc_ereport_post
29999  *
30000  * Description: Will be called when SD driver need to post an ereport.
30001  *
30002  *    Context: Kernel thread or interrupt context.
30003  */
30004 static void
30005 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
30006 {
30007 	int uscsi_path_instance = 0;
30008 	uchar_t	uscsi_pkt_reason;
30009 	uint32_t uscsi_pkt_state;
30010 	uint32_t uscsi_pkt_statistics;
30011 	uint64_t uscsi_ena;
30012 	uchar_t op_code;
30013 	uint8_t *sensep;
30014 	union scsi_cdb *cdbp;
30015 	uint_t cdblen = 0;
30016 	uint_t senlen = 0;
30017 	struct sd_lun *un;
30018 	dev_info_t *dip;
30019 	char *devid;
30020 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
30021 	    SSC_FLAGS_INVALID_STATUS |
30022 	    SSC_FLAGS_INVALID_SENSE |
30023 	    SSC_FLAGS_INVALID_DATA;
30024 	char assessment[16];
30025 
30026 	ASSERT(ssc != NULL);
30027 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
30028 	ASSERT(ssc->ssc_uscsi_info != NULL);
30029 
30030 	un = ssc->ssc_un;
30031 	ASSERT(un != NULL);
30032 
30033 	dip = un->un_sd->sd_dev;
30034 
30035 	/*
30036 	 * Get the devid:
30037 	 *	devid will only be passed to non-transport error reports.
30038 	 */
30039 	devid = DEVI(dip)->devi_devid_str;
30040 
30041 	/*
30042 	 * If we are syncing or dumping, the command will not be executed
30043 	 * so we bypass this situation.
30044 	 */
30045 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
30046 	    (un->un_state == SD_STATE_DUMPING))
30047 		return;
30048 
30049 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
30050 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
30051 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
30052 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
30053 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
30054 
30055 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
30056 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
30057 
30058 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
30059 	if (cdbp == NULL) {
30060 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30061 		    "sd_ssc_ereport_post meet empty cdb\n");
30062 		return;
30063 	}
30064 
30065 	op_code = cdbp->scc_cmd;
30066 
30067 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
30068 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
30069 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
30070 
30071 	if (senlen > 0)
30072 		ASSERT(sensep != NULL);
30073 
30074 	/*
30075 	 * Initialize drv_assess to corresponding values.
30076 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
30077 	 * on the sense-key returned back.
30078 	 */
30079 	switch (drv_assess) {
30080 		case SD_FM_DRV_RECOVERY:
30081 			(void) sprintf(assessment, "%s", "recovered");
30082 			break;
30083 		case SD_FM_DRV_RETRY:
30084 			(void) sprintf(assessment, "%s", "retry");
30085 			break;
30086 		case SD_FM_DRV_NOTICE:
30087 			(void) sprintf(assessment, "%s", "info");
30088 			break;
30089 		case SD_FM_DRV_FATAL:
30090 		default:
30091 			(void) sprintf(assessment, "%s", "unknown");
30092 	}
30093 	/*
30094 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
30095 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
30096 	 * driver-assessment will always be "recovered" here.
30097 	 */
30098 	if (drv_assess == SD_FM_DRV_RECOVERY) {
30099 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30100 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
30101 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30102 		    "driver-assessment", DATA_TYPE_STRING, assessment,
30103 		    "op-code", DATA_TYPE_UINT8, op_code,
30104 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30105 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30106 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30107 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30108 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30109 		    NULL);
30110 		return;
30111 	}
30112 
30113 	/*
30114 	 * If there is un-expected/un-decodable data, we should post
30115 	 * ereport.io.scsi.cmd.disk.dev.uderr.
30116 	 * driver-assessment will be set based on parameter drv_assess.
30117 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
30118 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
30119 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
30120 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
30121 	 */
30122 	if (ssc->ssc_flags & ssc_invalid_flags) {
30123 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
30124 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30125 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30126 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30127 			    "driver-assessment", DATA_TYPE_STRING,
30128 			    drv_assess == SD_FM_DRV_FATAL ?
30129 			    "fail" : assessment,
30130 			    "op-code", DATA_TYPE_UINT8, op_code,
30131 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30132 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30133 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30134 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30135 			    "pkt-stats", DATA_TYPE_UINT32,
30136 			    uscsi_pkt_statistics,
30137 			    "stat-code", DATA_TYPE_UINT8,
30138 			    ssc->ssc_uscsi_cmd->uscsi_status,
30139 			    "un-decode-info", DATA_TYPE_STRING,
30140 			    ssc->ssc_info,
30141 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30142 			    senlen, sensep,
30143 			    NULL);
30144 		} else {
30145 			/*
30146 			 * For other type of invalid data, the
30147 			 * un-decode-value field would be empty because the
30148 			 * un-decodable content could be seen from upper
30149 			 * level payload or inside un-decode-info.
30150 			 */
30151 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30152 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30153 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30154 			    "driver-assessment", DATA_TYPE_STRING,
30155 			    drv_assess == SD_FM_DRV_FATAL ?
30156 			    "fail" : assessment,
30157 			    "op-code", DATA_TYPE_UINT8, op_code,
30158 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30159 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30160 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30161 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30162 			    "pkt-stats", DATA_TYPE_UINT32,
30163 			    uscsi_pkt_statistics,
30164 			    "stat-code", DATA_TYPE_UINT8,
30165 			    ssc->ssc_uscsi_cmd->uscsi_status,
30166 			    "un-decode-info", DATA_TYPE_STRING,
30167 			    ssc->ssc_info,
30168 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30169 			    0, NULL,
30170 			    NULL);
30171 		}
30172 		ssc->ssc_flags &= ~ssc_invalid_flags;
30173 		return;
30174 	}
30175 
30176 	if (uscsi_pkt_reason != CMD_CMPLT ||
30177 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30178 		/*
30179 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30180 		 * set inside sd_start_cmds due to errors(bad packet or
30181 		 * fatal transport error), we should take it as a
30182 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30183 		 * driver-assessment will be set based on drv_assess.
30184 		 * We will set devid to NULL because it is a transport
30185 		 * error.
30186 		 */
30187 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30188 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30189 
30190 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30191 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30192 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30193 		    "driver-assessment", DATA_TYPE_STRING,
30194 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30195 		    "op-code", DATA_TYPE_UINT8, op_code,
30196 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30197 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30198 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30199 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30200 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30201 		    NULL);
30202 	} else {
30203 		/*
30204 		 * If we got here, we have a completed command, and we need
30205 		 * to further investigate the sense data to see what kind
30206 		 * of ereport we should post.
30207 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30208 		 * if sense-key == 0x3.
30209 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30210 		 * driver-assessment will be set based on the parameter
30211 		 * drv_assess.
30212 		 */
30213 		if (senlen > 0) {
30214 			/*
30215 			 * Here we have sense data available.
30216 			 */
30217 			uint8_t sense_key;
30218 			sense_key = scsi_sense_key(sensep);
30219 			if (sense_key == 0x3) {
30220 				/*
30221 				 * sense-key == 0x3(medium error),
30222 				 * driver-assessment should be "fatal" if
30223 				 * drv_assess is SD_FM_DRV_FATAL.
30224 				 */
30225 				scsi_fm_ereport_post(un->un_sd,
30226 				    uscsi_path_instance,
30227 				    "cmd.disk.dev.rqs.merr",
30228 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30229 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30230 				    "driver-assessment",
30231 				    DATA_TYPE_STRING,
30232 				    drv_assess == SD_FM_DRV_FATAL ?
30233 				    "fatal" : assessment,
30234 				    "op-code",
30235 				    DATA_TYPE_UINT8, op_code,
30236 				    "cdb",
30237 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30238 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30239 				    "pkt-reason",
30240 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30241 				    "pkt-state",
30242 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30243 				    "pkt-stats",
30244 				    DATA_TYPE_UINT32,
30245 				    uscsi_pkt_statistics,
30246 				    "stat-code",
30247 				    DATA_TYPE_UINT8,
30248 				    ssc->ssc_uscsi_cmd->uscsi_status,
30249 				    "key",
30250 				    DATA_TYPE_UINT8,
30251 				    scsi_sense_key(sensep),
30252 				    "asc",
30253 				    DATA_TYPE_UINT8,
30254 				    scsi_sense_asc(sensep),
30255 				    "ascq",
30256 				    DATA_TYPE_UINT8,
30257 				    scsi_sense_ascq(sensep),
30258 				    "sense-data",
30259 				    DATA_TYPE_UINT8_ARRAY,
30260 				    senlen, sensep,
30261 				    "lba",
30262 				    DATA_TYPE_UINT64,
30263 				    ssc->ssc_uscsi_info->ui_lba,
30264 				    NULL);
30265 				} else {
30266 					/*
30267 					 * if sense-key == 0x4(hardware
30268 					 * error), driver-assessment should
30269 					 * be "fatal" if drv_assess is
30270 					 * SD_FM_DRV_FATAL.
30271 					 */
30272 					scsi_fm_ereport_post(un->un_sd,
30273 					    uscsi_path_instance,
30274 					    "cmd.disk.dev.rqs.derr",
30275 					    uscsi_ena, devid, DDI_NOSLEEP,
30276 					    FM_VERSION,
30277 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30278 					    "driver-assessment",
30279 					    DATA_TYPE_STRING,
30280 					    drv_assess == SD_FM_DRV_FATAL ?
30281 					    (sense_key == 0x4 ?
30282 					    "fatal" : "fail") : assessment,
30283 					    "op-code",
30284 					    DATA_TYPE_UINT8, op_code,
30285 					    "cdb",
30286 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30287 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30288 					    "pkt-reason",
30289 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30290 					    "pkt-state",
30291 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30292 					    "pkt-stats",
30293 					    DATA_TYPE_UINT32,
30294 					    uscsi_pkt_statistics,
30295 					    "stat-code",
30296 					    DATA_TYPE_UINT8,
30297 					    ssc->ssc_uscsi_cmd->uscsi_status,
30298 					    "key",
30299 					    DATA_TYPE_UINT8,
30300 					    scsi_sense_key(sensep),
30301 					    "asc",
30302 					    DATA_TYPE_UINT8,
30303 					    scsi_sense_asc(sensep),
30304 					    "ascq",
30305 					    DATA_TYPE_UINT8,
30306 					    scsi_sense_ascq(sensep),
30307 					    "sense-data",
30308 					    DATA_TYPE_UINT8_ARRAY,
30309 					    senlen, sensep,
30310 					    NULL);
30311 				}
30312 		} else {
30313 			/*
30314 			 * For stat_code == STATUS_GOOD, this is not a
30315 			 * hardware error.
30316 			 */
30317 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30318 				return;
30319 
30320 			/*
30321 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30322 			 * stat-code but with sense data unavailable.
30323 			 * driver-assessment will be set based on parameter
30324 			 * drv_assess.
30325 			 */
30326 			scsi_fm_ereport_post(un->un_sd,
30327 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30328 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30329 			    FM_EREPORT_VERS0,
30330 			    "driver-assessment", DATA_TYPE_STRING,
30331 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30332 			    "op-code", DATA_TYPE_UINT8, op_code,
30333 			    "cdb",
30334 			    DATA_TYPE_UINT8_ARRAY,
30335 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30336 			    "pkt-reason",
30337 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30338 			    "pkt-state",
30339 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30340 			    "pkt-stats",
30341 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30342 			    "stat-code",
30343 			    DATA_TYPE_UINT8,
30344 			    ssc->ssc_uscsi_cmd->uscsi_status,
30345 			    NULL);
30346 		}
30347 	}
30348 }
30349 
30350 /*
30351  *     Function: sd_ssc_extract_info
30352  *
30353  * Description: Extract information available to help generate ereport.
30354  *
30355  *     Context: Kernel thread or interrupt context.
30356  */
30357 static void
30358 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30359     struct buf *bp, struct sd_xbuf *xp)
30360 {
30361 	size_t senlen = 0;
30362 	union scsi_cdb *cdbp;
30363 	int path_instance;
30364 	/*
30365 	 * Need scsi_cdb_size array to determine the cdb length.
30366 	 */
30367 	extern uchar_t	scsi_cdb_size[];
30368 
30369 	ASSERT(un != NULL);
30370 	ASSERT(pktp != NULL);
30371 	ASSERT(bp != NULL);
30372 	ASSERT(xp != NULL);
30373 	ASSERT(ssc != NULL);
30374 	ASSERT(mutex_owned(SD_MUTEX(un)));
30375 
30376 	/*
30377 	 * Transfer the cdb buffer pointer here.
30378 	 */
30379 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30380 
30381 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30382 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30383 
30384 	/*
30385 	 * Transfer the sense data buffer pointer if sense data is available,
30386 	 * calculate the sense data length first.
30387 	 */
30388 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30389 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30390 		/*
30391 		 * For arq case, we will enter here.
30392 		 */
30393 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30394 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30395 		} else {
30396 			senlen = SENSE_LENGTH;
30397 		}
30398 	} else {
30399 		/*
30400 		 * For non-arq case, we will enter this branch.
30401 		 */
30402 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30403 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30404 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30405 		}
30406 
30407 	}
30408 
30409 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30410 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30411 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30412 
30413 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30414 
30415 	/*
30416 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30417 	 */
30418 	path_instance = pktp->pkt_path_instance;
30419 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30420 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30421 	else
30422 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30423 
30424 	/*
30425 	 * Copy in the other fields we may need when posting ereport.
30426 	 */
30427 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30428 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30429 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30430 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30431 
30432 	/*
30433 	 * For partially read/write command, we will not create ena
30434 	 * in case of a successful command be reconized as recovered.
30435 	 */
30436 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30437 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30438 	    (senlen == 0)) {
30439 		return;
30440 	}
30441 
30442 	/*
30443 	 * To associate ereports of a single command execution flow, we
30444 	 * need a shared ena for a specific command.
30445 	 */
30446 	if (xp->xb_ena == 0)
30447 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30448 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30449 }
30450