xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 5c066ec2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 static struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower,		/* power */
1689 	ddi_quiesce_not_needed,		/* quiesce */
1690 };
1691 
1692 
1693 /*
1694  * This is the loadable module wrapper.
1695  */
1696 #include <sys/modctl.h>
1697 
1698 static struct modldrv modldrv = {
1699 	&mod_driverops,		/* Type of module. This one is a driver */
1700 	SD_MODULE_NAME,		/* Module name. */
1701 	&sd_ops			/* driver ops */
1702 };
1703 
1704 
1705 static struct modlinkage modlinkage = {
1706 	MODREV_1,
1707 	&modldrv,
1708 	NULL
1709 };
1710 
1711 static cmlb_tg_ops_t sd_tgops = {
1712 	TG_DK_OPS_VERSION_1,
1713 	sd_tg_rdwr,
1714 	sd_tg_getinfo
1715 	};
1716 
1717 static struct scsi_asq_key_strings sd_additional_codes[] = {
1718 	0x81, 0, "Logical Unit is Reserved",
1719 	0x85, 0, "Audio Address Not Valid",
1720 	0xb6, 0, "Media Load Mechanism Failed",
1721 	0xB9, 0, "Audio Play Operation Aborted",
1722 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1723 	0x53, 2, "Medium removal prevented",
1724 	0x6f, 0, "Authentication failed during key exchange",
1725 	0x6f, 1, "Key not present",
1726 	0x6f, 2, "Key not established",
1727 	0x6f, 3, "Read without proper authentication",
1728 	0x6f, 4, "Mismatched region to this logical unit",
1729 	0x6f, 5, "Region reset count error",
1730 	0xffff, 0x0, NULL
1731 };
1732 
1733 
1734 /*
1735  * Struct for passing printing information for sense data messages
1736  */
1737 struct sd_sense_info {
1738 	int	ssi_severity;
1739 	int	ssi_pfa_flag;
1740 };
1741 
1742 /*
1743  * Table of function pointers for iostart-side routines. Separate "chains"
1744  * of layered function calls are formed by placing the function pointers
1745  * sequentially in the desired order. Functions are called according to an
1746  * incrementing table index ordering. The last function in each chain must
1747  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1748  * in the sd_iodone_chain[] array.
1749  *
1750  * Note: It may seem more natural to organize both the iostart and iodone
1751  * functions together, into an array of structures (or some similar
1752  * organization) with a common index, rather than two separate arrays which
1753  * must be maintained in synchronization. The purpose of this division is
1754  * to achieve improved performance: individual arrays allows for more
1755  * effective cache line utilization on certain platforms.
1756  */
1757 
1758 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1759 
1760 
1761 static sd_chain_t sd_iostart_chain[] = {
1762 
1763 	/* Chain for buf IO for disk drive targets (PM enabled) */
1764 	sd_mapblockaddr_iostart,	/* Index: 0 */
1765 	sd_pm_iostart,			/* Index: 1 */
1766 	sd_core_iostart,		/* Index: 2 */
1767 
1768 	/* Chain for buf IO for disk drive targets (PM disabled) */
1769 	sd_mapblockaddr_iostart,	/* Index: 3 */
1770 	sd_core_iostart,		/* Index: 4 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM enabled) */
1773 	sd_mapblockaddr_iostart,	/* Index: 5 */
1774 	sd_mapblocksize_iostart,	/* Index: 6 */
1775 	sd_pm_iostart,			/* Index: 7 */
1776 	sd_core_iostart,		/* Index: 8 */
1777 
1778 	/* Chain for buf IO for removable-media targets (PM disabled) */
1779 	sd_mapblockaddr_iostart,	/* Index: 9 */
1780 	sd_mapblocksize_iostart,	/* Index: 10 */
1781 	sd_core_iostart,		/* Index: 11 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1784 	sd_mapblockaddr_iostart,	/* Index: 12 */
1785 	sd_checksum_iostart,		/* Index: 13 */
1786 	sd_pm_iostart,			/* Index: 14 */
1787 	sd_core_iostart,		/* Index: 15 */
1788 
1789 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1790 	sd_mapblockaddr_iostart,	/* Index: 16 */
1791 	sd_checksum_iostart,		/* Index: 17 */
1792 	sd_core_iostart,		/* Index: 18 */
1793 
1794 	/* Chain for USCSI commands (all targets) */
1795 	sd_pm_iostart,			/* Index: 19 */
1796 	sd_core_iostart,		/* Index: 20 */
1797 
1798 	/* Chain for checksumming USCSI commands (all targets) */
1799 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1800 	sd_pm_iostart,			/* Index: 22 */
1801 	sd_core_iostart,		/* Index: 23 */
1802 
1803 	/* Chain for "direct" USCSI commands (all targets) */
1804 	sd_core_iostart,		/* Index: 24 */
1805 
1806 	/* Chain for "direct priority" USCSI commands (all targets) */
1807 	sd_core_iostart,		/* Index: 25 */
1808 };
1809 
1810 /*
1811  * Macros to locate the first function of each iostart chain in the
1812  * sd_iostart_chain[] array. These are located by the index in the array.
1813  */
1814 #define	SD_CHAIN_DISK_IOSTART			0
1815 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1816 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1817 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1818 #define	SD_CHAIN_CHKSUM_IOSTART			12
1819 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1820 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1821 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1822 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1824 
1825 
1826 /*
1827  * Table of function pointers for the iodone-side routines for the driver-
1828  * internal layering mechanism.  The calling sequence for iodone routines
1829  * uses a decrementing table index, so the last routine called in a chain
1830  * must be at the lowest array index location for that chain.  The last
1831  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1832  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1833  * of the functions in an iodone side chain must correspond to the ordering
1834  * of the iostart routines for that chain.  Note that there is no iodone
1835  * side routine that corresponds to sd_core_iostart(), so there is no
1836  * entry in the table for this.
1837  */
1838 
1839 static sd_chain_t sd_iodone_chain[] = {
1840 
1841 	/* Chain for buf IO for disk drive targets (PM enabled) */
1842 	sd_buf_iodone,			/* Index: 0 */
1843 	sd_mapblockaddr_iodone,		/* Index: 1 */
1844 	sd_pm_iodone,			/* Index: 2 */
1845 
1846 	/* Chain for buf IO for disk drive targets (PM disabled) */
1847 	sd_buf_iodone,			/* Index: 3 */
1848 	sd_mapblockaddr_iodone,		/* Index: 4 */
1849 
1850 	/* Chain for buf IO for removable-media targets (PM enabled) */
1851 	sd_buf_iodone,			/* Index: 5 */
1852 	sd_mapblockaddr_iodone,		/* Index: 6 */
1853 	sd_mapblocksize_iodone,		/* Index: 7 */
1854 	sd_pm_iodone,			/* Index: 8 */
1855 
1856 	/* Chain for buf IO for removable-media targets (PM disabled) */
1857 	sd_buf_iodone,			/* Index: 9 */
1858 	sd_mapblockaddr_iodone,		/* Index: 10 */
1859 	sd_mapblocksize_iodone,		/* Index: 11 */
1860 
1861 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1862 	sd_buf_iodone,			/* Index: 12 */
1863 	sd_mapblockaddr_iodone,		/* Index: 13 */
1864 	sd_checksum_iodone,		/* Index: 14 */
1865 	sd_pm_iodone,			/* Index: 15 */
1866 
1867 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1868 	sd_buf_iodone,			/* Index: 16 */
1869 	sd_mapblockaddr_iodone,		/* Index: 17 */
1870 	sd_checksum_iodone,		/* Index: 18 */
1871 
1872 	/* Chain for USCSI commands (non-checksum targets) */
1873 	sd_uscsi_iodone,		/* Index: 19 */
1874 	sd_pm_iodone,			/* Index: 20 */
1875 
1876 	/* Chain for USCSI commands (checksum targets) */
1877 	sd_uscsi_iodone,		/* Index: 21 */
1878 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1879 	sd_pm_iodone,			/* Index: 22 */
1880 
1881 	/* Chain for "direct" USCSI commands (all targets) */
1882 	sd_uscsi_iodone,		/* Index: 24 */
1883 
1884 	/* Chain for "direct priority" USCSI commands (all targets) */
1885 	sd_uscsi_iodone,		/* Index: 25 */
1886 };
1887 
1888 
1889 /*
1890  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1891  * each iodone-side chain. These are located by the array index, but as the
1892  * iodone side functions are called in a decrementing-index order, the
1893  * highest index number in each chain must be specified (as these correspond
1894  * to the first function in the iodone chain that will be called by the core
1895  * at IO completion time).
1896  */
1897 
1898 #define	SD_CHAIN_DISK_IODONE			2
1899 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1900 #define	SD_CHAIN_RMMEDIA_IODONE			8
1901 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1902 #define	SD_CHAIN_CHKSUM_IODONE			15
1903 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1904 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1905 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1906 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1907 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1908 
1909 
1910 
1911 
1912 /*
1913  * Array to map a layering chain index to the appropriate initpkt routine.
1914  * The redundant entries are present so that the index used for accessing
1915  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1916  * with this table as well.
1917  */
1918 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1919 
1920 static sd_initpkt_t	sd_initpkt_map[] = {
1921 
1922 	/* Chain for buf IO for disk drive targets (PM enabled) */
1923 	sd_initpkt_for_buf,		/* Index: 0 */
1924 	sd_initpkt_for_buf,		/* Index: 1 */
1925 	sd_initpkt_for_buf,		/* Index: 2 */
1926 
1927 	/* Chain for buf IO for disk drive targets (PM disabled) */
1928 	sd_initpkt_for_buf,		/* Index: 3 */
1929 	sd_initpkt_for_buf,		/* Index: 4 */
1930 
1931 	/* Chain for buf IO for removable-media targets (PM enabled) */
1932 	sd_initpkt_for_buf,		/* Index: 5 */
1933 	sd_initpkt_for_buf,		/* Index: 6 */
1934 	sd_initpkt_for_buf,		/* Index: 7 */
1935 	sd_initpkt_for_buf,		/* Index: 8 */
1936 
1937 	/* Chain for buf IO for removable-media targets (PM disabled) */
1938 	sd_initpkt_for_buf,		/* Index: 9 */
1939 	sd_initpkt_for_buf,		/* Index: 10 */
1940 	sd_initpkt_for_buf,		/* Index: 11 */
1941 
1942 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1943 	sd_initpkt_for_buf,		/* Index: 12 */
1944 	sd_initpkt_for_buf,		/* Index: 13 */
1945 	sd_initpkt_for_buf,		/* Index: 14 */
1946 	sd_initpkt_for_buf,		/* Index: 15 */
1947 
1948 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1949 	sd_initpkt_for_buf,		/* Index: 16 */
1950 	sd_initpkt_for_buf,		/* Index: 17 */
1951 	sd_initpkt_for_buf,		/* Index: 18 */
1952 
1953 	/* Chain for USCSI commands (non-checksum targets) */
1954 	sd_initpkt_for_uscsi,		/* Index: 19 */
1955 	sd_initpkt_for_uscsi,		/* Index: 20 */
1956 
1957 	/* Chain for USCSI commands (checksum targets) */
1958 	sd_initpkt_for_uscsi,		/* Index: 21 */
1959 	sd_initpkt_for_uscsi,		/* Index: 22 */
1960 	sd_initpkt_for_uscsi,		/* Index: 22 */
1961 
1962 	/* Chain for "direct" USCSI commands (all targets) */
1963 	sd_initpkt_for_uscsi,		/* Index: 24 */
1964 
1965 	/* Chain for "direct priority" USCSI commands (all targets) */
1966 	sd_initpkt_for_uscsi,		/* Index: 25 */
1967 
1968 };
1969 
1970 
1971 /*
1972  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1973  * The redundant entries are present so that the index used for accessing
1974  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1975  * with this table as well.
1976  */
1977 typedef void (*sd_destroypkt_t)(struct buf *);
1978 
1979 static sd_destroypkt_t	sd_destroypkt_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	sd_destroypkt_for_buf,		/* Index: 0 */
1983 	sd_destroypkt_for_buf,		/* Index: 1 */
1984 	sd_destroypkt_for_buf,		/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	sd_destroypkt_for_buf,		/* Index: 3 */
1988 	sd_destroypkt_for_buf,		/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	sd_destroypkt_for_buf,		/* Index: 5 */
1992 	sd_destroypkt_for_buf,		/* Index: 6 */
1993 	sd_destroypkt_for_buf,		/* Index: 7 */
1994 	sd_destroypkt_for_buf,		/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	sd_destroypkt_for_buf,		/* Index: 9 */
1998 	sd_destroypkt_for_buf,		/* Index: 10 */
1999 	sd_destroypkt_for_buf,		/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	sd_destroypkt_for_buf,		/* Index: 12 */
2003 	sd_destroypkt_for_buf,		/* Index: 13 */
2004 	sd_destroypkt_for_buf,		/* Index: 14 */
2005 	sd_destroypkt_for_buf,		/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	sd_destroypkt_for_buf,		/* Index: 16 */
2009 	sd_destroypkt_for_buf,		/* Index: 17 */
2010 	sd_destroypkt_for_buf,		/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2014 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2018 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2019 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2026 
2027 };
2028 
2029 
2030 
2031 /*
2032  * Array to map a layering chain index to the appropriate chain "type".
2033  * The chain type indicates a specific property/usage of the chain.
2034  * The redundant entries are present so that the index used for accessing
2035  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2036  * with this table as well.
2037  */
2038 
2039 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2040 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2041 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2042 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2043 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2044 						/* (for error recovery) */
2045 
2046 static int sd_chain_type_map[] = {
2047 
2048 	/* Chain for buf IO for disk drive targets (PM enabled) */
2049 	SD_CHAIN_BUFIO,			/* Index: 0 */
2050 	SD_CHAIN_BUFIO,			/* Index: 1 */
2051 	SD_CHAIN_BUFIO,			/* Index: 2 */
2052 
2053 	/* Chain for buf IO for disk drive targets (PM disabled) */
2054 	SD_CHAIN_BUFIO,			/* Index: 3 */
2055 	SD_CHAIN_BUFIO,			/* Index: 4 */
2056 
2057 	/* Chain for buf IO for removable-media targets (PM enabled) */
2058 	SD_CHAIN_BUFIO,			/* Index: 5 */
2059 	SD_CHAIN_BUFIO,			/* Index: 6 */
2060 	SD_CHAIN_BUFIO,			/* Index: 7 */
2061 	SD_CHAIN_BUFIO,			/* Index: 8 */
2062 
2063 	/* Chain for buf IO for removable-media targets (PM disabled) */
2064 	SD_CHAIN_BUFIO,			/* Index: 9 */
2065 	SD_CHAIN_BUFIO,			/* Index: 10 */
2066 	SD_CHAIN_BUFIO,			/* Index: 11 */
2067 
2068 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2069 	SD_CHAIN_BUFIO,			/* Index: 12 */
2070 	SD_CHAIN_BUFIO,			/* Index: 13 */
2071 	SD_CHAIN_BUFIO,			/* Index: 14 */
2072 	SD_CHAIN_BUFIO,			/* Index: 15 */
2073 
2074 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2075 	SD_CHAIN_BUFIO,			/* Index: 16 */
2076 	SD_CHAIN_BUFIO,			/* Index: 17 */
2077 	SD_CHAIN_BUFIO,			/* Index: 18 */
2078 
2079 	/* Chain for USCSI commands (non-checksum targets) */
2080 	SD_CHAIN_USCSI,			/* Index: 19 */
2081 	SD_CHAIN_USCSI,			/* Index: 20 */
2082 
2083 	/* Chain for USCSI commands (checksum targets) */
2084 	SD_CHAIN_USCSI,			/* Index: 21 */
2085 	SD_CHAIN_USCSI,			/* Index: 22 */
2086 	SD_CHAIN_USCSI,			/* Index: 22 */
2087 
2088 	/* Chain for "direct" USCSI commands (all targets) */
2089 	SD_CHAIN_DIRECT,		/* Index: 24 */
2090 
2091 	/* Chain for "direct priority" USCSI commands (all targets) */
2092 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2093 };
2094 
2095 
2096 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2097 #define	SD_IS_BUFIO(xp)			\
2098 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2099 
2100 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2101 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2102 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2103 
2104 
2105 
2106 /*
2107  * Struct, array, and macros to map a specific chain to the appropriate
2108  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2109  *
2110  * The sd_chain_index_map[] array is used at attach time to set the various
2111  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2112  * chain to be used with the instance. This allows different instances to use
2113  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2114  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2115  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2116  * dynamically & without the use of locking; and (2) a layer may update the
2117  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2118  * to allow for deferred processing of an IO within the same chain from a
2119  * different execution context.
2120  */
2121 
2122 struct sd_chain_index {
2123 	int	sci_iostart_index;
2124 	int	sci_iodone_index;
2125 };
2126 
2127 static struct sd_chain_index	sd_chain_index_map[] = {
2128 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2129 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2130 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2131 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2132 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2133 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2134 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2135 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2136 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2137 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2138 };
2139 
2140 
2141 /*
2142  * The following are indexes into the sd_chain_index_map[] array.
2143  */
2144 
2145 /* un->un_buf_chain_type must be set to one of these */
2146 #define	SD_CHAIN_INFO_DISK		0
2147 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2148 #define	SD_CHAIN_INFO_RMMEDIA		2
2149 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2150 #define	SD_CHAIN_INFO_CHKSUM		4
2151 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2152 
2153 /* un->un_uscsi_chain_type must be set to one of these */
2154 #define	SD_CHAIN_INFO_USCSI_CMD		6
2155 /* USCSI with PM disabled is the same as DIRECT */
2156 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2157 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2158 
2159 /* un->un_direct_chain_type must be set to one of these */
2160 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2161 
2162 /* un->un_priority_chain_type must be set to one of these */
2163 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2164 
2165 /* size for devid inquiries */
2166 #define	MAX_INQUIRY_SIZE		0xF0
2167 
2168 /*
2169  * Macros used by functions to pass a given buf(9S) struct along to the
2170  * next function in the layering chain for further processing.
2171  *
2172  * In the following macros, passing more than three arguments to the called
2173  * routines causes the optimizer for the SPARC compiler to stop doing tail
2174  * call elimination which results in significant performance degradation.
2175  */
2176 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2177 	((*(sd_iostart_chain[index]))(index, un, bp))
2178 
2179 #define	SD_BEGIN_IODONE(index, un, bp)	\
2180 	((*(sd_iodone_chain[index]))(index, un, bp))
2181 
2182 #define	SD_NEXT_IOSTART(index, un, bp)				\
2183 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2184 
2185 #define	SD_NEXT_IODONE(index, un, bp)				\
2186 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2187 
2188 /*
2189  *    Function: _init
2190  *
2191  * Description: This is the driver _init(9E) entry point.
2192  *
2193  * Return Code: Returns the value from mod_install(9F) or
2194  *		ddi_soft_state_init(9F) as appropriate.
2195  *
2196  *     Context: Called when driver module loaded.
2197  */
2198 
2199 int
2200 _init(void)
2201 {
2202 	int	err;
2203 
2204 	/* establish driver name from module name */
2205 	sd_label = (char *)mod_modname(&modlinkage);
2206 
2207 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2208 	    SD_MAXUNIT);
2209 
2210 	if (err != 0) {
2211 		return (err);
2212 	}
2213 
2214 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2217 
2218 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2219 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2220 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2221 
2222 	/*
2223 	 * it's ok to init here even for fibre device
2224 	 */
2225 	sd_scsi_probe_cache_init();
2226 
2227 	sd_scsi_target_lun_init();
2228 
2229 	/*
2230 	 * Creating taskq before mod_install ensures that all callers (threads)
2231 	 * that enter the module after a successful mod_install encounter
2232 	 * a valid taskq.
2233 	 */
2234 	sd_taskq_create();
2235 
2236 	err = mod_install(&modlinkage);
2237 	if (err != 0) {
2238 		/* delete taskq if install fails */
2239 		sd_taskq_delete();
2240 
2241 		mutex_destroy(&sd_detach_mutex);
2242 		mutex_destroy(&sd_log_mutex);
2243 		mutex_destroy(&sd_label_mutex);
2244 
2245 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2246 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2247 		cv_destroy(&sd_tr.srq_inprocess_cv);
2248 
2249 		sd_scsi_probe_cache_fini();
2250 
2251 		sd_scsi_target_lun_fini();
2252 
2253 		ddi_soft_state_fini(&sd_state);
2254 		return (err);
2255 	}
2256 
2257 	return (err);
2258 }
2259 
2260 
2261 /*
2262  *    Function: _fini
2263  *
2264  * Description: This is the driver _fini(9E) entry point.
2265  *
2266  * Return Code: Returns the value from mod_remove(9F)
2267  *
2268  *     Context: Called when driver module is unloaded.
2269  */
2270 
2271 int
2272 _fini(void)
2273 {
2274 	int err;
2275 
2276 	if ((err = mod_remove(&modlinkage)) != 0) {
2277 		return (err);
2278 	}
2279 
2280 	sd_taskq_delete();
2281 
2282 	mutex_destroy(&sd_detach_mutex);
2283 	mutex_destroy(&sd_log_mutex);
2284 	mutex_destroy(&sd_label_mutex);
2285 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2286 
2287 	sd_scsi_probe_cache_fini();
2288 
2289 	sd_scsi_target_lun_fini();
2290 
2291 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2292 	cv_destroy(&sd_tr.srq_inprocess_cv);
2293 
2294 	ddi_soft_state_fini(&sd_state);
2295 
2296 	return (err);
2297 }
2298 
2299 
2300 /*
2301  *    Function: _info
2302  *
2303  * Description: This is the driver _info(9E) entry point.
2304  *
2305  *   Arguments: modinfop - pointer to the driver modinfo structure
2306  *
2307  * Return Code: Returns the value from mod_info(9F).
2308  *
2309  *     Context: Kernel thread context
2310  */
2311 
2312 int
2313 _info(struct modinfo *modinfop)
2314 {
2315 	return (mod_info(&modlinkage, modinfop));
2316 }
2317 
2318 
2319 /*
2320  * The following routines implement the driver message logging facility.
2321  * They provide component- and level- based debug output filtering.
2322  * Output may also be restricted to messages for a single instance by
2323  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2324  * to NULL, then messages for all instances are printed.
2325  *
2326  * These routines have been cloned from each other due to the language
2327  * constraints of macros and variable argument list processing.
2328  */
2329 
2330 
2331 /*
2332  *    Function: sd_log_err
2333  *
2334  * Description: This routine is called by the SD_ERROR macro for debug
2335  *		logging of error conditions.
2336  *
2337  *   Arguments: comp - driver component being logged
2338  *		dev  - pointer to driver info structure
2339  *		fmt  - error string and format to be logged
2340  */
2341 
2342 static void
2343 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2344 {
2345 	va_list		ap;
2346 	dev_info_t	*dev;
2347 
2348 	ASSERT(un != NULL);
2349 	dev = SD_DEVINFO(un);
2350 	ASSERT(dev != NULL);
2351 
2352 	/*
2353 	 * Filter messages based on the global component and level masks.
2354 	 * Also print if un matches the value of sd_debug_un, or if
2355 	 * sd_debug_un is set to NULL.
2356 	 */
2357 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2358 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2359 		mutex_enter(&sd_log_mutex);
2360 		va_start(ap, fmt);
2361 		(void) vsprintf(sd_log_buf, fmt, ap);
2362 		va_end(ap);
2363 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2364 		mutex_exit(&sd_log_mutex);
2365 	}
2366 #ifdef SD_FAULT_INJECTION
2367 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2368 	if (un->sd_injection_mask & comp) {
2369 		mutex_enter(&sd_log_mutex);
2370 		va_start(ap, fmt);
2371 		(void) vsprintf(sd_log_buf, fmt, ap);
2372 		va_end(ap);
2373 		sd_injection_log(sd_log_buf, un);
2374 		mutex_exit(&sd_log_mutex);
2375 	}
2376 #endif
2377 }
2378 
2379 
2380 /*
2381  *    Function: sd_log_info
2382  *
2383  * Description: This routine is called by the SD_INFO macro for debug
2384  *		logging of general purpose informational conditions.
2385  *
2386  *   Arguments: comp - driver component being logged
2387  *		dev  - pointer to driver info structure
2388  *		fmt  - info string and format to be logged
2389  */
2390 
2391 static void
2392 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2393 {
2394 	va_list		ap;
2395 	dev_info_t	*dev;
2396 
2397 	ASSERT(un != NULL);
2398 	dev = SD_DEVINFO(un);
2399 	ASSERT(dev != NULL);
2400 
2401 	/*
2402 	 * Filter messages based on the global component and level masks.
2403 	 * Also print if un matches the value of sd_debug_un, or if
2404 	 * sd_debug_un is set to NULL.
2405 	 */
2406 	if ((sd_component_mask & component) &&
2407 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2408 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2409 		mutex_enter(&sd_log_mutex);
2410 		va_start(ap, fmt);
2411 		(void) vsprintf(sd_log_buf, fmt, ap);
2412 		va_end(ap);
2413 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2414 		mutex_exit(&sd_log_mutex);
2415 	}
2416 #ifdef SD_FAULT_INJECTION
2417 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2418 	if (un->sd_injection_mask & component) {
2419 		mutex_enter(&sd_log_mutex);
2420 		va_start(ap, fmt);
2421 		(void) vsprintf(sd_log_buf, fmt, ap);
2422 		va_end(ap);
2423 		sd_injection_log(sd_log_buf, un);
2424 		mutex_exit(&sd_log_mutex);
2425 	}
2426 #endif
2427 }
2428 
2429 
2430 /*
2431  *    Function: sd_log_trace
2432  *
2433  * Description: This routine is called by the SD_TRACE macro for debug
2434  *		logging of trace conditions (i.e. function entry/exit).
2435  *
2436  *   Arguments: comp - driver component being logged
2437  *		dev  - pointer to driver info structure
2438  *		fmt  - trace string and format to be logged
2439  */
2440 
2441 static void
2442 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2443 {
2444 	va_list		ap;
2445 	dev_info_t	*dev;
2446 
2447 	ASSERT(un != NULL);
2448 	dev = SD_DEVINFO(un);
2449 	ASSERT(dev != NULL);
2450 
2451 	/*
2452 	 * Filter messages based on the global component and level masks.
2453 	 * Also print if un matches the value of sd_debug_un, or if
2454 	 * sd_debug_un is set to NULL.
2455 	 */
2456 	if ((sd_component_mask & component) &&
2457 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2458 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2459 		mutex_enter(&sd_log_mutex);
2460 		va_start(ap, fmt);
2461 		(void) vsprintf(sd_log_buf, fmt, ap);
2462 		va_end(ap);
2463 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2464 		mutex_exit(&sd_log_mutex);
2465 	}
2466 #ifdef SD_FAULT_INJECTION
2467 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2468 	if (un->sd_injection_mask & component) {
2469 		mutex_enter(&sd_log_mutex);
2470 		va_start(ap, fmt);
2471 		(void) vsprintf(sd_log_buf, fmt, ap);
2472 		va_end(ap);
2473 		sd_injection_log(sd_log_buf, un);
2474 		mutex_exit(&sd_log_mutex);
2475 	}
2476 #endif
2477 }
2478 
2479 
2480 /*
2481  *    Function: sdprobe
2482  *
2483  * Description: This is the driver probe(9e) entry point function.
2484  *
2485  *   Arguments: devi - opaque device info handle
2486  *
2487  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2488  *              DDI_PROBE_FAILURE: If the probe failed.
2489  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2490  *				   but may be present in the future.
2491  */
2492 
2493 static int
2494 sdprobe(dev_info_t *devi)
2495 {
2496 	struct scsi_device	*devp;
2497 	int			rval;
2498 	int			instance;
2499 
2500 	/*
2501 	 * if it wasn't for pln, sdprobe could actually be nulldev
2502 	 * in the "__fibre" case.
2503 	 */
2504 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2505 		return (DDI_PROBE_DONTCARE);
2506 	}
2507 
2508 	devp = ddi_get_driver_private(devi);
2509 
2510 	if (devp == NULL) {
2511 		/* Ooops... nexus driver is mis-configured... */
2512 		return (DDI_PROBE_FAILURE);
2513 	}
2514 
2515 	instance = ddi_get_instance(devi);
2516 
2517 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2518 		return (DDI_PROBE_PARTIAL);
2519 	}
2520 
2521 	/*
2522 	 * Call the SCSA utility probe routine to see if we actually
2523 	 * have a target at this SCSI nexus.
2524 	 */
2525 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2526 	case SCSIPROBE_EXISTS:
2527 		switch (devp->sd_inq->inq_dtype) {
2528 		case DTYPE_DIRECT:
2529 			rval = DDI_PROBE_SUCCESS;
2530 			break;
2531 		case DTYPE_RODIRECT:
2532 			/* CDs etc. Can be removable media */
2533 			rval = DDI_PROBE_SUCCESS;
2534 			break;
2535 		case DTYPE_OPTICAL:
2536 			/*
2537 			 * Rewritable optical driver HP115AA
2538 			 * Can also be removable media
2539 			 */
2540 
2541 			/*
2542 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2543 			 * pre solaris 9 sparc sd behavior is required
2544 			 *
2545 			 * If first time through and sd_dtype_optical_bind
2546 			 * has not been set in /etc/system check properties
2547 			 */
2548 
2549 			if (sd_dtype_optical_bind  < 0) {
2550 				sd_dtype_optical_bind = ddi_prop_get_int
2551 				    (DDI_DEV_T_ANY, devi, 0,
2552 				    "optical-device-bind", 1);
2553 			}
2554 
2555 			if (sd_dtype_optical_bind == 0) {
2556 				rval = DDI_PROBE_FAILURE;
2557 			} else {
2558 				rval = DDI_PROBE_SUCCESS;
2559 			}
2560 			break;
2561 
2562 		case DTYPE_NOTPRESENT:
2563 		default:
2564 			rval = DDI_PROBE_FAILURE;
2565 			break;
2566 		}
2567 		break;
2568 	default:
2569 		rval = DDI_PROBE_PARTIAL;
2570 		break;
2571 	}
2572 
2573 	/*
2574 	 * This routine checks for resource allocation prior to freeing,
2575 	 * so it will take care of the "smart probing" case where a
2576 	 * scsi_probe() may or may not have been issued and will *not*
2577 	 * free previously-freed resources.
2578 	 */
2579 	scsi_unprobe(devp);
2580 	return (rval);
2581 }
2582 
2583 
2584 /*
2585  *    Function: sdinfo
2586  *
2587  * Description: This is the driver getinfo(9e) entry point function.
2588  * 		Given the device number, return the devinfo pointer from
2589  *		the scsi_device structure or the instance number
2590  *		associated with the dev_t.
2591  *
2592  *   Arguments: dip     - pointer to device info structure
2593  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2594  *			  DDI_INFO_DEVT2INSTANCE)
2595  *		arg     - driver dev_t
2596  *		resultp - user buffer for request response
2597  *
2598  * Return Code: DDI_SUCCESS
2599  *              DDI_FAILURE
2600  */
2601 /* ARGSUSED */
2602 static int
2603 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2604 {
2605 	struct sd_lun	*un;
2606 	dev_t		dev;
2607 	int		instance;
2608 	int		error;
2609 
2610 	switch (infocmd) {
2611 	case DDI_INFO_DEVT2DEVINFO:
2612 		dev = (dev_t)arg;
2613 		instance = SDUNIT(dev);
2614 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2615 			return (DDI_FAILURE);
2616 		}
2617 		*result = (void *) SD_DEVINFO(un);
2618 		error = DDI_SUCCESS;
2619 		break;
2620 	case DDI_INFO_DEVT2INSTANCE:
2621 		dev = (dev_t)arg;
2622 		instance = SDUNIT(dev);
2623 		*result = (void *)(uintptr_t)instance;
2624 		error = DDI_SUCCESS;
2625 		break;
2626 	default:
2627 		error = DDI_FAILURE;
2628 	}
2629 	return (error);
2630 }
2631 
2632 /*
2633  *    Function: sd_prop_op
2634  *
2635  * Description: This is the driver prop_op(9e) entry point function.
2636  *		Return the number of blocks for the partition in question
2637  *		or forward the request to the property facilities.
2638  *
2639  *   Arguments: dev       - device number
2640  *		dip       - pointer to device info structure
2641  *		prop_op   - property operator
2642  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2643  *		name      - pointer to property name
2644  *		valuep    - pointer or address of the user buffer
2645  *		lengthp   - property length
2646  *
2647  * Return Code: DDI_PROP_SUCCESS
2648  *              DDI_PROP_NOT_FOUND
2649  *              DDI_PROP_UNDEFINED
2650  *              DDI_PROP_NO_MEMORY
2651  *              DDI_PROP_BUF_TOO_SMALL
2652  */
2653 
2654 static int
2655 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2656 	char *name, caddr_t valuep, int *lengthp)
2657 {
2658 	struct sd_lun	*un;
2659 
2660 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2661 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2662 		    name, valuep, lengthp));
2663 
2664 	return (cmlb_prop_op(un->un_cmlbhandle,
2665 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2666 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2667 }
2668 
2669 /*
2670  * The following functions are for smart probing:
2671  * sd_scsi_probe_cache_init()
2672  * sd_scsi_probe_cache_fini()
2673  * sd_scsi_clear_probe_cache()
2674  * sd_scsi_probe_with_cache()
2675  */
2676 
2677 /*
2678  *    Function: sd_scsi_probe_cache_init
2679  *
2680  * Description: Initializes the probe response cache mutex and head pointer.
2681  *
2682  *     Context: Kernel thread context
2683  */
2684 
2685 static void
2686 sd_scsi_probe_cache_init(void)
2687 {
2688 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2689 	sd_scsi_probe_cache_head = NULL;
2690 }
2691 
2692 
2693 /*
2694  *    Function: sd_scsi_probe_cache_fini
2695  *
2696  * Description: Frees all resources associated with the probe response cache.
2697  *
2698  *     Context: Kernel thread context
2699  */
2700 
2701 static void
2702 sd_scsi_probe_cache_fini(void)
2703 {
2704 	struct sd_scsi_probe_cache *cp;
2705 	struct sd_scsi_probe_cache *ncp;
2706 
2707 	/* Clean up our smart probing linked list */
2708 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2709 		ncp = cp->next;
2710 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2711 	}
2712 	sd_scsi_probe_cache_head = NULL;
2713 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2714 }
2715 
2716 
2717 /*
2718  *    Function: sd_scsi_clear_probe_cache
2719  *
2720  * Description: This routine clears the probe response cache. This is
2721  *		done when open() returns ENXIO so that when deferred
2722  *		attach is attempted (possibly after a device has been
2723  *		turned on) we will retry the probe. Since we don't know
2724  *		which target we failed to open, we just clear the
2725  *		entire cache.
2726  *
2727  *     Context: Kernel thread context
2728  */
2729 
2730 static void
2731 sd_scsi_clear_probe_cache(void)
2732 {
2733 	struct sd_scsi_probe_cache	*cp;
2734 	int				i;
2735 
2736 	mutex_enter(&sd_scsi_probe_cache_mutex);
2737 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2738 		/*
2739 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2740 		 * force probing to be performed the next time
2741 		 * sd_scsi_probe_with_cache is called.
2742 		 */
2743 		for (i = 0; i < NTARGETS_WIDE; i++) {
2744 			cp->cache[i] = SCSIPROBE_EXISTS;
2745 		}
2746 	}
2747 	mutex_exit(&sd_scsi_probe_cache_mutex);
2748 }
2749 
2750 
2751 /*
2752  *    Function: sd_scsi_probe_with_cache
2753  *
2754  * Description: This routine implements support for a scsi device probe
2755  *		with cache. The driver maintains a cache of the target
2756  *		responses to scsi probes. If we get no response from a
2757  *		target during a probe inquiry, we remember that, and we
2758  *		avoid additional calls to scsi_probe on non-zero LUNs
2759  *		on the same target until the cache is cleared. By doing
2760  *		so we avoid the 1/4 sec selection timeout for nonzero
2761  *		LUNs. lun0 of a target is always probed.
2762  *
2763  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2764  *              waitfunc - indicates what the allocator routines should
2765  *			   do when resources are not available. This value
2766  *			   is passed on to scsi_probe() when that routine
2767  *			   is called.
2768  *
2769  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2770  *		otherwise the value returned by scsi_probe(9F).
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2777 {
2778 	struct sd_scsi_probe_cache	*cp;
2779 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2780 	int		lun, tgt;
2781 
2782 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2783 	    SCSI_ADDR_PROP_LUN, 0);
2784 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2785 	    SCSI_ADDR_PROP_TARGET, -1);
2786 
2787 	/* Make sure caching enabled and target in range */
2788 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2789 		/* do it the old way (no cache) */
2790 		return (scsi_probe(devp, waitfn));
2791 	}
2792 
2793 	mutex_enter(&sd_scsi_probe_cache_mutex);
2794 
2795 	/* Find the cache for this scsi bus instance */
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		if (cp->pdip == pdip) {
2798 			break;
2799 		}
2800 	}
2801 
2802 	/* If we can't find a cache for this pdip, create one */
2803 	if (cp == NULL) {
2804 		int i;
2805 
2806 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2807 		    KM_SLEEP);
2808 		cp->pdip = pdip;
2809 		cp->next = sd_scsi_probe_cache_head;
2810 		sd_scsi_probe_cache_head = cp;
2811 		for (i = 0; i < NTARGETS_WIDE; i++) {
2812 			cp->cache[i] = SCSIPROBE_EXISTS;
2813 		}
2814 	}
2815 
2816 	mutex_exit(&sd_scsi_probe_cache_mutex);
2817 
2818 	/* Recompute the cache for this target if LUN zero */
2819 	if (lun == 0) {
2820 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2821 	}
2822 
2823 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2824 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2825 		return (SCSIPROBE_NORESP);
2826 	}
2827 
2828 	/* Do the actual probe; save & return the result */
2829 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2830 }
2831 
2832 
2833 /*
2834  *    Function: sd_scsi_target_lun_init
2835  *
2836  * Description: Initializes the attached lun chain mutex and head pointer.
2837  *
2838  *     Context: Kernel thread context
2839  */
2840 
2841 static void
2842 sd_scsi_target_lun_init(void)
2843 {
2844 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2845 	sd_scsi_target_lun_head = NULL;
2846 }
2847 
2848 
2849 /*
2850  *    Function: sd_scsi_target_lun_fini
2851  *
2852  * Description: Frees all resources associated with the attached lun
2853  *              chain
2854  *
2855  *     Context: Kernel thread context
2856  */
2857 
2858 static void
2859 sd_scsi_target_lun_fini(void)
2860 {
2861 	struct sd_scsi_hba_tgt_lun	*cp;
2862 	struct sd_scsi_hba_tgt_lun	*ncp;
2863 
2864 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2865 		ncp = cp->next;
2866 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2867 	}
2868 	sd_scsi_target_lun_head = NULL;
2869 	mutex_destroy(&sd_scsi_target_lun_mutex);
2870 }
2871 
2872 
2873 /*
2874  *    Function: sd_scsi_get_target_lun_count
2875  *
2876  * Description: This routine will check in the attached lun chain to see
2877  * 		how many luns are attached on the required SCSI controller
2878  * 		and target. Currently, some capabilities like tagged queue
2879  *		are supported per target based by HBA. So all luns in a
2880  *		target have the same capabilities. Based on this assumption,
2881  * 		sd should only set these capabilities once per target. This
2882  *		function is called when sd needs to decide how many luns
2883  *		already attached on a target.
2884  *
2885  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2886  *			  controller device.
2887  *              target	- The target ID on the controller's SCSI bus.
2888  *
2889  * Return Code: The number of luns attached on the required target and
2890  *		controller.
2891  *		-1 if target ID is not in parallel SCSI scope or the given
2892  * 		dip is not in the chain.
2893  *
2894  *     Context: Kernel thread context
2895  */
2896 
2897 static int
2898 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2899 {
2900 	struct sd_scsi_hba_tgt_lun	*cp;
2901 
2902 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2903 		return (-1);
2904 	}
2905 
2906 	mutex_enter(&sd_scsi_target_lun_mutex);
2907 
2908 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2909 		if (cp->pdip == dip) {
2910 			break;
2911 		}
2912 	}
2913 
2914 	mutex_exit(&sd_scsi_target_lun_mutex);
2915 
2916 	if (cp == NULL) {
2917 		return (-1);
2918 	}
2919 
2920 	return (cp->nlun[target]);
2921 }
2922 
2923 
2924 /*
2925  *    Function: sd_scsi_update_lun_on_target
2926  *
2927  * Description: This routine is used to update the attached lun chain when a
2928  *		lun is attached or detached on a target.
2929  *
2930  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2931  *                        controller device.
2932  *              target  - The target ID on the controller's SCSI bus.
2933  *		flag	- Indicate the lun is attached or detached.
2934  *
2935  *     Context: Kernel thread context
2936  */
2937 
2938 static void
2939 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2940 {
2941 	struct sd_scsi_hba_tgt_lun	*cp;
2942 
2943 	mutex_enter(&sd_scsi_target_lun_mutex);
2944 
2945 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2946 		if (cp->pdip == dip) {
2947 			break;
2948 		}
2949 	}
2950 
2951 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2952 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2953 		    KM_SLEEP);
2954 		cp->pdip = dip;
2955 		cp->next = sd_scsi_target_lun_head;
2956 		sd_scsi_target_lun_head = cp;
2957 	}
2958 
2959 	mutex_exit(&sd_scsi_target_lun_mutex);
2960 
2961 	if (cp != NULL) {
2962 		if (flag == SD_SCSI_LUN_ATTACH) {
2963 			cp->nlun[target] ++;
2964 		} else {
2965 			cp->nlun[target] --;
2966 		}
2967 	}
2968 }
2969 
2970 
2971 /*
2972  *    Function: sd_spin_up_unit
2973  *
2974  * Description: Issues the following commands to spin-up the device:
2975  *		START STOP UNIT, and INQUIRY.
2976  *
2977  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
2978  *                      structure for this target.
2979  *
2980  * Return Code: 0 - success
2981  *		EIO - failure
2982  *		EACCES - reservation conflict
2983  *
2984  *     Context: Kernel thread context
2985  */
2986 
2987 static int
2988 sd_spin_up_unit(sd_ssc_t *ssc)
2989 {
2990 	size_t	resid		= 0;
2991 	int	has_conflict	= FALSE;
2992 	uchar_t *bufaddr;
2993 	int 	status;
2994 	struct sd_lun	*un;
2995 
2996 	ASSERT(ssc != NULL);
2997 	un = ssc->ssc_un;
2998 	ASSERT(un != NULL);
2999 
3000 	/*
3001 	 * Send a throwaway START UNIT command.
3002 	 *
3003 	 * If we fail on this, we don't care presently what precisely
3004 	 * is wrong.  EMC's arrays will also fail this with a check
3005 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3006 	 * we don't want to fail the attach because it may become
3007 	 * "active" later.
3008 	 */
3009 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3010 	    SD_PATH_DIRECT);
3011 
3012 	if (status != 0) {
3013 		if (status == EACCES)
3014 			has_conflict = TRUE;
3015 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3016 	}
3017 
3018 	/*
3019 	 * Send another INQUIRY command to the target. This is necessary for
3020 	 * non-removable media direct access devices because their INQUIRY data
3021 	 * may not be fully qualified until they are spun up (perhaps via the
3022 	 * START command above).  Note: This seems to be needed for some
3023 	 * legacy devices only.) The INQUIRY command should succeed even if a
3024 	 * Reservation Conflict is present.
3025 	 */
3026 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3027 
3028 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3029 	    != 0) {
3030 		kmem_free(bufaddr, SUN_INQSIZE);
3031 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3032 		return (EIO);
3033 	}
3034 
3035 	/*
3036 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3037 	 * Note that this routine does not return a failure here even if the
3038 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3039 	 */
3040 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3041 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3042 	}
3043 
3044 	kmem_free(bufaddr, SUN_INQSIZE);
3045 
3046 	/* If we hit a reservation conflict above, tell the caller. */
3047 	if (has_conflict == TRUE) {
3048 		return (EACCES);
3049 	}
3050 
3051 	return (0);
3052 }
3053 
3054 #ifdef _LP64
3055 /*
3056  *    Function: sd_enable_descr_sense
3057  *
3058  * Description: This routine attempts to select descriptor sense format
3059  *		using the Control mode page.  Devices that support 64 bit
3060  *		LBAs (for >2TB luns) should also implement descriptor
3061  *		sense data so we will call this function whenever we see
3062  *		a lun larger than 2TB.  If for some reason the device
3063  *		supports 64 bit LBAs but doesn't support descriptor sense
3064  *		presumably the mode select will fail.  Everything will
3065  *		continue to work normally except that we will not get
3066  *		complete sense data for commands that fail with an LBA
3067  *		larger than 32 bits.
3068  *
3069  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3070  *                      structure for this target.
3071  *
3072  *     Context: Kernel thread context only
3073  */
3074 
3075 static void
3076 sd_enable_descr_sense(sd_ssc_t *ssc)
3077 {
3078 	uchar_t			*header;
3079 	struct mode_control_scsi3 *ctrl_bufp;
3080 	size_t			buflen;
3081 	size_t			bd_len;
3082 	int			status;
3083 	struct sd_lun		*un;
3084 
3085 	ASSERT(ssc != NULL);
3086 	un = ssc->ssc_un;
3087 	ASSERT(un != NULL);
3088 
3089 	/*
3090 	 * Read MODE SENSE page 0xA, Control Mode Page
3091 	 */
3092 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3093 	    sizeof (struct mode_control_scsi3);
3094 	header = kmem_zalloc(buflen, KM_SLEEP);
3095 
3096 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3097 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3098 
3099 	if (status != 0) {
3100 		SD_ERROR(SD_LOG_COMMON, un,
3101 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3102 		goto eds_exit;
3103 	}
3104 
3105 	/*
3106 	 * Determine size of Block Descriptors in order to locate
3107 	 * the mode page data. ATAPI devices return 0, SCSI devices
3108 	 * should return MODE_BLK_DESC_LENGTH.
3109 	 */
3110 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3111 
3112 	/* Clear the mode data length field for MODE SELECT */
3113 	((struct mode_header *)header)->length = 0;
3114 
3115 	ctrl_bufp = (struct mode_control_scsi3 *)
3116 	    (header + MODE_HEADER_LENGTH + bd_len);
3117 
3118 	/*
3119 	 * If the page length is smaller than the expected value,
3120 	 * the target device doesn't support D_SENSE. Bail out here.
3121 	 */
3122 	if (ctrl_bufp->mode_page.length <
3123 	    sizeof (struct mode_control_scsi3) - 2) {
3124 		SD_ERROR(SD_LOG_COMMON, un,
3125 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3126 		goto eds_exit;
3127 	}
3128 
3129 	/*
3130 	 * Clear PS bit for MODE SELECT
3131 	 */
3132 	ctrl_bufp->mode_page.ps = 0;
3133 
3134 	/*
3135 	 * Set D_SENSE to enable descriptor sense format.
3136 	 */
3137 	ctrl_bufp->d_sense = 1;
3138 
3139 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3140 
3141 	/*
3142 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3143 	 */
3144 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3145 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3146 
3147 	if (status != 0) {
3148 		SD_INFO(SD_LOG_COMMON, un,
3149 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3150 	} else {
3151 		kmem_free(header, buflen);
3152 		return;
3153 	}
3154 
3155 eds_exit:
3156 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3157 	kmem_free(header, buflen);
3158 }
3159 
3160 /*
3161  *    Function: sd_reenable_dsense_task
3162  *
3163  * Description: Re-enable descriptor sense after device or bus reset
3164  *
3165  *     Context: Executes in a taskq() thread context
3166  */
3167 static void
3168 sd_reenable_dsense_task(void *arg)
3169 {
3170 	struct	sd_lun	*un = arg;
3171 	sd_ssc_t	*ssc;
3172 
3173 	ASSERT(un != NULL);
3174 
3175 	ssc = sd_ssc_init(un);
3176 	sd_enable_descr_sense(ssc);
3177 	sd_ssc_fini(ssc);
3178 }
3179 #endif /* _LP64 */
3180 
3181 /*
3182  *    Function: sd_set_mmc_caps
3183  *
3184  * Description: This routine determines if the device is MMC compliant and if
3185  *		the device supports CDDA via a mode sense of the CDVD
3186  *		capabilities mode page. Also checks if the device is a
3187  *		dvdram writable device.
3188  *
3189  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3190  *                      structure for this target.
3191  *
3192  *     Context: Kernel thread context only
3193  */
3194 
3195 static void
3196 sd_set_mmc_caps(sd_ssc_t *ssc)
3197 {
3198 	struct mode_header_grp2		*sense_mhp;
3199 	uchar_t				*sense_page;
3200 	caddr_t				buf;
3201 	int				bd_len;
3202 	int				status;
3203 	struct uscsi_cmd		com;
3204 	int				rtn;
3205 	uchar_t				*out_data_rw, *out_data_hd;
3206 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3207 	struct sd_lun			*un;
3208 
3209 	ASSERT(ssc != NULL);
3210 	un = ssc->ssc_un;
3211 	ASSERT(un != NULL);
3212 
3213 	/*
3214 	 * The flags which will be set in this function are - mmc compliant,
3215 	 * dvdram writable device, cdda support. Initialize them to FALSE
3216 	 * and if a capability is detected - it will be set to TRUE.
3217 	 */
3218 	un->un_f_mmc_cap = FALSE;
3219 	un->un_f_dvdram_writable_device = FALSE;
3220 	un->un_f_cfg_cdda = FALSE;
3221 
3222 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3223 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3224 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3225 
3226 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3227 
3228 	if (status != 0) {
3229 		/* command failed; just return */
3230 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3231 		return;
3232 	}
3233 	/*
3234 	 * If the mode sense request for the CDROM CAPABILITIES
3235 	 * page (0x2A) succeeds the device is assumed to be MMC.
3236 	 */
3237 	un->un_f_mmc_cap = TRUE;
3238 
3239 	/* Get to the page data */
3240 	sense_mhp = (struct mode_header_grp2 *)buf;
3241 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3242 	    sense_mhp->bdesc_length_lo;
3243 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3244 		/*
3245 		 * We did not get back the expected block descriptor
3246 		 * length so we cannot determine if the device supports
3247 		 * CDDA. However, we still indicate the device is MMC
3248 		 * according to the successful response to the page
3249 		 * 0x2A mode sense request.
3250 		 */
3251 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3252 		    "sd_set_mmc_caps: Mode Sense returned "
3253 		    "invalid block descriptor length\n");
3254 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3255 		return;
3256 	}
3257 
3258 	/* See if read CDDA is supported */
3259 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3260 	    bd_len);
3261 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3262 
3263 	/* See if writing DVD RAM is supported. */
3264 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3265 	if (un->un_f_dvdram_writable_device == TRUE) {
3266 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * If the device presents DVD or CD capabilities in the mode
3272 	 * page, we can return here since a RRD will not have
3273 	 * these capabilities.
3274 	 */
3275 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3276 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3277 		return;
3278 	}
3279 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3280 
3281 	/*
3282 	 * If un->un_f_dvdram_writable_device is still FALSE,
3283 	 * check for a Removable Rigid Disk (RRD).  A RRD
3284 	 * device is identified by the features RANDOM_WRITABLE and
3285 	 * HARDWARE_DEFECT_MANAGEMENT.
3286 	 */
3287 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3288 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3289 
3290 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3291 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3292 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3293 
3294 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3295 
3296 	if (rtn != 0) {
3297 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3298 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3299 		return;
3300 	}
3301 
3302 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3303 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3304 
3305 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3306 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3307 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3308 
3309 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3310 
3311 	if (rtn == 0) {
3312 		/*
3313 		 * We have good information, check for random writable
3314 		 * and hardware defect features.
3315 		 */
3316 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3317 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3318 			un->un_f_dvdram_writable_device = TRUE;
3319 		}
3320 	}
3321 
3322 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3323 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3324 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3325 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3326 }
3327 
3328 /*
3329  *    Function: sd_check_for_writable_cd
3330  *
3331  * Description: This routine determines if the media in the device is
3332  *		writable or not. It uses the get configuration command (0x46)
3333  *		to determine if the media is writable
3334  *
3335  *   Arguments: un - driver soft state (unit) structure
3336  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3337  *                           chain and the normal command waitq, or
3338  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3339  *                           "direct" chain and bypass the normal command
3340  *                           waitq.
3341  *
3342  *     Context: Never called at interrupt context.
3343  */
3344 
3345 static void
3346 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3347 {
3348 	struct uscsi_cmd		com;
3349 	uchar_t				*out_data;
3350 	uchar_t				*rqbuf;
3351 	int				rtn;
3352 	uchar_t				*out_data_rw, *out_data_hd;
3353 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3354 	struct mode_header_grp2		*sense_mhp;
3355 	uchar_t				*sense_page;
3356 	caddr_t				buf;
3357 	int				bd_len;
3358 	int				status;
3359 	struct sd_lun			*un;
3360 
3361 	ASSERT(ssc != NULL);
3362 	un = ssc->ssc_un;
3363 	ASSERT(un != NULL);
3364 	ASSERT(mutex_owned(SD_MUTEX(un)));
3365 
3366 	/*
3367 	 * Initialize the writable media to false, if configuration info.
3368 	 * tells us otherwise then only we will set it.
3369 	 */
3370 	un->un_f_mmc_writable_media = FALSE;
3371 	mutex_exit(SD_MUTEX(un));
3372 
3373 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3374 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3375 
3376 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3377 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3378 
3379 	if (rtn != 0)
3380 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3381 
3382 	mutex_enter(SD_MUTEX(un));
3383 	if (rtn == 0) {
3384 		/*
3385 		 * We have good information, check for writable DVD.
3386 		 */
3387 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3388 			un->un_f_mmc_writable_media = TRUE;
3389 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3390 			kmem_free(rqbuf, SENSE_LENGTH);
3391 			return;
3392 		}
3393 	}
3394 
3395 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3396 	kmem_free(rqbuf, SENSE_LENGTH);
3397 
3398 	/*
3399 	 * Determine if this is a RRD type device.
3400 	 */
3401 	mutex_exit(SD_MUTEX(un));
3402 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3403 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3404 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3405 
3406 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3407 
3408 	mutex_enter(SD_MUTEX(un));
3409 	if (status != 0) {
3410 		/* command failed; just return */
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/* Get to the page data */
3416 	sense_mhp = (struct mode_header_grp2 *)buf;
3417 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3418 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3419 		/*
3420 		 * We did not get back the expected block descriptor length so
3421 		 * we cannot check the mode page.
3422 		 */
3423 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3424 		    "sd_check_for_writable_cd: Mode Sense returned "
3425 		    "invalid block descriptor length\n");
3426 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3427 		return;
3428 	}
3429 
3430 	/*
3431 	 * If the device presents DVD or CD capabilities in the mode
3432 	 * page, we can return here since a RRD device will not have
3433 	 * these capabilities.
3434 	 */
3435 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3436 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3437 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3438 		return;
3439 	}
3440 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3441 
3442 	/*
3443 	 * If un->un_f_mmc_writable_media is still FALSE,
3444 	 * check for RRD type media.  A RRD device is identified
3445 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3446 	 */
3447 	mutex_exit(SD_MUTEX(un));
3448 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3449 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3450 
3451 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3452 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3453 	    RANDOM_WRITABLE, path_flag);
3454 
3455 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3456 	if (rtn != 0) {
3457 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3458 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3459 		mutex_enter(SD_MUTEX(un));
3460 		return;
3461 	}
3462 
3463 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3464 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3465 
3466 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3467 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3468 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3469 
3470 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3471 	mutex_enter(SD_MUTEX(un));
3472 	if (rtn == 0) {
3473 		/*
3474 		 * We have good information, check for random writable
3475 		 * and hardware defect features as current.
3476 		 */
3477 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3478 		    (out_data_rw[10] & 0x1) &&
3479 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3480 		    (out_data_hd[10] & 0x1)) {
3481 			un->un_f_mmc_writable_media = TRUE;
3482 		}
3483 	}
3484 
3485 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3486 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3487 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3488 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3489 }
3490 
3491 /*
3492  *    Function: sd_read_unit_properties
3493  *
3494  * Description: The following implements a property lookup mechanism.
3495  *		Properties for particular disks (keyed on vendor, model
3496  *		and rev numbers) are sought in the sd.conf file via
3497  *		sd_process_sdconf_file(), and if not found there, are
3498  *		looked for in a list hardcoded in this driver via
3499  *		sd_process_sdconf_table() Once located the properties
3500  *		are used to update the driver unit structure.
3501  *
3502  *   Arguments: un - driver soft state (unit) structure
3503  */
3504 
3505 static void
3506 sd_read_unit_properties(struct sd_lun *un)
3507 {
3508 	/*
3509 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3510 	 * the "sd-config-list" property (from the sd.conf file) or if
3511 	 * there was not a match for the inquiry vid/pid. If this event
3512 	 * occurs the static driver configuration table is searched for
3513 	 * a match.
3514 	 */
3515 	ASSERT(un != NULL);
3516 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3517 		sd_process_sdconf_table(un);
3518 	}
3519 
3520 	/* check for LSI device */
3521 	sd_is_lsi(un);
3522 
3523 
3524 }
3525 
3526 
3527 /*
3528  *    Function: sd_process_sdconf_file
3529  *
3530  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3531  *		driver's config file (ie, sd.conf) and update the driver
3532  *		soft state structure accordingly.
3533  *
3534  *   Arguments: un - driver soft state (unit) structure
3535  *
3536  * Return Code: SD_SUCCESS - The properties were successfully set according
3537  *			     to the driver configuration file.
3538  *		SD_FAILURE - The driver config list was not obtained or
3539  *			     there was no vid/pid match. This indicates that
3540  *			     the static config table should be used.
3541  *
3542  * The config file has a property, "sd-config-list". Currently we support
3543  * two kinds of formats. For both formats, the value of this property
3544  * is a list of duplets:
3545  *
3546  *  sd-config-list=
3547  *	<duplet>,
3548  *	[,<duplet>]*;
3549  *
3550  * For the improved format, where
3551  *
3552  *     <duplet>:= "<vid+pid>","<tunable-list>"
3553  *
3554  * and
3555  *
3556  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3557  *     <tunable> =        <name> : <value>
3558  *
3559  * The <vid+pid> is the string that is returned by the target device on a
3560  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3561  * to apply to all target devices with the specified <vid+pid>.
3562  *
3563  * Each <tunable> is a "<name> : <value>" pair.
3564  *
3565  * For the old format, the structure of each duplet is as follows:
3566  *
3567  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3568  *
3569  * The first entry of the duplet is the device ID string (the concatenated
3570  * vid & pid; not to be confused with a device_id).  This is defined in
3571  * the same way as in the sd_disk_table.
3572  *
3573  * The second part of the duplet is a string that identifies a
3574  * data-property-name-list. The data-property-name-list is defined as
3575  * follows:
3576  *
3577  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3578  *
3579  * The syntax of <data-property-name> depends on the <version> field.
3580  *
3581  * If version = SD_CONF_VERSION_1 we have the following syntax:
3582  *
3583  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3584  *
3585  * where the prop0 value will be used to set prop0 if bit0 set in the
3586  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3587  *
3588  */
3589 
3590 static int
3591 sd_process_sdconf_file(struct sd_lun *un)
3592 {
3593 	char	**config_list = NULL;
3594 	uint_t	nelements;
3595 	char	*vidptr;
3596 	int	vidlen;
3597 	char	*dnlist_ptr;
3598 	char	*dataname_ptr;
3599 	char	*dataname_lasts;
3600 	int	*data_list = NULL;
3601 	uint_t	data_list_len;
3602 	int	rval = SD_FAILURE;
3603 	int	i;
3604 
3605 	ASSERT(un != NULL);
3606 
3607 	/* Obtain the configuration list associated with the .conf file */
3608 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3609 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3610 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3611 		return (SD_FAILURE);
3612 	}
3613 
3614 	/*
3615 	 * Compare vids in each duplet to the inquiry vid - if a match is
3616 	 * made, get the data value and update the soft state structure
3617 	 * accordingly.
3618 	 *
3619 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3620 	 * otherwise.
3621 	 */
3622 	if (nelements & 1) {
3623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3624 		    "sd-config-list should show as pairs of strings.\n");
3625 		if (config_list)
3626 			ddi_prop_free(config_list);
3627 		return (SD_FAILURE);
3628 	}
3629 
3630 	for (i = 0; i < nelements; i += 2) {
3631 		/*
3632 		 * Note: The assumption here is that each vid entry is on
3633 		 * a unique line from its associated duplet.
3634 		 */
3635 		vidptr = config_list[i];
3636 		vidlen = (int)strlen(vidptr);
3637 		if ((vidlen == 0) ||
3638 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3639 			continue;
3640 		}
3641 
3642 		/*
3643 		 * dnlist contains 1 or more blank separated
3644 		 * data-property-name entries
3645 		 */
3646 		dnlist_ptr = config_list[i + 1];
3647 
3648 		if (strchr(dnlist_ptr, ':') != NULL) {
3649 			/*
3650 			 * Decode the improved format sd-config-list.
3651 			 */
3652 			sd_nvpair_str_decode(un, dnlist_ptr);
3653 		} else {
3654 			/*
3655 			 * The old format sd-config-list, loop through all
3656 			 * data-property-name entries in the
3657 			 * data-property-name-list
3658 			 * setting the properties for each.
3659 			 */
3660 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3661 			    &dataname_lasts); dataname_ptr != NULL;
3662 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3663 			    &dataname_lasts)) {
3664 				int version;
3665 
3666 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3667 				    "sd_process_sdconf_file: disk:%s, "
3668 				    "data:%s\n", vidptr, dataname_ptr);
3669 
3670 				/* Get the data list */
3671 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3672 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3673 				    &data_list_len) != DDI_PROP_SUCCESS) {
3674 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3675 					    "sd_process_sdconf_file: data "
3676 					    "property (%s) has no value\n",
3677 					    dataname_ptr);
3678 					continue;
3679 				}
3680 
3681 				version = data_list[0];
3682 
3683 				if (version == SD_CONF_VERSION_1) {
3684 					sd_tunables values;
3685 
3686 					/* Set the properties */
3687 					if (sd_chk_vers1_data(un, data_list[1],
3688 					    &data_list[2], data_list_len,
3689 					    dataname_ptr) == SD_SUCCESS) {
3690 						sd_get_tunables_from_conf(un,
3691 						    data_list[1], &data_list[2],
3692 						    &values);
3693 						sd_set_vers1_properties(un,
3694 						    data_list[1], &values);
3695 						rval = SD_SUCCESS;
3696 					} else {
3697 						rval = SD_FAILURE;
3698 					}
3699 				} else {
3700 					scsi_log(SD_DEVINFO(un), sd_label,
3701 					    CE_WARN, "data property %s version "
3702 					    "0x%x is invalid.",
3703 					    dataname_ptr, version);
3704 					rval = SD_FAILURE;
3705 				}
3706 				if (data_list)
3707 					ddi_prop_free(data_list);
3708 			}
3709 		}
3710 	}
3711 
3712 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3713 	if (config_list) {
3714 		ddi_prop_free(config_list);
3715 	}
3716 
3717 	return (rval);
3718 }
3719 
3720 /*
3721  *    Function: sd_nvpair_str_decode()
3722  *
3723  * Description: Parse the improved format sd-config-list to get
3724  *    each entry of tunable, which includes a name-value pair.
3725  *    Then call sd_set_properties() to set the property.
3726  *
3727  *   Arguments: un - driver soft state (unit) structure
3728  *    nvpair_str - the tunable list
3729  */
3730 static void
3731 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3732 {
3733 	char	*nv, *name, *value, *token;
3734 	char	*nv_lasts, *v_lasts, *x_lasts;
3735 
3736 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3737 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3738 		token = sd_strtok_r(nv, ":", &v_lasts);
3739 		name  = sd_strtok_r(token, " \t", &x_lasts);
3740 		token = sd_strtok_r(NULL, ":", &v_lasts);
3741 		value = sd_strtok_r(token, " \t", &x_lasts);
3742 		if (name == NULL || value == NULL) {
3743 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3744 			    "sd_nvpair_str_decode: "
3745 			    "name or value is not valid!\n");
3746 		} else {
3747 			sd_set_properties(un, name, value);
3748 		}
3749 	}
3750 }
3751 
3752 /*
3753  *    Function: sd_strtok_r()
3754  *
3755  * Description: This function uses strpbrk and strspn to break
3756  *    string into tokens on sequentially subsequent calls. Return
3757  *    NULL when no non-separator characters remain. The first
3758  *    argument is NULL for subsequent calls.
3759  */
3760 static char *
3761 sd_strtok_r(char *string, const char *sepset, char **lasts)
3762 {
3763 	char	*q, *r;
3764 
3765 	/* First or subsequent call */
3766 	if (string == NULL)
3767 		string = *lasts;
3768 
3769 	if (string == NULL)
3770 		return (NULL);
3771 
3772 	/* Skip leading separators */
3773 	q = string + strspn(string, sepset);
3774 
3775 	if (*q == '\0')
3776 		return (NULL);
3777 
3778 	if ((r = strpbrk(q, sepset)) == NULL)
3779 		*lasts = NULL;
3780 	else {
3781 		*r = '\0';
3782 		*lasts = r + 1;
3783 	}
3784 	return (q);
3785 }
3786 
3787 /*
3788  *    Function: sd_set_properties()
3789  *
3790  * Description: Set device properties based on the improved
3791  *    format sd-config-list.
3792  *
3793  *   Arguments: un - driver soft state (unit) structure
3794  *    name  - supported tunable name
3795  *    value - tunable value
3796  */
3797 static void
3798 sd_set_properties(struct sd_lun *un, char *name, char *value)
3799 {
3800 	char	*endptr = NULL;
3801 	long	val = 0;
3802 
3803 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3804 		if (strcasecmp(value, "true") == 0) {
3805 			un->un_f_suppress_cache_flush = TRUE;
3806 		} else if (strcasecmp(value, "false") == 0) {
3807 			un->un_f_suppress_cache_flush = FALSE;
3808 		} else {
3809 			goto value_invalid;
3810 		}
3811 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3812 		    "suppress_cache_flush flag set to %d\n",
3813 		    un->un_f_suppress_cache_flush);
3814 		return;
3815 	}
3816 
3817 	if (strcasecmp(name, "controller-type") == 0) {
3818 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3819 			un->un_ctype = val;
3820 		} else {
3821 			goto value_invalid;
3822 		}
3823 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3824 		    "ctype set to %d\n", un->un_ctype);
3825 		return;
3826 	}
3827 
3828 	if (strcasecmp(name, "delay-busy") == 0) {
3829 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3830 			un->un_busy_timeout = drv_usectohz(val / 1000);
3831 		} else {
3832 			goto value_invalid;
3833 		}
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3835 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3836 		return;
3837 	}
3838 
3839 	if (strcasecmp(name, "disksort") == 0) {
3840 		if (strcasecmp(value, "true") == 0) {
3841 			un->un_f_disksort_disabled = FALSE;
3842 		} else if (strcasecmp(value, "false") == 0) {
3843 			un->un_f_disksort_disabled = TRUE;
3844 		} else {
3845 			goto value_invalid;
3846 		}
3847 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3848 		    "disksort disabled flag set to %d\n",
3849 		    un->un_f_disksort_disabled);
3850 		return;
3851 	}
3852 
3853 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3854 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3855 			un->un_reserve_release_time = val;
3856 		} else {
3857 			goto value_invalid;
3858 		}
3859 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3860 		    "reservation release timeout set to %d\n",
3861 		    un->un_reserve_release_time);
3862 		return;
3863 	}
3864 
3865 	if (strcasecmp(name, "reset-lun") == 0) {
3866 		if (strcasecmp(value, "true") == 0) {
3867 			un->un_f_lun_reset_enabled = TRUE;
3868 		} else if (strcasecmp(value, "false") == 0) {
3869 			un->un_f_lun_reset_enabled = FALSE;
3870 		} else {
3871 			goto value_invalid;
3872 		}
3873 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3874 		    "lun reset enabled flag set to %d\n",
3875 		    un->un_f_lun_reset_enabled);
3876 		return;
3877 	}
3878 
3879 	if (strcasecmp(name, "retries-busy") == 0) {
3880 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3881 			un->un_busy_retry_count = val;
3882 		} else {
3883 			goto value_invalid;
3884 		}
3885 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3886 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3887 		return;
3888 	}
3889 
3890 	if (strcasecmp(name, "retries-timeout") == 0) {
3891 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3892 			un->un_retry_count = val;
3893 		} else {
3894 			goto value_invalid;
3895 		}
3896 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3897 		    "timeout retry count set to %d\n", un->un_retry_count);
3898 		return;
3899 	}
3900 
3901 	if (strcasecmp(name, "retries-notready") == 0) {
3902 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3903 			un->un_notready_retry_count = val;
3904 		} else {
3905 			goto value_invalid;
3906 		}
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3908 		    "notready retry count set to %d\n",
3909 		    un->un_notready_retry_count);
3910 		return;
3911 	}
3912 
3913 	if (strcasecmp(name, "retries-reset") == 0) {
3914 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3915 			un->un_reset_retry_count = val;
3916 		} else {
3917 			goto value_invalid;
3918 		}
3919 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 		return;
3923 	}
3924 
3925 	if (strcasecmp(name, "throttle-max") == 0) {
3926 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3927 			un->un_saved_throttle = un->un_throttle = val;
3928 		} else {
3929 			goto value_invalid;
3930 		}
3931 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3932 		    "throttle set to %d\n", un->un_throttle);
3933 	}
3934 
3935 	if (strcasecmp(name, "throttle-min") == 0) {
3936 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3937 			un->un_min_throttle = val;
3938 		} else {
3939 			goto value_invalid;
3940 		}
3941 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3942 		    "min throttle set to %d\n", un->un_min_throttle);
3943 	}
3944 
3945 	/*
3946 	 * Validate the throttle values.
3947 	 * If any of the numbers are invalid, set everything to defaults.
3948 	 */
3949 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3950 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3951 	    (un->un_min_throttle > un->un_throttle)) {
3952 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3953 		un->un_min_throttle = sd_min_throttle;
3954 	}
3955 	return;
3956 
3957 value_invalid:
3958 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3959 	    "value of prop %s is invalid\n", name);
3960 }
3961 
3962 /*
3963  *    Function: sd_get_tunables_from_conf()
3964  *
3965  *
3966  *    This function reads the data list from the sd.conf file and pulls
3967  *    the values that can have numeric values as arguments and places
3968  *    the values in the appropriate sd_tunables member.
3969  *    Since the order of the data list members varies across platforms
3970  *    This function reads them from the data list in a platform specific
3971  *    order and places them into the correct sd_tunable member that is
3972  *    consistent across all platforms.
3973  */
3974 static void
3975 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3976     sd_tunables *values)
3977 {
3978 	int i;
3979 	int mask;
3980 
3981 	bzero(values, sizeof (sd_tunables));
3982 
3983 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3984 
3985 		mask = 1 << i;
3986 		if (mask > flags) {
3987 			break;
3988 		}
3989 
3990 		switch (mask & flags) {
3991 		case 0:	/* This mask bit not set in flags */
3992 			continue;
3993 		case SD_CONF_BSET_THROTTLE:
3994 			values->sdt_throttle = data_list[i];
3995 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3996 			    "sd_get_tunables_from_conf: throttle = %d\n",
3997 			    values->sdt_throttle);
3998 			break;
3999 		case SD_CONF_BSET_CTYPE:
4000 			values->sdt_ctype = data_list[i];
4001 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4002 			    "sd_get_tunables_from_conf: ctype = %d\n",
4003 			    values->sdt_ctype);
4004 			break;
4005 		case SD_CONF_BSET_NRR_COUNT:
4006 			values->sdt_not_rdy_retries = data_list[i];
4007 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4008 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4009 			    values->sdt_not_rdy_retries);
4010 			break;
4011 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4012 			values->sdt_busy_retries = data_list[i];
4013 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4014 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4015 			    values->sdt_busy_retries);
4016 			break;
4017 		case SD_CONF_BSET_RST_RETRIES:
4018 			values->sdt_reset_retries = data_list[i];
4019 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4020 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4021 			    values->sdt_reset_retries);
4022 			break;
4023 		case SD_CONF_BSET_RSV_REL_TIME:
4024 			values->sdt_reserv_rel_time = data_list[i];
4025 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4027 			    values->sdt_reserv_rel_time);
4028 			break;
4029 		case SD_CONF_BSET_MIN_THROTTLE:
4030 			values->sdt_min_throttle = data_list[i];
4031 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4033 			    values->sdt_min_throttle);
4034 			break;
4035 		case SD_CONF_BSET_DISKSORT_DISABLED:
4036 			values->sdt_disk_sort_dis = data_list[i];
4037 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4039 			    values->sdt_disk_sort_dis);
4040 			break;
4041 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4042 			values->sdt_lun_reset_enable = data_list[i];
4043 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4044 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4045 			    "\n", values->sdt_lun_reset_enable);
4046 			break;
4047 		case SD_CONF_BSET_CACHE_IS_NV:
4048 			values->sdt_suppress_cache_flush = data_list[i];
4049 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 			    "sd_get_tunables_from_conf: \
4051 			    suppress_cache_flush = %d"
4052 			    "\n", values->sdt_suppress_cache_flush);
4053 			break;
4054 		}
4055 	}
4056 }
4057 
4058 /*
4059  *    Function: sd_process_sdconf_table
4060  *
4061  * Description: Search the static configuration table for a match on the
4062  *		inquiry vid/pid and update the driver soft state structure
4063  *		according to the table property values for the device.
4064  *
4065  *		The form of a configuration table entry is:
4066  *		  <vid+pid>,<flags>,<property-data>
4067  *		  "SEAGATE ST42400N",1,0x40000,
4068  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4069  *
4070  *   Arguments: un - driver soft state (unit) structure
4071  */
4072 
4073 static void
4074 sd_process_sdconf_table(struct sd_lun *un)
4075 {
4076 	char	*id = NULL;
4077 	int	table_index;
4078 	int	idlen;
4079 
4080 	ASSERT(un != NULL);
4081 	for (table_index = 0; table_index < sd_disk_table_size;
4082 	    table_index++) {
4083 		id = sd_disk_table[table_index].device_id;
4084 		idlen = strlen(id);
4085 		if (idlen == 0) {
4086 			continue;
4087 		}
4088 
4089 		/*
4090 		 * The static configuration table currently does not
4091 		 * implement version 10 properties. Additionally,
4092 		 * multiple data-property-name entries are not
4093 		 * implemented in the static configuration table.
4094 		 */
4095 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4096 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4097 			    "sd_process_sdconf_table: disk %s\n", id);
4098 			sd_set_vers1_properties(un,
4099 			    sd_disk_table[table_index].flags,
4100 			    sd_disk_table[table_index].properties);
4101 			break;
4102 		}
4103 	}
4104 }
4105 
4106 
4107 /*
4108  *    Function: sd_sdconf_id_match
4109  *
4110  * Description: This local function implements a case sensitive vid/pid
4111  *		comparison as well as the boundary cases of wild card and
4112  *		multiple blanks.
4113  *
4114  *		Note: An implicit assumption made here is that the scsi
4115  *		inquiry structure will always keep the vid, pid and
4116  *		revision strings in consecutive sequence, so they can be
4117  *		read as a single string. If this assumption is not the
4118  *		case, a separate string, to be used for the check, needs
4119  *		to be built with these strings concatenated.
4120  *
4121  *   Arguments: un - driver soft state (unit) structure
4122  *		id - table or config file vid/pid
4123  *		idlen  - length of the vid/pid (bytes)
4124  *
4125  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4126  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4127  */
4128 
4129 static int
4130 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4131 {
4132 	struct scsi_inquiry	*sd_inq;
4133 	int 			rval = SD_SUCCESS;
4134 
4135 	ASSERT(un != NULL);
4136 	sd_inq = un->un_sd->sd_inq;
4137 	ASSERT(id != NULL);
4138 
4139 	/*
4140 	 * We use the inq_vid as a pointer to a buffer containing the
4141 	 * vid and pid and use the entire vid/pid length of the table
4142 	 * entry for the comparison. This works because the inq_pid
4143 	 * data member follows inq_vid in the scsi_inquiry structure.
4144 	 */
4145 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4146 		/*
4147 		 * The user id string is compared to the inquiry vid/pid
4148 		 * using a case insensitive comparison and ignoring
4149 		 * multiple spaces.
4150 		 */
4151 		rval = sd_blank_cmp(un, id, idlen);
4152 		if (rval != SD_SUCCESS) {
4153 			/*
4154 			 * User id strings that start and end with a "*"
4155 			 * are a special case. These do not have a
4156 			 * specific vendor, and the product string can
4157 			 * appear anywhere in the 16 byte PID portion of
4158 			 * the inquiry data. This is a simple strstr()
4159 			 * type search for the user id in the inquiry data.
4160 			 */
4161 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4162 				char	*pidptr = &id[1];
4163 				int	i;
4164 				int	j;
4165 				int	pidstrlen = idlen - 2;
4166 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4167 				    pidstrlen;
4168 
4169 				if (j < 0) {
4170 					return (SD_FAILURE);
4171 				}
4172 				for (i = 0; i < j; i++) {
4173 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4174 					    pidptr, pidstrlen) == 0) {
4175 						rval = SD_SUCCESS;
4176 						break;
4177 					}
4178 				}
4179 			}
4180 		}
4181 	}
4182 	return (rval);
4183 }
4184 
4185 
4186 /*
4187  *    Function: sd_blank_cmp
4188  *
4189  * Description: If the id string starts and ends with a space, treat
4190  *		multiple consecutive spaces as equivalent to a single
4191  *		space. For example, this causes a sd_disk_table entry
4192  *		of " NEC CDROM " to match a device's id string of
4193  *		"NEC       CDROM".
4194  *
4195  *		Note: The success exit condition for this routine is if
4196  *		the pointer to the table entry is '\0' and the cnt of
4197  *		the inquiry length is zero. This will happen if the inquiry
4198  *		string returned by the device is padded with spaces to be
4199  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4200  *		SCSI spec states that the inquiry string is to be padded with
4201  *		spaces.
4202  *
4203  *   Arguments: un - driver soft state (unit) structure
4204  *		id - table or config file vid/pid
4205  *		idlen  - length of the vid/pid (bytes)
4206  *
4207  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4208  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4209  */
4210 
4211 static int
4212 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4213 {
4214 	char		*p1;
4215 	char		*p2;
4216 	int		cnt;
4217 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4218 	    sizeof (SD_INQUIRY(un)->inq_pid);
4219 
4220 	ASSERT(un != NULL);
4221 	p2 = un->un_sd->sd_inq->inq_vid;
4222 	ASSERT(id != NULL);
4223 	p1 = id;
4224 
4225 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4226 		/*
4227 		 * Note: string p1 is terminated by a NUL but string p2
4228 		 * isn't.  The end of p2 is determined by cnt.
4229 		 */
4230 		for (;;) {
4231 			/* skip over any extra blanks in both strings */
4232 			while ((*p1 != '\0') && (*p1 == ' ')) {
4233 				p1++;
4234 			}
4235 			while ((cnt != 0) && (*p2 == ' ')) {
4236 				p2++;
4237 				cnt--;
4238 			}
4239 
4240 			/* compare the two strings */
4241 			if ((cnt == 0) ||
4242 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4243 				break;
4244 			}
4245 			while ((cnt > 0) &&
4246 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4247 				p1++;
4248 				p2++;
4249 				cnt--;
4250 			}
4251 		}
4252 	}
4253 
4254 	/* return SD_SUCCESS if both strings match */
4255 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4256 }
4257 
4258 
4259 /*
4260  *    Function: sd_chk_vers1_data
4261  *
4262  * Description: Verify the version 1 device properties provided by the
4263  *		user via the configuration file
4264  *
4265  *   Arguments: un	     - driver soft state (unit) structure
4266  *		flags	     - integer mask indicating properties to be set
4267  *		prop_list    - integer list of property values
4268  *		list_len     - number of the elements
4269  *
4270  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4271  *		SD_FAILURE - Indicates the user provided data is invalid
4272  */
4273 
4274 static int
4275 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4276     int list_len, char *dataname_ptr)
4277 {
4278 	int i;
4279 	int mask = 1;
4280 	int index = 0;
4281 
4282 	ASSERT(un != NULL);
4283 
4284 	/* Check for a NULL property name and list */
4285 	if (dataname_ptr == NULL) {
4286 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4287 		    "sd_chk_vers1_data: NULL data property name.");
4288 		return (SD_FAILURE);
4289 	}
4290 	if (prop_list == NULL) {
4291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4292 		    "sd_chk_vers1_data: %s NULL data property list.",
4293 		    dataname_ptr);
4294 		return (SD_FAILURE);
4295 	}
4296 
4297 	/* Display a warning if undefined bits are set in the flags */
4298 	if (flags & ~SD_CONF_BIT_MASK) {
4299 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4300 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4301 		    "Properties not set.",
4302 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4303 		return (SD_FAILURE);
4304 	}
4305 
4306 	/*
4307 	 * Verify the length of the list by identifying the highest bit set
4308 	 * in the flags and validating that the property list has a length
4309 	 * up to the index of this bit.
4310 	 */
4311 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4312 		if (flags & mask) {
4313 			index++;
4314 		}
4315 		mask = 1 << i;
4316 	}
4317 	if (list_len < (index + 2)) {
4318 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4319 		    "sd_chk_vers1_data: "
4320 		    "Data property list %s size is incorrect. "
4321 		    "Properties not set.", dataname_ptr);
4322 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4323 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4324 		return (SD_FAILURE);
4325 	}
4326 	return (SD_SUCCESS);
4327 }
4328 
4329 
4330 /*
4331  *    Function: sd_set_vers1_properties
4332  *
4333  * Description: Set version 1 device properties based on a property list
4334  *		retrieved from the driver configuration file or static
4335  *		configuration table. Version 1 properties have the format:
4336  *
4337  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4338  *
4339  *		where the prop0 value will be used to set prop0 if bit0
4340  *		is set in the flags
4341  *
4342  *   Arguments: un	     - driver soft state (unit) structure
4343  *		flags	     - integer mask indicating properties to be set
4344  *		prop_list    - integer list of property values
4345  */
4346 
4347 static void
4348 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4349 {
4350 	ASSERT(un != NULL);
4351 
4352 	/*
4353 	 * Set the flag to indicate cache is to be disabled. An attempt
4354 	 * to disable the cache via sd_cache_control() will be made
4355 	 * later during attach once the basic initialization is complete.
4356 	 */
4357 	if (flags & SD_CONF_BSET_NOCACHE) {
4358 		un->un_f_opt_disable_cache = TRUE;
4359 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360 		    "sd_set_vers1_properties: caching disabled flag set\n");
4361 	}
4362 
4363 	/* CD-specific configuration parameters */
4364 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4365 		un->un_f_cfg_playmsf_bcd = TRUE;
4366 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4367 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4368 	}
4369 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4370 		un->un_f_cfg_readsub_bcd = TRUE;
4371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4372 		    "sd_set_vers1_properties: readsub_bcd set\n");
4373 	}
4374 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4375 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4376 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4377 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4378 	}
4379 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4380 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4382 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4383 	}
4384 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4385 		un->un_f_cfg_no_read_header = TRUE;
4386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4387 		    "sd_set_vers1_properties: no_read_header set\n");
4388 	}
4389 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4390 		un->un_f_cfg_read_cd_xd4 = TRUE;
4391 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4392 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4393 	}
4394 
4395 	/* Support for devices which do not have valid/unique serial numbers */
4396 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4397 		un->un_f_opt_fab_devid = TRUE;
4398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4399 		    "sd_set_vers1_properties: fab_devid bit set\n");
4400 	}
4401 
4402 	/* Support for user throttle configuration */
4403 	if (flags & SD_CONF_BSET_THROTTLE) {
4404 		ASSERT(prop_list != NULL);
4405 		un->un_saved_throttle = un->un_throttle =
4406 		    prop_list->sdt_throttle;
4407 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4408 		    "sd_set_vers1_properties: throttle set to %d\n",
4409 		    prop_list->sdt_throttle);
4410 	}
4411 
4412 	/* Set the per disk retry count according to the conf file or table. */
4413 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4414 		ASSERT(prop_list != NULL);
4415 		if (prop_list->sdt_not_rdy_retries) {
4416 			un->un_notready_retry_count =
4417 			    prop_list->sdt_not_rdy_retries;
4418 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4419 			    "sd_set_vers1_properties: not ready retry count"
4420 			    " set to %d\n", un->un_notready_retry_count);
4421 		}
4422 	}
4423 
4424 	/* The controller type is reported for generic disk driver ioctls */
4425 	if (flags & SD_CONF_BSET_CTYPE) {
4426 		ASSERT(prop_list != NULL);
4427 		switch (prop_list->sdt_ctype) {
4428 		case CTYPE_CDROM:
4429 			un->un_ctype = prop_list->sdt_ctype;
4430 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4431 			    "sd_set_vers1_properties: ctype set to "
4432 			    "CTYPE_CDROM\n");
4433 			break;
4434 		case CTYPE_CCS:
4435 			un->un_ctype = prop_list->sdt_ctype;
4436 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4437 			    "sd_set_vers1_properties: ctype set to "
4438 			    "CTYPE_CCS\n");
4439 			break;
4440 		case CTYPE_ROD:		/* RW optical */
4441 			un->un_ctype = prop_list->sdt_ctype;
4442 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4443 			    "sd_set_vers1_properties: ctype set to "
4444 			    "CTYPE_ROD\n");
4445 			break;
4446 		default:
4447 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4448 			    "sd_set_vers1_properties: Could not set "
4449 			    "invalid ctype value (%d)",
4450 			    prop_list->sdt_ctype);
4451 		}
4452 	}
4453 
4454 	/* Purple failover timeout */
4455 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4456 		ASSERT(prop_list != NULL);
4457 		un->un_busy_retry_count =
4458 		    prop_list->sdt_busy_retries;
4459 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4460 		    "sd_set_vers1_properties: "
4461 		    "busy retry count set to %d\n",
4462 		    un->un_busy_retry_count);
4463 	}
4464 
4465 	/* Purple reset retry count */
4466 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4467 		ASSERT(prop_list != NULL);
4468 		un->un_reset_retry_count =
4469 		    prop_list->sdt_reset_retries;
4470 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4471 		    "sd_set_vers1_properties: "
4472 		    "reset retry count set to %d\n",
4473 		    un->un_reset_retry_count);
4474 	}
4475 
4476 	/* Purple reservation release timeout */
4477 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4478 		ASSERT(prop_list != NULL);
4479 		un->un_reserve_release_time =
4480 		    prop_list->sdt_reserv_rel_time;
4481 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4482 		    "sd_set_vers1_properties: "
4483 		    "reservation release timeout set to %d\n",
4484 		    un->un_reserve_release_time);
4485 	}
4486 
4487 	/*
4488 	 * Driver flag telling the driver to verify that no commands are pending
4489 	 * for a device before issuing a Test Unit Ready. This is a workaround
4490 	 * for a firmware bug in some Seagate eliteI drives.
4491 	 */
4492 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4493 		un->un_f_cfg_tur_check = TRUE;
4494 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4495 		    "sd_set_vers1_properties: tur queue check set\n");
4496 	}
4497 
4498 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4499 		un->un_min_throttle = prop_list->sdt_min_throttle;
4500 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4501 		    "sd_set_vers1_properties: min throttle set to %d\n",
4502 		    un->un_min_throttle);
4503 	}
4504 
4505 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4506 		un->un_f_disksort_disabled =
4507 		    (prop_list->sdt_disk_sort_dis != 0) ?
4508 		    TRUE : FALSE;
4509 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4510 		    "sd_set_vers1_properties: disksort disabled "
4511 		    "flag set to %d\n",
4512 		    prop_list->sdt_disk_sort_dis);
4513 	}
4514 
4515 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4516 		un->un_f_lun_reset_enabled =
4517 		    (prop_list->sdt_lun_reset_enable != 0) ?
4518 		    TRUE : FALSE;
4519 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4520 		    "sd_set_vers1_properties: lun reset enabled "
4521 		    "flag set to %d\n",
4522 		    prop_list->sdt_lun_reset_enable);
4523 	}
4524 
4525 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4526 		un->un_f_suppress_cache_flush =
4527 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4528 		    TRUE : FALSE;
4529 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4530 		    "sd_set_vers1_properties: suppress_cache_flush "
4531 		    "flag set to %d\n",
4532 		    prop_list->sdt_suppress_cache_flush);
4533 	}
4534 
4535 	/*
4536 	 * Validate the throttle values.
4537 	 * If any of the numbers are invalid, set everything to defaults.
4538 	 */
4539 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4540 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4541 	    (un->un_min_throttle > un->un_throttle)) {
4542 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4543 		un->un_min_throttle = sd_min_throttle;
4544 	}
4545 }
4546 
4547 /*
4548  *   Function: sd_is_lsi()
4549  *
4550  *   Description: Check for lsi devices, step through the static device
4551  *	table to match vid/pid.
4552  *
4553  *   Args: un - ptr to sd_lun
4554  *
4555  *   Notes:  When creating new LSI property, need to add the new LSI property
4556  *		to this function.
4557  */
4558 static void
4559 sd_is_lsi(struct sd_lun *un)
4560 {
4561 	char	*id = NULL;
4562 	int	table_index;
4563 	int	idlen;
4564 	void	*prop;
4565 
4566 	ASSERT(un != NULL);
4567 	for (table_index = 0; table_index < sd_disk_table_size;
4568 	    table_index++) {
4569 		id = sd_disk_table[table_index].device_id;
4570 		idlen = strlen(id);
4571 		if (idlen == 0) {
4572 			continue;
4573 		}
4574 
4575 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4576 			prop = sd_disk_table[table_index].properties;
4577 			if (prop == &lsi_properties ||
4578 			    prop == &lsi_oem_properties ||
4579 			    prop == &lsi_properties_scsi ||
4580 			    prop == &symbios_properties) {
4581 				un->un_f_cfg_is_lsi = TRUE;
4582 			}
4583 			break;
4584 		}
4585 	}
4586 }
4587 
4588 /*
4589  *    Function: sd_get_physical_geometry
4590  *
4591  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4592  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4593  *		target, and use this information to initialize the physical
4594  *		geometry cache specified by pgeom_p.
4595  *
4596  *		MODE SENSE is an optional command, so failure in this case
4597  *		does not necessarily denote an error. We want to use the
4598  *		MODE SENSE commands to derive the physical geometry of the
4599  *		device, but if either command fails, the logical geometry is
4600  *		used as the fallback for disk label geometry in cmlb.
4601  *
4602  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4603  *		have already been initialized for the current target and
4604  *		that the current values be passed as args so that we don't
4605  *		end up ever trying to use -1 as a valid value. This could
4606  *		happen if either value is reset while we're not holding
4607  *		the mutex.
4608  *
4609  *   Arguments: un - driver soft state (unit) structure
4610  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4611  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4612  *			to use the USCSI "direct" chain and bypass the normal
4613  *			command waitq.
4614  *
4615  *     Context: Kernel thread only (can sleep).
4616  */
4617 
4618 static int
4619 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4620 	diskaddr_t capacity, int lbasize, int path_flag)
4621 {
4622 	struct	mode_format	*page3p;
4623 	struct	mode_geometry	*page4p;
4624 	struct	mode_header	*headerp;
4625 	int	sector_size;
4626 	int	nsect;
4627 	int	nhead;
4628 	int	ncyl;
4629 	int	intrlv;
4630 	int	spc;
4631 	diskaddr_t	modesense_capacity;
4632 	int	rpm;
4633 	int	bd_len;
4634 	int	mode_header_length;
4635 	uchar_t	*p3bufp;
4636 	uchar_t	*p4bufp;
4637 	int	cdbsize;
4638 	int 	ret = EIO;
4639 	sd_ssc_t *ssc;
4640 	int	status;
4641 
4642 	ASSERT(un != NULL);
4643 
4644 	if (lbasize == 0) {
4645 		if (ISCD(un)) {
4646 			lbasize = 2048;
4647 		} else {
4648 			lbasize = un->un_sys_blocksize;
4649 		}
4650 	}
4651 	pgeom_p->g_secsize = (unsigned short)lbasize;
4652 
4653 	/*
4654 	 * If the unit is a cd/dvd drive MODE SENSE page three
4655 	 * and MODE SENSE page four are reserved (see SBC spec
4656 	 * and MMC spec). To prevent soft errors just return
4657 	 * using the default LBA size.
4658 	 */
4659 	if (ISCD(un))
4660 		return (ret);
4661 
4662 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4663 
4664 	/*
4665 	 * Retrieve MODE SENSE page 3 - Format Device Page
4666 	 */
4667 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4668 	ssc = sd_ssc_init(un);
4669 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4670 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4671 	if (status != 0) {
4672 		SD_ERROR(SD_LOG_COMMON, un,
4673 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4674 		goto page3_exit;
4675 	}
4676 
4677 	/*
4678 	 * Determine size of Block Descriptors in order to locate the mode
4679 	 * page data.  ATAPI devices return 0, SCSI devices should return
4680 	 * MODE_BLK_DESC_LENGTH.
4681 	 */
4682 	headerp = (struct mode_header *)p3bufp;
4683 	if (un->un_f_cfg_is_atapi == TRUE) {
4684 		struct mode_header_grp2 *mhp =
4685 		    (struct mode_header_grp2 *)headerp;
4686 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4687 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4688 	} else {
4689 		mode_header_length = MODE_HEADER_LENGTH;
4690 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4691 	}
4692 
4693 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4694 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4695 		    "sd_get_physical_geometry: received unexpected bd_len "
4696 		    "of %d, page3\n", bd_len);
4697 		status = EIO;
4698 		goto page3_exit;
4699 	}
4700 
4701 	page3p = (struct mode_format *)
4702 	    ((caddr_t)headerp + mode_header_length + bd_len);
4703 
4704 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4705 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4706 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
4707 		    "%d\n", page3p->mode_page.code);
4708 		status = EIO;
4709 		goto page3_exit;
4710 	}
4711 
4712 	/*
4713 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4714 	 * complete successfully; otherwise, revert to the logical geometry.
4715 	 * So, we need to save everything in temporary variables.
4716 	 */
4717 	sector_size = BE_16(page3p->data_bytes_sect);
4718 
4719 	/*
4720 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4721 	 */
4722 	if (sector_size == 0) {
4723 		sector_size = un->un_sys_blocksize;
4724 	} else {
4725 		sector_size &= ~(un->un_sys_blocksize - 1);
4726 	}
4727 
4728 	nsect  = BE_16(page3p->sect_track);
4729 	intrlv = BE_16(page3p->interleave);
4730 
4731 	SD_INFO(SD_LOG_COMMON, un,
4732 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4733 	SD_INFO(SD_LOG_COMMON, un,
4734 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4735 	    page3p->mode_page.code, nsect, sector_size);
4736 	SD_INFO(SD_LOG_COMMON, un,
4737 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4738 	    BE_16(page3p->track_skew),
4739 	    BE_16(page3p->cylinder_skew));
4740 
4741 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4742 
4743 	/*
4744 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4745 	 */
4746 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4747 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4748 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4749 	if (status != 0) {
4750 		SD_ERROR(SD_LOG_COMMON, un,
4751 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4752 		goto page4_exit;
4753 	}
4754 
4755 	/*
4756 	 * Determine size of Block Descriptors in order to locate the mode
4757 	 * page data.  ATAPI devices return 0, SCSI devices should return
4758 	 * MODE_BLK_DESC_LENGTH.
4759 	 */
4760 	headerp = (struct mode_header *)p4bufp;
4761 	if (un->un_f_cfg_is_atapi == TRUE) {
4762 		struct mode_header_grp2 *mhp =
4763 		    (struct mode_header_grp2 *)headerp;
4764 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4765 	} else {
4766 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4767 	}
4768 
4769 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4770 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4771 		    "sd_get_physical_geometry: received unexpected bd_len of "
4772 		    "%d, page4\n", bd_len);
4773 		status = EIO;
4774 		goto page4_exit;
4775 	}
4776 
4777 	page4p = (struct mode_geometry *)
4778 	    ((caddr_t)headerp + mode_header_length + bd_len);
4779 
4780 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4781 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4782 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
4783 		    "%d\n", page4p->mode_page.code);
4784 		status = EIO;
4785 		goto page4_exit;
4786 	}
4787 
4788 	/*
4789 	 * Stash the data now, after we know that both commands completed.
4790 	 */
4791 
4792 
4793 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4794 	spc   = nhead * nsect;
4795 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4796 	rpm   = BE_16(page4p->rpm);
4797 
4798 	modesense_capacity = spc * ncyl;
4799 
4800 	SD_INFO(SD_LOG_COMMON, un,
4801 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4802 	SD_INFO(SD_LOG_COMMON, un,
4803 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4804 	SD_INFO(SD_LOG_COMMON, un,
4805 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4806 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4807 	    (void *)pgeom_p, capacity);
4808 
4809 	/*
4810 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4811 	 * the product of C * H * S returned by MODE SENSE >= that returned
4812 	 * by read capacity. This is an idiosyncrasy of the original x86
4813 	 * disk subsystem.
4814 	 */
4815 	if (modesense_capacity >= capacity) {
4816 		SD_INFO(SD_LOG_COMMON, un,
4817 		    "sd_get_physical_geometry: adjusting acyl; "
4818 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4819 		    (modesense_capacity - capacity + spc - 1) / spc);
4820 		if (sector_size != 0) {
4821 			/* 1243403: NEC D38x7 drives don't support sec size */
4822 			pgeom_p->g_secsize = (unsigned short)sector_size;
4823 		}
4824 		pgeom_p->g_nsect    = (unsigned short)nsect;
4825 		pgeom_p->g_nhead    = (unsigned short)nhead;
4826 		pgeom_p->g_capacity = capacity;
4827 		pgeom_p->g_acyl	    =
4828 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4829 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4830 	}
4831 
4832 	pgeom_p->g_rpm    = (unsigned short)rpm;
4833 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4834 	ret = 0;
4835 
4836 	SD_INFO(SD_LOG_COMMON, un,
4837 	    "sd_get_physical_geometry: mode sense geometry:\n");
4838 	SD_INFO(SD_LOG_COMMON, un,
4839 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4840 	    nsect, sector_size, intrlv);
4841 	SD_INFO(SD_LOG_COMMON, un,
4842 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4843 	    nhead, ncyl, rpm, modesense_capacity);
4844 	SD_INFO(SD_LOG_COMMON, un,
4845 	    "sd_get_physical_geometry: (cached)\n");
4846 	SD_INFO(SD_LOG_COMMON, un,
4847 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4848 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4849 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4850 	SD_INFO(SD_LOG_COMMON, un,
4851 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4852 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4853 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4854 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4855 
4856 page4_exit:
4857 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4858 
4859 page3_exit:
4860 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4861 
4862 	if (status != 0) {
4863 		if (status == EIO) {
4864 			/*
4865 			 * Some disks do not support mode sense(6), we
4866 			 * should ignore this kind of error(sense key is
4867 			 * 0x5 - illegal request).
4868 			 */
4869 			uint8_t *sensep;
4870 			int senlen;
4871 
4872 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4873 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4874 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4875 
4876 			if (senlen > 0 &&
4877 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4878 				sd_ssc_assessment(ssc,
4879 				    SD_FMT_IGNORE_COMPROMISE);
4880 			} else {
4881 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4882 			}
4883 		} else {
4884 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4885 		}
4886 	}
4887 	sd_ssc_fini(ssc);
4888 	return (ret);
4889 }
4890 
4891 /*
4892  *    Function: sd_get_virtual_geometry
4893  *
4894  * Description: Ask the controller to tell us about the target device.
4895  *
4896  *   Arguments: un - pointer to softstate
4897  *		capacity - disk capacity in #blocks
4898  *		lbasize - disk block size in bytes
4899  *
4900  *     Context: Kernel thread only
4901  */
4902 
4903 static int
4904 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4905     diskaddr_t capacity, int lbasize)
4906 {
4907 	uint_t	geombuf;
4908 	int	spc;
4909 
4910 	ASSERT(un != NULL);
4911 
4912 	/* Set sector size, and total number of sectors */
4913 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4914 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4915 
4916 	/* Let the HBA tell us its geometry */
4917 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4918 
4919 	/* A value of -1 indicates an undefined "geometry" property */
4920 	if (geombuf == (-1)) {
4921 		return (EINVAL);
4922 	}
4923 
4924 	/* Initialize the logical geometry cache. */
4925 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4926 	lgeom_p->g_nsect   = geombuf & 0xffff;
4927 	lgeom_p->g_secsize = un->un_sys_blocksize;
4928 
4929 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4930 
4931 	/*
4932 	 * Note: The driver originally converted the capacity value from
4933 	 * target blocks to system blocks. However, the capacity value passed
4934 	 * to this routine is already in terms of system blocks (this scaling
4935 	 * is done when the READ CAPACITY command is issued and processed).
4936 	 * This 'error' may have gone undetected because the usage of g_ncyl
4937 	 * (which is based upon g_capacity) is very limited within the driver
4938 	 */
4939 	lgeom_p->g_capacity = capacity;
4940 
4941 	/*
4942 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4943 	 * hba may return zero values if the device has been removed.
4944 	 */
4945 	if (spc == 0) {
4946 		lgeom_p->g_ncyl = 0;
4947 	} else {
4948 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4949 	}
4950 	lgeom_p->g_acyl = 0;
4951 
4952 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4953 	return (0);
4954 
4955 }
4956 /*
4957  *    Function: sd_update_block_info
4958  *
4959  * Description: Calculate a byte count to sector count bitshift value
4960  *		from sector size.
4961  *
4962  *   Arguments: un: unit struct.
4963  *		lbasize: new target sector size
4964  *		capacity: new target capacity, ie. block count
4965  *
4966  *     Context: Kernel thread context
4967  */
4968 
4969 static void
4970 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4971 {
4972 	if (lbasize != 0) {
4973 		un->un_tgt_blocksize = lbasize;
4974 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4975 	}
4976 
4977 	if (capacity != 0) {
4978 		un->un_blockcount		= capacity;
4979 		un->un_f_blockcount_is_valid	= TRUE;
4980 	}
4981 }
4982 
4983 
4984 /*
4985  *    Function: sd_register_devid
4986  *
4987  * Description: This routine will obtain the device id information from the
4988  *		target, obtain the serial number, and register the device
4989  *		id with the ddi framework.
4990  *
4991  *   Arguments: devi - the system's dev_info_t for the device.
4992  *		un - driver soft state (unit) structure
4993  *		reservation_flag - indicates if a reservation conflict
4994  *		occurred during attach
4995  *
4996  *     Context: Kernel Thread
4997  */
4998 static void
4999 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5000 {
5001 	int		rval		= 0;
5002 	uchar_t		*inq80		= NULL;
5003 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5004 	size_t		inq80_resid	= 0;
5005 	uchar_t		*inq83		= NULL;
5006 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5007 	size_t		inq83_resid	= 0;
5008 	int		dlen, len;
5009 	char		*sn;
5010 	struct sd_lun	*un;
5011 
5012 	ASSERT(ssc != NULL);
5013 	un = ssc->ssc_un;
5014 	ASSERT(un != NULL);
5015 	ASSERT(mutex_owned(SD_MUTEX(un)));
5016 	ASSERT((SD_DEVINFO(un)) == devi);
5017 
5018 	/*
5019 	 * If transport has already registered a devid for this target
5020 	 * then that takes precedence over the driver's determination
5021 	 * of the devid.
5022 	 */
5023 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5024 		ASSERT(un->un_devid);
5025 		return; /* use devid registered by the transport */
5026 	}
5027 
5028 	/*
5029 	 * This is the case of antiquated Sun disk drives that have the
5030 	 * FAB_DEVID property set in the disk_table.  These drives
5031 	 * manage the devid's by storing them in last 2 available sectors
5032 	 * on the drive and have them fabricated by the ddi layer by calling
5033 	 * ddi_devid_init and passing the DEVID_FAB flag.
5034 	 */
5035 	if (un->un_f_opt_fab_devid == TRUE) {
5036 		/*
5037 		 * Depending on EINVAL isn't reliable, since a reserved disk
5038 		 * may result in invalid geometry, so check to make sure a
5039 		 * reservation conflict did not occur during attach.
5040 		 */
5041 		if ((sd_get_devid(ssc) == EINVAL) &&
5042 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5043 			/*
5044 			 * The devid is invalid AND there is no reservation
5045 			 * conflict.  Fabricate a new devid.
5046 			 */
5047 			(void) sd_create_devid(ssc);
5048 		}
5049 
5050 		/* Register the devid if it exists */
5051 		if (un->un_devid != NULL) {
5052 			(void) ddi_devid_register(SD_DEVINFO(un),
5053 			    un->un_devid);
5054 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5055 			    "sd_register_devid: Devid Fabricated\n");
5056 		}
5057 		return;
5058 	}
5059 
5060 	/*
5061 	 * We check the availability of the World Wide Name (0x83) and Unit
5062 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5063 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5064 	 * 0x83 is available, that is the best choice.  Our next choice is
5065 	 * 0x80.  If neither are available, we munge the devid from the device
5066 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5067 	 * to fabricate a devid for non-Sun qualified disks.
5068 	 */
5069 	if (sd_check_vpd_page_support(ssc) == 0) {
5070 		/* collect page 80 data if available */
5071 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5072 
5073 			mutex_exit(SD_MUTEX(un));
5074 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5075 
5076 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5077 			    0x01, 0x80, &inq80_resid);
5078 
5079 			if (rval != 0) {
5080 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5081 				kmem_free(inq80, inq80_len);
5082 				inq80 = NULL;
5083 				inq80_len = 0;
5084 			} else if (ddi_prop_exists(
5085 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5086 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5087 			    INQUIRY_SERIAL_NO) == 0) {
5088 				/*
5089 				 * If we don't already have a serial number
5090 				 * property, do quick verify of data returned
5091 				 * and define property.
5092 				 */
5093 				dlen = inq80_len - inq80_resid;
5094 				len = (size_t)inq80[3];
5095 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5096 					/*
5097 					 * Ensure sn termination, skip leading
5098 					 * blanks, and create property
5099 					 * 'inquiry-serial-no'.
5100 					 */
5101 					sn = (char *)&inq80[4];
5102 					sn[len] = 0;
5103 					while (*sn && (*sn == ' '))
5104 						sn++;
5105 					if (*sn) {
5106 						(void) ddi_prop_update_string(
5107 						    DDI_DEV_T_NONE,
5108 						    SD_DEVINFO(un),
5109 						    INQUIRY_SERIAL_NO, sn);
5110 					}
5111 				}
5112 			}
5113 			mutex_enter(SD_MUTEX(un));
5114 		}
5115 
5116 		/* collect page 83 data if available */
5117 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5118 			mutex_exit(SD_MUTEX(un));
5119 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5120 
5121 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5122 			    0x01, 0x83, &inq83_resid);
5123 
5124 			if (rval != 0) {
5125 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5126 				kmem_free(inq83, inq83_len);
5127 				inq83 = NULL;
5128 				inq83_len = 0;
5129 			}
5130 			mutex_enter(SD_MUTEX(un));
5131 		}
5132 	}
5133 
5134 	/* encode best devid possible based on data available */
5135 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5136 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5137 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5138 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5139 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5140 
5141 		/* devid successfully encoded, register devid */
5142 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5143 
5144 	} else {
5145 		/*
5146 		 * Unable to encode a devid based on data available.
5147 		 * This is not a Sun qualified disk.  Older Sun disk
5148 		 * drives that have the SD_FAB_DEVID property
5149 		 * set in the disk_table and non Sun qualified
5150 		 * disks are treated in the same manner.  These
5151 		 * drives manage the devid's by storing them in
5152 		 * last 2 available sectors on the drive and
5153 		 * have them fabricated by the ddi layer by
5154 		 * calling ddi_devid_init and passing the
5155 		 * DEVID_FAB flag.
5156 		 * Create a fabricate devid only if there's no
5157 		 * fabricate devid existed.
5158 		 */
5159 		if (sd_get_devid(ssc) == EINVAL) {
5160 			(void) sd_create_devid(ssc);
5161 		}
5162 		un->un_f_opt_fab_devid = TRUE;
5163 
5164 		/* Register the devid if it exists */
5165 		if (un->un_devid != NULL) {
5166 			(void) ddi_devid_register(SD_DEVINFO(un),
5167 			    un->un_devid);
5168 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5169 			    "sd_register_devid: devid fabricated using "
5170 			    "ddi framework\n");
5171 		}
5172 	}
5173 
5174 	/* clean up resources */
5175 	if (inq80 != NULL) {
5176 		kmem_free(inq80, inq80_len);
5177 	}
5178 	if (inq83 != NULL) {
5179 		kmem_free(inq83, inq83_len);
5180 	}
5181 }
5182 
5183 
5184 
5185 /*
5186  *    Function: sd_get_devid
5187  *
5188  * Description: This routine will return 0 if a valid device id has been
5189  *		obtained from the target and stored in the soft state. If a
5190  *		valid device id has not been previously read and stored, a
5191  *		read attempt will be made.
5192  *
5193  *   Arguments: un - driver soft state (unit) structure
5194  *
5195  * Return Code: 0 if we successfully get the device id
5196  *
5197  *     Context: Kernel Thread
5198  */
5199 
5200 static int
5201 sd_get_devid(sd_ssc_t *ssc)
5202 {
5203 	struct dk_devid		*dkdevid;
5204 	ddi_devid_t		tmpid;
5205 	uint_t			*ip;
5206 	size_t			sz;
5207 	diskaddr_t		blk;
5208 	int			status;
5209 	int			chksum;
5210 	int			i;
5211 	size_t			buffer_size;
5212 	struct sd_lun		*un;
5213 
5214 	ASSERT(ssc != NULL);
5215 	un = ssc->ssc_un;
5216 	ASSERT(un != NULL);
5217 	ASSERT(mutex_owned(SD_MUTEX(un)));
5218 
5219 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5220 	    un);
5221 
5222 	if (un->un_devid != NULL) {
5223 		return (0);
5224 	}
5225 
5226 	mutex_exit(SD_MUTEX(un));
5227 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5228 	    (void *)SD_PATH_DIRECT) != 0) {
5229 		mutex_enter(SD_MUTEX(un));
5230 		return (EINVAL);
5231 	}
5232 
5233 	/*
5234 	 * Read and verify device id, stored in the reserved cylinders at the
5235 	 * end of the disk. Backup label is on the odd sectors of the last
5236 	 * track of the last cylinder. Device id will be on track of the next
5237 	 * to last cylinder.
5238 	 */
5239 	mutex_enter(SD_MUTEX(un));
5240 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5241 	mutex_exit(SD_MUTEX(un));
5242 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5243 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5244 	    SD_PATH_DIRECT);
5245 
5246 	if (status != 0) {
5247 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5248 		goto error;
5249 	}
5250 
5251 	/* Validate the revision */
5252 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5253 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5254 		status = EINVAL;
5255 		goto error;
5256 	}
5257 
5258 	/* Calculate the checksum */
5259 	chksum = 0;
5260 	ip = (uint_t *)dkdevid;
5261 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5262 	    i++) {
5263 		chksum ^= ip[i];
5264 	}
5265 
5266 	/* Compare the checksums */
5267 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5268 		status = EINVAL;
5269 		goto error;
5270 	}
5271 
5272 	/* Validate the device id */
5273 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5274 		status = EINVAL;
5275 		goto error;
5276 	}
5277 
5278 	/*
5279 	 * Store the device id in the driver soft state
5280 	 */
5281 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5282 	tmpid = kmem_alloc(sz, KM_SLEEP);
5283 
5284 	mutex_enter(SD_MUTEX(un));
5285 
5286 	un->un_devid = tmpid;
5287 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5288 
5289 	kmem_free(dkdevid, buffer_size);
5290 
5291 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5292 
5293 	return (status);
5294 error:
5295 	mutex_enter(SD_MUTEX(un));
5296 	kmem_free(dkdevid, buffer_size);
5297 	return (status);
5298 }
5299 
5300 
5301 /*
5302  *    Function: sd_create_devid
5303  *
5304  * Description: This routine will fabricate the device id and write it
5305  *		to the disk.
5306  *
5307  *   Arguments: un - driver soft state (unit) structure
5308  *
5309  * Return Code: value of the fabricated device id
5310  *
5311  *     Context: Kernel Thread
5312  */
5313 
5314 static ddi_devid_t
5315 sd_create_devid(sd_ssc_t *ssc)
5316 {
5317 	struct sd_lun	*un;
5318 
5319 	ASSERT(ssc != NULL);
5320 	un = ssc->ssc_un;
5321 	ASSERT(un != NULL);
5322 
5323 	/* Fabricate the devid */
5324 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5325 	    == DDI_FAILURE) {
5326 		return (NULL);
5327 	}
5328 
5329 	/* Write the devid to disk */
5330 	if (sd_write_deviceid(ssc) != 0) {
5331 		ddi_devid_free(un->un_devid);
5332 		un->un_devid = NULL;
5333 	}
5334 
5335 	return (un->un_devid);
5336 }
5337 
5338 
5339 /*
5340  *    Function: sd_write_deviceid
5341  *
5342  * Description: This routine will write the device id to the disk
5343  *		reserved sector.
5344  *
5345  *   Arguments: un - driver soft state (unit) structure
5346  *
5347  * Return Code: EINVAL
5348  *		value returned by sd_send_scsi_cmd
5349  *
5350  *     Context: Kernel Thread
5351  */
5352 
5353 static int
5354 sd_write_deviceid(sd_ssc_t *ssc)
5355 {
5356 	struct dk_devid		*dkdevid;
5357 	diskaddr_t		blk;
5358 	uint_t			*ip, chksum;
5359 	int			status;
5360 	int			i;
5361 	struct sd_lun		*un;
5362 
5363 	ASSERT(ssc != NULL);
5364 	un = ssc->ssc_un;
5365 	ASSERT(un != NULL);
5366 	ASSERT(mutex_owned(SD_MUTEX(un)));
5367 
5368 	mutex_exit(SD_MUTEX(un));
5369 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5370 	    (void *)SD_PATH_DIRECT) != 0) {
5371 		mutex_enter(SD_MUTEX(un));
5372 		return (-1);
5373 	}
5374 
5375 
5376 	/* Allocate the buffer */
5377 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5378 
5379 	/* Fill in the revision */
5380 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5381 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5382 
5383 	/* Copy in the device id */
5384 	mutex_enter(SD_MUTEX(un));
5385 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5386 	    ddi_devid_sizeof(un->un_devid));
5387 	mutex_exit(SD_MUTEX(un));
5388 
5389 	/* Calculate the checksum */
5390 	chksum = 0;
5391 	ip = (uint_t *)dkdevid;
5392 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5393 	    i++) {
5394 		chksum ^= ip[i];
5395 	}
5396 
5397 	/* Fill-in checksum */
5398 	DKD_FORMCHKSUM(chksum, dkdevid);
5399 
5400 	/* Write the reserved sector */
5401 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5402 	    SD_PATH_DIRECT);
5403 	if (status != 0)
5404 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5405 
5406 	kmem_free(dkdevid, un->un_sys_blocksize);
5407 
5408 	mutex_enter(SD_MUTEX(un));
5409 	return (status);
5410 }
5411 
5412 
5413 /*
5414  *    Function: sd_check_vpd_page_support
5415  *
5416  * Description: This routine sends an inquiry command with the EVPD bit set and
5417  *		a page code of 0x00 to the device. It is used to determine which
5418  *		vital product pages are available to find the devid. We are
5419  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5420  *		device does not support that command.
5421  *
5422  *   Arguments: un  - driver soft state (unit) structure
5423  *
5424  * Return Code: 0 - success
5425  *		1 - check condition
5426  *
5427  *     Context: This routine can sleep.
5428  */
5429 
5430 static int
5431 sd_check_vpd_page_support(sd_ssc_t *ssc)
5432 {
5433 	uchar_t	*page_list	= NULL;
5434 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5435 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5436 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5437 	int    	rval		= 0;
5438 	int	counter;
5439 	struct sd_lun		*un;
5440 
5441 	ASSERT(ssc != NULL);
5442 	un = ssc->ssc_un;
5443 	ASSERT(un != NULL);
5444 	ASSERT(mutex_owned(SD_MUTEX(un)));
5445 
5446 	mutex_exit(SD_MUTEX(un));
5447 
5448 	/*
5449 	 * We'll set the page length to the maximum to save figuring it out
5450 	 * with an additional call.
5451 	 */
5452 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5453 
5454 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5455 	    page_code, NULL);
5456 
5457 	if (rval != 0)
5458 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5459 
5460 	mutex_enter(SD_MUTEX(un));
5461 
5462 	/*
5463 	 * Now we must validate that the device accepted the command, as some
5464 	 * drives do not support it.  If the drive does support it, we will
5465 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5466 	 * not, we return -1.
5467 	 */
5468 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5469 		/* Loop to find one of the 2 pages we need */
5470 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5471 
5472 		/*
5473 		 * Pages are returned in ascending order, and 0x83 is what we
5474 		 * are hoping for.
5475 		 */
5476 		while ((page_list[counter] <= 0x86) &&
5477 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5478 		    VPD_HEAD_OFFSET))) {
5479 			/*
5480 			 * Add 3 because page_list[3] is the number of
5481 			 * pages minus 3
5482 			 */
5483 
5484 			switch (page_list[counter]) {
5485 			case 0x00:
5486 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5487 				break;
5488 			case 0x80:
5489 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5490 				break;
5491 			case 0x81:
5492 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5493 				break;
5494 			case 0x82:
5495 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5496 				break;
5497 			case 0x83:
5498 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5499 				break;
5500 			case 0x86:
5501 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5502 				break;
5503 			}
5504 			counter++;
5505 		}
5506 
5507 	} else {
5508 		rval = -1;
5509 
5510 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5511 		    "sd_check_vpd_page_support: This drive does not implement "
5512 		    "VPD pages.\n");
5513 	}
5514 
5515 	kmem_free(page_list, page_length);
5516 
5517 	return (rval);
5518 }
5519 
5520 
5521 /*
5522  *    Function: sd_setup_pm
5523  *
5524  * Description: Initialize Power Management on the device
5525  *
5526  *     Context: Kernel Thread
5527  */
5528 
5529 static void
5530 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5531 {
5532 	uint_t		log_page_size;
5533 	uchar_t		*log_page_data;
5534 	int		rval = 0;
5535 	struct sd_lun	*un;
5536 
5537 	ASSERT(ssc != NULL);
5538 	un = ssc->ssc_un;
5539 	ASSERT(un != NULL);
5540 
5541 	/*
5542 	 * Since we are called from attach, holding a mutex for
5543 	 * un is unnecessary. Because some of the routines called
5544 	 * from here require SD_MUTEX to not be held, assert this
5545 	 * right up front.
5546 	 */
5547 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5548 	/*
5549 	 * Since the sd device does not have the 'reg' property,
5550 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5551 	 * The following code is to tell cpr that this device
5552 	 * DOES need to be suspended and resumed.
5553 	 */
5554 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5555 	    "pm-hardware-state", "needs-suspend-resume");
5556 
5557 	/*
5558 	 * This complies with the new power management framework
5559 	 * for certain desktop machines. Create the pm_components
5560 	 * property as a string array property.
5561 	 */
5562 	if (un->un_f_pm_supported) {
5563 		/*
5564 		 * not all devices have a motor, try it first.
5565 		 * some devices may return ILLEGAL REQUEST, some
5566 		 * will hang
5567 		 * The following START_STOP_UNIT is used to check if target
5568 		 * device has a motor.
5569 		 */
5570 		un->un_f_start_stop_supported = TRUE;
5571 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5572 		    SD_PATH_DIRECT);
5573 
5574 		if (rval != 0) {
5575 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5576 			un->un_f_start_stop_supported = FALSE;
5577 		}
5578 
5579 		/*
5580 		 * create pm properties anyways otherwise the parent can't
5581 		 * go to sleep
5582 		 */
5583 		(void) sd_create_pm_components(devi, un);
5584 		un->un_f_pm_is_enabled = TRUE;
5585 		return;
5586 	}
5587 
5588 	if (!un->un_f_log_sense_supported) {
5589 		un->un_power_level = SD_SPINDLE_ON;
5590 		un->un_f_pm_is_enabled = FALSE;
5591 		return;
5592 	}
5593 
5594 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5595 
5596 #ifdef	SDDEBUG
5597 	if (sd_force_pm_supported) {
5598 		/* Force a successful result */
5599 		rval = 1;
5600 	}
5601 #endif
5602 
5603 	/*
5604 	 * If the start-stop cycle counter log page is not supported
5605 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5606 	 * then we should not create the pm_components property.
5607 	 */
5608 	if (rval == -1) {
5609 		/*
5610 		 * Error.
5611 		 * Reading log sense failed, most likely this is
5612 		 * an older drive that does not support log sense.
5613 		 * If this fails auto-pm is not supported.
5614 		 */
5615 		un->un_power_level = SD_SPINDLE_ON;
5616 		un->un_f_pm_is_enabled = FALSE;
5617 
5618 	} else if (rval == 0) {
5619 		/*
5620 		 * Page not found.
5621 		 * The start stop cycle counter is implemented as page
5622 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5623 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5624 		 */
5625 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5626 			/*
5627 			 * Page found, use this one.
5628 			 */
5629 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5630 			un->un_f_pm_is_enabled = TRUE;
5631 		} else {
5632 			/*
5633 			 * Error or page not found.
5634 			 * auto-pm is not supported for this device.
5635 			 */
5636 			un->un_power_level = SD_SPINDLE_ON;
5637 			un->un_f_pm_is_enabled = FALSE;
5638 		}
5639 	} else {
5640 		/*
5641 		 * Page found, use it.
5642 		 */
5643 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5644 		un->un_f_pm_is_enabled = TRUE;
5645 	}
5646 
5647 
5648 	if (un->un_f_pm_is_enabled == TRUE) {
5649 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5650 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5651 
5652 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5653 		    log_page_size, un->un_start_stop_cycle_page,
5654 		    0x01, 0, SD_PATH_DIRECT);
5655 
5656 		if (rval != 0) {
5657 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5658 		}
5659 
5660 #ifdef	SDDEBUG
5661 		if (sd_force_pm_supported) {
5662 			/* Force a successful result */
5663 			rval = 0;
5664 		}
5665 #endif
5666 
5667 		/*
5668 		 * If the Log sense for Page( Start/stop cycle counter page)
5669 		 * succeeds, then power management is supported and we can
5670 		 * enable auto-pm.
5671 		 */
5672 		if (rval == 0)  {
5673 			(void) sd_create_pm_components(devi, un);
5674 		} else {
5675 			un->un_power_level = SD_SPINDLE_ON;
5676 			un->un_f_pm_is_enabled = FALSE;
5677 		}
5678 
5679 		kmem_free(log_page_data, log_page_size);
5680 	}
5681 }
5682 
5683 
5684 /*
5685  *    Function: sd_create_pm_components
5686  *
5687  * Description: Initialize PM property.
5688  *
5689  *     Context: Kernel thread context
5690  */
5691 
5692 static void
5693 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5694 {
5695 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5696 
5697 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5698 
5699 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5700 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5701 		/*
5702 		 * When components are initially created they are idle,
5703 		 * power up any non-removables.
5704 		 * Note: the return value of pm_raise_power can't be used
5705 		 * for determining if PM should be enabled for this device.
5706 		 * Even if you check the return values and remove this
5707 		 * property created above, the PM framework will not honor the
5708 		 * change after the first call to pm_raise_power. Hence,
5709 		 * removal of that property does not help if pm_raise_power
5710 		 * fails. In the case of removable media, the start/stop
5711 		 * will fail if the media is not present.
5712 		 */
5713 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5714 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5715 			mutex_enter(SD_MUTEX(un));
5716 			un->un_power_level = SD_SPINDLE_ON;
5717 			mutex_enter(&un->un_pm_mutex);
5718 			/* Set to on and not busy. */
5719 			un->un_pm_count = 0;
5720 		} else {
5721 			mutex_enter(SD_MUTEX(un));
5722 			un->un_power_level = SD_SPINDLE_OFF;
5723 			mutex_enter(&un->un_pm_mutex);
5724 			/* Set to off. */
5725 			un->un_pm_count = -1;
5726 		}
5727 		mutex_exit(&un->un_pm_mutex);
5728 		mutex_exit(SD_MUTEX(un));
5729 	} else {
5730 		un->un_power_level = SD_SPINDLE_ON;
5731 		un->un_f_pm_is_enabled = FALSE;
5732 	}
5733 }
5734 
5735 
5736 /*
5737  *    Function: sd_ddi_suspend
5738  *
5739  * Description: Performs system power-down operations. This includes
5740  *		setting the drive state to indicate its suspended so
5741  *		that no new commands will be accepted. Also, wait for
5742  *		all commands that are in transport or queued to a timer
5743  *		for retry to complete. All timeout threads are cancelled.
5744  *
5745  * Return Code: DDI_FAILURE or DDI_SUCCESS
5746  *
5747  *     Context: Kernel thread context
5748  */
5749 
5750 static int
5751 sd_ddi_suspend(dev_info_t *devi)
5752 {
5753 	struct	sd_lun	*un;
5754 	clock_t		wait_cmds_complete;
5755 
5756 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5757 	if (un == NULL) {
5758 		return (DDI_FAILURE);
5759 	}
5760 
5761 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5762 
5763 	mutex_enter(SD_MUTEX(un));
5764 
5765 	/* Return success if the device is already suspended. */
5766 	if (un->un_state == SD_STATE_SUSPENDED) {
5767 		mutex_exit(SD_MUTEX(un));
5768 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5769 		    "device already suspended, exiting\n");
5770 		return (DDI_SUCCESS);
5771 	}
5772 
5773 	/* Return failure if the device is being used by HA */
5774 	if (un->un_resvd_status &
5775 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5776 		mutex_exit(SD_MUTEX(un));
5777 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5778 		    "device in use by HA, exiting\n");
5779 		return (DDI_FAILURE);
5780 	}
5781 
5782 	/*
5783 	 * Return failure if the device is in a resource wait
5784 	 * or power changing state.
5785 	 */
5786 	if ((un->un_state == SD_STATE_RWAIT) ||
5787 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5788 		mutex_exit(SD_MUTEX(un));
5789 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5790 		    "device in resource wait state, exiting\n");
5791 		return (DDI_FAILURE);
5792 	}
5793 
5794 
5795 	un->un_save_state = un->un_last_state;
5796 	New_state(un, SD_STATE_SUSPENDED);
5797 
5798 	/*
5799 	 * Wait for all commands that are in transport or queued to a timer
5800 	 * for retry to complete.
5801 	 *
5802 	 * While waiting, no new commands will be accepted or sent because of
5803 	 * the new state we set above.
5804 	 *
5805 	 * Wait till current operation has completed. If we are in the resource
5806 	 * wait state (with an intr outstanding) then we need to wait till the
5807 	 * intr completes and starts the next cmd. We want to wait for
5808 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5809 	 */
5810 	wait_cmds_complete = ddi_get_lbolt() +
5811 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5812 
5813 	while (un->un_ncmds_in_transport != 0) {
5814 		/*
5815 		 * Fail if commands do not finish in the specified time.
5816 		 */
5817 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5818 		    wait_cmds_complete) == -1) {
5819 			/*
5820 			 * Undo the state changes made above. Everything
5821 			 * must go back to it's original value.
5822 			 */
5823 			Restore_state(un);
5824 			un->un_last_state = un->un_save_state;
5825 			/* Wake up any threads that might be waiting. */
5826 			cv_broadcast(&un->un_suspend_cv);
5827 			mutex_exit(SD_MUTEX(un));
5828 			SD_ERROR(SD_LOG_IO_PM, un,
5829 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5830 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5831 			return (DDI_FAILURE);
5832 		}
5833 	}
5834 
5835 	/*
5836 	 * Cancel SCSI watch thread and timeouts, if any are active
5837 	 */
5838 
5839 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5840 		opaque_t temp_token = un->un_swr_token;
5841 		mutex_exit(SD_MUTEX(un));
5842 		scsi_watch_suspend(temp_token);
5843 		mutex_enter(SD_MUTEX(un));
5844 	}
5845 
5846 	if (un->un_reset_throttle_timeid != NULL) {
5847 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5848 		un->un_reset_throttle_timeid = NULL;
5849 		mutex_exit(SD_MUTEX(un));
5850 		(void) untimeout(temp_id);
5851 		mutex_enter(SD_MUTEX(un));
5852 	}
5853 
5854 	if (un->un_dcvb_timeid != NULL) {
5855 		timeout_id_t temp_id = un->un_dcvb_timeid;
5856 		un->un_dcvb_timeid = NULL;
5857 		mutex_exit(SD_MUTEX(un));
5858 		(void) untimeout(temp_id);
5859 		mutex_enter(SD_MUTEX(un));
5860 	}
5861 
5862 	mutex_enter(&un->un_pm_mutex);
5863 	if (un->un_pm_timeid != NULL) {
5864 		timeout_id_t temp_id = un->un_pm_timeid;
5865 		un->un_pm_timeid = NULL;
5866 		mutex_exit(&un->un_pm_mutex);
5867 		mutex_exit(SD_MUTEX(un));
5868 		(void) untimeout(temp_id);
5869 		mutex_enter(SD_MUTEX(un));
5870 	} else {
5871 		mutex_exit(&un->un_pm_mutex);
5872 	}
5873 
5874 	if (un->un_retry_timeid != NULL) {
5875 		timeout_id_t temp_id = un->un_retry_timeid;
5876 		un->un_retry_timeid = NULL;
5877 		mutex_exit(SD_MUTEX(un));
5878 		(void) untimeout(temp_id);
5879 		mutex_enter(SD_MUTEX(un));
5880 
5881 		if (un->un_retry_bp != NULL) {
5882 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5883 			un->un_waitq_headp = un->un_retry_bp;
5884 			if (un->un_waitq_tailp == NULL) {
5885 				un->un_waitq_tailp = un->un_retry_bp;
5886 			}
5887 			un->un_retry_bp = NULL;
5888 			un->un_retry_statp = NULL;
5889 		}
5890 	}
5891 
5892 	if (un->un_direct_priority_timeid != NULL) {
5893 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5894 		un->un_direct_priority_timeid = NULL;
5895 		mutex_exit(SD_MUTEX(un));
5896 		(void) untimeout(temp_id);
5897 		mutex_enter(SD_MUTEX(un));
5898 	}
5899 
5900 	if (un->un_f_is_fibre == TRUE) {
5901 		/*
5902 		 * Remove callbacks for insert and remove events
5903 		 */
5904 		if (un->un_insert_event != NULL) {
5905 			mutex_exit(SD_MUTEX(un));
5906 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5907 			mutex_enter(SD_MUTEX(un));
5908 			un->un_insert_event = NULL;
5909 		}
5910 
5911 		if (un->un_remove_event != NULL) {
5912 			mutex_exit(SD_MUTEX(un));
5913 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5914 			mutex_enter(SD_MUTEX(un));
5915 			un->un_remove_event = NULL;
5916 		}
5917 	}
5918 
5919 	mutex_exit(SD_MUTEX(un));
5920 
5921 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5922 
5923 	return (DDI_SUCCESS);
5924 }
5925 
5926 
5927 /*
5928  *    Function: sd_ddi_pm_suspend
5929  *
5930  * Description: Set the drive state to low power.
5931  *		Someone else is required to actually change the drive
5932  *		power level.
5933  *
5934  *   Arguments: un - driver soft state (unit) structure
5935  *
5936  * Return Code: DDI_FAILURE or DDI_SUCCESS
5937  *
5938  *     Context: Kernel thread context
5939  */
5940 
5941 static int
5942 sd_ddi_pm_suspend(struct sd_lun *un)
5943 {
5944 	ASSERT(un != NULL);
5945 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5946 
5947 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5948 	mutex_enter(SD_MUTEX(un));
5949 
5950 	/*
5951 	 * Exit if power management is not enabled for this device, or if
5952 	 * the device is being used by HA.
5953 	 */
5954 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5955 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5956 		mutex_exit(SD_MUTEX(un));
5957 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5958 		return (DDI_SUCCESS);
5959 	}
5960 
5961 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5962 	    un->un_ncmds_in_driver);
5963 
5964 	/*
5965 	 * See if the device is not busy, ie.:
5966 	 *    - we have no commands in the driver for this device
5967 	 *    - not waiting for resources
5968 	 */
5969 	if ((un->un_ncmds_in_driver == 0) &&
5970 	    (un->un_state != SD_STATE_RWAIT)) {
5971 		/*
5972 		 * The device is not busy, so it is OK to go to low power state.
5973 		 * Indicate low power, but rely on someone else to actually
5974 		 * change it.
5975 		 */
5976 		mutex_enter(&un->un_pm_mutex);
5977 		un->un_pm_count = -1;
5978 		mutex_exit(&un->un_pm_mutex);
5979 		un->un_power_level = SD_SPINDLE_OFF;
5980 	}
5981 
5982 	mutex_exit(SD_MUTEX(un));
5983 
5984 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5985 
5986 	return (DDI_SUCCESS);
5987 }
5988 
5989 
5990 /*
5991  *    Function: sd_ddi_resume
5992  *
5993  * Description: Performs system power-up operations..
5994  *
5995  * Return Code: DDI_SUCCESS
5996  *		DDI_FAILURE
5997  *
5998  *     Context: Kernel thread context
5999  */
6000 
6001 static int
6002 sd_ddi_resume(dev_info_t *devi)
6003 {
6004 	struct	sd_lun	*un;
6005 
6006 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6007 	if (un == NULL) {
6008 		return (DDI_FAILURE);
6009 	}
6010 
6011 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6012 
6013 	mutex_enter(SD_MUTEX(un));
6014 	Restore_state(un);
6015 
6016 	/*
6017 	 * Restore the state which was saved to give the
6018 	 * the right state in un_last_state
6019 	 */
6020 	un->un_last_state = un->un_save_state;
6021 	/*
6022 	 * Note: throttle comes back at full.
6023 	 * Also note: this MUST be done before calling pm_raise_power
6024 	 * otherwise the system can get hung in biowait. The scenario where
6025 	 * this'll happen is under cpr suspend. Writing of the system
6026 	 * state goes through sddump, which writes 0 to un_throttle. If
6027 	 * writing the system state then fails, example if the partition is
6028 	 * too small, then cpr attempts a resume. If throttle isn't restored
6029 	 * from the saved value until after calling pm_raise_power then
6030 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6031 	 * in biowait.
6032 	 */
6033 	un->un_throttle = un->un_saved_throttle;
6034 
6035 	/*
6036 	 * The chance of failure is very rare as the only command done in power
6037 	 * entry point is START command when you transition from 0->1 or
6038 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6039 	 * which suspend was done. Ignore the return value as the resume should
6040 	 * not be failed. In the case of removable media the media need not be
6041 	 * inserted and hence there is a chance that raise power will fail with
6042 	 * media not present.
6043 	 */
6044 	if (un->un_f_attach_spinup) {
6045 		mutex_exit(SD_MUTEX(un));
6046 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6047 		mutex_enter(SD_MUTEX(un));
6048 	}
6049 
6050 	/*
6051 	 * Don't broadcast to the suspend cv and therefore possibly
6052 	 * start I/O until after power has been restored.
6053 	 */
6054 	cv_broadcast(&un->un_suspend_cv);
6055 	cv_broadcast(&un->un_state_cv);
6056 
6057 	/* restart thread */
6058 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6059 		scsi_watch_resume(un->un_swr_token);
6060 	}
6061 
6062 #if (defined(__fibre))
6063 	if (un->un_f_is_fibre == TRUE) {
6064 		/*
6065 		 * Add callbacks for insert and remove events
6066 		 */
6067 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6068 			sd_init_event_callbacks(un);
6069 		}
6070 	}
6071 #endif
6072 
6073 	/*
6074 	 * Transport any pending commands to the target.
6075 	 *
6076 	 * If this is a low-activity device commands in queue will have to wait
6077 	 * until new commands come in, which may take awhile. Also, we
6078 	 * specifically don't check un_ncmds_in_transport because we know that
6079 	 * there really are no commands in progress after the unit was
6080 	 * suspended and we could have reached the throttle level, been
6081 	 * suspended, and have no new commands coming in for awhile. Highly
6082 	 * unlikely, but so is the low-activity disk scenario.
6083 	 */
6084 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6085 
6086 	sd_start_cmds(un, NULL);
6087 	mutex_exit(SD_MUTEX(un));
6088 
6089 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6090 
6091 	return (DDI_SUCCESS);
6092 }
6093 
6094 
6095 /*
6096  *    Function: sd_ddi_pm_resume
6097  *
6098  * Description: Set the drive state to powered on.
6099  *		Someone else is required to actually change the drive
6100  *		power level.
6101  *
6102  *   Arguments: un - driver soft state (unit) structure
6103  *
6104  * Return Code: DDI_SUCCESS
6105  *
6106  *     Context: Kernel thread context
6107  */
6108 
6109 static int
6110 sd_ddi_pm_resume(struct sd_lun *un)
6111 {
6112 	ASSERT(un != NULL);
6113 
6114 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6115 	mutex_enter(SD_MUTEX(un));
6116 	un->un_power_level = SD_SPINDLE_ON;
6117 
6118 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6119 	mutex_enter(&un->un_pm_mutex);
6120 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6121 		un->un_pm_count++;
6122 		ASSERT(un->un_pm_count == 0);
6123 		/*
6124 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6125 		 * un_suspend_cv is for a system resume, not a power management
6126 		 * device resume. (4297749)
6127 		 *	 cv_broadcast(&un->un_suspend_cv);
6128 		 */
6129 	}
6130 	mutex_exit(&un->un_pm_mutex);
6131 	mutex_exit(SD_MUTEX(un));
6132 
6133 	return (DDI_SUCCESS);
6134 }
6135 
6136 
6137 /*
6138  *    Function: sd_pm_idletimeout_handler
6139  *
6140  * Description: A timer routine that's active only while a device is busy.
6141  *		The purpose is to extend slightly the pm framework's busy
6142  *		view of the device to prevent busy/idle thrashing for
6143  *		back-to-back commands. Do this by comparing the current time
6144  *		to the time at which the last command completed and when the
6145  *		difference is greater than sd_pm_idletime, call
6146  *		pm_idle_component. In addition to indicating idle to the pm
6147  *		framework, update the chain type to again use the internal pm
6148  *		layers of the driver.
6149  *
6150  *   Arguments: arg - driver soft state (unit) structure
6151  *
6152  *     Context: Executes in a timeout(9F) thread context
6153  */
6154 
6155 static void
6156 sd_pm_idletimeout_handler(void *arg)
6157 {
6158 	struct sd_lun *un = arg;
6159 
6160 	time_t	now;
6161 
6162 	mutex_enter(&sd_detach_mutex);
6163 	if (un->un_detach_count != 0) {
6164 		/* Abort if the instance is detaching */
6165 		mutex_exit(&sd_detach_mutex);
6166 		return;
6167 	}
6168 	mutex_exit(&sd_detach_mutex);
6169 
6170 	now = ddi_get_time();
6171 	/*
6172 	 * Grab both mutexes, in the proper order, since we're accessing
6173 	 * both PM and softstate variables.
6174 	 */
6175 	mutex_enter(SD_MUTEX(un));
6176 	mutex_enter(&un->un_pm_mutex);
6177 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6178 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6179 		/*
6180 		 * Update the chain types.
6181 		 * This takes affect on the next new command received.
6182 		 */
6183 		if (un->un_f_non_devbsize_supported) {
6184 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6185 		} else {
6186 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6187 		}
6188 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6189 
6190 		SD_TRACE(SD_LOG_IO_PM, un,
6191 		    "sd_pm_idletimeout_handler: idling device\n");
6192 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6193 		un->un_pm_idle_timeid = NULL;
6194 	} else {
6195 		un->un_pm_idle_timeid =
6196 		    timeout(sd_pm_idletimeout_handler, un,
6197 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6198 	}
6199 	mutex_exit(&un->un_pm_mutex);
6200 	mutex_exit(SD_MUTEX(un));
6201 }
6202 
6203 
6204 /*
6205  *    Function: sd_pm_timeout_handler
6206  *
6207  * Description: Callback to tell framework we are idle.
6208  *
6209  *     Context: timeout(9f) thread context.
6210  */
6211 
6212 static void
6213 sd_pm_timeout_handler(void *arg)
6214 {
6215 	struct sd_lun *un = arg;
6216 
6217 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6218 	mutex_enter(&un->un_pm_mutex);
6219 	un->un_pm_timeid = NULL;
6220 	mutex_exit(&un->un_pm_mutex);
6221 }
6222 
6223 
6224 /*
6225  *    Function: sdpower
6226  *
6227  * Description: PM entry point.
6228  *
6229  * Return Code: DDI_SUCCESS
6230  *		DDI_FAILURE
6231  *
6232  *     Context: Kernel thread context
6233  */
6234 
6235 static int
6236 sdpower(dev_info_t *devi, int component, int level)
6237 {
6238 	struct sd_lun	*un;
6239 	int		instance;
6240 	int		rval = DDI_SUCCESS;
6241 	uint_t		i, log_page_size, maxcycles, ncycles;
6242 	uchar_t		*log_page_data;
6243 	int		log_sense_page;
6244 	int		medium_present;
6245 	time_t		intvlp;
6246 	dev_t		dev;
6247 	struct pm_trans_data	sd_pm_tran_data;
6248 	uchar_t		save_state;
6249 	int		sval;
6250 	uchar_t		state_before_pm;
6251 	int		got_semaphore_here;
6252 	sd_ssc_t	*ssc;
6253 
6254 	instance = ddi_get_instance(devi);
6255 
6256 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6257 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6258 	    component != 0) {
6259 		return (DDI_FAILURE);
6260 	}
6261 
6262 	dev = sd_make_device(SD_DEVINFO(un));
6263 	ssc = sd_ssc_init(un);
6264 
6265 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6266 
6267 	/*
6268 	 * Must synchronize power down with close.
6269 	 * Attempt to decrement/acquire the open/close semaphore,
6270 	 * but do NOT wait on it. If it's not greater than zero,
6271 	 * ie. it can't be decremented without waiting, then
6272 	 * someone else, either open or close, already has it
6273 	 * and the try returns 0. Use that knowledge here to determine
6274 	 * if it's OK to change the device power level.
6275 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6276 	 * here.
6277 	 */
6278 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6279 
6280 	mutex_enter(SD_MUTEX(un));
6281 
6282 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6283 	    un->un_ncmds_in_driver);
6284 
6285 	/*
6286 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6287 	 * already being processed in the driver, or if the semaphore was
6288 	 * not gotten here it indicates an open or close is being processed.
6289 	 * At the same time somebody is requesting to go low power which
6290 	 * can't happen, therefore we need to return failure.
6291 	 */
6292 	if ((level == SD_SPINDLE_OFF) &&
6293 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6294 		mutex_exit(SD_MUTEX(un));
6295 
6296 		if (got_semaphore_here != 0) {
6297 			sema_v(&un->un_semoclose);
6298 		}
6299 		SD_TRACE(SD_LOG_IO_PM, un,
6300 		    "sdpower: exit, device has queued cmds.\n");
6301 
6302 		goto sdpower_failed;
6303 	}
6304 
6305 	/*
6306 	 * if it is OFFLINE that means the disk is completely dead
6307 	 * in our case we have to put the disk in on or off by sending commands
6308 	 * Of course that will fail anyway so return back here.
6309 	 *
6310 	 * Power changes to a device that's OFFLINE or SUSPENDED
6311 	 * are not allowed.
6312 	 */
6313 	if ((un->un_state == SD_STATE_OFFLINE) ||
6314 	    (un->un_state == SD_STATE_SUSPENDED)) {
6315 		mutex_exit(SD_MUTEX(un));
6316 
6317 		if (got_semaphore_here != 0) {
6318 			sema_v(&un->un_semoclose);
6319 		}
6320 		SD_TRACE(SD_LOG_IO_PM, un,
6321 		    "sdpower: exit, device is off-line.\n");
6322 
6323 		goto sdpower_failed;
6324 	}
6325 
6326 	/*
6327 	 * Change the device's state to indicate it's power level
6328 	 * is being changed. Do this to prevent a power off in the
6329 	 * middle of commands, which is especially bad on devices
6330 	 * that are really powered off instead of just spun down.
6331 	 */
6332 	state_before_pm = un->un_state;
6333 	un->un_state = SD_STATE_PM_CHANGING;
6334 
6335 	mutex_exit(SD_MUTEX(un));
6336 
6337 	/*
6338 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6339 	 * bypass the following checking, otherwise, check the log
6340 	 * sense information for this device
6341 	 */
6342 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6343 		/*
6344 		 * Get the log sense information to understand whether the
6345 		 * the powercycle counts have gone beyond the threshhold.
6346 		 */
6347 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6348 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6349 
6350 		mutex_enter(SD_MUTEX(un));
6351 		log_sense_page = un->un_start_stop_cycle_page;
6352 		mutex_exit(SD_MUTEX(un));
6353 
6354 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6355 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6356 
6357 		if (rval != 0) {
6358 			if (rval == EIO)
6359 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6360 			else
6361 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6362 		}
6363 
6364 #ifdef	SDDEBUG
6365 		if (sd_force_pm_supported) {
6366 			/* Force a successful result */
6367 			rval = 0;
6368 		}
6369 #endif
6370 		if (rval != 0) {
6371 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6372 			    "Log Sense Failed\n");
6373 
6374 			kmem_free(log_page_data, log_page_size);
6375 			/* Cannot support power management on those drives */
6376 
6377 			if (got_semaphore_here != 0) {
6378 				sema_v(&un->un_semoclose);
6379 			}
6380 			/*
6381 			 * On exit put the state back to it's original value
6382 			 * and broadcast to anyone waiting for the power
6383 			 * change completion.
6384 			 */
6385 			mutex_enter(SD_MUTEX(un));
6386 			un->un_state = state_before_pm;
6387 			cv_broadcast(&un->un_suspend_cv);
6388 			mutex_exit(SD_MUTEX(un));
6389 			SD_TRACE(SD_LOG_IO_PM, un,
6390 			    "sdpower: exit, Log Sense Failed.\n");
6391 
6392 			goto sdpower_failed;
6393 		}
6394 
6395 		/*
6396 		 * From the page data - Convert the essential information to
6397 		 * pm_trans_data
6398 		 */
6399 		maxcycles =
6400 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6401 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6402 
6403 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6404 
6405 		ncycles =
6406 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6407 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6408 
6409 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6410 
6411 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6412 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6413 			    log_page_data[8+i];
6414 		}
6415 
6416 		kmem_free(log_page_data, log_page_size);
6417 
6418 		/*
6419 		 * Call pm_trans_check routine to get the Ok from
6420 		 * the global policy
6421 		 */
6422 
6423 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6424 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6425 
6426 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6427 #ifdef	SDDEBUG
6428 		if (sd_force_pm_supported) {
6429 			/* Force a successful result */
6430 			rval = 1;
6431 		}
6432 #endif
6433 		switch (rval) {
6434 		case 0:
6435 			/*
6436 			 * Not Ok to Power cycle or error in parameters passed
6437 			 * Would have given the advised time to consider power
6438 			 * cycle. Based on the new intvlp parameter we are
6439 			 * supposed to pretend we are busy so that pm framework
6440 			 * will never call our power entry point. Because of
6441 			 * that install a timeout handler and wait for the
6442 			 * recommended time to elapse so that power management
6443 			 * can be effective again.
6444 			 *
6445 			 * To effect this behavior, call pm_busy_component to
6446 			 * indicate to the framework this device is busy.
6447 			 * By not adjusting un_pm_count the rest of PM in
6448 			 * the driver will function normally, and independent
6449 			 * of this but because the framework is told the device
6450 			 * is busy it won't attempt powering down until it gets
6451 			 * a matching idle. The timeout handler sends this.
6452 			 * Note: sd_pm_entry can't be called here to do this
6453 			 * because sdpower may have been called as a result
6454 			 * of a call to pm_raise_power from within sd_pm_entry.
6455 			 *
6456 			 * If a timeout handler is already active then
6457 			 * don't install another.
6458 			 */
6459 			mutex_enter(&un->un_pm_mutex);
6460 			if (un->un_pm_timeid == NULL) {
6461 				un->un_pm_timeid =
6462 				    timeout(sd_pm_timeout_handler,
6463 				    un, intvlp * drv_usectohz(1000000));
6464 				mutex_exit(&un->un_pm_mutex);
6465 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6466 			} else {
6467 				mutex_exit(&un->un_pm_mutex);
6468 			}
6469 			if (got_semaphore_here != 0) {
6470 				sema_v(&un->un_semoclose);
6471 			}
6472 			/*
6473 			 * On exit put the state back to it's original value
6474 			 * and broadcast to anyone waiting for the power
6475 			 * change completion.
6476 			 */
6477 			mutex_enter(SD_MUTEX(un));
6478 			un->un_state = state_before_pm;
6479 			cv_broadcast(&un->un_suspend_cv);
6480 			mutex_exit(SD_MUTEX(un));
6481 
6482 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6483 			    "trans check Failed, not ok to power cycle.\n");
6484 
6485 			goto sdpower_failed;
6486 		case -1:
6487 			if (got_semaphore_here != 0) {
6488 				sema_v(&un->un_semoclose);
6489 			}
6490 			/*
6491 			 * On exit put the state back to it's original value
6492 			 * and broadcast to anyone waiting for the power
6493 			 * change completion.
6494 			 */
6495 			mutex_enter(SD_MUTEX(un));
6496 			un->un_state = state_before_pm;
6497 			cv_broadcast(&un->un_suspend_cv);
6498 			mutex_exit(SD_MUTEX(un));
6499 			SD_TRACE(SD_LOG_IO_PM, un,
6500 			    "sdpower: exit, trans check command Failed.\n");
6501 
6502 			goto sdpower_failed;
6503 		}
6504 	}
6505 
6506 	if (level == SD_SPINDLE_OFF) {
6507 		/*
6508 		 * Save the last state... if the STOP FAILS we need it
6509 		 * for restoring
6510 		 */
6511 		mutex_enter(SD_MUTEX(un));
6512 		save_state = un->un_last_state;
6513 		/*
6514 		 * There must not be any cmds. getting processed
6515 		 * in the driver when we get here. Power to the
6516 		 * device is potentially going off.
6517 		 */
6518 		ASSERT(un->un_ncmds_in_driver == 0);
6519 		mutex_exit(SD_MUTEX(un));
6520 
6521 		/*
6522 		 * For now suspend the device completely before spindle is
6523 		 * turned off
6524 		 */
6525 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6526 			if (got_semaphore_here != 0) {
6527 				sema_v(&un->un_semoclose);
6528 			}
6529 			/*
6530 			 * On exit put the state back to it's original value
6531 			 * and broadcast to anyone waiting for the power
6532 			 * change completion.
6533 			 */
6534 			mutex_enter(SD_MUTEX(un));
6535 			un->un_state = state_before_pm;
6536 			cv_broadcast(&un->un_suspend_cv);
6537 			mutex_exit(SD_MUTEX(un));
6538 			SD_TRACE(SD_LOG_IO_PM, un,
6539 			    "sdpower: exit, PM suspend Failed.\n");
6540 
6541 			goto sdpower_failed;
6542 		}
6543 	}
6544 
6545 	/*
6546 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6547 	 * close, or strategy. Dump no long uses this routine, it uses it's
6548 	 * own code so it can be done in polled mode.
6549 	 */
6550 
6551 	medium_present = TRUE;
6552 
6553 	/*
6554 	 * When powering up, issue a TUR in case the device is at unit
6555 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6556 	 * a deadlock on un_pm_busy_cv will occur.
6557 	 */
6558 	if (level == SD_SPINDLE_ON) {
6559 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6560 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6561 		if (sval != 0)
6562 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6563 	}
6564 
6565 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6566 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6567 
6568 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6569 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6570 	    SD_PATH_DIRECT);
6571 	if (sval != 0) {
6572 		if (sval == EIO)
6573 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6574 		else
6575 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6576 	}
6577 
6578 	/* Command failed, check for media present. */
6579 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6580 		medium_present = FALSE;
6581 	}
6582 
6583 	/*
6584 	 * The conditions of interest here are:
6585 	 *   if a spindle off with media present fails,
6586 	 *	then restore the state and return an error.
6587 	 *   else if a spindle on fails,
6588 	 *	then return an error (there's no state to restore).
6589 	 * In all other cases we setup for the new state
6590 	 * and return success.
6591 	 */
6592 	switch (level) {
6593 	case SD_SPINDLE_OFF:
6594 		if ((medium_present == TRUE) && (sval != 0)) {
6595 			/* The stop command from above failed */
6596 			rval = DDI_FAILURE;
6597 			/*
6598 			 * The stop command failed, and we have media
6599 			 * present. Put the level back by calling the
6600 			 * sd_pm_resume() and set the state back to
6601 			 * it's previous value.
6602 			 */
6603 			(void) sd_ddi_pm_resume(un);
6604 			mutex_enter(SD_MUTEX(un));
6605 			un->un_last_state = save_state;
6606 			mutex_exit(SD_MUTEX(un));
6607 			break;
6608 		}
6609 		/*
6610 		 * The stop command from above succeeded.
6611 		 */
6612 		if (un->un_f_monitor_media_state) {
6613 			/*
6614 			 * Terminate watch thread in case of removable media
6615 			 * devices going into low power state. This is as per
6616 			 * the requirements of pm framework, otherwise commands
6617 			 * will be generated for the device (through watch
6618 			 * thread), even when the device is in low power state.
6619 			 */
6620 			mutex_enter(SD_MUTEX(un));
6621 			un->un_f_watcht_stopped = FALSE;
6622 			if (un->un_swr_token != NULL) {
6623 				opaque_t temp_token = un->un_swr_token;
6624 				un->un_f_watcht_stopped = TRUE;
6625 				un->un_swr_token = NULL;
6626 				mutex_exit(SD_MUTEX(un));
6627 				(void) scsi_watch_request_terminate(temp_token,
6628 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6629 			} else {
6630 				mutex_exit(SD_MUTEX(un));
6631 			}
6632 		}
6633 		break;
6634 
6635 	default:	/* The level requested is spindle on... */
6636 		/*
6637 		 * Legacy behavior: return success on a failed spinup
6638 		 * if there is no media in the drive.
6639 		 * Do this by looking at medium_present here.
6640 		 */
6641 		if ((sval != 0) && medium_present) {
6642 			/* The start command from above failed */
6643 			rval = DDI_FAILURE;
6644 			break;
6645 		}
6646 		/*
6647 		 * The start command from above succeeded
6648 		 * Resume the devices now that we have
6649 		 * started the disks
6650 		 */
6651 		(void) sd_ddi_pm_resume(un);
6652 
6653 		/*
6654 		 * Resume the watch thread since it was suspended
6655 		 * when the device went into low power mode.
6656 		 */
6657 		if (un->un_f_monitor_media_state) {
6658 			mutex_enter(SD_MUTEX(un));
6659 			if (un->un_f_watcht_stopped == TRUE) {
6660 				opaque_t temp_token;
6661 
6662 				un->un_f_watcht_stopped = FALSE;
6663 				mutex_exit(SD_MUTEX(un));
6664 				temp_token = scsi_watch_request_submit(
6665 				    SD_SCSI_DEVP(un),
6666 				    sd_check_media_time,
6667 				    SENSE_LENGTH, sd_media_watch_cb,
6668 				    (caddr_t)dev);
6669 				mutex_enter(SD_MUTEX(un));
6670 				un->un_swr_token = temp_token;
6671 			}
6672 			mutex_exit(SD_MUTEX(un));
6673 		}
6674 	}
6675 	if (got_semaphore_here != 0) {
6676 		sema_v(&un->un_semoclose);
6677 	}
6678 	/*
6679 	 * On exit put the state back to it's original value
6680 	 * and broadcast to anyone waiting for the power
6681 	 * change completion.
6682 	 */
6683 	mutex_enter(SD_MUTEX(un));
6684 	un->un_state = state_before_pm;
6685 	cv_broadcast(&un->un_suspend_cv);
6686 	mutex_exit(SD_MUTEX(un));
6687 
6688 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6689 
6690 	sd_ssc_fini(ssc);
6691 	return (rval);
6692 
6693 sdpower_failed:
6694 
6695 	sd_ssc_fini(ssc);
6696 	return (DDI_FAILURE);
6697 }
6698 
6699 
6700 
6701 /*
6702  *    Function: sdattach
6703  *
6704  * Description: Driver's attach(9e) entry point function.
6705  *
6706  *   Arguments: devi - opaque device info handle
6707  *		cmd  - attach  type
6708  *
6709  * Return Code: DDI_SUCCESS
6710  *		DDI_FAILURE
6711  *
6712  *     Context: Kernel thread context
6713  */
6714 
6715 static int
6716 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6717 {
6718 	switch (cmd) {
6719 	case DDI_ATTACH:
6720 		return (sd_unit_attach(devi));
6721 	case DDI_RESUME:
6722 		return (sd_ddi_resume(devi));
6723 	default:
6724 		break;
6725 	}
6726 	return (DDI_FAILURE);
6727 }
6728 
6729 
6730 /*
6731  *    Function: sddetach
6732  *
6733  * Description: Driver's detach(9E) entry point function.
6734  *
6735  *   Arguments: devi - opaque device info handle
6736  *		cmd  - detach  type
6737  *
6738  * Return Code: DDI_SUCCESS
6739  *		DDI_FAILURE
6740  *
6741  *     Context: Kernel thread context
6742  */
6743 
6744 static int
6745 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6746 {
6747 	switch (cmd) {
6748 	case DDI_DETACH:
6749 		return (sd_unit_detach(devi));
6750 	case DDI_SUSPEND:
6751 		return (sd_ddi_suspend(devi));
6752 	default:
6753 		break;
6754 	}
6755 	return (DDI_FAILURE);
6756 }
6757 
6758 
6759 /*
6760  *     Function: sd_sync_with_callback
6761  *
6762  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6763  *		 state while the callback routine is active.
6764  *
6765  *    Arguments: un: softstate structure for the instance
6766  *
6767  *	Context: Kernel thread context
6768  */
6769 
6770 static void
6771 sd_sync_with_callback(struct sd_lun *un)
6772 {
6773 	ASSERT(un != NULL);
6774 
6775 	mutex_enter(SD_MUTEX(un));
6776 
6777 	ASSERT(un->un_in_callback >= 0);
6778 
6779 	while (un->un_in_callback > 0) {
6780 		mutex_exit(SD_MUTEX(un));
6781 		delay(2);
6782 		mutex_enter(SD_MUTEX(un));
6783 	}
6784 
6785 	mutex_exit(SD_MUTEX(un));
6786 }
6787 
6788 /*
6789  *    Function: sd_unit_attach
6790  *
6791  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6792  *		the soft state structure for the device and performs
6793  *		all necessary structure and device initializations.
6794  *
6795  *   Arguments: devi: the system's dev_info_t for the device.
6796  *
6797  * Return Code: DDI_SUCCESS if attach is successful.
6798  *		DDI_FAILURE if any part of the attach fails.
6799  *
6800  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6801  *		Kernel thread context only.  Can sleep.
6802  */
6803 
6804 static int
6805 sd_unit_attach(dev_info_t *devi)
6806 {
6807 	struct	scsi_device	*devp;
6808 	struct	sd_lun		*un;
6809 	char			*variantp;
6810 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6811 	int	instance;
6812 	int	rval;
6813 	int	wc_enabled;
6814 	int	tgt;
6815 	uint64_t	capacity;
6816 	uint_t		lbasize = 0;
6817 	dev_info_t	*pdip = ddi_get_parent(devi);
6818 	int		offbyone = 0;
6819 	int		geom_label_valid = 0;
6820 	sd_ssc_t	*ssc;
6821 	int		status;
6822 	struct sd_fm_internal	*sfip = NULL;
6823 #if defined(__sparc)
6824 	int		max_xfer_size;
6825 #endif
6826 
6827 	/*
6828 	 * Retrieve the target driver's private data area. This was set
6829 	 * up by the HBA.
6830 	 */
6831 	devp = ddi_get_driver_private(devi);
6832 
6833 	/*
6834 	 * Retrieve the target ID of the device.
6835 	 */
6836 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6837 	    SCSI_ADDR_PROP_TARGET, -1);
6838 
6839 	/*
6840 	 * Since we have no idea what state things were left in by the last
6841 	 * user of the device, set up some 'default' settings, ie. turn 'em
6842 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6843 	 * Do this before the scsi_probe, which sends an inquiry.
6844 	 * This is a fix for bug (4430280).
6845 	 * Of special importance is wide-xfer. The drive could have been left
6846 	 * in wide transfer mode by the last driver to communicate with it,
6847 	 * this includes us. If that's the case, and if the following is not
6848 	 * setup properly or we don't re-negotiate with the drive prior to
6849 	 * transferring data to/from the drive, it causes bus parity errors,
6850 	 * data overruns, and unexpected interrupts. This first occurred when
6851 	 * the fix for bug (4378686) was made.
6852 	 */
6853 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6854 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6855 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6856 
6857 	/*
6858 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6859 	 * on a target. Setting it per lun instance actually sets the
6860 	 * capability of this target, which affects those luns already
6861 	 * attached on the same target. So during attach, we can only disable
6862 	 * this capability only when no other lun has been attached on this
6863 	 * target. By doing this, we assume a target has the same tagged-qing
6864 	 * capability for every lun. The condition can be removed when HBA
6865 	 * is changed to support per lun based tagged-qing capability.
6866 	 */
6867 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6868 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6869 	}
6870 
6871 	/*
6872 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6873 	 * This call will allocate and fill in the scsi_inquiry structure
6874 	 * and point the sd_inq member of the scsi_device structure to it.
6875 	 * If the attach succeeds, then this memory will not be de-allocated
6876 	 * (via scsi_unprobe()) until the instance is detached.
6877 	 */
6878 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6879 		goto probe_failed;
6880 	}
6881 
6882 	/*
6883 	 * Check the device type as specified in the inquiry data and
6884 	 * claim it if it is of a type that we support.
6885 	 */
6886 	switch (devp->sd_inq->inq_dtype) {
6887 	case DTYPE_DIRECT:
6888 		break;
6889 	case DTYPE_RODIRECT:
6890 		break;
6891 	case DTYPE_OPTICAL:
6892 		break;
6893 	case DTYPE_NOTPRESENT:
6894 	default:
6895 		/* Unsupported device type; fail the attach. */
6896 		goto probe_failed;
6897 	}
6898 
6899 	/*
6900 	 * Allocate the soft state structure for this unit.
6901 	 *
6902 	 * We rely upon this memory being set to all zeroes by
6903 	 * ddi_soft_state_zalloc().  We assume that any member of the
6904 	 * soft state structure that is not explicitly initialized by
6905 	 * this routine will have a value of zero.
6906 	 */
6907 	instance = ddi_get_instance(devp->sd_dev);
6908 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6909 		goto probe_failed;
6910 	}
6911 
6912 	/*
6913 	 * Retrieve a pointer to the newly-allocated soft state.
6914 	 *
6915 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6916 	 * was successful, unless something has gone horribly wrong and the
6917 	 * ddi's soft state internals are corrupt (in which case it is
6918 	 * probably better to halt here than just fail the attach....)
6919 	 */
6920 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6921 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6922 		    instance);
6923 		/*NOTREACHED*/
6924 	}
6925 
6926 	/*
6927 	 * Link the back ptr of the driver soft state to the scsi_device
6928 	 * struct for this lun.
6929 	 * Save a pointer to the softstate in the driver-private area of
6930 	 * the scsi_device struct.
6931 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6932 	 * we first set un->un_sd below.
6933 	 */
6934 	un->un_sd = devp;
6935 	devp->sd_private = (opaque_t)un;
6936 
6937 	/*
6938 	 * The following must be after devp is stored in the soft state struct.
6939 	 */
6940 #ifdef SDDEBUG
6941 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6942 	    "%s_unit_attach: un:0x%p instance:%d\n",
6943 	    ddi_driver_name(devi), un, instance);
6944 #endif
6945 
6946 	/*
6947 	 * Set up the device type and node type (for the minor nodes).
6948 	 * By default we assume that the device can at least support the
6949 	 * Common Command Set. Call it a CD-ROM if it reports itself
6950 	 * as a RODIRECT device.
6951 	 */
6952 	switch (devp->sd_inq->inq_dtype) {
6953 	case DTYPE_RODIRECT:
6954 		un->un_node_type = DDI_NT_CD_CHAN;
6955 		un->un_ctype	 = CTYPE_CDROM;
6956 		break;
6957 	case DTYPE_OPTICAL:
6958 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6959 		un->un_ctype	 = CTYPE_ROD;
6960 		break;
6961 	default:
6962 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6963 		un->un_ctype	 = CTYPE_CCS;
6964 		break;
6965 	}
6966 
6967 	/*
6968 	 * Try to read the interconnect type from the HBA.
6969 	 *
6970 	 * Note: This driver is currently compiled as two binaries, a parallel
6971 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6972 	 * differences are determined at compile time. In the future a single
6973 	 * binary will be provided and the interconnect type will be used to
6974 	 * differentiate between fibre and parallel scsi behaviors. At that time
6975 	 * it will be necessary for all fibre channel HBAs to support this
6976 	 * property.
6977 	 *
6978 	 * set un_f_is_fiber to TRUE ( default fiber )
6979 	 */
6980 	un->un_f_is_fibre = TRUE;
6981 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6982 	case INTERCONNECT_SSA:
6983 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6984 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6985 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6986 		break;
6987 	case INTERCONNECT_PARALLEL:
6988 		un->un_f_is_fibre = FALSE;
6989 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6990 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6991 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6992 		break;
6993 	case INTERCONNECT_SATA:
6994 		un->un_f_is_fibre = FALSE;
6995 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6996 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6997 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6998 		break;
6999 	case INTERCONNECT_FIBRE:
7000 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7001 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7002 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7003 		break;
7004 	case INTERCONNECT_FABRIC:
7005 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7006 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7007 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7008 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7009 		break;
7010 	default:
7011 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7012 		/*
7013 		 * The HBA does not support the "interconnect-type" property
7014 		 * (or did not provide a recognized type).
7015 		 *
7016 		 * Note: This will be obsoleted when a single fibre channel
7017 		 * and parallel scsi driver is delivered. In the meantime the
7018 		 * interconnect type will be set to the platform default.If that
7019 		 * type is not parallel SCSI, it means that we should be
7020 		 * assuming "ssd" semantics. However, here this also means that
7021 		 * the FC HBA is not supporting the "interconnect-type" property
7022 		 * like we expect it to, so log this occurrence.
7023 		 */
7024 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7025 		if (!SD_IS_PARALLEL_SCSI(un)) {
7026 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7027 			    "sd_unit_attach: un:0x%p Assuming "
7028 			    "INTERCONNECT_FIBRE\n", un);
7029 		} else {
7030 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7031 			    "sd_unit_attach: un:0x%p Assuming "
7032 			    "INTERCONNECT_PARALLEL\n", un);
7033 			un->un_f_is_fibre = FALSE;
7034 		}
7035 #else
7036 		/*
7037 		 * Note: This source will be implemented when a single fibre
7038 		 * channel and parallel scsi driver is delivered. The default
7039 		 * will be to assume that if a device does not support the
7040 		 * "interconnect-type" property it is a parallel SCSI HBA and
7041 		 * we will set the interconnect type for parallel scsi.
7042 		 */
7043 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7044 		un->un_f_is_fibre = FALSE;
7045 #endif
7046 		break;
7047 	}
7048 
7049 	if (un->un_f_is_fibre == TRUE) {
7050 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7051 		    SCSI_VERSION_3) {
7052 			switch (un->un_interconnect_type) {
7053 			case SD_INTERCONNECT_FIBRE:
7054 			case SD_INTERCONNECT_SSA:
7055 				un->un_node_type = DDI_NT_BLOCK_WWN;
7056 				break;
7057 			default:
7058 				break;
7059 			}
7060 		}
7061 	}
7062 
7063 	/*
7064 	 * Initialize the Request Sense command for the target
7065 	 */
7066 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7067 		goto alloc_rqs_failed;
7068 	}
7069 
7070 	/*
7071 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7072 	 * with separate binary for sd and ssd.
7073 	 *
7074 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7075 	 * The hardcoded values will go away when Sparc uses 1 binary
7076 	 * for sd and ssd.  This hardcoded values need to match
7077 	 * SD_RETRY_COUNT in sddef.h
7078 	 * The value used is base on interconnect type.
7079 	 * fibre = 3, parallel = 5
7080 	 */
7081 #if defined(__i386) || defined(__amd64)
7082 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7083 #else
7084 	un->un_retry_count = SD_RETRY_COUNT;
7085 #endif
7086 
7087 	/*
7088 	 * Set the per disk retry count to the default number of retries
7089 	 * for disks and CDROMs. This value can be overridden by the
7090 	 * disk property list or an entry in sd.conf.
7091 	 */
7092 	un->un_notready_retry_count =
7093 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7094 	    : DISK_NOT_READY_RETRY_COUNT(un);
7095 
7096 	/*
7097 	 * Set the busy retry count to the default value of un_retry_count.
7098 	 * This can be overridden by entries in sd.conf or the device
7099 	 * config table.
7100 	 */
7101 	un->un_busy_retry_count = un->un_retry_count;
7102 
7103 	/*
7104 	 * Init the reset threshold for retries.  This number determines
7105 	 * how many retries must be performed before a reset can be issued
7106 	 * (for certain error conditions). This can be overridden by entries
7107 	 * in sd.conf or the device config table.
7108 	 */
7109 	un->un_reset_retry_count = (un->un_retry_count / 2);
7110 
7111 	/*
7112 	 * Set the victim_retry_count to the default un_retry_count
7113 	 */
7114 	un->un_victim_retry_count = (2 * un->un_retry_count);
7115 
7116 	/*
7117 	 * Set the reservation release timeout to the default value of
7118 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7119 	 * device config table.
7120 	 */
7121 	un->un_reserve_release_time = 5;
7122 
7123 	/*
7124 	 * Set up the default maximum transfer size. Note that this may
7125 	 * get updated later in the attach, when setting up default wide
7126 	 * operations for disks.
7127 	 */
7128 #if defined(__i386) || defined(__amd64)
7129 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7130 	un->un_partial_dma_supported = 1;
7131 #else
7132 	un->un_max_xfer_size = (uint_t)maxphys;
7133 #endif
7134 
7135 	/*
7136 	 * Get "allow bus device reset" property (defaults to "enabled" if
7137 	 * the property was not defined). This is to disable bus resets for
7138 	 * certain kinds of error recovery. Note: In the future when a run-time
7139 	 * fibre check is available the soft state flag should default to
7140 	 * enabled.
7141 	 */
7142 	if (un->un_f_is_fibre == TRUE) {
7143 		un->un_f_allow_bus_device_reset = TRUE;
7144 	} else {
7145 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7146 		    "allow-bus-device-reset", 1) != 0) {
7147 			un->un_f_allow_bus_device_reset = TRUE;
7148 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7149 			    "sd_unit_attach: un:0x%p Bus device reset "
7150 			    "enabled\n", un);
7151 		} else {
7152 			un->un_f_allow_bus_device_reset = FALSE;
7153 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7154 			    "sd_unit_attach: un:0x%p Bus device reset "
7155 			    "disabled\n", un);
7156 		}
7157 	}
7158 
7159 	/*
7160 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7161 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7162 	 *
7163 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7164 	 * property. The new "variant" property with a value of "atapi" has been
7165 	 * introduced so that future 'variants' of standard SCSI behavior (like
7166 	 * atapi) could be specified by the underlying HBA drivers by supplying
7167 	 * a new value for the "variant" property, instead of having to define a
7168 	 * new property.
7169 	 */
7170 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7171 		un->un_f_cfg_is_atapi = TRUE;
7172 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7173 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7174 	}
7175 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7176 	    &variantp) == DDI_PROP_SUCCESS) {
7177 		if (strcmp(variantp, "atapi") == 0) {
7178 			un->un_f_cfg_is_atapi = TRUE;
7179 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7180 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7181 		}
7182 		ddi_prop_free(variantp);
7183 	}
7184 
7185 	un->un_cmd_timeout	= SD_IO_TIME;
7186 
7187 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7188 
7189 	/* Info on current states, statuses, etc. (Updated frequently) */
7190 	un->un_state		= SD_STATE_NORMAL;
7191 	un->un_last_state	= SD_STATE_NORMAL;
7192 
7193 	/* Control & status info for command throttling */
7194 	un->un_throttle		= sd_max_throttle;
7195 	un->un_saved_throttle	= sd_max_throttle;
7196 	un->un_min_throttle	= sd_min_throttle;
7197 
7198 	if (un->un_f_is_fibre == TRUE) {
7199 		un->un_f_use_adaptive_throttle = TRUE;
7200 	} else {
7201 		un->un_f_use_adaptive_throttle = FALSE;
7202 	}
7203 
7204 	/* Removable media support. */
7205 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7206 	un->un_mediastate		= DKIO_NONE;
7207 	un->un_specified_mediastate	= DKIO_NONE;
7208 
7209 	/* CVs for suspend/resume (PM or DR) */
7210 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7211 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7212 
7213 	/* Power management support. */
7214 	un->un_power_level = SD_SPINDLE_UNINIT;
7215 
7216 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7217 	un->un_f_wcc_inprog = 0;
7218 
7219 	/*
7220 	 * The open/close semaphore is used to serialize threads executing
7221 	 * in the driver's open & close entry point routines for a given
7222 	 * instance.
7223 	 */
7224 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7225 
7226 	/*
7227 	 * The conf file entry and softstate variable is a forceful override,
7228 	 * meaning a non-zero value must be entered to change the default.
7229 	 */
7230 	un->un_f_disksort_disabled = FALSE;
7231 
7232 	/*
7233 	 * Retrieve the properties from the static driver table or the driver
7234 	 * configuration file (.conf) for this unit and update the soft state
7235 	 * for the device as needed for the indicated properties.
7236 	 * Note: the property configuration needs to occur here as some of the
7237 	 * following routines may have dependencies on soft state flags set
7238 	 * as part of the driver property configuration.
7239 	 */
7240 	sd_read_unit_properties(un);
7241 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7242 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7243 
7244 	/*
7245 	 * Only if a device has "hotpluggable" property, it is
7246 	 * treated as hotpluggable device. Otherwise, it is
7247 	 * regarded as non-hotpluggable one.
7248 	 */
7249 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7250 	    -1) != -1) {
7251 		un->un_f_is_hotpluggable = TRUE;
7252 	}
7253 
7254 	/*
7255 	 * set unit's attributes(flags) according to "hotpluggable" and
7256 	 * RMB bit in INQUIRY data.
7257 	 */
7258 	sd_set_unit_attributes(un, devi);
7259 
7260 	/*
7261 	 * By default, we mark the capacity, lbasize, and geometry
7262 	 * as invalid. Only if we successfully read a valid capacity
7263 	 * will we update the un_blockcount and un_tgt_blocksize with the
7264 	 * valid values (the geometry will be validated later).
7265 	 */
7266 	un->un_f_blockcount_is_valid	= FALSE;
7267 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7268 
7269 	/*
7270 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7271 	 * otherwise.
7272 	 */
7273 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7274 	un->un_blockcount = 0;
7275 
7276 	/*
7277 	 * Set up the per-instance info needed to determine the correct
7278 	 * CDBs and other info for issuing commands to the target.
7279 	 */
7280 	sd_init_cdb_limits(un);
7281 
7282 	/*
7283 	 * Set up the IO chains to use, based upon the target type.
7284 	 */
7285 	if (un->un_f_non_devbsize_supported) {
7286 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7287 	} else {
7288 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7289 	}
7290 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7291 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7292 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7293 
7294 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7295 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7296 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7297 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7298 
7299 
7300 	if (ISCD(un)) {
7301 		un->un_additional_codes = sd_additional_codes;
7302 	} else {
7303 		un->un_additional_codes = NULL;
7304 	}
7305 
7306 	/*
7307 	 * Create the kstats here so they can be available for attach-time
7308 	 * routines that send commands to the unit (either polled or via
7309 	 * sd_send_scsi_cmd).
7310 	 *
7311 	 * Note: This is a critical sequence that needs to be maintained:
7312 	 *	1) Instantiate the kstats here, before any routines using the
7313 	 *	   iopath (i.e. sd_send_scsi_cmd).
7314 	 *	2) Instantiate and initialize the partition stats
7315 	 *	   (sd_set_pstats).
7316 	 *	3) Initialize the error stats (sd_set_errstats), following
7317 	 *	   sd_validate_geometry(),sd_register_devid(),
7318 	 *	   and sd_cache_control().
7319 	 */
7320 
7321 	un->un_stats = kstat_create(sd_label, instance,
7322 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7323 	if (un->un_stats != NULL) {
7324 		un->un_stats->ks_lock = SD_MUTEX(un);
7325 		kstat_install(un->un_stats);
7326 	}
7327 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7328 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7329 
7330 	sd_create_errstats(un, instance);
7331 	if (un->un_errstats == NULL) {
7332 		goto create_errstats_failed;
7333 	}
7334 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7335 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7336 
7337 	/*
7338 	 * The following if/else code was relocated here from below as part
7339 	 * of the fix for bug (4430280). However with the default setup added
7340 	 * on entry to this routine, it's no longer absolutely necessary for
7341 	 * this to be before the call to sd_spin_up_unit.
7342 	 */
7343 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7344 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7345 		    (devp->sd_inq->inq_ansi == 5)) &&
7346 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7347 
7348 		/*
7349 		 * If tagged queueing is supported by the target
7350 		 * and by the host adapter then we will enable it
7351 		 */
7352 		un->un_tagflags = 0;
7353 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7354 		    (un->un_f_arq_enabled == TRUE)) {
7355 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7356 			    1, 1) == 1) {
7357 				un->un_tagflags = FLAG_STAG;
7358 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7359 				    "sd_unit_attach: un:0x%p tag queueing "
7360 				    "enabled\n", un);
7361 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7362 			    "untagged-qing", 0) == 1) {
7363 				un->un_f_opt_queueing = TRUE;
7364 				un->un_saved_throttle = un->un_throttle =
7365 				    min(un->un_throttle, 3);
7366 			} else {
7367 				un->un_f_opt_queueing = FALSE;
7368 				un->un_saved_throttle = un->un_throttle = 1;
7369 			}
7370 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7371 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7372 			/* The Host Adapter supports internal queueing. */
7373 			un->un_f_opt_queueing = TRUE;
7374 			un->un_saved_throttle = un->un_throttle =
7375 			    min(un->un_throttle, 3);
7376 		} else {
7377 			un->un_f_opt_queueing = FALSE;
7378 			un->un_saved_throttle = un->un_throttle = 1;
7379 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7380 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7381 		}
7382 
7383 		/*
7384 		 * Enable large transfers for SATA/SAS drives
7385 		 */
7386 		if (SD_IS_SERIAL(un)) {
7387 			un->un_max_xfer_size =
7388 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7389 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7390 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7391 			    "sd_unit_attach: un:0x%p max transfer "
7392 			    "size=0x%x\n", un, un->un_max_xfer_size);
7393 
7394 		}
7395 
7396 		/* Setup or tear down default wide operations for disks */
7397 
7398 		/*
7399 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7400 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7401 		 * system and be set to different values. In the future this
7402 		 * code may need to be updated when the ssd module is
7403 		 * obsoleted and removed from the system. (4299588)
7404 		 */
7405 		if (SD_IS_PARALLEL_SCSI(un) &&
7406 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7407 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7408 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7409 			    1, 1) == 1) {
7410 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7411 				    "sd_unit_attach: un:0x%p Wide Transfer "
7412 				    "enabled\n", un);
7413 			}
7414 
7415 			/*
7416 			 * If tagged queuing has also been enabled, then
7417 			 * enable large xfers
7418 			 */
7419 			if (un->un_saved_throttle == sd_max_throttle) {
7420 				un->un_max_xfer_size =
7421 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7422 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7423 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7424 				    "sd_unit_attach: un:0x%p max transfer "
7425 				    "size=0x%x\n", un, un->un_max_xfer_size);
7426 			}
7427 		} else {
7428 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7429 			    0, 1) == 1) {
7430 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7431 				    "sd_unit_attach: un:0x%p "
7432 				    "Wide Transfer disabled\n", un);
7433 			}
7434 		}
7435 	} else {
7436 		un->un_tagflags = FLAG_STAG;
7437 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7438 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7439 	}
7440 
7441 	/*
7442 	 * If this target supports LUN reset, try to enable it.
7443 	 */
7444 	if (un->un_f_lun_reset_enabled) {
7445 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7446 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7447 			    "un:0x%p lun_reset capability set\n", un);
7448 		} else {
7449 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7450 			    "un:0x%p lun-reset capability not set\n", un);
7451 		}
7452 	}
7453 
7454 	/*
7455 	 * Adjust the maximum transfer size. This is to fix
7456 	 * the problem of partial DMA support on SPARC. Some
7457 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7458 	 * size, which requires partial DMA support on SPARC.
7459 	 * In the future the SPARC pci nexus driver may solve
7460 	 * the problem instead of this fix.
7461 	 */
7462 #if defined(__sparc)
7463 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7464 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7465 		un->un_max_xfer_size = max_xfer_size;
7466 		un->un_partial_dma_supported = 1;
7467 	}
7468 #endif
7469 
7470 	/*
7471 	 * Set PKT_DMA_PARTIAL flag.
7472 	 */
7473 	if (un->un_partial_dma_supported == 1) {
7474 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7475 	} else {
7476 		un->un_pkt_flags = 0;
7477 	}
7478 
7479 	/* Initialize sd_ssc_t for internal uscsi commands */
7480 	ssc = sd_ssc_init(un);
7481 	scsi_fm_init(devp);
7482 
7483 	/*
7484 	 * Allocate memory for SCSI FMA stuffs.
7485 	 */
7486 	un->un_fm_private =
7487 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7488 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7489 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7490 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7491 	sfip->fm_ssc.ssc_un = un;
7492 
7493 	if (ISCD(un) ||
7494 	    un->un_f_has_removable_media ||
7495 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7496 		/*
7497 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7498 		 * Their log are unchanged.
7499 		 */
7500 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7501 	} else {
7502 		/*
7503 		 * If enter here, it should be non-CDROM and FM-capable
7504 		 * device, and it will not keep the old scsi_log as before
7505 		 * in /var/adm/messages. However, the property
7506 		 * "fm-scsi-log" will control whether the FM telemetry will
7507 		 * be logged in /var/adm/messages.
7508 		 */
7509 		int fm_scsi_log;
7510 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7511 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7512 
7513 		if (fm_scsi_log)
7514 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7515 		else
7516 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7517 	}
7518 
7519 	/*
7520 	 * At this point in the attach, we have enough info in the
7521 	 * soft state to be able to issue commands to the target.
7522 	 *
7523 	 * All command paths used below MUST issue their commands as
7524 	 * SD_PATH_DIRECT. This is important as intermediate layers
7525 	 * are not all initialized yet (such as PM).
7526 	 */
7527 
7528 	/*
7529 	 * Send a TEST UNIT READY command to the device. This should clear
7530 	 * any outstanding UNIT ATTENTION that may be present.
7531 	 *
7532 	 * Note: Don't check for success, just track if there is a reservation,
7533 	 * this is a throw away command to clear any unit attentions.
7534 	 *
7535 	 * Note: This MUST be the first command issued to the target during
7536 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7537 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7538 	 * with attempts at spinning up a device with no media.
7539 	 */
7540 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7541 	if (status != 0) {
7542 		if (status == EACCES)
7543 			reservation_flag = SD_TARGET_IS_RESERVED;
7544 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7545 	}
7546 
7547 	/*
7548 	 * If the device is NOT a removable media device, attempt to spin
7549 	 * it up (using the START_STOP_UNIT command) and read its capacity
7550 	 * (using the READ CAPACITY command).  Note, however, that either
7551 	 * of these could fail and in some cases we would continue with
7552 	 * the attach despite the failure (see below).
7553 	 */
7554 	if (un->un_f_descr_format_supported) {
7555 
7556 		switch (sd_spin_up_unit(ssc)) {
7557 		case 0:
7558 			/*
7559 			 * Spin-up was successful; now try to read the
7560 			 * capacity.  If successful then save the results
7561 			 * and mark the capacity & lbasize as valid.
7562 			 */
7563 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7564 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7565 
7566 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7567 			    &lbasize, SD_PATH_DIRECT);
7568 
7569 			switch (status) {
7570 			case 0: {
7571 				if (capacity > DK_MAX_BLOCKS) {
7572 #ifdef _LP64
7573 					if ((capacity + 1) >
7574 					    SD_GROUP1_MAX_ADDRESS) {
7575 						/*
7576 						 * Enable descriptor format
7577 						 * sense data so that we can
7578 						 * get 64 bit sense data
7579 						 * fields.
7580 						 */
7581 						sd_enable_descr_sense(ssc);
7582 					}
7583 #else
7584 					/* 32-bit kernels can't handle this */
7585 					scsi_log(SD_DEVINFO(un),
7586 					    sd_label, CE_WARN,
7587 					    "disk has %llu blocks, which "
7588 					    "is too large for a 32-bit "
7589 					    "kernel", capacity);
7590 
7591 #if defined(__i386) || defined(__amd64)
7592 					/*
7593 					 * 1TB disk was treated as (1T - 512)B
7594 					 * in the past, so that it might have
7595 					 * valid VTOC and solaris partitions,
7596 					 * we have to allow it to continue to
7597 					 * work.
7598 					 */
7599 					if (capacity -1 > DK_MAX_BLOCKS)
7600 #endif
7601 					goto spinup_failed;
7602 #endif
7603 				}
7604 
7605 				/*
7606 				 * Here it's not necessary to check the case:
7607 				 * the capacity of the device is bigger than
7608 				 * what the max hba cdb can support. Because
7609 				 * sd_send_scsi_READ_CAPACITY will retrieve
7610 				 * the capacity by sending USCSI command, which
7611 				 * is constrained by the max hba cdb. Actually,
7612 				 * sd_send_scsi_READ_CAPACITY will return
7613 				 * EINVAL when using bigger cdb than required
7614 				 * cdb length. Will handle this case in
7615 				 * "case EINVAL".
7616 				 */
7617 
7618 				/*
7619 				 * The following relies on
7620 				 * sd_send_scsi_READ_CAPACITY never
7621 				 * returning 0 for capacity and/or lbasize.
7622 				 */
7623 				sd_update_block_info(un, lbasize, capacity);
7624 
7625 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7626 				    "sd_unit_attach: un:0x%p capacity = %ld "
7627 				    "blocks; lbasize= %ld.\n", un,
7628 				    un->un_blockcount, un->un_tgt_blocksize);
7629 
7630 				break;
7631 			}
7632 			case EINVAL:
7633 				/*
7634 				 * In the case where the max-cdb-length property
7635 				 * is smaller than the required CDB length for
7636 				 * a SCSI device, a target driver can fail to
7637 				 * attach to that device.
7638 				 */
7639 				scsi_log(SD_DEVINFO(un),
7640 				    sd_label, CE_WARN,
7641 				    "disk capacity is too large "
7642 				    "for current cdb length");
7643 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7644 
7645 				goto spinup_failed;
7646 			case EACCES:
7647 				/*
7648 				 * Should never get here if the spin-up
7649 				 * succeeded, but code it in anyway.
7650 				 * From here, just continue with the attach...
7651 				 */
7652 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7653 				    "sd_unit_attach: un:0x%p "
7654 				    "sd_send_scsi_READ_CAPACITY "
7655 				    "returned reservation conflict\n", un);
7656 				reservation_flag = SD_TARGET_IS_RESERVED;
7657 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7658 				break;
7659 			default:
7660 				/*
7661 				 * Likewise, should never get here if the
7662 				 * spin-up succeeded. Just continue with
7663 				 * the attach...
7664 				 */
7665 				if (status == EIO)
7666 					sd_ssc_assessment(ssc,
7667 					    SD_FMT_STATUS_CHECK);
7668 				else
7669 					sd_ssc_assessment(ssc,
7670 					    SD_FMT_IGNORE);
7671 				break;
7672 			}
7673 			break;
7674 		case EACCES:
7675 			/*
7676 			 * Device is reserved by another host.  In this case
7677 			 * we could not spin it up or read the capacity, but
7678 			 * we continue with the attach anyway.
7679 			 */
7680 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7681 			    "sd_unit_attach: un:0x%p spin-up reservation "
7682 			    "conflict.\n", un);
7683 			reservation_flag = SD_TARGET_IS_RESERVED;
7684 			break;
7685 		default:
7686 			/* Fail the attach if the spin-up failed. */
7687 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7688 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7689 			goto spinup_failed;
7690 		}
7691 
7692 	}
7693 
7694 	/*
7695 	 * Check to see if this is a MMC drive
7696 	 */
7697 	if (ISCD(un)) {
7698 		sd_set_mmc_caps(ssc);
7699 	}
7700 
7701 
7702 	/*
7703 	 * Add a zero-length attribute to tell the world we support
7704 	 * kernel ioctls (for layered drivers)
7705 	 */
7706 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7707 	    DDI_KERNEL_IOCTL, NULL, 0);
7708 
7709 	/*
7710 	 * Add a boolean property to tell the world we support
7711 	 * the B_FAILFAST flag (for layered drivers)
7712 	 */
7713 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7714 	    "ddi-failfast-supported", NULL, 0);
7715 
7716 	/*
7717 	 * Initialize power management
7718 	 */
7719 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7720 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7721 	sd_setup_pm(ssc, devi);
7722 	if (un->un_f_pm_is_enabled == FALSE) {
7723 		/*
7724 		 * For performance, point to a jump table that does
7725 		 * not include pm.
7726 		 * The direct and priority chains don't change with PM.
7727 		 *
7728 		 * Note: this is currently done based on individual device
7729 		 * capabilities. When an interface for determining system
7730 		 * power enabled state becomes available, or when additional
7731 		 * layers are added to the command chain, these values will
7732 		 * have to be re-evaluated for correctness.
7733 		 */
7734 		if (un->un_f_non_devbsize_supported) {
7735 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7736 		} else {
7737 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7738 		}
7739 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7740 	}
7741 
7742 	/*
7743 	 * This property is set to 0 by HA software to avoid retries
7744 	 * on a reserved disk. (The preferred property name is
7745 	 * "retry-on-reservation-conflict") (1189689)
7746 	 *
7747 	 * Note: The use of a global here can have unintended consequences. A
7748 	 * per instance variable is preferable to match the capabilities of
7749 	 * different underlying hba's (4402600)
7750 	 */
7751 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7752 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7753 	    sd_retry_on_reservation_conflict);
7754 	if (sd_retry_on_reservation_conflict != 0) {
7755 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7756 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7757 		    sd_retry_on_reservation_conflict);
7758 	}
7759 
7760 	/* Set up options for QFULL handling. */
7761 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7762 	    "qfull-retries", -1)) != -1) {
7763 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7764 		    rval, 1);
7765 	}
7766 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7767 	    "qfull-retry-interval", -1)) != -1) {
7768 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7769 		    rval, 1);
7770 	}
7771 
7772 	/*
7773 	 * This just prints a message that announces the existence of the
7774 	 * device. The message is always printed in the system logfile, but
7775 	 * only appears on the console if the system is booted with the
7776 	 * -v (verbose) argument.
7777 	 */
7778 	ddi_report_dev(devi);
7779 
7780 	un->un_mediastate = DKIO_NONE;
7781 
7782 	cmlb_alloc_handle(&un->un_cmlbhandle);
7783 
7784 #if defined(__i386) || defined(__amd64)
7785 	/*
7786 	 * On x86, compensate for off-by-1 legacy error
7787 	 */
7788 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7789 	    (lbasize == un->un_sys_blocksize))
7790 		offbyone = CMLB_OFF_BY_ONE;
7791 #endif
7792 
7793 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7794 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7795 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7796 	    (void *)SD_PATH_DIRECT) != 0) {
7797 		goto cmlb_attach_failed;
7798 	}
7799 
7800 
7801 	/*
7802 	 * Read and validate the device's geometry (ie, disk label)
7803 	 * A new unformatted drive will not have a valid geometry, but
7804 	 * the driver needs to successfully attach to this device so
7805 	 * the drive can be formatted via ioctls.
7806 	 */
7807 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7808 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7809 
7810 	mutex_enter(SD_MUTEX(un));
7811 
7812 	/*
7813 	 * Read and initialize the devid for the unit.
7814 	 */
7815 	if (un->un_f_devid_supported) {
7816 		sd_register_devid(ssc, devi, reservation_flag);
7817 	}
7818 	mutex_exit(SD_MUTEX(un));
7819 
7820 #if (defined(__fibre))
7821 	/*
7822 	 * Register callbacks for fibre only.  You can't do this solely
7823 	 * on the basis of the devid_type because this is hba specific.
7824 	 * We need to query our hba capabilities to find out whether to
7825 	 * register or not.
7826 	 */
7827 	if (un->un_f_is_fibre) {
7828 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7829 			sd_init_event_callbacks(un);
7830 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7831 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7832 			    un);
7833 		}
7834 	}
7835 #endif
7836 
7837 	if (un->un_f_opt_disable_cache == TRUE) {
7838 		/*
7839 		 * Disable both read cache and write cache.  This is
7840 		 * the historic behavior of the keywords in the config file.
7841 		 */
7842 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7843 		    0) {
7844 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7845 			    "sd_unit_attach: un:0x%p Could not disable "
7846 			    "caching", un);
7847 			goto devid_failed;
7848 		}
7849 	}
7850 
7851 	/*
7852 	 * Check the value of the WCE bit now and
7853 	 * set un_f_write_cache_enabled accordingly.
7854 	 */
7855 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7856 	mutex_enter(SD_MUTEX(un));
7857 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7858 	mutex_exit(SD_MUTEX(un));
7859 
7860 	/*
7861 	 * Check the value of the NV_SUP bit and set
7862 	 * un_f_suppress_cache_flush accordingly.
7863 	 */
7864 	sd_get_nv_sup(ssc);
7865 
7866 	/*
7867 	 * Find out what type of reservation this disk supports.
7868 	 */
7869 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7870 
7871 	switch (status) {
7872 	case 0:
7873 		/*
7874 		 * SCSI-3 reservations are supported.
7875 		 */
7876 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7877 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7878 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7879 		break;
7880 	case ENOTSUP:
7881 		/*
7882 		 * The PERSISTENT RESERVE IN command would not be recognized by
7883 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7884 		 */
7885 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7886 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7887 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7888 
7889 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7890 		break;
7891 	default:
7892 		/*
7893 		 * default to SCSI-3 reservations
7894 		 */
7895 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7896 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7897 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7898 
7899 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7900 		break;
7901 	}
7902 
7903 	/*
7904 	 * Set the pstat and error stat values here, so data obtained during the
7905 	 * previous attach-time routines is available.
7906 	 *
7907 	 * Note: This is a critical sequence that needs to be maintained:
7908 	 *	1) Instantiate the kstats before any routines using the iopath
7909 	 *	   (i.e. sd_send_scsi_cmd).
7910 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7911 	 *	   stats (sd_set_pstats)here, following
7912 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7913 	 *	   sd_cache_control().
7914 	 */
7915 
7916 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7917 		sd_set_pstats(un);
7918 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7919 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7920 	}
7921 
7922 	sd_set_errstats(un);
7923 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7924 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7925 
7926 
7927 	/*
7928 	 * After successfully attaching an instance, we record the information
7929 	 * of how many luns have been attached on the relative target and
7930 	 * controller for parallel SCSI. This information is used when sd tries
7931 	 * to set the tagged queuing capability in HBA.
7932 	 */
7933 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7934 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7935 	}
7936 
7937 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7938 	    "sd_unit_attach: un:0x%p exit success\n", un);
7939 
7940 	/* Uninitialize sd_ssc_t pointer */
7941 	sd_ssc_fini(ssc);
7942 
7943 	return (DDI_SUCCESS);
7944 
7945 	/*
7946 	 * An error occurred during the attach; clean up & return failure.
7947 	 */
7948 
7949 devid_failed:
7950 
7951 setup_pm_failed:
7952 	ddi_remove_minor_node(devi, NULL);
7953 
7954 cmlb_attach_failed:
7955 	/*
7956 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7957 	 */
7958 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7959 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7960 
7961 	/*
7962 	 * Refer to the comments of setting tagged-qing in the beginning of
7963 	 * sd_unit_attach. We can only disable tagged queuing when there is
7964 	 * no lun attached on the target.
7965 	 */
7966 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7967 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7968 	}
7969 
7970 	if (un->un_f_is_fibre == FALSE) {
7971 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7972 	}
7973 
7974 spinup_failed:
7975 
7976 	/* Uninitialize sd_ssc_t pointer */
7977 	sd_ssc_fini(ssc);
7978 
7979 	mutex_enter(SD_MUTEX(un));
7980 
7981 	/* Deallocate SCSI FMA memory spaces */
7982 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
7983 
7984 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7985 	if (un->un_direct_priority_timeid != NULL) {
7986 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7987 		un->un_direct_priority_timeid = NULL;
7988 		mutex_exit(SD_MUTEX(un));
7989 		(void) untimeout(temp_id);
7990 		mutex_enter(SD_MUTEX(un));
7991 	}
7992 
7993 	/* Cancel any pending start/stop timeouts */
7994 	if (un->un_startstop_timeid != NULL) {
7995 		timeout_id_t temp_id = un->un_startstop_timeid;
7996 		un->un_startstop_timeid = NULL;
7997 		mutex_exit(SD_MUTEX(un));
7998 		(void) untimeout(temp_id);
7999 		mutex_enter(SD_MUTEX(un));
8000 	}
8001 
8002 	/* Cancel any pending reset-throttle timeouts */
8003 	if (un->un_reset_throttle_timeid != NULL) {
8004 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8005 		un->un_reset_throttle_timeid = NULL;
8006 		mutex_exit(SD_MUTEX(un));
8007 		(void) untimeout(temp_id);
8008 		mutex_enter(SD_MUTEX(un));
8009 	}
8010 
8011 	/* Cancel any pending retry timeouts */
8012 	if (un->un_retry_timeid != NULL) {
8013 		timeout_id_t temp_id = un->un_retry_timeid;
8014 		un->un_retry_timeid = NULL;
8015 		mutex_exit(SD_MUTEX(un));
8016 		(void) untimeout(temp_id);
8017 		mutex_enter(SD_MUTEX(un));
8018 	}
8019 
8020 	/* Cancel any pending delayed cv broadcast timeouts */
8021 	if (un->un_dcvb_timeid != NULL) {
8022 		timeout_id_t temp_id = un->un_dcvb_timeid;
8023 		un->un_dcvb_timeid = NULL;
8024 		mutex_exit(SD_MUTEX(un));
8025 		(void) untimeout(temp_id);
8026 		mutex_enter(SD_MUTEX(un));
8027 	}
8028 
8029 	mutex_exit(SD_MUTEX(un));
8030 
8031 	/* There should not be any in-progress I/O so ASSERT this check */
8032 	ASSERT(un->un_ncmds_in_transport == 0);
8033 	ASSERT(un->un_ncmds_in_driver == 0);
8034 
8035 	/* Do not free the softstate if the callback routine is active */
8036 	sd_sync_with_callback(un);
8037 
8038 	/*
8039 	 * Partition stats apparently are not used with removables. These would
8040 	 * not have been created during attach, so no need to clean them up...
8041 	 */
8042 	if (un->un_errstats != NULL) {
8043 		kstat_delete(un->un_errstats);
8044 		un->un_errstats = NULL;
8045 	}
8046 
8047 create_errstats_failed:
8048 
8049 	if (un->un_stats != NULL) {
8050 		kstat_delete(un->un_stats);
8051 		un->un_stats = NULL;
8052 	}
8053 
8054 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8055 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8056 
8057 	ddi_prop_remove_all(devi);
8058 	sema_destroy(&un->un_semoclose);
8059 	cv_destroy(&un->un_state_cv);
8060 
8061 getrbuf_failed:
8062 
8063 	sd_free_rqs(un);
8064 
8065 alloc_rqs_failed:
8066 
8067 	devp->sd_private = NULL;
8068 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8069 
8070 get_softstate_failed:
8071 	/*
8072 	 * Note: the man pages are unclear as to whether or not doing a
8073 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8074 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8075 	 * ddi_get_soft_state() fails.  The implication seems to be
8076 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8077 	 */
8078 	ddi_soft_state_free(sd_state, instance);
8079 
8080 probe_failed:
8081 	scsi_unprobe(devp);
8082 
8083 	return (DDI_FAILURE);
8084 }
8085 
8086 
8087 /*
8088  *    Function: sd_unit_detach
8089  *
8090  * Description: Performs DDI_DETACH processing for sddetach().
8091  *
8092  * Return Code: DDI_SUCCESS
8093  *		DDI_FAILURE
8094  *
8095  *     Context: Kernel thread context
8096  */
8097 
8098 static int
8099 sd_unit_detach(dev_info_t *devi)
8100 {
8101 	struct scsi_device	*devp;
8102 	struct sd_lun		*un;
8103 	int			i;
8104 	int			tgt;
8105 	dev_t			dev;
8106 	dev_info_t		*pdip = ddi_get_parent(devi);
8107 	int			instance = ddi_get_instance(devi);
8108 
8109 	mutex_enter(&sd_detach_mutex);
8110 
8111 	/*
8112 	 * Fail the detach for any of the following:
8113 	 *  - Unable to get the sd_lun struct for the instance
8114 	 *  - A layered driver has an outstanding open on the instance
8115 	 *  - Another thread is already detaching this instance
8116 	 *  - Another thread is currently performing an open
8117 	 */
8118 	devp = ddi_get_driver_private(devi);
8119 	if ((devp == NULL) ||
8120 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8121 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8122 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8123 		mutex_exit(&sd_detach_mutex);
8124 		return (DDI_FAILURE);
8125 	}
8126 
8127 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8128 
8129 	/*
8130 	 * Mark this instance as currently in a detach, to inhibit any
8131 	 * opens from a layered driver.
8132 	 */
8133 	un->un_detach_count++;
8134 	mutex_exit(&sd_detach_mutex);
8135 
8136 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8137 	    SCSI_ADDR_PROP_TARGET, -1);
8138 
8139 	dev = sd_make_device(SD_DEVINFO(un));
8140 
8141 #ifndef lint
8142 	_NOTE(COMPETING_THREADS_NOW);
8143 #endif
8144 
8145 	mutex_enter(SD_MUTEX(un));
8146 
8147 	/*
8148 	 * Fail the detach if there are any outstanding layered
8149 	 * opens on this device.
8150 	 */
8151 	for (i = 0; i < NDKMAP; i++) {
8152 		if (un->un_ocmap.lyropen[i] != 0) {
8153 			goto err_notclosed;
8154 		}
8155 	}
8156 
8157 	/*
8158 	 * Verify there are NO outstanding commands issued to this device.
8159 	 * ie, un_ncmds_in_transport == 0.
8160 	 * It's possible to have outstanding commands through the physio
8161 	 * code path, even though everything's closed.
8162 	 */
8163 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8164 	    (un->un_direct_priority_timeid != NULL) ||
8165 	    (un->un_state == SD_STATE_RWAIT)) {
8166 		mutex_exit(SD_MUTEX(un));
8167 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8168 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8169 		goto err_stillbusy;
8170 	}
8171 
8172 	/*
8173 	 * If we have the device reserved, release the reservation.
8174 	 */
8175 	if ((un->un_resvd_status & SD_RESERVE) &&
8176 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8177 		mutex_exit(SD_MUTEX(un));
8178 		/*
8179 		 * Note: sd_reserve_release sends a command to the device
8180 		 * via the sd_ioctlcmd() path, and can sleep.
8181 		 */
8182 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8183 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8184 			    "sd_dr_detach: Cannot release reservation \n");
8185 		}
8186 	} else {
8187 		mutex_exit(SD_MUTEX(un));
8188 	}
8189 
8190 	/*
8191 	 * Untimeout any reserve recover, throttle reset, restart unit
8192 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8193 	 * from getting nulled by their callback functions.
8194 	 */
8195 	mutex_enter(SD_MUTEX(un));
8196 	if (un->un_resvd_timeid != NULL) {
8197 		timeout_id_t temp_id = un->un_resvd_timeid;
8198 		un->un_resvd_timeid = NULL;
8199 		mutex_exit(SD_MUTEX(un));
8200 		(void) untimeout(temp_id);
8201 		mutex_enter(SD_MUTEX(un));
8202 	}
8203 
8204 	if (un->un_reset_throttle_timeid != NULL) {
8205 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8206 		un->un_reset_throttle_timeid = NULL;
8207 		mutex_exit(SD_MUTEX(un));
8208 		(void) untimeout(temp_id);
8209 		mutex_enter(SD_MUTEX(un));
8210 	}
8211 
8212 	if (un->un_startstop_timeid != NULL) {
8213 		timeout_id_t temp_id = un->un_startstop_timeid;
8214 		un->un_startstop_timeid = NULL;
8215 		mutex_exit(SD_MUTEX(un));
8216 		(void) untimeout(temp_id);
8217 		mutex_enter(SD_MUTEX(un));
8218 	}
8219 
8220 	if (un->un_dcvb_timeid != NULL) {
8221 		timeout_id_t temp_id = un->un_dcvb_timeid;
8222 		un->un_dcvb_timeid = NULL;
8223 		mutex_exit(SD_MUTEX(un));
8224 		(void) untimeout(temp_id);
8225 	} else {
8226 		mutex_exit(SD_MUTEX(un));
8227 	}
8228 
8229 	/* Remove any pending reservation reclaim requests for this device */
8230 	sd_rmv_resv_reclaim_req(dev);
8231 
8232 	mutex_enter(SD_MUTEX(un));
8233 
8234 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8235 	if (un->un_direct_priority_timeid != NULL) {
8236 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8237 		un->un_direct_priority_timeid = NULL;
8238 		mutex_exit(SD_MUTEX(un));
8239 		(void) untimeout(temp_id);
8240 		mutex_enter(SD_MUTEX(un));
8241 	}
8242 
8243 	/* Cancel any active multi-host disk watch thread requests */
8244 	if (un->un_mhd_token != NULL) {
8245 		mutex_exit(SD_MUTEX(un));
8246 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8247 		if (scsi_watch_request_terminate(un->un_mhd_token,
8248 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8249 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8250 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8251 			/*
8252 			 * Note: We are returning here after having removed
8253 			 * some driver timeouts above. This is consistent with
8254 			 * the legacy implementation but perhaps the watch
8255 			 * terminate call should be made with the wait flag set.
8256 			 */
8257 			goto err_stillbusy;
8258 		}
8259 		mutex_enter(SD_MUTEX(un));
8260 		un->un_mhd_token = NULL;
8261 	}
8262 
8263 	if (un->un_swr_token != NULL) {
8264 		mutex_exit(SD_MUTEX(un));
8265 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8266 		if (scsi_watch_request_terminate(un->un_swr_token,
8267 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8268 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8269 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8270 			/*
8271 			 * Note: We are returning here after having removed
8272 			 * some driver timeouts above. This is consistent with
8273 			 * the legacy implementation but perhaps the watch
8274 			 * terminate call should be made with the wait flag set.
8275 			 */
8276 			goto err_stillbusy;
8277 		}
8278 		mutex_enter(SD_MUTEX(un));
8279 		un->un_swr_token = NULL;
8280 	}
8281 
8282 	mutex_exit(SD_MUTEX(un));
8283 
8284 	/*
8285 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8286 	 * if we have not registered one.
8287 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8288 	 */
8289 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8290 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8291 
8292 	/*
8293 	 * protect the timeout pointers from getting nulled by
8294 	 * their callback functions during the cancellation process.
8295 	 * In such a scenario untimeout can be invoked with a null value.
8296 	 */
8297 	_NOTE(NO_COMPETING_THREADS_NOW);
8298 
8299 	mutex_enter(&un->un_pm_mutex);
8300 	if (un->un_pm_idle_timeid != NULL) {
8301 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8302 		un->un_pm_idle_timeid = NULL;
8303 		mutex_exit(&un->un_pm_mutex);
8304 
8305 		/*
8306 		 * Timeout is active; cancel it.
8307 		 * Note that it'll never be active on a device
8308 		 * that does not support PM therefore we don't
8309 		 * have to check before calling pm_idle_component.
8310 		 */
8311 		(void) untimeout(temp_id);
8312 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8313 		mutex_enter(&un->un_pm_mutex);
8314 	}
8315 
8316 	/*
8317 	 * Check whether there is already a timeout scheduled for power
8318 	 * management. If yes then don't lower the power here, that's.
8319 	 * the timeout handler's job.
8320 	 */
8321 	if (un->un_pm_timeid != NULL) {
8322 		timeout_id_t temp_id = un->un_pm_timeid;
8323 		un->un_pm_timeid = NULL;
8324 		mutex_exit(&un->un_pm_mutex);
8325 		/*
8326 		 * Timeout is active; cancel it.
8327 		 * Note that it'll never be active on a device
8328 		 * that does not support PM therefore we don't
8329 		 * have to check before calling pm_idle_component.
8330 		 */
8331 		(void) untimeout(temp_id);
8332 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8333 
8334 	} else {
8335 		mutex_exit(&un->un_pm_mutex);
8336 		if ((un->un_f_pm_is_enabled == TRUE) &&
8337 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8338 		    DDI_SUCCESS)) {
8339 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8340 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8341 			/*
8342 			 * Fix for bug: 4297749, item # 13
8343 			 * The above test now includes a check to see if PM is
8344 			 * supported by this device before call
8345 			 * pm_lower_power().
8346 			 * Note, the following is not dead code. The call to
8347 			 * pm_lower_power above will generate a call back into
8348 			 * our sdpower routine which might result in a timeout
8349 			 * handler getting activated. Therefore the following
8350 			 * code is valid and necessary.
8351 			 */
8352 			mutex_enter(&un->un_pm_mutex);
8353 			if (un->un_pm_timeid != NULL) {
8354 				timeout_id_t temp_id = un->un_pm_timeid;
8355 				un->un_pm_timeid = NULL;
8356 				mutex_exit(&un->un_pm_mutex);
8357 				(void) untimeout(temp_id);
8358 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8359 			} else {
8360 				mutex_exit(&un->un_pm_mutex);
8361 			}
8362 		}
8363 	}
8364 
8365 	/*
8366 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8367 	 * Relocated here from above to be after the call to
8368 	 * pm_lower_power, which was getting errors.
8369 	 */
8370 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8371 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8372 
8373 	/*
8374 	 * Currently, tagged queuing is supported per target based by HBA.
8375 	 * Setting this per lun instance actually sets the capability of this
8376 	 * target in HBA, which affects those luns already attached on the
8377 	 * same target. So during detach, we can only disable this capability
8378 	 * only when this is the only lun left on this target. By doing
8379 	 * this, we assume a target has the same tagged queuing capability
8380 	 * for every lun. The condition can be removed when HBA is changed to
8381 	 * support per lun based tagged queuing capability.
8382 	 */
8383 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8384 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8385 	}
8386 
8387 	if (un->un_f_is_fibre == FALSE) {
8388 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8389 	}
8390 
8391 	/*
8392 	 * Remove any event callbacks, fibre only
8393 	 */
8394 	if (un->un_f_is_fibre == TRUE) {
8395 		if ((un->un_insert_event != NULL) &&
8396 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8397 		    DDI_SUCCESS)) {
8398 			/*
8399 			 * Note: We are returning here after having done
8400 			 * substantial cleanup above. This is consistent
8401 			 * with the legacy implementation but this may not
8402 			 * be the right thing to do.
8403 			 */
8404 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8405 			    "sd_dr_detach: Cannot cancel insert event\n");
8406 			goto err_remove_event;
8407 		}
8408 		un->un_insert_event = NULL;
8409 
8410 		if ((un->un_remove_event != NULL) &&
8411 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8412 		    DDI_SUCCESS)) {
8413 			/*
8414 			 * Note: We are returning here after having done
8415 			 * substantial cleanup above. This is consistent
8416 			 * with the legacy implementation but this may not
8417 			 * be the right thing to do.
8418 			 */
8419 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8420 			    "sd_dr_detach: Cannot cancel remove event\n");
8421 			goto err_remove_event;
8422 		}
8423 		un->un_remove_event = NULL;
8424 	}
8425 
8426 	/* Do not free the softstate if the callback routine is active */
8427 	sd_sync_with_callback(un);
8428 
8429 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8430 	cmlb_free_handle(&un->un_cmlbhandle);
8431 
8432 	/*
8433 	 * Hold the detach mutex here, to make sure that no other threads ever
8434 	 * can access a (partially) freed soft state structure.
8435 	 */
8436 	mutex_enter(&sd_detach_mutex);
8437 
8438 	/*
8439 	 * Clean up the soft state struct.
8440 	 * Cleanup is done in reverse order of allocs/inits.
8441 	 * At this point there should be no competing threads anymore.
8442 	 */
8443 
8444 	scsi_fm_fini(devp);
8445 
8446 	/*
8447 	 * Deallocate memory for SCSI FMA.
8448 	 */
8449 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8450 
8451 	/* Unregister and free device id. */
8452 	ddi_devid_unregister(devi);
8453 	if (un->un_devid) {
8454 		ddi_devid_free(un->un_devid);
8455 		un->un_devid = NULL;
8456 	}
8457 
8458 	/*
8459 	 * Destroy wmap cache if it exists.
8460 	 */
8461 	if (un->un_wm_cache != NULL) {
8462 		kmem_cache_destroy(un->un_wm_cache);
8463 		un->un_wm_cache = NULL;
8464 	}
8465 
8466 	/*
8467 	 * kstat cleanup is done in detach for all device types (4363169).
8468 	 * We do not want to fail detach if the device kstats are not deleted
8469 	 * since there is a confusion about the devo_refcnt for the device.
8470 	 * We just delete the kstats and let detach complete successfully.
8471 	 */
8472 	if (un->un_stats != NULL) {
8473 		kstat_delete(un->un_stats);
8474 		un->un_stats = NULL;
8475 	}
8476 	if (un->un_errstats != NULL) {
8477 		kstat_delete(un->un_errstats);
8478 		un->un_errstats = NULL;
8479 	}
8480 
8481 	/* Remove partition stats */
8482 	if (un->un_f_pkstats_enabled) {
8483 		for (i = 0; i < NSDMAP; i++) {
8484 			if (un->un_pstats[i] != NULL) {
8485 				kstat_delete(un->un_pstats[i]);
8486 				un->un_pstats[i] = NULL;
8487 			}
8488 		}
8489 	}
8490 
8491 	/* Remove xbuf registration */
8492 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8493 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8494 
8495 	/* Remove driver properties */
8496 	ddi_prop_remove_all(devi);
8497 
8498 	mutex_destroy(&un->un_pm_mutex);
8499 	cv_destroy(&un->un_pm_busy_cv);
8500 
8501 	cv_destroy(&un->un_wcc_cv);
8502 
8503 	/* Open/close semaphore */
8504 	sema_destroy(&un->un_semoclose);
8505 
8506 	/* Removable media condvar. */
8507 	cv_destroy(&un->un_state_cv);
8508 
8509 	/* Suspend/resume condvar. */
8510 	cv_destroy(&un->un_suspend_cv);
8511 	cv_destroy(&un->un_disk_busy_cv);
8512 
8513 	sd_free_rqs(un);
8514 
8515 	/* Free up soft state */
8516 	devp->sd_private = NULL;
8517 
8518 	bzero(un, sizeof (struct sd_lun));
8519 	ddi_soft_state_free(sd_state, instance);
8520 
8521 	mutex_exit(&sd_detach_mutex);
8522 
8523 	/* This frees up the INQUIRY data associated with the device. */
8524 	scsi_unprobe(devp);
8525 
8526 	/*
8527 	 * After successfully detaching an instance, we update the information
8528 	 * of how many luns have been attached in the relative target and
8529 	 * controller for parallel SCSI. This information is used when sd tries
8530 	 * to set the tagged queuing capability in HBA.
8531 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8532 	 * check if the device is parallel SCSI. However, we don't need to
8533 	 * check here because we've already checked during attach. No device
8534 	 * that is not parallel SCSI is in the chain.
8535 	 */
8536 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8537 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8538 	}
8539 
8540 	return (DDI_SUCCESS);
8541 
8542 err_notclosed:
8543 	mutex_exit(SD_MUTEX(un));
8544 
8545 err_stillbusy:
8546 	_NOTE(NO_COMPETING_THREADS_NOW);
8547 
8548 err_remove_event:
8549 	mutex_enter(&sd_detach_mutex);
8550 	un->un_detach_count--;
8551 	mutex_exit(&sd_detach_mutex);
8552 
8553 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8554 	return (DDI_FAILURE);
8555 }
8556 
8557 
8558 /*
8559  *    Function: sd_create_errstats
8560  *
8561  * Description: This routine instantiates the device error stats.
8562  *
8563  *		Note: During attach the stats are instantiated first so they are
8564  *		available for attach-time routines that utilize the driver
8565  *		iopath to send commands to the device. The stats are initialized
8566  *		separately so data obtained during some attach-time routines is
8567  *		available. (4362483)
8568  *
8569  *   Arguments: un - driver soft state (unit) structure
8570  *		instance - driver instance
8571  *
8572  *     Context: Kernel thread context
8573  */
8574 
8575 static void
8576 sd_create_errstats(struct sd_lun *un, int instance)
8577 {
8578 	struct	sd_errstats	*stp;
8579 	char	kstatmodule_err[KSTAT_STRLEN];
8580 	char	kstatname[KSTAT_STRLEN];
8581 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8582 
8583 	ASSERT(un != NULL);
8584 
8585 	if (un->un_errstats != NULL) {
8586 		return;
8587 	}
8588 
8589 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8590 	    "%serr", sd_label);
8591 	(void) snprintf(kstatname, sizeof (kstatname),
8592 	    "%s%d,err", sd_label, instance);
8593 
8594 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8595 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8596 
8597 	if (un->un_errstats == NULL) {
8598 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8599 		    "sd_create_errstats: Failed kstat_create\n");
8600 		return;
8601 	}
8602 
8603 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8604 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8605 	    KSTAT_DATA_UINT32);
8606 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8607 	    KSTAT_DATA_UINT32);
8608 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8609 	    KSTAT_DATA_UINT32);
8610 	kstat_named_init(&stp->sd_vid,		"Vendor",
8611 	    KSTAT_DATA_CHAR);
8612 	kstat_named_init(&stp->sd_pid,		"Product",
8613 	    KSTAT_DATA_CHAR);
8614 	kstat_named_init(&stp->sd_revision,	"Revision",
8615 	    KSTAT_DATA_CHAR);
8616 	kstat_named_init(&stp->sd_serial,	"Serial No",
8617 	    KSTAT_DATA_CHAR);
8618 	kstat_named_init(&stp->sd_capacity,	"Size",
8619 	    KSTAT_DATA_ULONGLONG);
8620 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8621 	    KSTAT_DATA_UINT32);
8622 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8623 	    KSTAT_DATA_UINT32);
8624 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8625 	    KSTAT_DATA_UINT32);
8626 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8627 	    KSTAT_DATA_UINT32);
8628 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8629 	    KSTAT_DATA_UINT32);
8630 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8631 	    KSTAT_DATA_UINT32);
8632 
8633 	un->un_errstats->ks_private = un;
8634 	un->un_errstats->ks_update  = nulldev;
8635 
8636 	kstat_install(un->un_errstats);
8637 }
8638 
8639 
8640 /*
8641  *    Function: sd_set_errstats
8642  *
8643  * Description: This routine sets the value of the vendor id, product id,
8644  *		revision, serial number, and capacity device error stats.
8645  *
8646  *		Note: During attach the stats are instantiated first so they are
8647  *		available for attach-time routines that utilize the driver
8648  *		iopath to send commands to the device. The stats are initialized
8649  *		separately so data obtained during some attach-time routines is
8650  *		available. (4362483)
8651  *
8652  *   Arguments: un - driver soft state (unit) structure
8653  *
8654  *     Context: Kernel thread context
8655  */
8656 
8657 static void
8658 sd_set_errstats(struct sd_lun *un)
8659 {
8660 	struct	sd_errstats	*stp;
8661 
8662 	ASSERT(un != NULL);
8663 	ASSERT(un->un_errstats != NULL);
8664 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8665 	ASSERT(stp != NULL);
8666 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8667 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8668 	(void) strncpy(stp->sd_revision.value.c,
8669 	    un->un_sd->sd_inq->inq_revision, 4);
8670 
8671 	/*
8672 	 * All the errstats are persistent across detach/attach,
8673 	 * so reset all the errstats here in case of the hot
8674 	 * replacement of disk drives, except for not changed
8675 	 * Sun qualified drives.
8676 	 */
8677 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8678 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8679 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8680 		stp->sd_softerrs.value.ui32 = 0;
8681 		stp->sd_harderrs.value.ui32 = 0;
8682 		stp->sd_transerrs.value.ui32 = 0;
8683 		stp->sd_rq_media_err.value.ui32 = 0;
8684 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8685 		stp->sd_rq_nodev_err.value.ui32 = 0;
8686 		stp->sd_rq_recov_err.value.ui32 = 0;
8687 		stp->sd_rq_illrq_err.value.ui32 = 0;
8688 		stp->sd_rq_pfa_err.value.ui32 = 0;
8689 	}
8690 
8691 	/*
8692 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8693 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8694 	 * (4376302))
8695 	 */
8696 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8697 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8698 		    sizeof (SD_INQUIRY(un)->inq_serial));
8699 	}
8700 
8701 	if (un->un_f_blockcount_is_valid != TRUE) {
8702 		/*
8703 		 * Set capacity error stat to 0 for no media. This ensures
8704 		 * a valid capacity is displayed in response to 'iostat -E'
8705 		 * when no media is present in the device.
8706 		 */
8707 		stp->sd_capacity.value.ui64 = 0;
8708 	} else {
8709 		/*
8710 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8711 		 * capacity.
8712 		 *
8713 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8714 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8715 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8716 		 */
8717 		stp->sd_capacity.value.ui64 = (uint64_t)
8718 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8719 	}
8720 }
8721 
8722 
8723 /*
8724  *    Function: sd_set_pstats
8725  *
8726  * Description: This routine instantiates and initializes the partition
8727  *              stats for each partition with more than zero blocks.
8728  *		(4363169)
8729  *
8730  *   Arguments: un - driver soft state (unit) structure
8731  *
8732  *     Context: Kernel thread context
8733  */
8734 
8735 static void
8736 sd_set_pstats(struct sd_lun *un)
8737 {
8738 	char	kstatname[KSTAT_STRLEN];
8739 	int	instance;
8740 	int	i;
8741 	diskaddr_t	nblks = 0;
8742 	char	*partname = NULL;
8743 
8744 	ASSERT(un != NULL);
8745 
8746 	instance = ddi_get_instance(SD_DEVINFO(un));
8747 
8748 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8749 	for (i = 0; i < NSDMAP; i++) {
8750 
8751 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8752 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8753 			continue;
8754 		mutex_enter(SD_MUTEX(un));
8755 
8756 		if ((un->un_pstats[i] == NULL) &&
8757 		    (nblks != 0)) {
8758 
8759 			(void) snprintf(kstatname, sizeof (kstatname),
8760 			    "%s%d,%s", sd_label, instance,
8761 			    partname);
8762 
8763 			un->un_pstats[i] = kstat_create(sd_label,
8764 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8765 			    1, KSTAT_FLAG_PERSISTENT);
8766 			if (un->un_pstats[i] != NULL) {
8767 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8768 				kstat_install(un->un_pstats[i]);
8769 			}
8770 		}
8771 		mutex_exit(SD_MUTEX(un));
8772 	}
8773 }
8774 
8775 
8776 #if (defined(__fibre))
8777 /*
8778  *    Function: sd_init_event_callbacks
8779  *
8780  * Description: This routine initializes the insertion and removal event
8781  *		callbacks. (fibre only)
8782  *
8783  *   Arguments: un - driver soft state (unit) structure
8784  *
8785  *     Context: Kernel thread context
8786  */
8787 
8788 static void
8789 sd_init_event_callbacks(struct sd_lun *un)
8790 {
8791 	ASSERT(un != NULL);
8792 
8793 	if ((un->un_insert_event == NULL) &&
8794 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8795 	    &un->un_insert_event) == DDI_SUCCESS)) {
8796 		/*
8797 		 * Add the callback for an insertion event
8798 		 */
8799 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8800 		    un->un_insert_event, sd_event_callback, (void *)un,
8801 		    &(un->un_insert_cb_id));
8802 	}
8803 
8804 	if ((un->un_remove_event == NULL) &&
8805 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8806 	    &un->un_remove_event) == DDI_SUCCESS)) {
8807 		/*
8808 		 * Add the callback for a removal event
8809 		 */
8810 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8811 		    un->un_remove_event, sd_event_callback, (void *)un,
8812 		    &(un->un_remove_cb_id));
8813 	}
8814 }
8815 
8816 
8817 /*
8818  *    Function: sd_event_callback
8819  *
8820  * Description: This routine handles insert/remove events (photon). The
8821  *		state is changed to OFFLINE which can be used to supress
8822  *		error msgs. (fibre only)
8823  *
8824  *   Arguments: un - driver soft state (unit) structure
8825  *
8826  *     Context: Callout thread context
8827  */
8828 /* ARGSUSED */
8829 static void
8830 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8831     void *bus_impldata)
8832 {
8833 	struct sd_lun *un = (struct sd_lun *)arg;
8834 
8835 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8836 	if (event == un->un_insert_event) {
8837 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8838 		mutex_enter(SD_MUTEX(un));
8839 		if (un->un_state == SD_STATE_OFFLINE) {
8840 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8841 				un->un_state = un->un_last_state;
8842 			} else {
8843 				/*
8844 				 * We have gone through SUSPEND/RESUME while
8845 				 * we were offline. Restore the last state
8846 				 */
8847 				un->un_state = un->un_save_state;
8848 			}
8849 		}
8850 		mutex_exit(SD_MUTEX(un));
8851 
8852 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8853 	} else if (event == un->un_remove_event) {
8854 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8855 		mutex_enter(SD_MUTEX(un));
8856 		/*
8857 		 * We need to handle an event callback that occurs during
8858 		 * the suspend operation, since we don't prevent it.
8859 		 */
8860 		if (un->un_state != SD_STATE_OFFLINE) {
8861 			if (un->un_state != SD_STATE_SUSPENDED) {
8862 				New_state(un, SD_STATE_OFFLINE);
8863 			} else {
8864 				un->un_last_state = SD_STATE_OFFLINE;
8865 			}
8866 		}
8867 		mutex_exit(SD_MUTEX(un));
8868 	} else {
8869 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8870 		    "!Unknown event\n");
8871 	}
8872 
8873 }
8874 #endif
8875 
8876 /*
8877  *    Function: sd_cache_control()
8878  *
8879  * Description: This routine is the driver entry point for setting
8880  *		read and write caching by modifying the WCE (write cache
8881  *		enable) and RCD (read cache disable) bits of mode
8882  *		page 8 (MODEPAGE_CACHING).
8883  *
8884  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8885  *                      structure for this target.
8886  *		rcd_flag - flag for controlling the read cache
8887  *		wce_flag - flag for controlling the write cache
8888  *
8889  * Return Code: EIO
8890  *		code returned by sd_send_scsi_MODE_SENSE and
8891  *		sd_send_scsi_MODE_SELECT
8892  *
8893  *     Context: Kernel Thread
8894  */
8895 
8896 static int
8897 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8898 {
8899 	struct mode_caching	*mode_caching_page;
8900 	uchar_t			*header;
8901 	size_t			buflen;
8902 	int			hdrlen;
8903 	int			bd_len;
8904 	int			rval = 0;
8905 	struct mode_header_grp2	*mhp;
8906 	struct sd_lun		*un;
8907 	int			status;
8908 
8909 	ASSERT(ssc != NULL);
8910 	un = ssc->ssc_un;
8911 	ASSERT(un != NULL);
8912 
8913 	/*
8914 	 * Do a test unit ready, otherwise a mode sense may not work if this
8915 	 * is the first command sent to the device after boot.
8916 	 */
8917 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8918 	if (status != 0)
8919 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8920 
8921 	if (un->un_f_cfg_is_atapi == TRUE) {
8922 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8923 	} else {
8924 		hdrlen = MODE_HEADER_LENGTH;
8925 	}
8926 
8927 	/*
8928 	 * Allocate memory for the retrieved mode page and its headers.  Set
8929 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8930 	 * we get all of the mode sense data otherwise, the mode select
8931 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8932 	 */
8933 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8934 	    sizeof (struct mode_cache_scsi3);
8935 
8936 	header = kmem_zalloc(buflen, KM_SLEEP);
8937 
8938 	/* Get the information from the device. */
8939 	if (un->un_f_cfg_is_atapi == TRUE) {
8940 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8941 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8942 	} else {
8943 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8944 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8945 	}
8946 
8947 	if (rval != 0) {
8948 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8949 		    "sd_cache_control: Mode Sense Failed\n");
8950 		goto mode_sense_failed;
8951 	}
8952 
8953 	/*
8954 	 * Determine size of Block Descriptors in order to locate
8955 	 * the mode page data. ATAPI devices return 0, SCSI devices
8956 	 * should return MODE_BLK_DESC_LENGTH.
8957 	 */
8958 	if (un->un_f_cfg_is_atapi == TRUE) {
8959 		mhp	= (struct mode_header_grp2 *)header;
8960 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8961 	} else {
8962 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8963 	}
8964 
8965 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8966 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
8967 		    "sd_cache_control: Mode Sense returned invalid block "
8968 		    "descriptor length\n");
8969 		rval = EIO;
8970 		goto mode_sense_failed;
8971 	}
8972 
8973 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8974 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8975 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
8976 		    "sd_cache_control: Mode Sense caching page code mismatch "
8977 		    "%d\n", mode_caching_page->mode_page.code);
8978 		rval = EIO;
8979 		goto mode_sense_failed;
8980 	}
8981 
8982 	/* Check the relevant bits on successful mode sense. */
8983 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8984 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8985 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8986 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8987 
8988 		size_t sbuflen;
8989 		uchar_t save_pg;
8990 
8991 		/*
8992 		 * Construct select buffer length based on the
8993 		 * length of the sense data returned.
8994 		 */
8995 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8996 		    sizeof (struct mode_page) +
8997 		    (int)mode_caching_page->mode_page.length;
8998 
8999 		/*
9000 		 * Set the caching bits as requested.
9001 		 */
9002 		if (rcd_flag == SD_CACHE_ENABLE)
9003 			mode_caching_page->rcd = 0;
9004 		else if (rcd_flag == SD_CACHE_DISABLE)
9005 			mode_caching_page->rcd = 1;
9006 
9007 		if (wce_flag == SD_CACHE_ENABLE)
9008 			mode_caching_page->wce = 1;
9009 		else if (wce_flag == SD_CACHE_DISABLE)
9010 			mode_caching_page->wce = 0;
9011 
9012 		/*
9013 		 * Save the page if the mode sense says the
9014 		 * drive supports it.
9015 		 */
9016 		save_pg = mode_caching_page->mode_page.ps ?
9017 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9018 
9019 		/* Clear reserved bits before mode select. */
9020 		mode_caching_page->mode_page.ps = 0;
9021 
9022 		/*
9023 		 * Clear out mode header for mode select.
9024 		 * The rest of the retrieved page will be reused.
9025 		 */
9026 		bzero(header, hdrlen);
9027 
9028 		if (un->un_f_cfg_is_atapi == TRUE) {
9029 			mhp = (struct mode_header_grp2 *)header;
9030 			mhp->bdesc_length_hi = bd_len >> 8;
9031 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9032 		} else {
9033 			((struct mode_header *)header)->bdesc_length = bd_len;
9034 		}
9035 
9036 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9037 
9038 		/* Issue mode select to change the cache settings */
9039 		if (un->un_f_cfg_is_atapi == TRUE) {
9040 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9041 			    sbuflen, save_pg, SD_PATH_DIRECT);
9042 		} else {
9043 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9044 			    sbuflen, save_pg, SD_PATH_DIRECT);
9045 		}
9046 
9047 	}
9048 
9049 
9050 mode_sense_failed:
9051 
9052 	kmem_free(header, buflen);
9053 
9054 	if (rval != 0) {
9055 		if (rval == EIO)
9056 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9057 		else
9058 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9059 	}
9060 	return (rval);
9061 }
9062 
9063 
9064 /*
9065  *    Function: sd_get_write_cache_enabled()
9066  *
9067  * Description: This routine is the driver entry point for determining if
9068  *		write caching is enabled.  It examines the WCE (write cache
9069  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9070  *
9071  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9072  *                      structure for this target.
9073  *		is_enabled - pointer to int where write cache enabled state
9074  *		is returned (non-zero -> write cache enabled)
9075  *
9076  *
9077  * Return Code: EIO
9078  *		code returned by sd_send_scsi_MODE_SENSE
9079  *
9080  *     Context: Kernel Thread
9081  *
9082  * NOTE: If ioctl is added to disable write cache, this sequence should
9083  * be followed so that no locking is required for accesses to
9084  * un->un_f_write_cache_enabled:
9085  * 	do mode select to clear wce
9086  * 	do synchronize cache to flush cache
9087  * 	set un->un_f_write_cache_enabled = FALSE
9088  *
9089  * Conversely, an ioctl to enable the write cache should be done
9090  * in this order:
9091  * 	set un->un_f_write_cache_enabled = TRUE
9092  * 	do mode select to set wce
9093  */
9094 
9095 static int
9096 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9097 {
9098 	struct mode_caching	*mode_caching_page;
9099 	uchar_t			*header;
9100 	size_t			buflen;
9101 	int			hdrlen;
9102 	int			bd_len;
9103 	int			rval = 0;
9104 	struct sd_lun		*un;
9105 	int			status;
9106 
9107 	ASSERT(ssc != NULL);
9108 	un = ssc->ssc_un;
9109 	ASSERT(un != NULL);
9110 	ASSERT(is_enabled != NULL);
9111 
9112 	/* in case of error, flag as enabled */
9113 	*is_enabled = TRUE;
9114 
9115 	/*
9116 	 * Do a test unit ready, otherwise a mode sense may not work if this
9117 	 * is the first command sent to the device after boot.
9118 	 */
9119 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9120 
9121 	if (status != 0)
9122 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9123 
9124 	if (un->un_f_cfg_is_atapi == TRUE) {
9125 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9126 	} else {
9127 		hdrlen = MODE_HEADER_LENGTH;
9128 	}
9129 
9130 	/*
9131 	 * Allocate memory for the retrieved mode page and its headers.  Set
9132 	 * a pointer to the page itself.
9133 	 */
9134 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9135 	header = kmem_zalloc(buflen, KM_SLEEP);
9136 
9137 	/* Get the information from the device. */
9138 	if (un->un_f_cfg_is_atapi == TRUE) {
9139 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9140 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9141 	} else {
9142 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9143 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9144 	}
9145 
9146 	if (rval != 0) {
9147 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9148 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9149 		goto mode_sense_failed;
9150 	}
9151 
9152 	/*
9153 	 * Determine size of Block Descriptors in order to locate
9154 	 * the mode page data. ATAPI devices return 0, SCSI devices
9155 	 * should return MODE_BLK_DESC_LENGTH.
9156 	 */
9157 	if (un->un_f_cfg_is_atapi == TRUE) {
9158 		struct mode_header_grp2	*mhp;
9159 		mhp	= (struct mode_header_grp2 *)header;
9160 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9161 	} else {
9162 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9163 	}
9164 
9165 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9166 		/* FMA should make upset complain here */
9167 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9168 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9169 		    "block descriptor length\n");
9170 		rval = EIO;
9171 		goto mode_sense_failed;
9172 	}
9173 
9174 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9175 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9176 		/* FMA could make upset complain here */
9177 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9178 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9179 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9180 		rval = EIO;
9181 		goto mode_sense_failed;
9182 	}
9183 	*is_enabled = mode_caching_page->wce;
9184 
9185 mode_sense_failed:
9186 	if (rval == 0) {
9187 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9188 	} else if (rval == EIO) {
9189 		/*
9190 		 * Some disks do not support mode sense(6), we
9191 		 * should ignore this kind of error(sense key is
9192 		 * 0x5 - illegal request).
9193 		 */
9194 		uint8_t *sensep;
9195 		int senlen;
9196 
9197 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9198 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9199 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9200 
9201 		if (senlen > 0 &&
9202 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9203 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9204 		} else {
9205 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9206 		}
9207 	} else {
9208 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9209 	}
9210 	kmem_free(header, buflen);
9211 	return (rval);
9212 }
9213 
9214 /*
9215  *    Function: sd_get_nv_sup()
9216  *
9217  * Description: This routine is the driver entry point for
9218  * determining whether non-volatile cache is supported. This
9219  * determination process works as follows:
9220  *
9221  * 1. sd first queries sd.conf on whether
9222  * suppress_cache_flush bit is set for this device.
9223  *
9224  * 2. if not there, then queries the internal disk table.
9225  *
9226  * 3. if either sd.conf or internal disk table specifies
9227  * cache flush be suppressed, we don't bother checking
9228  * NV_SUP bit.
9229  *
9230  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9231  * the optional INQUIRY VPD page 0x86. If the device
9232  * supports VPD page 0x86, sd examines the NV_SUP
9233  * (non-volatile cache support) bit in the INQUIRY VPD page
9234  * 0x86:
9235  *   o If NV_SUP bit is set, sd assumes the device has a
9236  *   non-volatile cache and set the
9237  *   un_f_sync_nv_supported to TRUE.
9238  *   o Otherwise cache is not non-volatile,
9239  *   un_f_sync_nv_supported is set to FALSE.
9240  *
9241  * Arguments: un - driver soft state (unit) structure
9242  *
9243  * Return Code:
9244  *
9245  *     Context: Kernel Thread
9246  */
9247 
9248 static void
9249 sd_get_nv_sup(sd_ssc_t *ssc)
9250 {
9251 	int		rval		= 0;
9252 	uchar_t		*inq86		= NULL;
9253 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9254 	size_t		inq86_resid	= 0;
9255 	struct		dk_callback *dkc;
9256 	struct sd_lun	*un;
9257 
9258 	ASSERT(ssc != NULL);
9259 	un = ssc->ssc_un;
9260 	ASSERT(un != NULL);
9261 
9262 	mutex_enter(SD_MUTEX(un));
9263 
9264 	/*
9265 	 * Be conservative on the device's support of
9266 	 * SYNC_NV bit: un_f_sync_nv_supported is
9267 	 * initialized to be false.
9268 	 */
9269 	un->un_f_sync_nv_supported = FALSE;
9270 
9271 	/*
9272 	 * If either sd.conf or internal disk table
9273 	 * specifies cache flush be suppressed, then
9274 	 * we don't bother checking NV_SUP bit.
9275 	 */
9276 	if (un->un_f_suppress_cache_flush == TRUE) {
9277 		mutex_exit(SD_MUTEX(un));
9278 		return;
9279 	}
9280 
9281 	if (sd_check_vpd_page_support(ssc) == 0 &&
9282 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9283 		mutex_exit(SD_MUTEX(un));
9284 		/* collect page 86 data if available */
9285 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9286 
9287 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9288 		    0x01, 0x86, &inq86_resid);
9289 
9290 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9291 			SD_TRACE(SD_LOG_COMMON, un,
9292 			    "sd_get_nv_sup: \
9293 			    successfully get VPD page: %x \
9294 			    PAGE LENGTH: %x BYTE 6: %x\n",
9295 			    inq86[1], inq86[3], inq86[6]);
9296 
9297 			mutex_enter(SD_MUTEX(un));
9298 			/*
9299 			 * check the value of NV_SUP bit: only if the device
9300 			 * reports NV_SUP bit to be 1, the
9301 			 * un_f_sync_nv_supported bit will be set to true.
9302 			 */
9303 			if (inq86[6] & SD_VPD_NV_SUP) {
9304 				un->un_f_sync_nv_supported = TRUE;
9305 			}
9306 			mutex_exit(SD_MUTEX(un));
9307 		} else if (rval != 0) {
9308 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9309 		}
9310 
9311 		kmem_free(inq86, inq86_len);
9312 	} else {
9313 		mutex_exit(SD_MUTEX(un));
9314 	}
9315 
9316 	/*
9317 	 * Send a SYNC CACHE command to check whether
9318 	 * SYNC_NV bit is supported. This command should have
9319 	 * un_f_sync_nv_supported set to correct value.
9320 	 */
9321 	mutex_enter(SD_MUTEX(un));
9322 	if (un->un_f_sync_nv_supported) {
9323 		mutex_exit(SD_MUTEX(un));
9324 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9325 		dkc->dkc_flag = FLUSH_VOLATILE;
9326 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9327 
9328 		/*
9329 		 * Send a TEST UNIT READY command to the device. This should
9330 		 * clear any outstanding UNIT ATTENTION that may be present.
9331 		 */
9332 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9333 		if (rval != 0)
9334 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9335 
9336 		kmem_free(dkc, sizeof (struct dk_callback));
9337 	} else {
9338 		mutex_exit(SD_MUTEX(un));
9339 	}
9340 
9341 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9342 	    un_f_suppress_cache_flush is set to %d\n",
9343 	    un->un_f_suppress_cache_flush);
9344 }
9345 
9346 /*
9347  *    Function: sd_make_device
9348  *
9349  * Description: Utility routine to return the Solaris device number from
9350  *		the data in the device's dev_info structure.
9351  *
9352  * Return Code: The Solaris device number
9353  *
9354  *     Context: Any
9355  */
9356 
9357 static dev_t
9358 sd_make_device(dev_info_t *devi)
9359 {
9360 	return (makedevice(ddi_driver_major(devi),
9361 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9362 }
9363 
9364 
9365 /*
9366  *    Function: sd_pm_entry
9367  *
9368  * Description: Called at the start of a new command to manage power
9369  *		and busy status of a device. This includes determining whether
9370  *		the current power state of the device is sufficient for
9371  *		performing the command or whether it must be changed.
9372  *		The PM framework is notified appropriately.
9373  *		Only with a return status of DDI_SUCCESS will the
9374  *		component be busy to the framework.
9375  *
9376  *		All callers of sd_pm_entry must check the return status
9377  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9378  *		of DDI_FAILURE indicates the device failed to power up.
9379  *		In this case un_pm_count has been adjusted so the result
9380  *		on exit is still powered down, ie. count is less than 0.
9381  *		Calling sd_pm_exit with this count value hits an ASSERT.
9382  *
9383  * Return Code: DDI_SUCCESS or DDI_FAILURE
9384  *
9385  *     Context: Kernel thread context.
9386  */
9387 
9388 static int
9389 sd_pm_entry(struct sd_lun *un)
9390 {
9391 	int return_status = DDI_SUCCESS;
9392 
9393 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9394 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9395 
9396 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9397 
9398 	if (un->un_f_pm_is_enabled == FALSE) {
9399 		SD_TRACE(SD_LOG_IO_PM, un,
9400 		    "sd_pm_entry: exiting, PM not enabled\n");
9401 		return (return_status);
9402 	}
9403 
9404 	/*
9405 	 * Just increment a counter if PM is enabled. On the transition from
9406 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9407 	 * the count with each IO and mark the device as idle when the count
9408 	 * hits 0.
9409 	 *
9410 	 * If the count is less than 0 the device is powered down. If a powered
9411 	 * down device is successfully powered up then the count must be
9412 	 * incremented to reflect the power up. Note that it'll get incremented
9413 	 * a second time to become busy.
9414 	 *
9415 	 * Because the following has the potential to change the device state
9416 	 * and must release the un_pm_mutex to do so, only one thread can be
9417 	 * allowed through at a time.
9418 	 */
9419 
9420 	mutex_enter(&un->un_pm_mutex);
9421 	while (un->un_pm_busy == TRUE) {
9422 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9423 	}
9424 	un->un_pm_busy = TRUE;
9425 
9426 	if (un->un_pm_count < 1) {
9427 
9428 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9429 
9430 		/*
9431 		 * Indicate we are now busy so the framework won't attempt to
9432 		 * power down the device. This call will only fail if either
9433 		 * we passed a bad component number or the device has no
9434 		 * components. Neither of these should ever happen.
9435 		 */
9436 		mutex_exit(&un->un_pm_mutex);
9437 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9438 		ASSERT(return_status == DDI_SUCCESS);
9439 
9440 		mutex_enter(&un->un_pm_mutex);
9441 
9442 		if (un->un_pm_count < 0) {
9443 			mutex_exit(&un->un_pm_mutex);
9444 
9445 			SD_TRACE(SD_LOG_IO_PM, un,
9446 			    "sd_pm_entry: power up component\n");
9447 
9448 			/*
9449 			 * pm_raise_power will cause sdpower to be called
9450 			 * which brings the device power level to the
9451 			 * desired state, ON in this case. If successful,
9452 			 * un_pm_count and un_power_level will be updated
9453 			 * appropriately.
9454 			 */
9455 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9456 			    SD_SPINDLE_ON);
9457 
9458 			mutex_enter(&un->un_pm_mutex);
9459 
9460 			if (return_status != DDI_SUCCESS) {
9461 				/*
9462 				 * Power up failed.
9463 				 * Idle the device and adjust the count
9464 				 * so the result on exit is that we're
9465 				 * still powered down, ie. count is less than 0.
9466 				 */
9467 				SD_TRACE(SD_LOG_IO_PM, un,
9468 				    "sd_pm_entry: power up failed,"
9469 				    " idle the component\n");
9470 
9471 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9472 				un->un_pm_count--;
9473 			} else {
9474 				/*
9475 				 * Device is powered up, verify the
9476 				 * count is non-negative.
9477 				 * This is debug only.
9478 				 */
9479 				ASSERT(un->un_pm_count == 0);
9480 			}
9481 		}
9482 
9483 		if (return_status == DDI_SUCCESS) {
9484 			/*
9485 			 * For performance, now that the device has been tagged
9486 			 * as busy, and it's known to be powered up, update the
9487 			 * chain types to use jump tables that do not include
9488 			 * pm. This significantly lowers the overhead and
9489 			 * therefore improves performance.
9490 			 */
9491 
9492 			mutex_exit(&un->un_pm_mutex);
9493 			mutex_enter(SD_MUTEX(un));
9494 			SD_TRACE(SD_LOG_IO_PM, un,
9495 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9496 			    un->un_uscsi_chain_type);
9497 
9498 			if (un->un_f_non_devbsize_supported) {
9499 				un->un_buf_chain_type =
9500 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9501 			} else {
9502 				un->un_buf_chain_type =
9503 				    SD_CHAIN_INFO_DISK_NO_PM;
9504 			}
9505 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9506 
9507 			SD_TRACE(SD_LOG_IO_PM, un,
9508 			    "             changed  uscsi_chain_type to   %d\n",
9509 			    un->un_uscsi_chain_type);
9510 			mutex_exit(SD_MUTEX(un));
9511 			mutex_enter(&un->un_pm_mutex);
9512 
9513 			if (un->un_pm_idle_timeid == NULL) {
9514 				/* 300 ms. */
9515 				un->un_pm_idle_timeid =
9516 				    timeout(sd_pm_idletimeout_handler, un,
9517 				    (drv_usectohz((clock_t)300000)));
9518 				/*
9519 				 * Include an extra call to busy which keeps the
9520 				 * device busy with-respect-to the PM layer
9521 				 * until the timer fires, at which time it'll
9522 				 * get the extra idle call.
9523 				 */
9524 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9525 			}
9526 		}
9527 	}
9528 	un->un_pm_busy = FALSE;
9529 	/* Next... */
9530 	cv_signal(&un->un_pm_busy_cv);
9531 
9532 	un->un_pm_count++;
9533 
9534 	SD_TRACE(SD_LOG_IO_PM, un,
9535 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9536 
9537 	mutex_exit(&un->un_pm_mutex);
9538 
9539 	return (return_status);
9540 }
9541 
9542 
9543 /*
9544  *    Function: sd_pm_exit
9545  *
9546  * Description: Called at the completion of a command to manage busy
9547  *		status for the device. If the device becomes idle the
9548  *		PM framework is notified.
9549  *
9550  *     Context: Kernel thread context
9551  */
9552 
9553 static void
9554 sd_pm_exit(struct sd_lun *un)
9555 {
9556 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9557 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9558 
9559 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9560 
9561 	/*
9562 	 * After attach the following flag is only read, so don't
9563 	 * take the penalty of acquiring a mutex for it.
9564 	 */
9565 	if (un->un_f_pm_is_enabled == TRUE) {
9566 
9567 		mutex_enter(&un->un_pm_mutex);
9568 		un->un_pm_count--;
9569 
9570 		SD_TRACE(SD_LOG_IO_PM, un,
9571 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9572 
9573 		ASSERT(un->un_pm_count >= 0);
9574 		if (un->un_pm_count == 0) {
9575 			mutex_exit(&un->un_pm_mutex);
9576 
9577 			SD_TRACE(SD_LOG_IO_PM, un,
9578 			    "sd_pm_exit: idle component\n");
9579 
9580 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9581 
9582 		} else {
9583 			mutex_exit(&un->un_pm_mutex);
9584 		}
9585 	}
9586 
9587 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9588 }
9589 
9590 
9591 /*
9592  *    Function: sdopen
9593  *
9594  * Description: Driver's open(9e) entry point function.
9595  *
9596  *   Arguments: dev_i   - pointer to device number
9597  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9598  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9599  *		cred_p  - user credential pointer
9600  *
9601  * Return Code: EINVAL
9602  *		ENXIO
9603  *		EIO
9604  *		EROFS
9605  *		EBUSY
9606  *
9607  *     Context: Kernel thread context
9608  */
9609 /* ARGSUSED */
9610 static int
9611 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9612 {
9613 	struct sd_lun	*un;
9614 	int		nodelay;
9615 	int		part;
9616 	uint64_t	partmask;
9617 	int		instance;
9618 	dev_t		dev;
9619 	int		rval = EIO;
9620 	diskaddr_t	nblks = 0;
9621 	diskaddr_t	label_cap;
9622 
9623 	/* Validate the open type */
9624 	if (otyp >= OTYPCNT) {
9625 		return (EINVAL);
9626 	}
9627 
9628 	dev = *dev_p;
9629 	instance = SDUNIT(dev);
9630 	mutex_enter(&sd_detach_mutex);
9631 
9632 	/*
9633 	 * Fail the open if there is no softstate for the instance, or
9634 	 * if another thread somewhere is trying to detach the instance.
9635 	 */
9636 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9637 	    (un->un_detach_count != 0)) {
9638 		mutex_exit(&sd_detach_mutex);
9639 		/*
9640 		 * The probe cache only needs to be cleared when open (9e) fails
9641 		 * with ENXIO (4238046).
9642 		 */
9643 		/*
9644 		 * un-conditionally clearing probe cache is ok with
9645 		 * separate sd/ssd binaries
9646 		 * x86 platform can be an issue with both parallel
9647 		 * and fibre in 1 binary
9648 		 */
9649 		sd_scsi_clear_probe_cache();
9650 		return (ENXIO);
9651 	}
9652 
9653 	/*
9654 	 * The un_layer_count is to prevent another thread in specfs from
9655 	 * trying to detach the instance, which can happen when we are
9656 	 * called from a higher-layer driver instead of thru specfs.
9657 	 * This will not be needed when DDI provides a layered driver
9658 	 * interface that allows specfs to know that an instance is in
9659 	 * use by a layered driver & should not be detached.
9660 	 *
9661 	 * Note: the semantics for layered driver opens are exactly one
9662 	 * close for every open.
9663 	 */
9664 	if (otyp == OTYP_LYR) {
9665 		un->un_layer_count++;
9666 	}
9667 
9668 	/*
9669 	 * Keep a count of the current # of opens in progress. This is because
9670 	 * some layered drivers try to call us as a regular open. This can
9671 	 * cause problems that we cannot prevent, however by keeping this count
9672 	 * we can at least keep our open and detach routines from racing against
9673 	 * each other under such conditions.
9674 	 */
9675 	un->un_opens_in_progress++;
9676 	mutex_exit(&sd_detach_mutex);
9677 
9678 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9679 	part	 = SDPART(dev);
9680 	partmask = 1 << part;
9681 
9682 	/*
9683 	 * We use a semaphore here in order to serialize
9684 	 * open and close requests on the device.
9685 	 */
9686 	sema_p(&un->un_semoclose);
9687 
9688 	mutex_enter(SD_MUTEX(un));
9689 
9690 	/*
9691 	 * All device accesses go thru sdstrategy() where we check
9692 	 * on suspend status but there could be a scsi_poll command,
9693 	 * which bypasses sdstrategy(), so we need to check pm
9694 	 * status.
9695 	 */
9696 
9697 	if (!nodelay) {
9698 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9699 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9700 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9701 		}
9702 
9703 		mutex_exit(SD_MUTEX(un));
9704 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9705 			rval = EIO;
9706 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9707 			    "sdopen: sd_pm_entry failed\n");
9708 			goto open_failed_with_pm;
9709 		}
9710 		mutex_enter(SD_MUTEX(un));
9711 	}
9712 
9713 	/* check for previous exclusive open */
9714 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9715 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9716 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9717 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9718 
9719 	if (un->un_exclopen & (partmask)) {
9720 		goto excl_open_fail;
9721 	}
9722 
9723 	if (flag & FEXCL) {
9724 		int i;
9725 		if (un->un_ocmap.lyropen[part]) {
9726 			goto excl_open_fail;
9727 		}
9728 		for (i = 0; i < (OTYPCNT - 1); i++) {
9729 			if (un->un_ocmap.regopen[i] & (partmask)) {
9730 				goto excl_open_fail;
9731 			}
9732 		}
9733 	}
9734 
9735 	/*
9736 	 * Check the write permission if this is a removable media device,
9737 	 * NDELAY has not been set, and writable permission is requested.
9738 	 *
9739 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9740 	 * attempt will fail with EIO as part of the I/O processing. This is a
9741 	 * more permissive implementation that allows the open to succeed and
9742 	 * WRITE attempts to fail when appropriate.
9743 	 */
9744 	if (un->un_f_chk_wp_open) {
9745 		if ((flag & FWRITE) && (!nodelay)) {
9746 			mutex_exit(SD_MUTEX(un));
9747 			/*
9748 			 * Defer the check for write permission on writable
9749 			 * DVD drive till sdstrategy and will not fail open even
9750 			 * if FWRITE is set as the device can be writable
9751 			 * depending upon the media and the media can change
9752 			 * after the call to open().
9753 			 */
9754 			if (un->un_f_dvdram_writable_device == FALSE) {
9755 				if (ISCD(un) || sr_check_wp(dev)) {
9756 				rval = EROFS;
9757 				mutex_enter(SD_MUTEX(un));
9758 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9759 				    "write to cd or write protected media\n");
9760 				goto open_fail;
9761 				}
9762 			}
9763 			mutex_enter(SD_MUTEX(un));
9764 		}
9765 	}
9766 
9767 	/*
9768 	 * If opening in NDELAY/NONBLOCK mode, just return.
9769 	 * Check if disk is ready and has a valid geometry later.
9770 	 */
9771 	if (!nodelay) {
9772 		sd_ssc_t	*ssc;
9773 
9774 		mutex_exit(SD_MUTEX(un));
9775 		ssc = sd_ssc_init(un);
9776 		rval = sd_ready_and_valid(ssc, part);
9777 		sd_ssc_fini(ssc);
9778 		mutex_enter(SD_MUTEX(un));
9779 		/*
9780 		 * Fail if device is not ready or if the number of disk
9781 		 * blocks is zero or negative for non CD devices.
9782 		 */
9783 
9784 		nblks = 0;
9785 
9786 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9787 			/* if cmlb_partinfo fails, nblks remains 0 */
9788 			mutex_exit(SD_MUTEX(un));
9789 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9790 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9791 			mutex_enter(SD_MUTEX(un));
9792 		}
9793 
9794 		if ((rval != SD_READY_VALID) ||
9795 		    (!ISCD(un) && nblks <= 0)) {
9796 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9797 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9798 			    "device not ready or invalid disk block value\n");
9799 			goto open_fail;
9800 		}
9801 #if defined(__i386) || defined(__amd64)
9802 	} else {
9803 		uchar_t *cp;
9804 		/*
9805 		 * x86 requires special nodelay handling, so that p0 is
9806 		 * always defined and accessible.
9807 		 * Invalidate geometry only if device is not already open.
9808 		 */
9809 		cp = &un->un_ocmap.chkd[0];
9810 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9811 			if (*cp != (uchar_t)0) {
9812 				break;
9813 			}
9814 			cp++;
9815 		}
9816 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9817 			mutex_exit(SD_MUTEX(un));
9818 			cmlb_invalidate(un->un_cmlbhandle,
9819 			    (void *)SD_PATH_DIRECT);
9820 			mutex_enter(SD_MUTEX(un));
9821 		}
9822 
9823 #endif
9824 	}
9825 
9826 	if (otyp == OTYP_LYR) {
9827 		un->un_ocmap.lyropen[part]++;
9828 	} else {
9829 		un->un_ocmap.regopen[otyp] |= partmask;
9830 	}
9831 
9832 	/* Set up open and exclusive open flags */
9833 	if (flag & FEXCL) {
9834 		un->un_exclopen |= (partmask);
9835 	}
9836 
9837 	/*
9838 	 * If the lun is EFI labeled and lun capacity is greater than the
9839 	 * capacity contained in the label, log a sys-event to notify the
9840 	 * interested module.
9841 	 * To avoid an infinite loop of logging sys-event, we only log the
9842 	 * event when the lun is not opened in NDELAY mode. The event handler
9843 	 * should open the lun in NDELAY mode.
9844 	 */
9845 	if (!(flag & FNDELAY)) {
9846 		mutex_exit(SD_MUTEX(un));
9847 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9848 		    (void*)SD_PATH_DIRECT) == 0) {
9849 			mutex_enter(SD_MUTEX(un));
9850 			if (un->un_f_blockcount_is_valid &&
9851 			    un->un_blockcount > label_cap) {
9852 				mutex_exit(SD_MUTEX(un));
9853 				sd_log_lun_expansion_event(un,
9854 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9855 				mutex_enter(SD_MUTEX(un));
9856 			}
9857 		} else {
9858 			mutex_enter(SD_MUTEX(un));
9859 		}
9860 	}
9861 
9862 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9863 	    "open of part %d type %d\n", part, otyp);
9864 
9865 	mutex_exit(SD_MUTEX(un));
9866 	if (!nodelay) {
9867 		sd_pm_exit(un);
9868 	}
9869 
9870 	sema_v(&un->un_semoclose);
9871 
9872 	mutex_enter(&sd_detach_mutex);
9873 	un->un_opens_in_progress--;
9874 	mutex_exit(&sd_detach_mutex);
9875 
9876 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9877 	return (DDI_SUCCESS);
9878 
9879 excl_open_fail:
9880 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9881 	rval = EBUSY;
9882 
9883 open_fail:
9884 	mutex_exit(SD_MUTEX(un));
9885 
9886 	/*
9887 	 * On a failed open we must exit the pm management.
9888 	 */
9889 	if (!nodelay) {
9890 		sd_pm_exit(un);
9891 	}
9892 open_failed_with_pm:
9893 	sema_v(&un->un_semoclose);
9894 
9895 	mutex_enter(&sd_detach_mutex);
9896 	un->un_opens_in_progress--;
9897 	if (otyp == OTYP_LYR) {
9898 		un->un_layer_count--;
9899 	}
9900 	mutex_exit(&sd_detach_mutex);
9901 
9902 	return (rval);
9903 }
9904 
9905 
9906 /*
9907  *    Function: sdclose
9908  *
9909  * Description: Driver's close(9e) entry point function.
9910  *
9911  *   Arguments: dev    - device number
9912  *		flag   - file status flag, informational only
9913  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9914  *		cred_p - user credential pointer
9915  *
9916  * Return Code: ENXIO
9917  *
9918  *     Context: Kernel thread context
9919  */
9920 /* ARGSUSED */
9921 static int
9922 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9923 {
9924 	struct sd_lun	*un;
9925 	uchar_t		*cp;
9926 	int		part;
9927 	int		nodelay;
9928 	int		rval = 0;
9929 
9930 	/* Validate the open type */
9931 	if (otyp >= OTYPCNT) {
9932 		return (ENXIO);
9933 	}
9934 
9935 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9936 		return (ENXIO);
9937 	}
9938 
9939 	part = SDPART(dev);
9940 	nodelay = flag & (FNDELAY | FNONBLOCK);
9941 
9942 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9943 	    "sdclose: close of part %d type %d\n", part, otyp);
9944 
9945 	/*
9946 	 * We use a semaphore here in order to serialize
9947 	 * open and close requests on the device.
9948 	 */
9949 	sema_p(&un->un_semoclose);
9950 
9951 	mutex_enter(SD_MUTEX(un));
9952 
9953 	/* Don't proceed if power is being changed. */
9954 	while (un->un_state == SD_STATE_PM_CHANGING) {
9955 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9956 	}
9957 
9958 	if (un->un_exclopen & (1 << part)) {
9959 		un->un_exclopen &= ~(1 << part);
9960 	}
9961 
9962 	/* Update the open partition map */
9963 	if (otyp == OTYP_LYR) {
9964 		un->un_ocmap.lyropen[part] -= 1;
9965 	} else {
9966 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9967 	}
9968 
9969 	cp = &un->un_ocmap.chkd[0];
9970 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9971 		if (*cp != NULL) {
9972 			break;
9973 		}
9974 		cp++;
9975 	}
9976 
9977 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9978 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9979 
9980 		/*
9981 		 * We avoid persistance upon the last close, and set
9982 		 * the throttle back to the maximum.
9983 		 */
9984 		un->un_throttle = un->un_saved_throttle;
9985 
9986 		if (un->un_state == SD_STATE_OFFLINE) {
9987 			if (un->un_f_is_fibre == FALSE) {
9988 				scsi_log(SD_DEVINFO(un), sd_label,
9989 				    CE_WARN, "offline\n");
9990 			}
9991 			mutex_exit(SD_MUTEX(un));
9992 			cmlb_invalidate(un->un_cmlbhandle,
9993 			    (void *)SD_PATH_DIRECT);
9994 			mutex_enter(SD_MUTEX(un));
9995 
9996 		} else {
9997 			/*
9998 			 * Flush any outstanding writes in NVRAM cache.
9999 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10000 			 * cmd, it may not work for non-Pluto devices.
10001 			 * SYNCHRONIZE CACHE is not required for removables,
10002 			 * except DVD-RAM drives.
10003 			 *
10004 			 * Also note: because SYNCHRONIZE CACHE is currently
10005 			 * the only command issued here that requires the
10006 			 * drive be powered up, only do the power up before
10007 			 * sending the Sync Cache command. If additional
10008 			 * commands are added which require a powered up
10009 			 * drive, the following sequence may have to change.
10010 			 *
10011 			 * And finally, note that parallel SCSI on SPARC
10012 			 * only issues a Sync Cache to DVD-RAM, a newly
10013 			 * supported device.
10014 			 */
10015 #if defined(__i386) || defined(__amd64)
10016 			if ((un->un_f_sync_cache_supported &&
10017 			    un->un_f_sync_cache_required) ||
10018 			    un->un_f_dvdram_writable_device == TRUE) {
10019 #else
10020 			if (un->un_f_dvdram_writable_device == TRUE) {
10021 #endif
10022 				mutex_exit(SD_MUTEX(un));
10023 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10024 					rval =
10025 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10026 					    NULL);
10027 					/* ignore error if not supported */
10028 					if (rval == ENOTSUP) {
10029 						rval = 0;
10030 					} else if (rval != 0) {
10031 						rval = EIO;
10032 					}
10033 					sd_pm_exit(un);
10034 				} else {
10035 					rval = EIO;
10036 				}
10037 				mutex_enter(SD_MUTEX(un));
10038 			}
10039 
10040 			/*
10041 			 * For devices which supports DOOR_LOCK, send an ALLOW
10042 			 * MEDIA REMOVAL command, but don't get upset if it
10043 			 * fails. We need to raise the power of the drive before
10044 			 * we can call sd_send_scsi_DOORLOCK()
10045 			 */
10046 			if (un->un_f_doorlock_supported) {
10047 				mutex_exit(SD_MUTEX(un));
10048 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10049 					sd_ssc_t	*ssc;
10050 
10051 					ssc = sd_ssc_init(un);
10052 					rval = sd_send_scsi_DOORLOCK(ssc,
10053 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10054 					if (rval != 0)
10055 						sd_ssc_assessment(ssc,
10056 						    SD_FMT_IGNORE);
10057 					sd_ssc_fini(ssc);
10058 
10059 					sd_pm_exit(un);
10060 					if (ISCD(un) && (rval != 0) &&
10061 					    (nodelay != 0)) {
10062 						rval = ENXIO;
10063 					}
10064 				} else {
10065 					rval = EIO;
10066 				}
10067 				mutex_enter(SD_MUTEX(un));
10068 			}
10069 
10070 			/*
10071 			 * If a device has removable media, invalidate all
10072 			 * parameters related to media, such as geometry,
10073 			 * blocksize, and blockcount.
10074 			 */
10075 			if (un->un_f_has_removable_media) {
10076 				sr_ejected(un);
10077 			}
10078 
10079 			/*
10080 			 * Destroy the cache (if it exists) which was
10081 			 * allocated for the write maps since this is
10082 			 * the last close for this media.
10083 			 */
10084 			if (un->un_wm_cache) {
10085 				/*
10086 				 * Check if there are pending commands.
10087 				 * and if there are give a warning and
10088 				 * do not destroy the cache.
10089 				 */
10090 				if (un->un_ncmds_in_driver > 0) {
10091 					scsi_log(SD_DEVINFO(un),
10092 					    sd_label, CE_WARN,
10093 					    "Unable to clean up memory "
10094 					    "because of pending I/O\n");
10095 				} else {
10096 					kmem_cache_destroy(
10097 					    un->un_wm_cache);
10098 					un->un_wm_cache = NULL;
10099 				}
10100 			}
10101 		}
10102 	}
10103 
10104 	mutex_exit(SD_MUTEX(un));
10105 	sema_v(&un->un_semoclose);
10106 
10107 	if (otyp == OTYP_LYR) {
10108 		mutex_enter(&sd_detach_mutex);
10109 		/*
10110 		 * The detach routine may run when the layer count
10111 		 * drops to zero.
10112 		 */
10113 		un->un_layer_count--;
10114 		mutex_exit(&sd_detach_mutex);
10115 	}
10116 
10117 	return (rval);
10118 }
10119 
10120 
10121 /*
10122  *    Function: sd_ready_and_valid
10123  *
10124  * Description: Test if device is ready and has a valid geometry.
10125  *
10126  *   Arguments: ssc - sd_ssc_t will contain un
10127  *		un  - driver soft state (unit) structure
10128  *
10129  * Return Code: SD_READY_VALID		ready and valid label
10130  *		SD_NOT_READY_VALID	not ready, no label
10131  *		SD_RESERVED_BY_OTHERS	reservation conflict
10132  *
10133  *     Context: Never called at interrupt context.
10134  */
10135 
10136 static int
10137 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10138 {
10139 	struct sd_errstats	*stp;
10140 	uint64_t		capacity;
10141 	uint_t			lbasize;
10142 	int			rval = SD_READY_VALID;
10143 	char			name_str[48];
10144 	int			is_valid;
10145 	struct sd_lun		*un;
10146 	int			status;
10147 
10148 	ASSERT(ssc != NULL);
10149 	un = ssc->ssc_un;
10150 	ASSERT(un != NULL);
10151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10152 
10153 	mutex_enter(SD_MUTEX(un));
10154 	/*
10155 	 * If a device has removable media, we must check if media is
10156 	 * ready when checking if this device is ready and valid.
10157 	 */
10158 	if (un->un_f_has_removable_media) {
10159 		mutex_exit(SD_MUTEX(un));
10160 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10161 
10162 		if (status != 0) {
10163 			rval = SD_NOT_READY_VALID;
10164 			mutex_enter(SD_MUTEX(un));
10165 
10166 			/* Ignore all failed status for removalbe media */
10167 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10168 
10169 			goto done;
10170 		}
10171 
10172 		is_valid = SD_IS_VALID_LABEL(un);
10173 		mutex_enter(SD_MUTEX(un));
10174 		if (!is_valid ||
10175 		    (un->un_f_blockcount_is_valid == FALSE) ||
10176 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10177 
10178 			/* capacity has to be read every open. */
10179 			mutex_exit(SD_MUTEX(un));
10180 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10181 			    &lbasize, SD_PATH_DIRECT);
10182 
10183 			if (status != 0) {
10184 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10185 
10186 				cmlb_invalidate(un->un_cmlbhandle,
10187 				    (void *)SD_PATH_DIRECT);
10188 				mutex_enter(SD_MUTEX(un));
10189 				rval = SD_NOT_READY_VALID;
10190 
10191 				goto done;
10192 			} else {
10193 				mutex_enter(SD_MUTEX(un));
10194 				sd_update_block_info(un, lbasize, capacity);
10195 			}
10196 		}
10197 
10198 		/*
10199 		 * Check if the media in the device is writable or not.
10200 		 */
10201 		if (!is_valid && ISCD(un)) {
10202 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10203 		}
10204 
10205 	} else {
10206 		/*
10207 		 * Do a test unit ready to clear any unit attention from non-cd
10208 		 * devices.
10209 		 */
10210 		mutex_exit(SD_MUTEX(un));
10211 
10212 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10213 		if (status != 0) {
10214 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10215 		}
10216 
10217 		mutex_enter(SD_MUTEX(un));
10218 	}
10219 
10220 
10221 	/*
10222 	 * If this is a non 512 block device, allocate space for
10223 	 * the wmap cache. This is being done here since every time
10224 	 * a media is changed this routine will be called and the
10225 	 * block size is a function of media rather than device.
10226 	 */
10227 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10228 		if (!(un->un_wm_cache)) {
10229 			(void) snprintf(name_str, sizeof (name_str),
10230 			    "%s%d_cache",
10231 			    ddi_driver_name(SD_DEVINFO(un)),
10232 			    ddi_get_instance(SD_DEVINFO(un)));
10233 			un->un_wm_cache = kmem_cache_create(
10234 			    name_str, sizeof (struct sd_w_map),
10235 			    8, sd_wm_cache_constructor,
10236 			    sd_wm_cache_destructor, NULL,
10237 			    (void *)un, NULL, 0);
10238 			if (!(un->un_wm_cache)) {
10239 				rval = ENOMEM;
10240 				goto done;
10241 			}
10242 		}
10243 	}
10244 
10245 	if (un->un_state == SD_STATE_NORMAL) {
10246 		/*
10247 		 * If the target is not yet ready here (defined by a TUR
10248 		 * failure), invalidate the geometry and print an 'offline'
10249 		 * message. This is a legacy message, as the state of the
10250 		 * target is not actually changed to SD_STATE_OFFLINE.
10251 		 *
10252 		 * If the TUR fails for EACCES (Reservation Conflict),
10253 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10254 		 * reservation conflict. If the TUR fails for other
10255 		 * reasons, SD_NOT_READY_VALID will be returned.
10256 		 */
10257 		int err;
10258 
10259 		mutex_exit(SD_MUTEX(un));
10260 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10261 		mutex_enter(SD_MUTEX(un));
10262 
10263 		if (err != 0) {
10264 			mutex_exit(SD_MUTEX(un));
10265 			cmlb_invalidate(un->un_cmlbhandle,
10266 			    (void *)SD_PATH_DIRECT);
10267 			mutex_enter(SD_MUTEX(un));
10268 			if (err == EACCES) {
10269 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10270 				    "reservation conflict\n");
10271 				rval = SD_RESERVED_BY_OTHERS;
10272 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10273 			} else {
10274 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10275 				    "drive offline\n");
10276 				rval = SD_NOT_READY_VALID;
10277 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10278 			}
10279 			goto done;
10280 		}
10281 	}
10282 
10283 	if (un->un_f_format_in_progress == FALSE) {
10284 		mutex_exit(SD_MUTEX(un));
10285 
10286 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10287 		    (void *)SD_PATH_DIRECT);
10288 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10289 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10290 			rval = SD_NOT_READY_VALID;
10291 			mutex_enter(SD_MUTEX(un));
10292 
10293 			goto done;
10294 		}
10295 		if (un->un_f_pkstats_enabled) {
10296 			sd_set_pstats(un);
10297 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10298 			    "sd_ready_and_valid: un:0x%p pstats created and "
10299 			    "set\n", un);
10300 		}
10301 		mutex_enter(SD_MUTEX(un));
10302 	}
10303 
10304 	/*
10305 	 * If this device supports DOOR_LOCK command, try and send
10306 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10307 	 * if it fails. For a CD, however, it is an error
10308 	 */
10309 	if (un->un_f_doorlock_supported) {
10310 		mutex_exit(SD_MUTEX(un));
10311 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10312 		    SD_PATH_DIRECT);
10313 
10314 		if ((status != 0) && ISCD(un)) {
10315 			rval = SD_NOT_READY_VALID;
10316 			mutex_enter(SD_MUTEX(un));
10317 
10318 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10319 
10320 			goto done;
10321 		} else if (status != 0)
10322 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10323 		mutex_enter(SD_MUTEX(un));
10324 	}
10325 
10326 	/* The state has changed, inform the media watch routines */
10327 	un->un_mediastate = DKIO_INSERTED;
10328 	cv_broadcast(&un->un_state_cv);
10329 	rval = SD_READY_VALID;
10330 
10331 done:
10332 
10333 	/*
10334 	 * Initialize the capacity kstat value, if no media previously
10335 	 * (capacity kstat is 0) and a media has been inserted
10336 	 * (un_blockcount > 0).
10337 	 */
10338 	if (un->un_errstats != NULL) {
10339 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10340 		if ((stp->sd_capacity.value.ui64 == 0) &&
10341 		    (un->un_f_blockcount_is_valid == TRUE)) {
10342 			stp->sd_capacity.value.ui64 =
10343 			    (uint64_t)((uint64_t)un->un_blockcount *
10344 			    un->un_sys_blocksize);
10345 		}
10346 	}
10347 
10348 	mutex_exit(SD_MUTEX(un));
10349 	return (rval);
10350 }
10351 
10352 
10353 /*
10354  *    Function: sdmin
10355  *
10356  * Description: Routine to limit the size of a data transfer. Used in
10357  *		conjunction with physio(9F).
10358  *
10359  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10360  *
10361  *     Context: Kernel thread context.
10362  */
10363 
10364 static void
10365 sdmin(struct buf *bp)
10366 {
10367 	struct sd_lun	*un;
10368 	int		instance;
10369 
10370 	instance = SDUNIT(bp->b_edev);
10371 
10372 	un = ddi_get_soft_state(sd_state, instance);
10373 	ASSERT(un != NULL);
10374 
10375 	if (bp->b_bcount > un->un_max_xfer_size) {
10376 		bp->b_bcount = un->un_max_xfer_size;
10377 	}
10378 }
10379 
10380 
10381 /*
10382  *    Function: sdread
10383  *
10384  * Description: Driver's read(9e) entry point function.
10385  *
10386  *   Arguments: dev   - device number
10387  *		uio   - structure pointer describing where data is to be stored
10388  *			in user's space
10389  *		cred_p  - user credential pointer
10390  *
10391  * Return Code: ENXIO
10392  *		EIO
10393  *		EINVAL
10394  *		value returned by physio
10395  *
10396  *     Context: Kernel thread context.
10397  */
10398 /* ARGSUSED */
10399 static int
10400 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10401 {
10402 	struct sd_lun	*un = NULL;
10403 	int		secmask;
10404 	int		err = 0;
10405 	sd_ssc_t	*ssc;
10406 
10407 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10408 		return (ENXIO);
10409 	}
10410 
10411 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10412 
10413 
10414 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10415 		mutex_enter(SD_MUTEX(un));
10416 		/*
10417 		 * Because the call to sd_ready_and_valid will issue I/O we
10418 		 * must wait here if either the device is suspended or
10419 		 * if it's power level is changing.
10420 		 */
10421 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10422 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10423 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10424 		}
10425 		un->un_ncmds_in_driver++;
10426 		mutex_exit(SD_MUTEX(un));
10427 
10428 		/* Initialize sd_ssc_t for internal uscsi commands */
10429 		ssc = sd_ssc_init(un);
10430 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10431 			err = EIO;
10432 		} else {
10433 			err = 0;
10434 		}
10435 		sd_ssc_fini(ssc);
10436 
10437 		mutex_enter(SD_MUTEX(un));
10438 		un->un_ncmds_in_driver--;
10439 		ASSERT(un->un_ncmds_in_driver >= 0);
10440 		mutex_exit(SD_MUTEX(un));
10441 		if (err != 0)
10442 			return (err);
10443 	}
10444 
10445 	/*
10446 	 * Read requests are restricted to multiples of the system block size.
10447 	 */
10448 	secmask = un->un_sys_blocksize - 1;
10449 
10450 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10451 		SD_ERROR(SD_LOG_READ_WRITE, un,
10452 		    "sdread: file offset not modulo %d\n",
10453 		    un->un_sys_blocksize);
10454 		err = EINVAL;
10455 	} else if (uio->uio_iov->iov_len & (secmask)) {
10456 		SD_ERROR(SD_LOG_READ_WRITE, un,
10457 		    "sdread: transfer length not modulo %d\n",
10458 		    un->un_sys_blocksize);
10459 		err = EINVAL;
10460 	} else {
10461 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10462 	}
10463 
10464 	return (err);
10465 }
10466 
10467 
10468 /*
10469  *    Function: sdwrite
10470  *
10471  * Description: Driver's write(9e) entry point function.
10472  *
10473  *   Arguments: dev   - device number
10474  *		uio   - structure pointer describing where data is stored in
10475  *			user's space
10476  *		cred_p  - user credential pointer
10477  *
10478  * Return Code: ENXIO
10479  *		EIO
10480  *		EINVAL
10481  *		value returned by physio
10482  *
10483  *     Context: Kernel thread context.
10484  */
10485 /* ARGSUSED */
10486 static int
10487 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10488 {
10489 	struct sd_lun	*un = NULL;
10490 	int		secmask;
10491 	int		err = 0;
10492 	sd_ssc_t	*ssc;
10493 
10494 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10495 		return (ENXIO);
10496 	}
10497 
10498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10499 
10500 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10501 		mutex_enter(SD_MUTEX(un));
10502 		/*
10503 		 * Because the call to sd_ready_and_valid will issue I/O we
10504 		 * must wait here if either the device is suspended or
10505 		 * if it's power level is changing.
10506 		 */
10507 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10508 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10509 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10510 		}
10511 		un->un_ncmds_in_driver++;
10512 		mutex_exit(SD_MUTEX(un));
10513 
10514 		/* Initialize sd_ssc_t for internal uscsi commands */
10515 		ssc = sd_ssc_init(un);
10516 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10517 			err = EIO;
10518 		} else {
10519 			err = 0;
10520 		}
10521 		sd_ssc_fini(ssc);
10522 
10523 		mutex_enter(SD_MUTEX(un));
10524 		un->un_ncmds_in_driver--;
10525 		ASSERT(un->un_ncmds_in_driver >= 0);
10526 		mutex_exit(SD_MUTEX(un));
10527 		if (err != 0)
10528 			return (err);
10529 	}
10530 
10531 	/*
10532 	 * Write requests are restricted to multiples of the system block size.
10533 	 */
10534 	secmask = un->un_sys_blocksize - 1;
10535 
10536 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10537 		SD_ERROR(SD_LOG_READ_WRITE, un,
10538 		    "sdwrite: file offset not modulo %d\n",
10539 		    un->un_sys_blocksize);
10540 		err = EINVAL;
10541 	} else if (uio->uio_iov->iov_len & (secmask)) {
10542 		SD_ERROR(SD_LOG_READ_WRITE, un,
10543 		    "sdwrite: transfer length not modulo %d\n",
10544 		    un->un_sys_blocksize);
10545 		err = EINVAL;
10546 	} else {
10547 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10548 	}
10549 
10550 	return (err);
10551 }
10552 
10553 
10554 /*
10555  *    Function: sdaread
10556  *
10557  * Description: Driver's aread(9e) entry point function.
10558  *
10559  *   Arguments: dev   - device number
10560  *		aio   - structure pointer describing where data is to be stored
10561  *		cred_p  - user credential pointer
10562  *
10563  * Return Code: ENXIO
10564  *		EIO
10565  *		EINVAL
10566  *		value returned by aphysio
10567  *
10568  *     Context: Kernel thread context.
10569  */
10570 /* ARGSUSED */
10571 static int
10572 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10573 {
10574 	struct sd_lun	*un = NULL;
10575 	struct uio	*uio = aio->aio_uio;
10576 	int		secmask;
10577 	int		err = 0;
10578 	sd_ssc_t	*ssc;
10579 
10580 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10581 		return (ENXIO);
10582 	}
10583 
10584 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10585 
10586 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10587 		mutex_enter(SD_MUTEX(un));
10588 		/*
10589 		 * Because the call to sd_ready_and_valid will issue I/O we
10590 		 * must wait here if either the device is suspended or
10591 		 * if it's power level is changing.
10592 		 */
10593 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10594 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10595 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10596 		}
10597 		un->un_ncmds_in_driver++;
10598 		mutex_exit(SD_MUTEX(un));
10599 
10600 		/* Initialize sd_ssc_t for internal uscsi commands */
10601 		ssc = sd_ssc_init(un);
10602 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10603 			err = EIO;
10604 		} else {
10605 			err = 0;
10606 		}
10607 		sd_ssc_fini(ssc);
10608 
10609 		mutex_enter(SD_MUTEX(un));
10610 		un->un_ncmds_in_driver--;
10611 		ASSERT(un->un_ncmds_in_driver >= 0);
10612 		mutex_exit(SD_MUTEX(un));
10613 		if (err != 0)
10614 			return (err);
10615 	}
10616 
10617 	/*
10618 	 * Read requests are restricted to multiples of the system block size.
10619 	 */
10620 	secmask = un->un_sys_blocksize - 1;
10621 
10622 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10623 		SD_ERROR(SD_LOG_READ_WRITE, un,
10624 		    "sdaread: file offset not modulo %d\n",
10625 		    un->un_sys_blocksize);
10626 		err = EINVAL;
10627 	} else if (uio->uio_iov->iov_len & (secmask)) {
10628 		SD_ERROR(SD_LOG_READ_WRITE, un,
10629 		    "sdaread: transfer length not modulo %d\n",
10630 		    un->un_sys_blocksize);
10631 		err = EINVAL;
10632 	} else {
10633 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10634 	}
10635 
10636 	return (err);
10637 }
10638 
10639 
10640 /*
10641  *    Function: sdawrite
10642  *
10643  * Description: Driver's awrite(9e) entry point function.
10644  *
10645  *   Arguments: dev   - device number
10646  *		aio   - structure pointer describing where data is stored
10647  *		cred_p  - user credential pointer
10648  *
10649  * Return Code: ENXIO
10650  *		EIO
10651  *		EINVAL
10652  *		value returned by aphysio
10653  *
10654  *     Context: Kernel thread context.
10655  */
10656 /* ARGSUSED */
10657 static int
10658 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10659 {
10660 	struct sd_lun	*un = NULL;
10661 	struct uio	*uio = aio->aio_uio;
10662 	int		secmask;
10663 	int		err = 0;
10664 	sd_ssc_t	*ssc;
10665 
10666 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10667 		return (ENXIO);
10668 	}
10669 
10670 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10671 
10672 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10673 		mutex_enter(SD_MUTEX(un));
10674 		/*
10675 		 * Because the call to sd_ready_and_valid will issue I/O we
10676 		 * must wait here if either the device is suspended or
10677 		 * if it's power level is changing.
10678 		 */
10679 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10680 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10681 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10682 		}
10683 		un->un_ncmds_in_driver++;
10684 		mutex_exit(SD_MUTEX(un));
10685 
10686 		/* Initialize sd_ssc_t for internal uscsi commands */
10687 		ssc = sd_ssc_init(un);
10688 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10689 			err = EIO;
10690 		} else {
10691 			err = 0;
10692 		}
10693 		sd_ssc_fini(ssc);
10694 
10695 		mutex_enter(SD_MUTEX(un));
10696 		un->un_ncmds_in_driver--;
10697 		ASSERT(un->un_ncmds_in_driver >= 0);
10698 		mutex_exit(SD_MUTEX(un));
10699 		if (err != 0)
10700 			return (err);
10701 	}
10702 
10703 	/*
10704 	 * Write requests are restricted to multiples of the system block size.
10705 	 */
10706 	secmask = un->un_sys_blocksize - 1;
10707 
10708 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10709 		SD_ERROR(SD_LOG_READ_WRITE, un,
10710 		    "sdawrite: file offset not modulo %d\n",
10711 		    un->un_sys_blocksize);
10712 		err = EINVAL;
10713 	} else if (uio->uio_iov->iov_len & (secmask)) {
10714 		SD_ERROR(SD_LOG_READ_WRITE, un,
10715 		    "sdawrite: transfer length not modulo %d\n",
10716 		    un->un_sys_blocksize);
10717 		err = EINVAL;
10718 	} else {
10719 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10720 	}
10721 
10722 	return (err);
10723 }
10724 
10725 
10726 
10727 
10728 
10729 /*
10730  * Driver IO processing follows the following sequence:
10731  *
10732  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10733  *         |                |                     ^
10734  *         v                v                     |
10735  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10736  *         |                |                     |                   |
10737  *         v                |                     |                   |
10738  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10739  *         |                |                     ^                   ^
10740  *         v                v                     |                   |
10741  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10742  *         |                |                     |                   |
10743  *     +---+                |                     +------------+      +-------+
10744  *     |                    |                                  |              |
10745  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10746  *     |                    v                                  |              |
10747  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10748  *     |                    |                                  ^              |
10749  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10750  *     |                    v                                  |              |
10751  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10752  *     |                    |                                  ^              |
10753  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10754  *     |                    v                                  |              |
10755  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10756  *     |                    |                                  ^              |
10757  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10758  *     |                    v                                  |              |
10759  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10760  *     |                    |                                  ^              |
10761  *     |                    |                                  |              |
10762  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10763  *                          |                           ^
10764  *                          v                           |
10765  *                   sd_core_iostart()                  |
10766  *                          |                           |
10767  *                          |                           +------>(*destroypkt)()
10768  *                          +-> sd_start_cmds() <-+     |           |
10769  *                          |                     |     |           v
10770  *                          |                     |     |  scsi_destroy_pkt(9F)
10771  *                          |                     |     |
10772  *                          +->(*initpkt)()       +- sdintr()
10773  *                          |  |                        |  |
10774  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10775  *                          |  +-> scsi_setup_cdb(9F)   |
10776  *                          |                           |
10777  *                          +--> scsi_transport(9F)     |
10778  *                                     |                |
10779  *                                     +----> SCSA ---->+
10780  *
10781  *
10782  * This code is based upon the following presumptions:
10783  *
10784  *   - iostart and iodone functions operate on buf(9S) structures. These
10785  *     functions perform the necessary operations on the buf(9S) and pass
10786  *     them along to the next function in the chain by using the macros
10787  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10788  *     (for iodone side functions).
10789  *
10790  *   - The iostart side functions may sleep. The iodone side functions
10791  *     are called under interrupt context and may NOT sleep. Therefore
10792  *     iodone side functions also may not call iostart side functions.
10793  *     (NOTE: iostart side functions should NOT sleep for memory, as
10794  *     this could result in deadlock.)
10795  *
10796  *   - An iostart side function may call its corresponding iodone side
10797  *     function directly (if necessary).
10798  *
10799  *   - In the event of an error, an iostart side function can return a buf(9S)
10800  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10801  *     b_error in the usual way of course).
10802  *
10803  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10804  *     requests to the iostart side functions.  The iostart side functions in
10805  *     this case would be called under the context of a taskq thread, so it's
10806  *     OK for them to block/sleep/spin in this case.
10807  *
10808  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10809  *     pass them along to the next function in the chain.  The corresponding
10810  *     iodone side functions must coalesce the "shadow" bufs and return
10811  *     the "original" buf to the next higher layer.
10812  *
10813  *   - The b_private field of the buf(9S) struct holds a pointer to
10814  *     an sd_xbuf struct, which contains information needed to
10815  *     construct the scsi_pkt for the command.
10816  *
10817  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10818  *     layer must acquire & release the SD_MUTEX(un) as needed.
10819  */
10820 
10821 
10822 /*
10823  * Create taskq for all targets in the system. This is created at
10824  * _init(9E) and destroyed at _fini(9E).
10825  *
10826  * Note: here we set the minalloc to a reasonably high number to ensure that
10827  * we will have an adequate supply of task entries available at interrupt time.
10828  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10829  * sd_create_taskq().  Since we do not want to sleep for allocations at
10830  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10831  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10832  * requests any one instant in time.
10833  */
10834 #define	SD_TASKQ_NUMTHREADS	8
10835 #define	SD_TASKQ_MINALLOC	256
10836 #define	SD_TASKQ_MAXALLOC	256
10837 
10838 static taskq_t	*sd_tq = NULL;
10839 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10840 
10841 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10842 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10843 
10844 /*
10845  * The following task queue is being created for the write part of
10846  * read-modify-write of non-512 block size devices.
10847  * Limit the number of threads to 1 for now. This number has been chosen
10848  * considering the fact that it applies only to dvd ram drives/MO drives
10849  * currently. Performance for which is not main criteria at this stage.
10850  * Note: It needs to be explored if we can use a single taskq in future
10851  */
10852 #define	SD_WMR_TASKQ_NUMTHREADS	1
10853 static taskq_t	*sd_wmr_tq = NULL;
10854 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10855 
10856 /*
10857  *    Function: sd_taskq_create
10858  *
10859  * Description: Create taskq thread(s) and preallocate task entries
10860  *
10861  * Return Code: Returns a pointer to the allocated taskq_t.
10862  *
10863  *     Context: Can sleep. Requires blockable context.
10864  *
10865  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10866  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10867  *		- taskq_create() will block for memory, also it will panic
10868  *		  if it cannot create the requested number of threads.
10869  *		- Currently taskq_create() creates threads that cannot be
10870  *		  swapped.
10871  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10872  *		  supply of taskq entries at interrupt time (ie, so that we
10873  *		  do not have to sleep for memory)
10874  */
10875 
10876 static void
10877 sd_taskq_create(void)
10878 {
10879 	char	taskq_name[TASKQ_NAMELEN];
10880 
10881 	ASSERT(sd_tq == NULL);
10882 	ASSERT(sd_wmr_tq == NULL);
10883 
10884 	(void) snprintf(taskq_name, sizeof (taskq_name),
10885 	    "%s_drv_taskq", sd_label);
10886 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10887 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10888 	    TASKQ_PREPOPULATE));
10889 
10890 	(void) snprintf(taskq_name, sizeof (taskq_name),
10891 	    "%s_rmw_taskq", sd_label);
10892 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10893 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10894 	    TASKQ_PREPOPULATE));
10895 }
10896 
10897 
10898 /*
10899  *    Function: sd_taskq_delete
10900  *
10901  * Description: Complementary cleanup routine for sd_taskq_create().
10902  *
10903  *     Context: Kernel thread context.
10904  */
10905 
10906 static void
10907 sd_taskq_delete(void)
10908 {
10909 	ASSERT(sd_tq != NULL);
10910 	ASSERT(sd_wmr_tq != NULL);
10911 	taskq_destroy(sd_tq);
10912 	taskq_destroy(sd_wmr_tq);
10913 	sd_tq = NULL;
10914 	sd_wmr_tq = NULL;
10915 }
10916 
10917 
10918 /*
10919  *    Function: sdstrategy
10920  *
10921  * Description: Driver's strategy (9E) entry point function.
10922  *
10923  *   Arguments: bp - pointer to buf(9S)
10924  *
10925  * Return Code: Always returns zero
10926  *
10927  *     Context: Kernel thread context.
10928  */
10929 
10930 static int
10931 sdstrategy(struct buf *bp)
10932 {
10933 	struct sd_lun *un;
10934 
10935 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10936 	if (un == NULL) {
10937 		bioerror(bp, EIO);
10938 		bp->b_resid = bp->b_bcount;
10939 		biodone(bp);
10940 		return (0);
10941 	}
10942 	/* As was done in the past, fail new cmds. if state is dumping. */
10943 	if (un->un_state == SD_STATE_DUMPING) {
10944 		bioerror(bp, ENXIO);
10945 		bp->b_resid = bp->b_bcount;
10946 		biodone(bp);
10947 		return (0);
10948 	}
10949 
10950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10951 
10952 	/*
10953 	 * Commands may sneak in while we released the mutex in
10954 	 * DDI_SUSPEND, we should block new commands. However, old
10955 	 * commands that are still in the driver at this point should
10956 	 * still be allowed to drain.
10957 	 */
10958 	mutex_enter(SD_MUTEX(un));
10959 	/*
10960 	 * Must wait here if either the device is suspended or
10961 	 * if it's power level is changing.
10962 	 */
10963 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10964 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10965 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10966 	}
10967 
10968 	un->un_ncmds_in_driver++;
10969 
10970 	/*
10971 	 * atapi: Since we are running the CD for now in PIO mode we need to
10972 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10973 	 * the HBA's init_pkt routine.
10974 	 */
10975 	if (un->un_f_cfg_is_atapi == TRUE) {
10976 		mutex_exit(SD_MUTEX(un));
10977 		bp_mapin(bp);
10978 		mutex_enter(SD_MUTEX(un));
10979 	}
10980 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10981 	    un->un_ncmds_in_driver);
10982 
10983 	if (bp->b_flags & B_WRITE)
10984 		un->un_f_sync_cache_required = TRUE;
10985 
10986 	mutex_exit(SD_MUTEX(un));
10987 
10988 	/*
10989 	 * This will (eventually) allocate the sd_xbuf area and
10990 	 * call sd_xbuf_strategy().  We just want to return the
10991 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10992 	 * imized tail call which saves us a stack frame.
10993 	 */
10994 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10995 }
10996 
10997 
10998 /*
10999  *    Function: sd_xbuf_strategy
11000  *
11001  * Description: Function for initiating IO operations via the
11002  *		ddi_xbuf_qstrategy() mechanism.
11003  *
11004  *     Context: Kernel thread context.
11005  */
11006 
11007 static void
11008 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11009 {
11010 	struct sd_lun *un = arg;
11011 
11012 	ASSERT(bp != NULL);
11013 	ASSERT(xp != NULL);
11014 	ASSERT(un != NULL);
11015 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11016 
11017 	/*
11018 	 * Initialize the fields in the xbuf and save a pointer to the
11019 	 * xbuf in bp->b_private.
11020 	 */
11021 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11022 
11023 	/* Send the buf down the iostart chain */
11024 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11025 }
11026 
11027 
11028 /*
11029  *    Function: sd_xbuf_init
11030  *
11031  * Description: Prepare the given sd_xbuf struct for use.
11032  *
11033  *   Arguments: un - ptr to softstate
11034  *		bp - ptr to associated buf(9S)
11035  *		xp - ptr to associated sd_xbuf
11036  *		chain_type - IO chain type to use:
11037  *			SD_CHAIN_NULL
11038  *			SD_CHAIN_BUFIO
11039  *			SD_CHAIN_USCSI
11040  *			SD_CHAIN_DIRECT
11041  *			SD_CHAIN_DIRECT_PRIORITY
11042  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11043  *			initialization; may be NULL if none.
11044  *
11045  *     Context: Kernel thread context
11046  */
11047 
11048 static void
11049 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11050 	uchar_t chain_type, void *pktinfop)
11051 {
11052 	int index;
11053 
11054 	ASSERT(un != NULL);
11055 	ASSERT(bp != NULL);
11056 	ASSERT(xp != NULL);
11057 
11058 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11059 	    bp, chain_type);
11060 
11061 	xp->xb_un	= un;
11062 	xp->xb_pktp	= NULL;
11063 	xp->xb_pktinfo	= pktinfop;
11064 	xp->xb_private	= bp->b_private;
11065 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11066 
11067 	/*
11068 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11069 	 * upon the specified chain type to use.
11070 	 */
11071 	switch (chain_type) {
11072 	case SD_CHAIN_NULL:
11073 		/*
11074 		 * Fall thru to just use the values for the buf type, even
11075 		 * tho for the NULL chain these values will never be used.
11076 		 */
11077 		/* FALLTHRU */
11078 	case SD_CHAIN_BUFIO:
11079 		index = un->un_buf_chain_type;
11080 		break;
11081 	case SD_CHAIN_USCSI:
11082 		index = un->un_uscsi_chain_type;
11083 		break;
11084 	case SD_CHAIN_DIRECT:
11085 		index = un->un_direct_chain_type;
11086 		break;
11087 	case SD_CHAIN_DIRECT_PRIORITY:
11088 		index = un->un_priority_chain_type;
11089 		break;
11090 	default:
11091 		/* We're really broken if we ever get here... */
11092 		panic("sd_xbuf_init: illegal chain type!");
11093 		/*NOTREACHED*/
11094 	}
11095 
11096 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11097 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11098 
11099 	/*
11100 	 * It might be a bit easier to simply bzero the entire xbuf above,
11101 	 * but it turns out that since we init a fair number of members anyway,
11102 	 * we save a fair number cycles by doing explicit assignment of zero.
11103 	 */
11104 	xp->xb_pkt_flags	= 0;
11105 	xp->xb_dma_resid	= 0;
11106 	xp->xb_retry_count	= 0;
11107 	xp->xb_victim_retry_count = 0;
11108 	xp->xb_ua_retry_count	= 0;
11109 	xp->xb_nr_retry_count	= 0;
11110 	xp->xb_sense_bp		= NULL;
11111 	xp->xb_sense_status	= 0;
11112 	xp->xb_sense_state	= 0;
11113 	xp->xb_sense_resid	= 0;
11114 	xp->xb_ena		= 0;
11115 
11116 	bp->b_private	= xp;
11117 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11118 	bp->b_resid	= 0;
11119 	bp->av_forw	= NULL;
11120 	bp->av_back	= NULL;
11121 	bioerror(bp, 0);
11122 
11123 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11124 }
11125 
11126 
11127 /*
11128  *    Function: sd_uscsi_strategy
11129  *
11130  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11131  *
11132  *   Arguments: bp - buf struct ptr
11133  *
11134  * Return Code: Always returns 0
11135  *
11136  *     Context: Kernel thread context
11137  */
11138 
11139 static int
11140 sd_uscsi_strategy(struct buf *bp)
11141 {
11142 	struct sd_lun		*un;
11143 	struct sd_uscsi_info	*uip;
11144 	struct sd_xbuf		*xp;
11145 	uchar_t			chain_type;
11146 	uchar_t			cmd;
11147 
11148 	ASSERT(bp != NULL);
11149 
11150 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11151 	if (un == NULL) {
11152 		bioerror(bp, EIO);
11153 		bp->b_resid = bp->b_bcount;
11154 		biodone(bp);
11155 		return (0);
11156 	}
11157 
11158 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11159 
11160 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11161 
11162 	/*
11163 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11164 	 */
11165 	ASSERT(bp->b_private != NULL);
11166 	uip = (struct sd_uscsi_info *)bp->b_private;
11167 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11168 
11169 	mutex_enter(SD_MUTEX(un));
11170 	/*
11171 	 * atapi: Since we are running the CD for now in PIO mode we need to
11172 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11173 	 * the HBA's init_pkt routine.
11174 	 */
11175 	if (un->un_f_cfg_is_atapi == TRUE) {
11176 		mutex_exit(SD_MUTEX(un));
11177 		bp_mapin(bp);
11178 		mutex_enter(SD_MUTEX(un));
11179 	}
11180 	un->un_ncmds_in_driver++;
11181 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11182 	    un->un_ncmds_in_driver);
11183 
11184 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11185 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11186 		un->un_f_sync_cache_required = TRUE;
11187 
11188 	mutex_exit(SD_MUTEX(un));
11189 
11190 	switch (uip->ui_flags) {
11191 	case SD_PATH_DIRECT:
11192 		chain_type = SD_CHAIN_DIRECT;
11193 		break;
11194 	case SD_PATH_DIRECT_PRIORITY:
11195 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11196 		break;
11197 	default:
11198 		chain_type = SD_CHAIN_USCSI;
11199 		break;
11200 	}
11201 
11202 	/*
11203 	 * We may allocate extra buf for external USCSI commands. If the
11204 	 * application asks for bigger than 20-byte sense data via USCSI,
11205 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11206 	 */
11207 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11208 	    SENSE_LENGTH) {
11209 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11210 		    MAX_SENSE_LENGTH, KM_SLEEP);
11211 	} else {
11212 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11213 	}
11214 
11215 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11216 
11217 	/* Use the index obtained within xbuf_init */
11218 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11219 
11220 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11221 
11222 	return (0);
11223 }
11224 
11225 /*
11226  *    Function: sd_send_scsi_cmd
11227  *
11228  * Description: Runs a USCSI command for user (when called thru sdioctl),
11229  *		or for the driver
11230  *
11231  *   Arguments: dev - the dev_t for the device
11232  *		incmd - ptr to a valid uscsi_cmd struct
11233  *		flag - bit flag, indicating open settings, 32/64 bit type
11234  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11235  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11236  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11237  *			to use the USCSI "direct" chain and bypass the normal
11238  *			command waitq.
11239  *
11240  * Return Code: 0 -  successful completion of the given command
11241  *		EIO - scsi_uscsi_handle_command() failed
11242  *		ENXIO  - soft state not found for specified dev
11243  *		EINVAL
11244  *		EFAULT - copyin/copyout error
11245  *		return code of scsi_uscsi_handle_command():
11246  *			EIO
11247  *			ENXIO
11248  *			EACCES
11249  *
11250  *     Context: Waits for command to complete. Can sleep.
11251  */
11252 
11253 static int
11254 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11255 	enum uio_seg dataspace, int path_flag)
11256 {
11257 	struct sd_lun	*un;
11258 	sd_ssc_t	*ssc;
11259 	int		rval;
11260 
11261 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11262 	if (un == NULL) {
11263 		return (ENXIO);
11264 	}
11265 
11266 	/*
11267 	 * Using sd_ssc_send to handle uscsi cmd
11268 	 */
11269 	ssc = sd_ssc_init(un);
11270 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11271 	sd_ssc_fini(ssc);
11272 
11273 	return (rval);
11274 }
11275 
11276 /*
11277  *    Function: sd_ssc_init
11278  *
11279  * Description: Uscsi end-user call this function to initialize necessary
11280  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11281  *
11282  *              The return value of sd_send_scsi_cmd will be treated as a
11283  *              fault in various conditions. Even it is not Zero, some
11284  *              callers may ignore the return value. That is to say, we can
11285  *              not make an accurate assessment in sdintr, since if a
11286  *              command is failed in sdintr it does not mean the caller of
11287  *              sd_send_scsi_cmd will treat it as a real failure.
11288  *
11289  *              To avoid printing too many error logs for a failed uscsi
11290  *              packet that the caller may not treat it as a failure, the
11291  *              sd will keep silent for handling all uscsi commands.
11292  *
11293  *              During detach->attach and attach-open, for some types of
11294  *              problems, the driver should be providing information about
11295  *              the problem encountered. Device use USCSI_SILENT, which
11296  *              suppresses all driver information. The result is that no
11297  *              information about the problem is available. Being
11298  *              completely silent during this time is inappropriate. The
11299  *              driver needs a more selective filter than USCSI_SILENT, so
11300  *              that information related to faults is provided.
11301  *
11302  *              To make the accurate accessment, the caller  of
11303  *              sd_send_scsi_USCSI_CMD should take the ownership and
11304  *              get necessary information to print error messages.
11305  *
11306  *              If we want to print necessary info of uscsi command, we need to
11307  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11308  *              assessment. We use sd_ssc_init to alloc necessary
11309  *              structs for sending an uscsi command and we are also
11310  *              responsible for free the memory by calling
11311  *              sd_ssc_fini.
11312  *
11313  *              The calling secquences will look like:
11314  *              sd_ssc_init->
11315  *
11316  *                  ...
11317  *
11318  *                  sd_send_scsi_USCSI_CMD->
11319  *                      sd_ssc_send-> - - - sdintr
11320  *                  ...
11321  *
11322  *                  if we think the return value should be treated as a
11323  *                  failure, we make the accessment here and print out
11324  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11325  *
11326  *                  ...
11327  *
11328  *              sd_ssc_fini
11329  *
11330  *
11331  *   Arguments: un - pointer to driver soft state (unit) structure for this
11332  *                   target.
11333  *
11334  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11335  *                         uscsi_cmd and sd_uscsi_info.
11336  *                  NULL - if can not alloc memory for sd_ssc_t struct
11337  *
11338  *     Context: Kernel Thread.
11339  */
11340 static sd_ssc_t *
11341 sd_ssc_init(struct sd_lun *un)
11342 {
11343 	sd_ssc_t		*ssc;
11344 	struct uscsi_cmd	*ucmdp;
11345 	struct sd_uscsi_info	*uip;
11346 
11347 	ASSERT(un != NULL);
11348 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11349 
11350 	/*
11351 	 * Allocate sd_ssc_t structure
11352 	 */
11353 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11354 
11355 	/*
11356 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11357 	 */
11358 	ucmdp = scsi_uscsi_alloc();
11359 
11360 	/*
11361 	 * Allocate sd_uscsi_info structure
11362 	 */
11363 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11364 
11365 	ssc->ssc_uscsi_cmd = ucmdp;
11366 	ssc->ssc_uscsi_info = uip;
11367 	ssc->ssc_un = un;
11368 
11369 	return (ssc);
11370 }
11371 
11372 /*
11373  * Function: sd_ssc_fini
11374  *
11375  * Description: To free sd_ssc_t and it's hanging off
11376  *
11377  * Arguments: ssc - struct pointer of sd_ssc_t.
11378  */
11379 static void
11380 sd_ssc_fini(sd_ssc_t *ssc)
11381 {
11382 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11383 
11384 	if (ssc->ssc_uscsi_info != NULL) {
11385 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11386 		ssc->ssc_uscsi_info = NULL;
11387 	}
11388 
11389 	kmem_free(ssc, sizeof (sd_ssc_t));
11390 	ssc = NULL;
11391 }
11392 
11393 /*
11394  * Function: sd_ssc_send
11395  *
11396  * Description: Runs a USCSI command for user when called through sdioctl,
11397  *              or for the driver.
11398  *
11399  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11400  *                    sd_uscsi_info in.
11401  *		incmd - ptr to a valid uscsi_cmd struct
11402  *		flag - bit flag, indicating open settings, 32/64 bit type
11403  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11404  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11405  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11406  *			to use the USCSI "direct" chain and bypass the normal
11407  *			command waitq.
11408  *
11409  * Return Code: 0 -  successful completion of the given command
11410  *		EIO - scsi_uscsi_handle_command() failed
11411  *		ENXIO  - soft state not found for specified dev
11412  *		EINVAL
11413  *		EFAULT - copyin/copyout error
11414  *		return code of scsi_uscsi_handle_command():
11415  *			EIO
11416  *			ENXIO
11417  *			EACCES
11418  *
11419  *     Context: Kernel Thread;
11420  *              Waits for command to complete. Can sleep.
11421  */
11422 static int
11423 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11424 	enum uio_seg dataspace, int path_flag)
11425 {
11426 	struct sd_uscsi_info	*uip;
11427 	struct uscsi_cmd	*uscmd;
11428 	struct sd_lun		*un;
11429 	dev_t			dev;
11430 
11431 	int	format = 0;
11432 	int	rval;
11433 
11434 	ASSERT(ssc != NULL);
11435 	un = ssc->ssc_un;
11436 	ASSERT(un != NULL);
11437 	uscmd = ssc->ssc_uscsi_cmd;
11438 	ASSERT(uscmd != NULL);
11439 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11440 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11441 		/*
11442 		 * If enter here, it indicates that the previous uscsi
11443 		 * command has not been processed by sd_ssc_assessment.
11444 		 * This is violating our rules of FMA telemetry processing.
11445 		 * We should print out this message and the last undisposed
11446 		 * uscsi command.
11447 		 */
11448 		if (uscmd->uscsi_cdb != NULL) {
11449 			SD_INFO(SD_LOG_SDTEST, un,
11450 			    "sd_ssc_send is missing the alternative "
11451 			    "sd_ssc_assessment when running command 0x%x.\n",
11452 			    uscmd->uscsi_cdb[0]);
11453 		}
11454 		/*
11455 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11456 		 * the initial status.
11457 		 */
11458 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11459 	}
11460 
11461 	/*
11462 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11463 	 * followed to avoid missing FMA telemetries.
11464 	 */
11465 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11466 
11467 #ifdef SDDEBUG
11468 	switch (dataspace) {
11469 	case UIO_USERSPACE:
11470 		SD_TRACE(SD_LOG_IO, un,
11471 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11472 		break;
11473 	case UIO_SYSSPACE:
11474 		SD_TRACE(SD_LOG_IO, un,
11475 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11476 		break;
11477 	default:
11478 		SD_TRACE(SD_LOG_IO, un,
11479 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11480 		break;
11481 	}
11482 #endif
11483 
11484 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11485 	    SD_ADDRESS(un), &uscmd);
11486 	if (rval != 0) {
11487 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11488 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11489 		return (rval);
11490 	}
11491 
11492 	if ((uscmd->uscsi_cdb != NULL) &&
11493 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11494 		mutex_enter(SD_MUTEX(un));
11495 		un->un_f_format_in_progress = TRUE;
11496 		mutex_exit(SD_MUTEX(un));
11497 		format = 1;
11498 	}
11499 
11500 	/*
11501 	 * Allocate an sd_uscsi_info struct and fill it with the info
11502 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11503 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11504 	 * since we allocate the buf here in this function, we do not
11505 	 * need to preserve the prior contents of b_private.
11506 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11507 	 */
11508 	uip = ssc->ssc_uscsi_info;
11509 	uip->ui_flags = path_flag;
11510 	uip->ui_cmdp = uscmd;
11511 
11512 	/*
11513 	 * Commands sent with priority are intended for error recovery
11514 	 * situations, and do not have retries performed.
11515 	 */
11516 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11517 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11518 	}
11519 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11520 
11521 	dev = SD_GET_DEV(un);
11522 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11523 	    sd_uscsi_strategy, NULL, uip);
11524 
11525 	/*
11526 	 * mark ssc_flags right after handle_cmd to make sure
11527 	 * the uscsi has been sent
11528 	 */
11529 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11530 
11531 #ifdef SDDEBUG
11532 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11533 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11534 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11535 	if (uscmd->uscsi_bufaddr != NULL) {
11536 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11537 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11538 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11539 		if (dataspace == UIO_SYSSPACE) {
11540 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11541 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11542 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11543 		}
11544 	}
11545 #endif
11546 
11547 	if (format == 1) {
11548 		mutex_enter(SD_MUTEX(un));
11549 		un->un_f_format_in_progress = FALSE;
11550 		mutex_exit(SD_MUTEX(un));
11551 	}
11552 
11553 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11554 
11555 	return (rval);
11556 }
11557 
11558 /*
11559  *     Function: sd_ssc_print
11560  *
11561  * Description: Print information available to the console.
11562  *
11563  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11564  *                    sd_uscsi_info in.
11565  *            sd_severity - log level.
11566  *     Context: Kernel thread or interrupt context.
11567  */
11568 static void
11569 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11570 {
11571 	struct uscsi_cmd	*ucmdp;
11572 	struct scsi_device	*devp;
11573 	dev_info_t 		*devinfo;
11574 	uchar_t			*sensep;
11575 	int			senlen;
11576 	union scsi_cdb		*cdbp;
11577 	uchar_t			com;
11578 	extern struct scsi_key_strings scsi_cmds[];
11579 
11580 	ASSERT(ssc != NULL);
11581 	ASSERT(ssc->ssc_un != NULL);
11582 
11583 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
11584 		return;
11585 	ucmdp = ssc->ssc_uscsi_cmd;
11586 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11587 	devinfo = SD_DEVINFO(ssc->ssc_un);
11588 	ASSERT(ucmdp != NULL);
11589 	ASSERT(devp != NULL);
11590 	ASSERT(devinfo != NULL);
11591 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11592 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11593 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11594 
11595 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11596 	if (cdbp == NULL)
11597 		return;
11598 	/* We don't print log if no sense data available. */
11599 	if (senlen == 0)
11600 		sensep = NULL;
11601 	com = cdbp->scc_cmd;
11602 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11603 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11604 }
11605 
11606 /*
11607  *     Function: sd_ssc_assessment
11608  *
11609  * Description: We use this function to make an assessment at the point
11610  *              where SD driver may encounter a potential error.
11611  *
11612  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11613  *                  sd_uscsi_info in.
11614  *            tp_assess - a hint of strategy for ereport posting.
11615  *            Possible values of tp_assess include:
11616  *                SD_FMT_IGNORE - we don't post any ereport because we're
11617  *                sure that it is ok to ignore the underlying problems.
11618  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11619  *                but it might be not correct to ignore the underlying hardware
11620  *                error.
11621  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11622  *                payload driver-assessment of value "fail" or
11623  *                "fatal"(depending on what information we have here). This
11624  *                assessment value is usually set when SD driver think there
11625  *                is a potential error occurred(Typically, when return value
11626  *                of the SCSI command is EIO).
11627  *                SD_FMT_STANDARD - we will post an ereport with the payload
11628  *                driver-assessment of value "info". This assessment value is
11629  *                set when the SCSI command returned successfully and with
11630  *                sense data sent back.
11631  *
11632  *     Context: Kernel thread.
11633  */
11634 static void
11635 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11636 {
11637 	int senlen = 0;
11638 	struct uscsi_cmd *ucmdp = NULL;
11639 	struct sd_lun *un;
11640 
11641 	ASSERT(ssc != NULL);
11642 	un = ssc->ssc_un;
11643 	ASSERT(un != NULL);
11644 	ucmdp = ssc->ssc_uscsi_cmd;
11645 	ASSERT(ucmdp != NULL);
11646 
11647 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11648 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11649 	} else {
11650 		/*
11651 		 * If enter here, it indicates that we have a wrong
11652 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
11653 		 * both of which should be called in a pair in case of
11654 		 * loss of FMA telemetries.
11655 		 */
11656 		if (ucmdp->uscsi_cdb != NULL) {
11657 			SD_INFO(SD_LOG_SDTEST, un,
11658 			    "sd_ssc_assessment is missing the "
11659 			    "alternative sd_ssc_send when running 0x%x, "
11660 			    "or there are superfluous sd_ssc_assessment for "
11661 			    "the same sd_ssc_send.\n",
11662 			    ucmdp->uscsi_cdb[0]);
11663 		}
11664 		/*
11665 		 * Set the ssc_flags to the initial value to avoid passing
11666 		 * down dirty flags to the following sd_ssc_send function.
11667 		 */
11668 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11669 		return;
11670 	}
11671 
11672 	/*
11673 	 * Only handle an issued command which is waiting for assessment.
11674 	 * A command which is not issued will not have
11675 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
11676 	 */
11677 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11678 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11679 		return;
11680 	} else {
11681 		/*
11682 		 * For an issued command, we should clear this flag in
11683 		 * order to make the sd_ssc_t structure be used off
11684 		 * multiple uscsi commands.
11685 		 */
11686 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11687 	}
11688 
11689 	/*
11690 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
11691 	 * commands here. And we should clear the ssc_flags before return.
11692 	 */
11693 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11694 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11695 		return;
11696 	}
11697 
11698 	switch (tp_assess) {
11699 	case SD_FMT_IGNORE:
11700 	case SD_FMT_IGNORE_COMPROMISE:
11701 		break;
11702 	case SD_FMT_STATUS_CHECK:
11703 		/*
11704 		 * For a failed command(including the succeeded command
11705 		 * with invalid data sent back).
11706 		 */
11707 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11708 		break;
11709 	case SD_FMT_STANDARD:
11710 		/*
11711 		 * Always for the succeeded commands probably with sense
11712 		 * data sent back.
11713 		 * Limitation:
11714 		 *	We can only handle a succeeded command with sense
11715 		 *	data sent back when auto-request-sense is enabled.
11716 		 */
11717 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11718 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11719 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11720 		    (un->un_f_arq_enabled == TRUE) &&
11721 		    senlen > 0 &&
11722 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11723 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11724 		}
11725 		break;
11726 	default:
11727 		/*
11728 		 * Should not have other type of assessment.
11729 		 */
11730 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11731 		    "sd_ssc_assessment got wrong "
11732 		    "sd_type_assessment %d.\n", tp_assess);
11733 		break;
11734 	}
11735 	/*
11736 	 * Clear up the ssc_flags before return.
11737 	 */
11738 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11739 }
11740 
11741 /*
11742  *    Function: sd_ssc_post
11743  *
11744  * Description: 1. read the driver property to get fm-scsi-log flag.
11745  *              2. print log if fm_log_capable is non-zero.
11746  *              3. call sd_ssc_ereport_post to post ereport if possible.
11747  *
11748  *    Context: May be called from kernel thread or interrupt context.
11749  */
11750 static void
11751 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11752 {
11753 	struct sd_lun	*un;
11754 	int		sd_severity;
11755 
11756 	ASSERT(ssc != NULL);
11757 	un = ssc->ssc_un;
11758 	ASSERT(un != NULL);
11759 
11760 	/*
11761 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
11762 	 * by directly called from sdintr context.
11763 	 * We don't handle a non-disk drive(CD-ROM, removable media).
11764 	 * Clear the ssc_flags before return in case we've set
11765 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
11766 	 * driver.
11767 	 */
11768 	if (ISCD(un) || un->un_f_has_removable_media) {
11769 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11770 		return;
11771 	}
11772 
11773 	switch (sd_assess) {
11774 		case SD_FM_DRV_FATAL:
11775 			sd_severity = SCSI_ERR_FATAL;
11776 			break;
11777 		case SD_FM_DRV_RECOVERY:
11778 			sd_severity = SCSI_ERR_RECOVERED;
11779 			break;
11780 		case SD_FM_DRV_RETRY:
11781 			sd_severity = SCSI_ERR_RETRYABLE;
11782 			break;
11783 		case SD_FM_DRV_NOTICE:
11784 			sd_severity = SCSI_ERR_INFO;
11785 			break;
11786 		default:
11787 			sd_severity = SCSI_ERR_UNKNOWN;
11788 	}
11789 	/* print log */
11790 	sd_ssc_print(ssc, sd_severity);
11791 
11792 	/* always post ereport */
11793 	sd_ssc_ereport_post(ssc, sd_assess);
11794 }
11795 
11796 /*
11797  *    Function: sd_ssc_set_info
11798  *
11799  * Description: Mark ssc_flags and set ssc_info which would be the
11800  *              payload of uderr ereport. This function will cause
11801  *              sd_ssc_ereport_post to post uderr ereport only.
11802  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
11803  *              the function will also call SD_ERROR or scsi_log for a
11804  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
11805  *
11806  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11807  *                  sd_uscsi_info in.
11808  *            ssc_flags - indicate the sub-category of a uderr.
11809  *            comp - this argument is meaningful only when
11810  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
11811  *                   values include:
11812  *                   > 0, SD_ERROR is used with comp as the driver logging
11813  *                   component;
11814  *                   = 0, scsi-log is used to log error telemetries;
11815  *                   < 0, no log available for this telemetry.
11816  *
11817  *    Context: Kernel thread or interrupt context
11818  */
11819 static void
11820 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
11821 {
11822 	va_list	ap;
11823 
11824 	ASSERT(ssc != NULL);
11825 	ASSERT(ssc->ssc_un != NULL);
11826 
11827 	ssc->ssc_flags |= ssc_flags;
11828 	va_start(ap, fmt);
11829 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11830 	va_end(ap);
11831 
11832 	/*
11833 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
11834 	 * with invalid data sent back. For non-uscsi command, the
11835 	 * following code will be bypassed.
11836 	 */
11837 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
11838 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
11839 			/*
11840 			 * If the error belong to certain component and we
11841 			 * do not want it to show up on the console, we
11842 			 * will use SD_ERROR, otherwise scsi_log is
11843 			 * preferred.
11844 			 */
11845 			if (comp > 0) {
11846 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
11847 			} else if (comp == 0) {
11848 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
11849 				    CE_WARN, ssc->ssc_info);
11850 			}
11851 		}
11852 	}
11853 }
11854 
11855 /*
11856  *    Function: sd_buf_iodone
11857  *
11858  * Description: Frees the sd_xbuf & returns the buf to its originator.
11859  *
11860  *     Context: May be called from interrupt context.
11861  */
11862 /* ARGSUSED */
11863 static void
11864 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11865 {
11866 	struct sd_xbuf *xp;
11867 
11868 	ASSERT(un != NULL);
11869 	ASSERT(bp != NULL);
11870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11871 
11872 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11873 
11874 	xp = SD_GET_XBUF(bp);
11875 	ASSERT(xp != NULL);
11876 
11877 	mutex_enter(SD_MUTEX(un));
11878 
11879 	/*
11880 	 * Grab time when the cmd completed.
11881 	 * This is used for determining if the system has been
11882 	 * idle long enough to make it idle to the PM framework.
11883 	 * This is for lowering the overhead, and therefore improving
11884 	 * performance per I/O operation.
11885 	 */
11886 	un->un_pm_idle_time = ddi_get_time();
11887 
11888 	un->un_ncmds_in_driver--;
11889 	ASSERT(un->un_ncmds_in_driver >= 0);
11890 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11891 	    un->un_ncmds_in_driver);
11892 
11893 	mutex_exit(SD_MUTEX(un));
11894 
11895 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11896 	biodone(bp);				/* bp is gone after this */
11897 
11898 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11899 }
11900 
11901 
11902 /*
11903  *    Function: sd_uscsi_iodone
11904  *
11905  * Description: Frees the sd_xbuf & returns the buf to its originator.
11906  *
11907  *     Context: May be called from interrupt context.
11908  */
11909 /* ARGSUSED */
11910 static void
11911 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11912 {
11913 	struct sd_xbuf *xp;
11914 
11915 	ASSERT(un != NULL);
11916 	ASSERT(bp != NULL);
11917 
11918 	xp = SD_GET_XBUF(bp);
11919 	ASSERT(xp != NULL);
11920 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11921 
11922 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11923 
11924 	bp->b_private = xp->xb_private;
11925 
11926 	mutex_enter(SD_MUTEX(un));
11927 
11928 	/*
11929 	 * Grab time when the cmd completed.
11930 	 * This is used for determining if the system has been
11931 	 * idle long enough to make it idle to the PM framework.
11932 	 * This is for lowering the overhead, and therefore improving
11933 	 * performance per I/O operation.
11934 	 */
11935 	un->un_pm_idle_time = ddi_get_time();
11936 
11937 	un->un_ncmds_in_driver--;
11938 	ASSERT(un->un_ncmds_in_driver >= 0);
11939 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11940 	    un->un_ncmds_in_driver);
11941 
11942 	mutex_exit(SD_MUTEX(un));
11943 
11944 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
11945 	    SENSE_LENGTH) {
11946 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
11947 		    MAX_SENSE_LENGTH);
11948 	} else {
11949 		kmem_free(xp, sizeof (struct sd_xbuf));
11950 	}
11951 
11952 	biodone(bp);
11953 
11954 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11955 }
11956 
11957 
11958 /*
11959  *    Function: sd_mapblockaddr_iostart
11960  *
11961  * Description: Verify request lies within the partition limits for
11962  *		the indicated minor device.  Issue "overrun" buf if
11963  *		request would exceed partition range.  Converts
11964  *		partition-relative block address to absolute.
11965  *
11966  *     Context: Can sleep
11967  *
11968  *      Issues: This follows what the old code did, in terms of accessing
11969  *		some of the partition info in the unit struct without holding
11970  *		the mutext.  This is a general issue, if the partition info
11971  *		can be altered while IO is in progress... as soon as we send
11972  *		a buf, its partitioning can be invalid before it gets to the
11973  *		device.  Probably the right fix is to move partitioning out
11974  *		of the driver entirely.
11975  */
11976 
11977 static void
11978 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11979 {
11980 	diskaddr_t	nblocks;	/* #blocks in the given partition */
11981 	daddr_t	blocknum;	/* Block number specified by the buf */
11982 	size_t	requested_nblocks;
11983 	size_t	available_nblocks;
11984 	int	partition;
11985 	diskaddr_t	partition_offset;
11986 	struct sd_xbuf *xp;
11987 
11988 	ASSERT(un != NULL);
11989 	ASSERT(bp != NULL);
11990 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11991 
11992 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11993 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11994 
11995 	xp = SD_GET_XBUF(bp);
11996 	ASSERT(xp != NULL);
11997 
11998 	/*
11999 	 * If the geometry is not indicated as valid, attempt to access
12000 	 * the unit & verify the geometry/label. This can be the case for
12001 	 * removable-media devices, of if the device was opened in
12002 	 * NDELAY/NONBLOCK mode.
12003 	 */
12004 	partition = SDPART(bp->b_edev);
12005 
12006 	if (!SD_IS_VALID_LABEL(un)) {
12007 		sd_ssc_t *ssc;
12008 		/*
12009 		 * Initialize sd_ssc_t for internal uscsi commands
12010 		 * In case of potential porformance issue, we need
12011 		 * to alloc memory only if there is invalid label
12012 		 */
12013 		ssc = sd_ssc_init(un);
12014 
12015 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12016 			/*
12017 			 * For removable devices it is possible to start an
12018 			 * I/O without a media by opening the device in nodelay
12019 			 * mode. Also for writable CDs there can be many
12020 			 * scenarios where there is no geometry yet but volume
12021 			 * manager is trying to issue a read() just because
12022 			 * it can see TOC on the CD. So do not print a message
12023 			 * for removables.
12024 			 */
12025 			if (!un->un_f_has_removable_media) {
12026 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12027 				    "i/o to invalid geometry\n");
12028 			}
12029 			bioerror(bp, EIO);
12030 			bp->b_resid = bp->b_bcount;
12031 			SD_BEGIN_IODONE(index, un, bp);
12032 
12033 			sd_ssc_fini(ssc);
12034 			return;
12035 		}
12036 		sd_ssc_fini(ssc);
12037 	}
12038 
12039 	nblocks = 0;
12040 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12041 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12042 
12043 	/*
12044 	 * blocknum is the starting block number of the request. At this
12045 	 * point it is still relative to the start of the minor device.
12046 	 */
12047 	blocknum = xp->xb_blkno;
12048 
12049 	/*
12050 	 * Legacy: If the starting block number is one past the last block
12051 	 * in the partition, do not set B_ERROR in the buf.
12052 	 */
12053 	if (blocknum == nblocks)  {
12054 		goto error_exit;
12055 	}
12056 
12057 	/*
12058 	 * Confirm that the first block of the request lies within the
12059 	 * partition limits. Also the requested number of bytes must be
12060 	 * a multiple of the system block size.
12061 	 */
12062 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12063 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12064 		bp->b_flags |= B_ERROR;
12065 		goto error_exit;
12066 	}
12067 
12068 	/*
12069 	 * If the requsted # blocks exceeds the available # blocks, that
12070 	 * is an overrun of the partition.
12071 	 */
12072 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12073 	available_nblocks = (size_t)(nblocks - blocknum);
12074 	ASSERT(nblocks >= blocknum);
12075 
12076 	if (requested_nblocks > available_nblocks) {
12077 		/*
12078 		 * Allocate an "overrun" buf to allow the request to proceed
12079 		 * for the amount of space available in the partition. The
12080 		 * amount not transferred will be added into the b_resid
12081 		 * when the operation is complete. The overrun buf
12082 		 * replaces the original buf here, and the original buf
12083 		 * is saved inside the overrun buf, for later use.
12084 		 */
12085 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12086 		    (offset_t)(requested_nblocks - available_nblocks));
12087 		size_t count = bp->b_bcount - resid;
12088 		/*
12089 		 * Note: count is an unsigned entity thus it'll NEVER
12090 		 * be less than 0 so ASSERT the original values are
12091 		 * correct.
12092 		 */
12093 		ASSERT(bp->b_bcount >= resid);
12094 
12095 		bp = sd_bioclone_alloc(bp, count, blocknum,
12096 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12097 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12098 		ASSERT(xp != NULL);
12099 	}
12100 
12101 	/* At this point there should be no residual for this buf. */
12102 	ASSERT(bp->b_resid == 0);
12103 
12104 	/* Convert the block number to an absolute address. */
12105 	xp->xb_blkno += partition_offset;
12106 
12107 	SD_NEXT_IOSTART(index, un, bp);
12108 
12109 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12110 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12111 
12112 	return;
12113 
12114 error_exit:
12115 	bp->b_resid = bp->b_bcount;
12116 	SD_BEGIN_IODONE(index, un, bp);
12117 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12118 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12119 }
12120 
12121 
12122 /*
12123  *    Function: sd_mapblockaddr_iodone
12124  *
12125  * Description: Completion-side processing for partition management.
12126  *
12127  *     Context: May be called under interrupt context
12128  */
12129 
12130 static void
12131 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12132 {
12133 	/* int	partition; */	/* Not used, see below. */
12134 	ASSERT(un != NULL);
12135 	ASSERT(bp != NULL);
12136 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12137 
12138 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12139 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12140 
12141 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12142 		/*
12143 		 * We have an "overrun" buf to deal with...
12144 		 */
12145 		struct sd_xbuf	*xp;
12146 		struct buf	*obp;	/* ptr to the original buf */
12147 
12148 		xp = SD_GET_XBUF(bp);
12149 		ASSERT(xp != NULL);
12150 
12151 		/* Retrieve the pointer to the original buf */
12152 		obp = (struct buf *)xp->xb_private;
12153 		ASSERT(obp != NULL);
12154 
12155 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12156 		bioerror(obp, bp->b_error);
12157 
12158 		sd_bioclone_free(bp);
12159 
12160 		/*
12161 		 * Get back the original buf.
12162 		 * Note that since the restoration of xb_blkno below
12163 		 * was removed, the sd_xbuf is not needed.
12164 		 */
12165 		bp = obp;
12166 		/*
12167 		 * xp = SD_GET_XBUF(bp);
12168 		 * ASSERT(xp != NULL);
12169 		 */
12170 	}
12171 
12172 	/*
12173 	 * Convert sd->xb_blkno back to a minor-device relative value.
12174 	 * Note: this has been commented out, as it is not needed in the
12175 	 * current implementation of the driver (ie, since this function
12176 	 * is at the top of the layering chains, so the info will be
12177 	 * discarded) and it is in the "hot" IO path.
12178 	 *
12179 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12180 	 * xp->xb_blkno -= un->un_offset[partition];
12181 	 */
12182 
12183 	SD_NEXT_IODONE(index, un, bp);
12184 
12185 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12186 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12187 }
12188 
12189 
12190 /*
12191  *    Function: sd_mapblocksize_iostart
12192  *
12193  * Description: Convert between system block size (un->un_sys_blocksize)
12194  *		and target block size (un->un_tgt_blocksize).
12195  *
12196  *     Context: Can sleep to allocate resources.
12197  *
12198  * Assumptions: A higher layer has already performed any partition validation,
12199  *		and converted the xp->xb_blkno to an absolute value relative
12200  *		to the start of the device.
12201  *
12202  *		It is also assumed that the higher layer has implemented
12203  *		an "overrun" mechanism for the case where the request would
12204  *		read/write beyond the end of a partition.  In this case we
12205  *		assume (and ASSERT) that bp->b_resid == 0.
12206  *
12207  *		Note: The implementation for this routine assumes the target
12208  *		block size remains constant between allocation and transport.
12209  */
12210 
12211 static void
12212 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12213 {
12214 	struct sd_mapblocksize_info	*bsp;
12215 	struct sd_xbuf			*xp;
12216 	offset_t first_byte;
12217 	daddr_t	start_block, end_block;
12218 	daddr_t	request_bytes;
12219 	ushort_t is_aligned = FALSE;
12220 
12221 	ASSERT(un != NULL);
12222 	ASSERT(bp != NULL);
12223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12224 	ASSERT(bp->b_resid == 0);
12225 
12226 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12227 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12228 
12229 	/*
12230 	 * For a non-writable CD, a write request is an error
12231 	 */
12232 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12233 	    (un->un_f_mmc_writable_media == FALSE)) {
12234 		bioerror(bp, EIO);
12235 		bp->b_resid = bp->b_bcount;
12236 		SD_BEGIN_IODONE(index, un, bp);
12237 		return;
12238 	}
12239 
12240 	/*
12241 	 * We do not need a shadow buf if the device is using
12242 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12243 	 * In this case there is no layer-private data block allocated.
12244 	 */
12245 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12246 	    (bp->b_bcount == 0)) {
12247 		goto done;
12248 	}
12249 
12250 #if defined(__i386) || defined(__amd64)
12251 	/* We do not support non-block-aligned transfers for ROD devices */
12252 	ASSERT(!ISROD(un));
12253 #endif
12254 
12255 	xp = SD_GET_XBUF(bp);
12256 	ASSERT(xp != NULL);
12257 
12258 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12259 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12260 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12261 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12262 	    "request start block:0x%x\n", xp->xb_blkno);
12263 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12264 	    "request len:0x%x\n", bp->b_bcount);
12265 
12266 	/*
12267 	 * Allocate the layer-private data area for the mapblocksize layer.
12268 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12269 	 * struct to store the pointer to their layer-private data block, but
12270 	 * each layer also has the responsibility of restoring the prior
12271 	 * contents of xb_private before returning the buf/xbuf to the
12272 	 * higher layer that sent it.
12273 	 *
12274 	 * Here we save the prior contents of xp->xb_private into the
12275 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12276 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12277 	 * the layer-private area and returning the buf/xbuf to the layer
12278 	 * that sent it.
12279 	 *
12280 	 * Note that here we use kmem_zalloc for the allocation as there are
12281 	 * parts of the mapblocksize code that expect certain fields to be
12282 	 * zero unless explicitly set to a required value.
12283 	 */
12284 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12285 	bsp->mbs_oprivate = xp->xb_private;
12286 	xp->xb_private = bsp;
12287 
12288 	/*
12289 	 * This treats the data on the disk (target) as an array of bytes.
12290 	 * first_byte is the byte offset, from the beginning of the device,
12291 	 * to the location of the request. This is converted from a
12292 	 * un->un_sys_blocksize block address to a byte offset, and then back
12293 	 * to a block address based upon a un->un_tgt_blocksize block size.
12294 	 *
12295 	 * xp->xb_blkno should be absolute upon entry into this function,
12296 	 * but, but it is based upon partitions that use the "system"
12297 	 * block size. It must be adjusted to reflect the block size of
12298 	 * the target.
12299 	 *
12300 	 * Note that end_block is actually the block that follows the last
12301 	 * block of the request, but that's what is needed for the computation.
12302 	 */
12303 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12304 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12305 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12306 	    un->un_tgt_blocksize;
12307 
12308 	/* request_bytes is rounded up to a multiple of the target block size */
12309 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12310 
12311 	/*
12312 	 * See if the starting address of the request and the request
12313 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12314 	 * then we do not need to allocate a shadow buf to handle the request.
12315 	 */
12316 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12317 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12318 		is_aligned = TRUE;
12319 	}
12320 
12321 	if ((bp->b_flags & B_READ) == 0) {
12322 		/*
12323 		 * Lock the range for a write operation. An aligned request is
12324 		 * considered a simple write; otherwise the request must be a
12325 		 * read-modify-write.
12326 		 */
12327 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12328 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12329 	}
12330 
12331 	/*
12332 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12333 	 * where the READ command is generated for a read-modify-write. (The
12334 	 * write phase is deferred until after the read completes.)
12335 	 */
12336 	if (is_aligned == FALSE) {
12337 
12338 		struct sd_mapblocksize_info	*shadow_bsp;
12339 		struct sd_xbuf	*shadow_xp;
12340 		struct buf	*shadow_bp;
12341 
12342 		/*
12343 		 * Allocate the shadow buf and it associated xbuf. Note that
12344 		 * after this call the xb_blkno value in both the original
12345 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12346 		 * same: absolute relative to the start of the device, and
12347 		 * adjusted for the target block size. The b_blkno in the
12348 		 * shadow buf will also be set to this value. We should never
12349 		 * change b_blkno in the original bp however.
12350 		 *
12351 		 * Note also that the shadow buf will always need to be a
12352 		 * READ command, regardless of whether the incoming command
12353 		 * is a READ or a WRITE.
12354 		 */
12355 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12356 		    xp->xb_blkno,
12357 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12358 
12359 		shadow_xp = SD_GET_XBUF(shadow_bp);
12360 
12361 		/*
12362 		 * Allocate the layer-private data for the shadow buf.
12363 		 * (No need to preserve xb_private in the shadow xbuf.)
12364 		 */
12365 		shadow_xp->xb_private = shadow_bsp =
12366 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12367 
12368 		/*
12369 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12370 		 * to figure out where the start of the user data is (based upon
12371 		 * the system block size) in the data returned by the READ
12372 		 * command (which will be based upon the target blocksize). Note
12373 		 * that this is only really used if the request is unaligned.
12374 		 */
12375 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12376 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12377 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12378 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12379 
12380 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12381 
12382 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12383 
12384 		/* Transfer the wmap (if any) to the shadow buf */
12385 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12386 		bsp->mbs_wmp = NULL;
12387 
12388 		/*
12389 		 * The shadow buf goes on from here in place of the
12390 		 * original buf.
12391 		 */
12392 		shadow_bsp->mbs_orig_bp = bp;
12393 		bp = shadow_bp;
12394 	}
12395 
12396 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12397 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12398 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12399 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12400 	    request_bytes);
12401 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12402 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12403 
12404 done:
12405 	SD_NEXT_IOSTART(index, un, bp);
12406 
12407 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12408 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12409 }
12410 
12411 
12412 /*
12413  *    Function: sd_mapblocksize_iodone
12414  *
12415  * Description: Completion side processing for block-size mapping.
12416  *
12417  *     Context: May be called under interrupt context
12418  */
12419 
12420 static void
12421 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12422 {
12423 	struct sd_mapblocksize_info	*bsp;
12424 	struct sd_xbuf	*xp;
12425 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12426 	struct buf	*orig_bp;	/* ptr to the original buf */
12427 	offset_t	shadow_end;
12428 	offset_t	request_end;
12429 	offset_t	shadow_start;
12430 	ssize_t		copy_offset;
12431 	size_t		copy_length;
12432 	size_t		shortfall;
12433 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12434 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12435 
12436 	ASSERT(un != NULL);
12437 	ASSERT(bp != NULL);
12438 
12439 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12440 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12441 
12442 	/*
12443 	 * There is no shadow buf or layer-private data if the target is
12444 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12445 	 */
12446 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12447 	    (bp->b_bcount == 0)) {
12448 		goto exit;
12449 	}
12450 
12451 	xp = SD_GET_XBUF(bp);
12452 	ASSERT(xp != NULL);
12453 
12454 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12455 	bsp = xp->xb_private;
12456 
12457 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12458 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12459 
12460 	if (is_write) {
12461 		/*
12462 		 * For a WRITE request we must free up the block range that
12463 		 * we have locked up.  This holds regardless of whether this is
12464 		 * an aligned write request or a read-modify-write request.
12465 		 */
12466 		sd_range_unlock(un, bsp->mbs_wmp);
12467 		bsp->mbs_wmp = NULL;
12468 	}
12469 
12470 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12471 		/*
12472 		 * An aligned read or write command will have no shadow buf;
12473 		 * there is not much else to do with it.
12474 		 */
12475 		goto done;
12476 	}
12477 
12478 	orig_bp = bsp->mbs_orig_bp;
12479 	ASSERT(orig_bp != NULL);
12480 	orig_xp = SD_GET_XBUF(orig_bp);
12481 	ASSERT(orig_xp != NULL);
12482 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12483 
12484 	if (!is_write && has_wmap) {
12485 		/*
12486 		 * A READ with a wmap means this is the READ phase of a
12487 		 * read-modify-write. If an error occurred on the READ then
12488 		 * we do not proceed with the WRITE phase or copy any data.
12489 		 * Just release the write maps and return with an error.
12490 		 */
12491 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12492 			orig_bp->b_resid = orig_bp->b_bcount;
12493 			bioerror(orig_bp, bp->b_error);
12494 			sd_range_unlock(un, bsp->mbs_wmp);
12495 			goto freebuf_done;
12496 		}
12497 	}
12498 
12499 	/*
12500 	 * Here is where we set up to copy the data from the shadow buf
12501 	 * into the space associated with the original buf.
12502 	 *
12503 	 * To deal with the conversion between block sizes, these
12504 	 * computations treat the data as an array of bytes, with the
12505 	 * first byte (byte 0) corresponding to the first byte in the
12506 	 * first block on the disk.
12507 	 */
12508 
12509 	/*
12510 	 * shadow_start and shadow_len indicate the location and size of
12511 	 * the data returned with the shadow IO request.
12512 	 */
12513 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12514 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12515 
12516 	/*
12517 	 * copy_offset gives the offset (in bytes) from the start of the first
12518 	 * block of the READ request to the beginning of the data.  We retrieve
12519 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12520 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12521 	 * data to be copied (in bytes).
12522 	 */
12523 	copy_offset  = bsp->mbs_copy_offset;
12524 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12525 	copy_length  = orig_bp->b_bcount;
12526 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12527 
12528 	/*
12529 	 * Set up the resid and error fields of orig_bp as appropriate.
12530 	 */
12531 	if (shadow_end >= request_end) {
12532 		/* We got all the requested data; set resid to zero */
12533 		orig_bp->b_resid = 0;
12534 	} else {
12535 		/*
12536 		 * We failed to get enough data to fully satisfy the original
12537 		 * request. Just copy back whatever data we got and set
12538 		 * up the residual and error code as required.
12539 		 *
12540 		 * 'shortfall' is the amount by which the data received with the
12541 		 * shadow buf has "fallen short" of the requested amount.
12542 		 */
12543 		shortfall = (size_t)(request_end - shadow_end);
12544 
12545 		if (shortfall > orig_bp->b_bcount) {
12546 			/*
12547 			 * We did not get enough data to even partially
12548 			 * fulfill the original request.  The residual is
12549 			 * equal to the amount requested.
12550 			 */
12551 			orig_bp->b_resid = orig_bp->b_bcount;
12552 		} else {
12553 			/*
12554 			 * We did not get all the data that we requested
12555 			 * from the device, but we will try to return what
12556 			 * portion we did get.
12557 			 */
12558 			orig_bp->b_resid = shortfall;
12559 		}
12560 		ASSERT(copy_length >= orig_bp->b_resid);
12561 		copy_length  -= orig_bp->b_resid;
12562 	}
12563 
12564 	/* Propagate the error code from the shadow buf to the original buf */
12565 	bioerror(orig_bp, bp->b_error);
12566 
12567 	if (is_write) {
12568 		goto freebuf_done;	/* No data copying for a WRITE */
12569 	}
12570 
12571 	if (has_wmap) {
12572 		/*
12573 		 * This is a READ command from the READ phase of a
12574 		 * read-modify-write request. We have to copy the data given
12575 		 * by the user OVER the data returned by the READ command,
12576 		 * then convert the command from a READ to a WRITE and send
12577 		 * it back to the target.
12578 		 */
12579 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12580 		    copy_length);
12581 
12582 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12583 
12584 		/*
12585 		 * Dispatch the WRITE command to the taskq thread, which
12586 		 * will in turn send the command to the target. When the
12587 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12588 		 * will get called again as part of the iodone chain
12589 		 * processing for it. Note that we will still be dealing
12590 		 * with the shadow buf at that point.
12591 		 */
12592 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12593 		    KM_NOSLEEP) != 0) {
12594 			/*
12595 			 * Dispatch was successful so we are done. Return
12596 			 * without going any higher up the iodone chain. Do
12597 			 * not free up any layer-private data until after the
12598 			 * WRITE completes.
12599 			 */
12600 			return;
12601 		}
12602 
12603 		/*
12604 		 * Dispatch of the WRITE command failed; set up the error
12605 		 * condition and send this IO back up the iodone chain.
12606 		 */
12607 		bioerror(orig_bp, EIO);
12608 		orig_bp->b_resid = orig_bp->b_bcount;
12609 
12610 	} else {
12611 		/*
12612 		 * This is a regular READ request (ie, not a RMW). Copy the
12613 		 * data from the shadow buf into the original buf. The
12614 		 * copy_offset compensates for any "misalignment" between the
12615 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12616 		 * original buf (with its un->un_sys_blocksize blocks).
12617 		 */
12618 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12619 		    copy_length);
12620 	}
12621 
12622 freebuf_done:
12623 
12624 	/*
12625 	 * At this point we still have both the shadow buf AND the original
12626 	 * buf to deal with, as well as the layer-private data area in each.
12627 	 * Local variables are as follows:
12628 	 *
12629 	 * bp -- points to shadow buf
12630 	 * xp -- points to xbuf of shadow buf
12631 	 * bsp -- points to layer-private data area of shadow buf
12632 	 * orig_bp -- points to original buf
12633 	 *
12634 	 * First free the shadow buf and its associated xbuf, then free the
12635 	 * layer-private data area from the shadow buf. There is no need to
12636 	 * restore xb_private in the shadow xbuf.
12637 	 */
12638 	sd_shadow_buf_free(bp);
12639 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12640 
12641 	/*
12642 	 * Now update the local variables to point to the original buf, xbuf,
12643 	 * and layer-private area.
12644 	 */
12645 	bp = orig_bp;
12646 	xp = SD_GET_XBUF(bp);
12647 	ASSERT(xp != NULL);
12648 	ASSERT(xp == orig_xp);
12649 	bsp = xp->xb_private;
12650 	ASSERT(bsp != NULL);
12651 
12652 done:
12653 	/*
12654 	 * Restore xb_private to whatever it was set to by the next higher
12655 	 * layer in the chain, then free the layer-private data area.
12656 	 */
12657 	xp->xb_private = bsp->mbs_oprivate;
12658 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12659 
12660 exit:
12661 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12662 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12663 
12664 	SD_NEXT_IODONE(index, un, bp);
12665 }
12666 
12667 
12668 /*
12669  *    Function: sd_checksum_iostart
12670  *
12671  * Description: A stub function for a layer that's currently not used.
12672  *		For now just a placeholder.
12673  *
12674  *     Context: Kernel thread context
12675  */
12676 
12677 static void
12678 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12679 {
12680 	ASSERT(un != NULL);
12681 	ASSERT(bp != NULL);
12682 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12683 	SD_NEXT_IOSTART(index, un, bp);
12684 }
12685 
12686 
12687 /*
12688  *    Function: sd_checksum_iodone
12689  *
12690  * Description: A stub function for a layer that's currently not used.
12691  *		For now just a placeholder.
12692  *
12693  *     Context: May be called under interrupt context
12694  */
12695 
12696 static void
12697 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12698 {
12699 	ASSERT(un != NULL);
12700 	ASSERT(bp != NULL);
12701 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12702 	SD_NEXT_IODONE(index, un, bp);
12703 }
12704 
12705 
12706 /*
12707  *    Function: sd_checksum_uscsi_iostart
12708  *
12709  * Description: A stub function for a layer that's currently not used.
12710  *		For now just a placeholder.
12711  *
12712  *     Context: Kernel thread context
12713  */
12714 
12715 static void
12716 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12717 {
12718 	ASSERT(un != NULL);
12719 	ASSERT(bp != NULL);
12720 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12721 	SD_NEXT_IOSTART(index, un, bp);
12722 }
12723 
12724 
12725 /*
12726  *    Function: sd_checksum_uscsi_iodone
12727  *
12728  * Description: A stub function for a layer that's currently not used.
12729  *		For now just a placeholder.
12730  *
12731  *     Context: May be called under interrupt context
12732  */
12733 
12734 static void
12735 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12736 {
12737 	ASSERT(un != NULL);
12738 	ASSERT(bp != NULL);
12739 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12740 	SD_NEXT_IODONE(index, un, bp);
12741 }
12742 
12743 
12744 /*
12745  *    Function: sd_pm_iostart
12746  *
12747  * Description: iostart-side routine for Power mangement.
12748  *
12749  *     Context: Kernel thread context
12750  */
12751 
12752 static void
12753 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12754 {
12755 	ASSERT(un != NULL);
12756 	ASSERT(bp != NULL);
12757 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12758 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12759 
12760 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12761 
12762 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12763 		/*
12764 		 * Set up to return the failed buf back up the 'iodone'
12765 		 * side of the calling chain.
12766 		 */
12767 		bioerror(bp, EIO);
12768 		bp->b_resid = bp->b_bcount;
12769 
12770 		SD_BEGIN_IODONE(index, un, bp);
12771 
12772 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12773 		return;
12774 	}
12775 
12776 	SD_NEXT_IOSTART(index, un, bp);
12777 
12778 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12779 }
12780 
12781 
12782 /*
12783  *    Function: sd_pm_iodone
12784  *
12785  * Description: iodone-side routine for power mangement.
12786  *
12787  *     Context: may be called from interrupt context
12788  */
12789 
12790 static void
12791 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12792 {
12793 	ASSERT(un != NULL);
12794 	ASSERT(bp != NULL);
12795 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12796 
12797 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12798 
12799 	/*
12800 	 * After attach the following flag is only read, so don't
12801 	 * take the penalty of acquiring a mutex for it.
12802 	 */
12803 	if (un->un_f_pm_is_enabled == TRUE) {
12804 		sd_pm_exit(un);
12805 	}
12806 
12807 	SD_NEXT_IODONE(index, un, bp);
12808 
12809 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12810 }
12811 
12812 
12813 /*
12814  *    Function: sd_core_iostart
12815  *
12816  * Description: Primary driver function for enqueuing buf(9S) structs from
12817  *		the system and initiating IO to the target device
12818  *
12819  *     Context: Kernel thread context. Can sleep.
12820  *
12821  * Assumptions:  - The given xp->xb_blkno is absolute
12822  *		   (ie, relative to the start of the device).
12823  *		 - The IO is to be done using the native blocksize of
12824  *		   the device, as specified in un->un_tgt_blocksize.
12825  */
12826 /* ARGSUSED */
12827 static void
12828 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12829 {
12830 	struct sd_xbuf *xp;
12831 
12832 	ASSERT(un != NULL);
12833 	ASSERT(bp != NULL);
12834 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12835 	ASSERT(bp->b_resid == 0);
12836 
12837 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12838 
12839 	xp = SD_GET_XBUF(bp);
12840 	ASSERT(xp != NULL);
12841 
12842 	mutex_enter(SD_MUTEX(un));
12843 
12844 	/*
12845 	 * If we are currently in the failfast state, fail any new IO
12846 	 * that has B_FAILFAST set, then return.
12847 	 */
12848 	if ((bp->b_flags & B_FAILFAST) &&
12849 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12850 		mutex_exit(SD_MUTEX(un));
12851 		bioerror(bp, EIO);
12852 		bp->b_resid = bp->b_bcount;
12853 		SD_BEGIN_IODONE(index, un, bp);
12854 		return;
12855 	}
12856 
12857 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12858 		/*
12859 		 * Priority command -- transport it immediately.
12860 		 *
12861 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12862 		 * because all direct priority commands should be associated
12863 		 * with error recovery actions which we don't want to retry.
12864 		 */
12865 		sd_start_cmds(un, bp);
12866 	} else {
12867 		/*
12868 		 * Normal command -- add it to the wait queue, then start
12869 		 * transporting commands from the wait queue.
12870 		 */
12871 		sd_add_buf_to_waitq(un, bp);
12872 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12873 		sd_start_cmds(un, NULL);
12874 	}
12875 
12876 	mutex_exit(SD_MUTEX(un));
12877 
12878 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12879 }
12880 
12881 
12882 /*
12883  *    Function: sd_init_cdb_limits
12884  *
12885  * Description: This is to handle scsi_pkt initialization differences
12886  *		between the driver platforms.
12887  *
12888  *		Legacy behaviors:
12889  *
12890  *		If the block number or the sector count exceeds the
12891  *		capabilities of a Group 0 command, shift over to a
12892  *		Group 1 command. We don't blindly use Group 1
12893  *		commands because a) some drives (CDC Wren IVs) get a
12894  *		bit confused, and b) there is probably a fair amount
12895  *		of speed difference for a target to receive and decode
12896  *		a 10 byte command instead of a 6 byte command.
12897  *
12898  *		The xfer time difference of 6 vs 10 byte CDBs is
12899  *		still significant so this code is still worthwhile.
12900  *		10 byte CDBs are very inefficient with the fas HBA driver
12901  *		and older disks. Each CDB byte took 1 usec with some
12902  *		popular disks.
12903  *
12904  *     Context: Must be called at attach time
12905  */
12906 
12907 static void
12908 sd_init_cdb_limits(struct sd_lun *un)
12909 {
12910 	int hba_cdb_limit;
12911 
12912 	/*
12913 	 * Use CDB_GROUP1 commands for most devices except for
12914 	 * parallel SCSI fixed drives in which case we get better
12915 	 * performance using CDB_GROUP0 commands (where applicable).
12916 	 */
12917 	un->un_mincdb = SD_CDB_GROUP1;
12918 #if !defined(__fibre)
12919 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12920 	    !un->un_f_has_removable_media) {
12921 		un->un_mincdb = SD_CDB_GROUP0;
12922 	}
12923 #endif
12924 
12925 	/*
12926 	 * Try to read the max-cdb-length supported by HBA.
12927 	 */
12928 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12929 	if (0 >= un->un_max_hba_cdb) {
12930 		un->un_max_hba_cdb = CDB_GROUP4;
12931 		hba_cdb_limit = SD_CDB_GROUP4;
12932 	} else if (0 < un->un_max_hba_cdb &&
12933 	    un->un_max_hba_cdb < CDB_GROUP1) {
12934 		hba_cdb_limit = SD_CDB_GROUP0;
12935 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12936 	    un->un_max_hba_cdb < CDB_GROUP5) {
12937 		hba_cdb_limit = SD_CDB_GROUP1;
12938 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
12939 	    un->un_max_hba_cdb < CDB_GROUP4) {
12940 		hba_cdb_limit = SD_CDB_GROUP5;
12941 	} else {
12942 		hba_cdb_limit = SD_CDB_GROUP4;
12943 	}
12944 
12945 	/*
12946 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12947 	 * commands for fixed disks unless we are building for a 32 bit
12948 	 * kernel.
12949 	 */
12950 #ifdef _LP64
12951 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12952 	    min(hba_cdb_limit, SD_CDB_GROUP4);
12953 #else
12954 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
12955 	    min(hba_cdb_limit, SD_CDB_GROUP1);
12956 #endif
12957 
12958 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12959 	    ? sizeof (struct scsi_arq_status) : 1);
12960 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12961 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12962 }
12963 
12964 
12965 /*
12966  *    Function: sd_initpkt_for_buf
12967  *
12968  * Description: Allocate and initialize for transport a scsi_pkt struct,
12969  *		based upon the info specified in the given buf struct.
12970  *
12971  *		Assumes the xb_blkno in the request is absolute (ie,
12972  *		relative to the start of the device (NOT partition!).
12973  *		Also assumes that the request is using the native block
12974  *		size of the device (as returned by the READ CAPACITY
12975  *		command).
12976  *
12977  * Return Code: SD_PKT_ALLOC_SUCCESS
12978  *		SD_PKT_ALLOC_FAILURE
12979  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12980  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12981  *
12982  *     Context: Kernel thread and may be called from software interrupt context
12983  *		as part of a sdrunout callback. This function may not block or
12984  *		call routines that block
12985  */
12986 
12987 static int
12988 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12989 {
12990 	struct sd_xbuf	*xp;
12991 	struct scsi_pkt *pktp = NULL;
12992 	struct sd_lun	*un;
12993 	size_t		blockcount;
12994 	daddr_t		startblock;
12995 	int		rval;
12996 	int		cmd_flags;
12997 
12998 	ASSERT(bp != NULL);
12999 	ASSERT(pktpp != NULL);
13000 	xp = SD_GET_XBUF(bp);
13001 	ASSERT(xp != NULL);
13002 	un = SD_GET_UN(bp);
13003 	ASSERT(un != NULL);
13004 	ASSERT(mutex_owned(SD_MUTEX(un)));
13005 	ASSERT(bp->b_resid == 0);
13006 
13007 	SD_TRACE(SD_LOG_IO_CORE, un,
13008 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13009 
13010 	mutex_exit(SD_MUTEX(un));
13011 
13012 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13013 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13014 		/*
13015 		 * Already have a scsi_pkt -- just need DMA resources.
13016 		 * We must recompute the CDB in case the mapping returns
13017 		 * a nonzero pkt_resid.
13018 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13019 		 * that is being retried, the unmap/remap of the DMA resouces
13020 		 * will result in the entire transfer starting over again
13021 		 * from the very first block.
13022 		 */
13023 		ASSERT(xp->xb_pktp != NULL);
13024 		pktp = xp->xb_pktp;
13025 	} else {
13026 		pktp = NULL;
13027 	}
13028 #endif /* __i386 || __amd64 */
13029 
13030 	startblock = xp->xb_blkno;	/* Absolute block num. */
13031 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13032 
13033 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13034 
13035 	/*
13036 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13037 	 * call scsi_init_pkt, and build the CDB.
13038 	 */
13039 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13040 	    cmd_flags, sdrunout, (caddr_t)un,
13041 	    startblock, blockcount);
13042 
13043 	if (rval == 0) {
13044 		/*
13045 		 * Success.
13046 		 *
13047 		 * If partial DMA is being used and required for this transfer.
13048 		 * set it up here.
13049 		 */
13050 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13051 		    (pktp->pkt_resid != 0)) {
13052 
13053 			/*
13054 			 * Save the CDB length and pkt_resid for the
13055 			 * next xfer
13056 			 */
13057 			xp->xb_dma_resid = pktp->pkt_resid;
13058 
13059 			/* rezero resid */
13060 			pktp->pkt_resid = 0;
13061 
13062 		} else {
13063 			xp->xb_dma_resid = 0;
13064 		}
13065 
13066 		pktp->pkt_flags = un->un_tagflags;
13067 		pktp->pkt_time  = un->un_cmd_timeout;
13068 		pktp->pkt_comp  = sdintr;
13069 
13070 		pktp->pkt_private = bp;
13071 		*pktpp = pktp;
13072 
13073 		SD_TRACE(SD_LOG_IO_CORE, un,
13074 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13075 
13076 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13077 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13078 #endif
13079 
13080 		mutex_enter(SD_MUTEX(un));
13081 		return (SD_PKT_ALLOC_SUCCESS);
13082 
13083 	}
13084 
13085 	/*
13086 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13087 	 * from sd_setup_rw_pkt.
13088 	 */
13089 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13090 
13091 	if (rval == SD_PKT_ALLOC_FAILURE) {
13092 		*pktpp = NULL;
13093 		/*
13094 		 * Set the driver state to RWAIT to indicate the driver
13095 		 * is waiting on resource allocations. The driver will not
13096 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13097 		 */
13098 		mutex_enter(SD_MUTEX(un));
13099 		New_state(un, SD_STATE_RWAIT);
13100 
13101 		SD_ERROR(SD_LOG_IO_CORE, un,
13102 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13103 
13104 		if ((bp->b_flags & B_ERROR) != 0) {
13105 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13106 		}
13107 		return (SD_PKT_ALLOC_FAILURE);
13108 	} else {
13109 		/*
13110 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13111 		 *
13112 		 * This should never happen.  Maybe someone messed with the
13113 		 * kernel's minphys?
13114 		 */
13115 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13116 		    "Request rejected: too large for CDB: "
13117 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13118 		SD_ERROR(SD_LOG_IO_CORE, un,
13119 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13120 		mutex_enter(SD_MUTEX(un));
13121 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13122 
13123 	}
13124 }
13125 
13126 
13127 /*
13128  *    Function: sd_destroypkt_for_buf
13129  *
13130  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13131  *
13132  *     Context: Kernel thread or interrupt context
13133  */
13134 
13135 static void
13136 sd_destroypkt_for_buf(struct buf *bp)
13137 {
13138 	ASSERT(bp != NULL);
13139 	ASSERT(SD_GET_UN(bp) != NULL);
13140 
13141 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13142 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13143 
13144 	ASSERT(SD_GET_PKTP(bp) != NULL);
13145 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13146 
13147 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13148 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13149 }
13150 
13151 /*
13152  *    Function: sd_setup_rw_pkt
13153  *
13154  * Description: Determines appropriate CDB group for the requested LBA
13155  *		and transfer length, calls scsi_init_pkt, and builds
13156  *		the CDB.  Do not use for partial DMA transfers except
13157  *		for the initial transfer since the CDB size must
13158  *		remain constant.
13159  *
13160  *     Context: Kernel thread and may be called from software interrupt
13161  *		context as part of a sdrunout callback. This function may not
13162  *		block or call routines that block
13163  */
13164 
13165 
13166 int
13167 sd_setup_rw_pkt(struct sd_lun *un,
13168     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13169     int (*callback)(caddr_t), caddr_t callback_arg,
13170     diskaddr_t lba, uint32_t blockcount)
13171 {
13172 	struct scsi_pkt *return_pktp;
13173 	union scsi_cdb *cdbp;
13174 	struct sd_cdbinfo *cp = NULL;
13175 	int i;
13176 
13177 	/*
13178 	 * See which size CDB to use, based upon the request.
13179 	 */
13180 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13181 
13182 		/*
13183 		 * Check lba and block count against sd_cdbtab limits.
13184 		 * In the partial DMA case, we have to use the same size
13185 		 * CDB for all the transfers.  Check lba + blockcount
13186 		 * against the max LBA so we know that segment of the
13187 		 * transfer can use the CDB we select.
13188 		 */
13189 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13190 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13191 
13192 			/*
13193 			 * The command will fit into the CDB type
13194 			 * specified by sd_cdbtab[i].
13195 			 */
13196 			cp = sd_cdbtab + i;
13197 
13198 			/*
13199 			 * Call scsi_init_pkt so we can fill in the
13200 			 * CDB.
13201 			 */
13202 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13203 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13204 			    flags, callback, callback_arg);
13205 
13206 			if (return_pktp != NULL) {
13207 
13208 				/*
13209 				 * Return new value of pkt
13210 				 */
13211 				*pktpp = return_pktp;
13212 
13213 				/*
13214 				 * To be safe, zero the CDB insuring there is
13215 				 * no leftover data from a previous command.
13216 				 */
13217 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13218 
13219 				/*
13220 				 * Handle partial DMA mapping
13221 				 */
13222 				if (return_pktp->pkt_resid != 0) {
13223 
13224 					/*
13225 					 * Not going to xfer as many blocks as
13226 					 * originally expected
13227 					 */
13228 					blockcount -=
13229 					    SD_BYTES2TGTBLOCKS(un,
13230 					    return_pktp->pkt_resid);
13231 				}
13232 
13233 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13234 
13235 				/*
13236 				 * Set command byte based on the CDB
13237 				 * type we matched.
13238 				 */
13239 				cdbp->scc_cmd = cp->sc_grpmask |
13240 				    ((bp->b_flags & B_READ) ?
13241 				    SCMD_READ : SCMD_WRITE);
13242 
13243 				SD_FILL_SCSI1_LUN(un, return_pktp);
13244 
13245 				/*
13246 				 * Fill in LBA and length
13247 				 */
13248 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13249 				    (cp->sc_grpcode == CDB_GROUP4) ||
13250 				    (cp->sc_grpcode == CDB_GROUP0) ||
13251 				    (cp->sc_grpcode == CDB_GROUP5));
13252 
13253 				if (cp->sc_grpcode == CDB_GROUP1) {
13254 					FORMG1ADDR(cdbp, lba);
13255 					FORMG1COUNT(cdbp, blockcount);
13256 					return (0);
13257 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13258 					FORMG4LONGADDR(cdbp, lba);
13259 					FORMG4COUNT(cdbp, blockcount);
13260 					return (0);
13261 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13262 					FORMG0ADDR(cdbp, lba);
13263 					FORMG0COUNT(cdbp, blockcount);
13264 					return (0);
13265 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13266 					FORMG5ADDR(cdbp, lba);
13267 					FORMG5COUNT(cdbp, blockcount);
13268 					return (0);
13269 				}
13270 
13271 				/*
13272 				 * It should be impossible to not match one
13273 				 * of the CDB types above, so we should never
13274 				 * reach this point.  Set the CDB command byte
13275 				 * to test-unit-ready to avoid writing
13276 				 * to somewhere we don't intend.
13277 				 */
13278 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13279 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13280 			} else {
13281 				/*
13282 				 * Couldn't get scsi_pkt
13283 				 */
13284 				return (SD_PKT_ALLOC_FAILURE);
13285 			}
13286 		}
13287 	}
13288 
13289 	/*
13290 	 * None of the available CDB types were suitable.  This really
13291 	 * should never happen:  on a 64 bit system we support
13292 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13293 	 * and on a 32 bit system we will refuse to bind to a device
13294 	 * larger than 2TB so addresses will never be larger than 32 bits.
13295 	 */
13296 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13297 }
13298 
13299 /*
13300  *    Function: sd_setup_next_rw_pkt
13301  *
13302  * Description: Setup packet for partial DMA transfers, except for the
13303  * 		initial transfer.  sd_setup_rw_pkt should be used for
13304  *		the initial transfer.
13305  *
13306  *     Context: Kernel thread and may be called from interrupt context.
13307  */
13308 
13309 int
13310 sd_setup_next_rw_pkt(struct sd_lun *un,
13311     struct scsi_pkt *pktp, struct buf *bp,
13312     diskaddr_t lba, uint32_t blockcount)
13313 {
13314 	uchar_t com;
13315 	union scsi_cdb *cdbp;
13316 	uchar_t cdb_group_id;
13317 
13318 	ASSERT(pktp != NULL);
13319 	ASSERT(pktp->pkt_cdbp != NULL);
13320 
13321 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13322 	com = cdbp->scc_cmd;
13323 	cdb_group_id = CDB_GROUPID(com);
13324 
13325 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13326 	    (cdb_group_id == CDB_GROUPID_1) ||
13327 	    (cdb_group_id == CDB_GROUPID_4) ||
13328 	    (cdb_group_id == CDB_GROUPID_5));
13329 
13330 	/*
13331 	 * Move pkt to the next portion of the xfer.
13332 	 * func is NULL_FUNC so we do not have to release
13333 	 * the disk mutex here.
13334 	 */
13335 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13336 	    NULL_FUNC, NULL) == pktp) {
13337 		/* Success.  Handle partial DMA */
13338 		if (pktp->pkt_resid != 0) {
13339 			blockcount -=
13340 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13341 		}
13342 
13343 		cdbp->scc_cmd = com;
13344 		SD_FILL_SCSI1_LUN(un, pktp);
13345 		if (cdb_group_id == CDB_GROUPID_1) {
13346 			FORMG1ADDR(cdbp, lba);
13347 			FORMG1COUNT(cdbp, blockcount);
13348 			return (0);
13349 		} else if (cdb_group_id == CDB_GROUPID_4) {
13350 			FORMG4LONGADDR(cdbp, lba);
13351 			FORMG4COUNT(cdbp, blockcount);
13352 			return (0);
13353 		} else if (cdb_group_id == CDB_GROUPID_0) {
13354 			FORMG0ADDR(cdbp, lba);
13355 			FORMG0COUNT(cdbp, blockcount);
13356 			return (0);
13357 		} else if (cdb_group_id == CDB_GROUPID_5) {
13358 			FORMG5ADDR(cdbp, lba);
13359 			FORMG5COUNT(cdbp, blockcount);
13360 			return (0);
13361 		}
13362 
13363 		/* Unreachable */
13364 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13365 	}
13366 
13367 	/*
13368 	 * Error setting up next portion of cmd transfer.
13369 	 * Something is definitely very wrong and this
13370 	 * should not happen.
13371 	 */
13372 	return (SD_PKT_ALLOC_FAILURE);
13373 }
13374 
13375 /*
13376  *    Function: sd_initpkt_for_uscsi
13377  *
13378  * Description: Allocate and initialize for transport a scsi_pkt struct,
13379  *		based upon the info specified in the given uscsi_cmd struct.
13380  *
13381  * Return Code: SD_PKT_ALLOC_SUCCESS
13382  *		SD_PKT_ALLOC_FAILURE
13383  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13384  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13385  *
13386  *     Context: Kernel thread and may be called from software interrupt context
13387  *		as part of a sdrunout callback. This function may not block or
13388  *		call routines that block
13389  */
13390 
13391 static int
13392 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13393 {
13394 	struct uscsi_cmd *uscmd;
13395 	struct sd_xbuf	*xp;
13396 	struct scsi_pkt	*pktp;
13397 	struct sd_lun	*un;
13398 	uint32_t	flags = 0;
13399 
13400 	ASSERT(bp != NULL);
13401 	ASSERT(pktpp != NULL);
13402 	xp = SD_GET_XBUF(bp);
13403 	ASSERT(xp != NULL);
13404 	un = SD_GET_UN(bp);
13405 	ASSERT(un != NULL);
13406 	ASSERT(mutex_owned(SD_MUTEX(un)));
13407 
13408 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13409 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13410 	ASSERT(uscmd != NULL);
13411 
13412 	SD_TRACE(SD_LOG_IO_CORE, un,
13413 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13414 
13415 	/*
13416 	 * Allocate the scsi_pkt for the command.
13417 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13418 	 *	 during scsi_init_pkt time and will continue to use the
13419 	 *	 same path as long as the same scsi_pkt is used without
13420 	 *	 intervening scsi_dma_free(). Since uscsi command does
13421 	 *	 not call scsi_dmafree() before retry failed command, it
13422 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13423 	 *	 set such that scsi_vhci can use other available path for
13424 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13425 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13426 	 */
13427 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13428 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13429 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13430 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13431 		    - sizeof (struct scsi_extended_sense)), 0,
13432 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13433 		    sdrunout, (caddr_t)un);
13434 	} else {
13435 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13436 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13437 		    sizeof (struct scsi_arq_status), 0,
13438 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13439 		    sdrunout, (caddr_t)un);
13440 	}
13441 
13442 	if (pktp == NULL) {
13443 		*pktpp = NULL;
13444 		/*
13445 		 * Set the driver state to RWAIT to indicate the driver
13446 		 * is waiting on resource allocations. The driver will not
13447 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13448 		 */
13449 		New_state(un, SD_STATE_RWAIT);
13450 
13451 		SD_ERROR(SD_LOG_IO_CORE, un,
13452 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13453 
13454 		if ((bp->b_flags & B_ERROR) != 0) {
13455 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13456 		}
13457 		return (SD_PKT_ALLOC_FAILURE);
13458 	}
13459 
13460 	/*
13461 	 * We do not do DMA breakup for USCSI commands, so return failure
13462 	 * here if all the needed DMA resources were not allocated.
13463 	 */
13464 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13465 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13466 		scsi_destroy_pkt(pktp);
13467 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13468 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13469 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13470 	}
13471 
13472 	/* Init the cdb from the given uscsi struct */
13473 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13474 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13475 
13476 	SD_FILL_SCSI1_LUN(un, pktp);
13477 
13478 	/*
13479 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13480 	 * for listing of the supported flags.
13481 	 */
13482 
13483 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13484 		flags |= FLAG_SILENT;
13485 	}
13486 
13487 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13488 		flags |= FLAG_DIAGNOSE;
13489 	}
13490 
13491 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13492 		flags |= FLAG_ISOLATE;
13493 	}
13494 
13495 	if (un->un_f_is_fibre == FALSE) {
13496 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13497 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13498 		}
13499 	}
13500 
13501 	/*
13502 	 * Set the pkt flags here so we save time later.
13503 	 * Note: These flags are NOT in the uscsi man page!!!
13504 	 */
13505 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13506 		flags |= FLAG_HEAD;
13507 	}
13508 
13509 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13510 		flags |= FLAG_NOINTR;
13511 	}
13512 
13513 	/*
13514 	 * For tagged queueing, things get a bit complicated.
13515 	 * Check first for head of queue and last for ordered queue.
13516 	 * If neither head nor order, use the default driver tag flags.
13517 	 */
13518 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13519 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13520 			flags |= FLAG_HTAG;
13521 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13522 			flags |= FLAG_OTAG;
13523 		} else {
13524 			flags |= un->un_tagflags & FLAG_TAGMASK;
13525 		}
13526 	}
13527 
13528 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13529 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13530 	}
13531 
13532 	pktp->pkt_flags = flags;
13533 
13534 	/* Transfer uscsi information to scsi_pkt */
13535 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13536 
13537 	/* Copy the caller's CDB into the pkt... */
13538 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13539 
13540 	if (uscmd->uscsi_timeout == 0) {
13541 		pktp->pkt_time = un->un_uscsi_timeout;
13542 	} else {
13543 		pktp->pkt_time = uscmd->uscsi_timeout;
13544 	}
13545 
13546 	/* need it later to identify USCSI request in sdintr */
13547 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13548 
13549 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13550 
13551 	pktp->pkt_private = bp;
13552 	pktp->pkt_comp = sdintr;
13553 	*pktpp = pktp;
13554 
13555 	SD_TRACE(SD_LOG_IO_CORE, un,
13556 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13557 
13558 	return (SD_PKT_ALLOC_SUCCESS);
13559 }
13560 
13561 
13562 /*
13563  *    Function: sd_destroypkt_for_uscsi
13564  *
13565  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13566  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13567  *		struct.
13568  *
13569  *     Context: May be called under interrupt context
13570  */
13571 
13572 static void
13573 sd_destroypkt_for_uscsi(struct buf *bp)
13574 {
13575 	struct uscsi_cmd *uscmd;
13576 	struct sd_xbuf	*xp;
13577 	struct scsi_pkt	*pktp;
13578 	struct sd_lun	*un;
13579 	struct sd_uscsi_info *suip;
13580 
13581 	ASSERT(bp != NULL);
13582 	xp = SD_GET_XBUF(bp);
13583 	ASSERT(xp != NULL);
13584 	un = SD_GET_UN(bp);
13585 	ASSERT(un != NULL);
13586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13587 	pktp = SD_GET_PKTP(bp);
13588 	ASSERT(pktp != NULL);
13589 
13590 	SD_TRACE(SD_LOG_IO_CORE, un,
13591 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13592 
13593 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13594 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13595 	ASSERT(uscmd != NULL);
13596 
13597 	/* Save the status and the residual into the uscsi_cmd struct */
13598 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13599 	uscmd->uscsi_resid  = bp->b_resid;
13600 
13601 	/* Transfer scsi_pkt information to uscsi */
13602 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13603 
13604 	/*
13605 	 * If enabled, copy any saved sense data into the area specified
13606 	 * by the uscsi command.
13607 	 */
13608 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13609 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13610 		/*
13611 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13612 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13613 		 */
13614 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13615 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13616 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13617 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13618 			    MAX_SENSE_LENGTH);
13619 		} else {
13620 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13621 			    SENSE_LENGTH);
13622 		}
13623 	}
13624 	/*
13625 	 * The following assignments are for SCSI FMA.
13626 	 */
13627 	ASSERT(xp->xb_private != NULL);
13628 	suip = (struct sd_uscsi_info *)xp->xb_private;
13629 	suip->ui_pkt_reason = pktp->pkt_reason;
13630 	suip->ui_pkt_state = pktp->pkt_state;
13631 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13632 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13633 
13634 	/* We are done with the scsi_pkt; free it now */
13635 	ASSERT(SD_GET_PKTP(bp) != NULL);
13636 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13637 
13638 	SD_TRACE(SD_LOG_IO_CORE, un,
13639 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13640 }
13641 
13642 
13643 /*
13644  *    Function: sd_bioclone_alloc
13645  *
13646  * Description: Allocate a buf(9S) and init it as per the given buf
13647  *		and the various arguments.  The associated sd_xbuf
13648  *		struct is (nearly) duplicated.  The struct buf *bp
13649  *		argument is saved in new_xp->xb_private.
13650  *
13651  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13652  *		datalen - size of data area for the shadow bp
13653  *		blkno - starting LBA
13654  *		func - function pointer for b_iodone in the shadow buf. (May
13655  *			be NULL if none.)
13656  *
13657  * Return Code: Pointer to allocates buf(9S) struct
13658  *
13659  *     Context: Can sleep.
13660  */
13661 
13662 static struct buf *
13663 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13664 	daddr_t blkno, int (*func)(struct buf *))
13665 {
13666 	struct	sd_lun	*un;
13667 	struct	sd_xbuf	*xp;
13668 	struct	sd_xbuf	*new_xp;
13669 	struct	buf	*new_bp;
13670 
13671 	ASSERT(bp != NULL);
13672 	xp = SD_GET_XBUF(bp);
13673 	ASSERT(xp != NULL);
13674 	un = SD_GET_UN(bp);
13675 	ASSERT(un != NULL);
13676 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13677 
13678 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13679 	    NULL, KM_SLEEP);
13680 
13681 	new_bp->b_lblkno	= blkno;
13682 
13683 	/*
13684 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13685 	 * original xbuf into it.
13686 	 */
13687 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13688 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13689 
13690 	/*
13691 	 * The given bp is automatically saved in the xb_private member
13692 	 * of the new xbuf.  Callers are allowed to depend on this.
13693 	 */
13694 	new_xp->xb_private = bp;
13695 
13696 	new_bp->b_private  = new_xp;
13697 
13698 	return (new_bp);
13699 }
13700 
13701 /*
13702  *    Function: sd_shadow_buf_alloc
13703  *
13704  * Description: Allocate a buf(9S) and init it as per the given buf
13705  *		and the various arguments.  The associated sd_xbuf
13706  *		struct is (nearly) duplicated.  The struct buf *bp
13707  *		argument is saved in new_xp->xb_private.
13708  *
13709  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13710  *		datalen - size of data area for the shadow bp
13711  *		bflags - B_READ or B_WRITE (pseudo flag)
13712  *		blkno - starting LBA
13713  *		func - function pointer for b_iodone in the shadow buf. (May
13714  *			be NULL if none.)
13715  *
13716  * Return Code: Pointer to allocates buf(9S) struct
13717  *
13718  *     Context: Can sleep.
13719  */
13720 
13721 static struct buf *
13722 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13723 	daddr_t blkno, int (*func)(struct buf *))
13724 {
13725 	struct	sd_lun	*un;
13726 	struct	sd_xbuf	*xp;
13727 	struct	sd_xbuf	*new_xp;
13728 	struct	buf	*new_bp;
13729 
13730 	ASSERT(bp != NULL);
13731 	xp = SD_GET_XBUF(bp);
13732 	ASSERT(xp != NULL);
13733 	un = SD_GET_UN(bp);
13734 	ASSERT(un != NULL);
13735 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13736 
13737 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13738 		bp_mapin(bp);
13739 	}
13740 
13741 	bflags &= (B_READ | B_WRITE);
13742 #if defined(__i386) || defined(__amd64)
13743 	new_bp = getrbuf(KM_SLEEP);
13744 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13745 	new_bp->b_bcount = datalen;
13746 	new_bp->b_flags = bflags |
13747 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13748 #else
13749 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13750 	    datalen, bflags, SLEEP_FUNC, NULL);
13751 #endif
13752 	new_bp->av_forw	= NULL;
13753 	new_bp->av_back	= NULL;
13754 	new_bp->b_dev	= bp->b_dev;
13755 	new_bp->b_blkno	= blkno;
13756 	new_bp->b_iodone = func;
13757 	new_bp->b_edev	= bp->b_edev;
13758 	new_bp->b_resid	= 0;
13759 
13760 	/* We need to preserve the B_FAILFAST flag */
13761 	if (bp->b_flags & B_FAILFAST) {
13762 		new_bp->b_flags |= B_FAILFAST;
13763 	}
13764 
13765 	/*
13766 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13767 	 * original xbuf into it.
13768 	 */
13769 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13770 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13771 
13772 	/* Need later to copy data between the shadow buf & original buf! */
13773 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13774 
13775 	/*
13776 	 * The given bp is automatically saved in the xb_private member
13777 	 * of the new xbuf.  Callers are allowed to depend on this.
13778 	 */
13779 	new_xp->xb_private = bp;
13780 
13781 	new_bp->b_private  = new_xp;
13782 
13783 	return (new_bp);
13784 }
13785 
13786 /*
13787  *    Function: sd_bioclone_free
13788  *
13789  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13790  *		in the larger than partition operation.
13791  *
13792  *     Context: May be called under interrupt context
13793  */
13794 
13795 static void
13796 sd_bioclone_free(struct buf *bp)
13797 {
13798 	struct sd_xbuf	*xp;
13799 
13800 	ASSERT(bp != NULL);
13801 	xp = SD_GET_XBUF(bp);
13802 	ASSERT(xp != NULL);
13803 
13804 	/*
13805 	 * Call bp_mapout() before freeing the buf,  in case a lower
13806 	 * layer or HBA  had done a bp_mapin().  we must do this here
13807 	 * as we are the "originator" of the shadow buf.
13808 	 */
13809 	bp_mapout(bp);
13810 
13811 	/*
13812 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13813 	 * never gets confused by a stale value in this field. (Just a little
13814 	 * extra defensiveness here.)
13815 	 */
13816 	bp->b_iodone = NULL;
13817 
13818 	freerbuf(bp);
13819 
13820 	kmem_free(xp, sizeof (struct sd_xbuf));
13821 }
13822 
13823 /*
13824  *    Function: sd_shadow_buf_free
13825  *
13826  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13827  *
13828  *     Context: May be called under interrupt context
13829  */
13830 
13831 static void
13832 sd_shadow_buf_free(struct buf *bp)
13833 {
13834 	struct sd_xbuf	*xp;
13835 
13836 	ASSERT(bp != NULL);
13837 	xp = SD_GET_XBUF(bp);
13838 	ASSERT(xp != NULL);
13839 
13840 #if defined(__sparc)
13841 	/*
13842 	 * Call bp_mapout() before freeing the buf,  in case a lower
13843 	 * layer or HBA  had done a bp_mapin().  we must do this here
13844 	 * as we are the "originator" of the shadow buf.
13845 	 */
13846 	bp_mapout(bp);
13847 #endif
13848 
13849 	/*
13850 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13851 	 * never gets confused by a stale value in this field. (Just a little
13852 	 * extra defensiveness here.)
13853 	 */
13854 	bp->b_iodone = NULL;
13855 
13856 #if defined(__i386) || defined(__amd64)
13857 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13858 	freerbuf(bp);
13859 #else
13860 	scsi_free_consistent_buf(bp);
13861 #endif
13862 
13863 	kmem_free(xp, sizeof (struct sd_xbuf));
13864 }
13865 
13866 
13867 /*
13868  *    Function: sd_print_transport_rejected_message
13869  *
13870  * Description: This implements the ludicrously complex rules for printing
13871  *		a "transport rejected" message.  This is to address the
13872  *		specific problem of having a flood of this error message
13873  *		produced when a failover occurs.
13874  *
13875  *     Context: Any.
13876  */
13877 
13878 static void
13879 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13880 	int code)
13881 {
13882 	ASSERT(un != NULL);
13883 	ASSERT(mutex_owned(SD_MUTEX(un)));
13884 	ASSERT(xp != NULL);
13885 
13886 	/*
13887 	 * Print the "transport rejected" message under the following
13888 	 * conditions:
13889 	 *
13890 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13891 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13892 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13893 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13894 	 *   scsi_transport(9F) (which indicates that the target might have
13895 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13896 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13897 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13898 	 *   from scsi_transport().
13899 	 *
13900 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13901 	 * the preceeding cases in order for the message to be printed.
13902 	 */
13903 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
13904 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
13905 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13906 		    (code != TRAN_FATAL_ERROR) ||
13907 		    (un->un_tran_fatal_count == 1)) {
13908 			switch (code) {
13909 			case TRAN_BADPKT:
13910 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13911 				    "transport rejected bad packet\n");
13912 				break;
13913 			case TRAN_FATAL_ERROR:
13914 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13915 				    "transport rejected fatal error\n");
13916 				break;
13917 			default:
13918 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13919 				    "transport rejected (%d)\n", code);
13920 				break;
13921 			}
13922 		}
13923 	}
13924 }
13925 
13926 
13927 /*
13928  *    Function: sd_add_buf_to_waitq
13929  *
13930  * Description: Add the given buf(9S) struct to the wait queue for the
13931  *		instance.  If sorting is enabled, then the buf is added
13932  *		to the queue via an elevator sort algorithm (a la
13933  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13934  *		If sorting is not enabled, then the buf is just added
13935  *		to the end of the wait queue.
13936  *
13937  * Return Code: void
13938  *
13939  *     Context: Does not sleep/block, therefore technically can be called
13940  *		from any context.  However if sorting is enabled then the
13941  *		execution time is indeterminate, and may take long if
13942  *		the wait queue grows large.
13943  */
13944 
13945 static void
13946 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13947 {
13948 	struct buf *ap;
13949 
13950 	ASSERT(bp != NULL);
13951 	ASSERT(un != NULL);
13952 	ASSERT(mutex_owned(SD_MUTEX(un)));
13953 
13954 	/* If the queue is empty, add the buf as the only entry & return. */
13955 	if (un->un_waitq_headp == NULL) {
13956 		ASSERT(un->un_waitq_tailp == NULL);
13957 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13958 		bp->av_forw = NULL;
13959 		return;
13960 	}
13961 
13962 	ASSERT(un->un_waitq_tailp != NULL);
13963 
13964 	/*
13965 	 * If sorting is disabled, just add the buf to the tail end of
13966 	 * the wait queue and return.
13967 	 */
13968 	if (un->un_f_disksort_disabled) {
13969 		un->un_waitq_tailp->av_forw = bp;
13970 		un->un_waitq_tailp = bp;
13971 		bp->av_forw = NULL;
13972 		return;
13973 	}
13974 
13975 	/*
13976 	 * Sort thru the list of requests currently on the wait queue
13977 	 * and add the new buf request at the appropriate position.
13978 	 *
13979 	 * The un->un_waitq_headp is an activity chain pointer on which
13980 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13981 	 * first queue holds those requests which are positioned after
13982 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13983 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13984 	 * Thus we implement a one way scan, retracting after reaching
13985 	 * the end of the drive to the first request on the second
13986 	 * queue, at which time it becomes the first queue.
13987 	 * A one-way scan is natural because of the way UNIX read-ahead
13988 	 * blocks are allocated.
13989 	 *
13990 	 * If we lie after the first request, then we must locate the
13991 	 * second request list and add ourselves to it.
13992 	 */
13993 	ap = un->un_waitq_headp;
13994 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13995 		while (ap->av_forw != NULL) {
13996 			/*
13997 			 * Look for an "inversion" in the (normally
13998 			 * ascending) block numbers. This indicates
13999 			 * the start of the second request list.
14000 			 */
14001 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14002 				/*
14003 				 * Search the second request list for the
14004 				 * first request at a larger block number.
14005 				 * We go before that; however if there is
14006 				 * no such request, we go at the end.
14007 				 */
14008 				do {
14009 					if (SD_GET_BLKNO(bp) <
14010 					    SD_GET_BLKNO(ap->av_forw)) {
14011 						goto insert;
14012 					}
14013 					ap = ap->av_forw;
14014 				} while (ap->av_forw != NULL);
14015 				goto insert;		/* after last */
14016 			}
14017 			ap = ap->av_forw;
14018 		}
14019 
14020 		/*
14021 		 * No inversions... we will go after the last, and
14022 		 * be the first request in the second request list.
14023 		 */
14024 		goto insert;
14025 	}
14026 
14027 	/*
14028 	 * Request is at/after the current request...
14029 	 * sort in the first request list.
14030 	 */
14031 	while (ap->av_forw != NULL) {
14032 		/*
14033 		 * We want to go after the current request (1) if
14034 		 * there is an inversion after it (i.e. it is the end
14035 		 * of the first request list), or (2) if the next
14036 		 * request is a larger block no. than our request.
14037 		 */
14038 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14039 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14040 			goto insert;
14041 		}
14042 		ap = ap->av_forw;
14043 	}
14044 
14045 	/*
14046 	 * Neither a second list nor a larger request, therefore
14047 	 * we go at the end of the first list (which is the same
14048 	 * as the end of the whole schebang).
14049 	 */
14050 insert:
14051 	bp->av_forw = ap->av_forw;
14052 	ap->av_forw = bp;
14053 
14054 	/*
14055 	 * If we inserted onto the tail end of the waitq, make sure the
14056 	 * tail pointer is updated.
14057 	 */
14058 	if (ap == un->un_waitq_tailp) {
14059 		un->un_waitq_tailp = bp;
14060 	}
14061 }
14062 
14063 
14064 /*
14065  *    Function: sd_start_cmds
14066  *
14067  * Description: Remove and transport cmds from the driver queues.
14068  *
14069  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14070  *
14071  *		immed_bp - ptr to a buf to be transported immediately. Only
14072  *		the immed_bp is transported; bufs on the waitq are not
14073  *		processed and the un_retry_bp is not checked.  If immed_bp is
14074  *		NULL, then normal queue processing is performed.
14075  *
14076  *     Context: May be called from kernel thread context, interrupt context,
14077  *		or runout callback context. This function may not block or
14078  *		call routines that block.
14079  */
14080 
14081 static void
14082 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14083 {
14084 	struct	sd_xbuf	*xp;
14085 	struct	buf	*bp;
14086 	void	(*statp)(kstat_io_t *);
14087 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14088 	void	(*saved_statp)(kstat_io_t *);
14089 #endif
14090 	int	rval;
14091 	struct sd_fm_internal *sfip = NULL;
14092 
14093 	ASSERT(un != NULL);
14094 	ASSERT(mutex_owned(SD_MUTEX(un)));
14095 	ASSERT(un->un_ncmds_in_transport >= 0);
14096 	ASSERT(un->un_throttle >= 0);
14097 
14098 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14099 
14100 	do {
14101 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14102 		saved_statp = NULL;
14103 #endif
14104 
14105 		/*
14106 		 * If we are syncing or dumping, fail the command to
14107 		 * avoid recursively calling back into scsi_transport().
14108 		 * The dump I/O itself uses a separate code path so this
14109 		 * only prevents non-dump I/O from being sent while dumping.
14110 		 * File system sync takes place before dumping begins.
14111 		 * During panic, filesystem I/O is allowed provided
14112 		 * un_in_callback is <= 1.  This is to prevent recursion
14113 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14114 		 * sd_start_cmds and so on.  See panic.c for more information
14115 		 * about the states the system can be in during panic.
14116 		 */
14117 		if ((un->un_state == SD_STATE_DUMPING) ||
14118 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14119 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14120 			    "sd_start_cmds: panicking\n");
14121 			goto exit;
14122 		}
14123 
14124 		if ((bp = immed_bp) != NULL) {
14125 			/*
14126 			 * We have a bp that must be transported immediately.
14127 			 * It's OK to transport the immed_bp here without doing
14128 			 * the throttle limit check because the immed_bp is
14129 			 * always used in a retry/recovery case. This means
14130 			 * that we know we are not at the throttle limit by
14131 			 * virtue of the fact that to get here we must have
14132 			 * already gotten a command back via sdintr(). This also
14133 			 * relies on (1) the command on un_retry_bp preventing
14134 			 * further commands from the waitq from being issued;
14135 			 * and (2) the code in sd_retry_command checking the
14136 			 * throttle limit before issuing a delayed or immediate
14137 			 * retry. This holds even if the throttle limit is
14138 			 * currently ratcheted down from its maximum value.
14139 			 */
14140 			statp = kstat_runq_enter;
14141 			if (bp == un->un_retry_bp) {
14142 				ASSERT((un->un_retry_statp == NULL) ||
14143 				    (un->un_retry_statp == kstat_waitq_enter) ||
14144 				    (un->un_retry_statp ==
14145 				    kstat_runq_back_to_waitq));
14146 				/*
14147 				 * If the waitq kstat was incremented when
14148 				 * sd_set_retry_bp() queued this bp for a retry,
14149 				 * then we must set up statp so that the waitq
14150 				 * count will get decremented correctly below.
14151 				 * Also we must clear un->un_retry_statp to
14152 				 * ensure that we do not act on a stale value
14153 				 * in this field.
14154 				 */
14155 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14156 				    (un->un_retry_statp ==
14157 				    kstat_runq_back_to_waitq)) {
14158 					statp = kstat_waitq_to_runq;
14159 				}
14160 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14161 				saved_statp = un->un_retry_statp;
14162 #endif
14163 				un->un_retry_statp = NULL;
14164 
14165 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14166 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14167 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14168 				    un, un->un_retry_bp, un->un_throttle,
14169 				    un->un_ncmds_in_transport);
14170 			} else {
14171 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14172 				    "processing priority bp:0x%p\n", bp);
14173 			}
14174 
14175 		} else if ((bp = un->un_waitq_headp) != NULL) {
14176 			/*
14177 			 * A command on the waitq is ready to go, but do not
14178 			 * send it if:
14179 			 *
14180 			 * (1) the throttle limit has been reached, or
14181 			 * (2) a retry is pending, or
14182 			 * (3) a START_STOP_UNIT callback pending, or
14183 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14184 			 *	command is pending.
14185 			 *
14186 			 * For all of these conditions, IO processing will
14187 			 * restart after the condition is cleared.
14188 			 */
14189 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14190 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14191 				    "sd_start_cmds: exiting, "
14192 				    "throttle limit reached!\n");
14193 				goto exit;
14194 			}
14195 			if (un->un_retry_bp != NULL) {
14196 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14197 				    "sd_start_cmds: exiting, retry pending!\n");
14198 				goto exit;
14199 			}
14200 			if (un->un_startstop_timeid != NULL) {
14201 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14202 				    "sd_start_cmds: exiting, "
14203 				    "START_STOP pending!\n");
14204 				goto exit;
14205 			}
14206 			if (un->un_direct_priority_timeid != NULL) {
14207 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14208 				    "sd_start_cmds: exiting, "
14209 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14210 				goto exit;
14211 			}
14212 
14213 			/* Dequeue the command */
14214 			un->un_waitq_headp = bp->av_forw;
14215 			if (un->un_waitq_headp == NULL) {
14216 				un->un_waitq_tailp = NULL;
14217 			}
14218 			bp->av_forw = NULL;
14219 			statp = kstat_waitq_to_runq;
14220 			SD_TRACE(SD_LOG_IO_CORE, un,
14221 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14222 
14223 		} else {
14224 			/* No work to do so bail out now */
14225 			SD_TRACE(SD_LOG_IO_CORE, un,
14226 			    "sd_start_cmds: no more work, exiting!\n");
14227 			goto exit;
14228 		}
14229 
14230 		/*
14231 		 * Reset the state to normal. This is the mechanism by which
14232 		 * the state transitions from either SD_STATE_RWAIT or
14233 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14234 		 * If state is SD_STATE_PM_CHANGING then this command is
14235 		 * part of the device power control and the state must
14236 		 * not be put back to normal. Doing so would would
14237 		 * allow new commands to proceed when they shouldn't,
14238 		 * the device may be going off.
14239 		 */
14240 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14241 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14242 			New_state(un, SD_STATE_NORMAL);
14243 		}
14244 
14245 		xp = SD_GET_XBUF(bp);
14246 		ASSERT(xp != NULL);
14247 
14248 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14249 		/*
14250 		 * Allocate the scsi_pkt if we need one, or attach DMA
14251 		 * resources if we have a scsi_pkt that needs them. The
14252 		 * latter should only occur for commands that are being
14253 		 * retried.
14254 		 */
14255 		if ((xp->xb_pktp == NULL) ||
14256 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14257 #else
14258 		if (xp->xb_pktp == NULL) {
14259 #endif
14260 			/*
14261 			 * There is no scsi_pkt allocated for this buf. Call
14262 			 * the initpkt function to allocate & init one.
14263 			 *
14264 			 * The scsi_init_pkt runout callback functionality is
14265 			 * implemented as follows:
14266 			 *
14267 			 * 1) The initpkt function always calls
14268 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14269 			 *    callback routine.
14270 			 * 2) A successful packet allocation is initialized and
14271 			 *    the I/O is transported.
14272 			 * 3) The I/O associated with an allocation resource
14273 			 *    failure is left on its queue to be retried via
14274 			 *    runout or the next I/O.
14275 			 * 4) The I/O associated with a DMA error is removed
14276 			 *    from the queue and failed with EIO. Processing of
14277 			 *    the transport queues is also halted to be
14278 			 *    restarted via runout or the next I/O.
14279 			 * 5) The I/O associated with a CDB size or packet
14280 			 *    size error is removed from the queue and failed
14281 			 *    with EIO. Processing of the transport queues is
14282 			 *    continued.
14283 			 *
14284 			 * Note: there is no interface for canceling a runout
14285 			 * callback. To prevent the driver from detaching or
14286 			 * suspending while a runout is pending the driver
14287 			 * state is set to SD_STATE_RWAIT
14288 			 *
14289 			 * Note: using the scsi_init_pkt callback facility can
14290 			 * result in an I/O request persisting at the head of
14291 			 * the list which cannot be satisfied even after
14292 			 * multiple retries. In the future the driver may
14293 			 * implement some kind of maximum runout count before
14294 			 * failing an I/O.
14295 			 *
14296 			 * Note: the use of funcp below may seem superfluous,
14297 			 * but it helps warlock figure out the correct
14298 			 * initpkt function calls (see [s]sd.wlcmd).
14299 			 */
14300 			struct scsi_pkt	*pktp;
14301 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14302 
14303 			ASSERT(bp != un->un_rqs_bp);
14304 
14305 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14306 			switch ((*funcp)(bp, &pktp)) {
14307 			case  SD_PKT_ALLOC_SUCCESS:
14308 				xp->xb_pktp = pktp;
14309 				SD_TRACE(SD_LOG_IO_CORE, un,
14310 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14311 				    pktp);
14312 				goto got_pkt;
14313 
14314 			case SD_PKT_ALLOC_FAILURE:
14315 				/*
14316 				 * Temporary (hopefully) resource depletion.
14317 				 * Since retries and RQS commands always have a
14318 				 * scsi_pkt allocated, these cases should never
14319 				 * get here. So the only cases this needs to
14320 				 * handle is a bp from the waitq (which we put
14321 				 * back onto the waitq for sdrunout), or a bp
14322 				 * sent as an immed_bp (which we just fail).
14323 				 */
14324 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14325 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14326 
14327 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14328 
14329 				if (bp == immed_bp) {
14330 					/*
14331 					 * If SD_XB_DMA_FREED is clear, then
14332 					 * this is a failure to allocate a
14333 					 * scsi_pkt, and we must fail the
14334 					 * command.
14335 					 */
14336 					if ((xp->xb_pkt_flags &
14337 					    SD_XB_DMA_FREED) == 0) {
14338 						break;
14339 					}
14340 
14341 					/*
14342 					 * If this immediate command is NOT our
14343 					 * un_retry_bp, then we must fail it.
14344 					 */
14345 					if (bp != un->un_retry_bp) {
14346 						break;
14347 					}
14348 
14349 					/*
14350 					 * We get here if this cmd is our
14351 					 * un_retry_bp that was DMAFREED, but
14352 					 * scsi_init_pkt() failed to reallocate
14353 					 * DMA resources when we attempted to
14354 					 * retry it. This can happen when an
14355 					 * mpxio failover is in progress, but
14356 					 * we don't want to just fail the
14357 					 * command in this case.
14358 					 *
14359 					 * Use timeout(9F) to restart it after
14360 					 * a 100ms delay.  We don't want to
14361 					 * let sdrunout() restart it, because
14362 					 * sdrunout() is just supposed to start
14363 					 * commands that are sitting on the
14364 					 * wait queue.  The un_retry_bp stays
14365 					 * set until the command completes, but
14366 					 * sdrunout can be called many times
14367 					 * before that happens.  Since sdrunout
14368 					 * cannot tell if the un_retry_bp is
14369 					 * already in the transport, it could
14370 					 * end up calling scsi_transport() for
14371 					 * the un_retry_bp multiple times.
14372 					 *
14373 					 * Also: don't schedule the callback
14374 					 * if some other callback is already
14375 					 * pending.
14376 					 */
14377 					if (un->un_retry_statp == NULL) {
14378 						/*
14379 						 * restore the kstat pointer to
14380 						 * keep kstat counts coherent
14381 						 * when we do retry the command.
14382 						 */
14383 						un->un_retry_statp =
14384 						    saved_statp;
14385 					}
14386 
14387 					if ((un->un_startstop_timeid == NULL) &&
14388 					    (un->un_retry_timeid == NULL) &&
14389 					    (un->un_direct_priority_timeid ==
14390 					    NULL)) {
14391 
14392 						un->un_retry_timeid =
14393 						    timeout(
14394 						    sd_start_retry_command,
14395 						    un, SD_RESTART_TIMEOUT);
14396 					}
14397 					goto exit;
14398 				}
14399 
14400 #else
14401 				if (bp == immed_bp) {
14402 					break;	/* Just fail the command */
14403 				}
14404 #endif
14405 
14406 				/* Add the buf back to the head of the waitq */
14407 				bp->av_forw = un->un_waitq_headp;
14408 				un->un_waitq_headp = bp;
14409 				if (un->un_waitq_tailp == NULL) {
14410 					un->un_waitq_tailp = bp;
14411 				}
14412 				goto exit;
14413 
14414 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14415 				/*
14416 				 * HBA DMA resource failure. Fail the command
14417 				 * and continue processing of the queues.
14418 				 */
14419 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14420 				    "sd_start_cmds: "
14421 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14422 				break;
14423 
14424 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14425 				/*
14426 				 * Note:x86: Partial DMA mapping not supported
14427 				 * for USCSI commands, and all the needed DMA
14428 				 * resources were not allocated.
14429 				 */
14430 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14431 				    "sd_start_cmds: "
14432 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14433 				break;
14434 
14435 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14436 				/*
14437 				 * Note:x86: Request cannot fit into CDB based
14438 				 * on lba and len.
14439 				 */
14440 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14441 				    "sd_start_cmds: "
14442 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14443 				break;
14444 
14445 			default:
14446 				/* Should NEVER get here! */
14447 				panic("scsi_initpkt error");
14448 				/*NOTREACHED*/
14449 			}
14450 
14451 			/*
14452 			 * Fatal error in allocating a scsi_pkt for this buf.
14453 			 * Update kstats & return the buf with an error code.
14454 			 * We must use sd_return_failed_command_no_restart() to
14455 			 * avoid a recursive call back into sd_start_cmds().
14456 			 * However this also means that we must keep processing
14457 			 * the waitq here in order to avoid stalling.
14458 			 */
14459 			if (statp == kstat_waitq_to_runq) {
14460 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14461 			}
14462 			sd_return_failed_command_no_restart(un, bp, EIO);
14463 			if (bp == immed_bp) {
14464 				/* immed_bp is gone by now, so clear this */
14465 				immed_bp = NULL;
14466 			}
14467 			continue;
14468 		}
14469 got_pkt:
14470 		if (bp == immed_bp) {
14471 			/* goto the head of the class.... */
14472 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14473 		}
14474 
14475 		un->un_ncmds_in_transport++;
14476 		SD_UPDATE_KSTATS(un, statp, bp);
14477 
14478 		/*
14479 		 * Call scsi_transport() to send the command to the target.
14480 		 * According to SCSA architecture, we must drop the mutex here
14481 		 * before calling scsi_transport() in order to avoid deadlock.
14482 		 * Note that the scsi_pkt's completion routine can be executed
14483 		 * (from interrupt context) even before the call to
14484 		 * scsi_transport() returns.
14485 		 */
14486 		SD_TRACE(SD_LOG_IO_CORE, un,
14487 		    "sd_start_cmds: calling scsi_transport()\n");
14488 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14489 
14490 		mutex_exit(SD_MUTEX(un));
14491 		rval = scsi_transport(xp->xb_pktp);
14492 		mutex_enter(SD_MUTEX(un));
14493 
14494 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14495 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14496 
14497 		switch (rval) {
14498 		case TRAN_ACCEPT:
14499 			/* Clear this with every pkt accepted by the HBA */
14500 			un->un_tran_fatal_count = 0;
14501 			break;	/* Success; try the next cmd (if any) */
14502 
14503 		case TRAN_BUSY:
14504 			un->un_ncmds_in_transport--;
14505 			ASSERT(un->un_ncmds_in_transport >= 0);
14506 
14507 			/*
14508 			 * Don't retry request sense, the sense data
14509 			 * is lost when another request is sent.
14510 			 * Free up the rqs buf and retry
14511 			 * the original failed cmd.  Update kstat.
14512 			 */
14513 			if (bp == un->un_rqs_bp) {
14514 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14515 				bp = sd_mark_rqs_idle(un, xp);
14516 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14517 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14518 				    kstat_waitq_enter);
14519 				goto exit;
14520 			}
14521 
14522 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14523 			/*
14524 			 * Free the DMA resources for the  scsi_pkt. This will
14525 			 * allow mpxio to select another path the next time
14526 			 * we call scsi_transport() with this scsi_pkt.
14527 			 * See sdintr() for the rationalization behind this.
14528 			 */
14529 			if ((un->un_f_is_fibre == TRUE) &&
14530 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14531 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14532 				scsi_dmafree(xp->xb_pktp);
14533 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14534 			}
14535 #endif
14536 
14537 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14538 				/*
14539 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14540 				 * are for error recovery situations. These do
14541 				 * not use the normal command waitq, so if they
14542 				 * get a TRAN_BUSY we cannot put them back onto
14543 				 * the waitq for later retry. One possible
14544 				 * problem is that there could already be some
14545 				 * other command on un_retry_bp that is waiting
14546 				 * for this one to complete, so we would be
14547 				 * deadlocked if we put this command back onto
14548 				 * the waitq for later retry (since un_retry_bp
14549 				 * must complete before the driver gets back to
14550 				 * commands on the waitq).
14551 				 *
14552 				 * To avoid deadlock we must schedule a callback
14553 				 * that will restart this command after a set
14554 				 * interval.  This should keep retrying for as
14555 				 * long as the underlying transport keeps
14556 				 * returning TRAN_BUSY (just like for other
14557 				 * commands).  Use the same timeout interval as
14558 				 * for the ordinary TRAN_BUSY retry.
14559 				 */
14560 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14561 				    "sd_start_cmds: scsi_transport() returned "
14562 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14563 
14564 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14565 				un->un_direct_priority_timeid =
14566 				    timeout(sd_start_direct_priority_command,
14567 				    bp, un->un_busy_timeout / 500);
14568 
14569 				goto exit;
14570 			}
14571 
14572 			/*
14573 			 * For TRAN_BUSY, we want to reduce the throttle value,
14574 			 * unless we are retrying a command.
14575 			 */
14576 			if (bp != un->un_retry_bp) {
14577 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14578 			}
14579 
14580 			/*
14581 			 * Set up the bp to be tried again 10 ms later.
14582 			 * Note:x86: Is there a timeout value in the sd_lun
14583 			 * for this condition?
14584 			 */
14585 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14586 			    kstat_runq_back_to_waitq);
14587 			goto exit;
14588 
14589 		case TRAN_FATAL_ERROR:
14590 			un->un_tran_fatal_count++;
14591 			/* FALLTHRU */
14592 
14593 		case TRAN_BADPKT:
14594 		default:
14595 			un->un_ncmds_in_transport--;
14596 			ASSERT(un->un_ncmds_in_transport >= 0);
14597 
14598 			/*
14599 			 * If this is our REQUEST SENSE command with a
14600 			 * transport error, we must get back the pointers
14601 			 * to the original buf, and mark the REQUEST
14602 			 * SENSE command as "available".
14603 			 */
14604 			if (bp == un->un_rqs_bp) {
14605 				bp = sd_mark_rqs_idle(un, xp);
14606 				xp = SD_GET_XBUF(bp);
14607 			} else {
14608 				/*
14609 				 * Legacy behavior: do not update transport
14610 				 * error count for request sense commands.
14611 				 */
14612 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14613 			}
14614 
14615 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14616 			sd_print_transport_rejected_message(un, xp, rval);
14617 
14618 			/*
14619 			 * This command will be terminated by SD driver due
14620 			 * to a fatal transport error. We should post
14621 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14622 			 * of "fail" for any command to indicate this
14623 			 * situation.
14624 			 */
14625 			if (xp->xb_ena > 0) {
14626 				ASSERT(un->un_fm_private != NULL);
14627 				sfip = un->un_fm_private;
14628 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14629 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14630 				    xp->xb_pktp, bp, xp);
14631 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14632 			}
14633 
14634 			/*
14635 			 * We must use sd_return_failed_command_no_restart() to
14636 			 * avoid a recursive call back into sd_start_cmds().
14637 			 * However this also means that we must keep processing
14638 			 * the waitq here in order to avoid stalling.
14639 			 */
14640 			sd_return_failed_command_no_restart(un, bp, EIO);
14641 
14642 			/*
14643 			 * Notify any threads waiting in sd_ddi_suspend() that
14644 			 * a command completion has occurred.
14645 			 */
14646 			if (un->un_state == SD_STATE_SUSPENDED) {
14647 				cv_broadcast(&un->un_disk_busy_cv);
14648 			}
14649 
14650 			if (bp == immed_bp) {
14651 				/* immed_bp is gone by now, so clear this */
14652 				immed_bp = NULL;
14653 			}
14654 			break;
14655 		}
14656 
14657 	} while (immed_bp == NULL);
14658 
14659 exit:
14660 	ASSERT(mutex_owned(SD_MUTEX(un)));
14661 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14662 }
14663 
14664 
14665 /*
14666  *    Function: sd_return_command
14667  *
14668  * Description: Returns a command to its originator (with or without an
14669  *		error).  Also starts commands waiting to be transported
14670  *		to the target.
14671  *
14672  *     Context: May be called from interrupt, kernel, or timeout context
14673  */
14674 
14675 static void
14676 sd_return_command(struct sd_lun *un, struct buf *bp)
14677 {
14678 	struct sd_xbuf *xp;
14679 	struct scsi_pkt *pktp;
14680 	struct sd_fm_internal *sfip;
14681 
14682 	ASSERT(bp != NULL);
14683 	ASSERT(un != NULL);
14684 	ASSERT(mutex_owned(SD_MUTEX(un)));
14685 	ASSERT(bp != un->un_rqs_bp);
14686 	xp = SD_GET_XBUF(bp);
14687 	ASSERT(xp != NULL);
14688 
14689 	pktp = SD_GET_PKTP(bp);
14690 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14691 	ASSERT(sfip != NULL);
14692 
14693 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14694 
14695 	/*
14696 	 * Note: check for the "sdrestart failed" case.
14697 	 */
14698 	if ((un->un_partial_dma_supported == 1) &&
14699 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14700 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14701 	    (xp->xb_pktp->pkt_resid == 0)) {
14702 
14703 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14704 			/*
14705 			 * Successfully set up next portion of cmd
14706 			 * transfer, try sending it
14707 			 */
14708 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14709 			    NULL, NULL, 0, (clock_t)0, NULL);
14710 			sd_start_cmds(un, NULL);
14711 			return;	/* Note:x86: need a return here? */
14712 		}
14713 	}
14714 
14715 	/*
14716 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14717 	 * can happen if upon being re-tried the failfast bp either
14718 	 * succeeded or encountered another error (possibly even a different
14719 	 * error than the one that precipitated the failfast state, but in
14720 	 * that case it would have had to exhaust retries as well). Regardless,
14721 	 * this should not occur whenever the instance is in the active
14722 	 * failfast state.
14723 	 */
14724 	if (bp == un->un_failfast_bp) {
14725 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14726 		un->un_failfast_bp = NULL;
14727 	}
14728 
14729 	/*
14730 	 * Clear the failfast state upon successful completion of ANY cmd.
14731 	 */
14732 	if (bp->b_error == 0) {
14733 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14734 		/*
14735 		 * If this is a successful command, but used to be retried,
14736 		 * we will take it as a recovered command and post an
14737 		 * ereport with driver-assessment of "recovered".
14738 		 */
14739 		if (xp->xb_ena > 0) {
14740 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14741 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14742 		}
14743 	} else {
14744 		/*
14745 		 * If this is a failed non-USCSI command we will post an
14746 		 * ereport with driver-assessment set accordingly("fail" or
14747 		 * "fatal").
14748 		 */
14749 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14750 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14751 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14752 		}
14753 	}
14754 
14755 	/*
14756 	 * This is used if the command was retried one or more times. Show that
14757 	 * we are done with it, and allow processing of the waitq to resume.
14758 	 */
14759 	if (bp == un->un_retry_bp) {
14760 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14761 		    "sd_return_command: un:0x%p: "
14762 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14763 		un->un_retry_bp = NULL;
14764 		un->un_retry_statp = NULL;
14765 	}
14766 
14767 	SD_UPDATE_RDWR_STATS(un, bp);
14768 	SD_UPDATE_PARTITION_STATS(un, bp);
14769 
14770 	switch (un->un_state) {
14771 	case SD_STATE_SUSPENDED:
14772 		/*
14773 		 * Notify any threads waiting in sd_ddi_suspend() that
14774 		 * a command completion has occurred.
14775 		 */
14776 		cv_broadcast(&un->un_disk_busy_cv);
14777 		break;
14778 	default:
14779 		sd_start_cmds(un, NULL);
14780 		break;
14781 	}
14782 
14783 	/* Return this command up the iodone chain to its originator. */
14784 	mutex_exit(SD_MUTEX(un));
14785 
14786 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14787 	xp->xb_pktp = NULL;
14788 
14789 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14790 
14791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14792 	mutex_enter(SD_MUTEX(un));
14793 
14794 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14795 }
14796 
14797 
14798 /*
14799  *    Function: sd_return_failed_command
14800  *
14801  * Description: Command completion when an error occurred.
14802  *
14803  *     Context: May be called from interrupt context
14804  */
14805 
14806 static void
14807 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14808 {
14809 	ASSERT(bp != NULL);
14810 	ASSERT(un != NULL);
14811 	ASSERT(mutex_owned(SD_MUTEX(un)));
14812 
14813 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14814 	    "sd_return_failed_command: entry\n");
14815 
14816 	/*
14817 	 * b_resid could already be nonzero due to a partial data
14818 	 * transfer, so do not change it here.
14819 	 */
14820 	SD_BIOERROR(bp, errcode);
14821 
14822 	sd_return_command(un, bp);
14823 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14824 	    "sd_return_failed_command: exit\n");
14825 }
14826 
14827 
14828 /*
14829  *    Function: sd_return_failed_command_no_restart
14830  *
14831  * Description: Same as sd_return_failed_command, but ensures that no
14832  *		call back into sd_start_cmds will be issued.
14833  *
14834  *     Context: May be called from interrupt context
14835  */
14836 
14837 static void
14838 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14839 	int errcode)
14840 {
14841 	struct sd_xbuf *xp;
14842 
14843 	ASSERT(bp != NULL);
14844 	ASSERT(un != NULL);
14845 	ASSERT(mutex_owned(SD_MUTEX(un)));
14846 	xp = SD_GET_XBUF(bp);
14847 	ASSERT(xp != NULL);
14848 	ASSERT(errcode != 0);
14849 
14850 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14851 	    "sd_return_failed_command_no_restart: entry\n");
14852 
14853 	/*
14854 	 * b_resid could already be nonzero due to a partial data
14855 	 * transfer, so do not change it here.
14856 	 */
14857 	SD_BIOERROR(bp, errcode);
14858 
14859 	/*
14860 	 * If this is the failfast bp, clear it. This can happen if the
14861 	 * failfast bp encounterd a fatal error when we attempted to
14862 	 * re-try it (such as a scsi_transport(9F) failure).  However
14863 	 * we should NOT be in an active failfast state if the failfast
14864 	 * bp is not NULL.
14865 	 */
14866 	if (bp == un->un_failfast_bp) {
14867 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14868 		un->un_failfast_bp = NULL;
14869 	}
14870 
14871 	if (bp == un->un_retry_bp) {
14872 		/*
14873 		 * This command was retried one or more times. Show that we are
14874 		 * done with it, and allow processing of the waitq to resume.
14875 		 */
14876 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14877 		    "sd_return_failed_command_no_restart: "
14878 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14879 		un->un_retry_bp = NULL;
14880 		un->un_retry_statp = NULL;
14881 	}
14882 
14883 	SD_UPDATE_RDWR_STATS(un, bp);
14884 	SD_UPDATE_PARTITION_STATS(un, bp);
14885 
14886 	mutex_exit(SD_MUTEX(un));
14887 
14888 	if (xp->xb_pktp != NULL) {
14889 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14890 		xp->xb_pktp = NULL;
14891 	}
14892 
14893 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14894 
14895 	mutex_enter(SD_MUTEX(un));
14896 
14897 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14898 	    "sd_return_failed_command_no_restart: exit\n");
14899 }
14900 
14901 
14902 /*
14903  *    Function: sd_retry_command
14904  *
14905  * Description: queue up a command for retry, or (optionally) fail it
14906  *		if retry counts are exhausted.
14907  *
14908  *   Arguments: un - Pointer to the sd_lun struct for the target.
14909  *
14910  *		bp - Pointer to the buf for the command to be retried.
14911  *
14912  *		retry_check_flag - Flag to see which (if any) of the retry
14913  *		   counts should be decremented/checked. If the indicated
14914  *		   retry count is exhausted, then the command will not be
14915  *		   retried; it will be failed instead. This should use a
14916  *		   value equal to one of the following:
14917  *
14918  *			SD_RETRIES_NOCHECK
14919  *			SD_RESD_RETRIES_STANDARD
14920  *			SD_RETRIES_VICTIM
14921  *
14922  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14923  *		   if the check should be made to see of FLAG_ISOLATE is set
14924  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14925  *		   not retried, it is simply failed.
14926  *
14927  *		user_funcp - Ptr to function to call before dispatching the
14928  *		   command. May be NULL if no action needs to be performed.
14929  *		   (Primarily intended for printing messages.)
14930  *
14931  *		user_arg - Optional argument to be passed along to
14932  *		   the user_funcp call.
14933  *
14934  *		failure_code - errno return code to set in the bp if the
14935  *		   command is going to be failed.
14936  *
14937  *		retry_delay - Retry delay interval in (clock_t) units. May
14938  *		   be zero which indicates that the retry should be retried
14939  *		   immediately (ie, without an intervening delay).
14940  *
14941  *		statp - Ptr to kstat function to be updated if the command
14942  *		   is queued for a delayed retry. May be NULL if no kstat
14943  *		   update is desired.
14944  *
14945  *     Context: May be called from interrupt context.
14946  */
14947 
14948 static void
14949 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14950 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14951 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14952 	void (*statp)(kstat_io_t *))
14953 {
14954 	struct sd_xbuf	*xp;
14955 	struct scsi_pkt	*pktp;
14956 	struct sd_fm_internal *sfip;
14957 
14958 	ASSERT(un != NULL);
14959 	ASSERT(mutex_owned(SD_MUTEX(un)));
14960 	ASSERT(bp != NULL);
14961 	xp = SD_GET_XBUF(bp);
14962 	ASSERT(xp != NULL);
14963 	pktp = SD_GET_PKTP(bp);
14964 	ASSERT(pktp != NULL);
14965 
14966 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14967 	ASSERT(sfip != NULL);
14968 
14969 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14970 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14971 
14972 	/*
14973 	 * If we are syncing or dumping, fail the command to avoid
14974 	 * recursively calling back into scsi_transport().
14975 	 */
14976 	if (ddi_in_panic()) {
14977 		goto fail_command_no_log;
14978 	}
14979 
14980 	/*
14981 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14982 	 * log an error and fail the command.
14983 	 */
14984 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14985 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14986 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14987 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14988 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14989 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14990 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14991 		goto fail_command;
14992 	}
14993 
14994 	/*
14995 	 * If we are suspended, then put the command onto head of the
14996 	 * wait queue since we don't want to start more commands, and
14997 	 * clear the un_retry_bp. Next time when we are resumed, will
14998 	 * handle the command in the wait queue.
14999 	 */
15000 	switch (un->un_state) {
15001 	case SD_STATE_SUSPENDED:
15002 	case SD_STATE_DUMPING:
15003 		bp->av_forw = un->un_waitq_headp;
15004 		un->un_waitq_headp = bp;
15005 		if (un->un_waitq_tailp == NULL) {
15006 			un->un_waitq_tailp = bp;
15007 		}
15008 		if (bp == un->un_retry_bp) {
15009 			un->un_retry_bp = NULL;
15010 			un->un_retry_statp = NULL;
15011 		}
15012 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15013 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15014 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15015 		return;
15016 	default:
15017 		break;
15018 	}
15019 
15020 	/*
15021 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15022 	 * is set; if it is then we do not want to retry the command.
15023 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15024 	 */
15025 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15026 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15027 			goto fail_command;
15028 		}
15029 	}
15030 
15031 
15032 	/*
15033 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15034 	 * command timeout or a selection timeout has occurred. This means
15035 	 * that we were unable to establish an kind of communication with
15036 	 * the target, and subsequent retries and/or commands are likely
15037 	 * to encounter similar results and take a long time to complete.
15038 	 *
15039 	 * If this is a failfast error condition, we need to update the
15040 	 * failfast state, even if this bp does not have B_FAILFAST set.
15041 	 */
15042 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15043 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15044 			ASSERT(un->un_failfast_bp == NULL);
15045 			/*
15046 			 * If we are already in the active failfast state, and
15047 			 * another failfast error condition has been detected,
15048 			 * then fail this command if it has B_FAILFAST set.
15049 			 * If B_FAILFAST is clear, then maintain the legacy
15050 			 * behavior of retrying heroically, even tho this will
15051 			 * take a lot more time to fail the command.
15052 			 */
15053 			if (bp->b_flags & B_FAILFAST) {
15054 				goto fail_command;
15055 			}
15056 		} else {
15057 			/*
15058 			 * We're not in the active failfast state, but we
15059 			 * have a failfast error condition, so we must begin
15060 			 * transition to the next state. We do this regardless
15061 			 * of whether or not this bp has B_FAILFAST set.
15062 			 */
15063 			if (un->un_failfast_bp == NULL) {
15064 				/*
15065 				 * This is the first bp to meet a failfast
15066 				 * condition so save it on un_failfast_bp &
15067 				 * do normal retry processing. Do not enter
15068 				 * active failfast state yet. This marks
15069 				 * entry into the "failfast pending" state.
15070 				 */
15071 				un->un_failfast_bp = bp;
15072 
15073 			} else if (un->un_failfast_bp == bp) {
15074 				/*
15075 				 * This is the second time *this* bp has
15076 				 * encountered a failfast error condition,
15077 				 * so enter active failfast state & flush
15078 				 * queues as appropriate.
15079 				 */
15080 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15081 				un->un_failfast_bp = NULL;
15082 				sd_failfast_flushq(un);
15083 
15084 				/*
15085 				 * Fail this bp now if B_FAILFAST set;
15086 				 * otherwise continue with retries. (It would
15087 				 * be pretty ironic if this bp succeeded on a
15088 				 * subsequent retry after we just flushed all
15089 				 * the queues).
15090 				 */
15091 				if (bp->b_flags & B_FAILFAST) {
15092 					goto fail_command;
15093 				}
15094 
15095 #if !defined(lint) && !defined(__lint)
15096 			} else {
15097 				/*
15098 				 * If neither of the preceeding conditionals
15099 				 * was true, it means that there is some
15100 				 * *other* bp that has met an inital failfast
15101 				 * condition and is currently either being
15102 				 * retried or is waiting to be retried. In
15103 				 * that case we should perform normal retry
15104 				 * processing on *this* bp, since there is a
15105 				 * chance that the current failfast condition
15106 				 * is transient and recoverable. If that does
15107 				 * not turn out to be the case, then retries
15108 				 * will be cleared when the wait queue is
15109 				 * flushed anyway.
15110 				 */
15111 #endif
15112 			}
15113 		}
15114 	} else {
15115 		/*
15116 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15117 		 * likely were able to at least establish some level of
15118 		 * communication with the target and subsequent commands
15119 		 * and/or retries are likely to get through to the target,
15120 		 * In this case we want to be aggressive about clearing
15121 		 * the failfast state. Note that this does not affect
15122 		 * the "failfast pending" condition.
15123 		 */
15124 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15125 	}
15126 
15127 
15128 	/*
15129 	 * Check the specified retry count to see if we can still do
15130 	 * any retries with this pkt before we should fail it.
15131 	 */
15132 	switch (retry_check_flag & SD_RETRIES_MASK) {
15133 	case SD_RETRIES_VICTIM:
15134 		/*
15135 		 * Check the victim retry count. If exhausted, then fall
15136 		 * thru & check against the standard retry count.
15137 		 */
15138 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15139 			/* Increment count & proceed with the retry */
15140 			xp->xb_victim_retry_count++;
15141 			break;
15142 		}
15143 		/* Victim retries exhausted, fall back to std. retries... */
15144 		/* FALLTHRU */
15145 
15146 	case SD_RETRIES_STANDARD:
15147 		if (xp->xb_retry_count >= un->un_retry_count) {
15148 			/* Retries exhausted, fail the command */
15149 			SD_TRACE(SD_LOG_IO_CORE, un,
15150 			    "sd_retry_command: retries exhausted!\n");
15151 			/*
15152 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15153 			 * commands with nonzero pkt_resid.
15154 			 */
15155 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15156 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15157 			    (pktp->pkt_resid != 0)) {
15158 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15159 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15160 					SD_UPDATE_B_RESID(bp, pktp);
15161 				}
15162 			}
15163 			goto fail_command;
15164 		}
15165 		xp->xb_retry_count++;
15166 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15167 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15168 		break;
15169 
15170 	case SD_RETRIES_UA:
15171 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15172 			/* Retries exhausted, fail the command */
15173 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15174 			    "Unit Attention retries exhausted. "
15175 			    "Check the target.\n");
15176 			goto fail_command;
15177 		}
15178 		xp->xb_ua_retry_count++;
15179 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15180 		    "sd_retry_command: retry count:%d\n",
15181 		    xp->xb_ua_retry_count);
15182 		break;
15183 
15184 	case SD_RETRIES_BUSY:
15185 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15186 			/* Retries exhausted, fail the command */
15187 			SD_TRACE(SD_LOG_IO_CORE, un,
15188 			    "sd_retry_command: retries exhausted!\n");
15189 			goto fail_command;
15190 		}
15191 		xp->xb_retry_count++;
15192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15193 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15194 		break;
15195 
15196 	case SD_RETRIES_NOCHECK:
15197 	default:
15198 		/* No retry count to check. Just proceed with the retry */
15199 		break;
15200 	}
15201 
15202 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15203 
15204 	/*
15205 	 * If this is a non-USCSI command being retried
15206 	 * during execution last time, we should post an ereport with
15207 	 * driver-assessment of the value "retry".
15208 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15209 	 * hardware errors, we bypass ereport posting.
15210 	 */
15211 	if (failure_code != 0) {
15212 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15213 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15214 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15215 		}
15216 	}
15217 
15218 	/*
15219 	 * If we were given a zero timeout, we must attempt to retry the
15220 	 * command immediately (ie, without a delay).
15221 	 */
15222 	if (retry_delay == 0) {
15223 		/*
15224 		 * Check some limiting conditions to see if we can actually
15225 		 * do the immediate retry.  If we cannot, then we must
15226 		 * fall back to queueing up a delayed retry.
15227 		 */
15228 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15229 			/*
15230 			 * We are at the throttle limit for the target,
15231 			 * fall back to delayed retry.
15232 			 */
15233 			retry_delay = un->un_busy_timeout;
15234 			statp = kstat_waitq_enter;
15235 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15236 			    "sd_retry_command: immed. retry hit "
15237 			    "throttle!\n");
15238 		} else {
15239 			/*
15240 			 * We're clear to proceed with the immediate retry.
15241 			 * First call the user-provided function (if any)
15242 			 */
15243 			if (user_funcp != NULL) {
15244 				(*user_funcp)(un, bp, user_arg,
15245 				    SD_IMMEDIATE_RETRY_ISSUED);
15246 #ifdef __lock_lint
15247 				sd_print_incomplete_msg(un, bp, user_arg,
15248 				    SD_IMMEDIATE_RETRY_ISSUED);
15249 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15250 				    SD_IMMEDIATE_RETRY_ISSUED);
15251 				sd_print_sense_failed_msg(un, bp, user_arg,
15252 				    SD_IMMEDIATE_RETRY_ISSUED);
15253 #endif
15254 			}
15255 
15256 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15257 			    "sd_retry_command: issuing immediate retry\n");
15258 
15259 			/*
15260 			 * Call sd_start_cmds() to transport the command to
15261 			 * the target.
15262 			 */
15263 			sd_start_cmds(un, bp);
15264 
15265 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15266 			    "sd_retry_command exit\n");
15267 			return;
15268 		}
15269 	}
15270 
15271 	/*
15272 	 * Set up to retry the command after a delay.
15273 	 * First call the user-provided function (if any)
15274 	 */
15275 	if (user_funcp != NULL) {
15276 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15277 	}
15278 
15279 	sd_set_retry_bp(un, bp, retry_delay, statp);
15280 
15281 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15282 	return;
15283 
15284 fail_command:
15285 
15286 	if (user_funcp != NULL) {
15287 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15288 	}
15289 
15290 fail_command_no_log:
15291 
15292 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15293 	    "sd_retry_command: returning failed command\n");
15294 
15295 	sd_return_failed_command(un, bp, failure_code);
15296 
15297 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15298 }
15299 
15300 
15301 /*
15302  *    Function: sd_set_retry_bp
15303  *
15304  * Description: Set up the given bp for retry.
15305  *
15306  *   Arguments: un - ptr to associated softstate
15307  *		bp - ptr to buf(9S) for the command
15308  *		retry_delay - time interval before issuing retry (may be 0)
15309  *		statp - optional pointer to kstat function
15310  *
15311  *     Context: May be called under interrupt context
15312  */
15313 
15314 static void
15315 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15316 	void (*statp)(kstat_io_t *))
15317 {
15318 	ASSERT(un != NULL);
15319 	ASSERT(mutex_owned(SD_MUTEX(un)));
15320 	ASSERT(bp != NULL);
15321 
15322 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15323 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15324 
15325 	/*
15326 	 * Indicate that the command is being retried. This will not allow any
15327 	 * other commands on the wait queue to be transported to the target
15328 	 * until this command has been completed (success or failure). The
15329 	 * "retry command" is not transported to the target until the given
15330 	 * time delay expires, unless the user specified a 0 retry_delay.
15331 	 *
15332 	 * Note: the timeout(9F) callback routine is what actually calls
15333 	 * sd_start_cmds() to transport the command, with the exception of a
15334 	 * zero retry_delay. The only current implementor of a zero retry delay
15335 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15336 	 */
15337 	if (un->un_retry_bp == NULL) {
15338 		ASSERT(un->un_retry_statp == NULL);
15339 		un->un_retry_bp = bp;
15340 
15341 		/*
15342 		 * If the user has not specified a delay the command should
15343 		 * be queued and no timeout should be scheduled.
15344 		 */
15345 		if (retry_delay == 0) {
15346 			/*
15347 			 * Save the kstat pointer that will be used in the
15348 			 * call to SD_UPDATE_KSTATS() below, so that
15349 			 * sd_start_cmds() can correctly decrement the waitq
15350 			 * count when it is time to transport this command.
15351 			 */
15352 			un->un_retry_statp = statp;
15353 			goto done;
15354 		}
15355 	}
15356 
15357 	if (un->un_retry_bp == bp) {
15358 		/*
15359 		 * Save the kstat pointer that will be used in the call to
15360 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15361 		 * correctly decrement the waitq count when it is time to
15362 		 * transport this command.
15363 		 */
15364 		un->un_retry_statp = statp;
15365 
15366 		/*
15367 		 * Schedule a timeout if:
15368 		 *   1) The user has specified a delay.
15369 		 *   2) There is not a START_STOP_UNIT callback pending.
15370 		 *
15371 		 * If no delay has been specified, then it is up to the caller
15372 		 * to ensure that IO processing continues without stalling.
15373 		 * Effectively, this means that the caller will issue the
15374 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15375 		 * callback does this after the START STOP UNIT command has
15376 		 * completed. In either of these cases we should not schedule
15377 		 * a timeout callback here.  Also don't schedule the timeout if
15378 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15379 		 */
15380 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15381 		    (un->un_direct_priority_timeid == NULL)) {
15382 			un->un_retry_timeid =
15383 			    timeout(sd_start_retry_command, un, retry_delay);
15384 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15385 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15386 			    " bp:0x%p un_retry_timeid:0x%p\n",
15387 			    un, bp, un->un_retry_timeid);
15388 		}
15389 	} else {
15390 		/*
15391 		 * We only get in here if there is already another command
15392 		 * waiting to be retried.  In this case, we just put the
15393 		 * given command onto the wait queue, so it can be transported
15394 		 * after the current retry command has completed.
15395 		 *
15396 		 * Also we have to make sure that if the command at the head
15397 		 * of the wait queue is the un_failfast_bp, that we do not
15398 		 * put ahead of it any other commands that are to be retried.
15399 		 */
15400 		if ((un->un_failfast_bp != NULL) &&
15401 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15402 			/*
15403 			 * Enqueue this command AFTER the first command on
15404 			 * the wait queue (which is also un_failfast_bp).
15405 			 */
15406 			bp->av_forw = un->un_waitq_headp->av_forw;
15407 			un->un_waitq_headp->av_forw = bp;
15408 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15409 				un->un_waitq_tailp = bp;
15410 			}
15411 		} else {
15412 			/* Enqueue this command at the head of the waitq. */
15413 			bp->av_forw = un->un_waitq_headp;
15414 			un->un_waitq_headp = bp;
15415 			if (un->un_waitq_tailp == NULL) {
15416 				un->un_waitq_tailp = bp;
15417 			}
15418 		}
15419 
15420 		if (statp == NULL) {
15421 			statp = kstat_waitq_enter;
15422 		}
15423 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15424 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15425 	}
15426 
15427 done:
15428 	if (statp != NULL) {
15429 		SD_UPDATE_KSTATS(un, statp, bp);
15430 	}
15431 
15432 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15433 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15434 }
15435 
15436 
15437 /*
15438  *    Function: sd_start_retry_command
15439  *
15440  * Description: Start the command that has been waiting on the target's
15441  *		retry queue.  Called from timeout(9F) context after the
15442  *		retry delay interval has expired.
15443  *
15444  *   Arguments: arg - pointer to associated softstate for the device.
15445  *
15446  *     Context: timeout(9F) thread context.  May not sleep.
15447  */
15448 
15449 static void
15450 sd_start_retry_command(void *arg)
15451 {
15452 	struct sd_lun *un = arg;
15453 
15454 	ASSERT(un != NULL);
15455 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15456 
15457 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15458 	    "sd_start_retry_command: entry\n");
15459 
15460 	mutex_enter(SD_MUTEX(un));
15461 
15462 	un->un_retry_timeid = NULL;
15463 
15464 	if (un->un_retry_bp != NULL) {
15465 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15466 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15467 		    un, un->un_retry_bp);
15468 		sd_start_cmds(un, un->un_retry_bp);
15469 	}
15470 
15471 	mutex_exit(SD_MUTEX(un));
15472 
15473 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15474 	    "sd_start_retry_command: exit\n");
15475 }
15476 
15477 
15478 /*
15479  *    Function: sd_start_direct_priority_command
15480  *
15481  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15482  *		received TRAN_BUSY when we called scsi_transport() to send it
15483  *		to the underlying HBA. This function is called from timeout(9F)
15484  *		context after the delay interval has expired.
15485  *
15486  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15487  *
15488  *     Context: timeout(9F) thread context.  May not sleep.
15489  */
15490 
15491 static void
15492 sd_start_direct_priority_command(void *arg)
15493 {
15494 	struct buf	*priority_bp = arg;
15495 	struct sd_lun	*un;
15496 
15497 	ASSERT(priority_bp != NULL);
15498 	un = SD_GET_UN(priority_bp);
15499 	ASSERT(un != NULL);
15500 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15501 
15502 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15503 	    "sd_start_direct_priority_command: entry\n");
15504 
15505 	mutex_enter(SD_MUTEX(un));
15506 	un->un_direct_priority_timeid = NULL;
15507 	sd_start_cmds(un, priority_bp);
15508 	mutex_exit(SD_MUTEX(un));
15509 
15510 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15511 	    "sd_start_direct_priority_command: exit\n");
15512 }
15513 
15514 
15515 /*
15516  *    Function: sd_send_request_sense_command
15517  *
15518  * Description: Sends a REQUEST SENSE command to the target
15519  *
15520  *     Context: May be called from interrupt context.
15521  */
15522 
15523 static void
15524 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15525 	struct scsi_pkt *pktp)
15526 {
15527 	ASSERT(bp != NULL);
15528 	ASSERT(un != NULL);
15529 	ASSERT(mutex_owned(SD_MUTEX(un)));
15530 
15531 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15532 	    "entry: buf:0x%p\n", bp);
15533 
15534 	/*
15535 	 * If we are syncing or dumping, then fail the command to avoid a
15536 	 * recursive callback into scsi_transport(). Also fail the command
15537 	 * if we are suspended (legacy behavior).
15538 	 */
15539 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15540 	    (un->un_state == SD_STATE_DUMPING)) {
15541 		sd_return_failed_command(un, bp, EIO);
15542 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15543 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15544 		return;
15545 	}
15546 
15547 	/*
15548 	 * Retry the failed command and don't issue the request sense if:
15549 	 *    1) the sense buf is busy
15550 	 *    2) we have 1 or more outstanding commands on the target
15551 	 *    (the sense data will be cleared or invalidated any way)
15552 	 *
15553 	 * Note: There could be an issue with not checking a retry limit here,
15554 	 * the problem is determining which retry limit to check.
15555 	 */
15556 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15557 		/* Don't retry if the command is flagged as non-retryable */
15558 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15559 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15560 			    NULL, NULL, 0, un->un_busy_timeout,
15561 			    kstat_waitq_enter);
15562 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15563 			    "sd_send_request_sense_command: "
15564 			    "at full throttle, retrying exit\n");
15565 		} else {
15566 			sd_return_failed_command(un, bp, EIO);
15567 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15568 			    "sd_send_request_sense_command: "
15569 			    "at full throttle, non-retryable exit\n");
15570 		}
15571 		return;
15572 	}
15573 
15574 	sd_mark_rqs_busy(un, bp);
15575 	sd_start_cmds(un, un->un_rqs_bp);
15576 
15577 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15578 	    "sd_send_request_sense_command: exit\n");
15579 }
15580 
15581 
15582 /*
15583  *    Function: sd_mark_rqs_busy
15584  *
15585  * Description: Indicate that the request sense bp for this instance is
15586  *		in use.
15587  *
15588  *     Context: May be called under interrupt context
15589  */
15590 
15591 static void
15592 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15593 {
15594 	struct sd_xbuf	*sense_xp;
15595 
15596 	ASSERT(un != NULL);
15597 	ASSERT(bp != NULL);
15598 	ASSERT(mutex_owned(SD_MUTEX(un)));
15599 	ASSERT(un->un_sense_isbusy == 0);
15600 
15601 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15602 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15603 
15604 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15605 	ASSERT(sense_xp != NULL);
15606 
15607 	SD_INFO(SD_LOG_IO, un,
15608 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15609 
15610 	ASSERT(sense_xp->xb_pktp != NULL);
15611 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15612 	    == (FLAG_SENSING | FLAG_HEAD));
15613 
15614 	un->un_sense_isbusy = 1;
15615 	un->un_rqs_bp->b_resid = 0;
15616 	sense_xp->xb_pktp->pkt_resid  = 0;
15617 	sense_xp->xb_pktp->pkt_reason = 0;
15618 
15619 	/* So we can get back the bp at interrupt time! */
15620 	sense_xp->xb_sense_bp = bp;
15621 
15622 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15623 
15624 	/*
15625 	 * Mark this buf as awaiting sense data. (This is already set in
15626 	 * the pkt_flags for the RQS packet.)
15627 	 */
15628 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15629 
15630 	/* Request sense down same path */
15631 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15632 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15633 		sense_xp->xb_pktp->pkt_path_instance =
15634 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15635 
15636 	sense_xp->xb_retry_count	= 0;
15637 	sense_xp->xb_victim_retry_count = 0;
15638 	sense_xp->xb_ua_retry_count	= 0;
15639 	sense_xp->xb_nr_retry_count 	= 0;
15640 	sense_xp->xb_dma_resid  = 0;
15641 
15642 	/* Clean up the fields for auto-request sense */
15643 	sense_xp->xb_sense_status = 0;
15644 	sense_xp->xb_sense_state  = 0;
15645 	sense_xp->xb_sense_resid  = 0;
15646 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15647 
15648 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15649 }
15650 
15651 
15652 /*
15653  *    Function: sd_mark_rqs_idle
15654  *
15655  * Description: SD_MUTEX must be held continuously through this routine
15656  *		to prevent reuse of the rqs struct before the caller can
15657  *		complete it's processing.
15658  *
15659  * Return Code: Pointer to the RQS buf
15660  *
15661  *     Context: May be called under interrupt context
15662  */
15663 
15664 static struct buf *
15665 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15666 {
15667 	struct buf *bp;
15668 	ASSERT(un != NULL);
15669 	ASSERT(sense_xp != NULL);
15670 	ASSERT(mutex_owned(SD_MUTEX(un)));
15671 	ASSERT(un->un_sense_isbusy != 0);
15672 
15673 	un->un_sense_isbusy = 0;
15674 	bp = sense_xp->xb_sense_bp;
15675 	sense_xp->xb_sense_bp = NULL;
15676 
15677 	/* This pkt is no longer interested in getting sense data */
15678 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15679 
15680 	return (bp);
15681 }
15682 
15683 
15684 
15685 /*
15686  *    Function: sd_alloc_rqs
15687  *
15688  * Description: Set up the unit to receive auto request sense data
15689  *
15690  * Return Code: DDI_SUCCESS or DDI_FAILURE
15691  *
15692  *     Context: Called under attach(9E) context
15693  */
15694 
15695 static int
15696 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15697 {
15698 	struct sd_xbuf *xp;
15699 
15700 	ASSERT(un != NULL);
15701 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15702 	ASSERT(un->un_rqs_bp == NULL);
15703 	ASSERT(un->un_rqs_pktp == NULL);
15704 
15705 	/*
15706 	 * First allocate the required buf and scsi_pkt structs, then set up
15707 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15708 	 */
15709 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15710 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15711 	if (un->un_rqs_bp == NULL) {
15712 		return (DDI_FAILURE);
15713 	}
15714 
15715 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15716 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15717 
15718 	if (un->un_rqs_pktp == NULL) {
15719 		sd_free_rqs(un);
15720 		return (DDI_FAILURE);
15721 	}
15722 
15723 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15724 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15725 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15726 
15727 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15728 
15729 	/* Set up the other needed members in the ARQ scsi_pkt. */
15730 	un->un_rqs_pktp->pkt_comp   = sdintr;
15731 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15732 	un->un_rqs_pktp->pkt_flags |=
15733 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15734 
15735 	/*
15736 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15737 	 * provide any intpkt, destroypkt routines as we take care of
15738 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15739 	 */
15740 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15741 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15742 	xp->xb_pktp = un->un_rqs_pktp;
15743 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15744 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15745 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15746 
15747 	/*
15748 	 * Save the pointer to the request sense private bp so it can
15749 	 * be retrieved in sdintr.
15750 	 */
15751 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15752 	ASSERT(un->un_rqs_bp->b_private == xp);
15753 
15754 	/*
15755 	 * See if the HBA supports auto-request sense for the specified
15756 	 * target/lun. If it does, then try to enable it (if not already
15757 	 * enabled).
15758 	 *
15759 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15760 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15761 	 * return success.  However, in both of these cases ARQ is always
15762 	 * enabled and scsi_ifgetcap will always return true. The best approach
15763 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15764 	 *
15765 	 * The 3rd case is the HBA (adp) always return enabled on
15766 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15767 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15768 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15769 	 */
15770 
15771 	if (un->un_f_is_fibre == TRUE) {
15772 		un->un_f_arq_enabled = TRUE;
15773 	} else {
15774 #if defined(__i386) || defined(__amd64)
15775 		/*
15776 		 * Circumvent the Adaptec bug, remove this code when
15777 		 * the bug is fixed
15778 		 */
15779 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15780 #endif
15781 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15782 		case 0:
15783 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15784 			    "sd_alloc_rqs: HBA supports ARQ\n");
15785 			/*
15786 			 * ARQ is supported by this HBA but currently is not
15787 			 * enabled. Attempt to enable it and if successful then
15788 			 * mark this instance as ARQ enabled.
15789 			 */
15790 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15791 			    == 1) {
15792 				/* Successfully enabled ARQ in the HBA */
15793 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15794 				    "sd_alloc_rqs: ARQ enabled\n");
15795 				un->un_f_arq_enabled = TRUE;
15796 			} else {
15797 				/* Could not enable ARQ in the HBA */
15798 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15799 				    "sd_alloc_rqs: failed ARQ enable\n");
15800 				un->un_f_arq_enabled = FALSE;
15801 			}
15802 			break;
15803 		case 1:
15804 			/*
15805 			 * ARQ is supported by this HBA and is already enabled.
15806 			 * Just mark ARQ as enabled for this instance.
15807 			 */
15808 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15809 			    "sd_alloc_rqs: ARQ already enabled\n");
15810 			un->un_f_arq_enabled = TRUE;
15811 			break;
15812 		default:
15813 			/*
15814 			 * ARQ is not supported by this HBA; disable it for this
15815 			 * instance.
15816 			 */
15817 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15818 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15819 			un->un_f_arq_enabled = FALSE;
15820 			break;
15821 		}
15822 	}
15823 
15824 	return (DDI_SUCCESS);
15825 }
15826 
15827 
15828 /*
15829  *    Function: sd_free_rqs
15830  *
15831  * Description: Cleanup for the pre-instance RQS command.
15832  *
15833  *     Context: Kernel thread context
15834  */
15835 
15836 static void
15837 sd_free_rqs(struct sd_lun *un)
15838 {
15839 	ASSERT(un != NULL);
15840 
15841 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15842 
15843 	/*
15844 	 * If consistent memory is bound to a scsi_pkt, the pkt
15845 	 * has to be destroyed *before* freeing the consistent memory.
15846 	 * Don't change the sequence of this operations.
15847 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15848 	 * after it was freed in scsi_free_consistent_buf().
15849 	 */
15850 	if (un->un_rqs_pktp != NULL) {
15851 		scsi_destroy_pkt(un->un_rqs_pktp);
15852 		un->un_rqs_pktp = NULL;
15853 	}
15854 
15855 	if (un->un_rqs_bp != NULL) {
15856 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15857 		if (xp != NULL) {
15858 			kmem_free(xp, sizeof (struct sd_xbuf));
15859 		}
15860 		scsi_free_consistent_buf(un->un_rqs_bp);
15861 		un->un_rqs_bp = NULL;
15862 	}
15863 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15864 }
15865 
15866 
15867 
15868 /*
15869  *    Function: sd_reduce_throttle
15870  *
15871  * Description: Reduces the maximum # of outstanding commands on a
15872  *		target to the current number of outstanding commands.
15873  *		Queues a tiemout(9F) callback to restore the limit
15874  *		after a specified interval has elapsed.
15875  *		Typically used when we get a TRAN_BUSY return code
15876  *		back from scsi_transport().
15877  *
15878  *   Arguments: un - ptr to the sd_lun softstate struct
15879  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15880  *
15881  *     Context: May be called from interrupt context
15882  */
15883 
15884 static void
15885 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15886 {
15887 	ASSERT(un != NULL);
15888 	ASSERT(mutex_owned(SD_MUTEX(un)));
15889 	ASSERT(un->un_ncmds_in_transport >= 0);
15890 
15891 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15892 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15893 	    un, un->un_throttle, un->un_ncmds_in_transport);
15894 
15895 	if (un->un_throttle > 1) {
15896 		if (un->un_f_use_adaptive_throttle == TRUE) {
15897 			switch (throttle_type) {
15898 			case SD_THROTTLE_TRAN_BUSY:
15899 				if (un->un_busy_throttle == 0) {
15900 					un->un_busy_throttle = un->un_throttle;
15901 				}
15902 				break;
15903 			case SD_THROTTLE_QFULL:
15904 				un->un_busy_throttle = 0;
15905 				break;
15906 			default:
15907 				ASSERT(FALSE);
15908 			}
15909 
15910 			if (un->un_ncmds_in_transport > 0) {
15911 				un->un_throttle = un->un_ncmds_in_transport;
15912 			}
15913 
15914 		} else {
15915 			if (un->un_ncmds_in_transport == 0) {
15916 				un->un_throttle = 1;
15917 			} else {
15918 				un->un_throttle = un->un_ncmds_in_transport;
15919 			}
15920 		}
15921 	}
15922 
15923 	/* Reschedule the timeout if none is currently active */
15924 	if (un->un_reset_throttle_timeid == NULL) {
15925 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15926 		    un, SD_THROTTLE_RESET_INTERVAL);
15927 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15928 		    "sd_reduce_throttle: timeout scheduled!\n");
15929 	}
15930 
15931 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15932 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15933 }
15934 
15935 
15936 
15937 /*
15938  *    Function: sd_restore_throttle
15939  *
15940  * Description: Callback function for timeout(9F).  Resets the current
15941  *		value of un->un_throttle to its default.
15942  *
15943  *   Arguments: arg - pointer to associated softstate for the device.
15944  *
15945  *     Context: May be called from interrupt context
15946  */
15947 
15948 static void
15949 sd_restore_throttle(void *arg)
15950 {
15951 	struct sd_lun	*un = arg;
15952 
15953 	ASSERT(un != NULL);
15954 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15955 
15956 	mutex_enter(SD_MUTEX(un));
15957 
15958 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15959 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15960 
15961 	un->un_reset_throttle_timeid = NULL;
15962 
15963 	if (un->un_f_use_adaptive_throttle == TRUE) {
15964 		/*
15965 		 * If un_busy_throttle is nonzero, then it contains the
15966 		 * value that un_throttle was when we got a TRAN_BUSY back
15967 		 * from scsi_transport(). We want to revert back to this
15968 		 * value.
15969 		 *
15970 		 * In the QFULL case, the throttle limit will incrementally
15971 		 * increase until it reaches max throttle.
15972 		 */
15973 		if (un->un_busy_throttle > 0) {
15974 			un->un_throttle = un->un_busy_throttle;
15975 			un->un_busy_throttle = 0;
15976 		} else {
15977 			/*
15978 			 * increase throttle by 10% open gate slowly, schedule
15979 			 * another restore if saved throttle has not been
15980 			 * reached
15981 			 */
15982 			short throttle;
15983 			if (sd_qfull_throttle_enable) {
15984 				throttle = un->un_throttle +
15985 				    max((un->un_throttle / 10), 1);
15986 				un->un_throttle =
15987 				    (throttle < un->un_saved_throttle) ?
15988 				    throttle : un->un_saved_throttle;
15989 				if (un->un_throttle < un->un_saved_throttle) {
15990 					un->un_reset_throttle_timeid =
15991 					    timeout(sd_restore_throttle,
15992 					    un,
15993 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
15994 				}
15995 			}
15996 		}
15997 
15998 		/*
15999 		 * If un_throttle has fallen below the low-water mark, we
16000 		 * restore the maximum value here (and allow it to ratchet
16001 		 * down again if necessary).
16002 		 */
16003 		if (un->un_throttle < un->un_min_throttle) {
16004 			un->un_throttle = un->un_saved_throttle;
16005 		}
16006 	} else {
16007 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16008 		    "restoring limit from 0x%x to 0x%x\n",
16009 		    un->un_throttle, un->un_saved_throttle);
16010 		un->un_throttle = un->un_saved_throttle;
16011 	}
16012 
16013 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16014 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16015 
16016 	sd_start_cmds(un, NULL);
16017 
16018 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16019 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16020 	    un, un->un_throttle);
16021 
16022 	mutex_exit(SD_MUTEX(un));
16023 
16024 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16025 }
16026 
16027 /*
16028  *    Function: sdrunout
16029  *
16030  * Description: Callback routine for scsi_init_pkt when a resource allocation
16031  *		fails.
16032  *
16033  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16034  *		soft state instance.
16035  *
16036  * Return Code: The scsi_init_pkt routine allows for the callback function to
16037  *		return a 0 indicating the callback should be rescheduled or a 1
16038  *		indicating not to reschedule. This routine always returns 1
16039  *		because the driver always provides a callback function to
16040  *		scsi_init_pkt. This results in a callback always being scheduled
16041  *		(via the scsi_init_pkt callback implementation) if a resource
16042  *		failure occurs.
16043  *
16044  *     Context: This callback function may not block or call routines that block
16045  *
16046  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16047  *		request persisting at the head of the list which cannot be
16048  *		satisfied even after multiple retries. In the future the driver
16049  *		may implement some time of maximum runout count before failing
16050  *		an I/O.
16051  */
16052 
16053 static int
16054 sdrunout(caddr_t arg)
16055 {
16056 	struct sd_lun	*un = (struct sd_lun *)arg;
16057 
16058 	ASSERT(un != NULL);
16059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16060 
16061 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16062 
16063 	mutex_enter(SD_MUTEX(un));
16064 	sd_start_cmds(un, NULL);
16065 	mutex_exit(SD_MUTEX(un));
16066 	/*
16067 	 * This callback routine always returns 1 (i.e. do not reschedule)
16068 	 * because we always specify sdrunout as the callback handler for
16069 	 * scsi_init_pkt inside the call to sd_start_cmds.
16070 	 */
16071 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16072 	return (1);
16073 }
16074 
16075 
16076 /*
16077  *    Function: sdintr
16078  *
16079  * Description: Completion callback routine for scsi_pkt(9S) structs
16080  *		sent to the HBA driver via scsi_transport(9F).
16081  *
16082  *     Context: Interrupt context
16083  */
16084 
16085 static void
16086 sdintr(struct scsi_pkt *pktp)
16087 {
16088 	struct buf	*bp;
16089 	struct sd_xbuf	*xp;
16090 	struct sd_lun	*un;
16091 	size_t		actual_len;
16092 	sd_ssc_t	*sscp;
16093 
16094 	ASSERT(pktp != NULL);
16095 	bp = (struct buf *)pktp->pkt_private;
16096 	ASSERT(bp != NULL);
16097 	xp = SD_GET_XBUF(bp);
16098 	ASSERT(xp != NULL);
16099 	ASSERT(xp->xb_pktp != NULL);
16100 	un = SD_GET_UN(bp);
16101 	ASSERT(un != NULL);
16102 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16103 
16104 #ifdef SD_FAULT_INJECTION
16105 
16106 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16107 	/* SD FaultInjection */
16108 	sd_faultinjection(pktp);
16109 
16110 #endif /* SD_FAULT_INJECTION */
16111 
16112 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16113 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16114 
16115 	mutex_enter(SD_MUTEX(un));
16116 
16117 	ASSERT(un->un_fm_private != NULL);
16118 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16119 	ASSERT(sscp != NULL);
16120 
16121 	/* Reduce the count of the #commands currently in transport */
16122 	un->un_ncmds_in_transport--;
16123 	ASSERT(un->un_ncmds_in_transport >= 0);
16124 
16125 	/* Increment counter to indicate that the callback routine is active */
16126 	un->un_in_callback++;
16127 
16128 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16129 
16130 #ifdef	SDDEBUG
16131 	if (bp == un->un_retry_bp) {
16132 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16133 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16134 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16135 	}
16136 #endif
16137 
16138 	/*
16139 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16140 	 * state if needed.
16141 	 */
16142 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16143 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16144 		    "Command failed to complete...Device is gone\n");
16145 		if (un->un_mediastate != DKIO_DEV_GONE) {
16146 			un->un_mediastate = DKIO_DEV_GONE;
16147 			cv_broadcast(&un->un_state_cv);
16148 		}
16149 		sd_return_failed_command(un, bp, EIO);
16150 		goto exit;
16151 	}
16152 
16153 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16154 		SD_TRACE(SD_LOG_COMMON, un,
16155 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16156 	}
16157 
16158 	/*
16159 	 * First see if the pkt has auto-request sense data with it....
16160 	 * Look at the packet state first so we don't take a performance
16161 	 * hit looking at the arq enabled flag unless absolutely necessary.
16162 	 */
16163 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16164 	    (un->un_f_arq_enabled == TRUE)) {
16165 		/*
16166 		 * The HBA did an auto request sense for this command so check
16167 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16168 		 * driver command that should not be retried.
16169 		 */
16170 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16171 			/*
16172 			 * Save the relevant sense info into the xp for the
16173 			 * original cmd.
16174 			 */
16175 			struct scsi_arq_status *asp;
16176 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16177 			xp->xb_sense_status =
16178 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16179 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16180 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16181 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16182 				actual_len = MAX_SENSE_LENGTH -
16183 				    xp->xb_sense_resid;
16184 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16185 				    MAX_SENSE_LENGTH);
16186 			} else {
16187 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16188 					actual_len = MAX_SENSE_LENGTH -
16189 					    xp->xb_sense_resid;
16190 				} else {
16191 					actual_len = SENSE_LENGTH -
16192 					    xp->xb_sense_resid;
16193 				}
16194 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16195 					if ((((struct uscsi_cmd *)
16196 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16197 					    actual_len) {
16198 						xp->xb_sense_resid =
16199 						    (((struct uscsi_cmd *)
16200 						    (xp->xb_pktinfo))->
16201 						    uscsi_rqlen) - actual_len;
16202 					} else {
16203 						xp->xb_sense_resid = 0;
16204 					}
16205 				}
16206 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16207 				    SENSE_LENGTH);
16208 			}
16209 
16210 			/* fail the command */
16211 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16212 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16213 			sd_return_failed_command(un, bp, EIO);
16214 			goto exit;
16215 		}
16216 
16217 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16218 		/*
16219 		 * We want to either retry or fail this command, so free
16220 		 * the DMA resources here.  If we retry the command then
16221 		 * the DMA resources will be reallocated in sd_start_cmds().
16222 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16223 		 * causes the *entire* transfer to start over again from the
16224 		 * beginning of the request, even for PARTIAL chunks that
16225 		 * have already transferred successfully.
16226 		 */
16227 		if ((un->un_f_is_fibre == TRUE) &&
16228 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16229 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16230 			scsi_dmafree(pktp);
16231 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16232 		}
16233 #endif
16234 
16235 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16236 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16237 
16238 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16239 		goto exit;
16240 	}
16241 
16242 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16243 	if (pktp->pkt_flags & FLAG_SENSING)  {
16244 		/* This pktp is from the unit's REQUEST_SENSE command */
16245 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16246 		    "sdintr: sd_handle_request_sense\n");
16247 		sd_handle_request_sense(un, bp, xp, pktp);
16248 		goto exit;
16249 	}
16250 
16251 	/*
16252 	 * Check to see if the command successfully completed as requested;
16253 	 * this is the most common case (and also the hot performance path).
16254 	 *
16255 	 * Requirements for successful completion are:
16256 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16257 	 * In addition:
16258 	 * - A residual of zero indicates successful completion no matter what
16259 	 *   the command is.
16260 	 * - If the residual is not zero and the command is not a read or
16261 	 *   write, then it's still defined as successful completion. In other
16262 	 *   words, if the command is a read or write the residual must be
16263 	 *   zero for successful completion.
16264 	 * - If the residual is not zero and the command is a read or
16265 	 *   write, and it's a USCSICMD, then it's still defined as
16266 	 *   successful completion.
16267 	 */
16268 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16269 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16270 
16271 		/*
16272 		 * Since this command is returned with a good status, we
16273 		 * can reset the count for Sonoma failover.
16274 		 */
16275 		un->un_sonoma_failure_count = 0;
16276 
16277 		/*
16278 		 * Return all USCSI commands on good status
16279 		 */
16280 		if (pktp->pkt_resid == 0) {
16281 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16282 			    "sdintr: returning command for resid == 0\n");
16283 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16284 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16285 			SD_UPDATE_B_RESID(bp, pktp);
16286 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16287 			    "sdintr: returning command for resid != 0\n");
16288 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16289 			SD_UPDATE_B_RESID(bp, pktp);
16290 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16291 			    "sdintr: returning uscsi command\n");
16292 		} else {
16293 			goto not_successful;
16294 		}
16295 		sd_return_command(un, bp);
16296 
16297 		/*
16298 		 * Decrement counter to indicate that the callback routine
16299 		 * is done.
16300 		 */
16301 		un->un_in_callback--;
16302 		ASSERT(un->un_in_callback >= 0);
16303 		mutex_exit(SD_MUTEX(un));
16304 
16305 		return;
16306 	}
16307 
16308 not_successful:
16309 
16310 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16311 	/*
16312 	 * The following is based upon knowledge of the underlying transport
16313 	 * and its use of DMA resources.  This code should be removed when
16314 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16315 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16316 	 * and sd_start_cmds().
16317 	 *
16318 	 * Free any DMA resources associated with this command if there
16319 	 * is a chance it could be retried or enqueued for later retry.
16320 	 * If we keep the DMA binding then mpxio cannot reissue the
16321 	 * command on another path whenever a path failure occurs.
16322 	 *
16323 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16324 	 * causes the *entire* transfer to start over again from the
16325 	 * beginning of the request, even for PARTIAL chunks that
16326 	 * have already transferred successfully.
16327 	 *
16328 	 * This is only done for non-uscsi commands (and also skipped for the
16329 	 * driver's internal RQS command). Also just do this for Fibre Channel
16330 	 * devices as these are the only ones that support mpxio.
16331 	 */
16332 	if ((un->un_f_is_fibre == TRUE) &&
16333 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16334 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16335 		scsi_dmafree(pktp);
16336 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16337 	}
16338 #endif
16339 
16340 	/*
16341 	 * The command did not successfully complete as requested so check
16342 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16343 	 * driver command that should not be retried so just return. If
16344 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16345 	 */
16346 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16347 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16348 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16349 		/*
16350 		 * Issue a request sense if a check condition caused the error
16351 		 * (we handle the auto request sense case above), otherwise
16352 		 * just fail the command.
16353 		 */
16354 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16355 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16356 			sd_send_request_sense_command(un, bp, pktp);
16357 		} else {
16358 			sd_return_failed_command(un, bp, EIO);
16359 		}
16360 		goto exit;
16361 	}
16362 
16363 	/*
16364 	 * The command did not successfully complete as requested so process
16365 	 * the error, retry, and/or attempt recovery.
16366 	 */
16367 	switch (pktp->pkt_reason) {
16368 	case CMD_CMPLT:
16369 		switch (SD_GET_PKT_STATUS(pktp)) {
16370 		case STATUS_GOOD:
16371 			/*
16372 			 * The command completed successfully with a non-zero
16373 			 * residual
16374 			 */
16375 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16376 			    "sdintr: STATUS_GOOD \n");
16377 			sd_pkt_status_good(un, bp, xp, pktp);
16378 			break;
16379 
16380 		case STATUS_CHECK:
16381 		case STATUS_TERMINATED:
16382 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16383 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16384 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16385 			break;
16386 
16387 		case STATUS_BUSY:
16388 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16389 			    "sdintr: STATUS_BUSY\n");
16390 			sd_pkt_status_busy(un, bp, xp, pktp);
16391 			break;
16392 
16393 		case STATUS_RESERVATION_CONFLICT:
16394 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16395 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16396 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16397 			break;
16398 
16399 		case STATUS_QFULL:
16400 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16401 			    "sdintr: STATUS_QFULL\n");
16402 			sd_pkt_status_qfull(un, bp, xp, pktp);
16403 			break;
16404 
16405 		case STATUS_MET:
16406 		case STATUS_INTERMEDIATE:
16407 		case STATUS_SCSI2:
16408 		case STATUS_INTERMEDIATE_MET:
16409 		case STATUS_ACA_ACTIVE:
16410 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16411 			    "Unexpected SCSI status received: 0x%x\n",
16412 			    SD_GET_PKT_STATUS(pktp));
16413 			/*
16414 			 * Mark the ssc_flags when detected invalid status
16415 			 * code for non-USCSI command.
16416 			 */
16417 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16418 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16419 				    0, "stat-code");
16420 			}
16421 			sd_return_failed_command(un, bp, EIO);
16422 			break;
16423 
16424 		default:
16425 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16426 			    "Invalid SCSI status received: 0x%x\n",
16427 			    SD_GET_PKT_STATUS(pktp));
16428 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16429 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16430 				    0, "stat-code");
16431 			}
16432 			sd_return_failed_command(un, bp, EIO);
16433 			break;
16434 
16435 		}
16436 		break;
16437 
16438 	case CMD_INCOMPLETE:
16439 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16440 		    "sdintr:  CMD_INCOMPLETE\n");
16441 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16442 		break;
16443 	case CMD_TRAN_ERR:
16444 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16445 		    "sdintr: CMD_TRAN_ERR\n");
16446 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16447 		break;
16448 	case CMD_RESET:
16449 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16450 		    "sdintr: CMD_RESET \n");
16451 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16452 		break;
16453 	case CMD_ABORTED:
16454 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16455 		    "sdintr: CMD_ABORTED \n");
16456 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16457 		break;
16458 	case CMD_TIMEOUT:
16459 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16460 		    "sdintr: CMD_TIMEOUT\n");
16461 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16462 		break;
16463 	case CMD_UNX_BUS_FREE:
16464 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16465 		    "sdintr: CMD_UNX_BUS_FREE \n");
16466 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16467 		break;
16468 	case CMD_TAG_REJECT:
16469 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16470 		    "sdintr: CMD_TAG_REJECT\n");
16471 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16472 		break;
16473 	default:
16474 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16475 		    "sdintr: default\n");
16476 		/*
16477 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16478 		 */
16479 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16480 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16481 			    0, "pkt-reason");
16482 		}
16483 		sd_pkt_reason_default(un, bp, xp, pktp);
16484 		break;
16485 	}
16486 
16487 exit:
16488 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16489 
16490 	/* Decrement counter to indicate that the callback routine is done. */
16491 	un->un_in_callback--;
16492 	ASSERT(un->un_in_callback >= 0);
16493 
16494 	/*
16495 	 * At this point, the pkt has been dispatched, ie, it is either
16496 	 * being re-tried or has been returned to its caller and should
16497 	 * not be referenced.
16498 	 */
16499 
16500 	mutex_exit(SD_MUTEX(un));
16501 }
16502 
16503 
16504 /*
16505  *    Function: sd_print_incomplete_msg
16506  *
16507  * Description: Prints the error message for a CMD_INCOMPLETE error.
16508  *
16509  *   Arguments: un - ptr to associated softstate for the device.
16510  *		bp - ptr to the buf(9S) for the command.
16511  *		arg - message string ptr
16512  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16513  *			or SD_NO_RETRY_ISSUED.
16514  *
16515  *     Context: May be called under interrupt context
16516  */
16517 
16518 static void
16519 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16520 {
16521 	struct scsi_pkt	*pktp;
16522 	char	*msgp;
16523 	char	*cmdp = arg;
16524 
16525 	ASSERT(un != NULL);
16526 	ASSERT(mutex_owned(SD_MUTEX(un)));
16527 	ASSERT(bp != NULL);
16528 	ASSERT(arg != NULL);
16529 	pktp = SD_GET_PKTP(bp);
16530 	ASSERT(pktp != NULL);
16531 
16532 	switch (code) {
16533 	case SD_DELAYED_RETRY_ISSUED:
16534 	case SD_IMMEDIATE_RETRY_ISSUED:
16535 		msgp = "retrying";
16536 		break;
16537 	case SD_NO_RETRY_ISSUED:
16538 	default:
16539 		msgp = "giving up";
16540 		break;
16541 	}
16542 
16543 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16544 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16545 		    "incomplete %s- %s\n", cmdp, msgp);
16546 	}
16547 }
16548 
16549 
16550 
16551 /*
16552  *    Function: sd_pkt_status_good
16553  *
16554  * Description: Processing for a STATUS_GOOD code in pkt_status.
16555  *
16556  *     Context: May be called under interrupt context
16557  */
16558 
16559 static void
16560 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16561 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16562 {
16563 	char	*cmdp;
16564 
16565 	ASSERT(un != NULL);
16566 	ASSERT(mutex_owned(SD_MUTEX(un)));
16567 	ASSERT(bp != NULL);
16568 	ASSERT(xp != NULL);
16569 	ASSERT(pktp != NULL);
16570 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16571 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16572 	ASSERT(pktp->pkt_resid != 0);
16573 
16574 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16575 
16576 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16577 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16578 	case SCMD_READ:
16579 		cmdp = "read";
16580 		break;
16581 	case SCMD_WRITE:
16582 		cmdp = "write";
16583 		break;
16584 	default:
16585 		SD_UPDATE_B_RESID(bp, pktp);
16586 		sd_return_command(un, bp);
16587 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16588 		return;
16589 	}
16590 
16591 	/*
16592 	 * See if we can retry the read/write, preferrably immediately.
16593 	 * If retries are exhaused, then sd_retry_command() will update
16594 	 * the b_resid count.
16595 	 */
16596 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16597 	    cmdp, EIO, (clock_t)0, NULL);
16598 
16599 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16600 }
16601 
16602 
16603 
16604 
16605 
16606 /*
16607  *    Function: sd_handle_request_sense
16608  *
16609  * Description: Processing for non-auto Request Sense command.
16610  *
16611  *   Arguments: un - ptr to associated softstate
16612  *		sense_bp - ptr to buf(9S) for the RQS command
16613  *		sense_xp - ptr to the sd_xbuf for the RQS command
16614  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16615  *
16616  *     Context: May be called under interrupt context
16617  */
16618 
16619 static void
16620 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16621 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16622 {
16623 	struct buf	*cmd_bp;	/* buf for the original command */
16624 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16625 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16626 	size_t		actual_len;	/* actual sense data length */
16627 
16628 	ASSERT(un != NULL);
16629 	ASSERT(mutex_owned(SD_MUTEX(un)));
16630 	ASSERT(sense_bp != NULL);
16631 	ASSERT(sense_xp != NULL);
16632 	ASSERT(sense_pktp != NULL);
16633 
16634 	/*
16635 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16636 	 * RQS command and not the original command.
16637 	 */
16638 	ASSERT(sense_pktp == un->un_rqs_pktp);
16639 	ASSERT(sense_bp   == un->un_rqs_bp);
16640 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16641 	    (FLAG_SENSING | FLAG_HEAD));
16642 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16643 	    FLAG_SENSING) == FLAG_SENSING);
16644 
16645 	/* These are the bp, xp, and pktp for the original command */
16646 	cmd_bp = sense_xp->xb_sense_bp;
16647 	cmd_xp = SD_GET_XBUF(cmd_bp);
16648 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16649 
16650 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16651 		/*
16652 		 * The REQUEST SENSE command failed.  Release the REQUEST
16653 		 * SENSE command for re-use, get back the bp for the original
16654 		 * command, and attempt to re-try the original command if
16655 		 * FLAG_DIAGNOSE is not set in the original packet.
16656 		 */
16657 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16658 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16659 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16660 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16661 			    NULL, NULL, EIO, (clock_t)0, NULL);
16662 			return;
16663 		}
16664 	}
16665 
16666 	/*
16667 	 * Save the relevant sense info into the xp for the original cmd.
16668 	 *
16669 	 * Note: if the request sense failed the state info will be zero
16670 	 * as set in sd_mark_rqs_busy()
16671 	 */
16672 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16673 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16674 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16675 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16676 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16677 	    SENSE_LENGTH)) {
16678 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16679 		    MAX_SENSE_LENGTH);
16680 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16681 	} else {
16682 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16683 		    SENSE_LENGTH);
16684 		if (actual_len < SENSE_LENGTH) {
16685 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16686 		} else {
16687 			cmd_xp->xb_sense_resid = 0;
16688 		}
16689 	}
16690 
16691 	/*
16692 	 *  Free up the RQS command....
16693 	 *  NOTE:
16694 	 *	Must do this BEFORE calling sd_validate_sense_data!
16695 	 *	sd_validate_sense_data may return the original command in
16696 	 *	which case the pkt will be freed and the flags can no
16697 	 *	longer be touched.
16698 	 *	SD_MUTEX is held through this process until the command
16699 	 *	is dispatched based upon the sense data, so there are
16700 	 *	no race conditions.
16701 	 */
16702 	(void) sd_mark_rqs_idle(un, sense_xp);
16703 
16704 	/*
16705 	 * For a retryable command see if we have valid sense data, if so then
16706 	 * turn it over to sd_decode_sense() to figure out the right course of
16707 	 * action. Just fail a non-retryable command.
16708 	 */
16709 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16710 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16711 		    SD_SENSE_DATA_IS_VALID) {
16712 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16713 		}
16714 	} else {
16715 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16716 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16717 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16718 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16719 		sd_return_failed_command(un, cmd_bp, EIO);
16720 	}
16721 }
16722 
16723 
16724 
16725 
16726 /*
16727  *    Function: sd_handle_auto_request_sense
16728  *
16729  * Description: Processing for auto-request sense information.
16730  *
16731  *   Arguments: un - ptr to associated softstate
16732  *		bp - ptr to buf(9S) for the command
16733  *		xp - ptr to the sd_xbuf for the command
16734  *		pktp - ptr to the scsi_pkt(9S) for the command
16735  *
16736  *     Context: May be called under interrupt context
16737  */
16738 
16739 static void
16740 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16741 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16742 {
16743 	struct scsi_arq_status *asp;
16744 	size_t actual_len;
16745 
16746 	ASSERT(un != NULL);
16747 	ASSERT(mutex_owned(SD_MUTEX(un)));
16748 	ASSERT(bp != NULL);
16749 	ASSERT(xp != NULL);
16750 	ASSERT(pktp != NULL);
16751 	ASSERT(pktp != un->un_rqs_pktp);
16752 	ASSERT(bp   != un->un_rqs_bp);
16753 
16754 	/*
16755 	 * For auto-request sense, we get a scsi_arq_status back from
16756 	 * the HBA, with the sense data in the sts_sensedata member.
16757 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16758 	 */
16759 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16760 
16761 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16762 		/*
16763 		 * The auto REQUEST SENSE failed; see if we can re-try
16764 		 * the original command.
16765 		 */
16766 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16767 		    "auto request sense failed (reason=%s)\n",
16768 		    scsi_rname(asp->sts_rqpkt_reason));
16769 
16770 		sd_reset_target(un, pktp);
16771 
16772 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16773 		    NULL, NULL, EIO, (clock_t)0, NULL);
16774 		return;
16775 	}
16776 
16777 	/* Save the relevant sense info into the xp for the original cmd. */
16778 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16779 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16780 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16781 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16782 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16783 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16784 		    MAX_SENSE_LENGTH);
16785 	} else {
16786 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16787 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16788 		} else {
16789 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16790 		}
16791 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16792 			if ((((struct uscsi_cmd *)
16793 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16794 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16795 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16796 				    actual_len;
16797 			} else {
16798 				xp->xb_sense_resid = 0;
16799 			}
16800 		}
16801 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16802 	}
16803 
16804 	/*
16805 	 * See if we have valid sense data, if so then turn it over to
16806 	 * sd_decode_sense() to figure out the right course of action.
16807 	 */
16808 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16809 	    SD_SENSE_DATA_IS_VALID) {
16810 		sd_decode_sense(un, bp, xp, pktp);
16811 	}
16812 }
16813 
16814 
16815 /*
16816  *    Function: sd_print_sense_failed_msg
16817  *
16818  * Description: Print log message when RQS has failed.
16819  *
16820  *   Arguments: un - ptr to associated softstate
16821  *		bp - ptr to buf(9S) for the command
16822  *		arg - generic message string ptr
16823  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16824  *			or SD_NO_RETRY_ISSUED
16825  *
16826  *     Context: May be called from interrupt context
16827  */
16828 
16829 static void
16830 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16831 	int code)
16832 {
16833 	char	*msgp = arg;
16834 
16835 	ASSERT(un != NULL);
16836 	ASSERT(mutex_owned(SD_MUTEX(un)));
16837 	ASSERT(bp != NULL);
16838 
16839 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16840 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16841 	}
16842 }
16843 
16844 
16845 /*
16846  *    Function: sd_validate_sense_data
16847  *
16848  * Description: Check the given sense data for validity.
16849  *		If the sense data is not valid, the command will
16850  *		be either failed or retried!
16851  *
16852  * Return Code: SD_SENSE_DATA_IS_INVALID
16853  *		SD_SENSE_DATA_IS_VALID
16854  *
16855  *     Context: May be called from interrupt context
16856  */
16857 
16858 static int
16859 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16860 	size_t actual_len)
16861 {
16862 	struct scsi_extended_sense *esp;
16863 	struct	scsi_pkt *pktp;
16864 	char	*msgp = NULL;
16865 	sd_ssc_t *sscp;
16866 
16867 	ASSERT(un != NULL);
16868 	ASSERT(mutex_owned(SD_MUTEX(un)));
16869 	ASSERT(bp != NULL);
16870 	ASSERT(bp != un->un_rqs_bp);
16871 	ASSERT(xp != NULL);
16872 	ASSERT(un->un_fm_private != NULL);
16873 
16874 	pktp = SD_GET_PKTP(bp);
16875 	ASSERT(pktp != NULL);
16876 
16877 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16878 	ASSERT(sscp != NULL);
16879 
16880 	/*
16881 	 * Check the status of the RQS command (auto or manual).
16882 	 */
16883 	switch (xp->xb_sense_status & STATUS_MASK) {
16884 	case STATUS_GOOD:
16885 		break;
16886 
16887 	case STATUS_RESERVATION_CONFLICT:
16888 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16889 		return (SD_SENSE_DATA_IS_INVALID);
16890 
16891 	case STATUS_BUSY:
16892 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16893 		    "Busy Status on REQUEST SENSE\n");
16894 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16895 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16896 		return (SD_SENSE_DATA_IS_INVALID);
16897 
16898 	case STATUS_QFULL:
16899 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16900 		    "QFULL Status on REQUEST SENSE\n");
16901 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16902 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16903 		return (SD_SENSE_DATA_IS_INVALID);
16904 
16905 	case STATUS_CHECK:
16906 	case STATUS_TERMINATED:
16907 		msgp = "Check Condition on REQUEST SENSE\n";
16908 		goto sense_failed;
16909 
16910 	default:
16911 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16912 		goto sense_failed;
16913 	}
16914 
16915 	/*
16916 	 * See if we got the minimum required amount of sense data.
16917 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16918 	 * or less.
16919 	 */
16920 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16921 	    (actual_len == 0)) {
16922 		msgp = "Request Sense couldn't get sense data\n";
16923 		goto sense_failed;
16924 	}
16925 
16926 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16927 		msgp = "Not enough sense information\n";
16928 		/* Mark the ssc_flags for detecting invalid sense data */
16929 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16930 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16931 			    "sense-data");
16932 		}
16933 		goto sense_failed;
16934 	}
16935 
16936 	/*
16937 	 * We require the extended sense data
16938 	 */
16939 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16940 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16941 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16942 			static char tmp[8];
16943 			static char buf[148];
16944 			char *p = (char *)(xp->xb_sense_data);
16945 			int i;
16946 
16947 			mutex_enter(&sd_sense_mutex);
16948 			(void) strcpy(buf, "undecodable sense information:");
16949 			for (i = 0; i < actual_len; i++) {
16950 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16951 				(void) strcpy(&buf[strlen(buf)], tmp);
16952 			}
16953 			i = strlen(buf);
16954 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16955 
16956 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
16957 				scsi_log(SD_DEVINFO(un), sd_label,
16958 				    CE_WARN, buf);
16959 			}
16960 			mutex_exit(&sd_sense_mutex);
16961 		}
16962 
16963 		/* Mark the ssc_flags for detecting invalid sense data */
16964 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16965 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16966 			    "sense-data");
16967 		}
16968 
16969 		/* Note: Legacy behavior, fail the command with no retry */
16970 		sd_return_failed_command(un, bp, EIO);
16971 		return (SD_SENSE_DATA_IS_INVALID);
16972 	}
16973 
16974 	/*
16975 	 * Check that es_code is valid (es_class concatenated with es_code
16976 	 * make up the "response code" field.  es_class will always be 7, so
16977 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16978 	 * format.
16979 	 */
16980 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16981 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16982 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16983 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16984 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16985 		/* Mark the ssc_flags for detecting invalid sense data */
16986 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16987 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16988 			    "sense-data");
16989 		}
16990 		goto sense_failed;
16991 	}
16992 
16993 	return (SD_SENSE_DATA_IS_VALID);
16994 
16995 sense_failed:
16996 	/*
16997 	 * If the request sense failed (for whatever reason), attempt
16998 	 * to retry the original command.
16999 	 */
17000 #if defined(__i386) || defined(__amd64)
17001 	/*
17002 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17003 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17004 	 * for both SCSI/FC.
17005 	 * The SD_RETRY_DELAY value need to be adjusted here
17006 	 * when SD_RETRY_DELAY change in sddef.h
17007 	 */
17008 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17009 	    sd_print_sense_failed_msg, msgp, EIO,
17010 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17011 #else
17012 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17013 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17014 #endif
17015 
17016 	return (SD_SENSE_DATA_IS_INVALID);
17017 }
17018 
17019 /*
17020  *    Function: sd_decode_sense
17021  *
17022  * Description: Take recovery action(s) when SCSI Sense Data is received.
17023  *
17024  *     Context: Interrupt context.
17025  */
17026 
17027 static void
17028 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17029 	struct scsi_pkt *pktp)
17030 {
17031 	uint8_t sense_key;
17032 
17033 	ASSERT(un != NULL);
17034 	ASSERT(mutex_owned(SD_MUTEX(un)));
17035 	ASSERT(bp != NULL);
17036 	ASSERT(bp != un->un_rqs_bp);
17037 	ASSERT(xp != NULL);
17038 	ASSERT(pktp != NULL);
17039 
17040 	sense_key = scsi_sense_key(xp->xb_sense_data);
17041 
17042 	switch (sense_key) {
17043 	case KEY_NO_SENSE:
17044 		sd_sense_key_no_sense(un, bp, xp, pktp);
17045 		break;
17046 	case KEY_RECOVERABLE_ERROR:
17047 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17048 		    bp, xp, pktp);
17049 		break;
17050 	case KEY_NOT_READY:
17051 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17052 		    bp, xp, pktp);
17053 		break;
17054 	case KEY_MEDIUM_ERROR:
17055 	case KEY_HARDWARE_ERROR:
17056 		sd_sense_key_medium_or_hardware_error(un,
17057 		    xp->xb_sense_data, bp, xp, pktp);
17058 		break;
17059 	case KEY_ILLEGAL_REQUEST:
17060 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17061 		break;
17062 	case KEY_UNIT_ATTENTION:
17063 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17064 		    bp, xp, pktp);
17065 		break;
17066 	case KEY_WRITE_PROTECT:
17067 	case KEY_VOLUME_OVERFLOW:
17068 	case KEY_MISCOMPARE:
17069 		sd_sense_key_fail_command(un, bp, xp, pktp);
17070 		break;
17071 	case KEY_BLANK_CHECK:
17072 		sd_sense_key_blank_check(un, bp, xp, pktp);
17073 		break;
17074 	case KEY_ABORTED_COMMAND:
17075 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17076 		break;
17077 	case KEY_VENDOR_UNIQUE:
17078 	case KEY_COPY_ABORTED:
17079 	case KEY_EQUAL:
17080 	case KEY_RESERVED:
17081 	default:
17082 		sd_sense_key_default(un, xp->xb_sense_data,
17083 		    bp, xp, pktp);
17084 		break;
17085 	}
17086 }
17087 
17088 
17089 /*
17090  *    Function: sd_dump_memory
17091  *
17092  * Description: Debug logging routine to print the contents of a user provided
17093  *		buffer. The output of the buffer is broken up into 256 byte
17094  *		segments due to a size constraint of the scsi_log.
17095  *		implementation.
17096  *
17097  *   Arguments: un - ptr to softstate
17098  *		comp - component mask
17099  *		title - "title" string to preceed data when printed
17100  *		data - ptr to data block to be printed
17101  *		len - size of data block to be printed
17102  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17103  *
17104  *     Context: May be called from interrupt context
17105  */
17106 
17107 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17108 
17109 static char *sd_dump_format_string[] = {
17110 		" 0x%02x",
17111 		" %c"
17112 };
17113 
17114 static void
17115 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17116     int len, int fmt)
17117 {
17118 	int	i, j;
17119 	int	avail_count;
17120 	int	start_offset;
17121 	int	end_offset;
17122 	size_t	entry_len;
17123 	char	*bufp;
17124 	char	*local_buf;
17125 	char	*format_string;
17126 
17127 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17128 
17129 	/*
17130 	 * In the debug version of the driver, this function is called from a
17131 	 * number of places which are NOPs in the release driver.
17132 	 * The debug driver therefore has additional methods of filtering
17133 	 * debug output.
17134 	 */
17135 #ifdef SDDEBUG
17136 	/*
17137 	 * In the debug version of the driver we can reduce the amount of debug
17138 	 * messages by setting sd_error_level to something other than
17139 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17140 	 * sd_component_mask.
17141 	 */
17142 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17143 	    (sd_error_level != SCSI_ERR_ALL)) {
17144 		return;
17145 	}
17146 	if (((sd_component_mask & comp) == 0) ||
17147 	    (sd_error_level != SCSI_ERR_ALL)) {
17148 		return;
17149 	}
17150 #else
17151 	if (sd_error_level != SCSI_ERR_ALL) {
17152 		return;
17153 	}
17154 #endif
17155 
17156 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17157 	bufp = local_buf;
17158 	/*
17159 	 * Available length is the length of local_buf[], minus the
17160 	 * length of the title string, minus one for the ":", minus
17161 	 * one for the newline, minus one for the NULL terminator.
17162 	 * This gives the #bytes available for holding the printed
17163 	 * values from the given data buffer.
17164 	 */
17165 	if (fmt == SD_LOG_HEX) {
17166 		format_string = sd_dump_format_string[0];
17167 	} else /* SD_LOG_CHAR */ {
17168 		format_string = sd_dump_format_string[1];
17169 	}
17170 	/*
17171 	 * Available count is the number of elements from the given
17172 	 * data buffer that we can fit into the available length.
17173 	 * This is based upon the size of the format string used.
17174 	 * Make one entry and find it's size.
17175 	 */
17176 	(void) sprintf(bufp, format_string, data[0]);
17177 	entry_len = strlen(bufp);
17178 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17179 
17180 	j = 0;
17181 	while (j < len) {
17182 		bufp = local_buf;
17183 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17184 		start_offset = j;
17185 
17186 		end_offset = start_offset + avail_count;
17187 
17188 		(void) sprintf(bufp, "%s:", title);
17189 		bufp += strlen(bufp);
17190 		for (i = start_offset; ((i < end_offset) && (j < len));
17191 		    i++, j++) {
17192 			(void) sprintf(bufp, format_string, data[i]);
17193 			bufp += entry_len;
17194 		}
17195 		(void) sprintf(bufp, "\n");
17196 
17197 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17198 	}
17199 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17200 }
17201 
17202 /*
17203  *    Function: sd_print_sense_msg
17204  *
17205  * Description: Log a message based upon the given sense data.
17206  *
17207  *   Arguments: un - ptr to associated softstate
17208  *		bp - ptr to buf(9S) for the command
17209  *		arg - ptr to associate sd_sense_info struct
17210  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17211  *			or SD_NO_RETRY_ISSUED
17212  *
17213  *     Context: May be called from interrupt context
17214  */
17215 
17216 static void
17217 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17218 {
17219 	struct sd_xbuf	*xp;
17220 	struct scsi_pkt	*pktp;
17221 	uint8_t *sensep;
17222 	daddr_t request_blkno;
17223 	diskaddr_t err_blkno;
17224 	int severity;
17225 	int pfa_flag;
17226 	extern struct scsi_key_strings scsi_cmds[];
17227 
17228 	ASSERT(un != NULL);
17229 	ASSERT(mutex_owned(SD_MUTEX(un)));
17230 	ASSERT(bp != NULL);
17231 	xp = SD_GET_XBUF(bp);
17232 	ASSERT(xp != NULL);
17233 	pktp = SD_GET_PKTP(bp);
17234 	ASSERT(pktp != NULL);
17235 	ASSERT(arg != NULL);
17236 
17237 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17238 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17239 
17240 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17241 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17242 		severity = SCSI_ERR_RETRYABLE;
17243 	}
17244 
17245 	/* Use absolute block number for the request block number */
17246 	request_blkno = xp->xb_blkno;
17247 
17248 	/*
17249 	 * Now try to get the error block number from the sense data
17250 	 */
17251 	sensep = xp->xb_sense_data;
17252 
17253 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17254 	    (uint64_t *)&err_blkno)) {
17255 		/*
17256 		 * We retrieved the error block number from the information
17257 		 * portion of the sense data.
17258 		 *
17259 		 * For USCSI commands we are better off using the error
17260 		 * block no. as the requested block no. (This is the best
17261 		 * we can estimate.)
17262 		 */
17263 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17264 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17265 			request_blkno = err_blkno;
17266 		}
17267 	} else {
17268 		/*
17269 		 * Without the es_valid bit set (for fixed format) or an
17270 		 * information descriptor (for descriptor format) we cannot
17271 		 * be certain of the error blkno, so just use the
17272 		 * request_blkno.
17273 		 */
17274 		err_blkno = (diskaddr_t)request_blkno;
17275 	}
17276 
17277 	/*
17278 	 * The following will log the buffer contents for the release driver
17279 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17280 	 * level is set to verbose.
17281 	 */
17282 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17283 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17284 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17285 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17286 
17287 	if (pfa_flag == FALSE) {
17288 		/* This is normally only set for USCSI */
17289 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17290 			return;
17291 		}
17292 
17293 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17294 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17295 		    (severity < sd_error_level))) {
17296 			return;
17297 		}
17298 	}
17299 	/*
17300 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17301 	 */
17302 	if ((SD_IS_LSI(un)) &&
17303 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17304 	    (scsi_sense_asc(sensep) == 0x94) &&
17305 	    (scsi_sense_ascq(sensep) == 0x01)) {
17306 		un->un_sonoma_failure_count++;
17307 		if (un->un_sonoma_failure_count > 1) {
17308 			return;
17309 		}
17310 	}
17311 
17312 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
17313 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
17314 	    (pktp->pkt_resid == 0))) {
17315 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17316 		    request_blkno, err_blkno, scsi_cmds,
17317 		    (struct scsi_extended_sense *)sensep,
17318 		    un->un_additional_codes, NULL);
17319 	}
17320 }
17321 
17322 /*
17323  *    Function: sd_sense_key_no_sense
17324  *
17325  * Description: Recovery action when sense data was not received.
17326  *
17327  *     Context: May be called from interrupt context
17328  */
17329 
17330 static void
17331 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17332 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17333 {
17334 	struct sd_sense_info	si;
17335 
17336 	ASSERT(un != NULL);
17337 	ASSERT(mutex_owned(SD_MUTEX(un)));
17338 	ASSERT(bp != NULL);
17339 	ASSERT(xp != NULL);
17340 	ASSERT(pktp != NULL);
17341 
17342 	si.ssi_severity = SCSI_ERR_FATAL;
17343 	si.ssi_pfa_flag = FALSE;
17344 
17345 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17346 
17347 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17348 	    &si, EIO, (clock_t)0, NULL);
17349 }
17350 
17351 
17352 /*
17353  *    Function: sd_sense_key_recoverable_error
17354  *
17355  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17356  *
17357  *     Context: May be called from interrupt context
17358  */
17359 
17360 static void
17361 sd_sense_key_recoverable_error(struct sd_lun *un,
17362 	uint8_t *sense_datap,
17363 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17364 {
17365 	struct sd_sense_info	si;
17366 	uint8_t asc = scsi_sense_asc(sense_datap);
17367 
17368 	ASSERT(un != NULL);
17369 	ASSERT(mutex_owned(SD_MUTEX(un)));
17370 	ASSERT(bp != NULL);
17371 	ASSERT(xp != NULL);
17372 	ASSERT(pktp != NULL);
17373 
17374 	/*
17375 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17376 	 */
17377 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17378 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17379 		si.ssi_severity = SCSI_ERR_INFO;
17380 		si.ssi_pfa_flag = TRUE;
17381 	} else {
17382 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17383 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17384 		si.ssi_severity = SCSI_ERR_RECOVERED;
17385 		si.ssi_pfa_flag = FALSE;
17386 	}
17387 
17388 	if (pktp->pkt_resid == 0) {
17389 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17390 		sd_return_command(un, bp);
17391 		return;
17392 	}
17393 
17394 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17395 	    &si, EIO, (clock_t)0, NULL);
17396 }
17397 
17398 
17399 
17400 
17401 /*
17402  *    Function: sd_sense_key_not_ready
17403  *
17404  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17405  *
17406  *     Context: May be called from interrupt context
17407  */
17408 
17409 static void
17410 sd_sense_key_not_ready(struct sd_lun *un,
17411 	uint8_t *sense_datap,
17412 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17413 {
17414 	struct sd_sense_info	si;
17415 	uint8_t asc = scsi_sense_asc(sense_datap);
17416 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17417 
17418 	ASSERT(un != NULL);
17419 	ASSERT(mutex_owned(SD_MUTEX(un)));
17420 	ASSERT(bp != NULL);
17421 	ASSERT(xp != NULL);
17422 	ASSERT(pktp != NULL);
17423 
17424 	si.ssi_severity = SCSI_ERR_FATAL;
17425 	si.ssi_pfa_flag = FALSE;
17426 
17427 	/*
17428 	 * Update error stats after first NOT READY error. Disks may have
17429 	 * been powered down and may need to be restarted.  For CDROMs,
17430 	 * report NOT READY errors only if media is present.
17431 	 */
17432 	if ((ISCD(un) && (asc == 0x3A)) ||
17433 	    (xp->xb_nr_retry_count > 0)) {
17434 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17435 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17436 	}
17437 
17438 	/*
17439 	 * Just fail if the "not ready" retry limit has been reached.
17440 	 */
17441 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17442 		/* Special check for error message printing for removables. */
17443 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17444 		    (ascq >= 0x04)) {
17445 			si.ssi_severity = SCSI_ERR_ALL;
17446 		}
17447 		goto fail_command;
17448 	}
17449 
17450 	/*
17451 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17452 	 * what to do.
17453 	 */
17454 	switch (asc) {
17455 	case 0x04:	/* LOGICAL UNIT NOT READY */
17456 		/*
17457 		 * disk drives that don't spin up result in a very long delay
17458 		 * in format without warning messages. We will log a message
17459 		 * if the error level is set to verbose.
17460 		 */
17461 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17462 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17463 			    "logical unit not ready, resetting disk\n");
17464 		}
17465 
17466 		/*
17467 		 * There are different requirements for CDROMs and disks for
17468 		 * the number of retries.  If a CD-ROM is giving this, it is
17469 		 * probably reading TOC and is in the process of getting
17470 		 * ready, so we should keep on trying for a long time to make
17471 		 * sure that all types of media are taken in account (for
17472 		 * some media the drive takes a long time to read TOC).  For
17473 		 * disks we do not want to retry this too many times as this
17474 		 * can cause a long hang in format when the drive refuses to
17475 		 * spin up (a very common failure).
17476 		 */
17477 		switch (ascq) {
17478 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17479 			/*
17480 			 * Disk drives frequently refuse to spin up which
17481 			 * results in a very long hang in format without
17482 			 * warning messages.
17483 			 *
17484 			 * Note: This code preserves the legacy behavior of
17485 			 * comparing xb_nr_retry_count against zero for fibre
17486 			 * channel targets instead of comparing against the
17487 			 * un_reset_retry_count value.  The reason for this
17488 			 * discrepancy has been so utterly lost beneath the
17489 			 * Sands of Time that even Indiana Jones could not
17490 			 * find it.
17491 			 */
17492 			if (un->un_f_is_fibre == TRUE) {
17493 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17494 				    (xp->xb_nr_retry_count > 0)) &&
17495 				    (un->un_startstop_timeid == NULL)) {
17496 					scsi_log(SD_DEVINFO(un), sd_label,
17497 					    CE_WARN, "logical unit not ready, "
17498 					    "resetting disk\n");
17499 					sd_reset_target(un, pktp);
17500 				}
17501 			} else {
17502 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17503 				    (xp->xb_nr_retry_count >
17504 				    un->un_reset_retry_count)) &&
17505 				    (un->un_startstop_timeid == NULL)) {
17506 					scsi_log(SD_DEVINFO(un), sd_label,
17507 					    CE_WARN, "logical unit not ready, "
17508 					    "resetting disk\n");
17509 					sd_reset_target(un, pktp);
17510 				}
17511 			}
17512 			break;
17513 
17514 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17515 			/*
17516 			 * If the target is in the process of becoming
17517 			 * ready, just proceed with the retry. This can
17518 			 * happen with CD-ROMs that take a long time to
17519 			 * read TOC after a power cycle or reset.
17520 			 */
17521 			goto do_retry;
17522 
17523 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17524 			break;
17525 
17526 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17527 			/*
17528 			 * Retries cannot help here so just fail right away.
17529 			 */
17530 			goto fail_command;
17531 
17532 		case 0x88:
17533 			/*
17534 			 * Vendor-unique code for T3/T4: it indicates a
17535 			 * path problem in a mutipathed config, but as far as
17536 			 * the target driver is concerned it equates to a fatal
17537 			 * error, so we should just fail the command right away
17538 			 * (without printing anything to the console). If this
17539 			 * is not a T3/T4, fall thru to the default recovery
17540 			 * action.
17541 			 * T3/T4 is FC only, don't need to check is_fibre
17542 			 */
17543 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17544 				sd_return_failed_command(un, bp, EIO);
17545 				return;
17546 			}
17547 			/* FALLTHRU */
17548 
17549 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17550 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17551 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17552 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17553 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17554 		default:    /* Possible future codes in SCSI spec? */
17555 			/*
17556 			 * For removable-media devices, do not retry if
17557 			 * ASCQ > 2 as these result mostly from USCSI commands
17558 			 * on MMC devices issued to check status of an
17559 			 * operation initiated in immediate mode.  Also for
17560 			 * ASCQ >= 4 do not print console messages as these
17561 			 * mainly represent a user-initiated operation
17562 			 * instead of a system failure.
17563 			 */
17564 			if (un->un_f_has_removable_media) {
17565 				si.ssi_severity = SCSI_ERR_ALL;
17566 				goto fail_command;
17567 			}
17568 			break;
17569 		}
17570 
17571 		/*
17572 		 * As part of our recovery attempt for the NOT READY
17573 		 * condition, we issue a START STOP UNIT command. However
17574 		 * we want to wait for a short delay before attempting this
17575 		 * as there may still be more commands coming back from the
17576 		 * target with the check condition. To do this we use
17577 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17578 		 * the delay interval expires. (sd_start_stop_unit_callback()
17579 		 * dispatches sd_start_stop_unit_task(), which will issue
17580 		 * the actual START STOP UNIT command. The delay interval
17581 		 * is one-half of the delay that we will use to retry the
17582 		 * command that generated the NOT READY condition.
17583 		 *
17584 		 * Note that we could just dispatch sd_start_stop_unit_task()
17585 		 * from here and allow it to sleep for the delay interval,
17586 		 * but then we would be tying up the taskq thread
17587 		 * uncesessarily for the duration of the delay.
17588 		 *
17589 		 * Do not issue the START STOP UNIT if the current command
17590 		 * is already a START STOP UNIT.
17591 		 */
17592 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17593 			break;
17594 		}
17595 
17596 		/*
17597 		 * Do not schedule the timeout if one is already pending.
17598 		 */
17599 		if (un->un_startstop_timeid != NULL) {
17600 			SD_INFO(SD_LOG_ERROR, un,
17601 			    "sd_sense_key_not_ready: restart already issued to"
17602 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17603 			    ddi_get_instance(SD_DEVINFO(un)));
17604 			break;
17605 		}
17606 
17607 		/*
17608 		 * Schedule the START STOP UNIT command, then queue the command
17609 		 * for a retry.
17610 		 *
17611 		 * Note: A timeout is not scheduled for this retry because we
17612 		 * want the retry to be serial with the START_STOP_UNIT. The
17613 		 * retry will be started when the START_STOP_UNIT is completed
17614 		 * in sd_start_stop_unit_task.
17615 		 */
17616 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17617 		    un, un->un_busy_timeout / 2);
17618 		xp->xb_nr_retry_count++;
17619 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17620 		return;
17621 
17622 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17623 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17624 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17625 			    "unit does not respond to selection\n");
17626 		}
17627 		break;
17628 
17629 	case 0x3A:	/* MEDIUM NOT PRESENT */
17630 		if (sd_error_level >= SCSI_ERR_FATAL) {
17631 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17632 			    "Caddy not inserted in drive\n");
17633 		}
17634 
17635 		sr_ejected(un);
17636 		un->un_mediastate = DKIO_EJECTED;
17637 		/* The state has changed, inform the media watch routines */
17638 		cv_broadcast(&un->un_state_cv);
17639 		/* Just fail if no media is present in the drive. */
17640 		goto fail_command;
17641 
17642 	default:
17643 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17644 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17645 			    "Unit not Ready. Additional sense code 0x%x\n",
17646 			    asc);
17647 		}
17648 		break;
17649 	}
17650 
17651 do_retry:
17652 
17653 	/*
17654 	 * Retry the command, as some targets may report NOT READY for
17655 	 * several seconds after being reset.
17656 	 */
17657 	xp->xb_nr_retry_count++;
17658 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17659 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17660 	    &si, EIO, un->un_busy_timeout, NULL);
17661 
17662 	return;
17663 
17664 fail_command:
17665 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17666 	sd_return_failed_command(un, bp, EIO);
17667 }
17668 
17669 
17670 
17671 /*
17672  *    Function: sd_sense_key_medium_or_hardware_error
17673  *
17674  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17675  *		sense key.
17676  *
17677  *     Context: May be called from interrupt context
17678  */
17679 
17680 static void
17681 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17682 	uint8_t *sense_datap,
17683 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17684 {
17685 	struct sd_sense_info	si;
17686 	uint8_t sense_key = scsi_sense_key(sense_datap);
17687 	uint8_t asc = scsi_sense_asc(sense_datap);
17688 
17689 	ASSERT(un != NULL);
17690 	ASSERT(mutex_owned(SD_MUTEX(un)));
17691 	ASSERT(bp != NULL);
17692 	ASSERT(xp != NULL);
17693 	ASSERT(pktp != NULL);
17694 
17695 	si.ssi_severity = SCSI_ERR_FATAL;
17696 	si.ssi_pfa_flag = FALSE;
17697 
17698 	if (sense_key == KEY_MEDIUM_ERROR) {
17699 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17700 	}
17701 
17702 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17703 
17704 	if ((un->un_reset_retry_count != 0) &&
17705 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17706 		mutex_exit(SD_MUTEX(un));
17707 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17708 		if (un->un_f_allow_bus_device_reset == TRUE) {
17709 
17710 			boolean_t try_resetting_target = B_TRUE;
17711 
17712 			/*
17713 			 * We need to be able to handle specific ASC when we are
17714 			 * handling a KEY_HARDWARE_ERROR. In particular
17715 			 * taking the default action of resetting the target may
17716 			 * not be the appropriate way to attempt recovery.
17717 			 * Resetting a target because of a single LUN failure
17718 			 * victimizes all LUNs on that target.
17719 			 *
17720 			 * This is true for the LSI arrays, if an LSI
17721 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17722 			 * should trust it.
17723 			 */
17724 
17725 			if (sense_key == KEY_HARDWARE_ERROR) {
17726 				switch (asc) {
17727 				case 0x84:
17728 					if (SD_IS_LSI(un)) {
17729 						try_resetting_target = B_FALSE;
17730 					}
17731 					break;
17732 				default:
17733 					break;
17734 				}
17735 			}
17736 
17737 			if (try_resetting_target == B_TRUE) {
17738 				int reset_retval = 0;
17739 				if (un->un_f_lun_reset_enabled == TRUE) {
17740 					SD_TRACE(SD_LOG_IO_CORE, un,
17741 					    "sd_sense_key_medium_or_hardware_"
17742 					    "error: issuing RESET_LUN\n");
17743 					reset_retval =
17744 					    scsi_reset(SD_ADDRESS(un),
17745 					    RESET_LUN);
17746 				}
17747 				if (reset_retval == 0) {
17748 					SD_TRACE(SD_LOG_IO_CORE, un,
17749 					    "sd_sense_key_medium_or_hardware_"
17750 					    "error: issuing RESET_TARGET\n");
17751 					(void) scsi_reset(SD_ADDRESS(un),
17752 					    RESET_TARGET);
17753 				}
17754 			}
17755 		}
17756 		mutex_enter(SD_MUTEX(un));
17757 	}
17758 
17759 	/*
17760 	 * This really ought to be a fatal error, but we will retry anyway
17761 	 * as some drives report this as a spurious error.
17762 	 */
17763 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17764 	    &si, EIO, (clock_t)0, NULL);
17765 }
17766 
17767 
17768 
17769 /*
17770  *    Function: sd_sense_key_illegal_request
17771  *
17772  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17773  *
17774  *     Context: May be called from interrupt context
17775  */
17776 
17777 static void
17778 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17779 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17780 {
17781 	struct sd_sense_info	si;
17782 
17783 	ASSERT(un != NULL);
17784 	ASSERT(mutex_owned(SD_MUTEX(un)));
17785 	ASSERT(bp != NULL);
17786 	ASSERT(xp != NULL);
17787 	ASSERT(pktp != NULL);
17788 
17789 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17790 
17791 	si.ssi_severity = SCSI_ERR_INFO;
17792 	si.ssi_pfa_flag = FALSE;
17793 
17794 	/* Pointless to retry if the target thinks it's an illegal request */
17795 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17796 	sd_return_failed_command(un, bp, EIO);
17797 }
17798 
17799 
17800 
17801 
17802 /*
17803  *    Function: sd_sense_key_unit_attention
17804  *
17805  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17806  *
17807  *     Context: May be called from interrupt context
17808  */
17809 
17810 static void
17811 sd_sense_key_unit_attention(struct sd_lun *un,
17812 	uint8_t *sense_datap,
17813 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17814 {
17815 	/*
17816 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17817 	 * like Sonoma can return UNIT ATTENTION close to a minute
17818 	 * under certain conditions.
17819 	 */
17820 	int	retry_check_flag = SD_RETRIES_UA;
17821 	boolean_t	kstat_updated = B_FALSE;
17822 	struct	sd_sense_info		si;
17823 	uint8_t asc = scsi_sense_asc(sense_datap);
17824 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17825 
17826 	ASSERT(un != NULL);
17827 	ASSERT(mutex_owned(SD_MUTEX(un)));
17828 	ASSERT(bp != NULL);
17829 	ASSERT(xp != NULL);
17830 	ASSERT(pktp != NULL);
17831 
17832 	si.ssi_severity = SCSI_ERR_INFO;
17833 	si.ssi_pfa_flag = FALSE;
17834 
17835 
17836 	switch (asc) {
17837 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17838 		if (sd_report_pfa != 0) {
17839 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17840 			si.ssi_pfa_flag = TRUE;
17841 			retry_check_flag = SD_RETRIES_STANDARD;
17842 			goto do_retry;
17843 		}
17844 
17845 		break;
17846 
17847 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17848 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17849 			un->un_resvd_status |=
17850 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17851 		}
17852 #ifdef _LP64
17853 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17854 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17855 			    un, KM_NOSLEEP) == 0) {
17856 				/*
17857 				 * If we can't dispatch the task we'll just
17858 				 * live without descriptor sense.  We can
17859 				 * try again on the next "unit attention"
17860 				 */
17861 				SD_ERROR(SD_LOG_ERROR, un,
17862 				    "sd_sense_key_unit_attention: "
17863 				    "Could not dispatch "
17864 				    "sd_reenable_dsense_task\n");
17865 			}
17866 		}
17867 #endif /* _LP64 */
17868 		/* FALLTHRU */
17869 
17870 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17871 		if (!un->un_f_has_removable_media) {
17872 			break;
17873 		}
17874 
17875 		/*
17876 		 * When we get a unit attention from a removable-media device,
17877 		 * it may be in a state that will take a long time to recover
17878 		 * (e.g., from a reset).  Since we are executing in interrupt
17879 		 * context here, we cannot wait around for the device to come
17880 		 * back. So hand this command off to sd_media_change_task()
17881 		 * for deferred processing under taskq thread context. (Note
17882 		 * that the command still may be failed if a problem is
17883 		 * encountered at a later time.)
17884 		 */
17885 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17886 		    KM_NOSLEEP) == 0) {
17887 			/*
17888 			 * Cannot dispatch the request so fail the command.
17889 			 */
17890 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17891 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17892 			si.ssi_severity = SCSI_ERR_FATAL;
17893 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17894 			sd_return_failed_command(un, bp, EIO);
17895 		}
17896 
17897 		/*
17898 		 * If failed to dispatch sd_media_change_task(), we already
17899 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17900 		 * we should update kstat later if it encounters an error. So,
17901 		 * we update kstat_updated flag here.
17902 		 */
17903 		kstat_updated = B_TRUE;
17904 
17905 		/*
17906 		 * Either the command has been successfully dispatched to a
17907 		 * task Q for retrying, or the dispatch failed. In either case
17908 		 * do NOT retry again by calling sd_retry_command. This sets up
17909 		 * two retries of the same command and when one completes and
17910 		 * frees the resources the other will access freed memory,
17911 		 * a bad thing.
17912 		 */
17913 		return;
17914 
17915 	default:
17916 		break;
17917 	}
17918 
17919 	/*
17920 	 * ASC  ASCQ
17921 	 *  2A   09	Capacity data has changed
17922 	 *  2A   01	Mode parameters changed
17923 	 *  3F   0E	Reported luns data has changed
17924 	 * Arrays that support logical unit expansion should report
17925 	 * capacity changes(2Ah/09). Mode parameters changed and
17926 	 * reported luns data has changed are the approximation.
17927 	 */
17928 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17929 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17930 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17931 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17932 		    KM_NOSLEEP) == 0) {
17933 			SD_ERROR(SD_LOG_ERROR, un,
17934 			    "sd_sense_key_unit_attention: "
17935 			    "Could not dispatch sd_target_change_task\n");
17936 		}
17937 	}
17938 
17939 	/*
17940 	 * Update kstat if we haven't done that.
17941 	 */
17942 	if (!kstat_updated) {
17943 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17944 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17945 	}
17946 
17947 do_retry:
17948 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17949 	    EIO, SD_UA_RETRY_DELAY, NULL);
17950 }
17951 
17952 
17953 
17954 /*
17955  *    Function: sd_sense_key_fail_command
17956  *
17957  * Description: Use to fail a command when we don't like the sense key that
17958  *		was returned.
17959  *
17960  *     Context: May be called from interrupt context
17961  */
17962 
17963 static void
17964 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17965 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17966 {
17967 	struct sd_sense_info	si;
17968 
17969 	ASSERT(un != NULL);
17970 	ASSERT(mutex_owned(SD_MUTEX(un)));
17971 	ASSERT(bp != NULL);
17972 	ASSERT(xp != NULL);
17973 	ASSERT(pktp != NULL);
17974 
17975 	si.ssi_severity = SCSI_ERR_FATAL;
17976 	si.ssi_pfa_flag = FALSE;
17977 
17978 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17979 	sd_return_failed_command(un, bp, EIO);
17980 }
17981 
17982 
17983 
17984 /*
17985  *    Function: sd_sense_key_blank_check
17986  *
17987  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17988  *		Has no monetary connotation.
17989  *
17990  *     Context: May be called from interrupt context
17991  */
17992 
17993 static void
17994 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17995 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17996 {
17997 	struct sd_sense_info	si;
17998 
17999 	ASSERT(un != NULL);
18000 	ASSERT(mutex_owned(SD_MUTEX(un)));
18001 	ASSERT(bp != NULL);
18002 	ASSERT(xp != NULL);
18003 	ASSERT(pktp != NULL);
18004 
18005 	/*
18006 	 * Blank check is not fatal for removable devices, therefore
18007 	 * it does not require a console message.
18008 	 */
18009 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18010 	    SCSI_ERR_FATAL;
18011 	si.ssi_pfa_flag = FALSE;
18012 
18013 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18014 	sd_return_failed_command(un, bp, EIO);
18015 }
18016 
18017 
18018 
18019 
18020 /*
18021  *    Function: sd_sense_key_aborted_command
18022  *
18023  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18024  *
18025  *     Context: May be called from interrupt context
18026  */
18027 
18028 static void
18029 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18030 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18031 {
18032 	struct sd_sense_info	si;
18033 
18034 	ASSERT(un != NULL);
18035 	ASSERT(mutex_owned(SD_MUTEX(un)));
18036 	ASSERT(bp != NULL);
18037 	ASSERT(xp != NULL);
18038 	ASSERT(pktp != NULL);
18039 
18040 	si.ssi_severity = SCSI_ERR_FATAL;
18041 	si.ssi_pfa_flag = FALSE;
18042 
18043 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18044 
18045 	/*
18046 	 * This really ought to be a fatal error, but we will retry anyway
18047 	 * as some drives report this as a spurious error.
18048 	 */
18049 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18050 	    &si, EIO, drv_usectohz(100000), NULL);
18051 }
18052 
18053 
18054 
18055 /*
18056  *    Function: sd_sense_key_default
18057  *
18058  * Description: Default recovery action for several SCSI sense keys (basically
18059  *		attempts a retry).
18060  *
18061  *     Context: May be called from interrupt context
18062  */
18063 
18064 static void
18065 sd_sense_key_default(struct sd_lun *un,
18066 	uint8_t *sense_datap,
18067 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18068 {
18069 	struct sd_sense_info	si;
18070 	uint8_t sense_key = scsi_sense_key(sense_datap);
18071 
18072 	ASSERT(un != NULL);
18073 	ASSERT(mutex_owned(SD_MUTEX(un)));
18074 	ASSERT(bp != NULL);
18075 	ASSERT(xp != NULL);
18076 	ASSERT(pktp != NULL);
18077 
18078 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18079 
18080 	/*
18081 	 * Undecoded sense key.	Attempt retries and hope that will fix
18082 	 * the problem.  Otherwise, we're dead.
18083 	 */
18084 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18085 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18086 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18087 	}
18088 
18089 	si.ssi_severity = SCSI_ERR_FATAL;
18090 	si.ssi_pfa_flag = FALSE;
18091 
18092 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18093 	    &si, EIO, (clock_t)0, NULL);
18094 }
18095 
18096 
18097 
18098 /*
18099  *    Function: sd_print_retry_msg
18100  *
18101  * Description: Print a message indicating the retry action being taken.
18102  *
18103  *   Arguments: un - ptr to associated softstate
18104  *		bp - ptr to buf(9S) for the command
18105  *		arg - not used.
18106  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18107  *			or SD_NO_RETRY_ISSUED
18108  *
18109  *     Context: May be called from interrupt context
18110  */
18111 /* ARGSUSED */
18112 static void
18113 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18114 {
18115 	struct sd_xbuf	*xp;
18116 	struct scsi_pkt *pktp;
18117 	char *reasonp;
18118 	char *msgp;
18119 
18120 	ASSERT(un != NULL);
18121 	ASSERT(mutex_owned(SD_MUTEX(un)));
18122 	ASSERT(bp != NULL);
18123 	pktp = SD_GET_PKTP(bp);
18124 	ASSERT(pktp != NULL);
18125 	xp = SD_GET_XBUF(bp);
18126 	ASSERT(xp != NULL);
18127 
18128 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18129 	mutex_enter(&un->un_pm_mutex);
18130 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18131 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18132 	    (pktp->pkt_flags & FLAG_SILENT)) {
18133 		mutex_exit(&un->un_pm_mutex);
18134 		goto update_pkt_reason;
18135 	}
18136 	mutex_exit(&un->un_pm_mutex);
18137 
18138 	/*
18139 	 * Suppress messages if they are all the same pkt_reason; with
18140 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18141 	 * If we are in panic, then suppress the retry messages.
18142 	 */
18143 	switch (flag) {
18144 	case SD_NO_RETRY_ISSUED:
18145 		msgp = "giving up";
18146 		break;
18147 	case SD_IMMEDIATE_RETRY_ISSUED:
18148 	case SD_DELAYED_RETRY_ISSUED:
18149 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18150 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18151 		    (sd_error_level != SCSI_ERR_ALL))) {
18152 			return;
18153 		}
18154 		msgp = "retrying command";
18155 		break;
18156 	default:
18157 		goto update_pkt_reason;
18158 	}
18159 
18160 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18161 	    scsi_rname(pktp->pkt_reason));
18162 
18163 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18164 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18165 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18166 	}
18167 
18168 update_pkt_reason:
18169 	/*
18170 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18171 	 * This is to prevent multiple console messages for the same failure
18172 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18173 	 * when the command is retried successfully because there still may be
18174 	 * more commands coming back with the same value of pktp->pkt_reason.
18175 	 */
18176 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18177 		un->un_last_pkt_reason = pktp->pkt_reason;
18178 	}
18179 }
18180 
18181 
18182 /*
18183  *    Function: sd_print_cmd_incomplete_msg
18184  *
18185  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18186  *
18187  *   Arguments: un - ptr to associated softstate
18188  *		bp - ptr to buf(9S) for the command
18189  *		arg - passed to sd_print_retry_msg()
18190  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18191  *			or SD_NO_RETRY_ISSUED
18192  *
18193  *     Context: May be called from interrupt context
18194  */
18195 
18196 static void
18197 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18198 	int code)
18199 {
18200 	dev_info_t	*dip;
18201 
18202 	ASSERT(un != NULL);
18203 	ASSERT(mutex_owned(SD_MUTEX(un)));
18204 	ASSERT(bp != NULL);
18205 
18206 	switch (code) {
18207 	case SD_NO_RETRY_ISSUED:
18208 		/* Command was failed. Someone turned off this target? */
18209 		if (un->un_state != SD_STATE_OFFLINE) {
18210 			/*
18211 			 * Suppress message if we are detaching and
18212 			 * device has been disconnected
18213 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18214 			 * private interface and not part of the DDI
18215 			 */
18216 			dip = un->un_sd->sd_dev;
18217 			if (!(DEVI_IS_DETACHING(dip) &&
18218 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18219 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18220 				"disk not responding to selection\n");
18221 			}
18222 			New_state(un, SD_STATE_OFFLINE);
18223 		}
18224 		break;
18225 
18226 	case SD_DELAYED_RETRY_ISSUED:
18227 	case SD_IMMEDIATE_RETRY_ISSUED:
18228 	default:
18229 		/* Command was successfully queued for retry */
18230 		sd_print_retry_msg(un, bp, arg, code);
18231 		break;
18232 	}
18233 }
18234 
18235 
18236 /*
18237  *    Function: sd_pkt_reason_cmd_incomplete
18238  *
18239  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18240  *
18241  *     Context: May be called from interrupt context
18242  */
18243 
18244 static void
18245 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18246 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18247 {
18248 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18249 
18250 	ASSERT(un != NULL);
18251 	ASSERT(mutex_owned(SD_MUTEX(un)));
18252 	ASSERT(bp != NULL);
18253 	ASSERT(xp != NULL);
18254 	ASSERT(pktp != NULL);
18255 
18256 	/* Do not do a reset if selection did not complete */
18257 	/* Note: Should this not just check the bit? */
18258 	if (pktp->pkt_state != STATE_GOT_BUS) {
18259 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18260 		sd_reset_target(un, pktp);
18261 	}
18262 
18263 	/*
18264 	 * If the target was not successfully selected, then set
18265 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18266 	 * with the target, and further retries and/or commands are
18267 	 * likely to take a long time.
18268 	 */
18269 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18270 		flag |= SD_RETRIES_FAILFAST;
18271 	}
18272 
18273 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18274 
18275 	sd_retry_command(un, bp, flag,
18276 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18277 }
18278 
18279 
18280 
18281 /*
18282  *    Function: sd_pkt_reason_cmd_tran_err
18283  *
18284  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18285  *
18286  *     Context: May be called from interrupt context
18287  */
18288 
18289 static void
18290 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18291 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18292 {
18293 	ASSERT(un != NULL);
18294 	ASSERT(mutex_owned(SD_MUTEX(un)));
18295 	ASSERT(bp != NULL);
18296 	ASSERT(xp != NULL);
18297 	ASSERT(pktp != NULL);
18298 
18299 	/*
18300 	 * Do not reset if we got a parity error, or if
18301 	 * selection did not complete.
18302 	 */
18303 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18304 	/* Note: Should this not just check the bit for pkt_state? */
18305 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18306 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18307 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18308 		sd_reset_target(un, pktp);
18309 	}
18310 
18311 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18312 
18313 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18314 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18315 }
18316 
18317 
18318 
18319 /*
18320  *    Function: sd_pkt_reason_cmd_reset
18321  *
18322  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18323  *
18324  *     Context: May be called from interrupt context
18325  */
18326 
18327 static void
18328 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18329 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18330 {
18331 	ASSERT(un != NULL);
18332 	ASSERT(mutex_owned(SD_MUTEX(un)));
18333 	ASSERT(bp != NULL);
18334 	ASSERT(xp != NULL);
18335 	ASSERT(pktp != NULL);
18336 
18337 	/* The target may still be running the command, so try to reset. */
18338 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18339 	sd_reset_target(un, pktp);
18340 
18341 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18342 
18343 	/*
18344 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18345 	 * reset because another target on this bus caused it. The target
18346 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18347 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18348 	 */
18349 
18350 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18351 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18352 }
18353 
18354 
18355 
18356 
18357 /*
18358  *    Function: sd_pkt_reason_cmd_aborted
18359  *
18360  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18361  *
18362  *     Context: May be called from interrupt context
18363  */
18364 
18365 static void
18366 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18367 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18368 {
18369 	ASSERT(un != NULL);
18370 	ASSERT(mutex_owned(SD_MUTEX(un)));
18371 	ASSERT(bp != NULL);
18372 	ASSERT(xp != NULL);
18373 	ASSERT(pktp != NULL);
18374 
18375 	/* The target may still be running the command, so try to reset. */
18376 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18377 	sd_reset_target(un, pktp);
18378 
18379 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18380 
18381 	/*
18382 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18383 	 * aborted because another target on this bus caused it. The target
18384 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18385 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18386 	 */
18387 
18388 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18389 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18390 }
18391 
18392 
18393 
18394 /*
18395  *    Function: sd_pkt_reason_cmd_timeout
18396  *
18397  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18398  *
18399  *     Context: May be called from interrupt context
18400  */
18401 
18402 static void
18403 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18404 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18405 {
18406 	ASSERT(un != NULL);
18407 	ASSERT(mutex_owned(SD_MUTEX(un)));
18408 	ASSERT(bp != NULL);
18409 	ASSERT(xp != NULL);
18410 	ASSERT(pktp != NULL);
18411 
18412 
18413 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18414 	sd_reset_target(un, pktp);
18415 
18416 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18417 
18418 	/*
18419 	 * A command timeout indicates that we could not establish
18420 	 * communication with the target, so set SD_RETRIES_FAILFAST
18421 	 * as further retries/commands are likely to take a long time.
18422 	 */
18423 	sd_retry_command(un, bp,
18424 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18425 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18426 }
18427 
18428 
18429 
18430 /*
18431  *    Function: sd_pkt_reason_cmd_unx_bus_free
18432  *
18433  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18434  *
18435  *     Context: May be called from interrupt context
18436  */
18437 
18438 static void
18439 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18440 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18441 {
18442 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18443 
18444 	ASSERT(un != NULL);
18445 	ASSERT(mutex_owned(SD_MUTEX(un)));
18446 	ASSERT(bp != NULL);
18447 	ASSERT(xp != NULL);
18448 	ASSERT(pktp != NULL);
18449 
18450 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18451 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18452 
18453 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18454 	    sd_print_retry_msg : NULL;
18455 
18456 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18457 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18458 }
18459 
18460 
18461 /*
18462  *    Function: sd_pkt_reason_cmd_tag_reject
18463  *
18464  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18465  *
18466  *     Context: May be called from interrupt context
18467  */
18468 
18469 static void
18470 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18471 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18472 {
18473 	ASSERT(un != NULL);
18474 	ASSERT(mutex_owned(SD_MUTEX(un)));
18475 	ASSERT(bp != NULL);
18476 	ASSERT(xp != NULL);
18477 	ASSERT(pktp != NULL);
18478 
18479 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18480 	pktp->pkt_flags = 0;
18481 	un->un_tagflags = 0;
18482 	if (un->un_f_opt_queueing == TRUE) {
18483 		un->un_throttle = min(un->un_throttle, 3);
18484 	} else {
18485 		un->un_throttle = 1;
18486 	}
18487 	mutex_exit(SD_MUTEX(un));
18488 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18489 	mutex_enter(SD_MUTEX(un));
18490 
18491 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18492 
18493 	/* Legacy behavior not to check retry counts here. */
18494 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18495 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18496 }
18497 
18498 
18499 /*
18500  *    Function: sd_pkt_reason_default
18501  *
18502  * Description: Default recovery actions for SCSA pkt_reason values that
18503  *		do not have more explicit recovery actions.
18504  *
18505  *     Context: May be called from interrupt context
18506  */
18507 
18508 static void
18509 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18510 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18511 {
18512 	ASSERT(un != NULL);
18513 	ASSERT(mutex_owned(SD_MUTEX(un)));
18514 	ASSERT(bp != NULL);
18515 	ASSERT(xp != NULL);
18516 	ASSERT(pktp != NULL);
18517 
18518 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18519 	sd_reset_target(un, pktp);
18520 
18521 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18522 
18523 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18524 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18525 }
18526 
18527 
18528 
18529 /*
18530  *    Function: sd_pkt_status_check_condition
18531  *
18532  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18533  *
18534  *     Context: May be called from interrupt context
18535  */
18536 
18537 static void
18538 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18539 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18540 {
18541 	ASSERT(un != NULL);
18542 	ASSERT(mutex_owned(SD_MUTEX(un)));
18543 	ASSERT(bp != NULL);
18544 	ASSERT(xp != NULL);
18545 	ASSERT(pktp != NULL);
18546 
18547 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18548 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18549 
18550 	/*
18551 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18552 	 * command will be retried after the request sense). Otherwise, retry
18553 	 * the command. Note: we are issuing the request sense even though the
18554 	 * retry limit may have been reached for the failed command.
18555 	 */
18556 	if (un->un_f_arq_enabled == FALSE) {
18557 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18558 		    "no ARQ, sending request sense command\n");
18559 		sd_send_request_sense_command(un, bp, pktp);
18560 	} else {
18561 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18562 		    "ARQ,retrying request sense command\n");
18563 #if defined(__i386) || defined(__amd64)
18564 		/*
18565 		 * The SD_RETRY_DELAY value need to be adjusted here
18566 		 * when SD_RETRY_DELAY change in sddef.h
18567 		 */
18568 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18569 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18570 		    NULL);
18571 #else
18572 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18573 		    EIO, SD_RETRY_DELAY, NULL);
18574 #endif
18575 	}
18576 
18577 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18578 }
18579 
18580 
18581 /*
18582  *    Function: sd_pkt_status_busy
18583  *
18584  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18585  *
18586  *     Context: May be called from interrupt context
18587  */
18588 
18589 static void
18590 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18591 	struct scsi_pkt *pktp)
18592 {
18593 	ASSERT(un != NULL);
18594 	ASSERT(mutex_owned(SD_MUTEX(un)));
18595 	ASSERT(bp != NULL);
18596 	ASSERT(xp != NULL);
18597 	ASSERT(pktp != NULL);
18598 
18599 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18600 	    "sd_pkt_status_busy: entry\n");
18601 
18602 	/* If retries are exhausted, just fail the command. */
18603 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18604 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18605 		    "device busy too long\n");
18606 		sd_return_failed_command(un, bp, EIO);
18607 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18608 		    "sd_pkt_status_busy: exit\n");
18609 		return;
18610 	}
18611 	xp->xb_retry_count++;
18612 
18613 	/*
18614 	 * Try to reset the target. However, we do not want to perform
18615 	 * more than one reset if the device continues to fail. The reset
18616 	 * will be performed when the retry count reaches the reset
18617 	 * threshold.  This threshold should be set such that at least
18618 	 * one retry is issued before the reset is performed.
18619 	 */
18620 	if (xp->xb_retry_count ==
18621 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18622 		int rval = 0;
18623 		mutex_exit(SD_MUTEX(un));
18624 		if (un->un_f_allow_bus_device_reset == TRUE) {
18625 			/*
18626 			 * First try to reset the LUN; if we cannot then
18627 			 * try to reset the target.
18628 			 */
18629 			if (un->un_f_lun_reset_enabled == TRUE) {
18630 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18631 				    "sd_pkt_status_busy: RESET_LUN\n");
18632 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18633 			}
18634 			if (rval == 0) {
18635 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18636 				    "sd_pkt_status_busy: RESET_TARGET\n");
18637 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18638 			}
18639 		}
18640 		if (rval == 0) {
18641 			/*
18642 			 * If the RESET_LUN and/or RESET_TARGET failed,
18643 			 * try RESET_ALL
18644 			 */
18645 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18646 			    "sd_pkt_status_busy: RESET_ALL\n");
18647 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18648 		}
18649 		mutex_enter(SD_MUTEX(un));
18650 		if (rval == 0) {
18651 			/*
18652 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18653 			 * At this point we give up & fail the command.
18654 			 */
18655 			sd_return_failed_command(un, bp, EIO);
18656 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18657 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18658 			return;
18659 		}
18660 	}
18661 
18662 	/*
18663 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18664 	 * we have already checked the retry counts above.
18665 	 */
18666 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18667 	    EIO, un->un_busy_timeout, NULL);
18668 
18669 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18670 	    "sd_pkt_status_busy: exit\n");
18671 }
18672 
18673 
18674 /*
18675  *    Function: sd_pkt_status_reservation_conflict
18676  *
18677  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18678  *		command status.
18679  *
18680  *     Context: May be called from interrupt context
18681  */
18682 
18683 static void
18684 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18685 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18686 {
18687 	ASSERT(un != NULL);
18688 	ASSERT(mutex_owned(SD_MUTEX(un)));
18689 	ASSERT(bp != NULL);
18690 	ASSERT(xp != NULL);
18691 	ASSERT(pktp != NULL);
18692 
18693 	/*
18694 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18695 	 * conflict could be due to various reasons like incorrect keys, not
18696 	 * registered or not reserved etc. So, we return EACCES to the caller.
18697 	 */
18698 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18699 		int cmd = SD_GET_PKT_OPCODE(pktp);
18700 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18701 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18702 			sd_return_failed_command(un, bp, EACCES);
18703 			return;
18704 		}
18705 	}
18706 
18707 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18708 
18709 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18710 		if (sd_failfast_enable != 0) {
18711 			/* By definition, we must panic here.... */
18712 			sd_panic_for_res_conflict(un);
18713 			/*NOTREACHED*/
18714 		}
18715 		SD_ERROR(SD_LOG_IO, un,
18716 		    "sd_handle_resv_conflict: Disk Reserved\n");
18717 		sd_return_failed_command(un, bp, EACCES);
18718 		return;
18719 	}
18720 
18721 	/*
18722 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18723 	 * property is set (default is 1). Retries will not succeed
18724 	 * on a disk reserved by another initiator. HA systems
18725 	 * may reset this via sd.conf to avoid these retries.
18726 	 *
18727 	 * Note: The legacy return code for this failure is EIO, however EACCES
18728 	 * seems more appropriate for a reservation conflict.
18729 	 */
18730 	if (sd_retry_on_reservation_conflict == 0) {
18731 		SD_ERROR(SD_LOG_IO, un,
18732 		    "sd_handle_resv_conflict: Device Reserved\n");
18733 		sd_return_failed_command(un, bp, EIO);
18734 		return;
18735 	}
18736 
18737 	/*
18738 	 * Retry the command if we can.
18739 	 *
18740 	 * Note: The legacy return code for this failure is EIO, however EACCES
18741 	 * seems more appropriate for a reservation conflict.
18742 	 */
18743 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18744 	    (clock_t)2, NULL);
18745 }
18746 
18747 
18748 
18749 /*
18750  *    Function: sd_pkt_status_qfull
18751  *
18752  * Description: Handle a QUEUE FULL condition from the target.  This can
18753  *		occur if the HBA does not handle the queue full condition.
18754  *		(Basically this means third-party HBAs as Sun HBAs will
18755  *		handle the queue full condition.)  Note that if there are
18756  *		some commands already in the transport, then the queue full
18757  *		has occurred because the queue for this nexus is actually
18758  *		full. If there are no commands in the transport, then the
18759  *		queue full is resulting from some other initiator or lun
18760  *		consuming all the resources at the target.
18761  *
18762  *     Context: May be called from interrupt context
18763  */
18764 
18765 static void
18766 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18767 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18768 {
18769 	ASSERT(un != NULL);
18770 	ASSERT(mutex_owned(SD_MUTEX(un)));
18771 	ASSERT(bp != NULL);
18772 	ASSERT(xp != NULL);
18773 	ASSERT(pktp != NULL);
18774 
18775 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18776 	    "sd_pkt_status_qfull: entry\n");
18777 
18778 	/*
18779 	 * Just lower the QFULL throttle and retry the command.  Note that
18780 	 * we do not limit the number of retries here.
18781 	 */
18782 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18783 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18784 	    SD_RESTART_TIMEOUT, NULL);
18785 
18786 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18787 	    "sd_pkt_status_qfull: exit\n");
18788 }
18789 
18790 
18791 /*
18792  *    Function: sd_reset_target
18793  *
18794  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18795  *		RESET_TARGET, or RESET_ALL.
18796  *
18797  *     Context: May be called under interrupt context.
18798  */
18799 
18800 static void
18801 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18802 {
18803 	int rval = 0;
18804 
18805 	ASSERT(un != NULL);
18806 	ASSERT(mutex_owned(SD_MUTEX(un)));
18807 	ASSERT(pktp != NULL);
18808 
18809 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18810 
18811 	/*
18812 	 * No need to reset if the transport layer has already done so.
18813 	 */
18814 	if ((pktp->pkt_statistics &
18815 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18816 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18817 		    "sd_reset_target: no reset\n");
18818 		return;
18819 	}
18820 
18821 	mutex_exit(SD_MUTEX(un));
18822 
18823 	if (un->un_f_allow_bus_device_reset == TRUE) {
18824 		if (un->un_f_lun_reset_enabled == TRUE) {
18825 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18826 			    "sd_reset_target: RESET_LUN\n");
18827 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18828 		}
18829 		if (rval == 0) {
18830 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18831 			    "sd_reset_target: RESET_TARGET\n");
18832 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18833 		}
18834 	}
18835 
18836 	if (rval == 0) {
18837 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18838 		    "sd_reset_target: RESET_ALL\n");
18839 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18840 	}
18841 
18842 	mutex_enter(SD_MUTEX(un));
18843 
18844 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18845 }
18846 
18847 /*
18848  *    Function: sd_target_change_task
18849  *
18850  * Description: Handle dynamic target change
18851  *
18852  *     Context: Executes in a taskq() thread context
18853  */
18854 static void
18855 sd_target_change_task(void *arg)
18856 {
18857 	struct sd_lun		*un = arg;
18858 	uint64_t		capacity;
18859 	diskaddr_t		label_cap;
18860 	uint_t			lbasize;
18861 	sd_ssc_t		*ssc;
18862 
18863 	ASSERT(un != NULL);
18864 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18865 
18866 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18867 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18868 		return;
18869 	}
18870 
18871 	ssc = sd_ssc_init(un);
18872 
18873 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18874 	    &lbasize, SD_PATH_DIRECT) != 0) {
18875 		SD_ERROR(SD_LOG_ERROR, un,
18876 		    "sd_target_change_task: fail to read capacity\n");
18877 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18878 		goto task_exit;
18879 	}
18880 
18881 	mutex_enter(SD_MUTEX(un));
18882 	if (capacity <= un->un_blockcount) {
18883 		mutex_exit(SD_MUTEX(un));
18884 		goto task_exit;
18885 	}
18886 
18887 	sd_update_block_info(un, lbasize, capacity);
18888 	mutex_exit(SD_MUTEX(un));
18889 
18890 	/*
18891 	 * If lun is EFI labeled and lun capacity is greater than the
18892 	 * capacity contained in the label, log a sys event.
18893 	 */
18894 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18895 	    (void*)SD_PATH_DIRECT) == 0) {
18896 		mutex_enter(SD_MUTEX(un));
18897 		if (un->un_f_blockcount_is_valid &&
18898 		    un->un_blockcount > label_cap) {
18899 			mutex_exit(SD_MUTEX(un));
18900 			sd_log_lun_expansion_event(un, KM_SLEEP);
18901 		} else {
18902 			mutex_exit(SD_MUTEX(un));
18903 		}
18904 	}
18905 
18906 task_exit:
18907 	sd_ssc_fini(ssc);
18908 }
18909 
18910 /*
18911  *    Function: sd_log_lun_expansion_event
18912  *
18913  * Description: Log lun expansion sys event
18914  *
18915  *     Context: Never called from interrupt context
18916  */
18917 static void
18918 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18919 {
18920 	int err;
18921 	char			*path;
18922 	nvlist_t		*dle_attr_list;
18923 
18924 	/* Allocate and build sysevent attribute list */
18925 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18926 	if (err != 0) {
18927 		SD_ERROR(SD_LOG_ERROR, un,
18928 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18929 		return;
18930 	}
18931 
18932 	path = kmem_alloc(MAXPATHLEN, km_flag);
18933 	if (path == NULL) {
18934 		nvlist_free(dle_attr_list);
18935 		SD_ERROR(SD_LOG_ERROR, un,
18936 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18937 		return;
18938 	}
18939 	/*
18940 	 * Add path attribute to identify the lun.
18941 	 * We are using minor node 'a' as the sysevent attribute.
18942 	 */
18943 	(void) snprintf(path, MAXPATHLEN, "/devices");
18944 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
18945 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
18946 	    ":a");
18947 
18948 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
18949 	if (err != 0) {
18950 		nvlist_free(dle_attr_list);
18951 		kmem_free(path, MAXPATHLEN);
18952 		SD_ERROR(SD_LOG_ERROR, un,
18953 		    "sd_log_lun_expansion_event: fail to add attribute\n");
18954 		return;
18955 	}
18956 
18957 	/* Log dynamic lun expansion sysevent */
18958 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
18959 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
18960 	if (err != DDI_SUCCESS) {
18961 		SD_ERROR(SD_LOG_ERROR, un,
18962 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
18963 	}
18964 
18965 	nvlist_free(dle_attr_list);
18966 	kmem_free(path, MAXPATHLEN);
18967 }
18968 
18969 /*
18970  *    Function: sd_media_change_task
18971  *
18972  * Description: Recovery action for CDROM to become available.
18973  *
18974  *     Context: Executes in a taskq() thread context
18975  */
18976 
18977 static void
18978 sd_media_change_task(void *arg)
18979 {
18980 	struct	scsi_pkt	*pktp = arg;
18981 	struct	sd_lun		*un;
18982 	struct	buf		*bp;
18983 	struct	sd_xbuf		*xp;
18984 	int	err		= 0;
18985 	int	retry_count	= 0;
18986 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18987 	struct	sd_sense_info	si;
18988 
18989 	ASSERT(pktp != NULL);
18990 	bp = (struct buf *)pktp->pkt_private;
18991 	ASSERT(bp != NULL);
18992 	xp = SD_GET_XBUF(bp);
18993 	ASSERT(xp != NULL);
18994 	un = SD_GET_UN(bp);
18995 	ASSERT(un != NULL);
18996 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18997 	ASSERT(un->un_f_monitor_media_state);
18998 
18999 	si.ssi_severity = SCSI_ERR_INFO;
19000 	si.ssi_pfa_flag = FALSE;
19001 
19002 	/*
19003 	 * When a reset is issued on a CDROM, it takes a long time to
19004 	 * recover. First few attempts to read capacity and other things
19005 	 * related to handling unit attention fail (with a ASC 0x4 and
19006 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19007 	 * to limit the retries in other cases of genuine failures like
19008 	 * no media in drive.
19009 	 */
19010 	while (retry_count++ < retry_limit) {
19011 		if ((err = sd_handle_mchange(un)) == 0) {
19012 			break;
19013 		}
19014 		if (err == EAGAIN) {
19015 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19016 		}
19017 		/* Sleep for 0.5 sec. & try again */
19018 		delay(drv_usectohz(500000));
19019 	}
19020 
19021 	/*
19022 	 * Dispatch (retry or fail) the original command here,
19023 	 * along with appropriate console messages....
19024 	 *
19025 	 * Must grab the mutex before calling sd_retry_command,
19026 	 * sd_print_sense_msg and sd_return_failed_command.
19027 	 */
19028 	mutex_enter(SD_MUTEX(un));
19029 	if (err != SD_CMD_SUCCESS) {
19030 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19031 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19032 		si.ssi_severity = SCSI_ERR_FATAL;
19033 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19034 		sd_return_failed_command(un, bp, EIO);
19035 	} else {
19036 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19037 		    &si, EIO, (clock_t)0, NULL);
19038 	}
19039 	mutex_exit(SD_MUTEX(un));
19040 }
19041 
19042 
19043 
19044 /*
19045  *    Function: sd_handle_mchange
19046  *
19047  * Description: Perform geometry validation & other recovery when CDROM
19048  *		has been removed from drive.
19049  *
19050  * Return Code: 0 for success
19051  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19052  *		sd_send_scsi_READ_CAPACITY()
19053  *
19054  *     Context: Executes in a taskq() thread context
19055  */
19056 
19057 static int
19058 sd_handle_mchange(struct sd_lun *un)
19059 {
19060 	uint64_t	capacity;
19061 	uint32_t	lbasize;
19062 	int		rval;
19063 	sd_ssc_t	*ssc;
19064 
19065 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19066 	ASSERT(un->un_f_monitor_media_state);
19067 
19068 	ssc = sd_ssc_init(un);
19069 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19070 	    SD_PATH_DIRECT_PRIORITY);
19071 
19072 	if (rval != 0)
19073 		goto failed;
19074 
19075 	mutex_enter(SD_MUTEX(un));
19076 	sd_update_block_info(un, lbasize, capacity);
19077 
19078 	if (un->un_errstats != NULL) {
19079 		struct	sd_errstats *stp =
19080 		    (struct sd_errstats *)un->un_errstats->ks_data;
19081 		stp->sd_capacity.value.ui64 = (uint64_t)
19082 		    ((uint64_t)un->un_blockcount *
19083 		    (uint64_t)un->un_tgt_blocksize);
19084 	}
19085 
19086 	/*
19087 	 * Check if the media in the device is writable or not
19088 	 */
19089 	if (ISCD(un)) {
19090 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19091 	}
19092 
19093 	/*
19094 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19095 	 * valid geometry.
19096 	 */
19097 	mutex_exit(SD_MUTEX(un));
19098 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19099 
19100 
19101 	if (cmlb_validate(un->un_cmlbhandle, 0,
19102 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19103 		sd_ssc_fini(ssc);
19104 		return (EIO);
19105 	} else {
19106 		if (un->un_f_pkstats_enabled) {
19107 			sd_set_pstats(un);
19108 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19109 			    "sd_handle_mchange: un:0x%p pstats created and "
19110 			    "set\n", un);
19111 		}
19112 	}
19113 
19114 	/*
19115 	 * Try to lock the door
19116 	 */
19117 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19118 	    SD_PATH_DIRECT_PRIORITY);
19119 failed:
19120 	if (rval != 0)
19121 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19122 	sd_ssc_fini(ssc);
19123 	return (rval);
19124 }
19125 
19126 
19127 /*
19128  *    Function: sd_send_scsi_DOORLOCK
19129  *
19130  * Description: Issue the scsi DOOR LOCK command
19131  *
19132  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19133  *                      structure for this target.
19134  *		flag  - SD_REMOVAL_ALLOW
19135  *			SD_REMOVAL_PREVENT
19136  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19137  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19138  *			to use the USCSI "direct" chain and bypass the normal
19139  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19140  *			command is issued as part of an error recovery action.
19141  *
19142  * Return Code: 0   - Success
19143  *		errno return code from sd_ssc_send()
19144  *
19145  *     Context: Can sleep.
19146  */
19147 
19148 static int
19149 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19150 {
19151 	struct scsi_extended_sense	sense_buf;
19152 	union scsi_cdb		cdb;
19153 	struct uscsi_cmd	ucmd_buf;
19154 	int			status;
19155 	struct sd_lun		*un;
19156 
19157 	ASSERT(ssc != NULL);
19158 	un = ssc->ssc_un;
19159 	ASSERT(un != NULL);
19160 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19161 
19162 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19163 
19164 	/* already determined doorlock is not supported, fake success */
19165 	if (un->un_f_doorlock_supported == FALSE) {
19166 		return (0);
19167 	}
19168 
19169 	/*
19170 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19171 	 * ignore the command so we can complete the eject
19172 	 * operation.
19173 	 */
19174 	if (flag == SD_REMOVAL_PREVENT) {
19175 		mutex_enter(SD_MUTEX(un));
19176 		if (un->un_f_ejecting == TRUE) {
19177 			mutex_exit(SD_MUTEX(un));
19178 			return (EAGAIN);
19179 		}
19180 		mutex_exit(SD_MUTEX(un));
19181 	}
19182 
19183 	bzero(&cdb, sizeof (cdb));
19184 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19185 
19186 	cdb.scc_cmd = SCMD_DOORLOCK;
19187 	cdb.cdb_opaque[4] = (uchar_t)flag;
19188 
19189 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19190 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19191 	ucmd_buf.uscsi_bufaddr	= NULL;
19192 	ucmd_buf.uscsi_buflen	= 0;
19193 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19194 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19195 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19196 	ucmd_buf.uscsi_timeout	= 15;
19197 
19198 	SD_TRACE(SD_LOG_IO, un,
19199 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19200 
19201 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19202 	    UIO_SYSSPACE, path_flag);
19203 
19204 	if (status == 0)
19205 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19206 
19207 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19208 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19209 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19210 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19211 
19212 		/* fake success and skip subsequent doorlock commands */
19213 		un->un_f_doorlock_supported = FALSE;
19214 		return (0);
19215 	}
19216 
19217 	return (status);
19218 }
19219 
19220 /*
19221  *    Function: sd_send_scsi_READ_CAPACITY
19222  *
19223  * Description: This routine uses the scsi READ CAPACITY command to determine
19224  *		the device capacity in number of blocks and the device native
19225  *		block size. If this function returns a failure, then the
19226  *		values in *capp and *lbap are undefined.  If the capacity
19227  *		returned is 0xffffffff then the lun is too large for a
19228  *		normal READ CAPACITY command and the results of a
19229  *		READ CAPACITY 16 will be used instead.
19230  *
19231  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19232  *		capp - ptr to unsigned 64-bit variable to receive the
19233  *			capacity value from the command.
19234  *		lbap - ptr to unsigned 32-bit varaible to receive the
19235  *			block size value from the command
19236  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19237  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19238  *			to use the USCSI "direct" chain and bypass the normal
19239  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19240  *			command is issued as part of an error recovery action.
19241  *
19242  * Return Code: 0   - Success
19243  *		EIO - IO error
19244  *		EACCES - Reservation conflict detected
19245  *		EAGAIN - Device is becoming ready
19246  *		errno return code from sd_ssc_send()
19247  *
19248  *     Context: Can sleep.  Blocks until command completes.
19249  */
19250 
19251 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19252 
19253 static int
19254 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19255 	int path_flag)
19256 {
19257 	struct	scsi_extended_sense	sense_buf;
19258 	struct	uscsi_cmd	ucmd_buf;
19259 	union	scsi_cdb	cdb;
19260 	uint32_t		*capacity_buf;
19261 	uint64_t		capacity;
19262 	uint32_t		lbasize;
19263 	int			status;
19264 	struct sd_lun		*un;
19265 
19266 	ASSERT(ssc != NULL);
19267 
19268 	un = ssc->ssc_un;
19269 	ASSERT(un != NULL);
19270 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19271 	ASSERT(capp != NULL);
19272 	ASSERT(lbap != NULL);
19273 
19274 	SD_TRACE(SD_LOG_IO, un,
19275 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19276 
19277 	/*
19278 	 * First send a READ_CAPACITY command to the target.
19279 	 * (This command is mandatory under SCSI-2.)
19280 	 *
19281 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19282 	 * Medium Indicator bit is cleared.  The address field must be
19283 	 * zero if the PMI bit is zero.
19284 	 */
19285 	bzero(&cdb, sizeof (cdb));
19286 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19287 
19288 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19289 
19290 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19291 
19292 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19293 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19294 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19295 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19296 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19297 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19298 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19299 	ucmd_buf.uscsi_timeout	= 60;
19300 
19301 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19302 	    UIO_SYSSPACE, path_flag);
19303 
19304 	switch (status) {
19305 	case 0:
19306 		/* Return failure if we did not get valid capacity data. */
19307 		if (ucmd_buf.uscsi_resid != 0) {
19308 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19309 			    "sd_send_scsi_READ_CAPACITY received invalid "
19310 			    "capacity data");
19311 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19312 			return (EIO);
19313 		}
19314 		/*
19315 		 * Read capacity and block size from the READ CAPACITY 10 data.
19316 		 * This data may be adjusted later due to device specific
19317 		 * issues.
19318 		 *
19319 		 * According to the SCSI spec, the READ CAPACITY 10
19320 		 * command returns the following:
19321 		 *
19322 		 *  bytes 0-3: Maximum logical block address available.
19323 		 *		(MSB in byte:0 & LSB in byte:3)
19324 		 *
19325 		 *  bytes 4-7: Block length in bytes
19326 		 *		(MSB in byte:4 & LSB in byte:7)
19327 		 *
19328 		 */
19329 		capacity = BE_32(capacity_buf[0]);
19330 		lbasize = BE_32(capacity_buf[1]);
19331 
19332 		/*
19333 		 * Done with capacity_buf
19334 		 */
19335 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19336 
19337 		/*
19338 		 * if the reported capacity is set to all 0xf's, then
19339 		 * this disk is too large and requires SBC-2 commands.
19340 		 * Reissue the request using READ CAPACITY 16.
19341 		 */
19342 		if (capacity == 0xffffffff) {
19343 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19344 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19345 			    &lbasize, path_flag);
19346 			if (status != 0) {
19347 				return (status);
19348 			}
19349 		}
19350 		break;	/* Success! */
19351 	case EIO:
19352 		switch (ucmd_buf.uscsi_status) {
19353 		case STATUS_RESERVATION_CONFLICT:
19354 			status = EACCES;
19355 			break;
19356 		case STATUS_CHECK:
19357 			/*
19358 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19359 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19360 			 */
19361 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19362 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19363 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19364 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19365 				return (EAGAIN);
19366 			}
19367 			break;
19368 		default:
19369 			break;
19370 		}
19371 		/* FALLTHRU */
19372 	default:
19373 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19374 		return (status);
19375 	}
19376 
19377 	/*
19378 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19379 	 * (2352 and 0 are common) so for these devices always force the value
19380 	 * to 2048 as required by the ATAPI specs.
19381 	 */
19382 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19383 		lbasize = 2048;
19384 	}
19385 
19386 	/*
19387 	 * Get the maximum LBA value from the READ CAPACITY data.
19388 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19389 	 * was cleared when issuing the command. This means that the LBA
19390 	 * returned from the device is the LBA of the last logical block
19391 	 * on the logical unit.  The actual logical block count will be
19392 	 * this value plus one.
19393 	 *
19394 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19395 	 * so scale the capacity value to reflect this.
19396 	 */
19397 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19398 
19399 	/*
19400 	 * Copy the values from the READ CAPACITY command into the space
19401 	 * provided by the caller.
19402 	 */
19403 	*capp = capacity;
19404 	*lbap = lbasize;
19405 
19406 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19407 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19408 
19409 	/*
19410 	 * Both the lbasize and capacity from the device must be nonzero,
19411 	 * otherwise we assume that the values are not valid and return
19412 	 * failure to the caller. (4203735)
19413 	 */
19414 	if ((capacity == 0) || (lbasize == 0)) {
19415 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19416 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19417 		    "capacity %llu lbasize %d", capacity, lbasize);
19418 		return (EIO);
19419 	}
19420 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19421 	return (0);
19422 }
19423 
19424 /*
19425  *    Function: sd_send_scsi_READ_CAPACITY_16
19426  *
19427  * Description: This routine uses the scsi READ CAPACITY 16 command to
19428  *		determine the device capacity in number of blocks and the
19429  *		device native block size.  If this function returns a failure,
19430  *		then the values in *capp and *lbap are undefined.
19431  *		This routine should always be called by
19432  *		sd_send_scsi_READ_CAPACITY which will appy any device
19433  *		specific adjustments to capacity and lbasize.
19434  *
19435  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19436  *		capp - ptr to unsigned 64-bit variable to receive the
19437  *			capacity value from the command.
19438  *		lbap - ptr to unsigned 32-bit varaible to receive the
19439  *			block size value from the command
19440  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19441  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19442  *			to use the USCSI "direct" chain and bypass the normal
19443  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19444  *			this command is issued as part of an error recovery
19445  *			action.
19446  *
19447  * Return Code: 0   - Success
19448  *		EIO - IO error
19449  *		EACCES - Reservation conflict detected
19450  *		EAGAIN - Device is becoming ready
19451  *		errno return code from sd_ssc_send()
19452  *
19453  *     Context: Can sleep.  Blocks until command completes.
19454  */
19455 
19456 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19457 
19458 static int
19459 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19460 	uint32_t *lbap, int path_flag)
19461 {
19462 	struct	scsi_extended_sense	sense_buf;
19463 	struct	uscsi_cmd	ucmd_buf;
19464 	union	scsi_cdb	cdb;
19465 	uint64_t		*capacity16_buf;
19466 	uint64_t		capacity;
19467 	uint32_t		lbasize;
19468 	int			status;
19469 	struct sd_lun		*un;
19470 
19471 	ASSERT(ssc != NULL);
19472 
19473 	un = ssc->ssc_un;
19474 	ASSERT(un != NULL);
19475 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19476 	ASSERT(capp != NULL);
19477 	ASSERT(lbap != NULL);
19478 
19479 	SD_TRACE(SD_LOG_IO, un,
19480 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19481 
19482 	/*
19483 	 * First send a READ_CAPACITY_16 command to the target.
19484 	 *
19485 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19486 	 * Medium Indicator bit is cleared.  The address field must be
19487 	 * zero if the PMI bit is zero.
19488 	 */
19489 	bzero(&cdb, sizeof (cdb));
19490 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19491 
19492 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19493 
19494 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19495 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19496 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19497 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19498 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19499 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19500 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19501 	ucmd_buf.uscsi_timeout	= 60;
19502 
19503 	/*
19504 	 * Read Capacity (16) is a Service Action In command.  One
19505 	 * command byte (0x9E) is overloaded for multiple operations,
19506 	 * with the second CDB byte specifying the desired operation
19507 	 */
19508 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19509 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19510 
19511 	/*
19512 	 * Fill in allocation length field
19513 	 */
19514 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19515 
19516 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19517 	    UIO_SYSSPACE, path_flag);
19518 
19519 	switch (status) {
19520 	case 0:
19521 		/* Return failure if we did not get valid capacity data. */
19522 		if (ucmd_buf.uscsi_resid > 20) {
19523 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19524 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
19525 			    "capacity data");
19526 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19527 			return (EIO);
19528 		}
19529 
19530 		/*
19531 		 * Read capacity and block size from the READ CAPACITY 10 data.
19532 		 * This data may be adjusted later due to device specific
19533 		 * issues.
19534 		 *
19535 		 * According to the SCSI spec, the READ CAPACITY 10
19536 		 * command returns the following:
19537 		 *
19538 		 *  bytes 0-7: Maximum logical block address available.
19539 		 *		(MSB in byte:0 & LSB in byte:7)
19540 		 *
19541 		 *  bytes 8-11: Block length in bytes
19542 		 *		(MSB in byte:8 & LSB in byte:11)
19543 		 *
19544 		 */
19545 		capacity = BE_64(capacity16_buf[0]);
19546 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19547 
19548 		/*
19549 		 * Done with capacity16_buf
19550 		 */
19551 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19552 
19553 		/*
19554 		 * if the reported capacity is set to all 0xf's, then
19555 		 * this disk is too large.  This could only happen with
19556 		 * a device that supports LBAs larger than 64 bits which
19557 		 * are not defined by any current T10 standards.
19558 		 */
19559 		if (capacity == 0xffffffffffffffff) {
19560 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19561 			    "disk is too large");
19562 			return (EIO);
19563 		}
19564 		break;	/* Success! */
19565 	case EIO:
19566 		switch (ucmd_buf.uscsi_status) {
19567 		case STATUS_RESERVATION_CONFLICT:
19568 			status = EACCES;
19569 			break;
19570 		case STATUS_CHECK:
19571 			/*
19572 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19573 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19574 			 */
19575 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19576 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19577 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19578 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19579 				return (EAGAIN);
19580 			}
19581 			break;
19582 		default:
19583 			break;
19584 		}
19585 		/* FALLTHRU */
19586 	default:
19587 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19588 		return (status);
19589 	}
19590 
19591 	*capp = capacity;
19592 	*lbap = lbasize;
19593 
19594 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19595 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19596 
19597 	return (0);
19598 }
19599 
19600 
19601 /*
19602  *    Function: sd_send_scsi_START_STOP_UNIT
19603  *
19604  * Description: Issue a scsi START STOP UNIT command to the target.
19605  *
19606  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19607  *                       structure for this target.
19608  *		flag  - SD_TARGET_START
19609  *			SD_TARGET_STOP
19610  *			SD_TARGET_EJECT
19611  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19612  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19613  *			to use the USCSI "direct" chain and bypass the normal
19614  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19615  *			command is issued as part of an error recovery action.
19616  *
19617  * Return Code: 0   - Success
19618  *		EIO - IO error
19619  *		EACCES - Reservation conflict detected
19620  *		ENXIO  - Not Ready, medium not present
19621  *		errno return code from sd_ssc_send()
19622  *
19623  *     Context: Can sleep.
19624  */
19625 
19626 static int
19627 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19628 {
19629 	struct	scsi_extended_sense	sense_buf;
19630 	union scsi_cdb		cdb;
19631 	struct uscsi_cmd	ucmd_buf;
19632 	int			status;
19633 	struct sd_lun		*un;
19634 
19635 	ASSERT(ssc != NULL);
19636 	un = ssc->ssc_un;
19637 	ASSERT(un != NULL);
19638 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19639 
19640 	SD_TRACE(SD_LOG_IO, un,
19641 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19642 
19643 	if (un->un_f_check_start_stop &&
19644 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19645 	    (un->un_f_start_stop_supported != TRUE)) {
19646 		return (0);
19647 	}
19648 
19649 	/*
19650 	 * If we are performing an eject operation and
19651 	 * we receive any command other than SD_TARGET_EJECT
19652 	 * we should immediately return.
19653 	 */
19654 	if (flag != SD_TARGET_EJECT) {
19655 		mutex_enter(SD_MUTEX(un));
19656 		if (un->un_f_ejecting == TRUE) {
19657 			mutex_exit(SD_MUTEX(un));
19658 			return (EAGAIN);
19659 		}
19660 		mutex_exit(SD_MUTEX(un));
19661 	}
19662 
19663 	bzero(&cdb, sizeof (cdb));
19664 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19665 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19666 
19667 	cdb.scc_cmd = SCMD_START_STOP;
19668 	cdb.cdb_opaque[4] = (uchar_t)flag;
19669 
19670 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19671 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19672 	ucmd_buf.uscsi_bufaddr	= NULL;
19673 	ucmd_buf.uscsi_buflen	= 0;
19674 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19675 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19676 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19677 	ucmd_buf.uscsi_timeout	= 200;
19678 
19679 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19680 	    UIO_SYSSPACE, path_flag);
19681 
19682 	switch (status) {
19683 	case 0:
19684 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19685 		break;	/* Success! */
19686 	case EIO:
19687 		switch (ucmd_buf.uscsi_status) {
19688 		case STATUS_RESERVATION_CONFLICT:
19689 			status = EACCES;
19690 			break;
19691 		case STATUS_CHECK:
19692 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19693 				switch (scsi_sense_key(
19694 				    (uint8_t *)&sense_buf)) {
19695 				case KEY_ILLEGAL_REQUEST:
19696 					status = ENOTSUP;
19697 					break;
19698 				case KEY_NOT_READY:
19699 					if (scsi_sense_asc(
19700 					    (uint8_t *)&sense_buf)
19701 					    == 0x3A) {
19702 						status = ENXIO;
19703 					}
19704 					break;
19705 				default:
19706 					break;
19707 				}
19708 			}
19709 			break;
19710 		default:
19711 			break;
19712 		}
19713 		break;
19714 	default:
19715 		break;
19716 	}
19717 
19718 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19719 
19720 	return (status);
19721 }
19722 
19723 
19724 /*
19725  *    Function: sd_start_stop_unit_callback
19726  *
19727  * Description: timeout(9F) callback to begin recovery process for a
19728  *		device that has spun down.
19729  *
19730  *   Arguments: arg - pointer to associated softstate struct.
19731  *
19732  *     Context: Executes in a timeout(9F) thread context
19733  */
19734 
19735 static void
19736 sd_start_stop_unit_callback(void *arg)
19737 {
19738 	struct sd_lun	*un = arg;
19739 	ASSERT(un != NULL);
19740 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19741 
19742 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19743 
19744 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19745 }
19746 
19747 
19748 /*
19749  *    Function: sd_start_stop_unit_task
19750  *
19751  * Description: Recovery procedure when a drive is spun down.
19752  *
19753  *   Arguments: arg - pointer to associated softstate struct.
19754  *
19755  *     Context: Executes in a taskq() thread context
19756  */
19757 
19758 static void
19759 sd_start_stop_unit_task(void *arg)
19760 {
19761 	struct sd_lun	*un = arg;
19762 	sd_ssc_t	*ssc;
19763 	int		rval;
19764 
19765 	ASSERT(un != NULL);
19766 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19767 
19768 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19769 
19770 	/*
19771 	 * Some unformatted drives report not ready error, no need to
19772 	 * restart if format has been initiated.
19773 	 */
19774 	mutex_enter(SD_MUTEX(un));
19775 	if (un->un_f_format_in_progress == TRUE) {
19776 		mutex_exit(SD_MUTEX(un));
19777 		return;
19778 	}
19779 	mutex_exit(SD_MUTEX(un));
19780 
19781 	/*
19782 	 * When a START STOP command is issued from here, it is part of a
19783 	 * failure recovery operation and must be issued before any other
19784 	 * commands, including any pending retries. Thus it must be sent
19785 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19786 	 * succeeds or not, we will start I/O after the attempt.
19787 	 */
19788 	ssc = sd_ssc_init(un);
19789 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19790 	    SD_PATH_DIRECT_PRIORITY);
19791 	if (rval != 0)
19792 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19793 	sd_ssc_fini(ssc);
19794 	/*
19795 	 * The above call blocks until the START_STOP_UNIT command completes.
19796 	 * Now that it has completed, we must re-try the original IO that
19797 	 * received the NOT READY condition in the first place. There are
19798 	 * three possible conditions here:
19799 	 *
19800 	 *  (1) The original IO is on un_retry_bp.
19801 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19802 	 *	is NULL.
19803 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19804 	 *	points to some other, unrelated bp.
19805 	 *
19806 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19807 	 * as the argument. If un_retry_bp is NULL, this will initiate
19808 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19809 	 * then this will process the bp on un_retry_bp. That may or may not
19810 	 * be the original IO, but that does not matter: the important thing
19811 	 * is to keep the IO processing going at this point.
19812 	 *
19813 	 * Note: This is a very specific error recovery sequence associated
19814 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19815 	 * serialize the I/O with completion of the spin-up.
19816 	 */
19817 	mutex_enter(SD_MUTEX(un));
19818 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19819 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19820 	    un, un->un_retry_bp);
19821 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19822 	sd_start_cmds(un, un->un_retry_bp);
19823 	mutex_exit(SD_MUTEX(un));
19824 
19825 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19826 }
19827 
19828 
19829 /*
19830  *    Function: sd_send_scsi_INQUIRY
19831  *
19832  * Description: Issue the scsi INQUIRY command.
19833  *
19834  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19835  *                      structure for this target.
19836  *		bufaddr
19837  *		buflen
19838  *		evpd
19839  *		page_code
19840  *		page_length
19841  *
19842  * Return Code: 0   - Success
19843  *		errno return code from sd_ssc_send()
19844  *
19845  *     Context: Can sleep. Does not return until command is completed.
19846  */
19847 
19848 static int
19849 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19850 	uchar_t evpd, uchar_t page_code, size_t *residp)
19851 {
19852 	union scsi_cdb		cdb;
19853 	struct uscsi_cmd	ucmd_buf;
19854 	int			status;
19855 	struct sd_lun		*un;
19856 
19857 	ASSERT(ssc != NULL);
19858 	un = ssc->ssc_un;
19859 	ASSERT(un != NULL);
19860 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19861 	ASSERT(bufaddr != NULL);
19862 
19863 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19864 
19865 	bzero(&cdb, sizeof (cdb));
19866 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19867 	bzero(bufaddr, buflen);
19868 
19869 	cdb.scc_cmd = SCMD_INQUIRY;
19870 	cdb.cdb_opaque[1] = evpd;
19871 	cdb.cdb_opaque[2] = page_code;
19872 	FORMG0COUNT(&cdb, buflen);
19873 
19874 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19875 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19876 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19877 	ucmd_buf.uscsi_buflen	= buflen;
19878 	ucmd_buf.uscsi_rqbuf	= NULL;
19879 	ucmd_buf.uscsi_rqlen	= 0;
19880 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19881 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19882 
19883 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19884 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19885 
19886 	/*
19887 	 * Only handle status == 0, the upper-level caller
19888 	 * will put different assessment based on the context.
19889 	 */
19890 	if (status == 0)
19891 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19892 
19893 	if ((status == 0) && (residp != NULL)) {
19894 		*residp = ucmd_buf.uscsi_resid;
19895 	}
19896 
19897 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19898 
19899 	return (status);
19900 }
19901 
19902 
19903 /*
19904  *    Function: sd_send_scsi_TEST_UNIT_READY
19905  *
19906  * Description: Issue the scsi TEST UNIT READY command.
19907  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19908  *		prevent retrying failed commands. Use this when the intent
19909  *		is either to check for device readiness, to clear a Unit
19910  *		Attention, or to clear any outstanding sense data.
19911  *		However under specific conditions the expected behavior
19912  *		is for retries to bring a device ready, so use the flag
19913  *		with caution.
19914  *
19915  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19916  *                      structure for this target.
19917  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19918  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19919  *			0: dont check for media present, do retries on cmd.
19920  *
19921  * Return Code: 0   - Success
19922  *		EIO - IO error
19923  *		EACCES - Reservation conflict detected
19924  *		ENXIO  - Not Ready, medium not present
19925  *		errno return code from sd_ssc_send()
19926  *
19927  *     Context: Can sleep. Does not return until command is completed.
19928  */
19929 
19930 static int
19931 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19932 {
19933 	struct	scsi_extended_sense	sense_buf;
19934 	union scsi_cdb		cdb;
19935 	struct uscsi_cmd	ucmd_buf;
19936 	int			status;
19937 	struct sd_lun		*un;
19938 
19939 	ASSERT(ssc != NULL);
19940 	un = ssc->ssc_un;
19941 	ASSERT(un != NULL);
19942 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19943 
19944 	SD_TRACE(SD_LOG_IO, un,
19945 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19946 
19947 	/*
19948 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19949 	 * timeouts when they receive a TUR and the queue is not empty. Check
19950 	 * the configuration flag set during attach (indicating the drive has
19951 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19952 	 * TUR. If there are
19953 	 * pending commands return success, this is a bit arbitrary but is ok
19954 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19955 	 * configurations.
19956 	 */
19957 	if (un->un_f_cfg_tur_check == TRUE) {
19958 		mutex_enter(SD_MUTEX(un));
19959 		if (un->un_ncmds_in_transport != 0) {
19960 			mutex_exit(SD_MUTEX(un));
19961 			return (0);
19962 		}
19963 		mutex_exit(SD_MUTEX(un));
19964 	}
19965 
19966 	bzero(&cdb, sizeof (cdb));
19967 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19968 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19969 
19970 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19971 
19972 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19973 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19974 	ucmd_buf.uscsi_bufaddr	= NULL;
19975 	ucmd_buf.uscsi_buflen	= 0;
19976 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19977 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19978 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19979 
19980 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19981 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19982 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19983 	}
19984 	ucmd_buf.uscsi_timeout	= 60;
19985 
19986 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19987 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
19988 	    SD_PATH_STANDARD));
19989 
19990 	switch (status) {
19991 	case 0:
19992 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19993 		break;	/* Success! */
19994 	case EIO:
19995 		switch (ucmd_buf.uscsi_status) {
19996 		case STATUS_RESERVATION_CONFLICT:
19997 			status = EACCES;
19998 			break;
19999 		case STATUS_CHECK:
20000 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20001 				break;
20002 			}
20003 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20004 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20005 			    KEY_NOT_READY) &&
20006 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20007 				status = ENXIO;
20008 			}
20009 			break;
20010 		default:
20011 			break;
20012 		}
20013 		break;
20014 	default:
20015 		break;
20016 	}
20017 
20018 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20019 
20020 	return (status);
20021 }
20022 
20023 /*
20024  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20025  *
20026  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20027  *
20028  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20029  *                      structure for this target.
20030  *
20031  * Return Code: 0   - Success
20032  *		EACCES
20033  *		ENOTSUP
20034  *		errno return code from sd_ssc_send()
20035  *
20036  *     Context: Can sleep. Does not return until command is completed.
20037  */
20038 
20039 static int
20040 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20041 	uint16_t data_len, uchar_t *data_bufp)
20042 {
20043 	struct scsi_extended_sense	sense_buf;
20044 	union scsi_cdb		cdb;
20045 	struct uscsi_cmd	ucmd_buf;
20046 	int			status;
20047 	int			no_caller_buf = FALSE;
20048 	struct sd_lun		*un;
20049 
20050 	ASSERT(ssc != NULL);
20051 	un = ssc->ssc_un;
20052 	ASSERT(un != NULL);
20053 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20054 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20055 
20056 	SD_TRACE(SD_LOG_IO, un,
20057 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20058 
20059 	bzero(&cdb, sizeof (cdb));
20060 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20061 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20062 	if (data_bufp == NULL) {
20063 		/* Allocate a default buf if the caller did not give one */
20064 		ASSERT(data_len == 0);
20065 		data_len  = MHIOC_RESV_KEY_SIZE;
20066 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20067 		no_caller_buf = TRUE;
20068 	}
20069 
20070 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20071 	cdb.cdb_opaque[1] = usr_cmd;
20072 	FORMG1COUNT(&cdb, data_len);
20073 
20074 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20075 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20076 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20077 	ucmd_buf.uscsi_buflen	= data_len;
20078 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20079 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20080 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20081 	ucmd_buf.uscsi_timeout	= 60;
20082 
20083 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20084 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20085 
20086 	switch (status) {
20087 	case 0:
20088 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20089 
20090 		break;	/* Success! */
20091 	case EIO:
20092 		switch (ucmd_buf.uscsi_status) {
20093 		case STATUS_RESERVATION_CONFLICT:
20094 			status = EACCES;
20095 			break;
20096 		case STATUS_CHECK:
20097 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20098 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20099 			    KEY_ILLEGAL_REQUEST)) {
20100 				status = ENOTSUP;
20101 			}
20102 			break;
20103 		default:
20104 			break;
20105 		}
20106 		break;
20107 	default:
20108 		break;
20109 	}
20110 
20111 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20112 
20113 	if (no_caller_buf == TRUE) {
20114 		kmem_free(data_bufp, data_len);
20115 	}
20116 
20117 	return (status);
20118 }
20119 
20120 
20121 /*
20122  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20123  *
20124  * Description: This routine is the driver entry point for handling CD-ROM
20125  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20126  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20127  *		device.
20128  *
20129  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20130  *                      for the target.
20131  *		usr_cmd SCSI-3 reservation facility command (one of
20132  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20133  *			SD_SCSI3_PREEMPTANDABORT)
20134  *		usr_bufp - user provided pointer register, reserve descriptor or
20135  *			preempt and abort structure (mhioc_register_t,
20136  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20137  *
20138  * Return Code: 0   - Success
20139  *		EACCES
20140  *		ENOTSUP
20141  *		errno return code from sd_ssc_send()
20142  *
20143  *     Context: Can sleep. Does not return until command is completed.
20144  */
20145 
20146 static int
20147 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20148 	uchar_t	*usr_bufp)
20149 {
20150 	struct scsi_extended_sense	sense_buf;
20151 	union scsi_cdb		cdb;
20152 	struct uscsi_cmd	ucmd_buf;
20153 	int			status;
20154 	uchar_t			data_len = sizeof (sd_prout_t);
20155 	sd_prout_t		*prp;
20156 	struct sd_lun		*un;
20157 
20158 	ASSERT(ssc != NULL);
20159 	un = ssc->ssc_un;
20160 	ASSERT(un != NULL);
20161 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20162 	ASSERT(data_len == 24);	/* required by scsi spec */
20163 
20164 	SD_TRACE(SD_LOG_IO, un,
20165 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20166 
20167 	if (usr_bufp == NULL) {
20168 		return (EINVAL);
20169 	}
20170 
20171 	bzero(&cdb, sizeof (cdb));
20172 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20173 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20174 	prp = kmem_zalloc(data_len, KM_SLEEP);
20175 
20176 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20177 	cdb.cdb_opaque[1] = usr_cmd;
20178 	FORMG1COUNT(&cdb, data_len);
20179 
20180 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20181 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20182 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20183 	ucmd_buf.uscsi_buflen	= data_len;
20184 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20185 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20186 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20187 	ucmd_buf.uscsi_timeout	= 60;
20188 
20189 	switch (usr_cmd) {
20190 	case SD_SCSI3_REGISTER: {
20191 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20192 
20193 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20194 		bcopy(ptr->newkey.key, prp->service_key,
20195 		    MHIOC_RESV_KEY_SIZE);
20196 		prp->aptpl = ptr->aptpl;
20197 		break;
20198 	}
20199 	case SD_SCSI3_RESERVE:
20200 	case SD_SCSI3_RELEASE: {
20201 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20202 
20203 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20204 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20205 		cdb.cdb_opaque[2] = ptr->type;
20206 		break;
20207 	}
20208 	case SD_SCSI3_PREEMPTANDABORT: {
20209 		mhioc_preemptandabort_t *ptr =
20210 		    (mhioc_preemptandabort_t *)usr_bufp;
20211 
20212 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20213 		bcopy(ptr->victim_key.key, prp->service_key,
20214 		    MHIOC_RESV_KEY_SIZE);
20215 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20216 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20217 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20218 		break;
20219 	}
20220 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20221 	{
20222 		mhioc_registerandignorekey_t *ptr;
20223 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20224 		bcopy(ptr->newkey.key,
20225 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20226 		prp->aptpl = ptr->aptpl;
20227 		break;
20228 	}
20229 	default:
20230 		ASSERT(FALSE);
20231 		break;
20232 	}
20233 
20234 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20235 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20236 
20237 	switch (status) {
20238 	case 0:
20239 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20240 		break;	/* Success! */
20241 	case EIO:
20242 		switch (ucmd_buf.uscsi_status) {
20243 		case STATUS_RESERVATION_CONFLICT:
20244 			status = EACCES;
20245 			break;
20246 		case STATUS_CHECK:
20247 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20248 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20249 			    KEY_ILLEGAL_REQUEST)) {
20250 				status = ENOTSUP;
20251 			}
20252 			break;
20253 		default:
20254 			break;
20255 		}
20256 		break;
20257 	default:
20258 		break;
20259 	}
20260 
20261 	kmem_free(prp, data_len);
20262 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20263 	return (status);
20264 }
20265 
20266 
20267 /*
20268  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20269  *
20270  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20271  *
20272  *   Arguments: un - pointer to the target's soft state struct
20273  *              dkc - pointer to the callback structure
20274  *
20275  * Return Code: 0 - success
20276  *		errno-type error code
20277  *
20278  *     Context: kernel thread context only.
20279  *
20280  *  _______________________________________________________________
20281  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20282  * |FLUSH_VOLATILE|              | operation                       |
20283  * |______________|______________|_________________________________|
20284  * | 0            | NULL         | Synchronous flush on both       |
20285  * |              |              | volatile and non-volatile cache |
20286  * |______________|______________|_________________________________|
20287  * | 1            | NULL         | Synchronous flush on volatile   |
20288  * |              |              | cache; disk drivers may suppress|
20289  * |              |              | flush if disk table indicates   |
20290  * |              |              | non-volatile cache              |
20291  * |______________|______________|_________________________________|
20292  * | 0            | !NULL        | Asynchronous flush on both      |
20293  * |              |              | volatile and non-volatile cache;|
20294  * |______________|______________|_________________________________|
20295  * | 1            | !NULL        | Asynchronous flush on volatile  |
20296  * |              |              | cache; disk drivers may suppress|
20297  * |              |              | flush if disk table indicates   |
20298  * |              |              | non-volatile cache              |
20299  * |______________|______________|_________________________________|
20300  *
20301  */
20302 
20303 static int
20304 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20305 {
20306 	struct sd_uscsi_info	*uip;
20307 	struct uscsi_cmd	*uscmd;
20308 	union scsi_cdb		*cdb;
20309 	struct buf		*bp;
20310 	int			rval = 0;
20311 	int			is_async;
20312 
20313 	SD_TRACE(SD_LOG_IO, un,
20314 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20315 
20316 	ASSERT(un != NULL);
20317 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20318 
20319 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20320 		is_async = FALSE;
20321 	} else {
20322 		is_async = TRUE;
20323 	}
20324 
20325 	mutex_enter(SD_MUTEX(un));
20326 	/* check whether cache flush should be suppressed */
20327 	if (un->un_f_suppress_cache_flush == TRUE) {
20328 		mutex_exit(SD_MUTEX(un));
20329 		/*
20330 		 * suppress the cache flush if the device is told to do
20331 		 * so by sd.conf or disk table
20332 		 */
20333 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20334 		    skip the cache flush since suppress_cache_flush is %d!\n",
20335 		    un->un_f_suppress_cache_flush);
20336 
20337 		if (is_async == TRUE) {
20338 			/* invoke callback for asynchronous flush */
20339 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20340 		}
20341 		return (rval);
20342 	}
20343 	mutex_exit(SD_MUTEX(un));
20344 
20345 	/*
20346 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20347 	 * set properly
20348 	 */
20349 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20350 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20351 
20352 	mutex_enter(SD_MUTEX(un));
20353 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20354 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20355 		/*
20356 		 * if the device supports SYNC_NV bit, turn on
20357 		 * the SYNC_NV bit to only flush volatile cache
20358 		 */
20359 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20360 	}
20361 	mutex_exit(SD_MUTEX(un));
20362 
20363 	/*
20364 	 * First get some memory for the uscsi_cmd struct and cdb
20365 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20366 	 */
20367 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20368 	uscmd->uscsi_cdblen = CDB_GROUP1;
20369 	uscmd->uscsi_cdb = (caddr_t)cdb;
20370 	uscmd->uscsi_bufaddr = NULL;
20371 	uscmd->uscsi_buflen = 0;
20372 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20373 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20374 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20375 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20376 	uscmd->uscsi_timeout = sd_io_time;
20377 
20378 	/*
20379 	 * Allocate an sd_uscsi_info struct and fill it with the info
20380 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20381 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20382 	 * since we allocate the buf here in this function, we do not
20383 	 * need to preserve the prior contents of b_private.
20384 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20385 	 */
20386 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20387 	uip->ui_flags = SD_PATH_DIRECT;
20388 	uip->ui_cmdp  = uscmd;
20389 
20390 	bp = getrbuf(KM_SLEEP);
20391 	bp->b_private = uip;
20392 
20393 	/*
20394 	 * Setup buffer to carry uscsi request.
20395 	 */
20396 	bp->b_flags  = B_BUSY;
20397 	bp->b_bcount = 0;
20398 	bp->b_blkno  = 0;
20399 
20400 	if (is_async == TRUE) {
20401 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20402 		uip->ui_dkc = *dkc;
20403 	}
20404 
20405 	bp->b_edev = SD_GET_DEV(un);
20406 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20407 
20408 	/*
20409 	 * Unset un_f_sync_cache_required flag
20410 	 */
20411 	mutex_enter(SD_MUTEX(un));
20412 	un->un_f_sync_cache_required = FALSE;
20413 	mutex_exit(SD_MUTEX(un));
20414 
20415 	(void) sd_uscsi_strategy(bp);
20416 
20417 	/*
20418 	 * If synchronous request, wait for completion
20419 	 * If async just return and let b_iodone callback
20420 	 * cleanup.
20421 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20422 	 * but it was also incremented in sd_uscsi_strategy(), so
20423 	 * we should be ok.
20424 	 */
20425 	if (is_async == FALSE) {
20426 		(void) biowait(bp);
20427 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20428 	}
20429 
20430 	return (rval);
20431 }
20432 
20433 
20434 static int
20435 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20436 {
20437 	struct sd_uscsi_info *uip;
20438 	struct uscsi_cmd *uscmd;
20439 	uint8_t *sense_buf;
20440 	struct sd_lun *un;
20441 	int status;
20442 	union scsi_cdb *cdb;
20443 
20444 	uip = (struct sd_uscsi_info *)(bp->b_private);
20445 	ASSERT(uip != NULL);
20446 
20447 	uscmd = uip->ui_cmdp;
20448 	ASSERT(uscmd != NULL);
20449 
20450 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20451 	ASSERT(sense_buf != NULL);
20452 
20453 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20454 	ASSERT(un != NULL);
20455 
20456 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20457 
20458 	status = geterror(bp);
20459 	switch (status) {
20460 	case 0:
20461 		break;	/* Success! */
20462 	case EIO:
20463 		switch (uscmd->uscsi_status) {
20464 		case STATUS_RESERVATION_CONFLICT:
20465 			/* Ignore reservation conflict */
20466 			status = 0;
20467 			goto done;
20468 
20469 		case STATUS_CHECK:
20470 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20471 			    (scsi_sense_key(sense_buf) ==
20472 			    KEY_ILLEGAL_REQUEST)) {
20473 				/* Ignore Illegal Request error */
20474 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20475 					mutex_enter(SD_MUTEX(un));
20476 					un->un_f_sync_nv_supported = FALSE;
20477 					mutex_exit(SD_MUTEX(un));
20478 					status = 0;
20479 					SD_TRACE(SD_LOG_IO, un,
20480 					    "un_f_sync_nv_supported \
20481 					    is set to false.\n");
20482 					goto done;
20483 				}
20484 
20485 				mutex_enter(SD_MUTEX(un));
20486 				un->un_f_sync_cache_supported = FALSE;
20487 				mutex_exit(SD_MUTEX(un));
20488 				SD_TRACE(SD_LOG_IO, un,
20489 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20490 				    un_f_sync_cache_supported set to false \
20491 				    with asc = %x, ascq = %x\n",
20492 				    scsi_sense_asc(sense_buf),
20493 				    scsi_sense_ascq(sense_buf));
20494 				status = ENOTSUP;
20495 				goto done;
20496 			}
20497 			break;
20498 		default:
20499 			break;
20500 		}
20501 		/* FALLTHRU */
20502 	default:
20503 		/*
20504 		 * Turn on the un_f_sync_cache_required flag
20505 		 * since the SYNC CACHE command failed
20506 		 */
20507 		mutex_enter(SD_MUTEX(un));
20508 		un->un_f_sync_cache_required = TRUE;
20509 		mutex_exit(SD_MUTEX(un));
20510 
20511 		/*
20512 		 * Don't log an error message if this device
20513 		 * has removable media.
20514 		 */
20515 		if (!un->un_f_has_removable_media) {
20516 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20517 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20518 		}
20519 		break;
20520 	}
20521 
20522 done:
20523 	if (uip->ui_dkc.dkc_callback != NULL) {
20524 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20525 	}
20526 
20527 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20528 	freerbuf(bp);
20529 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20530 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20531 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20532 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20533 
20534 	return (status);
20535 }
20536 
20537 
20538 /*
20539  *    Function: sd_send_scsi_GET_CONFIGURATION
20540  *
20541  * Description: Issues the get configuration command to the device.
20542  *		Called from sd_check_for_writable_cd & sd_get_media_info
20543  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20544  *   Arguments: ssc
20545  *		ucmdbuf
20546  *		rqbuf
20547  *		rqbuflen
20548  *		bufaddr
20549  *		buflen
20550  *		path_flag
20551  *
20552  * Return Code: 0   - Success
20553  *		errno return code from sd_ssc_send()
20554  *
20555  *     Context: Can sleep. Does not return until command is completed.
20556  *
20557  */
20558 
20559 static int
20560 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20561 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20562 	int path_flag)
20563 {
20564 	char	cdb[CDB_GROUP1];
20565 	int	status;
20566 	struct sd_lun	*un;
20567 
20568 	ASSERT(ssc != NULL);
20569 	un = ssc->ssc_un;
20570 	ASSERT(un != NULL);
20571 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20572 	ASSERT(bufaddr != NULL);
20573 	ASSERT(ucmdbuf != NULL);
20574 	ASSERT(rqbuf != NULL);
20575 
20576 	SD_TRACE(SD_LOG_IO, un,
20577 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20578 
20579 	bzero(cdb, sizeof (cdb));
20580 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20581 	bzero(rqbuf, rqbuflen);
20582 	bzero(bufaddr, buflen);
20583 
20584 	/*
20585 	 * Set up cdb field for the get configuration command.
20586 	 */
20587 	cdb[0] = SCMD_GET_CONFIGURATION;
20588 	cdb[1] = 0x02;  /* Requested Type */
20589 	cdb[8] = SD_PROFILE_HEADER_LEN;
20590 	ucmdbuf->uscsi_cdb = cdb;
20591 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20592 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20593 	ucmdbuf->uscsi_buflen = buflen;
20594 	ucmdbuf->uscsi_timeout = sd_io_time;
20595 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20596 	ucmdbuf->uscsi_rqlen = rqbuflen;
20597 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20598 
20599 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20600 	    UIO_SYSSPACE, path_flag);
20601 
20602 	switch (status) {
20603 	case 0:
20604 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20605 		break;  /* Success! */
20606 	case EIO:
20607 		switch (ucmdbuf->uscsi_status) {
20608 		case STATUS_RESERVATION_CONFLICT:
20609 			status = EACCES;
20610 			break;
20611 		default:
20612 			break;
20613 		}
20614 		break;
20615 	default:
20616 		break;
20617 	}
20618 
20619 	if (status == 0) {
20620 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20621 		    "sd_send_scsi_GET_CONFIGURATION: data",
20622 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20623 	}
20624 
20625 	SD_TRACE(SD_LOG_IO, un,
20626 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20627 
20628 	return (status);
20629 }
20630 
20631 /*
20632  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20633  *
20634  * Description: Issues the get configuration command to the device to
20635  *              retrieve a specific feature. Called from
20636  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20637  *   Arguments: ssc
20638  *              ucmdbuf
20639  *              rqbuf
20640  *              rqbuflen
20641  *              bufaddr
20642  *              buflen
20643  *		feature
20644  *
20645  * Return Code: 0   - Success
20646  *              errno return code from sd_ssc_send()
20647  *
20648  *     Context: Can sleep. Does not return until command is completed.
20649  *
20650  */
20651 static int
20652 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20653 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20654 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20655 {
20656 	char    cdb[CDB_GROUP1];
20657 	int	status;
20658 	struct sd_lun	*un;
20659 
20660 	ASSERT(ssc != NULL);
20661 	un = ssc->ssc_un;
20662 	ASSERT(un != NULL);
20663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20664 	ASSERT(bufaddr != NULL);
20665 	ASSERT(ucmdbuf != NULL);
20666 	ASSERT(rqbuf != NULL);
20667 
20668 	SD_TRACE(SD_LOG_IO, un,
20669 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20670 
20671 	bzero(cdb, sizeof (cdb));
20672 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20673 	bzero(rqbuf, rqbuflen);
20674 	bzero(bufaddr, buflen);
20675 
20676 	/*
20677 	 * Set up cdb field for the get configuration command.
20678 	 */
20679 	cdb[0] = SCMD_GET_CONFIGURATION;
20680 	cdb[1] = 0x02;  /* Requested Type */
20681 	cdb[3] = feature;
20682 	cdb[8] = buflen;
20683 	ucmdbuf->uscsi_cdb = cdb;
20684 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20685 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20686 	ucmdbuf->uscsi_buflen = buflen;
20687 	ucmdbuf->uscsi_timeout = sd_io_time;
20688 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20689 	ucmdbuf->uscsi_rqlen = rqbuflen;
20690 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20691 
20692 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20693 	    UIO_SYSSPACE, path_flag);
20694 
20695 	switch (status) {
20696 	case 0:
20697 
20698 		break;  /* Success! */
20699 	case EIO:
20700 		switch (ucmdbuf->uscsi_status) {
20701 		case STATUS_RESERVATION_CONFLICT:
20702 			status = EACCES;
20703 			break;
20704 		default:
20705 			break;
20706 		}
20707 		break;
20708 	default:
20709 		break;
20710 	}
20711 
20712 	if (status == 0) {
20713 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20714 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20715 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20716 	}
20717 
20718 	SD_TRACE(SD_LOG_IO, un,
20719 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20720 
20721 	return (status);
20722 }
20723 
20724 
20725 /*
20726  *    Function: sd_send_scsi_MODE_SENSE
20727  *
20728  * Description: Utility function for issuing a scsi MODE SENSE command.
20729  *		Note: This routine uses a consistent implementation for Group0,
20730  *		Group1, and Group2 commands across all platforms. ATAPI devices
20731  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20732  *
20733  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20734  *                      structure for this target.
20735  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20736  *			  CDB_GROUP[1|2] (10 byte).
20737  *		bufaddr - buffer for page data retrieved from the target.
20738  *		buflen - size of page to be retrieved.
20739  *		page_code - page code of data to be retrieved from the target.
20740  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20741  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20742  *			to use the USCSI "direct" chain and bypass the normal
20743  *			command waitq.
20744  *
20745  * Return Code: 0   - Success
20746  *		errno return code from sd_ssc_send()
20747  *
20748  *     Context: Can sleep. Does not return until command is completed.
20749  */
20750 
20751 static int
20752 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20753 	size_t buflen,  uchar_t page_code, int path_flag)
20754 {
20755 	struct	scsi_extended_sense	sense_buf;
20756 	union scsi_cdb		cdb;
20757 	struct uscsi_cmd	ucmd_buf;
20758 	int			status;
20759 	int			headlen;
20760 	struct sd_lun		*un;
20761 
20762 	ASSERT(ssc != NULL);
20763 	un = ssc->ssc_un;
20764 	ASSERT(un != NULL);
20765 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20766 	ASSERT(bufaddr != NULL);
20767 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20768 	    (cdbsize == CDB_GROUP2));
20769 
20770 	SD_TRACE(SD_LOG_IO, un,
20771 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20772 
20773 	bzero(&cdb, sizeof (cdb));
20774 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20775 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20776 	bzero(bufaddr, buflen);
20777 
20778 	if (cdbsize == CDB_GROUP0) {
20779 		cdb.scc_cmd = SCMD_MODE_SENSE;
20780 		cdb.cdb_opaque[2] = page_code;
20781 		FORMG0COUNT(&cdb, buflen);
20782 		headlen = MODE_HEADER_LENGTH;
20783 	} else {
20784 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20785 		cdb.cdb_opaque[2] = page_code;
20786 		FORMG1COUNT(&cdb, buflen);
20787 		headlen = MODE_HEADER_LENGTH_GRP2;
20788 	}
20789 
20790 	ASSERT(headlen <= buflen);
20791 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20792 
20793 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20794 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20795 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20796 	ucmd_buf.uscsi_buflen	= buflen;
20797 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20798 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20799 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20800 	ucmd_buf.uscsi_timeout	= 60;
20801 
20802 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20803 	    UIO_SYSSPACE, path_flag);
20804 
20805 	switch (status) {
20806 	case 0:
20807 		/*
20808 		 * sr_check_wp() uses 0x3f page code and check the header of
20809 		 * mode page to determine if target device is write-protected.
20810 		 * But some USB devices return 0 bytes for 0x3f page code. For
20811 		 * this case, make sure that mode page header is returned at
20812 		 * least.
20813 		 */
20814 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20815 			status = EIO;
20816 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20817 			    "mode page header is not returned");
20818 		}
20819 		break;	/* Success! */
20820 	case EIO:
20821 		switch (ucmd_buf.uscsi_status) {
20822 		case STATUS_RESERVATION_CONFLICT:
20823 			status = EACCES;
20824 			break;
20825 		default:
20826 			break;
20827 		}
20828 		break;
20829 	default:
20830 		break;
20831 	}
20832 
20833 	if (status == 0) {
20834 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20835 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20836 	}
20837 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20838 
20839 	return (status);
20840 }
20841 
20842 
20843 /*
20844  *    Function: sd_send_scsi_MODE_SELECT
20845  *
20846  * Description: Utility function for issuing a scsi MODE SELECT command.
20847  *		Note: This routine uses a consistent implementation for Group0,
20848  *		Group1, and Group2 commands across all platforms. ATAPI devices
20849  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20850  *
20851  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20852  *                      structure for this target.
20853  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20854  *			  CDB_GROUP[1|2] (10 byte).
20855  *		bufaddr - buffer for page data retrieved from the target.
20856  *		buflen - size of page to be retrieved.
20857  *		save_page - boolean to determin if SP bit should be set.
20858  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20859  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20860  *			to use the USCSI "direct" chain and bypass the normal
20861  *			command waitq.
20862  *
20863  * Return Code: 0   - Success
20864  *		errno return code from sd_ssc_send()
20865  *
20866  *     Context: Can sleep. Does not return until command is completed.
20867  */
20868 
20869 static int
20870 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20871 	size_t buflen,  uchar_t save_page, int path_flag)
20872 {
20873 	struct	scsi_extended_sense	sense_buf;
20874 	union scsi_cdb		cdb;
20875 	struct uscsi_cmd	ucmd_buf;
20876 	int			status;
20877 	struct sd_lun		*un;
20878 
20879 	ASSERT(ssc != NULL);
20880 	un = ssc->ssc_un;
20881 	ASSERT(un != NULL);
20882 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20883 	ASSERT(bufaddr != NULL);
20884 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20885 	    (cdbsize == CDB_GROUP2));
20886 
20887 	SD_TRACE(SD_LOG_IO, un,
20888 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20889 
20890 	bzero(&cdb, sizeof (cdb));
20891 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20892 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20893 
20894 	/* Set the PF bit for many third party drives */
20895 	cdb.cdb_opaque[1] = 0x10;
20896 
20897 	/* Set the savepage(SP) bit if given */
20898 	if (save_page == SD_SAVE_PAGE) {
20899 		cdb.cdb_opaque[1] |= 0x01;
20900 	}
20901 
20902 	if (cdbsize == CDB_GROUP0) {
20903 		cdb.scc_cmd = SCMD_MODE_SELECT;
20904 		FORMG0COUNT(&cdb, buflen);
20905 	} else {
20906 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20907 		FORMG1COUNT(&cdb, buflen);
20908 	}
20909 
20910 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20911 
20912 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20913 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20914 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20915 	ucmd_buf.uscsi_buflen	= buflen;
20916 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20917 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20918 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20919 	ucmd_buf.uscsi_timeout	= 60;
20920 
20921 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20922 	    UIO_SYSSPACE, path_flag);
20923 
20924 	switch (status) {
20925 	case 0:
20926 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20927 		break;	/* Success! */
20928 	case EIO:
20929 		switch (ucmd_buf.uscsi_status) {
20930 		case STATUS_RESERVATION_CONFLICT:
20931 			status = EACCES;
20932 			break;
20933 		default:
20934 			break;
20935 		}
20936 		break;
20937 	default:
20938 		break;
20939 	}
20940 
20941 	if (status == 0) {
20942 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20943 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20944 	}
20945 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20946 
20947 	return (status);
20948 }
20949 
20950 
20951 /*
20952  *    Function: sd_send_scsi_RDWR
20953  *
20954  * Description: Issue a scsi READ or WRITE command with the given parameters.
20955  *
20956  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20957  *                      structure for this target.
20958  *		cmd:	 SCMD_READ or SCMD_WRITE
20959  *		bufaddr: Address of caller's buffer to receive the RDWR data
20960  *		buflen:  Length of caller's buffer receive the RDWR data.
20961  *		start_block: Block number for the start of the RDWR operation.
20962  *			 (Assumes target-native block size.)
20963  *		residp:  Pointer to variable to receive the redisual of the
20964  *			 RDWR operation (may be NULL of no residual requested).
20965  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20966  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20967  *			to use the USCSI "direct" chain and bypass the normal
20968  *			command waitq.
20969  *
20970  * Return Code: 0   - Success
20971  *		errno return code from sd_ssc_send()
20972  *
20973  *     Context: Can sleep. Does not return until command is completed.
20974  */
20975 
20976 static int
20977 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
20978 	size_t buflen, daddr_t start_block, int path_flag)
20979 {
20980 	struct	scsi_extended_sense	sense_buf;
20981 	union scsi_cdb		cdb;
20982 	struct uscsi_cmd	ucmd_buf;
20983 	uint32_t		block_count;
20984 	int			status;
20985 	int			cdbsize;
20986 	uchar_t			flag;
20987 	struct sd_lun		*un;
20988 
20989 	ASSERT(ssc != NULL);
20990 	un = ssc->ssc_un;
20991 	ASSERT(un != NULL);
20992 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20993 	ASSERT(bufaddr != NULL);
20994 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20995 
20996 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20997 
20998 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20999 		return (EINVAL);
21000 	}
21001 
21002 	mutex_enter(SD_MUTEX(un));
21003 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21004 	mutex_exit(SD_MUTEX(un));
21005 
21006 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21007 
21008 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21009 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21010 	    bufaddr, buflen, start_block, block_count);
21011 
21012 	bzero(&cdb, sizeof (cdb));
21013 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21014 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21015 
21016 	/* Compute CDB size to use */
21017 	if (start_block > 0xffffffff)
21018 		cdbsize = CDB_GROUP4;
21019 	else if ((start_block & 0xFFE00000) ||
21020 	    (un->un_f_cfg_is_atapi == TRUE))
21021 		cdbsize = CDB_GROUP1;
21022 	else
21023 		cdbsize = CDB_GROUP0;
21024 
21025 	switch (cdbsize) {
21026 	case CDB_GROUP0:	/* 6-byte CDBs */
21027 		cdb.scc_cmd = cmd;
21028 		FORMG0ADDR(&cdb, start_block);
21029 		FORMG0COUNT(&cdb, block_count);
21030 		break;
21031 	case CDB_GROUP1:	/* 10-byte CDBs */
21032 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21033 		FORMG1ADDR(&cdb, start_block);
21034 		FORMG1COUNT(&cdb, block_count);
21035 		break;
21036 	case CDB_GROUP4:	/* 16-byte CDBs */
21037 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21038 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21039 		FORMG4COUNT(&cdb, block_count);
21040 		break;
21041 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21042 	default:
21043 		/* All others reserved */
21044 		return (EINVAL);
21045 	}
21046 
21047 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21048 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21049 
21050 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21051 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21052 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21053 	ucmd_buf.uscsi_buflen	= buflen;
21054 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21055 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21056 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21057 	ucmd_buf.uscsi_timeout	= 60;
21058 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21059 	    UIO_SYSSPACE, path_flag);
21060 
21061 	switch (status) {
21062 	case 0:
21063 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21064 		break;	/* Success! */
21065 	case EIO:
21066 		switch (ucmd_buf.uscsi_status) {
21067 		case STATUS_RESERVATION_CONFLICT:
21068 			status = EACCES;
21069 			break;
21070 		default:
21071 			break;
21072 		}
21073 		break;
21074 	default:
21075 		break;
21076 	}
21077 
21078 	if (status == 0) {
21079 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21080 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21081 	}
21082 
21083 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21084 
21085 	return (status);
21086 }
21087 
21088 
21089 /*
21090  *    Function: sd_send_scsi_LOG_SENSE
21091  *
21092  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21093  *
21094  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21095  *                      structure for this target.
21096  *
21097  * Return Code: 0   - Success
21098  *		errno return code from sd_ssc_send()
21099  *
21100  *     Context: Can sleep. Does not return until command is completed.
21101  */
21102 
21103 static int
21104 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21105 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21106 	int path_flag)
21107 
21108 {
21109 	struct scsi_extended_sense	sense_buf;
21110 	union scsi_cdb		cdb;
21111 	struct uscsi_cmd	ucmd_buf;
21112 	int			status;
21113 	struct sd_lun		*un;
21114 
21115 	ASSERT(ssc != NULL);
21116 	un = ssc->ssc_un;
21117 	ASSERT(un != NULL);
21118 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21119 
21120 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21121 
21122 	bzero(&cdb, sizeof (cdb));
21123 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21124 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21125 
21126 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21127 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21128 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21129 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21130 	FORMG1COUNT(&cdb, buflen);
21131 
21132 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21133 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21134 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21135 	ucmd_buf.uscsi_buflen	= buflen;
21136 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21137 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21138 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21139 	ucmd_buf.uscsi_timeout	= 60;
21140 
21141 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21142 	    UIO_SYSSPACE, path_flag);
21143 
21144 	switch (status) {
21145 	case 0:
21146 		break;
21147 	case EIO:
21148 		switch (ucmd_buf.uscsi_status) {
21149 		case STATUS_RESERVATION_CONFLICT:
21150 			status = EACCES;
21151 			break;
21152 		case STATUS_CHECK:
21153 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21154 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21155 				KEY_ILLEGAL_REQUEST) &&
21156 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21157 				/*
21158 				 * ASC 0x24: INVALID FIELD IN CDB
21159 				 */
21160 				switch (page_code) {
21161 				case START_STOP_CYCLE_PAGE:
21162 					/*
21163 					 * The start stop cycle counter is
21164 					 * implemented as page 0x31 in earlier
21165 					 * generation disks. In new generation
21166 					 * disks the start stop cycle counter is
21167 					 * implemented as page 0xE. To properly
21168 					 * handle this case if an attempt for
21169 					 * log page 0xE is made and fails we
21170 					 * will try again using page 0x31.
21171 					 *
21172 					 * Network storage BU committed to
21173 					 * maintain the page 0x31 for this
21174 					 * purpose and will not have any other
21175 					 * page implemented with page code 0x31
21176 					 * until all disks transition to the
21177 					 * standard page.
21178 					 */
21179 					mutex_enter(SD_MUTEX(un));
21180 					un->un_start_stop_cycle_page =
21181 					    START_STOP_CYCLE_VU_PAGE;
21182 					cdb.cdb_opaque[2] =
21183 					    (char)(page_control << 6) |
21184 					    un->un_start_stop_cycle_page;
21185 					mutex_exit(SD_MUTEX(un));
21186 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21187 					status = sd_ssc_send(
21188 					    ssc, &ucmd_buf, FKIOCTL,
21189 					    UIO_SYSSPACE, path_flag);
21190 
21191 					break;
21192 				case TEMPERATURE_PAGE:
21193 					status = ENOTTY;
21194 					break;
21195 				default:
21196 					break;
21197 				}
21198 			}
21199 			break;
21200 		default:
21201 			break;
21202 		}
21203 		break;
21204 	default:
21205 		break;
21206 	}
21207 
21208 	if (status == 0) {
21209 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21210 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21211 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21212 	}
21213 
21214 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21215 
21216 	return (status);
21217 }
21218 
21219 
21220 /*
21221  *    Function: sdioctl
21222  *
21223  * Description: Driver's ioctl(9e) entry point function.
21224  *
21225  *   Arguments: dev     - device number
21226  *		cmd     - ioctl operation to be performed
21227  *		arg     - user argument, contains data to be set or reference
21228  *			  parameter for get
21229  *		flag    - bit flag, indicating open settings, 32/64 bit type
21230  *		cred_p  - user credential pointer
21231  *		rval_p  - calling process return value (OPT)
21232  *
21233  * Return Code: EINVAL
21234  *		ENOTTY
21235  *		ENXIO
21236  *		EIO
21237  *		EFAULT
21238  *		ENOTSUP
21239  *		EPERM
21240  *
21241  *     Context: Called from the device switch at normal priority.
21242  */
21243 
21244 static int
21245 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21246 {
21247 	struct sd_lun	*un = NULL;
21248 	int		err = 0;
21249 	int		i = 0;
21250 	cred_t		*cr;
21251 	int		tmprval = EINVAL;
21252 	int 		is_valid;
21253 	sd_ssc_t	*ssc;
21254 
21255 	/*
21256 	 * All device accesses go thru sdstrategy where we check on suspend
21257 	 * status
21258 	 */
21259 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21260 		return (ENXIO);
21261 	}
21262 
21263 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21264 
21265 	/* Initialize sd_ssc_t for internal uscsi commands */
21266 	ssc = sd_ssc_init(un);
21267 
21268 	is_valid = SD_IS_VALID_LABEL(un);
21269 
21270 	/*
21271 	 * Moved this wait from sd_uscsi_strategy to here for
21272 	 * reasons of deadlock prevention. Internal driver commands,
21273 	 * specifically those to change a devices power level, result
21274 	 * in a call to sd_uscsi_strategy.
21275 	 */
21276 	mutex_enter(SD_MUTEX(un));
21277 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21278 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21279 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21280 	}
21281 	/*
21282 	 * Twiddling the counter here protects commands from now
21283 	 * through to the top of sd_uscsi_strategy. Without the
21284 	 * counter inc. a power down, for example, could get in
21285 	 * after the above check for state is made and before
21286 	 * execution gets to the top of sd_uscsi_strategy.
21287 	 * That would cause problems.
21288 	 */
21289 	un->un_ncmds_in_driver++;
21290 
21291 	if (!is_valid &&
21292 	    (flag & (FNDELAY | FNONBLOCK))) {
21293 		switch (cmd) {
21294 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21295 		case DKIOCGVTOC:
21296 		case DKIOCGEXTVTOC:
21297 		case DKIOCGAPART:
21298 		case DKIOCPARTINFO:
21299 		case DKIOCEXTPARTINFO:
21300 		case DKIOCSGEOM:
21301 		case DKIOCSAPART:
21302 		case DKIOCGETEFI:
21303 		case DKIOCPARTITION:
21304 		case DKIOCSVTOC:
21305 		case DKIOCSEXTVTOC:
21306 		case DKIOCSETEFI:
21307 		case DKIOCGMBOOT:
21308 		case DKIOCSMBOOT:
21309 		case DKIOCG_PHYGEOM:
21310 		case DKIOCG_VIRTGEOM:
21311 			/* let cmlb handle it */
21312 			goto skip_ready_valid;
21313 
21314 		case CDROMPAUSE:
21315 		case CDROMRESUME:
21316 		case CDROMPLAYMSF:
21317 		case CDROMPLAYTRKIND:
21318 		case CDROMREADTOCHDR:
21319 		case CDROMREADTOCENTRY:
21320 		case CDROMSTOP:
21321 		case CDROMSTART:
21322 		case CDROMVOLCTRL:
21323 		case CDROMSUBCHNL:
21324 		case CDROMREADMODE2:
21325 		case CDROMREADMODE1:
21326 		case CDROMREADOFFSET:
21327 		case CDROMSBLKMODE:
21328 		case CDROMGBLKMODE:
21329 		case CDROMGDRVSPEED:
21330 		case CDROMSDRVSPEED:
21331 		case CDROMCDDA:
21332 		case CDROMCDXA:
21333 		case CDROMSUBCODE:
21334 			if (!ISCD(un)) {
21335 				un->un_ncmds_in_driver--;
21336 				ASSERT(un->un_ncmds_in_driver >= 0);
21337 				mutex_exit(SD_MUTEX(un));
21338 				err = ENOTTY;
21339 				goto done_without_assess;
21340 			}
21341 			break;
21342 		case FDEJECT:
21343 		case DKIOCEJECT:
21344 		case CDROMEJECT:
21345 			if (!un->un_f_eject_media_supported) {
21346 				un->un_ncmds_in_driver--;
21347 				ASSERT(un->un_ncmds_in_driver >= 0);
21348 				mutex_exit(SD_MUTEX(un));
21349 				err = ENOTTY;
21350 				goto done_without_assess;
21351 			}
21352 			break;
21353 		case DKIOCFLUSHWRITECACHE:
21354 			mutex_exit(SD_MUTEX(un));
21355 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21356 			if (err != 0) {
21357 				mutex_enter(SD_MUTEX(un));
21358 				un->un_ncmds_in_driver--;
21359 				ASSERT(un->un_ncmds_in_driver >= 0);
21360 				mutex_exit(SD_MUTEX(un));
21361 				err = EIO;
21362 				goto done_quick_assess;
21363 			}
21364 			mutex_enter(SD_MUTEX(un));
21365 			/* FALLTHROUGH */
21366 		case DKIOCREMOVABLE:
21367 		case DKIOCHOTPLUGGABLE:
21368 		case DKIOCINFO:
21369 		case DKIOCGMEDIAINFO:
21370 		case MHIOCENFAILFAST:
21371 		case MHIOCSTATUS:
21372 		case MHIOCTKOWN:
21373 		case MHIOCRELEASE:
21374 		case MHIOCGRP_INKEYS:
21375 		case MHIOCGRP_INRESV:
21376 		case MHIOCGRP_REGISTER:
21377 		case MHIOCGRP_RESERVE:
21378 		case MHIOCGRP_PREEMPTANDABORT:
21379 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21380 		case CDROMCLOSETRAY:
21381 		case USCSICMD:
21382 			goto skip_ready_valid;
21383 		default:
21384 			break;
21385 		}
21386 
21387 		mutex_exit(SD_MUTEX(un));
21388 		err = sd_ready_and_valid(ssc, SDPART(dev));
21389 		mutex_enter(SD_MUTEX(un));
21390 
21391 		if (err != SD_READY_VALID) {
21392 			switch (cmd) {
21393 			case DKIOCSTATE:
21394 			case CDROMGDRVSPEED:
21395 			case CDROMSDRVSPEED:
21396 			case FDEJECT:	/* for eject command */
21397 			case DKIOCEJECT:
21398 			case CDROMEJECT:
21399 			case DKIOCREMOVABLE:
21400 			case DKIOCHOTPLUGGABLE:
21401 				break;
21402 			default:
21403 				if (un->un_f_has_removable_media) {
21404 					err = ENXIO;
21405 				} else {
21406 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21407 					if (err == SD_RESERVED_BY_OTHERS) {
21408 						err = EACCES;
21409 					} else {
21410 						err = EIO;
21411 					}
21412 				}
21413 				un->un_ncmds_in_driver--;
21414 				ASSERT(un->un_ncmds_in_driver >= 0);
21415 				mutex_exit(SD_MUTEX(un));
21416 
21417 				goto done_without_assess;
21418 			}
21419 		}
21420 	}
21421 
21422 skip_ready_valid:
21423 	mutex_exit(SD_MUTEX(un));
21424 
21425 	switch (cmd) {
21426 	case DKIOCINFO:
21427 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21428 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21429 		break;
21430 
21431 	case DKIOCGMEDIAINFO:
21432 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21433 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21434 		break;
21435 
21436 	case DKIOCGGEOM:
21437 	case DKIOCGVTOC:
21438 	case DKIOCGEXTVTOC:
21439 	case DKIOCGAPART:
21440 	case DKIOCPARTINFO:
21441 	case DKIOCEXTPARTINFO:
21442 	case DKIOCSGEOM:
21443 	case DKIOCSAPART:
21444 	case DKIOCGETEFI:
21445 	case DKIOCPARTITION:
21446 	case DKIOCSVTOC:
21447 	case DKIOCSEXTVTOC:
21448 	case DKIOCSETEFI:
21449 	case DKIOCGMBOOT:
21450 	case DKIOCSMBOOT:
21451 	case DKIOCG_PHYGEOM:
21452 	case DKIOCG_VIRTGEOM:
21453 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21454 
21455 		/* TUR should spin up */
21456 
21457 		if (un->un_f_has_removable_media)
21458 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21459 			    SD_CHECK_FOR_MEDIA);
21460 
21461 		else
21462 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21463 
21464 		if (err != 0)
21465 			goto done_with_assess;
21466 
21467 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21468 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21469 
21470 		if ((err == 0) &&
21471 		    ((cmd == DKIOCSETEFI) ||
21472 		    (un->un_f_pkstats_enabled) &&
21473 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
21474 		    cmd == DKIOCSEXTVTOC))) {
21475 
21476 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21477 			    (void *)SD_PATH_DIRECT);
21478 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21479 				sd_set_pstats(un);
21480 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21481 				    "sd_ioctl: un:0x%p pstats created and "
21482 				    "set\n", un);
21483 			}
21484 		}
21485 
21486 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
21487 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21488 
21489 			mutex_enter(SD_MUTEX(un));
21490 			if (un->un_f_devid_supported &&
21491 			    (un->un_f_opt_fab_devid == TRUE)) {
21492 				if (un->un_devid == NULL) {
21493 					sd_register_devid(ssc, SD_DEVINFO(un),
21494 					    SD_TARGET_IS_UNRESERVED);
21495 				} else {
21496 					/*
21497 					 * The device id for this disk
21498 					 * has been fabricated. The
21499 					 * device id must be preserved
21500 					 * by writing it back out to
21501 					 * disk.
21502 					 */
21503 					if (sd_write_deviceid(ssc) != 0) {
21504 						ddi_devid_free(un->un_devid);
21505 						un->un_devid = NULL;
21506 					}
21507 				}
21508 			}
21509 			mutex_exit(SD_MUTEX(un));
21510 		}
21511 
21512 		break;
21513 
21514 	case DKIOCLOCK:
21515 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21516 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21517 		    SD_PATH_STANDARD);
21518 		goto done_with_assess;
21519 
21520 	case DKIOCUNLOCK:
21521 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21522 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21523 		    SD_PATH_STANDARD);
21524 		goto done_with_assess;
21525 
21526 	case DKIOCSTATE: {
21527 		enum dkio_state		state;
21528 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21529 
21530 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21531 			err = EFAULT;
21532 		} else {
21533 			err = sd_check_media(dev, state);
21534 			if (err == 0) {
21535 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21536 				    sizeof (int), flag) != 0)
21537 					err = EFAULT;
21538 			}
21539 		}
21540 		break;
21541 	}
21542 
21543 	case DKIOCREMOVABLE:
21544 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21545 		i = un->un_f_has_removable_media ? 1 : 0;
21546 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21547 			err = EFAULT;
21548 		} else {
21549 			err = 0;
21550 		}
21551 		break;
21552 
21553 	case DKIOCHOTPLUGGABLE:
21554 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21555 		i = un->un_f_is_hotpluggable ? 1 : 0;
21556 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21557 			err = EFAULT;
21558 		} else {
21559 			err = 0;
21560 		}
21561 		break;
21562 
21563 	case DKIOCGTEMPERATURE:
21564 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21565 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21566 		break;
21567 
21568 	case MHIOCENFAILFAST:
21569 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21570 		if ((err = drv_priv(cred_p)) == 0) {
21571 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21572 		}
21573 		break;
21574 
21575 	case MHIOCTKOWN:
21576 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21577 		if ((err = drv_priv(cred_p)) == 0) {
21578 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21579 		}
21580 		break;
21581 
21582 	case MHIOCRELEASE:
21583 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21584 		if ((err = drv_priv(cred_p)) == 0) {
21585 			err = sd_mhdioc_release(dev);
21586 		}
21587 		break;
21588 
21589 	case MHIOCSTATUS:
21590 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21591 		if ((err = drv_priv(cred_p)) == 0) {
21592 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21593 			case 0:
21594 				err = 0;
21595 				break;
21596 			case EACCES:
21597 				*rval_p = 1;
21598 				err = 0;
21599 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21600 				break;
21601 			default:
21602 				err = EIO;
21603 				goto done_with_assess;
21604 			}
21605 		}
21606 		break;
21607 
21608 	case MHIOCQRESERVE:
21609 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21610 		if ((err = drv_priv(cred_p)) == 0) {
21611 			err = sd_reserve_release(dev, SD_RESERVE);
21612 		}
21613 		break;
21614 
21615 	case MHIOCREREGISTERDEVID:
21616 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21617 		if (drv_priv(cred_p) == EPERM) {
21618 			err = EPERM;
21619 		} else if (!un->un_f_devid_supported) {
21620 			err = ENOTTY;
21621 		} else {
21622 			err = sd_mhdioc_register_devid(dev);
21623 		}
21624 		break;
21625 
21626 	case MHIOCGRP_INKEYS:
21627 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21628 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21629 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21630 				err = ENOTSUP;
21631 			} else {
21632 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21633 				    flag);
21634 			}
21635 		}
21636 		break;
21637 
21638 	case MHIOCGRP_INRESV:
21639 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21640 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21641 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21642 				err = ENOTSUP;
21643 			} else {
21644 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21645 			}
21646 		}
21647 		break;
21648 
21649 	case MHIOCGRP_REGISTER:
21650 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21651 		if ((err = drv_priv(cred_p)) != EPERM) {
21652 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21653 				err = ENOTSUP;
21654 			} else if (arg != NULL) {
21655 				mhioc_register_t reg;
21656 				if (ddi_copyin((void *)arg, &reg,
21657 				    sizeof (mhioc_register_t), flag) != 0) {
21658 					err = EFAULT;
21659 				} else {
21660 					err =
21661 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21662 					    ssc, SD_SCSI3_REGISTER,
21663 					    (uchar_t *)&reg);
21664 					if (err != 0)
21665 						goto done_with_assess;
21666 				}
21667 			}
21668 		}
21669 		break;
21670 
21671 	case MHIOCGRP_RESERVE:
21672 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21673 		if ((err = drv_priv(cred_p)) != EPERM) {
21674 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21675 				err = ENOTSUP;
21676 			} else if (arg != NULL) {
21677 				mhioc_resv_desc_t resv_desc;
21678 				if (ddi_copyin((void *)arg, &resv_desc,
21679 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21680 					err = EFAULT;
21681 				} else {
21682 					err =
21683 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21684 					    ssc, SD_SCSI3_RESERVE,
21685 					    (uchar_t *)&resv_desc);
21686 					if (err != 0)
21687 						goto done_with_assess;
21688 				}
21689 			}
21690 		}
21691 		break;
21692 
21693 	case MHIOCGRP_PREEMPTANDABORT:
21694 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21695 		if ((err = drv_priv(cred_p)) != EPERM) {
21696 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21697 				err = ENOTSUP;
21698 			} else if (arg != NULL) {
21699 				mhioc_preemptandabort_t preempt_abort;
21700 				if (ddi_copyin((void *)arg, &preempt_abort,
21701 				    sizeof (mhioc_preemptandabort_t),
21702 				    flag) != 0) {
21703 					err = EFAULT;
21704 				} else {
21705 					err =
21706 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21707 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21708 					    (uchar_t *)&preempt_abort);
21709 					if (err != 0)
21710 						goto done_with_assess;
21711 				}
21712 			}
21713 		}
21714 		break;
21715 
21716 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21717 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21718 		if ((err = drv_priv(cred_p)) != EPERM) {
21719 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21720 				err = ENOTSUP;
21721 			} else if (arg != NULL) {
21722 				mhioc_registerandignorekey_t r_and_i;
21723 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21724 				    sizeof (mhioc_registerandignorekey_t),
21725 				    flag) != 0) {
21726 					err = EFAULT;
21727 				} else {
21728 					err =
21729 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21730 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21731 					    (uchar_t *)&r_and_i);
21732 					if (err != 0)
21733 						goto done_with_assess;
21734 				}
21735 			}
21736 		}
21737 		break;
21738 
21739 	case USCSICMD:
21740 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21741 		cr = ddi_get_cred();
21742 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21743 			err = EPERM;
21744 		} else {
21745 			enum uio_seg	uioseg;
21746 
21747 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21748 			    UIO_USERSPACE;
21749 			if (un->un_f_format_in_progress == TRUE) {
21750 				err = EAGAIN;
21751 				break;
21752 			}
21753 
21754 			err = sd_ssc_send(ssc,
21755 			    (struct uscsi_cmd *)arg,
21756 			    flag, uioseg, SD_PATH_STANDARD);
21757 			if (err != 0)
21758 				goto done_with_assess;
21759 			else
21760 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21761 		}
21762 		break;
21763 
21764 	case CDROMPAUSE:
21765 	case CDROMRESUME:
21766 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21767 		if (!ISCD(un)) {
21768 			err = ENOTTY;
21769 		} else {
21770 			err = sr_pause_resume(dev, cmd);
21771 		}
21772 		break;
21773 
21774 	case CDROMPLAYMSF:
21775 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21776 		if (!ISCD(un)) {
21777 			err = ENOTTY;
21778 		} else {
21779 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21780 		}
21781 		break;
21782 
21783 	case CDROMPLAYTRKIND:
21784 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21785 #if defined(__i386) || defined(__amd64)
21786 		/*
21787 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21788 		 */
21789 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21790 #else
21791 		if (!ISCD(un)) {
21792 #endif
21793 			err = ENOTTY;
21794 		} else {
21795 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21796 		}
21797 		break;
21798 
21799 	case CDROMREADTOCHDR:
21800 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21801 		if (!ISCD(un)) {
21802 			err = ENOTTY;
21803 		} else {
21804 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21805 		}
21806 		break;
21807 
21808 	case CDROMREADTOCENTRY:
21809 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21810 		if (!ISCD(un)) {
21811 			err = ENOTTY;
21812 		} else {
21813 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21814 		}
21815 		break;
21816 
21817 	case CDROMSTOP:
21818 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21819 		if (!ISCD(un)) {
21820 			err = ENOTTY;
21821 		} else {
21822 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21823 			    SD_PATH_STANDARD);
21824 			goto done_with_assess;
21825 		}
21826 		break;
21827 
21828 	case CDROMSTART:
21829 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21830 		if (!ISCD(un)) {
21831 			err = ENOTTY;
21832 		} else {
21833 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21834 			    SD_PATH_STANDARD);
21835 			goto done_with_assess;
21836 		}
21837 		break;
21838 
21839 	case CDROMCLOSETRAY:
21840 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21841 		if (!ISCD(un)) {
21842 			err = ENOTTY;
21843 		} else {
21844 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21845 			    SD_PATH_STANDARD);
21846 			goto done_with_assess;
21847 		}
21848 		break;
21849 
21850 	case FDEJECT:	/* for eject command */
21851 	case DKIOCEJECT:
21852 	case CDROMEJECT:
21853 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21854 		if (!un->un_f_eject_media_supported) {
21855 			err = ENOTTY;
21856 		} else {
21857 			err = sr_eject(dev);
21858 		}
21859 		break;
21860 
21861 	case CDROMVOLCTRL:
21862 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21863 		if (!ISCD(un)) {
21864 			err = ENOTTY;
21865 		} else {
21866 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21867 		}
21868 		break;
21869 
21870 	case CDROMSUBCHNL:
21871 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21872 		if (!ISCD(un)) {
21873 			err = ENOTTY;
21874 		} else {
21875 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21876 		}
21877 		break;
21878 
21879 	case CDROMREADMODE2:
21880 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21881 		if (!ISCD(un)) {
21882 			err = ENOTTY;
21883 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21884 			/*
21885 			 * If the drive supports READ CD, use that instead of
21886 			 * switching the LBA size via a MODE SELECT
21887 			 * Block Descriptor
21888 			 */
21889 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21890 		} else {
21891 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21892 		}
21893 		break;
21894 
21895 	case CDROMREADMODE1:
21896 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21897 		if (!ISCD(un)) {
21898 			err = ENOTTY;
21899 		} else {
21900 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21901 		}
21902 		break;
21903 
21904 	case CDROMREADOFFSET:
21905 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21906 		if (!ISCD(un)) {
21907 			err = ENOTTY;
21908 		} else {
21909 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21910 			    flag);
21911 		}
21912 		break;
21913 
21914 	case CDROMSBLKMODE:
21915 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21916 		/*
21917 		 * There is no means of changing block size in case of atapi
21918 		 * drives, thus return ENOTTY if drive type is atapi
21919 		 */
21920 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21921 			err = ENOTTY;
21922 		} else if (un->un_f_mmc_cap == TRUE) {
21923 
21924 			/*
21925 			 * MMC Devices do not support changing the
21926 			 * logical block size
21927 			 *
21928 			 * Note: EINVAL is being returned instead of ENOTTY to
21929 			 * maintain consistancy with the original mmc
21930 			 * driver update.
21931 			 */
21932 			err = EINVAL;
21933 		} else {
21934 			mutex_enter(SD_MUTEX(un));
21935 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21936 			    (un->un_ncmds_in_transport > 0)) {
21937 				mutex_exit(SD_MUTEX(un));
21938 				err = EINVAL;
21939 			} else {
21940 				mutex_exit(SD_MUTEX(un));
21941 				err = sr_change_blkmode(dev, cmd, arg, flag);
21942 			}
21943 		}
21944 		break;
21945 
21946 	case CDROMGBLKMODE:
21947 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21948 		if (!ISCD(un)) {
21949 			err = ENOTTY;
21950 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21951 		    (un->un_f_blockcount_is_valid != FALSE)) {
21952 			/*
21953 			 * Drive is an ATAPI drive so return target block
21954 			 * size for ATAPI drives since we cannot change the
21955 			 * blocksize on ATAPI drives. Used primarily to detect
21956 			 * if an ATAPI cdrom is present.
21957 			 */
21958 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21959 			    sizeof (int), flag) != 0) {
21960 				err = EFAULT;
21961 			} else {
21962 				err = 0;
21963 			}
21964 
21965 		} else {
21966 			/*
21967 			 * Drive supports changing block sizes via a Mode
21968 			 * Select.
21969 			 */
21970 			err = sr_change_blkmode(dev, cmd, arg, flag);
21971 		}
21972 		break;
21973 
21974 	case CDROMGDRVSPEED:
21975 	case CDROMSDRVSPEED:
21976 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21977 		if (!ISCD(un)) {
21978 			err = ENOTTY;
21979 		} else if (un->un_f_mmc_cap == TRUE) {
21980 			/*
21981 			 * Note: In the future the driver implementation
21982 			 * for getting and
21983 			 * setting cd speed should entail:
21984 			 * 1) If non-mmc try the Toshiba mode page
21985 			 *    (sr_change_speed)
21986 			 * 2) If mmc but no support for Real Time Streaming try
21987 			 *    the SET CD SPEED (0xBB) command
21988 			 *   (sr_atapi_change_speed)
21989 			 * 3) If mmc and support for Real Time Streaming
21990 			 *    try the GET PERFORMANCE and SET STREAMING
21991 			 *    commands (not yet implemented, 4380808)
21992 			 */
21993 			/*
21994 			 * As per recent MMC spec, CD-ROM speed is variable
21995 			 * and changes with LBA. Since there is no such
21996 			 * things as drive speed now, fail this ioctl.
21997 			 *
21998 			 * Note: EINVAL is returned for consistancy of original
21999 			 * implementation which included support for getting
22000 			 * the drive speed of mmc devices but not setting
22001 			 * the drive speed. Thus EINVAL would be returned
22002 			 * if a set request was made for an mmc device.
22003 			 * We no longer support get or set speed for
22004 			 * mmc but need to remain consistent with regard
22005 			 * to the error code returned.
22006 			 */
22007 			err = EINVAL;
22008 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22009 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22010 		} else {
22011 			err = sr_change_speed(dev, cmd, arg, flag);
22012 		}
22013 		break;
22014 
22015 	case CDROMCDDA:
22016 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22017 		if (!ISCD(un)) {
22018 			err = ENOTTY;
22019 		} else {
22020 			err = sr_read_cdda(dev, (void *)arg, flag);
22021 		}
22022 		break;
22023 
22024 	case CDROMCDXA:
22025 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22026 		if (!ISCD(un)) {
22027 			err = ENOTTY;
22028 		} else {
22029 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22030 		}
22031 		break;
22032 
22033 	case CDROMSUBCODE:
22034 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22035 		if (!ISCD(un)) {
22036 			err = ENOTTY;
22037 		} else {
22038 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22039 		}
22040 		break;
22041 
22042 
22043 #ifdef SDDEBUG
22044 /* RESET/ABORTS testing ioctls */
22045 	case DKIOCRESET: {
22046 		int	reset_level;
22047 
22048 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22049 			err = EFAULT;
22050 		} else {
22051 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22052 			    "reset_level = 0x%lx\n", reset_level);
22053 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22054 				err = 0;
22055 			} else {
22056 				err = EIO;
22057 			}
22058 		}
22059 		break;
22060 	}
22061 
22062 	case DKIOCABORT:
22063 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22064 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22065 			err = 0;
22066 		} else {
22067 			err = EIO;
22068 		}
22069 		break;
22070 #endif
22071 
22072 #ifdef SD_FAULT_INJECTION
22073 /* SDIOC FaultInjection testing ioctls */
22074 	case SDIOCSTART:
22075 	case SDIOCSTOP:
22076 	case SDIOCINSERTPKT:
22077 	case SDIOCINSERTXB:
22078 	case SDIOCINSERTUN:
22079 	case SDIOCINSERTARQ:
22080 	case SDIOCPUSH:
22081 	case SDIOCRETRIEVE:
22082 	case SDIOCRUN:
22083 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22084 		    "SDIOC detected cmd:0x%X:\n", cmd);
22085 		/* call error generator */
22086 		sd_faultinjection_ioctl(cmd, arg, un);
22087 		err = 0;
22088 		break;
22089 
22090 #endif /* SD_FAULT_INJECTION */
22091 
22092 	case DKIOCFLUSHWRITECACHE:
22093 		{
22094 			struct dk_callback *dkc = (struct dk_callback *)arg;
22095 
22096 			mutex_enter(SD_MUTEX(un));
22097 			if (!un->un_f_sync_cache_supported ||
22098 			    !un->un_f_write_cache_enabled) {
22099 				err = un->un_f_sync_cache_supported ?
22100 				    0 : ENOTSUP;
22101 				mutex_exit(SD_MUTEX(un));
22102 				if ((flag & FKIOCTL) && dkc != NULL &&
22103 				    dkc->dkc_callback != NULL) {
22104 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22105 					    err);
22106 					/*
22107 					 * Did callback and reported error.
22108 					 * Since we did a callback, ioctl
22109 					 * should return 0.
22110 					 */
22111 					err = 0;
22112 				}
22113 				break;
22114 			}
22115 			mutex_exit(SD_MUTEX(un));
22116 
22117 			if ((flag & FKIOCTL) && dkc != NULL &&
22118 			    dkc->dkc_callback != NULL) {
22119 				/* async SYNC CACHE request */
22120 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22121 			} else {
22122 				/* synchronous SYNC CACHE request */
22123 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22124 			}
22125 		}
22126 		break;
22127 
22128 	case DKIOCGETWCE: {
22129 
22130 		int wce;
22131 
22132 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22133 			break;
22134 		}
22135 
22136 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22137 			err = EFAULT;
22138 		}
22139 		break;
22140 	}
22141 
22142 	case DKIOCSETWCE: {
22143 
22144 		int wce, sync_supported;
22145 
22146 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22147 			err = EFAULT;
22148 			break;
22149 		}
22150 
22151 		/*
22152 		 * Synchronize multiple threads trying to enable
22153 		 * or disable the cache via the un_f_wcc_cv
22154 		 * condition variable.
22155 		 */
22156 		mutex_enter(SD_MUTEX(un));
22157 
22158 		/*
22159 		 * Don't allow the cache to be enabled if the
22160 		 * config file has it disabled.
22161 		 */
22162 		if (un->un_f_opt_disable_cache && wce) {
22163 			mutex_exit(SD_MUTEX(un));
22164 			err = EINVAL;
22165 			break;
22166 		}
22167 
22168 		/*
22169 		 * Wait for write cache change in progress
22170 		 * bit to be clear before proceeding.
22171 		 */
22172 		while (un->un_f_wcc_inprog)
22173 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22174 
22175 		un->un_f_wcc_inprog = 1;
22176 
22177 		if (un->un_f_write_cache_enabled && wce == 0) {
22178 			/*
22179 			 * Disable the write cache.  Don't clear
22180 			 * un_f_write_cache_enabled until after
22181 			 * the mode select and flush are complete.
22182 			 */
22183 			sync_supported = un->un_f_sync_cache_supported;
22184 
22185 			/*
22186 			 * If cache flush is suppressed, we assume that the
22187 			 * controller firmware will take care of managing the
22188 			 * write cache for us: no need to explicitly
22189 			 * disable it.
22190 			 */
22191 			if (!un->un_f_suppress_cache_flush) {
22192 				mutex_exit(SD_MUTEX(un));
22193 				if ((err = sd_cache_control(ssc,
22194 				    SD_CACHE_NOCHANGE,
22195 				    SD_CACHE_DISABLE)) == 0 &&
22196 				    sync_supported) {
22197 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22198 					    NULL);
22199 				}
22200 			} else {
22201 				mutex_exit(SD_MUTEX(un));
22202 			}
22203 
22204 			mutex_enter(SD_MUTEX(un));
22205 			if (err == 0) {
22206 				un->un_f_write_cache_enabled = 0;
22207 			}
22208 
22209 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22210 			/*
22211 			 * Set un_f_write_cache_enabled first, so there is
22212 			 * no window where the cache is enabled, but the
22213 			 * bit says it isn't.
22214 			 */
22215 			un->un_f_write_cache_enabled = 1;
22216 
22217 			/*
22218 			 * If cache flush is suppressed, we assume that the
22219 			 * controller firmware will take care of managing the
22220 			 * write cache for us: no need to explicitly
22221 			 * enable it.
22222 			 */
22223 			if (!un->un_f_suppress_cache_flush) {
22224 				mutex_exit(SD_MUTEX(un));
22225 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22226 				    SD_CACHE_ENABLE);
22227 			} else {
22228 				mutex_exit(SD_MUTEX(un));
22229 			}
22230 
22231 			mutex_enter(SD_MUTEX(un));
22232 
22233 			if (err) {
22234 				un->un_f_write_cache_enabled = 0;
22235 			}
22236 		}
22237 
22238 		un->un_f_wcc_inprog = 0;
22239 		cv_broadcast(&un->un_wcc_cv);
22240 		mutex_exit(SD_MUTEX(un));
22241 		break;
22242 	}
22243 
22244 	default:
22245 		err = ENOTTY;
22246 		break;
22247 	}
22248 	mutex_enter(SD_MUTEX(un));
22249 	un->un_ncmds_in_driver--;
22250 	ASSERT(un->un_ncmds_in_driver >= 0);
22251 	mutex_exit(SD_MUTEX(un));
22252 
22253 
22254 done_without_assess:
22255 	sd_ssc_fini(ssc);
22256 
22257 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22258 	return (err);
22259 
22260 done_with_assess:
22261 	mutex_enter(SD_MUTEX(un));
22262 	un->un_ncmds_in_driver--;
22263 	ASSERT(un->un_ncmds_in_driver >= 0);
22264 	mutex_exit(SD_MUTEX(un));
22265 
22266 done_quick_assess:
22267 	if (err != 0)
22268 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22269 	/* Uninitialize sd_ssc_t pointer */
22270 	sd_ssc_fini(ssc);
22271 
22272 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22273 	return (err);
22274 }
22275 
22276 
22277 /*
22278  *    Function: sd_dkio_ctrl_info
22279  *
22280  * Description: This routine is the driver entry point for handling controller
22281  *		information ioctl requests (DKIOCINFO).
22282  *
22283  *   Arguments: dev  - the device number
22284  *		arg  - pointer to user provided dk_cinfo structure
22285  *		       specifying the controller type and attributes.
22286  *		flag - this argument is a pass through to ddi_copyxxx()
22287  *		       directly from the mode argument of ioctl().
22288  *
22289  * Return Code: 0
22290  *		EFAULT
22291  *		ENXIO
22292  */
22293 
22294 static int
22295 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22296 {
22297 	struct sd_lun	*un = NULL;
22298 	struct dk_cinfo	*info;
22299 	dev_info_t	*pdip;
22300 	int		lun, tgt;
22301 
22302 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22303 		return (ENXIO);
22304 	}
22305 
22306 	info = (struct dk_cinfo *)
22307 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22308 
22309 	switch (un->un_ctype) {
22310 	case CTYPE_CDROM:
22311 		info->dki_ctype = DKC_CDROM;
22312 		break;
22313 	default:
22314 		info->dki_ctype = DKC_SCSI_CCS;
22315 		break;
22316 	}
22317 	pdip = ddi_get_parent(SD_DEVINFO(un));
22318 	info->dki_cnum = ddi_get_instance(pdip);
22319 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22320 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22321 	} else {
22322 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22323 		    DK_DEVLEN - 1);
22324 	}
22325 
22326 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22327 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22328 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22329 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22330 
22331 	/* Unit Information */
22332 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22333 	info->dki_slave = ((tgt << 3) | lun);
22334 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22335 	    DK_DEVLEN - 1);
22336 	info->dki_flags = DKI_FMTVOL;
22337 	info->dki_partition = SDPART(dev);
22338 
22339 	/* Max Transfer size of this device in blocks */
22340 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22341 	info->dki_addr = 0;
22342 	info->dki_space = 0;
22343 	info->dki_prio = 0;
22344 	info->dki_vec = 0;
22345 
22346 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22347 		kmem_free(info, sizeof (struct dk_cinfo));
22348 		return (EFAULT);
22349 	} else {
22350 		kmem_free(info, sizeof (struct dk_cinfo));
22351 		return (0);
22352 	}
22353 }
22354 
22355 
22356 /*
22357  *    Function: sd_get_media_info
22358  *
22359  * Description: This routine is the driver entry point for handling ioctl
22360  *		requests for the media type or command set profile used by the
22361  *		drive to operate on the media (DKIOCGMEDIAINFO).
22362  *
22363  *   Arguments: dev	- the device number
22364  *		arg	- pointer to user provided dk_minfo structure
22365  *			  specifying the media type, logical block size and
22366  *			  drive capacity.
22367  *		flag	- this argument is a pass through to ddi_copyxxx()
22368  *			  directly from the mode argument of ioctl().
22369  *
22370  * Return Code: 0
22371  *		EACCESS
22372  *		EFAULT
22373  *		ENXIO
22374  *		EIO
22375  */
22376 
22377 static int
22378 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22379 {
22380 	struct sd_lun		*un = NULL;
22381 	struct uscsi_cmd	com;
22382 	struct scsi_inquiry	*sinq;
22383 	struct dk_minfo		media_info;
22384 	u_longlong_t		media_capacity;
22385 	uint64_t		capacity;
22386 	uint_t			lbasize;
22387 	uchar_t			*out_data;
22388 	uchar_t			*rqbuf;
22389 	int			rval = 0;
22390 	int			rtn;
22391 	sd_ssc_t		*ssc;
22392 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22393 	    (un->un_state == SD_STATE_OFFLINE)) {
22394 		return (ENXIO);
22395 	}
22396 
22397 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22398 
22399 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22400 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22401 
22402 	/* Issue a TUR to determine if the drive is ready with media present */
22403 	ssc = sd_ssc_init(un);
22404 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22405 	if (rval == ENXIO) {
22406 		goto done;
22407 	} else if (rval != 0) {
22408 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22409 	}
22410 
22411 	/* Now get configuration data */
22412 	if (ISCD(un)) {
22413 		media_info.dki_media_type = DK_CDROM;
22414 
22415 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22416 		if (un->un_f_mmc_cap == TRUE) {
22417 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22418 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22419 			    SD_PATH_STANDARD);
22420 
22421 			if (rtn) {
22422 				/*
22423 				 * We ignore all failures for CD and need to
22424 				 * put the assessment before processing code
22425 				 * to avoid missing assessment for FMA.
22426 				 */
22427 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22428 				/*
22429 				 * Failed for other than an illegal request
22430 				 * or command not supported
22431 				 */
22432 				if ((com.uscsi_status == STATUS_CHECK) &&
22433 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22434 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22435 					    (rqbuf[12] != 0x20)) {
22436 						rval = EIO;
22437 						goto no_assessment;
22438 					}
22439 				}
22440 			} else {
22441 				/*
22442 				 * The GET CONFIGURATION command succeeded
22443 				 * so set the media type according to the
22444 				 * returned data
22445 				 */
22446 				media_info.dki_media_type = out_data[6];
22447 				media_info.dki_media_type <<= 8;
22448 				media_info.dki_media_type |= out_data[7];
22449 			}
22450 		}
22451 	} else {
22452 		/*
22453 		 * The profile list is not available, so we attempt to identify
22454 		 * the media type based on the inquiry data
22455 		 */
22456 		sinq = un->un_sd->sd_inq;
22457 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22458 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22459 			/* This is a direct access device  or optical disk */
22460 			media_info.dki_media_type = DK_FIXED_DISK;
22461 
22462 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22463 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22464 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22465 					media_info.dki_media_type = DK_ZIP;
22466 				} else if (
22467 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22468 					media_info.dki_media_type = DK_JAZ;
22469 				}
22470 			}
22471 		} else {
22472 			/*
22473 			 * Not a CD, direct access or optical disk so return
22474 			 * unknown media
22475 			 */
22476 			media_info.dki_media_type = DK_UNKNOWN;
22477 		}
22478 	}
22479 
22480 	/* Now read the capacity so we can provide the lbasize and capacity */
22481 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22482 	    SD_PATH_DIRECT);
22483 	switch (rval) {
22484 	case 0:
22485 		break;
22486 	case EACCES:
22487 		rval = EACCES;
22488 		goto done;
22489 	default:
22490 		rval = EIO;
22491 		goto done;
22492 	}
22493 
22494 	/*
22495 	 * If lun is expanded dynamically, update the un structure.
22496 	 */
22497 	mutex_enter(SD_MUTEX(un));
22498 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22499 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22500 	    (capacity > un->un_blockcount)) {
22501 		sd_update_block_info(un, lbasize, capacity);
22502 	}
22503 	mutex_exit(SD_MUTEX(un));
22504 
22505 	media_info.dki_lbsize = lbasize;
22506 	media_capacity = capacity;
22507 
22508 	/*
22509 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22510 	 * un->un_sys_blocksize chunks. So we need to convert it into
22511 	 * cap.lbasize chunks.
22512 	 */
22513 	media_capacity *= un->un_sys_blocksize;
22514 	media_capacity /= lbasize;
22515 	media_info.dki_capacity = media_capacity;
22516 
22517 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22518 		rval = EFAULT;
22519 		/* Put goto. Anybody might add some code below in future */
22520 		goto no_assessment;
22521 	}
22522 done:
22523 	if (rval != 0) {
22524 		if (rval == EIO)
22525 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22526 		else
22527 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22528 	}
22529 no_assessment:
22530 	sd_ssc_fini(ssc);
22531 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22532 	kmem_free(rqbuf, SENSE_LENGTH);
22533 	return (rval);
22534 }
22535 
22536 
22537 /*
22538  *    Function: sd_check_media
22539  *
22540  * Description: This utility routine implements the functionality for the
22541  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22542  *		driver state changes from that specified by the user
22543  *		(inserted or ejected). For example, if the user specifies
22544  *		DKIO_EJECTED and the current media state is inserted this
22545  *		routine will immediately return DKIO_INSERTED. However, if the
22546  *		current media state is not inserted the user thread will be
22547  *		blocked until the drive state changes. If DKIO_NONE is specified
22548  *		the user thread will block until a drive state change occurs.
22549  *
22550  *   Arguments: dev  - the device number
22551  *		state  - user pointer to a dkio_state, updated with the current
22552  *			drive state at return.
22553  *
22554  * Return Code: ENXIO
22555  *		EIO
22556  *		EAGAIN
22557  *		EINTR
22558  */
22559 
22560 static int
22561 sd_check_media(dev_t dev, enum dkio_state state)
22562 {
22563 	struct sd_lun		*un = NULL;
22564 	enum dkio_state		prev_state;
22565 	opaque_t		token = NULL;
22566 	int			rval = 0;
22567 	sd_ssc_t		*ssc;
22568 	dev_t			sub_dev;
22569 
22570 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22571 		return (ENXIO);
22572 	}
22573 
22574 	/*
22575 	 * sub_dev is used when submitting request to scsi watch.
22576 	 * All submissions are unified to use same device number.
22577 	 */
22578 	sub_dev = sd_make_device(SD_DEVINFO(un));
22579 
22580 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22581 
22582 	ssc = sd_ssc_init(un);
22583 
22584 	mutex_enter(SD_MUTEX(un));
22585 
22586 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22587 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22588 
22589 	prev_state = un->un_mediastate;
22590 
22591 	/* is there anything to do? */
22592 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22593 		/*
22594 		 * submit the request to the scsi_watch service;
22595 		 * scsi_media_watch_cb() does the real work
22596 		 */
22597 		mutex_exit(SD_MUTEX(un));
22598 
22599 		/*
22600 		 * This change handles the case where a scsi watch request is
22601 		 * added to a device that is powered down. To accomplish this
22602 		 * we power up the device before adding the scsi watch request,
22603 		 * since the scsi watch sends a TUR directly to the device
22604 		 * which the device cannot handle if it is powered down.
22605 		 */
22606 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22607 			mutex_enter(SD_MUTEX(un));
22608 			goto done;
22609 		}
22610 
22611 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22612 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22613 		    (caddr_t)sub_dev);
22614 
22615 		sd_pm_exit(un);
22616 
22617 		mutex_enter(SD_MUTEX(un));
22618 		if (token == NULL) {
22619 			rval = EAGAIN;
22620 			goto done;
22621 		}
22622 
22623 		/*
22624 		 * This is a special case IOCTL that doesn't return
22625 		 * until the media state changes. Routine sdpower
22626 		 * knows about and handles this so don't count it
22627 		 * as an active cmd in the driver, which would
22628 		 * keep the device busy to the pm framework.
22629 		 * If the count isn't decremented the device can't
22630 		 * be powered down.
22631 		 */
22632 		un->un_ncmds_in_driver--;
22633 		ASSERT(un->un_ncmds_in_driver >= 0);
22634 
22635 		/*
22636 		 * if a prior request had been made, this will be the same
22637 		 * token, as scsi_watch was designed that way.
22638 		 */
22639 		un->un_swr_token = token;
22640 		un->un_specified_mediastate = state;
22641 
22642 		/*
22643 		 * now wait for media change
22644 		 * we will not be signalled unless mediastate == state but it is
22645 		 * still better to test for this condition, since there is a
22646 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22647 		 */
22648 		SD_TRACE(SD_LOG_COMMON, un,
22649 		    "sd_check_media: waiting for media state change\n");
22650 		while (un->un_mediastate == state) {
22651 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22652 				SD_TRACE(SD_LOG_COMMON, un,
22653 				    "sd_check_media: waiting for media state "
22654 				    "was interrupted\n");
22655 				un->un_ncmds_in_driver++;
22656 				rval = EINTR;
22657 				goto done;
22658 			}
22659 			SD_TRACE(SD_LOG_COMMON, un,
22660 			    "sd_check_media: received signal, state=%x\n",
22661 			    un->un_mediastate);
22662 		}
22663 		/*
22664 		 * Inc the counter to indicate the device once again
22665 		 * has an active outstanding cmd.
22666 		 */
22667 		un->un_ncmds_in_driver++;
22668 	}
22669 
22670 	/* invalidate geometry */
22671 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22672 		sr_ejected(un);
22673 	}
22674 
22675 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22676 		uint64_t	capacity;
22677 		uint_t		lbasize;
22678 
22679 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22680 		mutex_exit(SD_MUTEX(un));
22681 		/*
22682 		 * Since the following routines use SD_PATH_DIRECT, we must
22683 		 * call PM directly before the upcoming disk accesses. This
22684 		 * may cause the disk to be power/spin up.
22685 		 */
22686 
22687 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22688 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22689 			    &capacity, &lbasize, SD_PATH_DIRECT);
22690 			if (rval != 0) {
22691 				sd_pm_exit(un);
22692 				if (rval == EIO)
22693 					sd_ssc_assessment(ssc,
22694 					    SD_FMT_STATUS_CHECK);
22695 				else
22696 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22697 				mutex_enter(SD_MUTEX(un));
22698 				goto done;
22699 			}
22700 		} else {
22701 			rval = EIO;
22702 			mutex_enter(SD_MUTEX(un));
22703 			goto done;
22704 		}
22705 		mutex_enter(SD_MUTEX(un));
22706 
22707 		sd_update_block_info(un, lbasize, capacity);
22708 
22709 		/*
22710 		 *  Check if the media in the device is writable or not
22711 		 */
22712 		if (ISCD(un)) {
22713 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22714 		}
22715 
22716 		mutex_exit(SD_MUTEX(un));
22717 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22718 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22719 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22720 			sd_set_pstats(un);
22721 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22722 			    "sd_check_media: un:0x%p pstats created and "
22723 			    "set\n", un);
22724 		}
22725 
22726 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22727 		    SD_PATH_DIRECT);
22728 
22729 		sd_pm_exit(un);
22730 
22731 		if (rval != 0) {
22732 			if (rval == EIO)
22733 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22734 			else
22735 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22736 		}
22737 
22738 		mutex_enter(SD_MUTEX(un));
22739 	}
22740 done:
22741 	sd_ssc_fini(ssc);
22742 	un->un_f_watcht_stopped = FALSE;
22743 	if (token != NULL && un->un_swr_token != NULL) {
22744 		/*
22745 		 * Use of this local token and the mutex ensures that we avoid
22746 		 * some race conditions associated with terminating the
22747 		 * scsi watch.
22748 		 */
22749 		token = un->un_swr_token;
22750 		mutex_exit(SD_MUTEX(un));
22751 		(void) scsi_watch_request_terminate(token,
22752 		    SCSI_WATCH_TERMINATE_WAIT);
22753 		if (scsi_watch_get_ref_count(token) == 0) {
22754 			mutex_enter(SD_MUTEX(un));
22755 			un->un_swr_token = (opaque_t)NULL;
22756 		} else {
22757 			mutex_enter(SD_MUTEX(un));
22758 		}
22759 	}
22760 
22761 	/*
22762 	 * Update the capacity kstat value, if no media previously
22763 	 * (capacity kstat is 0) and a media has been inserted
22764 	 * (un_f_blockcount_is_valid == TRUE)
22765 	 */
22766 	if (un->un_errstats) {
22767 		struct sd_errstats	*stp = NULL;
22768 
22769 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22770 		if ((stp->sd_capacity.value.ui64 == 0) &&
22771 		    (un->un_f_blockcount_is_valid == TRUE)) {
22772 			stp->sd_capacity.value.ui64 =
22773 			    (uint64_t)((uint64_t)un->un_blockcount *
22774 			    un->un_sys_blocksize);
22775 		}
22776 	}
22777 	mutex_exit(SD_MUTEX(un));
22778 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22779 	return (rval);
22780 }
22781 
22782 
22783 /*
22784  *    Function: sd_delayed_cv_broadcast
22785  *
22786  * Description: Delayed cv_broadcast to allow for target to recover from media
22787  *		insertion.
22788  *
22789  *   Arguments: arg - driver soft state (unit) structure
22790  */
22791 
22792 static void
22793 sd_delayed_cv_broadcast(void *arg)
22794 {
22795 	struct sd_lun *un = arg;
22796 
22797 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22798 
22799 	mutex_enter(SD_MUTEX(un));
22800 	un->un_dcvb_timeid = NULL;
22801 	cv_broadcast(&un->un_state_cv);
22802 	mutex_exit(SD_MUTEX(un));
22803 }
22804 
22805 
22806 /*
22807  *    Function: sd_media_watch_cb
22808  *
22809  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22810  *		routine processes the TUR sense data and updates the driver
22811  *		state if a transition has occurred. The user thread
22812  *		(sd_check_media) is then signalled.
22813  *
22814  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22815  *			among multiple watches that share this callback function
22816  *		resultp - scsi watch facility result packet containing scsi
22817  *			  packet, status byte and sense data
22818  *
22819  * Return Code: 0 for success, -1 for failure
22820  */
22821 
22822 static int
22823 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22824 {
22825 	struct sd_lun			*un;
22826 	struct scsi_status		*statusp = resultp->statusp;
22827 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22828 	enum dkio_state			state = DKIO_NONE;
22829 	dev_t				dev = (dev_t)arg;
22830 	uchar_t				actual_sense_length;
22831 	uint8_t				skey, asc, ascq;
22832 
22833 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22834 		return (-1);
22835 	}
22836 	actual_sense_length = resultp->actual_sense_length;
22837 
22838 	mutex_enter(SD_MUTEX(un));
22839 	SD_TRACE(SD_LOG_COMMON, un,
22840 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22841 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22842 
22843 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22844 		un->un_mediastate = DKIO_DEV_GONE;
22845 		cv_broadcast(&un->un_state_cv);
22846 		mutex_exit(SD_MUTEX(un));
22847 
22848 		return (0);
22849 	}
22850 
22851 	/*
22852 	 * If there was a check condition then sensep points to valid sense data
22853 	 * If status was not a check condition but a reservation or busy status
22854 	 * then the new state is DKIO_NONE
22855 	 */
22856 	if (sensep != NULL) {
22857 		skey = scsi_sense_key(sensep);
22858 		asc = scsi_sense_asc(sensep);
22859 		ascq = scsi_sense_ascq(sensep);
22860 
22861 		SD_INFO(SD_LOG_COMMON, un,
22862 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22863 		    skey, asc, ascq);
22864 		/* This routine only uses up to 13 bytes of sense data. */
22865 		if (actual_sense_length >= 13) {
22866 			if (skey == KEY_UNIT_ATTENTION) {
22867 				if (asc == 0x28) {
22868 					state = DKIO_INSERTED;
22869 				}
22870 			} else if (skey == KEY_NOT_READY) {
22871 				/*
22872 				 * Sense data of 02/06/00 means that the
22873 				 * drive could not read the media (No
22874 				 * reference position found). In this case
22875 				 * to prevent a hang on the DKIOCSTATE IOCTL
22876 				 * we set the media state to DKIO_INSERTED.
22877 				 */
22878 				if (asc == 0x06 && ascq == 0x00)
22879 					state = DKIO_INSERTED;
22880 
22881 				/*
22882 				 * if 02/04/02  means that the host
22883 				 * should send start command. Explicitly
22884 				 * leave the media state as is
22885 				 * (inserted) as the media is inserted
22886 				 * and host has stopped device for PM
22887 				 * reasons. Upon next true read/write
22888 				 * to this media will bring the
22889 				 * device to the right state good for
22890 				 * media access.
22891 				 */
22892 				if (asc == 0x3a) {
22893 					state = DKIO_EJECTED;
22894 				} else {
22895 					/*
22896 					 * If the drive is busy with an
22897 					 * operation or long write, keep the
22898 					 * media in an inserted state.
22899 					 */
22900 
22901 					if ((asc == 0x04) &&
22902 					    ((ascq == 0x02) ||
22903 					    (ascq == 0x07) ||
22904 					    (ascq == 0x08))) {
22905 						state = DKIO_INSERTED;
22906 					}
22907 				}
22908 			} else if (skey == KEY_NO_SENSE) {
22909 				if ((asc == 0x00) && (ascq == 0x00)) {
22910 					/*
22911 					 * Sense Data 00/00/00 does not provide
22912 					 * any information about the state of
22913 					 * the media. Ignore it.
22914 					 */
22915 					mutex_exit(SD_MUTEX(un));
22916 					return (0);
22917 				}
22918 			}
22919 		}
22920 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22921 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22922 		state = DKIO_INSERTED;
22923 	}
22924 
22925 	SD_TRACE(SD_LOG_COMMON, un,
22926 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22927 	    state, un->un_specified_mediastate);
22928 
22929 	/*
22930 	 * now signal the waiting thread if this is *not* the specified state;
22931 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22932 	 * to recover
22933 	 */
22934 	if (state != un->un_specified_mediastate) {
22935 		un->un_mediastate = state;
22936 		if (state == DKIO_INSERTED) {
22937 			/*
22938 			 * delay the signal to give the drive a chance
22939 			 * to do what it apparently needs to do
22940 			 */
22941 			SD_TRACE(SD_LOG_COMMON, un,
22942 			    "sd_media_watch_cb: delayed cv_broadcast\n");
22943 			if (un->un_dcvb_timeid == NULL) {
22944 				un->un_dcvb_timeid =
22945 				    timeout(sd_delayed_cv_broadcast, un,
22946 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
22947 			}
22948 		} else {
22949 			SD_TRACE(SD_LOG_COMMON, un,
22950 			    "sd_media_watch_cb: immediate cv_broadcast\n");
22951 			cv_broadcast(&un->un_state_cv);
22952 		}
22953 	}
22954 	mutex_exit(SD_MUTEX(un));
22955 	return (0);
22956 }
22957 
22958 
22959 /*
22960  *    Function: sd_dkio_get_temp
22961  *
22962  * Description: This routine is the driver entry point for handling ioctl
22963  *		requests to get the disk temperature.
22964  *
22965  *   Arguments: dev  - the device number
22966  *		arg  - pointer to user provided dk_temperature structure.
22967  *		flag - this argument is a pass through to ddi_copyxxx()
22968  *		       directly from the mode argument of ioctl().
22969  *
22970  * Return Code: 0
22971  *		EFAULT
22972  *		ENXIO
22973  *		EAGAIN
22974  */
22975 
22976 static int
22977 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
22978 {
22979 	struct sd_lun		*un = NULL;
22980 	struct dk_temperature	*dktemp = NULL;
22981 	uchar_t			*temperature_page;
22982 	int			rval = 0;
22983 	int			path_flag = SD_PATH_STANDARD;
22984 	sd_ssc_t		*ssc;
22985 
22986 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22987 		return (ENXIO);
22988 	}
22989 
22990 	ssc = sd_ssc_init(un);
22991 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
22992 
22993 	/* copyin the disk temp argument to get the user flags */
22994 	if (ddi_copyin((void *)arg, dktemp,
22995 	    sizeof (struct dk_temperature), flag) != 0) {
22996 		rval = EFAULT;
22997 		goto done;
22998 	}
22999 
23000 	/* Initialize the temperature to invalid. */
23001 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23002 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23003 
23004 	/*
23005 	 * Note: Investigate removing the "bypass pm" semantic.
23006 	 * Can we just bypass PM always?
23007 	 */
23008 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23009 		path_flag = SD_PATH_DIRECT;
23010 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23011 		mutex_enter(&un->un_pm_mutex);
23012 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23013 			/*
23014 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23015 			 * in low power mode, we can not wake it up, Need to
23016 			 * return EAGAIN.
23017 			 */
23018 			mutex_exit(&un->un_pm_mutex);
23019 			rval = EAGAIN;
23020 			goto done;
23021 		} else {
23022 			/*
23023 			 * Indicate to PM the device is busy. This is required
23024 			 * to avoid a race - i.e. the ioctl is issuing a
23025 			 * command and the pm framework brings down the device
23026 			 * to low power mode (possible power cut-off on some
23027 			 * platforms).
23028 			 */
23029 			mutex_exit(&un->un_pm_mutex);
23030 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23031 				rval = EAGAIN;
23032 				goto done;
23033 			}
23034 		}
23035 	}
23036 
23037 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23038 
23039 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
23040 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
23041 	if (rval != 0)
23042 		goto done2;
23043 
23044 	/*
23045 	 * For the current temperature verify that the parameter length is 0x02
23046 	 * and the parameter code is 0x00
23047 	 */
23048 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23049 	    (temperature_page[5] == 0x00)) {
23050 		if (temperature_page[9] == 0xFF) {
23051 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23052 		} else {
23053 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23054 		}
23055 	}
23056 
23057 	/*
23058 	 * For the reference temperature verify that the parameter
23059 	 * length is 0x02 and the parameter code is 0x01
23060 	 */
23061 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23062 	    (temperature_page[11] == 0x01)) {
23063 		if (temperature_page[15] == 0xFF) {
23064 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23065 		} else {
23066 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23067 		}
23068 	}
23069 
23070 	/* Do the copyout regardless of the temperature commands status. */
23071 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23072 	    flag) != 0) {
23073 		rval = EFAULT;
23074 		goto done1;
23075 	}
23076 
23077 done2:
23078 	if (rval != 0) {
23079 		if (rval == EIO)
23080 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23081 		else
23082 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23083 	}
23084 done1:
23085 	if (path_flag == SD_PATH_DIRECT) {
23086 		sd_pm_exit(un);
23087 	}
23088 
23089 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23090 done:
23091 	sd_ssc_fini(ssc);
23092 	if (dktemp != NULL) {
23093 		kmem_free(dktemp, sizeof (struct dk_temperature));
23094 	}
23095 
23096 	return (rval);
23097 }
23098 
23099 
23100 /*
23101  *    Function: sd_log_page_supported
23102  *
23103  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23104  *		supported log pages.
23105  *
23106  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
23107  *                      structure for this target.
23108  *		log_page -
23109  *
23110  * Return Code: -1 - on error (log sense is optional and may not be supported).
23111  *		0  - log page not found.
23112  *  		1  - log page found.
23113  */
23114 
23115 static int
23116 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23117 {
23118 	uchar_t *log_page_data;
23119 	int	i;
23120 	int	match = 0;
23121 	int	log_size;
23122 	int	status = 0;
23123 	struct sd_lun	*un;
23124 
23125 	ASSERT(ssc != NULL);
23126 	un = ssc->ssc_un;
23127 	ASSERT(un != NULL);
23128 
23129 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23130 
23131 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23132 	    SD_PATH_DIRECT);
23133 
23134 	if (status != 0) {
23135 		if (status == EIO) {
23136 			/*
23137 			 * Some disks do not support log sense, we
23138 			 * should ignore this kind of error(sense key is
23139 			 * 0x5 - illegal request).
23140 			 */
23141 			uint8_t *sensep;
23142 			int senlen;
23143 
23144 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23145 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23146 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23147 
23148 			if (senlen > 0 &&
23149 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23150 				sd_ssc_assessment(ssc,
23151 				    SD_FMT_IGNORE_COMPROMISE);
23152 			} else {
23153 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23154 			}
23155 		} else {
23156 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23157 		}
23158 
23159 		SD_ERROR(SD_LOG_COMMON, un,
23160 		    "sd_log_page_supported: failed log page retrieval\n");
23161 		kmem_free(log_page_data, 0xFF);
23162 		return (-1);
23163 	}
23164 
23165 	log_size = log_page_data[3];
23166 
23167 	/*
23168 	 * The list of supported log pages start from the fourth byte. Check
23169 	 * until we run out of log pages or a match is found.
23170 	 */
23171 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23172 		if (log_page_data[i] == log_page) {
23173 			match++;
23174 		}
23175 	}
23176 	kmem_free(log_page_data, 0xFF);
23177 	return (match);
23178 }
23179 
23180 
23181 /*
23182  *    Function: sd_mhdioc_failfast
23183  *
23184  * Description: This routine is the driver entry point for handling ioctl
23185  *		requests to enable/disable the multihost failfast option.
23186  *		(MHIOCENFAILFAST)
23187  *
23188  *   Arguments: dev	- the device number
23189  *		arg	- user specified probing interval.
23190  *		flag	- this argument is a pass through to ddi_copyxxx()
23191  *			  directly from the mode argument of ioctl().
23192  *
23193  * Return Code: 0
23194  *		EFAULT
23195  *		ENXIO
23196  */
23197 
23198 static int
23199 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23200 {
23201 	struct sd_lun	*un = NULL;
23202 	int		mh_time;
23203 	int		rval = 0;
23204 
23205 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23206 		return (ENXIO);
23207 	}
23208 
23209 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23210 		return (EFAULT);
23211 
23212 	if (mh_time) {
23213 		mutex_enter(SD_MUTEX(un));
23214 		un->un_resvd_status |= SD_FAILFAST;
23215 		mutex_exit(SD_MUTEX(un));
23216 		/*
23217 		 * If mh_time is INT_MAX, then this ioctl is being used for
23218 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23219 		 */
23220 		if (mh_time != INT_MAX) {
23221 			rval = sd_check_mhd(dev, mh_time);
23222 		}
23223 	} else {
23224 		(void) sd_check_mhd(dev, 0);
23225 		mutex_enter(SD_MUTEX(un));
23226 		un->un_resvd_status &= ~SD_FAILFAST;
23227 		mutex_exit(SD_MUTEX(un));
23228 	}
23229 	return (rval);
23230 }
23231 
23232 
23233 /*
23234  *    Function: sd_mhdioc_takeown
23235  *
23236  * Description: This routine is the driver entry point for handling ioctl
23237  *		requests to forcefully acquire exclusive access rights to the
23238  *		multihost disk (MHIOCTKOWN).
23239  *
23240  *   Arguments: dev	- the device number
23241  *		arg	- user provided structure specifying the delay
23242  *			  parameters in milliseconds
23243  *		flag	- this argument is a pass through to ddi_copyxxx()
23244  *			  directly from the mode argument of ioctl().
23245  *
23246  * Return Code: 0
23247  *		EFAULT
23248  *		ENXIO
23249  */
23250 
23251 static int
23252 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23253 {
23254 	struct sd_lun		*un = NULL;
23255 	struct mhioctkown	*tkown = NULL;
23256 	int			rval = 0;
23257 
23258 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23259 		return (ENXIO);
23260 	}
23261 
23262 	if (arg != NULL) {
23263 		tkown = (struct mhioctkown *)
23264 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23265 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23266 		if (rval != 0) {
23267 			rval = EFAULT;
23268 			goto error;
23269 		}
23270 	}
23271 
23272 	rval = sd_take_ownership(dev, tkown);
23273 	mutex_enter(SD_MUTEX(un));
23274 	if (rval == 0) {
23275 		un->un_resvd_status |= SD_RESERVE;
23276 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23277 			sd_reinstate_resv_delay =
23278 			    tkown->reinstate_resv_delay * 1000;
23279 		} else {
23280 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23281 		}
23282 		/*
23283 		 * Give the scsi_watch routine interval set by
23284 		 * the MHIOCENFAILFAST ioctl precedence here.
23285 		 */
23286 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23287 			mutex_exit(SD_MUTEX(un));
23288 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23289 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23290 			    "sd_mhdioc_takeown : %d\n",
23291 			    sd_reinstate_resv_delay);
23292 		} else {
23293 			mutex_exit(SD_MUTEX(un));
23294 		}
23295 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23296 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23297 	} else {
23298 		un->un_resvd_status &= ~SD_RESERVE;
23299 		mutex_exit(SD_MUTEX(un));
23300 	}
23301 
23302 error:
23303 	if (tkown != NULL) {
23304 		kmem_free(tkown, sizeof (struct mhioctkown));
23305 	}
23306 	return (rval);
23307 }
23308 
23309 
23310 /*
23311  *    Function: sd_mhdioc_release
23312  *
23313  * Description: This routine is the driver entry point for handling ioctl
23314  *		requests to release exclusive access rights to the multihost
23315  *		disk (MHIOCRELEASE).
23316  *
23317  *   Arguments: dev	- the device number
23318  *
23319  * Return Code: 0
23320  *		ENXIO
23321  */
23322 
23323 static int
23324 sd_mhdioc_release(dev_t dev)
23325 {
23326 	struct sd_lun		*un = NULL;
23327 	timeout_id_t		resvd_timeid_save;
23328 	int			resvd_status_save;
23329 	int			rval = 0;
23330 
23331 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23332 		return (ENXIO);
23333 	}
23334 
23335 	mutex_enter(SD_MUTEX(un));
23336 	resvd_status_save = un->un_resvd_status;
23337 	un->un_resvd_status &=
23338 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23339 	if (un->un_resvd_timeid) {
23340 		resvd_timeid_save = un->un_resvd_timeid;
23341 		un->un_resvd_timeid = NULL;
23342 		mutex_exit(SD_MUTEX(un));
23343 		(void) untimeout(resvd_timeid_save);
23344 	} else {
23345 		mutex_exit(SD_MUTEX(un));
23346 	}
23347 
23348 	/*
23349 	 * destroy any pending timeout thread that may be attempting to
23350 	 * reinstate reservation on this device.
23351 	 */
23352 	sd_rmv_resv_reclaim_req(dev);
23353 
23354 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23355 		mutex_enter(SD_MUTEX(un));
23356 		if ((un->un_mhd_token) &&
23357 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23358 			mutex_exit(SD_MUTEX(un));
23359 			(void) sd_check_mhd(dev, 0);
23360 		} else {
23361 			mutex_exit(SD_MUTEX(un));
23362 		}
23363 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23364 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23365 	} else {
23366 		/*
23367 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23368 		 */
23369 		mutex_enter(SD_MUTEX(un));
23370 		un->un_resvd_status = resvd_status_save;
23371 		mutex_exit(SD_MUTEX(un));
23372 	}
23373 	return (rval);
23374 }
23375 
23376 
23377 /*
23378  *    Function: sd_mhdioc_register_devid
23379  *
23380  * Description: This routine is the driver entry point for handling ioctl
23381  *		requests to register the device id (MHIOCREREGISTERDEVID).
23382  *
23383  *		Note: The implementation for this ioctl has been updated to
23384  *		be consistent with the original PSARC case (1999/357)
23385  *		(4375899, 4241671, 4220005)
23386  *
23387  *   Arguments: dev	- the device number
23388  *
23389  * Return Code: 0
23390  *		ENXIO
23391  */
23392 
23393 static int
23394 sd_mhdioc_register_devid(dev_t dev)
23395 {
23396 	struct sd_lun	*un = NULL;
23397 	int		rval = 0;
23398 	sd_ssc_t	*ssc;
23399 
23400 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23401 		return (ENXIO);
23402 	}
23403 
23404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23405 
23406 	mutex_enter(SD_MUTEX(un));
23407 
23408 	/* If a devid already exists, de-register it */
23409 	if (un->un_devid != NULL) {
23410 		ddi_devid_unregister(SD_DEVINFO(un));
23411 		/*
23412 		 * After unregister devid, needs to free devid memory
23413 		 */
23414 		ddi_devid_free(un->un_devid);
23415 		un->un_devid = NULL;
23416 	}
23417 
23418 	/* Check for reservation conflict */
23419 	mutex_exit(SD_MUTEX(un));
23420 	ssc = sd_ssc_init(un);
23421 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23422 	mutex_enter(SD_MUTEX(un));
23423 
23424 	switch (rval) {
23425 	case 0:
23426 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23427 		break;
23428 	case EACCES:
23429 		break;
23430 	default:
23431 		rval = EIO;
23432 	}
23433 
23434 	mutex_exit(SD_MUTEX(un));
23435 	if (rval != 0) {
23436 		if (rval == EIO)
23437 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23438 		else
23439 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23440 	}
23441 	sd_ssc_fini(ssc);
23442 	return (rval);
23443 }
23444 
23445 
23446 /*
23447  *    Function: sd_mhdioc_inkeys
23448  *
23449  * Description: This routine is the driver entry point for handling ioctl
23450  *		requests to issue the SCSI-3 Persistent In Read Keys command
23451  *		to the device (MHIOCGRP_INKEYS).
23452  *
23453  *   Arguments: dev	- the device number
23454  *		arg	- user provided in_keys structure
23455  *		flag	- this argument is a pass through to ddi_copyxxx()
23456  *			  directly from the mode argument of ioctl().
23457  *
23458  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23459  *		ENXIO
23460  *		EFAULT
23461  */
23462 
23463 static int
23464 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23465 {
23466 	struct sd_lun		*un;
23467 	mhioc_inkeys_t		inkeys;
23468 	int			rval = 0;
23469 
23470 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23471 		return (ENXIO);
23472 	}
23473 
23474 #ifdef _MULTI_DATAMODEL
23475 	switch (ddi_model_convert_from(flag & FMODELS)) {
23476 	case DDI_MODEL_ILP32: {
23477 		struct mhioc_inkeys32	inkeys32;
23478 
23479 		if (ddi_copyin(arg, &inkeys32,
23480 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23481 			return (EFAULT);
23482 		}
23483 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23484 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23485 		    &inkeys, flag)) != 0) {
23486 			return (rval);
23487 		}
23488 		inkeys32.generation = inkeys.generation;
23489 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23490 		    flag) != 0) {
23491 			return (EFAULT);
23492 		}
23493 		break;
23494 	}
23495 	case DDI_MODEL_NONE:
23496 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23497 		    flag) != 0) {
23498 			return (EFAULT);
23499 		}
23500 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23501 		    &inkeys, flag)) != 0) {
23502 			return (rval);
23503 		}
23504 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23505 		    flag) != 0) {
23506 			return (EFAULT);
23507 		}
23508 		break;
23509 	}
23510 
23511 #else /* ! _MULTI_DATAMODEL */
23512 
23513 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23514 		return (EFAULT);
23515 	}
23516 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23517 	if (rval != 0) {
23518 		return (rval);
23519 	}
23520 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23521 		return (EFAULT);
23522 	}
23523 
23524 #endif /* _MULTI_DATAMODEL */
23525 
23526 	return (rval);
23527 }
23528 
23529 
23530 /*
23531  *    Function: sd_mhdioc_inresv
23532  *
23533  * Description: This routine is the driver entry point for handling ioctl
23534  *		requests to issue the SCSI-3 Persistent In Read Reservations
23535  *		command to the device (MHIOCGRP_INKEYS).
23536  *
23537  *   Arguments: dev	- the device number
23538  *		arg	- user provided in_resv structure
23539  *		flag	- this argument is a pass through to ddi_copyxxx()
23540  *			  directly from the mode argument of ioctl().
23541  *
23542  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23543  *		ENXIO
23544  *		EFAULT
23545  */
23546 
23547 static int
23548 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23549 {
23550 	struct sd_lun		*un;
23551 	mhioc_inresvs_t		inresvs;
23552 	int			rval = 0;
23553 
23554 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23555 		return (ENXIO);
23556 	}
23557 
23558 #ifdef _MULTI_DATAMODEL
23559 
23560 	switch (ddi_model_convert_from(flag & FMODELS)) {
23561 	case DDI_MODEL_ILP32: {
23562 		struct mhioc_inresvs32	inresvs32;
23563 
23564 		if (ddi_copyin(arg, &inresvs32,
23565 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23566 			return (EFAULT);
23567 		}
23568 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23569 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23570 		    &inresvs, flag)) != 0) {
23571 			return (rval);
23572 		}
23573 		inresvs32.generation = inresvs.generation;
23574 		if (ddi_copyout(&inresvs32, arg,
23575 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23576 			return (EFAULT);
23577 		}
23578 		break;
23579 	}
23580 	case DDI_MODEL_NONE:
23581 		if (ddi_copyin(arg, &inresvs,
23582 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23583 			return (EFAULT);
23584 		}
23585 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23586 		    &inresvs, flag)) != 0) {
23587 			return (rval);
23588 		}
23589 		if (ddi_copyout(&inresvs, arg,
23590 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23591 			return (EFAULT);
23592 		}
23593 		break;
23594 	}
23595 
23596 #else /* ! _MULTI_DATAMODEL */
23597 
23598 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23599 		return (EFAULT);
23600 	}
23601 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23602 	if (rval != 0) {
23603 		return (rval);
23604 	}
23605 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23606 		return (EFAULT);
23607 	}
23608 
23609 #endif /* ! _MULTI_DATAMODEL */
23610 
23611 	return (rval);
23612 }
23613 
23614 
23615 /*
23616  * The following routines support the clustering functionality described below
23617  * and implement lost reservation reclaim functionality.
23618  *
23619  * Clustering
23620  * ----------
23621  * The clustering code uses two different, independent forms of SCSI
23622  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23623  * Persistent Group Reservations. For any particular disk, it will use either
23624  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23625  *
23626  * SCSI-2
23627  * The cluster software takes ownership of a multi-hosted disk by issuing the
23628  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23629  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23630  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23631  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23632  * driver. The meaning of failfast is that if the driver (on this host) ever
23633  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23634  * it should immediately panic the host. The motivation for this ioctl is that
23635  * if this host does encounter reservation conflict, the underlying cause is
23636  * that some other host of the cluster has decided that this host is no longer
23637  * in the cluster and has seized control of the disks for itself. Since this
23638  * host is no longer in the cluster, it ought to panic itself. The
23639  * MHIOCENFAILFAST ioctl does two things:
23640  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23641  *      error to panic the host
23642  *      (b) it sets up a periodic timer to test whether this host still has
23643  *      "access" (in that no other host has reserved the device):  if the
23644  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23645  *      purpose of that periodic timer is to handle scenarios where the host is
23646  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23647  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23648  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23649  * the device itself.
23650  *
23651  * SCSI-3 PGR
23652  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23653  * facility is supported through the shared multihost disk ioctls
23654  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23655  * MHIOCGRP_PREEMPTANDABORT)
23656  *
23657  * Reservation Reclaim:
23658  * --------------------
23659  * To support the lost reservation reclaim operations this driver creates a
23660  * single thread to handle reinstating reservations on all devices that have
23661  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23662  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23663  * and the reservation reclaim thread loops through the requests to regain the
23664  * lost reservations.
23665  */
23666 
23667 /*
23668  *    Function: sd_check_mhd()
23669  *
23670  * Description: This function sets up and submits a scsi watch request or
23671  *		terminates an existing watch request. This routine is used in
23672  *		support of reservation reclaim.
23673  *
23674  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23675  *			 among multiple watches that share the callback function
23676  *		interval - the number of microseconds specifying the watch
23677  *			   interval for issuing TEST UNIT READY commands. If
23678  *			   set to 0 the watch should be terminated. If the
23679  *			   interval is set to 0 and if the device is required
23680  *			   to hold reservation while disabling failfast, the
23681  *			   watch is restarted with an interval of
23682  *			   reinstate_resv_delay.
23683  *
23684  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23685  *		ENXIO      - Indicates an invalid device was specified
23686  *		EAGAIN     - Unable to submit the scsi watch request
23687  */
23688 
23689 static int
23690 sd_check_mhd(dev_t dev, int interval)
23691 {
23692 	struct sd_lun	*un;
23693 	opaque_t	token;
23694 
23695 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23696 		return (ENXIO);
23697 	}
23698 
23699 	/* is this a watch termination request? */
23700 	if (interval == 0) {
23701 		mutex_enter(SD_MUTEX(un));
23702 		/* if there is an existing watch task then terminate it */
23703 		if (un->un_mhd_token) {
23704 			token = un->un_mhd_token;
23705 			un->un_mhd_token = NULL;
23706 			mutex_exit(SD_MUTEX(un));
23707 			(void) scsi_watch_request_terminate(token,
23708 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23709 			mutex_enter(SD_MUTEX(un));
23710 		} else {
23711 			mutex_exit(SD_MUTEX(un));
23712 			/*
23713 			 * Note: If we return here we don't check for the
23714 			 * failfast case. This is the original legacy
23715 			 * implementation but perhaps we should be checking
23716 			 * the failfast case.
23717 			 */
23718 			return (0);
23719 		}
23720 		/*
23721 		 * If the device is required to hold reservation while
23722 		 * disabling failfast, we need to restart the scsi_watch
23723 		 * routine with an interval of reinstate_resv_delay.
23724 		 */
23725 		if (un->un_resvd_status & SD_RESERVE) {
23726 			interval = sd_reinstate_resv_delay/1000;
23727 		} else {
23728 			/* no failfast so bail */
23729 			mutex_exit(SD_MUTEX(un));
23730 			return (0);
23731 		}
23732 		mutex_exit(SD_MUTEX(un));
23733 	}
23734 
23735 	/*
23736 	 * adjust minimum time interval to 1 second,
23737 	 * and convert from msecs to usecs
23738 	 */
23739 	if (interval > 0 && interval < 1000) {
23740 		interval = 1000;
23741 	}
23742 	interval *= 1000;
23743 
23744 	/*
23745 	 * submit the request to the scsi_watch service
23746 	 */
23747 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23748 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23749 	if (token == NULL) {
23750 		return (EAGAIN);
23751 	}
23752 
23753 	/*
23754 	 * save token for termination later on
23755 	 */
23756 	mutex_enter(SD_MUTEX(un));
23757 	un->un_mhd_token = token;
23758 	mutex_exit(SD_MUTEX(un));
23759 	return (0);
23760 }
23761 
23762 
23763 /*
23764  *    Function: sd_mhd_watch_cb()
23765  *
23766  * Description: This function is the call back function used by the scsi watch
23767  *		facility. The scsi watch facility sends the "Test Unit Ready"
23768  *		and processes the status. If applicable (i.e. a "Unit Attention"
23769  *		status and automatic "Request Sense" not used) the scsi watch
23770  *		facility will send a "Request Sense" and retrieve the sense data
23771  *		to be passed to this callback function. In either case the
23772  *		automatic "Request Sense" or the facility submitting one, this
23773  *		callback is passed the status and sense data.
23774  *
23775  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23776  *			among multiple watches that share this callback function
23777  *		resultp - scsi watch facility result packet containing scsi
23778  *			  packet, status byte and sense data
23779  *
23780  * Return Code: 0 - continue the watch task
23781  *		non-zero - terminate the watch task
23782  */
23783 
23784 static int
23785 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23786 {
23787 	struct sd_lun			*un;
23788 	struct scsi_status		*statusp;
23789 	uint8_t				*sensep;
23790 	struct scsi_pkt			*pkt;
23791 	uchar_t				actual_sense_length;
23792 	dev_t  				dev = (dev_t)arg;
23793 
23794 	ASSERT(resultp != NULL);
23795 	statusp			= resultp->statusp;
23796 	sensep			= (uint8_t *)resultp->sensep;
23797 	pkt			= resultp->pkt;
23798 	actual_sense_length	= resultp->actual_sense_length;
23799 
23800 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23801 		return (ENXIO);
23802 	}
23803 
23804 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23805 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23806 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23807 
23808 	/* Begin processing of the status and/or sense data */
23809 	if (pkt->pkt_reason != CMD_CMPLT) {
23810 		/* Handle the incomplete packet */
23811 		sd_mhd_watch_incomplete(un, pkt);
23812 		return (0);
23813 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23814 		if (*((unsigned char *)statusp)
23815 		    == STATUS_RESERVATION_CONFLICT) {
23816 			/*
23817 			 * Handle a reservation conflict by panicking if
23818 			 * configured for failfast or by logging the conflict
23819 			 * and updating the reservation status
23820 			 */
23821 			mutex_enter(SD_MUTEX(un));
23822 			if ((un->un_resvd_status & SD_FAILFAST) &&
23823 			    (sd_failfast_enable)) {
23824 				sd_panic_for_res_conflict(un);
23825 				/*NOTREACHED*/
23826 			}
23827 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23828 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23829 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23830 			mutex_exit(SD_MUTEX(un));
23831 		}
23832 	}
23833 
23834 	if (sensep != NULL) {
23835 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23836 			mutex_enter(SD_MUTEX(un));
23837 			if ((scsi_sense_asc(sensep) ==
23838 			    SD_SCSI_RESET_SENSE_CODE) &&
23839 			    (un->un_resvd_status & SD_RESERVE)) {
23840 				/*
23841 				 * The additional sense code indicates a power
23842 				 * on or bus device reset has occurred; update
23843 				 * the reservation status.
23844 				 */
23845 				un->un_resvd_status |=
23846 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23847 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23848 				    "sd_mhd_watch_cb: Lost Reservation\n");
23849 			}
23850 		} else {
23851 			return (0);
23852 		}
23853 	} else {
23854 		mutex_enter(SD_MUTEX(un));
23855 	}
23856 
23857 	if ((un->un_resvd_status & SD_RESERVE) &&
23858 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23859 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23860 			/*
23861 			 * A reset occurred in between the last probe and this
23862 			 * one so if a timeout is pending cancel it.
23863 			 */
23864 			if (un->un_resvd_timeid) {
23865 				timeout_id_t temp_id = un->un_resvd_timeid;
23866 				un->un_resvd_timeid = NULL;
23867 				mutex_exit(SD_MUTEX(un));
23868 				(void) untimeout(temp_id);
23869 				mutex_enter(SD_MUTEX(un));
23870 			}
23871 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23872 		}
23873 		if (un->un_resvd_timeid == 0) {
23874 			/* Schedule a timeout to handle the lost reservation */
23875 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23876 			    (void *)dev,
23877 			    drv_usectohz(sd_reinstate_resv_delay));
23878 		}
23879 	}
23880 	mutex_exit(SD_MUTEX(un));
23881 	return (0);
23882 }
23883 
23884 
23885 /*
23886  *    Function: sd_mhd_watch_incomplete()
23887  *
23888  * Description: This function is used to find out why a scsi pkt sent by the
23889  *		scsi watch facility was not completed. Under some scenarios this
23890  *		routine will return. Otherwise it will send a bus reset to see
23891  *		if the drive is still online.
23892  *
23893  *   Arguments: un  - driver soft state (unit) structure
23894  *		pkt - incomplete scsi pkt
23895  */
23896 
23897 static void
23898 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23899 {
23900 	int	be_chatty;
23901 	int	perr;
23902 
23903 	ASSERT(pkt != NULL);
23904 	ASSERT(un != NULL);
23905 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23906 	perr		= (pkt->pkt_statistics & STAT_PERR);
23907 
23908 	mutex_enter(SD_MUTEX(un));
23909 	if (un->un_state == SD_STATE_DUMPING) {
23910 		mutex_exit(SD_MUTEX(un));
23911 		return;
23912 	}
23913 
23914 	switch (pkt->pkt_reason) {
23915 	case CMD_UNX_BUS_FREE:
23916 		/*
23917 		 * If we had a parity error that caused the target to drop BSY*,
23918 		 * don't be chatty about it.
23919 		 */
23920 		if (perr && be_chatty) {
23921 			be_chatty = 0;
23922 		}
23923 		break;
23924 	case CMD_TAG_REJECT:
23925 		/*
23926 		 * The SCSI-2 spec states that a tag reject will be sent by the
23927 		 * target if tagged queuing is not supported. A tag reject may
23928 		 * also be sent during certain initialization periods or to
23929 		 * control internal resources. For the latter case the target
23930 		 * may also return Queue Full.
23931 		 *
23932 		 * If this driver receives a tag reject from a target that is
23933 		 * going through an init period or controlling internal
23934 		 * resources tagged queuing will be disabled. This is a less
23935 		 * than optimal behavior but the driver is unable to determine
23936 		 * the target state and assumes tagged queueing is not supported
23937 		 */
23938 		pkt->pkt_flags = 0;
23939 		un->un_tagflags = 0;
23940 
23941 		if (un->un_f_opt_queueing == TRUE) {
23942 			un->un_throttle = min(un->un_throttle, 3);
23943 		} else {
23944 			un->un_throttle = 1;
23945 		}
23946 		mutex_exit(SD_MUTEX(un));
23947 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
23948 		mutex_enter(SD_MUTEX(un));
23949 		break;
23950 	case CMD_INCOMPLETE:
23951 		/*
23952 		 * The transport stopped with an abnormal state, fallthrough and
23953 		 * reset the target and/or bus unless selection did not complete
23954 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
23955 		 * go through a target/bus reset
23956 		 */
23957 		if (pkt->pkt_state == STATE_GOT_BUS) {
23958 			break;
23959 		}
23960 		/*FALLTHROUGH*/
23961 
23962 	case CMD_TIMEOUT:
23963 	default:
23964 		/*
23965 		 * The lun may still be running the command, so a lun reset
23966 		 * should be attempted. If the lun reset fails or cannot be
23967 		 * issued, than try a target reset. Lastly try a bus reset.
23968 		 */
23969 		if ((pkt->pkt_statistics &
23970 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
23971 			int reset_retval = 0;
23972 			mutex_exit(SD_MUTEX(un));
23973 			if (un->un_f_allow_bus_device_reset == TRUE) {
23974 				if (un->un_f_lun_reset_enabled == TRUE) {
23975 					reset_retval =
23976 					    scsi_reset(SD_ADDRESS(un),
23977 					    RESET_LUN);
23978 				}
23979 				if (reset_retval == 0) {
23980 					reset_retval =
23981 					    scsi_reset(SD_ADDRESS(un),
23982 					    RESET_TARGET);
23983 				}
23984 			}
23985 			if (reset_retval == 0) {
23986 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23987 			}
23988 			mutex_enter(SD_MUTEX(un));
23989 		}
23990 		break;
23991 	}
23992 
23993 	/* A device/bus reset has occurred; update the reservation status. */
23994 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
23995 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
23996 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
23997 			un->un_resvd_status |=
23998 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23999 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24000 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24001 		}
24002 	}
24003 
24004 	/*
24005 	 * The disk has been turned off; Update the device state.
24006 	 *
24007 	 * Note: Should we be offlining the disk here?
24008 	 */
24009 	if (pkt->pkt_state == STATE_GOT_BUS) {
24010 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24011 		    "Disk not responding to selection\n");
24012 		if (un->un_state != SD_STATE_OFFLINE) {
24013 			New_state(un, SD_STATE_OFFLINE);
24014 		}
24015 	} else if (be_chatty) {
24016 		/*
24017 		 * suppress messages if they are all the same pkt reason;
24018 		 * with TQ, many (up to 256) are returned with the same
24019 		 * pkt_reason
24020 		 */
24021 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24022 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24023 			    "sd_mhd_watch_incomplete: "
24024 			    "SCSI transport failed: reason '%s'\n",
24025 			    scsi_rname(pkt->pkt_reason));
24026 		}
24027 	}
24028 	un->un_last_pkt_reason = pkt->pkt_reason;
24029 	mutex_exit(SD_MUTEX(un));
24030 }
24031 
24032 
24033 /*
24034  *    Function: sd_sname()
24035  *
24036  * Description: This is a simple little routine to return a string containing
24037  *		a printable description of command status byte for use in
24038  *		logging.
24039  *
24040  *   Arguments: status - pointer to a status byte
24041  *
24042  * Return Code: char * - string containing status description.
24043  */
24044 
24045 static char *
24046 sd_sname(uchar_t status)
24047 {
24048 	switch (status & STATUS_MASK) {
24049 	case STATUS_GOOD:
24050 		return ("good status");
24051 	case STATUS_CHECK:
24052 		return ("check condition");
24053 	case STATUS_MET:
24054 		return ("condition met");
24055 	case STATUS_BUSY:
24056 		return ("busy");
24057 	case STATUS_INTERMEDIATE:
24058 		return ("intermediate");
24059 	case STATUS_INTERMEDIATE_MET:
24060 		return ("intermediate - condition met");
24061 	case STATUS_RESERVATION_CONFLICT:
24062 		return ("reservation_conflict");
24063 	case STATUS_TERMINATED:
24064 		return ("command terminated");
24065 	case STATUS_QFULL:
24066 		return ("queue full");
24067 	default:
24068 		return ("<unknown status>");
24069 	}
24070 }
24071 
24072 
24073 /*
24074  *    Function: sd_mhd_resvd_recover()
24075  *
24076  * Description: This function adds a reservation entry to the
24077  *		sd_resv_reclaim_request list and signals the reservation
24078  *		reclaim thread that there is work pending. If the reservation
24079  *		reclaim thread has not been previously created this function
24080  *		will kick it off.
24081  *
24082  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24083  *			among multiple watches that share this callback function
24084  *
24085  *     Context: This routine is called by timeout() and is run in interrupt
24086  *		context. It must not sleep or call other functions which may
24087  *		sleep.
24088  */
24089 
24090 static void
24091 sd_mhd_resvd_recover(void *arg)
24092 {
24093 	dev_t			dev = (dev_t)arg;
24094 	struct sd_lun		*un;
24095 	struct sd_thr_request	*sd_treq = NULL;
24096 	struct sd_thr_request	*sd_cur = NULL;
24097 	struct sd_thr_request	*sd_prev = NULL;
24098 	int			already_there = 0;
24099 
24100 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24101 		return;
24102 	}
24103 
24104 	mutex_enter(SD_MUTEX(un));
24105 	un->un_resvd_timeid = NULL;
24106 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24107 		/*
24108 		 * There was a reset so don't issue the reserve, allow the
24109 		 * sd_mhd_watch_cb callback function to notice this and
24110 		 * reschedule the timeout for reservation.
24111 		 */
24112 		mutex_exit(SD_MUTEX(un));
24113 		return;
24114 	}
24115 	mutex_exit(SD_MUTEX(un));
24116 
24117 	/*
24118 	 * Add this device to the sd_resv_reclaim_request list and the
24119 	 * sd_resv_reclaim_thread should take care of the rest.
24120 	 *
24121 	 * Note: We can't sleep in this context so if the memory allocation
24122 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24123 	 * reschedule the timeout for reservation.  (4378460)
24124 	 */
24125 	sd_treq = (struct sd_thr_request *)
24126 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24127 	if (sd_treq == NULL) {
24128 		return;
24129 	}
24130 
24131 	sd_treq->sd_thr_req_next = NULL;
24132 	sd_treq->dev = dev;
24133 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24134 	if (sd_tr.srq_thr_req_head == NULL) {
24135 		sd_tr.srq_thr_req_head = sd_treq;
24136 	} else {
24137 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24138 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24139 			if (sd_cur->dev == dev) {
24140 				/*
24141 				 * already in Queue so don't log
24142 				 * another request for the device
24143 				 */
24144 				already_there = 1;
24145 				break;
24146 			}
24147 			sd_prev = sd_cur;
24148 		}
24149 		if (!already_there) {
24150 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24151 			    "logging request for %lx\n", dev);
24152 			sd_prev->sd_thr_req_next = sd_treq;
24153 		} else {
24154 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24155 		}
24156 	}
24157 
24158 	/*
24159 	 * Create a kernel thread to do the reservation reclaim and free up this
24160 	 * thread. We cannot block this thread while we go away to do the
24161 	 * reservation reclaim
24162 	 */
24163 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24164 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24165 		    sd_resv_reclaim_thread, NULL,
24166 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24167 
24168 	/* Tell the reservation reclaim thread that it has work to do */
24169 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24170 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24171 }
24172 
24173 /*
24174  *    Function: sd_resv_reclaim_thread()
24175  *
24176  * Description: This function implements the reservation reclaim operations
24177  *
24178  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24179  *		      among multiple watches that share this callback function
24180  */
24181 
24182 static void
24183 sd_resv_reclaim_thread()
24184 {
24185 	struct sd_lun		*un;
24186 	struct sd_thr_request	*sd_mhreq;
24187 
24188 	/* Wait for work */
24189 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24190 	if (sd_tr.srq_thr_req_head == NULL) {
24191 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24192 		    &sd_tr.srq_resv_reclaim_mutex);
24193 	}
24194 
24195 	/* Loop while we have work */
24196 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24197 		un = ddi_get_soft_state(sd_state,
24198 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24199 		if (un == NULL) {
24200 			/*
24201 			 * softstate structure is NULL so just
24202 			 * dequeue the request and continue
24203 			 */
24204 			sd_tr.srq_thr_req_head =
24205 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24206 			kmem_free(sd_tr.srq_thr_cur_req,
24207 			    sizeof (struct sd_thr_request));
24208 			continue;
24209 		}
24210 
24211 		/* dequeue the request */
24212 		sd_mhreq = sd_tr.srq_thr_cur_req;
24213 		sd_tr.srq_thr_req_head =
24214 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24215 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24216 
24217 		/*
24218 		 * Reclaim reservation only if SD_RESERVE is still set. There
24219 		 * may have been a call to MHIOCRELEASE before we got here.
24220 		 */
24221 		mutex_enter(SD_MUTEX(un));
24222 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24223 			/*
24224 			 * Note: The SD_LOST_RESERVE flag is cleared before
24225 			 * reclaiming the reservation. If this is done after the
24226 			 * call to sd_reserve_release a reservation loss in the
24227 			 * window between pkt completion of reserve cmd and
24228 			 * mutex_enter below may not be recognized
24229 			 */
24230 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24231 			mutex_exit(SD_MUTEX(un));
24232 
24233 			if (sd_reserve_release(sd_mhreq->dev,
24234 			    SD_RESERVE) == 0) {
24235 				mutex_enter(SD_MUTEX(un));
24236 				un->un_resvd_status |= SD_RESERVE;
24237 				mutex_exit(SD_MUTEX(un));
24238 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24239 				    "sd_resv_reclaim_thread: "
24240 				    "Reservation Recovered\n");
24241 			} else {
24242 				mutex_enter(SD_MUTEX(un));
24243 				un->un_resvd_status |= SD_LOST_RESERVE;
24244 				mutex_exit(SD_MUTEX(un));
24245 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24246 				    "sd_resv_reclaim_thread: Failed "
24247 				    "Reservation Recovery\n");
24248 			}
24249 		} else {
24250 			mutex_exit(SD_MUTEX(un));
24251 		}
24252 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24253 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24254 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24255 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24256 		/*
24257 		 * wakeup the destroy thread if anyone is waiting on
24258 		 * us to complete.
24259 		 */
24260 		cv_signal(&sd_tr.srq_inprocess_cv);
24261 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24262 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24263 	}
24264 
24265 	/*
24266 	 * cleanup the sd_tr structure now that this thread will not exist
24267 	 */
24268 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24269 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24270 	sd_tr.srq_resv_reclaim_thread = NULL;
24271 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24272 	thread_exit();
24273 }
24274 
24275 
24276 /*
24277  *    Function: sd_rmv_resv_reclaim_req()
24278  *
24279  * Description: This function removes any pending reservation reclaim requests
24280  *		for the specified device.
24281  *
24282  *   Arguments: dev - the device 'dev_t'
24283  */
24284 
24285 static void
24286 sd_rmv_resv_reclaim_req(dev_t dev)
24287 {
24288 	struct sd_thr_request *sd_mhreq;
24289 	struct sd_thr_request *sd_prev;
24290 
24291 	/* Remove a reservation reclaim request from the list */
24292 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24293 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24294 		/*
24295 		 * We are attempting to reinstate reservation for
24296 		 * this device. We wait for sd_reserve_release()
24297 		 * to return before we return.
24298 		 */
24299 		cv_wait(&sd_tr.srq_inprocess_cv,
24300 		    &sd_tr.srq_resv_reclaim_mutex);
24301 	} else {
24302 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24303 		if (sd_mhreq && sd_mhreq->dev == dev) {
24304 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24305 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24306 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24307 			return;
24308 		}
24309 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24310 			if (sd_mhreq && sd_mhreq->dev == dev) {
24311 				break;
24312 			}
24313 			sd_prev = sd_mhreq;
24314 		}
24315 		if (sd_mhreq != NULL) {
24316 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24317 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24318 		}
24319 	}
24320 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24321 }
24322 
24323 
24324 /*
24325  *    Function: sd_mhd_reset_notify_cb()
24326  *
24327  * Description: This is a call back function for scsi_reset_notify. This
24328  *		function updates the softstate reserved status and logs the
24329  *		reset. The driver scsi watch facility callback function
24330  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24331  *		will reclaim the reservation.
24332  *
24333  *   Arguments: arg  - driver soft state (unit) structure
24334  */
24335 
24336 static void
24337 sd_mhd_reset_notify_cb(caddr_t arg)
24338 {
24339 	struct sd_lun *un = (struct sd_lun *)arg;
24340 
24341 	mutex_enter(SD_MUTEX(un));
24342 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24343 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24344 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24345 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24346 	}
24347 	mutex_exit(SD_MUTEX(un));
24348 }
24349 
24350 
24351 /*
24352  *    Function: sd_take_ownership()
24353  *
24354  * Description: This routine implements an algorithm to achieve a stable
24355  *		reservation on disks which don't implement priority reserve,
24356  *		and makes sure that other host lose re-reservation attempts.
24357  *		This algorithm contains of a loop that keeps issuing the RESERVE
24358  *		for some period of time (min_ownership_delay, default 6 seconds)
24359  *		During that loop, it looks to see if there has been a bus device
24360  *		reset or bus reset (both of which cause an existing reservation
24361  *		to be lost). If the reservation is lost issue RESERVE until a
24362  *		period of min_ownership_delay with no resets has gone by, or
24363  *		until max_ownership_delay has expired. This loop ensures that
24364  *		the host really did manage to reserve the device, in spite of
24365  *		resets. The looping for min_ownership_delay (default six
24366  *		seconds) is important to early generation clustering products,
24367  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24368  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24369  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24370  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24371  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24372  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24373  *		no longer "owns" the disk and will have panicked itself.  Thus,
24374  *		the host issuing the MHIOCTKOWN is assured (with timing
24375  *		dependencies) that by the time it actually starts to use the
24376  *		disk for real work, the old owner is no longer accessing it.
24377  *
24378  *		min_ownership_delay is the minimum amount of time for which the
24379  *		disk must be reserved continuously devoid of resets before the
24380  *		MHIOCTKOWN ioctl will return success.
24381  *
24382  *		max_ownership_delay indicates the amount of time by which the
24383  *		take ownership should succeed or timeout with an error.
24384  *
24385  *   Arguments: dev - the device 'dev_t'
24386  *		*p  - struct containing timing info.
24387  *
24388  * Return Code: 0 for success or error code
24389  */
24390 
24391 static int
24392 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24393 {
24394 	struct sd_lun	*un;
24395 	int		rval;
24396 	int		err;
24397 	int		reservation_count   = 0;
24398 	int		min_ownership_delay =  6000000; /* in usec */
24399 	int		max_ownership_delay = 30000000; /* in usec */
24400 	clock_t		start_time;	/* starting time of this algorithm */
24401 	clock_t		end_time;	/* time limit for giving up */
24402 	clock_t		ownership_time;	/* time limit for stable ownership */
24403 	clock_t		current_time;
24404 	clock_t		previous_current_time;
24405 
24406 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24407 		return (ENXIO);
24408 	}
24409 
24410 	/*
24411 	 * Attempt a device reservation. A priority reservation is requested.
24412 	 */
24413 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24414 	    != SD_SUCCESS) {
24415 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24416 		    "sd_take_ownership: return(1)=%d\n", rval);
24417 		return (rval);
24418 	}
24419 
24420 	/* Update the softstate reserved status to indicate the reservation */
24421 	mutex_enter(SD_MUTEX(un));
24422 	un->un_resvd_status |= SD_RESERVE;
24423 	un->un_resvd_status &=
24424 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24425 	mutex_exit(SD_MUTEX(un));
24426 
24427 	if (p != NULL) {
24428 		if (p->min_ownership_delay != 0) {
24429 			min_ownership_delay = p->min_ownership_delay * 1000;
24430 		}
24431 		if (p->max_ownership_delay != 0) {
24432 			max_ownership_delay = p->max_ownership_delay * 1000;
24433 		}
24434 	}
24435 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24436 	    "sd_take_ownership: min, max delays: %d, %d\n",
24437 	    min_ownership_delay, max_ownership_delay);
24438 
24439 	start_time = ddi_get_lbolt();
24440 	current_time	= start_time;
24441 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24442 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24443 
24444 	while (current_time - end_time < 0) {
24445 		delay(drv_usectohz(500000));
24446 
24447 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24448 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24449 				mutex_enter(SD_MUTEX(un));
24450 				rval = (un->un_resvd_status &
24451 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24452 				mutex_exit(SD_MUTEX(un));
24453 				break;
24454 			}
24455 		}
24456 		previous_current_time = current_time;
24457 		current_time = ddi_get_lbolt();
24458 		mutex_enter(SD_MUTEX(un));
24459 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24460 			ownership_time = ddi_get_lbolt() +
24461 			    drv_usectohz(min_ownership_delay);
24462 			reservation_count = 0;
24463 		} else {
24464 			reservation_count++;
24465 		}
24466 		un->un_resvd_status |= SD_RESERVE;
24467 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24468 		mutex_exit(SD_MUTEX(un));
24469 
24470 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24471 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24472 		    "reservation=%s\n", (current_time - previous_current_time),
24473 		    reservation_count ? "ok" : "reclaimed");
24474 
24475 		if (current_time - ownership_time >= 0 &&
24476 		    reservation_count >= 4) {
24477 			rval = 0; /* Achieved a stable ownership */
24478 			break;
24479 		}
24480 		if (current_time - end_time >= 0) {
24481 			rval = EACCES; /* No ownership in max possible time */
24482 			break;
24483 		}
24484 	}
24485 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24486 	    "sd_take_ownership: return(2)=%d\n", rval);
24487 	return (rval);
24488 }
24489 
24490 
24491 /*
24492  *    Function: sd_reserve_release()
24493  *
24494  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24495  *		PRIORITY RESERVE commands based on a user specified command type
24496  *
24497  *   Arguments: dev - the device 'dev_t'
24498  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24499  *		      SD_RESERVE, SD_RELEASE
24500  *
24501  * Return Code: 0 or Error Code
24502  */
24503 
24504 static int
24505 sd_reserve_release(dev_t dev, int cmd)
24506 {
24507 	struct uscsi_cmd	*com = NULL;
24508 	struct sd_lun		*un = NULL;
24509 	char			cdb[CDB_GROUP0];
24510 	int			rval;
24511 
24512 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24513 	    (cmd == SD_PRIORITY_RESERVE));
24514 
24515 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24516 		return (ENXIO);
24517 	}
24518 
24519 	/* instantiate and initialize the command and cdb */
24520 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24521 	bzero(cdb, CDB_GROUP0);
24522 	com->uscsi_flags   = USCSI_SILENT;
24523 	com->uscsi_timeout = un->un_reserve_release_time;
24524 	com->uscsi_cdblen  = CDB_GROUP0;
24525 	com->uscsi_cdb	   = cdb;
24526 	if (cmd == SD_RELEASE) {
24527 		cdb[0] = SCMD_RELEASE;
24528 	} else {
24529 		cdb[0] = SCMD_RESERVE;
24530 	}
24531 
24532 	/* Send the command. */
24533 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24534 	    SD_PATH_STANDARD);
24535 
24536 	/*
24537 	 * "break" a reservation that is held by another host, by issuing a
24538 	 * reset if priority reserve is desired, and we could not get the
24539 	 * device.
24540 	 */
24541 	if ((cmd == SD_PRIORITY_RESERVE) &&
24542 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24543 		/*
24544 		 * First try to reset the LUN. If we cannot, then try a target
24545 		 * reset, followed by a bus reset if the target reset fails.
24546 		 */
24547 		int reset_retval = 0;
24548 		if (un->un_f_lun_reset_enabled == TRUE) {
24549 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24550 		}
24551 		if (reset_retval == 0) {
24552 			/* The LUN reset either failed or was not issued */
24553 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24554 		}
24555 		if ((reset_retval == 0) &&
24556 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24557 			rval = EIO;
24558 			kmem_free(com, sizeof (*com));
24559 			return (rval);
24560 		}
24561 
24562 		bzero(com, sizeof (struct uscsi_cmd));
24563 		com->uscsi_flags   = USCSI_SILENT;
24564 		com->uscsi_cdb	   = cdb;
24565 		com->uscsi_cdblen  = CDB_GROUP0;
24566 		com->uscsi_timeout = 5;
24567 
24568 		/*
24569 		 * Reissue the last reserve command, this time without request
24570 		 * sense.  Assume that it is just a regular reserve command.
24571 		 */
24572 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24573 		    SD_PATH_STANDARD);
24574 	}
24575 
24576 	/* Return an error if still getting a reservation conflict. */
24577 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24578 		rval = EACCES;
24579 	}
24580 
24581 	kmem_free(com, sizeof (*com));
24582 	return (rval);
24583 }
24584 
24585 
24586 #define	SD_NDUMP_RETRIES	12
24587 /*
24588  *	System Crash Dump routine
24589  */
24590 
24591 static int
24592 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24593 {
24594 	int		instance;
24595 	int		partition;
24596 	int		i;
24597 	int		err;
24598 	struct sd_lun	*un;
24599 	struct scsi_pkt *wr_pktp;
24600 	struct buf	*wr_bp;
24601 	struct buf	wr_buf;
24602 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24603 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24604 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24605 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24606 	size_t		io_start_offset;
24607 	int		doing_rmw = FALSE;
24608 	int		rval;
24609 	ssize_t		dma_resid;
24610 	daddr_t		oblkno;
24611 	diskaddr_t	nblks = 0;
24612 	diskaddr_t	start_block;
24613 
24614 	instance = SDUNIT(dev);
24615 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24616 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24617 		return (ENXIO);
24618 	}
24619 
24620 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24621 
24622 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24623 
24624 	partition = SDPART(dev);
24625 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24626 
24627 	/* Validate blocks to dump at against partition size. */
24628 
24629 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24630 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24631 
24632 	if ((blkno + nblk) > nblks) {
24633 		SD_TRACE(SD_LOG_DUMP, un,
24634 		    "sddump: dump range larger than partition: "
24635 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24636 		    blkno, nblk, nblks);
24637 		return (EINVAL);
24638 	}
24639 
24640 	mutex_enter(&un->un_pm_mutex);
24641 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24642 		struct scsi_pkt *start_pktp;
24643 
24644 		mutex_exit(&un->un_pm_mutex);
24645 
24646 		/*
24647 		 * use pm framework to power on HBA 1st
24648 		 */
24649 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24650 
24651 		/*
24652 		 * Dump no long uses sdpower to power on a device, it's
24653 		 * in-line here so it can be done in polled mode.
24654 		 */
24655 
24656 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24657 
24658 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24659 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24660 
24661 		if (start_pktp == NULL) {
24662 			/* We were not given a SCSI packet, fail. */
24663 			return (EIO);
24664 		}
24665 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24666 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24667 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24668 		start_pktp->pkt_flags = FLAG_NOINTR;
24669 
24670 		mutex_enter(SD_MUTEX(un));
24671 		SD_FILL_SCSI1_LUN(un, start_pktp);
24672 		mutex_exit(SD_MUTEX(un));
24673 		/*
24674 		 * Scsi_poll returns 0 (success) if the command completes and
24675 		 * the status block is STATUS_GOOD.
24676 		 */
24677 		if (sd_scsi_poll(un, start_pktp) != 0) {
24678 			scsi_destroy_pkt(start_pktp);
24679 			return (EIO);
24680 		}
24681 		scsi_destroy_pkt(start_pktp);
24682 		(void) sd_ddi_pm_resume(un);
24683 	} else {
24684 		mutex_exit(&un->un_pm_mutex);
24685 	}
24686 
24687 	mutex_enter(SD_MUTEX(un));
24688 	un->un_throttle = 0;
24689 
24690 	/*
24691 	 * The first time through, reset the specific target device.
24692 	 * However, when cpr calls sddump we know that sd is in a
24693 	 * a good state so no bus reset is required.
24694 	 * Clear sense data via Request Sense cmd.
24695 	 * In sddump we don't care about allow_bus_device_reset anymore
24696 	 */
24697 
24698 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24699 	    (un->un_state != SD_STATE_DUMPING)) {
24700 
24701 		New_state(un, SD_STATE_DUMPING);
24702 
24703 		if (un->un_f_is_fibre == FALSE) {
24704 			mutex_exit(SD_MUTEX(un));
24705 			/*
24706 			 * Attempt a bus reset for parallel scsi.
24707 			 *
24708 			 * Note: A bus reset is required because on some host
24709 			 * systems (i.e. E420R) a bus device reset is
24710 			 * insufficient to reset the state of the target.
24711 			 *
24712 			 * Note: Don't issue the reset for fibre-channel,
24713 			 * because this tends to hang the bus (loop) for
24714 			 * too long while everyone is logging out and in
24715 			 * and the deadman timer for dumping will fire
24716 			 * before the dump is complete.
24717 			 */
24718 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24719 				mutex_enter(SD_MUTEX(un));
24720 				Restore_state(un);
24721 				mutex_exit(SD_MUTEX(un));
24722 				return (EIO);
24723 			}
24724 
24725 			/* Delay to give the device some recovery time. */
24726 			drv_usecwait(10000);
24727 
24728 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24729 				SD_INFO(SD_LOG_DUMP, un,
24730 				    "sddump: sd_send_polled_RQS failed\n");
24731 			}
24732 			mutex_enter(SD_MUTEX(un));
24733 		}
24734 	}
24735 
24736 	/*
24737 	 * Convert the partition-relative block number to a
24738 	 * disk physical block number.
24739 	 */
24740 	blkno += start_block;
24741 
24742 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24743 
24744 
24745 	/*
24746 	 * Check if the device has a non-512 block size.
24747 	 */
24748 	wr_bp = NULL;
24749 	if (NOT_DEVBSIZE(un)) {
24750 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24751 		tgt_byte_count = nblk * un->un_sys_blocksize;
24752 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24753 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24754 			doing_rmw = TRUE;
24755 			/*
24756 			 * Calculate the block number and number of block
24757 			 * in terms of the media block size.
24758 			 */
24759 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24760 			tgt_nblk =
24761 			    ((tgt_byte_offset + tgt_byte_count +
24762 			    (un->un_tgt_blocksize - 1)) /
24763 			    un->un_tgt_blocksize) - tgt_blkno;
24764 
24765 			/*
24766 			 * Invoke the routine which is going to do read part
24767 			 * of read-modify-write.
24768 			 * Note that this routine returns a pointer to
24769 			 * a valid bp in wr_bp.
24770 			 */
24771 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24772 			    &wr_bp);
24773 			if (err) {
24774 				mutex_exit(SD_MUTEX(un));
24775 				return (err);
24776 			}
24777 			/*
24778 			 * Offset is being calculated as -
24779 			 * (original block # * system block size) -
24780 			 * (new block # * target block size)
24781 			 */
24782 			io_start_offset =
24783 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24784 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24785 
24786 			ASSERT((io_start_offset >= 0) &&
24787 			    (io_start_offset < un->un_tgt_blocksize));
24788 			/*
24789 			 * Do the modify portion of read modify write.
24790 			 */
24791 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24792 			    (size_t)nblk * un->un_sys_blocksize);
24793 		} else {
24794 			doing_rmw = FALSE;
24795 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24796 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24797 		}
24798 
24799 		/* Convert blkno and nblk to target blocks */
24800 		blkno = tgt_blkno;
24801 		nblk = tgt_nblk;
24802 	} else {
24803 		wr_bp = &wr_buf;
24804 		bzero(wr_bp, sizeof (struct buf));
24805 		wr_bp->b_flags		= B_BUSY;
24806 		wr_bp->b_un.b_addr	= addr;
24807 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24808 		wr_bp->b_resid		= 0;
24809 	}
24810 
24811 	mutex_exit(SD_MUTEX(un));
24812 
24813 	/*
24814 	 * Obtain a SCSI packet for the write command.
24815 	 * It should be safe to call the allocator here without
24816 	 * worrying about being locked for DVMA mapping because
24817 	 * the address we're passed is already a DVMA mapping
24818 	 *
24819 	 * We are also not going to worry about semaphore ownership
24820 	 * in the dump buffer. Dumping is single threaded at present.
24821 	 */
24822 
24823 	wr_pktp = NULL;
24824 
24825 	dma_resid = wr_bp->b_bcount;
24826 	oblkno = blkno;
24827 
24828 	while (dma_resid != 0) {
24829 
24830 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24831 		wr_bp->b_flags &= ~B_ERROR;
24832 
24833 		if (un->un_partial_dma_supported == 1) {
24834 			blkno = oblkno +
24835 			    ((wr_bp->b_bcount - dma_resid) /
24836 			    un->un_tgt_blocksize);
24837 			nblk = dma_resid / un->un_tgt_blocksize;
24838 
24839 			if (wr_pktp) {
24840 				/*
24841 				 * Partial DMA transfers after initial transfer
24842 				 */
24843 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24844 				    blkno, nblk);
24845 			} else {
24846 				/* Initial transfer */
24847 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24848 				    un->un_pkt_flags, NULL_FUNC, NULL,
24849 				    blkno, nblk);
24850 			}
24851 		} else {
24852 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24853 			    0, NULL_FUNC, NULL, blkno, nblk);
24854 		}
24855 
24856 		if (rval == 0) {
24857 			/* We were given a SCSI packet, continue. */
24858 			break;
24859 		}
24860 
24861 		if (i == 0) {
24862 			if (wr_bp->b_flags & B_ERROR) {
24863 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24864 				    "no resources for dumping; "
24865 				    "error code: 0x%x, retrying",
24866 				    geterror(wr_bp));
24867 			} else {
24868 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24869 				    "no resources for dumping; retrying");
24870 			}
24871 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24872 			if (wr_bp->b_flags & B_ERROR) {
24873 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24874 				    "no resources for dumping; error code: "
24875 				    "0x%x, retrying\n", geterror(wr_bp));
24876 			}
24877 		} else {
24878 			if (wr_bp->b_flags & B_ERROR) {
24879 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24880 				    "no resources for dumping; "
24881 				    "error code: 0x%x, retries failed, "
24882 				    "giving up.\n", geterror(wr_bp));
24883 			} else {
24884 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24885 				    "no resources for dumping; "
24886 				    "retries failed, giving up.\n");
24887 			}
24888 			mutex_enter(SD_MUTEX(un));
24889 			Restore_state(un);
24890 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24891 				mutex_exit(SD_MUTEX(un));
24892 				scsi_free_consistent_buf(wr_bp);
24893 			} else {
24894 				mutex_exit(SD_MUTEX(un));
24895 			}
24896 			return (EIO);
24897 		}
24898 		drv_usecwait(10000);
24899 	}
24900 
24901 	if (un->un_partial_dma_supported == 1) {
24902 		/*
24903 		 * save the resid from PARTIAL_DMA
24904 		 */
24905 		dma_resid = wr_pktp->pkt_resid;
24906 		if (dma_resid != 0)
24907 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24908 		wr_pktp->pkt_resid = 0;
24909 	} else {
24910 		dma_resid = 0;
24911 	}
24912 
24913 	/* SunBug 1222170 */
24914 	wr_pktp->pkt_flags = FLAG_NOINTR;
24915 
24916 	err = EIO;
24917 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24918 
24919 		/*
24920 		 * Scsi_poll returns 0 (success) if the command completes and
24921 		 * the status block is STATUS_GOOD.  We should only check
24922 		 * errors if this condition is not true.  Even then we should
24923 		 * send our own request sense packet only if we have a check
24924 		 * condition and auto request sense has not been performed by
24925 		 * the hba.
24926 		 */
24927 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24928 
24929 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24930 		    (wr_pktp->pkt_resid == 0)) {
24931 			err = SD_SUCCESS;
24932 			break;
24933 		}
24934 
24935 		/*
24936 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24937 		 */
24938 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
24939 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24940 			    "Error while dumping state...Device is gone\n");
24941 			break;
24942 		}
24943 
24944 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
24945 			SD_INFO(SD_LOG_DUMP, un,
24946 			    "sddump: write failed with CHECK, try # %d\n", i);
24947 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
24948 				(void) sd_send_polled_RQS(un);
24949 			}
24950 
24951 			continue;
24952 		}
24953 
24954 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
24955 			int reset_retval = 0;
24956 
24957 			SD_INFO(SD_LOG_DUMP, un,
24958 			    "sddump: write failed with BUSY, try # %d\n", i);
24959 
24960 			if (un->un_f_lun_reset_enabled == TRUE) {
24961 				reset_retval = scsi_reset(SD_ADDRESS(un),
24962 				    RESET_LUN);
24963 			}
24964 			if (reset_retval == 0) {
24965 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24966 			}
24967 			(void) sd_send_polled_RQS(un);
24968 
24969 		} else {
24970 			SD_INFO(SD_LOG_DUMP, un,
24971 			    "sddump: write failed with 0x%x, try # %d\n",
24972 			    SD_GET_PKT_STATUS(wr_pktp), i);
24973 			mutex_enter(SD_MUTEX(un));
24974 			sd_reset_target(un, wr_pktp);
24975 			mutex_exit(SD_MUTEX(un));
24976 		}
24977 
24978 		/*
24979 		 * If we are not getting anywhere with lun/target resets,
24980 		 * let's reset the bus.
24981 		 */
24982 		if (i == SD_NDUMP_RETRIES/2) {
24983 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24984 			(void) sd_send_polled_RQS(un);
24985 		}
24986 	}
24987 	}
24988 
24989 	scsi_destroy_pkt(wr_pktp);
24990 	mutex_enter(SD_MUTEX(un));
24991 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
24992 		mutex_exit(SD_MUTEX(un));
24993 		scsi_free_consistent_buf(wr_bp);
24994 	} else {
24995 		mutex_exit(SD_MUTEX(un));
24996 	}
24997 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
24998 	return (err);
24999 }
25000 
25001 /*
25002  *    Function: sd_scsi_poll()
25003  *
25004  * Description: This is a wrapper for the scsi_poll call.
25005  *
25006  *   Arguments: sd_lun - The unit structure
25007  *              scsi_pkt - The scsi packet being sent to the device.
25008  *
25009  * Return Code: 0 - Command completed successfully with good status
25010  *             -1 - Command failed.  This could indicate a check condition
25011  *                  or other status value requiring recovery action.
25012  *
25013  * NOTE: This code is only called off sddump().
25014  */
25015 
25016 static int
25017 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25018 {
25019 	int status;
25020 
25021 	ASSERT(un != NULL);
25022 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25023 	ASSERT(pktp != NULL);
25024 
25025 	status = SD_SUCCESS;
25026 
25027 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25028 		pktp->pkt_flags |= un->un_tagflags;
25029 		pktp->pkt_flags &= ~FLAG_NODISCON;
25030 	}
25031 
25032 	status = sd_ddi_scsi_poll(pktp);
25033 	/*
25034 	 * Scsi_poll returns 0 (success) if the command completes and the
25035 	 * status block is STATUS_GOOD.  We should only check errors if this
25036 	 * condition is not true.  Even then we should send our own request
25037 	 * sense packet only if we have a check condition and auto
25038 	 * request sense has not been performed by the hba.
25039 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25040 	 */
25041 	if ((status != SD_SUCCESS) &&
25042 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25043 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25044 	    (pktp->pkt_reason != CMD_DEV_GONE))
25045 		(void) sd_send_polled_RQS(un);
25046 
25047 	return (status);
25048 }
25049 
25050 /*
25051  *    Function: sd_send_polled_RQS()
25052  *
25053  * Description: This sends the request sense command to a device.
25054  *
25055  *   Arguments: sd_lun - The unit structure
25056  *
25057  * Return Code: 0 - Command completed successfully with good status
25058  *             -1 - Command failed.
25059  *
25060  */
25061 
25062 static int
25063 sd_send_polled_RQS(struct sd_lun *un)
25064 {
25065 	int	ret_val;
25066 	struct	scsi_pkt	*rqs_pktp;
25067 	struct	buf		*rqs_bp;
25068 
25069 	ASSERT(un != NULL);
25070 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25071 
25072 	ret_val = SD_SUCCESS;
25073 
25074 	rqs_pktp = un->un_rqs_pktp;
25075 	rqs_bp	 = un->un_rqs_bp;
25076 
25077 	mutex_enter(SD_MUTEX(un));
25078 
25079 	if (un->un_sense_isbusy) {
25080 		ret_val = SD_FAILURE;
25081 		mutex_exit(SD_MUTEX(un));
25082 		return (ret_val);
25083 	}
25084 
25085 	/*
25086 	 * If the request sense buffer (and packet) is not in use,
25087 	 * let's set the un_sense_isbusy and send our packet
25088 	 */
25089 	un->un_sense_isbusy 	= 1;
25090 	rqs_pktp->pkt_resid  	= 0;
25091 	rqs_pktp->pkt_reason 	= 0;
25092 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25093 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25094 
25095 	mutex_exit(SD_MUTEX(un));
25096 
25097 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25098 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25099 
25100 	/*
25101 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25102 	 * axle - it has a call into us!
25103 	 */
25104 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25105 		SD_INFO(SD_LOG_COMMON, un,
25106 		    "sd_send_polled_RQS: RQS failed\n");
25107 	}
25108 
25109 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25110 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25111 
25112 	mutex_enter(SD_MUTEX(un));
25113 	un->un_sense_isbusy = 0;
25114 	mutex_exit(SD_MUTEX(un));
25115 
25116 	return (ret_val);
25117 }
25118 
25119 /*
25120  * Defines needed for localized version of the scsi_poll routine.
25121  */
25122 #define	CSEC		10000			/* usecs */
25123 #define	SEC_TO_CSEC	(1000000/CSEC)
25124 
25125 /*
25126  *    Function: sd_ddi_scsi_poll()
25127  *
25128  * Description: Localized version of the scsi_poll routine.  The purpose is to
25129  *		send a scsi_pkt to a device as a polled command.  This version
25130  *		is to ensure more robust handling of transport errors.
25131  *		Specifically this routine cures not ready, coming ready
25132  *		transition for power up and reset of sonoma's.  This can take
25133  *		up to 45 seconds for power-on and 20 seconds for reset of a
25134  * 		sonoma lun.
25135  *
25136  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25137  *
25138  * Return Code: 0 - Command completed successfully with good status
25139  *             -1 - Command failed.
25140  *
25141  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25142  * be fixed (removing this code), we need to determine how to handle the
25143  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25144  *
25145  * NOTE: This code is only called off sddump().
25146  */
25147 static int
25148 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25149 {
25150 	int			rval = -1;
25151 	int			savef;
25152 	long			savet;
25153 	void			(*savec)();
25154 	int			timeout;
25155 	int			busy_count;
25156 	int			poll_delay;
25157 	int			rc;
25158 	uint8_t			*sensep;
25159 	struct scsi_arq_status	*arqstat;
25160 	extern int		do_polled_io;
25161 
25162 	ASSERT(pkt->pkt_scbp);
25163 
25164 	/*
25165 	 * save old flags..
25166 	 */
25167 	savef = pkt->pkt_flags;
25168 	savec = pkt->pkt_comp;
25169 	savet = pkt->pkt_time;
25170 
25171 	pkt->pkt_flags |= FLAG_NOINTR;
25172 
25173 	/*
25174 	 * XXX there is nothing in the SCSA spec that states that we should not
25175 	 * do a callback for polled cmds; however, removing this will break sd
25176 	 * and probably other target drivers
25177 	 */
25178 	pkt->pkt_comp = NULL;
25179 
25180 	/*
25181 	 * we don't like a polled command without timeout.
25182 	 * 60 seconds seems long enough.
25183 	 */
25184 	if (pkt->pkt_time == 0)
25185 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25186 
25187 	/*
25188 	 * Send polled cmd.
25189 	 *
25190 	 * We do some error recovery for various errors.  Tran_busy,
25191 	 * queue full, and non-dispatched commands are retried every 10 msec.
25192 	 * as they are typically transient failures.  Busy status and Not
25193 	 * Ready are retried every second as this status takes a while to
25194 	 * change.
25195 	 */
25196 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25197 
25198 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25199 		/*
25200 		 * Initialize pkt status variables.
25201 		 */
25202 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25203 
25204 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25205 			if (rc != TRAN_BUSY) {
25206 				/* Transport failed - give up. */
25207 				break;
25208 			} else {
25209 				/* Transport busy - try again. */
25210 				poll_delay = 1 * CSEC;		/* 10 msec. */
25211 			}
25212 		} else {
25213 			/*
25214 			 * Transport accepted - check pkt status.
25215 			 */
25216 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25217 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25218 			    (rc == STATUS_CHECK) &&
25219 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25220 				arqstat =
25221 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25222 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25223 			} else {
25224 				sensep = NULL;
25225 			}
25226 
25227 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25228 			    (rc == STATUS_GOOD)) {
25229 				/* No error - we're done */
25230 				rval = 0;
25231 				break;
25232 
25233 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25234 				/* Lost connection - give up */
25235 				break;
25236 
25237 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25238 			    (pkt->pkt_state == 0)) {
25239 				/* Pkt not dispatched - try again. */
25240 				poll_delay = 1 * CSEC;		/* 10 msec. */
25241 
25242 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25243 			    (rc == STATUS_QFULL)) {
25244 				/* Queue full - try again. */
25245 				poll_delay = 1 * CSEC;		/* 10 msec. */
25246 
25247 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25248 			    (rc == STATUS_BUSY)) {
25249 				/* Busy - try again. */
25250 				poll_delay = 100 * CSEC;	/* 1 sec. */
25251 				busy_count += (SEC_TO_CSEC - 1);
25252 
25253 			} else if ((sensep != NULL) &&
25254 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25255 				/*
25256 				 * Unit Attention - try again.
25257 				 * Pretend it took 1 sec.
25258 				 * NOTE: 'continue' avoids poll_delay
25259 				 */
25260 				busy_count += (SEC_TO_CSEC - 1);
25261 				continue;
25262 
25263 			} else if ((sensep != NULL) &&
25264 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25265 			    (scsi_sense_asc(sensep) == 0x04) &&
25266 			    (scsi_sense_ascq(sensep) == 0x01)) {
25267 				/*
25268 				 * Not ready -> ready - try again.
25269 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25270 				 * ...same as STATUS_BUSY
25271 				 */
25272 				poll_delay = 100 * CSEC;	/* 1 sec. */
25273 				busy_count += (SEC_TO_CSEC - 1);
25274 
25275 			} else {
25276 				/* BAD status - give up. */
25277 				break;
25278 			}
25279 		}
25280 
25281 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25282 		    !do_polled_io) {
25283 			delay(drv_usectohz(poll_delay));
25284 		} else {
25285 			/* we busy wait during cpr_dump or interrupt threads */
25286 			drv_usecwait(poll_delay);
25287 		}
25288 	}
25289 
25290 	pkt->pkt_flags = savef;
25291 	pkt->pkt_comp = savec;
25292 	pkt->pkt_time = savet;
25293 
25294 	/* return on error */
25295 	if (rval)
25296 		return (rval);
25297 
25298 	/*
25299 	 * This is not a performance critical code path.
25300 	 *
25301 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25302 	 * issues associated with looking at DMA memory prior to
25303 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25304 	 */
25305 	scsi_sync_pkt(pkt);
25306 	return (0);
25307 }
25308 
25309 
25310 
25311 /*
25312  *    Function: sd_persistent_reservation_in_read_keys
25313  *
25314  * Description: This routine is the driver entry point for handling CD-ROM
25315  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25316  *		by sending the SCSI-3 PRIN commands to the device.
25317  *		Processes the read keys command response by copying the
25318  *		reservation key information into the user provided buffer.
25319  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25320  *
25321  *   Arguments: un   -  Pointer to soft state struct for the target.
25322  *		usrp -	user provided pointer to multihost Persistent In Read
25323  *			Keys structure (mhioc_inkeys_t)
25324  *		flag -	this argument is a pass through to ddi_copyxxx()
25325  *			directly from the mode argument of ioctl().
25326  *
25327  * Return Code: 0   - Success
25328  *		EACCES
25329  *		ENOTSUP
25330  *		errno return code from sd_send_scsi_cmd()
25331  *
25332  *     Context: Can sleep. Does not return until command is completed.
25333  */
25334 
25335 static int
25336 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25337     mhioc_inkeys_t *usrp, int flag)
25338 {
25339 #ifdef _MULTI_DATAMODEL
25340 	struct mhioc_key_list32	li32;
25341 #endif
25342 	sd_prin_readkeys_t	*in;
25343 	mhioc_inkeys_t		*ptr;
25344 	mhioc_key_list_t	li;
25345 	uchar_t			*data_bufp;
25346 	int 			data_len;
25347 	int			rval = 0;
25348 	size_t			copysz;
25349 	sd_ssc_t		*ssc;
25350 
25351 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25352 		return (EINVAL);
25353 	}
25354 	bzero(&li, sizeof (mhioc_key_list_t));
25355 
25356 	ssc = sd_ssc_init(un);
25357 
25358 	/*
25359 	 * Get the listsize from user
25360 	 */
25361 #ifdef _MULTI_DATAMODEL
25362 
25363 	switch (ddi_model_convert_from(flag & FMODELS)) {
25364 	case DDI_MODEL_ILP32:
25365 		copysz = sizeof (struct mhioc_key_list32);
25366 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25367 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25368 			    "sd_persistent_reservation_in_read_keys: "
25369 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25370 			rval = EFAULT;
25371 			goto done;
25372 		}
25373 		li.listsize = li32.listsize;
25374 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25375 		break;
25376 
25377 	case DDI_MODEL_NONE:
25378 		copysz = sizeof (mhioc_key_list_t);
25379 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25380 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25381 			    "sd_persistent_reservation_in_read_keys: "
25382 			    "failed ddi_copyin: mhioc_key_list_t\n");
25383 			rval = EFAULT;
25384 			goto done;
25385 		}
25386 		break;
25387 	}
25388 
25389 #else /* ! _MULTI_DATAMODEL */
25390 	copysz = sizeof (mhioc_key_list_t);
25391 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25392 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25393 		    "sd_persistent_reservation_in_read_keys: "
25394 		    "failed ddi_copyin: mhioc_key_list_t\n");
25395 		rval = EFAULT;
25396 		goto done;
25397 	}
25398 #endif
25399 
25400 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25401 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25402 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25403 
25404 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25405 	    data_len, data_bufp);
25406 	if (rval != 0) {
25407 		if (rval == EIO)
25408 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25409 		else
25410 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25411 		goto done;
25412 	}
25413 	in = (sd_prin_readkeys_t *)data_bufp;
25414 	ptr->generation = BE_32(in->generation);
25415 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25416 
25417 	/*
25418 	 * Return the min(listsize, listlen) keys
25419 	 */
25420 #ifdef _MULTI_DATAMODEL
25421 
25422 	switch (ddi_model_convert_from(flag & FMODELS)) {
25423 	case DDI_MODEL_ILP32:
25424 		li32.listlen = li.listlen;
25425 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25426 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25427 			    "sd_persistent_reservation_in_read_keys: "
25428 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25429 			rval = EFAULT;
25430 			goto done;
25431 		}
25432 		break;
25433 
25434 	case DDI_MODEL_NONE:
25435 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25436 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25437 			    "sd_persistent_reservation_in_read_keys: "
25438 			    "failed ddi_copyout: mhioc_key_list_t\n");
25439 			rval = EFAULT;
25440 			goto done;
25441 		}
25442 		break;
25443 	}
25444 
25445 #else /* ! _MULTI_DATAMODEL */
25446 
25447 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25448 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25449 		    "sd_persistent_reservation_in_read_keys: "
25450 		    "failed ddi_copyout: mhioc_key_list_t\n");
25451 		rval = EFAULT;
25452 		goto done;
25453 	}
25454 
25455 #endif /* _MULTI_DATAMODEL */
25456 
25457 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25458 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25459 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25460 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25461 		    "sd_persistent_reservation_in_read_keys: "
25462 		    "failed ddi_copyout: keylist\n");
25463 		rval = EFAULT;
25464 	}
25465 done:
25466 	sd_ssc_fini(ssc);
25467 	kmem_free(data_bufp, data_len);
25468 	return (rval);
25469 }
25470 
25471 
25472 /*
25473  *    Function: sd_persistent_reservation_in_read_resv
25474  *
25475  * Description: This routine is the driver entry point for handling CD-ROM
25476  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25477  *		by sending the SCSI-3 PRIN commands to the device.
25478  *		Process the read persistent reservations command response by
25479  *		copying the reservation information into the user provided
25480  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25481  *
25482  *   Arguments: un   -  Pointer to soft state struct for the target.
25483  *		usrp -	user provided pointer to multihost Persistent In Read
25484  *			Keys structure (mhioc_inkeys_t)
25485  *		flag -	this argument is a pass through to ddi_copyxxx()
25486  *			directly from the mode argument of ioctl().
25487  *
25488  * Return Code: 0   - Success
25489  *		EACCES
25490  *		ENOTSUP
25491  *		errno return code from sd_send_scsi_cmd()
25492  *
25493  *     Context: Can sleep. Does not return until command is completed.
25494  */
25495 
25496 static int
25497 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25498     mhioc_inresvs_t *usrp, int flag)
25499 {
25500 #ifdef _MULTI_DATAMODEL
25501 	struct mhioc_resv_desc_list32 resvlist32;
25502 #endif
25503 	sd_prin_readresv_t	*in;
25504 	mhioc_inresvs_t		*ptr;
25505 	sd_readresv_desc_t	*readresv_ptr;
25506 	mhioc_resv_desc_list_t	resvlist;
25507 	mhioc_resv_desc_t 	resvdesc;
25508 	uchar_t			*data_bufp = NULL;
25509 	int 			data_len;
25510 	int			rval = 0;
25511 	int			i;
25512 	size_t			copysz;
25513 	mhioc_resv_desc_t	*bufp;
25514 	sd_ssc_t		*ssc;
25515 
25516 	if ((ptr = usrp) == NULL) {
25517 		return (EINVAL);
25518 	}
25519 
25520 	ssc = sd_ssc_init(un);
25521 
25522 	/*
25523 	 * Get the listsize from user
25524 	 */
25525 #ifdef _MULTI_DATAMODEL
25526 	switch (ddi_model_convert_from(flag & FMODELS)) {
25527 	case DDI_MODEL_ILP32:
25528 		copysz = sizeof (struct mhioc_resv_desc_list32);
25529 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25530 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25531 			    "sd_persistent_reservation_in_read_resv: "
25532 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25533 			rval = EFAULT;
25534 			goto done;
25535 		}
25536 		resvlist.listsize = resvlist32.listsize;
25537 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25538 		break;
25539 
25540 	case DDI_MODEL_NONE:
25541 		copysz = sizeof (mhioc_resv_desc_list_t);
25542 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25543 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25544 			    "sd_persistent_reservation_in_read_resv: "
25545 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25546 			rval = EFAULT;
25547 			goto done;
25548 		}
25549 		break;
25550 	}
25551 #else /* ! _MULTI_DATAMODEL */
25552 	copysz = sizeof (mhioc_resv_desc_list_t);
25553 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25554 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25555 		    "sd_persistent_reservation_in_read_resv: "
25556 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25557 		rval = EFAULT;
25558 		goto done;
25559 	}
25560 #endif /* ! _MULTI_DATAMODEL */
25561 
25562 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25563 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25564 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25565 
25566 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25567 	    data_len, data_bufp);
25568 	if (rval != 0) {
25569 		if (rval == EIO)
25570 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25571 		else
25572 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25573 		goto done;
25574 	}
25575 	in = (sd_prin_readresv_t *)data_bufp;
25576 	ptr->generation = BE_32(in->generation);
25577 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25578 
25579 	/*
25580 	 * Return the min(listsize, listlen( keys
25581 	 */
25582 #ifdef _MULTI_DATAMODEL
25583 
25584 	switch (ddi_model_convert_from(flag & FMODELS)) {
25585 	case DDI_MODEL_ILP32:
25586 		resvlist32.listlen = resvlist.listlen;
25587 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25588 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25589 			    "sd_persistent_reservation_in_read_resv: "
25590 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25591 			rval = EFAULT;
25592 			goto done;
25593 		}
25594 		break;
25595 
25596 	case DDI_MODEL_NONE:
25597 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25598 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25599 			    "sd_persistent_reservation_in_read_resv: "
25600 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25601 			rval = EFAULT;
25602 			goto done;
25603 		}
25604 		break;
25605 	}
25606 
25607 #else /* ! _MULTI_DATAMODEL */
25608 
25609 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25610 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25611 		    "sd_persistent_reservation_in_read_resv: "
25612 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25613 		rval = EFAULT;
25614 		goto done;
25615 	}
25616 
25617 #endif /* ! _MULTI_DATAMODEL */
25618 
25619 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25620 	bufp = resvlist.list;
25621 	copysz = sizeof (mhioc_resv_desc_t);
25622 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25623 	    i++, readresv_ptr++, bufp++) {
25624 
25625 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25626 		    MHIOC_RESV_KEY_SIZE);
25627 		resvdesc.type  = readresv_ptr->type;
25628 		resvdesc.scope = readresv_ptr->scope;
25629 		resvdesc.scope_specific_addr =
25630 		    BE_32(readresv_ptr->scope_specific_addr);
25631 
25632 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25633 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25634 			    "sd_persistent_reservation_in_read_resv: "
25635 			    "failed ddi_copyout: resvlist\n");
25636 			rval = EFAULT;
25637 			goto done;
25638 		}
25639 	}
25640 done:
25641 	sd_ssc_fini(ssc);
25642 	/* only if data_bufp is allocated, we need to free it */
25643 	if (data_bufp) {
25644 		kmem_free(data_bufp, data_len);
25645 	}
25646 	return (rval);
25647 }
25648 
25649 
25650 /*
25651  *    Function: sr_change_blkmode()
25652  *
25653  * Description: This routine is the driver entry point for handling CD-ROM
25654  *		block mode ioctl requests. Support for returning and changing
25655  *		the current block size in use by the device is implemented. The
25656  *		LBA size is changed via a MODE SELECT Block Descriptor.
25657  *
25658  *		This routine issues a mode sense with an allocation length of
25659  *		12 bytes for the mode page header and a single block descriptor.
25660  *
25661  *   Arguments: dev - the device 'dev_t'
25662  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25663  *		      CDROMSBLKMODE (set)
25664  *		data - current block size or requested block size
25665  *		flag - this argument is a pass through to ddi_copyxxx() directly
25666  *		       from the mode argument of ioctl().
25667  *
25668  * Return Code: the code returned by sd_send_scsi_cmd()
25669  *		EINVAL if invalid arguments are provided
25670  *		EFAULT if ddi_copyxxx() fails
25671  *		ENXIO if fail ddi_get_soft_state
25672  *		EIO if invalid mode sense block descriptor length
25673  *
25674  */
25675 
25676 static int
25677 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25678 {
25679 	struct sd_lun			*un = NULL;
25680 	struct mode_header		*sense_mhp, *select_mhp;
25681 	struct block_descriptor		*sense_desc, *select_desc;
25682 	int				current_bsize;
25683 	int				rval = EINVAL;
25684 	uchar_t				*sense = NULL;
25685 	uchar_t				*select = NULL;
25686 	sd_ssc_t			*ssc;
25687 
25688 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25689 
25690 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25691 		return (ENXIO);
25692 	}
25693 
25694 	/*
25695 	 * The block length is changed via the Mode Select block descriptor, the
25696 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25697 	 * required as part of this routine. Therefore the mode sense allocation
25698 	 * length is specified to be the length of a mode page header and a
25699 	 * block descriptor.
25700 	 */
25701 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25702 
25703 	ssc = sd_ssc_init(un);
25704 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25705 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25706 	sd_ssc_fini(ssc);
25707 	if (rval != 0) {
25708 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25709 		    "sr_change_blkmode: Mode Sense Failed\n");
25710 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25711 		return (rval);
25712 	}
25713 
25714 	/* Check the block descriptor len to handle only 1 block descriptor */
25715 	sense_mhp = (struct mode_header *)sense;
25716 	if ((sense_mhp->bdesc_length == 0) ||
25717 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25718 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25719 		    "sr_change_blkmode: Mode Sense returned invalid block"
25720 		    " descriptor length\n");
25721 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25722 		return (EIO);
25723 	}
25724 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25725 	current_bsize = ((sense_desc->blksize_hi << 16) |
25726 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25727 
25728 	/* Process command */
25729 	switch (cmd) {
25730 	case CDROMGBLKMODE:
25731 		/* Return the block size obtained during the mode sense */
25732 		if (ddi_copyout(&current_bsize, (void *)data,
25733 		    sizeof (int), flag) != 0)
25734 			rval = EFAULT;
25735 		break;
25736 	case CDROMSBLKMODE:
25737 		/* Validate the requested block size */
25738 		switch (data) {
25739 		case CDROM_BLK_512:
25740 		case CDROM_BLK_1024:
25741 		case CDROM_BLK_2048:
25742 		case CDROM_BLK_2056:
25743 		case CDROM_BLK_2336:
25744 		case CDROM_BLK_2340:
25745 		case CDROM_BLK_2352:
25746 		case CDROM_BLK_2368:
25747 		case CDROM_BLK_2448:
25748 		case CDROM_BLK_2646:
25749 		case CDROM_BLK_2647:
25750 			break;
25751 		default:
25752 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25753 			    "sr_change_blkmode: "
25754 			    "Block Size '%ld' Not Supported\n", data);
25755 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25756 			return (EINVAL);
25757 		}
25758 
25759 		/*
25760 		 * The current block size matches the requested block size so
25761 		 * there is no need to send the mode select to change the size
25762 		 */
25763 		if (current_bsize == data) {
25764 			break;
25765 		}
25766 
25767 		/* Build the select data for the requested block size */
25768 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25769 		select_mhp = (struct mode_header *)select;
25770 		select_desc =
25771 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25772 		/*
25773 		 * The LBA size is changed via the block descriptor, so the
25774 		 * descriptor is built according to the user data
25775 		 */
25776 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25777 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25778 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25779 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25780 
25781 		/* Send the mode select for the requested block size */
25782 		ssc = sd_ssc_init(un);
25783 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25784 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25785 		    SD_PATH_STANDARD);
25786 		sd_ssc_fini(ssc);
25787 		if (rval != 0) {
25788 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25789 			    "sr_change_blkmode: Mode Select Failed\n");
25790 			/*
25791 			 * The mode select failed for the requested block size,
25792 			 * so reset the data for the original block size and
25793 			 * send it to the target. The error is indicated by the
25794 			 * return value for the failed mode select.
25795 			 */
25796 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25797 			select_desc->blksize_mid = sense_desc->blksize_mid;
25798 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25799 			ssc = sd_ssc_init(un);
25800 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25801 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25802 			    SD_PATH_STANDARD);
25803 			sd_ssc_fini(ssc);
25804 		} else {
25805 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25806 			mutex_enter(SD_MUTEX(un));
25807 			sd_update_block_info(un, (uint32_t)data, 0);
25808 			mutex_exit(SD_MUTEX(un));
25809 		}
25810 		break;
25811 	default:
25812 		/* should not reach here, but check anyway */
25813 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25814 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25815 		rval = EINVAL;
25816 		break;
25817 	}
25818 
25819 	if (select) {
25820 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25821 	}
25822 	if (sense) {
25823 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25824 	}
25825 	return (rval);
25826 }
25827 
25828 
25829 /*
25830  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25831  * implement driver support for getting and setting the CD speed. The command
25832  * set used will be based on the device type. If the device has not been
25833  * identified as MMC the Toshiba vendor specific mode page will be used. If
25834  * the device is MMC but does not support the Real Time Streaming feature
25835  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25836  * be used to read the speed.
25837  */
25838 
25839 /*
25840  *    Function: sr_change_speed()
25841  *
25842  * Description: This routine is the driver entry point for handling CD-ROM
25843  *		drive speed ioctl requests for devices supporting the Toshiba
25844  *		vendor specific drive speed mode page. Support for returning
25845  *		and changing the current drive speed in use by the device is
25846  *		implemented.
25847  *
25848  *   Arguments: dev - the device 'dev_t'
25849  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25850  *		      CDROMSDRVSPEED (set)
25851  *		data - current drive speed or requested drive speed
25852  *		flag - this argument is a pass through to ddi_copyxxx() directly
25853  *		       from the mode argument of ioctl().
25854  *
25855  * Return Code: the code returned by sd_send_scsi_cmd()
25856  *		EINVAL if invalid arguments are provided
25857  *		EFAULT if ddi_copyxxx() fails
25858  *		ENXIO if fail ddi_get_soft_state
25859  *		EIO if invalid mode sense block descriptor length
25860  */
25861 
25862 static int
25863 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25864 {
25865 	struct sd_lun			*un = NULL;
25866 	struct mode_header		*sense_mhp, *select_mhp;
25867 	struct mode_speed		*sense_page, *select_page;
25868 	int				current_speed;
25869 	int				rval = EINVAL;
25870 	int				bd_len;
25871 	uchar_t				*sense = NULL;
25872 	uchar_t				*select = NULL;
25873 	sd_ssc_t			*ssc;
25874 
25875 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25876 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25877 		return (ENXIO);
25878 	}
25879 
25880 	/*
25881 	 * Note: The drive speed is being modified here according to a Toshiba
25882 	 * vendor specific mode page (0x31).
25883 	 */
25884 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25885 
25886 	ssc = sd_ssc_init(un);
25887 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25888 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25889 	    SD_PATH_STANDARD);
25890 	sd_ssc_fini(ssc);
25891 	if (rval != 0) {
25892 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25893 		    "sr_change_speed: Mode Sense Failed\n");
25894 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25895 		return (rval);
25896 	}
25897 	sense_mhp  = (struct mode_header *)sense;
25898 
25899 	/* Check the block descriptor len to handle only 1 block descriptor */
25900 	bd_len = sense_mhp->bdesc_length;
25901 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25902 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25903 		    "sr_change_speed: Mode Sense returned invalid block "
25904 		    "descriptor length\n");
25905 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25906 		return (EIO);
25907 	}
25908 
25909 	sense_page = (struct mode_speed *)
25910 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25911 	current_speed = sense_page->speed;
25912 
25913 	/* Process command */
25914 	switch (cmd) {
25915 	case CDROMGDRVSPEED:
25916 		/* Return the drive speed obtained during the mode sense */
25917 		if (current_speed == 0x2) {
25918 			current_speed = CDROM_TWELVE_SPEED;
25919 		}
25920 		if (ddi_copyout(&current_speed, (void *)data,
25921 		    sizeof (int), flag) != 0) {
25922 			rval = EFAULT;
25923 		}
25924 		break;
25925 	case CDROMSDRVSPEED:
25926 		/* Validate the requested drive speed */
25927 		switch ((uchar_t)data) {
25928 		case CDROM_TWELVE_SPEED:
25929 			data = 0x2;
25930 			/*FALLTHROUGH*/
25931 		case CDROM_NORMAL_SPEED:
25932 		case CDROM_DOUBLE_SPEED:
25933 		case CDROM_QUAD_SPEED:
25934 		case CDROM_MAXIMUM_SPEED:
25935 			break;
25936 		default:
25937 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25938 			    "sr_change_speed: "
25939 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
25940 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25941 			return (EINVAL);
25942 		}
25943 
25944 		/*
25945 		 * The current drive speed matches the requested drive speed so
25946 		 * there is no need to send the mode select to change the speed
25947 		 */
25948 		if (current_speed == data) {
25949 			break;
25950 		}
25951 
25952 		/* Build the select data for the requested drive speed */
25953 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25954 		select_mhp = (struct mode_header *)select;
25955 		select_mhp->bdesc_length = 0;
25956 		select_page =
25957 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25958 		select_page =
25959 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
25960 		select_page->mode_page.code = CDROM_MODE_SPEED;
25961 		select_page->mode_page.length = 2;
25962 		select_page->speed = (uchar_t)data;
25963 
25964 		/* Send the mode select for the requested block size */
25965 		ssc = sd_ssc_init(un);
25966 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25967 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25968 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25969 		sd_ssc_fini(ssc);
25970 		if (rval != 0) {
25971 			/*
25972 			 * The mode select failed for the requested drive speed,
25973 			 * so reset the data for the original drive speed and
25974 			 * send it to the target. The error is indicated by the
25975 			 * return value for the failed mode select.
25976 			 */
25977 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25978 			    "sr_drive_speed: Mode Select Failed\n");
25979 			select_page->speed = sense_page->speed;
25980 			ssc = sd_ssc_init(un);
25981 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
25982 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
25983 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25984 			sd_ssc_fini(ssc);
25985 		}
25986 		break;
25987 	default:
25988 		/* should not reach here, but check anyway */
25989 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25990 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
25991 		rval = EINVAL;
25992 		break;
25993 	}
25994 
25995 	if (select) {
25996 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
25997 	}
25998 	if (sense) {
25999 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26000 	}
26001 
26002 	return (rval);
26003 }
26004 
26005 
26006 /*
26007  *    Function: sr_atapi_change_speed()
26008  *
26009  * Description: This routine is the driver entry point for handling CD-ROM
26010  *		drive speed ioctl requests for MMC devices that do not support
26011  *		the Real Time Streaming feature (0x107).
26012  *
26013  *		Note: This routine will use the SET SPEED command which may not
26014  *		be supported by all devices.
26015  *
26016  *   Arguments: dev- the device 'dev_t'
26017  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26018  *		     CDROMSDRVSPEED (set)
26019  *		data- current drive speed or requested drive speed
26020  *		flag- this argument is a pass through to ddi_copyxxx() directly
26021  *		      from the mode argument of ioctl().
26022  *
26023  * Return Code: the code returned by sd_send_scsi_cmd()
26024  *		EINVAL if invalid arguments are provided
26025  *		EFAULT if ddi_copyxxx() fails
26026  *		ENXIO if fail ddi_get_soft_state
26027  *		EIO if invalid mode sense block descriptor length
26028  */
26029 
26030 static int
26031 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26032 {
26033 	struct sd_lun			*un;
26034 	struct uscsi_cmd		*com = NULL;
26035 	struct mode_header_grp2		*sense_mhp;
26036 	uchar_t				*sense_page;
26037 	uchar_t				*sense = NULL;
26038 	char				cdb[CDB_GROUP5];
26039 	int				bd_len;
26040 	int				current_speed = 0;
26041 	int				max_speed = 0;
26042 	int				rval;
26043 	sd_ssc_t			*ssc;
26044 
26045 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26046 
26047 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26048 		return (ENXIO);
26049 	}
26050 
26051 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26052 
26053 	ssc = sd_ssc_init(un);
26054 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
26055 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26056 	    SD_PATH_STANDARD);
26057 	sd_ssc_fini(ssc);
26058 	if (rval != 0) {
26059 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26060 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26061 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26062 		return (rval);
26063 	}
26064 
26065 	/* Check the block descriptor len to handle only 1 block descriptor */
26066 	sense_mhp = (struct mode_header_grp2 *)sense;
26067 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26068 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26069 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26070 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26071 		    "block descriptor length\n");
26072 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26073 		return (EIO);
26074 	}
26075 
26076 	/* Calculate the current and maximum drive speeds */
26077 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26078 	current_speed = (sense_page[14] << 8) | sense_page[15];
26079 	max_speed = (sense_page[8] << 8) | sense_page[9];
26080 
26081 	/* Process the command */
26082 	switch (cmd) {
26083 	case CDROMGDRVSPEED:
26084 		current_speed /= SD_SPEED_1X;
26085 		if (ddi_copyout(&current_speed, (void *)data,
26086 		    sizeof (int), flag) != 0)
26087 			rval = EFAULT;
26088 		break;
26089 	case CDROMSDRVSPEED:
26090 		/* Convert the speed code to KB/sec */
26091 		switch ((uchar_t)data) {
26092 		case CDROM_NORMAL_SPEED:
26093 			current_speed = SD_SPEED_1X;
26094 			break;
26095 		case CDROM_DOUBLE_SPEED:
26096 			current_speed = 2 * SD_SPEED_1X;
26097 			break;
26098 		case CDROM_QUAD_SPEED:
26099 			current_speed = 4 * SD_SPEED_1X;
26100 			break;
26101 		case CDROM_TWELVE_SPEED:
26102 			current_speed = 12 * SD_SPEED_1X;
26103 			break;
26104 		case CDROM_MAXIMUM_SPEED:
26105 			current_speed = 0xffff;
26106 			break;
26107 		default:
26108 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26109 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26110 			    (uchar_t)data);
26111 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26112 			return (EINVAL);
26113 		}
26114 
26115 		/* Check the request against the drive's max speed. */
26116 		if (current_speed != 0xffff) {
26117 			if (current_speed > max_speed) {
26118 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26119 				return (EINVAL);
26120 			}
26121 		}
26122 
26123 		/*
26124 		 * Build and send the SET SPEED command
26125 		 *
26126 		 * Note: The SET SPEED (0xBB) command used in this routine is
26127 		 * obsolete per the SCSI MMC spec but still supported in the
26128 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26129 		 * therefore the command is still implemented in this routine.
26130 		 */
26131 		bzero(cdb, sizeof (cdb));
26132 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26133 		cdb[2] = (uchar_t)(current_speed >> 8);
26134 		cdb[3] = (uchar_t)current_speed;
26135 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26136 		com->uscsi_cdb	   = (caddr_t)cdb;
26137 		com->uscsi_cdblen  = CDB_GROUP5;
26138 		com->uscsi_bufaddr = NULL;
26139 		com->uscsi_buflen  = 0;
26140 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26141 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26142 		break;
26143 	default:
26144 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26145 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26146 		rval = EINVAL;
26147 	}
26148 
26149 	if (sense) {
26150 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26151 	}
26152 	if (com) {
26153 		kmem_free(com, sizeof (*com));
26154 	}
26155 	return (rval);
26156 }
26157 
26158 
26159 /*
26160  *    Function: sr_pause_resume()
26161  *
26162  * Description: This routine is the driver entry point for handling CD-ROM
26163  *		pause/resume ioctl requests. This only affects the audio play
26164  *		operation.
26165  *
26166  *   Arguments: dev - the device 'dev_t'
26167  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26168  *		      for setting the resume bit of the cdb.
26169  *
26170  * Return Code: the code returned by sd_send_scsi_cmd()
26171  *		EINVAL if invalid mode specified
26172  *
26173  */
26174 
26175 static int
26176 sr_pause_resume(dev_t dev, int cmd)
26177 {
26178 	struct sd_lun		*un;
26179 	struct uscsi_cmd	*com;
26180 	char			cdb[CDB_GROUP1];
26181 	int			rval;
26182 
26183 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26184 		return (ENXIO);
26185 	}
26186 
26187 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26188 	bzero(cdb, CDB_GROUP1);
26189 	cdb[0] = SCMD_PAUSE_RESUME;
26190 	switch (cmd) {
26191 	case CDROMRESUME:
26192 		cdb[8] = 1;
26193 		break;
26194 	case CDROMPAUSE:
26195 		cdb[8] = 0;
26196 		break;
26197 	default:
26198 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26199 		    " Command '%x' Not Supported\n", cmd);
26200 		rval = EINVAL;
26201 		goto done;
26202 	}
26203 
26204 	com->uscsi_cdb    = cdb;
26205 	com->uscsi_cdblen = CDB_GROUP1;
26206 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26207 
26208 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26209 	    SD_PATH_STANDARD);
26210 
26211 done:
26212 	kmem_free(com, sizeof (*com));
26213 	return (rval);
26214 }
26215 
26216 
26217 /*
26218  *    Function: sr_play_msf()
26219  *
26220  * Description: This routine is the driver entry point for handling CD-ROM
26221  *		ioctl requests to output the audio signals at the specified
26222  *		starting address and continue the audio play until the specified
26223  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26224  *		Frame (MSF) format.
26225  *
26226  *   Arguments: dev	- the device 'dev_t'
26227  *		data	- pointer to user provided audio msf structure,
26228  *		          specifying start/end addresses.
26229  *		flag	- this argument is a pass through to ddi_copyxxx()
26230  *		          directly from the mode argument of ioctl().
26231  *
26232  * Return Code: the code returned by sd_send_scsi_cmd()
26233  *		EFAULT if ddi_copyxxx() fails
26234  *		ENXIO if fail ddi_get_soft_state
26235  *		EINVAL if data pointer is NULL
26236  */
26237 
26238 static int
26239 sr_play_msf(dev_t dev, caddr_t data, int flag)
26240 {
26241 	struct sd_lun		*un;
26242 	struct uscsi_cmd	*com;
26243 	struct cdrom_msf	msf_struct;
26244 	struct cdrom_msf	*msf = &msf_struct;
26245 	char			cdb[CDB_GROUP1];
26246 	int			rval;
26247 
26248 	if (data == NULL) {
26249 		return (EINVAL);
26250 	}
26251 
26252 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26253 		return (ENXIO);
26254 	}
26255 
26256 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26257 		return (EFAULT);
26258 	}
26259 
26260 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26261 	bzero(cdb, CDB_GROUP1);
26262 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26263 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26264 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26265 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26266 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26267 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26268 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26269 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26270 	} else {
26271 		cdb[3] = msf->cdmsf_min0;
26272 		cdb[4] = msf->cdmsf_sec0;
26273 		cdb[5] = msf->cdmsf_frame0;
26274 		cdb[6] = msf->cdmsf_min1;
26275 		cdb[7] = msf->cdmsf_sec1;
26276 		cdb[8] = msf->cdmsf_frame1;
26277 	}
26278 	com->uscsi_cdb    = cdb;
26279 	com->uscsi_cdblen = CDB_GROUP1;
26280 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26281 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26282 	    SD_PATH_STANDARD);
26283 	kmem_free(com, sizeof (*com));
26284 	return (rval);
26285 }
26286 
26287 
26288 /*
26289  *    Function: sr_play_trkind()
26290  *
26291  * Description: This routine is the driver entry point for handling CD-ROM
26292  *		ioctl requests to output the audio signals at the specified
26293  *		starting address and continue the audio play until the specified
26294  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26295  *		format.
26296  *
26297  *   Arguments: dev	- the device 'dev_t'
26298  *		data	- pointer to user provided audio track/index structure,
26299  *		          specifying start/end addresses.
26300  *		flag	- this argument is a pass through to ddi_copyxxx()
26301  *		          directly from the mode argument of ioctl().
26302  *
26303  * Return Code: the code returned by sd_send_scsi_cmd()
26304  *		EFAULT if ddi_copyxxx() fails
26305  *		ENXIO if fail ddi_get_soft_state
26306  *		EINVAL if data pointer is NULL
26307  */
26308 
26309 static int
26310 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26311 {
26312 	struct cdrom_ti		ti_struct;
26313 	struct cdrom_ti		*ti = &ti_struct;
26314 	struct uscsi_cmd	*com = NULL;
26315 	char			cdb[CDB_GROUP1];
26316 	int			rval;
26317 
26318 	if (data == NULL) {
26319 		return (EINVAL);
26320 	}
26321 
26322 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26323 		return (EFAULT);
26324 	}
26325 
26326 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26327 	bzero(cdb, CDB_GROUP1);
26328 	cdb[0] = SCMD_PLAYAUDIO_TI;
26329 	cdb[4] = ti->cdti_trk0;
26330 	cdb[5] = ti->cdti_ind0;
26331 	cdb[7] = ti->cdti_trk1;
26332 	cdb[8] = ti->cdti_ind1;
26333 	com->uscsi_cdb    = cdb;
26334 	com->uscsi_cdblen = CDB_GROUP1;
26335 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26336 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26337 	    SD_PATH_STANDARD);
26338 	kmem_free(com, sizeof (*com));
26339 	return (rval);
26340 }
26341 
26342 
26343 /*
26344  *    Function: sr_read_all_subcodes()
26345  *
26346  * Description: This routine is the driver entry point for handling CD-ROM
26347  *		ioctl requests to return raw subcode data while the target is
26348  *		playing audio (CDROMSUBCODE).
26349  *
26350  *   Arguments: dev	- the device 'dev_t'
26351  *		data	- pointer to user provided cdrom subcode structure,
26352  *		          specifying the transfer length and address.
26353  *		flag	- this argument is a pass through to ddi_copyxxx()
26354  *		          directly from the mode argument of ioctl().
26355  *
26356  * Return Code: the code returned by sd_send_scsi_cmd()
26357  *		EFAULT if ddi_copyxxx() fails
26358  *		ENXIO if fail ddi_get_soft_state
26359  *		EINVAL if data pointer is NULL
26360  */
26361 
26362 static int
26363 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26364 {
26365 	struct sd_lun		*un = NULL;
26366 	struct uscsi_cmd	*com = NULL;
26367 	struct cdrom_subcode	*subcode = NULL;
26368 	int			rval;
26369 	size_t			buflen;
26370 	char			cdb[CDB_GROUP5];
26371 
26372 #ifdef _MULTI_DATAMODEL
26373 	/* To support ILP32 applications in an LP64 world */
26374 	struct cdrom_subcode32		cdrom_subcode32;
26375 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26376 #endif
26377 	if (data == NULL) {
26378 		return (EINVAL);
26379 	}
26380 
26381 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26382 		return (ENXIO);
26383 	}
26384 
26385 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26386 
26387 #ifdef _MULTI_DATAMODEL
26388 	switch (ddi_model_convert_from(flag & FMODELS)) {
26389 	case DDI_MODEL_ILP32:
26390 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26391 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26392 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26393 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26394 			return (EFAULT);
26395 		}
26396 		/* Convert the ILP32 uscsi data from the application to LP64 */
26397 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26398 		break;
26399 	case DDI_MODEL_NONE:
26400 		if (ddi_copyin(data, subcode,
26401 		    sizeof (struct cdrom_subcode), flag)) {
26402 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26403 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26404 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26405 			return (EFAULT);
26406 		}
26407 		break;
26408 	}
26409 #else /* ! _MULTI_DATAMODEL */
26410 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26411 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26412 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26413 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26414 		return (EFAULT);
26415 	}
26416 #endif /* _MULTI_DATAMODEL */
26417 
26418 	/*
26419 	 * Since MMC-2 expects max 3 bytes for length, check if the
26420 	 * length input is greater than 3 bytes
26421 	 */
26422 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26423 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26424 		    "sr_read_all_subcodes: "
26425 		    "cdrom transfer length too large: %d (limit %d)\n",
26426 		    subcode->cdsc_length, 0xFFFFFF);
26427 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26428 		return (EINVAL);
26429 	}
26430 
26431 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26432 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26433 	bzero(cdb, CDB_GROUP5);
26434 
26435 	if (un->un_f_mmc_cap == TRUE) {
26436 		cdb[0] = (char)SCMD_READ_CD;
26437 		cdb[2] = (char)0xff;
26438 		cdb[3] = (char)0xff;
26439 		cdb[4] = (char)0xff;
26440 		cdb[5] = (char)0xff;
26441 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26442 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26443 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26444 		cdb[10] = 1;
26445 	} else {
26446 		/*
26447 		 * Note: A vendor specific command (0xDF) is being used her to
26448 		 * request a read of all subcodes.
26449 		 */
26450 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26451 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26452 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26453 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26454 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26455 	}
26456 	com->uscsi_cdb	   = cdb;
26457 	com->uscsi_cdblen  = CDB_GROUP5;
26458 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26459 	com->uscsi_buflen  = buflen;
26460 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26461 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26462 	    SD_PATH_STANDARD);
26463 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26464 	kmem_free(com, sizeof (*com));
26465 	return (rval);
26466 }
26467 
26468 
26469 /*
26470  *    Function: sr_read_subchannel()
26471  *
26472  * Description: This routine is the driver entry point for handling CD-ROM
26473  *		ioctl requests to return the Q sub-channel data of the CD
26474  *		current position block. (CDROMSUBCHNL) The data includes the
26475  *		track number, index number, absolute CD-ROM address (LBA or MSF
26476  *		format per the user) , track relative CD-ROM address (LBA or MSF
26477  *		format per the user), control data and audio status.
26478  *
26479  *   Arguments: dev	- the device 'dev_t'
26480  *		data	- pointer to user provided cdrom sub-channel structure
26481  *		flag	- this argument is a pass through to ddi_copyxxx()
26482  *		          directly from the mode argument of ioctl().
26483  *
26484  * Return Code: the code returned by sd_send_scsi_cmd()
26485  *		EFAULT if ddi_copyxxx() fails
26486  *		ENXIO if fail ddi_get_soft_state
26487  *		EINVAL if data pointer is NULL
26488  */
26489 
26490 static int
26491 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26492 {
26493 	struct sd_lun		*un;
26494 	struct uscsi_cmd	*com;
26495 	struct cdrom_subchnl	subchanel;
26496 	struct cdrom_subchnl	*subchnl = &subchanel;
26497 	char			cdb[CDB_GROUP1];
26498 	caddr_t			buffer;
26499 	int			rval;
26500 
26501 	if (data == NULL) {
26502 		return (EINVAL);
26503 	}
26504 
26505 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26506 	    (un->un_state == SD_STATE_OFFLINE)) {
26507 		return (ENXIO);
26508 	}
26509 
26510 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26511 		return (EFAULT);
26512 	}
26513 
26514 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26515 	bzero(cdb, CDB_GROUP1);
26516 	cdb[0] = SCMD_READ_SUBCHANNEL;
26517 	/* Set the MSF bit based on the user requested address format */
26518 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26519 	/*
26520 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26521 	 * returned
26522 	 */
26523 	cdb[2] = 0x40;
26524 	/*
26525 	 * Set byte 3 to specify the return data format. A value of 0x01
26526 	 * indicates that the CD-ROM current position should be returned.
26527 	 */
26528 	cdb[3] = 0x01;
26529 	cdb[8] = 0x10;
26530 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26531 	com->uscsi_cdb	   = cdb;
26532 	com->uscsi_cdblen  = CDB_GROUP1;
26533 	com->uscsi_bufaddr = buffer;
26534 	com->uscsi_buflen  = 16;
26535 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26536 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26537 	    SD_PATH_STANDARD);
26538 	if (rval != 0) {
26539 		kmem_free(buffer, 16);
26540 		kmem_free(com, sizeof (*com));
26541 		return (rval);
26542 	}
26543 
26544 	/* Process the returned Q sub-channel data */
26545 	subchnl->cdsc_audiostatus = buffer[1];
26546 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26547 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26548 	subchnl->cdsc_trk	= buffer[6];
26549 	subchnl->cdsc_ind	= buffer[7];
26550 	if (subchnl->cdsc_format & CDROM_LBA) {
26551 		subchnl->cdsc_absaddr.lba =
26552 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26553 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26554 		subchnl->cdsc_reladdr.lba =
26555 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26556 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26557 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26558 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26559 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26560 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26561 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26562 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26563 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26564 	} else {
26565 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26566 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26567 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26568 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26569 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26570 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26571 	}
26572 	kmem_free(buffer, 16);
26573 	kmem_free(com, sizeof (*com));
26574 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26575 	    != 0) {
26576 		return (EFAULT);
26577 	}
26578 	return (rval);
26579 }
26580 
26581 
26582 /*
26583  *    Function: sr_read_tocentry()
26584  *
26585  * Description: This routine is the driver entry point for handling CD-ROM
26586  *		ioctl requests to read from the Table of Contents (TOC)
26587  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26588  *		fields, the starting address (LBA or MSF format per the user)
26589  *		and the data mode if the user specified track is a data track.
26590  *
26591  *		Note: The READ HEADER (0x44) command used in this routine is
26592  *		obsolete per the SCSI MMC spec but still supported in the
26593  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26594  *		therefore the command is still implemented in this routine.
26595  *
26596  *   Arguments: dev	- the device 'dev_t'
26597  *		data	- pointer to user provided toc entry structure,
26598  *			  specifying the track # and the address format
26599  *			  (LBA or MSF).
26600  *		flag	- this argument is a pass through to ddi_copyxxx()
26601  *		          directly from the mode argument of ioctl().
26602  *
26603  * Return Code: the code returned by sd_send_scsi_cmd()
26604  *		EFAULT if ddi_copyxxx() fails
26605  *		ENXIO if fail ddi_get_soft_state
26606  *		EINVAL if data pointer is NULL
26607  */
26608 
26609 static int
26610 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26611 {
26612 	struct sd_lun		*un = NULL;
26613 	struct uscsi_cmd	*com;
26614 	struct cdrom_tocentry	toc_entry;
26615 	struct cdrom_tocentry	*entry = &toc_entry;
26616 	caddr_t			buffer;
26617 	int			rval;
26618 	char			cdb[CDB_GROUP1];
26619 
26620 	if (data == NULL) {
26621 		return (EINVAL);
26622 	}
26623 
26624 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26625 	    (un->un_state == SD_STATE_OFFLINE)) {
26626 		return (ENXIO);
26627 	}
26628 
26629 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26630 		return (EFAULT);
26631 	}
26632 
26633 	/* Validate the requested track and address format */
26634 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26635 		return (EINVAL);
26636 	}
26637 
26638 	if (entry->cdte_track == 0) {
26639 		return (EINVAL);
26640 	}
26641 
26642 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26643 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26644 	bzero(cdb, CDB_GROUP1);
26645 
26646 	cdb[0] = SCMD_READ_TOC;
26647 	/* Set the MSF bit based on the user requested address format  */
26648 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26649 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26650 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26651 	} else {
26652 		cdb[6] = entry->cdte_track;
26653 	}
26654 
26655 	/*
26656 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26657 	 * (4 byte TOC response header + 8 byte track descriptor)
26658 	 */
26659 	cdb[8] = 12;
26660 	com->uscsi_cdb	   = cdb;
26661 	com->uscsi_cdblen  = CDB_GROUP1;
26662 	com->uscsi_bufaddr = buffer;
26663 	com->uscsi_buflen  = 0x0C;
26664 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26665 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26666 	    SD_PATH_STANDARD);
26667 	if (rval != 0) {
26668 		kmem_free(buffer, 12);
26669 		kmem_free(com, sizeof (*com));
26670 		return (rval);
26671 	}
26672 
26673 	/* Process the toc entry */
26674 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26675 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26676 	if (entry->cdte_format & CDROM_LBA) {
26677 		entry->cdte_addr.lba =
26678 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26679 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26680 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26681 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26682 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26683 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26684 		/*
26685 		 * Send a READ TOC command using the LBA address format to get
26686 		 * the LBA for the track requested so it can be used in the
26687 		 * READ HEADER request
26688 		 *
26689 		 * Note: The MSF bit of the READ HEADER command specifies the
26690 		 * output format. The block address specified in that command
26691 		 * must be in LBA format.
26692 		 */
26693 		cdb[1] = 0;
26694 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26695 		    SD_PATH_STANDARD);
26696 		if (rval != 0) {
26697 			kmem_free(buffer, 12);
26698 			kmem_free(com, sizeof (*com));
26699 			return (rval);
26700 		}
26701 	} else {
26702 		entry->cdte_addr.msf.minute	= buffer[9];
26703 		entry->cdte_addr.msf.second	= buffer[10];
26704 		entry->cdte_addr.msf.frame	= buffer[11];
26705 		/*
26706 		 * Send a READ TOC command using the LBA address format to get
26707 		 * the LBA for the track requested so it can be used in the
26708 		 * READ HEADER request
26709 		 *
26710 		 * Note: The MSF bit of the READ HEADER command specifies the
26711 		 * output format. The block address specified in that command
26712 		 * must be in LBA format.
26713 		 */
26714 		cdb[1] = 0;
26715 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26716 		    SD_PATH_STANDARD);
26717 		if (rval != 0) {
26718 			kmem_free(buffer, 12);
26719 			kmem_free(com, sizeof (*com));
26720 			return (rval);
26721 		}
26722 	}
26723 
26724 	/*
26725 	 * Build and send the READ HEADER command to determine the data mode of
26726 	 * the user specified track.
26727 	 */
26728 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26729 	    (entry->cdte_track != CDROM_LEADOUT)) {
26730 		bzero(cdb, CDB_GROUP1);
26731 		cdb[0] = SCMD_READ_HEADER;
26732 		cdb[2] = buffer[8];
26733 		cdb[3] = buffer[9];
26734 		cdb[4] = buffer[10];
26735 		cdb[5] = buffer[11];
26736 		cdb[8] = 0x08;
26737 		com->uscsi_buflen = 0x08;
26738 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26739 		    SD_PATH_STANDARD);
26740 		if (rval == 0) {
26741 			entry->cdte_datamode = buffer[0];
26742 		} else {
26743 			/*
26744 			 * READ HEADER command failed, since this is
26745 			 * obsoleted in one spec, its better to return
26746 			 * -1 for an invlid track so that we can still
26747 			 * receive the rest of the TOC data.
26748 			 */
26749 			entry->cdte_datamode = (uchar_t)-1;
26750 		}
26751 	} else {
26752 		entry->cdte_datamode = (uchar_t)-1;
26753 	}
26754 
26755 	kmem_free(buffer, 12);
26756 	kmem_free(com, sizeof (*com));
26757 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26758 		return (EFAULT);
26759 
26760 	return (rval);
26761 }
26762 
26763 
26764 /*
26765  *    Function: sr_read_tochdr()
26766  *
26767  * Description: This routine is the driver entry point for handling CD-ROM
26768  * 		ioctl requests to read the Table of Contents (TOC) header
26769  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26770  *		and ending track numbers
26771  *
26772  *   Arguments: dev	- the device 'dev_t'
26773  *		data	- pointer to user provided toc header structure,
26774  *			  specifying the starting and ending track numbers.
26775  *		flag	- this argument is a pass through to ddi_copyxxx()
26776  *			  directly from the mode argument of ioctl().
26777  *
26778  * Return Code: the code returned by sd_send_scsi_cmd()
26779  *		EFAULT if ddi_copyxxx() fails
26780  *		ENXIO if fail ddi_get_soft_state
26781  *		EINVAL if data pointer is NULL
26782  */
26783 
26784 static int
26785 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26786 {
26787 	struct sd_lun		*un;
26788 	struct uscsi_cmd	*com;
26789 	struct cdrom_tochdr	toc_header;
26790 	struct cdrom_tochdr	*hdr = &toc_header;
26791 	char			cdb[CDB_GROUP1];
26792 	int			rval;
26793 	caddr_t			buffer;
26794 
26795 	if (data == NULL) {
26796 		return (EINVAL);
26797 	}
26798 
26799 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26800 	    (un->un_state == SD_STATE_OFFLINE)) {
26801 		return (ENXIO);
26802 	}
26803 
26804 	buffer = kmem_zalloc(4, KM_SLEEP);
26805 	bzero(cdb, CDB_GROUP1);
26806 	cdb[0] = SCMD_READ_TOC;
26807 	/*
26808 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26809 	 * that the TOC header should be returned
26810 	 */
26811 	cdb[6] = 0x00;
26812 	/*
26813 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26814 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26815 	 */
26816 	cdb[8] = 0x04;
26817 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26818 	com->uscsi_cdb	   = cdb;
26819 	com->uscsi_cdblen  = CDB_GROUP1;
26820 	com->uscsi_bufaddr = buffer;
26821 	com->uscsi_buflen  = 0x04;
26822 	com->uscsi_timeout = 300;
26823 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26824 
26825 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26826 	    SD_PATH_STANDARD);
26827 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26828 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26829 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26830 	} else {
26831 		hdr->cdth_trk0 = buffer[2];
26832 		hdr->cdth_trk1 = buffer[3];
26833 	}
26834 	kmem_free(buffer, 4);
26835 	kmem_free(com, sizeof (*com));
26836 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26837 		return (EFAULT);
26838 	}
26839 	return (rval);
26840 }
26841 
26842 
26843 /*
26844  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26845  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26846  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26847  * digital audio and extended architecture digital audio. These modes are
26848  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26849  * MMC specs.
26850  *
26851  * In addition to support for the various data formats these routines also
26852  * include support for devices that implement only the direct access READ
26853  * commands (0x08, 0x28), devices that implement the READ_CD commands
26854  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26855  * READ CDXA commands (0xD8, 0xDB)
26856  */
26857 
26858 /*
26859  *    Function: sr_read_mode1()
26860  *
26861  * Description: This routine is the driver entry point for handling CD-ROM
26862  *		ioctl read mode1 requests (CDROMREADMODE1).
26863  *
26864  *   Arguments: dev	- the device 'dev_t'
26865  *		data	- pointer to user provided cd read structure specifying
26866  *			  the lba buffer address and length.
26867  *		flag	- this argument is a pass through to ddi_copyxxx()
26868  *			  directly from the mode argument of ioctl().
26869  *
26870  * Return Code: the code returned by sd_send_scsi_cmd()
26871  *		EFAULT if ddi_copyxxx() fails
26872  *		ENXIO if fail ddi_get_soft_state
26873  *		EINVAL if data pointer is NULL
26874  */
26875 
26876 static int
26877 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26878 {
26879 	struct sd_lun		*un;
26880 	struct cdrom_read	mode1_struct;
26881 	struct cdrom_read	*mode1 = &mode1_struct;
26882 	int			rval;
26883 	sd_ssc_t		*ssc;
26884 
26885 #ifdef _MULTI_DATAMODEL
26886 	/* To support ILP32 applications in an LP64 world */
26887 	struct cdrom_read32	cdrom_read32;
26888 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26889 #endif /* _MULTI_DATAMODEL */
26890 
26891 	if (data == NULL) {
26892 		return (EINVAL);
26893 	}
26894 
26895 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26896 	    (un->un_state == SD_STATE_OFFLINE)) {
26897 		return (ENXIO);
26898 	}
26899 
26900 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26901 	    "sd_read_mode1: entry: un:0x%p\n", un);
26902 
26903 #ifdef _MULTI_DATAMODEL
26904 	switch (ddi_model_convert_from(flag & FMODELS)) {
26905 	case DDI_MODEL_ILP32:
26906 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26907 			return (EFAULT);
26908 		}
26909 		/* Convert the ILP32 uscsi data from the application to LP64 */
26910 		cdrom_read32tocdrom_read(cdrd32, mode1);
26911 		break;
26912 	case DDI_MODEL_NONE:
26913 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26914 			return (EFAULT);
26915 		}
26916 	}
26917 #else /* ! _MULTI_DATAMODEL */
26918 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26919 		return (EFAULT);
26920 	}
26921 #endif /* _MULTI_DATAMODEL */
26922 
26923 	ssc = sd_ssc_init(un);
26924 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26925 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26926 	sd_ssc_fini(ssc);
26927 
26928 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26929 	    "sd_read_mode1: exit: un:0x%p\n", un);
26930 
26931 	return (rval);
26932 }
26933 
26934 
26935 /*
26936  *    Function: sr_read_cd_mode2()
26937  *
26938  * Description: This routine is the driver entry point for handling CD-ROM
26939  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
26940  *		support the READ CD (0xBE) command or the 1st generation
26941  *		READ CD (0xD4) command.
26942  *
26943  *   Arguments: dev	- the device 'dev_t'
26944  *		data	- pointer to user provided cd read structure specifying
26945  *			  the lba buffer address and length.
26946  *		flag	- this argument is a pass through to ddi_copyxxx()
26947  *			  directly from the mode argument of ioctl().
26948  *
26949  * Return Code: the code returned by sd_send_scsi_cmd()
26950  *		EFAULT if ddi_copyxxx() fails
26951  *		ENXIO if fail ddi_get_soft_state
26952  *		EINVAL if data pointer is NULL
26953  */
26954 
26955 static int
26956 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
26957 {
26958 	struct sd_lun		*un;
26959 	struct uscsi_cmd	*com;
26960 	struct cdrom_read	mode2_struct;
26961 	struct cdrom_read	*mode2 = &mode2_struct;
26962 	uchar_t			cdb[CDB_GROUP5];
26963 	int			nblocks;
26964 	int			rval;
26965 #ifdef _MULTI_DATAMODEL
26966 	/*  To support ILP32 applications in an LP64 world */
26967 	struct cdrom_read32	cdrom_read32;
26968 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26969 #endif /* _MULTI_DATAMODEL */
26970 
26971 	if (data == NULL) {
26972 		return (EINVAL);
26973 	}
26974 
26975 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26976 	    (un->un_state == SD_STATE_OFFLINE)) {
26977 		return (ENXIO);
26978 	}
26979 
26980 #ifdef _MULTI_DATAMODEL
26981 	switch (ddi_model_convert_from(flag & FMODELS)) {
26982 	case DDI_MODEL_ILP32:
26983 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26984 			return (EFAULT);
26985 		}
26986 		/* Convert the ILP32 uscsi data from the application to LP64 */
26987 		cdrom_read32tocdrom_read(cdrd32, mode2);
26988 		break;
26989 	case DDI_MODEL_NONE:
26990 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26991 			return (EFAULT);
26992 		}
26993 		break;
26994 	}
26995 
26996 #else /* ! _MULTI_DATAMODEL */
26997 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
26998 		return (EFAULT);
26999 	}
27000 #endif /* _MULTI_DATAMODEL */
27001 
27002 	bzero(cdb, sizeof (cdb));
27003 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27004 		/* Read command supported by 1st generation atapi drives */
27005 		cdb[0] = SCMD_READ_CDD4;
27006 	} else {
27007 		/* Universal CD Access Command */
27008 		cdb[0] = SCMD_READ_CD;
27009 	}
27010 
27011 	/*
27012 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27013 	 */
27014 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27015 
27016 	/* set the start address */
27017 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27018 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27019 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27020 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27021 
27022 	/* set the transfer length */
27023 	nblocks = mode2->cdread_buflen / 2336;
27024 	cdb[6] = (uchar_t)(nblocks >> 16);
27025 	cdb[7] = (uchar_t)(nblocks >> 8);
27026 	cdb[8] = (uchar_t)nblocks;
27027 
27028 	/* set the filter bits */
27029 	cdb[9] = CDROM_READ_CD_USERDATA;
27030 
27031 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27032 	com->uscsi_cdb = (caddr_t)cdb;
27033 	com->uscsi_cdblen = sizeof (cdb);
27034 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27035 	com->uscsi_buflen = mode2->cdread_buflen;
27036 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27037 
27038 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27039 	    SD_PATH_STANDARD);
27040 	kmem_free(com, sizeof (*com));
27041 	return (rval);
27042 }
27043 
27044 
27045 /*
27046  *    Function: sr_read_mode2()
27047  *
27048  * Description: This routine is the driver entry point for handling CD-ROM
27049  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27050  *		do not support the READ CD (0xBE) command.
27051  *
27052  *   Arguments: dev	- the device 'dev_t'
27053  *		data	- pointer to user provided cd read structure specifying
27054  *			  the lba buffer address and length.
27055  *		flag	- this argument is a pass through to ddi_copyxxx()
27056  *			  directly from the mode argument of ioctl().
27057  *
27058  * Return Code: the code returned by sd_send_scsi_cmd()
27059  *		EFAULT if ddi_copyxxx() fails
27060  *		ENXIO if fail ddi_get_soft_state
27061  *		EINVAL if data pointer is NULL
27062  *		EIO if fail to reset block size
27063  *		EAGAIN if commands are in progress in the driver
27064  */
27065 
27066 static int
27067 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27068 {
27069 	struct sd_lun		*un;
27070 	struct cdrom_read	mode2_struct;
27071 	struct cdrom_read	*mode2 = &mode2_struct;
27072 	int			rval;
27073 	uint32_t		restore_blksize;
27074 	struct uscsi_cmd	*com;
27075 	uchar_t			cdb[CDB_GROUP0];
27076 	int			nblocks;
27077 
27078 #ifdef _MULTI_DATAMODEL
27079 	/* To support ILP32 applications in an LP64 world */
27080 	struct cdrom_read32	cdrom_read32;
27081 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27082 #endif /* _MULTI_DATAMODEL */
27083 
27084 	if (data == NULL) {
27085 		return (EINVAL);
27086 	}
27087 
27088 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27089 	    (un->un_state == SD_STATE_OFFLINE)) {
27090 		return (ENXIO);
27091 	}
27092 
27093 	/*
27094 	 * Because this routine will update the device and driver block size
27095 	 * being used we want to make sure there are no commands in progress.
27096 	 * If commands are in progress the user will have to try again.
27097 	 *
27098 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27099 	 * in sdioctl to protect commands from sdioctl through to the top of
27100 	 * sd_uscsi_strategy. See sdioctl for details.
27101 	 */
27102 	mutex_enter(SD_MUTEX(un));
27103 	if (un->un_ncmds_in_driver != 1) {
27104 		mutex_exit(SD_MUTEX(un));
27105 		return (EAGAIN);
27106 	}
27107 	mutex_exit(SD_MUTEX(un));
27108 
27109 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27110 	    "sd_read_mode2: entry: un:0x%p\n", un);
27111 
27112 #ifdef _MULTI_DATAMODEL
27113 	switch (ddi_model_convert_from(flag & FMODELS)) {
27114 	case DDI_MODEL_ILP32:
27115 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27116 			return (EFAULT);
27117 		}
27118 		/* Convert the ILP32 uscsi data from the application to LP64 */
27119 		cdrom_read32tocdrom_read(cdrd32, mode2);
27120 		break;
27121 	case DDI_MODEL_NONE:
27122 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27123 			return (EFAULT);
27124 		}
27125 		break;
27126 	}
27127 #else /* ! _MULTI_DATAMODEL */
27128 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27129 		return (EFAULT);
27130 	}
27131 #endif /* _MULTI_DATAMODEL */
27132 
27133 	/* Store the current target block size for restoration later */
27134 	restore_blksize = un->un_tgt_blocksize;
27135 
27136 	/* Change the device and soft state target block size to 2336 */
27137 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27138 		rval = EIO;
27139 		goto done;
27140 	}
27141 
27142 
27143 	bzero(cdb, sizeof (cdb));
27144 
27145 	/* set READ operation */
27146 	cdb[0] = SCMD_READ;
27147 
27148 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27149 	mode2->cdread_lba >>= 2;
27150 
27151 	/* set the start address */
27152 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27153 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27154 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27155 
27156 	/* set the transfer length */
27157 	nblocks = mode2->cdread_buflen / 2336;
27158 	cdb[4] = (uchar_t)nblocks & 0xFF;
27159 
27160 	/* build command */
27161 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27162 	com->uscsi_cdb = (caddr_t)cdb;
27163 	com->uscsi_cdblen = sizeof (cdb);
27164 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27165 	com->uscsi_buflen = mode2->cdread_buflen;
27166 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27167 
27168 	/*
27169 	 * Issue SCSI command with user space address for read buffer.
27170 	 *
27171 	 * This sends the command through main channel in the driver.
27172 	 *
27173 	 * Since this is accessed via an IOCTL call, we go through the
27174 	 * standard path, so that if the device was powered down, then
27175 	 * it would be 'awakened' to handle the command.
27176 	 */
27177 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27178 	    SD_PATH_STANDARD);
27179 
27180 	kmem_free(com, sizeof (*com));
27181 
27182 	/* Restore the device and soft state target block size */
27183 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27184 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27185 		    "can't do switch back to mode 1\n");
27186 		/*
27187 		 * If sd_send_scsi_READ succeeded we still need to report
27188 		 * an error because we failed to reset the block size
27189 		 */
27190 		if (rval == 0) {
27191 			rval = EIO;
27192 		}
27193 	}
27194 
27195 done:
27196 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27197 	    "sd_read_mode2: exit: un:0x%p\n", un);
27198 
27199 	return (rval);
27200 }
27201 
27202 
27203 /*
27204  *    Function: sr_sector_mode()
27205  *
27206  * Description: This utility function is used by sr_read_mode2 to set the target
27207  *		block size based on the user specified size. This is a legacy
27208  *		implementation based upon a vendor specific mode page
27209  *
27210  *   Arguments: dev	- the device 'dev_t'
27211  *		data	- flag indicating if block size is being set to 2336 or
27212  *			  512.
27213  *
27214  * Return Code: the code returned by sd_send_scsi_cmd()
27215  *		EFAULT if ddi_copyxxx() fails
27216  *		ENXIO if fail ddi_get_soft_state
27217  *		EINVAL if data pointer is NULL
27218  */
27219 
27220 static int
27221 sr_sector_mode(dev_t dev, uint32_t blksize)
27222 {
27223 	struct sd_lun	*un;
27224 	uchar_t		*sense;
27225 	uchar_t		*select;
27226 	int		rval;
27227 	sd_ssc_t	*ssc;
27228 
27229 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27230 	    (un->un_state == SD_STATE_OFFLINE)) {
27231 		return (ENXIO);
27232 	}
27233 
27234 	sense = kmem_zalloc(20, KM_SLEEP);
27235 
27236 	/* Note: This is a vendor specific mode page (0x81) */
27237 	ssc = sd_ssc_init(un);
27238 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27239 	    SD_PATH_STANDARD);
27240 	sd_ssc_fini(ssc);
27241 	if (rval != 0) {
27242 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27243 		    "sr_sector_mode: Mode Sense failed\n");
27244 		kmem_free(sense, 20);
27245 		return (rval);
27246 	}
27247 	select = kmem_zalloc(20, KM_SLEEP);
27248 	select[3] = 0x08;
27249 	select[10] = ((blksize >> 8) & 0xff);
27250 	select[11] = (blksize & 0xff);
27251 	select[12] = 0x01;
27252 	select[13] = 0x06;
27253 	select[14] = sense[14];
27254 	select[15] = sense[15];
27255 	if (blksize == SD_MODE2_BLKSIZE) {
27256 		select[14] |= 0x01;
27257 	}
27258 
27259 	ssc = sd_ssc_init(un);
27260 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27261 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27262 	sd_ssc_fini(ssc);
27263 	if (rval != 0) {
27264 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27265 		    "sr_sector_mode: Mode Select failed\n");
27266 	} else {
27267 		/*
27268 		 * Only update the softstate block size if we successfully
27269 		 * changed the device block mode.
27270 		 */
27271 		mutex_enter(SD_MUTEX(un));
27272 		sd_update_block_info(un, blksize, 0);
27273 		mutex_exit(SD_MUTEX(un));
27274 	}
27275 	kmem_free(sense, 20);
27276 	kmem_free(select, 20);
27277 	return (rval);
27278 }
27279 
27280 
27281 /*
27282  *    Function: sr_read_cdda()
27283  *
27284  * Description: This routine is the driver entry point for handling CD-ROM
27285  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27286  *		the target supports CDDA these requests are handled via a vendor
27287  *		specific command (0xD8) If the target does not support CDDA
27288  *		these requests are handled via the READ CD command (0xBE).
27289  *
27290  *   Arguments: dev	- the device 'dev_t'
27291  *		data	- pointer to user provided CD-DA structure specifying
27292  *			  the track starting address, transfer length, and
27293  *			  subcode options.
27294  *		flag	- this argument is a pass through to ddi_copyxxx()
27295  *			  directly from the mode argument of ioctl().
27296  *
27297  * Return Code: the code returned by sd_send_scsi_cmd()
27298  *		EFAULT if ddi_copyxxx() fails
27299  *		ENXIO if fail ddi_get_soft_state
27300  *		EINVAL if invalid arguments are provided
27301  *		ENOTTY
27302  */
27303 
27304 static int
27305 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27306 {
27307 	struct sd_lun			*un;
27308 	struct uscsi_cmd		*com;
27309 	struct cdrom_cdda		*cdda;
27310 	int				rval;
27311 	size_t				buflen;
27312 	char				cdb[CDB_GROUP5];
27313 
27314 #ifdef _MULTI_DATAMODEL
27315 	/* To support ILP32 applications in an LP64 world */
27316 	struct cdrom_cdda32	cdrom_cdda32;
27317 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27318 #endif /* _MULTI_DATAMODEL */
27319 
27320 	if (data == NULL) {
27321 		return (EINVAL);
27322 	}
27323 
27324 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27325 		return (ENXIO);
27326 	}
27327 
27328 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27329 
27330 #ifdef _MULTI_DATAMODEL
27331 	switch (ddi_model_convert_from(flag & FMODELS)) {
27332 	case DDI_MODEL_ILP32:
27333 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27334 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27335 			    "sr_read_cdda: ddi_copyin Failed\n");
27336 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27337 			return (EFAULT);
27338 		}
27339 		/* Convert the ILP32 uscsi data from the application to LP64 */
27340 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27341 		break;
27342 	case DDI_MODEL_NONE:
27343 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27344 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27345 			    "sr_read_cdda: ddi_copyin Failed\n");
27346 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27347 			return (EFAULT);
27348 		}
27349 		break;
27350 	}
27351 #else /* ! _MULTI_DATAMODEL */
27352 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27353 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27354 		    "sr_read_cdda: ddi_copyin Failed\n");
27355 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27356 		return (EFAULT);
27357 	}
27358 #endif /* _MULTI_DATAMODEL */
27359 
27360 	/*
27361 	 * Since MMC-2 expects max 3 bytes for length, check if the
27362 	 * length input is greater than 3 bytes
27363 	 */
27364 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27365 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27366 		    "cdrom transfer length too large: %d (limit %d)\n",
27367 		    cdda->cdda_length, 0xFFFFFF);
27368 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27369 		return (EINVAL);
27370 	}
27371 
27372 	switch (cdda->cdda_subcode) {
27373 	case CDROM_DA_NO_SUBCODE:
27374 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27375 		break;
27376 	case CDROM_DA_SUBQ:
27377 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27378 		break;
27379 	case CDROM_DA_ALL_SUBCODE:
27380 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27381 		break;
27382 	case CDROM_DA_SUBCODE_ONLY:
27383 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27384 		break;
27385 	default:
27386 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27387 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27388 		    cdda->cdda_subcode);
27389 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27390 		return (EINVAL);
27391 	}
27392 
27393 	/* Build and send the command */
27394 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27395 	bzero(cdb, CDB_GROUP5);
27396 
27397 	if (un->un_f_cfg_cdda == TRUE) {
27398 		cdb[0] = (char)SCMD_READ_CD;
27399 		cdb[1] = 0x04;
27400 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27401 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27402 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27403 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27404 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27405 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27406 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27407 		cdb[9] = 0x10;
27408 		switch (cdda->cdda_subcode) {
27409 		case CDROM_DA_NO_SUBCODE :
27410 			cdb[10] = 0x0;
27411 			break;
27412 		case CDROM_DA_SUBQ :
27413 			cdb[10] = 0x2;
27414 			break;
27415 		case CDROM_DA_ALL_SUBCODE :
27416 			cdb[10] = 0x1;
27417 			break;
27418 		case CDROM_DA_SUBCODE_ONLY :
27419 			/* FALLTHROUGH */
27420 		default :
27421 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27422 			kmem_free(com, sizeof (*com));
27423 			return (ENOTTY);
27424 		}
27425 	} else {
27426 		cdb[0] = (char)SCMD_READ_CDDA;
27427 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27428 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27429 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27430 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27431 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27432 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27433 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27434 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27435 		cdb[10] = cdda->cdda_subcode;
27436 	}
27437 
27438 	com->uscsi_cdb = cdb;
27439 	com->uscsi_cdblen = CDB_GROUP5;
27440 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27441 	com->uscsi_buflen = buflen;
27442 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27443 
27444 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27445 	    SD_PATH_STANDARD);
27446 
27447 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27448 	kmem_free(com, sizeof (*com));
27449 	return (rval);
27450 }
27451 
27452 
27453 /*
27454  *    Function: sr_read_cdxa()
27455  *
27456  * Description: This routine is the driver entry point for handling CD-ROM
27457  *		ioctl requests to return CD-XA (Extended Architecture) data.
27458  *		(CDROMCDXA).
27459  *
27460  *   Arguments: dev	- the device 'dev_t'
27461  *		data	- pointer to user provided CD-XA structure specifying
27462  *			  the data starting address, transfer length, and format
27463  *		flag	- this argument is a pass through to ddi_copyxxx()
27464  *			  directly from the mode argument of ioctl().
27465  *
27466  * Return Code: the code returned by sd_send_scsi_cmd()
27467  *		EFAULT if ddi_copyxxx() fails
27468  *		ENXIO if fail ddi_get_soft_state
27469  *		EINVAL if data pointer is NULL
27470  */
27471 
27472 static int
27473 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27474 {
27475 	struct sd_lun		*un;
27476 	struct uscsi_cmd	*com;
27477 	struct cdrom_cdxa	*cdxa;
27478 	int			rval;
27479 	size_t			buflen;
27480 	char			cdb[CDB_GROUP5];
27481 	uchar_t			read_flags;
27482 
27483 #ifdef _MULTI_DATAMODEL
27484 	/* To support ILP32 applications in an LP64 world */
27485 	struct cdrom_cdxa32		cdrom_cdxa32;
27486 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27487 #endif /* _MULTI_DATAMODEL */
27488 
27489 	if (data == NULL) {
27490 		return (EINVAL);
27491 	}
27492 
27493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27494 		return (ENXIO);
27495 	}
27496 
27497 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27498 
27499 #ifdef _MULTI_DATAMODEL
27500 	switch (ddi_model_convert_from(flag & FMODELS)) {
27501 	case DDI_MODEL_ILP32:
27502 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27503 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27504 			return (EFAULT);
27505 		}
27506 		/*
27507 		 * Convert the ILP32 uscsi data from the
27508 		 * application to LP64 for internal use.
27509 		 */
27510 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27511 		break;
27512 	case DDI_MODEL_NONE:
27513 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27514 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27515 			return (EFAULT);
27516 		}
27517 		break;
27518 	}
27519 #else /* ! _MULTI_DATAMODEL */
27520 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27521 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27522 		return (EFAULT);
27523 	}
27524 #endif /* _MULTI_DATAMODEL */
27525 
27526 	/*
27527 	 * Since MMC-2 expects max 3 bytes for length, check if the
27528 	 * length input is greater than 3 bytes
27529 	 */
27530 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27531 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27532 		    "cdrom transfer length too large: %d (limit %d)\n",
27533 		    cdxa->cdxa_length, 0xFFFFFF);
27534 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27535 		return (EINVAL);
27536 	}
27537 
27538 	switch (cdxa->cdxa_format) {
27539 	case CDROM_XA_DATA:
27540 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27541 		read_flags = 0x10;
27542 		break;
27543 	case CDROM_XA_SECTOR_DATA:
27544 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27545 		read_flags = 0xf8;
27546 		break;
27547 	case CDROM_XA_DATA_W_ERROR:
27548 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27549 		read_flags = 0xfc;
27550 		break;
27551 	default:
27552 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27553 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27554 		    cdxa->cdxa_format);
27555 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27556 		return (EINVAL);
27557 	}
27558 
27559 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27560 	bzero(cdb, CDB_GROUP5);
27561 	if (un->un_f_mmc_cap == TRUE) {
27562 		cdb[0] = (char)SCMD_READ_CD;
27563 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27564 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27565 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27566 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27567 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27568 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27569 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27570 		cdb[9] = (char)read_flags;
27571 	} else {
27572 		/*
27573 		 * Note: A vendor specific command (0xDB) is being used her to
27574 		 * request a read of all subcodes.
27575 		 */
27576 		cdb[0] = (char)SCMD_READ_CDXA;
27577 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27578 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27579 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27580 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27581 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27582 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27583 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27584 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27585 		cdb[10] = cdxa->cdxa_format;
27586 	}
27587 	com->uscsi_cdb	   = cdb;
27588 	com->uscsi_cdblen  = CDB_GROUP5;
27589 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27590 	com->uscsi_buflen  = buflen;
27591 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27592 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27593 	    SD_PATH_STANDARD);
27594 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27595 	kmem_free(com, sizeof (*com));
27596 	return (rval);
27597 }
27598 
27599 
27600 /*
27601  *    Function: sr_eject()
27602  *
27603  * Description: This routine is the driver entry point for handling CD-ROM
27604  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27605  *
27606  *   Arguments: dev	- the device 'dev_t'
27607  *
27608  * Return Code: the code returned by sd_send_scsi_cmd()
27609  */
27610 
27611 static int
27612 sr_eject(dev_t dev)
27613 {
27614 	struct sd_lun	*un;
27615 	int		rval;
27616 	sd_ssc_t	*ssc;
27617 
27618 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27619 	    (un->un_state == SD_STATE_OFFLINE)) {
27620 		return (ENXIO);
27621 	}
27622 
27623 	/*
27624 	 * To prevent race conditions with the eject
27625 	 * command, keep track of an eject command as
27626 	 * it progresses. If we are already handling
27627 	 * an eject command in the driver for the given
27628 	 * unit and another request to eject is received
27629 	 * immediately return EAGAIN so we don't lose
27630 	 * the command if the current eject command fails.
27631 	 */
27632 	mutex_enter(SD_MUTEX(un));
27633 	if (un->un_f_ejecting == TRUE) {
27634 		mutex_exit(SD_MUTEX(un));
27635 		return (EAGAIN);
27636 	}
27637 	un->un_f_ejecting = TRUE;
27638 	mutex_exit(SD_MUTEX(un));
27639 
27640 	ssc = sd_ssc_init(un);
27641 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27642 	    SD_PATH_STANDARD);
27643 	sd_ssc_fini(ssc);
27644 
27645 	if (rval != 0) {
27646 		mutex_enter(SD_MUTEX(un));
27647 		un->un_f_ejecting = FALSE;
27648 		mutex_exit(SD_MUTEX(un));
27649 		return (rval);
27650 	}
27651 
27652 	ssc = sd_ssc_init(un);
27653 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27654 	    SD_PATH_STANDARD);
27655 	sd_ssc_fini(ssc);
27656 
27657 	if (rval == 0) {
27658 		mutex_enter(SD_MUTEX(un));
27659 		sr_ejected(un);
27660 		un->un_mediastate = DKIO_EJECTED;
27661 		un->un_f_ejecting = FALSE;
27662 		cv_broadcast(&un->un_state_cv);
27663 		mutex_exit(SD_MUTEX(un));
27664 	} else {
27665 		mutex_enter(SD_MUTEX(un));
27666 		un->un_f_ejecting = FALSE;
27667 		mutex_exit(SD_MUTEX(un));
27668 	}
27669 	return (rval);
27670 }
27671 
27672 
27673 /*
27674  *    Function: sr_ejected()
27675  *
27676  * Description: This routine updates the soft state structure to invalidate the
27677  *		geometry information after the media has been ejected or a
27678  *		media eject has been detected.
27679  *
27680  *   Arguments: un - driver soft state (unit) structure
27681  */
27682 
27683 static void
27684 sr_ejected(struct sd_lun *un)
27685 {
27686 	struct sd_errstats *stp;
27687 
27688 	ASSERT(un != NULL);
27689 	ASSERT(mutex_owned(SD_MUTEX(un)));
27690 
27691 	un->un_f_blockcount_is_valid	= FALSE;
27692 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27693 	mutex_exit(SD_MUTEX(un));
27694 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27695 	mutex_enter(SD_MUTEX(un));
27696 
27697 	if (un->un_errstats != NULL) {
27698 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27699 		stp->sd_capacity.value.ui64 = 0;
27700 	}
27701 }
27702 
27703 
27704 /*
27705  *    Function: sr_check_wp()
27706  *
27707  * Description: This routine checks the write protection of a removable
27708  *      media disk and hotpluggable devices via the write protect bit of
27709  *      the Mode Page Header device specific field. Some devices choke
27710  *      on unsupported mode page. In order to workaround this issue,
27711  *      this routine has been implemented to use 0x3f mode page(request
27712  *      for all pages) for all device types.
27713  *
27714  *   Arguments: dev             - the device 'dev_t'
27715  *
27716  * Return Code: int indicating if the device is write protected (1) or not (0)
27717  *
27718  *     Context: Kernel thread.
27719  *
27720  */
27721 
27722 static int
27723 sr_check_wp(dev_t dev)
27724 {
27725 	struct sd_lun	*un;
27726 	uchar_t		device_specific;
27727 	uchar_t		*sense;
27728 	int		hdrlen;
27729 	int		rval = FALSE;
27730 	int		status;
27731 	sd_ssc_t	*ssc;
27732 
27733 	/*
27734 	 * Note: The return codes for this routine should be reworked to
27735 	 * properly handle the case of a NULL softstate.
27736 	 */
27737 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27738 		return (FALSE);
27739 	}
27740 
27741 	if (un->un_f_cfg_is_atapi == TRUE) {
27742 		/*
27743 		 * The mode page contents are not required; set the allocation
27744 		 * length for the mode page header only
27745 		 */
27746 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27747 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27748 		ssc = sd_ssc_init(un);
27749 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27750 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27751 		sd_ssc_fini(ssc);
27752 		if (status != 0)
27753 			goto err_exit;
27754 		device_specific =
27755 		    ((struct mode_header_grp2 *)sense)->device_specific;
27756 	} else {
27757 		hdrlen = MODE_HEADER_LENGTH;
27758 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27759 		ssc = sd_ssc_init(un);
27760 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27761 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27762 		sd_ssc_fini(ssc);
27763 		if (status != 0)
27764 			goto err_exit;
27765 		device_specific =
27766 		    ((struct mode_header *)sense)->device_specific;
27767 	}
27768 
27769 
27770 	/*
27771 	 * Write protect mode sense failed; not all disks
27772 	 * understand this query. Return FALSE assuming that
27773 	 * these devices are not writable.
27774 	 */
27775 	if (device_specific & WRITE_PROTECT) {
27776 		rval = TRUE;
27777 	}
27778 
27779 err_exit:
27780 	kmem_free(sense, hdrlen);
27781 	return (rval);
27782 }
27783 
27784 /*
27785  *    Function: sr_volume_ctrl()
27786  *
27787  * Description: This routine is the driver entry point for handling CD-ROM
27788  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27789  *
27790  *   Arguments: dev	- the device 'dev_t'
27791  *		data	- pointer to user audio volume control structure
27792  *		flag	- this argument is a pass through to ddi_copyxxx()
27793  *			  directly from the mode argument of ioctl().
27794  *
27795  * Return Code: the code returned by sd_send_scsi_cmd()
27796  *		EFAULT if ddi_copyxxx() fails
27797  *		ENXIO if fail ddi_get_soft_state
27798  *		EINVAL if data pointer is NULL
27799  *
27800  */
27801 
27802 static int
27803 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27804 {
27805 	struct sd_lun		*un;
27806 	struct cdrom_volctrl    volume;
27807 	struct cdrom_volctrl    *vol = &volume;
27808 	uchar_t			*sense_page;
27809 	uchar_t			*select_page;
27810 	uchar_t			*sense;
27811 	uchar_t			*select;
27812 	int			sense_buflen;
27813 	int			select_buflen;
27814 	int			rval;
27815 	sd_ssc_t		*ssc;
27816 
27817 	if (data == NULL) {
27818 		return (EINVAL);
27819 	}
27820 
27821 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27822 	    (un->un_state == SD_STATE_OFFLINE)) {
27823 		return (ENXIO);
27824 	}
27825 
27826 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27827 		return (EFAULT);
27828 	}
27829 
27830 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27831 		struct mode_header_grp2		*sense_mhp;
27832 		struct mode_header_grp2		*select_mhp;
27833 		int				bd_len;
27834 
27835 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27836 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27837 		    MODEPAGE_AUDIO_CTRL_LEN;
27838 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27839 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27840 		ssc = sd_ssc_init(un);
27841 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27842 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27843 		    SD_PATH_STANDARD);
27844 		sd_ssc_fini(ssc);
27845 
27846 		if (rval != 0) {
27847 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27848 			    "sr_volume_ctrl: Mode Sense Failed\n");
27849 			kmem_free(sense, sense_buflen);
27850 			kmem_free(select, select_buflen);
27851 			return (rval);
27852 		}
27853 		sense_mhp = (struct mode_header_grp2 *)sense;
27854 		select_mhp = (struct mode_header_grp2 *)select;
27855 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27856 		    sense_mhp->bdesc_length_lo;
27857 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27858 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27859 			    "sr_volume_ctrl: Mode Sense returned invalid "
27860 			    "block descriptor length\n");
27861 			kmem_free(sense, sense_buflen);
27862 			kmem_free(select, select_buflen);
27863 			return (EIO);
27864 		}
27865 		sense_page = (uchar_t *)
27866 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27867 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27868 		select_mhp->length_msb = 0;
27869 		select_mhp->length_lsb = 0;
27870 		select_mhp->bdesc_length_hi = 0;
27871 		select_mhp->bdesc_length_lo = 0;
27872 	} else {
27873 		struct mode_header		*sense_mhp, *select_mhp;
27874 
27875 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27876 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27877 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27878 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27879 		ssc = sd_ssc_init(un);
27880 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27881 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27882 		    SD_PATH_STANDARD);
27883 		sd_ssc_fini(ssc);
27884 
27885 		if (rval != 0) {
27886 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27887 			    "sr_volume_ctrl: Mode Sense Failed\n");
27888 			kmem_free(sense, sense_buflen);
27889 			kmem_free(select, select_buflen);
27890 			return (rval);
27891 		}
27892 		sense_mhp  = (struct mode_header *)sense;
27893 		select_mhp = (struct mode_header *)select;
27894 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27895 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27896 			    "sr_volume_ctrl: Mode Sense returned invalid "
27897 			    "block descriptor length\n");
27898 			kmem_free(sense, sense_buflen);
27899 			kmem_free(select, select_buflen);
27900 			return (EIO);
27901 		}
27902 		sense_page = (uchar_t *)
27903 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27904 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27905 		select_mhp->length = 0;
27906 		select_mhp->bdesc_length = 0;
27907 	}
27908 	/*
27909 	 * Note: An audio control data structure could be created and overlayed
27910 	 * on the following in place of the array indexing method implemented.
27911 	 */
27912 
27913 	/* Build the select data for the user volume data */
27914 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27915 	select_page[1] = 0xE;
27916 	/* Set the immediate bit */
27917 	select_page[2] = 0x04;
27918 	/* Zero out reserved fields */
27919 	select_page[3] = 0x00;
27920 	select_page[4] = 0x00;
27921 	/* Return sense data for fields not to be modified */
27922 	select_page[5] = sense_page[5];
27923 	select_page[6] = sense_page[6];
27924 	select_page[7] = sense_page[7];
27925 	/* Set the user specified volume levels for channel 0 and 1 */
27926 	select_page[8] = 0x01;
27927 	select_page[9] = vol->channel0;
27928 	select_page[10] = 0x02;
27929 	select_page[11] = vol->channel1;
27930 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27931 	select_page[12] = sense_page[12];
27932 	select_page[13] = sense_page[13];
27933 	select_page[14] = sense_page[14];
27934 	select_page[15] = sense_page[15];
27935 
27936 	ssc = sd_ssc_init(un);
27937 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27938 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
27939 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27940 	} else {
27941 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27942 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27943 	}
27944 	sd_ssc_fini(ssc);
27945 
27946 	kmem_free(sense, sense_buflen);
27947 	kmem_free(select, select_buflen);
27948 	return (rval);
27949 }
27950 
27951 
27952 /*
27953  *    Function: sr_read_sony_session_offset()
27954  *
27955  * Description: This routine is the driver entry point for handling CD-ROM
27956  *		ioctl requests for session offset information. (CDROMREADOFFSET)
27957  *		The address of the first track in the last session of a
27958  *		multi-session CD-ROM is returned
27959  *
27960  *		Note: This routine uses a vendor specific key value in the
27961  *		command control field without implementing any vendor check here
27962  *		or in the ioctl routine.
27963  *
27964  *   Arguments: dev	- the device 'dev_t'
27965  *		data	- pointer to an int to hold the requested address
27966  *		flag	- this argument is a pass through to ddi_copyxxx()
27967  *			  directly from the mode argument of ioctl().
27968  *
27969  * Return Code: the code returned by sd_send_scsi_cmd()
27970  *		EFAULT if ddi_copyxxx() fails
27971  *		ENXIO if fail ddi_get_soft_state
27972  *		EINVAL if data pointer is NULL
27973  */
27974 
27975 static int
27976 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
27977 {
27978 	struct sd_lun		*un;
27979 	struct uscsi_cmd	*com;
27980 	caddr_t			buffer;
27981 	char			cdb[CDB_GROUP1];
27982 	int			session_offset = 0;
27983 	int			rval;
27984 
27985 	if (data == NULL) {
27986 		return (EINVAL);
27987 	}
27988 
27989 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27990 	    (un->un_state == SD_STATE_OFFLINE)) {
27991 		return (ENXIO);
27992 	}
27993 
27994 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
27995 	bzero(cdb, CDB_GROUP1);
27996 	cdb[0] = SCMD_READ_TOC;
27997 	/*
27998 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27999 	 * (4 byte TOC response header + 8 byte response data)
28000 	 */
28001 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28002 	/* Byte 9 is the control byte. A vendor specific value is used */
28003 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28004 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28005 	com->uscsi_cdb = cdb;
28006 	com->uscsi_cdblen = CDB_GROUP1;
28007 	com->uscsi_bufaddr = buffer;
28008 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28009 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28010 
28011 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28012 	    SD_PATH_STANDARD);
28013 	if (rval != 0) {
28014 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28015 		kmem_free(com, sizeof (*com));
28016 		return (rval);
28017 	}
28018 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28019 		session_offset =
28020 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28021 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28022 		/*
28023 		 * Offset returned offset in current lbasize block's. Convert to
28024 		 * 2k block's to return to the user
28025 		 */
28026 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28027 			session_offset >>= 2;
28028 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28029 			session_offset >>= 1;
28030 		}
28031 	}
28032 
28033 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28034 		rval = EFAULT;
28035 	}
28036 
28037 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28038 	kmem_free(com, sizeof (*com));
28039 	return (rval);
28040 }
28041 
28042 
28043 /*
28044  *    Function: sd_wm_cache_constructor()
28045  *
28046  * Description: Cache Constructor for the wmap cache for the read/modify/write
28047  * 		devices.
28048  *
28049  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28050  *		un	- sd_lun structure for the device.
28051  *		flag	- the km flags passed to constructor
28052  *
28053  * Return Code: 0 on success.
28054  *		-1 on failure.
28055  */
28056 
28057 /*ARGSUSED*/
28058 static int
28059 sd_wm_cache_constructor(void *wm, void *un, int flags)
28060 {
28061 	bzero(wm, sizeof (struct sd_w_map));
28062 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28063 	return (0);
28064 }
28065 
28066 
28067 /*
28068  *    Function: sd_wm_cache_destructor()
28069  *
28070  * Description: Cache destructor for the wmap cache for the read/modify/write
28071  * 		devices.
28072  *
28073  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28074  *		un	- sd_lun structure for the device.
28075  */
28076 /*ARGSUSED*/
28077 static void
28078 sd_wm_cache_destructor(void *wm, void *un)
28079 {
28080 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28081 }
28082 
28083 
28084 /*
28085  *    Function: sd_range_lock()
28086  *
28087  * Description: Lock the range of blocks specified as parameter to ensure
28088  *		that read, modify write is atomic and no other i/o writes
28089  *		to the same location. The range is specified in terms
28090  *		of start and end blocks. Block numbers are the actual
28091  *		media block numbers and not system.
28092  *
28093  *   Arguments: un	- sd_lun structure for the device.
28094  *		startb - The starting block number
28095  *		endb - The end block number
28096  *		typ - type of i/o - simple/read_modify_write
28097  *
28098  * Return Code: wm  - pointer to the wmap structure.
28099  *
28100  *     Context: This routine can sleep.
28101  */
28102 
28103 static struct sd_w_map *
28104 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28105 {
28106 	struct sd_w_map *wmp = NULL;
28107 	struct sd_w_map *sl_wmp = NULL;
28108 	struct sd_w_map *tmp_wmp;
28109 	wm_state state = SD_WM_CHK_LIST;
28110 
28111 
28112 	ASSERT(un != NULL);
28113 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28114 
28115 	mutex_enter(SD_MUTEX(un));
28116 
28117 	while (state != SD_WM_DONE) {
28118 
28119 		switch (state) {
28120 		case SD_WM_CHK_LIST:
28121 			/*
28122 			 * This is the starting state. Check the wmap list
28123 			 * to see if the range is currently available.
28124 			 */
28125 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28126 				/*
28127 				 * If this is a simple write and no rmw
28128 				 * i/o is pending then try to lock the
28129 				 * range as the range should be available.
28130 				 */
28131 				state = SD_WM_LOCK_RANGE;
28132 			} else {
28133 				tmp_wmp = sd_get_range(un, startb, endb);
28134 				if (tmp_wmp != NULL) {
28135 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28136 						/*
28137 						 * Should not keep onlist wmps
28138 						 * while waiting this macro
28139 						 * will also do wmp = NULL;
28140 						 */
28141 						FREE_ONLIST_WMAP(un, wmp);
28142 					}
28143 					/*
28144 					 * sl_wmp is the wmap on which wait
28145 					 * is done, since the tmp_wmp points
28146 					 * to the inuse wmap, set sl_wmp to
28147 					 * tmp_wmp and change the state to sleep
28148 					 */
28149 					sl_wmp = tmp_wmp;
28150 					state = SD_WM_WAIT_MAP;
28151 				} else {
28152 					state = SD_WM_LOCK_RANGE;
28153 				}
28154 
28155 			}
28156 			break;
28157 
28158 		case SD_WM_LOCK_RANGE:
28159 			ASSERT(un->un_wm_cache);
28160 			/*
28161 			 * The range need to be locked, try to get a wmap.
28162 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28163 			 * if possible as we will have to release the sd mutex
28164 			 * if we have to sleep.
28165 			 */
28166 			if (wmp == NULL)
28167 				wmp = kmem_cache_alloc(un->un_wm_cache,
28168 				    KM_NOSLEEP);
28169 			if (wmp == NULL) {
28170 				mutex_exit(SD_MUTEX(un));
28171 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28172 				    (sd_lun::un_wm_cache))
28173 				wmp = kmem_cache_alloc(un->un_wm_cache,
28174 				    KM_SLEEP);
28175 				mutex_enter(SD_MUTEX(un));
28176 				/*
28177 				 * we released the mutex so recheck and go to
28178 				 * check list state.
28179 				 */
28180 				state = SD_WM_CHK_LIST;
28181 			} else {
28182 				/*
28183 				 * We exit out of state machine since we
28184 				 * have the wmap. Do the housekeeping first.
28185 				 * place the wmap on the wmap list if it is not
28186 				 * on it already and then set the state to done.
28187 				 */
28188 				wmp->wm_start = startb;
28189 				wmp->wm_end = endb;
28190 				wmp->wm_flags = typ | SD_WM_BUSY;
28191 				if (typ & SD_WTYPE_RMW) {
28192 					un->un_rmw_count++;
28193 				}
28194 				/*
28195 				 * If not already on the list then link
28196 				 */
28197 				if (!ONLIST(un, wmp)) {
28198 					wmp->wm_next = un->un_wm;
28199 					wmp->wm_prev = NULL;
28200 					if (wmp->wm_next)
28201 						wmp->wm_next->wm_prev = wmp;
28202 					un->un_wm = wmp;
28203 				}
28204 				state = SD_WM_DONE;
28205 			}
28206 			break;
28207 
28208 		case SD_WM_WAIT_MAP:
28209 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28210 			/*
28211 			 * Wait is done on sl_wmp, which is set in the
28212 			 * check_list state.
28213 			 */
28214 			sl_wmp->wm_wanted_count++;
28215 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28216 			sl_wmp->wm_wanted_count--;
28217 			/*
28218 			 * We can reuse the memory from the completed sl_wmp
28219 			 * lock range for our new lock, but only if noone is
28220 			 * waiting for it.
28221 			 */
28222 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28223 			if (sl_wmp->wm_wanted_count == 0) {
28224 				if (wmp != NULL)
28225 					CHK_N_FREEWMP(un, wmp);
28226 				wmp = sl_wmp;
28227 			}
28228 			sl_wmp = NULL;
28229 			/*
28230 			 * After waking up, need to recheck for availability of
28231 			 * range.
28232 			 */
28233 			state = SD_WM_CHK_LIST;
28234 			break;
28235 
28236 		default:
28237 			panic("sd_range_lock: "
28238 			    "Unknown state %d in sd_range_lock", state);
28239 			/*NOTREACHED*/
28240 		} /* switch(state) */
28241 
28242 	} /* while(state != SD_WM_DONE) */
28243 
28244 	mutex_exit(SD_MUTEX(un));
28245 
28246 	ASSERT(wmp != NULL);
28247 
28248 	return (wmp);
28249 }
28250 
28251 
28252 /*
28253  *    Function: sd_get_range()
28254  *
28255  * Description: Find if there any overlapping I/O to this one
28256  *		Returns the write-map of 1st such I/O, NULL otherwise.
28257  *
28258  *   Arguments: un	- sd_lun structure for the device.
28259  *		startb - The starting block number
28260  *		endb - The end block number
28261  *
28262  * Return Code: wm  - pointer to the wmap structure.
28263  */
28264 
28265 static struct sd_w_map *
28266 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28267 {
28268 	struct sd_w_map *wmp;
28269 
28270 	ASSERT(un != NULL);
28271 
28272 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28273 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28274 			continue;
28275 		}
28276 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28277 			break;
28278 		}
28279 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28280 			break;
28281 		}
28282 	}
28283 
28284 	return (wmp);
28285 }
28286 
28287 
28288 /*
28289  *    Function: sd_free_inlist_wmap()
28290  *
28291  * Description: Unlink and free a write map struct.
28292  *
28293  *   Arguments: un      - sd_lun structure for the device.
28294  *		wmp	- sd_w_map which needs to be unlinked.
28295  */
28296 
28297 static void
28298 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28299 {
28300 	ASSERT(un != NULL);
28301 
28302 	if (un->un_wm == wmp) {
28303 		un->un_wm = wmp->wm_next;
28304 	} else {
28305 		wmp->wm_prev->wm_next = wmp->wm_next;
28306 	}
28307 
28308 	if (wmp->wm_next) {
28309 		wmp->wm_next->wm_prev = wmp->wm_prev;
28310 	}
28311 
28312 	wmp->wm_next = wmp->wm_prev = NULL;
28313 
28314 	kmem_cache_free(un->un_wm_cache, wmp);
28315 }
28316 
28317 
28318 /*
28319  *    Function: sd_range_unlock()
28320  *
28321  * Description: Unlock the range locked by wm.
28322  *		Free write map if nobody else is waiting on it.
28323  *
28324  *   Arguments: un      - sd_lun structure for the device.
28325  *              wmp     - sd_w_map which needs to be unlinked.
28326  */
28327 
28328 static void
28329 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28330 {
28331 	ASSERT(un != NULL);
28332 	ASSERT(wm != NULL);
28333 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28334 
28335 	mutex_enter(SD_MUTEX(un));
28336 
28337 	if (wm->wm_flags & SD_WTYPE_RMW) {
28338 		un->un_rmw_count--;
28339 	}
28340 
28341 	if (wm->wm_wanted_count) {
28342 		wm->wm_flags = 0;
28343 		/*
28344 		 * Broadcast that the wmap is available now.
28345 		 */
28346 		cv_broadcast(&wm->wm_avail);
28347 	} else {
28348 		/*
28349 		 * If no one is waiting on the map, it should be free'ed.
28350 		 */
28351 		sd_free_inlist_wmap(un, wm);
28352 	}
28353 
28354 	mutex_exit(SD_MUTEX(un));
28355 }
28356 
28357 
28358 /*
28359  *    Function: sd_read_modify_write_task
28360  *
28361  * Description: Called from a taskq thread to initiate the write phase of
28362  *		a read-modify-write request.  This is used for targets where
28363  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28364  *
28365  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28366  *
28367  *     Context: Called under taskq thread context.
28368  */
28369 
28370 static void
28371 sd_read_modify_write_task(void *arg)
28372 {
28373 	struct sd_mapblocksize_info	*bsp;
28374 	struct buf	*bp;
28375 	struct sd_xbuf	*xp;
28376 	struct sd_lun	*un;
28377 
28378 	bp = arg;	/* The bp is given in arg */
28379 	ASSERT(bp != NULL);
28380 
28381 	/* Get the pointer to the layer-private data struct */
28382 	xp = SD_GET_XBUF(bp);
28383 	ASSERT(xp != NULL);
28384 	bsp = xp->xb_private;
28385 	ASSERT(bsp != NULL);
28386 
28387 	un = SD_GET_UN(bp);
28388 	ASSERT(un != NULL);
28389 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28390 
28391 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28392 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28393 
28394 	/*
28395 	 * This is the write phase of a read-modify-write request, called
28396 	 * under the context of a taskq thread in response to the completion
28397 	 * of the read portion of the rmw request completing under interrupt
28398 	 * context. The write request must be sent from here down the iostart
28399 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28400 	 * we use the layer index saved in the layer-private data area.
28401 	 */
28402 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28403 
28404 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28405 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28406 }
28407 
28408 
28409 /*
28410  *    Function: sddump_do_read_of_rmw()
28411  *
28412  * Description: This routine will be called from sddump, If sddump is called
28413  *		with an I/O which not aligned on device blocksize boundary
28414  *		then the write has to be converted to read-modify-write.
28415  *		Do the read part here in order to keep sddump simple.
28416  *		Note - That the sd_mutex is held across the call to this
28417  *		routine.
28418  *
28419  *   Arguments: un	- sd_lun
28420  *		blkno	- block number in terms of media block size.
28421  *		nblk	- number of blocks.
28422  *		bpp	- pointer to pointer to the buf structure. On return
28423  *			from this function, *bpp points to the valid buffer
28424  *			to which the write has to be done.
28425  *
28426  * Return Code: 0 for success or errno-type return code
28427  */
28428 
28429 static int
28430 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28431 	struct buf **bpp)
28432 {
28433 	int err;
28434 	int i;
28435 	int rval;
28436 	struct buf *bp;
28437 	struct scsi_pkt *pkt = NULL;
28438 	uint32_t target_blocksize;
28439 
28440 	ASSERT(un != NULL);
28441 	ASSERT(mutex_owned(SD_MUTEX(un)));
28442 
28443 	target_blocksize = un->un_tgt_blocksize;
28444 
28445 	mutex_exit(SD_MUTEX(un));
28446 
28447 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28448 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28449 	if (bp == NULL) {
28450 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28451 		    "no resources for dumping; giving up");
28452 		err = ENOMEM;
28453 		goto done;
28454 	}
28455 
28456 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28457 	    blkno, nblk);
28458 	if (rval != 0) {
28459 		scsi_free_consistent_buf(bp);
28460 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28461 		    "no resources for dumping; giving up");
28462 		err = ENOMEM;
28463 		goto done;
28464 	}
28465 
28466 	pkt->pkt_flags |= FLAG_NOINTR;
28467 
28468 	err = EIO;
28469 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28470 
28471 		/*
28472 		 * Scsi_poll returns 0 (success) if the command completes and
28473 		 * the status block is STATUS_GOOD.  We should only check
28474 		 * errors if this condition is not true.  Even then we should
28475 		 * send our own request sense packet only if we have a check
28476 		 * condition and auto request sense has not been performed by
28477 		 * the hba.
28478 		 */
28479 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28480 
28481 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28482 			err = 0;
28483 			break;
28484 		}
28485 
28486 		/*
28487 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28488 		 * no need to read RQS data.
28489 		 */
28490 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28491 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28492 			    "Error while dumping state with rmw..."
28493 			    "Device is gone\n");
28494 			break;
28495 		}
28496 
28497 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28498 			SD_INFO(SD_LOG_DUMP, un,
28499 			    "sddump: read failed with CHECK, try # %d\n", i);
28500 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28501 				(void) sd_send_polled_RQS(un);
28502 			}
28503 
28504 			continue;
28505 		}
28506 
28507 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28508 			int reset_retval = 0;
28509 
28510 			SD_INFO(SD_LOG_DUMP, un,
28511 			    "sddump: read failed with BUSY, try # %d\n", i);
28512 
28513 			if (un->un_f_lun_reset_enabled == TRUE) {
28514 				reset_retval = scsi_reset(SD_ADDRESS(un),
28515 				    RESET_LUN);
28516 			}
28517 			if (reset_retval == 0) {
28518 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28519 			}
28520 			(void) sd_send_polled_RQS(un);
28521 
28522 		} else {
28523 			SD_INFO(SD_LOG_DUMP, un,
28524 			    "sddump: read failed with 0x%x, try # %d\n",
28525 			    SD_GET_PKT_STATUS(pkt), i);
28526 			mutex_enter(SD_MUTEX(un));
28527 			sd_reset_target(un, pkt);
28528 			mutex_exit(SD_MUTEX(un));
28529 		}
28530 
28531 		/*
28532 		 * If we are not getting anywhere with lun/target resets,
28533 		 * let's reset the bus.
28534 		 */
28535 		if (i > SD_NDUMP_RETRIES/2) {
28536 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28537 			(void) sd_send_polled_RQS(un);
28538 		}
28539 
28540 	}
28541 	scsi_destroy_pkt(pkt);
28542 
28543 	if (err != 0) {
28544 		scsi_free_consistent_buf(bp);
28545 		*bpp = NULL;
28546 	} else {
28547 		*bpp = bp;
28548 	}
28549 
28550 done:
28551 	mutex_enter(SD_MUTEX(un));
28552 	return (err);
28553 }
28554 
28555 
28556 /*
28557  *    Function: sd_failfast_flushq
28558  *
28559  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28560  *		in b_flags and move them onto the failfast queue, then kick
28561  *		off a thread to return all bp's on the failfast queue to
28562  *		their owners with an error set.
28563  *
28564  *   Arguments: un - pointer to the soft state struct for the instance.
28565  *
28566  *     Context: may execute in interrupt context.
28567  */
28568 
28569 static void
28570 sd_failfast_flushq(struct sd_lun *un)
28571 {
28572 	struct buf *bp;
28573 	struct buf *next_waitq_bp;
28574 	struct buf *prev_waitq_bp = NULL;
28575 
28576 	ASSERT(un != NULL);
28577 	ASSERT(mutex_owned(SD_MUTEX(un)));
28578 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28579 	ASSERT(un->un_failfast_bp == NULL);
28580 
28581 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28582 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28583 
28584 	/*
28585 	 * Check if we should flush all bufs when entering failfast state, or
28586 	 * just those with B_FAILFAST set.
28587 	 */
28588 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28589 		/*
28590 		 * Move *all* bp's on the wait queue to the failfast flush
28591 		 * queue, including those that do NOT have B_FAILFAST set.
28592 		 */
28593 		if (un->un_failfast_headp == NULL) {
28594 			ASSERT(un->un_failfast_tailp == NULL);
28595 			un->un_failfast_headp = un->un_waitq_headp;
28596 		} else {
28597 			ASSERT(un->un_failfast_tailp != NULL);
28598 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28599 		}
28600 
28601 		un->un_failfast_tailp = un->un_waitq_tailp;
28602 
28603 		/* update kstat for each bp moved out of the waitq */
28604 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28605 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28606 		}
28607 
28608 		/* empty the waitq */
28609 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28610 
28611 	} else {
28612 		/*
28613 		 * Go thru the wait queue, pick off all entries with
28614 		 * B_FAILFAST set, and move these onto the failfast queue.
28615 		 */
28616 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28617 			/*
28618 			 * Save the pointer to the next bp on the wait queue,
28619 			 * so we get to it on the next iteration of this loop.
28620 			 */
28621 			next_waitq_bp = bp->av_forw;
28622 
28623 			/*
28624 			 * If this bp from the wait queue does NOT have
28625 			 * B_FAILFAST set, just move on to the next element
28626 			 * in the wait queue. Note, this is the only place
28627 			 * where it is correct to set prev_waitq_bp.
28628 			 */
28629 			if ((bp->b_flags & B_FAILFAST) == 0) {
28630 				prev_waitq_bp = bp;
28631 				continue;
28632 			}
28633 
28634 			/*
28635 			 * Remove the bp from the wait queue.
28636 			 */
28637 			if (bp == un->un_waitq_headp) {
28638 				/* The bp is the first element of the waitq. */
28639 				un->un_waitq_headp = next_waitq_bp;
28640 				if (un->un_waitq_headp == NULL) {
28641 					/* The wait queue is now empty */
28642 					un->un_waitq_tailp = NULL;
28643 				}
28644 			} else {
28645 				/*
28646 				 * The bp is either somewhere in the middle
28647 				 * or at the end of the wait queue.
28648 				 */
28649 				ASSERT(un->un_waitq_headp != NULL);
28650 				ASSERT(prev_waitq_bp != NULL);
28651 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28652 				    == 0);
28653 				if (bp == un->un_waitq_tailp) {
28654 					/* bp is the last entry on the waitq. */
28655 					ASSERT(next_waitq_bp == NULL);
28656 					un->un_waitq_tailp = prev_waitq_bp;
28657 				}
28658 				prev_waitq_bp->av_forw = next_waitq_bp;
28659 			}
28660 			bp->av_forw = NULL;
28661 
28662 			/*
28663 			 * update kstat since the bp is moved out of
28664 			 * the waitq
28665 			 */
28666 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28667 
28668 			/*
28669 			 * Now put the bp onto the failfast queue.
28670 			 */
28671 			if (un->un_failfast_headp == NULL) {
28672 				/* failfast queue is currently empty */
28673 				ASSERT(un->un_failfast_tailp == NULL);
28674 				un->un_failfast_headp =
28675 				    un->un_failfast_tailp = bp;
28676 			} else {
28677 				/* Add the bp to the end of the failfast q */
28678 				ASSERT(un->un_failfast_tailp != NULL);
28679 				ASSERT(un->un_failfast_tailp->b_flags &
28680 				    B_FAILFAST);
28681 				un->un_failfast_tailp->av_forw = bp;
28682 				un->un_failfast_tailp = bp;
28683 			}
28684 		}
28685 	}
28686 
28687 	/*
28688 	 * Now return all bp's on the failfast queue to their owners.
28689 	 */
28690 	while ((bp = un->un_failfast_headp) != NULL) {
28691 
28692 		un->un_failfast_headp = bp->av_forw;
28693 		if (un->un_failfast_headp == NULL) {
28694 			un->un_failfast_tailp = NULL;
28695 		}
28696 
28697 		/*
28698 		 * We want to return the bp with a failure error code, but
28699 		 * we do not want a call to sd_start_cmds() to occur here,
28700 		 * so use sd_return_failed_command_no_restart() instead of
28701 		 * sd_return_failed_command().
28702 		 */
28703 		sd_return_failed_command_no_restart(un, bp, EIO);
28704 	}
28705 
28706 	/* Flush the xbuf queues if required. */
28707 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28708 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28709 	}
28710 
28711 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28712 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28713 }
28714 
28715 
28716 /*
28717  *    Function: sd_failfast_flushq_callback
28718  *
28719  * Description: Return TRUE if the given bp meets the criteria for failfast
28720  *		flushing. Used with ddi_xbuf_flushq(9F).
28721  *
28722  *   Arguments: bp - ptr to buf struct to be examined.
28723  *
28724  *     Context: Any
28725  */
28726 
28727 static int
28728 sd_failfast_flushq_callback(struct buf *bp)
28729 {
28730 	/*
28731 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28732 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28733 	 */
28734 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28735 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28736 }
28737 
28738 
28739 
28740 /*
28741  * Function: sd_setup_next_xfer
28742  *
28743  * Description: Prepare next I/O operation using DMA_PARTIAL
28744  *
28745  */
28746 
28747 static int
28748 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28749     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28750 {
28751 	ssize_t	num_blks_not_xfered;
28752 	daddr_t	strt_blk_num;
28753 	ssize_t	bytes_not_xfered;
28754 	int	rval;
28755 
28756 	ASSERT(pkt->pkt_resid == 0);
28757 
28758 	/*
28759 	 * Calculate next block number and amount to be transferred.
28760 	 *
28761 	 * How much data NOT transfered to the HBA yet.
28762 	 */
28763 	bytes_not_xfered = xp->xb_dma_resid;
28764 
28765 	/*
28766 	 * figure how many blocks NOT transfered to the HBA yet.
28767 	 */
28768 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28769 
28770 	/*
28771 	 * set starting block number to the end of what WAS transfered.
28772 	 */
28773 	strt_blk_num = xp->xb_blkno +
28774 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28775 
28776 	/*
28777 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28778 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28779 	 * the disk mutex here.
28780 	 */
28781 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28782 	    strt_blk_num, num_blks_not_xfered);
28783 
28784 	if (rval == 0) {
28785 
28786 		/*
28787 		 * Success.
28788 		 *
28789 		 * Adjust things if there are still more blocks to be
28790 		 * transfered.
28791 		 */
28792 		xp->xb_dma_resid = pkt->pkt_resid;
28793 		pkt->pkt_resid = 0;
28794 
28795 		return (1);
28796 	}
28797 
28798 	/*
28799 	 * There's really only one possible return value from
28800 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28801 	 * returns NULL.
28802 	 */
28803 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28804 
28805 	bp->b_resid = bp->b_bcount;
28806 	bp->b_flags |= B_ERROR;
28807 
28808 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28809 	    "Error setting up next portion of DMA transfer\n");
28810 
28811 	return (0);
28812 }
28813 
28814 /*
28815  *    Function: sd_panic_for_res_conflict
28816  *
28817  * Description: Call panic with a string formatted with "Reservation Conflict"
28818  *		and a human readable identifier indicating the SD instance
28819  *		that experienced the reservation conflict.
28820  *
28821  *   Arguments: un - pointer to the soft state struct for the instance.
28822  *
28823  *     Context: may execute in interrupt context.
28824  */
28825 
28826 #define	SD_RESV_CONFLICT_FMT_LEN 40
28827 void
28828 sd_panic_for_res_conflict(struct sd_lun *un)
28829 {
28830 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28831 	char path_str[MAXPATHLEN];
28832 
28833 	(void) snprintf(panic_str, sizeof (panic_str),
28834 	    "Reservation Conflict\nDisk: %s",
28835 	    ddi_pathname(SD_DEVINFO(un), path_str));
28836 
28837 	panic(panic_str);
28838 }
28839 
28840 /*
28841  * Note: The following sd_faultinjection_ioctl( ) routines implement
28842  * driver support for handling fault injection for error analysis
28843  * causing faults in multiple layers of the driver.
28844  *
28845  */
28846 
28847 #ifdef SD_FAULT_INJECTION
28848 static uint_t   sd_fault_injection_on = 0;
28849 
28850 /*
28851  *    Function: sd_faultinjection_ioctl()
28852  *
28853  * Description: This routine is the driver entry point for handling
28854  *              faultinjection ioctls to inject errors into the
28855  *              layer model
28856  *
28857  *   Arguments: cmd	- the ioctl cmd received
28858  *		arg	- the arguments from user and returns
28859  */
28860 
28861 static void
28862 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28863 
28864 	uint_t i = 0;
28865 	uint_t rval;
28866 
28867 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28868 
28869 	mutex_enter(SD_MUTEX(un));
28870 
28871 	switch (cmd) {
28872 	case SDIOCRUN:
28873 		/* Allow pushed faults to be injected */
28874 		SD_INFO(SD_LOG_SDTEST, un,
28875 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28876 
28877 		sd_fault_injection_on = 1;
28878 
28879 		SD_INFO(SD_LOG_IOERR, un,
28880 		    "sd_faultinjection_ioctl: run finished\n");
28881 		break;
28882 
28883 	case SDIOCSTART:
28884 		/* Start Injection Session */
28885 		SD_INFO(SD_LOG_SDTEST, un,
28886 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28887 
28888 		sd_fault_injection_on = 0;
28889 		un->sd_injection_mask = 0xFFFFFFFF;
28890 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28891 			un->sd_fi_fifo_pkt[i] = NULL;
28892 			un->sd_fi_fifo_xb[i] = NULL;
28893 			un->sd_fi_fifo_un[i] = NULL;
28894 			un->sd_fi_fifo_arq[i] = NULL;
28895 		}
28896 		un->sd_fi_fifo_start = 0;
28897 		un->sd_fi_fifo_end = 0;
28898 
28899 		mutex_enter(&(un->un_fi_mutex));
28900 		un->sd_fi_log[0] = '\0';
28901 		un->sd_fi_buf_len = 0;
28902 		mutex_exit(&(un->un_fi_mutex));
28903 
28904 		SD_INFO(SD_LOG_IOERR, un,
28905 		    "sd_faultinjection_ioctl: start finished\n");
28906 		break;
28907 
28908 	case SDIOCSTOP:
28909 		/* Stop Injection Session */
28910 		SD_INFO(SD_LOG_SDTEST, un,
28911 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28912 		sd_fault_injection_on = 0;
28913 		un->sd_injection_mask = 0x0;
28914 
28915 		/* Empty stray or unuseds structs from fifo */
28916 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28917 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28918 				kmem_free(un->sd_fi_fifo_pkt[i],
28919 				    sizeof (struct sd_fi_pkt));
28920 			}
28921 			if (un->sd_fi_fifo_xb[i] != NULL) {
28922 				kmem_free(un->sd_fi_fifo_xb[i],
28923 				    sizeof (struct sd_fi_xb));
28924 			}
28925 			if (un->sd_fi_fifo_un[i] != NULL) {
28926 				kmem_free(un->sd_fi_fifo_un[i],
28927 				    sizeof (struct sd_fi_un));
28928 			}
28929 			if (un->sd_fi_fifo_arq[i] != NULL) {
28930 				kmem_free(un->sd_fi_fifo_arq[i],
28931 				    sizeof (struct sd_fi_arq));
28932 			}
28933 			un->sd_fi_fifo_pkt[i] = NULL;
28934 			un->sd_fi_fifo_un[i] = NULL;
28935 			un->sd_fi_fifo_xb[i] = NULL;
28936 			un->sd_fi_fifo_arq[i] = NULL;
28937 		}
28938 		un->sd_fi_fifo_start = 0;
28939 		un->sd_fi_fifo_end = 0;
28940 
28941 		SD_INFO(SD_LOG_IOERR, un,
28942 		    "sd_faultinjection_ioctl: stop finished\n");
28943 		break;
28944 
28945 	case SDIOCINSERTPKT:
28946 		/* Store a packet struct to be pushed onto fifo */
28947 		SD_INFO(SD_LOG_SDTEST, un,
28948 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
28949 
28950 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28951 
28952 		sd_fault_injection_on = 0;
28953 
28954 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
28955 		if (un->sd_fi_fifo_pkt[i] != NULL) {
28956 			kmem_free(un->sd_fi_fifo_pkt[i],
28957 			    sizeof (struct sd_fi_pkt));
28958 		}
28959 		if (arg != NULL) {
28960 			un->sd_fi_fifo_pkt[i] =
28961 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
28962 			if (un->sd_fi_fifo_pkt[i] == NULL) {
28963 				/* Alloc failed don't store anything */
28964 				break;
28965 			}
28966 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
28967 			    sizeof (struct sd_fi_pkt), 0);
28968 			if (rval == -1) {
28969 				kmem_free(un->sd_fi_fifo_pkt[i],
28970 				    sizeof (struct sd_fi_pkt));
28971 				un->sd_fi_fifo_pkt[i] = NULL;
28972 			}
28973 		} else {
28974 			SD_INFO(SD_LOG_IOERR, un,
28975 			    "sd_faultinjection_ioctl: pkt null\n");
28976 		}
28977 		break;
28978 
28979 	case SDIOCINSERTXB:
28980 		/* Store a xb struct to be pushed onto fifo */
28981 		SD_INFO(SD_LOG_SDTEST, un,
28982 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
28983 
28984 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
28985 
28986 		sd_fault_injection_on = 0;
28987 
28988 		if (un->sd_fi_fifo_xb[i] != NULL) {
28989 			kmem_free(un->sd_fi_fifo_xb[i],
28990 			    sizeof (struct sd_fi_xb));
28991 			un->sd_fi_fifo_xb[i] = NULL;
28992 		}
28993 		if (arg != NULL) {
28994 			un->sd_fi_fifo_xb[i] =
28995 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
28996 			if (un->sd_fi_fifo_xb[i] == NULL) {
28997 				/* Alloc failed don't store anything */
28998 				break;
28999 			}
29000 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29001 			    sizeof (struct sd_fi_xb), 0);
29002 
29003 			if (rval == -1) {
29004 				kmem_free(un->sd_fi_fifo_xb[i],
29005 				    sizeof (struct sd_fi_xb));
29006 				un->sd_fi_fifo_xb[i] = NULL;
29007 			}
29008 		} else {
29009 			SD_INFO(SD_LOG_IOERR, un,
29010 			    "sd_faultinjection_ioctl: xb null\n");
29011 		}
29012 		break;
29013 
29014 	case SDIOCINSERTUN:
29015 		/* Store a un struct to be pushed onto fifo */
29016 		SD_INFO(SD_LOG_SDTEST, un,
29017 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29018 
29019 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29020 
29021 		sd_fault_injection_on = 0;
29022 
29023 		if (un->sd_fi_fifo_un[i] != NULL) {
29024 			kmem_free(un->sd_fi_fifo_un[i],
29025 			    sizeof (struct sd_fi_un));
29026 			un->sd_fi_fifo_un[i] = NULL;
29027 		}
29028 		if (arg != NULL) {
29029 			un->sd_fi_fifo_un[i] =
29030 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29031 			if (un->sd_fi_fifo_un[i] == NULL) {
29032 				/* Alloc failed don't store anything */
29033 				break;
29034 			}
29035 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29036 			    sizeof (struct sd_fi_un), 0);
29037 			if (rval == -1) {
29038 				kmem_free(un->sd_fi_fifo_un[i],
29039 				    sizeof (struct sd_fi_un));
29040 				un->sd_fi_fifo_un[i] = NULL;
29041 			}
29042 
29043 		} else {
29044 			SD_INFO(SD_LOG_IOERR, un,
29045 			    "sd_faultinjection_ioctl: un null\n");
29046 		}
29047 
29048 		break;
29049 
29050 	case SDIOCINSERTARQ:
29051 		/* Store a arq struct to be pushed onto fifo */
29052 		SD_INFO(SD_LOG_SDTEST, un,
29053 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29054 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29055 
29056 		sd_fault_injection_on = 0;
29057 
29058 		if (un->sd_fi_fifo_arq[i] != NULL) {
29059 			kmem_free(un->sd_fi_fifo_arq[i],
29060 			    sizeof (struct sd_fi_arq));
29061 			un->sd_fi_fifo_arq[i] = NULL;
29062 		}
29063 		if (arg != NULL) {
29064 			un->sd_fi_fifo_arq[i] =
29065 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29066 			if (un->sd_fi_fifo_arq[i] == NULL) {
29067 				/* Alloc failed don't store anything */
29068 				break;
29069 			}
29070 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29071 			    sizeof (struct sd_fi_arq), 0);
29072 			if (rval == -1) {
29073 				kmem_free(un->sd_fi_fifo_arq[i],
29074 				    sizeof (struct sd_fi_arq));
29075 				un->sd_fi_fifo_arq[i] = NULL;
29076 			}
29077 
29078 		} else {
29079 			SD_INFO(SD_LOG_IOERR, un,
29080 			    "sd_faultinjection_ioctl: arq null\n");
29081 		}
29082 
29083 		break;
29084 
29085 	case SDIOCPUSH:
29086 		/* Push stored xb, pkt, un, and arq onto fifo */
29087 		sd_fault_injection_on = 0;
29088 
29089 		if (arg != NULL) {
29090 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29091 			if (rval != -1 &&
29092 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29093 				un->sd_fi_fifo_end += i;
29094 			}
29095 		} else {
29096 			SD_INFO(SD_LOG_IOERR, un,
29097 			    "sd_faultinjection_ioctl: push arg null\n");
29098 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29099 				un->sd_fi_fifo_end++;
29100 			}
29101 		}
29102 		SD_INFO(SD_LOG_IOERR, un,
29103 		    "sd_faultinjection_ioctl: push to end=%d\n",
29104 		    un->sd_fi_fifo_end);
29105 		break;
29106 
29107 	case SDIOCRETRIEVE:
29108 		/* Return buffer of log from Injection session */
29109 		SD_INFO(SD_LOG_SDTEST, un,
29110 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29111 
29112 		sd_fault_injection_on = 0;
29113 
29114 		mutex_enter(&(un->un_fi_mutex));
29115 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29116 		    un->sd_fi_buf_len+1, 0);
29117 		mutex_exit(&(un->un_fi_mutex));
29118 
29119 		if (rval == -1) {
29120 			/*
29121 			 * arg is possibly invalid setting
29122 			 * it to NULL for return
29123 			 */
29124 			arg = NULL;
29125 		}
29126 		break;
29127 	}
29128 
29129 	mutex_exit(SD_MUTEX(un));
29130 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29131 			    " exit\n");
29132 }
29133 
29134 
29135 /*
29136  *    Function: sd_injection_log()
29137  *
29138  * Description: This routine adds buff to the already existing injection log
29139  *              for retrieval via faultinjection_ioctl for use in fault
29140  *              detection and recovery
29141  *
29142  *   Arguments: buf - the string to add to the log
29143  */
29144 
29145 static void
29146 sd_injection_log(char *buf, struct sd_lun *un)
29147 {
29148 	uint_t len;
29149 
29150 	ASSERT(un != NULL);
29151 	ASSERT(buf != NULL);
29152 
29153 	mutex_enter(&(un->un_fi_mutex));
29154 
29155 	len = min(strlen(buf), 255);
29156 	/* Add logged value to Injection log to be returned later */
29157 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29158 		uint_t	offset = strlen((char *)un->sd_fi_log);
29159 		char *destp = (char *)un->sd_fi_log + offset;
29160 		int i;
29161 		for (i = 0; i < len; i++) {
29162 			*destp++ = *buf++;
29163 		}
29164 		un->sd_fi_buf_len += len;
29165 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29166 	}
29167 
29168 	mutex_exit(&(un->un_fi_mutex));
29169 }
29170 
29171 
29172 /*
29173  *    Function: sd_faultinjection()
29174  *
29175  * Description: This routine takes the pkt and changes its
29176  *		content based on error injection scenerio.
29177  *
29178  *   Arguments: pktp	- packet to be changed
29179  */
29180 
29181 static void
29182 sd_faultinjection(struct scsi_pkt *pktp)
29183 {
29184 	uint_t i;
29185 	struct sd_fi_pkt *fi_pkt;
29186 	struct sd_fi_xb *fi_xb;
29187 	struct sd_fi_un *fi_un;
29188 	struct sd_fi_arq *fi_arq;
29189 	struct buf *bp;
29190 	struct sd_xbuf *xb;
29191 	struct sd_lun *un;
29192 
29193 	ASSERT(pktp != NULL);
29194 
29195 	/* pull bp xb and un from pktp */
29196 	bp = (struct buf *)pktp->pkt_private;
29197 	xb = SD_GET_XBUF(bp);
29198 	un = SD_GET_UN(bp);
29199 
29200 	ASSERT(un != NULL);
29201 
29202 	mutex_enter(SD_MUTEX(un));
29203 
29204 	SD_TRACE(SD_LOG_SDTEST, un,
29205 	    "sd_faultinjection: entry Injection from sdintr\n");
29206 
29207 	/* if injection is off return */
29208 	if (sd_fault_injection_on == 0 ||
29209 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29210 		mutex_exit(SD_MUTEX(un));
29211 		return;
29212 	}
29213 
29214 	SD_INFO(SD_LOG_SDTEST, un,
29215 	    "sd_faultinjection: is working for copying\n");
29216 
29217 	/* take next set off fifo */
29218 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29219 
29220 	fi_pkt = un->sd_fi_fifo_pkt[i];
29221 	fi_xb = un->sd_fi_fifo_xb[i];
29222 	fi_un = un->sd_fi_fifo_un[i];
29223 	fi_arq = un->sd_fi_fifo_arq[i];
29224 
29225 
29226 	/* set variables accordingly */
29227 	/* set pkt if it was on fifo */
29228 	if (fi_pkt != NULL) {
29229 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29230 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29231 		if (fi_pkt->pkt_cdbp != 0xff)
29232 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29233 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29234 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29235 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29236 
29237 	}
29238 	/* set xb if it was on fifo */
29239 	if (fi_xb != NULL) {
29240 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29241 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29242 		if (fi_xb->xb_retry_count != 0)
29243 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29244 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29245 		    "xb_victim_retry_count");
29246 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29247 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29248 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29249 
29250 		/* copy in block data from sense */
29251 		/*
29252 		 * if (fi_xb->xb_sense_data[0] != -1) {
29253 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29254 		 *	SENSE_LENGTH);
29255 		 * }
29256 		 */
29257 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29258 
29259 		/* copy in extended sense codes */
29260 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29261 		    xb, es_code, "es_code");
29262 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29263 		    xb, es_key, "es_key");
29264 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29265 		    xb, es_add_code, "es_add_code");
29266 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29267 		    xb, es_qual_code, "es_qual_code");
29268 		struct scsi_extended_sense *esp;
29269 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29270 		esp->es_class = CLASS_EXTENDED_SENSE;
29271 	}
29272 
29273 	/* set un if it was on fifo */
29274 	if (fi_un != NULL) {
29275 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29276 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29277 		SD_CONDSET(un, un, un_reset_retry_count,
29278 		    "un_reset_retry_count");
29279 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29280 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29281 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29282 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29283 		    "un_f_allow_bus_device_reset");
29284 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29285 
29286 	}
29287 
29288 	/* copy in auto request sense if it was on fifo */
29289 	if (fi_arq != NULL) {
29290 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29291 	}
29292 
29293 	/* free structs */
29294 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29295 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29296 	}
29297 	if (un->sd_fi_fifo_xb[i] != NULL) {
29298 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29299 	}
29300 	if (un->sd_fi_fifo_un[i] != NULL) {
29301 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29302 	}
29303 	if (un->sd_fi_fifo_arq[i] != NULL) {
29304 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29305 	}
29306 
29307 	/*
29308 	 * kmem_free does not gurantee to set to NULL
29309 	 * since we uses these to determine if we set
29310 	 * values or not lets confirm they are always
29311 	 * NULL after free
29312 	 */
29313 	un->sd_fi_fifo_pkt[i] = NULL;
29314 	un->sd_fi_fifo_un[i] = NULL;
29315 	un->sd_fi_fifo_xb[i] = NULL;
29316 	un->sd_fi_fifo_arq[i] = NULL;
29317 
29318 	un->sd_fi_fifo_start++;
29319 
29320 	mutex_exit(SD_MUTEX(un));
29321 
29322 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29323 }
29324 
29325 #endif /* SD_FAULT_INJECTION */
29326 
29327 /*
29328  * This routine is invoked in sd_unit_attach(). Before calling it, the
29329  * properties in conf file should be processed already, and "hotpluggable"
29330  * property was processed also.
29331  *
29332  * The sd driver distinguishes 3 different type of devices: removable media,
29333  * non-removable media, and hotpluggable. Below the differences are defined:
29334  *
29335  * 1. Device ID
29336  *
29337  *     The device ID of a device is used to identify this device. Refer to
29338  *     ddi_devid_register(9F).
29339  *
29340  *     For a non-removable media disk device which can provide 0x80 or 0x83
29341  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29342  *     device ID is created to identify this device. For other non-removable
29343  *     media devices, a default device ID is created only if this device has
29344  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29345  *
29346  *     -------------------------------------------------------
29347  *     removable media   hotpluggable  | Can Have Device ID
29348  *     -------------------------------------------------------
29349  *         false             false     |     Yes
29350  *         false             true      |     Yes
29351  *         true                x       |     No
29352  *     ------------------------------------------------------
29353  *
29354  *
29355  * 2. SCSI group 4 commands
29356  *
29357  *     In SCSI specs, only some commands in group 4 command set can use
29358  *     8-byte addresses that can be used to access >2TB storage spaces.
29359  *     Other commands have no such capability. Without supporting group4,
29360  *     it is impossible to make full use of storage spaces of a disk with
29361  *     capacity larger than 2TB.
29362  *
29363  *     -----------------------------------------------
29364  *     removable media   hotpluggable   LP64  |  Group
29365  *     -----------------------------------------------
29366  *           false          false       false |   1
29367  *           false          false       true  |   4
29368  *           false          true        false |   1
29369  *           false          true        true  |   4
29370  *           true             x           x   |   5
29371  *     -----------------------------------------------
29372  *
29373  *
29374  * 3. Check for VTOC Label
29375  *
29376  *     If a direct-access disk has no EFI label, sd will check if it has a
29377  *     valid VTOC label. Now, sd also does that check for removable media
29378  *     and hotpluggable devices.
29379  *
29380  *     --------------------------------------------------------------
29381  *     Direct-Access   removable media    hotpluggable |  Check Label
29382  *     -------------------------------------------------------------
29383  *         false          false           false        |   No
29384  *         false          false           true         |   No
29385  *         false          true            false        |   Yes
29386  *         false          true            true         |   Yes
29387  *         true            x                x          |   Yes
29388  *     --------------------------------------------------------------
29389  *
29390  *
29391  * 4. Building default VTOC label
29392  *
29393  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29394  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29395  *     create default VTOC for them. Currently sd creates default VTOC label
29396  *     for all devices on x86 platform (VTOC_16), but only for removable
29397  *     media devices on SPARC (VTOC_8).
29398  *
29399  *     -----------------------------------------------------------
29400  *       removable media hotpluggable platform   |   Default Label
29401  *     -----------------------------------------------------------
29402  *             false          false    sparc     |     No
29403  *             false          true      x86      |     Yes
29404  *             false          true     sparc     |     Yes
29405  *             true             x        x       |     Yes
29406  *     ----------------------------------------------------------
29407  *
29408  *
29409  * 5. Supported blocksizes of target devices
29410  *
29411  *     Sd supports non-512-byte blocksize for removable media devices only.
29412  *     For other devices, only 512-byte blocksize is supported. This may be
29413  *     changed in near future because some RAID devices require non-512-byte
29414  *     blocksize
29415  *
29416  *     -----------------------------------------------------------
29417  *     removable media    hotpluggable    | non-512-byte blocksize
29418  *     -----------------------------------------------------------
29419  *           false          false         |   No
29420  *           false          true          |   No
29421  *           true             x           |   Yes
29422  *     -----------------------------------------------------------
29423  *
29424  *
29425  * 6. Automatic mount & unmount
29426  *
29427  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29428  *     if a device is removable media device. It return 1 for removable media
29429  *     devices, and 0 for others.
29430  *
29431  *     The automatic mounting subsystem should distinguish between the types
29432  *     of devices and apply automounting policies to each.
29433  *
29434  *
29435  * 7. fdisk partition management
29436  *
29437  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29438  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29439  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29440  *     fdisk partitions on both x86 and SPARC platform.
29441  *
29442  *     -----------------------------------------------------------
29443  *       platform   removable media  USB/1394  |  fdisk supported
29444  *     -----------------------------------------------------------
29445  *        x86         X               X        |       true
29446  *     ------------------------------------------------------------
29447  *        sparc       X               X        |       false
29448  *     ------------------------------------------------------------
29449  *
29450  *
29451  * 8. MBOOT/MBR
29452  *
29453  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29454  *     read/write mboot for removable media devices on sparc platform.
29455  *
29456  *     -----------------------------------------------------------
29457  *       platform   removable media  USB/1394  |  mboot supported
29458  *     -----------------------------------------------------------
29459  *        x86         X               X        |       true
29460  *     ------------------------------------------------------------
29461  *        sparc      false           false     |       false
29462  *        sparc      false           true      |       true
29463  *        sparc      true            false     |       true
29464  *        sparc      true            true      |       true
29465  *     ------------------------------------------------------------
29466  *
29467  *
29468  * 9.  error handling during opening device
29469  *
29470  *     If failed to open a disk device, an errno is returned. For some kinds
29471  *     of errors, different errno is returned depending on if this device is
29472  *     a removable media device. This brings USB/1394 hard disks in line with
29473  *     expected hard disk behavior. It is not expected that this breaks any
29474  *     application.
29475  *
29476  *     ------------------------------------------------------
29477  *       removable media    hotpluggable   |  errno
29478  *     ------------------------------------------------------
29479  *             false          false        |   EIO
29480  *             false          true         |   EIO
29481  *             true             x          |   ENXIO
29482  *     ------------------------------------------------------
29483  *
29484  *
29485  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29486  *
29487  *     These IOCTLs are applicable only to removable media devices.
29488  *
29489  *     -----------------------------------------------------------
29490  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29491  *     -----------------------------------------------------------
29492  *             false          false        |     No
29493  *             false          true         |     No
29494  *             true            x           |     Yes
29495  *     -----------------------------------------------------------
29496  *
29497  *
29498  * 12. Kstats for partitions
29499  *
29500  *     sd creates partition kstat for non-removable media devices. USB and
29501  *     Firewire hard disks now have partition kstats
29502  *
29503  *      ------------------------------------------------------
29504  *       removable media    hotpluggable   |   kstat
29505  *      ------------------------------------------------------
29506  *             false          false        |    Yes
29507  *             false          true         |    Yes
29508  *             true             x          |    No
29509  *       ------------------------------------------------------
29510  *
29511  *
29512  * 13. Removable media & hotpluggable properties
29513  *
29514  *     Sd driver creates a "removable-media" property for removable media
29515  *     devices. Parent nexus drivers create a "hotpluggable" property if
29516  *     it supports hotplugging.
29517  *
29518  *     ---------------------------------------------------------------------
29519  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29520  *     ---------------------------------------------------------------------
29521  *       false            false       |    No                   No
29522  *       false            true        |    No                   Yes
29523  *       true             false       |    Yes                  No
29524  *       true             true        |    Yes                  Yes
29525  *     ---------------------------------------------------------------------
29526  *
29527  *
29528  * 14. Power Management
29529  *
29530  *     sd only power manages removable media devices or devices that support
29531  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29532  *
29533  *     A parent nexus that supports hotplugging can also set "pm-capable"
29534  *     if the disk can be power managed.
29535  *
29536  *     ------------------------------------------------------------
29537  *       removable media hotpluggable pm-capable  |   power manage
29538  *     ------------------------------------------------------------
29539  *             false          false     false     |     No
29540  *             false          false     true      |     Yes
29541  *             false          true      false     |     No
29542  *             false          true      true      |     Yes
29543  *             true             x        x        |     Yes
29544  *     ------------------------------------------------------------
29545  *
29546  *      USB and firewire hard disks can now be power managed independently
29547  *      of the framebuffer
29548  *
29549  *
29550  * 15. Support for USB disks with capacity larger than 1TB
29551  *
29552  *     Currently, sd doesn't permit a fixed disk device with capacity
29553  *     larger than 1TB to be used in a 32-bit operating system environment.
29554  *     However, sd doesn't do that for removable media devices. Instead, it
29555  *     assumes that removable media devices cannot have a capacity larger
29556  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29557  *     supported, which can cause some unexpected results.
29558  *
29559  *     ---------------------------------------------------------------------
29560  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29561  *     ---------------------------------------------------------------------
29562  *             false          false  |   true         |     no
29563  *             false          true   |   true         |     no
29564  *             true           false  |   true         |     Yes
29565  *             true           true   |   true         |     Yes
29566  *     ---------------------------------------------------------------------
29567  *
29568  *
29569  * 16. Check write-protection at open time
29570  *
29571  *     When a removable media device is being opened for writing without NDELAY
29572  *     flag, sd will check if this device is writable. If attempting to open
29573  *     without NDELAY flag a write-protected device, this operation will abort.
29574  *
29575  *     ------------------------------------------------------------
29576  *       removable media    USB/1394   |   WP Check
29577  *     ------------------------------------------------------------
29578  *             false          false    |     No
29579  *             false          true     |     No
29580  *             true           false    |     Yes
29581  *             true           true     |     Yes
29582  *     ------------------------------------------------------------
29583  *
29584  *
29585  * 17. syslog when corrupted VTOC is encountered
29586  *
29587  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29588  *      for fixed SCSI disks.
29589  *     ------------------------------------------------------------
29590  *       removable media    USB/1394   |   print syslog
29591  *     ------------------------------------------------------------
29592  *             false          false    |     Yes
29593  *             false          true     |     No
29594  *             true           false    |     No
29595  *             true           true     |     No
29596  *     ------------------------------------------------------------
29597  */
29598 static void
29599 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29600 {
29601 	int	pm_capable_prop;
29602 
29603 	ASSERT(un->un_sd);
29604 	ASSERT(un->un_sd->sd_inq);
29605 
29606 	/*
29607 	 * Enable SYNC CACHE support for all devices.
29608 	 */
29609 	un->un_f_sync_cache_supported = TRUE;
29610 
29611 	/*
29612 	 * Set the sync cache required flag to false.
29613 	 * This would ensure that there is no SYNC CACHE
29614 	 * sent when there are no writes
29615 	 */
29616 	un->un_f_sync_cache_required = FALSE;
29617 
29618 	if (un->un_sd->sd_inq->inq_rmb) {
29619 		/*
29620 		 * The media of this device is removable. And for this kind
29621 		 * of devices, it is possible to change medium after opening
29622 		 * devices. Thus we should support this operation.
29623 		 */
29624 		un->un_f_has_removable_media = TRUE;
29625 
29626 		/*
29627 		 * support non-512-byte blocksize of removable media devices
29628 		 */
29629 		un->un_f_non_devbsize_supported = TRUE;
29630 
29631 		/*
29632 		 * Assume that all removable media devices support DOOR_LOCK
29633 		 */
29634 		un->un_f_doorlock_supported = TRUE;
29635 
29636 		/*
29637 		 * For a removable media device, it is possible to be opened
29638 		 * with NDELAY flag when there is no media in drive, in this
29639 		 * case we don't care if device is writable. But if without
29640 		 * NDELAY flag, we need to check if media is write-protected.
29641 		 */
29642 		un->un_f_chk_wp_open = TRUE;
29643 
29644 		/*
29645 		 * need to start a SCSI watch thread to monitor media state,
29646 		 * when media is being inserted or ejected, notify syseventd.
29647 		 */
29648 		un->un_f_monitor_media_state = TRUE;
29649 
29650 		/*
29651 		 * Some devices don't support START_STOP_UNIT command.
29652 		 * Therefore, we'd better check if a device supports it
29653 		 * before sending it.
29654 		 */
29655 		un->un_f_check_start_stop = TRUE;
29656 
29657 		/*
29658 		 * support eject media ioctl:
29659 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29660 		 */
29661 		un->un_f_eject_media_supported = TRUE;
29662 
29663 		/*
29664 		 * Because many removable-media devices don't support
29665 		 * LOG_SENSE, we couldn't use this command to check if
29666 		 * a removable media device support power-management.
29667 		 * We assume that they support power-management via
29668 		 * START_STOP_UNIT command and can be spun up and down
29669 		 * without limitations.
29670 		 */
29671 		un->un_f_pm_supported = TRUE;
29672 
29673 		/*
29674 		 * Need to create a zero length (Boolean) property
29675 		 * removable-media for the removable media devices.
29676 		 * Note that the return value of the property is not being
29677 		 * checked, since if unable to create the property
29678 		 * then do not want the attach to fail altogether. Consistent
29679 		 * with other property creation in attach.
29680 		 */
29681 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29682 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29683 
29684 	} else {
29685 		/*
29686 		 * create device ID for device
29687 		 */
29688 		un->un_f_devid_supported = TRUE;
29689 
29690 		/*
29691 		 * Spin up non-removable-media devices once it is attached
29692 		 */
29693 		un->un_f_attach_spinup = TRUE;
29694 
29695 		/*
29696 		 * According to SCSI specification, Sense data has two kinds of
29697 		 * format: fixed format, and descriptor format. At present, we
29698 		 * don't support descriptor format sense data for removable
29699 		 * media.
29700 		 */
29701 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29702 			un->un_f_descr_format_supported = TRUE;
29703 		}
29704 
29705 		/*
29706 		 * kstats are created only for non-removable media devices.
29707 		 *
29708 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29709 		 * default is 1, so they are enabled by default.
29710 		 */
29711 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29712 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29713 		    "enable-partition-kstats", 1));
29714 
29715 		/*
29716 		 * Check if HBA has set the "pm-capable" property.
29717 		 * If "pm-capable" exists and is non-zero then we can
29718 		 * power manage the device without checking the start/stop
29719 		 * cycle count log sense page.
29720 		 *
29721 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29722 		 * then we should not power manage the device.
29723 		 *
29724 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29725 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29726 		 * sd will check the start/stop cycle count log sense page
29727 		 * and power manage the device if the cycle count limit has
29728 		 * not been exceeded.
29729 		 */
29730 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29731 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29732 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29733 			un->un_f_log_sense_supported = TRUE;
29734 		} else {
29735 			/*
29736 			 * pm-capable property exists.
29737 			 *
29738 			 * Convert "TRUE" values for pm_capable_prop to
29739 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29740 			 * later. "TRUE" values are any values except
29741 			 * SD_PM_CAPABLE_FALSE (0) and
29742 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29743 			 */
29744 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29745 				un->un_f_log_sense_supported = FALSE;
29746 			} else {
29747 				un->un_f_pm_supported = TRUE;
29748 			}
29749 
29750 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29751 			    "sd_unit_attach: un:0x%p pm-capable "
29752 			    "property set to %d.\n", un, un->un_f_pm_supported);
29753 		}
29754 	}
29755 
29756 	if (un->un_f_is_hotpluggable) {
29757 
29758 		/*
29759 		 * Have to watch hotpluggable devices as well, since
29760 		 * that's the only way for userland applications to
29761 		 * detect hot removal while device is busy/mounted.
29762 		 */
29763 		un->un_f_monitor_media_state = TRUE;
29764 
29765 		un->un_f_check_start_stop = TRUE;
29766 
29767 	}
29768 }
29769 
29770 /*
29771  * sd_tg_rdwr:
29772  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29773  * in sys block size, req_length in bytes.
29774  *
29775  */
29776 static int
29777 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29778     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29779 {
29780 	struct sd_lun *un;
29781 	int path_flag = (int)(uintptr_t)tg_cookie;
29782 	char *dkl = NULL;
29783 	diskaddr_t real_addr = start_block;
29784 	diskaddr_t first_byte, end_block;
29785 
29786 	size_t	buffer_size = reqlength;
29787 	int rval = 0;
29788 	diskaddr_t	cap;
29789 	uint32_t	lbasize;
29790 	sd_ssc_t	*ssc;
29791 
29792 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29793 	if (un == NULL)
29794 		return (ENXIO);
29795 
29796 	if (cmd != TG_READ && cmd != TG_WRITE)
29797 		return (EINVAL);
29798 
29799 	ssc = sd_ssc_init(un);
29800 	mutex_enter(SD_MUTEX(un));
29801 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29802 		mutex_exit(SD_MUTEX(un));
29803 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29804 		    &lbasize, path_flag);
29805 		if (rval != 0)
29806 			goto done1;
29807 		mutex_enter(SD_MUTEX(un));
29808 		sd_update_block_info(un, lbasize, cap);
29809 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29810 			mutex_exit(SD_MUTEX(un));
29811 			rval = EIO;
29812 			goto done;
29813 		}
29814 	}
29815 
29816 	if (NOT_DEVBSIZE(un)) {
29817 		/*
29818 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29819 		 * blkno and save the index to beginning of dk_label
29820 		 */
29821 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29822 		real_addr = first_byte / un->un_tgt_blocksize;
29823 
29824 		end_block = (first_byte + reqlength +
29825 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29826 
29827 		/* round up buffer size to multiple of target block size */
29828 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29829 
29830 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29831 		    "label_addr: 0x%x allocation size: 0x%x\n",
29832 		    real_addr, buffer_size);
29833 
29834 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29835 		    (reqlength % un->un_tgt_blocksize) != 0)
29836 			/* the request is not aligned */
29837 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29838 	}
29839 
29840 	/*
29841 	 * The MMC standard allows READ CAPACITY to be
29842 	 * inaccurate by a bounded amount (in the interest of
29843 	 * response latency).  As a result, failed READs are
29844 	 * commonplace (due to the reading of metadata and not
29845 	 * data). Depending on the per-Vendor/drive Sense data,
29846 	 * the failed READ can cause many (unnecessary) retries.
29847 	 */
29848 
29849 	if (ISCD(un) && (cmd == TG_READ) &&
29850 	    (un->un_f_blockcount_is_valid == TRUE) &&
29851 	    ((start_block == (un->un_blockcount - 1))||
29852 	    (start_block == (un->un_blockcount - 2)))) {
29853 			path_flag = SD_PATH_DIRECT_PRIORITY;
29854 	}
29855 
29856 	mutex_exit(SD_MUTEX(un));
29857 	if (cmd == TG_READ) {
29858 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29859 		    buffer_size, real_addr, path_flag);
29860 		if (dkl != NULL)
29861 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29862 			    real_addr), bufaddr, reqlength);
29863 	} else {
29864 		if (dkl) {
29865 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29866 			    real_addr, path_flag);
29867 			if (rval) {
29868 				goto done1;
29869 			}
29870 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29871 			    real_addr), reqlength);
29872 		}
29873 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29874 		    buffer_size, real_addr, path_flag);
29875 	}
29876 
29877 done1:
29878 	if (dkl != NULL)
29879 		kmem_free(dkl, buffer_size);
29880 
29881 	if (rval != 0) {
29882 		if (rval == EIO)
29883 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29884 		else
29885 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29886 	}
29887 done:
29888 	sd_ssc_fini(ssc);
29889 	return (rval);
29890 }
29891 
29892 
29893 static int
29894 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29895 {
29896 
29897 	struct sd_lun *un;
29898 	diskaddr_t	cap;
29899 	uint32_t	lbasize;
29900 	int		path_flag = (int)(uintptr_t)tg_cookie;
29901 	int		ret = 0;
29902 
29903 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29904 	if (un == NULL)
29905 		return (ENXIO);
29906 
29907 	switch (cmd) {
29908 	case TG_GETPHYGEOM:
29909 	case TG_GETVIRTGEOM:
29910 	case TG_GETCAPACITY:
29911 	case TG_GETBLOCKSIZE:
29912 		mutex_enter(SD_MUTEX(un));
29913 
29914 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29915 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29916 			cap = un->un_blockcount;
29917 			lbasize = un->un_tgt_blocksize;
29918 			mutex_exit(SD_MUTEX(un));
29919 		} else {
29920 			sd_ssc_t	*ssc;
29921 			mutex_exit(SD_MUTEX(un));
29922 			ssc = sd_ssc_init(un);
29923 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29924 			    &lbasize, path_flag);
29925 			if (ret != 0) {
29926 				if (ret == EIO)
29927 					sd_ssc_assessment(ssc,
29928 					    SD_FMT_STATUS_CHECK);
29929 				else
29930 					sd_ssc_assessment(ssc,
29931 					    SD_FMT_IGNORE);
29932 				sd_ssc_fini(ssc);
29933 				return (ret);
29934 			}
29935 			sd_ssc_fini(ssc);
29936 			mutex_enter(SD_MUTEX(un));
29937 			sd_update_block_info(un, lbasize, cap);
29938 			if ((un->un_f_blockcount_is_valid == FALSE) ||
29939 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
29940 				mutex_exit(SD_MUTEX(un));
29941 				return (EIO);
29942 			}
29943 			mutex_exit(SD_MUTEX(un));
29944 		}
29945 
29946 		if (cmd == TG_GETCAPACITY) {
29947 			*(diskaddr_t *)arg = cap;
29948 			return (0);
29949 		}
29950 
29951 		if (cmd == TG_GETBLOCKSIZE) {
29952 			*(uint32_t *)arg = lbasize;
29953 			return (0);
29954 		}
29955 
29956 		if (cmd == TG_GETPHYGEOM)
29957 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
29958 			    cap, lbasize, path_flag);
29959 		else
29960 			/* TG_GETVIRTGEOM */
29961 			ret = sd_get_virtual_geometry(un,
29962 			    (cmlb_geom_t *)arg, cap, lbasize);
29963 
29964 		return (ret);
29965 
29966 	case TG_GETATTR:
29967 		mutex_enter(SD_MUTEX(un));
29968 		((tg_attribute_t *)arg)->media_is_writable =
29969 		    un->un_f_mmc_writable_media;
29970 		mutex_exit(SD_MUTEX(un));
29971 		return (0);
29972 	default:
29973 		return (ENOTTY);
29974 
29975 	}
29976 }
29977 
29978 /*
29979  *    Function: sd_ssc_ereport_post
29980  *
29981  * Description: Will be called when SD driver need to post an ereport.
29982  *
29983  *    Context: Kernel thread or interrupt context.
29984  */
29985 static void
29986 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
29987 {
29988 	int uscsi_path_instance = 0;
29989 	uchar_t	uscsi_pkt_reason;
29990 	uint32_t uscsi_pkt_state;
29991 	uint32_t uscsi_pkt_statistics;
29992 	uint64_t uscsi_ena;
29993 	uchar_t op_code;
29994 	uint8_t *sensep;
29995 	union scsi_cdb *cdbp;
29996 	uint_t cdblen = 0;
29997 	uint_t senlen = 0;
29998 	struct sd_lun *un;
29999 	dev_info_t *dip;
30000 	char *devid;
30001 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
30002 	    SSC_FLAGS_INVALID_STATUS |
30003 	    SSC_FLAGS_INVALID_SENSE |
30004 	    SSC_FLAGS_INVALID_DATA;
30005 	char assessment[16];
30006 
30007 	ASSERT(ssc != NULL);
30008 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
30009 	ASSERT(ssc->ssc_uscsi_info != NULL);
30010 
30011 	un = ssc->ssc_un;
30012 	ASSERT(un != NULL);
30013 
30014 	dip = un->un_sd->sd_dev;
30015 
30016 	/*
30017 	 * Get the devid:
30018 	 *	devid will only be passed to non-transport error reports.
30019 	 */
30020 	devid = DEVI(dip)->devi_devid_str;
30021 
30022 	/*
30023 	 * If we are syncing or dumping, the command will not be executed
30024 	 * so we bypass this situation.
30025 	 */
30026 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
30027 	    (un->un_state == SD_STATE_DUMPING))
30028 		return;
30029 
30030 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
30031 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
30032 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
30033 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
30034 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
30035 
30036 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
30037 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
30038 
30039 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
30040 	if (cdbp == NULL) {
30041 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30042 		    "sd_ssc_ereport_post meet empty cdb\n");
30043 		return;
30044 	}
30045 
30046 	op_code = cdbp->scc_cmd;
30047 
30048 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
30049 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
30050 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
30051 
30052 	if (senlen > 0)
30053 		ASSERT(sensep != NULL);
30054 
30055 	/*
30056 	 * Initialize drv_assess to corresponding values.
30057 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
30058 	 * on the sense-key returned back.
30059 	 */
30060 	switch (drv_assess) {
30061 		case SD_FM_DRV_RECOVERY:
30062 			(void) sprintf(assessment, "%s", "recovered");
30063 			break;
30064 		case SD_FM_DRV_RETRY:
30065 			(void) sprintf(assessment, "%s", "retry");
30066 			break;
30067 		case SD_FM_DRV_NOTICE:
30068 			(void) sprintf(assessment, "%s", "info");
30069 			break;
30070 		case SD_FM_DRV_FATAL:
30071 		default:
30072 			(void) sprintf(assessment, "%s", "unknown");
30073 	}
30074 	/*
30075 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
30076 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
30077 	 * driver-assessment will always be "recovered" here.
30078 	 */
30079 	if (drv_assess == SD_FM_DRV_RECOVERY) {
30080 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30081 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
30082 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30083 		    "driver-assessment", DATA_TYPE_STRING, assessment,
30084 		    "op-code", DATA_TYPE_UINT8, op_code,
30085 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30086 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30087 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30088 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30089 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30090 		    NULL);
30091 		return;
30092 	}
30093 
30094 	/*
30095 	 * If there is un-expected/un-decodable data, we should post
30096 	 * ereport.io.scsi.cmd.disk.dev.uderr.
30097 	 * driver-assessment will be set based on parameter drv_assess.
30098 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
30099 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
30100 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
30101 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
30102 	 */
30103 	if (ssc->ssc_flags & ssc_invalid_flags) {
30104 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
30105 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30106 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30107 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30108 			    "driver-assessment", DATA_TYPE_STRING,
30109 			    drv_assess == SD_FM_DRV_FATAL ?
30110 			    "fail" : assessment,
30111 			    "op-code", DATA_TYPE_UINT8, op_code,
30112 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30113 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30114 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30115 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30116 			    "pkt-stats", DATA_TYPE_UINT32,
30117 			    uscsi_pkt_statistics,
30118 			    "stat-code", DATA_TYPE_UINT8,
30119 			    ssc->ssc_uscsi_cmd->uscsi_status,
30120 			    "un-decode-info", DATA_TYPE_STRING,
30121 			    ssc->ssc_info,
30122 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30123 			    senlen, sensep,
30124 			    NULL);
30125 		} else {
30126 			/*
30127 			 * For other type of invalid data, the
30128 			 * un-decode-value field would be empty because the
30129 			 * un-decodable content could be seen from upper
30130 			 * level payload or inside un-decode-info.
30131 			 */
30132 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30133 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30134 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30135 			    "driver-assessment", DATA_TYPE_STRING,
30136 			    drv_assess == SD_FM_DRV_FATAL ?
30137 			    "fail" : assessment,
30138 			    "op-code", DATA_TYPE_UINT8, op_code,
30139 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30140 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30141 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30142 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30143 			    "pkt-stats", DATA_TYPE_UINT32,
30144 			    uscsi_pkt_statistics,
30145 			    "stat-code", DATA_TYPE_UINT8,
30146 			    ssc->ssc_uscsi_cmd->uscsi_status,
30147 			    "un-decode-info", DATA_TYPE_STRING,
30148 			    ssc->ssc_info,
30149 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30150 			    0, NULL,
30151 			    NULL);
30152 		}
30153 		ssc->ssc_flags &= ~ssc_invalid_flags;
30154 		return;
30155 	}
30156 
30157 	if (uscsi_pkt_reason != CMD_CMPLT ||
30158 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30159 		/*
30160 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30161 		 * set inside sd_start_cmds due to errors(bad packet or
30162 		 * fatal transport error), we should take it as a
30163 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30164 		 * driver-assessment will be set based on drv_assess.
30165 		 * We will set devid to NULL because it is a transport
30166 		 * error.
30167 		 */
30168 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30169 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30170 
30171 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30172 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30173 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30174 		    "driver-assessment", DATA_TYPE_STRING,
30175 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30176 		    "op-code", DATA_TYPE_UINT8, op_code,
30177 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30178 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30179 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30180 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30181 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30182 		    NULL);
30183 	} else {
30184 		/*
30185 		 * If we got here, we have a completed command, and we need
30186 		 * to further investigate the sense data to see what kind
30187 		 * of ereport we should post.
30188 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30189 		 * if sense-key == 0x3.
30190 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30191 		 * driver-assessment will be set based on the parameter
30192 		 * drv_assess.
30193 		 */
30194 		if (senlen > 0) {
30195 			/*
30196 			 * Here we have sense data available.
30197 			 */
30198 			uint8_t sense_key;
30199 			sense_key = scsi_sense_key(sensep);
30200 			if (sense_key == 0x3) {
30201 				/*
30202 				 * sense-key == 0x3(medium error),
30203 				 * driver-assessment should be "fatal" if
30204 				 * drv_assess is SD_FM_DRV_FATAL.
30205 				 */
30206 				scsi_fm_ereport_post(un->un_sd,
30207 				    uscsi_path_instance,
30208 				    "cmd.disk.dev.rqs.merr",
30209 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30210 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30211 				    "driver-assessment",
30212 				    DATA_TYPE_STRING,
30213 				    drv_assess == SD_FM_DRV_FATAL ?
30214 				    "fatal" : assessment,
30215 				    "op-code",
30216 				    DATA_TYPE_UINT8, op_code,
30217 				    "cdb",
30218 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30219 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30220 				    "pkt-reason",
30221 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30222 				    "pkt-state",
30223 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30224 				    "pkt-stats",
30225 				    DATA_TYPE_UINT32,
30226 				    uscsi_pkt_statistics,
30227 				    "stat-code",
30228 				    DATA_TYPE_UINT8,
30229 				    ssc->ssc_uscsi_cmd->uscsi_status,
30230 				    "key",
30231 				    DATA_TYPE_UINT8,
30232 				    scsi_sense_key(sensep),
30233 				    "asc",
30234 				    DATA_TYPE_UINT8,
30235 				    scsi_sense_asc(sensep),
30236 				    "ascq",
30237 				    DATA_TYPE_UINT8,
30238 				    scsi_sense_ascq(sensep),
30239 				    "sense-data",
30240 				    DATA_TYPE_UINT8_ARRAY,
30241 				    senlen, sensep,
30242 				    "lba",
30243 				    DATA_TYPE_UINT64,
30244 				    ssc->ssc_uscsi_info->ui_lba,
30245 				    NULL);
30246 				} else {
30247 					/*
30248 					 * if sense-key == 0x4(hardware
30249 					 * error), driver-assessment should
30250 					 * be "fatal" if drv_assess is
30251 					 * SD_FM_DRV_FATAL.
30252 					 */
30253 					scsi_fm_ereport_post(un->un_sd,
30254 					    uscsi_path_instance,
30255 					    "cmd.disk.dev.rqs.derr",
30256 					    uscsi_ena, devid, DDI_NOSLEEP,
30257 					    FM_VERSION,
30258 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30259 					    "driver-assessment",
30260 					    DATA_TYPE_STRING,
30261 					    drv_assess == SD_FM_DRV_FATAL ?
30262 					    (sense_key == 0x4 ?
30263 					    "fatal" : "fail") : assessment,
30264 					    "op-code",
30265 					    DATA_TYPE_UINT8, op_code,
30266 					    "cdb",
30267 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30268 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30269 					    "pkt-reason",
30270 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30271 					    "pkt-state",
30272 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30273 					    "pkt-stats",
30274 					    DATA_TYPE_UINT32,
30275 					    uscsi_pkt_statistics,
30276 					    "stat-code",
30277 					    DATA_TYPE_UINT8,
30278 					    ssc->ssc_uscsi_cmd->uscsi_status,
30279 					    "key",
30280 					    DATA_TYPE_UINT8,
30281 					    scsi_sense_key(sensep),
30282 					    "asc",
30283 					    DATA_TYPE_UINT8,
30284 					    scsi_sense_asc(sensep),
30285 					    "ascq",
30286 					    DATA_TYPE_UINT8,
30287 					    scsi_sense_ascq(sensep),
30288 					    "sense-data",
30289 					    DATA_TYPE_UINT8_ARRAY,
30290 					    senlen, sensep,
30291 					    NULL);
30292 				}
30293 		} else {
30294 			/*
30295 			 * For stat_code == STATUS_GOOD, this is not a
30296 			 * hardware error.
30297 			 */
30298 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30299 				return;
30300 
30301 			/*
30302 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30303 			 * stat-code but with sense data unavailable.
30304 			 * driver-assessment will be set based on parameter
30305 			 * drv_assess.
30306 			 */
30307 			scsi_fm_ereport_post(un->un_sd,
30308 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30309 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30310 			    FM_EREPORT_VERS0,
30311 			    "driver-assessment", DATA_TYPE_STRING,
30312 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30313 			    "op-code", DATA_TYPE_UINT8, op_code,
30314 			    "cdb",
30315 			    DATA_TYPE_UINT8_ARRAY,
30316 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30317 			    "pkt-reason",
30318 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30319 			    "pkt-state",
30320 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30321 			    "pkt-stats",
30322 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30323 			    "stat-code",
30324 			    DATA_TYPE_UINT8,
30325 			    ssc->ssc_uscsi_cmd->uscsi_status,
30326 			    NULL);
30327 		}
30328 	}
30329 }
30330 
30331 /*
30332  *     Function: sd_ssc_extract_info
30333  *
30334  * Description: Extract information available to help generate ereport.
30335  *
30336  *     Context: Kernel thread or interrupt context.
30337  */
30338 static void
30339 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30340     struct buf *bp, struct sd_xbuf *xp)
30341 {
30342 	size_t senlen = 0;
30343 	union scsi_cdb *cdbp;
30344 	int path_instance;
30345 	/*
30346 	 * Need scsi_cdb_size array to determine the cdb length.
30347 	 */
30348 	extern uchar_t	scsi_cdb_size[];
30349 
30350 	ASSERT(un != NULL);
30351 	ASSERT(pktp != NULL);
30352 	ASSERT(bp != NULL);
30353 	ASSERT(xp != NULL);
30354 	ASSERT(ssc != NULL);
30355 	ASSERT(mutex_owned(SD_MUTEX(un)));
30356 
30357 	/*
30358 	 * Transfer the cdb buffer pointer here.
30359 	 */
30360 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30361 
30362 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30363 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30364 
30365 	/*
30366 	 * Transfer the sense data buffer pointer if sense data is available,
30367 	 * calculate the sense data length first.
30368 	 */
30369 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30370 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30371 		/*
30372 		 * For arq case, we will enter here.
30373 		 */
30374 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30375 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30376 		} else {
30377 			senlen = SENSE_LENGTH;
30378 		}
30379 	} else {
30380 		/*
30381 		 * For non-arq case, we will enter this branch.
30382 		 */
30383 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30384 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30385 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30386 		}
30387 
30388 	}
30389 
30390 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30391 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30392 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30393 
30394 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30395 
30396 	/*
30397 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30398 	 */
30399 	path_instance = pktp->pkt_path_instance;
30400 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30401 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30402 	else
30403 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30404 
30405 	/*
30406 	 * Copy in the other fields we may need when posting ereport.
30407 	 */
30408 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30409 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30410 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30411 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30412 
30413 	/*
30414 	 * For partially read/write command, we will not create ena
30415 	 * in case of a successful command be reconized as recovered.
30416 	 */
30417 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30418 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30419 	    (senlen == 0)) {
30420 		return;
30421 	}
30422 
30423 	/*
30424 	 * To associate ereports of a single command execution flow, we
30425 	 * need a shared ena for a specific command.
30426 	 */
30427 	if (xp->xb_ena == 0)
30428 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30429 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30430 }
30431