xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 470452aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * SCSI disk target driver.
29  */
30 #include <sys/scsi/scsi.h>
31 #include <sys/dkbad.h>
32 #include <sys/dklabel.h>
33 #include <sys/dkio.h>
34 #include <sys/fdio.h>
35 #include <sys/cdio.h>
36 #include <sys/mhd.h>
37 #include <sys/vtoc.h>
38 #include <sys/dktp/fdisk.h>
39 #include <sys/kstat.h>
40 #include <sys/vtrace.h>
41 #include <sys/note.h>
42 #include <sys/thread.h>
43 #include <sys/proc.h>
44 #include <sys/efi_partition.h>
45 #include <sys/var.h>
46 #include <sys/aio_req.h>
47 
48 #ifdef __lock_lint
49 #define	_LP64
50 #define	__amd64
51 #endif
52 
53 #if (defined(__fibre))
54 /* Note: is there a leadville version of the following? */
55 #include <sys/fc4/fcal_linkapp.h>
56 #endif
57 #include <sys/taskq.h>
58 #include <sys/uuid.h>
59 #include <sys/byteorder.h>
60 #include <sys/sdt.h>
61 
62 #include "sd_xbuf.h"
63 
64 #include <sys/scsi/targets/sddef.h>
65 #include <sys/cmlb.h>
66 #include <sys/sysevent/eventdefs.h>
67 #include <sys/sysevent/dev.h>
68 
69 #include <sys/fm/protocol.h>
70 
71 /*
72  * Loadable module info.
73  */
74 #if (defined(__fibre))
75 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
76 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
77 #else /* !__fibre */
78 #define	SD_MODULE_NAME	"SCSI Disk Driver"
79 char _depends_on[]	= "misc/scsi misc/cmlb";
80 #endif /* !__fibre */
81 
82 /*
83  * Define the interconnect type, to allow the driver to distinguish
84  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
85  *
86  * This is really for backward compatibility. In the future, the driver
87  * should actually check the "interconnect-type" property as reported by
88  * the HBA; however at present this property is not defined by all HBAs,
89  * so we will use this #define (1) to permit the driver to run in
90  * backward-compatibility mode; and (2) to print a notification message
91  * if an FC HBA does not support the "interconnect-type" property.  The
92  * behavior of the driver will be to assume parallel SCSI behaviors unless
93  * the "interconnect-type" property is defined by the HBA **AND** has a
94  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
95  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
96  * Channel behaviors (as per the old ssd).  (Note that the
97  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
98  * will result in the driver assuming parallel SCSI behaviors.)
99  *
100  * (see common/sys/scsi/impl/services.h)
101  *
102  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
103  * since some FC HBAs may already support that, and there is some code in
104  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
105  * default would confuse that code, and besides things should work fine
106  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
107  * "interconnect_type" property.
108  *
109  */
110 #if (defined(__fibre))
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
112 #else
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
114 #endif
115 
116 /*
117  * The name of the driver, established from the module name in _init.
118  */
119 static	char *sd_label			= NULL;
120 
121 /*
122  * Driver name is unfortunately prefixed on some driver.conf properties.
123  */
124 #if (defined(__fibre))
125 #define	sd_max_xfer_size		ssd_max_xfer_size
126 #define	sd_config_list			ssd_config_list
127 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
128 static	char *sd_config_list		= "ssd-config-list";
129 #else
130 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
131 static	char *sd_config_list		= "sd-config-list";
132 #endif
133 
134 /*
135  * Driver global variables
136  */
137 
138 #if (defined(__fibre))
139 /*
140  * These #defines are to avoid namespace collisions that occur because this
141  * code is currently used to compile two separate driver modules: sd and ssd.
142  * All global variables need to be treated this way (even if declared static)
143  * in order to allow the debugger to resolve the names properly.
144  * It is anticipated that in the near future the ssd module will be obsoleted,
145  * at which time this namespace issue should go away.
146  */
147 #define	sd_state			ssd_state
148 #define	sd_io_time			ssd_io_time
149 #define	sd_failfast_enable		ssd_failfast_enable
150 #define	sd_ua_retry_count		ssd_ua_retry_count
151 #define	sd_report_pfa			ssd_report_pfa
152 #define	sd_max_throttle			ssd_max_throttle
153 #define	sd_min_throttle			ssd_min_throttle
154 #define	sd_rot_delay			ssd_rot_delay
155 
156 #define	sd_retry_on_reservation_conflict	\
157 					ssd_retry_on_reservation_conflict
158 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
159 #define	sd_resv_conflict_name		ssd_resv_conflict_name
160 
161 #define	sd_component_mask		ssd_component_mask
162 #define	sd_level_mask			ssd_level_mask
163 #define	sd_debug_un			ssd_debug_un
164 #define	sd_error_level			ssd_error_level
165 
166 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
167 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
168 
169 #define	sd_tr				ssd_tr
170 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
171 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
172 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
173 #define	sd_check_media_time		ssd_check_media_time
174 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
175 #define	sd_label_mutex			ssd_label_mutex
176 #define	sd_detach_mutex			ssd_detach_mutex
177 #define	sd_log_buf			ssd_log_buf
178 #define	sd_log_mutex			ssd_log_mutex
179 
180 #define	sd_disk_table			ssd_disk_table
181 #define	sd_disk_table_size		ssd_disk_table_size
182 #define	sd_sense_mutex			ssd_sense_mutex
183 #define	sd_cdbtab			ssd_cdbtab
184 
185 #define	sd_cb_ops			ssd_cb_ops
186 #define	sd_ops				ssd_ops
187 #define	sd_additional_codes		ssd_additional_codes
188 #define	sd_tgops			ssd_tgops
189 
190 #define	sd_minor_data			ssd_minor_data
191 #define	sd_minor_data_efi		ssd_minor_data_efi
192 
193 #define	sd_tq				ssd_tq
194 #define	sd_wmr_tq			ssd_wmr_tq
195 #define	sd_taskq_name			ssd_taskq_name
196 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
197 #define	sd_taskq_minalloc		ssd_taskq_minalloc
198 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
199 
200 #define	sd_dump_format_string		ssd_dump_format_string
201 
202 #define	sd_iostart_chain		ssd_iostart_chain
203 #define	sd_iodone_chain			ssd_iodone_chain
204 
205 #define	sd_pm_idletime			ssd_pm_idletime
206 
207 #define	sd_force_pm_supported		ssd_force_pm_supported
208 
209 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
210 
211 #define	sd_ssc_init			ssd_ssc_init
212 #define	sd_ssc_send			ssd_ssc_send
213 #define	sd_ssc_fini			ssd_ssc_fini
214 #define	sd_ssc_assessment		ssd_ssc_assessment
215 #define	sd_ssc_post			ssd_ssc_post
216 #define	sd_ssc_print			ssd_ssc_print
217 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
218 #define	sd_ssc_set_info			ssd_ssc_set_info
219 #define	sd_ssc_extract_info		ssd_ssc_extract_info
220 
221 #endif
222 
223 #ifdef	SDDEBUG
224 int	sd_force_pm_supported		= 0;
225 #endif	/* SDDEBUG */
226 
227 void *sd_state				= NULL;
228 int sd_io_time				= SD_IO_TIME;
229 int sd_failfast_enable			= 1;
230 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
231 int sd_report_pfa			= 1;
232 int sd_max_throttle			= SD_MAX_THROTTLE;
233 int sd_min_throttle			= SD_MIN_THROTTLE;
234 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
235 int sd_qfull_throttle_enable		= TRUE;
236 
237 int sd_retry_on_reservation_conflict	= 1;
238 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
239 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
240 
241 static int sd_dtype_optical_bind	= -1;
242 
243 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
244 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
245 
246 /*
247  * Global data for debug logging. To enable debug printing, sd_component_mask
248  * and sd_level_mask should be set to the desired bit patterns as outlined in
249  * sddef.h.
250  */
251 uint_t	sd_component_mask		= 0x0;
252 uint_t	sd_level_mask			= 0x0;
253 struct	sd_lun *sd_debug_un		= NULL;
254 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
255 
256 /* Note: these may go away in the future... */
257 static uint32_t	sd_xbuf_active_limit	= 512;
258 static uint32_t sd_xbuf_reserve_limit	= 16;
259 
260 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
261 
262 /*
263  * Timer value used to reset the throttle after it has been reduced
264  * (typically in response to TRAN_BUSY or STATUS_QFULL)
265  */
266 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
267 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
268 
269 /*
270  * Interval value associated with the media change scsi watch.
271  */
272 static int sd_check_media_time		= 3000000;
273 
274 /*
275  * Wait value used for in progress operations during a DDI_SUSPEND
276  */
277 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
278 
279 /*
280  * sd_label_mutex protects a static buffer used in the disk label
281  * component of the driver
282  */
283 static kmutex_t sd_label_mutex;
284 
285 /*
286  * sd_detach_mutex protects un_layer_count, un_detach_count, and
287  * un_opens_in_progress in the sd_lun structure.
288  */
289 static kmutex_t sd_detach_mutex;
290 
291 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
292 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
293 
294 /*
295  * Global buffer and mutex for debug logging
296  */
297 static char	sd_log_buf[1024];
298 static kmutex_t	sd_log_mutex;
299 
300 /*
301  * Structs and globals for recording attached lun information.
302  * This maintains a chain. Each node in the chain represents a SCSI controller.
303  * The structure records the number of luns attached to each target connected
304  * with the controller.
305  * For parallel scsi device only.
306  */
307 struct sd_scsi_hba_tgt_lun {
308 	struct sd_scsi_hba_tgt_lun	*next;
309 	dev_info_t			*pdip;
310 	int				nlun[NTARGETS_WIDE];
311 };
312 
313 /*
314  * Flag to indicate the lun is attached or detached
315  */
316 #define	SD_SCSI_LUN_ATTACH	0
317 #define	SD_SCSI_LUN_DETACH	1
318 
319 static kmutex_t	sd_scsi_target_lun_mutex;
320 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
321 
322 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
323     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
324 
325 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
326     sd_scsi_target_lun_head))
327 
328 /*
329  * "Smart" Probe Caching structs, globals, #defines, etc.
330  * For parallel scsi and non-self-identify device only.
331  */
332 
333 /*
334  * The following resources and routines are implemented to support
335  * "smart" probing, which caches the scsi_probe() results in an array,
336  * in order to help avoid long probe times.
337  */
338 struct sd_scsi_probe_cache {
339 	struct	sd_scsi_probe_cache	*next;
340 	dev_info_t	*pdip;
341 	int		cache[NTARGETS_WIDE];
342 };
343 
344 static kmutex_t	sd_scsi_probe_cache_mutex;
345 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
346 
347 /*
348  * Really we only need protection on the head of the linked list, but
349  * better safe than sorry.
350  */
351 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
352     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
353 
354 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
355     sd_scsi_probe_cache_head))
356 
357 
358 /*
359  * Vendor specific data name property declarations
360  */
361 
362 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
363 
364 static sd_tunables seagate_properties = {
365 	SEAGATE_THROTTLE_VALUE,
366 	0,
367 	0,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0
374 };
375 
376 
377 static sd_tunables fujitsu_properties = {
378 	FUJITSU_THROTTLE_VALUE,
379 	0,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0
387 };
388 
389 static sd_tunables ibm_properties = {
390 	IBM_THROTTLE_VALUE,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	0
399 };
400 
401 static sd_tunables purple_properties = {
402 	PURPLE_THROTTLE_VALUE,
403 	0,
404 	0,
405 	PURPLE_BUSY_RETRIES,
406 	PURPLE_RESET_RETRY_COUNT,
407 	PURPLE_RESERVE_RELEASE_TIME,
408 	0,
409 	0,
410 	0
411 };
412 
413 static sd_tunables sve_properties = {
414 	SVE_THROTTLE_VALUE,
415 	0,
416 	0,
417 	SVE_BUSY_RETRIES,
418 	SVE_RESET_RETRY_COUNT,
419 	SVE_RESERVE_RELEASE_TIME,
420 	SVE_MIN_THROTTLE_VALUE,
421 	SVE_DISKSORT_DISABLED_FLAG,
422 	0
423 };
424 
425 static sd_tunables maserati_properties = {
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	MASERATI_DISKSORT_DISABLED_FLAG,
434 	MASERATI_LUN_RESET_ENABLED_FLAG
435 };
436 
437 static sd_tunables pirus_properties = {
438 	PIRUS_THROTTLE_VALUE,
439 	0,
440 	PIRUS_NRR_COUNT,
441 	PIRUS_BUSY_RETRIES,
442 	PIRUS_RESET_RETRY_COUNT,
443 	0,
444 	PIRUS_MIN_THROTTLE_VALUE,
445 	PIRUS_DISKSORT_DISABLED_FLAG,
446 	PIRUS_LUN_RESET_ENABLED_FLAG
447 };
448 
449 #endif
450 
451 #if (defined(__sparc) && !defined(__fibre)) || \
452 	(defined(__i386) || defined(__amd64))
453 
454 
455 static sd_tunables elite_properties = {
456 	ELITE_THROTTLE_VALUE,
457 	0,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0
465 };
466 
467 static sd_tunables st31200n_properties = {
468 	ST31200N_THROTTLE_VALUE,
469 	0,
470 	0,
471 	0,
472 	0,
473 	0,
474 	0,
475 	0,
476 	0
477 };
478 
479 #endif /* Fibre or not */
480 
481 static sd_tunables lsi_properties_scsi = {
482 	LSI_THROTTLE_VALUE,
483 	0,
484 	LSI_NOTREADY_RETRIES,
485 	0,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0
491 };
492 
493 static sd_tunables symbios_properties = {
494 	SYMBIOS_THROTTLE_VALUE,
495 	0,
496 	SYMBIOS_NOTREADY_RETRIES,
497 	0,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0
503 };
504 
505 static sd_tunables lsi_properties = {
506 	0,
507 	0,
508 	LSI_NOTREADY_RETRIES,
509 	0,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0
515 };
516 
517 static sd_tunables lsi_oem_properties = {
518 	0,
519 	0,
520 	LSI_OEM_NOTREADY_RETRIES,
521 	0,
522 	0,
523 	0,
524 	0,
525 	0,
526 	0,
527 	1
528 };
529 
530 
531 
532 #if (defined(SD_PROP_TST))
533 
534 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
535 #define	SD_TST_THROTTLE_VAL	16
536 #define	SD_TST_NOTREADY_VAL	12
537 #define	SD_TST_BUSY_VAL		60
538 #define	SD_TST_RST_RETRY_VAL	36
539 #define	SD_TST_RSV_REL_TIME	60
540 
541 static sd_tunables tst_properties = {
542 	SD_TST_THROTTLE_VAL,
543 	SD_TST_CTYPE_VAL,
544 	SD_TST_NOTREADY_VAL,
545 	SD_TST_BUSY_VAL,
546 	SD_TST_RST_RETRY_VAL,
547 	SD_TST_RSV_REL_TIME,
548 	0,
549 	0,
550 	0
551 };
552 #endif
553 
554 /* This is similar to the ANSI toupper implementation */
555 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
556 
557 /*
558  * Static Driver Configuration Table
559  *
560  * This is the table of disks which need throttle adjustment (or, perhaps
561  * something else as defined by the flags at a future time.)  device_id
562  * is a string consisting of concatenated vid (vendor), pid (product/model)
563  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
564  * the parts of the string are as defined by the sizes in the scsi_inquiry
565  * structure.  Device type is searched as far as the device_id string is
566  * defined.  Flags defines which values are to be set in the driver from the
567  * properties list.
568  *
569  * Entries below which begin and end with a "*" are a special case.
570  * These do not have a specific vendor, and the string which follows
571  * can appear anywhere in the 16 byte PID portion of the inquiry data.
572  *
573  * Entries below which begin and end with a " " (blank) are a special
574  * case. The comparison function will treat multiple consecutive blanks
575  * as equivalent to a single blank. For example, this causes a
576  * sd_disk_table entry of " NEC CDROM " to match a device's id string
577  * of  "NEC       CDROM".
578  *
579  * Note: The MD21 controller type has been obsoleted.
580  *	 ST318202F is a Legacy device
581  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
582  *	 made with an FC connection. The entries here are a legacy.
583  */
584 static sd_disk_config_t sd_disk_table[] = {
585 #if defined(__fibre) || defined(__i386) || defined(__amd64)
586 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
590 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
591 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
592 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
593 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
594 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
595 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
596 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
597 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
598 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
599 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
600 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
601 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
602 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
603 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
604 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
605 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
606 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
607 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
608 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
609 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
610 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
611 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
612 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
613 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
623 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
624 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
625 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
626 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
627 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
632 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
636 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
637 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
638 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
639 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
640 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
641 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
642 			SD_CONF_BSET_BSY_RETRY_COUNT|
643 			SD_CONF_BSET_RST_RETRIES|
644 			SD_CONF_BSET_RSV_REL_TIME,
645 		&purple_properties },
646 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
647 		SD_CONF_BSET_BSY_RETRY_COUNT|
648 		SD_CONF_BSET_RST_RETRIES|
649 		SD_CONF_BSET_RSV_REL_TIME|
650 		SD_CONF_BSET_MIN_THROTTLE|
651 		SD_CONF_BSET_DISKSORT_DISABLED,
652 		&sve_properties },
653 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
654 			SD_CONF_BSET_BSY_RETRY_COUNT|
655 			SD_CONF_BSET_RST_RETRIES|
656 			SD_CONF_BSET_RSV_REL_TIME,
657 		&purple_properties },
658 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
659 		SD_CONF_BSET_LUN_RESET_ENABLED,
660 		&maserati_properties },
661 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
662 		SD_CONF_BSET_NRR_COUNT|
663 		SD_CONF_BSET_BSY_RETRY_COUNT|
664 		SD_CONF_BSET_RST_RETRIES|
665 		SD_CONF_BSET_MIN_THROTTLE|
666 		SD_CONF_BSET_DISKSORT_DISABLED|
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&pirus_properties },
669 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
710 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
711 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
712 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
713 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
714 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
715 #endif /* fibre or NON-sparc platforms */
716 #if ((defined(__sparc) && !defined(__fibre)) ||\
717 	(defined(__i386) || defined(__amd64)))
718 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
719 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
720 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
721 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
722 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
723 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
724 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
725 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
726 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
727 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
728 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
729 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
731 	    &symbios_properties },
732 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
733 	    &lsi_properties_scsi },
734 #if defined(__i386) || defined(__amd64)
735 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
736 				    | SD_CONF_BSET_READSUB_BCD
737 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
738 				    | SD_CONF_BSET_NO_READ_HEADER
739 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
740 
741 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
742 				    | SD_CONF_BSET_READSUB_BCD
743 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
744 				    | SD_CONF_BSET_NO_READ_HEADER
745 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
746 #endif /* __i386 || __amd64 */
747 #endif /* sparc NON-fibre or NON-sparc platforms */
748 
749 #if (defined(SD_PROP_TST))
750 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
751 				| SD_CONF_BSET_CTYPE
752 				| SD_CONF_BSET_NRR_COUNT
753 				| SD_CONF_BSET_FAB_DEVID
754 				| SD_CONF_BSET_NOCACHE
755 				| SD_CONF_BSET_BSY_RETRY_COUNT
756 				| SD_CONF_BSET_PLAYMSF_BCD
757 				| SD_CONF_BSET_READSUB_BCD
758 				| SD_CONF_BSET_READ_TOC_TRK_BCD
759 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
760 				| SD_CONF_BSET_NO_READ_HEADER
761 				| SD_CONF_BSET_READ_CD_XD4
762 				| SD_CONF_BSET_RST_RETRIES
763 				| SD_CONF_BSET_RSV_REL_TIME
764 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
765 #endif
766 };
767 
768 static const int sd_disk_table_size =
769 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
770 
771 
772 
773 #define	SD_INTERCONNECT_PARALLEL	0
774 #define	SD_INTERCONNECT_FABRIC		1
775 #define	SD_INTERCONNECT_FIBRE		2
776 #define	SD_INTERCONNECT_SSA		3
777 #define	SD_INTERCONNECT_SATA		4
778 #define	SD_IS_PARALLEL_SCSI(un)		\
779 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
780 #define	SD_IS_SERIAL(un)		\
781 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
782 
783 /*
784  * Definitions used by device id registration routines
785  */
786 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
787 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
788 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
789 
790 static kmutex_t sd_sense_mutex = {0};
791 
792 /*
793  * Macros for updates of the driver state
794  */
795 #define	New_state(un, s)        \
796 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
797 #define	Restore_state(un)	\
798 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
799 
800 static struct sd_cdbinfo sd_cdbtab[] = {
801 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
802 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
803 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
804 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
805 };
806 
807 /*
808  * Specifies the number of seconds that must have elapsed since the last
809  * cmd. has completed for a device to be declared idle to the PM framework.
810  */
811 static int sd_pm_idletime = 1;
812 
813 /*
814  * Internal function prototypes
815  */
816 
817 #if (defined(__fibre))
818 /*
819  * These #defines are to avoid namespace collisions that occur because this
820  * code is currently used to compile two separate driver modules: sd and ssd.
821  * All function names need to be treated this way (even if declared static)
822  * in order to allow the debugger to resolve the names properly.
823  * It is anticipated that in the near future the ssd module will be obsoleted,
824  * at which time this ugliness should go away.
825  */
826 #define	sd_log_trace			ssd_log_trace
827 #define	sd_log_info			ssd_log_info
828 #define	sd_log_err			ssd_log_err
829 #define	sdprobe				ssdprobe
830 #define	sdinfo				ssdinfo
831 #define	sd_prop_op			ssd_prop_op
832 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
833 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
834 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
835 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
836 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
837 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
838 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
839 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
840 #define	sd_spin_up_unit			ssd_spin_up_unit
841 #define	sd_enable_descr_sense		ssd_enable_descr_sense
842 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
843 #define	sd_set_mmc_caps			ssd_set_mmc_caps
844 #define	sd_read_unit_properties		ssd_read_unit_properties
845 #define	sd_process_sdconf_file		ssd_process_sdconf_file
846 #define	sd_process_sdconf_table		ssd_process_sdconf_table
847 #define	sd_sdconf_id_match		ssd_sdconf_id_match
848 #define	sd_blank_cmp			ssd_blank_cmp
849 #define	sd_chk_vers1_data		ssd_chk_vers1_data
850 #define	sd_set_vers1_properties		ssd_set_vers1_properties
851 
852 #define	sd_get_physical_geometry	ssd_get_physical_geometry
853 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
854 #define	sd_update_block_info		ssd_update_block_info
855 #define	sd_register_devid		ssd_register_devid
856 #define	sd_get_devid			ssd_get_devid
857 #define	sd_create_devid			ssd_create_devid
858 #define	sd_write_deviceid		ssd_write_deviceid
859 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
860 #define	sd_setup_pm			ssd_setup_pm
861 #define	sd_create_pm_components		ssd_create_pm_components
862 #define	sd_ddi_suspend			ssd_ddi_suspend
863 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
864 #define	sd_ddi_resume			ssd_ddi_resume
865 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
866 #define	sdpower				ssdpower
867 #define	sdattach			ssdattach
868 #define	sddetach			ssddetach
869 #define	sd_unit_attach			ssd_unit_attach
870 #define	sd_unit_detach			ssd_unit_detach
871 #define	sd_set_unit_attributes		ssd_set_unit_attributes
872 #define	sd_create_errstats		ssd_create_errstats
873 #define	sd_set_errstats			ssd_set_errstats
874 #define	sd_set_pstats			ssd_set_pstats
875 #define	sddump				ssddump
876 #define	sd_scsi_poll			ssd_scsi_poll
877 #define	sd_send_polled_RQS		ssd_send_polled_RQS
878 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
879 #define	sd_init_event_callbacks		ssd_init_event_callbacks
880 #define	sd_event_callback		ssd_event_callback
881 #define	sd_cache_control		ssd_cache_control
882 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
883 #define	sd_get_nv_sup			ssd_get_nv_sup
884 #define	sd_make_device			ssd_make_device
885 #define	sdopen				ssdopen
886 #define	sdclose				ssdclose
887 #define	sd_ready_and_valid		ssd_ready_and_valid
888 #define	sdmin				ssdmin
889 #define	sdread				ssdread
890 #define	sdwrite				ssdwrite
891 #define	sdaread				ssdaread
892 #define	sdawrite			ssdawrite
893 #define	sdstrategy			ssdstrategy
894 #define	sdioctl				ssdioctl
895 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
896 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
897 #define	sd_checksum_iostart		ssd_checksum_iostart
898 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
899 #define	sd_pm_iostart			ssd_pm_iostart
900 #define	sd_core_iostart			ssd_core_iostart
901 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
902 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
903 #define	sd_checksum_iodone		ssd_checksum_iodone
904 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
905 #define	sd_pm_iodone			ssd_pm_iodone
906 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
907 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
908 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
909 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
910 #define	sd_buf_iodone			ssd_buf_iodone
911 #define	sd_uscsi_strategy		ssd_uscsi_strategy
912 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
913 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
914 #define	sd_uscsi_iodone			ssd_uscsi_iodone
915 #define	sd_xbuf_strategy		ssd_xbuf_strategy
916 #define	sd_xbuf_init			ssd_xbuf_init
917 #define	sd_pm_entry			ssd_pm_entry
918 #define	sd_pm_exit			ssd_pm_exit
919 
920 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
921 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
922 
923 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
924 #define	sdintr				ssdintr
925 #define	sd_start_cmds			ssd_start_cmds
926 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
927 #define	sd_bioclone_alloc		ssd_bioclone_alloc
928 #define	sd_bioclone_free		ssd_bioclone_free
929 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
930 #define	sd_shadow_buf_free		ssd_shadow_buf_free
931 #define	sd_print_transport_rejected_message	\
932 					ssd_print_transport_rejected_message
933 #define	sd_retry_command		ssd_retry_command
934 #define	sd_set_retry_bp			ssd_set_retry_bp
935 #define	sd_send_request_sense_command	ssd_send_request_sense_command
936 #define	sd_start_retry_command		ssd_start_retry_command
937 #define	sd_start_direct_priority_command	\
938 					ssd_start_direct_priority_command
939 #define	sd_return_failed_command	ssd_return_failed_command
940 #define	sd_return_failed_command_no_restart	\
941 					ssd_return_failed_command_no_restart
942 #define	sd_return_command		ssd_return_command
943 #define	sd_sync_with_callback		ssd_sync_with_callback
944 #define	sdrunout			ssdrunout
945 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
946 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
947 #define	sd_reduce_throttle		ssd_reduce_throttle
948 #define	sd_restore_throttle		ssd_restore_throttle
949 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
950 #define	sd_init_cdb_limits		ssd_init_cdb_limits
951 #define	sd_pkt_status_good		ssd_pkt_status_good
952 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
953 #define	sd_pkt_status_busy		ssd_pkt_status_busy
954 #define	sd_pkt_status_reservation_conflict	\
955 					ssd_pkt_status_reservation_conflict
956 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
957 #define	sd_handle_request_sense		ssd_handle_request_sense
958 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
959 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
960 #define	sd_validate_sense_data		ssd_validate_sense_data
961 #define	sd_decode_sense			ssd_decode_sense
962 #define	sd_print_sense_msg		ssd_print_sense_msg
963 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
964 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
965 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
966 #define	sd_sense_key_medium_or_hardware_error	\
967 					ssd_sense_key_medium_or_hardware_error
968 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
969 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
970 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
971 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
972 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
973 #define	sd_sense_key_default		ssd_sense_key_default
974 #define	sd_print_retry_msg		ssd_print_retry_msg
975 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
976 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
977 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
978 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
979 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
980 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
981 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
982 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
983 #define	sd_pkt_reason_default		ssd_pkt_reason_default
984 #define	sd_reset_target			ssd_reset_target
985 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
986 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
987 #define	sd_taskq_create			ssd_taskq_create
988 #define	sd_taskq_delete			ssd_taskq_delete
989 #define	sd_target_change_task		ssd_target_change_task
990 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
991 #define	sd_media_change_task		ssd_media_change_task
992 #define	sd_handle_mchange		ssd_handle_mchange
993 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
994 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
995 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
996 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
997 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
998 					sd_send_scsi_feature_GET_CONFIGURATION
999 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1000 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1001 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1002 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1003 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1004 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1005 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1006 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1007 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1008 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1009 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1010 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1011 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1012 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1013 #define	sd_alloc_rqs			ssd_alloc_rqs
1014 #define	sd_free_rqs			ssd_free_rqs
1015 #define	sd_dump_memory			ssd_dump_memory
1016 #define	sd_get_media_info		ssd_get_media_info
1017 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1018 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1019 #define	sd_strtok_r			ssd_strtok_r
1020 #define	sd_set_properties		ssd_set_properties
1021 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1022 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1023 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1024 #define	sd_check_mhd			ssd_check_mhd
1025 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1026 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1027 #define	sd_sname			ssd_sname
1028 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1029 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1030 #define	sd_take_ownership		ssd_take_ownership
1031 #define	sd_reserve_release		ssd_reserve_release
1032 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1033 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1034 #define	sd_persistent_reservation_in_read_keys	\
1035 					ssd_persistent_reservation_in_read_keys
1036 #define	sd_persistent_reservation_in_read_resv	\
1037 					ssd_persistent_reservation_in_read_resv
1038 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1039 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1040 #define	sd_mhdioc_release		ssd_mhdioc_release
1041 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1042 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1043 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1044 #define	sr_change_blkmode		ssr_change_blkmode
1045 #define	sr_change_speed			ssr_change_speed
1046 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1047 #define	sr_pause_resume			ssr_pause_resume
1048 #define	sr_play_msf			ssr_play_msf
1049 #define	sr_play_trkind			ssr_play_trkind
1050 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1051 #define	sr_read_subchannel		ssr_read_subchannel
1052 #define	sr_read_tocentry		ssr_read_tocentry
1053 #define	sr_read_tochdr			ssr_read_tochdr
1054 #define	sr_read_cdda			ssr_read_cdda
1055 #define	sr_read_cdxa			ssr_read_cdxa
1056 #define	sr_read_mode1			ssr_read_mode1
1057 #define	sr_read_mode2			ssr_read_mode2
1058 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1059 #define	sr_sector_mode			ssr_sector_mode
1060 #define	sr_eject			ssr_eject
1061 #define	sr_ejected			ssr_ejected
1062 #define	sr_check_wp			ssr_check_wp
1063 #define	sd_check_media			ssd_check_media
1064 #define	sd_media_watch_cb		ssd_media_watch_cb
1065 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1066 #define	sr_volume_ctrl			ssr_volume_ctrl
1067 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1068 #define	sd_log_page_supported		ssd_log_page_supported
1069 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1070 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1071 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1072 #define	sd_range_lock			ssd_range_lock
1073 #define	sd_get_range			ssd_get_range
1074 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1075 #define	sd_range_unlock			ssd_range_unlock
1076 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1077 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1078 
1079 #define	sd_iostart_chain		ssd_iostart_chain
1080 #define	sd_iodone_chain			ssd_iodone_chain
1081 #define	sd_initpkt_map			ssd_initpkt_map
1082 #define	sd_destroypkt_map		ssd_destroypkt_map
1083 #define	sd_chain_type_map		ssd_chain_type_map
1084 #define	sd_chain_index_map		ssd_chain_index_map
1085 
1086 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1087 #define	sd_failfast_flushq		ssd_failfast_flushq
1088 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1089 
1090 #define	sd_is_lsi			ssd_is_lsi
1091 #define	sd_tg_rdwr			ssd_tg_rdwr
1092 #define	sd_tg_getinfo			ssd_tg_getinfo
1093 
1094 #endif	/* #if (defined(__fibre)) */
1095 
1096 
1097 int _init(void);
1098 int _fini(void);
1099 int _info(struct modinfo *modinfop);
1100 
1101 /*PRINTFLIKE3*/
1102 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1103 /*PRINTFLIKE3*/
1104 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1105 /*PRINTFLIKE3*/
1106 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1107 
1108 static int sdprobe(dev_info_t *devi);
1109 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1110     void **result);
1111 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1112     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1113 
1114 /*
1115  * Smart probe for parallel scsi
1116  */
1117 static void sd_scsi_probe_cache_init(void);
1118 static void sd_scsi_probe_cache_fini(void);
1119 static void sd_scsi_clear_probe_cache(void);
1120 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1121 
1122 /*
1123  * Attached luns on target for parallel scsi
1124  */
1125 static void sd_scsi_target_lun_init(void);
1126 static void sd_scsi_target_lun_fini(void);
1127 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1128 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1129 
1130 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1131 
1132 /*
1133  * Using sd_ssc_init to establish sd_ssc_t struct
1134  * Using sd_ssc_send to send uscsi internal command
1135  * Using sd_ssc_fini to free sd_ssc_t struct
1136  */
1137 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1138 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1139     int flag, enum uio_seg dataspace, int path_flag);
1140 static void sd_ssc_fini(sd_ssc_t *ssc);
1141 
1142 /*
1143  * Using sd_ssc_assessment to set correct type-of-assessment
1144  * Using sd_ssc_post to post ereport & system log
1145  *       sd_ssc_post will call sd_ssc_print to print system log
1146  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1147  */
1148 static void sd_ssc_assessment(sd_ssc_t *ssc,
1149     enum sd_type_assessment tp_assess);
1150 
1151 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1152 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1153 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1154     enum sd_driver_assessment drv_assess);
1155 
1156 /*
1157  * Using sd_ssc_set_info to mark an un-decodable-data error.
1158  * Using sd_ssc_extract_info to transfer information from internal
1159  *       data structures to sd_ssc_t.
1160  */
1161 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1162     const char *fmt, ...);
1163 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1164     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1165 
1166 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1167     enum uio_seg dataspace, int path_flag);
1168 
1169 #ifdef _LP64
1170 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1171 static void	sd_reenable_dsense_task(void *arg);
1172 #endif /* _LP64 */
1173 
1174 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1175 
1176 static void sd_read_unit_properties(struct sd_lun *un);
1177 static int  sd_process_sdconf_file(struct sd_lun *un);
1178 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1179 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1180 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 
1191 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1192     int reservation_flag);
1193 static int  sd_get_devid(sd_ssc_t *ssc);
1194 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1195 static int  sd_write_deviceid(sd_ssc_t *ssc);
1196 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1197 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1198 
1199 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1200 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1201 
1202 static int  sd_ddi_suspend(dev_info_t *devi);
1203 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1204 static int  sd_ddi_resume(dev_info_t *devi);
1205 static int  sd_ddi_pm_resume(struct sd_lun *un);
1206 static int  sdpower(dev_info_t *devi, int component, int level);
1207 
1208 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1209 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1210 static int  sd_unit_attach(dev_info_t *devi);
1211 static int  sd_unit_detach(dev_info_t *devi);
1212 
1213 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1214 static void sd_create_errstats(struct sd_lun *un, int instance);
1215 static void sd_set_errstats(struct sd_lun *un);
1216 static void sd_set_pstats(struct sd_lun *un);
1217 
1218 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1219 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1220 static int  sd_send_polled_RQS(struct sd_lun *un);
1221 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1222 
1223 #if (defined(__fibre))
1224 /*
1225  * Event callbacks (photon)
1226  */
1227 static void sd_init_event_callbacks(struct sd_lun *un);
1228 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1229 #endif
1230 
1231 /*
1232  * Defines for sd_cache_control
1233  */
1234 
1235 #define	SD_CACHE_ENABLE		1
1236 #define	SD_CACHE_DISABLE	0
1237 #define	SD_CACHE_NOCHANGE	-1
1238 
1239 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1240 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1241 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1242 static dev_t sd_make_device(dev_info_t *devi);
1243 
1244 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1245 	uint64_t capacity);
1246 
1247 /*
1248  * Driver entry point functions.
1249  */
1250 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1251 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1252 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1253 
1254 static void sdmin(struct buf *bp);
1255 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1256 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1257 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1258 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1259 
1260 static int sdstrategy(struct buf *bp);
1261 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1262 
1263 /*
1264  * Function prototypes for layering functions in the iostart chain.
1265  */
1266 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1267 	struct buf *bp);
1268 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1269 	struct buf *bp);
1270 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1271 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1272 	struct buf *bp);
1273 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1274 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1275 
1276 /*
1277  * Function prototypes for layering functions in the iodone chain.
1278  */
1279 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1280 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1281 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1282 	struct buf *bp);
1283 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1284 	struct buf *bp);
1285 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1286 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1287 	struct buf *bp);
1288 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1289 
1290 /*
1291  * Prototypes for functions to support buf(9S) based IO.
1292  */
1293 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1294 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1295 static void sd_destroypkt_for_buf(struct buf *);
1296 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1297 	struct buf *bp, int flags,
1298 	int (*callback)(caddr_t), caddr_t callback_arg,
1299 	diskaddr_t lba, uint32_t blockcount);
1300 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1301 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1302 
1303 /*
1304  * Prototypes for functions to support USCSI IO.
1305  */
1306 static int sd_uscsi_strategy(struct buf *bp);
1307 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1308 static void sd_destroypkt_for_uscsi(struct buf *);
1309 
1310 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1311 	uchar_t chain_type, void *pktinfop);
1312 
1313 static int  sd_pm_entry(struct sd_lun *un);
1314 static void sd_pm_exit(struct sd_lun *un);
1315 
1316 static void sd_pm_idletimeout_handler(void *arg);
1317 
1318 /*
1319  * sd_core internal functions (used at the sd_core_io layer).
1320  */
1321 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1322 static void sdintr(struct scsi_pkt *pktp);
1323 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1324 
1325 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1326 	enum uio_seg dataspace, int path_flag);
1327 
1328 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1329 	daddr_t blkno, int (*func)(struct buf *));
1330 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1331 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1332 static void sd_bioclone_free(struct buf *bp);
1333 static void sd_shadow_buf_free(struct buf *bp);
1334 
1335 static void sd_print_transport_rejected_message(struct sd_lun *un,
1336 	struct sd_xbuf *xp, int code);
1337 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1338     void *arg, int code);
1339 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1340     void *arg, int code);
1341 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1342     void *arg, int code);
1343 
1344 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1345 	int retry_check_flag,
1346 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1347 		int c),
1348 	void *user_arg, int failure_code,  clock_t retry_delay,
1349 	void (*statp)(kstat_io_t *));
1350 
1351 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1352 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1353 
1354 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1355 	struct scsi_pkt *pktp);
1356 static void sd_start_retry_command(void *arg);
1357 static void sd_start_direct_priority_command(void *arg);
1358 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1359 	int errcode);
1360 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1361 	struct buf *bp, int errcode);
1362 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1363 static void sd_sync_with_callback(struct sd_lun *un);
1364 static int sdrunout(caddr_t arg);
1365 
1366 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1367 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1368 
1369 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1370 static void sd_restore_throttle(void *arg);
1371 
1372 static void sd_init_cdb_limits(struct sd_lun *un);
1373 
1374 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 
1377 /*
1378  * Error handling functions
1379  */
1380 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1383 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1385 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1386 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1387 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1388 
1389 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1390 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1391 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1392 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1393 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1394 	struct sd_xbuf *xp, size_t actual_len);
1395 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1396 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1397 
1398 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1399 	void *arg, int code);
1400 
1401 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1402 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1403 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1404 	uint8_t *sense_datap,
1405 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1406 static void sd_sense_key_not_ready(struct sd_lun *un,
1407 	uint8_t *sense_datap,
1408 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1409 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1410 	uint8_t *sense_datap,
1411 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1412 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1413 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1414 static void sd_sense_key_unit_attention(struct sd_lun *un,
1415 	uint8_t *sense_datap,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1420 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 static void sd_sense_key_default(struct sd_lun *un,
1424 	uint8_t *sense_datap,
1425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 
1427 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1428 	void *arg, int flag);
1429 
1430 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1435 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1436 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1441 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1445 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1446 
1447 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1448 
1449 static void sd_start_stop_unit_callback(void *arg);
1450 static void sd_start_stop_unit_task(void *arg);
1451 
1452 static void sd_taskq_create(void);
1453 static void sd_taskq_delete(void);
1454 static void sd_target_change_task(void *arg);
1455 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1456 static void sd_media_change_task(void *arg);
1457 
1458 static int sd_handle_mchange(struct sd_lun *un);
1459 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1460 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1461 	uint32_t *lbap, int path_flag);
1462 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1463 	uint32_t *lbap, int path_flag);
1464 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag,
1465 	int path_flag);
1466 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1467 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1468 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1469 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1470 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1471 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1472 	uchar_t usr_cmd, uchar_t *usr_bufp);
1473 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1474 	struct dk_callback *dkc);
1475 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1476 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1477 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1478 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1479 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1480 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1481 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1482 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1483 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1484 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1485 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1486 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1487 	size_t buflen, daddr_t start_block, int path_flag);
1488 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1489 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1490 	path_flag)
1491 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1492 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1493 	path_flag)
1494 
1495 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1496 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1497 	uint16_t param_ptr, int path_flag);
1498 
1499 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1500 static void sd_free_rqs(struct sd_lun *un);
1501 
1502 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1503 	uchar_t *data, int len, int fmt);
1504 static void sd_panic_for_res_conflict(struct sd_lun *un);
1505 
1506 /*
1507  * Disk Ioctl Function Prototypes
1508  */
1509 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1510 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1511 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1512 
1513 /*
1514  * Multi-host Ioctl Prototypes
1515  */
1516 static int sd_check_mhd(dev_t dev, int interval);
1517 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1518 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1519 static char *sd_sname(uchar_t status);
1520 static void sd_mhd_resvd_recover(void *arg);
1521 static void sd_resv_reclaim_thread();
1522 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1523 static int sd_reserve_release(dev_t dev, int cmd);
1524 static void sd_rmv_resv_reclaim_req(dev_t dev);
1525 static void sd_mhd_reset_notify_cb(caddr_t arg);
1526 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1527 	mhioc_inkeys_t *usrp, int flag);
1528 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1529 	mhioc_inresvs_t *usrp, int flag);
1530 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1531 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1532 static int sd_mhdioc_release(dev_t dev);
1533 static int sd_mhdioc_register_devid(dev_t dev);
1534 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1535 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1536 
1537 /*
1538  * SCSI removable prototypes
1539  */
1540 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1541 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1542 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1543 static int sr_pause_resume(dev_t dev, int mode);
1544 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1545 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1546 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1547 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1548 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1549 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1550 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1551 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1552 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1553 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1554 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1555 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1556 static int sr_eject(dev_t dev);
1557 static void sr_ejected(register struct sd_lun *un);
1558 static int sr_check_wp(dev_t dev);
1559 static int sd_check_media(dev_t dev, enum dkio_state state);
1560 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1561 static void sd_delayed_cv_broadcast(void *arg);
1562 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1563 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1564 
1565 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1566 
1567 /*
1568  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1569  */
1570 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1571 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1572 static void sd_wm_cache_destructor(void *wm, void *un);
1573 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1574 	daddr_t endb, ushort_t typ);
1575 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1576 	daddr_t endb);
1577 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1578 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1579 static void sd_read_modify_write_task(void * arg);
1580 static int
1581 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1582 	struct buf **bpp);
1583 
1584 
1585 /*
1586  * Function prototypes for failfast support.
1587  */
1588 static void sd_failfast_flushq(struct sd_lun *un);
1589 static int sd_failfast_flushq_callback(struct buf *bp);
1590 
1591 /*
1592  * Function prototypes to check for lsi devices
1593  */
1594 static void sd_is_lsi(struct sd_lun *un);
1595 
1596 /*
1597  * Function prototypes for partial DMA support
1598  */
1599 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1600 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1601 
1602 
1603 /* Function prototypes for cmlb */
1604 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1605     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1606 
1607 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1608 
1609 /*
1610  * Constants for failfast support:
1611  *
1612  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1613  * failfast processing being performed.
1614  *
1615  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1616  * failfast processing on all bufs with B_FAILFAST set.
1617  */
1618 
1619 #define	SD_FAILFAST_INACTIVE		0
1620 #define	SD_FAILFAST_ACTIVE		1
1621 
1622 /*
1623  * Bitmask to control behavior of buf(9S) flushes when a transition to
1624  * the failfast state occurs. Optional bits include:
1625  *
1626  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1627  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1628  * be flushed.
1629  *
1630  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1631  * driver, in addition to the regular wait queue. This includes the xbuf
1632  * queues. When clear, only the driver's wait queue will be flushed.
1633  */
1634 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1635 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1636 
1637 /*
1638  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1639  * to flush all queues within the driver.
1640  */
1641 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1642 
1643 
1644 /*
1645  * SD Testing Fault Injection
1646  */
1647 #ifdef SD_FAULT_INJECTION
1648 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1649 static void sd_faultinjection(struct scsi_pkt *pktp);
1650 static void sd_injection_log(char *buf, struct sd_lun *un);
1651 #endif
1652 
1653 /*
1654  * Device driver ops vector
1655  */
1656 static struct cb_ops sd_cb_ops = {
1657 	sdopen,			/* open */
1658 	sdclose,		/* close */
1659 	sdstrategy,		/* strategy */
1660 	nodev,			/* print */
1661 	sddump,			/* dump */
1662 	sdread,			/* read */
1663 	sdwrite,		/* write */
1664 	sdioctl,		/* ioctl */
1665 	nodev,			/* devmap */
1666 	nodev,			/* mmap */
1667 	nodev,			/* segmap */
1668 	nochpoll,		/* poll */
1669 	sd_prop_op,		/* cb_prop_op */
1670 	0,			/* streamtab  */
1671 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1672 	CB_REV,			/* cb_rev */
1673 	sdaread, 		/* async I/O read entry point */
1674 	sdawrite		/* async I/O write entry point */
1675 };
1676 
1677 struct dev_ops sd_ops = {
1678 	DEVO_REV,		/* devo_rev, */
1679 	0,			/* refcnt  */
1680 	sdinfo,			/* info */
1681 	nulldev,		/* identify */
1682 	sdprobe,		/* probe */
1683 	sdattach,		/* attach */
1684 	sddetach,		/* detach */
1685 	nodev,			/* reset */
1686 	&sd_cb_ops,		/* driver operations */
1687 	NULL,			/* bus operations */
1688 	sdpower,		/* power */
1689 	ddi_quiesce_not_needed,		/* quiesce */
1690 };
1691 
1692 /*
1693  * This is the loadable module wrapper.
1694  */
1695 #include <sys/modctl.h>
1696 
1697 #ifndef XPV_HVM_DRIVER
1698 static struct modldrv modldrv = {
1699 	&mod_driverops,		/* Type of module. This one is a driver */
1700 	SD_MODULE_NAME,		/* Module name. */
1701 	&sd_ops			/* driver ops */
1702 };
1703 
1704 static struct modlinkage modlinkage = {
1705 	MODREV_1, &modldrv, NULL
1706 };
1707 
1708 #else /* XPV_HVM_DRIVER */
1709 static struct modlmisc modlmisc = {
1710 	&mod_miscops,		/* Type of module. This one is a misc */
1711 	"HVM " SD_MODULE_NAME,		/* Module name. */
1712 };
1713 
1714 static struct modlinkage modlinkage = {
1715 	MODREV_1, &modlmisc, NULL
1716 };
1717 
1718 #endif /* XPV_HVM_DRIVER */
1719 
1720 static cmlb_tg_ops_t sd_tgops = {
1721 	TG_DK_OPS_VERSION_1,
1722 	sd_tg_rdwr,
1723 	sd_tg_getinfo
1724 };
1725 
1726 static struct scsi_asq_key_strings sd_additional_codes[] = {
1727 	0x81, 0, "Logical Unit is Reserved",
1728 	0x85, 0, "Audio Address Not Valid",
1729 	0xb6, 0, "Media Load Mechanism Failed",
1730 	0xB9, 0, "Audio Play Operation Aborted",
1731 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1732 	0x53, 2, "Medium removal prevented",
1733 	0x6f, 0, "Authentication failed during key exchange",
1734 	0x6f, 1, "Key not present",
1735 	0x6f, 2, "Key not established",
1736 	0x6f, 3, "Read without proper authentication",
1737 	0x6f, 4, "Mismatched region to this logical unit",
1738 	0x6f, 5, "Region reset count error",
1739 	0xffff, 0x0, NULL
1740 };
1741 
1742 
1743 /*
1744  * Struct for passing printing information for sense data messages
1745  */
1746 struct sd_sense_info {
1747 	int	ssi_severity;
1748 	int	ssi_pfa_flag;
1749 };
1750 
1751 /*
1752  * Table of function pointers for iostart-side routines. Separate "chains"
1753  * of layered function calls are formed by placing the function pointers
1754  * sequentially in the desired order. Functions are called according to an
1755  * incrementing table index ordering. The last function in each chain must
1756  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1757  * in the sd_iodone_chain[] array.
1758  *
1759  * Note: It may seem more natural to organize both the iostart and iodone
1760  * functions together, into an array of structures (or some similar
1761  * organization) with a common index, rather than two separate arrays which
1762  * must be maintained in synchronization. The purpose of this division is
1763  * to achieve improved performance: individual arrays allows for more
1764  * effective cache line utilization on certain platforms.
1765  */
1766 
1767 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1768 
1769 
1770 static sd_chain_t sd_iostart_chain[] = {
1771 
1772 	/* Chain for buf IO for disk drive targets (PM enabled) */
1773 	sd_mapblockaddr_iostart,	/* Index: 0 */
1774 	sd_pm_iostart,			/* Index: 1 */
1775 	sd_core_iostart,		/* Index: 2 */
1776 
1777 	/* Chain for buf IO for disk drive targets (PM disabled) */
1778 	sd_mapblockaddr_iostart,	/* Index: 3 */
1779 	sd_core_iostart,		/* Index: 4 */
1780 
1781 	/* Chain for buf IO for removable-media targets (PM enabled) */
1782 	sd_mapblockaddr_iostart,	/* Index: 5 */
1783 	sd_mapblocksize_iostart,	/* Index: 6 */
1784 	sd_pm_iostart,			/* Index: 7 */
1785 	sd_core_iostart,		/* Index: 8 */
1786 
1787 	/* Chain for buf IO for removable-media targets (PM disabled) */
1788 	sd_mapblockaddr_iostart,	/* Index: 9 */
1789 	sd_mapblocksize_iostart,	/* Index: 10 */
1790 	sd_core_iostart,		/* Index: 11 */
1791 
1792 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1793 	sd_mapblockaddr_iostart,	/* Index: 12 */
1794 	sd_checksum_iostart,		/* Index: 13 */
1795 	sd_pm_iostart,			/* Index: 14 */
1796 	sd_core_iostart,		/* Index: 15 */
1797 
1798 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1799 	sd_mapblockaddr_iostart,	/* Index: 16 */
1800 	sd_checksum_iostart,		/* Index: 17 */
1801 	sd_core_iostart,		/* Index: 18 */
1802 
1803 	/* Chain for USCSI commands (all targets) */
1804 	sd_pm_iostart,			/* Index: 19 */
1805 	sd_core_iostart,		/* Index: 20 */
1806 
1807 	/* Chain for checksumming USCSI commands (all targets) */
1808 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1809 	sd_pm_iostart,			/* Index: 22 */
1810 	sd_core_iostart,		/* Index: 23 */
1811 
1812 	/* Chain for "direct" USCSI commands (all targets) */
1813 	sd_core_iostart,		/* Index: 24 */
1814 
1815 	/* Chain for "direct priority" USCSI commands (all targets) */
1816 	sd_core_iostart,		/* Index: 25 */
1817 };
1818 
1819 /*
1820  * Macros to locate the first function of each iostart chain in the
1821  * sd_iostart_chain[] array. These are located by the index in the array.
1822  */
1823 #define	SD_CHAIN_DISK_IOSTART			0
1824 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1825 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1826 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1827 #define	SD_CHAIN_CHKSUM_IOSTART			12
1828 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1829 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1830 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1831 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1832 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1833 
1834 
1835 /*
1836  * Table of function pointers for the iodone-side routines for the driver-
1837  * internal layering mechanism.  The calling sequence for iodone routines
1838  * uses a decrementing table index, so the last routine called in a chain
1839  * must be at the lowest array index location for that chain.  The last
1840  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1841  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1842  * of the functions in an iodone side chain must correspond to the ordering
1843  * of the iostart routines for that chain.  Note that there is no iodone
1844  * side routine that corresponds to sd_core_iostart(), so there is no
1845  * entry in the table for this.
1846  */
1847 
1848 static sd_chain_t sd_iodone_chain[] = {
1849 
1850 	/* Chain for buf IO for disk drive targets (PM enabled) */
1851 	sd_buf_iodone,			/* Index: 0 */
1852 	sd_mapblockaddr_iodone,		/* Index: 1 */
1853 	sd_pm_iodone,			/* Index: 2 */
1854 
1855 	/* Chain for buf IO for disk drive targets (PM disabled) */
1856 	sd_buf_iodone,			/* Index: 3 */
1857 	sd_mapblockaddr_iodone,		/* Index: 4 */
1858 
1859 	/* Chain for buf IO for removable-media targets (PM enabled) */
1860 	sd_buf_iodone,			/* Index: 5 */
1861 	sd_mapblockaddr_iodone,		/* Index: 6 */
1862 	sd_mapblocksize_iodone,		/* Index: 7 */
1863 	sd_pm_iodone,			/* Index: 8 */
1864 
1865 	/* Chain for buf IO for removable-media targets (PM disabled) */
1866 	sd_buf_iodone,			/* Index: 9 */
1867 	sd_mapblockaddr_iodone,		/* Index: 10 */
1868 	sd_mapblocksize_iodone,		/* Index: 11 */
1869 
1870 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1871 	sd_buf_iodone,			/* Index: 12 */
1872 	sd_mapblockaddr_iodone,		/* Index: 13 */
1873 	sd_checksum_iodone,		/* Index: 14 */
1874 	sd_pm_iodone,			/* Index: 15 */
1875 
1876 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1877 	sd_buf_iodone,			/* Index: 16 */
1878 	sd_mapblockaddr_iodone,		/* Index: 17 */
1879 	sd_checksum_iodone,		/* Index: 18 */
1880 
1881 	/* Chain for USCSI commands (non-checksum targets) */
1882 	sd_uscsi_iodone,		/* Index: 19 */
1883 	sd_pm_iodone,			/* Index: 20 */
1884 
1885 	/* Chain for USCSI commands (checksum targets) */
1886 	sd_uscsi_iodone,		/* Index: 21 */
1887 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1888 	sd_pm_iodone,			/* Index: 22 */
1889 
1890 	/* Chain for "direct" USCSI commands (all targets) */
1891 	sd_uscsi_iodone,		/* Index: 24 */
1892 
1893 	/* Chain for "direct priority" USCSI commands (all targets) */
1894 	sd_uscsi_iodone,		/* Index: 25 */
1895 };
1896 
1897 
1898 /*
1899  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1900  * each iodone-side chain. These are located by the array index, but as the
1901  * iodone side functions are called in a decrementing-index order, the
1902  * highest index number in each chain must be specified (as these correspond
1903  * to the first function in the iodone chain that will be called by the core
1904  * at IO completion time).
1905  */
1906 
1907 #define	SD_CHAIN_DISK_IODONE			2
1908 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1909 #define	SD_CHAIN_RMMEDIA_IODONE			8
1910 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1911 #define	SD_CHAIN_CHKSUM_IODONE			15
1912 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1913 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1914 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1915 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1916 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1917 
1918 
1919 
1920 
1921 /*
1922  * Array to map a layering chain index to the appropriate initpkt routine.
1923  * The redundant entries are present so that the index used for accessing
1924  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1925  * with this table as well.
1926  */
1927 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1928 
1929 static sd_initpkt_t	sd_initpkt_map[] = {
1930 
1931 	/* Chain for buf IO for disk drive targets (PM enabled) */
1932 	sd_initpkt_for_buf,		/* Index: 0 */
1933 	sd_initpkt_for_buf,		/* Index: 1 */
1934 	sd_initpkt_for_buf,		/* Index: 2 */
1935 
1936 	/* Chain for buf IO for disk drive targets (PM disabled) */
1937 	sd_initpkt_for_buf,		/* Index: 3 */
1938 	sd_initpkt_for_buf,		/* Index: 4 */
1939 
1940 	/* Chain for buf IO for removable-media targets (PM enabled) */
1941 	sd_initpkt_for_buf,		/* Index: 5 */
1942 	sd_initpkt_for_buf,		/* Index: 6 */
1943 	sd_initpkt_for_buf,		/* Index: 7 */
1944 	sd_initpkt_for_buf,		/* Index: 8 */
1945 
1946 	/* Chain for buf IO for removable-media targets (PM disabled) */
1947 	sd_initpkt_for_buf,		/* Index: 9 */
1948 	sd_initpkt_for_buf,		/* Index: 10 */
1949 	sd_initpkt_for_buf,		/* Index: 11 */
1950 
1951 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1952 	sd_initpkt_for_buf,		/* Index: 12 */
1953 	sd_initpkt_for_buf,		/* Index: 13 */
1954 	sd_initpkt_for_buf,		/* Index: 14 */
1955 	sd_initpkt_for_buf,		/* Index: 15 */
1956 
1957 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1958 	sd_initpkt_for_buf,		/* Index: 16 */
1959 	sd_initpkt_for_buf,		/* Index: 17 */
1960 	sd_initpkt_for_buf,		/* Index: 18 */
1961 
1962 	/* Chain for USCSI commands (non-checksum targets) */
1963 	sd_initpkt_for_uscsi,		/* Index: 19 */
1964 	sd_initpkt_for_uscsi,		/* Index: 20 */
1965 
1966 	/* Chain for USCSI commands (checksum targets) */
1967 	sd_initpkt_for_uscsi,		/* Index: 21 */
1968 	sd_initpkt_for_uscsi,		/* Index: 22 */
1969 	sd_initpkt_for_uscsi,		/* Index: 22 */
1970 
1971 	/* Chain for "direct" USCSI commands (all targets) */
1972 	sd_initpkt_for_uscsi,		/* Index: 24 */
1973 
1974 	/* Chain for "direct priority" USCSI commands (all targets) */
1975 	sd_initpkt_for_uscsi,		/* Index: 25 */
1976 
1977 };
1978 
1979 
1980 /*
1981  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1982  * The redundant entries are present so that the index used for accessing
1983  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1984  * with this table as well.
1985  */
1986 typedef void (*sd_destroypkt_t)(struct buf *);
1987 
1988 static sd_destroypkt_t	sd_destroypkt_map[] = {
1989 
1990 	/* Chain for buf IO for disk drive targets (PM enabled) */
1991 	sd_destroypkt_for_buf,		/* Index: 0 */
1992 	sd_destroypkt_for_buf,		/* Index: 1 */
1993 	sd_destroypkt_for_buf,		/* Index: 2 */
1994 
1995 	/* Chain for buf IO for disk drive targets (PM disabled) */
1996 	sd_destroypkt_for_buf,		/* Index: 3 */
1997 	sd_destroypkt_for_buf,		/* Index: 4 */
1998 
1999 	/* Chain for buf IO for removable-media targets (PM enabled) */
2000 	sd_destroypkt_for_buf,		/* Index: 5 */
2001 	sd_destroypkt_for_buf,		/* Index: 6 */
2002 	sd_destroypkt_for_buf,		/* Index: 7 */
2003 	sd_destroypkt_for_buf,		/* Index: 8 */
2004 
2005 	/* Chain for buf IO for removable-media targets (PM disabled) */
2006 	sd_destroypkt_for_buf,		/* Index: 9 */
2007 	sd_destroypkt_for_buf,		/* Index: 10 */
2008 	sd_destroypkt_for_buf,		/* Index: 11 */
2009 
2010 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2011 	sd_destroypkt_for_buf,		/* Index: 12 */
2012 	sd_destroypkt_for_buf,		/* Index: 13 */
2013 	sd_destroypkt_for_buf,		/* Index: 14 */
2014 	sd_destroypkt_for_buf,		/* Index: 15 */
2015 
2016 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2017 	sd_destroypkt_for_buf,		/* Index: 16 */
2018 	sd_destroypkt_for_buf,		/* Index: 17 */
2019 	sd_destroypkt_for_buf,		/* Index: 18 */
2020 
2021 	/* Chain for USCSI commands (non-checksum targets) */
2022 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2023 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2024 
2025 	/* Chain for USCSI commands (checksum targets) */
2026 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2027 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2028 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2029 
2030 	/* Chain for "direct" USCSI commands (all targets) */
2031 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2032 
2033 	/* Chain for "direct priority" USCSI commands (all targets) */
2034 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2035 
2036 };
2037 
2038 
2039 
2040 /*
2041  * Array to map a layering chain index to the appropriate chain "type".
2042  * The chain type indicates a specific property/usage of the chain.
2043  * The redundant entries are present so that the index used for accessing
2044  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2045  * with this table as well.
2046  */
2047 
2048 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2049 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2050 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2051 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2052 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2053 						/* (for error recovery) */
2054 
2055 static int sd_chain_type_map[] = {
2056 
2057 	/* Chain for buf IO for disk drive targets (PM enabled) */
2058 	SD_CHAIN_BUFIO,			/* Index: 0 */
2059 	SD_CHAIN_BUFIO,			/* Index: 1 */
2060 	SD_CHAIN_BUFIO,			/* Index: 2 */
2061 
2062 	/* Chain for buf IO for disk drive targets (PM disabled) */
2063 	SD_CHAIN_BUFIO,			/* Index: 3 */
2064 	SD_CHAIN_BUFIO,			/* Index: 4 */
2065 
2066 	/* Chain for buf IO for removable-media targets (PM enabled) */
2067 	SD_CHAIN_BUFIO,			/* Index: 5 */
2068 	SD_CHAIN_BUFIO,			/* Index: 6 */
2069 	SD_CHAIN_BUFIO,			/* Index: 7 */
2070 	SD_CHAIN_BUFIO,			/* Index: 8 */
2071 
2072 	/* Chain for buf IO for removable-media targets (PM disabled) */
2073 	SD_CHAIN_BUFIO,			/* Index: 9 */
2074 	SD_CHAIN_BUFIO,			/* Index: 10 */
2075 	SD_CHAIN_BUFIO,			/* Index: 11 */
2076 
2077 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2078 	SD_CHAIN_BUFIO,			/* Index: 12 */
2079 	SD_CHAIN_BUFIO,			/* Index: 13 */
2080 	SD_CHAIN_BUFIO,			/* Index: 14 */
2081 	SD_CHAIN_BUFIO,			/* Index: 15 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2084 	SD_CHAIN_BUFIO,			/* Index: 16 */
2085 	SD_CHAIN_BUFIO,			/* Index: 17 */
2086 	SD_CHAIN_BUFIO,			/* Index: 18 */
2087 
2088 	/* Chain for USCSI commands (non-checksum targets) */
2089 	SD_CHAIN_USCSI,			/* Index: 19 */
2090 	SD_CHAIN_USCSI,			/* Index: 20 */
2091 
2092 	/* Chain for USCSI commands (checksum targets) */
2093 	SD_CHAIN_USCSI,			/* Index: 21 */
2094 	SD_CHAIN_USCSI,			/* Index: 22 */
2095 	SD_CHAIN_USCSI,			/* Index: 22 */
2096 
2097 	/* Chain for "direct" USCSI commands (all targets) */
2098 	SD_CHAIN_DIRECT,		/* Index: 24 */
2099 
2100 	/* Chain for "direct priority" USCSI commands (all targets) */
2101 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2102 };
2103 
2104 
2105 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2106 #define	SD_IS_BUFIO(xp)			\
2107 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2108 
2109 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2110 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2111 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2112 
2113 
2114 
2115 /*
2116  * Struct, array, and macros to map a specific chain to the appropriate
2117  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2118  *
2119  * The sd_chain_index_map[] array is used at attach time to set the various
2120  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2121  * chain to be used with the instance. This allows different instances to use
2122  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2123  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2124  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2125  * dynamically & without the use of locking; and (2) a layer may update the
2126  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2127  * to allow for deferred processing of an IO within the same chain from a
2128  * different execution context.
2129  */
2130 
2131 struct sd_chain_index {
2132 	int	sci_iostart_index;
2133 	int	sci_iodone_index;
2134 };
2135 
2136 static struct sd_chain_index	sd_chain_index_map[] = {
2137 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2138 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2139 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2140 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2141 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2142 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2143 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2144 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2145 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2146 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2147 };
2148 
2149 
2150 /*
2151  * The following are indexes into the sd_chain_index_map[] array.
2152  */
2153 
2154 /* un->un_buf_chain_type must be set to one of these */
2155 #define	SD_CHAIN_INFO_DISK		0
2156 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2157 #define	SD_CHAIN_INFO_RMMEDIA		2
2158 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2159 #define	SD_CHAIN_INFO_CHKSUM		4
2160 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2161 
2162 /* un->un_uscsi_chain_type must be set to one of these */
2163 #define	SD_CHAIN_INFO_USCSI_CMD		6
2164 /* USCSI with PM disabled is the same as DIRECT */
2165 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2166 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2167 
2168 /* un->un_direct_chain_type must be set to one of these */
2169 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2170 
2171 /* un->un_priority_chain_type must be set to one of these */
2172 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2173 
2174 /* size for devid inquiries */
2175 #define	MAX_INQUIRY_SIZE		0xF0
2176 
2177 /*
2178  * Macros used by functions to pass a given buf(9S) struct along to the
2179  * next function in the layering chain for further processing.
2180  *
2181  * In the following macros, passing more than three arguments to the called
2182  * routines causes the optimizer for the SPARC compiler to stop doing tail
2183  * call elimination which results in significant performance degradation.
2184  */
2185 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2186 	((*(sd_iostart_chain[index]))(index, un, bp))
2187 
2188 #define	SD_BEGIN_IODONE(index, un, bp)	\
2189 	((*(sd_iodone_chain[index]))(index, un, bp))
2190 
2191 #define	SD_NEXT_IOSTART(index, un, bp)				\
2192 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2193 
2194 #define	SD_NEXT_IODONE(index, un, bp)				\
2195 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2196 
2197 /*
2198  *    Function: _init
2199  *
2200  * Description: This is the driver _init(9E) entry point.
2201  *
2202  * Return Code: Returns the value from mod_install(9F) or
2203  *		ddi_soft_state_init(9F) as appropriate.
2204  *
2205  *     Context: Called when driver module loaded.
2206  */
2207 
2208 int
2209 _init(void)
2210 {
2211 	int	err;
2212 
2213 	/* establish driver name from module name */
2214 	sd_label = (char *)mod_modname(&modlinkage);
2215 
2216 #ifndef XPV_HVM_DRIVER
2217 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2218 	    SD_MAXUNIT);
2219 	if (err != 0) {
2220 		return (err);
2221 	}
2222 
2223 #else /* XPV_HVM_DRIVER */
2224 	/* Remove the leading "hvm_" from the module name */
2225 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2226 	sd_label += strlen("hvm_");
2227 
2228 #endif /* XPV_HVM_DRIVER */
2229 
2230 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2231 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2232 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2233 
2234 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2235 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2236 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2237 
2238 	/*
2239 	 * it's ok to init here even for fibre device
2240 	 */
2241 	sd_scsi_probe_cache_init();
2242 
2243 	sd_scsi_target_lun_init();
2244 
2245 	/*
2246 	 * Creating taskq before mod_install ensures that all callers (threads)
2247 	 * that enter the module after a successful mod_install encounter
2248 	 * a valid taskq.
2249 	 */
2250 	sd_taskq_create();
2251 
2252 	err = mod_install(&modlinkage);
2253 	if (err != 0) {
2254 		/* delete taskq if install fails */
2255 		sd_taskq_delete();
2256 
2257 		mutex_destroy(&sd_detach_mutex);
2258 		mutex_destroy(&sd_log_mutex);
2259 		mutex_destroy(&sd_label_mutex);
2260 
2261 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2262 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2263 		cv_destroy(&sd_tr.srq_inprocess_cv);
2264 
2265 		sd_scsi_probe_cache_fini();
2266 
2267 		sd_scsi_target_lun_fini();
2268 
2269 #ifndef XPV_HVM_DRIVER
2270 		ddi_soft_state_fini(&sd_state);
2271 #endif /* !XPV_HVM_DRIVER */
2272 		return (err);
2273 	}
2274 
2275 	return (err);
2276 }
2277 
2278 
2279 /*
2280  *    Function: _fini
2281  *
2282  * Description: This is the driver _fini(9E) entry point.
2283  *
2284  * Return Code: Returns the value from mod_remove(9F)
2285  *
2286  *     Context: Called when driver module is unloaded.
2287  */
2288 
2289 int
2290 _fini(void)
2291 {
2292 	int err;
2293 
2294 	if ((err = mod_remove(&modlinkage)) != 0) {
2295 		return (err);
2296 	}
2297 
2298 	sd_taskq_delete();
2299 
2300 	mutex_destroy(&sd_detach_mutex);
2301 	mutex_destroy(&sd_log_mutex);
2302 	mutex_destroy(&sd_label_mutex);
2303 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2304 
2305 	sd_scsi_probe_cache_fini();
2306 
2307 	sd_scsi_target_lun_fini();
2308 
2309 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2310 	cv_destroy(&sd_tr.srq_inprocess_cv);
2311 
2312 #ifndef XPV_HVM_DRIVER
2313 	ddi_soft_state_fini(&sd_state);
2314 #endif /* !XPV_HVM_DRIVER */
2315 
2316 	return (err);
2317 }
2318 
2319 
2320 /*
2321  *    Function: _info
2322  *
2323  * Description: This is the driver _info(9E) entry point.
2324  *
2325  *   Arguments: modinfop - pointer to the driver modinfo structure
2326  *
2327  * Return Code: Returns the value from mod_info(9F).
2328  *
2329  *     Context: Kernel thread context
2330  */
2331 
2332 int
2333 _info(struct modinfo *modinfop)
2334 {
2335 	return (mod_info(&modlinkage, modinfop));
2336 }
2337 
2338 
2339 /*
2340  * The following routines implement the driver message logging facility.
2341  * They provide component- and level- based debug output filtering.
2342  * Output may also be restricted to messages for a single instance by
2343  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2344  * to NULL, then messages for all instances are printed.
2345  *
2346  * These routines have been cloned from each other due to the language
2347  * constraints of macros and variable argument list processing.
2348  */
2349 
2350 
2351 /*
2352  *    Function: sd_log_err
2353  *
2354  * Description: This routine is called by the SD_ERROR macro for debug
2355  *		logging of error conditions.
2356  *
2357  *   Arguments: comp - driver component being logged
2358  *		dev  - pointer to driver info structure
2359  *		fmt  - error string and format to be logged
2360  */
2361 
2362 static void
2363 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2364 {
2365 	va_list		ap;
2366 	dev_info_t	*dev;
2367 
2368 	ASSERT(un != NULL);
2369 	dev = SD_DEVINFO(un);
2370 	ASSERT(dev != NULL);
2371 
2372 	/*
2373 	 * Filter messages based on the global component and level masks.
2374 	 * Also print if un matches the value of sd_debug_un, or if
2375 	 * sd_debug_un is set to NULL.
2376 	 */
2377 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2378 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2379 		mutex_enter(&sd_log_mutex);
2380 		va_start(ap, fmt);
2381 		(void) vsprintf(sd_log_buf, fmt, ap);
2382 		va_end(ap);
2383 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2384 		mutex_exit(&sd_log_mutex);
2385 	}
2386 #ifdef SD_FAULT_INJECTION
2387 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2388 	if (un->sd_injection_mask & comp) {
2389 		mutex_enter(&sd_log_mutex);
2390 		va_start(ap, fmt);
2391 		(void) vsprintf(sd_log_buf, fmt, ap);
2392 		va_end(ap);
2393 		sd_injection_log(sd_log_buf, un);
2394 		mutex_exit(&sd_log_mutex);
2395 	}
2396 #endif
2397 }
2398 
2399 
2400 /*
2401  *    Function: sd_log_info
2402  *
2403  * Description: This routine is called by the SD_INFO macro for debug
2404  *		logging of general purpose informational conditions.
2405  *
2406  *   Arguments: comp - driver component being logged
2407  *		dev  - pointer to driver info structure
2408  *		fmt  - info string and format to be logged
2409  */
2410 
2411 static void
2412 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2413 {
2414 	va_list		ap;
2415 	dev_info_t	*dev;
2416 
2417 	ASSERT(un != NULL);
2418 	dev = SD_DEVINFO(un);
2419 	ASSERT(dev != NULL);
2420 
2421 	/*
2422 	 * Filter messages based on the global component and level masks.
2423 	 * Also print if un matches the value of sd_debug_un, or if
2424 	 * sd_debug_un is set to NULL.
2425 	 */
2426 	if ((sd_component_mask & component) &&
2427 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2428 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2429 		mutex_enter(&sd_log_mutex);
2430 		va_start(ap, fmt);
2431 		(void) vsprintf(sd_log_buf, fmt, ap);
2432 		va_end(ap);
2433 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2434 		mutex_exit(&sd_log_mutex);
2435 	}
2436 #ifdef SD_FAULT_INJECTION
2437 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2438 	if (un->sd_injection_mask & component) {
2439 		mutex_enter(&sd_log_mutex);
2440 		va_start(ap, fmt);
2441 		(void) vsprintf(sd_log_buf, fmt, ap);
2442 		va_end(ap);
2443 		sd_injection_log(sd_log_buf, un);
2444 		mutex_exit(&sd_log_mutex);
2445 	}
2446 #endif
2447 }
2448 
2449 
2450 /*
2451  *    Function: sd_log_trace
2452  *
2453  * Description: This routine is called by the SD_TRACE macro for debug
2454  *		logging of trace conditions (i.e. function entry/exit).
2455  *
2456  *   Arguments: comp - driver component being logged
2457  *		dev  - pointer to driver info structure
2458  *		fmt  - trace string and format to be logged
2459  */
2460 
2461 static void
2462 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2463 {
2464 	va_list		ap;
2465 	dev_info_t	*dev;
2466 
2467 	ASSERT(un != NULL);
2468 	dev = SD_DEVINFO(un);
2469 	ASSERT(dev != NULL);
2470 
2471 	/*
2472 	 * Filter messages based on the global component and level masks.
2473 	 * Also print if un matches the value of sd_debug_un, or if
2474 	 * sd_debug_un is set to NULL.
2475 	 */
2476 	if ((sd_component_mask & component) &&
2477 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2478 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2479 		mutex_enter(&sd_log_mutex);
2480 		va_start(ap, fmt);
2481 		(void) vsprintf(sd_log_buf, fmt, ap);
2482 		va_end(ap);
2483 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2484 		mutex_exit(&sd_log_mutex);
2485 	}
2486 #ifdef SD_FAULT_INJECTION
2487 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2488 	if (un->sd_injection_mask & component) {
2489 		mutex_enter(&sd_log_mutex);
2490 		va_start(ap, fmt);
2491 		(void) vsprintf(sd_log_buf, fmt, ap);
2492 		va_end(ap);
2493 		sd_injection_log(sd_log_buf, un);
2494 		mutex_exit(&sd_log_mutex);
2495 	}
2496 #endif
2497 }
2498 
2499 
2500 /*
2501  *    Function: sdprobe
2502  *
2503  * Description: This is the driver probe(9e) entry point function.
2504  *
2505  *   Arguments: devi - opaque device info handle
2506  *
2507  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2508  *              DDI_PROBE_FAILURE: If the probe failed.
2509  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2510  *				   but may be present in the future.
2511  */
2512 
2513 static int
2514 sdprobe(dev_info_t *devi)
2515 {
2516 	struct scsi_device	*devp;
2517 	int			rval;
2518 #ifndef XPV_HVM_DRIVER
2519 	int			instance = ddi_get_instance(devi);
2520 #endif /* !XPV_HVM_DRIVER */
2521 
2522 	/*
2523 	 * if it wasn't for pln, sdprobe could actually be nulldev
2524 	 * in the "__fibre" case.
2525 	 */
2526 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2527 		return (DDI_PROBE_DONTCARE);
2528 	}
2529 
2530 	devp = ddi_get_driver_private(devi);
2531 
2532 	if (devp == NULL) {
2533 		/* Ooops... nexus driver is mis-configured... */
2534 		return (DDI_PROBE_FAILURE);
2535 	}
2536 
2537 #ifndef XPV_HVM_DRIVER
2538 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2539 		return (DDI_PROBE_PARTIAL);
2540 	}
2541 #endif /* !XPV_HVM_DRIVER */
2542 
2543 	/*
2544 	 * Call the SCSA utility probe routine to see if we actually
2545 	 * have a target at this SCSI nexus.
2546 	 */
2547 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2548 	case SCSIPROBE_EXISTS:
2549 		switch (devp->sd_inq->inq_dtype) {
2550 		case DTYPE_DIRECT:
2551 			rval = DDI_PROBE_SUCCESS;
2552 			break;
2553 		case DTYPE_RODIRECT:
2554 			/* CDs etc. Can be removable media */
2555 			rval = DDI_PROBE_SUCCESS;
2556 			break;
2557 		case DTYPE_OPTICAL:
2558 			/*
2559 			 * Rewritable optical driver HP115AA
2560 			 * Can also be removable media
2561 			 */
2562 
2563 			/*
2564 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2565 			 * pre solaris 9 sparc sd behavior is required
2566 			 *
2567 			 * If first time through and sd_dtype_optical_bind
2568 			 * has not been set in /etc/system check properties
2569 			 */
2570 
2571 			if (sd_dtype_optical_bind  < 0) {
2572 				sd_dtype_optical_bind = ddi_prop_get_int
2573 				    (DDI_DEV_T_ANY, devi, 0,
2574 				    "optical-device-bind", 1);
2575 			}
2576 
2577 			if (sd_dtype_optical_bind == 0) {
2578 				rval = DDI_PROBE_FAILURE;
2579 			} else {
2580 				rval = DDI_PROBE_SUCCESS;
2581 			}
2582 			break;
2583 
2584 		case DTYPE_NOTPRESENT:
2585 		default:
2586 			rval = DDI_PROBE_FAILURE;
2587 			break;
2588 		}
2589 		break;
2590 	default:
2591 		rval = DDI_PROBE_PARTIAL;
2592 		break;
2593 	}
2594 
2595 	/*
2596 	 * This routine checks for resource allocation prior to freeing,
2597 	 * so it will take care of the "smart probing" case where a
2598 	 * scsi_probe() may or may not have been issued and will *not*
2599 	 * free previously-freed resources.
2600 	 */
2601 	scsi_unprobe(devp);
2602 	return (rval);
2603 }
2604 
2605 
2606 /*
2607  *    Function: sdinfo
2608  *
2609  * Description: This is the driver getinfo(9e) entry point function.
2610  * 		Given the device number, return the devinfo pointer from
2611  *		the scsi_device structure or the instance number
2612  *		associated with the dev_t.
2613  *
2614  *   Arguments: dip     - pointer to device info structure
2615  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2616  *			  DDI_INFO_DEVT2INSTANCE)
2617  *		arg     - driver dev_t
2618  *		resultp - user buffer for request response
2619  *
2620  * Return Code: DDI_SUCCESS
2621  *              DDI_FAILURE
2622  */
2623 /* ARGSUSED */
2624 static int
2625 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2626 {
2627 	struct sd_lun	*un;
2628 	dev_t		dev;
2629 	int		instance;
2630 	int		error;
2631 
2632 	switch (infocmd) {
2633 	case DDI_INFO_DEVT2DEVINFO:
2634 		dev = (dev_t)arg;
2635 		instance = SDUNIT(dev);
2636 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2637 			return (DDI_FAILURE);
2638 		}
2639 		*result = (void *) SD_DEVINFO(un);
2640 		error = DDI_SUCCESS;
2641 		break;
2642 	case DDI_INFO_DEVT2INSTANCE:
2643 		dev = (dev_t)arg;
2644 		instance = SDUNIT(dev);
2645 		*result = (void *)(uintptr_t)instance;
2646 		error = DDI_SUCCESS;
2647 		break;
2648 	default:
2649 		error = DDI_FAILURE;
2650 	}
2651 	return (error);
2652 }
2653 
2654 /*
2655  *    Function: sd_prop_op
2656  *
2657  * Description: This is the driver prop_op(9e) entry point function.
2658  *		Return the number of blocks for the partition in question
2659  *		or forward the request to the property facilities.
2660  *
2661  *   Arguments: dev       - device number
2662  *		dip       - pointer to device info structure
2663  *		prop_op   - property operator
2664  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2665  *		name      - pointer to property name
2666  *		valuep    - pointer or address of the user buffer
2667  *		lengthp   - property length
2668  *
2669  * Return Code: DDI_PROP_SUCCESS
2670  *              DDI_PROP_NOT_FOUND
2671  *              DDI_PROP_UNDEFINED
2672  *              DDI_PROP_NO_MEMORY
2673  *              DDI_PROP_BUF_TOO_SMALL
2674  */
2675 
2676 static int
2677 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2678 	char *name, caddr_t valuep, int *lengthp)
2679 {
2680 	struct sd_lun	*un;
2681 
2682 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2683 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2684 		    name, valuep, lengthp));
2685 
2686 	return (cmlb_prop_op(un->un_cmlbhandle,
2687 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2688 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2689 }
2690 
2691 /*
2692  * The following functions are for smart probing:
2693  * sd_scsi_probe_cache_init()
2694  * sd_scsi_probe_cache_fini()
2695  * sd_scsi_clear_probe_cache()
2696  * sd_scsi_probe_with_cache()
2697  */
2698 
2699 /*
2700  *    Function: sd_scsi_probe_cache_init
2701  *
2702  * Description: Initializes the probe response cache mutex and head pointer.
2703  *
2704  *     Context: Kernel thread context
2705  */
2706 
2707 static void
2708 sd_scsi_probe_cache_init(void)
2709 {
2710 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2711 	sd_scsi_probe_cache_head = NULL;
2712 }
2713 
2714 
2715 /*
2716  *    Function: sd_scsi_probe_cache_fini
2717  *
2718  * Description: Frees all resources associated with the probe response cache.
2719  *
2720  *     Context: Kernel thread context
2721  */
2722 
2723 static void
2724 sd_scsi_probe_cache_fini(void)
2725 {
2726 	struct sd_scsi_probe_cache *cp;
2727 	struct sd_scsi_probe_cache *ncp;
2728 
2729 	/* Clean up our smart probing linked list */
2730 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2731 		ncp = cp->next;
2732 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2733 	}
2734 	sd_scsi_probe_cache_head = NULL;
2735 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2736 }
2737 
2738 
2739 /*
2740  *    Function: sd_scsi_clear_probe_cache
2741  *
2742  * Description: This routine clears the probe response cache. This is
2743  *		done when open() returns ENXIO so that when deferred
2744  *		attach is attempted (possibly after a device has been
2745  *		turned on) we will retry the probe. Since we don't know
2746  *		which target we failed to open, we just clear the
2747  *		entire cache.
2748  *
2749  *     Context: Kernel thread context
2750  */
2751 
2752 static void
2753 sd_scsi_clear_probe_cache(void)
2754 {
2755 	struct sd_scsi_probe_cache	*cp;
2756 	int				i;
2757 
2758 	mutex_enter(&sd_scsi_probe_cache_mutex);
2759 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2760 		/*
2761 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2762 		 * force probing to be performed the next time
2763 		 * sd_scsi_probe_with_cache is called.
2764 		 */
2765 		for (i = 0; i < NTARGETS_WIDE; i++) {
2766 			cp->cache[i] = SCSIPROBE_EXISTS;
2767 		}
2768 	}
2769 	mutex_exit(&sd_scsi_probe_cache_mutex);
2770 }
2771 
2772 
2773 /*
2774  *    Function: sd_scsi_probe_with_cache
2775  *
2776  * Description: This routine implements support for a scsi device probe
2777  *		with cache. The driver maintains a cache of the target
2778  *		responses to scsi probes. If we get no response from a
2779  *		target during a probe inquiry, we remember that, and we
2780  *		avoid additional calls to scsi_probe on non-zero LUNs
2781  *		on the same target until the cache is cleared. By doing
2782  *		so we avoid the 1/4 sec selection timeout for nonzero
2783  *		LUNs. lun0 of a target is always probed.
2784  *
2785  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2786  *              waitfunc - indicates what the allocator routines should
2787  *			   do when resources are not available. This value
2788  *			   is passed on to scsi_probe() when that routine
2789  *			   is called.
2790  *
2791  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2792  *		otherwise the value returned by scsi_probe(9F).
2793  *
2794  *     Context: Kernel thread context
2795  */
2796 
2797 static int
2798 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2799 {
2800 	struct sd_scsi_probe_cache	*cp;
2801 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2802 	int		lun, tgt;
2803 
2804 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2805 	    SCSI_ADDR_PROP_LUN, 0);
2806 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2807 	    SCSI_ADDR_PROP_TARGET, -1);
2808 
2809 	/* Make sure caching enabled and target in range */
2810 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2811 		/* do it the old way (no cache) */
2812 		return (scsi_probe(devp, waitfn));
2813 	}
2814 
2815 	mutex_enter(&sd_scsi_probe_cache_mutex);
2816 
2817 	/* Find the cache for this scsi bus instance */
2818 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2819 		if (cp->pdip == pdip) {
2820 			break;
2821 		}
2822 	}
2823 
2824 	/* If we can't find a cache for this pdip, create one */
2825 	if (cp == NULL) {
2826 		int i;
2827 
2828 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2829 		    KM_SLEEP);
2830 		cp->pdip = pdip;
2831 		cp->next = sd_scsi_probe_cache_head;
2832 		sd_scsi_probe_cache_head = cp;
2833 		for (i = 0; i < NTARGETS_WIDE; i++) {
2834 			cp->cache[i] = SCSIPROBE_EXISTS;
2835 		}
2836 	}
2837 
2838 	mutex_exit(&sd_scsi_probe_cache_mutex);
2839 
2840 	/* Recompute the cache for this target if LUN zero */
2841 	if (lun == 0) {
2842 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2843 	}
2844 
2845 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2846 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2847 		return (SCSIPROBE_NORESP);
2848 	}
2849 
2850 	/* Do the actual probe; save & return the result */
2851 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2852 }
2853 
2854 
2855 /*
2856  *    Function: sd_scsi_target_lun_init
2857  *
2858  * Description: Initializes the attached lun chain mutex and head pointer.
2859  *
2860  *     Context: Kernel thread context
2861  */
2862 
2863 static void
2864 sd_scsi_target_lun_init(void)
2865 {
2866 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2867 	sd_scsi_target_lun_head = NULL;
2868 }
2869 
2870 
2871 /*
2872  *    Function: sd_scsi_target_lun_fini
2873  *
2874  * Description: Frees all resources associated with the attached lun
2875  *              chain
2876  *
2877  *     Context: Kernel thread context
2878  */
2879 
2880 static void
2881 sd_scsi_target_lun_fini(void)
2882 {
2883 	struct sd_scsi_hba_tgt_lun	*cp;
2884 	struct sd_scsi_hba_tgt_lun	*ncp;
2885 
2886 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2887 		ncp = cp->next;
2888 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2889 	}
2890 	sd_scsi_target_lun_head = NULL;
2891 	mutex_destroy(&sd_scsi_target_lun_mutex);
2892 }
2893 
2894 
2895 /*
2896  *    Function: sd_scsi_get_target_lun_count
2897  *
2898  * Description: This routine will check in the attached lun chain to see
2899  * 		how many luns are attached on the required SCSI controller
2900  * 		and target. Currently, some capabilities like tagged queue
2901  *		are supported per target based by HBA. So all luns in a
2902  *		target have the same capabilities. Based on this assumption,
2903  * 		sd should only set these capabilities once per target. This
2904  *		function is called when sd needs to decide how many luns
2905  *		already attached on a target.
2906  *
2907  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2908  *			  controller device.
2909  *              target	- The target ID on the controller's SCSI bus.
2910  *
2911  * Return Code: The number of luns attached on the required target and
2912  *		controller.
2913  *		-1 if target ID is not in parallel SCSI scope or the given
2914  * 		dip is not in the chain.
2915  *
2916  *     Context: Kernel thread context
2917  */
2918 
2919 static int
2920 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2921 {
2922 	struct sd_scsi_hba_tgt_lun	*cp;
2923 
2924 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2925 		return (-1);
2926 	}
2927 
2928 	mutex_enter(&sd_scsi_target_lun_mutex);
2929 
2930 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2931 		if (cp->pdip == dip) {
2932 			break;
2933 		}
2934 	}
2935 
2936 	mutex_exit(&sd_scsi_target_lun_mutex);
2937 
2938 	if (cp == NULL) {
2939 		return (-1);
2940 	}
2941 
2942 	return (cp->nlun[target]);
2943 }
2944 
2945 
2946 /*
2947  *    Function: sd_scsi_update_lun_on_target
2948  *
2949  * Description: This routine is used to update the attached lun chain when a
2950  *		lun is attached or detached on a target.
2951  *
2952  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2953  *                        controller device.
2954  *              target  - The target ID on the controller's SCSI bus.
2955  *		flag	- Indicate the lun is attached or detached.
2956  *
2957  *     Context: Kernel thread context
2958  */
2959 
2960 static void
2961 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2962 {
2963 	struct sd_scsi_hba_tgt_lun	*cp;
2964 
2965 	mutex_enter(&sd_scsi_target_lun_mutex);
2966 
2967 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2968 		if (cp->pdip == dip) {
2969 			break;
2970 		}
2971 	}
2972 
2973 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2974 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2975 		    KM_SLEEP);
2976 		cp->pdip = dip;
2977 		cp->next = sd_scsi_target_lun_head;
2978 		sd_scsi_target_lun_head = cp;
2979 	}
2980 
2981 	mutex_exit(&sd_scsi_target_lun_mutex);
2982 
2983 	if (cp != NULL) {
2984 		if (flag == SD_SCSI_LUN_ATTACH) {
2985 			cp->nlun[target] ++;
2986 		} else {
2987 			cp->nlun[target] --;
2988 		}
2989 	}
2990 }
2991 
2992 
2993 /*
2994  *    Function: sd_spin_up_unit
2995  *
2996  * Description: Issues the following commands to spin-up the device:
2997  *		START STOP UNIT, and INQUIRY.
2998  *
2999  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3000  *                      structure for this target.
3001  *
3002  * Return Code: 0 - success
3003  *		EIO - failure
3004  *		EACCES - reservation conflict
3005  *
3006  *     Context: Kernel thread context
3007  */
3008 
3009 static int
3010 sd_spin_up_unit(sd_ssc_t *ssc)
3011 {
3012 	size_t	resid		= 0;
3013 	int	has_conflict	= FALSE;
3014 	uchar_t *bufaddr;
3015 	int 	status;
3016 	struct sd_lun	*un;
3017 
3018 	ASSERT(ssc != NULL);
3019 	un = ssc->ssc_un;
3020 	ASSERT(un != NULL);
3021 
3022 	/*
3023 	 * Send a throwaway START UNIT command.
3024 	 *
3025 	 * If we fail on this, we don't care presently what precisely
3026 	 * is wrong.  EMC's arrays will also fail this with a check
3027 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3028 	 * we don't want to fail the attach because it may become
3029 	 * "active" later.
3030 	 */
3031 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
3032 	    SD_PATH_DIRECT);
3033 
3034 	if (status != 0) {
3035 		if (status == EACCES)
3036 			has_conflict = TRUE;
3037 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3038 	}
3039 
3040 	/*
3041 	 * Send another INQUIRY command to the target. This is necessary for
3042 	 * non-removable media direct access devices because their INQUIRY data
3043 	 * may not be fully qualified until they are spun up (perhaps via the
3044 	 * START command above).  Note: This seems to be needed for some
3045 	 * legacy devices only.) The INQUIRY command should succeed even if a
3046 	 * Reservation Conflict is present.
3047 	 */
3048 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3049 
3050 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3051 	    != 0) {
3052 		kmem_free(bufaddr, SUN_INQSIZE);
3053 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3054 		return (EIO);
3055 	}
3056 
3057 	/*
3058 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3059 	 * Note that this routine does not return a failure here even if the
3060 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3061 	 */
3062 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3063 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3064 	}
3065 
3066 	kmem_free(bufaddr, SUN_INQSIZE);
3067 
3068 	/* If we hit a reservation conflict above, tell the caller. */
3069 	if (has_conflict == TRUE) {
3070 		return (EACCES);
3071 	}
3072 
3073 	return (0);
3074 }
3075 
3076 #ifdef _LP64
3077 /*
3078  *    Function: sd_enable_descr_sense
3079  *
3080  * Description: This routine attempts to select descriptor sense format
3081  *		using the Control mode page.  Devices that support 64 bit
3082  *		LBAs (for >2TB luns) should also implement descriptor
3083  *		sense data so we will call this function whenever we see
3084  *		a lun larger than 2TB.  If for some reason the device
3085  *		supports 64 bit LBAs but doesn't support descriptor sense
3086  *		presumably the mode select will fail.  Everything will
3087  *		continue to work normally except that we will not get
3088  *		complete sense data for commands that fail with an LBA
3089  *		larger than 32 bits.
3090  *
3091  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3092  *                      structure for this target.
3093  *
3094  *     Context: Kernel thread context only
3095  */
3096 
3097 static void
3098 sd_enable_descr_sense(sd_ssc_t *ssc)
3099 {
3100 	uchar_t			*header;
3101 	struct mode_control_scsi3 *ctrl_bufp;
3102 	size_t			buflen;
3103 	size_t			bd_len;
3104 	int			status;
3105 	struct sd_lun		*un;
3106 
3107 	ASSERT(ssc != NULL);
3108 	un = ssc->ssc_un;
3109 	ASSERT(un != NULL);
3110 
3111 	/*
3112 	 * Read MODE SENSE page 0xA, Control Mode Page
3113 	 */
3114 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3115 	    sizeof (struct mode_control_scsi3);
3116 	header = kmem_zalloc(buflen, KM_SLEEP);
3117 
3118 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3119 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3120 
3121 	if (status != 0) {
3122 		SD_ERROR(SD_LOG_COMMON, un,
3123 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3124 		goto eds_exit;
3125 	}
3126 
3127 	/*
3128 	 * Determine size of Block Descriptors in order to locate
3129 	 * the mode page data. ATAPI devices return 0, SCSI devices
3130 	 * should return MODE_BLK_DESC_LENGTH.
3131 	 */
3132 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3133 
3134 	/* Clear the mode data length field for MODE SELECT */
3135 	((struct mode_header *)header)->length = 0;
3136 
3137 	ctrl_bufp = (struct mode_control_scsi3 *)
3138 	    (header + MODE_HEADER_LENGTH + bd_len);
3139 
3140 	/*
3141 	 * If the page length is smaller than the expected value,
3142 	 * the target device doesn't support D_SENSE. Bail out here.
3143 	 */
3144 	if (ctrl_bufp->mode_page.length <
3145 	    sizeof (struct mode_control_scsi3) - 2) {
3146 		SD_ERROR(SD_LOG_COMMON, un,
3147 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3148 		goto eds_exit;
3149 	}
3150 
3151 	/*
3152 	 * Clear PS bit for MODE SELECT
3153 	 */
3154 	ctrl_bufp->mode_page.ps = 0;
3155 
3156 	/*
3157 	 * Set D_SENSE to enable descriptor sense format.
3158 	 */
3159 	ctrl_bufp->d_sense = 1;
3160 
3161 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3162 
3163 	/*
3164 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3165 	 */
3166 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3167 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3168 
3169 	if (status != 0) {
3170 		SD_INFO(SD_LOG_COMMON, un,
3171 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3172 	} else {
3173 		kmem_free(header, buflen);
3174 		return;
3175 	}
3176 
3177 eds_exit:
3178 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3179 	kmem_free(header, buflen);
3180 }
3181 
3182 /*
3183  *    Function: sd_reenable_dsense_task
3184  *
3185  * Description: Re-enable descriptor sense after device or bus reset
3186  *
3187  *     Context: Executes in a taskq() thread context
3188  */
3189 static void
3190 sd_reenable_dsense_task(void *arg)
3191 {
3192 	struct	sd_lun	*un = arg;
3193 	sd_ssc_t	*ssc;
3194 
3195 	ASSERT(un != NULL);
3196 
3197 	ssc = sd_ssc_init(un);
3198 	sd_enable_descr_sense(ssc);
3199 	sd_ssc_fini(ssc);
3200 }
3201 #endif /* _LP64 */
3202 
3203 /*
3204  *    Function: sd_set_mmc_caps
3205  *
3206  * Description: This routine determines if the device is MMC compliant and if
3207  *		the device supports CDDA via a mode sense of the CDVD
3208  *		capabilities mode page. Also checks if the device is a
3209  *		dvdram writable device.
3210  *
3211  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3212  *                      structure for this target.
3213  *
3214  *     Context: Kernel thread context only
3215  */
3216 
3217 static void
3218 sd_set_mmc_caps(sd_ssc_t *ssc)
3219 {
3220 	struct mode_header_grp2		*sense_mhp;
3221 	uchar_t				*sense_page;
3222 	caddr_t				buf;
3223 	int				bd_len;
3224 	int				status;
3225 	struct uscsi_cmd		com;
3226 	int				rtn;
3227 	uchar_t				*out_data_rw, *out_data_hd;
3228 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3229 	struct sd_lun			*un;
3230 
3231 	ASSERT(ssc != NULL);
3232 	un = ssc->ssc_un;
3233 	ASSERT(un != NULL);
3234 
3235 	/*
3236 	 * The flags which will be set in this function are - mmc compliant,
3237 	 * dvdram writable device, cdda support. Initialize them to FALSE
3238 	 * and if a capability is detected - it will be set to TRUE.
3239 	 */
3240 	un->un_f_mmc_cap = FALSE;
3241 	un->un_f_dvdram_writable_device = FALSE;
3242 	un->un_f_cfg_cdda = FALSE;
3243 
3244 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3245 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3246 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3247 
3248 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3249 
3250 	if (status != 0) {
3251 		/* command failed; just return */
3252 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3253 		return;
3254 	}
3255 	/*
3256 	 * If the mode sense request for the CDROM CAPABILITIES
3257 	 * page (0x2A) succeeds the device is assumed to be MMC.
3258 	 */
3259 	un->un_f_mmc_cap = TRUE;
3260 
3261 	/* Get to the page data */
3262 	sense_mhp = (struct mode_header_grp2 *)buf;
3263 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3264 	    sense_mhp->bdesc_length_lo;
3265 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3266 		/*
3267 		 * We did not get back the expected block descriptor
3268 		 * length so we cannot determine if the device supports
3269 		 * CDDA. However, we still indicate the device is MMC
3270 		 * according to the successful response to the page
3271 		 * 0x2A mode sense request.
3272 		 */
3273 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3274 		    "sd_set_mmc_caps: Mode Sense returned "
3275 		    "invalid block descriptor length\n");
3276 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3277 		return;
3278 	}
3279 
3280 	/* See if read CDDA is supported */
3281 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3282 	    bd_len);
3283 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3284 
3285 	/* See if writing DVD RAM is supported. */
3286 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3287 	if (un->un_f_dvdram_writable_device == TRUE) {
3288 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3289 		return;
3290 	}
3291 
3292 	/*
3293 	 * If the device presents DVD or CD capabilities in the mode
3294 	 * page, we can return here since a RRD will not have
3295 	 * these capabilities.
3296 	 */
3297 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3298 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3299 		return;
3300 	}
3301 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3302 
3303 	/*
3304 	 * If un->un_f_dvdram_writable_device is still FALSE,
3305 	 * check for a Removable Rigid Disk (RRD).  A RRD
3306 	 * device is identified by the features RANDOM_WRITABLE and
3307 	 * HARDWARE_DEFECT_MANAGEMENT.
3308 	 */
3309 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3310 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3311 
3312 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3313 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3314 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3315 
3316 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3317 
3318 	if (rtn != 0) {
3319 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3320 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3321 		return;
3322 	}
3323 
3324 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3325 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3326 
3327 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3328 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3329 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3330 
3331 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3332 
3333 	if (rtn == 0) {
3334 		/*
3335 		 * We have good information, check for random writable
3336 		 * and hardware defect features.
3337 		 */
3338 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3339 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3340 			un->un_f_dvdram_writable_device = TRUE;
3341 		}
3342 	}
3343 
3344 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3345 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3346 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3347 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3348 }
3349 
3350 /*
3351  *    Function: sd_check_for_writable_cd
3352  *
3353  * Description: This routine determines if the media in the device is
3354  *		writable or not. It uses the get configuration command (0x46)
3355  *		to determine if the media is writable
3356  *
3357  *   Arguments: un - driver soft state (unit) structure
3358  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3359  *                           chain and the normal command waitq, or
3360  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3361  *                           "direct" chain and bypass the normal command
3362  *                           waitq.
3363  *
3364  *     Context: Never called at interrupt context.
3365  */
3366 
3367 static void
3368 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3369 {
3370 	struct uscsi_cmd		com;
3371 	uchar_t				*out_data;
3372 	uchar_t				*rqbuf;
3373 	int				rtn;
3374 	uchar_t				*out_data_rw, *out_data_hd;
3375 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3376 	struct mode_header_grp2		*sense_mhp;
3377 	uchar_t				*sense_page;
3378 	caddr_t				buf;
3379 	int				bd_len;
3380 	int				status;
3381 	struct sd_lun			*un;
3382 
3383 	ASSERT(ssc != NULL);
3384 	un = ssc->ssc_un;
3385 	ASSERT(un != NULL);
3386 	ASSERT(mutex_owned(SD_MUTEX(un)));
3387 
3388 	/*
3389 	 * Initialize the writable media to false, if configuration info.
3390 	 * tells us otherwise then only we will set it.
3391 	 */
3392 	un->un_f_mmc_writable_media = FALSE;
3393 	mutex_exit(SD_MUTEX(un));
3394 
3395 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3396 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3397 
3398 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3399 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3400 
3401 	if (rtn != 0)
3402 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3403 
3404 	mutex_enter(SD_MUTEX(un));
3405 	if (rtn == 0) {
3406 		/*
3407 		 * We have good information, check for writable DVD.
3408 		 */
3409 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3410 			un->un_f_mmc_writable_media = TRUE;
3411 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3412 			kmem_free(rqbuf, SENSE_LENGTH);
3413 			return;
3414 		}
3415 	}
3416 
3417 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3418 	kmem_free(rqbuf, SENSE_LENGTH);
3419 
3420 	/*
3421 	 * Determine if this is a RRD type device.
3422 	 */
3423 	mutex_exit(SD_MUTEX(un));
3424 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3425 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3426 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3427 
3428 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3429 
3430 	mutex_enter(SD_MUTEX(un));
3431 	if (status != 0) {
3432 		/* command failed; just return */
3433 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3434 		return;
3435 	}
3436 
3437 	/* Get to the page data */
3438 	sense_mhp = (struct mode_header_grp2 *)buf;
3439 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3440 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3441 		/*
3442 		 * We did not get back the expected block descriptor length so
3443 		 * we cannot check the mode page.
3444 		 */
3445 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3446 		    "sd_check_for_writable_cd: Mode Sense returned "
3447 		    "invalid block descriptor length\n");
3448 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3449 		return;
3450 	}
3451 
3452 	/*
3453 	 * If the device presents DVD or CD capabilities in the mode
3454 	 * page, we can return here since a RRD device will not have
3455 	 * these capabilities.
3456 	 */
3457 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3458 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3459 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3460 		return;
3461 	}
3462 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3463 
3464 	/*
3465 	 * If un->un_f_mmc_writable_media is still FALSE,
3466 	 * check for RRD type media.  A RRD device is identified
3467 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3468 	 */
3469 	mutex_exit(SD_MUTEX(un));
3470 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3471 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3472 
3473 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3474 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3475 	    RANDOM_WRITABLE, path_flag);
3476 
3477 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3478 	if (rtn != 0) {
3479 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3480 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3481 		mutex_enter(SD_MUTEX(un));
3482 		return;
3483 	}
3484 
3485 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3486 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3487 
3488 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3489 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3490 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3491 
3492 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3493 	mutex_enter(SD_MUTEX(un));
3494 	if (rtn == 0) {
3495 		/*
3496 		 * We have good information, check for random writable
3497 		 * and hardware defect features as current.
3498 		 */
3499 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3500 		    (out_data_rw[10] & 0x1) &&
3501 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3502 		    (out_data_hd[10] & 0x1)) {
3503 			un->un_f_mmc_writable_media = TRUE;
3504 		}
3505 	}
3506 
3507 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3508 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3509 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3510 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3511 }
3512 
3513 /*
3514  *    Function: sd_read_unit_properties
3515  *
3516  * Description: The following implements a property lookup mechanism.
3517  *		Properties for particular disks (keyed on vendor, model
3518  *		and rev numbers) are sought in the sd.conf file via
3519  *		sd_process_sdconf_file(), and if not found there, are
3520  *		looked for in a list hardcoded in this driver via
3521  *		sd_process_sdconf_table() Once located the properties
3522  *		are used to update the driver unit structure.
3523  *
3524  *   Arguments: un - driver soft state (unit) structure
3525  */
3526 
3527 static void
3528 sd_read_unit_properties(struct sd_lun *un)
3529 {
3530 	/*
3531 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3532 	 * the "sd-config-list" property (from the sd.conf file) or if
3533 	 * there was not a match for the inquiry vid/pid. If this event
3534 	 * occurs the static driver configuration table is searched for
3535 	 * a match.
3536 	 */
3537 	ASSERT(un != NULL);
3538 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3539 		sd_process_sdconf_table(un);
3540 	}
3541 
3542 	/* check for LSI device */
3543 	sd_is_lsi(un);
3544 
3545 
3546 }
3547 
3548 
3549 /*
3550  *    Function: sd_process_sdconf_file
3551  *
3552  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3553  *		driver's config file (ie, sd.conf) and update the driver
3554  *		soft state structure accordingly.
3555  *
3556  *   Arguments: un - driver soft state (unit) structure
3557  *
3558  * Return Code: SD_SUCCESS - The properties were successfully set according
3559  *			     to the driver configuration file.
3560  *		SD_FAILURE - The driver config list was not obtained or
3561  *			     there was no vid/pid match. This indicates that
3562  *			     the static config table should be used.
3563  *
3564  * The config file has a property, "sd-config-list". Currently we support
3565  * two kinds of formats. For both formats, the value of this property
3566  * is a list of duplets:
3567  *
3568  *  sd-config-list=
3569  *	<duplet>,
3570  *	[,<duplet>]*;
3571  *
3572  * For the improved format, where
3573  *
3574  *     <duplet>:= "<vid+pid>","<tunable-list>"
3575  *
3576  * and
3577  *
3578  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3579  *     <tunable> =        <name> : <value>
3580  *
3581  * The <vid+pid> is the string that is returned by the target device on a
3582  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3583  * to apply to all target devices with the specified <vid+pid>.
3584  *
3585  * Each <tunable> is a "<name> : <value>" pair.
3586  *
3587  * For the old format, the structure of each duplet is as follows:
3588  *
3589  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3590  *
3591  * The first entry of the duplet is the device ID string (the concatenated
3592  * vid & pid; not to be confused with a device_id).  This is defined in
3593  * the same way as in the sd_disk_table.
3594  *
3595  * The second part of the duplet is a string that identifies a
3596  * data-property-name-list. The data-property-name-list is defined as
3597  * follows:
3598  *
3599  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3600  *
3601  * The syntax of <data-property-name> depends on the <version> field.
3602  *
3603  * If version = SD_CONF_VERSION_1 we have the following syntax:
3604  *
3605  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3606  *
3607  * where the prop0 value will be used to set prop0 if bit0 set in the
3608  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3609  *
3610  */
3611 
3612 static int
3613 sd_process_sdconf_file(struct sd_lun *un)
3614 {
3615 	char	**config_list = NULL;
3616 	uint_t	nelements;
3617 	char	*vidptr;
3618 	int	vidlen;
3619 	char	*dnlist_ptr;
3620 	char	*dataname_ptr;
3621 	char	*dataname_lasts;
3622 	int	*data_list = NULL;
3623 	uint_t	data_list_len;
3624 	int	rval = SD_FAILURE;
3625 	int	i;
3626 
3627 	ASSERT(un != NULL);
3628 
3629 	/* Obtain the configuration list associated with the .conf file */
3630 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3631 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3632 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3633 		return (SD_FAILURE);
3634 	}
3635 
3636 	/*
3637 	 * Compare vids in each duplet to the inquiry vid - if a match is
3638 	 * made, get the data value and update the soft state structure
3639 	 * accordingly.
3640 	 *
3641 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3642 	 * otherwise.
3643 	 */
3644 	if (nelements & 1) {
3645 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3646 		    "sd-config-list should show as pairs of strings.\n");
3647 		if (config_list)
3648 			ddi_prop_free(config_list);
3649 		return (SD_FAILURE);
3650 	}
3651 
3652 	for (i = 0; i < nelements; i += 2) {
3653 		/*
3654 		 * Note: The assumption here is that each vid entry is on
3655 		 * a unique line from its associated duplet.
3656 		 */
3657 		vidptr = config_list[i];
3658 		vidlen = (int)strlen(vidptr);
3659 		if ((vidlen == 0) ||
3660 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3661 			continue;
3662 		}
3663 
3664 		/*
3665 		 * dnlist contains 1 or more blank separated
3666 		 * data-property-name entries
3667 		 */
3668 		dnlist_ptr = config_list[i + 1];
3669 
3670 		if (strchr(dnlist_ptr, ':') != NULL) {
3671 			/*
3672 			 * Decode the improved format sd-config-list.
3673 			 */
3674 			sd_nvpair_str_decode(un, dnlist_ptr);
3675 		} else {
3676 			/*
3677 			 * The old format sd-config-list, loop through all
3678 			 * data-property-name entries in the
3679 			 * data-property-name-list
3680 			 * setting the properties for each.
3681 			 */
3682 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3683 			    &dataname_lasts); dataname_ptr != NULL;
3684 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3685 			    &dataname_lasts)) {
3686 				int version;
3687 
3688 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3689 				    "sd_process_sdconf_file: disk:%s, "
3690 				    "data:%s\n", vidptr, dataname_ptr);
3691 
3692 				/* Get the data list */
3693 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3694 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3695 				    &data_list_len) != DDI_PROP_SUCCESS) {
3696 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3697 					    "sd_process_sdconf_file: data "
3698 					    "property (%s) has no value\n",
3699 					    dataname_ptr);
3700 					continue;
3701 				}
3702 
3703 				version = data_list[0];
3704 
3705 				if (version == SD_CONF_VERSION_1) {
3706 					sd_tunables values;
3707 
3708 					/* Set the properties */
3709 					if (sd_chk_vers1_data(un, data_list[1],
3710 					    &data_list[2], data_list_len,
3711 					    dataname_ptr) == SD_SUCCESS) {
3712 						sd_get_tunables_from_conf(un,
3713 						    data_list[1], &data_list[2],
3714 						    &values);
3715 						sd_set_vers1_properties(un,
3716 						    data_list[1], &values);
3717 						rval = SD_SUCCESS;
3718 					} else {
3719 						rval = SD_FAILURE;
3720 					}
3721 				} else {
3722 					scsi_log(SD_DEVINFO(un), sd_label,
3723 					    CE_WARN, "data property %s version "
3724 					    "0x%x is invalid.",
3725 					    dataname_ptr, version);
3726 					rval = SD_FAILURE;
3727 				}
3728 				if (data_list)
3729 					ddi_prop_free(data_list);
3730 			}
3731 		}
3732 	}
3733 
3734 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3735 	if (config_list) {
3736 		ddi_prop_free(config_list);
3737 	}
3738 
3739 	return (rval);
3740 }
3741 
3742 /*
3743  *    Function: sd_nvpair_str_decode()
3744  *
3745  * Description: Parse the improved format sd-config-list to get
3746  *    each entry of tunable, which includes a name-value pair.
3747  *    Then call sd_set_properties() to set the property.
3748  *
3749  *   Arguments: un - driver soft state (unit) structure
3750  *    nvpair_str - the tunable list
3751  */
3752 static void
3753 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3754 {
3755 	char	*nv, *name, *value, *token;
3756 	char	*nv_lasts, *v_lasts, *x_lasts;
3757 
3758 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3759 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3760 		token = sd_strtok_r(nv, ":", &v_lasts);
3761 		name  = sd_strtok_r(token, " \t", &x_lasts);
3762 		token = sd_strtok_r(NULL, ":", &v_lasts);
3763 		value = sd_strtok_r(token, " \t", &x_lasts);
3764 		if (name == NULL || value == NULL) {
3765 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3766 			    "sd_nvpair_str_decode: "
3767 			    "name or value is not valid!\n");
3768 		} else {
3769 			sd_set_properties(un, name, value);
3770 		}
3771 	}
3772 }
3773 
3774 /*
3775  *    Function: sd_strtok_r()
3776  *
3777  * Description: This function uses strpbrk and strspn to break
3778  *    string into tokens on sequentially subsequent calls. Return
3779  *    NULL when no non-separator characters remain. The first
3780  *    argument is NULL for subsequent calls.
3781  */
3782 static char *
3783 sd_strtok_r(char *string, const char *sepset, char **lasts)
3784 {
3785 	char	*q, *r;
3786 
3787 	/* First or subsequent call */
3788 	if (string == NULL)
3789 		string = *lasts;
3790 
3791 	if (string == NULL)
3792 		return (NULL);
3793 
3794 	/* Skip leading separators */
3795 	q = string + strspn(string, sepset);
3796 
3797 	if (*q == '\0')
3798 		return (NULL);
3799 
3800 	if ((r = strpbrk(q, sepset)) == NULL)
3801 		*lasts = NULL;
3802 	else {
3803 		*r = '\0';
3804 		*lasts = r + 1;
3805 	}
3806 	return (q);
3807 }
3808 
3809 /*
3810  *    Function: sd_set_properties()
3811  *
3812  * Description: Set device properties based on the improved
3813  *    format sd-config-list.
3814  *
3815  *   Arguments: un - driver soft state (unit) structure
3816  *    name  - supported tunable name
3817  *    value - tunable value
3818  */
3819 static void
3820 sd_set_properties(struct sd_lun *un, char *name, char *value)
3821 {
3822 	char	*endptr = NULL;
3823 	long	val = 0;
3824 
3825 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
3826 		if (strcasecmp(value, "true") == 0) {
3827 			un->un_f_suppress_cache_flush = TRUE;
3828 		} else if (strcasecmp(value, "false") == 0) {
3829 			un->un_f_suppress_cache_flush = FALSE;
3830 		} else {
3831 			goto value_invalid;
3832 		}
3833 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3834 		    "suppress_cache_flush flag set to %d\n",
3835 		    un->un_f_suppress_cache_flush);
3836 		return;
3837 	}
3838 
3839 	if (strcasecmp(name, "controller-type") == 0) {
3840 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3841 			un->un_ctype = val;
3842 		} else {
3843 			goto value_invalid;
3844 		}
3845 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3846 		    "ctype set to %d\n", un->un_ctype);
3847 		return;
3848 	}
3849 
3850 	if (strcasecmp(name, "delay-busy") == 0) {
3851 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3852 			un->un_busy_timeout = drv_usectohz(val / 1000);
3853 		} else {
3854 			goto value_invalid;
3855 		}
3856 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3857 		    "busy_timeout set to %d\n", un->un_busy_timeout);
3858 		return;
3859 	}
3860 
3861 	if (strcasecmp(name, "disksort") == 0) {
3862 		if (strcasecmp(value, "true") == 0) {
3863 			un->un_f_disksort_disabled = FALSE;
3864 		} else if (strcasecmp(value, "false") == 0) {
3865 			un->un_f_disksort_disabled = TRUE;
3866 		} else {
3867 			goto value_invalid;
3868 		}
3869 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3870 		    "disksort disabled flag set to %d\n",
3871 		    un->un_f_disksort_disabled);
3872 		return;
3873 	}
3874 
3875 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
3876 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3877 			un->un_reserve_release_time = val;
3878 		} else {
3879 			goto value_invalid;
3880 		}
3881 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3882 		    "reservation release timeout set to %d\n",
3883 		    un->un_reserve_release_time);
3884 		return;
3885 	}
3886 
3887 	if (strcasecmp(name, "reset-lun") == 0) {
3888 		if (strcasecmp(value, "true") == 0) {
3889 			un->un_f_lun_reset_enabled = TRUE;
3890 		} else if (strcasecmp(value, "false") == 0) {
3891 			un->un_f_lun_reset_enabled = FALSE;
3892 		} else {
3893 			goto value_invalid;
3894 		}
3895 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3896 		    "lun reset enabled flag set to %d\n",
3897 		    un->un_f_lun_reset_enabled);
3898 		return;
3899 	}
3900 
3901 	if (strcasecmp(name, "retries-busy") == 0) {
3902 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3903 			un->un_busy_retry_count = val;
3904 		} else {
3905 			goto value_invalid;
3906 		}
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3908 		    "busy retry count set to %d\n", un->un_busy_retry_count);
3909 		return;
3910 	}
3911 
3912 	if (strcasecmp(name, "retries-timeout") == 0) {
3913 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3914 			un->un_retry_count = val;
3915 		} else {
3916 			goto value_invalid;
3917 		}
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3919 		    "timeout retry count set to %d\n", un->un_retry_count);
3920 		return;
3921 	}
3922 
3923 	if (strcasecmp(name, "retries-notready") == 0) {
3924 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3925 			un->un_notready_retry_count = val;
3926 		} else {
3927 			goto value_invalid;
3928 		}
3929 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3930 		    "notready retry count set to %d\n",
3931 		    un->un_notready_retry_count);
3932 		return;
3933 	}
3934 
3935 	if (strcasecmp(name, "retries-reset") == 0) {
3936 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3937 			un->un_reset_retry_count = val;
3938 		} else {
3939 			goto value_invalid;
3940 		}
3941 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3942 		    "reset retry count set to %d\n",
3943 		    un->un_reset_retry_count);
3944 		return;
3945 	}
3946 
3947 	if (strcasecmp(name, "throttle-max") == 0) {
3948 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3949 			un->un_saved_throttle = un->un_throttle = val;
3950 		} else {
3951 			goto value_invalid;
3952 		}
3953 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3954 		    "throttle set to %d\n", un->un_throttle);
3955 	}
3956 
3957 	if (strcasecmp(name, "throttle-min") == 0) {
3958 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
3959 			un->un_min_throttle = val;
3960 		} else {
3961 			goto value_invalid;
3962 		}
3963 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3964 		    "min throttle set to %d\n", un->un_min_throttle);
3965 	}
3966 
3967 	/*
3968 	 * Validate the throttle values.
3969 	 * If any of the numbers are invalid, set everything to defaults.
3970 	 */
3971 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3972 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3973 	    (un->un_min_throttle > un->un_throttle)) {
3974 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3975 		un->un_min_throttle = sd_min_throttle;
3976 	}
3977 	return;
3978 
3979 value_invalid:
3980 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
3981 	    "value of prop %s is invalid\n", name);
3982 }
3983 
3984 /*
3985  *    Function: sd_get_tunables_from_conf()
3986  *
3987  *
3988  *    This function reads the data list from the sd.conf file and pulls
3989  *    the values that can have numeric values as arguments and places
3990  *    the values in the appropriate sd_tunables member.
3991  *    Since the order of the data list members varies across platforms
3992  *    This function reads them from the data list in a platform specific
3993  *    order and places them into the correct sd_tunable member that is
3994  *    consistent across all platforms.
3995  */
3996 static void
3997 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3998     sd_tunables *values)
3999 {
4000 	int i;
4001 	int mask;
4002 
4003 	bzero(values, sizeof (sd_tunables));
4004 
4005 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4006 
4007 		mask = 1 << i;
4008 		if (mask > flags) {
4009 			break;
4010 		}
4011 
4012 		switch (mask & flags) {
4013 		case 0:	/* This mask bit not set in flags */
4014 			continue;
4015 		case SD_CONF_BSET_THROTTLE:
4016 			values->sdt_throttle = data_list[i];
4017 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4018 			    "sd_get_tunables_from_conf: throttle = %d\n",
4019 			    values->sdt_throttle);
4020 			break;
4021 		case SD_CONF_BSET_CTYPE:
4022 			values->sdt_ctype = data_list[i];
4023 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4024 			    "sd_get_tunables_from_conf: ctype = %d\n",
4025 			    values->sdt_ctype);
4026 			break;
4027 		case SD_CONF_BSET_NRR_COUNT:
4028 			values->sdt_not_rdy_retries = data_list[i];
4029 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4030 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4031 			    values->sdt_not_rdy_retries);
4032 			break;
4033 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4034 			values->sdt_busy_retries = data_list[i];
4035 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4037 			    values->sdt_busy_retries);
4038 			break;
4039 		case SD_CONF_BSET_RST_RETRIES:
4040 			values->sdt_reset_retries = data_list[i];
4041 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4042 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4043 			    values->sdt_reset_retries);
4044 			break;
4045 		case SD_CONF_BSET_RSV_REL_TIME:
4046 			values->sdt_reserv_rel_time = data_list[i];
4047 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4048 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4049 			    values->sdt_reserv_rel_time);
4050 			break;
4051 		case SD_CONF_BSET_MIN_THROTTLE:
4052 			values->sdt_min_throttle = data_list[i];
4053 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4054 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4055 			    values->sdt_min_throttle);
4056 			break;
4057 		case SD_CONF_BSET_DISKSORT_DISABLED:
4058 			values->sdt_disk_sort_dis = data_list[i];
4059 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4060 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4061 			    values->sdt_disk_sort_dis);
4062 			break;
4063 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4064 			values->sdt_lun_reset_enable = data_list[i];
4065 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4066 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4067 			    "\n", values->sdt_lun_reset_enable);
4068 			break;
4069 		case SD_CONF_BSET_CACHE_IS_NV:
4070 			values->sdt_suppress_cache_flush = data_list[i];
4071 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4072 			    "sd_get_tunables_from_conf: \
4073 			    suppress_cache_flush = %d"
4074 			    "\n", values->sdt_suppress_cache_flush);
4075 			break;
4076 		}
4077 	}
4078 }
4079 
4080 /*
4081  *    Function: sd_process_sdconf_table
4082  *
4083  * Description: Search the static configuration table for a match on the
4084  *		inquiry vid/pid and update the driver soft state structure
4085  *		according to the table property values for the device.
4086  *
4087  *		The form of a configuration table entry is:
4088  *		  <vid+pid>,<flags>,<property-data>
4089  *		  "SEAGATE ST42400N",1,0x40000,
4090  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4091  *
4092  *   Arguments: un - driver soft state (unit) structure
4093  */
4094 
4095 static void
4096 sd_process_sdconf_table(struct sd_lun *un)
4097 {
4098 	char	*id = NULL;
4099 	int	table_index;
4100 	int	idlen;
4101 
4102 	ASSERT(un != NULL);
4103 	for (table_index = 0; table_index < sd_disk_table_size;
4104 	    table_index++) {
4105 		id = sd_disk_table[table_index].device_id;
4106 		idlen = strlen(id);
4107 		if (idlen == 0) {
4108 			continue;
4109 		}
4110 
4111 		/*
4112 		 * The static configuration table currently does not
4113 		 * implement version 10 properties. Additionally,
4114 		 * multiple data-property-name entries are not
4115 		 * implemented in the static configuration table.
4116 		 */
4117 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4118 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4119 			    "sd_process_sdconf_table: disk %s\n", id);
4120 			sd_set_vers1_properties(un,
4121 			    sd_disk_table[table_index].flags,
4122 			    sd_disk_table[table_index].properties);
4123 			break;
4124 		}
4125 	}
4126 }
4127 
4128 
4129 /*
4130  *    Function: sd_sdconf_id_match
4131  *
4132  * Description: This local function implements a case sensitive vid/pid
4133  *		comparison as well as the boundary cases of wild card and
4134  *		multiple blanks.
4135  *
4136  *		Note: An implicit assumption made here is that the scsi
4137  *		inquiry structure will always keep the vid, pid and
4138  *		revision strings in consecutive sequence, so they can be
4139  *		read as a single string. If this assumption is not the
4140  *		case, a separate string, to be used for the check, needs
4141  *		to be built with these strings concatenated.
4142  *
4143  *   Arguments: un - driver soft state (unit) structure
4144  *		id - table or config file vid/pid
4145  *		idlen  - length of the vid/pid (bytes)
4146  *
4147  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4148  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4149  */
4150 
4151 static int
4152 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4153 {
4154 	struct scsi_inquiry	*sd_inq;
4155 	int 			rval = SD_SUCCESS;
4156 
4157 	ASSERT(un != NULL);
4158 	sd_inq = un->un_sd->sd_inq;
4159 	ASSERT(id != NULL);
4160 
4161 	/*
4162 	 * We use the inq_vid as a pointer to a buffer containing the
4163 	 * vid and pid and use the entire vid/pid length of the table
4164 	 * entry for the comparison. This works because the inq_pid
4165 	 * data member follows inq_vid in the scsi_inquiry structure.
4166 	 */
4167 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4168 		/*
4169 		 * The user id string is compared to the inquiry vid/pid
4170 		 * using a case insensitive comparison and ignoring
4171 		 * multiple spaces.
4172 		 */
4173 		rval = sd_blank_cmp(un, id, idlen);
4174 		if (rval != SD_SUCCESS) {
4175 			/*
4176 			 * User id strings that start and end with a "*"
4177 			 * are a special case. These do not have a
4178 			 * specific vendor, and the product string can
4179 			 * appear anywhere in the 16 byte PID portion of
4180 			 * the inquiry data. This is a simple strstr()
4181 			 * type search for the user id in the inquiry data.
4182 			 */
4183 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4184 				char	*pidptr = &id[1];
4185 				int	i;
4186 				int	j;
4187 				int	pidstrlen = idlen - 2;
4188 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4189 				    pidstrlen;
4190 
4191 				if (j < 0) {
4192 					return (SD_FAILURE);
4193 				}
4194 				for (i = 0; i < j; i++) {
4195 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4196 					    pidptr, pidstrlen) == 0) {
4197 						rval = SD_SUCCESS;
4198 						break;
4199 					}
4200 				}
4201 			}
4202 		}
4203 	}
4204 	return (rval);
4205 }
4206 
4207 
4208 /*
4209  *    Function: sd_blank_cmp
4210  *
4211  * Description: If the id string starts and ends with a space, treat
4212  *		multiple consecutive spaces as equivalent to a single
4213  *		space. For example, this causes a sd_disk_table entry
4214  *		of " NEC CDROM " to match a device's id string of
4215  *		"NEC       CDROM".
4216  *
4217  *		Note: The success exit condition for this routine is if
4218  *		the pointer to the table entry is '\0' and the cnt of
4219  *		the inquiry length is zero. This will happen if the inquiry
4220  *		string returned by the device is padded with spaces to be
4221  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4222  *		SCSI spec states that the inquiry string is to be padded with
4223  *		spaces.
4224  *
4225  *   Arguments: un - driver soft state (unit) structure
4226  *		id - table or config file vid/pid
4227  *		idlen  - length of the vid/pid (bytes)
4228  *
4229  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4230  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4231  */
4232 
4233 static int
4234 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4235 {
4236 	char		*p1;
4237 	char		*p2;
4238 	int		cnt;
4239 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4240 	    sizeof (SD_INQUIRY(un)->inq_pid);
4241 
4242 	ASSERT(un != NULL);
4243 	p2 = un->un_sd->sd_inq->inq_vid;
4244 	ASSERT(id != NULL);
4245 	p1 = id;
4246 
4247 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4248 		/*
4249 		 * Note: string p1 is terminated by a NUL but string p2
4250 		 * isn't.  The end of p2 is determined by cnt.
4251 		 */
4252 		for (;;) {
4253 			/* skip over any extra blanks in both strings */
4254 			while ((*p1 != '\0') && (*p1 == ' ')) {
4255 				p1++;
4256 			}
4257 			while ((cnt != 0) && (*p2 == ' ')) {
4258 				p2++;
4259 				cnt--;
4260 			}
4261 
4262 			/* compare the two strings */
4263 			if ((cnt == 0) ||
4264 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4265 				break;
4266 			}
4267 			while ((cnt > 0) &&
4268 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4269 				p1++;
4270 				p2++;
4271 				cnt--;
4272 			}
4273 		}
4274 	}
4275 
4276 	/* return SD_SUCCESS if both strings match */
4277 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4278 }
4279 
4280 
4281 /*
4282  *    Function: sd_chk_vers1_data
4283  *
4284  * Description: Verify the version 1 device properties provided by the
4285  *		user via the configuration file
4286  *
4287  *   Arguments: un	     - driver soft state (unit) structure
4288  *		flags	     - integer mask indicating properties to be set
4289  *		prop_list    - integer list of property values
4290  *		list_len     - number of the elements
4291  *
4292  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4293  *		SD_FAILURE - Indicates the user provided data is invalid
4294  */
4295 
4296 static int
4297 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4298     int list_len, char *dataname_ptr)
4299 {
4300 	int i;
4301 	int mask = 1;
4302 	int index = 0;
4303 
4304 	ASSERT(un != NULL);
4305 
4306 	/* Check for a NULL property name and list */
4307 	if (dataname_ptr == NULL) {
4308 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4309 		    "sd_chk_vers1_data: NULL data property name.");
4310 		return (SD_FAILURE);
4311 	}
4312 	if (prop_list == NULL) {
4313 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4314 		    "sd_chk_vers1_data: %s NULL data property list.",
4315 		    dataname_ptr);
4316 		return (SD_FAILURE);
4317 	}
4318 
4319 	/* Display a warning if undefined bits are set in the flags */
4320 	if (flags & ~SD_CONF_BIT_MASK) {
4321 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4322 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4323 		    "Properties not set.",
4324 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4325 		return (SD_FAILURE);
4326 	}
4327 
4328 	/*
4329 	 * Verify the length of the list by identifying the highest bit set
4330 	 * in the flags and validating that the property list has a length
4331 	 * up to the index of this bit.
4332 	 */
4333 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4334 		if (flags & mask) {
4335 			index++;
4336 		}
4337 		mask = 1 << i;
4338 	}
4339 	if (list_len < (index + 2)) {
4340 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4341 		    "sd_chk_vers1_data: "
4342 		    "Data property list %s size is incorrect. "
4343 		    "Properties not set.", dataname_ptr);
4344 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4345 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4346 		return (SD_FAILURE);
4347 	}
4348 	return (SD_SUCCESS);
4349 }
4350 
4351 
4352 /*
4353  *    Function: sd_set_vers1_properties
4354  *
4355  * Description: Set version 1 device properties based on a property list
4356  *		retrieved from the driver configuration file or static
4357  *		configuration table. Version 1 properties have the format:
4358  *
4359  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4360  *
4361  *		where the prop0 value will be used to set prop0 if bit0
4362  *		is set in the flags
4363  *
4364  *   Arguments: un	     - driver soft state (unit) structure
4365  *		flags	     - integer mask indicating properties to be set
4366  *		prop_list    - integer list of property values
4367  */
4368 
4369 static void
4370 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4371 {
4372 	ASSERT(un != NULL);
4373 
4374 	/*
4375 	 * Set the flag to indicate cache is to be disabled. An attempt
4376 	 * to disable the cache via sd_cache_control() will be made
4377 	 * later during attach once the basic initialization is complete.
4378 	 */
4379 	if (flags & SD_CONF_BSET_NOCACHE) {
4380 		un->un_f_opt_disable_cache = TRUE;
4381 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4382 		    "sd_set_vers1_properties: caching disabled flag set\n");
4383 	}
4384 
4385 	/* CD-specific configuration parameters */
4386 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4387 		un->un_f_cfg_playmsf_bcd = TRUE;
4388 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4389 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4390 	}
4391 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4392 		un->un_f_cfg_readsub_bcd = TRUE;
4393 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4394 		    "sd_set_vers1_properties: readsub_bcd set\n");
4395 	}
4396 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4397 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4398 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4399 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4400 	}
4401 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4402 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4403 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4404 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4405 	}
4406 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4407 		un->un_f_cfg_no_read_header = TRUE;
4408 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4409 		    "sd_set_vers1_properties: no_read_header set\n");
4410 	}
4411 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4412 		un->un_f_cfg_read_cd_xd4 = TRUE;
4413 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4414 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4415 	}
4416 
4417 	/* Support for devices which do not have valid/unique serial numbers */
4418 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4419 		un->un_f_opt_fab_devid = TRUE;
4420 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4421 		    "sd_set_vers1_properties: fab_devid bit set\n");
4422 	}
4423 
4424 	/* Support for user throttle configuration */
4425 	if (flags & SD_CONF_BSET_THROTTLE) {
4426 		ASSERT(prop_list != NULL);
4427 		un->un_saved_throttle = un->un_throttle =
4428 		    prop_list->sdt_throttle;
4429 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4430 		    "sd_set_vers1_properties: throttle set to %d\n",
4431 		    prop_list->sdt_throttle);
4432 	}
4433 
4434 	/* Set the per disk retry count according to the conf file or table. */
4435 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4436 		ASSERT(prop_list != NULL);
4437 		if (prop_list->sdt_not_rdy_retries) {
4438 			un->un_notready_retry_count =
4439 			    prop_list->sdt_not_rdy_retries;
4440 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4441 			    "sd_set_vers1_properties: not ready retry count"
4442 			    " set to %d\n", un->un_notready_retry_count);
4443 		}
4444 	}
4445 
4446 	/* The controller type is reported for generic disk driver ioctls */
4447 	if (flags & SD_CONF_BSET_CTYPE) {
4448 		ASSERT(prop_list != NULL);
4449 		switch (prop_list->sdt_ctype) {
4450 		case CTYPE_CDROM:
4451 			un->un_ctype = prop_list->sdt_ctype;
4452 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4453 			    "sd_set_vers1_properties: ctype set to "
4454 			    "CTYPE_CDROM\n");
4455 			break;
4456 		case CTYPE_CCS:
4457 			un->un_ctype = prop_list->sdt_ctype;
4458 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4459 			    "sd_set_vers1_properties: ctype set to "
4460 			    "CTYPE_CCS\n");
4461 			break;
4462 		case CTYPE_ROD:		/* RW optical */
4463 			un->un_ctype = prop_list->sdt_ctype;
4464 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4465 			    "sd_set_vers1_properties: ctype set to "
4466 			    "CTYPE_ROD\n");
4467 			break;
4468 		default:
4469 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4470 			    "sd_set_vers1_properties: Could not set "
4471 			    "invalid ctype value (%d)",
4472 			    prop_list->sdt_ctype);
4473 		}
4474 	}
4475 
4476 	/* Purple failover timeout */
4477 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4478 		ASSERT(prop_list != NULL);
4479 		un->un_busy_retry_count =
4480 		    prop_list->sdt_busy_retries;
4481 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4482 		    "sd_set_vers1_properties: "
4483 		    "busy retry count set to %d\n",
4484 		    un->un_busy_retry_count);
4485 	}
4486 
4487 	/* Purple reset retry count */
4488 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4489 		ASSERT(prop_list != NULL);
4490 		un->un_reset_retry_count =
4491 		    prop_list->sdt_reset_retries;
4492 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4493 		    "sd_set_vers1_properties: "
4494 		    "reset retry count set to %d\n",
4495 		    un->un_reset_retry_count);
4496 	}
4497 
4498 	/* Purple reservation release timeout */
4499 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4500 		ASSERT(prop_list != NULL);
4501 		un->un_reserve_release_time =
4502 		    prop_list->sdt_reserv_rel_time;
4503 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4504 		    "sd_set_vers1_properties: "
4505 		    "reservation release timeout set to %d\n",
4506 		    un->un_reserve_release_time);
4507 	}
4508 
4509 	/*
4510 	 * Driver flag telling the driver to verify that no commands are pending
4511 	 * for a device before issuing a Test Unit Ready. This is a workaround
4512 	 * for a firmware bug in some Seagate eliteI drives.
4513 	 */
4514 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4515 		un->un_f_cfg_tur_check = TRUE;
4516 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4517 		    "sd_set_vers1_properties: tur queue check set\n");
4518 	}
4519 
4520 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4521 		un->un_min_throttle = prop_list->sdt_min_throttle;
4522 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4523 		    "sd_set_vers1_properties: min throttle set to %d\n",
4524 		    un->un_min_throttle);
4525 	}
4526 
4527 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4528 		un->un_f_disksort_disabled =
4529 		    (prop_list->sdt_disk_sort_dis != 0) ?
4530 		    TRUE : FALSE;
4531 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4532 		    "sd_set_vers1_properties: disksort disabled "
4533 		    "flag set to %d\n",
4534 		    prop_list->sdt_disk_sort_dis);
4535 	}
4536 
4537 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4538 		un->un_f_lun_reset_enabled =
4539 		    (prop_list->sdt_lun_reset_enable != 0) ?
4540 		    TRUE : FALSE;
4541 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4542 		    "sd_set_vers1_properties: lun reset enabled "
4543 		    "flag set to %d\n",
4544 		    prop_list->sdt_lun_reset_enable);
4545 	}
4546 
4547 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4548 		un->un_f_suppress_cache_flush =
4549 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4550 		    TRUE : FALSE;
4551 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4552 		    "sd_set_vers1_properties: suppress_cache_flush "
4553 		    "flag set to %d\n",
4554 		    prop_list->sdt_suppress_cache_flush);
4555 	}
4556 
4557 	/*
4558 	 * Validate the throttle values.
4559 	 * If any of the numbers are invalid, set everything to defaults.
4560 	 */
4561 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4562 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4563 	    (un->un_min_throttle > un->un_throttle)) {
4564 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4565 		un->un_min_throttle = sd_min_throttle;
4566 	}
4567 }
4568 
4569 /*
4570  *   Function: sd_is_lsi()
4571  *
4572  *   Description: Check for lsi devices, step through the static device
4573  *	table to match vid/pid.
4574  *
4575  *   Args: un - ptr to sd_lun
4576  *
4577  *   Notes:  When creating new LSI property, need to add the new LSI property
4578  *		to this function.
4579  */
4580 static void
4581 sd_is_lsi(struct sd_lun *un)
4582 {
4583 	char	*id = NULL;
4584 	int	table_index;
4585 	int	idlen;
4586 	void	*prop;
4587 
4588 	ASSERT(un != NULL);
4589 	for (table_index = 0; table_index < sd_disk_table_size;
4590 	    table_index++) {
4591 		id = sd_disk_table[table_index].device_id;
4592 		idlen = strlen(id);
4593 		if (idlen == 0) {
4594 			continue;
4595 		}
4596 
4597 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4598 			prop = sd_disk_table[table_index].properties;
4599 			if (prop == &lsi_properties ||
4600 			    prop == &lsi_oem_properties ||
4601 			    prop == &lsi_properties_scsi ||
4602 			    prop == &symbios_properties) {
4603 				un->un_f_cfg_is_lsi = TRUE;
4604 			}
4605 			break;
4606 		}
4607 	}
4608 }
4609 
4610 /*
4611  *    Function: sd_get_physical_geometry
4612  *
4613  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4614  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4615  *		target, and use this information to initialize the physical
4616  *		geometry cache specified by pgeom_p.
4617  *
4618  *		MODE SENSE is an optional command, so failure in this case
4619  *		does not necessarily denote an error. We want to use the
4620  *		MODE SENSE commands to derive the physical geometry of the
4621  *		device, but if either command fails, the logical geometry is
4622  *		used as the fallback for disk label geometry in cmlb.
4623  *
4624  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4625  *		have already been initialized for the current target and
4626  *		that the current values be passed as args so that we don't
4627  *		end up ever trying to use -1 as a valid value. This could
4628  *		happen if either value is reset while we're not holding
4629  *		the mutex.
4630  *
4631  *   Arguments: un - driver soft state (unit) structure
4632  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4633  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4634  *			to use the USCSI "direct" chain and bypass the normal
4635  *			command waitq.
4636  *
4637  *     Context: Kernel thread only (can sleep).
4638  */
4639 
4640 static int
4641 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4642 	diskaddr_t capacity, int lbasize, int path_flag)
4643 {
4644 	struct	mode_format	*page3p;
4645 	struct	mode_geometry	*page4p;
4646 	struct	mode_header	*headerp;
4647 	int	sector_size;
4648 	int	nsect;
4649 	int	nhead;
4650 	int	ncyl;
4651 	int	intrlv;
4652 	int	spc;
4653 	diskaddr_t	modesense_capacity;
4654 	int	rpm;
4655 	int	bd_len;
4656 	int	mode_header_length;
4657 	uchar_t	*p3bufp;
4658 	uchar_t	*p4bufp;
4659 	int	cdbsize;
4660 	int 	ret = EIO;
4661 	sd_ssc_t *ssc;
4662 	int	status;
4663 
4664 	ASSERT(un != NULL);
4665 
4666 	if (lbasize == 0) {
4667 		if (ISCD(un)) {
4668 			lbasize = 2048;
4669 		} else {
4670 			lbasize = un->un_sys_blocksize;
4671 		}
4672 	}
4673 	pgeom_p->g_secsize = (unsigned short)lbasize;
4674 
4675 	/*
4676 	 * If the unit is a cd/dvd drive MODE SENSE page three
4677 	 * and MODE SENSE page four are reserved (see SBC spec
4678 	 * and MMC spec). To prevent soft errors just return
4679 	 * using the default LBA size.
4680 	 */
4681 	if (ISCD(un))
4682 		return (ret);
4683 
4684 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4685 
4686 	/*
4687 	 * Retrieve MODE SENSE page 3 - Format Device Page
4688 	 */
4689 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4690 	ssc = sd_ssc_init(un);
4691 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4692 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4693 	if (status != 0) {
4694 		SD_ERROR(SD_LOG_COMMON, un,
4695 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4696 		goto page3_exit;
4697 	}
4698 
4699 	/*
4700 	 * Determine size of Block Descriptors in order to locate the mode
4701 	 * page data.  ATAPI devices return 0, SCSI devices should return
4702 	 * MODE_BLK_DESC_LENGTH.
4703 	 */
4704 	headerp = (struct mode_header *)p3bufp;
4705 	if (un->un_f_cfg_is_atapi == TRUE) {
4706 		struct mode_header_grp2 *mhp =
4707 		    (struct mode_header_grp2 *)headerp;
4708 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4709 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4710 	} else {
4711 		mode_header_length = MODE_HEADER_LENGTH;
4712 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4713 	}
4714 
4715 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4716 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4717 		    "sd_get_physical_geometry: received unexpected bd_len "
4718 		    "of %d, page3\n", bd_len);
4719 		status = EIO;
4720 		goto page3_exit;
4721 	}
4722 
4723 	page3p = (struct mode_format *)
4724 	    ((caddr_t)headerp + mode_header_length + bd_len);
4725 
4726 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4727 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4728 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
4729 		    "%d\n", page3p->mode_page.code);
4730 		status = EIO;
4731 		goto page3_exit;
4732 	}
4733 
4734 	/*
4735 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4736 	 * complete successfully; otherwise, revert to the logical geometry.
4737 	 * So, we need to save everything in temporary variables.
4738 	 */
4739 	sector_size = BE_16(page3p->data_bytes_sect);
4740 
4741 	/*
4742 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4743 	 */
4744 	if (sector_size == 0) {
4745 		sector_size = un->un_sys_blocksize;
4746 	} else {
4747 		sector_size &= ~(un->un_sys_blocksize - 1);
4748 	}
4749 
4750 	nsect  = BE_16(page3p->sect_track);
4751 	intrlv = BE_16(page3p->interleave);
4752 
4753 	SD_INFO(SD_LOG_COMMON, un,
4754 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4755 	SD_INFO(SD_LOG_COMMON, un,
4756 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4757 	    page3p->mode_page.code, nsect, sector_size);
4758 	SD_INFO(SD_LOG_COMMON, un,
4759 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4760 	    BE_16(page3p->track_skew),
4761 	    BE_16(page3p->cylinder_skew));
4762 
4763 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4764 
4765 	/*
4766 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4767 	 */
4768 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4769 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
4770 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
4771 	if (status != 0) {
4772 		SD_ERROR(SD_LOG_COMMON, un,
4773 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4774 		goto page4_exit;
4775 	}
4776 
4777 	/*
4778 	 * Determine size of Block Descriptors in order to locate the mode
4779 	 * page data.  ATAPI devices return 0, SCSI devices should return
4780 	 * MODE_BLK_DESC_LENGTH.
4781 	 */
4782 	headerp = (struct mode_header *)p4bufp;
4783 	if (un->un_f_cfg_is_atapi == TRUE) {
4784 		struct mode_header_grp2 *mhp =
4785 		    (struct mode_header_grp2 *)headerp;
4786 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4787 	} else {
4788 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4789 	}
4790 
4791 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4792 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4793 		    "sd_get_physical_geometry: received unexpected bd_len of "
4794 		    "%d, page4\n", bd_len);
4795 		status = EIO;
4796 		goto page4_exit;
4797 	}
4798 
4799 	page4p = (struct mode_geometry *)
4800 	    ((caddr_t)headerp + mode_header_length + bd_len);
4801 
4802 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4803 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
4804 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
4805 		    "%d\n", page4p->mode_page.code);
4806 		status = EIO;
4807 		goto page4_exit;
4808 	}
4809 
4810 	/*
4811 	 * Stash the data now, after we know that both commands completed.
4812 	 */
4813 
4814 
4815 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4816 	spc   = nhead * nsect;
4817 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4818 	rpm   = BE_16(page4p->rpm);
4819 
4820 	modesense_capacity = spc * ncyl;
4821 
4822 	SD_INFO(SD_LOG_COMMON, un,
4823 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4824 	SD_INFO(SD_LOG_COMMON, un,
4825 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4826 	SD_INFO(SD_LOG_COMMON, un,
4827 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4828 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4829 	    (void *)pgeom_p, capacity);
4830 
4831 	/*
4832 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4833 	 * the product of C * H * S returned by MODE SENSE >= that returned
4834 	 * by read capacity. This is an idiosyncrasy of the original x86
4835 	 * disk subsystem.
4836 	 */
4837 	if (modesense_capacity >= capacity) {
4838 		SD_INFO(SD_LOG_COMMON, un,
4839 		    "sd_get_physical_geometry: adjusting acyl; "
4840 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4841 		    (modesense_capacity - capacity + spc - 1) / spc);
4842 		if (sector_size != 0) {
4843 			/* 1243403: NEC D38x7 drives don't support sec size */
4844 			pgeom_p->g_secsize = (unsigned short)sector_size;
4845 		}
4846 		pgeom_p->g_nsect    = (unsigned short)nsect;
4847 		pgeom_p->g_nhead    = (unsigned short)nhead;
4848 		pgeom_p->g_capacity = capacity;
4849 		pgeom_p->g_acyl	    =
4850 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4851 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4852 	}
4853 
4854 	pgeom_p->g_rpm    = (unsigned short)rpm;
4855 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4856 	ret = 0;
4857 
4858 	SD_INFO(SD_LOG_COMMON, un,
4859 	    "sd_get_physical_geometry: mode sense geometry:\n");
4860 	SD_INFO(SD_LOG_COMMON, un,
4861 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4862 	    nsect, sector_size, intrlv);
4863 	SD_INFO(SD_LOG_COMMON, un,
4864 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4865 	    nhead, ncyl, rpm, modesense_capacity);
4866 	SD_INFO(SD_LOG_COMMON, un,
4867 	    "sd_get_physical_geometry: (cached)\n");
4868 	SD_INFO(SD_LOG_COMMON, un,
4869 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4870 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4871 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4872 	SD_INFO(SD_LOG_COMMON, un,
4873 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4874 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4875 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4876 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
4877 
4878 page4_exit:
4879 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4880 
4881 page3_exit:
4882 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4883 
4884 	if (status != 0) {
4885 		if (status == EIO) {
4886 			/*
4887 			 * Some disks do not support mode sense(6), we
4888 			 * should ignore this kind of error(sense key is
4889 			 * 0x5 - illegal request).
4890 			 */
4891 			uint8_t *sensep;
4892 			int senlen;
4893 
4894 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
4895 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
4896 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
4897 
4898 			if (senlen > 0 &&
4899 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
4900 				sd_ssc_assessment(ssc,
4901 				    SD_FMT_IGNORE_COMPROMISE);
4902 			} else {
4903 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
4904 			}
4905 		} else {
4906 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
4907 		}
4908 	}
4909 	sd_ssc_fini(ssc);
4910 	return (ret);
4911 }
4912 
4913 /*
4914  *    Function: sd_get_virtual_geometry
4915  *
4916  * Description: Ask the controller to tell us about the target device.
4917  *
4918  *   Arguments: un - pointer to softstate
4919  *		capacity - disk capacity in #blocks
4920  *		lbasize - disk block size in bytes
4921  *
4922  *     Context: Kernel thread only
4923  */
4924 
4925 static int
4926 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4927     diskaddr_t capacity, int lbasize)
4928 {
4929 	uint_t	geombuf;
4930 	int	spc;
4931 
4932 	ASSERT(un != NULL);
4933 
4934 	/* Set sector size, and total number of sectors */
4935 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4936 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4937 
4938 	/* Let the HBA tell us its geometry */
4939 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4940 
4941 	/* A value of -1 indicates an undefined "geometry" property */
4942 	if (geombuf == (-1)) {
4943 		return (EINVAL);
4944 	}
4945 
4946 	/* Initialize the logical geometry cache. */
4947 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4948 	lgeom_p->g_nsect   = geombuf & 0xffff;
4949 	lgeom_p->g_secsize = un->un_sys_blocksize;
4950 
4951 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4952 
4953 	/*
4954 	 * Note: The driver originally converted the capacity value from
4955 	 * target blocks to system blocks. However, the capacity value passed
4956 	 * to this routine is already in terms of system blocks (this scaling
4957 	 * is done when the READ CAPACITY command is issued and processed).
4958 	 * This 'error' may have gone undetected because the usage of g_ncyl
4959 	 * (which is based upon g_capacity) is very limited within the driver
4960 	 */
4961 	lgeom_p->g_capacity = capacity;
4962 
4963 	/*
4964 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4965 	 * hba may return zero values if the device has been removed.
4966 	 */
4967 	if (spc == 0) {
4968 		lgeom_p->g_ncyl = 0;
4969 	} else {
4970 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4971 	}
4972 	lgeom_p->g_acyl = 0;
4973 
4974 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4975 	return (0);
4976 
4977 }
4978 /*
4979  *    Function: sd_update_block_info
4980  *
4981  * Description: Calculate a byte count to sector count bitshift value
4982  *		from sector size.
4983  *
4984  *   Arguments: un: unit struct.
4985  *		lbasize: new target sector size
4986  *		capacity: new target capacity, ie. block count
4987  *
4988  *     Context: Kernel thread context
4989  */
4990 
4991 static void
4992 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4993 {
4994 	if (lbasize != 0) {
4995 		un->un_tgt_blocksize = lbasize;
4996 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4997 	}
4998 
4999 	if (capacity != 0) {
5000 		un->un_blockcount		= capacity;
5001 		un->un_f_blockcount_is_valid	= TRUE;
5002 	}
5003 }
5004 
5005 
5006 /*
5007  *    Function: sd_register_devid
5008  *
5009  * Description: This routine will obtain the device id information from the
5010  *		target, obtain the serial number, and register the device
5011  *		id with the ddi framework.
5012  *
5013  *   Arguments: devi - the system's dev_info_t for the device.
5014  *		un - driver soft state (unit) structure
5015  *		reservation_flag - indicates if a reservation conflict
5016  *		occurred during attach
5017  *
5018  *     Context: Kernel Thread
5019  */
5020 static void
5021 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5022 {
5023 	int		rval		= 0;
5024 	uchar_t		*inq80		= NULL;
5025 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5026 	size_t		inq80_resid	= 0;
5027 	uchar_t		*inq83		= NULL;
5028 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5029 	size_t		inq83_resid	= 0;
5030 	int		dlen, len;
5031 	char		*sn;
5032 	struct sd_lun	*un;
5033 
5034 	ASSERT(ssc != NULL);
5035 	un = ssc->ssc_un;
5036 	ASSERT(un != NULL);
5037 	ASSERT(mutex_owned(SD_MUTEX(un)));
5038 	ASSERT((SD_DEVINFO(un)) == devi);
5039 
5040 
5041 	/*
5042 	 * We check the availability of the World Wide Name (0x83) and Unit
5043 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5044 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5045 	 * 0x83 is available, that is the best choice.  Our next choice is
5046 	 * 0x80.  If neither are available, we munge the devid from the device
5047 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5048 	 * to fabricate a devid for non-Sun qualified disks.
5049 	 */
5050 	if (sd_check_vpd_page_support(ssc) == 0) {
5051 		/* collect page 80 data if available */
5052 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5053 
5054 			mutex_exit(SD_MUTEX(un));
5055 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5056 
5057 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5058 			    0x01, 0x80, &inq80_resid);
5059 
5060 			if (rval != 0) {
5061 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5062 				kmem_free(inq80, inq80_len);
5063 				inq80 = NULL;
5064 				inq80_len = 0;
5065 			} else if (ddi_prop_exists(
5066 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5067 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5068 			    INQUIRY_SERIAL_NO) == 0) {
5069 				/*
5070 				 * If we don't already have a serial number
5071 				 * property, do quick verify of data returned
5072 				 * and define property.
5073 				 */
5074 				dlen = inq80_len - inq80_resid;
5075 				len = (size_t)inq80[3];
5076 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5077 					/*
5078 					 * Ensure sn termination, skip leading
5079 					 * blanks, and create property
5080 					 * 'inquiry-serial-no'.
5081 					 */
5082 					sn = (char *)&inq80[4];
5083 					sn[len] = 0;
5084 					while (*sn && (*sn == ' '))
5085 						sn++;
5086 					if (*sn) {
5087 						(void) ddi_prop_update_string(
5088 						    DDI_DEV_T_NONE,
5089 						    SD_DEVINFO(un),
5090 						    INQUIRY_SERIAL_NO, sn);
5091 					}
5092 				}
5093 			}
5094 			mutex_enter(SD_MUTEX(un));
5095 		}
5096 
5097 		/* collect page 83 data if available */
5098 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5099 			mutex_exit(SD_MUTEX(un));
5100 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5101 
5102 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5103 			    0x01, 0x83, &inq83_resid);
5104 
5105 			if (rval != 0) {
5106 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5107 				kmem_free(inq83, inq83_len);
5108 				inq83 = NULL;
5109 				inq83_len = 0;
5110 			}
5111 			mutex_enter(SD_MUTEX(un));
5112 		}
5113 	}
5114 
5115 	/*
5116 	 * If transport has already registered a devid for this target
5117 	 * then that takes precedence over the driver's determination
5118 	 * of the devid.
5119 	 *
5120 	 * NOTE: The reason this check is done here instead of at the beginning
5121 	 * of the function is to allow the code above to create the
5122 	 * 'inquiry-serial-no' property.
5123 	 */
5124 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5125 		ASSERT(un->un_devid);
5126 		un->un_f_devid_transport_defined = TRUE;
5127 		goto cleanup; /* use devid registered by the transport */
5128 	}
5129 
5130 	/*
5131 	 * This is the case of antiquated Sun disk drives that have the
5132 	 * FAB_DEVID property set in the disk_table.  These drives
5133 	 * manage the devid's by storing them in last 2 available sectors
5134 	 * on the drive and have them fabricated by the ddi layer by calling
5135 	 * ddi_devid_init and passing the DEVID_FAB flag.
5136 	 */
5137 	if (un->un_f_opt_fab_devid == TRUE) {
5138 		/*
5139 		 * Depending on EINVAL isn't reliable, since a reserved disk
5140 		 * may result in invalid geometry, so check to make sure a
5141 		 * reservation conflict did not occur during attach.
5142 		 */
5143 		if ((sd_get_devid(ssc) == EINVAL) &&
5144 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5145 			/*
5146 			 * The devid is invalid AND there is no reservation
5147 			 * conflict.  Fabricate a new devid.
5148 			 */
5149 			(void) sd_create_devid(ssc);
5150 		}
5151 
5152 		/* Register the devid if it exists */
5153 		if (un->un_devid != NULL) {
5154 			(void) ddi_devid_register(SD_DEVINFO(un),
5155 			    un->un_devid);
5156 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5157 			    "sd_register_devid: Devid Fabricated\n");
5158 		}
5159 		goto cleanup;
5160 	}
5161 
5162 	/* encode best devid possible based on data available */
5163 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5164 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5165 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5166 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5167 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5168 
5169 		/* devid successfully encoded, register devid */
5170 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5171 
5172 	} else {
5173 		/*
5174 		 * Unable to encode a devid based on data available.
5175 		 * This is not a Sun qualified disk.  Older Sun disk
5176 		 * drives that have the SD_FAB_DEVID property
5177 		 * set in the disk_table and non Sun qualified
5178 		 * disks are treated in the same manner.  These
5179 		 * drives manage the devid's by storing them in
5180 		 * last 2 available sectors on the drive and
5181 		 * have them fabricated by the ddi layer by
5182 		 * calling ddi_devid_init and passing the
5183 		 * DEVID_FAB flag.
5184 		 * Create a fabricate devid only if there's no
5185 		 * fabricate devid existed.
5186 		 */
5187 		if (sd_get_devid(ssc) == EINVAL) {
5188 			(void) sd_create_devid(ssc);
5189 		}
5190 		un->un_f_opt_fab_devid = TRUE;
5191 
5192 		/* Register the devid if it exists */
5193 		if (un->un_devid != NULL) {
5194 			(void) ddi_devid_register(SD_DEVINFO(un),
5195 			    un->un_devid);
5196 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5197 			    "sd_register_devid: devid fabricated using "
5198 			    "ddi framework\n");
5199 		}
5200 	}
5201 
5202 cleanup:
5203 	/* clean up resources */
5204 	if (inq80 != NULL) {
5205 		kmem_free(inq80, inq80_len);
5206 	}
5207 	if (inq83 != NULL) {
5208 		kmem_free(inq83, inq83_len);
5209 	}
5210 }
5211 
5212 
5213 
5214 /*
5215  *    Function: sd_get_devid
5216  *
5217  * Description: This routine will return 0 if a valid device id has been
5218  *		obtained from the target and stored in the soft state. If a
5219  *		valid device id has not been previously read and stored, a
5220  *		read attempt will be made.
5221  *
5222  *   Arguments: un - driver soft state (unit) structure
5223  *
5224  * Return Code: 0 if we successfully get the device id
5225  *
5226  *     Context: Kernel Thread
5227  */
5228 
5229 static int
5230 sd_get_devid(sd_ssc_t *ssc)
5231 {
5232 	struct dk_devid		*dkdevid;
5233 	ddi_devid_t		tmpid;
5234 	uint_t			*ip;
5235 	size_t			sz;
5236 	diskaddr_t		blk;
5237 	int			status;
5238 	int			chksum;
5239 	int			i;
5240 	size_t			buffer_size;
5241 	struct sd_lun		*un;
5242 
5243 	ASSERT(ssc != NULL);
5244 	un = ssc->ssc_un;
5245 	ASSERT(un != NULL);
5246 	ASSERT(mutex_owned(SD_MUTEX(un)));
5247 
5248 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5249 	    un);
5250 
5251 	if (un->un_devid != NULL) {
5252 		return (0);
5253 	}
5254 
5255 	mutex_exit(SD_MUTEX(un));
5256 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5257 	    (void *)SD_PATH_DIRECT) != 0) {
5258 		mutex_enter(SD_MUTEX(un));
5259 		return (EINVAL);
5260 	}
5261 
5262 	/*
5263 	 * Read and verify device id, stored in the reserved cylinders at the
5264 	 * end of the disk. Backup label is on the odd sectors of the last
5265 	 * track of the last cylinder. Device id will be on track of the next
5266 	 * to last cylinder.
5267 	 */
5268 	mutex_enter(SD_MUTEX(un));
5269 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5270 	mutex_exit(SD_MUTEX(un));
5271 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5272 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5273 	    SD_PATH_DIRECT);
5274 
5275 	if (status != 0) {
5276 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5277 		goto error;
5278 	}
5279 
5280 	/* Validate the revision */
5281 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5282 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5283 		status = EINVAL;
5284 		goto error;
5285 	}
5286 
5287 	/* Calculate the checksum */
5288 	chksum = 0;
5289 	ip = (uint_t *)dkdevid;
5290 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5291 	    i++) {
5292 		chksum ^= ip[i];
5293 	}
5294 
5295 	/* Compare the checksums */
5296 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5297 		status = EINVAL;
5298 		goto error;
5299 	}
5300 
5301 	/* Validate the device id */
5302 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5303 		status = EINVAL;
5304 		goto error;
5305 	}
5306 
5307 	/*
5308 	 * Store the device id in the driver soft state
5309 	 */
5310 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5311 	tmpid = kmem_alloc(sz, KM_SLEEP);
5312 
5313 	mutex_enter(SD_MUTEX(un));
5314 
5315 	un->un_devid = tmpid;
5316 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5317 
5318 	kmem_free(dkdevid, buffer_size);
5319 
5320 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5321 
5322 	return (status);
5323 error:
5324 	mutex_enter(SD_MUTEX(un));
5325 	kmem_free(dkdevid, buffer_size);
5326 	return (status);
5327 }
5328 
5329 
5330 /*
5331  *    Function: sd_create_devid
5332  *
5333  * Description: This routine will fabricate the device id and write it
5334  *		to the disk.
5335  *
5336  *   Arguments: un - driver soft state (unit) structure
5337  *
5338  * Return Code: value of the fabricated device id
5339  *
5340  *     Context: Kernel Thread
5341  */
5342 
5343 static ddi_devid_t
5344 sd_create_devid(sd_ssc_t *ssc)
5345 {
5346 	struct sd_lun	*un;
5347 
5348 	ASSERT(ssc != NULL);
5349 	un = ssc->ssc_un;
5350 	ASSERT(un != NULL);
5351 
5352 	/* Fabricate the devid */
5353 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5354 	    == DDI_FAILURE) {
5355 		return (NULL);
5356 	}
5357 
5358 	/* Write the devid to disk */
5359 	if (sd_write_deviceid(ssc) != 0) {
5360 		ddi_devid_free(un->un_devid);
5361 		un->un_devid = NULL;
5362 	}
5363 
5364 	return (un->un_devid);
5365 }
5366 
5367 
5368 /*
5369  *    Function: sd_write_deviceid
5370  *
5371  * Description: This routine will write the device id to the disk
5372  *		reserved sector.
5373  *
5374  *   Arguments: un - driver soft state (unit) structure
5375  *
5376  * Return Code: EINVAL
5377  *		value returned by sd_send_scsi_cmd
5378  *
5379  *     Context: Kernel Thread
5380  */
5381 
5382 static int
5383 sd_write_deviceid(sd_ssc_t *ssc)
5384 {
5385 	struct dk_devid		*dkdevid;
5386 	diskaddr_t		blk;
5387 	uint_t			*ip, chksum;
5388 	int			status;
5389 	int			i;
5390 	struct sd_lun		*un;
5391 
5392 	ASSERT(ssc != NULL);
5393 	un = ssc->ssc_un;
5394 	ASSERT(un != NULL);
5395 	ASSERT(mutex_owned(SD_MUTEX(un)));
5396 
5397 	mutex_exit(SD_MUTEX(un));
5398 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5399 	    (void *)SD_PATH_DIRECT) != 0) {
5400 		mutex_enter(SD_MUTEX(un));
5401 		return (-1);
5402 	}
5403 
5404 
5405 	/* Allocate the buffer */
5406 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5407 
5408 	/* Fill in the revision */
5409 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5410 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5411 
5412 	/* Copy in the device id */
5413 	mutex_enter(SD_MUTEX(un));
5414 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5415 	    ddi_devid_sizeof(un->un_devid));
5416 	mutex_exit(SD_MUTEX(un));
5417 
5418 	/* Calculate the checksum */
5419 	chksum = 0;
5420 	ip = (uint_t *)dkdevid;
5421 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5422 	    i++) {
5423 		chksum ^= ip[i];
5424 	}
5425 
5426 	/* Fill-in checksum */
5427 	DKD_FORMCHKSUM(chksum, dkdevid);
5428 
5429 	/* Write the reserved sector */
5430 	status = sd_send_scsi_WRITE(ssc, dkdevid, un->un_sys_blocksize, blk,
5431 	    SD_PATH_DIRECT);
5432 	if (status != 0)
5433 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5434 
5435 	kmem_free(dkdevid, un->un_sys_blocksize);
5436 
5437 	mutex_enter(SD_MUTEX(un));
5438 	return (status);
5439 }
5440 
5441 
5442 /*
5443  *    Function: sd_check_vpd_page_support
5444  *
5445  * Description: This routine sends an inquiry command with the EVPD bit set and
5446  *		a page code of 0x00 to the device. It is used to determine which
5447  *		vital product pages are available to find the devid. We are
5448  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5449  *		device does not support that command.
5450  *
5451  *   Arguments: un  - driver soft state (unit) structure
5452  *
5453  * Return Code: 0 - success
5454  *		1 - check condition
5455  *
5456  *     Context: This routine can sleep.
5457  */
5458 
5459 static int
5460 sd_check_vpd_page_support(sd_ssc_t *ssc)
5461 {
5462 	uchar_t	*page_list	= NULL;
5463 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5464 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5465 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5466 	int    	rval		= 0;
5467 	int	counter;
5468 	struct sd_lun		*un;
5469 
5470 	ASSERT(ssc != NULL);
5471 	un = ssc->ssc_un;
5472 	ASSERT(un != NULL);
5473 	ASSERT(mutex_owned(SD_MUTEX(un)));
5474 
5475 	mutex_exit(SD_MUTEX(un));
5476 
5477 	/*
5478 	 * We'll set the page length to the maximum to save figuring it out
5479 	 * with an additional call.
5480 	 */
5481 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5482 
5483 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5484 	    page_code, NULL);
5485 
5486 	if (rval != 0)
5487 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5488 
5489 	mutex_enter(SD_MUTEX(un));
5490 
5491 	/*
5492 	 * Now we must validate that the device accepted the command, as some
5493 	 * drives do not support it.  If the drive does support it, we will
5494 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5495 	 * not, we return -1.
5496 	 */
5497 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5498 		/* Loop to find one of the 2 pages we need */
5499 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5500 
5501 		/*
5502 		 * Pages are returned in ascending order, and 0x83 is what we
5503 		 * are hoping for.
5504 		 */
5505 		while ((page_list[counter] <= 0x86) &&
5506 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5507 		    VPD_HEAD_OFFSET))) {
5508 			/*
5509 			 * Add 3 because page_list[3] is the number of
5510 			 * pages minus 3
5511 			 */
5512 
5513 			switch (page_list[counter]) {
5514 			case 0x00:
5515 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5516 				break;
5517 			case 0x80:
5518 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5519 				break;
5520 			case 0x81:
5521 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5522 				break;
5523 			case 0x82:
5524 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5525 				break;
5526 			case 0x83:
5527 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5528 				break;
5529 			case 0x86:
5530 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5531 				break;
5532 			}
5533 			counter++;
5534 		}
5535 
5536 	} else {
5537 		rval = -1;
5538 
5539 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5540 		    "sd_check_vpd_page_support: This drive does not implement "
5541 		    "VPD pages.\n");
5542 	}
5543 
5544 	kmem_free(page_list, page_length);
5545 
5546 	return (rval);
5547 }
5548 
5549 
5550 /*
5551  *    Function: sd_setup_pm
5552  *
5553  * Description: Initialize Power Management on the device
5554  *
5555  *     Context: Kernel Thread
5556  */
5557 
5558 static void
5559 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5560 {
5561 	uint_t		log_page_size;
5562 	uchar_t		*log_page_data;
5563 	int		rval = 0;
5564 	struct sd_lun	*un;
5565 
5566 	ASSERT(ssc != NULL);
5567 	un = ssc->ssc_un;
5568 	ASSERT(un != NULL);
5569 
5570 	/*
5571 	 * Since we are called from attach, holding a mutex for
5572 	 * un is unnecessary. Because some of the routines called
5573 	 * from here require SD_MUTEX to not be held, assert this
5574 	 * right up front.
5575 	 */
5576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5577 	/*
5578 	 * Since the sd device does not have the 'reg' property,
5579 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5580 	 * The following code is to tell cpr that this device
5581 	 * DOES need to be suspended and resumed.
5582 	 */
5583 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5584 	    "pm-hardware-state", "needs-suspend-resume");
5585 
5586 	/*
5587 	 * This complies with the new power management framework
5588 	 * for certain desktop machines. Create the pm_components
5589 	 * property as a string array property.
5590 	 */
5591 	if (un->un_f_pm_supported) {
5592 		/*
5593 		 * not all devices have a motor, try it first.
5594 		 * some devices may return ILLEGAL REQUEST, some
5595 		 * will hang
5596 		 * The following START_STOP_UNIT is used to check if target
5597 		 * device has a motor.
5598 		 */
5599 		un->un_f_start_stop_supported = TRUE;
5600 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
5601 		    SD_PATH_DIRECT);
5602 
5603 		if (rval != 0) {
5604 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5605 			un->un_f_start_stop_supported = FALSE;
5606 		}
5607 
5608 		/*
5609 		 * create pm properties anyways otherwise the parent can't
5610 		 * go to sleep
5611 		 */
5612 		(void) sd_create_pm_components(devi, un);
5613 		un->un_f_pm_is_enabled = TRUE;
5614 		return;
5615 	}
5616 
5617 	if (!un->un_f_log_sense_supported) {
5618 		un->un_power_level = SD_SPINDLE_ON;
5619 		un->un_f_pm_is_enabled = FALSE;
5620 		return;
5621 	}
5622 
5623 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5624 
5625 #ifdef	SDDEBUG
5626 	if (sd_force_pm_supported) {
5627 		/* Force a successful result */
5628 		rval = 1;
5629 	}
5630 #endif
5631 
5632 	/*
5633 	 * If the start-stop cycle counter log page is not supported
5634 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5635 	 * then we should not create the pm_components property.
5636 	 */
5637 	if (rval == -1) {
5638 		/*
5639 		 * Error.
5640 		 * Reading log sense failed, most likely this is
5641 		 * an older drive that does not support log sense.
5642 		 * If this fails auto-pm is not supported.
5643 		 */
5644 		un->un_power_level = SD_SPINDLE_ON;
5645 		un->un_f_pm_is_enabled = FALSE;
5646 
5647 	} else if (rval == 0) {
5648 		/*
5649 		 * Page not found.
5650 		 * The start stop cycle counter is implemented as page
5651 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5652 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5653 		 */
5654 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
5655 			/*
5656 			 * Page found, use this one.
5657 			 */
5658 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5659 			un->un_f_pm_is_enabled = TRUE;
5660 		} else {
5661 			/*
5662 			 * Error or page not found.
5663 			 * auto-pm is not supported for this device.
5664 			 */
5665 			un->un_power_level = SD_SPINDLE_ON;
5666 			un->un_f_pm_is_enabled = FALSE;
5667 		}
5668 	} else {
5669 		/*
5670 		 * Page found, use it.
5671 		 */
5672 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5673 		un->un_f_pm_is_enabled = TRUE;
5674 	}
5675 
5676 
5677 	if (un->un_f_pm_is_enabled == TRUE) {
5678 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5679 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5680 
5681 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
5682 		    log_page_size, un->un_start_stop_cycle_page,
5683 		    0x01, 0, SD_PATH_DIRECT);
5684 
5685 		if (rval != 0) {
5686 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5687 		}
5688 
5689 #ifdef	SDDEBUG
5690 		if (sd_force_pm_supported) {
5691 			/* Force a successful result */
5692 			rval = 0;
5693 		}
5694 #endif
5695 
5696 		/*
5697 		 * If the Log sense for Page( Start/stop cycle counter page)
5698 		 * succeeds, then power management is supported and we can
5699 		 * enable auto-pm.
5700 		 */
5701 		if (rval == 0)  {
5702 			(void) sd_create_pm_components(devi, un);
5703 		} else {
5704 			un->un_power_level = SD_SPINDLE_ON;
5705 			un->un_f_pm_is_enabled = FALSE;
5706 		}
5707 
5708 		kmem_free(log_page_data, log_page_size);
5709 	}
5710 }
5711 
5712 
5713 /*
5714  *    Function: sd_create_pm_components
5715  *
5716  * Description: Initialize PM property.
5717  *
5718  *     Context: Kernel thread context
5719  */
5720 
5721 static void
5722 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5723 {
5724 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5725 
5726 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5727 
5728 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5729 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5730 		/*
5731 		 * When components are initially created they are idle,
5732 		 * power up any non-removables.
5733 		 * Note: the return value of pm_raise_power can't be used
5734 		 * for determining if PM should be enabled for this device.
5735 		 * Even if you check the return values and remove this
5736 		 * property created above, the PM framework will not honor the
5737 		 * change after the first call to pm_raise_power. Hence,
5738 		 * removal of that property does not help if pm_raise_power
5739 		 * fails. In the case of removable media, the start/stop
5740 		 * will fail if the media is not present.
5741 		 */
5742 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5743 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5744 			mutex_enter(SD_MUTEX(un));
5745 			un->un_power_level = SD_SPINDLE_ON;
5746 			mutex_enter(&un->un_pm_mutex);
5747 			/* Set to on and not busy. */
5748 			un->un_pm_count = 0;
5749 		} else {
5750 			mutex_enter(SD_MUTEX(un));
5751 			un->un_power_level = SD_SPINDLE_OFF;
5752 			mutex_enter(&un->un_pm_mutex);
5753 			/* Set to off. */
5754 			un->un_pm_count = -1;
5755 		}
5756 		mutex_exit(&un->un_pm_mutex);
5757 		mutex_exit(SD_MUTEX(un));
5758 	} else {
5759 		un->un_power_level = SD_SPINDLE_ON;
5760 		un->un_f_pm_is_enabled = FALSE;
5761 	}
5762 }
5763 
5764 
5765 /*
5766  *    Function: sd_ddi_suspend
5767  *
5768  * Description: Performs system power-down operations. This includes
5769  *		setting the drive state to indicate its suspended so
5770  *		that no new commands will be accepted. Also, wait for
5771  *		all commands that are in transport or queued to a timer
5772  *		for retry to complete. All timeout threads are cancelled.
5773  *
5774  * Return Code: DDI_FAILURE or DDI_SUCCESS
5775  *
5776  *     Context: Kernel thread context
5777  */
5778 
5779 static int
5780 sd_ddi_suspend(dev_info_t *devi)
5781 {
5782 	struct	sd_lun	*un;
5783 	clock_t		wait_cmds_complete;
5784 
5785 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5786 	if (un == NULL) {
5787 		return (DDI_FAILURE);
5788 	}
5789 
5790 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5791 
5792 	mutex_enter(SD_MUTEX(un));
5793 
5794 	/* Return success if the device is already suspended. */
5795 	if (un->un_state == SD_STATE_SUSPENDED) {
5796 		mutex_exit(SD_MUTEX(un));
5797 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5798 		    "device already suspended, exiting\n");
5799 		return (DDI_SUCCESS);
5800 	}
5801 
5802 	/* Return failure if the device is being used by HA */
5803 	if (un->un_resvd_status &
5804 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5805 		mutex_exit(SD_MUTEX(un));
5806 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5807 		    "device in use by HA, exiting\n");
5808 		return (DDI_FAILURE);
5809 	}
5810 
5811 	/*
5812 	 * Return failure if the device is in a resource wait
5813 	 * or power changing state.
5814 	 */
5815 	if ((un->un_state == SD_STATE_RWAIT) ||
5816 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5817 		mutex_exit(SD_MUTEX(un));
5818 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5819 		    "device in resource wait state, exiting\n");
5820 		return (DDI_FAILURE);
5821 	}
5822 
5823 
5824 	un->un_save_state = un->un_last_state;
5825 	New_state(un, SD_STATE_SUSPENDED);
5826 
5827 	/*
5828 	 * Wait for all commands that are in transport or queued to a timer
5829 	 * for retry to complete.
5830 	 *
5831 	 * While waiting, no new commands will be accepted or sent because of
5832 	 * the new state we set above.
5833 	 *
5834 	 * Wait till current operation has completed. If we are in the resource
5835 	 * wait state (with an intr outstanding) then we need to wait till the
5836 	 * intr completes and starts the next cmd. We want to wait for
5837 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5838 	 */
5839 	wait_cmds_complete = ddi_get_lbolt() +
5840 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5841 
5842 	while (un->un_ncmds_in_transport != 0) {
5843 		/*
5844 		 * Fail if commands do not finish in the specified time.
5845 		 */
5846 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5847 		    wait_cmds_complete) == -1) {
5848 			/*
5849 			 * Undo the state changes made above. Everything
5850 			 * must go back to it's original value.
5851 			 */
5852 			Restore_state(un);
5853 			un->un_last_state = un->un_save_state;
5854 			/* Wake up any threads that might be waiting. */
5855 			cv_broadcast(&un->un_suspend_cv);
5856 			mutex_exit(SD_MUTEX(un));
5857 			SD_ERROR(SD_LOG_IO_PM, un,
5858 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5859 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5860 			return (DDI_FAILURE);
5861 		}
5862 	}
5863 
5864 	/*
5865 	 * Cancel SCSI watch thread and timeouts, if any are active
5866 	 */
5867 
5868 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5869 		opaque_t temp_token = un->un_swr_token;
5870 		mutex_exit(SD_MUTEX(un));
5871 		scsi_watch_suspend(temp_token);
5872 		mutex_enter(SD_MUTEX(un));
5873 	}
5874 
5875 	if (un->un_reset_throttle_timeid != NULL) {
5876 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5877 		un->un_reset_throttle_timeid = NULL;
5878 		mutex_exit(SD_MUTEX(un));
5879 		(void) untimeout(temp_id);
5880 		mutex_enter(SD_MUTEX(un));
5881 	}
5882 
5883 	if (un->un_dcvb_timeid != NULL) {
5884 		timeout_id_t temp_id = un->un_dcvb_timeid;
5885 		un->un_dcvb_timeid = NULL;
5886 		mutex_exit(SD_MUTEX(un));
5887 		(void) untimeout(temp_id);
5888 		mutex_enter(SD_MUTEX(un));
5889 	}
5890 
5891 	mutex_enter(&un->un_pm_mutex);
5892 	if (un->un_pm_timeid != NULL) {
5893 		timeout_id_t temp_id = un->un_pm_timeid;
5894 		un->un_pm_timeid = NULL;
5895 		mutex_exit(&un->un_pm_mutex);
5896 		mutex_exit(SD_MUTEX(un));
5897 		(void) untimeout(temp_id);
5898 		mutex_enter(SD_MUTEX(un));
5899 	} else {
5900 		mutex_exit(&un->un_pm_mutex);
5901 	}
5902 
5903 	if (un->un_retry_timeid != NULL) {
5904 		timeout_id_t temp_id = un->un_retry_timeid;
5905 		un->un_retry_timeid = NULL;
5906 		mutex_exit(SD_MUTEX(un));
5907 		(void) untimeout(temp_id);
5908 		mutex_enter(SD_MUTEX(un));
5909 
5910 		if (un->un_retry_bp != NULL) {
5911 			un->un_retry_bp->av_forw = un->un_waitq_headp;
5912 			un->un_waitq_headp = un->un_retry_bp;
5913 			if (un->un_waitq_tailp == NULL) {
5914 				un->un_waitq_tailp = un->un_retry_bp;
5915 			}
5916 			un->un_retry_bp = NULL;
5917 			un->un_retry_statp = NULL;
5918 		}
5919 	}
5920 
5921 	if (un->un_direct_priority_timeid != NULL) {
5922 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5923 		un->un_direct_priority_timeid = NULL;
5924 		mutex_exit(SD_MUTEX(un));
5925 		(void) untimeout(temp_id);
5926 		mutex_enter(SD_MUTEX(un));
5927 	}
5928 
5929 	if (un->un_f_is_fibre == TRUE) {
5930 		/*
5931 		 * Remove callbacks for insert and remove events
5932 		 */
5933 		if (un->un_insert_event != NULL) {
5934 			mutex_exit(SD_MUTEX(un));
5935 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5936 			mutex_enter(SD_MUTEX(un));
5937 			un->un_insert_event = NULL;
5938 		}
5939 
5940 		if (un->un_remove_event != NULL) {
5941 			mutex_exit(SD_MUTEX(un));
5942 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5943 			mutex_enter(SD_MUTEX(un));
5944 			un->un_remove_event = NULL;
5945 		}
5946 	}
5947 
5948 	mutex_exit(SD_MUTEX(un));
5949 
5950 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5951 
5952 	return (DDI_SUCCESS);
5953 }
5954 
5955 
5956 /*
5957  *    Function: sd_ddi_pm_suspend
5958  *
5959  * Description: Set the drive state to low power.
5960  *		Someone else is required to actually change the drive
5961  *		power level.
5962  *
5963  *   Arguments: un - driver soft state (unit) structure
5964  *
5965  * Return Code: DDI_FAILURE or DDI_SUCCESS
5966  *
5967  *     Context: Kernel thread context
5968  */
5969 
5970 static int
5971 sd_ddi_pm_suspend(struct sd_lun *un)
5972 {
5973 	ASSERT(un != NULL);
5974 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5975 
5976 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5977 	mutex_enter(SD_MUTEX(un));
5978 
5979 	/*
5980 	 * Exit if power management is not enabled for this device, or if
5981 	 * the device is being used by HA.
5982 	 */
5983 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5984 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5985 		mutex_exit(SD_MUTEX(un));
5986 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5987 		return (DDI_SUCCESS);
5988 	}
5989 
5990 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5991 	    un->un_ncmds_in_driver);
5992 
5993 	/*
5994 	 * See if the device is not busy, ie.:
5995 	 *    - we have no commands in the driver for this device
5996 	 *    - not waiting for resources
5997 	 */
5998 	if ((un->un_ncmds_in_driver == 0) &&
5999 	    (un->un_state != SD_STATE_RWAIT)) {
6000 		/*
6001 		 * The device is not busy, so it is OK to go to low power state.
6002 		 * Indicate low power, but rely on someone else to actually
6003 		 * change it.
6004 		 */
6005 		mutex_enter(&un->un_pm_mutex);
6006 		un->un_pm_count = -1;
6007 		mutex_exit(&un->un_pm_mutex);
6008 		un->un_power_level = SD_SPINDLE_OFF;
6009 	}
6010 
6011 	mutex_exit(SD_MUTEX(un));
6012 
6013 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6014 
6015 	return (DDI_SUCCESS);
6016 }
6017 
6018 
6019 /*
6020  *    Function: sd_ddi_resume
6021  *
6022  * Description: Performs system power-up operations..
6023  *
6024  * Return Code: DDI_SUCCESS
6025  *		DDI_FAILURE
6026  *
6027  *     Context: Kernel thread context
6028  */
6029 
6030 static int
6031 sd_ddi_resume(dev_info_t *devi)
6032 {
6033 	struct	sd_lun	*un;
6034 
6035 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6036 	if (un == NULL) {
6037 		return (DDI_FAILURE);
6038 	}
6039 
6040 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6041 
6042 	mutex_enter(SD_MUTEX(un));
6043 	Restore_state(un);
6044 
6045 	/*
6046 	 * Restore the state which was saved to give the
6047 	 * the right state in un_last_state
6048 	 */
6049 	un->un_last_state = un->un_save_state;
6050 	/*
6051 	 * Note: throttle comes back at full.
6052 	 * Also note: this MUST be done before calling pm_raise_power
6053 	 * otherwise the system can get hung in biowait. The scenario where
6054 	 * this'll happen is under cpr suspend. Writing of the system
6055 	 * state goes through sddump, which writes 0 to un_throttle. If
6056 	 * writing the system state then fails, example if the partition is
6057 	 * too small, then cpr attempts a resume. If throttle isn't restored
6058 	 * from the saved value until after calling pm_raise_power then
6059 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6060 	 * in biowait.
6061 	 */
6062 	un->un_throttle = un->un_saved_throttle;
6063 
6064 	/*
6065 	 * The chance of failure is very rare as the only command done in power
6066 	 * entry point is START command when you transition from 0->1 or
6067 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6068 	 * which suspend was done. Ignore the return value as the resume should
6069 	 * not be failed. In the case of removable media the media need not be
6070 	 * inserted and hence there is a chance that raise power will fail with
6071 	 * media not present.
6072 	 */
6073 	if (un->un_f_attach_spinup) {
6074 		mutex_exit(SD_MUTEX(un));
6075 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6076 		mutex_enter(SD_MUTEX(un));
6077 	}
6078 
6079 	/*
6080 	 * Don't broadcast to the suspend cv and therefore possibly
6081 	 * start I/O until after power has been restored.
6082 	 */
6083 	cv_broadcast(&un->un_suspend_cv);
6084 	cv_broadcast(&un->un_state_cv);
6085 
6086 	/* restart thread */
6087 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6088 		scsi_watch_resume(un->un_swr_token);
6089 	}
6090 
6091 #if (defined(__fibre))
6092 	if (un->un_f_is_fibre == TRUE) {
6093 		/*
6094 		 * Add callbacks for insert and remove events
6095 		 */
6096 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6097 			sd_init_event_callbacks(un);
6098 		}
6099 	}
6100 #endif
6101 
6102 	/*
6103 	 * Transport any pending commands to the target.
6104 	 *
6105 	 * If this is a low-activity device commands in queue will have to wait
6106 	 * until new commands come in, which may take awhile. Also, we
6107 	 * specifically don't check un_ncmds_in_transport because we know that
6108 	 * there really are no commands in progress after the unit was
6109 	 * suspended and we could have reached the throttle level, been
6110 	 * suspended, and have no new commands coming in for awhile. Highly
6111 	 * unlikely, but so is the low-activity disk scenario.
6112 	 */
6113 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6114 
6115 	sd_start_cmds(un, NULL);
6116 	mutex_exit(SD_MUTEX(un));
6117 
6118 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6119 
6120 	return (DDI_SUCCESS);
6121 }
6122 
6123 
6124 /*
6125  *    Function: sd_ddi_pm_resume
6126  *
6127  * Description: Set the drive state to powered on.
6128  *		Someone else is required to actually change the drive
6129  *		power level.
6130  *
6131  *   Arguments: un - driver soft state (unit) structure
6132  *
6133  * Return Code: DDI_SUCCESS
6134  *
6135  *     Context: Kernel thread context
6136  */
6137 
6138 static int
6139 sd_ddi_pm_resume(struct sd_lun *un)
6140 {
6141 	ASSERT(un != NULL);
6142 
6143 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6144 	mutex_enter(SD_MUTEX(un));
6145 	un->un_power_level = SD_SPINDLE_ON;
6146 
6147 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6148 	mutex_enter(&un->un_pm_mutex);
6149 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6150 		un->un_pm_count++;
6151 		ASSERT(un->un_pm_count == 0);
6152 		/*
6153 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6154 		 * un_suspend_cv is for a system resume, not a power management
6155 		 * device resume. (4297749)
6156 		 *	 cv_broadcast(&un->un_suspend_cv);
6157 		 */
6158 	}
6159 	mutex_exit(&un->un_pm_mutex);
6160 	mutex_exit(SD_MUTEX(un));
6161 
6162 	return (DDI_SUCCESS);
6163 }
6164 
6165 
6166 /*
6167  *    Function: sd_pm_idletimeout_handler
6168  *
6169  * Description: A timer routine that's active only while a device is busy.
6170  *		The purpose is to extend slightly the pm framework's busy
6171  *		view of the device to prevent busy/idle thrashing for
6172  *		back-to-back commands. Do this by comparing the current time
6173  *		to the time at which the last command completed and when the
6174  *		difference is greater than sd_pm_idletime, call
6175  *		pm_idle_component. In addition to indicating idle to the pm
6176  *		framework, update the chain type to again use the internal pm
6177  *		layers of the driver.
6178  *
6179  *   Arguments: arg - driver soft state (unit) structure
6180  *
6181  *     Context: Executes in a timeout(9F) thread context
6182  */
6183 
6184 static void
6185 sd_pm_idletimeout_handler(void *arg)
6186 {
6187 	struct sd_lun *un = arg;
6188 
6189 	time_t	now;
6190 
6191 	mutex_enter(&sd_detach_mutex);
6192 	if (un->un_detach_count != 0) {
6193 		/* Abort if the instance is detaching */
6194 		mutex_exit(&sd_detach_mutex);
6195 		return;
6196 	}
6197 	mutex_exit(&sd_detach_mutex);
6198 
6199 	now = ddi_get_time();
6200 	/*
6201 	 * Grab both mutexes, in the proper order, since we're accessing
6202 	 * both PM and softstate variables.
6203 	 */
6204 	mutex_enter(SD_MUTEX(un));
6205 	mutex_enter(&un->un_pm_mutex);
6206 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6207 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6208 		/*
6209 		 * Update the chain types.
6210 		 * This takes affect on the next new command received.
6211 		 */
6212 		if (un->un_f_non_devbsize_supported) {
6213 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6214 		} else {
6215 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6216 		}
6217 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6218 
6219 		SD_TRACE(SD_LOG_IO_PM, un,
6220 		    "sd_pm_idletimeout_handler: idling device\n");
6221 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6222 		un->un_pm_idle_timeid = NULL;
6223 	} else {
6224 		un->un_pm_idle_timeid =
6225 		    timeout(sd_pm_idletimeout_handler, un,
6226 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6227 	}
6228 	mutex_exit(&un->un_pm_mutex);
6229 	mutex_exit(SD_MUTEX(un));
6230 }
6231 
6232 
6233 /*
6234  *    Function: sd_pm_timeout_handler
6235  *
6236  * Description: Callback to tell framework we are idle.
6237  *
6238  *     Context: timeout(9f) thread context.
6239  */
6240 
6241 static void
6242 sd_pm_timeout_handler(void *arg)
6243 {
6244 	struct sd_lun *un = arg;
6245 
6246 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6247 	mutex_enter(&un->un_pm_mutex);
6248 	un->un_pm_timeid = NULL;
6249 	mutex_exit(&un->un_pm_mutex);
6250 }
6251 
6252 
6253 /*
6254  *    Function: sdpower
6255  *
6256  * Description: PM entry point.
6257  *
6258  * Return Code: DDI_SUCCESS
6259  *		DDI_FAILURE
6260  *
6261  *     Context: Kernel thread context
6262  */
6263 
6264 static int
6265 sdpower(dev_info_t *devi, int component, int level)
6266 {
6267 	struct sd_lun	*un;
6268 	int		instance;
6269 	int		rval = DDI_SUCCESS;
6270 	uint_t		i, log_page_size, maxcycles, ncycles;
6271 	uchar_t		*log_page_data;
6272 	int		log_sense_page;
6273 	int		medium_present;
6274 	time_t		intvlp;
6275 	dev_t		dev;
6276 	struct pm_trans_data	sd_pm_tran_data;
6277 	uchar_t		save_state;
6278 	int		sval;
6279 	uchar_t		state_before_pm;
6280 	int		got_semaphore_here;
6281 	sd_ssc_t	*ssc;
6282 
6283 	instance = ddi_get_instance(devi);
6284 
6285 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6286 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
6287 	    component != 0) {
6288 		return (DDI_FAILURE);
6289 	}
6290 
6291 	dev = sd_make_device(SD_DEVINFO(un));
6292 	ssc = sd_ssc_init(un);
6293 
6294 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6295 
6296 	/*
6297 	 * Must synchronize power down with close.
6298 	 * Attempt to decrement/acquire the open/close semaphore,
6299 	 * but do NOT wait on it. If it's not greater than zero,
6300 	 * ie. it can't be decremented without waiting, then
6301 	 * someone else, either open or close, already has it
6302 	 * and the try returns 0. Use that knowledge here to determine
6303 	 * if it's OK to change the device power level.
6304 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6305 	 * here.
6306 	 */
6307 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6308 
6309 	mutex_enter(SD_MUTEX(un));
6310 
6311 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6312 	    un->un_ncmds_in_driver);
6313 
6314 	/*
6315 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6316 	 * already being processed in the driver, or if the semaphore was
6317 	 * not gotten here it indicates an open or close is being processed.
6318 	 * At the same time somebody is requesting to go low power which
6319 	 * can't happen, therefore we need to return failure.
6320 	 */
6321 	if ((level == SD_SPINDLE_OFF) &&
6322 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6323 		mutex_exit(SD_MUTEX(un));
6324 
6325 		if (got_semaphore_here != 0) {
6326 			sema_v(&un->un_semoclose);
6327 		}
6328 		SD_TRACE(SD_LOG_IO_PM, un,
6329 		    "sdpower: exit, device has queued cmds.\n");
6330 
6331 		goto sdpower_failed;
6332 	}
6333 
6334 	/*
6335 	 * if it is OFFLINE that means the disk is completely dead
6336 	 * in our case we have to put the disk in on or off by sending commands
6337 	 * Of course that will fail anyway so return back here.
6338 	 *
6339 	 * Power changes to a device that's OFFLINE or SUSPENDED
6340 	 * are not allowed.
6341 	 */
6342 	if ((un->un_state == SD_STATE_OFFLINE) ||
6343 	    (un->un_state == SD_STATE_SUSPENDED)) {
6344 		mutex_exit(SD_MUTEX(un));
6345 
6346 		if (got_semaphore_here != 0) {
6347 			sema_v(&un->un_semoclose);
6348 		}
6349 		SD_TRACE(SD_LOG_IO_PM, un,
6350 		    "sdpower: exit, device is off-line.\n");
6351 
6352 		goto sdpower_failed;
6353 	}
6354 
6355 	/*
6356 	 * Change the device's state to indicate it's power level
6357 	 * is being changed. Do this to prevent a power off in the
6358 	 * middle of commands, which is especially bad on devices
6359 	 * that are really powered off instead of just spun down.
6360 	 */
6361 	state_before_pm = un->un_state;
6362 	un->un_state = SD_STATE_PM_CHANGING;
6363 
6364 	mutex_exit(SD_MUTEX(un));
6365 
6366 	/*
6367 	 * If "pm-capable" property is set to TRUE by HBA drivers,
6368 	 * bypass the following checking, otherwise, check the log
6369 	 * sense information for this device
6370 	 */
6371 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
6372 		/*
6373 		 * Get the log sense information to understand whether the
6374 		 * the powercycle counts have gone beyond the threshhold.
6375 		 */
6376 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6377 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6378 
6379 		mutex_enter(SD_MUTEX(un));
6380 		log_sense_page = un->un_start_stop_cycle_page;
6381 		mutex_exit(SD_MUTEX(un));
6382 
6383 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6384 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6385 
6386 		if (rval != 0) {
6387 			if (rval == EIO)
6388 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6389 			else
6390 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6391 		}
6392 
6393 #ifdef	SDDEBUG
6394 		if (sd_force_pm_supported) {
6395 			/* Force a successful result */
6396 			rval = 0;
6397 		}
6398 #endif
6399 		if (rval != 0) {
6400 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6401 			    "Log Sense Failed\n");
6402 
6403 			kmem_free(log_page_data, log_page_size);
6404 			/* Cannot support power management on those drives */
6405 
6406 			if (got_semaphore_here != 0) {
6407 				sema_v(&un->un_semoclose);
6408 			}
6409 			/*
6410 			 * On exit put the state back to it's original value
6411 			 * and broadcast to anyone waiting for the power
6412 			 * change completion.
6413 			 */
6414 			mutex_enter(SD_MUTEX(un));
6415 			un->un_state = state_before_pm;
6416 			cv_broadcast(&un->un_suspend_cv);
6417 			mutex_exit(SD_MUTEX(un));
6418 			SD_TRACE(SD_LOG_IO_PM, un,
6419 			    "sdpower: exit, Log Sense Failed.\n");
6420 
6421 			goto sdpower_failed;
6422 		}
6423 
6424 		/*
6425 		 * From the page data - Convert the essential information to
6426 		 * pm_trans_data
6427 		 */
6428 		maxcycles =
6429 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6430 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6431 
6432 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6433 
6434 		ncycles =
6435 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6436 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6437 
6438 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6439 
6440 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6441 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6442 			    log_page_data[8+i];
6443 		}
6444 
6445 		kmem_free(log_page_data, log_page_size);
6446 
6447 		/*
6448 		 * Call pm_trans_check routine to get the Ok from
6449 		 * the global policy
6450 		 */
6451 
6452 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6453 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6454 
6455 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6456 #ifdef	SDDEBUG
6457 		if (sd_force_pm_supported) {
6458 			/* Force a successful result */
6459 			rval = 1;
6460 		}
6461 #endif
6462 		switch (rval) {
6463 		case 0:
6464 			/*
6465 			 * Not Ok to Power cycle or error in parameters passed
6466 			 * Would have given the advised time to consider power
6467 			 * cycle. Based on the new intvlp parameter we are
6468 			 * supposed to pretend we are busy so that pm framework
6469 			 * will never call our power entry point. Because of
6470 			 * that install a timeout handler and wait for the
6471 			 * recommended time to elapse so that power management
6472 			 * can be effective again.
6473 			 *
6474 			 * To effect this behavior, call pm_busy_component to
6475 			 * indicate to the framework this device is busy.
6476 			 * By not adjusting un_pm_count the rest of PM in
6477 			 * the driver will function normally, and independent
6478 			 * of this but because the framework is told the device
6479 			 * is busy it won't attempt powering down until it gets
6480 			 * a matching idle. The timeout handler sends this.
6481 			 * Note: sd_pm_entry can't be called here to do this
6482 			 * because sdpower may have been called as a result
6483 			 * of a call to pm_raise_power from within sd_pm_entry.
6484 			 *
6485 			 * If a timeout handler is already active then
6486 			 * don't install another.
6487 			 */
6488 			mutex_enter(&un->un_pm_mutex);
6489 			if (un->un_pm_timeid == NULL) {
6490 				un->un_pm_timeid =
6491 				    timeout(sd_pm_timeout_handler,
6492 				    un, intvlp * drv_usectohz(1000000));
6493 				mutex_exit(&un->un_pm_mutex);
6494 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6495 			} else {
6496 				mutex_exit(&un->un_pm_mutex);
6497 			}
6498 			if (got_semaphore_here != 0) {
6499 				sema_v(&un->un_semoclose);
6500 			}
6501 			/*
6502 			 * On exit put the state back to it's original value
6503 			 * and broadcast to anyone waiting for the power
6504 			 * change completion.
6505 			 */
6506 			mutex_enter(SD_MUTEX(un));
6507 			un->un_state = state_before_pm;
6508 			cv_broadcast(&un->un_suspend_cv);
6509 			mutex_exit(SD_MUTEX(un));
6510 
6511 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6512 			    "trans check Failed, not ok to power cycle.\n");
6513 
6514 			goto sdpower_failed;
6515 		case -1:
6516 			if (got_semaphore_here != 0) {
6517 				sema_v(&un->un_semoclose);
6518 			}
6519 			/*
6520 			 * On exit put the state back to it's original value
6521 			 * and broadcast to anyone waiting for the power
6522 			 * change completion.
6523 			 */
6524 			mutex_enter(SD_MUTEX(un));
6525 			un->un_state = state_before_pm;
6526 			cv_broadcast(&un->un_suspend_cv);
6527 			mutex_exit(SD_MUTEX(un));
6528 			SD_TRACE(SD_LOG_IO_PM, un,
6529 			    "sdpower: exit, trans check command Failed.\n");
6530 
6531 			goto sdpower_failed;
6532 		}
6533 	}
6534 
6535 	if (level == SD_SPINDLE_OFF) {
6536 		/*
6537 		 * Save the last state... if the STOP FAILS we need it
6538 		 * for restoring
6539 		 */
6540 		mutex_enter(SD_MUTEX(un));
6541 		save_state = un->un_last_state;
6542 		/*
6543 		 * There must not be any cmds. getting processed
6544 		 * in the driver when we get here. Power to the
6545 		 * device is potentially going off.
6546 		 */
6547 		ASSERT(un->un_ncmds_in_driver == 0);
6548 		mutex_exit(SD_MUTEX(un));
6549 
6550 		/*
6551 		 * For now suspend the device completely before spindle is
6552 		 * turned off
6553 		 */
6554 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6555 			if (got_semaphore_here != 0) {
6556 				sema_v(&un->un_semoclose);
6557 			}
6558 			/*
6559 			 * On exit put the state back to it's original value
6560 			 * and broadcast to anyone waiting for the power
6561 			 * change completion.
6562 			 */
6563 			mutex_enter(SD_MUTEX(un));
6564 			un->un_state = state_before_pm;
6565 			cv_broadcast(&un->un_suspend_cv);
6566 			mutex_exit(SD_MUTEX(un));
6567 			SD_TRACE(SD_LOG_IO_PM, un,
6568 			    "sdpower: exit, PM suspend Failed.\n");
6569 
6570 			goto sdpower_failed;
6571 		}
6572 	}
6573 
6574 	/*
6575 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6576 	 * close, or strategy. Dump no long uses this routine, it uses it's
6577 	 * own code so it can be done in polled mode.
6578 	 */
6579 
6580 	medium_present = TRUE;
6581 
6582 	/*
6583 	 * When powering up, issue a TUR in case the device is at unit
6584 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6585 	 * a deadlock on un_pm_busy_cv will occur.
6586 	 */
6587 	if (level == SD_SPINDLE_ON) {
6588 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6589 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6590 		if (sval != 0)
6591 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6592 	}
6593 
6594 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6595 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6596 
6597 	sval = sd_send_scsi_START_STOP_UNIT(ssc,
6598 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6599 	    SD_PATH_DIRECT);
6600 	if (sval != 0) {
6601 		if (sval == EIO)
6602 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6603 		else
6604 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6605 	}
6606 
6607 	/* Command failed, check for media present. */
6608 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6609 		medium_present = FALSE;
6610 	}
6611 
6612 	/*
6613 	 * The conditions of interest here are:
6614 	 *   if a spindle off with media present fails,
6615 	 *	then restore the state and return an error.
6616 	 *   else if a spindle on fails,
6617 	 *	then return an error (there's no state to restore).
6618 	 * In all other cases we setup for the new state
6619 	 * and return success.
6620 	 */
6621 	switch (level) {
6622 	case SD_SPINDLE_OFF:
6623 		if ((medium_present == TRUE) && (sval != 0)) {
6624 			/* The stop command from above failed */
6625 			rval = DDI_FAILURE;
6626 			/*
6627 			 * The stop command failed, and we have media
6628 			 * present. Put the level back by calling the
6629 			 * sd_pm_resume() and set the state back to
6630 			 * it's previous value.
6631 			 */
6632 			(void) sd_ddi_pm_resume(un);
6633 			mutex_enter(SD_MUTEX(un));
6634 			un->un_last_state = save_state;
6635 			mutex_exit(SD_MUTEX(un));
6636 			break;
6637 		}
6638 		/*
6639 		 * The stop command from above succeeded.
6640 		 */
6641 		if (un->un_f_monitor_media_state) {
6642 			/*
6643 			 * Terminate watch thread in case of removable media
6644 			 * devices going into low power state. This is as per
6645 			 * the requirements of pm framework, otherwise commands
6646 			 * will be generated for the device (through watch
6647 			 * thread), even when the device is in low power state.
6648 			 */
6649 			mutex_enter(SD_MUTEX(un));
6650 			un->un_f_watcht_stopped = FALSE;
6651 			if (un->un_swr_token != NULL) {
6652 				opaque_t temp_token = un->un_swr_token;
6653 				un->un_f_watcht_stopped = TRUE;
6654 				un->un_swr_token = NULL;
6655 				mutex_exit(SD_MUTEX(un));
6656 				(void) scsi_watch_request_terminate(temp_token,
6657 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
6658 			} else {
6659 				mutex_exit(SD_MUTEX(un));
6660 			}
6661 		}
6662 		break;
6663 
6664 	default:	/* The level requested is spindle on... */
6665 		/*
6666 		 * Legacy behavior: return success on a failed spinup
6667 		 * if there is no media in the drive.
6668 		 * Do this by looking at medium_present here.
6669 		 */
6670 		if ((sval != 0) && medium_present) {
6671 			/* The start command from above failed */
6672 			rval = DDI_FAILURE;
6673 			break;
6674 		}
6675 		/*
6676 		 * The start command from above succeeded
6677 		 * Resume the devices now that we have
6678 		 * started the disks
6679 		 */
6680 		(void) sd_ddi_pm_resume(un);
6681 
6682 		/*
6683 		 * Resume the watch thread since it was suspended
6684 		 * when the device went into low power mode.
6685 		 */
6686 		if (un->un_f_monitor_media_state) {
6687 			mutex_enter(SD_MUTEX(un));
6688 			if (un->un_f_watcht_stopped == TRUE) {
6689 				opaque_t temp_token;
6690 
6691 				un->un_f_watcht_stopped = FALSE;
6692 				mutex_exit(SD_MUTEX(un));
6693 				temp_token = scsi_watch_request_submit(
6694 				    SD_SCSI_DEVP(un),
6695 				    sd_check_media_time,
6696 				    SENSE_LENGTH, sd_media_watch_cb,
6697 				    (caddr_t)dev);
6698 				mutex_enter(SD_MUTEX(un));
6699 				un->un_swr_token = temp_token;
6700 			}
6701 			mutex_exit(SD_MUTEX(un));
6702 		}
6703 	}
6704 	if (got_semaphore_here != 0) {
6705 		sema_v(&un->un_semoclose);
6706 	}
6707 	/*
6708 	 * On exit put the state back to it's original value
6709 	 * and broadcast to anyone waiting for the power
6710 	 * change completion.
6711 	 */
6712 	mutex_enter(SD_MUTEX(un));
6713 	un->un_state = state_before_pm;
6714 	cv_broadcast(&un->un_suspend_cv);
6715 	mutex_exit(SD_MUTEX(un));
6716 
6717 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6718 
6719 	sd_ssc_fini(ssc);
6720 	return (rval);
6721 
6722 sdpower_failed:
6723 
6724 	sd_ssc_fini(ssc);
6725 	return (DDI_FAILURE);
6726 }
6727 
6728 
6729 
6730 /*
6731  *    Function: sdattach
6732  *
6733  * Description: Driver's attach(9e) entry point function.
6734  *
6735  *   Arguments: devi - opaque device info handle
6736  *		cmd  - attach  type
6737  *
6738  * Return Code: DDI_SUCCESS
6739  *		DDI_FAILURE
6740  *
6741  *     Context: Kernel thread context
6742  */
6743 
6744 static int
6745 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6746 {
6747 	switch (cmd) {
6748 	case DDI_ATTACH:
6749 		return (sd_unit_attach(devi));
6750 	case DDI_RESUME:
6751 		return (sd_ddi_resume(devi));
6752 	default:
6753 		break;
6754 	}
6755 	return (DDI_FAILURE);
6756 }
6757 
6758 
6759 /*
6760  *    Function: sddetach
6761  *
6762  * Description: Driver's detach(9E) entry point function.
6763  *
6764  *   Arguments: devi - opaque device info handle
6765  *		cmd  - detach  type
6766  *
6767  * Return Code: DDI_SUCCESS
6768  *		DDI_FAILURE
6769  *
6770  *     Context: Kernel thread context
6771  */
6772 
6773 static int
6774 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6775 {
6776 	switch (cmd) {
6777 	case DDI_DETACH:
6778 		return (sd_unit_detach(devi));
6779 	case DDI_SUSPEND:
6780 		return (sd_ddi_suspend(devi));
6781 	default:
6782 		break;
6783 	}
6784 	return (DDI_FAILURE);
6785 }
6786 
6787 
6788 /*
6789  *     Function: sd_sync_with_callback
6790  *
6791  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6792  *		 state while the callback routine is active.
6793  *
6794  *    Arguments: un: softstate structure for the instance
6795  *
6796  *	Context: Kernel thread context
6797  */
6798 
6799 static void
6800 sd_sync_with_callback(struct sd_lun *un)
6801 {
6802 	ASSERT(un != NULL);
6803 
6804 	mutex_enter(SD_MUTEX(un));
6805 
6806 	ASSERT(un->un_in_callback >= 0);
6807 
6808 	while (un->un_in_callback > 0) {
6809 		mutex_exit(SD_MUTEX(un));
6810 		delay(2);
6811 		mutex_enter(SD_MUTEX(un));
6812 	}
6813 
6814 	mutex_exit(SD_MUTEX(un));
6815 }
6816 
6817 /*
6818  *    Function: sd_unit_attach
6819  *
6820  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6821  *		the soft state structure for the device and performs
6822  *		all necessary structure and device initializations.
6823  *
6824  *   Arguments: devi: the system's dev_info_t for the device.
6825  *
6826  * Return Code: DDI_SUCCESS if attach is successful.
6827  *		DDI_FAILURE if any part of the attach fails.
6828  *
6829  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6830  *		Kernel thread context only.  Can sleep.
6831  */
6832 
6833 static int
6834 sd_unit_attach(dev_info_t *devi)
6835 {
6836 	struct	scsi_device	*devp;
6837 	struct	sd_lun		*un;
6838 	char			*variantp;
6839 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6840 	int	instance;
6841 	int	rval;
6842 	int	wc_enabled;
6843 	int	tgt;
6844 	uint64_t	capacity;
6845 	uint_t		lbasize = 0;
6846 	dev_info_t	*pdip = ddi_get_parent(devi);
6847 	int		offbyone = 0;
6848 	int		geom_label_valid = 0;
6849 	sd_ssc_t	*ssc;
6850 	int		status;
6851 	struct sd_fm_internal	*sfip = NULL;
6852 	int		max_xfer_size;
6853 
6854 	/*
6855 	 * Retrieve the target driver's private data area. This was set
6856 	 * up by the HBA.
6857 	 */
6858 	devp = ddi_get_driver_private(devi);
6859 
6860 	/*
6861 	 * Retrieve the target ID of the device.
6862 	 */
6863 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6864 	    SCSI_ADDR_PROP_TARGET, -1);
6865 
6866 	/*
6867 	 * Since we have no idea what state things were left in by the last
6868 	 * user of the device, set up some 'default' settings, ie. turn 'em
6869 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6870 	 * Do this before the scsi_probe, which sends an inquiry.
6871 	 * This is a fix for bug (4430280).
6872 	 * Of special importance is wide-xfer. The drive could have been left
6873 	 * in wide transfer mode by the last driver to communicate with it,
6874 	 * this includes us. If that's the case, and if the following is not
6875 	 * setup properly or we don't re-negotiate with the drive prior to
6876 	 * transferring data to/from the drive, it causes bus parity errors,
6877 	 * data overruns, and unexpected interrupts. This first occurred when
6878 	 * the fix for bug (4378686) was made.
6879 	 */
6880 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6881 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6882 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6883 
6884 	/*
6885 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6886 	 * on a target. Setting it per lun instance actually sets the
6887 	 * capability of this target, which affects those luns already
6888 	 * attached on the same target. So during attach, we can only disable
6889 	 * this capability only when no other lun has been attached on this
6890 	 * target. By doing this, we assume a target has the same tagged-qing
6891 	 * capability for every lun. The condition can be removed when HBA
6892 	 * is changed to support per lun based tagged-qing capability.
6893 	 */
6894 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6895 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6896 	}
6897 
6898 	/*
6899 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6900 	 * This call will allocate and fill in the scsi_inquiry structure
6901 	 * and point the sd_inq member of the scsi_device structure to it.
6902 	 * If the attach succeeds, then this memory will not be de-allocated
6903 	 * (via scsi_unprobe()) until the instance is detached.
6904 	 */
6905 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6906 		goto probe_failed;
6907 	}
6908 
6909 	/*
6910 	 * Check the device type as specified in the inquiry data and
6911 	 * claim it if it is of a type that we support.
6912 	 */
6913 	switch (devp->sd_inq->inq_dtype) {
6914 	case DTYPE_DIRECT:
6915 		break;
6916 	case DTYPE_RODIRECT:
6917 		break;
6918 	case DTYPE_OPTICAL:
6919 		break;
6920 	case DTYPE_NOTPRESENT:
6921 	default:
6922 		/* Unsupported device type; fail the attach. */
6923 		goto probe_failed;
6924 	}
6925 
6926 	/*
6927 	 * Allocate the soft state structure for this unit.
6928 	 *
6929 	 * We rely upon this memory being set to all zeroes by
6930 	 * ddi_soft_state_zalloc().  We assume that any member of the
6931 	 * soft state structure that is not explicitly initialized by
6932 	 * this routine will have a value of zero.
6933 	 */
6934 	instance = ddi_get_instance(devp->sd_dev);
6935 #ifndef XPV_HVM_DRIVER
6936 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6937 		goto probe_failed;
6938 	}
6939 #endif /* !XPV_HVM_DRIVER */
6940 
6941 	/*
6942 	 * Retrieve a pointer to the newly-allocated soft state.
6943 	 *
6944 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6945 	 * was successful, unless something has gone horribly wrong and the
6946 	 * ddi's soft state internals are corrupt (in which case it is
6947 	 * probably better to halt here than just fail the attach....)
6948 	 */
6949 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6950 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6951 		    instance);
6952 		/*NOTREACHED*/
6953 	}
6954 
6955 	/*
6956 	 * Link the back ptr of the driver soft state to the scsi_device
6957 	 * struct for this lun.
6958 	 * Save a pointer to the softstate in the driver-private area of
6959 	 * the scsi_device struct.
6960 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6961 	 * we first set un->un_sd below.
6962 	 */
6963 	un->un_sd = devp;
6964 	devp->sd_private = (opaque_t)un;
6965 
6966 	/*
6967 	 * The following must be after devp is stored in the soft state struct.
6968 	 */
6969 #ifdef SDDEBUG
6970 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6971 	    "%s_unit_attach: un:0x%p instance:%d\n",
6972 	    ddi_driver_name(devi), un, instance);
6973 #endif
6974 
6975 	/*
6976 	 * Set up the device type and node type (for the minor nodes).
6977 	 * By default we assume that the device can at least support the
6978 	 * Common Command Set. Call it a CD-ROM if it reports itself
6979 	 * as a RODIRECT device.
6980 	 */
6981 	switch (devp->sd_inq->inq_dtype) {
6982 	case DTYPE_RODIRECT:
6983 		un->un_node_type = DDI_NT_CD_CHAN;
6984 		un->un_ctype	 = CTYPE_CDROM;
6985 		break;
6986 	case DTYPE_OPTICAL:
6987 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6988 		un->un_ctype	 = CTYPE_ROD;
6989 		break;
6990 	default:
6991 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6992 		un->un_ctype	 = CTYPE_CCS;
6993 		break;
6994 	}
6995 
6996 	/*
6997 	 * Try to read the interconnect type from the HBA.
6998 	 *
6999 	 * Note: This driver is currently compiled as two binaries, a parallel
7000 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7001 	 * differences are determined at compile time. In the future a single
7002 	 * binary will be provided and the interconnect type will be used to
7003 	 * differentiate between fibre and parallel scsi behaviors. At that time
7004 	 * it will be necessary for all fibre channel HBAs to support this
7005 	 * property.
7006 	 *
7007 	 * set un_f_is_fiber to TRUE ( default fiber )
7008 	 */
7009 	un->un_f_is_fibre = TRUE;
7010 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7011 	case INTERCONNECT_SSA:
7012 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7013 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7014 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7015 		break;
7016 	case INTERCONNECT_PARALLEL:
7017 		un->un_f_is_fibre = FALSE;
7018 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7019 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7020 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7021 		break;
7022 	case INTERCONNECT_SATA:
7023 		un->un_f_is_fibre = FALSE;
7024 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7025 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7026 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7027 		break;
7028 	case INTERCONNECT_FIBRE:
7029 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7031 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7032 		break;
7033 	case INTERCONNECT_FABRIC:
7034 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7035 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7036 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7037 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7038 		break;
7039 	default:
7040 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7041 		/*
7042 		 * The HBA does not support the "interconnect-type" property
7043 		 * (or did not provide a recognized type).
7044 		 *
7045 		 * Note: This will be obsoleted when a single fibre channel
7046 		 * and parallel scsi driver is delivered. In the meantime the
7047 		 * interconnect type will be set to the platform default.If that
7048 		 * type is not parallel SCSI, it means that we should be
7049 		 * assuming "ssd" semantics. However, here this also means that
7050 		 * the FC HBA is not supporting the "interconnect-type" property
7051 		 * like we expect it to, so log this occurrence.
7052 		 */
7053 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7054 		if (!SD_IS_PARALLEL_SCSI(un)) {
7055 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7056 			    "sd_unit_attach: un:0x%p Assuming "
7057 			    "INTERCONNECT_FIBRE\n", un);
7058 		} else {
7059 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7060 			    "sd_unit_attach: un:0x%p Assuming "
7061 			    "INTERCONNECT_PARALLEL\n", un);
7062 			un->un_f_is_fibre = FALSE;
7063 		}
7064 #else
7065 		/*
7066 		 * Note: This source will be implemented when a single fibre
7067 		 * channel and parallel scsi driver is delivered. The default
7068 		 * will be to assume that if a device does not support the
7069 		 * "interconnect-type" property it is a parallel SCSI HBA and
7070 		 * we will set the interconnect type for parallel scsi.
7071 		 */
7072 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7073 		un->un_f_is_fibre = FALSE;
7074 #endif
7075 		break;
7076 	}
7077 
7078 	if (un->un_f_is_fibre == TRUE) {
7079 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7080 		    SCSI_VERSION_3) {
7081 			switch (un->un_interconnect_type) {
7082 			case SD_INTERCONNECT_FIBRE:
7083 			case SD_INTERCONNECT_SSA:
7084 				un->un_node_type = DDI_NT_BLOCK_WWN;
7085 				break;
7086 			default:
7087 				break;
7088 			}
7089 		}
7090 	}
7091 
7092 	/*
7093 	 * Initialize the Request Sense command for the target
7094 	 */
7095 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7096 		goto alloc_rqs_failed;
7097 	}
7098 
7099 	/*
7100 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7101 	 * with separate binary for sd and ssd.
7102 	 *
7103 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7104 	 * The hardcoded values will go away when Sparc uses 1 binary
7105 	 * for sd and ssd.  This hardcoded values need to match
7106 	 * SD_RETRY_COUNT in sddef.h
7107 	 * The value used is base on interconnect type.
7108 	 * fibre = 3, parallel = 5
7109 	 */
7110 #if defined(__i386) || defined(__amd64)
7111 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7112 #else
7113 	un->un_retry_count = SD_RETRY_COUNT;
7114 #endif
7115 
7116 	/*
7117 	 * Set the per disk retry count to the default number of retries
7118 	 * for disks and CDROMs. This value can be overridden by the
7119 	 * disk property list or an entry in sd.conf.
7120 	 */
7121 	un->un_notready_retry_count =
7122 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7123 	    : DISK_NOT_READY_RETRY_COUNT(un);
7124 
7125 	/*
7126 	 * Set the busy retry count to the default value of un_retry_count.
7127 	 * This can be overridden by entries in sd.conf or the device
7128 	 * config table.
7129 	 */
7130 	un->un_busy_retry_count = un->un_retry_count;
7131 
7132 	/*
7133 	 * Init the reset threshold for retries.  This number determines
7134 	 * how many retries must be performed before a reset can be issued
7135 	 * (for certain error conditions). This can be overridden by entries
7136 	 * in sd.conf or the device config table.
7137 	 */
7138 	un->un_reset_retry_count = (un->un_retry_count / 2);
7139 
7140 	/*
7141 	 * Set the victim_retry_count to the default un_retry_count
7142 	 */
7143 	un->un_victim_retry_count = (2 * un->un_retry_count);
7144 
7145 	/*
7146 	 * Set the reservation release timeout to the default value of
7147 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7148 	 * device config table.
7149 	 */
7150 	un->un_reserve_release_time = 5;
7151 
7152 	/*
7153 	 * Set up the default maximum transfer size. Note that this may
7154 	 * get updated later in the attach, when setting up default wide
7155 	 * operations for disks.
7156 	 */
7157 #if defined(__i386) || defined(__amd64)
7158 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7159 	un->un_partial_dma_supported = 1;
7160 #else
7161 	un->un_max_xfer_size = (uint_t)maxphys;
7162 #endif
7163 
7164 	/*
7165 	 * Get "allow bus device reset" property (defaults to "enabled" if
7166 	 * the property was not defined). This is to disable bus resets for
7167 	 * certain kinds of error recovery. Note: In the future when a run-time
7168 	 * fibre check is available the soft state flag should default to
7169 	 * enabled.
7170 	 */
7171 	if (un->un_f_is_fibre == TRUE) {
7172 		un->un_f_allow_bus_device_reset = TRUE;
7173 	} else {
7174 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7175 		    "allow-bus-device-reset", 1) != 0) {
7176 			un->un_f_allow_bus_device_reset = TRUE;
7177 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7178 			    "sd_unit_attach: un:0x%p Bus device reset "
7179 			    "enabled\n", un);
7180 		} else {
7181 			un->un_f_allow_bus_device_reset = FALSE;
7182 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7183 			    "sd_unit_attach: un:0x%p Bus device reset "
7184 			    "disabled\n", un);
7185 		}
7186 	}
7187 
7188 	/*
7189 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7190 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7191 	 *
7192 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7193 	 * property. The new "variant" property with a value of "atapi" has been
7194 	 * introduced so that future 'variants' of standard SCSI behavior (like
7195 	 * atapi) could be specified by the underlying HBA drivers by supplying
7196 	 * a new value for the "variant" property, instead of having to define a
7197 	 * new property.
7198 	 */
7199 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7200 		un->un_f_cfg_is_atapi = TRUE;
7201 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7202 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7203 	}
7204 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7205 	    &variantp) == DDI_PROP_SUCCESS) {
7206 		if (strcmp(variantp, "atapi") == 0) {
7207 			un->un_f_cfg_is_atapi = TRUE;
7208 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7209 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7210 		}
7211 		ddi_prop_free(variantp);
7212 	}
7213 
7214 	un->un_cmd_timeout	= SD_IO_TIME;
7215 
7216 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7217 
7218 	/* Info on current states, statuses, etc. (Updated frequently) */
7219 	un->un_state		= SD_STATE_NORMAL;
7220 	un->un_last_state	= SD_STATE_NORMAL;
7221 
7222 	/* Control & status info for command throttling */
7223 	un->un_throttle		= sd_max_throttle;
7224 	un->un_saved_throttle	= sd_max_throttle;
7225 	un->un_min_throttle	= sd_min_throttle;
7226 
7227 	if (un->un_f_is_fibre == TRUE) {
7228 		un->un_f_use_adaptive_throttle = TRUE;
7229 	} else {
7230 		un->un_f_use_adaptive_throttle = FALSE;
7231 	}
7232 
7233 	/* Removable media support. */
7234 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7235 	un->un_mediastate		= DKIO_NONE;
7236 	un->un_specified_mediastate	= DKIO_NONE;
7237 
7238 	/* CVs for suspend/resume (PM or DR) */
7239 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7240 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7241 
7242 	/* Power management support. */
7243 	un->un_power_level = SD_SPINDLE_UNINIT;
7244 
7245 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7246 	un->un_f_wcc_inprog = 0;
7247 
7248 	/*
7249 	 * The open/close semaphore is used to serialize threads executing
7250 	 * in the driver's open & close entry point routines for a given
7251 	 * instance.
7252 	 */
7253 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7254 
7255 	/*
7256 	 * The conf file entry and softstate variable is a forceful override,
7257 	 * meaning a non-zero value must be entered to change the default.
7258 	 */
7259 	un->un_f_disksort_disabled = FALSE;
7260 
7261 	/*
7262 	 * Retrieve the properties from the static driver table or the driver
7263 	 * configuration file (.conf) for this unit and update the soft state
7264 	 * for the device as needed for the indicated properties.
7265 	 * Note: the property configuration needs to occur here as some of the
7266 	 * following routines may have dependencies on soft state flags set
7267 	 * as part of the driver property configuration.
7268 	 */
7269 	sd_read_unit_properties(un);
7270 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7271 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7272 
7273 	/*
7274 	 * Only if a device has "hotpluggable" property, it is
7275 	 * treated as hotpluggable device. Otherwise, it is
7276 	 * regarded as non-hotpluggable one.
7277 	 */
7278 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7279 	    -1) != -1) {
7280 		un->un_f_is_hotpluggable = TRUE;
7281 	}
7282 
7283 	/*
7284 	 * set unit's attributes(flags) according to "hotpluggable" and
7285 	 * RMB bit in INQUIRY data.
7286 	 */
7287 	sd_set_unit_attributes(un, devi);
7288 
7289 	/*
7290 	 * By default, we mark the capacity, lbasize, and geometry
7291 	 * as invalid. Only if we successfully read a valid capacity
7292 	 * will we update the un_blockcount and un_tgt_blocksize with the
7293 	 * valid values (the geometry will be validated later).
7294 	 */
7295 	un->un_f_blockcount_is_valid	= FALSE;
7296 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7297 
7298 	/*
7299 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7300 	 * otherwise.
7301 	 */
7302 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7303 	un->un_blockcount = 0;
7304 
7305 	/*
7306 	 * Set up the per-instance info needed to determine the correct
7307 	 * CDBs and other info for issuing commands to the target.
7308 	 */
7309 	sd_init_cdb_limits(un);
7310 
7311 	/*
7312 	 * Set up the IO chains to use, based upon the target type.
7313 	 */
7314 	if (un->un_f_non_devbsize_supported) {
7315 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7316 	} else {
7317 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7318 	}
7319 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7320 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7321 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7322 
7323 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7324 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7325 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7326 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7327 
7328 
7329 	if (ISCD(un)) {
7330 		un->un_additional_codes = sd_additional_codes;
7331 	} else {
7332 		un->un_additional_codes = NULL;
7333 	}
7334 
7335 	/*
7336 	 * Create the kstats here so they can be available for attach-time
7337 	 * routines that send commands to the unit (either polled or via
7338 	 * sd_send_scsi_cmd).
7339 	 *
7340 	 * Note: This is a critical sequence that needs to be maintained:
7341 	 *	1) Instantiate the kstats here, before any routines using the
7342 	 *	   iopath (i.e. sd_send_scsi_cmd).
7343 	 *	2) Instantiate and initialize the partition stats
7344 	 *	   (sd_set_pstats).
7345 	 *	3) Initialize the error stats (sd_set_errstats), following
7346 	 *	   sd_validate_geometry(),sd_register_devid(),
7347 	 *	   and sd_cache_control().
7348 	 */
7349 
7350 	un->un_stats = kstat_create(sd_label, instance,
7351 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7352 	if (un->un_stats != NULL) {
7353 		un->un_stats->ks_lock = SD_MUTEX(un);
7354 		kstat_install(un->un_stats);
7355 	}
7356 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7357 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7358 
7359 	sd_create_errstats(un, instance);
7360 	if (un->un_errstats == NULL) {
7361 		goto create_errstats_failed;
7362 	}
7363 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7364 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7365 
7366 	/*
7367 	 * The following if/else code was relocated here from below as part
7368 	 * of the fix for bug (4430280). However with the default setup added
7369 	 * on entry to this routine, it's no longer absolutely necessary for
7370 	 * this to be before the call to sd_spin_up_unit.
7371 	 */
7372 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7373 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7374 		    (devp->sd_inq->inq_ansi == 5)) &&
7375 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7376 
7377 		/*
7378 		 * If tagged queueing is supported by the target
7379 		 * and by the host adapter then we will enable it
7380 		 */
7381 		un->un_tagflags = 0;
7382 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7383 		    (un->un_f_arq_enabled == TRUE)) {
7384 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7385 			    1, 1) == 1) {
7386 				un->un_tagflags = FLAG_STAG;
7387 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7388 				    "sd_unit_attach: un:0x%p tag queueing "
7389 				    "enabled\n", un);
7390 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7391 			    "untagged-qing", 0) == 1) {
7392 				un->un_f_opt_queueing = TRUE;
7393 				un->un_saved_throttle = un->un_throttle =
7394 				    min(un->un_throttle, 3);
7395 			} else {
7396 				un->un_f_opt_queueing = FALSE;
7397 				un->un_saved_throttle = un->un_throttle = 1;
7398 			}
7399 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7400 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7401 			/* The Host Adapter supports internal queueing. */
7402 			un->un_f_opt_queueing = TRUE;
7403 			un->un_saved_throttle = un->un_throttle =
7404 			    min(un->un_throttle, 3);
7405 		} else {
7406 			un->un_f_opt_queueing = FALSE;
7407 			un->un_saved_throttle = un->un_throttle = 1;
7408 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7409 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7410 		}
7411 
7412 		/*
7413 		 * Enable large transfers for SATA/SAS drives
7414 		 */
7415 		if (SD_IS_SERIAL(un)) {
7416 			un->un_max_xfer_size =
7417 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7418 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7419 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7420 			    "sd_unit_attach: un:0x%p max transfer "
7421 			    "size=0x%x\n", un, un->un_max_xfer_size);
7422 
7423 		}
7424 
7425 		/* Setup or tear down default wide operations for disks */
7426 
7427 		/*
7428 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7429 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7430 		 * system and be set to different values. In the future this
7431 		 * code may need to be updated when the ssd module is
7432 		 * obsoleted and removed from the system. (4299588)
7433 		 */
7434 		if (SD_IS_PARALLEL_SCSI(un) &&
7435 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7436 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7437 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7438 			    1, 1) == 1) {
7439 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7440 				    "sd_unit_attach: un:0x%p Wide Transfer "
7441 				    "enabled\n", un);
7442 			}
7443 
7444 			/*
7445 			 * If tagged queuing has also been enabled, then
7446 			 * enable large xfers
7447 			 */
7448 			if (un->un_saved_throttle == sd_max_throttle) {
7449 				un->un_max_xfer_size =
7450 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7451 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7452 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7453 				    "sd_unit_attach: un:0x%p max transfer "
7454 				    "size=0x%x\n", un, un->un_max_xfer_size);
7455 			}
7456 		} else {
7457 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7458 			    0, 1) == 1) {
7459 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7460 				    "sd_unit_attach: un:0x%p "
7461 				    "Wide Transfer disabled\n", un);
7462 			}
7463 		}
7464 	} else {
7465 		un->un_tagflags = FLAG_STAG;
7466 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7467 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7468 	}
7469 
7470 	/*
7471 	 * If this target supports LUN reset, try to enable it.
7472 	 */
7473 	if (un->un_f_lun_reset_enabled) {
7474 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7475 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7476 			    "un:0x%p lun_reset capability set\n", un);
7477 		} else {
7478 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7479 			    "un:0x%p lun-reset capability not set\n", un);
7480 		}
7481 	}
7482 
7483 	/*
7484 	 * Adjust the maximum transfer size. This is to fix
7485 	 * the problem of partial DMA support on SPARC. Some
7486 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7487 	 * size, which requires partial DMA support on SPARC.
7488 	 * In the future the SPARC pci nexus driver may solve
7489 	 * the problem instead of this fix.
7490 	 */
7491 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7492 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7493 		/* We need DMA partial even on sparc to ensure sddump() works */
7494 		un->un_max_xfer_size = max_xfer_size;
7495 		if (un->un_partial_dma_supported == 0)
7496 			un->un_partial_dma_supported = 1;
7497 	}
7498 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7499 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7500 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7501 		    un->un_max_xfer_size) == 1) {
7502 			un->un_buf_breakup_supported = 1;
7503 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7504 			    "un:0x%p Buf breakup enabled\n", un);
7505 		}
7506 	}
7507 
7508 	/*
7509 	 * Set PKT_DMA_PARTIAL flag.
7510 	 */
7511 	if (un->un_partial_dma_supported == 1) {
7512 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7513 	} else {
7514 		un->un_pkt_flags = 0;
7515 	}
7516 
7517 	/* Initialize sd_ssc_t for internal uscsi commands */
7518 	ssc = sd_ssc_init(un);
7519 	scsi_fm_init(devp);
7520 
7521 	/*
7522 	 * Allocate memory for SCSI FMA stuffs.
7523 	 */
7524 	un->un_fm_private =
7525 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7526 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7527 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7528 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7529 	sfip->fm_ssc.ssc_un = un;
7530 
7531 	if (ISCD(un) ||
7532 	    un->un_f_has_removable_media ||
7533 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7534 		/*
7535 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7536 		 * Their log are unchanged.
7537 		 */
7538 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7539 	} else {
7540 		/*
7541 		 * If enter here, it should be non-CDROM and FM-capable
7542 		 * device, and it will not keep the old scsi_log as before
7543 		 * in /var/adm/messages. However, the property
7544 		 * "fm-scsi-log" will control whether the FM telemetry will
7545 		 * be logged in /var/adm/messages.
7546 		 */
7547 		int fm_scsi_log;
7548 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7549 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7550 
7551 		if (fm_scsi_log)
7552 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7553 		else
7554 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7555 	}
7556 
7557 	/*
7558 	 * At this point in the attach, we have enough info in the
7559 	 * soft state to be able to issue commands to the target.
7560 	 *
7561 	 * All command paths used below MUST issue their commands as
7562 	 * SD_PATH_DIRECT. This is important as intermediate layers
7563 	 * are not all initialized yet (such as PM).
7564 	 */
7565 
7566 	/*
7567 	 * Send a TEST UNIT READY command to the device. This should clear
7568 	 * any outstanding UNIT ATTENTION that may be present.
7569 	 *
7570 	 * Note: Don't check for success, just track if there is a reservation,
7571 	 * this is a throw away command to clear any unit attentions.
7572 	 *
7573 	 * Note: This MUST be the first command issued to the target during
7574 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7575 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7576 	 * with attempts at spinning up a device with no media.
7577 	 */
7578 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7579 	if (status != 0) {
7580 		if (status == EACCES)
7581 			reservation_flag = SD_TARGET_IS_RESERVED;
7582 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7583 	}
7584 
7585 	/*
7586 	 * If the device is NOT a removable media device, attempt to spin
7587 	 * it up (using the START_STOP_UNIT command) and read its capacity
7588 	 * (using the READ CAPACITY command).  Note, however, that either
7589 	 * of these could fail and in some cases we would continue with
7590 	 * the attach despite the failure (see below).
7591 	 */
7592 	if (un->un_f_descr_format_supported) {
7593 
7594 		switch (sd_spin_up_unit(ssc)) {
7595 		case 0:
7596 			/*
7597 			 * Spin-up was successful; now try to read the
7598 			 * capacity.  If successful then save the results
7599 			 * and mark the capacity & lbasize as valid.
7600 			 */
7601 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7602 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7603 
7604 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7605 			    &lbasize, SD_PATH_DIRECT);
7606 
7607 			switch (status) {
7608 			case 0: {
7609 				if (capacity > DK_MAX_BLOCKS) {
7610 #ifdef _LP64
7611 					if ((capacity + 1) >
7612 					    SD_GROUP1_MAX_ADDRESS) {
7613 						/*
7614 						 * Enable descriptor format
7615 						 * sense data so that we can
7616 						 * get 64 bit sense data
7617 						 * fields.
7618 						 */
7619 						sd_enable_descr_sense(ssc);
7620 					}
7621 #else
7622 					/* 32-bit kernels can't handle this */
7623 					scsi_log(SD_DEVINFO(un),
7624 					    sd_label, CE_WARN,
7625 					    "disk has %llu blocks, which "
7626 					    "is too large for a 32-bit "
7627 					    "kernel", capacity);
7628 
7629 #if defined(__i386) || defined(__amd64)
7630 					/*
7631 					 * 1TB disk was treated as (1T - 512)B
7632 					 * in the past, so that it might have
7633 					 * valid VTOC and solaris partitions,
7634 					 * we have to allow it to continue to
7635 					 * work.
7636 					 */
7637 					if (capacity -1 > DK_MAX_BLOCKS)
7638 #endif
7639 					goto spinup_failed;
7640 #endif
7641 				}
7642 
7643 				/*
7644 				 * Here it's not necessary to check the case:
7645 				 * the capacity of the device is bigger than
7646 				 * what the max hba cdb can support. Because
7647 				 * sd_send_scsi_READ_CAPACITY will retrieve
7648 				 * the capacity by sending USCSI command, which
7649 				 * is constrained by the max hba cdb. Actually,
7650 				 * sd_send_scsi_READ_CAPACITY will return
7651 				 * EINVAL when using bigger cdb than required
7652 				 * cdb length. Will handle this case in
7653 				 * "case EINVAL".
7654 				 */
7655 
7656 				/*
7657 				 * The following relies on
7658 				 * sd_send_scsi_READ_CAPACITY never
7659 				 * returning 0 for capacity and/or lbasize.
7660 				 */
7661 				sd_update_block_info(un, lbasize, capacity);
7662 
7663 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7664 				    "sd_unit_attach: un:0x%p capacity = %ld "
7665 				    "blocks; lbasize= %ld.\n", un,
7666 				    un->un_blockcount, un->un_tgt_blocksize);
7667 
7668 				break;
7669 			}
7670 			case EINVAL:
7671 				/*
7672 				 * In the case where the max-cdb-length property
7673 				 * is smaller than the required CDB length for
7674 				 * a SCSI device, a target driver can fail to
7675 				 * attach to that device.
7676 				 */
7677 				scsi_log(SD_DEVINFO(un),
7678 				    sd_label, CE_WARN,
7679 				    "disk capacity is too large "
7680 				    "for current cdb length");
7681 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7682 
7683 				goto spinup_failed;
7684 			case EACCES:
7685 				/*
7686 				 * Should never get here if the spin-up
7687 				 * succeeded, but code it in anyway.
7688 				 * From here, just continue with the attach...
7689 				 */
7690 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7691 				    "sd_unit_attach: un:0x%p "
7692 				    "sd_send_scsi_READ_CAPACITY "
7693 				    "returned reservation conflict\n", un);
7694 				reservation_flag = SD_TARGET_IS_RESERVED;
7695 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7696 				break;
7697 			default:
7698 				/*
7699 				 * Likewise, should never get here if the
7700 				 * spin-up succeeded. Just continue with
7701 				 * the attach...
7702 				 */
7703 				if (status == EIO)
7704 					sd_ssc_assessment(ssc,
7705 					    SD_FMT_STATUS_CHECK);
7706 				else
7707 					sd_ssc_assessment(ssc,
7708 					    SD_FMT_IGNORE);
7709 				break;
7710 			}
7711 			break;
7712 		case EACCES:
7713 			/*
7714 			 * Device is reserved by another host.  In this case
7715 			 * we could not spin it up or read the capacity, but
7716 			 * we continue with the attach anyway.
7717 			 */
7718 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7719 			    "sd_unit_attach: un:0x%p spin-up reservation "
7720 			    "conflict.\n", un);
7721 			reservation_flag = SD_TARGET_IS_RESERVED;
7722 			break;
7723 		default:
7724 			/* Fail the attach if the spin-up failed. */
7725 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7726 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7727 			goto spinup_failed;
7728 		}
7729 
7730 	}
7731 
7732 	/*
7733 	 * Check to see if this is a MMC drive
7734 	 */
7735 	if (ISCD(un)) {
7736 		sd_set_mmc_caps(ssc);
7737 	}
7738 
7739 
7740 	/*
7741 	 * Add a zero-length attribute to tell the world we support
7742 	 * kernel ioctls (for layered drivers)
7743 	 */
7744 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7745 	    DDI_KERNEL_IOCTL, NULL, 0);
7746 
7747 	/*
7748 	 * Add a boolean property to tell the world we support
7749 	 * the B_FAILFAST flag (for layered drivers)
7750 	 */
7751 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7752 	    "ddi-failfast-supported", NULL, 0);
7753 
7754 	/*
7755 	 * Initialize power management
7756 	 */
7757 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7758 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7759 	sd_setup_pm(ssc, devi);
7760 	if (un->un_f_pm_is_enabled == FALSE) {
7761 		/*
7762 		 * For performance, point to a jump table that does
7763 		 * not include pm.
7764 		 * The direct and priority chains don't change with PM.
7765 		 *
7766 		 * Note: this is currently done based on individual device
7767 		 * capabilities. When an interface for determining system
7768 		 * power enabled state becomes available, or when additional
7769 		 * layers are added to the command chain, these values will
7770 		 * have to be re-evaluated for correctness.
7771 		 */
7772 		if (un->un_f_non_devbsize_supported) {
7773 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7774 		} else {
7775 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7776 		}
7777 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7778 	}
7779 
7780 	/*
7781 	 * This property is set to 0 by HA software to avoid retries
7782 	 * on a reserved disk. (The preferred property name is
7783 	 * "retry-on-reservation-conflict") (1189689)
7784 	 *
7785 	 * Note: The use of a global here can have unintended consequences. A
7786 	 * per instance variable is preferable to match the capabilities of
7787 	 * different underlying hba's (4402600)
7788 	 */
7789 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7790 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7791 	    sd_retry_on_reservation_conflict);
7792 	if (sd_retry_on_reservation_conflict != 0) {
7793 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7794 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7795 		    sd_retry_on_reservation_conflict);
7796 	}
7797 
7798 	/* Set up options for QFULL handling. */
7799 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7800 	    "qfull-retries", -1)) != -1) {
7801 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7802 		    rval, 1);
7803 	}
7804 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7805 	    "qfull-retry-interval", -1)) != -1) {
7806 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7807 		    rval, 1);
7808 	}
7809 
7810 	/*
7811 	 * This just prints a message that announces the existence of the
7812 	 * device. The message is always printed in the system logfile, but
7813 	 * only appears on the console if the system is booted with the
7814 	 * -v (verbose) argument.
7815 	 */
7816 	ddi_report_dev(devi);
7817 
7818 	un->un_mediastate = DKIO_NONE;
7819 
7820 	cmlb_alloc_handle(&un->un_cmlbhandle);
7821 
7822 #if defined(__i386) || defined(__amd64)
7823 	/*
7824 	 * On x86, compensate for off-by-1 legacy error
7825 	 */
7826 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7827 	    (lbasize == un->un_sys_blocksize))
7828 		offbyone = CMLB_OFF_BY_ONE;
7829 #endif
7830 
7831 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7832 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
7833 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
7834 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7835 	    (void *)SD_PATH_DIRECT) != 0) {
7836 		goto cmlb_attach_failed;
7837 	}
7838 
7839 
7840 	/*
7841 	 * Read and validate the device's geometry (ie, disk label)
7842 	 * A new unformatted drive will not have a valid geometry, but
7843 	 * the driver needs to successfully attach to this device so
7844 	 * the drive can be formatted via ioctls.
7845 	 */
7846 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7847 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7848 
7849 	mutex_enter(SD_MUTEX(un));
7850 
7851 	/*
7852 	 * Read and initialize the devid for the unit.
7853 	 */
7854 	if (un->un_f_devid_supported) {
7855 		sd_register_devid(ssc, devi, reservation_flag);
7856 	}
7857 	mutex_exit(SD_MUTEX(un));
7858 
7859 #if (defined(__fibre))
7860 	/*
7861 	 * Register callbacks for fibre only.  You can't do this solely
7862 	 * on the basis of the devid_type because this is hba specific.
7863 	 * We need to query our hba capabilities to find out whether to
7864 	 * register or not.
7865 	 */
7866 	if (un->un_f_is_fibre) {
7867 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7868 			sd_init_event_callbacks(un);
7869 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7870 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7871 			    un);
7872 		}
7873 	}
7874 #endif
7875 
7876 	if (un->un_f_opt_disable_cache == TRUE) {
7877 		/*
7878 		 * Disable both read cache and write cache.  This is
7879 		 * the historic behavior of the keywords in the config file.
7880 		 */
7881 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7882 		    0) {
7883 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7884 			    "sd_unit_attach: un:0x%p Could not disable "
7885 			    "caching", un);
7886 			goto devid_failed;
7887 		}
7888 	}
7889 
7890 	/*
7891 	 * Check the value of the WCE bit now and
7892 	 * set un_f_write_cache_enabled accordingly.
7893 	 */
7894 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
7895 	mutex_enter(SD_MUTEX(un));
7896 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7897 	mutex_exit(SD_MUTEX(un));
7898 
7899 	/*
7900 	 * Check the value of the NV_SUP bit and set
7901 	 * un_f_suppress_cache_flush accordingly.
7902 	 */
7903 	sd_get_nv_sup(ssc);
7904 
7905 	/*
7906 	 * Find out what type of reservation this disk supports.
7907 	 */
7908 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
7909 
7910 	switch (status) {
7911 	case 0:
7912 		/*
7913 		 * SCSI-3 reservations are supported.
7914 		 */
7915 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7916 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7917 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7918 		break;
7919 	case ENOTSUP:
7920 		/*
7921 		 * The PERSISTENT RESERVE IN command would not be recognized by
7922 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7923 		 */
7924 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7925 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7926 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7927 
7928 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7929 		break;
7930 	default:
7931 		/*
7932 		 * default to SCSI-3 reservations
7933 		 */
7934 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7935 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7936 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7937 
7938 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7939 		break;
7940 	}
7941 
7942 	/*
7943 	 * Set the pstat and error stat values here, so data obtained during the
7944 	 * previous attach-time routines is available.
7945 	 *
7946 	 * Note: This is a critical sequence that needs to be maintained:
7947 	 *	1) Instantiate the kstats before any routines using the iopath
7948 	 *	   (i.e. sd_send_scsi_cmd).
7949 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7950 	 *	   stats (sd_set_pstats)here, following
7951 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7952 	 *	   sd_cache_control().
7953 	 */
7954 
7955 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7956 		sd_set_pstats(un);
7957 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7958 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7959 	}
7960 
7961 	sd_set_errstats(un);
7962 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7963 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7964 
7965 
7966 	/*
7967 	 * After successfully attaching an instance, we record the information
7968 	 * of how many luns have been attached on the relative target and
7969 	 * controller for parallel SCSI. This information is used when sd tries
7970 	 * to set the tagged queuing capability in HBA.
7971 	 */
7972 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7973 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7974 	}
7975 
7976 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7977 	    "sd_unit_attach: un:0x%p exit success\n", un);
7978 
7979 	/* Uninitialize sd_ssc_t pointer */
7980 	sd_ssc_fini(ssc);
7981 
7982 	return (DDI_SUCCESS);
7983 
7984 	/*
7985 	 * An error occurred during the attach; clean up & return failure.
7986 	 */
7987 
7988 devid_failed:
7989 
7990 setup_pm_failed:
7991 	ddi_remove_minor_node(devi, NULL);
7992 
7993 cmlb_attach_failed:
7994 	/*
7995 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7996 	 */
7997 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7998 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7999 
8000 	/*
8001 	 * Refer to the comments of setting tagged-qing in the beginning of
8002 	 * sd_unit_attach. We can only disable tagged queuing when there is
8003 	 * no lun attached on the target.
8004 	 */
8005 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8006 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8007 	}
8008 
8009 	if (un->un_f_is_fibre == FALSE) {
8010 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8011 	}
8012 
8013 spinup_failed:
8014 
8015 	/* Uninitialize sd_ssc_t pointer */
8016 	sd_ssc_fini(ssc);
8017 
8018 	mutex_enter(SD_MUTEX(un));
8019 
8020 	/* Deallocate SCSI FMA memory spaces */
8021 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8022 
8023 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8024 	if (un->un_direct_priority_timeid != NULL) {
8025 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8026 		un->un_direct_priority_timeid = NULL;
8027 		mutex_exit(SD_MUTEX(un));
8028 		(void) untimeout(temp_id);
8029 		mutex_enter(SD_MUTEX(un));
8030 	}
8031 
8032 	/* Cancel any pending start/stop timeouts */
8033 	if (un->un_startstop_timeid != NULL) {
8034 		timeout_id_t temp_id = un->un_startstop_timeid;
8035 		un->un_startstop_timeid = NULL;
8036 		mutex_exit(SD_MUTEX(un));
8037 		(void) untimeout(temp_id);
8038 		mutex_enter(SD_MUTEX(un));
8039 	}
8040 
8041 	/* Cancel any pending reset-throttle timeouts */
8042 	if (un->un_reset_throttle_timeid != NULL) {
8043 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8044 		un->un_reset_throttle_timeid = NULL;
8045 		mutex_exit(SD_MUTEX(un));
8046 		(void) untimeout(temp_id);
8047 		mutex_enter(SD_MUTEX(un));
8048 	}
8049 
8050 	/* Cancel any pending retry timeouts */
8051 	if (un->un_retry_timeid != NULL) {
8052 		timeout_id_t temp_id = un->un_retry_timeid;
8053 		un->un_retry_timeid = NULL;
8054 		mutex_exit(SD_MUTEX(un));
8055 		(void) untimeout(temp_id);
8056 		mutex_enter(SD_MUTEX(un));
8057 	}
8058 
8059 	/* Cancel any pending delayed cv broadcast timeouts */
8060 	if (un->un_dcvb_timeid != NULL) {
8061 		timeout_id_t temp_id = un->un_dcvb_timeid;
8062 		un->un_dcvb_timeid = NULL;
8063 		mutex_exit(SD_MUTEX(un));
8064 		(void) untimeout(temp_id);
8065 		mutex_enter(SD_MUTEX(un));
8066 	}
8067 
8068 	mutex_exit(SD_MUTEX(un));
8069 
8070 	/* There should not be any in-progress I/O so ASSERT this check */
8071 	ASSERT(un->un_ncmds_in_transport == 0);
8072 	ASSERT(un->un_ncmds_in_driver == 0);
8073 
8074 	/* Do not free the softstate if the callback routine is active */
8075 	sd_sync_with_callback(un);
8076 
8077 	/*
8078 	 * Partition stats apparently are not used with removables. These would
8079 	 * not have been created during attach, so no need to clean them up...
8080 	 */
8081 	if (un->un_errstats != NULL) {
8082 		kstat_delete(un->un_errstats);
8083 		un->un_errstats = NULL;
8084 	}
8085 
8086 create_errstats_failed:
8087 
8088 	if (un->un_stats != NULL) {
8089 		kstat_delete(un->un_stats);
8090 		un->un_stats = NULL;
8091 	}
8092 
8093 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8094 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8095 
8096 	ddi_prop_remove_all(devi);
8097 	sema_destroy(&un->un_semoclose);
8098 	cv_destroy(&un->un_state_cv);
8099 
8100 getrbuf_failed:
8101 
8102 	sd_free_rqs(un);
8103 
8104 alloc_rqs_failed:
8105 
8106 	devp->sd_private = NULL;
8107 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8108 
8109 get_softstate_failed:
8110 	/*
8111 	 * Note: the man pages are unclear as to whether or not doing a
8112 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8113 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8114 	 * ddi_get_soft_state() fails.  The implication seems to be
8115 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8116 	 */
8117 #ifndef XPV_HVM_DRIVER
8118 	ddi_soft_state_free(sd_state, instance);
8119 #endif /* !XPV_HVM_DRIVER */
8120 
8121 probe_failed:
8122 	scsi_unprobe(devp);
8123 
8124 	return (DDI_FAILURE);
8125 }
8126 
8127 
8128 /*
8129  *    Function: sd_unit_detach
8130  *
8131  * Description: Performs DDI_DETACH processing for sddetach().
8132  *
8133  * Return Code: DDI_SUCCESS
8134  *		DDI_FAILURE
8135  *
8136  *     Context: Kernel thread context
8137  */
8138 
8139 static int
8140 sd_unit_detach(dev_info_t *devi)
8141 {
8142 	struct scsi_device	*devp;
8143 	struct sd_lun		*un;
8144 	int			i;
8145 	int			tgt;
8146 	dev_t			dev;
8147 	dev_info_t		*pdip = ddi_get_parent(devi);
8148 #ifndef XPV_HVM_DRIVER
8149 	int			instance = ddi_get_instance(devi);
8150 #endif /* !XPV_HVM_DRIVER */
8151 
8152 	mutex_enter(&sd_detach_mutex);
8153 
8154 	/*
8155 	 * Fail the detach for any of the following:
8156 	 *  - Unable to get the sd_lun struct for the instance
8157 	 *  - A layered driver has an outstanding open on the instance
8158 	 *  - Another thread is already detaching this instance
8159 	 *  - Another thread is currently performing an open
8160 	 */
8161 	devp = ddi_get_driver_private(devi);
8162 	if ((devp == NULL) ||
8163 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8164 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8165 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8166 		mutex_exit(&sd_detach_mutex);
8167 		return (DDI_FAILURE);
8168 	}
8169 
8170 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8171 
8172 	/*
8173 	 * Mark this instance as currently in a detach, to inhibit any
8174 	 * opens from a layered driver.
8175 	 */
8176 	un->un_detach_count++;
8177 	mutex_exit(&sd_detach_mutex);
8178 
8179 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8180 	    SCSI_ADDR_PROP_TARGET, -1);
8181 
8182 	dev = sd_make_device(SD_DEVINFO(un));
8183 
8184 #ifndef lint
8185 	_NOTE(COMPETING_THREADS_NOW);
8186 #endif
8187 
8188 	mutex_enter(SD_MUTEX(un));
8189 
8190 	/*
8191 	 * Fail the detach if there are any outstanding layered
8192 	 * opens on this device.
8193 	 */
8194 	for (i = 0; i < NDKMAP; i++) {
8195 		if (un->un_ocmap.lyropen[i] != 0) {
8196 			goto err_notclosed;
8197 		}
8198 	}
8199 
8200 	/*
8201 	 * Verify there are NO outstanding commands issued to this device.
8202 	 * ie, un_ncmds_in_transport == 0.
8203 	 * It's possible to have outstanding commands through the physio
8204 	 * code path, even though everything's closed.
8205 	 */
8206 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8207 	    (un->un_direct_priority_timeid != NULL) ||
8208 	    (un->un_state == SD_STATE_RWAIT)) {
8209 		mutex_exit(SD_MUTEX(un));
8210 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8211 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8212 		goto err_stillbusy;
8213 	}
8214 
8215 	/*
8216 	 * If we have the device reserved, release the reservation.
8217 	 */
8218 	if ((un->un_resvd_status & SD_RESERVE) &&
8219 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8220 		mutex_exit(SD_MUTEX(un));
8221 		/*
8222 		 * Note: sd_reserve_release sends a command to the device
8223 		 * via the sd_ioctlcmd() path, and can sleep.
8224 		 */
8225 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8226 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8227 			    "sd_dr_detach: Cannot release reservation \n");
8228 		}
8229 	} else {
8230 		mutex_exit(SD_MUTEX(un));
8231 	}
8232 
8233 	/*
8234 	 * Untimeout any reserve recover, throttle reset, restart unit
8235 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8236 	 * from getting nulled by their callback functions.
8237 	 */
8238 	mutex_enter(SD_MUTEX(un));
8239 	if (un->un_resvd_timeid != NULL) {
8240 		timeout_id_t temp_id = un->un_resvd_timeid;
8241 		un->un_resvd_timeid = NULL;
8242 		mutex_exit(SD_MUTEX(un));
8243 		(void) untimeout(temp_id);
8244 		mutex_enter(SD_MUTEX(un));
8245 	}
8246 
8247 	if (un->un_reset_throttle_timeid != NULL) {
8248 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8249 		un->un_reset_throttle_timeid = NULL;
8250 		mutex_exit(SD_MUTEX(un));
8251 		(void) untimeout(temp_id);
8252 		mutex_enter(SD_MUTEX(un));
8253 	}
8254 
8255 	if (un->un_startstop_timeid != NULL) {
8256 		timeout_id_t temp_id = un->un_startstop_timeid;
8257 		un->un_startstop_timeid = NULL;
8258 		mutex_exit(SD_MUTEX(un));
8259 		(void) untimeout(temp_id);
8260 		mutex_enter(SD_MUTEX(un));
8261 	}
8262 
8263 	if (un->un_dcvb_timeid != NULL) {
8264 		timeout_id_t temp_id = un->un_dcvb_timeid;
8265 		un->un_dcvb_timeid = NULL;
8266 		mutex_exit(SD_MUTEX(un));
8267 		(void) untimeout(temp_id);
8268 	} else {
8269 		mutex_exit(SD_MUTEX(un));
8270 	}
8271 
8272 	/* Remove any pending reservation reclaim requests for this device */
8273 	sd_rmv_resv_reclaim_req(dev);
8274 
8275 	mutex_enter(SD_MUTEX(un));
8276 
8277 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8278 	if (un->un_direct_priority_timeid != NULL) {
8279 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8280 		un->un_direct_priority_timeid = NULL;
8281 		mutex_exit(SD_MUTEX(un));
8282 		(void) untimeout(temp_id);
8283 		mutex_enter(SD_MUTEX(un));
8284 	}
8285 
8286 	/* Cancel any active multi-host disk watch thread requests */
8287 	if (un->un_mhd_token != NULL) {
8288 		mutex_exit(SD_MUTEX(un));
8289 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8290 		if (scsi_watch_request_terminate(un->un_mhd_token,
8291 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8292 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8293 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8294 			/*
8295 			 * Note: We are returning here after having removed
8296 			 * some driver timeouts above. This is consistent with
8297 			 * the legacy implementation but perhaps the watch
8298 			 * terminate call should be made with the wait flag set.
8299 			 */
8300 			goto err_stillbusy;
8301 		}
8302 		mutex_enter(SD_MUTEX(un));
8303 		un->un_mhd_token = NULL;
8304 	}
8305 
8306 	if (un->un_swr_token != NULL) {
8307 		mutex_exit(SD_MUTEX(un));
8308 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8309 		if (scsi_watch_request_terminate(un->un_swr_token,
8310 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8311 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8312 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8313 			/*
8314 			 * Note: We are returning here after having removed
8315 			 * some driver timeouts above. This is consistent with
8316 			 * the legacy implementation but perhaps the watch
8317 			 * terminate call should be made with the wait flag set.
8318 			 */
8319 			goto err_stillbusy;
8320 		}
8321 		mutex_enter(SD_MUTEX(un));
8322 		un->un_swr_token = NULL;
8323 	}
8324 
8325 	mutex_exit(SD_MUTEX(un));
8326 
8327 	/*
8328 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8329 	 * if we have not registered one.
8330 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8331 	 */
8332 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8333 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8334 
8335 	/*
8336 	 * protect the timeout pointers from getting nulled by
8337 	 * their callback functions during the cancellation process.
8338 	 * In such a scenario untimeout can be invoked with a null value.
8339 	 */
8340 	_NOTE(NO_COMPETING_THREADS_NOW);
8341 
8342 	mutex_enter(&un->un_pm_mutex);
8343 	if (un->un_pm_idle_timeid != NULL) {
8344 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8345 		un->un_pm_idle_timeid = NULL;
8346 		mutex_exit(&un->un_pm_mutex);
8347 
8348 		/*
8349 		 * Timeout is active; cancel it.
8350 		 * Note that it'll never be active on a device
8351 		 * that does not support PM therefore we don't
8352 		 * have to check before calling pm_idle_component.
8353 		 */
8354 		(void) untimeout(temp_id);
8355 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8356 		mutex_enter(&un->un_pm_mutex);
8357 	}
8358 
8359 	/*
8360 	 * Check whether there is already a timeout scheduled for power
8361 	 * management. If yes then don't lower the power here, that's.
8362 	 * the timeout handler's job.
8363 	 */
8364 	if (un->un_pm_timeid != NULL) {
8365 		timeout_id_t temp_id = un->un_pm_timeid;
8366 		un->un_pm_timeid = NULL;
8367 		mutex_exit(&un->un_pm_mutex);
8368 		/*
8369 		 * Timeout is active; cancel it.
8370 		 * Note that it'll never be active on a device
8371 		 * that does not support PM therefore we don't
8372 		 * have to check before calling pm_idle_component.
8373 		 */
8374 		(void) untimeout(temp_id);
8375 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8376 
8377 	} else {
8378 		mutex_exit(&un->un_pm_mutex);
8379 		if ((un->un_f_pm_is_enabled == TRUE) &&
8380 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8381 		    DDI_SUCCESS)) {
8382 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8383 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8384 			/*
8385 			 * Fix for bug: 4297749, item # 13
8386 			 * The above test now includes a check to see if PM is
8387 			 * supported by this device before call
8388 			 * pm_lower_power().
8389 			 * Note, the following is not dead code. The call to
8390 			 * pm_lower_power above will generate a call back into
8391 			 * our sdpower routine which might result in a timeout
8392 			 * handler getting activated. Therefore the following
8393 			 * code is valid and necessary.
8394 			 */
8395 			mutex_enter(&un->un_pm_mutex);
8396 			if (un->un_pm_timeid != NULL) {
8397 				timeout_id_t temp_id = un->un_pm_timeid;
8398 				un->un_pm_timeid = NULL;
8399 				mutex_exit(&un->un_pm_mutex);
8400 				(void) untimeout(temp_id);
8401 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8402 			} else {
8403 				mutex_exit(&un->un_pm_mutex);
8404 			}
8405 		}
8406 	}
8407 
8408 	/*
8409 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8410 	 * Relocated here from above to be after the call to
8411 	 * pm_lower_power, which was getting errors.
8412 	 */
8413 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8414 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8415 
8416 	/*
8417 	 * Currently, tagged queuing is supported per target based by HBA.
8418 	 * Setting this per lun instance actually sets the capability of this
8419 	 * target in HBA, which affects those luns already attached on the
8420 	 * same target. So during detach, we can only disable this capability
8421 	 * only when this is the only lun left on this target. By doing
8422 	 * this, we assume a target has the same tagged queuing capability
8423 	 * for every lun. The condition can be removed when HBA is changed to
8424 	 * support per lun based tagged queuing capability.
8425 	 */
8426 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8427 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8428 	}
8429 
8430 	if (un->un_f_is_fibre == FALSE) {
8431 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8432 	}
8433 
8434 	/*
8435 	 * Remove any event callbacks, fibre only
8436 	 */
8437 	if (un->un_f_is_fibre == TRUE) {
8438 		if ((un->un_insert_event != NULL) &&
8439 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8440 		    DDI_SUCCESS)) {
8441 			/*
8442 			 * Note: We are returning here after having done
8443 			 * substantial cleanup above. This is consistent
8444 			 * with the legacy implementation but this may not
8445 			 * be the right thing to do.
8446 			 */
8447 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8448 			    "sd_dr_detach: Cannot cancel insert event\n");
8449 			goto err_remove_event;
8450 		}
8451 		un->un_insert_event = NULL;
8452 
8453 		if ((un->un_remove_event != NULL) &&
8454 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8455 		    DDI_SUCCESS)) {
8456 			/*
8457 			 * Note: We are returning here after having done
8458 			 * substantial cleanup above. This is consistent
8459 			 * with the legacy implementation but this may not
8460 			 * be the right thing to do.
8461 			 */
8462 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8463 			    "sd_dr_detach: Cannot cancel remove event\n");
8464 			goto err_remove_event;
8465 		}
8466 		un->un_remove_event = NULL;
8467 	}
8468 
8469 	/* Do not free the softstate if the callback routine is active */
8470 	sd_sync_with_callback(un);
8471 
8472 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8473 	cmlb_free_handle(&un->un_cmlbhandle);
8474 
8475 	/*
8476 	 * Hold the detach mutex here, to make sure that no other threads ever
8477 	 * can access a (partially) freed soft state structure.
8478 	 */
8479 	mutex_enter(&sd_detach_mutex);
8480 
8481 	/*
8482 	 * Clean up the soft state struct.
8483 	 * Cleanup is done in reverse order of allocs/inits.
8484 	 * At this point there should be no competing threads anymore.
8485 	 */
8486 
8487 	scsi_fm_fini(devp);
8488 
8489 	/*
8490 	 * Deallocate memory for SCSI FMA.
8491 	 */
8492 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8493 
8494 	/*
8495 	 * Unregister and free device id if it was not registered
8496 	 * by the transport.
8497 	 */
8498 	if (un->un_f_devid_transport_defined == FALSE) {
8499 		ddi_devid_unregister(devi);
8500 		if (un->un_devid) {
8501 			ddi_devid_free(un->un_devid);
8502 			un->un_devid = NULL;
8503 		}
8504 	}
8505 
8506 	/*
8507 	 * Destroy wmap cache if it exists.
8508 	 */
8509 	if (un->un_wm_cache != NULL) {
8510 		kmem_cache_destroy(un->un_wm_cache);
8511 		un->un_wm_cache = NULL;
8512 	}
8513 
8514 	/*
8515 	 * kstat cleanup is done in detach for all device types (4363169).
8516 	 * We do not want to fail detach if the device kstats are not deleted
8517 	 * since there is a confusion about the devo_refcnt for the device.
8518 	 * We just delete the kstats and let detach complete successfully.
8519 	 */
8520 	if (un->un_stats != NULL) {
8521 		kstat_delete(un->un_stats);
8522 		un->un_stats = NULL;
8523 	}
8524 	if (un->un_errstats != NULL) {
8525 		kstat_delete(un->un_errstats);
8526 		un->un_errstats = NULL;
8527 	}
8528 
8529 	/* Remove partition stats */
8530 	if (un->un_f_pkstats_enabled) {
8531 		for (i = 0; i < NSDMAP; i++) {
8532 			if (un->un_pstats[i] != NULL) {
8533 				kstat_delete(un->un_pstats[i]);
8534 				un->un_pstats[i] = NULL;
8535 			}
8536 		}
8537 	}
8538 
8539 	/* Remove xbuf registration */
8540 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8541 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8542 
8543 	/* Remove driver properties */
8544 	ddi_prop_remove_all(devi);
8545 
8546 	mutex_destroy(&un->un_pm_mutex);
8547 	cv_destroy(&un->un_pm_busy_cv);
8548 
8549 	cv_destroy(&un->un_wcc_cv);
8550 
8551 	/* Open/close semaphore */
8552 	sema_destroy(&un->un_semoclose);
8553 
8554 	/* Removable media condvar. */
8555 	cv_destroy(&un->un_state_cv);
8556 
8557 	/* Suspend/resume condvar. */
8558 	cv_destroy(&un->un_suspend_cv);
8559 	cv_destroy(&un->un_disk_busy_cv);
8560 
8561 	sd_free_rqs(un);
8562 
8563 	/* Free up soft state */
8564 	devp->sd_private = NULL;
8565 
8566 	bzero(un, sizeof (struct sd_lun));
8567 #ifndef XPV_HVM_DRIVER
8568 	ddi_soft_state_free(sd_state, instance);
8569 #endif /* !XPV_HVM_DRIVER */
8570 
8571 	mutex_exit(&sd_detach_mutex);
8572 
8573 	/* This frees up the INQUIRY data associated with the device. */
8574 	scsi_unprobe(devp);
8575 
8576 	/*
8577 	 * After successfully detaching an instance, we update the information
8578 	 * of how many luns have been attached in the relative target and
8579 	 * controller for parallel SCSI. This information is used when sd tries
8580 	 * to set the tagged queuing capability in HBA.
8581 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8582 	 * check if the device is parallel SCSI. However, we don't need to
8583 	 * check here because we've already checked during attach. No device
8584 	 * that is not parallel SCSI is in the chain.
8585 	 */
8586 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8587 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8588 	}
8589 
8590 	return (DDI_SUCCESS);
8591 
8592 err_notclosed:
8593 	mutex_exit(SD_MUTEX(un));
8594 
8595 err_stillbusy:
8596 	_NOTE(NO_COMPETING_THREADS_NOW);
8597 
8598 err_remove_event:
8599 	mutex_enter(&sd_detach_mutex);
8600 	un->un_detach_count--;
8601 	mutex_exit(&sd_detach_mutex);
8602 
8603 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8604 	return (DDI_FAILURE);
8605 }
8606 
8607 
8608 /*
8609  *    Function: sd_create_errstats
8610  *
8611  * Description: This routine instantiates the device error stats.
8612  *
8613  *		Note: During attach the stats are instantiated first so they are
8614  *		available for attach-time routines that utilize the driver
8615  *		iopath to send commands to the device. The stats are initialized
8616  *		separately so data obtained during some attach-time routines is
8617  *		available. (4362483)
8618  *
8619  *   Arguments: un - driver soft state (unit) structure
8620  *		instance - driver instance
8621  *
8622  *     Context: Kernel thread context
8623  */
8624 
8625 static void
8626 sd_create_errstats(struct sd_lun *un, int instance)
8627 {
8628 	struct	sd_errstats	*stp;
8629 	char	kstatmodule_err[KSTAT_STRLEN];
8630 	char	kstatname[KSTAT_STRLEN];
8631 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8632 
8633 	ASSERT(un != NULL);
8634 
8635 	if (un->un_errstats != NULL) {
8636 		return;
8637 	}
8638 
8639 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8640 	    "%serr", sd_label);
8641 	(void) snprintf(kstatname, sizeof (kstatname),
8642 	    "%s%d,err", sd_label, instance);
8643 
8644 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8645 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8646 
8647 	if (un->un_errstats == NULL) {
8648 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8649 		    "sd_create_errstats: Failed kstat_create\n");
8650 		return;
8651 	}
8652 
8653 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8654 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8655 	    KSTAT_DATA_UINT32);
8656 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8657 	    KSTAT_DATA_UINT32);
8658 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8659 	    KSTAT_DATA_UINT32);
8660 	kstat_named_init(&stp->sd_vid,		"Vendor",
8661 	    KSTAT_DATA_CHAR);
8662 	kstat_named_init(&stp->sd_pid,		"Product",
8663 	    KSTAT_DATA_CHAR);
8664 	kstat_named_init(&stp->sd_revision,	"Revision",
8665 	    KSTAT_DATA_CHAR);
8666 	kstat_named_init(&stp->sd_serial,	"Serial No",
8667 	    KSTAT_DATA_CHAR);
8668 	kstat_named_init(&stp->sd_capacity,	"Size",
8669 	    KSTAT_DATA_ULONGLONG);
8670 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8671 	    KSTAT_DATA_UINT32);
8672 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8673 	    KSTAT_DATA_UINT32);
8674 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8675 	    KSTAT_DATA_UINT32);
8676 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8677 	    KSTAT_DATA_UINT32);
8678 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8679 	    KSTAT_DATA_UINT32);
8680 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8681 	    KSTAT_DATA_UINT32);
8682 
8683 	un->un_errstats->ks_private = un;
8684 	un->un_errstats->ks_update  = nulldev;
8685 
8686 	kstat_install(un->un_errstats);
8687 }
8688 
8689 
8690 /*
8691  *    Function: sd_set_errstats
8692  *
8693  * Description: This routine sets the value of the vendor id, product id,
8694  *		revision, serial number, and capacity device error stats.
8695  *
8696  *		Note: During attach the stats are instantiated first so they are
8697  *		available for attach-time routines that utilize the driver
8698  *		iopath to send commands to the device. The stats are initialized
8699  *		separately so data obtained during some attach-time routines is
8700  *		available. (4362483)
8701  *
8702  *   Arguments: un - driver soft state (unit) structure
8703  *
8704  *     Context: Kernel thread context
8705  */
8706 
8707 static void
8708 sd_set_errstats(struct sd_lun *un)
8709 {
8710 	struct	sd_errstats	*stp;
8711 
8712 	ASSERT(un != NULL);
8713 	ASSERT(un->un_errstats != NULL);
8714 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8715 	ASSERT(stp != NULL);
8716 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8717 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8718 	(void) strncpy(stp->sd_revision.value.c,
8719 	    un->un_sd->sd_inq->inq_revision, 4);
8720 
8721 	/*
8722 	 * All the errstats are persistent across detach/attach,
8723 	 * so reset all the errstats here in case of the hot
8724 	 * replacement of disk drives, except for not changed
8725 	 * Sun qualified drives.
8726 	 */
8727 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8728 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8729 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8730 		stp->sd_softerrs.value.ui32 = 0;
8731 		stp->sd_harderrs.value.ui32 = 0;
8732 		stp->sd_transerrs.value.ui32 = 0;
8733 		stp->sd_rq_media_err.value.ui32 = 0;
8734 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8735 		stp->sd_rq_nodev_err.value.ui32 = 0;
8736 		stp->sd_rq_recov_err.value.ui32 = 0;
8737 		stp->sd_rq_illrq_err.value.ui32 = 0;
8738 		stp->sd_rq_pfa_err.value.ui32 = 0;
8739 	}
8740 
8741 	/*
8742 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8743 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8744 	 * (4376302))
8745 	 */
8746 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8747 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8748 		    sizeof (SD_INQUIRY(un)->inq_serial));
8749 	}
8750 
8751 	if (un->un_f_blockcount_is_valid != TRUE) {
8752 		/*
8753 		 * Set capacity error stat to 0 for no media. This ensures
8754 		 * a valid capacity is displayed in response to 'iostat -E'
8755 		 * when no media is present in the device.
8756 		 */
8757 		stp->sd_capacity.value.ui64 = 0;
8758 	} else {
8759 		/*
8760 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8761 		 * capacity.
8762 		 *
8763 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8764 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8765 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8766 		 */
8767 		stp->sd_capacity.value.ui64 = (uint64_t)
8768 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8769 	}
8770 }
8771 
8772 
8773 /*
8774  *    Function: sd_set_pstats
8775  *
8776  * Description: This routine instantiates and initializes the partition
8777  *              stats for each partition with more than zero blocks.
8778  *		(4363169)
8779  *
8780  *   Arguments: un - driver soft state (unit) structure
8781  *
8782  *     Context: Kernel thread context
8783  */
8784 
8785 static void
8786 sd_set_pstats(struct sd_lun *un)
8787 {
8788 	char	kstatname[KSTAT_STRLEN];
8789 	int	instance;
8790 	int	i;
8791 	diskaddr_t	nblks = 0;
8792 	char	*partname = NULL;
8793 
8794 	ASSERT(un != NULL);
8795 
8796 	instance = ddi_get_instance(SD_DEVINFO(un));
8797 
8798 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8799 	for (i = 0; i < NSDMAP; i++) {
8800 
8801 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8802 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8803 			continue;
8804 		mutex_enter(SD_MUTEX(un));
8805 
8806 		if ((un->un_pstats[i] == NULL) &&
8807 		    (nblks != 0)) {
8808 
8809 			(void) snprintf(kstatname, sizeof (kstatname),
8810 			    "%s%d,%s", sd_label, instance,
8811 			    partname);
8812 
8813 			un->un_pstats[i] = kstat_create(sd_label,
8814 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8815 			    1, KSTAT_FLAG_PERSISTENT);
8816 			if (un->un_pstats[i] != NULL) {
8817 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8818 				kstat_install(un->un_pstats[i]);
8819 			}
8820 		}
8821 		mutex_exit(SD_MUTEX(un));
8822 	}
8823 }
8824 
8825 
8826 #if (defined(__fibre))
8827 /*
8828  *    Function: sd_init_event_callbacks
8829  *
8830  * Description: This routine initializes the insertion and removal event
8831  *		callbacks. (fibre only)
8832  *
8833  *   Arguments: un - driver soft state (unit) structure
8834  *
8835  *     Context: Kernel thread context
8836  */
8837 
8838 static void
8839 sd_init_event_callbacks(struct sd_lun *un)
8840 {
8841 	ASSERT(un != NULL);
8842 
8843 	if ((un->un_insert_event == NULL) &&
8844 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8845 	    &un->un_insert_event) == DDI_SUCCESS)) {
8846 		/*
8847 		 * Add the callback for an insertion event
8848 		 */
8849 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8850 		    un->un_insert_event, sd_event_callback, (void *)un,
8851 		    &(un->un_insert_cb_id));
8852 	}
8853 
8854 	if ((un->un_remove_event == NULL) &&
8855 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8856 	    &un->un_remove_event) == DDI_SUCCESS)) {
8857 		/*
8858 		 * Add the callback for a removal event
8859 		 */
8860 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8861 		    un->un_remove_event, sd_event_callback, (void *)un,
8862 		    &(un->un_remove_cb_id));
8863 	}
8864 }
8865 
8866 
8867 /*
8868  *    Function: sd_event_callback
8869  *
8870  * Description: This routine handles insert/remove events (photon). The
8871  *		state is changed to OFFLINE which can be used to supress
8872  *		error msgs. (fibre only)
8873  *
8874  *   Arguments: un - driver soft state (unit) structure
8875  *
8876  *     Context: Callout thread context
8877  */
8878 /* ARGSUSED */
8879 static void
8880 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8881     void *bus_impldata)
8882 {
8883 	struct sd_lun *un = (struct sd_lun *)arg;
8884 
8885 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8886 	if (event == un->un_insert_event) {
8887 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8888 		mutex_enter(SD_MUTEX(un));
8889 		if (un->un_state == SD_STATE_OFFLINE) {
8890 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8891 				un->un_state = un->un_last_state;
8892 			} else {
8893 				/*
8894 				 * We have gone through SUSPEND/RESUME while
8895 				 * we were offline. Restore the last state
8896 				 */
8897 				un->un_state = un->un_save_state;
8898 			}
8899 		}
8900 		mutex_exit(SD_MUTEX(un));
8901 
8902 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8903 	} else if (event == un->un_remove_event) {
8904 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8905 		mutex_enter(SD_MUTEX(un));
8906 		/*
8907 		 * We need to handle an event callback that occurs during
8908 		 * the suspend operation, since we don't prevent it.
8909 		 */
8910 		if (un->un_state != SD_STATE_OFFLINE) {
8911 			if (un->un_state != SD_STATE_SUSPENDED) {
8912 				New_state(un, SD_STATE_OFFLINE);
8913 			} else {
8914 				un->un_last_state = SD_STATE_OFFLINE;
8915 			}
8916 		}
8917 		mutex_exit(SD_MUTEX(un));
8918 	} else {
8919 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8920 		    "!Unknown event\n");
8921 	}
8922 
8923 }
8924 #endif
8925 
8926 /*
8927  *    Function: sd_cache_control()
8928  *
8929  * Description: This routine is the driver entry point for setting
8930  *		read and write caching by modifying the WCE (write cache
8931  *		enable) and RCD (read cache disable) bits of mode
8932  *		page 8 (MODEPAGE_CACHING).
8933  *
8934  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
8935  *                      structure for this target.
8936  *		rcd_flag - flag for controlling the read cache
8937  *		wce_flag - flag for controlling the write cache
8938  *
8939  * Return Code: EIO
8940  *		code returned by sd_send_scsi_MODE_SENSE and
8941  *		sd_send_scsi_MODE_SELECT
8942  *
8943  *     Context: Kernel Thread
8944  */
8945 
8946 static int
8947 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
8948 {
8949 	struct mode_caching	*mode_caching_page;
8950 	uchar_t			*header;
8951 	size_t			buflen;
8952 	int			hdrlen;
8953 	int			bd_len;
8954 	int			rval = 0;
8955 	struct mode_header_grp2	*mhp;
8956 	struct sd_lun		*un;
8957 	int			status;
8958 
8959 	ASSERT(ssc != NULL);
8960 	un = ssc->ssc_un;
8961 	ASSERT(un != NULL);
8962 
8963 	/*
8964 	 * Do a test unit ready, otherwise a mode sense may not work if this
8965 	 * is the first command sent to the device after boot.
8966 	 */
8967 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
8968 	if (status != 0)
8969 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8970 
8971 	if (un->un_f_cfg_is_atapi == TRUE) {
8972 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8973 	} else {
8974 		hdrlen = MODE_HEADER_LENGTH;
8975 	}
8976 
8977 	/*
8978 	 * Allocate memory for the retrieved mode page and its headers.  Set
8979 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8980 	 * we get all of the mode sense data otherwise, the mode select
8981 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8982 	 */
8983 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8984 	    sizeof (struct mode_cache_scsi3);
8985 
8986 	header = kmem_zalloc(buflen, KM_SLEEP);
8987 
8988 	/* Get the information from the device. */
8989 	if (un->un_f_cfg_is_atapi == TRUE) {
8990 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
8991 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8992 	} else {
8993 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
8994 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8995 	}
8996 
8997 	if (rval != 0) {
8998 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8999 		    "sd_cache_control: Mode Sense Failed\n");
9000 		goto mode_sense_failed;
9001 	}
9002 
9003 	/*
9004 	 * Determine size of Block Descriptors in order to locate
9005 	 * the mode page data. ATAPI devices return 0, SCSI devices
9006 	 * should return MODE_BLK_DESC_LENGTH.
9007 	 */
9008 	if (un->un_f_cfg_is_atapi == TRUE) {
9009 		mhp	= (struct mode_header_grp2 *)header;
9010 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9011 	} else {
9012 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9013 	}
9014 
9015 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9016 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9017 		    "sd_cache_control: Mode Sense returned invalid block "
9018 		    "descriptor length\n");
9019 		rval = EIO;
9020 		goto mode_sense_failed;
9021 	}
9022 
9023 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9024 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9025 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9026 		    "sd_cache_control: Mode Sense caching page code mismatch "
9027 		    "%d\n", mode_caching_page->mode_page.code);
9028 		rval = EIO;
9029 		goto mode_sense_failed;
9030 	}
9031 
9032 	/* Check the relevant bits on successful mode sense. */
9033 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9034 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9035 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9036 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9037 
9038 		size_t sbuflen;
9039 		uchar_t save_pg;
9040 
9041 		/*
9042 		 * Construct select buffer length based on the
9043 		 * length of the sense data returned.
9044 		 */
9045 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
9046 		    sizeof (struct mode_page) +
9047 		    (int)mode_caching_page->mode_page.length;
9048 
9049 		/*
9050 		 * Set the caching bits as requested.
9051 		 */
9052 		if (rcd_flag == SD_CACHE_ENABLE)
9053 			mode_caching_page->rcd = 0;
9054 		else if (rcd_flag == SD_CACHE_DISABLE)
9055 			mode_caching_page->rcd = 1;
9056 
9057 		if (wce_flag == SD_CACHE_ENABLE)
9058 			mode_caching_page->wce = 1;
9059 		else if (wce_flag == SD_CACHE_DISABLE)
9060 			mode_caching_page->wce = 0;
9061 
9062 		/*
9063 		 * Save the page if the mode sense says the
9064 		 * drive supports it.
9065 		 */
9066 		save_pg = mode_caching_page->mode_page.ps ?
9067 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9068 
9069 		/* Clear reserved bits before mode select. */
9070 		mode_caching_page->mode_page.ps = 0;
9071 
9072 		/*
9073 		 * Clear out mode header for mode select.
9074 		 * The rest of the retrieved page will be reused.
9075 		 */
9076 		bzero(header, hdrlen);
9077 
9078 		if (un->un_f_cfg_is_atapi == TRUE) {
9079 			mhp = (struct mode_header_grp2 *)header;
9080 			mhp->bdesc_length_hi = bd_len >> 8;
9081 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9082 		} else {
9083 			((struct mode_header *)header)->bdesc_length = bd_len;
9084 		}
9085 
9086 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9087 
9088 		/* Issue mode select to change the cache settings */
9089 		if (un->un_f_cfg_is_atapi == TRUE) {
9090 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9091 			    sbuflen, save_pg, SD_PATH_DIRECT);
9092 		} else {
9093 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9094 			    sbuflen, save_pg, SD_PATH_DIRECT);
9095 		}
9096 
9097 	}
9098 
9099 
9100 mode_sense_failed:
9101 
9102 	kmem_free(header, buflen);
9103 
9104 	if (rval != 0) {
9105 		if (rval == EIO)
9106 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9107 		else
9108 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9109 	}
9110 	return (rval);
9111 }
9112 
9113 
9114 /*
9115  *    Function: sd_get_write_cache_enabled()
9116  *
9117  * Description: This routine is the driver entry point for determining if
9118  *		write caching is enabled.  It examines the WCE (write cache
9119  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9120  *
9121  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9122  *                      structure for this target.
9123  *		is_enabled - pointer to int where write cache enabled state
9124  *		is returned (non-zero -> write cache enabled)
9125  *
9126  *
9127  * Return Code: EIO
9128  *		code returned by sd_send_scsi_MODE_SENSE
9129  *
9130  *     Context: Kernel Thread
9131  *
9132  * NOTE: If ioctl is added to disable write cache, this sequence should
9133  * be followed so that no locking is required for accesses to
9134  * un->un_f_write_cache_enabled:
9135  * 	do mode select to clear wce
9136  * 	do synchronize cache to flush cache
9137  * 	set un->un_f_write_cache_enabled = FALSE
9138  *
9139  * Conversely, an ioctl to enable the write cache should be done
9140  * in this order:
9141  * 	set un->un_f_write_cache_enabled = TRUE
9142  * 	do mode select to set wce
9143  */
9144 
9145 static int
9146 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9147 {
9148 	struct mode_caching	*mode_caching_page;
9149 	uchar_t			*header;
9150 	size_t			buflen;
9151 	int			hdrlen;
9152 	int			bd_len;
9153 	int			rval = 0;
9154 	struct sd_lun		*un;
9155 	int			status;
9156 
9157 	ASSERT(ssc != NULL);
9158 	un = ssc->ssc_un;
9159 	ASSERT(un != NULL);
9160 	ASSERT(is_enabled != NULL);
9161 
9162 	/* in case of error, flag as enabled */
9163 	*is_enabled = TRUE;
9164 
9165 	/*
9166 	 * Do a test unit ready, otherwise a mode sense may not work if this
9167 	 * is the first command sent to the device after boot.
9168 	 */
9169 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9170 
9171 	if (status != 0)
9172 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9173 
9174 	if (un->un_f_cfg_is_atapi == TRUE) {
9175 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9176 	} else {
9177 		hdrlen = MODE_HEADER_LENGTH;
9178 	}
9179 
9180 	/*
9181 	 * Allocate memory for the retrieved mode page and its headers.  Set
9182 	 * a pointer to the page itself.
9183 	 */
9184 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9185 	header = kmem_zalloc(buflen, KM_SLEEP);
9186 
9187 	/* Get the information from the device. */
9188 	if (un->un_f_cfg_is_atapi == TRUE) {
9189 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9190 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9191 	} else {
9192 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9193 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9194 	}
9195 
9196 	if (rval != 0) {
9197 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9198 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9199 		goto mode_sense_failed;
9200 	}
9201 
9202 	/*
9203 	 * Determine size of Block Descriptors in order to locate
9204 	 * the mode page data. ATAPI devices return 0, SCSI devices
9205 	 * should return MODE_BLK_DESC_LENGTH.
9206 	 */
9207 	if (un->un_f_cfg_is_atapi == TRUE) {
9208 		struct mode_header_grp2	*mhp;
9209 		mhp	= (struct mode_header_grp2 *)header;
9210 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9211 	} else {
9212 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9213 	}
9214 
9215 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9216 		/* FMA should make upset complain here */
9217 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9218 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9219 		    "block descriptor length\n");
9220 		rval = EIO;
9221 		goto mode_sense_failed;
9222 	}
9223 
9224 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9225 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9226 		/* FMA could make upset complain here */
9227 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9228 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9229 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9230 		rval = EIO;
9231 		goto mode_sense_failed;
9232 	}
9233 	*is_enabled = mode_caching_page->wce;
9234 
9235 mode_sense_failed:
9236 	if (rval == 0) {
9237 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9238 	} else if (rval == EIO) {
9239 		/*
9240 		 * Some disks do not support mode sense(6), we
9241 		 * should ignore this kind of error(sense key is
9242 		 * 0x5 - illegal request).
9243 		 */
9244 		uint8_t *sensep;
9245 		int senlen;
9246 
9247 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9248 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9249 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9250 
9251 		if (senlen > 0 &&
9252 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9253 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9254 		} else {
9255 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9256 		}
9257 	} else {
9258 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9259 	}
9260 	kmem_free(header, buflen);
9261 	return (rval);
9262 }
9263 
9264 /*
9265  *    Function: sd_get_nv_sup()
9266  *
9267  * Description: This routine is the driver entry point for
9268  * determining whether non-volatile cache is supported. This
9269  * determination process works as follows:
9270  *
9271  * 1. sd first queries sd.conf on whether
9272  * suppress_cache_flush bit is set for this device.
9273  *
9274  * 2. if not there, then queries the internal disk table.
9275  *
9276  * 3. if either sd.conf or internal disk table specifies
9277  * cache flush be suppressed, we don't bother checking
9278  * NV_SUP bit.
9279  *
9280  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9281  * the optional INQUIRY VPD page 0x86. If the device
9282  * supports VPD page 0x86, sd examines the NV_SUP
9283  * (non-volatile cache support) bit in the INQUIRY VPD page
9284  * 0x86:
9285  *   o If NV_SUP bit is set, sd assumes the device has a
9286  *   non-volatile cache and set the
9287  *   un_f_sync_nv_supported to TRUE.
9288  *   o Otherwise cache is not non-volatile,
9289  *   un_f_sync_nv_supported is set to FALSE.
9290  *
9291  * Arguments: un - driver soft state (unit) structure
9292  *
9293  * Return Code:
9294  *
9295  *     Context: Kernel Thread
9296  */
9297 
9298 static void
9299 sd_get_nv_sup(sd_ssc_t *ssc)
9300 {
9301 	int		rval		= 0;
9302 	uchar_t		*inq86		= NULL;
9303 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9304 	size_t		inq86_resid	= 0;
9305 	struct		dk_callback *dkc;
9306 	struct sd_lun	*un;
9307 
9308 	ASSERT(ssc != NULL);
9309 	un = ssc->ssc_un;
9310 	ASSERT(un != NULL);
9311 
9312 	mutex_enter(SD_MUTEX(un));
9313 
9314 	/*
9315 	 * Be conservative on the device's support of
9316 	 * SYNC_NV bit: un_f_sync_nv_supported is
9317 	 * initialized to be false.
9318 	 */
9319 	un->un_f_sync_nv_supported = FALSE;
9320 
9321 	/*
9322 	 * If either sd.conf or internal disk table
9323 	 * specifies cache flush be suppressed, then
9324 	 * we don't bother checking NV_SUP bit.
9325 	 */
9326 	if (un->un_f_suppress_cache_flush == TRUE) {
9327 		mutex_exit(SD_MUTEX(un));
9328 		return;
9329 	}
9330 
9331 	if (sd_check_vpd_page_support(ssc) == 0 &&
9332 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9333 		mutex_exit(SD_MUTEX(un));
9334 		/* collect page 86 data if available */
9335 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9336 
9337 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9338 		    0x01, 0x86, &inq86_resid);
9339 
9340 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9341 			SD_TRACE(SD_LOG_COMMON, un,
9342 			    "sd_get_nv_sup: \
9343 			    successfully get VPD page: %x \
9344 			    PAGE LENGTH: %x BYTE 6: %x\n",
9345 			    inq86[1], inq86[3], inq86[6]);
9346 
9347 			mutex_enter(SD_MUTEX(un));
9348 			/*
9349 			 * check the value of NV_SUP bit: only if the device
9350 			 * reports NV_SUP bit to be 1, the
9351 			 * un_f_sync_nv_supported bit will be set to true.
9352 			 */
9353 			if (inq86[6] & SD_VPD_NV_SUP) {
9354 				un->un_f_sync_nv_supported = TRUE;
9355 			}
9356 			mutex_exit(SD_MUTEX(un));
9357 		} else if (rval != 0) {
9358 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9359 		}
9360 
9361 		kmem_free(inq86, inq86_len);
9362 	} else {
9363 		mutex_exit(SD_MUTEX(un));
9364 	}
9365 
9366 	/*
9367 	 * Send a SYNC CACHE command to check whether
9368 	 * SYNC_NV bit is supported. This command should have
9369 	 * un_f_sync_nv_supported set to correct value.
9370 	 */
9371 	mutex_enter(SD_MUTEX(un));
9372 	if (un->un_f_sync_nv_supported) {
9373 		mutex_exit(SD_MUTEX(un));
9374 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9375 		dkc->dkc_flag = FLUSH_VOLATILE;
9376 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9377 
9378 		/*
9379 		 * Send a TEST UNIT READY command to the device. This should
9380 		 * clear any outstanding UNIT ATTENTION that may be present.
9381 		 */
9382 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9383 		if (rval != 0)
9384 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9385 
9386 		kmem_free(dkc, sizeof (struct dk_callback));
9387 	} else {
9388 		mutex_exit(SD_MUTEX(un));
9389 	}
9390 
9391 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9392 	    un_f_suppress_cache_flush is set to %d\n",
9393 	    un->un_f_suppress_cache_flush);
9394 }
9395 
9396 /*
9397  *    Function: sd_make_device
9398  *
9399  * Description: Utility routine to return the Solaris device number from
9400  *		the data in the device's dev_info structure.
9401  *
9402  * Return Code: The Solaris device number
9403  *
9404  *     Context: Any
9405  */
9406 
9407 static dev_t
9408 sd_make_device(dev_info_t *devi)
9409 {
9410 	return (makedevice(ddi_driver_major(devi),
9411 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9412 }
9413 
9414 
9415 /*
9416  *    Function: sd_pm_entry
9417  *
9418  * Description: Called at the start of a new command to manage power
9419  *		and busy status of a device. This includes determining whether
9420  *		the current power state of the device is sufficient for
9421  *		performing the command or whether it must be changed.
9422  *		The PM framework is notified appropriately.
9423  *		Only with a return status of DDI_SUCCESS will the
9424  *		component be busy to the framework.
9425  *
9426  *		All callers of sd_pm_entry must check the return status
9427  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9428  *		of DDI_FAILURE indicates the device failed to power up.
9429  *		In this case un_pm_count has been adjusted so the result
9430  *		on exit is still powered down, ie. count is less than 0.
9431  *		Calling sd_pm_exit with this count value hits an ASSERT.
9432  *
9433  * Return Code: DDI_SUCCESS or DDI_FAILURE
9434  *
9435  *     Context: Kernel thread context.
9436  */
9437 
9438 static int
9439 sd_pm_entry(struct sd_lun *un)
9440 {
9441 	int return_status = DDI_SUCCESS;
9442 
9443 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9444 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9445 
9446 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9447 
9448 	if (un->un_f_pm_is_enabled == FALSE) {
9449 		SD_TRACE(SD_LOG_IO_PM, un,
9450 		    "sd_pm_entry: exiting, PM not enabled\n");
9451 		return (return_status);
9452 	}
9453 
9454 	/*
9455 	 * Just increment a counter if PM is enabled. On the transition from
9456 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9457 	 * the count with each IO and mark the device as idle when the count
9458 	 * hits 0.
9459 	 *
9460 	 * If the count is less than 0 the device is powered down. If a powered
9461 	 * down device is successfully powered up then the count must be
9462 	 * incremented to reflect the power up. Note that it'll get incremented
9463 	 * a second time to become busy.
9464 	 *
9465 	 * Because the following has the potential to change the device state
9466 	 * and must release the un_pm_mutex to do so, only one thread can be
9467 	 * allowed through at a time.
9468 	 */
9469 
9470 	mutex_enter(&un->un_pm_mutex);
9471 	while (un->un_pm_busy == TRUE) {
9472 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9473 	}
9474 	un->un_pm_busy = TRUE;
9475 
9476 	if (un->un_pm_count < 1) {
9477 
9478 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9479 
9480 		/*
9481 		 * Indicate we are now busy so the framework won't attempt to
9482 		 * power down the device. This call will only fail if either
9483 		 * we passed a bad component number or the device has no
9484 		 * components. Neither of these should ever happen.
9485 		 */
9486 		mutex_exit(&un->un_pm_mutex);
9487 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9488 		ASSERT(return_status == DDI_SUCCESS);
9489 
9490 		mutex_enter(&un->un_pm_mutex);
9491 
9492 		if (un->un_pm_count < 0) {
9493 			mutex_exit(&un->un_pm_mutex);
9494 
9495 			SD_TRACE(SD_LOG_IO_PM, un,
9496 			    "sd_pm_entry: power up component\n");
9497 
9498 			/*
9499 			 * pm_raise_power will cause sdpower to be called
9500 			 * which brings the device power level to the
9501 			 * desired state, ON in this case. If successful,
9502 			 * un_pm_count and un_power_level will be updated
9503 			 * appropriately.
9504 			 */
9505 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9506 			    SD_SPINDLE_ON);
9507 
9508 			mutex_enter(&un->un_pm_mutex);
9509 
9510 			if (return_status != DDI_SUCCESS) {
9511 				/*
9512 				 * Power up failed.
9513 				 * Idle the device and adjust the count
9514 				 * so the result on exit is that we're
9515 				 * still powered down, ie. count is less than 0.
9516 				 */
9517 				SD_TRACE(SD_LOG_IO_PM, un,
9518 				    "sd_pm_entry: power up failed,"
9519 				    " idle the component\n");
9520 
9521 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9522 				un->un_pm_count--;
9523 			} else {
9524 				/*
9525 				 * Device is powered up, verify the
9526 				 * count is non-negative.
9527 				 * This is debug only.
9528 				 */
9529 				ASSERT(un->un_pm_count == 0);
9530 			}
9531 		}
9532 
9533 		if (return_status == DDI_SUCCESS) {
9534 			/*
9535 			 * For performance, now that the device has been tagged
9536 			 * as busy, and it's known to be powered up, update the
9537 			 * chain types to use jump tables that do not include
9538 			 * pm. This significantly lowers the overhead and
9539 			 * therefore improves performance.
9540 			 */
9541 
9542 			mutex_exit(&un->un_pm_mutex);
9543 			mutex_enter(SD_MUTEX(un));
9544 			SD_TRACE(SD_LOG_IO_PM, un,
9545 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9546 			    un->un_uscsi_chain_type);
9547 
9548 			if (un->un_f_non_devbsize_supported) {
9549 				un->un_buf_chain_type =
9550 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9551 			} else {
9552 				un->un_buf_chain_type =
9553 				    SD_CHAIN_INFO_DISK_NO_PM;
9554 			}
9555 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9556 
9557 			SD_TRACE(SD_LOG_IO_PM, un,
9558 			    "             changed  uscsi_chain_type to   %d\n",
9559 			    un->un_uscsi_chain_type);
9560 			mutex_exit(SD_MUTEX(un));
9561 			mutex_enter(&un->un_pm_mutex);
9562 
9563 			if (un->un_pm_idle_timeid == NULL) {
9564 				/* 300 ms. */
9565 				un->un_pm_idle_timeid =
9566 				    timeout(sd_pm_idletimeout_handler, un,
9567 				    (drv_usectohz((clock_t)300000)));
9568 				/*
9569 				 * Include an extra call to busy which keeps the
9570 				 * device busy with-respect-to the PM layer
9571 				 * until the timer fires, at which time it'll
9572 				 * get the extra idle call.
9573 				 */
9574 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9575 			}
9576 		}
9577 	}
9578 	un->un_pm_busy = FALSE;
9579 	/* Next... */
9580 	cv_signal(&un->un_pm_busy_cv);
9581 
9582 	un->un_pm_count++;
9583 
9584 	SD_TRACE(SD_LOG_IO_PM, un,
9585 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9586 
9587 	mutex_exit(&un->un_pm_mutex);
9588 
9589 	return (return_status);
9590 }
9591 
9592 
9593 /*
9594  *    Function: sd_pm_exit
9595  *
9596  * Description: Called at the completion of a command to manage busy
9597  *		status for the device. If the device becomes idle the
9598  *		PM framework is notified.
9599  *
9600  *     Context: Kernel thread context
9601  */
9602 
9603 static void
9604 sd_pm_exit(struct sd_lun *un)
9605 {
9606 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9607 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9608 
9609 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9610 
9611 	/*
9612 	 * After attach the following flag is only read, so don't
9613 	 * take the penalty of acquiring a mutex for it.
9614 	 */
9615 	if (un->un_f_pm_is_enabled == TRUE) {
9616 
9617 		mutex_enter(&un->un_pm_mutex);
9618 		un->un_pm_count--;
9619 
9620 		SD_TRACE(SD_LOG_IO_PM, un,
9621 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9622 
9623 		ASSERT(un->un_pm_count >= 0);
9624 		if (un->un_pm_count == 0) {
9625 			mutex_exit(&un->un_pm_mutex);
9626 
9627 			SD_TRACE(SD_LOG_IO_PM, un,
9628 			    "sd_pm_exit: idle component\n");
9629 
9630 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9631 
9632 		} else {
9633 			mutex_exit(&un->un_pm_mutex);
9634 		}
9635 	}
9636 
9637 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9638 }
9639 
9640 
9641 /*
9642  *    Function: sdopen
9643  *
9644  * Description: Driver's open(9e) entry point function.
9645  *
9646  *   Arguments: dev_i   - pointer to device number
9647  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9648  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9649  *		cred_p  - user credential pointer
9650  *
9651  * Return Code: EINVAL
9652  *		ENXIO
9653  *		EIO
9654  *		EROFS
9655  *		EBUSY
9656  *
9657  *     Context: Kernel thread context
9658  */
9659 /* ARGSUSED */
9660 static int
9661 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9662 {
9663 	struct sd_lun	*un;
9664 	int		nodelay;
9665 	int		part;
9666 	uint64_t	partmask;
9667 	int		instance;
9668 	dev_t		dev;
9669 	int		rval = EIO;
9670 	diskaddr_t	nblks = 0;
9671 	diskaddr_t	label_cap;
9672 
9673 	/* Validate the open type */
9674 	if (otyp >= OTYPCNT) {
9675 		return (EINVAL);
9676 	}
9677 
9678 	dev = *dev_p;
9679 	instance = SDUNIT(dev);
9680 	mutex_enter(&sd_detach_mutex);
9681 
9682 	/*
9683 	 * Fail the open if there is no softstate for the instance, or
9684 	 * if another thread somewhere is trying to detach the instance.
9685 	 */
9686 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9687 	    (un->un_detach_count != 0)) {
9688 		mutex_exit(&sd_detach_mutex);
9689 		/*
9690 		 * The probe cache only needs to be cleared when open (9e) fails
9691 		 * with ENXIO (4238046).
9692 		 */
9693 		/*
9694 		 * un-conditionally clearing probe cache is ok with
9695 		 * separate sd/ssd binaries
9696 		 * x86 platform can be an issue with both parallel
9697 		 * and fibre in 1 binary
9698 		 */
9699 		sd_scsi_clear_probe_cache();
9700 		return (ENXIO);
9701 	}
9702 
9703 	/*
9704 	 * The un_layer_count is to prevent another thread in specfs from
9705 	 * trying to detach the instance, which can happen when we are
9706 	 * called from a higher-layer driver instead of thru specfs.
9707 	 * This will not be needed when DDI provides a layered driver
9708 	 * interface that allows specfs to know that an instance is in
9709 	 * use by a layered driver & should not be detached.
9710 	 *
9711 	 * Note: the semantics for layered driver opens are exactly one
9712 	 * close for every open.
9713 	 */
9714 	if (otyp == OTYP_LYR) {
9715 		un->un_layer_count++;
9716 	}
9717 
9718 	/*
9719 	 * Keep a count of the current # of opens in progress. This is because
9720 	 * some layered drivers try to call us as a regular open. This can
9721 	 * cause problems that we cannot prevent, however by keeping this count
9722 	 * we can at least keep our open and detach routines from racing against
9723 	 * each other under such conditions.
9724 	 */
9725 	un->un_opens_in_progress++;
9726 	mutex_exit(&sd_detach_mutex);
9727 
9728 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9729 	part	 = SDPART(dev);
9730 	partmask = 1 << part;
9731 
9732 	/*
9733 	 * We use a semaphore here in order to serialize
9734 	 * open and close requests on the device.
9735 	 */
9736 	sema_p(&un->un_semoclose);
9737 
9738 	mutex_enter(SD_MUTEX(un));
9739 
9740 	/*
9741 	 * All device accesses go thru sdstrategy() where we check
9742 	 * on suspend status but there could be a scsi_poll command,
9743 	 * which bypasses sdstrategy(), so we need to check pm
9744 	 * status.
9745 	 */
9746 
9747 	if (!nodelay) {
9748 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9749 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9750 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9751 		}
9752 
9753 		mutex_exit(SD_MUTEX(un));
9754 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9755 			rval = EIO;
9756 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9757 			    "sdopen: sd_pm_entry failed\n");
9758 			goto open_failed_with_pm;
9759 		}
9760 		mutex_enter(SD_MUTEX(un));
9761 	}
9762 
9763 	/* check for previous exclusive open */
9764 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9765 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9766 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9767 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9768 
9769 	if (un->un_exclopen & (partmask)) {
9770 		goto excl_open_fail;
9771 	}
9772 
9773 	if (flag & FEXCL) {
9774 		int i;
9775 		if (un->un_ocmap.lyropen[part]) {
9776 			goto excl_open_fail;
9777 		}
9778 		for (i = 0; i < (OTYPCNT - 1); i++) {
9779 			if (un->un_ocmap.regopen[i] & (partmask)) {
9780 				goto excl_open_fail;
9781 			}
9782 		}
9783 	}
9784 
9785 	/*
9786 	 * Check the write permission if this is a removable media device,
9787 	 * NDELAY has not been set, and writable permission is requested.
9788 	 *
9789 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9790 	 * attempt will fail with EIO as part of the I/O processing. This is a
9791 	 * more permissive implementation that allows the open to succeed and
9792 	 * WRITE attempts to fail when appropriate.
9793 	 */
9794 	if (un->un_f_chk_wp_open) {
9795 		if ((flag & FWRITE) && (!nodelay)) {
9796 			mutex_exit(SD_MUTEX(un));
9797 			/*
9798 			 * Defer the check for write permission on writable
9799 			 * DVD drive till sdstrategy and will not fail open even
9800 			 * if FWRITE is set as the device can be writable
9801 			 * depending upon the media and the media can change
9802 			 * after the call to open().
9803 			 */
9804 			if (un->un_f_dvdram_writable_device == FALSE) {
9805 				if (ISCD(un) || sr_check_wp(dev)) {
9806 				rval = EROFS;
9807 				mutex_enter(SD_MUTEX(un));
9808 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9809 				    "write to cd or write protected media\n");
9810 				goto open_fail;
9811 				}
9812 			}
9813 			mutex_enter(SD_MUTEX(un));
9814 		}
9815 	}
9816 
9817 	/*
9818 	 * If opening in NDELAY/NONBLOCK mode, just return.
9819 	 * Check if disk is ready and has a valid geometry later.
9820 	 */
9821 	if (!nodelay) {
9822 		sd_ssc_t	*ssc;
9823 
9824 		mutex_exit(SD_MUTEX(un));
9825 		ssc = sd_ssc_init(un);
9826 		rval = sd_ready_and_valid(ssc, part);
9827 		sd_ssc_fini(ssc);
9828 		mutex_enter(SD_MUTEX(un));
9829 		/*
9830 		 * Fail if device is not ready or if the number of disk
9831 		 * blocks is zero or negative for non CD devices.
9832 		 */
9833 
9834 		nblks = 0;
9835 
9836 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9837 			/* if cmlb_partinfo fails, nblks remains 0 */
9838 			mutex_exit(SD_MUTEX(un));
9839 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9840 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9841 			mutex_enter(SD_MUTEX(un));
9842 		}
9843 
9844 		if ((rval != SD_READY_VALID) ||
9845 		    (!ISCD(un) && nblks <= 0)) {
9846 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9847 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9848 			    "device not ready or invalid disk block value\n");
9849 			goto open_fail;
9850 		}
9851 #if defined(__i386) || defined(__amd64)
9852 	} else {
9853 		uchar_t *cp;
9854 		/*
9855 		 * x86 requires special nodelay handling, so that p0 is
9856 		 * always defined and accessible.
9857 		 * Invalidate geometry only if device is not already open.
9858 		 */
9859 		cp = &un->un_ocmap.chkd[0];
9860 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9861 			if (*cp != (uchar_t)0) {
9862 				break;
9863 			}
9864 			cp++;
9865 		}
9866 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9867 			mutex_exit(SD_MUTEX(un));
9868 			cmlb_invalidate(un->un_cmlbhandle,
9869 			    (void *)SD_PATH_DIRECT);
9870 			mutex_enter(SD_MUTEX(un));
9871 		}
9872 
9873 #endif
9874 	}
9875 
9876 	if (otyp == OTYP_LYR) {
9877 		un->un_ocmap.lyropen[part]++;
9878 	} else {
9879 		un->un_ocmap.regopen[otyp] |= partmask;
9880 	}
9881 
9882 	/* Set up open and exclusive open flags */
9883 	if (flag & FEXCL) {
9884 		un->un_exclopen |= (partmask);
9885 	}
9886 
9887 	/*
9888 	 * If the lun is EFI labeled and lun capacity is greater than the
9889 	 * capacity contained in the label, log a sys-event to notify the
9890 	 * interested module.
9891 	 * To avoid an infinite loop of logging sys-event, we only log the
9892 	 * event when the lun is not opened in NDELAY mode. The event handler
9893 	 * should open the lun in NDELAY mode.
9894 	 */
9895 	if (!(flag & FNDELAY)) {
9896 		mutex_exit(SD_MUTEX(un));
9897 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
9898 		    (void*)SD_PATH_DIRECT) == 0) {
9899 			mutex_enter(SD_MUTEX(un));
9900 			if (un->un_f_blockcount_is_valid &&
9901 			    un->un_blockcount > label_cap) {
9902 				mutex_exit(SD_MUTEX(un));
9903 				sd_log_lun_expansion_event(un,
9904 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
9905 				mutex_enter(SD_MUTEX(un));
9906 			}
9907 		} else {
9908 			mutex_enter(SD_MUTEX(un));
9909 		}
9910 	}
9911 
9912 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9913 	    "open of part %d type %d\n", part, otyp);
9914 
9915 	mutex_exit(SD_MUTEX(un));
9916 	if (!nodelay) {
9917 		sd_pm_exit(un);
9918 	}
9919 
9920 	sema_v(&un->un_semoclose);
9921 
9922 	mutex_enter(&sd_detach_mutex);
9923 	un->un_opens_in_progress--;
9924 	mutex_exit(&sd_detach_mutex);
9925 
9926 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9927 	return (DDI_SUCCESS);
9928 
9929 excl_open_fail:
9930 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9931 	rval = EBUSY;
9932 
9933 open_fail:
9934 	mutex_exit(SD_MUTEX(un));
9935 
9936 	/*
9937 	 * On a failed open we must exit the pm management.
9938 	 */
9939 	if (!nodelay) {
9940 		sd_pm_exit(un);
9941 	}
9942 open_failed_with_pm:
9943 	sema_v(&un->un_semoclose);
9944 
9945 	mutex_enter(&sd_detach_mutex);
9946 	un->un_opens_in_progress--;
9947 	if (otyp == OTYP_LYR) {
9948 		un->un_layer_count--;
9949 	}
9950 	mutex_exit(&sd_detach_mutex);
9951 
9952 	return (rval);
9953 }
9954 
9955 
9956 /*
9957  *    Function: sdclose
9958  *
9959  * Description: Driver's close(9e) entry point function.
9960  *
9961  *   Arguments: dev    - device number
9962  *		flag   - file status flag, informational only
9963  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9964  *		cred_p - user credential pointer
9965  *
9966  * Return Code: ENXIO
9967  *
9968  *     Context: Kernel thread context
9969  */
9970 /* ARGSUSED */
9971 static int
9972 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9973 {
9974 	struct sd_lun	*un;
9975 	uchar_t		*cp;
9976 	int		part;
9977 	int		nodelay;
9978 	int		rval = 0;
9979 
9980 	/* Validate the open type */
9981 	if (otyp >= OTYPCNT) {
9982 		return (ENXIO);
9983 	}
9984 
9985 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9986 		return (ENXIO);
9987 	}
9988 
9989 	part = SDPART(dev);
9990 	nodelay = flag & (FNDELAY | FNONBLOCK);
9991 
9992 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9993 	    "sdclose: close of part %d type %d\n", part, otyp);
9994 
9995 	/*
9996 	 * We use a semaphore here in order to serialize
9997 	 * open and close requests on the device.
9998 	 */
9999 	sema_p(&un->un_semoclose);
10000 
10001 	mutex_enter(SD_MUTEX(un));
10002 
10003 	/* Don't proceed if power is being changed. */
10004 	while (un->un_state == SD_STATE_PM_CHANGING) {
10005 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10006 	}
10007 
10008 	if (un->un_exclopen & (1 << part)) {
10009 		un->un_exclopen &= ~(1 << part);
10010 	}
10011 
10012 	/* Update the open partition map */
10013 	if (otyp == OTYP_LYR) {
10014 		un->un_ocmap.lyropen[part] -= 1;
10015 	} else {
10016 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10017 	}
10018 
10019 	cp = &un->un_ocmap.chkd[0];
10020 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10021 		if (*cp != NULL) {
10022 			break;
10023 		}
10024 		cp++;
10025 	}
10026 
10027 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10028 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10029 
10030 		/*
10031 		 * We avoid persistance upon the last close, and set
10032 		 * the throttle back to the maximum.
10033 		 */
10034 		un->un_throttle = un->un_saved_throttle;
10035 
10036 		if (un->un_state == SD_STATE_OFFLINE) {
10037 			if (un->un_f_is_fibre == FALSE) {
10038 				scsi_log(SD_DEVINFO(un), sd_label,
10039 				    CE_WARN, "offline\n");
10040 			}
10041 			mutex_exit(SD_MUTEX(un));
10042 			cmlb_invalidate(un->un_cmlbhandle,
10043 			    (void *)SD_PATH_DIRECT);
10044 			mutex_enter(SD_MUTEX(un));
10045 
10046 		} else {
10047 			/*
10048 			 * Flush any outstanding writes in NVRAM cache.
10049 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10050 			 * cmd, it may not work for non-Pluto devices.
10051 			 * SYNCHRONIZE CACHE is not required for removables,
10052 			 * except DVD-RAM drives.
10053 			 *
10054 			 * Also note: because SYNCHRONIZE CACHE is currently
10055 			 * the only command issued here that requires the
10056 			 * drive be powered up, only do the power up before
10057 			 * sending the Sync Cache command. If additional
10058 			 * commands are added which require a powered up
10059 			 * drive, the following sequence may have to change.
10060 			 *
10061 			 * And finally, note that parallel SCSI on SPARC
10062 			 * only issues a Sync Cache to DVD-RAM, a newly
10063 			 * supported device.
10064 			 */
10065 #if defined(__i386) || defined(__amd64)
10066 			if ((un->un_f_sync_cache_supported &&
10067 			    un->un_f_sync_cache_required) ||
10068 			    un->un_f_dvdram_writable_device == TRUE) {
10069 #else
10070 			if (un->un_f_dvdram_writable_device == TRUE) {
10071 #endif
10072 				mutex_exit(SD_MUTEX(un));
10073 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10074 					rval =
10075 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10076 					    NULL);
10077 					/* ignore error if not supported */
10078 					if (rval == ENOTSUP) {
10079 						rval = 0;
10080 					} else if (rval != 0) {
10081 						rval = EIO;
10082 					}
10083 					sd_pm_exit(un);
10084 				} else {
10085 					rval = EIO;
10086 				}
10087 				mutex_enter(SD_MUTEX(un));
10088 			}
10089 
10090 			/*
10091 			 * For devices which supports DOOR_LOCK, send an ALLOW
10092 			 * MEDIA REMOVAL command, but don't get upset if it
10093 			 * fails. We need to raise the power of the drive before
10094 			 * we can call sd_send_scsi_DOORLOCK()
10095 			 */
10096 			if (un->un_f_doorlock_supported) {
10097 				mutex_exit(SD_MUTEX(un));
10098 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10099 					sd_ssc_t	*ssc;
10100 
10101 					ssc = sd_ssc_init(un);
10102 					rval = sd_send_scsi_DOORLOCK(ssc,
10103 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10104 					if (rval != 0)
10105 						sd_ssc_assessment(ssc,
10106 						    SD_FMT_IGNORE);
10107 					sd_ssc_fini(ssc);
10108 
10109 					sd_pm_exit(un);
10110 					if (ISCD(un) && (rval != 0) &&
10111 					    (nodelay != 0)) {
10112 						rval = ENXIO;
10113 					}
10114 				} else {
10115 					rval = EIO;
10116 				}
10117 				mutex_enter(SD_MUTEX(un));
10118 			}
10119 
10120 			/*
10121 			 * If a device has removable media, invalidate all
10122 			 * parameters related to media, such as geometry,
10123 			 * blocksize, and blockcount.
10124 			 */
10125 			if (un->un_f_has_removable_media) {
10126 				sr_ejected(un);
10127 			}
10128 
10129 			/*
10130 			 * Destroy the cache (if it exists) which was
10131 			 * allocated for the write maps since this is
10132 			 * the last close for this media.
10133 			 */
10134 			if (un->un_wm_cache) {
10135 				/*
10136 				 * Check if there are pending commands.
10137 				 * and if there are give a warning and
10138 				 * do not destroy the cache.
10139 				 */
10140 				if (un->un_ncmds_in_driver > 0) {
10141 					scsi_log(SD_DEVINFO(un),
10142 					    sd_label, CE_WARN,
10143 					    "Unable to clean up memory "
10144 					    "because of pending I/O\n");
10145 				} else {
10146 					kmem_cache_destroy(
10147 					    un->un_wm_cache);
10148 					un->un_wm_cache = NULL;
10149 				}
10150 			}
10151 		}
10152 	}
10153 
10154 	mutex_exit(SD_MUTEX(un));
10155 	sema_v(&un->un_semoclose);
10156 
10157 	if (otyp == OTYP_LYR) {
10158 		mutex_enter(&sd_detach_mutex);
10159 		/*
10160 		 * The detach routine may run when the layer count
10161 		 * drops to zero.
10162 		 */
10163 		un->un_layer_count--;
10164 		mutex_exit(&sd_detach_mutex);
10165 	}
10166 
10167 	return (rval);
10168 }
10169 
10170 
10171 /*
10172  *    Function: sd_ready_and_valid
10173  *
10174  * Description: Test if device is ready and has a valid geometry.
10175  *
10176  *   Arguments: ssc - sd_ssc_t will contain un
10177  *		un  - driver soft state (unit) structure
10178  *
10179  * Return Code: SD_READY_VALID		ready and valid label
10180  *		SD_NOT_READY_VALID	not ready, no label
10181  *		SD_RESERVED_BY_OTHERS	reservation conflict
10182  *
10183  *     Context: Never called at interrupt context.
10184  */
10185 
10186 static int
10187 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10188 {
10189 	struct sd_errstats	*stp;
10190 	uint64_t		capacity;
10191 	uint_t			lbasize;
10192 	int			rval = SD_READY_VALID;
10193 	char			name_str[48];
10194 	boolean_t		is_valid;
10195 	struct sd_lun		*un;
10196 	int			status;
10197 
10198 	ASSERT(ssc != NULL);
10199 	un = ssc->ssc_un;
10200 	ASSERT(un != NULL);
10201 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10202 
10203 	mutex_enter(SD_MUTEX(un));
10204 	/*
10205 	 * If a device has removable media, we must check if media is
10206 	 * ready when checking if this device is ready and valid.
10207 	 */
10208 	if (un->un_f_has_removable_media) {
10209 		mutex_exit(SD_MUTEX(un));
10210 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10211 
10212 		if (status != 0) {
10213 			rval = SD_NOT_READY_VALID;
10214 			mutex_enter(SD_MUTEX(un));
10215 
10216 			/* Ignore all failed status for removalbe media */
10217 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10218 
10219 			goto done;
10220 		}
10221 
10222 		is_valid = SD_IS_VALID_LABEL(un);
10223 		mutex_enter(SD_MUTEX(un));
10224 		if (!is_valid ||
10225 		    (un->un_f_blockcount_is_valid == FALSE) ||
10226 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10227 
10228 			/* capacity has to be read every open. */
10229 			mutex_exit(SD_MUTEX(un));
10230 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10231 			    &lbasize, SD_PATH_DIRECT);
10232 
10233 			if (status != 0) {
10234 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10235 
10236 				cmlb_invalidate(un->un_cmlbhandle,
10237 				    (void *)SD_PATH_DIRECT);
10238 				mutex_enter(SD_MUTEX(un));
10239 				rval = SD_NOT_READY_VALID;
10240 
10241 				goto done;
10242 			} else {
10243 				mutex_enter(SD_MUTEX(un));
10244 				sd_update_block_info(un, lbasize, capacity);
10245 			}
10246 		}
10247 
10248 		/*
10249 		 * Check if the media in the device is writable or not.
10250 		 */
10251 		if (!is_valid && ISCD(un)) {
10252 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10253 		}
10254 
10255 	} else {
10256 		/*
10257 		 * Do a test unit ready to clear any unit attention from non-cd
10258 		 * devices.
10259 		 */
10260 		mutex_exit(SD_MUTEX(un));
10261 
10262 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10263 		if (status != 0) {
10264 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10265 		}
10266 
10267 		mutex_enter(SD_MUTEX(un));
10268 	}
10269 
10270 
10271 	/*
10272 	 * If this is a non 512 block device, allocate space for
10273 	 * the wmap cache. This is being done here since every time
10274 	 * a media is changed this routine will be called and the
10275 	 * block size is a function of media rather than device.
10276 	 */
10277 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10278 		if (!(un->un_wm_cache)) {
10279 			(void) snprintf(name_str, sizeof (name_str),
10280 			    "%s%d_cache",
10281 			    ddi_driver_name(SD_DEVINFO(un)),
10282 			    ddi_get_instance(SD_DEVINFO(un)));
10283 			un->un_wm_cache = kmem_cache_create(
10284 			    name_str, sizeof (struct sd_w_map),
10285 			    8, sd_wm_cache_constructor,
10286 			    sd_wm_cache_destructor, NULL,
10287 			    (void *)un, NULL, 0);
10288 			if (!(un->un_wm_cache)) {
10289 				rval = ENOMEM;
10290 				goto done;
10291 			}
10292 		}
10293 	}
10294 
10295 	if (un->un_state == SD_STATE_NORMAL) {
10296 		/*
10297 		 * If the target is not yet ready here (defined by a TUR
10298 		 * failure), invalidate the geometry and print an 'offline'
10299 		 * message. This is a legacy message, as the state of the
10300 		 * target is not actually changed to SD_STATE_OFFLINE.
10301 		 *
10302 		 * If the TUR fails for EACCES (Reservation Conflict),
10303 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10304 		 * reservation conflict. If the TUR fails for other
10305 		 * reasons, SD_NOT_READY_VALID will be returned.
10306 		 */
10307 		int err;
10308 
10309 		mutex_exit(SD_MUTEX(un));
10310 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10311 		mutex_enter(SD_MUTEX(un));
10312 
10313 		if (err != 0) {
10314 			mutex_exit(SD_MUTEX(un));
10315 			cmlb_invalidate(un->un_cmlbhandle,
10316 			    (void *)SD_PATH_DIRECT);
10317 			mutex_enter(SD_MUTEX(un));
10318 			if (err == EACCES) {
10319 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10320 				    "reservation conflict\n");
10321 				rval = SD_RESERVED_BY_OTHERS;
10322 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10323 			} else {
10324 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10325 				    "drive offline\n");
10326 				rval = SD_NOT_READY_VALID;
10327 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10328 			}
10329 			goto done;
10330 		}
10331 	}
10332 
10333 	if (un->un_f_format_in_progress == FALSE) {
10334 		mutex_exit(SD_MUTEX(un));
10335 
10336 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10337 		    (void *)SD_PATH_DIRECT);
10338 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10339 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10340 			rval = SD_NOT_READY_VALID;
10341 			mutex_enter(SD_MUTEX(un));
10342 
10343 			goto done;
10344 		}
10345 		if (un->un_f_pkstats_enabled) {
10346 			sd_set_pstats(un);
10347 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10348 			    "sd_ready_and_valid: un:0x%p pstats created and "
10349 			    "set\n", un);
10350 		}
10351 		mutex_enter(SD_MUTEX(un));
10352 	}
10353 
10354 	/*
10355 	 * If this device supports DOOR_LOCK command, try and send
10356 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10357 	 * if it fails. For a CD, however, it is an error
10358 	 */
10359 	if (un->un_f_doorlock_supported) {
10360 		mutex_exit(SD_MUTEX(un));
10361 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10362 		    SD_PATH_DIRECT);
10363 
10364 		if ((status != 0) && ISCD(un)) {
10365 			rval = SD_NOT_READY_VALID;
10366 			mutex_enter(SD_MUTEX(un));
10367 
10368 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10369 
10370 			goto done;
10371 		} else if (status != 0)
10372 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10373 		mutex_enter(SD_MUTEX(un));
10374 	}
10375 
10376 	/* The state has changed, inform the media watch routines */
10377 	un->un_mediastate = DKIO_INSERTED;
10378 	cv_broadcast(&un->un_state_cv);
10379 	rval = SD_READY_VALID;
10380 
10381 done:
10382 
10383 	/*
10384 	 * Initialize the capacity kstat value, if no media previously
10385 	 * (capacity kstat is 0) and a media has been inserted
10386 	 * (un_blockcount > 0).
10387 	 */
10388 	if (un->un_errstats != NULL) {
10389 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10390 		if ((stp->sd_capacity.value.ui64 == 0) &&
10391 		    (un->un_f_blockcount_is_valid == TRUE)) {
10392 			stp->sd_capacity.value.ui64 =
10393 			    (uint64_t)((uint64_t)un->un_blockcount *
10394 			    un->un_sys_blocksize);
10395 		}
10396 	}
10397 
10398 	mutex_exit(SD_MUTEX(un));
10399 	return (rval);
10400 }
10401 
10402 
10403 /*
10404  *    Function: sdmin
10405  *
10406  * Description: Routine to limit the size of a data transfer. Used in
10407  *		conjunction with physio(9F).
10408  *
10409  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10410  *
10411  *     Context: Kernel thread context.
10412  */
10413 
10414 static void
10415 sdmin(struct buf *bp)
10416 {
10417 	struct sd_lun	*un;
10418 	int		instance;
10419 
10420 	instance = SDUNIT(bp->b_edev);
10421 
10422 	un = ddi_get_soft_state(sd_state, instance);
10423 	ASSERT(un != NULL);
10424 
10425 	/*
10426 	 * We depend on DMA partial or buf breakup to restrict
10427 	 * IO size if any of them enabled.
10428 	 */
10429 	if (un->un_partial_dma_supported ||
10430 	    un->un_buf_breakup_supported) {
10431 		return;
10432 	}
10433 
10434 	if (bp->b_bcount > un->un_max_xfer_size) {
10435 		bp->b_bcount = un->un_max_xfer_size;
10436 	}
10437 }
10438 
10439 
10440 /*
10441  *    Function: sdread
10442  *
10443  * Description: Driver's read(9e) entry point function.
10444  *
10445  *   Arguments: dev   - device number
10446  *		uio   - structure pointer describing where data is to be stored
10447  *			in user's space
10448  *		cred_p  - user credential pointer
10449  *
10450  * Return Code: ENXIO
10451  *		EIO
10452  *		EINVAL
10453  *		value returned by physio
10454  *
10455  *     Context: Kernel thread context.
10456  */
10457 /* ARGSUSED */
10458 static int
10459 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10460 {
10461 	struct sd_lun	*un = NULL;
10462 	int		secmask;
10463 	int		err = 0;
10464 	sd_ssc_t	*ssc;
10465 
10466 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10467 		return (ENXIO);
10468 	}
10469 
10470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10471 
10472 
10473 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10474 		mutex_enter(SD_MUTEX(un));
10475 		/*
10476 		 * Because the call to sd_ready_and_valid will issue I/O we
10477 		 * must wait here if either the device is suspended or
10478 		 * if it's power level is changing.
10479 		 */
10480 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10481 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10482 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10483 		}
10484 		un->un_ncmds_in_driver++;
10485 		mutex_exit(SD_MUTEX(un));
10486 
10487 		/* Initialize sd_ssc_t for internal uscsi commands */
10488 		ssc = sd_ssc_init(un);
10489 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10490 			err = EIO;
10491 		} else {
10492 			err = 0;
10493 		}
10494 		sd_ssc_fini(ssc);
10495 
10496 		mutex_enter(SD_MUTEX(un));
10497 		un->un_ncmds_in_driver--;
10498 		ASSERT(un->un_ncmds_in_driver >= 0);
10499 		mutex_exit(SD_MUTEX(un));
10500 		if (err != 0)
10501 			return (err);
10502 	}
10503 
10504 	/*
10505 	 * Read requests are restricted to multiples of the system block size.
10506 	 */
10507 	secmask = un->un_sys_blocksize - 1;
10508 
10509 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10510 		SD_ERROR(SD_LOG_READ_WRITE, un,
10511 		    "sdread: file offset not modulo %d\n",
10512 		    un->un_sys_blocksize);
10513 		err = EINVAL;
10514 	} else if (uio->uio_iov->iov_len & (secmask)) {
10515 		SD_ERROR(SD_LOG_READ_WRITE, un,
10516 		    "sdread: transfer length not modulo %d\n",
10517 		    un->un_sys_blocksize);
10518 		err = EINVAL;
10519 	} else {
10520 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10521 	}
10522 
10523 	return (err);
10524 }
10525 
10526 
10527 /*
10528  *    Function: sdwrite
10529  *
10530  * Description: Driver's write(9e) entry point function.
10531  *
10532  *   Arguments: dev   - device number
10533  *		uio   - structure pointer describing where data is stored in
10534  *			user's space
10535  *		cred_p  - user credential pointer
10536  *
10537  * Return Code: ENXIO
10538  *		EIO
10539  *		EINVAL
10540  *		value returned by physio
10541  *
10542  *     Context: Kernel thread context.
10543  */
10544 /* ARGSUSED */
10545 static int
10546 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10547 {
10548 	struct sd_lun	*un = NULL;
10549 	int		secmask;
10550 	int		err = 0;
10551 	sd_ssc_t	*ssc;
10552 
10553 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10554 		return (ENXIO);
10555 	}
10556 
10557 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10558 
10559 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10560 		mutex_enter(SD_MUTEX(un));
10561 		/*
10562 		 * Because the call to sd_ready_and_valid will issue I/O we
10563 		 * must wait here if either the device is suspended or
10564 		 * if it's power level is changing.
10565 		 */
10566 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10567 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10568 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10569 		}
10570 		un->un_ncmds_in_driver++;
10571 		mutex_exit(SD_MUTEX(un));
10572 
10573 		/* Initialize sd_ssc_t for internal uscsi commands */
10574 		ssc = sd_ssc_init(un);
10575 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10576 			err = EIO;
10577 		} else {
10578 			err = 0;
10579 		}
10580 		sd_ssc_fini(ssc);
10581 
10582 		mutex_enter(SD_MUTEX(un));
10583 		un->un_ncmds_in_driver--;
10584 		ASSERT(un->un_ncmds_in_driver >= 0);
10585 		mutex_exit(SD_MUTEX(un));
10586 		if (err != 0)
10587 			return (err);
10588 	}
10589 
10590 	/*
10591 	 * Write requests are restricted to multiples of the system block size.
10592 	 */
10593 	secmask = un->un_sys_blocksize - 1;
10594 
10595 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10596 		SD_ERROR(SD_LOG_READ_WRITE, un,
10597 		    "sdwrite: file offset not modulo %d\n",
10598 		    un->un_sys_blocksize);
10599 		err = EINVAL;
10600 	} else if (uio->uio_iov->iov_len & (secmask)) {
10601 		SD_ERROR(SD_LOG_READ_WRITE, un,
10602 		    "sdwrite: transfer length not modulo %d\n",
10603 		    un->un_sys_blocksize);
10604 		err = EINVAL;
10605 	} else {
10606 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10607 	}
10608 
10609 	return (err);
10610 }
10611 
10612 
10613 /*
10614  *    Function: sdaread
10615  *
10616  * Description: Driver's aread(9e) entry point function.
10617  *
10618  *   Arguments: dev   - device number
10619  *		aio   - structure pointer describing where data is to be stored
10620  *		cred_p  - user credential pointer
10621  *
10622  * Return Code: ENXIO
10623  *		EIO
10624  *		EINVAL
10625  *		value returned by aphysio
10626  *
10627  *     Context: Kernel thread context.
10628  */
10629 /* ARGSUSED */
10630 static int
10631 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10632 {
10633 	struct sd_lun	*un = NULL;
10634 	struct uio	*uio = aio->aio_uio;
10635 	int		secmask;
10636 	int		err = 0;
10637 	sd_ssc_t	*ssc;
10638 
10639 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10640 		return (ENXIO);
10641 	}
10642 
10643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10644 
10645 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10646 		mutex_enter(SD_MUTEX(un));
10647 		/*
10648 		 * Because the call to sd_ready_and_valid will issue I/O we
10649 		 * must wait here if either the device is suspended or
10650 		 * if it's power level is changing.
10651 		 */
10652 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10653 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10654 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10655 		}
10656 		un->un_ncmds_in_driver++;
10657 		mutex_exit(SD_MUTEX(un));
10658 
10659 		/* Initialize sd_ssc_t for internal uscsi commands */
10660 		ssc = sd_ssc_init(un);
10661 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10662 			err = EIO;
10663 		} else {
10664 			err = 0;
10665 		}
10666 		sd_ssc_fini(ssc);
10667 
10668 		mutex_enter(SD_MUTEX(un));
10669 		un->un_ncmds_in_driver--;
10670 		ASSERT(un->un_ncmds_in_driver >= 0);
10671 		mutex_exit(SD_MUTEX(un));
10672 		if (err != 0)
10673 			return (err);
10674 	}
10675 
10676 	/*
10677 	 * Read requests are restricted to multiples of the system block size.
10678 	 */
10679 	secmask = un->un_sys_blocksize - 1;
10680 
10681 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10682 		SD_ERROR(SD_LOG_READ_WRITE, un,
10683 		    "sdaread: file offset not modulo %d\n",
10684 		    un->un_sys_blocksize);
10685 		err = EINVAL;
10686 	} else if (uio->uio_iov->iov_len & (secmask)) {
10687 		SD_ERROR(SD_LOG_READ_WRITE, un,
10688 		    "sdaread: transfer length not modulo %d\n",
10689 		    un->un_sys_blocksize);
10690 		err = EINVAL;
10691 	} else {
10692 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10693 	}
10694 
10695 	return (err);
10696 }
10697 
10698 
10699 /*
10700  *    Function: sdawrite
10701  *
10702  * Description: Driver's awrite(9e) entry point function.
10703  *
10704  *   Arguments: dev   - device number
10705  *		aio   - structure pointer describing where data is stored
10706  *		cred_p  - user credential pointer
10707  *
10708  * Return Code: ENXIO
10709  *		EIO
10710  *		EINVAL
10711  *		value returned by aphysio
10712  *
10713  *     Context: Kernel thread context.
10714  */
10715 /* ARGSUSED */
10716 static int
10717 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10718 {
10719 	struct sd_lun	*un = NULL;
10720 	struct uio	*uio = aio->aio_uio;
10721 	int		secmask;
10722 	int		err = 0;
10723 	sd_ssc_t	*ssc;
10724 
10725 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10726 		return (ENXIO);
10727 	}
10728 
10729 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10730 
10731 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10732 		mutex_enter(SD_MUTEX(un));
10733 		/*
10734 		 * Because the call to sd_ready_and_valid will issue I/O we
10735 		 * must wait here if either the device is suspended or
10736 		 * if it's power level is changing.
10737 		 */
10738 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10739 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10740 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10741 		}
10742 		un->un_ncmds_in_driver++;
10743 		mutex_exit(SD_MUTEX(un));
10744 
10745 		/* Initialize sd_ssc_t for internal uscsi commands */
10746 		ssc = sd_ssc_init(un);
10747 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10748 			err = EIO;
10749 		} else {
10750 			err = 0;
10751 		}
10752 		sd_ssc_fini(ssc);
10753 
10754 		mutex_enter(SD_MUTEX(un));
10755 		un->un_ncmds_in_driver--;
10756 		ASSERT(un->un_ncmds_in_driver >= 0);
10757 		mutex_exit(SD_MUTEX(un));
10758 		if (err != 0)
10759 			return (err);
10760 	}
10761 
10762 	/*
10763 	 * Write requests are restricted to multiples of the system block size.
10764 	 */
10765 	secmask = un->un_sys_blocksize - 1;
10766 
10767 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10768 		SD_ERROR(SD_LOG_READ_WRITE, un,
10769 		    "sdawrite: file offset not modulo %d\n",
10770 		    un->un_sys_blocksize);
10771 		err = EINVAL;
10772 	} else if (uio->uio_iov->iov_len & (secmask)) {
10773 		SD_ERROR(SD_LOG_READ_WRITE, un,
10774 		    "sdawrite: transfer length not modulo %d\n",
10775 		    un->un_sys_blocksize);
10776 		err = EINVAL;
10777 	} else {
10778 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10779 	}
10780 
10781 	return (err);
10782 }
10783 
10784 
10785 
10786 
10787 
10788 /*
10789  * Driver IO processing follows the following sequence:
10790  *
10791  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10792  *         |                |                     ^
10793  *         v                v                     |
10794  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10795  *         |                |                     |                   |
10796  *         v                |                     |                   |
10797  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10798  *         |                |                     ^                   ^
10799  *         v                v                     |                   |
10800  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10801  *         |                |                     |                   |
10802  *     +---+                |                     +------------+      +-------+
10803  *     |                    |                                  |              |
10804  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10805  *     |                    v                                  |              |
10806  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10807  *     |                    |                                  ^              |
10808  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10809  *     |                    v                                  |              |
10810  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10811  *     |                    |                                  ^              |
10812  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10813  *     |                    v                                  |              |
10814  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10815  *     |                    |                                  ^              |
10816  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10817  *     |                    v                                  |              |
10818  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10819  *     |                    |                                  ^              |
10820  *     |                    |                                  |              |
10821  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10822  *                          |                           ^
10823  *                          v                           |
10824  *                   sd_core_iostart()                  |
10825  *                          |                           |
10826  *                          |                           +------>(*destroypkt)()
10827  *                          +-> sd_start_cmds() <-+     |           |
10828  *                          |                     |     |           v
10829  *                          |                     |     |  scsi_destroy_pkt(9F)
10830  *                          |                     |     |
10831  *                          +->(*initpkt)()       +- sdintr()
10832  *                          |  |                        |  |
10833  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10834  *                          |  +-> scsi_setup_cdb(9F)   |
10835  *                          |                           |
10836  *                          +--> scsi_transport(9F)     |
10837  *                                     |                |
10838  *                                     +----> SCSA ---->+
10839  *
10840  *
10841  * This code is based upon the following presumptions:
10842  *
10843  *   - iostart and iodone functions operate on buf(9S) structures. These
10844  *     functions perform the necessary operations on the buf(9S) and pass
10845  *     them along to the next function in the chain by using the macros
10846  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10847  *     (for iodone side functions).
10848  *
10849  *   - The iostart side functions may sleep. The iodone side functions
10850  *     are called under interrupt context and may NOT sleep. Therefore
10851  *     iodone side functions also may not call iostart side functions.
10852  *     (NOTE: iostart side functions should NOT sleep for memory, as
10853  *     this could result in deadlock.)
10854  *
10855  *   - An iostart side function may call its corresponding iodone side
10856  *     function directly (if necessary).
10857  *
10858  *   - In the event of an error, an iostart side function can return a buf(9S)
10859  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10860  *     b_error in the usual way of course).
10861  *
10862  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10863  *     requests to the iostart side functions.  The iostart side functions in
10864  *     this case would be called under the context of a taskq thread, so it's
10865  *     OK for them to block/sleep/spin in this case.
10866  *
10867  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10868  *     pass them along to the next function in the chain.  The corresponding
10869  *     iodone side functions must coalesce the "shadow" bufs and return
10870  *     the "original" buf to the next higher layer.
10871  *
10872  *   - The b_private field of the buf(9S) struct holds a pointer to
10873  *     an sd_xbuf struct, which contains information needed to
10874  *     construct the scsi_pkt for the command.
10875  *
10876  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10877  *     layer must acquire & release the SD_MUTEX(un) as needed.
10878  */
10879 
10880 
10881 /*
10882  * Create taskq for all targets in the system. This is created at
10883  * _init(9E) and destroyed at _fini(9E).
10884  *
10885  * Note: here we set the minalloc to a reasonably high number to ensure that
10886  * we will have an adequate supply of task entries available at interrupt time.
10887  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10888  * sd_create_taskq().  Since we do not want to sleep for allocations at
10889  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10890  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10891  * requests any one instant in time.
10892  */
10893 #define	SD_TASKQ_NUMTHREADS	8
10894 #define	SD_TASKQ_MINALLOC	256
10895 #define	SD_TASKQ_MAXALLOC	256
10896 
10897 static taskq_t	*sd_tq = NULL;
10898 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10899 
10900 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10901 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10902 
10903 /*
10904  * The following task queue is being created for the write part of
10905  * read-modify-write of non-512 block size devices.
10906  * Limit the number of threads to 1 for now. This number has been chosen
10907  * considering the fact that it applies only to dvd ram drives/MO drives
10908  * currently. Performance for which is not main criteria at this stage.
10909  * Note: It needs to be explored if we can use a single taskq in future
10910  */
10911 #define	SD_WMR_TASKQ_NUMTHREADS	1
10912 static taskq_t	*sd_wmr_tq = NULL;
10913 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10914 
10915 /*
10916  *    Function: sd_taskq_create
10917  *
10918  * Description: Create taskq thread(s) and preallocate task entries
10919  *
10920  * Return Code: Returns a pointer to the allocated taskq_t.
10921  *
10922  *     Context: Can sleep. Requires blockable context.
10923  *
10924  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10925  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10926  *		- taskq_create() will block for memory, also it will panic
10927  *		  if it cannot create the requested number of threads.
10928  *		- Currently taskq_create() creates threads that cannot be
10929  *		  swapped.
10930  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10931  *		  supply of taskq entries at interrupt time (ie, so that we
10932  *		  do not have to sleep for memory)
10933  */
10934 
10935 static void
10936 sd_taskq_create(void)
10937 {
10938 	char	taskq_name[TASKQ_NAMELEN];
10939 
10940 	ASSERT(sd_tq == NULL);
10941 	ASSERT(sd_wmr_tq == NULL);
10942 
10943 	(void) snprintf(taskq_name, sizeof (taskq_name),
10944 	    "%s_drv_taskq", sd_label);
10945 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10946 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10947 	    TASKQ_PREPOPULATE));
10948 
10949 	(void) snprintf(taskq_name, sizeof (taskq_name),
10950 	    "%s_rmw_taskq", sd_label);
10951 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10952 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10953 	    TASKQ_PREPOPULATE));
10954 }
10955 
10956 
10957 /*
10958  *    Function: sd_taskq_delete
10959  *
10960  * Description: Complementary cleanup routine for sd_taskq_create().
10961  *
10962  *     Context: Kernel thread context.
10963  */
10964 
10965 static void
10966 sd_taskq_delete(void)
10967 {
10968 	ASSERT(sd_tq != NULL);
10969 	ASSERT(sd_wmr_tq != NULL);
10970 	taskq_destroy(sd_tq);
10971 	taskq_destroy(sd_wmr_tq);
10972 	sd_tq = NULL;
10973 	sd_wmr_tq = NULL;
10974 }
10975 
10976 
10977 /*
10978  *    Function: sdstrategy
10979  *
10980  * Description: Driver's strategy (9E) entry point function.
10981  *
10982  *   Arguments: bp - pointer to buf(9S)
10983  *
10984  * Return Code: Always returns zero
10985  *
10986  *     Context: Kernel thread context.
10987  */
10988 
10989 static int
10990 sdstrategy(struct buf *bp)
10991 {
10992 	struct sd_lun *un;
10993 
10994 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10995 	if (un == NULL) {
10996 		bioerror(bp, EIO);
10997 		bp->b_resid = bp->b_bcount;
10998 		biodone(bp);
10999 		return (0);
11000 	}
11001 	/* As was done in the past, fail new cmds. if state is dumping. */
11002 	if (un->un_state == SD_STATE_DUMPING) {
11003 		bioerror(bp, ENXIO);
11004 		bp->b_resid = bp->b_bcount;
11005 		biodone(bp);
11006 		return (0);
11007 	}
11008 
11009 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11010 
11011 	/*
11012 	 * Commands may sneak in while we released the mutex in
11013 	 * DDI_SUSPEND, we should block new commands. However, old
11014 	 * commands that are still in the driver at this point should
11015 	 * still be allowed to drain.
11016 	 */
11017 	mutex_enter(SD_MUTEX(un));
11018 	/*
11019 	 * Must wait here if either the device is suspended or
11020 	 * if it's power level is changing.
11021 	 */
11022 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11023 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11024 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11025 	}
11026 
11027 	un->un_ncmds_in_driver++;
11028 
11029 	/*
11030 	 * atapi: Since we are running the CD for now in PIO mode we need to
11031 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11032 	 * the HBA's init_pkt routine.
11033 	 */
11034 	if (un->un_f_cfg_is_atapi == TRUE) {
11035 		mutex_exit(SD_MUTEX(un));
11036 		bp_mapin(bp);
11037 		mutex_enter(SD_MUTEX(un));
11038 	}
11039 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11040 	    un->un_ncmds_in_driver);
11041 
11042 	if (bp->b_flags & B_WRITE)
11043 		un->un_f_sync_cache_required = TRUE;
11044 
11045 	mutex_exit(SD_MUTEX(un));
11046 
11047 	/*
11048 	 * This will (eventually) allocate the sd_xbuf area and
11049 	 * call sd_xbuf_strategy().  We just want to return the
11050 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11051 	 * imized tail call which saves us a stack frame.
11052 	 */
11053 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11054 }
11055 
11056 
11057 /*
11058  *    Function: sd_xbuf_strategy
11059  *
11060  * Description: Function for initiating IO operations via the
11061  *		ddi_xbuf_qstrategy() mechanism.
11062  *
11063  *     Context: Kernel thread context.
11064  */
11065 
11066 static void
11067 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11068 {
11069 	struct sd_lun *un = arg;
11070 
11071 	ASSERT(bp != NULL);
11072 	ASSERT(xp != NULL);
11073 	ASSERT(un != NULL);
11074 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11075 
11076 	/*
11077 	 * Initialize the fields in the xbuf and save a pointer to the
11078 	 * xbuf in bp->b_private.
11079 	 */
11080 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11081 
11082 	/* Send the buf down the iostart chain */
11083 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11084 }
11085 
11086 
11087 /*
11088  *    Function: sd_xbuf_init
11089  *
11090  * Description: Prepare the given sd_xbuf struct for use.
11091  *
11092  *   Arguments: un - ptr to softstate
11093  *		bp - ptr to associated buf(9S)
11094  *		xp - ptr to associated sd_xbuf
11095  *		chain_type - IO chain type to use:
11096  *			SD_CHAIN_NULL
11097  *			SD_CHAIN_BUFIO
11098  *			SD_CHAIN_USCSI
11099  *			SD_CHAIN_DIRECT
11100  *			SD_CHAIN_DIRECT_PRIORITY
11101  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11102  *			initialization; may be NULL if none.
11103  *
11104  *     Context: Kernel thread context
11105  */
11106 
11107 static void
11108 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11109 	uchar_t chain_type, void *pktinfop)
11110 {
11111 	int index;
11112 
11113 	ASSERT(un != NULL);
11114 	ASSERT(bp != NULL);
11115 	ASSERT(xp != NULL);
11116 
11117 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11118 	    bp, chain_type);
11119 
11120 	xp->xb_un	= un;
11121 	xp->xb_pktp	= NULL;
11122 	xp->xb_pktinfo	= pktinfop;
11123 	xp->xb_private	= bp->b_private;
11124 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11125 
11126 	/*
11127 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11128 	 * upon the specified chain type to use.
11129 	 */
11130 	switch (chain_type) {
11131 	case SD_CHAIN_NULL:
11132 		/*
11133 		 * Fall thru to just use the values for the buf type, even
11134 		 * tho for the NULL chain these values will never be used.
11135 		 */
11136 		/* FALLTHRU */
11137 	case SD_CHAIN_BUFIO:
11138 		index = un->un_buf_chain_type;
11139 		break;
11140 	case SD_CHAIN_USCSI:
11141 		index = un->un_uscsi_chain_type;
11142 		break;
11143 	case SD_CHAIN_DIRECT:
11144 		index = un->un_direct_chain_type;
11145 		break;
11146 	case SD_CHAIN_DIRECT_PRIORITY:
11147 		index = un->un_priority_chain_type;
11148 		break;
11149 	default:
11150 		/* We're really broken if we ever get here... */
11151 		panic("sd_xbuf_init: illegal chain type!");
11152 		/*NOTREACHED*/
11153 	}
11154 
11155 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11156 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11157 
11158 	/*
11159 	 * It might be a bit easier to simply bzero the entire xbuf above,
11160 	 * but it turns out that since we init a fair number of members anyway,
11161 	 * we save a fair number cycles by doing explicit assignment of zero.
11162 	 */
11163 	xp->xb_pkt_flags	= 0;
11164 	xp->xb_dma_resid	= 0;
11165 	xp->xb_retry_count	= 0;
11166 	xp->xb_victim_retry_count = 0;
11167 	xp->xb_ua_retry_count	= 0;
11168 	xp->xb_nr_retry_count	= 0;
11169 	xp->xb_sense_bp		= NULL;
11170 	xp->xb_sense_status	= 0;
11171 	xp->xb_sense_state	= 0;
11172 	xp->xb_sense_resid	= 0;
11173 	xp->xb_ena		= 0;
11174 
11175 	bp->b_private	= xp;
11176 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11177 	bp->b_resid	= 0;
11178 	bp->av_forw	= NULL;
11179 	bp->av_back	= NULL;
11180 	bioerror(bp, 0);
11181 
11182 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11183 }
11184 
11185 
11186 /*
11187  *    Function: sd_uscsi_strategy
11188  *
11189  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11190  *
11191  *   Arguments: bp - buf struct ptr
11192  *
11193  * Return Code: Always returns 0
11194  *
11195  *     Context: Kernel thread context
11196  */
11197 
11198 static int
11199 sd_uscsi_strategy(struct buf *bp)
11200 {
11201 	struct sd_lun		*un;
11202 	struct sd_uscsi_info	*uip;
11203 	struct sd_xbuf		*xp;
11204 	uchar_t			chain_type;
11205 	uchar_t			cmd;
11206 
11207 	ASSERT(bp != NULL);
11208 
11209 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11210 	if (un == NULL) {
11211 		bioerror(bp, EIO);
11212 		bp->b_resid = bp->b_bcount;
11213 		biodone(bp);
11214 		return (0);
11215 	}
11216 
11217 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11218 
11219 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11220 
11221 	/*
11222 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11223 	 */
11224 	ASSERT(bp->b_private != NULL);
11225 	uip = (struct sd_uscsi_info *)bp->b_private;
11226 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11227 
11228 	mutex_enter(SD_MUTEX(un));
11229 	/*
11230 	 * atapi: Since we are running the CD for now in PIO mode we need to
11231 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11232 	 * the HBA's init_pkt routine.
11233 	 */
11234 	if (un->un_f_cfg_is_atapi == TRUE) {
11235 		mutex_exit(SD_MUTEX(un));
11236 		bp_mapin(bp);
11237 		mutex_enter(SD_MUTEX(un));
11238 	}
11239 	un->un_ncmds_in_driver++;
11240 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11241 	    un->un_ncmds_in_driver);
11242 
11243 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11244 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11245 		un->un_f_sync_cache_required = TRUE;
11246 
11247 	mutex_exit(SD_MUTEX(un));
11248 
11249 	switch (uip->ui_flags) {
11250 	case SD_PATH_DIRECT:
11251 		chain_type = SD_CHAIN_DIRECT;
11252 		break;
11253 	case SD_PATH_DIRECT_PRIORITY:
11254 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11255 		break;
11256 	default:
11257 		chain_type = SD_CHAIN_USCSI;
11258 		break;
11259 	}
11260 
11261 	/*
11262 	 * We may allocate extra buf for external USCSI commands. If the
11263 	 * application asks for bigger than 20-byte sense data via USCSI,
11264 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11265 	 */
11266 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11267 	    SENSE_LENGTH) {
11268 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11269 		    MAX_SENSE_LENGTH, KM_SLEEP);
11270 	} else {
11271 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11272 	}
11273 
11274 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11275 
11276 	/* Use the index obtained within xbuf_init */
11277 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11278 
11279 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11280 
11281 	return (0);
11282 }
11283 
11284 /*
11285  *    Function: sd_send_scsi_cmd
11286  *
11287  * Description: Runs a USCSI command for user (when called thru sdioctl),
11288  *		or for the driver
11289  *
11290  *   Arguments: dev - the dev_t for the device
11291  *		incmd - ptr to a valid uscsi_cmd struct
11292  *		flag - bit flag, indicating open settings, 32/64 bit type
11293  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11294  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11295  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11296  *			to use the USCSI "direct" chain and bypass the normal
11297  *			command waitq.
11298  *
11299  * Return Code: 0 -  successful completion of the given command
11300  *		EIO - scsi_uscsi_handle_command() failed
11301  *		ENXIO  - soft state not found for specified dev
11302  *		EINVAL
11303  *		EFAULT - copyin/copyout error
11304  *		return code of scsi_uscsi_handle_command():
11305  *			EIO
11306  *			ENXIO
11307  *			EACCES
11308  *
11309  *     Context: Waits for command to complete. Can sleep.
11310  */
11311 
11312 static int
11313 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11314 	enum uio_seg dataspace, int path_flag)
11315 {
11316 	struct sd_lun	*un;
11317 	sd_ssc_t	*ssc;
11318 	int		rval;
11319 
11320 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11321 	if (un == NULL) {
11322 		return (ENXIO);
11323 	}
11324 
11325 	/*
11326 	 * Using sd_ssc_send to handle uscsi cmd
11327 	 */
11328 	ssc = sd_ssc_init(un);
11329 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11330 	sd_ssc_fini(ssc);
11331 
11332 	return (rval);
11333 }
11334 
11335 /*
11336  *    Function: sd_ssc_init
11337  *
11338  * Description: Uscsi end-user call this function to initialize necessary
11339  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11340  *
11341  *              The return value of sd_send_scsi_cmd will be treated as a
11342  *              fault in various conditions. Even it is not Zero, some
11343  *              callers may ignore the return value. That is to say, we can
11344  *              not make an accurate assessment in sdintr, since if a
11345  *              command is failed in sdintr it does not mean the caller of
11346  *              sd_send_scsi_cmd will treat it as a real failure.
11347  *
11348  *              To avoid printing too many error logs for a failed uscsi
11349  *              packet that the caller may not treat it as a failure, the
11350  *              sd will keep silent for handling all uscsi commands.
11351  *
11352  *              During detach->attach and attach-open, for some types of
11353  *              problems, the driver should be providing information about
11354  *              the problem encountered. Device use USCSI_SILENT, which
11355  *              suppresses all driver information. The result is that no
11356  *              information about the problem is available. Being
11357  *              completely silent during this time is inappropriate. The
11358  *              driver needs a more selective filter than USCSI_SILENT, so
11359  *              that information related to faults is provided.
11360  *
11361  *              To make the accurate accessment, the caller  of
11362  *              sd_send_scsi_USCSI_CMD should take the ownership and
11363  *              get necessary information to print error messages.
11364  *
11365  *              If we want to print necessary info of uscsi command, we need to
11366  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11367  *              assessment. We use sd_ssc_init to alloc necessary
11368  *              structs for sending an uscsi command and we are also
11369  *              responsible for free the memory by calling
11370  *              sd_ssc_fini.
11371  *
11372  *              The calling secquences will look like:
11373  *              sd_ssc_init->
11374  *
11375  *                  ...
11376  *
11377  *                  sd_send_scsi_USCSI_CMD->
11378  *                      sd_ssc_send-> - - - sdintr
11379  *                  ...
11380  *
11381  *                  if we think the return value should be treated as a
11382  *                  failure, we make the accessment here and print out
11383  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11384  *
11385  *                  ...
11386  *
11387  *              sd_ssc_fini
11388  *
11389  *
11390  *   Arguments: un - pointer to driver soft state (unit) structure for this
11391  *                   target.
11392  *
11393  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11394  *                         uscsi_cmd and sd_uscsi_info.
11395  *                  NULL - if can not alloc memory for sd_ssc_t struct
11396  *
11397  *     Context: Kernel Thread.
11398  */
11399 static sd_ssc_t *
11400 sd_ssc_init(struct sd_lun *un)
11401 {
11402 	sd_ssc_t		*ssc;
11403 	struct uscsi_cmd	*ucmdp;
11404 	struct sd_uscsi_info	*uip;
11405 
11406 	ASSERT(un != NULL);
11407 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11408 
11409 	/*
11410 	 * Allocate sd_ssc_t structure
11411 	 */
11412 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11413 
11414 	/*
11415 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11416 	 */
11417 	ucmdp = scsi_uscsi_alloc();
11418 
11419 	/*
11420 	 * Allocate sd_uscsi_info structure
11421 	 */
11422 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11423 
11424 	ssc->ssc_uscsi_cmd = ucmdp;
11425 	ssc->ssc_uscsi_info = uip;
11426 	ssc->ssc_un = un;
11427 
11428 	return (ssc);
11429 }
11430 
11431 /*
11432  * Function: sd_ssc_fini
11433  *
11434  * Description: To free sd_ssc_t and it's hanging off
11435  *
11436  * Arguments: ssc - struct pointer of sd_ssc_t.
11437  */
11438 static void
11439 sd_ssc_fini(sd_ssc_t *ssc)
11440 {
11441 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11442 
11443 	if (ssc->ssc_uscsi_info != NULL) {
11444 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11445 		ssc->ssc_uscsi_info = NULL;
11446 	}
11447 
11448 	kmem_free(ssc, sizeof (sd_ssc_t));
11449 	ssc = NULL;
11450 }
11451 
11452 /*
11453  * Function: sd_ssc_send
11454  *
11455  * Description: Runs a USCSI command for user when called through sdioctl,
11456  *              or for the driver.
11457  *
11458  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11459  *                    sd_uscsi_info in.
11460  *		incmd - ptr to a valid uscsi_cmd struct
11461  *		flag - bit flag, indicating open settings, 32/64 bit type
11462  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11463  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11464  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11465  *			to use the USCSI "direct" chain and bypass the normal
11466  *			command waitq.
11467  *
11468  * Return Code: 0 -  successful completion of the given command
11469  *		EIO - scsi_uscsi_handle_command() failed
11470  *		ENXIO  - soft state not found for specified dev
11471  *		EINVAL
11472  *		EFAULT - copyin/copyout error
11473  *		return code of scsi_uscsi_handle_command():
11474  *			EIO
11475  *			ENXIO
11476  *			EACCES
11477  *
11478  *     Context: Kernel Thread;
11479  *              Waits for command to complete. Can sleep.
11480  */
11481 static int
11482 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11483 	enum uio_seg dataspace, int path_flag)
11484 {
11485 	struct sd_uscsi_info	*uip;
11486 	struct uscsi_cmd	*uscmd;
11487 	struct sd_lun		*un;
11488 	dev_t			dev;
11489 
11490 	int	format = 0;
11491 	int	rval;
11492 
11493 	ASSERT(ssc != NULL);
11494 	un = ssc->ssc_un;
11495 	ASSERT(un != NULL);
11496 	uscmd = ssc->ssc_uscsi_cmd;
11497 	ASSERT(uscmd != NULL);
11498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11499 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11500 		/*
11501 		 * If enter here, it indicates that the previous uscsi
11502 		 * command has not been processed by sd_ssc_assessment.
11503 		 * This is violating our rules of FMA telemetry processing.
11504 		 * We should print out this message and the last undisposed
11505 		 * uscsi command.
11506 		 */
11507 		if (uscmd->uscsi_cdb != NULL) {
11508 			SD_INFO(SD_LOG_SDTEST, un,
11509 			    "sd_ssc_send is missing the alternative "
11510 			    "sd_ssc_assessment when running command 0x%x.\n",
11511 			    uscmd->uscsi_cdb[0]);
11512 		}
11513 		/*
11514 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
11515 		 * the initial status.
11516 		 */
11517 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11518 	}
11519 
11520 	/*
11521 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
11522 	 * followed to avoid missing FMA telemetries.
11523 	 */
11524 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
11525 
11526 #ifdef SDDEBUG
11527 	switch (dataspace) {
11528 	case UIO_USERSPACE:
11529 		SD_TRACE(SD_LOG_IO, un,
11530 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
11531 		break;
11532 	case UIO_SYSSPACE:
11533 		SD_TRACE(SD_LOG_IO, un,
11534 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
11535 		break;
11536 	default:
11537 		SD_TRACE(SD_LOG_IO, un,
11538 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
11539 		break;
11540 	}
11541 #endif
11542 
11543 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
11544 	    SD_ADDRESS(un), &uscmd);
11545 	if (rval != 0) {
11546 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
11547 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
11548 		return (rval);
11549 	}
11550 
11551 	if ((uscmd->uscsi_cdb != NULL) &&
11552 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
11553 		mutex_enter(SD_MUTEX(un));
11554 		un->un_f_format_in_progress = TRUE;
11555 		mutex_exit(SD_MUTEX(un));
11556 		format = 1;
11557 	}
11558 
11559 	/*
11560 	 * Allocate an sd_uscsi_info struct and fill it with the info
11561 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11562 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11563 	 * since we allocate the buf here in this function, we do not
11564 	 * need to preserve the prior contents of b_private.
11565 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11566 	 */
11567 	uip = ssc->ssc_uscsi_info;
11568 	uip->ui_flags = path_flag;
11569 	uip->ui_cmdp = uscmd;
11570 
11571 	/*
11572 	 * Commands sent with priority are intended for error recovery
11573 	 * situations, and do not have retries performed.
11574 	 */
11575 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11576 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11577 	}
11578 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
11579 
11580 	dev = SD_GET_DEV(un);
11581 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
11582 	    sd_uscsi_strategy, NULL, uip);
11583 
11584 	/*
11585 	 * mark ssc_flags right after handle_cmd to make sure
11586 	 * the uscsi has been sent
11587 	 */
11588 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
11589 
11590 #ifdef SDDEBUG
11591 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11592 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11593 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11594 	if (uscmd->uscsi_bufaddr != NULL) {
11595 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
11596 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11597 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11598 		if (dataspace == UIO_SYSSPACE) {
11599 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11600 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11601 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11602 		}
11603 	}
11604 #endif
11605 
11606 	if (format == 1) {
11607 		mutex_enter(SD_MUTEX(un));
11608 		un->un_f_format_in_progress = FALSE;
11609 		mutex_exit(SD_MUTEX(un));
11610 	}
11611 
11612 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
11613 
11614 	return (rval);
11615 }
11616 
11617 /*
11618  *     Function: sd_ssc_print
11619  *
11620  * Description: Print information available to the console.
11621  *
11622  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11623  *                    sd_uscsi_info in.
11624  *            sd_severity - log level.
11625  *     Context: Kernel thread or interrupt context.
11626  */
11627 static void
11628 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
11629 {
11630 	struct uscsi_cmd	*ucmdp;
11631 	struct scsi_device	*devp;
11632 	dev_info_t 		*devinfo;
11633 	uchar_t			*sensep;
11634 	int			senlen;
11635 	union scsi_cdb		*cdbp;
11636 	uchar_t			com;
11637 	extern struct scsi_key_strings scsi_cmds[];
11638 
11639 	ASSERT(ssc != NULL);
11640 	ASSERT(ssc->ssc_un != NULL);
11641 
11642 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
11643 		return;
11644 	ucmdp = ssc->ssc_uscsi_cmd;
11645 	devp = SD_SCSI_DEVP(ssc->ssc_un);
11646 	devinfo = SD_DEVINFO(ssc->ssc_un);
11647 	ASSERT(ucmdp != NULL);
11648 	ASSERT(devp != NULL);
11649 	ASSERT(devinfo != NULL);
11650 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
11651 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
11652 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
11653 
11654 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
11655 	if (cdbp == NULL)
11656 		return;
11657 	/* We don't print log if no sense data available. */
11658 	if (senlen == 0)
11659 		sensep = NULL;
11660 	com = cdbp->scc_cmd;
11661 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
11662 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
11663 }
11664 
11665 /*
11666  *     Function: sd_ssc_assessment
11667  *
11668  * Description: We use this function to make an assessment at the point
11669  *              where SD driver may encounter a potential error.
11670  *
11671  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11672  *                  sd_uscsi_info in.
11673  *            tp_assess - a hint of strategy for ereport posting.
11674  *            Possible values of tp_assess include:
11675  *                SD_FMT_IGNORE - we don't post any ereport because we're
11676  *                sure that it is ok to ignore the underlying problems.
11677  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
11678  *                but it might be not correct to ignore the underlying hardware
11679  *                error.
11680  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
11681  *                payload driver-assessment of value "fail" or
11682  *                "fatal"(depending on what information we have here). This
11683  *                assessment value is usually set when SD driver think there
11684  *                is a potential error occurred(Typically, when return value
11685  *                of the SCSI command is EIO).
11686  *                SD_FMT_STANDARD - we will post an ereport with the payload
11687  *                driver-assessment of value "info". This assessment value is
11688  *                set when the SCSI command returned successfully and with
11689  *                sense data sent back.
11690  *
11691  *     Context: Kernel thread.
11692  */
11693 static void
11694 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
11695 {
11696 	int senlen = 0;
11697 	struct uscsi_cmd *ucmdp = NULL;
11698 	struct sd_lun *un;
11699 
11700 	ASSERT(ssc != NULL);
11701 	un = ssc->ssc_un;
11702 	ASSERT(un != NULL);
11703 	ucmdp = ssc->ssc_uscsi_cmd;
11704 	ASSERT(ucmdp != NULL);
11705 
11706 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11707 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
11708 	} else {
11709 		/*
11710 		 * If enter here, it indicates that we have a wrong
11711 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
11712 		 * both of which should be called in a pair in case of
11713 		 * loss of FMA telemetries.
11714 		 */
11715 		if (ucmdp->uscsi_cdb != NULL) {
11716 			SD_INFO(SD_LOG_SDTEST, un,
11717 			    "sd_ssc_assessment is missing the "
11718 			    "alternative sd_ssc_send when running 0x%x, "
11719 			    "or there are superfluous sd_ssc_assessment for "
11720 			    "the same sd_ssc_send.\n",
11721 			    ucmdp->uscsi_cdb[0]);
11722 		}
11723 		/*
11724 		 * Set the ssc_flags to the initial value to avoid passing
11725 		 * down dirty flags to the following sd_ssc_send function.
11726 		 */
11727 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11728 		return;
11729 	}
11730 
11731 	/*
11732 	 * Only handle an issued command which is waiting for assessment.
11733 	 * A command which is not issued will not have
11734 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
11735 	 */
11736 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
11737 		sd_ssc_print(ssc, SCSI_ERR_INFO);
11738 		return;
11739 	} else {
11740 		/*
11741 		 * For an issued command, we should clear this flag in
11742 		 * order to make the sd_ssc_t structure be used off
11743 		 * multiple uscsi commands.
11744 		 */
11745 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
11746 	}
11747 
11748 	/*
11749 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
11750 	 * commands here. And we should clear the ssc_flags before return.
11751 	 */
11752 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
11753 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11754 		return;
11755 	}
11756 
11757 	switch (tp_assess) {
11758 	case SD_FMT_IGNORE:
11759 	case SD_FMT_IGNORE_COMPROMISE:
11760 		break;
11761 	case SD_FMT_STATUS_CHECK:
11762 		/*
11763 		 * For a failed command(including the succeeded command
11764 		 * with invalid data sent back).
11765 		 */
11766 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
11767 		break;
11768 	case SD_FMT_STANDARD:
11769 		/*
11770 		 * Always for the succeeded commands probably with sense
11771 		 * data sent back.
11772 		 * Limitation:
11773 		 *	We can only handle a succeeded command with sense
11774 		 *	data sent back when auto-request-sense is enabled.
11775 		 */
11776 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
11777 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
11778 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
11779 		    (un->un_f_arq_enabled == TRUE) &&
11780 		    senlen > 0 &&
11781 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
11782 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
11783 		}
11784 		break;
11785 	default:
11786 		/*
11787 		 * Should not have other type of assessment.
11788 		 */
11789 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
11790 		    "sd_ssc_assessment got wrong "
11791 		    "sd_type_assessment %d.\n", tp_assess);
11792 		break;
11793 	}
11794 	/*
11795 	 * Clear up the ssc_flags before return.
11796 	 */
11797 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11798 }
11799 
11800 /*
11801  *    Function: sd_ssc_post
11802  *
11803  * Description: 1. read the driver property to get fm-scsi-log flag.
11804  *              2. print log if fm_log_capable is non-zero.
11805  *              3. call sd_ssc_ereport_post to post ereport if possible.
11806  *
11807  *    Context: May be called from kernel thread or interrupt context.
11808  */
11809 static void
11810 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
11811 {
11812 	struct sd_lun	*un;
11813 	int		sd_severity;
11814 
11815 	ASSERT(ssc != NULL);
11816 	un = ssc->ssc_un;
11817 	ASSERT(un != NULL);
11818 
11819 	/*
11820 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
11821 	 * by directly called from sdintr context.
11822 	 * We don't handle a non-disk drive(CD-ROM, removable media).
11823 	 * Clear the ssc_flags before return in case we've set
11824 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
11825 	 * driver.
11826 	 */
11827 	if (ISCD(un) || un->un_f_has_removable_media) {
11828 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
11829 		return;
11830 	}
11831 
11832 	switch (sd_assess) {
11833 		case SD_FM_DRV_FATAL:
11834 			sd_severity = SCSI_ERR_FATAL;
11835 			break;
11836 		case SD_FM_DRV_RECOVERY:
11837 			sd_severity = SCSI_ERR_RECOVERED;
11838 			break;
11839 		case SD_FM_DRV_RETRY:
11840 			sd_severity = SCSI_ERR_RETRYABLE;
11841 			break;
11842 		case SD_FM_DRV_NOTICE:
11843 			sd_severity = SCSI_ERR_INFO;
11844 			break;
11845 		default:
11846 			sd_severity = SCSI_ERR_UNKNOWN;
11847 	}
11848 	/* print log */
11849 	sd_ssc_print(ssc, sd_severity);
11850 
11851 	/* always post ereport */
11852 	sd_ssc_ereport_post(ssc, sd_assess);
11853 }
11854 
11855 /*
11856  *    Function: sd_ssc_set_info
11857  *
11858  * Description: Mark ssc_flags and set ssc_info which would be the
11859  *              payload of uderr ereport. This function will cause
11860  *              sd_ssc_ereport_post to post uderr ereport only.
11861  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
11862  *              the function will also call SD_ERROR or scsi_log for a
11863  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
11864  *
11865  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11866  *                  sd_uscsi_info in.
11867  *            ssc_flags - indicate the sub-category of a uderr.
11868  *            comp - this argument is meaningful only when
11869  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
11870  *                   values include:
11871  *                   > 0, SD_ERROR is used with comp as the driver logging
11872  *                   component;
11873  *                   = 0, scsi-log is used to log error telemetries;
11874  *                   < 0, no log available for this telemetry.
11875  *
11876  *    Context: Kernel thread or interrupt context
11877  */
11878 static void
11879 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
11880 {
11881 	va_list	ap;
11882 
11883 	ASSERT(ssc != NULL);
11884 	ASSERT(ssc->ssc_un != NULL);
11885 
11886 	ssc->ssc_flags |= ssc_flags;
11887 	va_start(ap, fmt);
11888 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
11889 	va_end(ap);
11890 
11891 	/*
11892 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
11893 	 * with invalid data sent back. For non-uscsi command, the
11894 	 * following code will be bypassed.
11895 	 */
11896 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
11897 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
11898 			/*
11899 			 * If the error belong to certain component and we
11900 			 * do not want it to show up on the console, we
11901 			 * will use SD_ERROR, otherwise scsi_log is
11902 			 * preferred.
11903 			 */
11904 			if (comp > 0) {
11905 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
11906 			} else if (comp == 0) {
11907 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
11908 				    CE_WARN, ssc->ssc_info);
11909 			}
11910 		}
11911 	}
11912 }
11913 
11914 /*
11915  *    Function: sd_buf_iodone
11916  *
11917  * Description: Frees the sd_xbuf & returns the buf to its originator.
11918  *
11919  *     Context: May be called from interrupt context.
11920  */
11921 /* ARGSUSED */
11922 static void
11923 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11924 {
11925 	struct sd_xbuf *xp;
11926 
11927 	ASSERT(un != NULL);
11928 	ASSERT(bp != NULL);
11929 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11930 
11931 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11932 
11933 	xp = SD_GET_XBUF(bp);
11934 	ASSERT(xp != NULL);
11935 
11936 	/* xbuf is gone after this */
11937 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
11938 		mutex_enter(SD_MUTEX(un));
11939 
11940 		/*
11941 		 * Grab time when the cmd completed.
11942 		 * This is used for determining if the system has been
11943 		 * idle long enough to make it idle to the PM framework.
11944 		 * This is for lowering the overhead, and therefore improving
11945 		 * performance per I/O operation.
11946 		 */
11947 		un->un_pm_idle_time = ddi_get_time();
11948 
11949 		un->un_ncmds_in_driver--;
11950 		ASSERT(un->un_ncmds_in_driver >= 0);
11951 		SD_INFO(SD_LOG_IO, un,
11952 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11953 		    un->un_ncmds_in_driver);
11954 
11955 		mutex_exit(SD_MUTEX(un));
11956 	}
11957 
11958 	biodone(bp);				/* bp is gone after this */
11959 
11960 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11961 }
11962 
11963 
11964 /*
11965  *    Function: sd_uscsi_iodone
11966  *
11967  * Description: Frees the sd_xbuf & returns the buf to its originator.
11968  *
11969  *     Context: May be called from interrupt context.
11970  */
11971 /* ARGSUSED */
11972 static void
11973 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11974 {
11975 	struct sd_xbuf *xp;
11976 
11977 	ASSERT(un != NULL);
11978 	ASSERT(bp != NULL);
11979 
11980 	xp = SD_GET_XBUF(bp);
11981 	ASSERT(xp != NULL);
11982 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11983 
11984 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11985 
11986 	bp->b_private = xp->xb_private;
11987 
11988 	mutex_enter(SD_MUTEX(un));
11989 
11990 	/*
11991 	 * Grab time when the cmd completed.
11992 	 * This is used for determining if the system has been
11993 	 * idle long enough to make it idle to the PM framework.
11994 	 * This is for lowering the overhead, and therefore improving
11995 	 * performance per I/O operation.
11996 	 */
11997 	un->un_pm_idle_time = ddi_get_time();
11998 
11999 	un->un_ncmds_in_driver--;
12000 	ASSERT(un->un_ncmds_in_driver >= 0);
12001 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12002 	    un->un_ncmds_in_driver);
12003 
12004 	mutex_exit(SD_MUTEX(un));
12005 
12006 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12007 	    SENSE_LENGTH) {
12008 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12009 		    MAX_SENSE_LENGTH);
12010 	} else {
12011 		kmem_free(xp, sizeof (struct sd_xbuf));
12012 	}
12013 
12014 	biodone(bp);
12015 
12016 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12017 }
12018 
12019 
12020 /*
12021  *    Function: sd_mapblockaddr_iostart
12022  *
12023  * Description: Verify request lies within the partition limits for
12024  *		the indicated minor device.  Issue "overrun" buf if
12025  *		request would exceed partition range.  Converts
12026  *		partition-relative block address to absolute.
12027  *
12028  *     Context: Can sleep
12029  *
12030  *      Issues: This follows what the old code did, in terms of accessing
12031  *		some of the partition info in the unit struct without holding
12032  *		the mutext.  This is a general issue, if the partition info
12033  *		can be altered while IO is in progress... as soon as we send
12034  *		a buf, its partitioning can be invalid before it gets to the
12035  *		device.  Probably the right fix is to move partitioning out
12036  *		of the driver entirely.
12037  */
12038 
12039 static void
12040 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12041 {
12042 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12043 	daddr_t	blocknum;	/* Block number specified by the buf */
12044 	size_t	requested_nblocks;
12045 	size_t	available_nblocks;
12046 	int	partition;
12047 	diskaddr_t	partition_offset;
12048 	struct sd_xbuf *xp;
12049 
12050 	ASSERT(un != NULL);
12051 	ASSERT(bp != NULL);
12052 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12053 
12054 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12055 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12056 
12057 	xp = SD_GET_XBUF(bp);
12058 	ASSERT(xp != NULL);
12059 
12060 	/*
12061 	 * If the geometry is not indicated as valid, attempt to access
12062 	 * the unit & verify the geometry/label. This can be the case for
12063 	 * removable-media devices, of if the device was opened in
12064 	 * NDELAY/NONBLOCK mode.
12065 	 */
12066 	partition = SDPART(bp->b_edev);
12067 
12068 	if (!SD_IS_VALID_LABEL(un)) {
12069 		sd_ssc_t *ssc;
12070 		/*
12071 		 * Initialize sd_ssc_t for internal uscsi commands
12072 		 * In case of potential porformance issue, we need
12073 		 * to alloc memory only if there is invalid label
12074 		 */
12075 		ssc = sd_ssc_init(un);
12076 
12077 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12078 			/*
12079 			 * For removable devices it is possible to start an
12080 			 * I/O without a media by opening the device in nodelay
12081 			 * mode. Also for writable CDs there can be many
12082 			 * scenarios where there is no geometry yet but volume
12083 			 * manager is trying to issue a read() just because
12084 			 * it can see TOC on the CD. So do not print a message
12085 			 * for removables.
12086 			 */
12087 			if (!un->un_f_has_removable_media) {
12088 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12089 				    "i/o to invalid geometry\n");
12090 			}
12091 			bioerror(bp, EIO);
12092 			bp->b_resid = bp->b_bcount;
12093 			SD_BEGIN_IODONE(index, un, bp);
12094 
12095 			sd_ssc_fini(ssc);
12096 			return;
12097 		}
12098 		sd_ssc_fini(ssc);
12099 	}
12100 
12101 	nblocks = 0;
12102 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12103 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12104 
12105 	/*
12106 	 * blocknum is the starting block number of the request. At this
12107 	 * point it is still relative to the start of the minor device.
12108 	 */
12109 	blocknum = xp->xb_blkno;
12110 
12111 	/*
12112 	 * Legacy: If the starting block number is one past the last block
12113 	 * in the partition, do not set B_ERROR in the buf.
12114 	 */
12115 	if (blocknum == nblocks)  {
12116 		goto error_exit;
12117 	}
12118 
12119 	/*
12120 	 * Confirm that the first block of the request lies within the
12121 	 * partition limits. Also the requested number of bytes must be
12122 	 * a multiple of the system block size.
12123 	 */
12124 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12125 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12126 		bp->b_flags |= B_ERROR;
12127 		goto error_exit;
12128 	}
12129 
12130 	/*
12131 	 * If the requsted # blocks exceeds the available # blocks, that
12132 	 * is an overrun of the partition.
12133 	 */
12134 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12135 	available_nblocks = (size_t)(nblocks - blocknum);
12136 	ASSERT(nblocks >= blocknum);
12137 
12138 	if (requested_nblocks > available_nblocks) {
12139 		/*
12140 		 * Allocate an "overrun" buf to allow the request to proceed
12141 		 * for the amount of space available in the partition. The
12142 		 * amount not transferred will be added into the b_resid
12143 		 * when the operation is complete. The overrun buf
12144 		 * replaces the original buf here, and the original buf
12145 		 * is saved inside the overrun buf, for later use.
12146 		 */
12147 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12148 		    (offset_t)(requested_nblocks - available_nblocks));
12149 		size_t count = bp->b_bcount - resid;
12150 		/*
12151 		 * Note: count is an unsigned entity thus it'll NEVER
12152 		 * be less than 0 so ASSERT the original values are
12153 		 * correct.
12154 		 */
12155 		ASSERT(bp->b_bcount >= resid);
12156 
12157 		bp = sd_bioclone_alloc(bp, count, blocknum,
12158 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12159 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12160 		ASSERT(xp != NULL);
12161 	}
12162 
12163 	/* At this point there should be no residual for this buf. */
12164 	ASSERT(bp->b_resid == 0);
12165 
12166 	/* Convert the block number to an absolute address. */
12167 	xp->xb_blkno += partition_offset;
12168 
12169 	SD_NEXT_IOSTART(index, un, bp);
12170 
12171 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12172 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12173 
12174 	return;
12175 
12176 error_exit:
12177 	bp->b_resid = bp->b_bcount;
12178 	SD_BEGIN_IODONE(index, un, bp);
12179 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12180 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12181 }
12182 
12183 
12184 /*
12185  *    Function: sd_mapblockaddr_iodone
12186  *
12187  * Description: Completion-side processing for partition management.
12188  *
12189  *     Context: May be called under interrupt context
12190  */
12191 
12192 static void
12193 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12194 {
12195 	/* int	partition; */	/* Not used, see below. */
12196 	ASSERT(un != NULL);
12197 	ASSERT(bp != NULL);
12198 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12199 
12200 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12201 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12202 
12203 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12204 		/*
12205 		 * We have an "overrun" buf to deal with...
12206 		 */
12207 		struct sd_xbuf	*xp;
12208 		struct buf	*obp;	/* ptr to the original buf */
12209 
12210 		xp = SD_GET_XBUF(bp);
12211 		ASSERT(xp != NULL);
12212 
12213 		/* Retrieve the pointer to the original buf */
12214 		obp = (struct buf *)xp->xb_private;
12215 		ASSERT(obp != NULL);
12216 
12217 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12218 		bioerror(obp, bp->b_error);
12219 
12220 		sd_bioclone_free(bp);
12221 
12222 		/*
12223 		 * Get back the original buf.
12224 		 * Note that since the restoration of xb_blkno below
12225 		 * was removed, the sd_xbuf is not needed.
12226 		 */
12227 		bp = obp;
12228 		/*
12229 		 * xp = SD_GET_XBUF(bp);
12230 		 * ASSERT(xp != NULL);
12231 		 */
12232 	}
12233 
12234 	/*
12235 	 * Convert sd->xb_blkno back to a minor-device relative value.
12236 	 * Note: this has been commented out, as it is not needed in the
12237 	 * current implementation of the driver (ie, since this function
12238 	 * is at the top of the layering chains, so the info will be
12239 	 * discarded) and it is in the "hot" IO path.
12240 	 *
12241 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12242 	 * xp->xb_blkno -= un->un_offset[partition];
12243 	 */
12244 
12245 	SD_NEXT_IODONE(index, un, bp);
12246 
12247 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12248 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12249 }
12250 
12251 
12252 /*
12253  *    Function: sd_mapblocksize_iostart
12254  *
12255  * Description: Convert between system block size (un->un_sys_blocksize)
12256  *		and target block size (un->un_tgt_blocksize).
12257  *
12258  *     Context: Can sleep to allocate resources.
12259  *
12260  * Assumptions: A higher layer has already performed any partition validation,
12261  *		and converted the xp->xb_blkno to an absolute value relative
12262  *		to the start of the device.
12263  *
12264  *		It is also assumed that the higher layer has implemented
12265  *		an "overrun" mechanism for the case where the request would
12266  *		read/write beyond the end of a partition.  In this case we
12267  *		assume (and ASSERT) that bp->b_resid == 0.
12268  *
12269  *		Note: The implementation for this routine assumes the target
12270  *		block size remains constant between allocation and transport.
12271  */
12272 
12273 static void
12274 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12275 {
12276 	struct sd_mapblocksize_info	*bsp;
12277 	struct sd_xbuf			*xp;
12278 	offset_t first_byte;
12279 	daddr_t	start_block, end_block;
12280 	daddr_t	request_bytes;
12281 	ushort_t is_aligned = FALSE;
12282 
12283 	ASSERT(un != NULL);
12284 	ASSERT(bp != NULL);
12285 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12286 	ASSERT(bp->b_resid == 0);
12287 
12288 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12289 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12290 
12291 	/*
12292 	 * For a non-writable CD, a write request is an error
12293 	 */
12294 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12295 	    (un->un_f_mmc_writable_media == FALSE)) {
12296 		bioerror(bp, EIO);
12297 		bp->b_resid = bp->b_bcount;
12298 		SD_BEGIN_IODONE(index, un, bp);
12299 		return;
12300 	}
12301 
12302 	/*
12303 	 * We do not need a shadow buf if the device is using
12304 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12305 	 * In this case there is no layer-private data block allocated.
12306 	 */
12307 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12308 	    (bp->b_bcount == 0)) {
12309 		goto done;
12310 	}
12311 
12312 #if defined(__i386) || defined(__amd64)
12313 	/* We do not support non-block-aligned transfers for ROD devices */
12314 	ASSERT(!ISROD(un));
12315 #endif
12316 
12317 	xp = SD_GET_XBUF(bp);
12318 	ASSERT(xp != NULL);
12319 
12320 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12321 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12322 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12323 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12324 	    "request start block:0x%x\n", xp->xb_blkno);
12325 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12326 	    "request len:0x%x\n", bp->b_bcount);
12327 
12328 	/*
12329 	 * Allocate the layer-private data area for the mapblocksize layer.
12330 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12331 	 * struct to store the pointer to their layer-private data block, but
12332 	 * each layer also has the responsibility of restoring the prior
12333 	 * contents of xb_private before returning the buf/xbuf to the
12334 	 * higher layer that sent it.
12335 	 *
12336 	 * Here we save the prior contents of xp->xb_private into the
12337 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12338 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12339 	 * the layer-private area and returning the buf/xbuf to the layer
12340 	 * that sent it.
12341 	 *
12342 	 * Note that here we use kmem_zalloc for the allocation as there are
12343 	 * parts of the mapblocksize code that expect certain fields to be
12344 	 * zero unless explicitly set to a required value.
12345 	 */
12346 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12347 	bsp->mbs_oprivate = xp->xb_private;
12348 	xp->xb_private = bsp;
12349 
12350 	/*
12351 	 * This treats the data on the disk (target) as an array of bytes.
12352 	 * first_byte is the byte offset, from the beginning of the device,
12353 	 * to the location of the request. This is converted from a
12354 	 * un->un_sys_blocksize block address to a byte offset, and then back
12355 	 * to a block address based upon a un->un_tgt_blocksize block size.
12356 	 *
12357 	 * xp->xb_blkno should be absolute upon entry into this function,
12358 	 * but, but it is based upon partitions that use the "system"
12359 	 * block size. It must be adjusted to reflect the block size of
12360 	 * the target.
12361 	 *
12362 	 * Note that end_block is actually the block that follows the last
12363 	 * block of the request, but that's what is needed for the computation.
12364 	 */
12365 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12366 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12367 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12368 	    un->un_tgt_blocksize;
12369 
12370 	/* request_bytes is rounded up to a multiple of the target block size */
12371 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12372 
12373 	/*
12374 	 * See if the starting address of the request and the request
12375 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12376 	 * then we do not need to allocate a shadow buf to handle the request.
12377 	 */
12378 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12379 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12380 		is_aligned = TRUE;
12381 	}
12382 
12383 	if ((bp->b_flags & B_READ) == 0) {
12384 		/*
12385 		 * Lock the range for a write operation. An aligned request is
12386 		 * considered a simple write; otherwise the request must be a
12387 		 * read-modify-write.
12388 		 */
12389 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12390 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12391 	}
12392 
12393 	/*
12394 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12395 	 * where the READ command is generated for a read-modify-write. (The
12396 	 * write phase is deferred until after the read completes.)
12397 	 */
12398 	if (is_aligned == FALSE) {
12399 
12400 		struct sd_mapblocksize_info	*shadow_bsp;
12401 		struct sd_xbuf	*shadow_xp;
12402 		struct buf	*shadow_bp;
12403 
12404 		/*
12405 		 * Allocate the shadow buf and it associated xbuf. Note that
12406 		 * after this call the xb_blkno value in both the original
12407 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12408 		 * same: absolute relative to the start of the device, and
12409 		 * adjusted for the target block size. The b_blkno in the
12410 		 * shadow buf will also be set to this value. We should never
12411 		 * change b_blkno in the original bp however.
12412 		 *
12413 		 * Note also that the shadow buf will always need to be a
12414 		 * READ command, regardless of whether the incoming command
12415 		 * is a READ or a WRITE.
12416 		 */
12417 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12418 		    xp->xb_blkno,
12419 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12420 
12421 		shadow_xp = SD_GET_XBUF(shadow_bp);
12422 
12423 		/*
12424 		 * Allocate the layer-private data for the shadow buf.
12425 		 * (No need to preserve xb_private in the shadow xbuf.)
12426 		 */
12427 		shadow_xp->xb_private = shadow_bsp =
12428 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12429 
12430 		/*
12431 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12432 		 * to figure out where the start of the user data is (based upon
12433 		 * the system block size) in the data returned by the READ
12434 		 * command (which will be based upon the target blocksize). Note
12435 		 * that this is only really used if the request is unaligned.
12436 		 */
12437 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12438 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12439 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12440 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12441 
12442 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12443 
12444 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12445 
12446 		/* Transfer the wmap (if any) to the shadow buf */
12447 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12448 		bsp->mbs_wmp = NULL;
12449 
12450 		/*
12451 		 * The shadow buf goes on from here in place of the
12452 		 * original buf.
12453 		 */
12454 		shadow_bsp->mbs_orig_bp = bp;
12455 		bp = shadow_bp;
12456 	}
12457 
12458 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12459 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12460 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12461 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12462 	    request_bytes);
12463 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12464 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12465 
12466 done:
12467 	SD_NEXT_IOSTART(index, un, bp);
12468 
12469 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12470 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12471 }
12472 
12473 
12474 /*
12475  *    Function: sd_mapblocksize_iodone
12476  *
12477  * Description: Completion side processing for block-size mapping.
12478  *
12479  *     Context: May be called under interrupt context
12480  */
12481 
12482 static void
12483 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12484 {
12485 	struct sd_mapblocksize_info	*bsp;
12486 	struct sd_xbuf	*xp;
12487 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12488 	struct buf	*orig_bp;	/* ptr to the original buf */
12489 	offset_t	shadow_end;
12490 	offset_t	request_end;
12491 	offset_t	shadow_start;
12492 	ssize_t		copy_offset;
12493 	size_t		copy_length;
12494 	size_t		shortfall;
12495 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12496 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12497 
12498 	ASSERT(un != NULL);
12499 	ASSERT(bp != NULL);
12500 
12501 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12502 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12503 
12504 	/*
12505 	 * There is no shadow buf or layer-private data if the target is
12506 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12507 	 */
12508 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12509 	    (bp->b_bcount == 0)) {
12510 		goto exit;
12511 	}
12512 
12513 	xp = SD_GET_XBUF(bp);
12514 	ASSERT(xp != NULL);
12515 
12516 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12517 	bsp = xp->xb_private;
12518 
12519 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12520 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12521 
12522 	if (is_write) {
12523 		/*
12524 		 * For a WRITE request we must free up the block range that
12525 		 * we have locked up.  This holds regardless of whether this is
12526 		 * an aligned write request or a read-modify-write request.
12527 		 */
12528 		sd_range_unlock(un, bsp->mbs_wmp);
12529 		bsp->mbs_wmp = NULL;
12530 	}
12531 
12532 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12533 		/*
12534 		 * An aligned read or write command will have no shadow buf;
12535 		 * there is not much else to do with it.
12536 		 */
12537 		goto done;
12538 	}
12539 
12540 	orig_bp = bsp->mbs_orig_bp;
12541 	ASSERT(orig_bp != NULL);
12542 	orig_xp = SD_GET_XBUF(orig_bp);
12543 	ASSERT(orig_xp != NULL);
12544 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12545 
12546 	if (!is_write && has_wmap) {
12547 		/*
12548 		 * A READ with a wmap means this is the READ phase of a
12549 		 * read-modify-write. If an error occurred on the READ then
12550 		 * we do not proceed with the WRITE phase or copy any data.
12551 		 * Just release the write maps and return with an error.
12552 		 */
12553 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12554 			orig_bp->b_resid = orig_bp->b_bcount;
12555 			bioerror(orig_bp, bp->b_error);
12556 			sd_range_unlock(un, bsp->mbs_wmp);
12557 			goto freebuf_done;
12558 		}
12559 	}
12560 
12561 	/*
12562 	 * Here is where we set up to copy the data from the shadow buf
12563 	 * into the space associated with the original buf.
12564 	 *
12565 	 * To deal with the conversion between block sizes, these
12566 	 * computations treat the data as an array of bytes, with the
12567 	 * first byte (byte 0) corresponding to the first byte in the
12568 	 * first block on the disk.
12569 	 */
12570 
12571 	/*
12572 	 * shadow_start and shadow_len indicate the location and size of
12573 	 * the data returned with the shadow IO request.
12574 	 */
12575 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12576 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12577 
12578 	/*
12579 	 * copy_offset gives the offset (in bytes) from the start of the first
12580 	 * block of the READ request to the beginning of the data.  We retrieve
12581 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12582 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12583 	 * data to be copied (in bytes).
12584 	 */
12585 	copy_offset  = bsp->mbs_copy_offset;
12586 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12587 	copy_length  = orig_bp->b_bcount;
12588 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12589 
12590 	/*
12591 	 * Set up the resid and error fields of orig_bp as appropriate.
12592 	 */
12593 	if (shadow_end >= request_end) {
12594 		/* We got all the requested data; set resid to zero */
12595 		orig_bp->b_resid = 0;
12596 	} else {
12597 		/*
12598 		 * We failed to get enough data to fully satisfy the original
12599 		 * request. Just copy back whatever data we got and set
12600 		 * up the residual and error code as required.
12601 		 *
12602 		 * 'shortfall' is the amount by which the data received with the
12603 		 * shadow buf has "fallen short" of the requested amount.
12604 		 */
12605 		shortfall = (size_t)(request_end - shadow_end);
12606 
12607 		if (shortfall > orig_bp->b_bcount) {
12608 			/*
12609 			 * We did not get enough data to even partially
12610 			 * fulfill the original request.  The residual is
12611 			 * equal to the amount requested.
12612 			 */
12613 			orig_bp->b_resid = orig_bp->b_bcount;
12614 		} else {
12615 			/*
12616 			 * We did not get all the data that we requested
12617 			 * from the device, but we will try to return what
12618 			 * portion we did get.
12619 			 */
12620 			orig_bp->b_resid = shortfall;
12621 		}
12622 		ASSERT(copy_length >= orig_bp->b_resid);
12623 		copy_length  -= orig_bp->b_resid;
12624 	}
12625 
12626 	/* Propagate the error code from the shadow buf to the original buf */
12627 	bioerror(orig_bp, bp->b_error);
12628 
12629 	if (is_write) {
12630 		goto freebuf_done;	/* No data copying for a WRITE */
12631 	}
12632 
12633 	if (has_wmap) {
12634 		/*
12635 		 * This is a READ command from the READ phase of a
12636 		 * read-modify-write request. We have to copy the data given
12637 		 * by the user OVER the data returned by the READ command,
12638 		 * then convert the command from a READ to a WRITE and send
12639 		 * it back to the target.
12640 		 */
12641 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12642 		    copy_length);
12643 
12644 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12645 
12646 		/*
12647 		 * Dispatch the WRITE command to the taskq thread, which
12648 		 * will in turn send the command to the target. When the
12649 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12650 		 * will get called again as part of the iodone chain
12651 		 * processing for it. Note that we will still be dealing
12652 		 * with the shadow buf at that point.
12653 		 */
12654 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12655 		    KM_NOSLEEP) != 0) {
12656 			/*
12657 			 * Dispatch was successful so we are done. Return
12658 			 * without going any higher up the iodone chain. Do
12659 			 * not free up any layer-private data until after the
12660 			 * WRITE completes.
12661 			 */
12662 			return;
12663 		}
12664 
12665 		/*
12666 		 * Dispatch of the WRITE command failed; set up the error
12667 		 * condition and send this IO back up the iodone chain.
12668 		 */
12669 		bioerror(orig_bp, EIO);
12670 		orig_bp->b_resid = orig_bp->b_bcount;
12671 
12672 	} else {
12673 		/*
12674 		 * This is a regular READ request (ie, not a RMW). Copy the
12675 		 * data from the shadow buf into the original buf. The
12676 		 * copy_offset compensates for any "misalignment" between the
12677 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12678 		 * original buf (with its un->un_sys_blocksize blocks).
12679 		 */
12680 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12681 		    copy_length);
12682 	}
12683 
12684 freebuf_done:
12685 
12686 	/*
12687 	 * At this point we still have both the shadow buf AND the original
12688 	 * buf to deal with, as well as the layer-private data area in each.
12689 	 * Local variables are as follows:
12690 	 *
12691 	 * bp -- points to shadow buf
12692 	 * xp -- points to xbuf of shadow buf
12693 	 * bsp -- points to layer-private data area of shadow buf
12694 	 * orig_bp -- points to original buf
12695 	 *
12696 	 * First free the shadow buf and its associated xbuf, then free the
12697 	 * layer-private data area from the shadow buf. There is no need to
12698 	 * restore xb_private in the shadow xbuf.
12699 	 */
12700 	sd_shadow_buf_free(bp);
12701 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12702 
12703 	/*
12704 	 * Now update the local variables to point to the original buf, xbuf,
12705 	 * and layer-private area.
12706 	 */
12707 	bp = orig_bp;
12708 	xp = SD_GET_XBUF(bp);
12709 	ASSERT(xp != NULL);
12710 	ASSERT(xp == orig_xp);
12711 	bsp = xp->xb_private;
12712 	ASSERT(bsp != NULL);
12713 
12714 done:
12715 	/*
12716 	 * Restore xb_private to whatever it was set to by the next higher
12717 	 * layer in the chain, then free the layer-private data area.
12718 	 */
12719 	xp->xb_private = bsp->mbs_oprivate;
12720 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12721 
12722 exit:
12723 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12724 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12725 
12726 	SD_NEXT_IODONE(index, un, bp);
12727 }
12728 
12729 
12730 /*
12731  *    Function: sd_checksum_iostart
12732  *
12733  * Description: A stub function for a layer that's currently not used.
12734  *		For now just a placeholder.
12735  *
12736  *     Context: Kernel thread context
12737  */
12738 
12739 static void
12740 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12741 {
12742 	ASSERT(un != NULL);
12743 	ASSERT(bp != NULL);
12744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12745 	SD_NEXT_IOSTART(index, un, bp);
12746 }
12747 
12748 
12749 /*
12750  *    Function: sd_checksum_iodone
12751  *
12752  * Description: A stub function for a layer that's currently not used.
12753  *		For now just a placeholder.
12754  *
12755  *     Context: May be called under interrupt context
12756  */
12757 
12758 static void
12759 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12760 {
12761 	ASSERT(un != NULL);
12762 	ASSERT(bp != NULL);
12763 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12764 	SD_NEXT_IODONE(index, un, bp);
12765 }
12766 
12767 
12768 /*
12769  *    Function: sd_checksum_uscsi_iostart
12770  *
12771  * Description: A stub function for a layer that's currently not used.
12772  *		For now just a placeholder.
12773  *
12774  *     Context: Kernel thread context
12775  */
12776 
12777 static void
12778 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12779 {
12780 	ASSERT(un != NULL);
12781 	ASSERT(bp != NULL);
12782 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12783 	SD_NEXT_IOSTART(index, un, bp);
12784 }
12785 
12786 
12787 /*
12788  *    Function: sd_checksum_uscsi_iodone
12789  *
12790  * Description: A stub function for a layer that's currently not used.
12791  *		For now just a placeholder.
12792  *
12793  *     Context: May be called under interrupt context
12794  */
12795 
12796 static void
12797 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12798 {
12799 	ASSERT(un != NULL);
12800 	ASSERT(bp != NULL);
12801 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12802 	SD_NEXT_IODONE(index, un, bp);
12803 }
12804 
12805 
12806 /*
12807  *    Function: sd_pm_iostart
12808  *
12809  * Description: iostart-side routine for Power mangement.
12810  *
12811  *     Context: Kernel thread context
12812  */
12813 
12814 static void
12815 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12816 {
12817 	ASSERT(un != NULL);
12818 	ASSERT(bp != NULL);
12819 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12820 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12821 
12822 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12823 
12824 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12825 		/*
12826 		 * Set up to return the failed buf back up the 'iodone'
12827 		 * side of the calling chain.
12828 		 */
12829 		bioerror(bp, EIO);
12830 		bp->b_resid = bp->b_bcount;
12831 
12832 		SD_BEGIN_IODONE(index, un, bp);
12833 
12834 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12835 		return;
12836 	}
12837 
12838 	SD_NEXT_IOSTART(index, un, bp);
12839 
12840 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12841 }
12842 
12843 
12844 /*
12845  *    Function: sd_pm_iodone
12846  *
12847  * Description: iodone-side routine for power mangement.
12848  *
12849  *     Context: may be called from interrupt context
12850  */
12851 
12852 static void
12853 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12854 {
12855 	ASSERT(un != NULL);
12856 	ASSERT(bp != NULL);
12857 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12858 
12859 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12860 
12861 	/*
12862 	 * After attach the following flag is only read, so don't
12863 	 * take the penalty of acquiring a mutex for it.
12864 	 */
12865 	if (un->un_f_pm_is_enabled == TRUE) {
12866 		sd_pm_exit(un);
12867 	}
12868 
12869 	SD_NEXT_IODONE(index, un, bp);
12870 
12871 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12872 }
12873 
12874 
12875 /*
12876  *    Function: sd_core_iostart
12877  *
12878  * Description: Primary driver function for enqueuing buf(9S) structs from
12879  *		the system and initiating IO to the target device
12880  *
12881  *     Context: Kernel thread context. Can sleep.
12882  *
12883  * Assumptions:  - The given xp->xb_blkno is absolute
12884  *		   (ie, relative to the start of the device).
12885  *		 - The IO is to be done using the native blocksize of
12886  *		   the device, as specified in un->un_tgt_blocksize.
12887  */
12888 /* ARGSUSED */
12889 static void
12890 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12891 {
12892 	struct sd_xbuf *xp;
12893 
12894 	ASSERT(un != NULL);
12895 	ASSERT(bp != NULL);
12896 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12897 	ASSERT(bp->b_resid == 0);
12898 
12899 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12900 
12901 	xp = SD_GET_XBUF(bp);
12902 	ASSERT(xp != NULL);
12903 
12904 	mutex_enter(SD_MUTEX(un));
12905 
12906 	/*
12907 	 * If we are currently in the failfast state, fail any new IO
12908 	 * that has B_FAILFAST set, then return.
12909 	 */
12910 	if ((bp->b_flags & B_FAILFAST) &&
12911 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12912 		mutex_exit(SD_MUTEX(un));
12913 		bioerror(bp, EIO);
12914 		bp->b_resid = bp->b_bcount;
12915 		SD_BEGIN_IODONE(index, un, bp);
12916 		return;
12917 	}
12918 
12919 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12920 		/*
12921 		 * Priority command -- transport it immediately.
12922 		 *
12923 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12924 		 * because all direct priority commands should be associated
12925 		 * with error recovery actions which we don't want to retry.
12926 		 */
12927 		sd_start_cmds(un, bp);
12928 	} else {
12929 		/*
12930 		 * Normal command -- add it to the wait queue, then start
12931 		 * transporting commands from the wait queue.
12932 		 */
12933 		sd_add_buf_to_waitq(un, bp);
12934 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12935 		sd_start_cmds(un, NULL);
12936 	}
12937 
12938 	mutex_exit(SD_MUTEX(un));
12939 
12940 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12941 }
12942 
12943 
12944 /*
12945  *    Function: sd_init_cdb_limits
12946  *
12947  * Description: This is to handle scsi_pkt initialization differences
12948  *		between the driver platforms.
12949  *
12950  *		Legacy behaviors:
12951  *
12952  *		If the block number or the sector count exceeds the
12953  *		capabilities of a Group 0 command, shift over to a
12954  *		Group 1 command. We don't blindly use Group 1
12955  *		commands because a) some drives (CDC Wren IVs) get a
12956  *		bit confused, and b) there is probably a fair amount
12957  *		of speed difference for a target to receive and decode
12958  *		a 10 byte command instead of a 6 byte command.
12959  *
12960  *		The xfer time difference of 6 vs 10 byte CDBs is
12961  *		still significant so this code is still worthwhile.
12962  *		10 byte CDBs are very inefficient with the fas HBA driver
12963  *		and older disks. Each CDB byte took 1 usec with some
12964  *		popular disks.
12965  *
12966  *     Context: Must be called at attach time
12967  */
12968 
12969 static void
12970 sd_init_cdb_limits(struct sd_lun *un)
12971 {
12972 	int hba_cdb_limit;
12973 
12974 	/*
12975 	 * Use CDB_GROUP1 commands for most devices except for
12976 	 * parallel SCSI fixed drives in which case we get better
12977 	 * performance using CDB_GROUP0 commands (where applicable).
12978 	 */
12979 	un->un_mincdb = SD_CDB_GROUP1;
12980 #if !defined(__fibre)
12981 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12982 	    !un->un_f_has_removable_media) {
12983 		un->un_mincdb = SD_CDB_GROUP0;
12984 	}
12985 #endif
12986 
12987 	/*
12988 	 * Try to read the max-cdb-length supported by HBA.
12989 	 */
12990 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
12991 	if (0 >= un->un_max_hba_cdb) {
12992 		un->un_max_hba_cdb = CDB_GROUP4;
12993 		hba_cdb_limit = SD_CDB_GROUP4;
12994 	} else if (0 < un->un_max_hba_cdb &&
12995 	    un->un_max_hba_cdb < CDB_GROUP1) {
12996 		hba_cdb_limit = SD_CDB_GROUP0;
12997 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
12998 	    un->un_max_hba_cdb < CDB_GROUP5) {
12999 		hba_cdb_limit = SD_CDB_GROUP1;
13000 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13001 	    un->un_max_hba_cdb < CDB_GROUP4) {
13002 		hba_cdb_limit = SD_CDB_GROUP5;
13003 	} else {
13004 		hba_cdb_limit = SD_CDB_GROUP4;
13005 	}
13006 
13007 	/*
13008 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13009 	 * commands for fixed disks unless we are building for a 32 bit
13010 	 * kernel.
13011 	 */
13012 #ifdef _LP64
13013 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13014 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13015 #else
13016 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13017 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13018 #endif
13019 
13020 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13021 	    ? sizeof (struct scsi_arq_status) : 1);
13022 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13023 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13024 }
13025 
13026 
13027 /*
13028  *    Function: sd_initpkt_for_buf
13029  *
13030  * Description: Allocate and initialize for transport a scsi_pkt struct,
13031  *		based upon the info specified in the given buf struct.
13032  *
13033  *		Assumes the xb_blkno in the request is absolute (ie,
13034  *		relative to the start of the device (NOT partition!).
13035  *		Also assumes that the request is using the native block
13036  *		size of the device (as returned by the READ CAPACITY
13037  *		command).
13038  *
13039  * Return Code: SD_PKT_ALLOC_SUCCESS
13040  *		SD_PKT_ALLOC_FAILURE
13041  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13042  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13043  *
13044  *     Context: Kernel thread and may be called from software interrupt context
13045  *		as part of a sdrunout callback. This function may not block or
13046  *		call routines that block
13047  */
13048 
13049 static int
13050 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13051 {
13052 	struct sd_xbuf	*xp;
13053 	struct scsi_pkt *pktp = NULL;
13054 	struct sd_lun	*un;
13055 	size_t		blockcount;
13056 	daddr_t		startblock;
13057 	int		rval;
13058 	int		cmd_flags;
13059 
13060 	ASSERT(bp != NULL);
13061 	ASSERT(pktpp != NULL);
13062 	xp = SD_GET_XBUF(bp);
13063 	ASSERT(xp != NULL);
13064 	un = SD_GET_UN(bp);
13065 	ASSERT(un != NULL);
13066 	ASSERT(mutex_owned(SD_MUTEX(un)));
13067 	ASSERT(bp->b_resid == 0);
13068 
13069 	SD_TRACE(SD_LOG_IO_CORE, un,
13070 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13071 
13072 	mutex_exit(SD_MUTEX(un));
13073 
13074 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13075 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13076 		/*
13077 		 * Already have a scsi_pkt -- just need DMA resources.
13078 		 * We must recompute the CDB in case the mapping returns
13079 		 * a nonzero pkt_resid.
13080 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13081 		 * that is being retried, the unmap/remap of the DMA resouces
13082 		 * will result in the entire transfer starting over again
13083 		 * from the very first block.
13084 		 */
13085 		ASSERT(xp->xb_pktp != NULL);
13086 		pktp = xp->xb_pktp;
13087 	} else {
13088 		pktp = NULL;
13089 	}
13090 #endif /* __i386 || __amd64 */
13091 
13092 	startblock = xp->xb_blkno;	/* Absolute block num. */
13093 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13094 
13095 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13096 
13097 	/*
13098 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13099 	 * call scsi_init_pkt, and build the CDB.
13100 	 */
13101 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13102 	    cmd_flags, sdrunout, (caddr_t)un,
13103 	    startblock, blockcount);
13104 
13105 	if (rval == 0) {
13106 		/*
13107 		 * Success.
13108 		 *
13109 		 * If partial DMA is being used and required for this transfer.
13110 		 * set it up here.
13111 		 */
13112 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13113 		    (pktp->pkt_resid != 0)) {
13114 
13115 			/*
13116 			 * Save the CDB length and pkt_resid for the
13117 			 * next xfer
13118 			 */
13119 			xp->xb_dma_resid = pktp->pkt_resid;
13120 
13121 			/* rezero resid */
13122 			pktp->pkt_resid = 0;
13123 
13124 		} else {
13125 			xp->xb_dma_resid = 0;
13126 		}
13127 
13128 		pktp->pkt_flags = un->un_tagflags;
13129 		pktp->pkt_time  = un->un_cmd_timeout;
13130 		pktp->pkt_comp  = sdintr;
13131 
13132 		pktp->pkt_private = bp;
13133 		*pktpp = pktp;
13134 
13135 		SD_TRACE(SD_LOG_IO_CORE, un,
13136 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13137 
13138 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13139 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13140 #endif
13141 
13142 		mutex_enter(SD_MUTEX(un));
13143 		return (SD_PKT_ALLOC_SUCCESS);
13144 
13145 	}
13146 
13147 	/*
13148 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13149 	 * from sd_setup_rw_pkt.
13150 	 */
13151 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13152 
13153 	if (rval == SD_PKT_ALLOC_FAILURE) {
13154 		*pktpp = NULL;
13155 		/*
13156 		 * Set the driver state to RWAIT to indicate the driver
13157 		 * is waiting on resource allocations. The driver will not
13158 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13159 		 */
13160 		mutex_enter(SD_MUTEX(un));
13161 		New_state(un, SD_STATE_RWAIT);
13162 
13163 		SD_ERROR(SD_LOG_IO_CORE, un,
13164 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13165 
13166 		if ((bp->b_flags & B_ERROR) != 0) {
13167 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13168 		}
13169 		return (SD_PKT_ALLOC_FAILURE);
13170 	} else {
13171 		/*
13172 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13173 		 *
13174 		 * This should never happen.  Maybe someone messed with the
13175 		 * kernel's minphys?
13176 		 */
13177 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13178 		    "Request rejected: too large for CDB: "
13179 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13180 		SD_ERROR(SD_LOG_IO_CORE, un,
13181 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13182 		mutex_enter(SD_MUTEX(un));
13183 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13184 
13185 	}
13186 }
13187 
13188 
13189 /*
13190  *    Function: sd_destroypkt_for_buf
13191  *
13192  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13193  *
13194  *     Context: Kernel thread or interrupt context
13195  */
13196 
13197 static void
13198 sd_destroypkt_for_buf(struct buf *bp)
13199 {
13200 	ASSERT(bp != NULL);
13201 	ASSERT(SD_GET_UN(bp) != NULL);
13202 
13203 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13204 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13205 
13206 	ASSERT(SD_GET_PKTP(bp) != NULL);
13207 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13208 
13209 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13210 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13211 }
13212 
13213 /*
13214  *    Function: sd_setup_rw_pkt
13215  *
13216  * Description: Determines appropriate CDB group for the requested LBA
13217  *		and transfer length, calls scsi_init_pkt, and builds
13218  *		the CDB.  Do not use for partial DMA transfers except
13219  *		for the initial transfer since the CDB size must
13220  *		remain constant.
13221  *
13222  *     Context: Kernel thread and may be called from software interrupt
13223  *		context as part of a sdrunout callback. This function may not
13224  *		block or call routines that block
13225  */
13226 
13227 
13228 int
13229 sd_setup_rw_pkt(struct sd_lun *un,
13230     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13231     int (*callback)(caddr_t), caddr_t callback_arg,
13232     diskaddr_t lba, uint32_t blockcount)
13233 {
13234 	struct scsi_pkt *return_pktp;
13235 	union scsi_cdb *cdbp;
13236 	struct sd_cdbinfo *cp = NULL;
13237 	int i;
13238 
13239 	/*
13240 	 * See which size CDB to use, based upon the request.
13241 	 */
13242 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13243 
13244 		/*
13245 		 * Check lba and block count against sd_cdbtab limits.
13246 		 * In the partial DMA case, we have to use the same size
13247 		 * CDB for all the transfers.  Check lba + blockcount
13248 		 * against the max LBA so we know that segment of the
13249 		 * transfer can use the CDB we select.
13250 		 */
13251 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13252 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13253 
13254 			/*
13255 			 * The command will fit into the CDB type
13256 			 * specified by sd_cdbtab[i].
13257 			 */
13258 			cp = sd_cdbtab + i;
13259 
13260 			/*
13261 			 * Call scsi_init_pkt so we can fill in the
13262 			 * CDB.
13263 			 */
13264 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13265 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13266 			    flags, callback, callback_arg);
13267 
13268 			if (return_pktp != NULL) {
13269 
13270 				/*
13271 				 * Return new value of pkt
13272 				 */
13273 				*pktpp = return_pktp;
13274 
13275 				/*
13276 				 * To be safe, zero the CDB insuring there is
13277 				 * no leftover data from a previous command.
13278 				 */
13279 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13280 
13281 				/*
13282 				 * Handle partial DMA mapping
13283 				 */
13284 				if (return_pktp->pkt_resid != 0) {
13285 
13286 					/*
13287 					 * Not going to xfer as many blocks as
13288 					 * originally expected
13289 					 */
13290 					blockcount -=
13291 					    SD_BYTES2TGTBLOCKS(un,
13292 					    return_pktp->pkt_resid);
13293 				}
13294 
13295 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13296 
13297 				/*
13298 				 * Set command byte based on the CDB
13299 				 * type we matched.
13300 				 */
13301 				cdbp->scc_cmd = cp->sc_grpmask |
13302 				    ((bp->b_flags & B_READ) ?
13303 				    SCMD_READ : SCMD_WRITE);
13304 
13305 				SD_FILL_SCSI1_LUN(un, return_pktp);
13306 
13307 				/*
13308 				 * Fill in LBA and length
13309 				 */
13310 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13311 				    (cp->sc_grpcode == CDB_GROUP4) ||
13312 				    (cp->sc_grpcode == CDB_GROUP0) ||
13313 				    (cp->sc_grpcode == CDB_GROUP5));
13314 
13315 				if (cp->sc_grpcode == CDB_GROUP1) {
13316 					FORMG1ADDR(cdbp, lba);
13317 					FORMG1COUNT(cdbp, blockcount);
13318 					return (0);
13319 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13320 					FORMG4LONGADDR(cdbp, lba);
13321 					FORMG4COUNT(cdbp, blockcount);
13322 					return (0);
13323 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13324 					FORMG0ADDR(cdbp, lba);
13325 					FORMG0COUNT(cdbp, blockcount);
13326 					return (0);
13327 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13328 					FORMG5ADDR(cdbp, lba);
13329 					FORMG5COUNT(cdbp, blockcount);
13330 					return (0);
13331 				}
13332 
13333 				/*
13334 				 * It should be impossible to not match one
13335 				 * of the CDB types above, so we should never
13336 				 * reach this point.  Set the CDB command byte
13337 				 * to test-unit-ready to avoid writing
13338 				 * to somewhere we don't intend.
13339 				 */
13340 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13341 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13342 			} else {
13343 				/*
13344 				 * Couldn't get scsi_pkt
13345 				 */
13346 				return (SD_PKT_ALLOC_FAILURE);
13347 			}
13348 		}
13349 	}
13350 
13351 	/*
13352 	 * None of the available CDB types were suitable.  This really
13353 	 * should never happen:  on a 64 bit system we support
13354 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13355 	 * and on a 32 bit system we will refuse to bind to a device
13356 	 * larger than 2TB so addresses will never be larger than 32 bits.
13357 	 */
13358 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13359 }
13360 
13361 /*
13362  *    Function: sd_setup_next_rw_pkt
13363  *
13364  * Description: Setup packet for partial DMA transfers, except for the
13365  * 		initial transfer.  sd_setup_rw_pkt should be used for
13366  *		the initial transfer.
13367  *
13368  *     Context: Kernel thread and may be called from interrupt context.
13369  */
13370 
13371 int
13372 sd_setup_next_rw_pkt(struct sd_lun *un,
13373     struct scsi_pkt *pktp, struct buf *bp,
13374     diskaddr_t lba, uint32_t blockcount)
13375 {
13376 	uchar_t com;
13377 	union scsi_cdb *cdbp;
13378 	uchar_t cdb_group_id;
13379 
13380 	ASSERT(pktp != NULL);
13381 	ASSERT(pktp->pkt_cdbp != NULL);
13382 
13383 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13384 	com = cdbp->scc_cmd;
13385 	cdb_group_id = CDB_GROUPID(com);
13386 
13387 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13388 	    (cdb_group_id == CDB_GROUPID_1) ||
13389 	    (cdb_group_id == CDB_GROUPID_4) ||
13390 	    (cdb_group_id == CDB_GROUPID_5));
13391 
13392 	/*
13393 	 * Move pkt to the next portion of the xfer.
13394 	 * func is NULL_FUNC so we do not have to release
13395 	 * the disk mutex here.
13396 	 */
13397 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13398 	    NULL_FUNC, NULL) == pktp) {
13399 		/* Success.  Handle partial DMA */
13400 		if (pktp->pkt_resid != 0) {
13401 			blockcount -=
13402 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13403 		}
13404 
13405 		cdbp->scc_cmd = com;
13406 		SD_FILL_SCSI1_LUN(un, pktp);
13407 		if (cdb_group_id == CDB_GROUPID_1) {
13408 			FORMG1ADDR(cdbp, lba);
13409 			FORMG1COUNT(cdbp, blockcount);
13410 			return (0);
13411 		} else if (cdb_group_id == CDB_GROUPID_4) {
13412 			FORMG4LONGADDR(cdbp, lba);
13413 			FORMG4COUNT(cdbp, blockcount);
13414 			return (0);
13415 		} else if (cdb_group_id == CDB_GROUPID_0) {
13416 			FORMG0ADDR(cdbp, lba);
13417 			FORMG0COUNT(cdbp, blockcount);
13418 			return (0);
13419 		} else if (cdb_group_id == CDB_GROUPID_5) {
13420 			FORMG5ADDR(cdbp, lba);
13421 			FORMG5COUNT(cdbp, blockcount);
13422 			return (0);
13423 		}
13424 
13425 		/* Unreachable */
13426 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13427 	}
13428 
13429 	/*
13430 	 * Error setting up next portion of cmd transfer.
13431 	 * Something is definitely very wrong and this
13432 	 * should not happen.
13433 	 */
13434 	return (SD_PKT_ALLOC_FAILURE);
13435 }
13436 
13437 /*
13438  *    Function: sd_initpkt_for_uscsi
13439  *
13440  * Description: Allocate and initialize for transport a scsi_pkt struct,
13441  *		based upon the info specified in the given uscsi_cmd struct.
13442  *
13443  * Return Code: SD_PKT_ALLOC_SUCCESS
13444  *		SD_PKT_ALLOC_FAILURE
13445  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13446  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13447  *
13448  *     Context: Kernel thread and may be called from software interrupt context
13449  *		as part of a sdrunout callback. This function may not block or
13450  *		call routines that block
13451  */
13452 
13453 static int
13454 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13455 {
13456 	struct uscsi_cmd *uscmd;
13457 	struct sd_xbuf	*xp;
13458 	struct scsi_pkt	*pktp;
13459 	struct sd_lun	*un;
13460 	uint32_t	flags = 0;
13461 
13462 	ASSERT(bp != NULL);
13463 	ASSERT(pktpp != NULL);
13464 	xp = SD_GET_XBUF(bp);
13465 	ASSERT(xp != NULL);
13466 	un = SD_GET_UN(bp);
13467 	ASSERT(un != NULL);
13468 	ASSERT(mutex_owned(SD_MUTEX(un)));
13469 
13470 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13471 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13472 	ASSERT(uscmd != NULL);
13473 
13474 	SD_TRACE(SD_LOG_IO_CORE, un,
13475 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13476 
13477 	/*
13478 	 * Allocate the scsi_pkt for the command.
13479 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13480 	 *	 during scsi_init_pkt time and will continue to use the
13481 	 *	 same path as long as the same scsi_pkt is used without
13482 	 *	 intervening scsi_dma_free(). Since uscsi command does
13483 	 *	 not call scsi_dmafree() before retry failed command, it
13484 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13485 	 *	 set such that scsi_vhci can use other available path for
13486 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13487 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13488 	 */
13489 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13490 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13491 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13492 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
13493 		    - sizeof (struct scsi_extended_sense)), 0,
13494 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
13495 		    sdrunout, (caddr_t)un);
13496 	} else {
13497 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13498 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13499 		    sizeof (struct scsi_arq_status), 0,
13500 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13501 		    sdrunout, (caddr_t)un);
13502 	}
13503 
13504 	if (pktp == NULL) {
13505 		*pktpp = NULL;
13506 		/*
13507 		 * Set the driver state to RWAIT to indicate the driver
13508 		 * is waiting on resource allocations. The driver will not
13509 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13510 		 */
13511 		New_state(un, SD_STATE_RWAIT);
13512 
13513 		SD_ERROR(SD_LOG_IO_CORE, un,
13514 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13515 
13516 		if ((bp->b_flags & B_ERROR) != 0) {
13517 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13518 		}
13519 		return (SD_PKT_ALLOC_FAILURE);
13520 	}
13521 
13522 	/*
13523 	 * We do not do DMA breakup for USCSI commands, so return failure
13524 	 * here if all the needed DMA resources were not allocated.
13525 	 */
13526 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13527 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13528 		scsi_destroy_pkt(pktp);
13529 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13530 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13531 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13532 	}
13533 
13534 	/* Init the cdb from the given uscsi struct */
13535 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13536 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13537 
13538 	SD_FILL_SCSI1_LUN(un, pktp);
13539 
13540 	/*
13541 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13542 	 * for listing of the supported flags.
13543 	 */
13544 
13545 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13546 		flags |= FLAG_SILENT;
13547 	}
13548 
13549 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13550 		flags |= FLAG_DIAGNOSE;
13551 	}
13552 
13553 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13554 		flags |= FLAG_ISOLATE;
13555 	}
13556 
13557 	if (un->un_f_is_fibre == FALSE) {
13558 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13559 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13560 		}
13561 	}
13562 
13563 	/*
13564 	 * Set the pkt flags here so we save time later.
13565 	 * Note: These flags are NOT in the uscsi man page!!!
13566 	 */
13567 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13568 		flags |= FLAG_HEAD;
13569 	}
13570 
13571 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13572 		flags |= FLAG_NOINTR;
13573 	}
13574 
13575 	/*
13576 	 * For tagged queueing, things get a bit complicated.
13577 	 * Check first for head of queue and last for ordered queue.
13578 	 * If neither head nor order, use the default driver tag flags.
13579 	 */
13580 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13581 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13582 			flags |= FLAG_HTAG;
13583 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13584 			flags |= FLAG_OTAG;
13585 		} else {
13586 			flags |= un->un_tagflags & FLAG_TAGMASK;
13587 		}
13588 	}
13589 
13590 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13591 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13592 	}
13593 
13594 	pktp->pkt_flags = flags;
13595 
13596 	/* Transfer uscsi information to scsi_pkt */
13597 	(void) scsi_uscsi_pktinit(uscmd, pktp);
13598 
13599 	/* Copy the caller's CDB into the pkt... */
13600 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13601 
13602 	if (uscmd->uscsi_timeout == 0) {
13603 		pktp->pkt_time = un->un_uscsi_timeout;
13604 	} else {
13605 		pktp->pkt_time = uscmd->uscsi_timeout;
13606 	}
13607 
13608 	/* need it later to identify USCSI request in sdintr */
13609 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13610 
13611 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13612 
13613 	pktp->pkt_private = bp;
13614 	pktp->pkt_comp = sdintr;
13615 	*pktpp = pktp;
13616 
13617 	SD_TRACE(SD_LOG_IO_CORE, un,
13618 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13619 
13620 	return (SD_PKT_ALLOC_SUCCESS);
13621 }
13622 
13623 
13624 /*
13625  *    Function: sd_destroypkt_for_uscsi
13626  *
13627  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13628  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13629  *		struct.
13630  *
13631  *     Context: May be called under interrupt context
13632  */
13633 
13634 static void
13635 sd_destroypkt_for_uscsi(struct buf *bp)
13636 {
13637 	struct uscsi_cmd *uscmd;
13638 	struct sd_xbuf	*xp;
13639 	struct scsi_pkt	*pktp;
13640 	struct sd_lun	*un;
13641 	struct sd_uscsi_info *suip;
13642 
13643 	ASSERT(bp != NULL);
13644 	xp = SD_GET_XBUF(bp);
13645 	ASSERT(xp != NULL);
13646 	un = SD_GET_UN(bp);
13647 	ASSERT(un != NULL);
13648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13649 	pktp = SD_GET_PKTP(bp);
13650 	ASSERT(pktp != NULL);
13651 
13652 	SD_TRACE(SD_LOG_IO_CORE, un,
13653 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13654 
13655 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13656 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13657 	ASSERT(uscmd != NULL);
13658 
13659 	/* Save the status and the residual into the uscsi_cmd struct */
13660 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13661 	uscmd->uscsi_resid  = bp->b_resid;
13662 
13663 	/* Transfer scsi_pkt information to uscsi */
13664 	(void) scsi_uscsi_pktfini(pktp, uscmd);
13665 
13666 	/*
13667 	 * If enabled, copy any saved sense data into the area specified
13668 	 * by the uscsi command.
13669 	 */
13670 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13671 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13672 		/*
13673 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13674 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13675 		 */
13676 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13677 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13678 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
13679 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13680 			    MAX_SENSE_LENGTH);
13681 		} else {
13682 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
13683 			    SENSE_LENGTH);
13684 		}
13685 	}
13686 	/*
13687 	 * The following assignments are for SCSI FMA.
13688 	 */
13689 	ASSERT(xp->xb_private != NULL);
13690 	suip = (struct sd_uscsi_info *)xp->xb_private;
13691 	suip->ui_pkt_reason = pktp->pkt_reason;
13692 	suip->ui_pkt_state = pktp->pkt_state;
13693 	suip->ui_pkt_statistics = pktp->pkt_statistics;
13694 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
13695 
13696 	/* We are done with the scsi_pkt; free it now */
13697 	ASSERT(SD_GET_PKTP(bp) != NULL);
13698 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13699 
13700 	SD_TRACE(SD_LOG_IO_CORE, un,
13701 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13702 }
13703 
13704 
13705 /*
13706  *    Function: sd_bioclone_alloc
13707  *
13708  * Description: Allocate a buf(9S) and init it as per the given buf
13709  *		and the various arguments.  The associated sd_xbuf
13710  *		struct is (nearly) duplicated.  The struct buf *bp
13711  *		argument is saved in new_xp->xb_private.
13712  *
13713  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13714  *		datalen - size of data area for the shadow bp
13715  *		blkno - starting LBA
13716  *		func - function pointer for b_iodone in the shadow buf. (May
13717  *			be NULL if none.)
13718  *
13719  * Return Code: Pointer to allocates buf(9S) struct
13720  *
13721  *     Context: Can sleep.
13722  */
13723 
13724 static struct buf *
13725 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13726 	daddr_t blkno, int (*func)(struct buf *))
13727 {
13728 	struct	sd_lun	*un;
13729 	struct	sd_xbuf	*xp;
13730 	struct	sd_xbuf	*new_xp;
13731 	struct	buf	*new_bp;
13732 
13733 	ASSERT(bp != NULL);
13734 	xp = SD_GET_XBUF(bp);
13735 	ASSERT(xp != NULL);
13736 	un = SD_GET_UN(bp);
13737 	ASSERT(un != NULL);
13738 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13739 
13740 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13741 	    NULL, KM_SLEEP);
13742 
13743 	new_bp->b_lblkno	= blkno;
13744 
13745 	/*
13746 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13747 	 * original xbuf into it.
13748 	 */
13749 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13750 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13751 
13752 	/*
13753 	 * The given bp is automatically saved in the xb_private member
13754 	 * of the new xbuf.  Callers are allowed to depend on this.
13755 	 */
13756 	new_xp->xb_private = bp;
13757 
13758 	new_bp->b_private  = new_xp;
13759 
13760 	return (new_bp);
13761 }
13762 
13763 /*
13764  *    Function: sd_shadow_buf_alloc
13765  *
13766  * Description: Allocate a buf(9S) and init it as per the given buf
13767  *		and the various arguments.  The associated sd_xbuf
13768  *		struct is (nearly) duplicated.  The struct buf *bp
13769  *		argument is saved in new_xp->xb_private.
13770  *
13771  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13772  *		datalen - size of data area for the shadow bp
13773  *		bflags - B_READ or B_WRITE (pseudo flag)
13774  *		blkno - starting LBA
13775  *		func - function pointer for b_iodone in the shadow buf. (May
13776  *			be NULL if none.)
13777  *
13778  * Return Code: Pointer to allocates buf(9S) struct
13779  *
13780  *     Context: Can sleep.
13781  */
13782 
13783 static struct buf *
13784 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13785 	daddr_t blkno, int (*func)(struct buf *))
13786 {
13787 	struct	sd_lun	*un;
13788 	struct	sd_xbuf	*xp;
13789 	struct	sd_xbuf	*new_xp;
13790 	struct	buf	*new_bp;
13791 
13792 	ASSERT(bp != NULL);
13793 	xp = SD_GET_XBUF(bp);
13794 	ASSERT(xp != NULL);
13795 	un = SD_GET_UN(bp);
13796 	ASSERT(un != NULL);
13797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13798 
13799 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13800 		bp_mapin(bp);
13801 	}
13802 
13803 	bflags &= (B_READ | B_WRITE);
13804 #if defined(__i386) || defined(__amd64)
13805 	new_bp = getrbuf(KM_SLEEP);
13806 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13807 	new_bp->b_bcount = datalen;
13808 	new_bp->b_flags = bflags |
13809 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
13810 #else
13811 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13812 	    datalen, bflags, SLEEP_FUNC, NULL);
13813 #endif
13814 	new_bp->av_forw	= NULL;
13815 	new_bp->av_back	= NULL;
13816 	new_bp->b_dev	= bp->b_dev;
13817 	new_bp->b_blkno	= blkno;
13818 	new_bp->b_iodone = func;
13819 	new_bp->b_edev	= bp->b_edev;
13820 	new_bp->b_resid	= 0;
13821 
13822 	/* We need to preserve the B_FAILFAST flag */
13823 	if (bp->b_flags & B_FAILFAST) {
13824 		new_bp->b_flags |= B_FAILFAST;
13825 	}
13826 
13827 	/*
13828 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13829 	 * original xbuf into it.
13830 	 */
13831 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13832 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13833 
13834 	/* Need later to copy data between the shadow buf & original buf! */
13835 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13836 
13837 	/*
13838 	 * The given bp is automatically saved in the xb_private member
13839 	 * of the new xbuf.  Callers are allowed to depend on this.
13840 	 */
13841 	new_xp->xb_private = bp;
13842 
13843 	new_bp->b_private  = new_xp;
13844 
13845 	return (new_bp);
13846 }
13847 
13848 /*
13849  *    Function: sd_bioclone_free
13850  *
13851  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13852  *		in the larger than partition operation.
13853  *
13854  *     Context: May be called under interrupt context
13855  */
13856 
13857 static void
13858 sd_bioclone_free(struct buf *bp)
13859 {
13860 	struct sd_xbuf	*xp;
13861 
13862 	ASSERT(bp != NULL);
13863 	xp = SD_GET_XBUF(bp);
13864 	ASSERT(xp != NULL);
13865 
13866 	/*
13867 	 * Call bp_mapout() before freeing the buf,  in case a lower
13868 	 * layer or HBA  had done a bp_mapin().  we must do this here
13869 	 * as we are the "originator" of the shadow buf.
13870 	 */
13871 	bp_mapout(bp);
13872 
13873 	/*
13874 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13875 	 * never gets confused by a stale value in this field. (Just a little
13876 	 * extra defensiveness here.)
13877 	 */
13878 	bp->b_iodone = NULL;
13879 
13880 	freerbuf(bp);
13881 
13882 	kmem_free(xp, sizeof (struct sd_xbuf));
13883 }
13884 
13885 /*
13886  *    Function: sd_shadow_buf_free
13887  *
13888  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13889  *
13890  *     Context: May be called under interrupt context
13891  */
13892 
13893 static void
13894 sd_shadow_buf_free(struct buf *bp)
13895 {
13896 	struct sd_xbuf	*xp;
13897 
13898 	ASSERT(bp != NULL);
13899 	xp = SD_GET_XBUF(bp);
13900 	ASSERT(xp != NULL);
13901 
13902 #if defined(__sparc)
13903 	/*
13904 	 * Call bp_mapout() before freeing the buf,  in case a lower
13905 	 * layer or HBA  had done a bp_mapin().  we must do this here
13906 	 * as we are the "originator" of the shadow buf.
13907 	 */
13908 	bp_mapout(bp);
13909 #endif
13910 
13911 	/*
13912 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13913 	 * never gets confused by a stale value in this field. (Just a little
13914 	 * extra defensiveness here.)
13915 	 */
13916 	bp->b_iodone = NULL;
13917 
13918 #if defined(__i386) || defined(__amd64)
13919 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13920 	freerbuf(bp);
13921 #else
13922 	scsi_free_consistent_buf(bp);
13923 #endif
13924 
13925 	kmem_free(xp, sizeof (struct sd_xbuf));
13926 }
13927 
13928 
13929 /*
13930  *    Function: sd_print_transport_rejected_message
13931  *
13932  * Description: This implements the ludicrously complex rules for printing
13933  *		a "transport rejected" message.  This is to address the
13934  *		specific problem of having a flood of this error message
13935  *		produced when a failover occurs.
13936  *
13937  *     Context: Any.
13938  */
13939 
13940 static void
13941 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13942 	int code)
13943 {
13944 	ASSERT(un != NULL);
13945 	ASSERT(mutex_owned(SD_MUTEX(un)));
13946 	ASSERT(xp != NULL);
13947 
13948 	/*
13949 	 * Print the "transport rejected" message under the following
13950 	 * conditions:
13951 	 *
13952 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13953 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13954 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13955 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13956 	 *   scsi_transport(9F) (which indicates that the target might have
13957 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13958 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13959 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13960 	 *   from scsi_transport().
13961 	 *
13962 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13963 	 * the preceeding cases in order for the message to be printed.
13964 	 */
13965 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
13966 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
13967 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13968 		    (code != TRAN_FATAL_ERROR) ||
13969 		    (un->un_tran_fatal_count == 1)) {
13970 			switch (code) {
13971 			case TRAN_BADPKT:
13972 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13973 				    "transport rejected bad packet\n");
13974 				break;
13975 			case TRAN_FATAL_ERROR:
13976 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13977 				    "transport rejected fatal error\n");
13978 				break;
13979 			default:
13980 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13981 				    "transport rejected (%d)\n", code);
13982 				break;
13983 			}
13984 		}
13985 	}
13986 }
13987 
13988 
13989 /*
13990  *    Function: sd_add_buf_to_waitq
13991  *
13992  * Description: Add the given buf(9S) struct to the wait queue for the
13993  *		instance.  If sorting is enabled, then the buf is added
13994  *		to the queue via an elevator sort algorithm (a la
13995  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13996  *		If sorting is not enabled, then the buf is just added
13997  *		to the end of the wait queue.
13998  *
13999  * Return Code: void
14000  *
14001  *     Context: Does not sleep/block, therefore technically can be called
14002  *		from any context.  However if sorting is enabled then the
14003  *		execution time is indeterminate, and may take long if
14004  *		the wait queue grows large.
14005  */
14006 
14007 static void
14008 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14009 {
14010 	struct buf *ap;
14011 
14012 	ASSERT(bp != NULL);
14013 	ASSERT(un != NULL);
14014 	ASSERT(mutex_owned(SD_MUTEX(un)));
14015 
14016 	/* If the queue is empty, add the buf as the only entry & return. */
14017 	if (un->un_waitq_headp == NULL) {
14018 		ASSERT(un->un_waitq_tailp == NULL);
14019 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14020 		bp->av_forw = NULL;
14021 		return;
14022 	}
14023 
14024 	ASSERT(un->un_waitq_tailp != NULL);
14025 
14026 	/*
14027 	 * If sorting is disabled, just add the buf to the tail end of
14028 	 * the wait queue and return.
14029 	 */
14030 	if (un->un_f_disksort_disabled) {
14031 		un->un_waitq_tailp->av_forw = bp;
14032 		un->un_waitq_tailp = bp;
14033 		bp->av_forw = NULL;
14034 		return;
14035 	}
14036 
14037 	/*
14038 	 * Sort thru the list of requests currently on the wait queue
14039 	 * and add the new buf request at the appropriate position.
14040 	 *
14041 	 * The un->un_waitq_headp is an activity chain pointer on which
14042 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14043 	 * first queue holds those requests which are positioned after
14044 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14045 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14046 	 * Thus we implement a one way scan, retracting after reaching
14047 	 * the end of the drive to the first request on the second
14048 	 * queue, at which time it becomes the first queue.
14049 	 * A one-way scan is natural because of the way UNIX read-ahead
14050 	 * blocks are allocated.
14051 	 *
14052 	 * If we lie after the first request, then we must locate the
14053 	 * second request list and add ourselves to it.
14054 	 */
14055 	ap = un->un_waitq_headp;
14056 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14057 		while (ap->av_forw != NULL) {
14058 			/*
14059 			 * Look for an "inversion" in the (normally
14060 			 * ascending) block numbers. This indicates
14061 			 * the start of the second request list.
14062 			 */
14063 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14064 				/*
14065 				 * Search the second request list for the
14066 				 * first request at a larger block number.
14067 				 * We go before that; however if there is
14068 				 * no such request, we go at the end.
14069 				 */
14070 				do {
14071 					if (SD_GET_BLKNO(bp) <
14072 					    SD_GET_BLKNO(ap->av_forw)) {
14073 						goto insert;
14074 					}
14075 					ap = ap->av_forw;
14076 				} while (ap->av_forw != NULL);
14077 				goto insert;		/* after last */
14078 			}
14079 			ap = ap->av_forw;
14080 		}
14081 
14082 		/*
14083 		 * No inversions... we will go after the last, and
14084 		 * be the first request in the second request list.
14085 		 */
14086 		goto insert;
14087 	}
14088 
14089 	/*
14090 	 * Request is at/after the current request...
14091 	 * sort in the first request list.
14092 	 */
14093 	while (ap->av_forw != NULL) {
14094 		/*
14095 		 * We want to go after the current request (1) if
14096 		 * there is an inversion after it (i.e. it is the end
14097 		 * of the first request list), or (2) if the next
14098 		 * request is a larger block no. than our request.
14099 		 */
14100 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14101 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14102 			goto insert;
14103 		}
14104 		ap = ap->av_forw;
14105 	}
14106 
14107 	/*
14108 	 * Neither a second list nor a larger request, therefore
14109 	 * we go at the end of the first list (which is the same
14110 	 * as the end of the whole schebang).
14111 	 */
14112 insert:
14113 	bp->av_forw = ap->av_forw;
14114 	ap->av_forw = bp;
14115 
14116 	/*
14117 	 * If we inserted onto the tail end of the waitq, make sure the
14118 	 * tail pointer is updated.
14119 	 */
14120 	if (ap == un->un_waitq_tailp) {
14121 		un->un_waitq_tailp = bp;
14122 	}
14123 }
14124 
14125 
14126 /*
14127  *    Function: sd_start_cmds
14128  *
14129  * Description: Remove and transport cmds from the driver queues.
14130  *
14131  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14132  *
14133  *		immed_bp - ptr to a buf to be transported immediately. Only
14134  *		the immed_bp is transported; bufs on the waitq are not
14135  *		processed and the un_retry_bp is not checked.  If immed_bp is
14136  *		NULL, then normal queue processing is performed.
14137  *
14138  *     Context: May be called from kernel thread context, interrupt context,
14139  *		or runout callback context. This function may not block or
14140  *		call routines that block.
14141  */
14142 
14143 static void
14144 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14145 {
14146 	struct	sd_xbuf	*xp;
14147 	struct	buf	*bp;
14148 	void	(*statp)(kstat_io_t *);
14149 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14150 	void	(*saved_statp)(kstat_io_t *);
14151 #endif
14152 	int	rval;
14153 	struct sd_fm_internal *sfip = NULL;
14154 
14155 	ASSERT(un != NULL);
14156 	ASSERT(mutex_owned(SD_MUTEX(un)));
14157 	ASSERT(un->un_ncmds_in_transport >= 0);
14158 	ASSERT(un->un_throttle >= 0);
14159 
14160 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14161 
14162 	do {
14163 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14164 		saved_statp = NULL;
14165 #endif
14166 
14167 		/*
14168 		 * If we are syncing or dumping, fail the command to
14169 		 * avoid recursively calling back into scsi_transport().
14170 		 * The dump I/O itself uses a separate code path so this
14171 		 * only prevents non-dump I/O from being sent while dumping.
14172 		 * File system sync takes place before dumping begins.
14173 		 * During panic, filesystem I/O is allowed provided
14174 		 * un_in_callback is <= 1.  This is to prevent recursion
14175 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14176 		 * sd_start_cmds and so on.  See panic.c for more information
14177 		 * about the states the system can be in during panic.
14178 		 */
14179 		if ((un->un_state == SD_STATE_DUMPING) ||
14180 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14181 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14182 			    "sd_start_cmds: panicking\n");
14183 			goto exit;
14184 		}
14185 
14186 		if ((bp = immed_bp) != NULL) {
14187 			/*
14188 			 * We have a bp that must be transported immediately.
14189 			 * It's OK to transport the immed_bp here without doing
14190 			 * the throttle limit check because the immed_bp is
14191 			 * always used in a retry/recovery case. This means
14192 			 * that we know we are not at the throttle limit by
14193 			 * virtue of the fact that to get here we must have
14194 			 * already gotten a command back via sdintr(). This also
14195 			 * relies on (1) the command on un_retry_bp preventing
14196 			 * further commands from the waitq from being issued;
14197 			 * and (2) the code in sd_retry_command checking the
14198 			 * throttle limit before issuing a delayed or immediate
14199 			 * retry. This holds even if the throttle limit is
14200 			 * currently ratcheted down from its maximum value.
14201 			 */
14202 			statp = kstat_runq_enter;
14203 			if (bp == un->un_retry_bp) {
14204 				ASSERT((un->un_retry_statp == NULL) ||
14205 				    (un->un_retry_statp == kstat_waitq_enter) ||
14206 				    (un->un_retry_statp ==
14207 				    kstat_runq_back_to_waitq));
14208 				/*
14209 				 * If the waitq kstat was incremented when
14210 				 * sd_set_retry_bp() queued this bp for a retry,
14211 				 * then we must set up statp so that the waitq
14212 				 * count will get decremented correctly below.
14213 				 * Also we must clear un->un_retry_statp to
14214 				 * ensure that we do not act on a stale value
14215 				 * in this field.
14216 				 */
14217 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14218 				    (un->un_retry_statp ==
14219 				    kstat_runq_back_to_waitq)) {
14220 					statp = kstat_waitq_to_runq;
14221 				}
14222 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14223 				saved_statp = un->un_retry_statp;
14224 #endif
14225 				un->un_retry_statp = NULL;
14226 
14227 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14228 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14229 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14230 				    un, un->un_retry_bp, un->un_throttle,
14231 				    un->un_ncmds_in_transport);
14232 			} else {
14233 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14234 				    "processing priority bp:0x%p\n", bp);
14235 			}
14236 
14237 		} else if ((bp = un->un_waitq_headp) != NULL) {
14238 			/*
14239 			 * A command on the waitq is ready to go, but do not
14240 			 * send it if:
14241 			 *
14242 			 * (1) the throttle limit has been reached, or
14243 			 * (2) a retry is pending, or
14244 			 * (3) a START_STOP_UNIT callback pending, or
14245 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14246 			 *	command is pending.
14247 			 *
14248 			 * For all of these conditions, IO processing will
14249 			 * restart after the condition is cleared.
14250 			 */
14251 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14252 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14253 				    "sd_start_cmds: exiting, "
14254 				    "throttle limit reached!\n");
14255 				goto exit;
14256 			}
14257 			if (un->un_retry_bp != NULL) {
14258 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14259 				    "sd_start_cmds: exiting, retry pending!\n");
14260 				goto exit;
14261 			}
14262 			if (un->un_startstop_timeid != NULL) {
14263 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14264 				    "sd_start_cmds: exiting, "
14265 				    "START_STOP pending!\n");
14266 				goto exit;
14267 			}
14268 			if (un->un_direct_priority_timeid != NULL) {
14269 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14270 				    "sd_start_cmds: exiting, "
14271 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14272 				goto exit;
14273 			}
14274 
14275 			/* Dequeue the command */
14276 			un->un_waitq_headp = bp->av_forw;
14277 			if (un->un_waitq_headp == NULL) {
14278 				un->un_waitq_tailp = NULL;
14279 			}
14280 			bp->av_forw = NULL;
14281 			statp = kstat_waitq_to_runq;
14282 			SD_TRACE(SD_LOG_IO_CORE, un,
14283 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14284 
14285 		} else {
14286 			/* No work to do so bail out now */
14287 			SD_TRACE(SD_LOG_IO_CORE, un,
14288 			    "sd_start_cmds: no more work, exiting!\n");
14289 			goto exit;
14290 		}
14291 
14292 		/*
14293 		 * Reset the state to normal. This is the mechanism by which
14294 		 * the state transitions from either SD_STATE_RWAIT or
14295 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14296 		 * If state is SD_STATE_PM_CHANGING then this command is
14297 		 * part of the device power control and the state must
14298 		 * not be put back to normal. Doing so would would
14299 		 * allow new commands to proceed when they shouldn't,
14300 		 * the device may be going off.
14301 		 */
14302 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14303 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14304 			New_state(un, SD_STATE_NORMAL);
14305 		}
14306 
14307 		xp = SD_GET_XBUF(bp);
14308 		ASSERT(xp != NULL);
14309 
14310 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14311 		/*
14312 		 * Allocate the scsi_pkt if we need one, or attach DMA
14313 		 * resources if we have a scsi_pkt that needs them. The
14314 		 * latter should only occur for commands that are being
14315 		 * retried.
14316 		 */
14317 		if ((xp->xb_pktp == NULL) ||
14318 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14319 #else
14320 		if (xp->xb_pktp == NULL) {
14321 #endif
14322 			/*
14323 			 * There is no scsi_pkt allocated for this buf. Call
14324 			 * the initpkt function to allocate & init one.
14325 			 *
14326 			 * The scsi_init_pkt runout callback functionality is
14327 			 * implemented as follows:
14328 			 *
14329 			 * 1) The initpkt function always calls
14330 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14331 			 *    callback routine.
14332 			 * 2) A successful packet allocation is initialized and
14333 			 *    the I/O is transported.
14334 			 * 3) The I/O associated with an allocation resource
14335 			 *    failure is left on its queue to be retried via
14336 			 *    runout or the next I/O.
14337 			 * 4) The I/O associated with a DMA error is removed
14338 			 *    from the queue and failed with EIO. Processing of
14339 			 *    the transport queues is also halted to be
14340 			 *    restarted via runout or the next I/O.
14341 			 * 5) The I/O associated with a CDB size or packet
14342 			 *    size error is removed from the queue and failed
14343 			 *    with EIO. Processing of the transport queues is
14344 			 *    continued.
14345 			 *
14346 			 * Note: there is no interface for canceling a runout
14347 			 * callback. To prevent the driver from detaching or
14348 			 * suspending while a runout is pending the driver
14349 			 * state is set to SD_STATE_RWAIT
14350 			 *
14351 			 * Note: using the scsi_init_pkt callback facility can
14352 			 * result in an I/O request persisting at the head of
14353 			 * the list which cannot be satisfied even after
14354 			 * multiple retries. In the future the driver may
14355 			 * implement some kind of maximum runout count before
14356 			 * failing an I/O.
14357 			 *
14358 			 * Note: the use of funcp below may seem superfluous,
14359 			 * but it helps warlock figure out the correct
14360 			 * initpkt function calls (see [s]sd.wlcmd).
14361 			 */
14362 			struct scsi_pkt	*pktp;
14363 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14364 
14365 			ASSERT(bp != un->un_rqs_bp);
14366 
14367 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14368 			switch ((*funcp)(bp, &pktp)) {
14369 			case  SD_PKT_ALLOC_SUCCESS:
14370 				xp->xb_pktp = pktp;
14371 				SD_TRACE(SD_LOG_IO_CORE, un,
14372 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14373 				    pktp);
14374 				goto got_pkt;
14375 
14376 			case SD_PKT_ALLOC_FAILURE:
14377 				/*
14378 				 * Temporary (hopefully) resource depletion.
14379 				 * Since retries and RQS commands always have a
14380 				 * scsi_pkt allocated, these cases should never
14381 				 * get here. So the only cases this needs to
14382 				 * handle is a bp from the waitq (which we put
14383 				 * back onto the waitq for sdrunout), or a bp
14384 				 * sent as an immed_bp (which we just fail).
14385 				 */
14386 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14387 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14388 
14389 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14390 
14391 				if (bp == immed_bp) {
14392 					/*
14393 					 * If SD_XB_DMA_FREED is clear, then
14394 					 * this is a failure to allocate a
14395 					 * scsi_pkt, and we must fail the
14396 					 * command.
14397 					 */
14398 					if ((xp->xb_pkt_flags &
14399 					    SD_XB_DMA_FREED) == 0) {
14400 						break;
14401 					}
14402 
14403 					/*
14404 					 * If this immediate command is NOT our
14405 					 * un_retry_bp, then we must fail it.
14406 					 */
14407 					if (bp != un->un_retry_bp) {
14408 						break;
14409 					}
14410 
14411 					/*
14412 					 * We get here if this cmd is our
14413 					 * un_retry_bp that was DMAFREED, but
14414 					 * scsi_init_pkt() failed to reallocate
14415 					 * DMA resources when we attempted to
14416 					 * retry it. This can happen when an
14417 					 * mpxio failover is in progress, but
14418 					 * we don't want to just fail the
14419 					 * command in this case.
14420 					 *
14421 					 * Use timeout(9F) to restart it after
14422 					 * a 100ms delay.  We don't want to
14423 					 * let sdrunout() restart it, because
14424 					 * sdrunout() is just supposed to start
14425 					 * commands that are sitting on the
14426 					 * wait queue.  The un_retry_bp stays
14427 					 * set until the command completes, but
14428 					 * sdrunout can be called many times
14429 					 * before that happens.  Since sdrunout
14430 					 * cannot tell if the un_retry_bp is
14431 					 * already in the transport, it could
14432 					 * end up calling scsi_transport() for
14433 					 * the un_retry_bp multiple times.
14434 					 *
14435 					 * Also: don't schedule the callback
14436 					 * if some other callback is already
14437 					 * pending.
14438 					 */
14439 					if (un->un_retry_statp == NULL) {
14440 						/*
14441 						 * restore the kstat pointer to
14442 						 * keep kstat counts coherent
14443 						 * when we do retry the command.
14444 						 */
14445 						un->un_retry_statp =
14446 						    saved_statp;
14447 					}
14448 
14449 					if ((un->un_startstop_timeid == NULL) &&
14450 					    (un->un_retry_timeid == NULL) &&
14451 					    (un->un_direct_priority_timeid ==
14452 					    NULL)) {
14453 
14454 						un->un_retry_timeid =
14455 						    timeout(
14456 						    sd_start_retry_command,
14457 						    un, SD_RESTART_TIMEOUT);
14458 					}
14459 					goto exit;
14460 				}
14461 
14462 #else
14463 				if (bp == immed_bp) {
14464 					break;	/* Just fail the command */
14465 				}
14466 #endif
14467 
14468 				/* Add the buf back to the head of the waitq */
14469 				bp->av_forw = un->un_waitq_headp;
14470 				un->un_waitq_headp = bp;
14471 				if (un->un_waitq_tailp == NULL) {
14472 					un->un_waitq_tailp = bp;
14473 				}
14474 				goto exit;
14475 
14476 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14477 				/*
14478 				 * HBA DMA resource failure. Fail the command
14479 				 * and continue processing of the queues.
14480 				 */
14481 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14482 				    "sd_start_cmds: "
14483 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14484 				break;
14485 
14486 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14487 				/*
14488 				 * Note:x86: Partial DMA mapping not supported
14489 				 * for USCSI commands, and all the needed DMA
14490 				 * resources were not allocated.
14491 				 */
14492 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14493 				    "sd_start_cmds: "
14494 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14495 				break;
14496 
14497 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14498 				/*
14499 				 * Note:x86: Request cannot fit into CDB based
14500 				 * on lba and len.
14501 				 */
14502 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14503 				    "sd_start_cmds: "
14504 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14505 				break;
14506 
14507 			default:
14508 				/* Should NEVER get here! */
14509 				panic("scsi_initpkt error");
14510 				/*NOTREACHED*/
14511 			}
14512 
14513 			/*
14514 			 * Fatal error in allocating a scsi_pkt for this buf.
14515 			 * Update kstats & return the buf with an error code.
14516 			 * We must use sd_return_failed_command_no_restart() to
14517 			 * avoid a recursive call back into sd_start_cmds().
14518 			 * However this also means that we must keep processing
14519 			 * the waitq here in order to avoid stalling.
14520 			 */
14521 			if (statp == kstat_waitq_to_runq) {
14522 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14523 			}
14524 			sd_return_failed_command_no_restart(un, bp, EIO);
14525 			if (bp == immed_bp) {
14526 				/* immed_bp is gone by now, so clear this */
14527 				immed_bp = NULL;
14528 			}
14529 			continue;
14530 		}
14531 got_pkt:
14532 		if (bp == immed_bp) {
14533 			/* goto the head of the class.... */
14534 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14535 		}
14536 
14537 		un->un_ncmds_in_transport++;
14538 		SD_UPDATE_KSTATS(un, statp, bp);
14539 
14540 		/*
14541 		 * Call scsi_transport() to send the command to the target.
14542 		 * According to SCSA architecture, we must drop the mutex here
14543 		 * before calling scsi_transport() in order to avoid deadlock.
14544 		 * Note that the scsi_pkt's completion routine can be executed
14545 		 * (from interrupt context) even before the call to
14546 		 * scsi_transport() returns.
14547 		 */
14548 		SD_TRACE(SD_LOG_IO_CORE, un,
14549 		    "sd_start_cmds: calling scsi_transport()\n");
14550 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14551 
14552 		mutex_exit(SD_MUTEX(un));
14553 		rval = scsi_transport(xp->xb_pktp);
14554 		mutex_enter(SD_MUTEX(un));
14555 
14556 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14557 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14558 
14559 		switch (rval) {
14560 		case TRAN_ACCEPT:
14561 			/* Clear this with every pkt accepted by the HBA */
14562 			un->un_tran_fatal_count = 0;
14563 			break;	/* Success; try the next cmd (if any) */
14564 
14565 		case TRAN_BUSY:
14566 			un->un_ncmds_in_transport--;
14567 			ASSERT(un->un_ncmds_in_transport >= 0);
14568 
14569 			/*
14570 			 * Don't retry request sense, the sense data
14571 			 * is lost when another request is sent.
14572 			 * Free up the rqs buf and retry
14573 			 * the original failed cmd.  Update kstat.
14574 			 */
14575 			if (bp == un->un_rqs_bp) {
14576 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14577 				bp = sd_mark_rqs_idle(un, xp);
14578 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14579 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
14580 				    kstat_waitq_enter);
14581 				goto exit;
14582 			}
14583 
14584 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14585 			/*
14586 			 * Free the DMA resources for the  scsi_pkt. This will
14587 			 * allow mpxio to select another path the next time
14588 			 * we call scsi_transport() with this scsi_pkt.
14589 			 * See sdintr() for the rationalization behind this.
14590 			 */
14591 			if ((un->un_f_is_fibre == TRUE) &&
14592 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14593 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14594 				scsi_dmafree(xp->xb_pktp);
14595 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14596 			}
14597 #endif
14598 
14599 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14600 				/*
14601 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14602 				 * are for error recovery situations. These do
14603 				 * not use the normal command waitq, so if they
14604 				 * get a TRAN_BUSY we cannot put them back onto
14605 				 * the waitq for later retry. One possible
14606 				 * problem is that there could already be some
14607 				 * other command on un_retry_bp that is waiting
14608 				 * for this one to complete, so we would be
14609 				 * deadlocked if we put this command back onto
14610 				 * the waitq for later retry (since un_retry_bp
14611 				 * must complete before the driver gets back to
14612 				 * commands on the waitq).
14613 				 *
14614 				 * To avoid deadlock we must schedule a callback
14615 				 * that will restart this command after a set
14616 				 * interval.  This should keep retrying for as
14617 				 * long as the underlying transport keeps
14618 				 * returning TRAN_BUSY (just like for other
14619 				 * commands).  Use the same timeout interval as
14620 				 * for the ordinary TRAN_BUSY retry.
14621 				 */
14622 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14623 				    "sd_start_cmds: scsi_transport() returned "
14624 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14625 
14626 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14627 				un->un_direct_priority_timeid =
14628 				    timeout(sd_start_direct_priority_command,
14629 				    bp, un->un_busy_timeout / 500);
14630 
14631 				goto exit;
14632 			}
14633 
14634 			/*
14635 			 * For TRAN_BUSY, we want to reduce the throttle value,
14636 			 * unless we are retrying a command.
14637 			 */
14638 			if (bp != un->un_retry_bp) {
14639 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14640 			}
14641 
14642 			/*
14643 			 * Set up the bp to be tried again 10 ms later.
14644 			 * Note:x86: Is there a timeout value in the sd_lun
14645 			 * for this condition?
14646 			 */
14647 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
14648 			    kstat_runq_back_to_waitq);
14649 			goto exit;
14650 
14651 		case TRAN_FATAL_ERROR:
14652 			un->un_tran_fatal_count++;
14653 			/* FALLTHRU */
14654 
14655 		case TRAN_BADPKT:
14656 		default:
14657 			un->un_ncmds_in_transport--;
14658 			ASSERT(un->un_ncmds_in_transport >= 0);
14659 
14660 			/*
14661 			 * If this is our REQUEST SENSE command with a
14662 			 * transport error, we must get back the pointers
14663 			 * to the original buf, and mark the REQUEST
14664 			 * SENSE command as "available".
14665 			 */
14666 			if (bp == un->un_rqs_bp) {
14667 				bp = sd_mark_rqs_idle(un, xp);
14668 				xp = SD_GET_XBUF(bp);
14669 			} else {
14670 				/*
14671 				 * Legacy behavior: do not update transport
14672 				 * error count for request sense commands.
14673 				 */
14674 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14675 			}
14676 
14677 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14678 			sd_print_transport_rejected_message(un, xp, rval);
14679 
14680 			/*
14681 			 * This command will be terminated by SD driver due
14682 			 * to a fatal transport error. We should post
14683 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
14684 			 * of "fail" for any command to indicate this
14685 			 * situation.
14686 			 */
14687 			if (xp->xb_ena > 0) {
14688 				ASSERT(un->un_fm_private != NULL);
14689 				sfip = un->un_fm_private;
14690 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
14691 				sd_ssc_extract_info(&sfip->fm_ssc, un,
14692 				    xp->xb_pktp, bp, xp);
14693 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14694 			}
14695 
14696 			/*
14697 			 * We must use sd_return_failed_command_no_restart() to
14698 			 * avoid a recursive call back into sd_start_cmds().
14699 			 * However this also means that we must keep processing
14700 			 * the waitq here in order to avoid stalling.
14701 			 */
14702 			sd_return_failed_command_no_restart(un, bp, EIO);
14703 
14704 			/*
14705 			 * Notify any threads waiting in sd_ddi_suspend() that
14706 			 * a command completion has occurred.
14707 			 */
14708 			if (un->un_state == SD_STATE_SUSPENDED) {
14709 				cv_broadcast(&un->un_disk_busy_cv);
14710 			}
14711 
14712 			if (bp == immed_bp) {
14713 				/* immed_bp is gone by now, so clear this */
14714 				immed_bp = NULL;
14715 			}
14716 			break;
14717 		}
14718 
14719 	} while (immed_bp == NULL);
14720 
14721 exit:
14722 	ASSERT(mutex_owned(SD_MUTEX(un)));
14723 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14724 }
14725 
14726 
14727 /*
14728  *    Function: sd_return_command
14729  *
14730  * Description: Returns a command to its originator (with or without an
14731  *		error).  Also starts commands waiting to be transported
14732  *		to the target.
14733  *
14734  *     Context: May be called from interrupt, kernel, or timeout context
14735  */
14736 
14737 static void
14738 sd_return_command(struct sd_lun *un, struct buf *bp)
14739 {
14740 	struct sd_xbuf *xp;
14741 	struct scsi_pkt *pktp;
14742 	struct sd_fm_internal *sfip;
14743 
14744 	ASSERT(bp != NULL);
14745 	ASSERT(un != NULL);
14746 	ASSERT(mutex_owned(SD_MUTEX(un)));
14747 	ASSERT(bp != un->un_rqs_bp);
14748 	xp = SD_GET_XBUF(bp);
14749 	ASSERT(xp != NULL);
14750 
14751 	pktp = SD_GET_PKTP(bp);
14752 	sfip = (struct sd_fm_internal *)un->un_fm_private;
14753 	ASSERT(sfip != NULL);
14754 
14755 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14756 
14757 	/*
14758 	 * Note: check for the "sdrestart failed" case.
14759 	 */
14760 	if ((un->un_partial_dma_supported == 1) &&
14761 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14762 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14763 	    (xp->xb_pktp->pkt_resid == 0)) {
14764 
14765 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14766 			/*
14767 			 * Successfully set up next portion of cmd
14768 			 * transfer, try sending it
14769 			 */
14770 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14771 			    NULL, NULL, 0, (clock_t)0, NULL);
14772 			sd_start_cmds(un, NULL);
14773 			return;	/* Note:x86: need a return here? */
14774 		}
14775 	}
14776 
14777 	/*
14778 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14779 	 * can happen if upon being re-tried the failfast bp either
14780 	 * succeeded or encountered another error (possibly even a different
14781 	 * error than the one that precipitated the failfast state, but in
14782 	 * that case it would have had to exhaust retries as well). Regardless,
14783 	 * this should not occur whenever the instance is in the active
14784 	 * failfast state.
14785 	 */
14786 	if (bp == un->un_failfast_bp) {
14787 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14788 		un->un_failfast_bp = NULL;
14789 	}
14790 
14791 	/*
14792 	 * Clear the failfast state upon successful completion of ANY cmd.
14793 	 */
14794 	if (bp->b_error == 0) {
14795 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14796 		/*
14797 		 * If this is a successful command, but used to be retried,
14798 		 * we will take it as a recovered command and post an
14799 		 * ereport with driver-assessment of "recovered".
14800 		 */
14801 		if (xp->xb_ena > 0) {
14802 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14803 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
14804 		}
14805 	} else {
14806 		/*
14807 		 * If this is a failed non-USCSI command we will post an
14808 		 * ereport with driver-assessment set accordingly("fail" or
14809 		 * "fatal").
14810 		 */
14811 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
14812 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
14813 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
14814 		}
14815 	}
14816 
14817 	/*
14818 	 * This is used if the command was retried one or more times. Show that
14819 	 * we are done with it, and allow processing of the waitq to resume.
14820 	 */
14821 	if (bp == un->un_retry_bp) {
14822 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14823 		    "sd_return_command: un:0x%p: "
14824 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14825 		un->un_retry_bp = NULL;
14826 		un->un_retry_statp = NULL;
14827 	}
14828 
14829 	SD_UPDATE_RDWR_STATS(un, bp);
14830 	SD_UPDATE_PARTITION_STATS(un, bp);
14831 
14832 	switch (un->un_state) {
14833 	case SD_STATE_SUSPENDED:
14834 		/*
14835 		 * Notify any threads waiting in sd_ddi_suspend() that
14836 		 * a command completion has occurred.
14837 		 */
14838 		cv_broadcast(&un->un_disk_busy_cv);
14839 		break;
14840 	default:
14841 		sd_start_cmds(un, NULL);
14842 		break;
14843 	}
14844 
14845 	/* Return this command up the iodone chain to its originator. */
14846 	mutex_exit(SD_MUTEX(un));
14847 
14848 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14849 	xp->xb_pktp = NULL;
14850 
14851 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14852 
14853 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14854 	mutex_enter(SD_MUTEX(un));
14855 
14856 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14857 }
14858 
14859 
14860 /*
14861  *    Function: sd_return_failed_command
14862  *
14863  * Description: Command completion when an error occurred.
14864  *
14865  *     Context: May be called from interrupt context
14866  */
14867 
14868 static void
14869 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14870 {
14871 	ASSERT(bp != NULL);
14872 	ASSERT(un != NULL);
14873 	ASSERT(mutex_owned(SD_MUTEX(un)));
14874 
14875 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14876 	    "sd_return_failed_command: entry\n");
14877 
14878 	/*
14879 	 * b_resid could already be nonzero due to a partial data
14880 	 * transfer, so do not change it here.
14881 	 */
14882 	SD_BIOERROR(bp, errcode);
14883 
14884 	sd_return_command(un, bp);
14885 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14886 	    "sd_return_failed_command: exit\n");
14887 }
14888 
14889 
14890 /*
14891  *    Function: sd_return_failed_command_no_restart
14892  *
14893  * Description: Same as sd_return_failed_command, but ensures that no
14894  *		call back into sd_start_cmds will be issued.
14895  *
14896  *     Context: May be called from interrupt context
14897  */
14898 
14899 static void
14900 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14901 	int errcode)
14902 {
14903 	struct sd_xbuf *xp;
14904 
14905 	ASSERT(bp != NULL);
14906 	ASSERT(un != NULL);
14907 	ASSERT(mutex_owned(SD_MUTEX(un)));
14908 	xp = SD_GET_XBUF(bp);
14909 	ASSERT(xp != NULL);
14910 	ASSERT(errcode != 0);
14911 
14912 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14913 	    "sd_return_failed_command_no_restart: entry\n");
14914 
14915 	/*
14916 	 * b_resid could already be nonzero due to a partial data
14917 	 * transfer, so do not change it here.
14918 	 */
14919 	SD_BIOERROR(bp, errcode);
14920 
14921 	/*
14922 	 * If this is the failfast bp, clear it. This can happen if the
14923 	 * failfast bp encounterd a fatal error when we attempted to
14924 	 * re-try it (such as a scsi_transport(9F) failure).  However
14925 	 * we should NOT be in an active failfast state if the failfast
14926 	 * bp is not NULL.
14927 	 */
14928 	if (bp == un->un_failfast_bp) {
14929 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14930 		un->un_failfast_bp = NULL;
14931 	}
14932 
14933 	if (bp == un->un_retry_bp) {
14934 		/*
14935 		 * This command was retried one or more times. Show that we are
14936 		 * done with it, and allow processing of the waitq to resume.
14937 		 */
14938 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14939 		    "sd_return_failed_command_no_restart: "
14940 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14941 		un->un_retry_bp = NULL;
14942 		un->un_retry_statp = NULL;
14943 	}
14944 
14945 	SD_UPDATE_RDWR_STATS(un, bp);
14946 	SD_UPDATE_PARTITION_STATS(un, bp);
14947 
14948 	mutex_exit(SD_MUTEX(un));
14949 
14950 	if (xp->xb_pktp != NULL) {
14951 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14952 		xp->xb_pktp = NULL;
14953 	}
14954 
14955 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14956 
14957 	mutex_enter(SD_MUTEX(un));
14958 
14959 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14960 	    "sd_return_failed_command_no_restart: exit\n");
14961 }
14962 
14963 
14964 /*
14965  *    Function: sd_retry_command
14966  *
14967  * Description: queue up a command for retry, or (optionally) fail it
14968  *		if retry counts are exhausted.
14969  *
14970  *   Arguments: un - Pointer to the sd_lun struct for the target.
14971  *
14972  *		bp - Pointer to the buf for the command to be retried.
14973  *
14974  *		retry_check_flag - Flag to see which (if any) of the retry
14975  *		   counts should be decremented/checked. If the indicated
14976  *		   retry count is exhausted, then the command will not be
14977  *		   retried; it will be failed instead. This should use a
14978  *		   value equal to one of the following:
14979  *
14980  *			SD_RETRIES_NOCHECK
14981  *			SD_RESD_RETRIES_STANDARD
14982  *			SD_RETRIES_VICTIM
14983  *
14984  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14985  *		   if the check should be made to see of FLAG_ISOLATE is set
14986  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14987  *		   not retried, it is simply failed.
14988  *
14989  *		user_funcp - Ptr to function to call before dispatching the
14990  *		   command. May be NULL if no action needs to be performed.
14991  *		   (Primarily intended for printing messages.)
14992  *
14993  *		user_arg - Optional argument to be passed along to
14994  *		   the user_funcp call.
14995  *
14996  *		failure_code - errno return code to set in the bp if the
14997  *		   command is going to be failed.
14998  *
14999  *		retry_delay - Retry delay interval in (clock_t) units. May
15000  *		   be zero which indicates that the retry should be retried
15001  *		   immediately (ie, without an intervening delay).
15002  *
15003  *		statp - Ptr to kstat function to be updated if the command
15004  *		   is queued for a delayed retry. May be NULL if no kstat
15005  *		   update is desired.
15006  *
15007  *     Context: May be called from interrupt context.
15008  */
15009 
15010 static void
15011 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15012 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15013 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15014 	void (*statp)(kstat_io_t *))
15015 {
15016 	struct sd_xbuf	*xp;
15017 	struct scsi_pkt	*pktp;
15018 	struct sd_fm_internal *sfip;
15019 
15020 	ASSERT(un != NULL);
15021 	ASSERT(mutex_owned(SD_MUTEX(un)));
15022 	ASSERT(bp != NULL);
15023 	xp = SD_GET_XBUF(bp);
15024 	ASSERT(xp != NULL);
15025 	pktp = SD_GET_PKTP(bp);
15026 	ASSERT(pktp != NULL);
15027 
15028 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15029 	ASSERT(sfip != NULL);
15030 
15031 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15032 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15033 
15034 	/*
15035 	 * If we are syncing or dumping, fail the command to avoid
15036 	 * recursively calling back into scsi_transport().
15037 	 */
15038 	if (ddi_in_panic()) {
15039 		goto fail_command_no_log;
15040 	}
15041 
15042 	/*
15043 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15044 	 * log an error and fail the command.
15045 	 */
15046 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15047 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15048 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15049 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15050 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15051 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15052 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15053 		goto fail_command;
15054 	}
15055 
15056 	/*
15057 	 * If we are suspended, then put the command onto head of the
15058 	 * wait queue since we don't want to start more commands, and
15059 	 * clear the un_retry_bp. Next time when we are resumed, will
15060 	 * handle the command in the wait queue.
15061 	 */
15062 	switch (un->un_state) {
15063 	case SD_STATE_SUSPENDED:
15064 	case SD_STATE_DUMPING:
15065 		bp->av_forw = un->un_waitq_headp;
15066 		un->un_waitq_headp = bp;
15067 		if (un->un_waitq_tailp == NULL) {
15068 			un->un_waitq_tailp = bp;
15069 		}
15070 		if (bp == un->un_retry_bp) {
15071 			un->un_retry_bp = NULL;
15072 			un->un_retry_statp = NULL;
15073 		}
15074 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15075 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15076 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15077 		return;
15078 	default:
15079 		break;
15080 	}
15081 
15082 	/*
15083 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15084 	 * is set; if it is then we do not want to retry the command.
15085 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15086 	 */
15087 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15088 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15089 			goto fail_command;
15090 		}
15091 	}
15092 
15093 
15094 	/*
15095 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15096 	 * command timeout or a selection timeout has occurred. This means
15097 	 * that we were unable to establish an kind of communication with
15098 	 * the target, and subsequent retries and/or commands are likely
15099 	 * to encounter similar results and take a long time to complete.
15100 	 *
15101 	 * If this is a failfast error condition, we need to update the
15102 	 * failfast state, even if this bp does not have B_FAILFAST set.
15103 	 */
15104 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15105 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15106 			ASSERT(un->un_failfast_bp == NULL);
15107 			/*
15108 			 * If we are already in the active failfast state, and
15109 			 * another failfast error condition has been detected,
15110 			 * then fail this command if it has B_FAILFAST set.
15111 			 * If B_FAILFAST is clear, then maintain the legacy
15112 			 * behavior of retrying heroically, even tho this will
15113 			 * take a lot more time to fail the command.
15114 			 */
15115 			if (bp->b_flags & B_FAILFAST) {
15116 				goto fail_command;
15117 			}
15118 		} else {
15119 			/*
15120 			 * We're not in the active failfast state, but we
15121 			 * have a failfast error condition, so we must begin
15122 			 * transition to the next state. We do this regardless
15123 			 * of whether or not this bp has B_FAILFAST set.
15124 			 */
15125 			if (un->un_failfast_bp == NULL) {
15126 				/*
15127 				 * This is the first bp to meet a failfast
15128 				 * condition so save it on un_failfast_bp &
15129 				 * do normal retry processing. Do not enter
15130 				 * active failfast state yet. This marks
15131 				 * entry into the "failfast pending" state.
15132 				 */
15133 				un->un_failfast_bp = bp;
15134 
15135 			} else if (un->un_failfast_bp == bp) {
15136 				/*
15137 				 * This is the second time *this* bp has
15138 				 * encountered a failfast error condition,
15139 				 * so enter active failfast state & flush
15140 				 * queues as appropriate.
15141 				 */
15142 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15143 				un->un_failfast_bp = NULL;
15144 				sd_failfast_flushq(un);
15145 
15146 				/*
15147 				 * Fail this bp now if B_FAILFAST set;
15148 				 * otherwise continue with retries. (It would
15149 				 * be pretty ironic if this bp succeeded on a
15150 				 * subsequent retry after we just flushed all
15151 				 * the queues).
15152 				 */
15153 				if (bp->b_flags & B_FAILFAST) {
15154 					goto fail_command;
15155 				}
15156 
15157 #if !defined(lint) && !defined(__lint)
15158 			} else {
15159 				/*
15160 				 * If neither of the preceeding conditionals
15161 				 * was true, it means that there is some
15162 				 * *other* bp that has met an inital failfast
15163 				 * condition and is currently either being
15164 				 * retried or is waiting to be retried. In
15165 				 * that case we should perform normal retry
15166 				 * processing on *this* bp, since there is a
15167 				 * chance that the current failfast condition
15168 				 * is transient and recoverable. If that does
15169 				 * not turn out to be the case, then retries
15170 				 * will be cleared when the wait queue is
15171 				 * flushed anyway.
15172 				 */
15173 #endif
15174 			}
15175 		}
15176 	} else {
15177 		/*
15178 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15179 		 * likely were able to at least establish some level of
15180 		 * communication with the target and subsequent commands
15181 		 * and/or retries are likely to get through to the target,
15182 		 * In this case we want to be aggressive about clearing
15183 		 * the failfast state. Note that this does not affect
15184 		 * the "failfast pending" condition.
15185 		 */
15186 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15187 	}
15188 
15189 
15190 	/*
15191 	 * Check the specified retry count to see if we can still do
15192 	 * any retries with this pkt before we should fail it.
15193 	 */
15194 	switch (retry_check_flag & SD_RETRIES_MASK) {
15195 	case SD_RETRIES_VICTIM:
15196 		/*
15197 		 * Check the victim retry count. If exhausted, then fall
15198 		 * thru & check against the standard retry count.
15199 		 */
15200 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15201 			/* Increment count & proceed with the retry */
15202 			xp->xb_victim_retry_count++;
15203 			break;
15204 		}
15205 		/* Victim retries exhausted, fall back to std. retries... */
15206 		/* FALLTHRU */
15207 
15208 	case SD_RETRIES_STANDARD:
15209 		if (xp->xb_retry_count >= un->un_retry_count) {
15210 			/* Retries exhausted, fail the command */
15211 			SD_TRACE(SD_LOG_IO_CORE, un,
15212 			    "sd_retry_command: retries exhausted!\n");
15213 			/*
15214 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15215 			 * commands with nonzero pkt_resid.
15216 			 */
15217 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15218 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15219 			    (pktp->pkt_resid != 0)) {
15220 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15221 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15222 					SD_UPDATE_B_RESID(bp, pktp);
15223 				}
15224 			}
15225 			goto fail_command;
15226 		}
15227 		xp->xb_retry_count++;
15228 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15229 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15230 		break;
15231 
15232 	case SD_RETRIES_UA:
15233 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15234 			/* Retries exhausted, fail the command */
15235 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15236 			    "Unit Attention retries exhausted. "
15237 			    "Check the target.\n");
15238 			goto fail_command;
15239 		}
15240 		xp->xb_ua_retry_count++;
15241 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15242 		    "sd_retry_command: retry count:%d\n",
15243 		    xp->xb_ua_retry_count);
15244 		break;
15245 
15246 	case SD_RETRIES_BUSY:
15247 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15248 			/* Retries exhausted, fail the command */
15249 			SD_TRACE(SD_LOG_IO_CORE, un,
15250 			    "sd_retry_command: retries exhausted!\n");
15251 			goto fail_command;
15252 		}
15253 		xp->xb_retry_count++;
15254 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15255 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15256 		break;
15257 
15258 	case SD_RETRIES_NOCHECK:
15259 	default:
15260 		/* No retry count to check. Just proceed with the retry */
15261 		break;
15262 	}
15263 
15264 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15265 
15266 	/*
15267 	 * If this is a non-USCSI command being retried
15268 	 * during execution last time, we should post an ereport with
15269 	 * driver-assessment of the value "retry".
15270 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15271 	 * hardware errors, we bypass ereport posting.
15272 	 */
15273 	if (failure_code != 0) {
15274 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15275 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15276 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15277 		}
15278 	}
15279 
15280 	/*
15281 	 * If we were given a zero timeout, we must attempt to retry the
15282 	 * command immediately (ie, without a delay).
15283 	 */
15284 	if (retry_delay == 0) {
15285 		/*
15286 		 * Check some limiting conditions to see if we can actually
15287 		 * do the immediate retry.  If we cannot, then we must
15288 		 * fall back to queueing up a delayed retry.
15289 		 */
15290 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15291 			/*
15292 			 * We are at the throttle limit for the target,
15293 			 * fall back to delayed retry.
15294 			 */
15295 			retry_delay = un->un_busy_timeout;
15296 			statp = kstat_waitq_enter;
15297 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15298 			    "sd_retry_command: immed. retry hit "
15299 			    "throttle!\n");
15300 		} else {
15301 			/*
15302 			 * We're clear to proceed with the immediate retry.
15303 			 * First call the user-provided function (if any)
15304 			 */
15305 			if (user_funcp != NULL) {
15306 				(*user_funcp)(un, bp, user_arg,
15307 				    SD_IMMEDIATE_RETRY_ISSUED);
15308 #ifdef __lock_lint
15309 				sd_print_incomplete_msg(un, bp, user_arg,
15310 				    SD_IMMEDIATE_RETRY_ISSUED);
15311 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15312 				    SD_IMMEDIATE_RETRY_ISSUED);
15313 				sd_print_sense_failed_msg(un, bp, user_arg,
15314 				    SD_IMMEDIATE_RETRY_ISSUED);
15315 #endif
15316 			}
15317 
15318 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15319 			    "sd_retry_command: issuing immediate retry\n");
15320 
15321 			/*
15322 			 * Call sd_start_cmds() to transport the command to
15323 			 * the target.
15324 			 */
15325 			sd_start_cmds(un, bp);
15326 
15327 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15328 			    "sd_retry_command exit\n");
15329 			return;
15330 		}
15331 	}
15332 
15333 	/*
15334 	 * Set up to retry the command after a delay.
15335 	 * First call the user-provided function (if any)
15336 	 */
15337 	if (user_funcp != NULL) {
15338 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15339 	}
15340 
15341 	sd_set_retry_bp(un, bp, retry_delay, statp);
15342 
15343 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15344 	return;
15345 
15346 fail_command:
15347 
15348 	if (user_funcp != NULL) {
15349 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15350 	}
15351 
15352 fail_command_no_log:
15353 
15354 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15355 	    "sd_retry_command: returning failed command\n");
15356 
15357 	sd_return_failed_command(un, bp, failure_code);
15358 
15359 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15360 }
15361 
15362 
15363 /*
15364  *    Function: sd_set_retry_bp
15365  *
15366  * Description: Set up the given bp for retry.
15367  *
15368  *   Arguments: un - ptr to associated softstate
15369  *		bp - ptr to buf(9S) for the command
15370  *		retry_delay - time interval before issuing retry (may be 0)
15371  *		statp - optional pointer to kstat function
15372  *
15373  *     Context: May be called under interrupt context
15374  */
15375 
15376 static void
15377 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15378 	void (*statp)(kstat_io_t *))
15379 {
15380 	ASSERT(un != NULL);
15381 	ASSERT(mutex_owned(SD_MUTEX(un)));
15382 	ASSERT(bp != NULL);
15383 
15384 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15385 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15386 
15387 	/*
15388 	 * Indicate that the command is being retried. This will not allow any
15389 	 * other commands on the wait queue to be transported to the target
15390 	 * until this command has been completed (success or failure). The
15391 	 * "retry command" is not transported to the target until the given
15392 	 * time delay expires, unless the user specified a 0 retry_delay.
15393 	 *
15394 	 * Note: the timeout(9F) callback routine is what actually calls
15395 	 * sd_start_cmds() to transport the command, with the exception of a
15396 	 * zero retry_delay. The only current implementor of a zero retry delay
15397 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15398 	 */
15399 	if (un->un_retry_bp == NULL) {
15400 		ASSERT(un->un_retry_statp == NULL);
15401 		un->un_retry_bp = bp;
15402 
15403 		/*
15404 		 * If the user has not specified a delay the command should
15405 		 * be queued and no timeout should be scheduled.
15406 		 */
15407 		if (retry_delay == 0) {
15408 			/*
15409 			 * Save the kstat pointer that will be used in the
15410 			 * call to SD_UPDATE_KSTATS() below, so that
15411 			 * sd_start_cmds() can correctly decrement the waitq
15412 			 * count when it is time to transport this command.
15413 			 */
15414 			un->un_retry_statp = statp;
15415 			goto done;
15416 		}
15417 	}
15418 
15419 	if (un->un_retry_bp == bp) {
15420 		/*
15421 		 * Save the kstat pointer that will be used in the call to
15422 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15423 		 * correctly decrement the waitq count when it is time to
15424 		 * transport this command.
15425 		 */
15426 		un->un_retry_statp = statp;
15427 
15428 		/*
15429 		 * Schedule a timeout if:
15430 		 *   1) The user has specified a delay.
15431 		 *   2) There is not a START_STOP_UNIT callback pending.
15432 		 *
15433 		 * If no delay has been specified, then it is up to the caller
15434 		 * to ensure that IO processing continues without stalling.
15435 		 * Effectively, this means that the caller will issue the
15436 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15437 		 * callback does this after the START STOP UNIT command has
15438 		 * completed. In either of these cases we should not schedule
15439 		 * a timeout callback here.  Also don't schedule the timeout if
15440 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15441 		 */
15442 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15443 		    (un->un_direct_priority_timeid == NULL)) {
15444 			un->un_retry_timeid =
15445 			    timeout(sd_start_retry_command, un, retry_delay);
15446 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15447 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15448 			    " bp:0x%p un_retry_timeid:0x%p\n",
15449 			    un, bp, un->un_retry_timeid);
15450 		}
15451 	} else {
15452 		/*
15453 		 * We only get in here if there is already another command
15454 		 * waiting to be retried.  In this case, we just put the
15455 		 * given command onto the wait queue, so it can be transported
15456 		 * after the current retry command has completed.
15457 		 *
15458 		 * Also we have to make sure that if the command at the head
15459 		 * of the wait queue is the un_failfast_bp, that we do not
15460 		 * put ahead of it any other commands that are to be retried.
15461 		 */
15462 		if ((un->un_failfast_bp != NULL) &&
15463 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15464 			/*
15465 			 * Enqueue this command AFTER the first command on
15466 			 * the wait queue (which is also un_failfast_bp).
15467 			 */
15468 			bp->av_forw = un->un_waitq_headp->av_forw;
15469 			un->un_waitq_headp->av_forw = bp;
15470 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15471 				un->un_waitq_tailp = bp;
15472 			}
15473 		} else {
15474 			/* Enqueue this command at the head of the waitq. */
15475 			bp->av_forw = un->un_waitq_headp;
15476 			un->un_waitq_headp = bp;
15477 			if (un->un_waitq_tailp == NULL) {
15478 				un->un_waitq_tailp = bp;
15479 			}
15480 		}
15481 
15482 		if (statp == NULL) {
15483 			statp = kstat_waitq_enter;
15484 		}
15485 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15486 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15487 	}
15488 
15489 done:
15490 	if (statp != NULL) {
15491 		SD_UPDATE_KSTATS(un, statp, bp);
15492 	}
15493 
15494 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15495 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15496 }
15497 
15498 
15499 /*
15500  *    Function: sd_start_retry_command
15501  *
15502  * Description: Start the command that has been waiting on the target's
15503  *		retry queue.  Called from timeout(9F) context after the
15504  *		retry delay interval has expired.
15505  *
15506  *   Arguments: arg - pointer to associated softstate for the device.
15507  *
15508  *     Context: timeout(9F) thread context.  May not sleep.
15509  */
15510 
15511 static void
15512 sd_start_retry_command(void *arg)
15513 {
15514 	struct sd_lun *un = arg;
15515 
15516 	ASSERT(un != NULL);
15517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15518 
15519 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15520 	    "sd_start_retry_command: entry\n");
15521 
15522 	mutex_enter(SD_MUTEX(un));
15523 
15524 	un->un_retry_timeid = NULL;
15525 
15526 	if (un->un_retry_bp != NULL) {
15527 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15528 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15529 		    un, un->un_retry_bp);
15530 		sd_start_cmds(un, un->un_retry_bp);
15531 	}
15532 
15533 	mutex_exit(SD_MUTEX(un));
15534 
15535 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15536 	    "sd_start_retry_command: exit\n");
15537 }
15538 
15539 
15540 /*
15541  *    Function: sd_start_direct_priority_command
15542  *
15543  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15544  *		received TRAN_BUSY when we called scsi_transport() to send it
15545  *		to the underlying HBA. This function is called from timeout(9F)
15546  *		context after the delay interval has expired.
15547  *
15548  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15549  *
15550  *     Context: timeout(9F) thread context.  May not sleep.
15551  */
15552 
15553 static void
15554 sd_start_direct_priority_command(void *arg)
15555 {
15556 	struct buf	*priority_bp = arg;
15557 	struct sd_lun	*un;
15558 
15559 	ASSERT(priority_bp != NULL);
15560 	un = SD_GET_UN(priority_bp);
15561 	ASSERT(un != NULL);
15562 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15563 
15564 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15565 	    "sd_start_direct_priority_command: entry\n");
15566 
15567 	mutex_enter(SD_MUTEX(un));
15568 	un->un_direct_priority_timeid = NULL;
15569 	sd_start_cmds(un, priority_bp);
15570 	mutex_exit(SD_MUTEX(un));
15571 
15572 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15573 	    "sd_start_direct_priority_command: exit\n");
15574 }
15575 
15576 
15577 /*
15578  *    Function: sd_send_request_sense_command
15579  *
15580  * Description: Sends a REQUEST SENSE command to the target
15581  *
15582  *     Context: May be called from interrupt context.
15583  */
15584 
15585 static void
15586 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15587 	struct scsi_pkt *pktp)
15588 {
15589 	ASSERT(bp != NULL);
15590 	ASSERT(un != NULL);
15591 	ASSERT(mutex_owned(SD_MUTEX(un)));
15592 
15593 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15594 	    "entry: buf:0x%p\n", bp);
15595 
15596 	/*
15597 	 * If we are syncing or dumping, then fail the command to avoid a
15598 	 * recursive callback into scsi_transport(). Also fail the command
15599 	 * if we are suspended (legacy behavior).
15600 	 */
15601 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15602 	    (un->un_state == SD_STATE_DUMPING)) {
15603 		sd_return_failed_command(un, bp, EIO);
15604 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15605 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15606 		return;
15607 	}
15608 
15609 	/*
15610 	 * Retry the failed command and don't issue the request sense if:
15611 	 *    1) the sense buf is busy
15612 	 *    2) we have 1 or more outstanding commands on the target
15613 	 *    (the sense data will be cleared or invalidated any way)
15614 	 *
15615 	 * Note: There could be an issue with not checking a retry limit here,
15616 	 * the problem is determining which retry limit to check.
15617 	 */
15618 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15619 		/* Don't retry if the command is flagged as non-retryable */
15620 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15621 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15622 			    NULL, NULL, 0, un->un_busy_timeout,
15623 			    kstat_waitq_enter);
15624 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15625 			    "sd_send_request_sense_command: "
15626 			    "at full throttle, retrying exit\n");
15627 		} else {
15628 			sd_return_failed_command(un, bp, EIO);
15629 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15630 			    "sd_send_request_sense_command: "
15631 			    "at full throttle, non-retryable exit\n");
15632 		}
15633 		return;
15634 	}
15635 
15636 	sd_mark_rqs_busy(un, bp);
15637 	sd_start_cmds(un, un->un_rqs_bp);
15638 
15639 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15640 	    "sd_send_request_sense_command: exit\n");
15641 }
15642 
15643 
15644 /*
15645  *    Function: sd_mark_rqs_busy
15646  *
15647  * Description: Indicate that the request sense bp for this instance is
15648  *		in use.
15649  *
15650  *     Context: May be called under interrupt context
15651  */
15652 
15653 static void
15654 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15655 {
15656 	struct sd_xbuf	*sense_xp;
15657 
15658 	ASSERT(un != NULL);
15659 	ASSERT(bp != NULL);
15660 	ASSERT(mutex_owned(SD_MUTEX(un)));
15661 	ASSERT(un->un_sense_isbusy == 0);
15662 
15663 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15664 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15665 
15666 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15667 	ASSERT(sense_xp != NULL);
15668 
15669 	SD_INFO(SD_LOG_IO, un,
15670 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15671 
15672 	ASSERT(sense_xp->xb_pktp != NULL);
15673 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15674 	    == (FLAG_SENSING | FLAG_HEAD));
15675 
15676 	un->un_sense_isbusy = 1;
15677 	un->un_rqs_bp->b_resid = 0;
15678 	sense_xp->xb_pktp->pkt_resid  = 0;
15679 	sense_xp->xb_pktp->pkt_reason = 0;
15680 
15681 	/* So we can get back the bp at interrupt time! */
15682 	sense_xp->xb_sense_bp = bp;
15683 
15684 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15685 
15686 	/*
15687 	 * Mark this buf as awaiting sense data. (This is already set in
15688 	 * the pkt_flags for the RQS packet.)
15689 	 */
15690 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15691 
15692 	/* Request sense down same path */
15693 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
15694 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
15695 		sense_xp->xb_pktp->pkt_path_instance =
15696 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
15697 
15698 	sense_xp->xb_retry_count	= 0;
15699 	sense_xp->xb_victim_retry_count = 0;
15700 	sense_xp->xb_ua_retry_count	= 0;
15701 	sense_xp->xb_nr_retry_count 	= 0;
15702 	sense_xp->xb_dma_resid  = 0;
15703 
15704 	/* Clean up the fields for auto-request sense */
15705 	sense_xp->xb_sense_status = 0;
15706 	sense_xp->xb_sense_state  = 0;
15707 	sense_xp->xb_sense_resid  = 0;
15708 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15709 
15710 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15711 }
15712 
15713 
15714 /*
15715  *    Function: sd_mark_rqs_idle
15716  *
15717  * Description: SD_MUTEX must be held continuously through this routine
15718  *		to prevent reuse of the rqs struct before the caller can
15719  *		complete it's processing.
15720  *
15721  * Return Code: Pointer to the RQS buf
15722  *
15723  *     Context: May be called under interrupt context
15724  */
15725 
15726 static struct buf *
15727 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15728 {
15729 	struct buf *bp;
15730 	ASSERT(un != NULL);
15731 	ASSERT(sense_xp != NULL);
15732 	ASSERT(mutex_owned(SD_MUTEX(un)));
15733 	ASSERT(un->un_sense_isbusy != 0);
15734 
15735 	un->un_sense_isbusy = 0;
15736 	bp = sense_xp->xb_sense_bp;
15737 	sense_xp->xb_sense_bp = NULL;
15738 
15739 	/* This pkt is no longer interested in getting sense data */
15740 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15741 
15742 	return (bp);
15743 }
15744 
15745 
15746 
15747 /*
15748  *    Function: sd_alloc_rqs
15749  *
15750  * Description: Set up the unit to receive auto request sense data
15751  *
15752  * Return Code: DDI_SUCCESS or DDI_FAILURE
15753  *
15754  *     Context: Called under attach(9E) context
15755  */
15756 
15757 static int
15758 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15759 {
15760 	struct sd_xbuf *xp;
15761 
15762 	ASSERT(un != NULL);
15763 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15764 	ASSERT(un->un_rqs_bp == NULL);
15765 	ASSERT(un->un_rqs_pktp == NULL);
15766 
15767 	/*
15768 	 * First allocate the required buf and scsi_pkt structs, then set up
15769 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15770 	 */
15771 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15772 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15773 	if (un->un_rqs_bp == NULL) {
15774 		return (DDI_FAILURE);
15775 	}
15776 
15777 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15778 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15779 
15780 	if (un->un_rqs_pktp == NULL) {
15781 		sd_free_rqs(un);
15782 		return (DDI_FAILURE);
15783 	}
15784 
15785 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15786 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15787 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
15788 
15789 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15790 
15791 	/* Set up the other needed members in the ARQ scsi_pkt. */
15792 	un->un_rqs_pktp->pkt_comp   = sdintr;
15793 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15794 	un->un_rqs_pktp->pkt_flags |=
15795 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15796 
15797 	/*
15798 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15799 	 * provide any intpkt, destroypkt routines as we take care of
15800 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15801 	 */
15802 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15803 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15804 	xp->xb_pktp = un->un_rqs_pktp;
15805 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15806 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15807 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15808 
15809 	/*
15810 	 * Save the pointer to the request sense private bp so it can
15811 	 * be retrieved in sdintr.
15812 	 */
15813 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15814 	ASSERT(un->un_rqs_bp->b_private == xp);
15815 
15816 	/*
15817 	 * See if the HBA supports auto-request sense for the specified
15818 	 * target/lun. If it does, then try to enable it (if not already
15819 	 * enabled).
15820 	 *
15821 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15822 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15823 	 * return success.  However, in both of these cases ARQ is always
15824 	 * enabled and scsi_ifgetcap will always return true. The best approach
15825 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15826 	 *
15827 	 * The 3rd case is the HBA (adp) always return enabled on
15828 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15829 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15830 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15831 	 */
15832 
15833 	if (un->un_f_is_fibre == TRUE) {
15834 		un->un_f_arq_enabled = TRUE;
15835 	} else {
15836 #if defined(__i386) || defined(__amd64)
15837 		/*
15838 		 * Circumvent the Adaptec bug, remove this code when
15839 		 * the bug is fixed
15840 		 */
15841 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15842 #endif
15843 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15844 		case 0:
15845 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15846 			    "sd_alloc_rqs: HBA supports ARQ\n");
15847 			/*
15848 			 * ARQ is supported by this HBA but currently is not
15849 			 * enabled. Attempt to enable it and if successful then
15850 			 * mark this instance as ARQ enabled.
15851 			 */
15852 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15853 			    == 1) {
15854 				/* Successfully enabled ARQ in the HBA */
15855 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15856 				    "sd_alloc_rqs: ARQ enabled\n");
15857 				un->un_f_arq_enabled = TRUE;
15858 			} else {
15859 				/* Could not enable ARQ in the HBA */
15860 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15861 				    "sd_alloc_rqs: failed ARQ enable\n");
15862 				un->un_f_arq_enabled = FALSE;
15863 			}
15864 			break;
15865 		case 1:
15866 			/*
15867 			 * ARQ is supported by this HBA and is already enabled.
15868 			 * Just mark ARQ as enabled for this instance.
15869 			 */
15870 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15871 			    "sd_alloc_rqs: ARQ already enabled\n");
15872 			un->un_f_arq_enabled = TRUE;
15873 			break;
15874 		default:
15875 			/*
15876 			 * ARQ is not supported by this HBA; disable it for this
15877 			 * instance.
15878 			 */
15879 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15880 			    "sd_alloc_rqs: HBA does not support ARQ\n");
15881 			un->un_f_arq_enabled = FALSE;
15882 			break;
15883 		}
15884 	}
15885 
15886 	return (DDI_SUCCESS);
15887 }
15888 
15889 
15890 /*
15891  *    Function: sd_free_rqs
15892  *
15893  * Description: Cleanup for the pre-instance RQS command.
15894  *
15895  *     Context: Kernel thread context
15896  */
15897 
15898 static void
15899 sd_free_rqs(struct sd_lun *un)
15900 {
15901 	ASSERT(un != NULL);
15902 
15903 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15904 
15905 	/*
15906 	 * If consistent memory is bound to a scsi_pkt, the pkt
15907 	 * has to be destroyed *before* freeing the consistent memory.
15908 	 * Don't change the sequence of this operations.
15909 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15910 	 * after it was freed in scsi_free_consistent_buf().
15911 	 */
15912 	if (un->un_rqs_pktp != NULL) {
15913 		scsi_destroy_pkt(un->un_rqs_pktp);
15914 		un->un_rqs_pktp = NULL;
15915 	}
15916 
15917 	if (un->un_rqs_bp != NULL) {
15918 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
15919 		if (xp != NULL) {
15920 			kmem_free(xp, sizeof (struct sd_xbuf));
15921 		}
15922 		scsi_free_consistent_buf(un->un_rqs_bp);
15923 		un->un_rqs_bp = NULL;
15924 	}
15925 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15926 }
15927 
15928 
15929 
15930 /*
15931  *    Function: sd_reduce_throttle
15932  *
15933  * Description: Reduces the maximum # of outstanding commands on a
15934  *		target to the current number of outstanding commands.
15935  *		Queues a tiemout(9F) callback to restore the limit
15936  *		after a specified interval has elapsed.
15937  *		Typically used when we get a TRAN_BUSY return code
15938  *		back from scsi_transport().
15939  *
15940  *   Arguments: un - ptr to the sd_lun softstate struct
15941  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15942  *
15943  *     Context: May be called from interrupt context
15944  */
15945 
15946 static void
15947 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15948 {
15949 	ASSERT(un != NULL);
15950 	ASSERT(mutex_owned(SD_MUTEX(un)));
15951 	ASSERT(un->un_ncmds_in_transport >= 0);
15952 
15953 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15954 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15955 	    un, un->un_throttle, un->un_ncmds_in_transport);
15956 
15957 	if (un->un_throttle > 1) {
15958 		if (un->un_f_use_adaptive_throttle == TRUE) {
15959 			switch (throttle_type) {
15960 			case SD_THROTTLE_TRAN_BUSY:
15961 				if (un->un_busy_throttle == 0) {
15962 					un->un_busy_throttle = un->un_throttle;
15963 				}
15964 				break;
15965 			case SD_THROTTLE_QFULL:
15966 				un->un_busy_throttle = 0;
15967 				break;
15968 			default:
15969 				ASSERT(FALSE);
15970 			}
15971 
15972 			if (un->un_ncmds_in_transport > 0) {
15973 				un->un_throttle = un->un_ncmds_in_transport;
15974 			}
15975 
15976 		} else {
15977 			if (un->un_ncmds_in_transport == 0) {
15978 				un->un_throttle = 1;
15979 			} else {
15980 				un->un_throttle = un->un_ncmds_in_transport;
15981 			}
15982 		}
15983 	}
15984 
15985 	/* Reschedule the timeout if none is currently active */
15986 	if (un->un_reset_throttle_timeid == NULL) {
15987 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15988 		    un, SD_THROTTLE_RESET_INTERVAL);
15989 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15990 		    "sd_reduce_throttle: timeout scheduled!\n");
15991 	}
15992 
15993 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15994 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15995 }
15996 
15997 
15998 
15999 /*
16000  *    Function: sd_restore_throttle
16001  *
16002  * Description: Callback function for timeout(9F).  Resets the current
16003  *		value of un->un_throttle to its default.
16004  *
16005  *   Arguments: arg - pointer to associated softstate for the device.
16006  *
16007  *     Context: May be called from interrupt context
16008  */
16009 
16010 static void
16011 sd_restore_throttle(void *arg)
16012 {
16013 	struct sd_lun	*un = arg;
16014 
16015 	ASSERT(un != NULL);
16016 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16017 
16018 	mutex_enter(SD_MUTEX(un));
16019 
16020 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16021 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16022 
16023 	un->un_reset_throttle_timeid = NULL;
16024 
16025 	if (un->un_f_use_adaptive_throttle == TRUE) {
16026 		/*
16027 		 * If un_busy_throttle is nonzero, then it contains the
16028 		 * value that un_throttle was when we got a TRAN_BUSY back
16029 		 * from scsi_transport(). We want to revert back to this
16030 		 * value.
16031 		 *
16032 		 * In the QFULL case, the throttle limit will incrementally
16033 		 * increase until it reaches max throttle.
16034 		 */
16035 		if (un->un_busy_throttle > 0) {
16036 			un->un_throttle = un->un_busy_throttle;
16037 			un->un_busy_throttle = 0;
16038 		} else {
16039 			/*
16040 			 * increase throttle by 10% open gate slowly, schedule
16041 			 * another restore if saved throttle has not been
16042 			 * reached
16043 			 */
16044 			short throttle;
16045 			if (sd_qfull_throttle_enable) {
16046 				throttle = un->un_throttle +
16047 				    max((un->un_throttle / 10), 1);
16048 				un->un_throttle =
16049 				    (throttle < un->un_saved_throttle) ?
16050 				    throttle : un->un_saved_throttle;
16051 				if (un->un_throttle < un->un_saved_throttle) {
16052 					un->un_reset_throttle_timeid =
16053 					    timeout(sd_restore_throttle,
16054 					    un,
16055 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16056 				}
16057 			}
16058 		}
16059 
16060 		/*
16061 		 * If un_throttle has fallen below the low-water mark, we
16062 		 * restore the maximum value here (and allow it to ratchet
16063 		 * down again if necessary).
16064 		 */
16065 		if (un->un_throttle < un->un_min_throttle) {
16066 			un->un_throttle = un->un_saved_throttle;
16067 		}
16068 	} else {
16069 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16070 		    "restoring limit from 0x%x to 0x%x\n",
16071 		    un->un_throttle, un->un_saved_throttle);
16072 		un->un_throttle = un->un_saved_throttle;
16073 	}
16074 
16075 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16076 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16077 
16078 	sd_start_cmds(un, NULL);
16079 
16080 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16081 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16082 	    un, un->un_throttle);
16083 
16084 	mutex_exit(SD_MUTEX(un));
16085 
16086 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16087 }
16088 
16089 /*
16090  *    Function: sdrunout
16091  *
16092  * Description: Callback routine for scsi_init_pkt when a resource allocation
16093  *		fails.
16094  *
16095  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16096  *		soft state instance.
16097  *
16098  * Return Code: The scsi_init_pkt routine allows for the callback function to
16099  *		return a 0 indicating the callback should be rescheduled or a 1
16100  *		indicating not to reschedule. This routine always returns 1
16101  *		because the driver always provides a callback function to
16102  *		scsi_init_pkt. This results in a callback always being scheduled
16103  *		(via the scsi_init_pkt callback implementation) if a resource
16104  *		failure occurs.
16105  *
16106  *     Context: This callback function may not block or call routines that block
16107  *
16108  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16109  *		request persisting at the head of the list which cannot be
16110  *		satisfied even after multiple retries. In the future the driver
16111  *		may implement some time of maximum runout count before failing
16112  *		an I/O.
16113  */
16114 
16115 static int
16116 sdrunout(caddr_t arg)
16117 {
16118 	struct sd_lun	*un = (struct sd_lun *)arg;
16119 
16120 	ASSERT(un != NULL);
16121 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16122 
16123 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16124 
16125 	mutex_enter(SD_MUTEX(un));
16126 	sd_start_cmds(un, NULL);
16127 	mutex_exit(SD_MUTEX(un));
16128 	/*
16129 	 * This callback routine always returns 1 (i.e. do not reschedule)
16130 	 * because we always specify sdrunout as the callback handler for
16131 	 * scsi_init_pkt inside the call to sd_start_cmds.
16132 	 */
16133 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16134 	return (1);
16135 }
16136 
16137 
16138 /*
16139  *    Function: sdintr
16140  *
16141  * Description: Completion callback routine for scsi_pkt(9S) structs
16142  *		sent to the HBA driver via scsi_transport(9F).
16143  *
16144  *     Context: Interrupt context
16145  */
16146 
16147 static void
16148 sdintr(struct scsi_pkt *pktp)
16149 {
16150 	struct buf	*bp;
16151 	struct sd_xbuf	*xp;
16152 	struct sd_lun	*un;
16153 	size_t		actual_len;
16154 	sd_ssc_t	*sscp;
16155 
16156 	ASSERT(pktp != NULL);
16157 	bp = (struct buf *)pktp->pkt_private;
16158 	ASSERT(bp != NULL);
16159 	xp = SD_GET_XBUF(bp);
16160 	ASSERT(xp != NULL);
16161 	ASSERT(xp->xb_pktp != NULL);
16162 	un = SD_GET_UN(bp);
16163 	ASSERT(un != NULL);
16164 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16165 
16166 #ifdef SD_FAULT_INJECTION
16167 
16168 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16169 	/* SD FaultInjection */
16170 	sd_faultinjection(pktp);
16171 
16172 #endif /* SD_FAULT_INJECTION */
16173 
16174 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16175 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16176 
16177 	mutex_enter(SD_MUTEX(un));
16178 
16179 	ASSERT(un->un_fm_private != NULL);
16180 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16181 	ASSERT(sscp != NULL);
16182 
16183 	/* Reduce the count of the #commands currently in transport */
16184 	un->un_ncmds_in_transport--;
16185 	ASSERT(un->un_ncmds_in_transport >= 0);
16186 
16187 	/* Increment counter to indicate that the callback routine is active */
16188 	un->un_in_callback++;
16189 
16190 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16191 
16192 #ifdef	SDDEBUG
16193 	if (bp == un->un_retry_bp) {
16194 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16195 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16196 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16197 	}
16198 #endif
16199 
16200 	/*
16201 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16202 	 * state if needed.
16203 	 */
16204 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16205 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16206 		    "Command failed to complete...Device is gone\n");
16207 		if (un->un_mediastate != DKIO_DEV_GONE) {
16208 			un->un_mediastate = DKIO_DEV_GONE;
16209 			cv_broadcast(&un->un_state_cv);
16210 		}
16211 		sd_return_failed_command(un, bp, EIO);
16212 		goto exit;
16213 	}
16214 
16215 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16216 		SD_TRACE(SD_LOG_COMMON, un,
16217 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16218 	}
16219 
16220 	/*
16221 	 * First see if the pkt has auto-request sense data with it....
16222 	 * Look at the packet state first so we don't take a performance
16223 	 * hit looking at the arq enabled flag unless absolutely necessary.
16224 	 */
16225 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16226 	    (un->un_f_arq_enabled == TRUE)) {
16227 		/*
16228 		 * The HBA did an auto request sense for this command so check
16229 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16230 		 * driver command that should not be retried.
16231 		 */
16232 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16233 			/*
16234 			 * Save the relevant sense info into the xp for the
16235 			 * original cmd.
16236 			 */
16237 			struct scsi_arq_status *asp;
16238 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16239 			xp->xb_sense_status =
16240 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16241 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16242 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16243 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16244 				actual_len = MAX_SENSE_LENGTH -
16245 				    xp->xb_sense_resid;
16246 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16247 				    MAX_SENSE_LENGTH);
16248 			} else {
16249 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16250 					actual_len = MAX_SENSE_LENGTH -
16251 					    xp->xb_sense_resid;
16252 				} else {
16253 					actual_len = SENSE_LENGTH -
16254 					    xp->xb_sense_resid;
16255 				}
16256 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16257 					if ((((struct uscsi_cmd *)
16258 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16259 					    actual_len) {
16260 						xp->xb_sense_resid =
16261 						    (((struct uscsi_cmd *)
16262 						    (xp->xb_pktinfo))->
16263 						    uscsi_rqlen) - actual_len;
16264 					} else {
16265 						xp->xb_sense_resid = 0;
16266 					}
16267 				}
16268 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16269 				    SENSE_LENGTH);
16270 			}
16271 
16272 			/* fail the command */
16273 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16274 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16275 			sd_return_failed_command(un, bp, EIO);
16276 			goto exit;
16277 		}
16278 
16279 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16280 		/*
16281 		 * We want to either retry or fail this command, so free
16282 		 * the DMA resources here.  If we retry the command then
16283 		 * the DMA resources will be reallocated in sd_start_cmds().
16284 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16285 		 * causes the *entire* transfer to start over again from the
16286 		 * beginning of the request, even for PARTIAL chunks that
16287 		 * have already transferred successfully.
16288 		 */
16289 		if ((un->un_f_is_fibre == TRUE) &&
16290 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16291 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16292 			scsi_dmafree(pktp);
16293 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16294 		}
16295 #endif
16296 
16297 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16298 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16299 
16300 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16301 		goto exit;
16302 	}
16303 
16304 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16305 	if (pktp->pkt_flags & FLAG_SENSING)  {
16306 		/* This pktp is from the unit's REQUEST_SENSE command */
16307 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16308 		    "sdintr: sd_handle_request_sense\n");
16309 		sd_handle_request_sense(un, bp, xp, pktp);
16310 		goto exit;
16311 	}
16312 
16313 	/*
16314 	 * Check to see if the command successfully completed as requested;
16315 	 * this is the most common case (and also the hot performance path).
16316 	 *
16317 	 * Requirements for successful completion are:
16318 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16319 	 * In addition:
16320 	 * - A residual of zero indicates successful completion no matter what
16321 	 *   the command is.
16322 	 * - If the residual is not zero and the command is not a read or
16323 	 *   write, then it's still defined as successful completion. In other
16324 	 *   words, if the command is a read or write the residual must be
16325 	 *   zero for successful completion.
16326 	 * - If the residual is not zero and the command is a read or
16327 	 *   write, and it's a USCSICMD, then it's still defined as
16328 	 *   successful completion.
16329 	 */
16330 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16331 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16332 
16333 		/*
16334 		 * Since this command is returned with a good status, we
16335 		 * can reset the count for Sonoma failover.
16336 		 */
16337 		un->un_sonoma_failure_count = 0;
16338 
16339 		/*
16340 		 * Return all USCSI commands on good status
16341 		 */
16342 		if (pktp->pkt_resid == 0) {
16343 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16344 			    "sdintr: returning command for resid == 0\n");
16345 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16346 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16347 			SD_UPDATE_B_RESID(bp, pktp);
16348 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16349 			    "sdintr: returning command for resid != 0\n");
16350 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16351 			SD_UPDATE_B_RESID(bp, pktp);
16352 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16353 			    "sdintr: returning uscsi command\n");
16354 		} else {
16355 			goto not_successful;
16356 		}
16357 		sd_return_command(un, bp);
16358 
16359 		/*
16360 		 * Decrement counter to indicate that the callback routine
16361 		 * is done.
16362 		 */
16363 		un->un_in_callback--;
16364 		ASSERT(un->un_in_callback >= 0);
16365 		mutex_exit(SD_MUTEX(un));
16366 
16367 		return;
16368 	}
16369 
16370 not_successful:
16371 
16372 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16373 	/*
16374 	 * The following is based upon knowledge of the underlying transport
16375 	 * and its use of DMA resources.  This code should be removed when
16376 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16377 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16378 	 * and sd_start_cmds().
16379 	 *
16380 	 * Free any DMA resources associated with this command if there
16381 	 * is a chance it could be retried or enqueued for later retry.
16382 	 * If we keep the DMA binding then mpxio cannot reissue the
16383 	 * command on another path whenever a path failure occurs.
16384 	 *
16385 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16386 	 * causes the *entire* transfer to start over again from the
16387 	 * beginning of the request, even for PARTIAL chunks that
16388 	 * have already transferred successfully.
16389 	 *
16390 	 * This is only done for non-uscsi commands (and also skipped for the
16391 	 * driver's internal RQS command). Also just do this for Fibre Channel
16392 	 * devices as these are the only ones that support mpxio.
16393 	 */
16394 	if ((un->un_f_is_fibre == TRUE) &&
16395 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16396 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16397 		scsi_dmafree(pktp);
16398 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16399 	}
16400 #endif
16401 
16402 	/*
16403 	 * The command did not successfully complete as requested so check
16404 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16405 	 * driver command that should not be retried so just return. If
16406 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16407 	 */
16408 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16409 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16410 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16411 		/*
16412 		 * Issue a request sense if a check condition caused the error
16413 		 * (we handle the auto request sense case above), otherwise
16414 		 * just fail the command.
16415 		 */
16416 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16417 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16418 			sd_send_request_sense_command(un, bp, pktp);
16419 		} else {
16420 			sd_return_failed_command(un, bp, EIO);
16421 		}
16422 		goto exit;
16423 	}
16424 
16425 	/*
16426 	 * The command did not successfully complete as requested so process
16427 	 * the error, retry, and/or attempt recovery.
16428 	 */
16429 	switch (pktp->pkt_reason) {
16430 	case CMD_CMPLT:
16431 		switch (SD_GET_PKT_STATUS(pktp)) {
16432 		case STATUS_GOOD:
16433 			/*
16434 			 * The command completed successfully with a non-zero
16435 			 * residual
16436 			 */
16437 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16438 			    "sdintr: STATUS_GOOD \n");
16439 			sd_pkt_status_good(un, bp, xp, pktp);
16440 			break;
16441 
16442 		case STATUS_CHECK:
16443 		case STATUS_TERMINATED:
16444 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16445 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16446 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16447 			break;
16448 
16449 		case STATUS_BUSY:
16450 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16451 			    "sdintr: STATUS_BUSY\n");
16452 			sd_pkt_status_busy(un, bp, xp, pktp);
16453 			break;
16454 
16455 		case STATUS_RESERVATION_CONFLICT:
16456 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16457 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16458 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16459 			break;
16460 
16461 		case STATUS_QFULL:
16462 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16463 			    "sdintr: STATUS_QFULL\n");
16464 			sd_pkt_status_qfull(un, bp, xp, pktp);
16465 			break;
16466 
16467 		case STATUS_MET:
16468 		case STATUS_INTERMEDIATE:
16469 		case STATUS_SCSI2:
16470 		case STATUS_INTERMEDIATE_MET:
16471 		case STATUS_ACA_ACTIVE:
16472 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16473 			    "Unexpected SCSI status received: 0x%x\n",
16474 			    SD_GET_PKT_STATUS(pktp));
16475 			/*
16476 			 * Mark the ssc_flags when detected invalid status
16477 			 * code for non-USCSI command.
16478 			 */
16479 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16480 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16481 				    0, "stat-code");
16482 			}
16483 			sd_return_failed_command(un, bp, EIO);
16484 			break;
16485 
16486 		default:
16487 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16488 			    "Invalid SCSI status received: 0x%x\n",
16489 			    SD_GET_PKT_STATUS(pktp));
16490 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16491 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
16492 				    0, "stat-code");
16493 			}
16494 			sd_return_failed_command(un, bp, EIO);
16495 			break;
16496 
16497 		}
16498 		break;
16499 
16500 	case CMD_INCOMPLETE:
16501 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16502 		    "sdintr:  CMD_INCOMPLETE\n");
16503 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16504 		break;
16505 	case CMD_TRAN_ERR:
16506 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16507 		    "sdintr: CMD_TRAN_ERR\n");
16508 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16509 		break;
16510 	case CMD_RESET:
16511 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16512 		    "sdintr: CMD_RESET \n");
16513 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16514 		break;
16515 	case CMD_ABORTED:
16516 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16517 		    "sdintr: CMD_ABORTED \n");
16518 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16519 		break;
16520 	case CMD_TIMEOUT:
16521 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16522 		    "sdintr: CMD_TIMEOUT\n");
16523 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16524 		break;
16525 	case CMD_UNX_BUS_FREE:
16526 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16527 		    "sdintr: CMD_UNX_BUS_FREE \n");
16528 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16529 		break;
16530 	case CMD_TAG_REJECT:
16531 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16532 		    "sdintr: CMD_TAG_REJECT\n");
16533 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16534 		break;
16535 	default:
16536 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16537 		    "sdintr: default\n");
16538 		/*
16539 		 * Mark the ssc_flags for detecting invliad pkt_reason.
16540 		 */
16541 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16542 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
16543 			    0, "pkt-reason");
16544 		}
16545 		sd_pkt_reason_default(un, bp, xp, pktp);
16546 		break;
16547 	}
16548 
16549 exit:
16550 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16551 
16552 	/* Decrement counter to indicate that the callback routine is done. */
16553 	un->un_in_callback--;
16554 	ASSERT(un->un_in_callback >= 0);
16555 
16556 	/*
16557 	 * At this point, the pkt has been dispatched, ie, it is either
16558 	 * being re-tried or has been returned to its caller and should
16559 	 * not be referenced.
16560 	 */
16561 
16562 	mutex_exit(SD_MUTEX(un));
16563 }
16564 
16565 
16566 /*
16567  *    Function: sd_print_incomplete_msg
16568  *
16569  * Description: Prints the error message for a CMD_INCOMPLETE error.
16570  *
16571  *   Arguments: un - ptr to associated softstate for the device.
16572  *		bp - ptr to the buf(9S) for the command.
16573  *		arg - message string ptr
16574  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16575  *			or SD_NO_RETRY_ISSUED.
16576  *
16577  *     Context: May be called under interrupt context
16578  */
16579 
16580 static void
16581 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16582 {
16583 	struct scsi_pkt	*pktp;
16584 	char	*msgp;
16585 	char	*cmdp = arg;
16586 
16587 	ASSERT(un != NULL);
16588 	ASSERT(mutex_owned(SD_MUTEX(un)));
16589 	ASSERT(bp != NULL);
16590 	ASSERT(arg != NULL);
16591 	pktp = SD_GET_PKTP(bp);
16592 	ASSERT(pktp != NULL);
16593 
16594 	switch (code) {
16595 	case SD_DELAYED_RETRY_ISSUED:
16596 	case SD_IMMEDIATE_RETRY_ISSUED:
16597 		msgp = "retrying";
16598 		break;
16599 	case SD_NO_RETRY_ISSUED:
16600 	default:
16601 		msgp = "giving up";
16602 		break;
16603 	}
16604 
16605 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16606 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16607 		    "incomplete %s- %s\n", cmdp, msgp);
16608 	}
16609 }
16610 
16611 
16612 
16613 /*
16614  *    Function: sd_pkt_status_good
16615  *
16616  * Description: Processing for a STATUS_GOOD code in pkt_status.
16617  *
16618  *     Context: May be called under interrupt context
16619  */
16620 
16621 static void
16622 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16623 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16624 {
16625 	char	*cmdp;
16626 
16627 	ASSERT(un != NULL);
16628 	ASSERT(mutex_owned(SD_MUTEX(un)));
16629 	ASSERT(bp != NULL);
16630 	ASSERT(xp != NULL);
16631 	ASSERT(pktp != NULL);
16632 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16633 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16634 	ASSERT(pktp->pkt_resid != 0);
16635 
16636 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16637 
16638 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16639 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16640 	case SCMD_READ:
16641 		cmdp = "read";
16642 		break;
16643 	case SCMD_WRITE:
16644 		cmdp = "write";
16645 		break;
16646 	default:
16647 		SD_UPDATE_B_RESID(bp, pktp);
16648 		sd_return_command(un, bp);
16649 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16650 		return;
16651 	}
16652 
16653 	/*
16654 	 * See if we can retry the read/write, preferrably immediately.
16655 	 * If retries are exhaused, then sd_retry_command() will update
16656 	 * the b_resid count.
16657 	 */
16658 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16659 	    cmdp, EIO, (clock_t)0, NULL);
16660 
16661 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16662 }
16663 
16664 
16665 
16666 
16667 
16668 /*
16669  *    Function: sd_handle_request_sense
16670  *
16671  * Description: Processing for non-auto Request Sense command.
16672  *
16673  *   Arguments: un - ptr to associated softstate
16674  *		sense_bp - ptr to buf(9S) for the RQS command
16675  *		sense_xp - ptr to the sd_xbuf for the RQS command
16676  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16677  *
16678  *     Context: May be called under interrupt context
16679  */
16680 
16681 static void
16682 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16683 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16684 {
16685 	struct buf	*cmd_bp;	/* buf for the original command */
16686 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16687 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16688 	size_t		actual_len;	/* actual sense data length */
16689 
16690 	ASSERT(un != NULL);
16691 	ASSERT(mutex_owned(SD_MUTEX(un)));
16692 	ASSERT(sense_bp != NULL);
16693 	ASSERT(sense_xp != NULL);
16694 	ASSERT(sense_pktp != NULL);
16695 
16696 	/*
16697 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16698 	 * RQS command and not the original command.
16699 	 */
16700 	ASSERT(sense_pktp == un->un_rqs_pktp);
16701 	ASSERT(sense_bp   == un->un_rqs_bp);
16702 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16703 	    (FLAG_SENSING | FLAG_HEAD));
16704 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16705 	    FLAG_SENSING) == FLAG_SENSING);
16706 
16707 	/* These are the bp, xp, and pktp for the original command */
16708 	cmd_bp = sense_xp->xb_sense_bp;
16709 	cmd_xp = SD_GET_XBUF(cmd_bp);
16710 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16711 
16712 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16713 		/*
16714 		 * The REQUEST SENSE command failed.  Release the REQUEST
16715 		 * SENSE command for re-use, get back the bp for the original
16716 		 * command, and attempt to re-try the original command if
16717 		 * FLAG_DIAGNOSE is not set in the original packet.
16718 		 */
16719 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16720 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16721 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16722 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16723 			    NULL, NULL, EIO, (clock_t)0, NULL);
16724 			return;
16725 		}
16726 	}
16727 
16728 	/*
16729 	 * Save the relevant sense info into the xp for the original cmd.
16730 	 *
16731 	 * Note: if the request sense failed the state info will be zero
16732 	 * as set in sd_mark_rqs_busy()
16733 	 */
16734 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16735 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16736 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
16737 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
16738 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
16739 	    SENSE_LENGTH)) {
16740 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16741 		    MAX_SENSE_LENGTH);
16742 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
16743 	} else {
16744 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
16745 		    SENSE_LENGTH);
16746 		if (actual_len < SENSE_LENGTH) {
16747 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
16748 		} else {
16749 			cmd_xp->xb_sense_resid = 0;
16750 		}
16751 	}
16752 
16753 	/*
16754 	 *  Free up the RQS command....
16755 	 *  NOTE:
16756 	 *	Must do this BEFORE calling sd_validate_sense_data!
16757 	 *	sd_validate_sense_data may return the original command in
16758 	 *	which case the pkt will be freed and the flags can no
16759 	 *	longer be touched.
16760 	 *	SD_MUTEX is held through this process until the command
16761 	 *	is dispatched based upon the sense data, so there are
16762 	 *	no race conditions.
16763 	 */
16764 	(void) sd_mark_rqs_idle(un, sense_xp);
16765 
16766 	/*
16767 	 * For a retryable command see if we have valid sense data, if so then
16768 	 * turn it over to sd_decode_sense() to figure out the right course of
16769 	 * action. Just fail a non-retryable command.
16770 	 */
16771 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16772 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
16773 		    SD_SENSE_DATA_IS_VALID) {
16774 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16775 		}
16776 	} else {
16777 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16778 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16779 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16780 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16781 		sd_return_failed_command(un, cmd_bp, EIO);
16782 	}
16783 }
16784 
16785 
16786 
16787 
16788 /*
16789  *    Function: sd_handle_auto_request_sense
16790  *
16791  * Description: Processing for auto-request sense information.
16792  *
16793  *   Arguments: un - ptr to associated softstate
16794  *		bp - ptr to buf(9S) for the command
16795  *		xp - ptr to the sd_xbuf for the command
16796  *		pktp - ptr to the scsi_pkt(9S) for the command
16797  *
16798  *     Context: May be called under interrupt context
16799  */
16800 
16801 static void
16802 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16803 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16804 {
16805 	struct scsi_arq_status *asp;
16806 	size_t actual_len;
16807 
16808 	ASSERT(un != NULL);
16809 	ASSERT(mutex_owned(SD_MUTEX(un)));
16810 	ASSERT(bp != NULL);
16811 	ASSERT(xp != NULL);
16812 	ASSERT(pktp != NULL);
16813 	ASSERT(pktp != un->un_rqs_pktp);
16814 	ASSERT(bp   != un->un_rqs_bp);
16815 
16816 	/*
16817 	 * For auto-request sense, we get a scsi_arq_status back from
16818 	 * the HBA, with the sense data in the sts_sensedata member.
16819 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16820 	 */
16821 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16822 
16823 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16824 		/*
16825 		 * The auto REQUEST SENSE failed; see if we can re-try
16826 		 * the original command.
16827 		 */
16828 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16829 		    "auto request sense failed (reason=%s)\n",
16830 		    scsi_rname(asp->sts_rqpkt_reason));
16831 
16832 		sd_reset_target(un, pktp);
16833 
16834 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16835 		    NULL, NULL, EIO, (clock_t)0, NULL);
16836 		return;
16837 	}
16838 
16839 	/* Save the relevant sense info into the xp for the original cmd. */
16840 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16841 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16842 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16843 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
16844 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16845 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16846 		    MAX_SENSE_LENGTH);
16847 	} else {
16848 		if (xp->xb_sense_resid > SENSE_LENGTH) {
16849 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
16850 		} else {
16851 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
16852 		}
16853 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16854 			if ((((struct uscsi_cmd *)
16855 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
16856 				xp->xb_sense_resid = (((struct uscsi_cmd *)
16857 				    (xp->xb_pktinfo))->uscsi_rqlen) -
16858 				    actual_len;
16859 			} else {
16860 				xp->xb_sense_resid = 0;
16861 			}
16862 		}
16863 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
16864 	}
16865 
16866 	/*
16867 	 * See if we have valid sense data, if so then turn it over to
16868 	 * sd_decode_sense() to figure out the right course of action.
16869 	 */
16870 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
16871 	    SD_SENSE_DATA_IS_VALID) {
16872 		sd_decode_sense(un, bp, xp, pktp);
16873 	}
16874 }
16875 
16876 
16877 /*
16878  *    Function: sd_print_sense_failed_msg
16879  *
16880  * Description: Print log message when RQS has failed.
16881  *
16882  *   Arguments: un - ptr to associated softstate
16883  *		bp - ptr to buf(9S) for the command
16884  *		arg - generic message string ptr
16885  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16886  *			or SD_NO_RETRY_ISSUED
16887  *
16888  *     Context: May be called from interrupt context
16889  */
16890 
16891 static void
16892 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16893 	int code)
16894 {
16895 	char	*msgp = arg;
16896 
16897 	ASSERT(un != NULL);
16898 	ASSERT(mutex_owned(SD_MUTEX(un)));
16899 	ASSERT(bp != NULL);
16900 
16901 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16902 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16903 	}
16904 }
16905 
16906 
16907 /*
16908  *    Function: sd_validate_sense_data
16909  *
16910  * Description: Check the given sense data for validity.
16911  *		If the sense data is not valid, the command will
16912  *		be either failed or retried!
16913  *
16914  * Return Code: SD_SENSE_DATA_IS_INVALID
16915  *		SD_SENSE_DATA_IS_VALID
16916  *
16917  *     Context: May be called from interrupt context
16918  */
16919 
16920 static int
16921 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16922 	size_t actual_len)
16923 {
16924 	struct scsi_extended_sense *esp;
16925 	struct	scsi_pkt *pktp;
16926 	char	*msgp = NULL;
16927 	sd_ssc_t *sscp;
16928 
16929 	ASSERT(un != NULL);
16930 	ASSERT(mutex_owned(SD_MUTEX(un)));
16931 	ASSERT(bp != NULL);
16932 	ASSERT(bp != un->un_rqs_bp);
16933 	ASSERT(xp != NULL);
16934 	ASSERT(un->un_fm_private != NULL);
16935 
16936 	pktp = SD_GET_PKTP(bp);
16937 	ASSERT(pktp != NULL);
16938 
16939 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16940 	ASSERT(sscp != NULL);
16941 
16942 	/*
16943 	 * Check the status of the RQS command (auto or manual).
16944 	 */
16945 	switch (xp->xb_sense_status & STATUS_MASK) {
16946 	case STATUS_GOOD:
16947 		break;
16948 
16949 	case STATUS_RESERVATION_CONFLICT:
16950 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16951 		return (SD_SENSE_DATA_IS_INVALID);
16952 
16953 	case STATUS_BUSY:
16954 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16955 		    "Busy Status on REQUEST SENSE\n");
16956 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16957 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16958 		return (SD_SENSE_DATA_IS_INVALID);
16959 
16960 	case STATUS_QFULL:
16961 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16962 		    "QFULL Status on REQUEST SENSE\n");
16963 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16964 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
16965 		return (SD_SENSE_DATA_IS_INVALID);
16966 
16967 	case STATUS_CHECK:
16968 	case STATUS_TERMINATED:
16969 		msgp = "Check Condition on REQUEST SENSE\n";
16970 		goto sense_failed;
16971 
16972 	default:
16973 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16974 		goto sense_failed;
16975 	}
16976 
16977 	/*
16978 	 * See if we got the minimum required amount of sense data.
16979 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16980 	 * or less.
16981 	 */
16982 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16983 	    (actual_len == 0)) {
16984 		msgp = "Request Sense couldn't get sense data\n";
16985 		goto sense_failed;
16986 	}
16987 
16988 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16989 		msgp = "Not enough sense information\n";
16990 		/* Mark the ssc_flags for detecting invalid sense data */
16991 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
16992 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
16993 			    "sense-data");
16994 		}
16995 		goto sense_failed;
16996 	}
16997 
16998 	/*
16999 	 * We require the extended sense data
17000 	 */
17001 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17002 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17003 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17004 			static char tmp[8];
17005 			static char buf[148];
17006 			char *p = (char *)(xp->xb_sense_data);
17007 			int i;
17008 
17009 			mutex_enter(&sd_sense_mutex);
17010 			(void) strcpy(buf, "undecodable sense information:");
17011 			for (i = 0; i < actual_len; i++) {
17012 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17013 				(void) strcpy(&buf[strlen(buf)], tmp);
17014 			}
17015 			i = strlen(buf);
17016 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17017 
17018 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17019 				scsi_log(SD_DEVINFO(un), sd_label,
17020 				    CE_WARN, buf);
17021 			}
17022 			mutex_exit(&sd_sense_mutex);
17023 		}
17024 
17025 		/* Mark the ssc_flags for detecting invalid sense data */
17026 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17027 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17028 			    "sense-data");
17029 		}
17030 
17031 		/* Note: Legacy behavior, fail the command with no retry */
17032 		sd_return_failed_command(un, bp, EIO);
17033 		return (SD_SENSE_DATA_IS_INVALID);
17034 	}
17035 
17036 	/*
17037 	 * Check that es_code is valid (es_class concatenated with es_code
17038 	 * make up the "response code" field.  es_class will always be 7, so
17039 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17040 	 * format.
17041 	 */
17042 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17043 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17044 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17045 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17046 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17047 		/* Mark the ssc_flags for detecting invalid sense data */
17048 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17049 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17050 			    "sense-data");
17051 		}
17052 		goto sense_failed;
17053 	}
17054 
17055 	return (SD_SENSE_DATA_IS_VALID);
17056 
17057 sense_failed:
17058 	/*
17059 	 * If the request sense failed (for whatever reason), attempt
17060 	 * to retry the original command.
17061 	 */
17062 #if defined(__i386) || defined(__amd64)
17063 	/*
17064 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17065 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17066 	 * for both SCSI/FC.
17067 	 * The SD_RETRY_DELAY value need to be adjusted here
17068 	 * when SD_RETRY_DELAY change in sddef.h
17069 	 */
17070 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17071 	    sd_print_sense_failed_msg, msgp, EIO,
17072 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17073 #else
17074 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17075 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17076 #endif
17077 
17078 	return (SD_SENSE_DATA_IS_INVALID);
17079 }
17080 
17081 /*
17082  *    Function: sd_decode_sense
17083  *
17084  * Description: Take recovery action(s) when SCSI Sense Data is received.
17085  *
17086  *     Context: Interrupt context.
17087  */
17088 
17089 static void
17090 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17091 	struct scsi_pkt *pktp)
17092 {
17093 	uint8_t sense_key;
17094 
17095 	ASSERT(un != NULL);
17096 	ASSERT(mutex_owned(SD_MUTEX(un)));
17097 	ASSERT(bp != NULL);
17098 	ASSERT(bp != un->un_rqs_bp);
17099 	ASSERT(xp != NULL);
17100 	ASSERT(pktp != NULL);
17101 
17102 	sense_key = scsi_sense_key(xp->xb_sense_data);
17103 
17104 	switch (sense_key) {
17105 	case KEY_NO_SENSE:
17106 		sd_sense_key_no_sense(un, bp, xp, pktp);
17107 		break;
17108 	case KEY_RECOVERABLE_ERROR:
17109 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17110 		    bp, xp, pktp);
17111 		break;
17112 	case KEY_NOT_READY:
17113 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17114 		    bp, xp, pktp);
17115 		break;
17116 	case KEY_MEDIUM_ERROR:
17117 	case KEY_HARDWARE_ERROR:
17118 		sd_sense_key_medium_or_hardware_error(un,
17119 		    xp->xb_sense_data, bp, xp, pktp);
17120 		break;
17121 	case KEY_ILLEGAL_REQUEST:
17122 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17123 		break;
17124 	case KEY_UNIT_ATTENTION:
17125 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17126 		    bp, xp, pktp);
17127 		break;
17128 	case KEY_WRITE_PROTECT:
17129 	case KEY_VOLUME_OVERFLOW:
17130 	case KEY_MISCOMPARE:
17131 		sd_sense_key_fail_command(un, bp, xp, pktp);
17132 		break;
17133 	case KEY_BLANK_CHECK:
17134 		sd_sense_key_blank_check(un, bp, xp, pktp);
17135 		break;
17136 	case KEY_ABORTED_COMMAND:
17137 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17138 		break;
17139 	case KEY_VENDOR_UNIQUE:
17140 	case KEY_COPY_ABORTED:
17141 	case KEY_EQUAL:
17142 	case KEY_RESERVED:
17143 	default:
17144 		sd_sense_key_default(un, xp->xb_sense_data,
17145 		    bp, xp, pktp);
17146 		break;
17147 	}
17148 }
17149 
17150 
17151 /*
17152  *    Function: sd_dump_memory
17153  *
17154  * Description: Debug logging routine to print the contents of a user provided
17155  *		buffer. The output of the buffer is broken up into 256 byte
17156  *		segments due to a size constraint of the scsi_log.
17157  *		implementation.
17158  *
17159  *   Arguments: un - ptr to softstate
17160  *		comp - component mask
17161  *		title - "title" string to preceed data when printed
17162  *		data - ptr to data block to be printed
17163  *		len - size of data block to be printed
17164  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17165  *
17166  *     Context: May be called from interrupt context
17167  */
17168 
17169 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17170 
17171 static char *sd_dump_format_string[] = {
17172 		" 0x%02x",
17173 		" %c"
17174 };
17175 
17176 static void
17177 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17178     int len, int fmt)
17179 {
17180 	int	i, j;
17181 	int	avail_count;
17182 	int	start_offset;
17183 	int	end_offset;
17184 	size_t	entry_len;
17185 	char	*bufp;
17186 	char	*local_buf;
17187 	char	*format_string;
17188 
17189 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17190 
17191 	/*
17192 	 * In the debug version of the driver, this function is called from a
17193 	 * number of places which are NOPs in the release driver.
17194 	 * The debug driver therefore has additional methods of filtering
17195 	 * debug output.
17196 	 */
17197 #ifdef SDDEBUG
17198 	/*
17199 	 * In the debug version of the driver we can reduce the amount of debug
17200 	 * messages by setting sd_error_level to something other than
17201 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17202 	 * sd_component_mask.
17203 	 */
17204 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17205 	    (sd_error_level != SCSI_ERR_ALL)) {
17206 		return;
17207 	}
17208 	if (((sd_component_mask & comp) == 0) ||
17209 	    (sd_error_level != SCSI_ERR_ALL)) {
17210 		return;
17211 	}
17212 #else
17213 	if (sd_error_level != SCSI_ERR_ALL) {
17214 		return;
17215 	}
17216 #endif
17217 
17218 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17219 	bufp = local_buf;
17220 	/*
17221 	 * Available length is the length of local_buf[], minus the
17222 	 * length of the title string, minus one for the ":", minus
17223 	 * one for the newline, minus one for the NULL terminator.
17224 	 * This gives the #bytes available for holding the printed
17225 	 * values from the given data buffer.
17226 	 */
17227 	if (fmt == SD_LOG_HEX) {
17228 		format_string = sd_dump_format_string[0];
17229 	} else /* SD_LOG_CHAR */ {
17230 		format_string = sd_dump_format_string[1];
17231 	}
17232 	/*
17233 	 * Available count is the number of elements from the given
17234 	 * data buffer that we can fit into the available length.
17235 	 * This is based upon the size of the format string used.
17236 	 * Make one entry and find it's size.
17237 	 */
17238 	(void) sprintf(bufp, format_string, data[0]);
17239 	entry_len = strlen(bufp);
17240 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17241 
17242 	j = 0;
17243 	while (j < len) {
17244 		bufp = local_buf;
17245 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17246 		start_offset = j;
17247 
17248 		end_offset = start_offset + avail_count;
17249 
17250 		(void) sprintf(bufp, "%s:", title);
17251 		bufp += strlen(bufp);
17252 		for (i = start_offset; ((i < end_offset) && (j < len));
17253 		    i++, j++) {
17254 			(void) sprintf(bufp, format_string, data[i]);
17255 			bufp += entry_len;
17256 		}
17257 		(void) sprintf(bufp, "\n");
17258 
17259 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17260 	}
17261 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17262 }
17263 
17264 /*
17265  *    Function: sd_print_sense_msg
17266  *
17267  * Description: Log a message based upon the given sense data.
17268  *
17269  *   Arguments: un - ptr to associated softstate
17270  *		bp - ptr to buf(9S) for the command
17271  *		arg - ptr to associate sd_sense_info struct
17272  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17273  *			or SD_NO_RETRY_ISSUED
17274  *
17275  *     Context: May be called from interrupt context
17276  */
17277 
17278 static void
17279 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17280 {
17281 	struct sd_xbuf	*xp;
17282 	struct scsi_pkt	*pktp;
17283 	uint8_t *sensep;
17284 	daddr_t request_blkno;
17285 	diskaddr_t err_blkno;
17286 	int severity;
17287 	int pfa_flag;
17288 	extern struct scsi_key_strings scsi_cmds[];
17289 
17290 	ASSERT(un != NULL);
17291 	ASSERT(mutex_owned(SD_MUTEX(un)));
17292 	ASSERT(bp != NULL);
17293 	xp = SD_GET_XBUF(bp);
17294 	ASSERT(xp != NULL);
17295 	pktp = SD_GET_PKTP(bp);
17296 	ASSERT(pktp != NULL);
17297 	ASSERT(arg != NULL);
17298 
17299 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17300 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17301 
17302 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17303 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17304 		severity = SCSI_ERR_RETRYABLE;
17305 	}
17306 
17307 	/* Use absolute block number for the request block number */
17308 	request_blkno = xp->xb_blkno;
17309 
17310 	/*
17311 	 * Now try to get the error block number from the sense data
17312 	 */
17313 	sensep = xp->xb_sense_data;
17314 
17315 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17316 	    (uint64_t *)&err_blkno)) {
17317 		/*
17318 		 * We retrieved the error block number from the information
17319 		 * portion of the sense data.
17320 		 *
17321 		 * For USCSI commands we are better off using the error
17322 		 * block no. as the requested block no. (This is the best
17323 		 * we can estimate.)
17324 		 */
17325 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17326 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17327 			request_blkno = err_blkno;
17328 		}
17329 	} else {
17330 		/*
17331 		 * Without the es_valid bit set (for fixed format) or an
17332 		 * information descriptor (for descriptor format) we cannot
17333 		 * be certain of the error blkno, so just use the
17334 		 * request_blkno.
17335 		 */
17336 		err_blkno = (diskaddr_t)request_blkno;
17337 	}
17338 
17339 	/*
17340 	 * The following will log the buffer contents for the release driver
17341 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17342 	 * level is set to verbose.
17343 	 */
17344 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17345 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17346 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17347 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17348 
17349 	if (pfa_flag == FALSE) {
17350 		/* This is normally only set for USCSI */
17351 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17352 			return;
17353 		}
17354 
17355 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17356 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17357 		    (severity < sd_error_level))) {
17358 			return;
17359 		}
17360 	}
17361 	/*
17362 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17363 	 */
17364 	if ((SD_IS_LSI(un)) &&
17365 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17366 	    (scsi_sense_asc(sensep) == 0x94) &&
17367 	    (scsi_sense_ascq(sensep) == 0x01)) {
17368 		un->un_sonoma_failure_count++;
17369 		if (un->un_sonoma_failure_count > 1) {
17370 			return;
17371 		}
17372 	}
17373 
17374 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
17375 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
17376 	    (pktp->pkt_resid == 0))) {
17377 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17378 		    request_blkno, err_blkno, scsi_cmds,
17379 		    (struct scsi_extended_sense *)sensep,
17380 		    un->un_additional_codes, NULL);
17381 	}
17382 }
17383 
17384 /*
17385  *    Function: sd_sense_key_no_sense
17386  *
17387  * Description: Recovery action when sense data was not received.
17388  *
17389  *     Context: May be called from interrupt context
17390  */
17391 
17392 static void
17393 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17394 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17395 {
17396 	struct sd_sense_info	si;
17397 
17398 	ASSERT(un != NULL);
17399 	ASSERT(mutex_owned(SD_MUTEX(un)));
17400 	ASSERT(bp != NULL);
17401 	ASSERT(xp != NULL);
17402 	ASSERT(pktp != NULL);
17403 
17404 	si.ssi_severity = SCSI_ERR_FATAL;
17405 	si.ssi_pfa_flag = FALSE;
17406 
17407 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17408 
17409 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17410 	    &si, EIO, (clock_t)0, NULL);
17411 }
17412 
17413 
17414 /*
17415  *    Function: sd_sense_key_recoverable_error
17416  *
17417  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17418  *
17419  *     Context: May be called from interrupt context
17420  */
17421 
17422 static void
17423 sd_sense_key_recoverable_error(struct sd_lun *un,
17424 	uint8_t *sense_datap,
17425 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17426 {
17427 	struct sd_sense_info	si;
17428 	uint8_t asc = scsi_sense_asc(sense_datap);
17429 
17430 	ASSERT(un != NULL);
17431 	ASSERT(mutex_owned(SD_MUTEX(un)));
17432 	ASSERT(bp != NULL);
17433 	ASSERT(xp != NULL);
17434 	ASSERT(pktp != NULL);
17435 
17436 	/*
17437 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17438 	 */
17439 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17440 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17441 		si.ssi_severity = SCSI_ERR_INFO;
17442 		si.ssi_pfa_flag = TRUE;
17443 	} else {
17444 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17445 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17446 		si.ssi_severity = SCSI_ERR_RECOVERED;
17447 		si.ssi_pfa_flag = FALSE;
17448 	}
17449 
17450 	if (pktp->pkt_resid == 0) {
17451 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17452 		sd_return_command(un, bp);
17453 		return;
17454 	}
17455 
17456 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17457 	    &si, EIO, (clock_t)0, NULL);
17458 }
17459 
17460 
17461 
17462 
17463 /*
17464  *    Function: sd_sense_key_not_ready
17465  *
17466  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17467  *
17468  *     Context: May be called from interrupt context
17469  */
17470 
17471 static void
17472 sd_sense_key_not_ready(struct sd_lun *un,
17473 	uint8_t *sense_datap,
17474 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17475 {
17476 	struct sd_sense_info	si;
17477 	uint8_t asc = scsi_sense_asc(sense_datap);
17478 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17479 
17480 	ASSERT(un != NULL);
17481 	ASSERT(mutex_owned(SD_MUTEX(un)));
17482 	ASSERT(bp != NULL);
17483 	ASSERT(xp != NULL);
17484 	ASSERT(pktp != NULL);
17485 
17486 	si.ssi_severity = SCSI_ERR_FATAL;
17487 	si.ssi_pfa_flag = FALSE;
17488 
17489 	/*
17490 	 * Update error stats after first NOT READY error. Disks may have
17491 	 * been powered down and may need to be restarted.  For CDROMs,
17492 	 * report NOT READY errors only if media is present.
17493 	 */
17494 	if ((ISCD(un) && (asc == 0x3A)) ||
17495 	    (xp->xb_nr_retry_count > 0)) {
17496 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17497 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17498 	}
17499 
17500 	/*
17501 	 * Just fail if the "not ready" retry limit has been reached.
17502 	 */
17503 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
17504 		/* Special check for error message printing for removables. */
17505 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17506 		    (ascq >= 0x04)) {
17507 			si.ssi_severity = SCSI_ERR_ALL;
17508 		}
17509 		goto fail_command;
17510 	}
17511 
17512 	/*
17513 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17514 	 * what to do.
17515 	 */
17516 	switch (asc) {
17517 	case 0x04:	/* LOGICAL UNIT NOT READY */
17518 		/*
17519 		 * disk drives that don't spin up result in a very long delay
17520 		 * in format without warning messages. We will log a message
17521 		 * if the error level is set to verbose.
17522 		 */
17523 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17524 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17525 			    "logical unit not ready, resetting disk\n");
17526 		}
17527 
17528 		/*
17529 		 * There are different requirements for CDROMs and disks for
17530 		 * the number of retries.  If a CD-ROM is giving this, it is
17531 		 * probably reading TOC and is in the process of getting
17532 		 * ready, so we should keep on trying for a long time to make
17533 		 * sure that all types of media are taken in account (for
17534 		 * some media the drive takes a long time to read TOC).  For
17535 		 * disks we do not want to retry this too many times as this
17536 		 * can cause a long hang in format when the drive refuses to
17537 		 * spin up (a very common failure).
17538 		 */
17539 		switch (ascq) {
17540 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17541 			/*
17542 			 * Disk drives frequently refuse to spin up which
17543 			 * results in a very long hang in format without
17544 			 * warning messages.
17545 			 *
17546 			 * Note: This code preserves the legacy behavior of
17547 			 * comparing xb_nr_retry_count against zero for fibre
17548 			 * channel targets instead of comparing against the
17549 			 * un_reset_retry_count value.  The reason for this
17550 			 * discrepancy has been so utterly lost beneath the
17551 			 * Sands of Time that even Indiana Jones could not
17552 			 * find it.
17553 			 */
17554 			if (un->un_f_is_fibre == TRUE) {
17555 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17556 				    (xp->xb_nr_retry_count > 0)) &&
17557 				    (un->un_startstop_timeid == NULL)) {
17558 					scsi_log(SD_DEVINFO(un), sd_label,
17559 					    CE_WARN, "logical unit not ready, "
17560 					    "resetting disk\n");
17561 					sd_reset_target(un, pktp);
17562 				}
17563 			} else {
17564 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17565 				    (xp->xb_nr_retry_count >
17566 				    un->un_reset_retry_count)) &&
17567 				    (un->un_startstop_timeid == NULL)) {
17568 					scsi_log(SD_DEVINFO(un), sd_label,
17569 					    CE_WARN, "logical unit not ready, "
17570 					    "resetting disk\n");
17571 					sd_reset_target(un, pktp);
17572 				}
17573 			}
17574 			break;
17575 
17576 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17577 			/*
17578 			 * If the target is in the process of becoming
17579 			 * ready, just proceed with the retry. This can
17580 			 * happen with CD-ROMs that take a long time to
17581 			 * read TOC after a power cycle or reset.
17582 			 */
17583 			goto do_retry;
17584 
17585 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17586 			break;
17587 
17588 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17589 			/*
17590 			 * Retries cannot help here so just fail right away.
17591 			 */
17592 			goto fail_command;
17593 
17594 		case 0x88:
17595 			/*
17596 			 * Vendor-unique code for T3/T4: it indicates a
17597 			 * path problem in a mutipathed config, but as far as
17598 			 * the target driver is concerned it equates to a fatal
17599 			 * error, so we should just fail the command right away
17600 			 * (without printing anything to the console). If this
17601 			 * is not a T3/T4, fall thru to the default recovery
17602 			 * action.
17603 			 * T3/T4 is FC only, don't need to check is_fibre
17604 			 */
17605 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17606 				sd_return_failed_command(un, bp, EIO);
17607 				return;
17608 			}
17609 			/* FALLTHRU */
17610 
17611 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17612 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17613 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17614 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17615 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17616 		default:    /* Possible future codes in SCSI spec? */
17617 			/*
17618 			 * For removable-media devices, do not retry if
17619 			 * ASCQ > 2 as these result mostly from USCSI commands
17620 			 * on MMC devices issued to check status of an
17621 			 * operation initiated in immediate mode.  Also for
17622 			 * ASCQ >= 4 do not print console messages as these
17623 			 * mainly represent a user-initiated operation
17624 			 * instead of a system failure.
17625 			 */
17626 			if (un->un_f_has_removable_media) {
17627 				si.ssi_severity = SCSI_ERR_ALL;
17628 				goto fail_command;
17629 			}
17630 			break;
17631 		}
17632 
17633 		/*
17634 		 * As part of our recovery attempt for the NOT READY
17635 		 * condition, we issue a START STOP UNIT command. However
17636 		 * we want to wait for a short delay before attempting this
17637 		 * as there may still be more commands coming back from the
17638 		 * target with the check condition. To do this we use
17639 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17640 		 * the delay interval expires. (sd_start_stop_unit_callback()
17641 		 * dispatches sd_start_stop_unit_task(), which will issue
17642 		 * the actual START STOP UNIT command. The delay interval
17643 		 * is one-half of the delay that we will use to retry the
17644 		 * command that generated the NOT READY condition.
17645 		 *
17646 		 * Note that we could just dispatch sd_start_stop_unit_task()
17647 		 * from here and allow it to sleep for the delay interval,
17648 		 * but then we would be tying up the taskq thread
17649 		 * uncesessarily for the duration of the delay.
17650 		 *
17651 		 * Do not issue the START STOP UNIT if the current command
17652 		 * is already a START STOP UNIT.
17653 		 */
17654 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17655 			break;
17656 		}
17657 
17658 		/*
17659 		 * Do not schedule the timeout if one is already pending.
17660 		 */
17661 		if (un->un_startstop_timeid != NULL) {
17662 			SD_INFO(SD_LOG_ERROR, un,
17663 			    "sd_sense_key_not_ready: restart already issued to"
17664 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17665 			    ddi_get_instance(SD_DEVINFO(un)));
17666 			break;
17667 		}
17668 
17669 		/*
17670 		 * Schedule the START STOP UNIT command, then queue the command
17671 		 * for a retry.
17672 		 *
17673 		 * Note: A timeout is not scheduled for this retry because we
17674 		 * want the retry to be serial with the START_STOP_UNIT. The
17675 		 * retry will be started when the START_STOP_UNIT is completed
17676 		 * in sd_start_stop_unit_task.
17677 		 */
17678 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17679 		    un, un->un_busy_timeout / 2);
17680 		xp->xb_nr_retry_count++;
17681 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17682 		return;
17683 
17684 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17685 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17686 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17687 			    "unit does not respond to selection\n");
17688 		}
17689 		break;
17690 
17691 	case 0x3A:	/* MEDIUM NOT PRESENT */
17692 		if (sd_error_level >= SCSI_ERR_FATAL) {
17693 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17694 			    "Caddy not inserted in drive\n");
17695 		}
17696 
17697 		sr_ejected(un);
17698 		un->un_mediastate = DKIO_EJECTED;
17699 		/* The state has changed, inform the media watch routines */
17700 		cv_broadcast(&un->un_state_cv);
17701 		/* Just fail if no media is present in the drive. */
17702 		goto fail_command;
17703 
17704 	default:
17705 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17706 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17707 			    "Unit not Ready. Additional sense code 0x%x\n",
17708 			    asc);
17709 		}
17710 		break;
17711 	}
17712 
17713 do_retry:
17714 
17715 	/*
17716 	 * Retry the command, as some targets may report NOT READY for
17717 	 * several seconds after being reset.
17718 	 */
17719 	xp->xb_nr_retry_count++;
17720 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17721 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17722 	    &si, EIO, un->un_busy_timeout, NULL);
17723 
17724 	return;
17725 
17726 fail_command:
17727 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17728 	sd_return_failed_command(un, bp, EIO);
17729 }
17730 
17731 
17732 
17733 /*
17734  *    Function: sd_sense_key_medium_or_hardware_error
17735  *
17736  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17737  *		sense key.
17738  *
17739  *     Context: May be called from interrupt context
17740  */
17741 
17742 static void
17743 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17744 	uint8_t *sense_datap,
17745 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17746 {
17747 	struct sd_sense_info	si;
17748 	uint8_t sense_key = scsi_sense_key(sense_datap);
17749 	uint8_t asc = scsi_sense_asc(sense_datap);
17750 
17751 	ASSERT(un != NULL);
17752 	ASSERT(mutex_owned(SD_MUTEX(un)));
17753 	ASSERT(bp != NULL);
17754 	ASSERT(xp != NULL);
17755 	ASSERT(pktp != NULL);
17756 
17757 	si.ssi_severity = SCSI_ERR_FATAL;
17758 	si.ssi_pfa_flag = FALSE;
17759 
17760 	if (sense_key == KEY_MEDIUM_ERROR) {
17761 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17762 	}
17763 
17764 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17765 
17766 	if ((un->un_reset_retry_count != 0) &&
17767 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17768 		mutex_exit(SD_MUTEX(un));
17769 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17770 		if (un->un_f_allow_bus_device_reset == TRUE) {
17771 
17772 			boolean_t try_resetting_target = B_TRUE;
17773 
17774 			/*
17775 			 * We need to be able to handle specific ASC when we are
17776 			 * handling a KEY_HARDWARE_ERROR. In particular
17777 			 * taking the default action of resetting the target may
17778 			 * not be the appropriate way to attempt recovery.
17779 			 * Resetting a target because of a single LUN failure
17780 			 * victimizes all LUNs on that target.
17781 			 *
17782 			 * This is true for the LSI arrays, if an LSI
17783 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17784 			 * should trust it.
17785 			 */
17786 
17787 			if (sense_key == KEY_HARDWARE_ERROR) {
17788 				switch (asc) {
17789 				case 0x84:
17790 					if (SD_IS_LSI(un)) {
17791 						try_resetting_target = B_FALSE;
17792 					}
17793 					break;
17794 				default:
17795 					break;
17796 				}
17797 			}
17798 
17799 			if (try_resetting_target == B_TRUE) {
17800 				int reset_retval = 0;
17801 				if (un->un_f_lun_reset_enabled == TRUE) {
17802 					SD_TRACE(SD_LOG_IO_CORE, un,
17803 					    "sd_sense_key_medium_or_hardware_"
17804 					    "error: issuing RESET_LUN\n");
17805 					reset_retval =
17806 					    scsi_reset(SD_ADDRESS(un),
17807 					    RESET_LUN);
17808 				}
17809 				if (reset_retval == 0) {
17810 					SD_TRACE(SD_LOG_IO_CORE, un,
17811 					    "sd_sense_key_medium_or_hardware_"
17812 					    "error: issuing RESET_TARGET\n");
17813 					(void) scsi_reset(SD_ADDRESS(un),
17814 					    RESET_TARGET);
17815 				}
17816 			}
17817 		}
17818 		mutex_enter(SD_MUTEX(un));
17819 	}
17820 
17821 	/*
17822 	 * This really ought to be a fatal error, but we will retry anyway
17823 	 * as some drives report this as a spurious error.
17824 	 */
17825 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17826 	    &si, EIO, (clock_t)0, NULL);
17827 }
17828 
17829 
17830 
17831 /*
17832  *    Function: sd_sense_key_illegal_request
17833  *
17834  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17835  *
17836  *     Context: May be called from interrupt context
17837  */
17838 
17839 static void
17840 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17841 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17842 {
17843 	struct sd_sense_info	si;
17844 
17845 	ASSERT(un != NULL);
17846 	ASSERT(mutex_owned(SD_MUTEX(un)));
17847 	ASSERT(bp != NULL);
17848 	ASSERT(xp != NULL);
17849 	ASSERT(pktp != NULL);
17850 
17851 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17852 
17853 	si.ssi_severity = SCSI_ERR_INFO;
17854 	si.ssi_pfa_flag = FALSE;
17855 
17856 	/* Pointless to retry if the target thinks it's an illegal request */
17857 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17858 	sd_return_failed_command(un, bp, EIO);
17859 }
17860 
17861 
17862 
17863 
17864 /*
17865  *    Function: sd_sense_key_unit_attention
17866  *
17867  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17868  *
17869  *     Context: May be called from interrupt context
17870  */
17871 
17872 static void
17873 sd_sense_key_unit_attention(struct sd_lun *un,
17874 	uint8_t *sense_datap,
17875 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17876 {
17877 	/*
17878 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17879 	 * like Sonoma can return UNIT ATTENTION close to a minute
17880 	 * under certain conditions.
17881 	 */
17882 	int	retry_check_flag = SD_RETRIES_UA;
17883 	boolean_t	kstat_updated = B_FALSE;
17884 	struct	sd_sense_info		si;
17885 	uint8_t asc = scsi_sense_asc(sense_datap);
17886 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
17887 
17888 	ASSERT(un != NULL);
17889 	ASSERT(mutex_owned(SD_MUTEX(un)));
17890 	ASSERT(bp != NULL);
17891 	ASSERT(xp != NULL);
17892 	ASSERT(pktp != NULL);
17893 
17894 	si.ssi_severity = SCSI_ERR_INFO;
17895 	si.ssi_pfa_flag = FALSE;
17896 
17897 
17898 	switch (asc) {
17899 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17900 		if (sd_report_pfa != 0) {
17901 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17902 			si.ssi_pfa_flag = TRUE;
17903 			retry_check_flag = SD_RETRIES_STANDARD;
17904 			goto do_retry;
17905 		}
17906 
17907 		break;
17908 
17909 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17910 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17911 			un->un_resvd_status |=
17912 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17913 		}
17914 #ifdef _LP64
17915 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
17916 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
17917 			    un, KM_NOSLEEP) == 0) {
17918 				/*
17919 				 * If we can't dispatch the task we'll just
17920 				 * live without descriptor sense.  We can
17921 				 * try again on the next "unit attention"
17922 				 */
17923 				SD_ERROR(SD_LOG_ERROR, un,
17924 				    "sd_sense_key_unit_attention: "
17925 				    "Could not dispatch "
17926 				    "sd_reenable_dsense_task\n");
17927 			}
17928 		}
17929 #endif /* _LP64 */
17930 		/* FALLTHRU */
17931 
17932 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17933 		if (!un->un_f_has_removable_media) {
17934 			break;
17935 		}
17936 
17937 		/*
17938 		 * When we get a unit attention from a removable-media device,
17939 		 * it may be in a state that will take a long time to recover
17940 		 * (e.g., from a reset).  Since we are executing in interrupt
17941 		 * context here, we cannot wait around for the device to come
17942 		 * back. So hand this command off to sd_media_change_task()
17943 		 * for deferred processing under taskq thread context. (Note
17944 		 * that the command still may be failed if a problem is
17945 		 * encountered at a later time.)
17946 		 */
17947 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17948 		    KM_NOSLEEP) == 0) {
17949 			/*
17950 			 * Cannot dispatch the request so fail the command.
17951 			 */
17952 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17953 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17954 			si.ssi_severity = SCSI_ERR_FATAL;
17955 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17956 			sd_return_failed_command(un, bp, EIO);
17957 		}
17958 
17959 		/*
17960 		 * If failed to dispatch sd_media_change_task(), we already
17961 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17962 		 * we should update kstat later if it encounters an error. So,
17963 		 * we update kstat_updated flag here.
17964 		 */
17965 		kstat_updated = B_TRUE;
17966 
17967 		/*
17968 		 * Either the command has been successfully dispatched to a
17969 		 * task Q for retrying, or the dispatch failed. In either case
17970 		 * do NOT retry again by calling sd_retry_command. This sets up
17971 		 * two retries of the same command and when one completes and
17972 		 * frees the resources the other will access freed memory,
17973 		 * a bad thing.
17974 		 */
17975 		return;
17976 
17977 	default:
17978 		break;
17979 	}
17980 
17981 	/*
17982 	 * ASC  ASCQ
17983 	 *  2A   09	Capacity data has changed
17984 	 *  2A   01	Mode parameters changed
17985 	 *  3F   0E	Reported luns data has changed
17986 	 * Arrays that support logical unit expansion should report
17987 	 * capacity changes(2Ah/09). Mode parameters changed and
17988 	 * reported luns data has changed are the approximation.
17989 	 */
17990 	if (((asc == 0x2a) && (ascq == 0x09)) ||
17991 	    ((asc == 0x2a) && (ascq == 0x01)) ||
17992 	    ((asc == 0x3f) && (ascq == 0x0e))) {
17993 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
17994 		    KM_NOSLEEP) == 0) {
17995 			SD_ERROR(SD_LOG_ERROR, un,
17996 			    "sd_sense_key_unit_attention: "
17997 			    "Could not dispatch sd_target_change_task\n");
17998 		}
17999 	}
18000 
18001 	/*
18002 	 * Update kstat if we haven't done that.
18003 	 */
18004 	if (!kstat_updated) {
18005 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18006 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18007 	}
18008 
18009 do_retry:
18010 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18011 	    EIO, SD_UA_RETRY_DELAY, NULL);
18012 }
18013 
18014 
18015 
18016 /*
18017  *    Function: sd_sense_key_fail_command
18018  *
18019  * Description: Use to fail a command when we don't like the sense key that
18020  *		was returned.
18021  *
18022  *     Context: May be called from interrupt context
18023  */
18024 
18025 static void
18026 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18027 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18028 {
18029 	struct sd_sense_info	si;
18030 
18031 	ASSERT(un != NULL);
18032 	ASSERT(mutex_owned(SD_MUTEX(un)));
18033 	ASSERT(bp != NULL);
18034 	ASSERT(xp != NULL);
18035 	ASSERT(pktp != NULL);
18036 
18037 	si.ssi_severity = SCSI_ERR_FATAL;
18038 	si.ssi_pfa_flag = FALSE;
18039 
18040 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18041 	sd_return_failed_command(un, bp, EIO);
18042 }
18043 
18044 
18045 
18046 /*
18047  *    Function: sd_sense_key_blank_check
18048  *
18049  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18050  *		Has no monetary connotation.
18051  *
18052  *     Context: May be called from interrupt context
18053  */
18054 
18055 static void
18056 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18057 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18058 {
18059 	struct sd_sense_info	si;
18060 
18061 	ASSERT(un != NULL);
18062 	ASSERT(mutex_owned(SD_MUTEX(un)));
18063 	ASSERT(bp != NULL);
18064 	ASSERT(xp != NULL);
18065 	ASSERT(pktp != NULL);
18066 
18067 	/*
18068 	 * Blank check is not fatal for removable devices, therefore
18069 	 * it does not require a console message.
18070 	 */
18071 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18072 	    SCSI_ERR_FATAL;
18073 	si.ssi_pfa_flag = FALSE;
18074 
18075 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18076 	sd_return_failed_command(un, bp, EIO);
18077 }
18078 
18079 
18080 
18081 
18082 /*
18083  *    Function: sd_sense_key_aborted_command
18084  *
18085  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18086  *
18087  *     Context: May be called from interrupt context
18088  */
18089 
18090 static void
18091 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18092 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18093 {
18094 	struct sd_sense_info	si;
18095 
18096 	ASSERT(un != NULL);
18097 	ASSERT(mutex_owned(SD_MUTEX(un)));
18098 	ASSERT(bp != NULL);
18099 	ASSERT(xp != NULL);
18100 	ASSERT(pktp != NULL);
18101 
18102 	si.ssi_severity = SCSI_ERR_FATAL;
18103 	si.ssi_pfa_flag = FALSE;
18104 
18105 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18106 
18107 	/*
18108 	 * This really ought to be a fatal error, but we will retry anyway
18109 	 * as some drives report this as a spurious error.
18110 	 */
18111 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18112 	    &si, EIO, drv_usectohz(100000), NULL);
18113 }
18114 
18115 
18116 
18117 /*
18118  *    Function: sd_sense_key_default
18119  *
18120  * Description: Default recovery action for several SCSI sense keys (basically
18121  *		attempts a retry).
18122  *
18123  *     Context: May be called from interrupt context
18124  */
18125 
18126 static void
18127 sd_sense_key_default(struct sd_lun *un,
18128 	uint8_t *sense_datap,
18129 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18130 {
18131 	struct sd_sense_info	si;
18132 	uint8_t sense_key = scsi_sense_key(sense_datap);
18133 
18134 	ASSERT(un != NULL);
18135 	ASSERT(mutex_owned(SD_MUTEX(un)));
18136 	ASSERT(bp != NULL);
18137 	ASSERT(xp != NULL);
18138 	ASSERT(pktp != NULL);
18139 
18140 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18141 
18142 	/*
18143 	 * Undecoded sense key.	Attempt retries and hope that will fix
18144 	 * the problem.  Otherwise, we're dead.
18145 	 */
18146 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18147 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18148 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18149 	}
18150 
18151 	si.ssi_severity = SCSI_ERR_FATAL;
18152 	si.ssi_pfa_flag = FALSE;
18153 
18154 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18155 	    &si, EIO, (clock_t)0, NULL);
18156 }
18157 
18158 
18159 
18160 /*
18161  *    Function: sd_print_retry_msg
18162  *
18163  * Description: Print a message indicating the retry action being taken.
18164  *
18165  *   Arguments: un - ptr to associated softstate
18166  *		bp - ptr to buf(9S) for the command
18167  *		arg - not used.
18168  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18169  *			or SD_NO_RETRY_ISSUED
18170  *
18171  *     Context: May be called from interrupt context
18172  */
18173 /* ARGSUSED */
18174 static void
18175 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18176 {
18177 	struct sd_xbuf	*xp;
18178 	struct scsi_pkt *pktp;
18179 	char *reasonp;
18180 	char *msgp;
18181 
18182 	ASSERT(un != NULL);
18183 	ASSERT(mutex_owned(SD_MUTEX(un)));
18184 	ASSERT(bp != NULL);
18185 	pktp = SD_GET_PKTP(bp);
18186 	ASSERT(pktp != NULL);
18187 	xp = SD_GET_XBUF(bp);
18188 	ASSERT(xp != NULL);
18189 
18190 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18191 	mutex_enter(&un->un_pm_mutex);
18192 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18193 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18194 	    (pktp->pkt_flags & FLAG_SILENT)) {
18195 		mutex_exit(&un->un_pm_mutex);
18196 		goto update_pkt_reason;
18197 	}
18198 	mutex_exit(&un->un_pm_mutex);
18199 
18200 	/*
18201 	 * Suppress messages if they are all the same pkt_reason; with
18202 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18203 	 * If we are in panic, then suppress the retry messages.
18204 	 */
18205 	switch (flag) {
18206 	case SD_NO_RETRY_ISSUED:
18207 		msgp = "giving up";
18208 		break;
18209 	case SD_IMMEDIATE_RETRY_ISSUED:
18210 	case SD_DELAYED_RETRY_ISSUED:
18211 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18212 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18213 		    (sd_error_level != SCSI_ERR_ALL))) {
18214 			return;
18215 		}
18216 		msgp = "retrying command";
18217 		break;
18218 	default:
18219 		goto update_pkt_reason;
18220 	}
18221 
18222 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18223 	    scsi_rname(pktp->pkt_reason));
18224 
18225 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18226 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18227 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18228 	}
18229 
18230 update_pkt_reason:
18231 	/*
18232 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18233 	 * This is to prevent multiple console messages for the same failure
18234 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18235 	 * when the command is retried successfully because there still may be
18236 	 * more commands coming back with the same value of pktp->pkt_reason.
18237 	 */
18238 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18239 		un->un_last_pkt_reason = pktp->pkt_reason;
18240 	}
18241 }
18242 
18243 
18244 /*
18245  *    Function: sd_print_cmd_incomplete_msg
18246  *
18247  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18248  *
18249  *   Arguments: un - ptr to associated softstate
18250  *		bp - ptr to buf(9S) for the command
18251  *		arg - passed to sd_print_retry_msg()
18252  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18253  *			or SD_NO_RETRY_ISSUED
18254  *
18255  *     Context: May be called from interrupt context
18256  */
18257 
18258 static void
18259 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18260 	int code)
18261 {
18262 	dev_info_t	*dip;
18263 
18264 	ASSERT(un != NULL);
18265 	ASSERT(mutex_owned(SD_MUTEX(un)));
18266 	ASSERT(bp != NULL);
18267 
18268 	switch (code) {
18269 	case SD_NO_RETRY_ISSUED:
18270 		/* Command was failed. Someone turned off this target? */
18271 		if (un->un_state != SD_STATE_OFFLINE) {
18272 			/*
18273 			 * Suppress message if we are detaching and
18274 			 * device has been disconnected
18275 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18276 			 * private interface and not part of the DDI
18277 			 */
18278 			dip = un->un_sd->sd_dev;
18279 			if (!(DEVI_IS_DETACHING(dip) &&
18280 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18281 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18282 				"disk not responding to selection\n");
18283 			}
18284 			New_state(un, SD_STATE_OFFLINE);
18285 		}
18286 		break;
18287 
18288 	case SD_DELAYED_RETRY_ISSUED:
18289 	case SD_IMMEDIATE_RETRY_ISSUED:
18290 	default:
18291 		/* Command was successfully queued for retry */
18292 		sd_print_retry_msg(un, bp, arg, code);
18293 		break;
18294 	}
18295 }
18296 
18297 
18298 /*
18299  *    Function: sd_pkt_reason_cmd_incomplete
18300  *
18301  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18302  *
18303  *     Context: May be called from interrupt context
18304  */
18305 
18306 static void
18307 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18308 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18309 {
18310 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18311 
18312 	ASSERT(un != NULL);
18313 	ASSERT(mutex_owned(SD_MUTEX(un)));
18314 	ASSERT(bp != NULL);
18315 	ASSERT(xp != NULL);
18316 	ASSERT(pktp != NULL);
18317 
18318 	/* Do not do a reset if selection did not complete */
18319 	/* Note: Should this not just check the bit? */
18320 	if (pktp->pkt_state != STATE_GOT_BUS) {
18321 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18322 		sd_reset_target(un, pktp);
18323 	}
18324 
18325 	/*
18326 	 * If the target was not successfully selected, then set
18327 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18328 	 * with the target, and further retries and/or commands are
18329 	 * likely to take a long time.
18330 	 */
18331 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18332 		flag |= SD_RETRIES_FAILFAST;
18333 	}
18334 
18335 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18336 
18337 	sd_retry_command(un, bp, flag,
18338 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18339 }
18340 
18341 
18342 
18343 /*
18344  *    Function: sd_pkt_reason_cmd_tran_err
18345  *
18346  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18347  *
18348  *     Context: May be called from interrupt context
18349  */
18350 
18351 static void
18352 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18353 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18354 {
18355 	ASSERT(un != NULL);
18356 	ASSERT(mutex_owned(SD_MUTEX(un)));
18357 	ASSERT(bp != NULL);
18358 	ASSERT(xp != NULL);
18359 	ASSERT(pktp != NULL);
18360 
18361 	/*
18362 	 * Do not reset if we got a parity error, or if
18363 	 * selection did not complete.
18364 	 */
18365 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18366 	/* Note: Should this not just check the bit for pkt_state? */
18367 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18368 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18369 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18370 		sd_reset_target(un, pktp);
18371 	}
18372 
18373 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18374 
18375 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18376 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18377 }
18378 
18379 
18380 
18381 /*
18382  *    Function: sd_pkt_reason_cmd_reset
18383  *
18384  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18385  *
18386  *     Context: May be called from interrupt context
18387  */
18388 
18389 static void
18390 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18391 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18392 {
18393 	ASSERT(un != NULL);
18394 	ASSERT(mutex_owned(SD_MUTEX(un)));
18395 	ASSERT(bp != NULL);
18396 	ASSERT(xp != NULL);
18397 	ASSERT(pktp != NULL);
18398 
18399 	/* The target may still be running the command, so try to reset. */
18400 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18401 	sd_reset_target(un, pktp);
18402 
18403 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18404 
18405 	/*
18406 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18407 	 * reset because another target on this bus caused it. The target
18408 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18409 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18410 	 */
18411 
18412 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18413 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18414 }
18415 
18416 
18417 
18418 
18419 /*
18420  *    Function: sd_pkt_reason_cmd_aborted
18421  *
18422  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18423  *
18424  *     Context: May be called from interrupt context
18425  */
18426 
18427 static void
18428 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18429 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18430 {
18431 	ASSERT(un != NULL);
18432 	ASSERT(mutex_owned(SD_MUTEX(un)));
18433 	ASSERT(bp != NULL);
18434 	ASSERT(xp != NULL);
18435 	ASSERT(pktp != NULL);
18436 
18437 	/* The target may still be running the command, so try to reset. */
18438 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18439 	sd_reset_target(un, pktp);
18440 
18441 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18442 
18443 	/*
18444 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18445 	 * aborted because another target on this bus caused it. The target
18446 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18447 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18448 	 */
18449 
18450 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18451 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18452 }
18453 
18454 
18455 
18456 /*
18457  *    Function: sd_pkt_reason_cmd_timeout
18458  *
18459  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18460  *
18461  *     Context: May be called from interrupt context
18462  */
18463 
18464 static void
18465 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18466 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18467 {
18468 	ASSERT(un != NULL);
18469 	ASSERT(mutex_owned(SD_MUTEX(un)));
18470 	ASSERT(bp != NULL);
18471 	ASSERT(xp != NULL);
18472 	ASSERT(pktp != NULL);
18473 
18474 
18475 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18476 	sd_reset_target(un, pktp);
18477 
18478 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18479 
18480 	/*
18481 	 * A command timeout indicates that we could not establish
18482 	 * communication with the target, so set SD_RETRIES_FAILFAST
18483 	 * as further retries/commands are likely to take a long time.
18484 	 */
18485 	sd_retry_command(un, bp,
18486 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18487 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18488 }
18489 
18490 
18491 
18492 /*
18493  *    Function: sd_pkt_reason_cmd_unx_bus_free
18494  *
18495  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18496  *
18497  *     Context: May be called from interrupt context
18498  */
18499 
18500 static void
18501 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18502 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18503 {
18504 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18505 
18506 	ASSERT(un != NULL);
18507 	ASSERT(mutex_owned(SD_MUTEX(un)));
18508 	ASSERT(bp != NULL);
18509 	ASSERT(xp != NULL);
18510 	ASSERT(pktp != NULL);
18511 
18512 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18513 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18514 
18515 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18516 	    sd_print_retry_msg : NULL;
18517 
18518 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18519 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18520 }
18521 
18522 
18523 /*
18524  *    Function: sd_pkt_reason_cmd_tag_reject
18525  *
18526  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18527  *
18528  *     Context: May be called from interrupt context
18529  */
18530 
18531 static void
18532 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18533 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18534 {
18535 	ASSERT(un != NULL);
18536 	ASSERT(mutex_owned(SD_MUTEX(un)));
18537 	ASSERT(bp != NULL);
18538 	ASSERT(xp != NULL);
18539 	ASSERT(pktp != NULL);
18540 
18541 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18542 	pktp->pkt_flags = 0;
18543 	un->un_tagflags = 0;
18544 	if (un->un_f_opt_queueing == TRUE) {
18545 		un->un_throttle = min(un->un_throttle, 3);
18546 	} else {
18547 		un->un_throttle = 1;
18548 	}
18549 	mutex_exit(SD_MUTEX(un));
18550 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18551 	mutex_enter(SD_MUTEX(un));
18552 
18553 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18554 
18555 	/* Legacy behavior not to check retry counts here. */
18556 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18557 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18558 }
18559 
18560 
18561 /*
18562  *    Function: sd_pkt_reason_default
18563  *
18564  * Description: Default recovery actions for SCSA pkt_reason values that
18565  *		do not have more explicit recovery actions.
18566  *
18567  *     Context: May be called from interrupt context
18568  */
18569 
18570 static void
18571 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18572 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18573 {
18574 	ASSERT(un != NULL);
18575 	ASSERT(mutex_owned(SD_MUTEX(un)));
18576 	ASSERT(bp != NULL);
18577 	ASSERT(xp != NULL);
18578 	ASSERT(pktp != NULL);
18579 
18580 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18581 	sd_reset_target(un, pktp);
18582 
18583 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18584 
18585 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18586 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18587 }
18588 
18589 
18590 
18591 /*
18592  *    Function: sd_pkt_status_check_condition
18593  *
18594  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18595  *
18596  *     Context: May be called from interrupt context
18597  */
18598 
18599 static void
18600 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18601 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18602 {
18603 	ASSERT(un != NULL);
18604 	ASSERT(mutex_owned(SD_MUTEX(un)));
18605 	ASSERT(bp != NULL);
18606 	ASSERT(xp != NULL);
18607 	ASSERT(pktp != NULL);
18608 
18609 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18610 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18611 
18612 	/*
18613 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18614 	 * command will be retried after the request sense). Otherwise, retry
18615 	 * the command. Note: we are issuing the request sense even though the
18616 	 * retry limit may have been reached for the failed command.
18617 	 */
18618 	if (un->un_f_arq_enabled == FALSE) {
18619 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18620 		    "no ARQ, sending request sense command\n");
18621 		sd_send_request_sense_command(un, bp, pktp);
18622 	} else {
18623 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18624 		    "ARQ,retrying request sense command\n");
18625 #if defined(__i386) || defined(__amd64)
18626 		/*
18627 		 * The SD_RETRY_DELAY value need to be adjusted here
18628 		 * when SD_RETRY_DELAY change in sddef.h
18629 		 */
18630 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18631 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18632 		    NULL);
18633 #else
18634 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18635 		    EIO, SD_RETRY_DELAY, NULL);
18636 #endif
18637 	}
18638 
18639 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18640 }
18641 
18642 
18643 /*
18644  *    Function: sd_pkt_status_busy
18645  *
18646  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18647  *
18648  *     Context: May be called from interrupt context
18649  */
18650 
18651 static void
18652 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18653 	struct scsi_pkt *pktp)
18654 {
18655 	ASSERT(un != NULL);
18656 	ASSERT(mutex_owned(SD_MUTEX(un)));
18657 	ASSERT(bp != NULL);
18658 	ASSERT(xp != NULL);
18659 	ASSERT(pktp != NULL);
18660 
18661 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18662 	    "sd_pkt_status_busy: entry\n");
18663 
18664 	/* If retries are exhausted, just fail the command. */
18665 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18666 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18667 		    "device busy too long\n");
18668 		sd_return_failed_command(un, bp, EIO);
18669 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18670 		    "sd_pkt_status_busy: exit\n");
18671 		return;
18672 	}
18673 	xp->xb_retry_count++;
18674 
18675 	/*
18676 	 * Try to reset the target. However, we do not want to perform
18677 	 * more than one reset if the device continues to fail. The reset
18678 	 * will be performed when the retry count reaches the reset
18679 	 * threshold.  This threshold should be set such that at least
18680 	 * one retry is issued before the reset is performed.
18681 	 */
18682 	if (xp->xb_retry_count ==
18683 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18684 		int rval = 0;
18685 		mutex_exit(SD_MUTEX(un));
18686 		if (un->un_f_allow_bus_device_reset == TRUE) {
18687 			/*
18688 			 * First try to reset the LUN; if we cannot then
18689 			 * try to reset the target.
18690 			 */
18691 			if (un->un_f_lun_reset_enabled == TRUE) {
18692 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18693 				    "sd_pkt_status_busy: RESET_LUN\n");
18694 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18695 			}
18696 			if (rval == 0) {
18697 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18698 				    "sd_pkt_status_busy: RESET_TARGET\n");
18699 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18700 			}
18701 		}
18702 		if (rval == 0) {
18703 			/*
18704 			 * If the RESET_LUN and/or RESET_TARGET failed,
18705 			 * try RESET_ALL
18706 			 */
18707 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18708 			    "sd_pkt_status_busy: RESET_ALL\n");
18709 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18710 		}
18711 		mutex_enter(SD_MUTEX(un));
18712 		if (rval == 0) {
18713 			/*
18714 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18715 			 * At this point we give up & fail the command.
18716 			 */
18717 			sd_return_failed_command(un, bp, EIO);
18718 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18719 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18720 			return;
18721 		}
18722 	}
18723 
18724 	/*
18725 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18726 	 * we have already checked the retry counts above.
18727 	 */
18728 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18729 	    EIO, un->un_busy_timeout, NULL);
18730 
18731 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18732 	    "sd_pkt_status_busy: exit\n");
18733 }
18734 
18735 
18736 /*
18737  *    Function: sd_pkt_status_reservation_conflict
18738  *
18739  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18740  *		command status.
18741  *
18742  *     Context: May be called from interrupt context
18743  */
18744 
18745 static void
18746 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18747 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18748 {
18749 	ASSERT(un != NULL);
18750 	ASSERT(mutex_owned(SD_MUTEX(un)));
18751 	ASSERT(bp != NULL);
18752 	ASSERT(xp != NULL);
18753 	ASSERT(pktp != NULL);
18754 
18755 	/*
18756 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18757 	 * conflict could be due to various reasons like incorrect keys, not
18758 	 * registered or not reserved etc. So, we return EACCES to the caller.
18759 	 */
18760 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18761 		int cmd = SD_GET_PKT_OPCODE(pktp);
18762 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18763 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18764 			sd_return_failed_command(un, bp, EACCES);
18765 			return;
18766 		}
18767 	}
18768 
18769 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18770 
18771 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18772 		if (sd_failfast_enable != 0) {
18773 			/* By definition, we must panic here.... */
18774 			sd_panic_for_res_conflict(un);
18775 			/*NOTREACHED*/
18776 		}
18777 		SD_ERROR(SD_LOG_IO, un,
18778 		    "sd_handle_resv_conflict: Disk Reserved\n");
18779 		sd_return_failed_command(un, bp, EACCES);
18780 		return;
18781 	}
18782 
18783 	/*
18784 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18785 	 * property is set (default is 1). Retries will not succeed
18786 	 * on a disk reserved by another initiator. HA systems
18787 	 * may reset this via sd.conf to avoid these retries.
18788 	 *
18789 	 * Note: The legacy return code for this failure is EIO, however EACCES
18790 	 * seems more appropriate for a reservation conflict.
18791 	 */
18792 	if (sd_retry_on_reservation_conflict == 0) {
18793 		SD_ERROR(SD_LOG_IO, un,
18794 		    "sd_handle_resv_conflict: Device Reserved\n");
18795 		sd_return_failed_command(un, bp, EIO);
18796 		return;
18797 	}
18798 
18799 	/*
18800 	 * Retry the command if we can.
18801 	 *
18802 	 * Note: The legacy return code for this failure is EIO, however EACCES
18803 	 * seems more appropriate for a reservation conflict.
18804 	 */
18805 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18806 	    (clock_t)2, NULL);
18807 }
18808 
18809 
18810 
18811 /*
18812  *    Function: sd_pkt_status_qfull
18813  *
18814  * Description: Handle a QUEUE FULL condition from the target.  This can
18815  *		occur if the HBA does not handle the queue full condition.
18816  *		(Basically this means third-party HBAs as Sun HBAs will
18817  *		handle the queue full condition.)  Note that if there are
18818  *		some commands already in the transport, then the queue full
18819  *		has occurred because the queue for this nexus is actually
18820  *		full. If there are no commands in the transport, then the
18821  *		queue full is resulting from some other initiator or lun
18822  *		consuming all the resources at the target.
18823  *
18824  *     Context: May be called from interrupt context
18825  */
18826 
18827 static void
18828 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18829 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18830 {
18831 	ASSERT(un != NULL);
18832 	ASSERT(mutex_owned(SD_MUTEX(un)));
18833 	ASSERT(bp != NULL);
18834 	ASSERT(xp != NULL);
18835 	ASSERT(pktp != NULL);
18836 
18837 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18838 	    "sd_pkt_status_qfull: entry\n");
18839 
18840 	/*
18841 	 * Just lower the QFULL throttle and retry the command.  Note that
18842 	 * we do not limit the number of retries here.
18843 	 */
18844 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18845 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18846 	    SD_RESTART_TIMEOUT, NULL);
18847 
18848 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18849 	    "sd_pkt_status_qfull: exit\n");
18850 }
18851 
18852 
18853 /*
18854  *    Function: sd_reset_target
18855  *
18856  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18857  *		RESET_TARGET, or RESET_ALL.
18858  *
18859  *     Context: May be called under interrupt context.
18860  */
18861 
18862 static void
18863 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18864 {
18865 	int rval = 0;
18866 
18867 	ASSERT(un != NULL);
18868 	ASSERT(mutex_owned(SD_MUTEX(un)));
18869 	ASSERT(pktp != NULL);
18870 
18871 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18872 
18873 	/*
18874 	 * No need to reset if the transport layer has already done so.
18875 	 */
18876 	if ((pktp->pkt_statistics &
18877 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18878 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18879 		    "sd_reset_target: no reset\n");
18880 		return;
18881 	}
18882 
18883 	mutex_exit(SD_MUTEX(un));
18884 
18885 	if (un->un_f_allow_bus_device_reset == TRUE) {
18886 		if (un->un_f_lun_reset_enabled == TRUE) {
18887 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18888 			    "sd_reset_target: RESET_LUN\n");
18889 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18890 		}
18891 		if (rval == 0) {
18892 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18893 			    "sd_reset_target: RESET_TARGET\n");
18894 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18895 		}
18896 	}
18897 
18898 	if (rval == 0) {
18899 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18900 		    "sd_reset_target: RESET_ALL\n");
18901 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18902 	}
18903 
18904 	mutex_enter(SD_MUTEX(un));
18905 
18906 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18907 }
18908 
18909 /*
18910  *    Function: sd_target_change_task
18911  *
18912  * Description: Handle dynamic target change
18913  *
18914  *     Context: Executes in a taskq() thread context
18915  */
18916 static void
18917 sd_target_change_task(void *arg)
18918 {
18919 	struct sd_lun		*un = arg;
18920 	uint64_t		capacity;
18921 	diskaddr_t		label_cap;
18922 	uint_t			lbasize;
18923 	sd_ssc_t		*ssc;
18924 
18925 	ASSERT(un != NULL);
18926 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18927 
18928 	if ((un->un_f_blockcount_is_valid == FALSE) ||
18929 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
18930 		return;
18931 	}
18932 
18933 	ssc = sd_ssc_init(un);
18934 
18935 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
18936 	    &lbasize, SD_PATH_DIRECT) != 0) {
18937 		SD_ERROR(SD_LOG_ERROR, un,
18938 		    "sd_target_change_task: fail to read capacity\n");
18939 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
18940 		goto task_exit;
18941 	}
18942 
18943 	mutex_enter(SD_MUTEX(un));
18944 	if (capacity <= un->un_blockcount) {
18945 		mutex_exit(SD_MUTEX(un));
18946 		goto task_exit;
18947 	}
18948 
18949 	sd_update_block_info(un, lbasize, capacity);
18950 	mutex_exit(SD_MUTEX(un));
18951 
18952 	/*
18953 	 * If lun is EFI labeled and lun capacity is greater than the
18954 	 * capacity contained in the label, log a sys event.
18955 	 */
18956 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
18957 	    (void*)SD_PATH_DIRECT) == 0) {
18958 		mutex_enter(SD_MUTEX(un));
18959 		if (un->un_f_blockcount_is_valid &&
18960 		    un->un_blockcount > label_cap) {
18961 			mutex_exit(SD_MUTEX(un));
18962 			sd_log_lun_expansion_event(un, KM_SLEEP);
18963 		} else {
18964 			mutex_exit(SD_MUTEX(un));
18965 		}
18966 	}
18967 
18968 task_exit:
18969 	sd_ssc_fini(ssc);
18970 }
18971 
18972 /*
18973  *    Function: sd_log_lun_expansion_event
18974  *
18975  * Description: Log lun expansion sys event
18976  *
18977  *     Context: Never called from interrupt context
18978  */
18979 static void
18980 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
18981 {
18982 	int err;
18983 	char			*path;
18984 	nvlist_t		*dle_attr_list;
18985 
18986 	/* Allocate and build sysevent attribute list */
18987 	err = nvlist_alloc(&dle_attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
18988 	if (err != 0) {
18989 		SD_ERROR(SD_LOG_ERROR, un,
18990 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18991 		return;
18992 	}
18993 
18994 	path = kmem_alloc(MAXPATHLEN, km_flag);
18995 	if (path == NULL) {
18996 		nvlist_free(dle_attr_list);
18997 		SD_ERROR(SD_LOG_ERROR, un,
18998 		    "sd_log_lun_expansion_event: fail to allocate space\n");
18999 		return;
19000 	}
19001 	/*
19002 	 * Add path attribute to identify the lun.
19003 	 * We are using minor node 'a' as the sysevent attribute.
19004 	 */
19005 	(void) snprintf(path, MAXPATHLEN, "/devices");
19006 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19007 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19008 	    ":a");
19009 
19010 	err = nvlist_add_string(dle_attr_list, DEV_PHYS_PATH, path);
19011 	if (err != 0) {
19012 		nvlist_free(dle_attr_list);
19013 		kmem_free(path, MAXPATHLEN);
19014 		SD_ERROR(SD_LOG_ERROR, un,
19015 		    "sd_log_lun_expansion_event: fail to add attribute\n");
19016 		return;
19017 	}
19018 
19019 	/* Log dynamic lun expansion sysevent */
19020 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19021 	    ESC_DEV_DLE, dle_attr_list, NULL, km_flag);
19022 	if (err != DDI_SUCCESS) {
19023 		SD_ERROR(SD_LOG_ERROR, un,
19024 		    "sd_log_lun_expansion_event: fail to log sysevent\n");
19025 	}
19026 
19027 	nvlist_free(dle_attr_list);
19028 	kmem_free(path, MAXPATHLEN);
19029 }
19030 
19031 /*
19032  *    Function: sd_media_change_task
19033  *
19034  * Description: Recovery action for CDROM to become available.
19035  *
19036  *     Context: Executes in a taskq() thread context
19037  */
19038 
19039 static void
19040 sd_media_change_task(void *arg)
19041 {
19042 	struct	scsi_pkt	*pktp = arg;
19043 	struct	sd_lun		*un;
19044 	struct	buf		*bp;
19045 	struct	sd_xbuf		*xp;
19046 	int	err		= 0;
19047 	int	retry_count	= 0;
19048 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19049 	struct	sd_sense_info	si;
19050 
19051 	ASSERT(pktp != NULL);
19052 	bp = (struct buf *)pktp->pkt_private;
19053 	ASSERT(bp != NULL);
19054 	xp = SD_GET_XBUF(bp);
19055 	ASSERT(xp != NULL);
19056 	un = SD_GET_UN(bp);
19057 	ASSERT(un != NULL);
19058 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19059 	ASSERT(un->un_f_monitor_media_state);
19060 
19061 	si.ssi_severity = SCSI_ERR_INFO;
19062 	si.ssi_pfa_flag = FALSE;
19063 
19064 	/*
19065 	 * When a reset is issued on a CDROM, it takes a long time to
19066 	 * recover. First few attempts to read capacity and other things
19067 	 * related to handling unit attention fail (with a ASC 0x4 and
19068 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19069 	 * to limit the retries in other cases of genuine failures like
19070 	 * no media in drive.
19071 	 */
19072 	while (retry_count++ < retry_limit) {
19073 		if ((err = sd_handle_mchange(un)) == 0) {
19074 			break;
19075 		}
19076 		if (err == EAGAIN) {
19077 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19078 		}
19079 		/* Sleep for 0.5 sec. & try again */
19080 		delay(drv_usectohz(500000));
19081 	}
19082 
19083 	/*
19084 	 * Dispatch (retry or fail) the original command here,
19085 	 * along with appropriate console messages....
19086 	 *
19087 	 * Must grab the mutex before calling sd_retry_command,
19088 	 * sd_print_sense_msg and sd_return_failed_command.
19089 	 */
19090 	mutex_enter(SD_MUTEX(un));
19091 	if (err != SD_CMD_SUCCESS) {
19092 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19093 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19094 		si.ssi_severity = SCSI_ERR_FATAL;
19095 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19096 		sd_return_failed_command(un, bp, EIO);
19097 	} else {
19098 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19099 		    &si, EIO, (clock_t)0, NULL);
19100 	}
19101 	mutex_exit(SD_MUTEX(un));
19102 }
19103 
19104 
19105 
19106 /*
19107  *    Function: sd_handle_mchange
19108  *
19109  * Description: Perform geometry validation & other recovery when CDROM
19110  *		has been removed from drive.
19111  *
19112  * Return Code: 0 for success
19113  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19114  *		sd_send_scsi_READ_CAPACITY()
19115  *
19116  *     Context: Executes in a taskq() thread context
19117  */
19118 
19119 static int
19120 sd_handle_mchange(struct sd_lun *un)
19121 {
19122 	uint64_t	capacity;
19123 	uint32_t	lbasize;
19124 	int		rval;
19125 	sd_ssc_t	*ssc;
19126 
19127 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19128 	ASSERT(un->un_f_monitor_media_state);
19129 
19130 	ssc = sd_ssc_init(un);
19131 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19132 	    SD_PATH_DIRECT_PRIORITY);
19133 
19134 	if (rval != 0)
19135 		goto failed;
19136 
19137 	mutex_enter(SD_MUTEX(un));
19138 	sd_update_block_info(un, lbasize, capacity);
19139 
19140 	if (un->un_errstats != NULL) {
19141 		struct	sd_errstats *stp =
19142 		    (struct sd_errstats *)un->un_errstats->ks_data;
19143 		stp->sd_capacity.value.ui64 = (uint64_t)
19144 		    ((uint64_t)un->un_blockcount *
19145 		    (uint64_t)un->un_tgt_blocksize);
19146 	}
19147 
19148 	/*
19149 	 * Check if the media in the device is writable or not
19150 	 */
19151 	if (ISCD(un)) {
19152 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19153 	}
19154 
19155 	/*
19156 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19157 	 * valid geometry.
19158 	 */
19159 	mutex_exit(SD_MUTEX(un));
19160 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19161 
19162 
19163 	if (cmlb_validate(un->un_cmlbhandle, 0,
19164 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19165 		sd_ssc_fini(ssc);
19166 		return (EIO);
19167 	} else {
19168 		if (un->un_f_pkstats_enabled) {
19169 			sd_set_pstats(un);
19170 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19171 			    "sd_handle_mchange: un:0x%p pstats created and "
19172 			    "set\n", un);
19173 		}
19174 	}
19175 
19176 	/*
19177 	 * Try to lock the door
19178 	 */
19179 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19180 	    SD_PATH_DIRECT_PRIORITY);
19181 failed:
19182 	if (rval != 0)
19183 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19184 	sd_ssc_fini(ssc);
19185 	return (rval);
19186 }
19187 
19188 
19189 /*
19190  *    Function: sd_send_scsi_DOORLOCK
19191  *
19192  * Description: Issue the scsi DOOR LOCK command
19193  *
19194  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19195  *                      structure for this target.
19196  *		flag  - SD_REMOVAL_ALLOW
19197  *			SD_REMOVAL_PREVENT
19198  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19199  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19200  *			to use the USCSI "direct" chain and bypass the normal
19201  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19202  *			command is issued as part of an error recovery action.
19203  *
19204  * Return Code: 0   - Success
19205  *		errno return code from sd_ssc_send()
19206  *
19207  *     Context: Can sleep.
19208  */
19209 
19210 static int
19211 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19212 {
19213 	struct scsi_extended_sense	sense_buf;
19214 	union scsi_cdb		cdb;
19215 	struct uscsi_cmd	ucmd_buf;
19216 	int			status;
19217 	struct sd_lun		*un;
19218 
19219 	ASSERT(ssc != NULL);
19220 	un = ssc->ssc_un;
19221 	ASSERT(un != NULL);
19222 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19223 
19224 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19225 
19226 	/* already determined doorlock is not supported, fake success */
19227 	if (un->un_f_doorlock_supported == FALSE) {
19228 		return (0);
19229 	}
19230 
19231 	/*
19232 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19233 	 * ignore the command so we can complete the eject
19234 	 * operation.
19235 	 */
19236 	if (flag == SD_REMOVAL_PREVENT) {
19237 		mutex_enter(SD_MUTEX(un));
19238 		if (un->un_f_ejecting == TRUE) {
19239 			mutex_exit(SD_MUTEX(un));
19240 			return (EAGAIN);
19241 		}
19242 		mutex_exit(SD_MUTEX(un));
19243 	}
19244 
19245 	bzero(&cdb, sizeof (cdb));
19246 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19247 
19248 	cdb.scc_cmd = SCMD_DOORLOCK;
19249 	cdb.cdb_opaque[4] = (uchar_t)flag;
19250 
19251 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19252 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19253 	ucmd_buf.uscsi_bufaddr	= NULL;
19254 	ucmd_buf.uscsi_buflen	= 0;
19255 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19256 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19257 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19258 	ucmd_buf.uscsi_timeout	= 15;
19259 
19260 	SD_TRACE(SD_LOG_IO, un,
19261 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19262 
19263 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19264 	    UIO_SYSSPACE, path_flag);
19265 
19266 	if (status == 0)
19267 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19268 
19269 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19270 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19271 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19272 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19273 
19274 		/* fake success and skip subsequent doorlock commands */
19275 		un->un_f_doorlock_supported = FALSE;
19276 		return (0);
19277 	}
19278 
19279 	return (status);
19280 }
19281 
19282 /*
19283  *    Function: sd_send_scsi_READ_CAPACITY
19284  *
19285  * Description: This routine uses the scsi READ CAPACITY command to determine
19286  *		the device capacity in number of blocks and the device native
19287  *		block size. If this function returns a failure, then the
19288  *		values in *capp and *lbap are undefined.  If the capacity
19289  *		returned is 0xffffffff then the lun is too large for a
19290  *		normal READ CAPACITY command and the results of a
19291  *		READ CAPACITY 16 will be used instead.
19292  *
19293  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19294  *		capp - ptr to unsigned 64-bit variable to receive the
19295  *			capacity value from the command.
19296  *		lbap - ptr to unsigned 32-bit varaible to receive the
19297  *			block size value from the command
19298  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19299  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19300  *			to use the USCSI "direct" chain and bypass the normal
19301  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19302  *			command is issued as part of an error recovery action.
19303  *
19304  * Return Code: 0   - Success
19305  *		EIO - IO error
19306  *		EACCES - Reservation conflict detected
19307  *		EAGAIN - Device is becoming ready
19308  *		errno return code from sd_ssc_send()
19309  *
19310  *     Context: Can sleep.  Blocks until command completes.
19311  */
19312 
19313 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19314 
19315 static int
19316 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
19317 	int path_flag)
19318 {
19319 	struct	scsi_extended_sense	sense_buf;
19320 	struct	uscsi_cmd	ucmd_buf;
19321 	union	scsi_cdb	cdb;
19322 	uint32_t		*capacity_buf;
19323 	uint64_t		capacity;
19324 	uint32_t		lbasize;
19325 	int			status;
19326 	struct sd_lun		*un;
19327 
19328 	ASSERT(ssc != NULL);
19329 
19330 	un = ssc->ssc_un;
19331 	ASSERT(un != NULL);
19332 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19333 	ASSERT(capp != NULL);
19334 	ASSERT(lbap != NULL);
19335 
19336 	SD_TRACE(SD_LOG_IO, un,
19337 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19338 
19339 	/*
19340 	 * First send a READ_CAPACITY command to the target.
19341 	 * (This command is mandatory under SCSI-2.)
19342 	 *
19343 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19344 	 * Medium Indicator bit is cleared.  The address field must be
19345 	 * zero if the PMI bit is zero.
19346 	 */
19347 	bzero(&cdb, sizeof (cdb));
19348 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19349 
19350 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19351 
19352 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19353 
19354 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19355 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19356 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19357 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19358 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19359 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19360 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19361 	ucmd_buf.uscsi_timeout	= 60;
19362 
19363 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19364 	    UIO_SYSSPACE, path_flag);
19365 
19366 	switch (status) {
19367 	case 0:
19368 		/* Return failure if we did not get valid capacity data. */
19369 		if (ucmd_buf.uscsi_resid != 0) {
19370 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19371 			    "sd_send_scsi_READ_CAPACITY received invalid "
19372 			    "capacity data");
19373 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19374 			return (EIO);
19375 		}
19376 		/*
19377 		 * Read capacity and block size from the READ CAPACITY 10 data.
19378 		 * This data may be adjusted later due to device specific
19379 		 * issues.
19380 		 *
19381 		 * According to the SCSI spec, the READ CAPACITY 10
19382 		 * command returns the following:
19383 		 *
19384 		 *  bytes 0-3: Maximum logical block address available.
19385 		 *		(MSB in byte:0 & LSB in byte:3)
19386 		 *
19387 		 *  bytes 4-7: Block length in bytes
19388 		 *		(MSB in byte:4 & LSB in byte:7)
19389 		 *
19390 		 */
19391 		capacity = BE_32(capacity_buf[0]);
19392 		lbasize = BE_32(capacity_buf[1]);
19393 
19394 		/*
19395 		 * Done with capacity_buf
19396 		 */
19397 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19398 
19399 		/*
19400 		 * if the reported capacity is set to all 0xf's, then
19401 		 * this disk is too large and requires SBC-2 commands.
19402 		 * Reissue the request using READ CAPACITY 16.
19403 		 */
19404 		if (capacity == 0xffffffff) {
19405 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19406 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
19407 			    &lbasize, path_flag);
19408 			if (status != 0) {
19409 				return (status);
19410 			}
19411 		}
19412 		break;	/* Success! */
19413 	case EIO:
19414 		switch (ucmd_buf.uscsi_status) {
19415 		case STATUS_RESERVATION_CONFLICT:
19416 			status = EACCES;
19417 			break;
19418 		case STATUS_CHECK:
19419 			/*
19420 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19421 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19422 			 */
19423 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19424 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19425 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19426 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19427 				return (EAGAIN);
19428 			}
19429 			break;
19430 		default:
19431 			break;
19432 		}
19433 		/* FALLTHRU */
19434 	default:
19435 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19436 		return (status);
19437 	}
19438 
19439 	/*
19440 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19441 	 * (2352 and 0 are common) so for these devices always force the value
19442 	 * to 2048 as required by the ATAPI specs.
19443 	 */
19444 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19445 		lbasize = 2048;
19446 	}
19447 
19448 	/*
19449 	 * Get the maximum LBA value from the READ CAPACITY data.
19450 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19451 	 * was cleared when issuing the command. This means that the LBA
19452 	 * returned from the device is the LBA of the last logical block
19453 	 * on the logical unit.  The actual logical block count will be
19454 	 * this value plus one.
19455 	 *
19456 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19457 	 * so scale the capacity value to reflect this.
19458 	 */
19459 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19460 
19461 	/*
19462 	 * Copy the values from the READ CAPACITY command into the space
19463 	 * provided by the caller.
19464 	 */
19465 	*capp = capacity;
19466 	*lbap = lbasize;
19467 
19468 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19469 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19470 
19471 	/*
19472 	 * Both the lbasize and capacity from the device must be nonzero,
19473 	 * otherwise we assume that the values are not valid and return
19474 	 * failure to the caller. (4203735)
19475 	 */
19476 	if ((capacity == 0) || (lbasize == 0)) {
19477 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19478 		    "sd_send_scsi_READ_CAPACITY received invalid value "
19479 		    "capacity %llu lbasize %d", capacity, lbasize);
19480 		return (EIO);
19481 	}
19482 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19483 	return (0);
19484 }
19485 
19486 /*
19487  *    Function: sd_send_scsi_READ_CAPACITY_16
19488  *
19489  * Description: This routine uses the scsi READ CAPACITY 16 command to
19490  *		determine the device capacity in number of blocks and the
19491  *		device native block size.  If this function returns a failure,
19492  *		then the values in *capp and *lbap are undefined.
19493  *		This routine should always be called by
19494  *		sd_send_scsi_READ_CAPACITY which will appy any device
19495  *		specific adjustments to capacity and lbasize.
19496  *
19497  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
19498  *		capp - ptr to unsigned 64-bit variable to receive the
19499  *			capacity value from the command.
19500  *		lbap - ptr to unsigned 32-bit varaible to receive the
19501  *			block size value from the command
19502  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19503  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19504  *			to use the USCSI "direct" chain and bypass the normal
19505  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19506  *			this command is issued as part of an error recovery
19507  *			action.
19508  *
19509  * Return Code: 0   - Success
19510  *		EIO - IO error
19511  *		EACCES - Reservation conflict detected
19512  *		EAGAIN - Device is becoming ready
19513  *		errno return code from sd_ssc_send()
19514  *
19515  *     Context: Can sleep.  Blocks until command completes.
19516  */
19517 
19518 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19519 
19520 static int
19521 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
19522 	uint32_t *lbap, int path_flag)
19523 {
19524 	struct	scsi_extended_sense	sense_buf;
19525 	struct	uscsi_cmd	ucmd_buf;
19526 	union	scsi_cdb	cdb;
19527 	uint64_t		*capacity16_buf;
19528 	uint64_t		capacity;
19529 	uint32_t		lbasize;
19530 	int			status;
19531 	struct sd_lun		*un;
19532 
19533 	ASSERT(ssc != NULL);
19534 
19535 	un = ssc->ssc_un;
19536 	ASSERT(un != NULL);
19537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19538 	ASSERT(capp != NULL);
19539 	ASSERT(lbap != NULL);
19540 
19541 	SD_TRACE(SD_LOG_IO, un,
19542 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19543 
19544 	/*
19545 	 * First send a READ_CAPACITY_16 command to the target.
19546 	 *
19547 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19548 	 * Medium Indicator bit is cleared.  The address field must be
19549 	 * zero if the PMI bit is zero.
19550 	 */
19551 	bzero(&cdb, sizeof (cdb));
19552 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19553 
19554 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19555 
19556 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19557 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19558 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19559 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19560 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19561 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19562 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19563 	ucmd_buf.uscsi_timeout	= 60;
19564 
19565 	/*
19566 	 * Read Capacity (16) is a Service Action In command.  One
19567 	 * command byte (0x9E) is overloaded for multiple operations,
19568 	 * with the second CDB byte specifying the desired operation
19569 	 */
19570 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19571 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19572 
19573 	/*
19574 	 * Fill in allocation length field
19575 	 */
19576 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19577 
19578 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19579 	    UIO_SYSSPACE, path_flag);
19580 
19581 	switch (status) {
19582 	case 0:
19583 		/* Return failure if we did not get valid capacity data. */
19584 		if (ucmd_buf.uscsi_resid > 20) {
19585 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19586 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
19587 			    "capacity data");
19588 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19589 			return (EIO);
19590 		}
19591 
19592 		/*
19593 		 * Read capacity and block size from the READ CAPACITY 10 data.
19594 		 * This data may be adjusted later due to device specific
19595 		 * issues.
19596 		 *
19597 		 * According to the SCSI spec, the READ CAPACITY 10
19598 		 * command returns the following:
19599 		 *
19600 		 *  bytes 0-7: Maximum logical block address available.
19601 		 *		(MSB in byte:0 & LSB in byte:7)
19602 		 *
19603 		 *  bytes 8-11: Block length in bytes
19604 		 *		(MSB in byte:8 & LSB in byte:11)
19605 		 *
19606 		 */
19607 		capacity = BE_64(capacity16_buf[0]);
19608 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19609 
19610 		/*
19611 		 * Done with capacity16_buf
19612 		 */
19613 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19614 
19615 		/*
19616 		 * if the reported capacity is set to all 0xf's, then
19617 		 * this disk is too large.  This could only happen with
19618 		 * a device that supports LBAs larger than 64 bits which
19619 		 * are not defined by any current T10 standards.
19620 		 */
19621 		if (capacity == 0xffffffffffffffff) {
19622 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
19623 			    "disk is too large");
19624 			return (EIO);
19625 		}
19626 		break;	/* Success! */
19627 	case EIO:
19628 		switch (ucmd_buf.uscsi_status) {
19629 		case STATUS_RESERVATION_CONFLICT:
19630 			status = EACCES;
19631 			break;
19632 		case STATUS_CHECK:
19633 			/*
19634 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19635 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19636 			 */
19637 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19638 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19639 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19640 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19641 				return (EAGAIN);
19642 			}
19643 			break;
19644 		default:
19645 			break;
19646 		}
19647 		/* FALLTHRU */
19648 	default:
19649 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19650 		return (status);
19651 	}
19652 
19653 	*capp = capacity;
19654 	*lbap = lbasize;
19655 
19656 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19657 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19658 
19659 	return (0);
19660 }
19661 
19662 
19663 /*
19664  *    Function: sd_send_scsi_START_STOP_UNIT
19665  *
19666  * Description: Issue a scsi START STOP UNIT command to the target.
19667  *
19668  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
19669  *                       structure for this target.
19670  *		flag  - SD_TARGET_START
19671  *			SD_TARGET_STOP
19672  *			SD_TARGET_EJECT
19673  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19674  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19675  *			to use the USCSI "direct" chain and bypass the normal
19676  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19677  *			command is issued as part of an error recovery action.
19678  *
19679  * Return Code: 0   - Success
19680  *		EIO - IO error
19681  *		EACCES - Reservation conflict detected
19682  *		ENXIO  - Not Ready, medium not present
19683  *		errno return code from sd_ssc_send()
19684  *
19685  *     Context: Can sleep.
19686  */
19687 
19688 static int
19689 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int flag, int path_flag)
19690 {
19691 	struct	scsi_extended_sense	sense_buf;
19692 	union scsi_cdb		cdb;
19693 	struct uscsi_cmd	ucmd_buf;
19694 	int			status;
19695 	struct sd_lun		*un;
19696 
19697 	ASSERT(ssc != NULL);
19698 	un = ssc->ssc_un;
19699 	ASSERT(un != NULL);
19700 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19701 
19702 	SD_TRACE(SD_LOG_IO, un,
19703 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19704 
19705 	if (un->un_f_check_start_stop &&
19706 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19707 	    (un->un_f_start_stop_supported != TRUE)) {
19708 		return (0);
19709 	}
19710 
19711 	/*
19712 	 * If we are performing an eject operation and
19713 	 * we receive any command other than SD_TARGET_EJECT
19714 	 * we should immediately return.
19715 	 */
19716 	if (flag != SD_TARGET_EJECT) {
19717 		mutex_enter(SD_MUTEX(un));
19718 		if (un->un_f_ejecting == TRUE) {
19719 			mutex_exit(SD_MUTEX(un));
19720 			return (EAGAIN);
19721 		}
19722 		mutex_exit(SD_MUTEX(un));
19723 	}
19724 
19725 	bzero(&cdb, sizeof (cdb));
19726 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19727 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19728 
19729 	cdb.scc_cmd = SCMD_START_STOP;
19730 	cdb.cdb_opaque[4] = (uchar_t)flag;
19731 
19732 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19733 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19734 	ucmd_buf.uscsi_bufaddr	= NULL;
19735 	ucmd_buf.uscsi_buflen	= 0;
19736 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19737 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19738 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19739 	ucmd_buf.uscsi_timeout	= 200;
19740 
19741 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19742 	    UIO_SYSSPACE, path_flag);
19743 
19744 	switch (status) {
19745 	case 0:
19746 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19747 		break;	/* Success! */
19748 	case EIO:
19749 		switch (ucmd_buf.uscsi_status) {
19750 		case STATUS_RESERVATION_CONFLICT:
19751 			status = EACCES;
19752 			break;
19753 		case STATUS_CHECK:
19754 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19755 				switch (scsi_sense_key(
19756 				    (uint8_t *)&sense_buf)) {
19757 				case KEY_ILLEGAL_REQUEST:
19758 					status = ENOTSUP;
19759 					break;
19760 				case KEY_NOT_READY:
19761 					if (scsi_sense_asc(
19762 					    (uint8_t *)&sense_buf)
19763 					    == 0x3A) {
19764 						status = ENXIO;
19765 					}
19766 					break;
19767 				default:
19768 					break;
19769 				}
19770 			}
19771 			break;
19772 		default:
19773 			break;
19774 		}
19775 		break;
19776 	default:
19777 		break;
19778 	}
19779 
19780 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19781 
19782 	return (status);
19783 }
19784 
19785 
19786 /*
19787  *    Function: sd_start_stop_unit_callback
19788  *
19789  * Description: timeout(9F) callback to begin recovery process for a
19790  *		device that has spun down.
19791  *
19792  *   Arguments: arg - pointer to associated softstate struct.
19793  *
19794  *     Context: Executes in a timeout(9F) thread context
19795  */
19796 
19797 static void
19798 sd_start_stop_unit_callback(void *arg)
19799 {
19800 	struct sd_lun	*un = arg;
19801 	ASSERT(un != NULL);
19802 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19803 
19804 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19805 
19806 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19807 }
19808 
19809 
19810 /*
19811  *    Function: sd_start_stop_unit_task
19812  *
19813  * Description: Recovery procedure when a drive is spun down.
19814  *
19815  *   Arguments: arg - pointer to associated softstate struct.
19816  *
19817  *     Context: Executes in a taskq() thread context
19818  */
19819 
19820 static void
19821 sd_start_stop_unit_task(void *arg)
19822 {
19823 	struct sd_lun	*un = arg;
19824 	sd_ssc_t	*ssc;
19825 	int		rval;
19826 
19827 	ASSERT(un != NULL);
19828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19829 
19830 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19831 
19832 	/*
19833 	 * Some unformatted drives report not ready error, no need to
19834 	 * restart if format has been initiated.
19835 	 */
19836 	mutex_enter(SD_MUTEX(un));
19837 	if (un->un_f_format_in_progress == TRUE) {
19838 		mutex_exit(SD_MUTEX(un));
19839 		return;
19840 	}
19841 	mutex_exit(SD_MUTEX(un));
19842 
19843 	/*
19844 	 * When a START STOP command is issued from here, it is part of a
19845 	 * failure recovery operation and must be issued before any other
19846 	 * commands, including any pending retries. Thus it must be sent
19847 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19848 	 * succeeds or not, we will start I/O after the attempt.
19849 	 */
19850 	ssc = sd_ssc_init(un);
19851 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
19852 	    SD_PATH_DIRECT_PRIORITY);
19853 	if (rval != 0)
19854 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19855 	sd_ssc_fini(ssc);
19856 	/*
19857 	 * The above call blocks until the START_STOP_UNIT command completes.
19858 	 * Now that it has completed, we must re-try the original IO that
19859 	 * received the NOT READY condition in the first place. There are
19860 	 * three possible conditions here:
19861 	 *
19862 	 *  (1) The original IO is on un_retry_bp.
19863 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19864 	 *	is NULL.
19865 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19866 	 *	points to some other, unrelated bp.
19867 	 *
19868 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19869 	 * as the argument. If un_retry_bp is NULL, this will initiate
19870 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19871 	 * then this will process the bp on un_retry_bp. That may or may not
19872 	 * be the original IO, but that does not matter: the important thing
19873 	 * is to keep the IO processing going at this point.
19874 	 *
19875 	 * Note: This is a very specific error recovery sequence associated
19876 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19877 	 * serialize the I/O with completion of the spin-up.
19878 	 */
19879 	mutex_enter(SD_MUTEX(un));
19880 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19881 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19882 	    un, un->un_retry_bp);
19883 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19884 	sd_start_cmds(un, un->un_retry_bp);
19885 	mutex_exit(SD_MUTEX(un));
19886 
19887 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19888 }
19889 
19890 
19891 /*
19892  *    Function: sd_send_scsi_INQUIRY
19893  *
19894  * Description: Issue the scsi INQUIRY command.
19895  *
19896  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19897  *                      structure for this target.
19898  *		bufaddr
19899  *		buflen
19900  *		evpd
19901  *		page_code
19902  *		page_length
19903  *
19904  * Return Code: 0   - Success
19905  *		errno return code from sd_ssc_send()
19906  *
19907  *     Context: Can sleep. Does not return until command is completed.
19908  */
19909 
19910 static int
19911 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
19912 	uchar_t evpd, uchar_t page_code, size_t *residp)
19913 {
19914 	union scsi_cdb		cdb;
19915 	struct uscsi_cmd	ucmd_buf;
19916 	int			status;
19917 	struct sd_lun		*un;
19918 
19919 	ASSERT(ssc != NULL);
19920 	un = ssc->ssc_un;
19921 	ASSERT(un != NULL);
19922 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19923 	ASSERT(bufaddr != NULL);
19924 
19925 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19926 
19927 	bzero(&cdb, sizeof (cdb));
19928 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19929 	bzero(bufaddr, buflen);
19930 
19931 	cdb.scc_cmd = SCMD_INQUIRY;
19932 	cdb.cdb_opaque[1] = evpd;
19933 	cdb.cdb_opaque[2] = page_code;
19934 	FORMG0COUNT(&cdb, buflen);
19935 
19936 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19937 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19938 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19939 	ucmd_buf.uscsi_buflen	= buflen;
19940 	ucmd_buf.uscsi_rqbuf	= NULL;
19941 	ucmd_buf.uscsi_rqlen	= 0;
19942 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19943 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19944 
19945 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19946 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19947 
19948 	/*
19949 	 * Only handle status == 0, the upper-level caller
19950 	 * will put different assessment based on the context.
19951 	 */
19952 	if (status == 0)
19953 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19954 
19955 	if ((status == 0) && (residp != NULL)) {
19956 		*residp = ucmd_buf.uscsi_resid;
19957 	}
19958 
19959 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19960 
19961 	return (status);
19962 }
19963 
19964 
19965 /*
19966  *    Function: sd_send_scsi_TEST_UNIT_READY
19967  *
19968  * Description: Issue the scsi TEST UNIT READY command.
19969  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19970  *		prevent retrying failed commands. Use this when the intent
19971  *		is either to check for device readiness, to clear a Unit
19972  *		Attention, or to clear any outstanding sense data.
19973  *		However under specific conditions the expected behavior
19974  *		is for retries to bring a device ready, so use the flag
19975  *		with caution.
19976  *
19977  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19978  *                      structure for this target.
19979  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19980  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19981  *			0: dont check for media present, do retries on cmd.
19982  *
19983  * Return Code: 0   - Success
19984  *		EIO - IO error
19985  *		EACCES - Reservation conflict detected
19986  *		ENXIO  - Not Ready, medium not present
19987  *		errno return code from sd_ssc_send()
19988  *
19989  *     Context: Can sleep. Does not return until command is completed.
19990  */
19991 
19992 static int
19993 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
19994 {
19995 	struct	scsi_extended_sense	sense_buf;
19996 	union scsi_cdb		cdb;
19997 	struct uscsi_cmd	ucmd_buf;
19998 	int			status;
19999 	struct sd_lun		*un;
20000 
20001 	ASSERT(ssc != NULL);
20002 	un = ssc->ssc_un;
20003 	ASSERT(un != NULL);
20004 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20005 
20006 	SD_TRACE(SD_LOG_IO, un,
20007 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20008 
20009 	/*
20010 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20011 	 * timeouts when they receive a TUR and the queue is not empty. Check
20012 	 * the configuration flag set during attach (indicating the drive has
20013 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20014 	 * TUR. If there are
20015 	 * pending commands return success, this is a bit arbitrary but is ok
20016 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20017 	 * configurations.
20018 	 */
20019 	if (un->un_f_cfg_tur_check == TRUE) {
20020 		mutex_enter(SD_MUTEX(un));
20021 		if (un->un_ncmds_in_transport != 0) {
20022 			mutex_exit(SD_MUTEX(un));
20023 			return (0);
20024 		}
20025 		mutex_exit(SD_MUTEX(un));
20026 	}
20027 
20028 	bzero(&cdb, sizeof (cdb));
20029 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20030 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20031 
20032 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20033 
20034 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20035 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20036 	ucmd_buf.uscsi_bufaddr	= NULL;
20037 	ucmd_buf.uscsi_buflen	= 0;
20038 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20039 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20040 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20041 
20042 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20043 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20044 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20045 	}
20046 	ucmd_buf.uscsi_timeout	= 60;
20047 
20048 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20049 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20050 	    SD_PATH_STANDARD));
20051 
20052 	switch (status) {
20053 	case 0:
20054 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20055 		break;	/* Success! */
20056 	case EIO:
20057 		switch (ucmd_buf.uscsi_status) {
20058 		case STATUS_RESERVATION_CONFLICT:
20059 			status = EACCES;
20060 			break;
20061 		case STATUS_CHECK:
20062 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20063 				break;
20064 			}
20065 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20066 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20067 			    KEY_NOT_READY) &&
20068 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20069 				status = ENXIO;
20070 			}
20071 			break;
20072 		default:
20073 			break;
20074 		}
20075 		break;
20076 	default:
20077 		break;
20078 	}
20079 
20080 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20081 
20082 	return (status);
20083 }
20084 
20085 /*
20086  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20087  *
20088  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20089  *
20090  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20091  *                      structure for this target.
20092  *
20093  * Return Code: 0   - Success
20094  *		EACCES
20095  *		ENOTSUP
20096  *		errno return code from sd_ssc_send()
20097  *
20098  *     Context: Can sleep. Does not return until command is completed.
20099  */
20100 
20101 static int
20102 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20103 	uint16_t data_len, uchar_t *data_bufp)
20104 {
20105 	struct scsi_extended_sense	sense_buf;
20106 	union scsi_cdb		cdb;
20107 	struct uscsi_cmd	ucmd_buf;
20108 	int			status;
20109 	int			no_caller_buf = FALSE;
20110 	struct sd_lun		*un;
20111 
20112 	ASSERT(ssc != NULL);
20113 	un = ssc->ssc_un;
20114 	ASSERT(un != NULL);
20115 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20116 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20117 
20118 	SD_TRACE(SD_LOG_IO, un,
20119 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20120 
20121 	bzero(&cdb, sizeof (cdb));
20122 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20123 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20124 	if (data_bufp == NULL) {
20125 		/* Allocate a default buf if the caller did not give one */
20126 		ASSERT(data_len == 0);
20127 		data_len  = MHIOC_RESV_KEY_SIZE;
20128 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20129 		no_caller_buf = TRUE;
20130 	}
20131 
20132 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20133 	cdb.cdb_opaque[1] = usr_cmd;
20134 	FORMG1COUNT(&cdb, data_len);
20135 
20136 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20137 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20138 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20139 	ucmd_buf.uscsi_buflen	= data_len;
20140 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20141 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20142 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20143 	ucmd_buf.uscsi_timeout	= 60;
20144 
20145 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20146 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20147 
20148 	switch (status) {
20149 	case 0:
20150 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20151 
20152 		break;	/* Success! */
20153 	case EIO:
20154 		switch (ucmd_buf.uscsi_status) {
20155 		case STATUS_RESERVATION_CONFLICT:
20156 			status = EACCES;
20157 			break;
20158 		case STATUS_CHECK:
20159 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20160 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20161 			    KEY_ILLEGAL_REQUEST)) {
20162 				status = ENOTSUP;
20163 			}
20164 			break;
20165 		default:
20166 			break;
20167 		}
20168 		break;
20169 	default:
20170 		break;
20171 	}
20172 
20173 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20174 
20175 	if (no_caller_buf == TRUE) {
20176 		kmem_free(data_bufp, data_len);
20177 	}
20178 
20179 	return (status);
20180 }
20181 
20182 
20183 /*
20184  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20185  *
20186  * Description: This routine is the driver entry point for handling CD-ROM
20187  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20188  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20189  *		device.
20190  *
20191  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20192  *                      for the target.
20193  *		usr_cmd SCSI-3 reservation facility command (one of
20194  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20195  *			SD_SCSI3_PREEMPTANDABORT)
20196  *		usr_bufp - user provided pointer register, reserve descriptor or
20197  *			preempt and abort structure (mhioc_register_t,
20198  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20199  *
20200  * Return Code: 0   - Success
20201  *		EACCES
20202  *		ENOTSUP
20203  *		errno return code from sd_ssc_send()
20204  *
20205  *     Context: Can sleep. Does not return until command is completed.
20206  */
20207 
20208 static int
20209 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20210 	uchar_t	*usr_bufp)
20211 {
20212 	struct scsi_extended_sense	sense_buf;
20213 	union scsi_cdb		cdb;
20214 	struct uscsi_cmd	ucmd_buf;
20215 	int			status;
20216 	uchar_t			data_len = sizeof (sd_prout_t);
20217 	sd_prout_t		*prp;
20218 	struct sd_lun		*un;
20219 
20220 	ASSERT(ssc != NULL);
20221 	un = ssc->ssc_un;
20222 	ASSERT(un != NULL);
20223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20224 	ASSERT(data_len == 24);	/* required by scsi spec */
20225 
20226 	SD_TRACE(SD_LOG_IO, un,
20227 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20228 
20229 	if (usr_bufp == NULL) {
20230 		return (EINVAL);
20231 	}
20232 
20233 	bzero(&cdb, sizeof (cdb));
20234 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20235 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20236 	prp = kmem_zalloc(data_len, KM_SLEEP);
20237 
20238 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20239 	cdb.cdb_opaque[1] = usr_cmd;
20240 	FORMG1COUNT(&cdb, data_len);
20241 
20242 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20243 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20244 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20245 	ucmd_buf.uscsi_buflen	= data_len;
20246 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20247 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20248 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20249 	ucmd_buf.uscsi_timeout	= 60;
20250 
20251 	switch (usr_cmd) {
20252 	case SD_SCSI3_REGISTER: {
20253 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20254 
20255 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20256 		bcopy(ptr->newkey.key, prp->service_key,
20257 		    MHIOC_RESV_KEY_SIZE);
20258 		prp->aptpl = ptr->aptpl;
20259 		break;
20260 	}
20261 	case SD_SCSI3_RESERVE:
20262 	case SD_SCSI3_RELEASE: {
20263 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20264 
20265 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20266 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20267 		cdb.cdb_opaque[2] = ptr->type;
20268 		break;
20269 	}
20270 	case SD_SCSI3_PREEMPTANDABORT: {
20271 		mhioc_preemptandabort_t *ptr =
20272 		    (mhioc_preemptandabort_t *)usr_bufp;
20273 
20274 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20275 		bcopy(ptr->victim_key.key, prp->service_key,
20276 		    MHIOC_RESV_KEY_SIZE);
20277 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20278 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20279 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20280 		break;
20281 	}
20282 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20283 	{
20284 		mhioc_registerandignorekey_t *ptr;
20285 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20286 		bcopy(ptr->newkey.key,
20287 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20288 		prp->aptpl = ptr->aptpl;
20289 		break;
20290 	}
20291 	default:
20292 		ASSERT(FALSE);
20293 		break;
20294 	}
20295 
20296 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20297 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20298 
20299 	switch (status) {
20300 	case 0:
20301 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20302 		break;	/* Success! */
20303 	case EIO:
20304 		switch (ucmd_buf.uscsi_status) {
20305 		case STATUS_RESERVATION_CONFLICT:
20306 			status = EACCES;
20307 			break;
20308 		case STATUS_CHECK:
20309 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20310 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20311 			    KEY_ILLEGAL_REQUEST)) {
20312 				status = ENOTSUP;
20313 			}
20314 			break;
20315 		default:
20316 			break;
20317 		}
20318 		break;
20319 	default:
20320 		break;
20321 	}
20322 
20323 	kmem_free(prp, data_len);
20324 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20325 	return (status);
20326 }
20327 
20328 
20329 /*
20330  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20331  *
20332  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20333  *
20334  *   Arguments: un - pointer to the target's soft state struct
20335  *              dkc - pointer to the callback structure
20336  *
20337  * Return Code: 0 - success
20338  *		errno-type error code
20339  *
20340  *     Context: kernel thread context only.
20341  *
20342  *  _______________________________________________________________
20343  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
20344  * |FLUSH_VOLATILE|              | operation                       |
20345  * |______________|______________|_________________________________|
20346  * | 0            | NULL         | Synchronous flush on both       |
20347  * |              |              | volatile and non-volatile cache |
20348  * |______________|______________|_________________________________|
20349  * | 1            | NULL         | Synchronous flush on volatile   |
20350  * |              |              | cache; disk drivers may suppress|
20351  * |              |              | flush if disk table indicates   |
20352  * |              |              | non-volatile cache              |
20353  * |______________|______________|_________________________________|
20354  * | 0            | !NULL        | Asynchronous flush on both      |
20355  * |              |              | volatile and non-volatile cache;|
20356  * |______________|______________|_________________________________|
20357  * | 1            | !NULL        | Asynchronous flush on volatile  |
20358  * |              |              | cache; disk drivers may suppress|
20359  * |              |              | flush if disk table indicates   |
20360  * |              |              | non-volatile cache              |
20361  * |______________|______________|_________________________________|
20362  *
20363  */
20364 
20365 static int
20366 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20367 {
20368 	struct sd_uscsi_info	*uip;
20369 	struct uscsi_cmd	*uscmd;
20370 	union scsi_cdb		*cdb;
20371 	struct buf		*bp;
20372 	int			rval = 0;
20373 	int			is_async;
20374 
20375 	SD_TRACE(SD_LOG_IO, un,
20376 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20377 
20378 	ASSERT(un != NULL);
20379 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20380 
20381 	if (dkc == NULL || dkc->dkc_callback == NULL) {
20382 		is_async = FALSE;
20383 	} else {
20384 		is_async = TRUE;
20385 	}
20386 
20387 	mutex_enter(SD_MUTEX(un));
20388 	/* check whether cache flush should be suppressed */
20389 	if (un->un_f_suppress_cache_flush == TRUE) {
20390 		mutex_exit(SD_MUTEX(un));
20391 		/*
20392 		 * suppress the cache flush if the device is told to do
20393 		 * so by sd.conf or disk table
20394 		 */
20395 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
20396 		    skip the cache flush since suppress_cache_flush is %d!\n",
20397 		    un->un_f_suppress_cache_flush);
20398 
20399 		if (is_async == TRUE) {
20400 			/* invoke callback for asynchronous flush */
20401 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
20402 		}
20403 		return (rval);
20404 	}
20405 	mutex_exit(SD_MUTEX(un));
20406 
20407 	/*
20408 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
20409 	 * set properly
20410 	 */
20411 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20412 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20413 
20414 	mutex_enter(SD_MUTEX(un));
20415 	if (dkc != NULL && un->un_f_sync_nv_supported &&
20416 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
20417 		/*
20418 		 * if the device supports SYNC_NV bit, turn on
20419 		 * the SYNC_NV bit to only flush volatile cache
20420 		 */
20421 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
20422 	}
20423 	mutex_exit(SD_MUTEX(un));
20424 
20425 	/*
20426 	 * First get some memory for the uscsi_cmd struct and cdb
20427 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20428 	 */
20429 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20430 	uscmd->uscsi_cdblen = CDB_GROUP1;
20431 	uscmd->uscsi_cdb = (caddr_t)cdb;
20432 	uscmd->uscsi_bufaddr = NULL;
20433 	uscmd->uscsi_buflen = 0;
20434 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20435 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20436 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20437 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20438 	uscmd->uscsi_timeout = sd_io_time;
20439 
20440 	/*
20441 	 * Allocate an sd_uscsi_info struct and fill it with the info
20442 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20443 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20444 	 * since we allocate the buf here in this function, we do not
20445 	 * need to preserve the prior contents of b_private.
20446 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20447 	 */
20448 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20449 	uip->ui_flags = SD_PATH_DIRECT;
20450 	uip->ui_cmdp  = uscmd;
20451 
20452 	bp = getrbuf(KM_SLEEP);
20453 	bp->b_private = uip;
20454 
20455 	/*
20456 	 * Setup buffer to carry uscsi request.
20457 	 */
20458 	bp->b_flags  = B_BUSY;
20459 	bp->b_bcount = 0;
20460 	bp->b_blkno  = 0;
20461 
20462 	if (is_async == TRUE) {
20463 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20464 		uip->ui_dkc = *dkc;
20465 	}
20466 
20467 	bp->b_edev = SD_GET_DEV(un);
20468 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20469 
20470 	/*
20471 	 * Unset un_f_sync_cache_required flag
20472 	 */
20473 	mutex_enter(SD_MUTEX(un));
20474 	un->un_f_sync_cache_required = FALSE;
20475 	mutex_exit(SD_MUTEX(un));
20476 
20477 	(void) sd_uscsi_strategy(bp);
20478 
20479 	/*
20480 	 * If synchronous request, wait for completion
20481 	 * If async just return and let b_iodone callback
20482 	 * cleanup.
20483 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20484 	 * but it was also incremented in sd_uscsi_strategy(), so
20485 	 * we should be ok.
20486 	 */
20487 	if (is_async == FALSE) {
20488 		(void) biowait(bp);
20489 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20490 	}
20491 
20492 	return (rval);
20493 }
20494 
20495 
20496 static int
20497 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20498 {
20499 	struct sd_uscsi_info *uip;
20500 	struct uscsi_cmd *uscmd;
20501 	uint8_t *sense_buf;
20502 	struct sd_lun *un;
20503 	int status;
20504 	union scsi_cdb *cdb;
20505 
20506 	uip = (struct sd_uscsi_info *)(bp->b_private);
20507 	ASSERT(uip != NULL);
20508 
20509 	uscmd = uip->ui_cmdp;
20510 	ASSERT(uscmd != NULL);
20511 
20512 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20513 	ASSERT(sense_buf != NULL);
20514 
20515 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20516 	ASSERT(un != NULL);
20517 
20518 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
20519 
20520 	status = geterror(bp);
20521 	switch (status) {
20522 	case 0:
20523 		break;	/* Success! */
20524 	case EIO:
20525 		switch (uscmd->uscsi_status) {
20526 		case STATUS_RESERVATION_CONFLICT:
20527 			/* Ignore reservation conflict */
20528 			status = 0;
20529 			goto done;
20530 
20531 		case STATUS_CHECK:
20532 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20533 			    (scsi_sense_key(sense_buf) ==
20534 			    KEY_ILLEGAL_REQUEST)) {
20535 				/* Ignore Illegal Request error */
20536 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
20537 					mutex_enter(SD_MUTEX(un));
20538 					un->un_f_sync_nv_supported = FALSE;
20539 					mutex_exit(SD_MUTEX(un));
20540 					status = 0;
20541 					SD_TRACE(SD_LOG_IO, un,
20542 					    "un_f_sync_nv_supported \
20543 					    is set to false.\n");
20544 					goto done;
20545 				}
20546 
20547 				mutex_enter(SD_MUTEX(un));
20548 				un->un_f_sync_cache_supported = FALSE;
20549 				mutex_exit(SD_MUTEX(un));
20550 				SD_TRACE(SD_LOG_IO, un,
20551 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
20552 				    un_f_sync_cache_supported set to false \
20553 				    with asc = %x, ascq = %x\n",
20554 				    scsi_sense_asc(sense_buf),
20555 				    scsi_sense_ascq(sense_buf));
20556 				status = ENOTSUP;
20557 				goto done;
20558 			}
20559 			break;
20560 		default:
20561 			break;
20562 		}
20563 		/* FALLTHRU */
20564 	default:
20565 		/*
20566 		 * Turn on the un_f_sync_cache_required flag
20567 		 * since the SYNC CACHE command failed
20568 		 */
20569 		mutex_enter(SD_MUTEX(un));
20570 		un->un_f_sync_cache_required = TRUE;
20571 		mutex_exit(SD_MUTEX(un));
20572 
20573 		/*
20574 		 * Don't log an error message if this device
20575 		 * has removable media.
20576 		 */
20577 		if (!un->un_f_has_removable_media) {
20578 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20579 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20580 		}
20581 		break;
20582 	}
20583 
20584 done:
20585 	if (uip->ui_dkc.dkc_callback != NULL) {
20586 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20587 	}
20588 
20589 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20590 	freerbuf(bp);
20591 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20592 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20593 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20594 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20595 
20596 	return (status);
20597 }
20598 
20599 
20600 /*
20601  *    Function: sd_send_scsi_GET_CONFIGURATION
20602  *
20603  * Description: Issues the get configuration command to the device.
20604  *		Called from sd_check_for_writable_cd & sd_get_media_info
20605  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20606  *   Arguments: ssc
20607  *		ucmdbuf
20608  *		rqbuf
20609  *		rqbuflen
20610  *		bufaddr
20611  *		buflen
20612  *		path_flag
20613  *
20614  * Return Code: 0   - Success
20615  *		errno return code from sd_ssc_send()
20616  *
20617  *     Context: Can sleep. Does not return until command is completed.
20618  *
20619  */
20620 
20621 static int
20622 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
20623 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
20624 	int path_flag)
20625 {
20626 	char	cdb[CDB_GROUP1];
20627 	int	status;
20628 	struct sd_lun	*un;
20629 
20630 	ASSERT(ssc != NULL);
20631 	un = ssc->ssc_un;
20632 	ASSERT(un != NULL);
20633 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20634 	ASSERT(bufaddr != NULL);
20635 	ASSERT(ucmdbuf != NULL);
20636 	ASSERT(rqbuf != NULL);
20637 
20638 	SD_TRACE(SD_LOG_IO, un,
20639 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20640 
20641 	bzero(cdb, sizeof (cdb));
20642 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20643 	bzero(rqbuf, rqbuflen);
20644 	bzero(bufaddr, buflen);
20645 
20646 	/*
20647 	 * Set up cdb field for the get configuration command.
20648 	 */
20649 	cdb[0] = SCMD_GET_CONFIGURATION;
20650 	cdb[1] = 0x02;  /* Requested Type */
20651 	cdb[8] = SD_PROFILE_HEADER_LEN;
20652 	ucmdbuf->uscsi_cdb = cdb;
20653 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20654 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20655 	ucmdbuf->uscsi_buflen = buflen;
20656 	ucmdbuf->uscsi_timeout = sd_io_time;
20657 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20658 	ucmdbuf->uscsi_rqlen = rqbuflen;
20659 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20660 
20661 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20662 	    UIO_SYSSPACE, path_flag);
20663 
20664 	switch (status) {
20665 	case 0:
20666 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20667 		break;  /* Success! */
20668 	case EIO:
20669 		switch (ucmdbuf->uscsi_status) {
20670 		case STATUS_RESERVATION_CONFLICT:
20671 			status = EACCES;
20672 			break;
20673 		default:
20674 			break;
20675 		}
20676 		break;
20677 	default:
20678 		break;
20679 	}
20680 
20681 	if (status == 0) {
20682 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20683 		    "sd_send_scsi_GET_CONFIGURATION: data",
20684 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20685 	}
20686 
20687 	SD_TRACE(SD_LOG_IO, un,
20688 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20689 
20690 	return (status);
20691 }
20692 
20693 /*
20694  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20695  *
20696  * Description: Issues the get configuration command to the device to
20697  *              retrieve a specific feature. Called from
20698  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20699  *   Arguments: ssc
20700  *              ucmdbuf
20701  *              rqbuf
20702  *              rqbuflen
20703  *              bufaddr
20704  *              buflen
20705  *		feature
20706  *
20707  * Return Code: 0   - Success
20708  *              errno return code from sd_ssc_send()
20709  *
20710  *     Context: Can sleep. Does not return until command is completed.
20711  *
20712  */
20713 static int
20714 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
20715 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20716 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
20717 {
20718 	char    cdb[CDB_GROUP1];
20719 	int	status;
20720 	struct sd_lun	*un;
20721 
20722 	ASSERT(ssc != NULL);
20723 	un = ssc->ssc_un;
20724 	ASSERT(un != NULL);
20725 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20726 	ASSERT(bufaddr != NULL);
20727 	ASSERT(ucmdbuf != NULL);
20728 	ASSERT(rqbuf != NULL);
20729 
20730 	SD_TRACE(SD_LOG_IO, un,
20731 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20732 
20733 	bzero(cdb, sizeof (cdb));
20734 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20735 	bzero(rqbuf, rqbuflen);
20736 	bzero(bufaddr, buflen);
20737 
20738 	/*
20739 	 * Set up cdb field for the get configuration command.
20740 	 */
20741 	cdb[0] = SCMD_GET_CONFIGURATION;
20742 	cdb[1] = 0x02;  /* Requested Type */
20743 	cdb[3] = feature;
20744 	cdb[8] = buflen;
20745 	ucmdbuf->uscsi_cdb = cdb;
20746 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20747 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20748 	ucmdbuf->uscsi_buflen = buflen;
20749 	ucmdbuf->uscsi_timeout = sd_io_time;
20750 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20751 	ucmdbuf->uscsi_rqlen = rqbuflen;
20752 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20753 
20754 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
20755 	    UIO_SYSSPACE, path_flag);
20756 
20757 	switch (status) {
20758 	case 0:
20759 
20760 		break;  /* Success! */
20761 	case EIO:
20762 		switch (ucmdbuf->uscsi_status) {
20763 		case STATUS_RESERVATION_CONFLICT:
20764 			status = EACCES;
20765 			break;
20766 		default:
20767 			break;
20768 		}
20769 		break;
20770 	default:
20771 		break;
20772 	}
20773 
20774 	if (status == 0) {
20775 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20776 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20777 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20778 	}
20779 
20780 	SD_TRACE(SD_LOG_IO, un,
20781 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20782 
20783 	return (status);
20784 }
20785 
20786 
20787 /*
20788  *    Function: sd_send_scsi_MODE_SENSE
20789  *
20790  * Description: Utility function for issuing a scsi MODE SENSE command.
20791  *		Note: This routine uses a consistent implementation for Group0,
20792  *		Group1, and Group2 commands across all platforms. ATAPI devices
20793  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20794  *
20795  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20796  *                      structure for this target.
20797  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20798  *			  CDB_GROUP[1|2] (10 byte).
20799  *		bufaddr - buffer for page data retrieved from the target.
20800  *		buflen - size of page to be retrieved.
20801  *		page_code - page code of data to be retrieved from the target.
20802  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20803  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20804  *			to use the USCSI "direct" chain and bypass the normal
20805  *			command waitq.
20806  *
20807  * Return Code: 0   - Success
20808  *		errno return code from sd_ssc_send()
20809  *
20810  *     Context: Can sleep. Does not return until command is completed.
20811  */
20812 
20813 static int
20814 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20815 	size_t buflen,  uchar_t page_code, int path_flag)
20816 {
20817 	struct	scsi_extended_sense	sense_buf;
20818 	union scsi_cdb		cdb;
20819 	struct uscsi_cmd	ucmd_buf;
20820 	int			status;
20821 	int			headlen;
20822 	struct sd_lun		*un;
20823 
20824 	ASSERT(ssc != NULL);
20825 	un = ssc->ssc_un;
20826 	ASSERT(un != NULL);
20827 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20828 	ASSERT(bufaddr != NULL);
20829 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20830 	    (cdbsize == CDB_GROUP2));
20831 
20832 	SD_TRACE(SD_LOG_IO, un,
20833 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20834 
20835 	bzero(&cdb, sizeof (cdb));
20836 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20837 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20838 	bzero(bufaddr, buflen);
20839 
20840 	if (cdbsize == CDB_GROUP0) {
20841 		cdb.scc_cmd = SCMD_MODE_SENSE;
20842 		cdb.cdb_opaque[2] = page_code;
20843 		FORMG0COUNT(&cdb, buflen);
20844 		headlen = MODE_HEADER_LENGTH;
20845 	} else {
20846 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20847 		cdb.cdb_opaque[2] = page_code;
20848 		FORMG1COUNT(&cdb, buflen);
20849 		headlen = MODE_HEADER_LENGTH_GRP2;
20850 	}
20851 
20852 	ASSERT(headlen <= buflen);
20853 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20854 
20855 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20856 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20857 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20858 	ucmd_buf.uscsi_buflen	= buflen;
20859 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20860 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20861 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20862 	ucmd_buf.uscsi_timeout	= 60;
20863 
20864 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20865 	    UIO_SYSSPACE, path_flag);
20866 
20867 	switch (status) {
20868 	case 0:
20869 		/*
20870 		 * sr_check_wp() uses 0x3f page code and check the header of
20871 		 * mode page to determine if target device is write-protected.
20872 		 * But some USB devices return 0 bytes for 0x3f page code. For
20873 		 * this case, make sure that mode page header is returned at
20874 		 * least.
20875 		 */
20876 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
20877 			status = EIO;
20878 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20879 			    "mode page header is not returned");
20880 		}
20881 		break;	/* Success! */
20882 	case EIO:
20883 		switch (ucmd_buf.uscsi_status) {
20884 		case STATUS_RESERVATION_CONFLICT:
20885 			status = EACCES;
20886 			break;
20887 		default:
20888 			break;
20889 		}
20890 		break;
20891 	default:
20892 		break;
20893 	}
20894 
20895 	if (status == 0) {
20896 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20897 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20898 	}
20899 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20900 
20901 	return (status);
20902 }
20903 
20904 
20905 /*
20906  *    Function: sd_send_scsi_MODE_SELECT
20907  *
20908  * Description: Utility function for issuing a scsi MODE SELECT command.
20909  *		Note: This routine uses a consistent implementation for Group0,
20910  *		Group1, and Group2 commands across all platforms. ATAPI devices
20911  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20912  *
20913  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20914  *                      structure for this target.
20915  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20916  *			  CDB_GROUP[1|2] (10 byte).
20917  *		bufaddr - buffer for page data retrieved from the target.
20918  *		buflen - size of page to be retrieved.
20919  *		save_page - boolean to determin if SP bit should be set.
20920  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20921  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20922  *			to use the USCSI "direct" chain and bypass the normal
20923  *			command waitq.
20924  *
20925  * Return Code: 0   - Success
20926  *		errno return code from sd_ssc_send()
20927  *
20928  *     Context: Can sleep. Does not return until command is completed.
20929  */
20930 
20931 static int
20932 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
20933 	size_t buflen,  uchar_t save_page, int path_flag)
20934 {
20935 	struct	scsi_extended_sense	sense_buf;
20936 	union scsi_cdb		cdb;
20937 	struct uscsi_cmd	ucmd_buf;
20938 	int			status;
20939 	struct sd_lun		*un;
20940 
20941 	ASSERT(ssc != NULL);
20942 	un = ssc->ssc_un;
20943 	ASSERT(un != NULL);
20944 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20945 	ASSERT(bufaddr != NULL);
20946 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20947 	    (cdbsize == CDB_GROUP2));
20948 
20949 	SD_TRACE(SD_LOG_IO, un,
20950 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20951 
20952 	bzero(&cdb, sizeof (cdb));
20953 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20954 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20955 
20956 	/* Set the PF bit for many third party drives */
20957 	cdb.cdb_opaque[1] = 0x10;
20958 
20959 	/* Set the savepage(SP) bit if given */
20960 	if (save_page == SD_SAVE_PAGE) {
20961 		cdb.cdb_opaque[1] |= 0x01;
20962 	}
20963 
20964 	if (cdbsize == CDB_GROUP0) {
20965 		cdb.scc_cmd = SCMD_MODE_SELECT;
20966 		FORMG0COUNT(&cdb, buflen);
20967 	} else {
20968 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20969 		FORMG1COUNT(&cdb, buflen);
20970 	}
20971 
20972 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20973 
20974 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20975 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20976 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20977 	ucmd_buf.uscsi_buflen	= buflen;
20978 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20979 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20980 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20981 	ucmd_buf.uscsi_timeout	= 60;
20982 
20983 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20984 	    UIO_SYSSPACE, path_flag);
20985 
20986 	switch (status) {
20987 	case 0:
20988 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20989 		break;	/* Success! */
20990 	case EIO:
20991 		switch (ucmd_buf.uscsi_status) {
20992 		case STATUS_RESERVATION_CONFLICT:
20993 			status = EACCES;
20994 			break;
20995 		default:
20996 			break;
20997 		}
20998 		break;
20999 	default:
21000 		break;
21001 	}
21002 
21003 	if (status == 0) {
21004 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21005 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21006 	}
21007 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21008 
21009 	return (status);
21010 }
21011 
21012 
21013 /*
21014  *    Function: sd_send_scsi_RDWR
21015  *
21016  * Description: Issue a scsi READ or WRITE command with the given parameters.
21017  *
21018  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21019  *                      structure for this target.
21020  *		cmd:	 SCMD_READ or SCMD_WRITE
21021  *		bufaddr: Address of caller's buffer to receive the RDWR data
21022  *		buflen:  Length of caller's buffer receive the RDWR data.
21023  *		start_block: Block number for the start of the RDWR operation.
21024  *			 (Assumes target-native block size.)
21025  *		residp:  Pointer to variable to receive the redisual of the
21026  *			 RDWR operation (may be NULL of no residual requested).
21027  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21028  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21029  *			to use the USCSI "direct" chain and bypass the normal
21030  *			command waitq.
21031  *
21032  * Return Code: 0   - Success
21033  *		errno return code from sd_ssc_send()
21034  *
21035  *     Context: Can sleep. Does not return until command is completed.
21036  */
21037 
21038 static int
21039 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21040 	size_t buflen, daddr_t start_block, int path_flag)
21041 {
21042 	struct	scsi_extended_sense	sense_buf;
21043 	union scsi_cdb		cdb;
21044 	struct uscsi_cmd	ucmd_buf;
21045 	uint32_t		block_count;
21046 	int			status;
21047 	int			cdbsize;
21048 	uchar_t			flag;
21049 	struct sd_lun		*un;
21050 
21051 	ASSERT(ssc != NULL);
21052 	un = ssc->ssc_un;
21053 	ASSERT(un != NULL);
21054 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21055 	ASSERT(bufaddr != NULL);
21056 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21057 
21058 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21059 
21060 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21061 		return (EINVAL);
21062 	}
21063 
21064 	mutex_enter(SD_MUTEX(un));
21065 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21066 	mutex_exit(SD_MUTEX(un));
21067 
21068 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21069 
21070 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21071 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21072 	    bufaddr, buflen, start_block, block_count);
21073 
21074 	bzero(&cdb, sizeof (cdb));
21075 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21076 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21077 
21078 	/* Compute CDB size to use */
21079 	if (start_block > 0xffffffff)
21080 		cdbsize = CDB_GROUP4;
21081 	else if ((start_block & 0xFFE00000) ||
21082 	    (un->un_f_cfg_is_atapi == TRUE))
21083 		cdbsize = CDB_GROUP1;
21084 	else
21085 		cdbsize = CDB_GROUP0;
21086 
21087 	switch (cdbsize) {
21088 	case CDB_GROUP0:	/* 6-byte CDBs */
21089 		cdb.scc_cmd = cmd;
21090 		FORMG0ADDR(&cdb, start_block);
21091 		FORMG0COUNT(&cdb, block_count);
21092 		break;
21093 	case CDB_GROUP1:	/* 10-byte CDBs */
21094 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21095 		FORMG1ADDR(&cdb, start_block);
21096 		FORMG1COUNT(&cdb, block_count);
21097 		break;
21098 	case CDB_GROUP4:	/* 16-byte CDBs */
21099 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21100 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21101 		FORMG4COUNT(&cdb, block_count);
21102 		break;
21103 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21104 	default:
21105 		/* All others reserved */
21106 		return (EINVAL);
21107 	}
21108 
21109 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21110 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21111 
21112 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21113 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21114 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21115 	ucmd_buf.uscsi_buflen	= buflen;
21116 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21117 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21118 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21119 	ucmd_buf.uscsi_timeout	= 60;
21120 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21121 	    UIO_SYSSPACE, path_flag);
21122 
21123 	switch (status) {
21124 	case 0:
21125 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21126 		break;	/* Success! */
21127 	case EIO:
21128 		switch (ucmd_buf.uscsi_status) {
21129 		case STATUS_RESERVATION_CONFLICT:
21130 			status = EACCES;
21131 			break;
21132 		default:
21133 			break;
21134 		}
21135 		break;
21136 	default:
21137 		break;
21138 	}
21139 
21140 	if (status == 0) {
21141 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21142 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21143 	}
21144 
21145 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21146 
21147 	return (status);
21148 }
21149 
21150 
21151 /*
21152  *    Function: sd_send_scsi_LOG_SENSE
21153  *
21154  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21155  *
21156  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21157  *                      structure for this target.
21158  *
21159  * Return Code: 0   - Success
21160  *		errno return code from sd_ssc_send()
21161  *
21162  *     Context: Can sleep. Does not return until command is completed.
21163  */
21164 
21165 static int
21166 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21167 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21168 	int path_flag)
21169 
21170 {
21171 	struct scsi_extended_sense	sense_buf;
21172 	union scsi_cdb		cdb;
21173 	struct uscsi_cmd	ucmd_buf;
21174 	int			status;
21175 	struct sd_lun		*un;
21176 
21177 	ASSERT(ssc != NULL);
21178 	un = ssc->ssc_un;
21179 	ASSERT(un != NULL);
21180 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21181 
21182 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21183 
21184 	bzero(&cdb, sizeof (cdb));
21185 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21186 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21187 
21188 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21189 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21190 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21191 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21192 	FORMG1COUNT(&cdb, buflen);
21193 
21194 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21195 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21196 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21197 	ucmd_buf.uscsi_buflen	= buflen;
21198 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21199 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21200 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21201 	ucmd_buf.uscsi_timeout	= 60;
21202 
21203 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21204 	    UIO_SYSSPACE, path_flag);
21205 
21206 	switch (status) {
21207 	case 0:
21208 		break;
21209 	case EIO:
21210 		switch (ucmd_buf.uscsi_status) {
21211 		case STATUS_RESERVATION_CONFLICT:
21212 			status = EACCES;
21213 			break;
21214 		case STATUS_CHECK:
21215 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21216 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21217 				KEY_ILLEGAL_REQUEST) &&
21218 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21219 				/*
21220 				 * ASC 0x24: INVALID FIELD IN CDB
21221 				 */
21222 				switch (page_code) {
21223 				case START_STOP_CYCLE_PAGE:
21224 					/*
21225 					 * The start stop cycle counter is
21226 					 * implemented as page 0x31 in earlier
21227 					 * generation disks. In new generation
21228 					 * disks the start stop cycle counter is
21229 					 * implemented as page 0xE. To properly
21230 					 * handle this case if an attempt for
21231 					 * log page 0xE is made and fails we
21232 					 * will try again using page 0x31.
21233 					 *
21234 					 * Network storage BU committed to
21235 					 * maintain the page 0x31 for this
21236 					 * purpose and will not have any other
21237 					 * page implemented with page code 0x31
21238 					 * until all disks transition to the
21239 					 * standard page.
21240 					 */
21241 					mutex_enter(SD_MUTEX(un));
21242 					un->un_start_stop_cycle_page =
21243 					    START_STOP_CYCLE_VU_PAGE;
21244 					cdb.cdb_opaque[2] =
21245 					    (char)(page_control << 6) |
21246 					    un->un_start_stop_cycle_page;
21247 					mutex_exit(SD_MUTEX(un));
21248 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21249 					status = sd_ssc_send(
21250 					    ssc, &ucmd_buf, FKIOCTL,
21251 					    UIO_SYSSPACE, path_flag);
21252 
21253 					break;
21254 				case TEMPERATURE_PAGE:
21255 					status = ENOTTY;
21256 					break;
21257 				default:
21258 					break;
21259 				}
21260 			}
21261 			break;
21262 		default:
21263 			break;
21264 		}
21265 		break;
21266 	default:
21267 		break;
21268 	}
21269 
21270 	if (status == 0) {
21271 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21272 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21273 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21274 	}
21275 
21276 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21277 
21278 	return (status);
21279 }
21280 
21281 
21282 /*
21283  *    Function: sdioctl
21284  *
21285  * Description: Driver's ioctl(9e) entry point function.
21286  *
21287  *   Arguments: dev     - device number
21288  *		cmd     - ioctl operation to be performed
21289  *		arg     - user argument, contains data to be set or reference
21290  *			  parameter for get
21291  *		flag    - bit flag, indicating open settings, 32/64 bit type
21292  *		cred_p  - user credential pointer
21293  *		rval_p  - calling process return value (OPT)
21294  *
21295  * Return Code: EINVAL
21296  *		ENOTTY
21297  *		ENXIO
21298  *		EIO
21299  *		EFAULT
21300  *		ENOTSUP
21301  *		EPERM
21302  *
21303  *     Context: Called from the device switch at normal priority.
21304  */
21305 
21306 static int
21307 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21308 {
21309 	struct sd_lun	*un = NULL;
21310 	int		err = 0;
21311 	int		i = 0;
21312 	cred_t		*cr;
21313 	int		tmprval = EINVAL;
21314 	boolean_t	is_valid;
21315 	sd_ssc_t	*ssc;
21316 
21317 	/*
21318 	 * All device accesses go thru sdstrategy where we check on suspend
21319 	 * status
21320 	 */
21321 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21322 		return (ENXIO);
21323 	}
21324 
21325 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21326 
21327 	/* Initialize sd_ssc_t for internal uscsi commands */
21328 	ssc = sd_ssc_init(un);
21329 
21330 	is_valid = SD_IS_VALID_LABEL(un);
21331 
21332 	/*
21333 	 * Moved this wait from sd_uscsi_strategy to here for
21334 	 * reasons of deadlock prevention. Internal driver commands,
21335 	 * specifically those to change a devices power level, result
21336 	 * in a call to sd_uscsi_strategy.
21337 	 */
21338 	mutex_enter(SD_MUTEX(un));
21339 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21340 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21341 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21342 	}
21343 	/*
21344 	 * Twiddling the counter here protects commands from now
21345 	 * through to the top of sd_uscsi_strategy. Without the
21346 	 * counter inc. a power down, for example, could get in
21347 	 * after the above check for state is made and before
21348 	 * execution gets to the top of sd_uscsi_strategy.
21349 	 * That would cause problems.
21350 	 */
21351 	un->un_ncmds_in_driver++;
21352 
21353 	if (!is_valid &&
21354 	    (flag & (FNDELAY | FNONBLOCK))) {
21355 		switch (cmd) {
21356 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
21357 		case DKIOCGVTOC:
21358 		case DKIOCGEXTVTOC:
21359 		case DKIOCGAPART:
21360 		case DKIOCPARTINFO:
21361 		case DKIOCEXTPARTINFO:
21362 		case DKIOCSGEOM:
21363 		case DKIOCSAPART:
21364 		case DKIOCGETEFI:
21365 		case DKIOCPARTITION:
21366 		case DKIOCSVTOC:
21367 		case DKIOCSEXTVTOC:
21368 		case DKIOCSETEFI:
21369 		case DKIOCGMBOOT:
21370 		case DKIOCSMBOOT:
21371 		case DKIOCG_PHYGEOM:
21372 		case DKIOCG_VIRTGEOM:
21373 			/* let cmlb handle it */
21374 			goto skip_ready_valid;
21375 
21376 		case CDROMPAUSE:
21377 		case CDROMRESUME:
21378 		case CDROMPLAYMSF:
21379 		case CDROMPLAYTRKIND:
21380 		case CDROMREADTOCHDR:
21381 		case CDROMREADTOCENTRY:
21382 		case CDROMSTOP:
21383 		case CDROMSTART:
21384 		case CDROMVOLCTRL:
21385 		case CDROMSUBCHNL:
21386 		case CDROMREADMODE2:
21387 		case CDROMREADMODE1:
21388 		case CDROMREADOFFSET:
21389 		case CDROMSBLKMODE:
21390 		case CDROMGBLKMODE:
21391 		case CDROMGDRVSPEED:
21392 		case CDROMSDRVSPEED:
21393 		case CDROMCDDA:
21394 		case CDROMCDXA:
21395 		case CDROMSUBCODE:
21396 			if (!ISCD(un)) {
21397 				un->un_ncmds_in_driver--;
21398 				ASSERT(un->un_ncmds_in_driver >= 0);
21399 				mutex_exit(SD_MUTEX(un));
21400 				err = ENOTTY;
21401 				goto done_without_assess;
21402 			}
21403 			break;
21404 		case FDEJECT:
21405 		case DKIOCEJECT:
21406 		case CDROMEJECT:
21407 			if (!un->un_f_eject_media_supported) {
21408 				un->un_ncmds_in_driver--;
21409 				ASSERT(un->un_ncmds_in_driver >= 0);
21410 				mutex_exit(SD_MUTEX(un));
21411 				err = ENOTTY;
21412 				goto done_without_assess;
21413 			}
21414 			break;
21415 		case DKIOCFLUSHWRITECACHE:
21416 			mutex_exit(SD_MUTEX(un));
21417 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21418 			if (err != 0) {
21419 				mutex_enter(SD_MUTEX(un));
21420 				un->un_ncmds_in_driver--;
21421 				ASSERT(un->un_ncmds_in_driver >= 0);
21422 				mutex_exit(SD_MUTEX(un));
21423 				err = EIO;
21424 				goto done_quick_assess;
21425 			}
21426 			mutex_enter(SD_MUTEX(un));
21427 			/* FALLTHROUGH */
21428 		case DKIOCREMOVABLE:
21429 		case DKIOCHOTPLUGGABLE:
21430 		case DKIOCINFO:
21431 		case DKIOCGMEDIAINFO:
21432 		case MHIOCENFAILFAST:
21433 		case MHIOCSTATUS:
21434 		case MHIOCTKOWN:
21435 		case MHIOCRELEASE:
21436 		case MHIOCGRP_INKEYS:
21437 		case MHIOCGRP_INRESV:
21438 		case MHIOCGRP_REGISTER:
21439 		case MHIOCGRP_RESERVE:
21440 		case MHIOCGRP_PREEMPTANDABORT:
21441 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21442 		case CDROMCLOSETRAY:
21443 		case USCSICMD:
21444 			goto skip_ready_valid;
21445 		default:
21446 			break;
21447 		}
21448 
21449 		mutex_exit(SD_MUTEX(un));
21450 		err = sd_ready_and_valid(ssc, SDPART(dev));
21451 		mutex_enter(SD_MUTEX(un));
21452 
21453 		if (err != SD_READY_VALID) {
21454 			switch (cmd) {
21455 			case DKIOCSTATE:
21456 			case CDROMGDRVSPEED:
21457 			case CDROMSDRVSPEED:
21458 			case FDEJECT:	/* for eject command */
21459 			case DKIOCEJECT:
21460 			case CDROMEJECT:
21461 			case DKIOCREMOVABLE:
21462 			case DKIOCHOTPLUGGABLE:
21463 				break;
21464 			default:
21465 				if (un->un_f_has_removable_media) {
21466 					err = ENXIO;
21467 				} else {
21468 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21469 					if (err == SD_RESERVED_BY_OTHERS) {
21470 						err = EACCES;
21471 					} else {
21472 						err = EIO;
21473 					}
21474 				}
21475 				un->un_ncmds_in_driver--;
21476 				ASSERT(un->un_ncmds_in_driver >= 0);
21477 				mutex_exit(SD_MUTEX(un));
21478 
21479 				goto done_without_assess;
21480 			}
21481 		}
21482 	}
21483 
21484 skip_ready_valid:
21485 	mutex_exit(SD_MUTEX(un));
21486 
21487 	switch (cmd) {
21488 	case DKIOCINFO:
21489 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21490 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21491 		break;
21492 
21493 	case DKIOCGMEDIAINFO:
21494 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21495 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21496 		break;
21497 
21498 	case DKIOCGGEOM:
21499 	case DKIOCGVTOC:
21500 	case DKIOCGEXTVTOC:
21501 	case DKIOCGAPART:
21502 	case DKIOCPARTINFO:
21503 	case DKIOCEXTPARTINFO:
21504 	case DKIOCSGEOM:
21505 	case DKIOCSAPART:
21506 	case DKIOCGETEFI:
21507 	case DKIOCPARTITION:
21508 	case DKIOCSVTOC:
21509 	case DKIOCSEXTVTOC:
21510 	case DKIOCSETEFI:
21511 	case DKIOCGMBOOT:
21512 	case DKIOCSMBOOT:
21513 	case DKIOCG_PHYGEOM:
21514 	case DKIOCG_VIRTGEOM:
21515 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
21516 
21517 		/* TUR should spin up */
21518 
21519 		if (un->un_f_has_removable_media)
21520 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
21521 			    SD_CHECK_FOR_MEDIA);
21522 
21523 		else
21524 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
21525 
21526 		if (err != 0)
21527 			goto done_with_assess;
21528 
21529 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
21530 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
21531 
21532 		if ((err == 0) &&
21533 		    ((cmd == DKIOCSETEFI) ||
21534 		    (un->un_f_pkstats_enabled) &&
21535 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
21536 		    cmd == DKIOCSEXTVTOC))) {
21537 
21538 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
21539 			    (void *)SD_PATH_DIRECT);
21540 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
21541 				sd_set_pstats(un);
21542 				SD_TRACE(SD_LOG_IO_PARTITION, un,
21543 				    "sd_ioctl: un:0x%p pstats created and "
21544 				    "set\n", un);
21545 			}
21546 		}
21547 
21548 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
21549 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
21550 
21551 			mutex_enter(SD_MUTEX(un));
21552 			if (un->un_f_devid_supported &&
21553 			    (un->un_f_opt_fab_devid == TRUE)) {
21554 				if (un->un_devid == NULL) {
21555 					sd_register_devid(ssc, SD_DEVINFO(un),
21556 					    SD_TARGET_IS_UNRESERVED);
21557 				} else {
21558 					/*
21559 					 * The device id for this disk
21560 					 * has been fabricated. The
21561 					 * device id must be preserved
21562 					 * by writing it back out to
21563 					 * disk.
21564 					 */
21565 					if (sd_write_deviceid(ssc) != 0) {
21566 						ddi_devid_free(un->un_devid);
21567 						un->un_devid = NULL;
21568 					}
21569 				}
21570 			}
21571 			mutex_exit(SD_MUTEX(un));
21572 		}
21573 
21574 		break;
21575 
21576 	case DKIOCLOCK:
21577 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21578 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
21579 		    SD_PATH_STANDARD);
21580 		goto done_with_assess;
21581 
21582 	case DKIOCUNLOCK:
21583 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21584 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
21585 		    SD_PATH_STANDARD);
21586 		goto done_with_assess;
21587 
21588 	case DKIOCSTATE: {
21589 		enum dkio_state		state;
21590 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21591 
21592 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21593 			err = EFAULT;
21594 		} else {
21595 			err = sd_check_media(dev, state);
21596 			if (err == 0) {
21597 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21598 				    sizeof (int), flag) != 0)
21599 					err = EFAULT;
21600 			}
21601 		}
21602 		break;
21603 	}
21604 
21605 	case DKIOCREMOVABLE:
21606 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21607 		i = un->un_f_has_removable_media ? 1 : 0;
21608 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21609 			err = EFAULT;
21610 		} else {
21611 			err = 0;
21612 		}
21613 		break;
21614 
21615 	case DKIOCHOTPLUGGABLE:
21616 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21617 		i = un->un_f_is_hotpluggable ? 1 : 0;
21618 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21619 			err = EFAULT;
21620 		} else {
21621 			err = 0;
21622 		}
21623 		break;
21624 
21625 	case DKIOCGTEMPERATURE:
21626 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21627 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21628 		break;
21629 
21630 	case MHIOCENFAILFAST:
21631 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21632 		if ((err = drv_priv(cred_p)) == 0) {
21633 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21634 		}
21635 		break;
21636 
21637 	case MHIOCTKOWN:
21638 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21639 		if ((err = drv_priv(cred_p)) == 0) {
21640 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21641 		}
21642 		break;
21643 
21644 	case MHIOCRELEASE:
21645 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21646 		if ((err = drv_priv(cred_p)) == 0) {
21647 			err = sd_mhdioc_release(dev);
21648 		}
21649 		break;
21650 
21651 	case MHIOCSTATUS:
21652 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21653 		if ((err = drv_priv(cred_p)) == 0) {
21654 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
21655 			case 0:
21656 				err = 0;
21657 				break;
21658 			case EACCES:
21659 				*rval_p = 1;
21660 				err = 0;
21661 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
21662 				break;
21663 			default:
21664 				err = EIO;
21665 				goto done_with_assess;
21666 			}
21667 		}
21668 		break;
21669 
21670 	case MHIOCQRESERVE:
21671 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21672 		if ((err = drv_priv(cred_p)) == 0) {
21673 			err = sd_reserve_release(dev, SD_RESERVE);
21674 		}
21675 		break;
21676 
21677 	case MHIOCREREGISTERDEVID:
21678 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21679 		if (drv_priv(cred_p) == EPERM) {
21680 			err = EPERM;
21681 		} else if (!un->un_f_devid_supported) {
21682 			err = ENOTTY;
21683 		} else {
21684 			err = sd_mhdioc_register_devid(dev);
21685 		}
21686 		break;
21687 
21688 	case MHIOCGRP_INKEYS:
21689 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21690 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21691 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21692 				err = ENOTSUP;
21693 			} else {
21694 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21695 				    flag);
21696 			}
21697 		}
21698 		break;
21699 
21700 	case MHIOCGRP_INRESV:
21701 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21702 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21703 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21704 				err = ENOTSUP;
21705 			} else {
21706 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21707 			}
21708 		}
21709 		break;
21710 
21711 	case MHIOCGRP_REGISTER:
21712 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21713 		if ((err = drv_priv(cred_p)) != EPERM) {
21714 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21715 				err = ENOTSUP;
21716 			} else if (arg != NULL) {
21717 				mhioc_register_t reg;
21718 				if (ddi_copyin((void *)arg, &reg,
21719 				    sizeof (mhioc_register_t), flag) != 0) {
21720 					err = EFAULT;
21721 				} else {
21722 					err =
21723 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21724 					    ssc, SD_SCSI3_REGISTER,
21725 					    (uchar_t *)&reg);
21726 					if (err != 0)
21727 						goto done_with_assess;
21728 				}
21729 			}
21730 		}
21731 		break;
21732 
21733 	case MHIOCGRP_RESERVE:
21734 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21735 		if ((err = drv_priv(cred_p)) != EPERM) {
21736 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21737 				err = ENOTSUP;
21738 			} else if (arg != NULL) {
21739 				mhioc_resv_desc_t resv_desc;
21740 				if (ddi_copyin((void *)arg, &resv_desc,
21741 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21742 					err = EFAULT;
21743 				} else {
21744 					err =
21745 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21746 					    ssc, SD_SCSI3_RESERVE,
21747 					    (uchar_t *)&resv_desc);
21748 					if (err != 0)
21749 						goto done_with_assess;
21750 				}
21751 			}
21752 		}
21753 		break;
21754 
21755 	case MHIOCGRP_PREEMPTANDABORT:
21756 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21757 		if ((err = drv_priv(cred_p)) != EPERM) {
21758 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21759 				err = ENOTSUP;
21760 			} else if (arg != NULL) {
21761 				mhioc_preemptandabort_t preempt_abort;
21762 				if (ddi_copyin((void *)arg, &preempt_abort,
21763 				    sizeof (mhioc_preemptandabort_t),
21764 				    flag) != 0) {
21765 					err = EFAULT;
21766 				} else {
21767 					err =
21768 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21769 					    ssc, SD_SCSI3_PREEMPTANDABORT,
21770 					    (uchar_t *)&preempt_abort);
21771 					if (err != 0)
21772 						goto done_with_assess;
21773 				}
21774 			}
21775 		}
21776 		break;
21777 
21778 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21779 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
21780 		if ((err = drv_priv(cred_p)) != EPERM) {
21781 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21782 				err = ENOTSUP;
21783 			} else if (arg != NULL) {
21784 				mhioc_registerandignorekey_t r_and_i;
21785 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21786 				    sizeof (mhioc_registerandignorekey_t),
21787 				    flag) != 0) {
21788 					err = EFAULT;
21789 				} else {
21790 					err =
21791 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21792 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
21793 					    (uchar_t *)&r_and_i);
21794 					if (err != 0)
21795 						goto done_with_assess;
21796 				}
21797 			}
21798 		}
21799 		break;
21800 
21801 	case USCSICMD:
21802 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21803 		cr = ddi_get_cred();
21804 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21805 			err = EPERM;
21806 		} else {
21807 			enum uio_seg	uioseg;
21808 
21809 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21810 			    UIO_USERSPACE;
21811 			if (un->un_f_format_in_progress == TRUE) {
21812 				err = EAGAIN;
21813 				break;
21814 			}
21815 
21816 			err = sd_ssc_send(ssc,
21817 			    (struct uscsi_cmd *)arg,
21818 			    flag, uioseg, SD_PATH_STANDARD);
21819 			if (err != 0)
21820 				goto done_with_assess;
21821 			else
21822 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21823 		}
21824 		break;
21825 
21826 	case CDROMPAUSE:
21827 	case CDROMRESUME:
21828 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21829 		if (!ISCD(un)) {
21830 			err = ENOTTY;
21831 		} else {
21832 			err = sr_pause_resume(dev, cmd);
21833 		}
21834 		break;
21835 
21836 	case CDROMPLAYMSF:
21837 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21838 		if (!ISCD(un)) {
21839 			err = ENOTTY;
21840 		} else {
21841 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21842 		}
21843 		break;
21844 
21845 	case CDROMPLAYTRKIND:
21846 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21847 #if defined(__i386) || defined(__amd64)
21848 		/*
21849 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21850 		 */
21851 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21852 #else
21853 		if (!ISCD(un)) {
21854 #endif
21855 			err = ENOTTY;
21856 		} else {
21857 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21858 		}
21859 		break;
21860 
21861 	case CDROMREADTOCHDR:
21862 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21863 		if (!ISCD(un)) {
21864 			err = ENOTTY;
21865 		} else {
21866 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21867 		}
21868 		break;
21869 
21870 	case CDROMREADTOCENTRY:
21871 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21872 		if (!ISCD(un)) {
21873 			err = ENOTTY;
21874 		} else {
21875 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21876 		}
21877 		break;
21878 
21879 	case CDROMSTOP:
21880 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21881 		if (!ISCD(un)) {
21882 			err = ENOTTY;
21883 		} else {
21884 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_STOP,
21885 			    SD_PATH_STANDARD);
21886 			goto done_with_assess;
21887 		}
21888 		break;
21889 
21890 	case CDROMSTART:
21891 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21892 		if (!ISCD(un)) {
21893 			err = ENOTTY;
21894 		} else {
21895 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_START,
21896 			    SD_PATH_STANDARD);
21897 			goto done_with_assess;
21898 		}
21899 		break;
21900 
21901 	case CDROMCLOSETRAY:
21902 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21903 		if (!ISCD(un)) {
21904 			err = ENOTTY;
21905 		} else {
21906 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_CLOSE,
21907 			    SD_PATH_STANDARD);
21908 			goto done_with_assess;
21909 		}
21910 		break;
21911 
21912 	case FDEJECT:	/* for eject command */
21913 	case DKIOCEJECT:
21914 	case CDROMEJECT:
21915 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21916 		if (!un->un_f_eject_media_supported) {
21917 			err = ENOTTY;
21918 		} else {
21919 			err = sr_eject(dev);
21920 		}
21921 		break;
21922 
21923 	case CDROMVOLCTRL:
21924 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21925 		if (!ISCD(un)) {
21926 			err = ENOTTY;
21927 		} else {
21928 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21929 		}
21930 		break;
21931 
21932 	case CDROMSUBCHNL:
21933 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21934 		if (!ISCD(un)) {
21935 			err = ENOTTY;
21936 		} else {
21937 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21938 		}
21939 		break;
21940 
21941 	case CDROMREADMODE2:
21942 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21943 		if (!ISCD(un)) {
21944 			err = ENOTTY;
21945 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21946 			/*
21947 			 * If the drive supports READ CD, use that instead of
21948 			 * switching the LBA size via a MODE SELECT
21949 			 * Block Descriptor
21950 			 */
21951 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21952 		} else {
21953 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21954 		}
21955 		break;
21956 
21957 	case CDROMREADMODE1:
21958 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21959 		if (!ISCD(un)) {
21960 			err = ENOTTY;
21961 		} else {
21962 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21963 		}
21964 		break;
21965 
21966 	case CDROMREADOFFSET:
21967 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21968 		if (!ISCD(un)) {
21969 			err = ENOTTY;
21970 		} else {
21971 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21972 			    flag);
21973 		}
21974 		break;
21975 
21976 	case CDROMSBLKMODE:
21977 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21978 		/*
21979 		 * There is no means of changing block size in case of atapi
21980 		 * drives, thus return ENOTTY if drive type is atapi
21981 		 */
21982 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21983 			err = ENOTTY;
21984 		} else if (un->un_f_mmc_cap == TRUE) {
21985 
21986 			/*
21987 			 * MMC Devices do not support changing the
21988 			 * logical block size
21989 			 *
21990 			 * Note: EINVAL is being returned instead of ENOTTY to
21991 			 * maintain consistancy with the original mmc
21992 			 * driver update.
21993 			 */
21994 			err = EINVAL;
21995 		} else {
21996 			mutex_enter(SD_MUTEX(un));
21997 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21998 			    (un->un_ncmds_in_transport > 0)) {
21999 				mutex_exit(SD_MUTEX(un));
22000 				err = EINVAL;
22001 			} else {
22002 				mutex_exit(SD_MUTEX(un));
22003 				err = sr_change_blkmode(dev, cmd, arg, flag);
22004 			}
22005 		}
22006 		break;
22007 
22008 	case CDROMGBLKMODE:
22009 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22010 		if (!ISCD(un)) {
22011 			err = ENOTTY;
22012 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22013 		    (un->un_f_blockcount_is_valid != FALSE)) {
22014 			/*
22015 			 * Drive is an ATAPI drive so return target block
22016 			 * size for ATAPI drives since we cannot change the
22017 			 * blocksize on ATAPI drives. Used primarily to detect
22018 			 * if an ATAPI cdrom is present.
22019 			 */
22020 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22021 			    sizeof (int), flag) != 0) {
22022 				err = EFAULT;
22023 			} else {
22024 				err = 0;
22025 			}
22026 
22027 		} else {
22028 			/*
22029 			 * Drive supports changing block sizes via a Mode
22030 			 * Select.
22031 			 */
22032 			err = sr_change_blkmode(dev, cmd, arg, flag);
22033 		}
22034 		break;
22035 
22036 	case CDROMGDRVSPEED:
22037 	case CDROMSDRVSPEED:
22038 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22039 		if (!ISCD(un)) {
22040 			err = ENOTTY;
22041 		} else if (un->un_f_mmc_cap == TRUE) {
22042 			/*
22043 			 * Note: In the future the driver implementation
22044 			 * for getting and
22045 			 * setting cd speed should entail:
22046 			 * 1) If non-mmc try the Toshiba mode page
22047 			 *    (sr_change_speed)
22048 			 * 2) If mmc but no support for Real Time Streaming try
22049 			 *    the SET CD SPEED (0xBB) command
22050 			 *   (sr_atapi_change_speed)
22051 			 * 3) If mmc and support for Real Time Streaming
22052 			 *    try the GET PERFORMANCE and SET STREAMING
22053 			 *    commands (not yet implemented, 4380808)
22054 			 */
22055 			/*
22056 			 * As per recent MMC spec, CD-ROM speed is variable
22057 			 * and changes with LBA. Since there is no such
22058 			 * things as drive speed now, fail this ioctl.
22059 			 *
22060 			 * Note: EINVAL is returned for consistancy of original
22061 			 * implementation which included support for getting
22062 			 * the drive speed of mmc devices but not setting
22063 			 * the drive speed. Thus EINVAL would be returned
22064 			 * if a set request was made for an mmc device.
22065 			 * We no longer support get or set speed for
22066 			 * mmc but need to remain consistent with regard
22067 			 * to the error code returned.
22068 			 */
22069 			err = EINVAL;
22070 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22071 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22072 		} else {
22073 			err = sr_change_speed(dev, cmd, arg, flag);
22074 		}
22075 		break;
22076 
22077 	case CDROMCDDA:
22078 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22079 		if (!ISCD(un)) {
22080 			err = ENOTTY;
22081 		} else {
22082 			err = sr_read_cdda(dev, (void *)arg, flag);
22083 		}
22084 		break;
22085 
22086 	case CDROMCDXA:
22087 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22088 		if (!ISCD(un)) {
22089 			err = ENOTTY;
22090 		} else {
22091 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22092 		}
22093 		break;
22094 
22095 	case CDROMSUBCODE:
22096 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22097 		if (!ISCD(un)) {
22098 			err = ENOTTY;
22099 		} else {
22100 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22101 		}
22102 		break;
22103 
22104 
22105 #ifdef SDDEBUG
22106 /* RESET/ABORTS testing ioctls */
22107 	case DKIOCRESET: {
22108 		int	reset_level;
22109 
22110 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22111 			err = EFAULT;
22112 		} else {
22113 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22114 			    "reset_level = 0x%lx\n", reset_level);
22115 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22116 				err = 0;
22117 			} else {
22118 				err = EIO;
22119 			}
22120 		}
22121 		break;
22122 	}
22123 
22124 	case DKIOCABORT:
22125 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22126 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22127 			err = 0;
22128 		} else {
22129 			err = EIO;
22130 		}
22131 		break;
22132 #endif
22133 
22134 #ifdef SD_FAULT_INJECTION
22135 /* SDIOC FaultInjection testing ioctls */
22136 	case SDIOCSTART:
22137 	case SDIOCSTOP:
22138 	case SDIOCINSERTPKT:
22139 	case SDIOCINSERTXB:
22140 	case SDIOCINSERTUN:
22141 	case SDIOCINSERTARQ:
22142 	case SDIOCPUSH:
22143 	case SDIOCRETRIEVE:
22144 	case SDIOCRUN:
22145 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22146 		    "SDIOC detected cmd:0x%X:\n", cmd);
22147 		/* call error generator */
22148 		sd_faultinjection_ioctl(cmd, arg, un);
22149 		err = 0;
22150 		break;
22151 
22152 #endif /* SD_FAULT_INJECTION */
22153 
22154 	case DKIOCFLUSHWRITECACHE:
22155 		{
22156 			struct dk_callback *dkc = (struct dk_callback *)arg;
22157 
22158 			mutex_enter(SD_MUTEX(un));
22159 			if (!un->un_f_sync_cache_supported ||
22160 			    !un->un_f_write_cache_enabled) {
22161 				err = un->un_f_sync_cache_supported ?
22162 				    0 : ENOTSUP;
22163 				mutex_exit(SD_MUTEX(un));
22164 				if ((flag & FKIOCTL) && dkc != NULL &&
22165 				    dkc->dkc_callback != NULL) {
22166 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22167 					    err);
22168 					/*
22169 					 * Did callback and reported error.
22170 					 * Since we did a callback, ioctl
22171 					 * should return 0.
22172 					 */
22173 					err = 0;
22174 				}
22175 				break;
22176 			}
22177 			mutex_exit(SD_MUTEX(un));
22178 
22179 			if ((flag & FKIOCTL) && dkc != NULL &&
22180 			    dkc->dkc_callback != NULL) {
22181 				/* async SYNC CACHE request */
22182 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22183 			} else {
22184 				/* synchronous SYNC CACHE request */
22185 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22186 			}
22187 		}
22188 		break;
22189 
22190 	case DKIOCGETWCE: {
22191 
22192 		int wce;
22193 
22194 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
22195 			break;
22196 		}
22197 
22198 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22199 			err = EFAULT;
22200 		}
22201 		break;
22202 	}
22203 
22204 	case DKIOCSETWCE: {
22205 
22206 		int wce, sync_supported;
22207 
22208 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22209 			err = EFAULT;
22210 			break;
22211 		}
22212 
22213 		/*
22214 		 * Synchronize multiple threads trying to enable
22215 		 * or disable the cache via the un_f_wcc_cv
22216 		 * condition variable.
22217 		 */
22218 		mutex_enter(SD_MUTEX(un));
22219 
22220 		/*
22221 		 * Don't allow the cache to be enabled if the
22222 		 * config file has it disabled.
22223 		 */
22224 		if (un->un_f_opt_disable_cache && wce) {
22225 			mutex_exit(SD_MUTEX(un));
22226 			err = EINVAL;
22227 			break;
22228 		}
22229 
22230 		/*
22231 		 * Wait for write cache change in progress
22232 		 * bit to be clear before proceeding.
22233 		 */
22234 		while (un->un_f_wcc_inprog)
22235 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22236 
22237 		un->un_f_wcc_inprog = 1;
22238 
22239 		if (un->un_f_write_cache_enabled && wce == 0) {
22240 			/*
22241 			 * Disable the write cache.  Don't clear
22242 			 * un_f_write_cache_enabled until after
22243 			 * the mode select and flush are complete.
22244 			 */
22245 			sync_supported = un->un_f_sync_cache_supported;
22246 
22247 			/*
22248 			 * If cache flush is suppressed, we assume that the
22249 			 * controller firmware will take care of managing the
22250 			 * write cache for us: no need to explicitly
22251 			 * disable it.
22252 			 */
22253 			if (!un->un_f_suppress_cache_flush) {
22254 				mutex_exit(SD_MUTEX(un));
22255 				if ((err = sd_cache_control(ssc,
22256 				    SD_CACHE_NOCHANGE,
22257 				    SD_CACHE_DISABLE)) == 0 &&
22258 				    sync_supported) {
22259 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
22260 					    NULL);
22261 				}
22262 			} else {
22263 				mutex_exit(SD_MUTEX(un));
22264 			}
22265 
22266 			mutex_enter(SD_MUTEX(un));
22267 			if (err == 0) {
22268 				un->un_f_write_cache_enabled = 0;
22269 			}
22270 
22271 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22272 			/*
22273 			 * Set un_f_write_cache_enabled first, so there is
22274 			 * no window where the cache is enabled, but the
22275 			 * bit says it isn't.
22276 			 */
22277 			un->un_f_write_cache_enabled = 1;
22278 
22279 			/*
22280 			 * If cache flush is suppressed, we assume that the
22281 			 * controller firmware will take care of managing the
22282 			 * write cache for us: no need to explicitly
22283 			 * enable it.
22284 			 */
22285 			if (!un->un_f_suppress_cache_flush) {
22286 				mutex_exit(SD_MUTEX(un));
22287 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
22288 				    SD_CACHE_ENABLE);
22289 			} else {
22290 				mutex_exit(SD_MUTEX(un));
22291 			}
22292 
22293 			mutex_enter(SD_MUTEX(un));
22294 
22295 			if (err) {
22296 				un->un_f_write_cache_enabled = 0;
22297 			}
22298 		}
22299 
22300 		un->un_f_wcc_inprog = 0;
22301 		cv_broadcast(&un->un_wcc_cv);
22302 		mutex_exit(SD_MUTEX(un));
22303 		break;
22304 	}
22305 
22306 	default:
22307 		err = ENOTTY;
22308 		break;
22309 	}
22310 	mutex_enter(SD_MUTEX(un));
22311 	un->un_ncmds_in_driver--;
22312 	ASSERT(un->un_ncmds_in_driver >= 0);
22313 	mutex_exit(SD_MUTEX(un));
22314 
22315 
22316 done_without_assess:
22317 	sd_ssc_fini(ssc);
22318 
22319 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22320 	return (err);
22321 
22322 done_with_assess:
22323 	mutex_enter(SD_MUTEX(un));
22324 	un->un_ncmds_in_driver--;
22325 	ASSERT(un->un_ncmds_in_driver >= 0);
22326 	mutex_exit(SD_MUTEX(un));
22327 
22328 done_quick_assess:
22329 	if (err != 0)
22330 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22331 	/* Uninitialize sd_ssc_t pointer */
22332 	sd_ssc_fini(ssc);
22333 
22334 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22335 	return (err);
22336 }
22337 
22338 
22339 /*
22340  *    Function: sd_dkio_ctrl_info
22341  *
22342  * Description: This routine is the driver entry point for handling controller
22343  *		information ioctl requests (DKIOCINFO).
22344  *
22345  *   Arguments: dev  - the device number
22346  *		arg  - pointer to user provided dk_cinfo structure
22347  *		       specifying the controller type and attributes.
22348  *		flag - this argument is a pass through to ddi_copyxxx()
22349  *		       directly from the mode argument of ioctl().
22350  *
22351  * Return Code: 0
22352  *		EFAULT
22353  *		ENXIO
22354  */
22355 
22356 static int
22357 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22358 {
22359 	struct sd_lun	*un = NULL;
22360 	struct dk_cinfo	*info;
22361 	dev_info_t	*pdip;
22362 	int		lun, tgt;
22363 
22364 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22365 		return (ENXIO);
22366 	}
22367 
22368 	info = (struct dk_cinfo *)
22369 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22370 
22371 	switch (un->un_ctype) {
22372 	case CTYPE_CDROM:
22373 		info->dki_ctype = DKC_CDROM;
22374 		break;
22375 	default:
22376 		info->dki_ctype = DKC_SCSI_CCS;
22377 		break;
22378 	}
22379 	pdip = ddi_get_parent(SD_DEVINFO(un));
22380 	info->dki_cnum = ddi_get_instance(pdip);
22381 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22382 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22383 	} else {
22384 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22385 		    DK_DEVLEN - 1);
22386 	}
22387 
22388 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22389 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22390 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22391 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22392 
22393 	/* Unit Information */
22394 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22395 	info->dki_slave = ((tgt << 3) | lun);
22396 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22397 	    DK_DEVLEN - 1);
22398 	info->dki_flags = DKI_FMTVOL;
22399 	info->dki_partition = SDPART(dev);
22400 
22401 	/* Max Transfer size of this device in blocks */
22402 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22403 	info->dki_addr = 0;
22404 	info->dki_space = 0;
22405 	info->dki_prio = 0;
22406 	info->dki_vec = 0;
22407 
22408 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22409 		kmem_free(info, sizeof (struct dk_cinfo));
22410 		return (EFAULT);
22411 	} else {
22412 		kmem_free(info, sizeof (struct dk_cinfo));
22413 		return (0);
22414 	}
22415 }
22416 
22417 
22418 /*
22419  *    Function: sd_get_media_info
22420  *
22421  * Description: This routine is the driver entry point for handling ioctl
22422  *		requests for the media type or command set profile used by the
22423  *		drive to operate on the media (DKIOCGMEDIAINFO).
22424  *
22425  *   Arguments: dev	- the device number
22426  *		arg	- pointer to user provided dk_minfo structure
22427  *			  specifying the media type, logical block size and
22428  *			  drive capacity.
22429  *		flag	- this argument is a pass through to ddi_copyxxx()
22430  *			  directly from the mode argument of ioctl().
22431  *
22432  * Return Code: 0
22433  *		EACCESS
22434  *		EFAULT
22435  *		ENXIO
22436  *		EIO
22437  */
22438 
22439 static int
22440 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22441 {
22442 	struct sd_lun		*un = NULL;
22443 	struct uscsi_cmd	com;
22444 	struct scsi_inquiry	*sinq;
22445 	struct dk_minfo		media_info;
22446 	u_longlong_t		media_capacity;
22447 	uint64_t		capacity;
22448 	uint_t			lbasize;
22449 	uchar_t			*out_data;
22450 	uchar_t			*rqbuf;
22451 	int			rval = 0;
22452 	int			rtn;
22453 	sd_ssc_t		*ssc;
22454 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22455 	    (un->un_state == SD_STATE_OFFLINE)) {
22456 		return (ENXIO);
22457 	}
22458 
22459 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22460 
22461 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22462 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22463 
22464 	/* Issue a TUR to determine if the drive is ready with media present */
22465 	ssc = sd_ssc_init(un);
22466 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
22467 	if (rval == ENXIO) {
22468 		goto done;
22469 	} else if (rval != 0) {
22470 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22471 	}
22472 
22473 	/* Now get configuration data */
22474 	if (ISCD(un)) {
22475 		media_info.dki_media_type = DK_CDROM;
22476 
22477 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22478 		if (un->un_f_mmc_cap == TRUE) {
22479 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
22480 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
22481 			    SD_PATH_STANDARD);
22482 
22483 			if (rtn) {
22484 				/*
22485 				 * We ignore all failures for CD and need to
22486 				 * put the assessment before processing code
22487 				 * to avoid missing assessment for FMA.
22488 				 */
22489 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22490 				/*
22491 				 * Failed for other than an illegal request
22492 				 * or command not supported
22493 				 */
22494 				if ((com.uscsi_status == STATUS_CHECK) &&
22495 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22496 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22497 					    (rqbuf[12] != 0x20)) {
22498 						rval = EIO;
22499 						goto no_assessment;
22500 					}
22501 				}
22502 			} else {
22503 				/*
22504 				 * The GET CONFIGURATION command succeeded
22505 				 * so set the media type according to the
22506 				 * returned data
22507 				 */
22508 				media_info.dki_media_type = out_data[6];
22509 				media_info.dki_media_type <<= 8;
22510 				media_info.dki_media_type |= out_data[7];
22511 			}
22512 		}
22513 	} else {
22514 		/*
22515 		 * The profile list is not available, so we attempt to identify
22516 		 * the media type based on the inquiry data
22517 		 */
22518 		sinq = un->un_sd->sd_inq;
22519 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
22520 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
22521 			/* This is a direct access device  or optical disk */
22522 			media_info.dki_media_type = DK_FIXED_DISK;
22523 
22524 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22525 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22526 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22527 					media_info.dki_media_type = DK_ZIP;
22528 				} else if (
22529 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22530 					media_info.dki_media_type = DK_JAZ;
22531 				}
22532 			}
22533 		} else {
22534 			/*
22535 			 * Not a CD, direct access or optical disk so return
22536 			 * unknown media
22537 			 */
22538 			media_info.dki_media_type = DK_UNKNOWN;
22539 		}
22540 	}
22541 
22542 	/* Now read the capacity so we can provide the lbasize and capacity */
22543 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
22544 	    SD_PATH_DIRECT);
22545 	switch (rval) {
22546 	case 0:
22547 		break;
22548 	case EACCES:
22549 		rval = EACCES;
22550 		goto done;
22551 	default:
22552 		rval = EIO;
22553 		goto done;
22554 	}
22555 
22556 	/*
22557 	 * If lun is expanded dynamically, update the un structure.
22558 	 */
22559 	mutex_enter(SD_MUTEX(un));
22560 	if ((un->un_f_blockcount_is_valid == TRUE) &&
22561 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
22562 	    (capacity > un->un_blockcount)) {
22563 		sd_update_block_info(un, lbasize, capacity);
22564 	}
22565 	mutex_exit(SD_MUTEX(un));
22566 
22567 	media_info.dki_lbsize = lbasize;
22568 	media_capacity = capacity;
22569 
22570 	/*
22571 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22572 	 * un->un_sys_blocksize chunks. So we need to convert it into
22573 	 * cap.lbasize chunks.
22574 	 */
22575 	media_capacity *= un->un_sys_blocksize;
22576 	media_capacity /= lbasize;
22577 	media_info.dki_capacity = media_capacity;
22578 
22579 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22580 		rval = EFAULT;
22581 		/* Put goto. Anybody might add some code below in future */
22582 		goto no_assessment;
22583 	}
22584 done:
22585 	if (rval != 0) {
22586 		if (rval == EIO)
22587 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22588 		else
22589 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22590 	}
22591 no_assessment:
22592 	sd_ssc_fini(ssc);
22593 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22594 	kmem_free(rqbuf, SENSE_LENGTH);
22595 	return (rval);
22596 }
22597 
22598 
22599 /*
22600  *    Function: sd_check_media
22601  *
22602  * Description: This utility routine implements the functionality for the
22603  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
22604  *		driver state changes from that specified by the user
22605  *		(inserted or ejected). For example, if the user specifies
22606  *		DKIO_EJECTED and the current media state is inserted this
22607  *		routine will immediately return DKIO_INSERTED. However, if the
22608  *		current media state is not inserted the user thread will be
22609  *		blocked until the drive state changes. If DKIO_NONE is specified
22610  *		the user thread will block until a drive state change occurs.
22611  *
22612  *   Arguments: dev  - the device number
22613  *		state  - user pointer to a dkio_state, updated with the current
22614  *			drive state at return.
22615  *
22616  * Return Code: ENXIO
22617  *		EIO
22618  *		EAGAIN
22619  *		EINTR
22620  */
22621 
22622 static int
22623 sd_check_media(dev_t dev, enum dkio_state state)
22624 {
22625 	struct sd_lun		*un = NULL;
22626 	enum dkio_state		prev_state;
22627 	opaque_t		token = NULL;
22628 	int			rval = 0;
22629 	sd_ssc_t		*ssc;
22630 	dev_t			sub_dev;
22631 
22632 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22633 		return (ENXIO);
22634 	}
22635 
22636 	/*
22637 	 * sub_dev is used when submitting request to scsi watch.
22638 	 * All submissions are unified to use same device number.
22639 	 */
22640 	sub_dev = sd_make_device(SD_DEVINFO(un));
22641 
22642 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
22643 
22644 	ssc = sd_ssc_init(un);
22645 
22646 	mutex_enter(SD_MUTEX(un));
22647 
22648 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
22649 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
22650 
22651 	prev_state = un->un_mediastate;
22652 
22653 	/* is there anything to do? */
22654 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
22655 		/*
22656 		 * submit the request to the scsi_watch service;
22657 		 * scsi_media_watch_cb() does the real work
22658 		 */
22659 		mutex_exit(SD_MUTEX(un));
22660 
22661 		/*
22662 		 * This change handles the case where a scsi watch request is
22663 		 * added to a device that is powered down. To accomplish this
22664 		 * we power up the device before adding the scsi watch request,
22665 		 * since the scsi watch sends a TUR directly to the device
22666 		 * which the device cannot handle if it is powered down.
22667 		 */
22668 		if (sd_pm_entry(un) != DDI_SUCCESS) {
22669 			mutex_enter(SD_MUTEX(un));
22670 			goto done;
22671 		}
22672 
22673 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
22674 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
22675 		    (caddr_t)sub_dev);
22676 
22677 		sd_pm_exit(un);
22678 
22679 		mutex_enter(SD_MUTEX(un));
22680 		if (token == NULL) {
22681 			rval = EAGAIN;
22682 			goto done;
22683 		}
22684 
22685 		/*
22686 		 * This is a special case IOCTL that doesn't return
22687 		 * until the media state changes. Routine sdpower
22688 		 * knows about and handles this so don't count it
22689 		 * as an active cmd in the driver, which would
22690 		 * keep the device busy to the pm framework.
22691 		 * If the count isn't decremented the device can't
22692 		 * be powered down.
22693 		 */
22694 		un->un_ncmds_in_driver--;
22695 		ASSERT(un->un_ncmds_in_driver >= 0);
22696 
22697 		/*
22698 		 * if a prior request had been made, this will be the same
22699 		 * token, as scsi_watch was designed that way.
22700 		 */
22701 		un->un_swr_token = token;
22702 		un->un_specified_mediastate = state;
22703 
22704 		/*
22705 		 * now wait for media change
22706 		 * we will not be signalled unless mediastate == state but it is
22707 		 * still better to test for this condition, since there is a
22708 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
22709 		 */
22710 		SD_TRACE(SD_LOG_COMMON, un,
22711 		    "sd_check_media: waiting for media state change\n");
22712 		while (un->un_mediastate == state) {
22713 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
22714 				SD_TRACE(SD_LOG_COMMON, un,
22715 				    "sd_check_media: waiting for media state "
22716 				    "was interrupted\n");
22717 				un->un_ncmds_in_driver++;
22718 				rval = EINTR;
22719 				goto done;
22720 			}
22721 			SD_TRACE(SD_LOG_COMMON, un,
22722 			    "sd_check_media: received signal, state=%x\n",
22723 			    un->un_mediastate);
22724 		}
22725 		/*
22726 		 * Inc the counter to indicate the device once again
22727 		 * has an active outstanding cmd.
22728 		 */
22729 		un->un_ncmds_in_driver++;
22730 	}
22731 
22732 	/* invalidate geometry */
22733 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
22734 		sr_ejected(un);
22735 	}
22736 
22737 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
22738 		uint64_t	capacity;
22739 		uint_t		lbasize;
22740 
22741 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
22742 		mutex_exit(SD_MUTEX(un));
22743 		/*
22744 		 * Since the following routines use SD_PATH_DIRECT, we must
22745 		 * call PM directly before the upcoming disk accesses. This
22746 		 * may cause the disk to be power/spin up.
22747 		 */
22748 
22749 		if (sd_pm_entry(un) == DDI_SUCCESS) {
22750 			rval = sd_send_scsi_READ_CAPACITY(ssc,
22751 			    &capacity, &lbasize, SD_PATH_DIRECT);
22752 			if (rval != 0) {
22753 				sd_pm_exit(un);
22754 				if (rval == EIO)
22755 					sd_ssc_assessment(ssc,
22756 					    SD_FMT_STATUS_CHECK);
22757 				else
22758 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22759 				mutex_enter(SD_MUTEX(un));
22760 				goto done;
22761 			}
22762 		} else {
22763 			rval = EIO;
22764 			mutex_enter(SD_MUTEX(un));
22765 			goto done;
22766 		}
22767 		mutex_enter(SD_MUTEX(un));
22768 
22769 		sd_update_block_info(un, lbasize, capacity);
22770 
22771 		/*
22772 		 *  Check if the media in the device is writable or not
22773 		 */
22774 		if (ISCD(un)) {
22775 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
22776 		}
22777 
22778 		mutex_exit(SD_MUTEX(un));
22779 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
22780 		if ((cmlb_validate(un->un_cmlbhandle, 0,
22781 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
22782 			sd_set_pstats(un);
22783 			SD_TRACE(SD_LOG_IO_PARTITION, un,
22784 			    "sd_check_media: un:0x%p pstats created and "
22785 			    "set\n", un);
22786 		}
22787 
22788 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22789 		    SD_PATH_DIRECT);
22790 
22791 		sd_pm_exit(un);
22792 
22793 		if (rval != 0) {
22794 			if (rval == EIO)
22795 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
22796 			else
22797 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22798 		}
22799 
22800 		mutex_enter(SD_MUTEX(un));
22801 	}
22802 done:
22803 	sd_ssc_fini(ssc);
22804 	un->un_f_watcht_stopped = FALSE;
22805 	if (token != NULL && un->un_swr_token != NULL) {
22806 		/*
22807 		 * Use of this local token and the mutex ensures that we avoid
22808 		 * some race conditions associated with terminating the
22809 		 * scsi watch.
22810 		 */
22811 		token = un->un_swr_token;
22812 		mutex_exit(SD_MUTEX(un));
22813 		(void) scsi_watch_request_terminate(token,
22814 		    SCSI_WATCH_TERMINATE_WAIT);
22815 		if (scsi_watch_get_ref_count(token) == 0) {
22816 			mutex_enter(SD_MUTEX(un));
22817 			un->un_swr_token = (opaque_t)NULL;
22818 		} else {
22819 			mutex_enter(SD_MUTEX(un));
22820 		}
22821 	}
22822 
22823 	/*
22824 	 * Update the capacity kstat value, if no media previously
22825 	 * (capacity kstat is 0) and a media has been inserted
22826 	 * (un_f_blockcount_is_valid == TRUE)
22827 	 */
22828 	if (un->un_errstats) {
22829 		struct sd_errstats	*stp = NULL;
22830 
22831 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
22832 		if ((stp->sd_capacity.value.ui64 == 0) &&
22833 		    (un->un_f_blockcount_is_valid == TRUE)) {
22834 			stp->sd_capacity.value.ui64 =
22835 			    (uint64_t)((uint64_t)un->un_blockcount *
22836 			    un->un_sys_blocksize);
22837 		}
22838 	}
22839 	mutex_exit(SD_MUTEX(un));
22840 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
22841 	return (rval);
22842 }
22843 
22844 
22845 /*
22846  *    Function: sd_delayed_cv_broadcast
22847  *
22848  * Description: Delayed cv_broadcast to allow for target to recover from media
22849  *		insertion.
22850  *
22851  *   Arguments: arg - driver soft state (unit) structure
22852  */
22853 
22854 static void
22855 sd_delayed_cv_broadcast(void *arg)
22856 {
22857 	struct sd_lun *un = arg;
22858 
22859 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
22860 
22861 	mutex_enter(SD_MUTEX(un));
22862 	un->un_dcvb_timeid = NULL;
22863 	cv_broadcast(&un->un_state_cv);
22864 	mutex_exit(SD_MUTEX(un));
22865 }
22866 
22867 
22868 /*
22869  *    Function: sd_media_watch_cb
22870  *
22871  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
22872  *		routine processes the TUR sense data and updates the driver
22873  *		state if a transition has occurred. The user thread
22874  *		(sd_check_media) is then signalled.
22875  *
22876  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22877  *			among multiple watches that share this callback function
22878  *		resultp - scsi watch facility result packet containing scsi
22879  *			  packet, status byte and sense data
22880  *
22881  * Return Code: 0 for success, -1 for failure
22882  */
22883 
22884 static int
22885 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
22886 {
22887 	struct sd_lun			*un;
22888 	struct scsi_status		*statusp = resultp->statusp;
22889 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
22890 	enum dkio_state			state = DKIO_NONE;
22891 	dev_t				dev = (dev_t)arg;
22892 	uchar_t				actual_sense_length;
22893 	uint8_t				skey, asc, ascq;
22894 
22895 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22896 		return (-1);
22897 	}
22898 	actual_sense_length = resultp->actual_sense_length;
22899 
22900 	mutex_enter(SD_MUTEX(un));
22901 	SD_TRACE(SD_LOG_COMMON, un,
22902 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
22903 	    *((char *)statusp), (void *)sensep, actual_sense_length);
22904 
22905 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
22906 		un->un_mediastate = DKIO_DEV_GONE;
22907 		cv_broadcast(&un->un_state_cv);
22908 		mutex_exit(SD_MUTEX(un));
22909 
22910 		return (0);
22911 	}
22912 
22913 	/*
22914 	 * If there was a check condition then sensep points to valid sense data
22915 	 * If status was not a check condition but a reservation or busy status
22916 	 * then the new state is DKIO_NONE
22917 	 */
22918 	if (sensep != NULL) {
22919 		skey = scsi_sense_key(sensep);
22920 		asc = scsi_sense_asc(sensep);
22921 		ascq = scsi_sense_ascq(sensep);
22922 
22923 		SD_INFO(SD_LOG_COMMON, un,
22924 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
22925 		    skey, asc, ascq);
22926 		/* This routine only uses up to 13 bytes of sense data. */
22927 		if (actual_sense_length >= 13) {
22928 			if (skey == KEY_UNIT_ATTENTION) {
22929 				if (asc == 0x28) {
22930 					state = DKIO_INSERTED;
22931 				}
22932 			} else if (skey == KEY_NOT_READY) {
22933 				/*
22934 				 * Sense data of 02/06/00 means that the
22935 				 * drive could not read the media (No
22936 				 * reference position found). In this case
22937 				 * to prevent a hang on the DKIOCSTATE IOCTL
22938 				 * we set the media state to DKIO_INSERTED.
22939 				 */
22940 				if (asc == 0x06 && ascq == 0x00)
22941 					state = DKIO_INSERTED;
22942 
22943 				/*
22944 				 * if 02/04/02  means that the host
22945 				 * should send start command. Explicitly
22946 				 * leave the media state as is
22947 				 * (inserted) as the media is inserted
22948 				 * and host has stopped device for PM
22949 				 * reasons. Upon next true read/write
22950 				 * to this media will bring the
22951 				 * device to the right state good for
22952 				 * media access.
22953 				 */
22954 				if (asc == 0x3a) {
22955 					state = DKIO_EJECTED;
22956 				} else {
22957 					/*
22958 					 * If the drive is busy with an
22959 					 * operation or long write, keep the
22960 					 * media in an inserted state.
22961 					 */
22962 
22963 					if ((asc == 0x04) &&
22964 					    ((ascq == 0x02) ||
22965 					    (ascq == 0x07) ||
22966 					    (ascq == 0x08))) {
22967 						state = DKIO_INSERTED;
22968 					}
22969 				}
22970 			} else if (skey == KEY_NO_SENSE) {
22971 				if ((asc == 0x00) && (ascq == 0x00)) {
22972 					/*
22973 					 * Sense Data 00/00/00 does not provide
22974 					 * any information about the state of
22975 					 * the media. Ignore it.
22976 					 */
22977 					mutex_exit(SD_MUTEX(un));
22978 					return (0);
22979 				}
22980 			}
22981 		}
22982 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
22983 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
22984 		state = DKIO_INSERTED;
22985 	}
22986 
22987 	SD_TRACE(SD_LOG_COMMON, un,
22988 	    "sd_media_watch_cb: state=%x, specified=%x\n",
22989 	    state, un->un_specified_mediastate);
22990 
22991 	/*
22992 	 * now signal the waiting thread if this is *not* the specified state;
22993 	 * delay the signal if the state is DKIO_INSERTED to allow the target
22994 	 * to recover
22995 	 */
22996 	if (state != un->un_specified_mediastate) {
22997 		un->un_mediastate = state;
22998 		if (state == DKIO_INSERTED) {
22999 			/*
23000 			 * delay the signal to give the drive a chance
23001 			 * to do what it apparently needs to do
23002 			 */
23003 			SD_TRACE(SD_LOG_COMMON, un,
23004 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23005 			if (un->un_dcvb_timeid == NULL) {
23006 				un->un_dcvb_timeid =
23007 				    timeout(sd_delayed_cv_broadcast, un,
23008 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23009 			}
23010 		} else {
23011 			SD_TRACE(SD_LOG_COMMON, un,
23012 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23013 			cv_broadcast(&un->un_state_cv);
23014 		}
23015 	}
23016 	mutex_exit(SD_MUTEX(un));
23017 	return (0);
23018 }
23019 
23020 
23021 /*
23022  *    Function: sd_dkio_get_temp
23023  *
23024  * Description: This routine is the driver entry point for handling ioctl
23025  *		requests to get the disk temperature.
23026  *
23027  *   Arguments: dev  - the device number
23028  *		arg  - pointer to user provided dk_temperature structure.
23029  *		flag - this argument is a pass through to ddi_copyxxx()
23030  *		       directly from the mode argument of ioctl().
23031  *
23032  * Return Code: 0
23033  *		EFAULT
23034  *		ENXIO
23035  *		EAGAIN
23036  */
23037 
23038 static int
23039 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23040 {
23041 	struct sd_lun		*un = NULL;
23042 	struct dk_temperature	*dktemp = NULL;
23043 	uchar_t			*temperature_page;
23044 	int			rval = 0;
23045 	int			path_flag = SD_PATH_STANDARD;
23046 	sd_ssc_t		*ssc;
23047 
23048 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23049 		return (ENXIO);
23050 	}
23051 
23052 	ssc = sd_ssc_init(un);
23053 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23054 
23055 	/* copyin the disk temp argument to get the user flags */
23056 	if (ddi_copyin((void *)arg, dktemp,
23057 	    sizeof (struct dk_temperature), flag) != 0) {
23058 		rval = EFAULT;
23059 		goto done;
23060 	}
23061 
23062 	/* Initialize the temperature to invalid. */
23063 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23064 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23065 
23066 	/*
23067 	 * Note: Investigate removing the "bypass pm" semantic.
23068 	 * Can we just bypass PM always?
23069 	 */
23070 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
23071 		path_flag = SD_PATH_DIRECT;
23072 		ASSERT(!mutex_owned(&un->un_pm_mutex));
23073 		mutex_enter(&un->un_pm_mutex);
23074 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
23075 			/*
23076 			 * If DKT_BYPASS_PM is set, and the drive happens to be
23077 			 * in low power mode, we can not wake it up, Need to
23078 			 * return EAGAIN.
23079 			 */
23080 			mutex_exit(&un->un_pm_mutex);
23081 			rval = EAGAIN;
23082 			goto done;
23083 		} else {
23084 			/*
23085 			 * Indicate to PM the device is busy. This is required
23086 			 * to avoid a race - i.e. the ioctl is issuing a
23087 			 * command and the pm framework brings down the device
23088 			 * to low power mode (possible power cut-off on some
23089 			 * platforms).
23090 			 */
23091 			mutex_exit(&un->un_pm_mutex);
23092 			if (sd_pm_entry(un) != DDI_SUCCESS) {
23093 				rval = EAGAIN;
23094 				goto done;
23095 			}
23096 		}
23097 	}
23098 
23099 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
23100 
23101 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
23102 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
23103 	if (rval != 0)
23104 		goto done2;
23105 
23106 	/*
23107 	 * For the current temperature verify that the parameter length is 0x02
23108 	 * and the parameter code is 0x00
23109 	 */
23110 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
23111 	    (temperature_page[5] == 0x00)) {
23112 		if (temperature_page[9] == 0xFF) {
23113 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
23114 		} else {
23115 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
23116 		}
23117 	}
23118 
23119 	/*
23120 	 * For the reference temperature verify that the parameter
23121 	 * length is 0x02 and the parameter code is 0x01
23122 	 */
23123 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
23124 	    (temperature_page[11] == 0x01)) {
23125 		if (temperature_page[15] == 0xFF) {
23126 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
23127 		} else {
23128 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
23129 		}
23130 	}
23131 
23132 	/* Do the copyout regardless of the temperature commands status. */
23133 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
23134 	    flag) != 0) {
23135 		rval = EFAULT;
23136 		goto done1;
23137 	}
23138 
23139 done2:
23140 	if (rval != 0) {
23141 		if (rval == EIO)
23142 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23143 		else
23144 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23145 	}
23146 done1:
23147 	if (path_flag == SD_PATH_DIRECT) {
23148 		sd_pm_exit(un);
23149 	}
23150 
23151 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
23152 done:
23153 	sd_ssc_fini(ssc);
23154 	if (dktemp != NULL) {
23155 		kmem_free(dktemp, sizeof (struct dk_temperature));
23156 	}
23157 
23158 	return (rval);
23159 }
23160 
23161 
23162 /*
23163  *    Function: sd_log_page_supported
23164  *
23165  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
23166  *		supported log pages.
23167  *
23168  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
23169  *                      structure for this target.
23170  *		log_page -
23171  *
23172  * Return Code: -1 - on error (log sense is optional and may not be supported).
23173  *		0  - log page not found.
23174  *  		1  - log page found.
23175  */
23176 
23177 static int
23178 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
23179 {
23180 	uchar_t *log_page_data;
23181 	int	i;
23182 	int	match = 0;
23183 	int	log_size;
23184 	int	status = 0;
23185 	struct sd_lun	*un;
23186 
23187 	ASSERT(ssc != NULL);
23188 	un = ssc->ssc_un;
23189 	ASSERT(un != NULL);
23190 
23191 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
23192 
23193 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
23194 	    SD_PATH_DIRECT);
23195 
23196 	if (status != 0) {
23197 		if (status == EIO) {
23198 			/*
23199 			 * Some disks do not support log sense, we
23200 			 * should ignore this kind of error(sense key is
23201 			 * 0x5 - illegal request).
23202 			 */
23203 			uint8_t *sensep;
23204 			int senlen;
23205 
23206 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
23207 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
23208 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
23209 
23210 			if (senlen > 0 &&
23211 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
23212 				sd_ssc_assessment(ssc,
23213 				    SD_FMT_IGNORE_COMPROMISE);
23214 			} else {
23215 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23216 			}
23217 		} else {
23218 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23219 		}
23220 
23221 		SD_ERROR(SD_LOG_COMMON, un,
23222 		    "sd_log_page_supported: failed log page retrieval\n");
23223 		kmem_free(log_page_data, 0xFF);
23224 		return (-1);
23225 	}
23226 
23227 	log_size = log_page_data[3];
23228 
23229 	/*
23230 	 * The list of supported log pages start from the fourth byte. Check
23231 	 * until we run out of log pages or a match is found.
23232 	 */
23233 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
23234 		if (log_page_data[i] == log_page) {
23235 			match++;
23236 		}
23237 	}
23238 	kmem_free(log_page_data, 0xFF);
23239 	return (match);
23240 }
23241 
23242 
23243 /*
23244  *    Function: sd_mhdioc_failfast
23245  *
23246  * Description: This routine is the driver entry point for handling ioctl
23247  *		requests to enable/disable the multihost failfast option.
23248  *		(MHIOCENFAILFAST)
23249  *
23250  *   Arguments: dev	- the device number
23251  *		arg	- user specified probing interval.
23252  *		flag	- this argument is a pass through to ddi_copyxxx()
23253  *			  directly from the mode argument of ioctl().
23254  *
23255  * Return Code: 0
23256  *		EFAULT
23257  *		ENXIO
23258  */
23259 
23260 static int
23261 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
23262 {
23263 	struct sd_lun	*un = NULL;
23264 	int		mh_time;
23265 	int		rval = 0;
23266 
23267 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23268 		return (ENXIO);
23269 	}
23270 
23271 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
23272 		return (EFAULT);
23273 
23274 	if (mh_time) {
23275 		mutex_enter(SD_MUTEX(un));
23276 		un->un_resvd_status |= SD_FAILFAST;
23277 		mutex_exit(SD_MUTEX(un));
23278 		/*
23279 		 * If mh_time is INT_MAX, then this ioctl is being used for
23280 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
23281 		 */
23282 		if (mh_time != INT_MAX) {
23283 			rval = sd_check_mhd(dev, mh_time);
23284 		}
23285 	} else {
23286 		(void) sd_check_mhd(dev, 0);
23287 		mutex_enter(SD_MUTEX(un));
23288 		un->un_resvd_status &= ~SD_FAILFAST;
23289 		mutex_exit(SD_MUTEX(un));
23290 	}
23291 	return (rval);
23292 }
23293 
23294 
23295 /*
23296  *    Function: sd_mhdioc_takeown
23297  *
23298  * Description: This routine is the driver entry point for handling ioctl
23299  *		requests to forcefully acquire exclusive access rights to the
23300  *		multihost disk (MHIOCTKOWN).
23301  *
23302  *   Arguments: dev	- the device number
23303  *		arg	- user provided structure specifying the delay
23304  *			  parameters in milliseconds
23305  *		flag	- this argument is a pass through to ddi_copyxxx()
23306  *			  directly from the mode argument of ioctl().
23307  *
23308  * Return Code: 0
23309  *		EFAULT
23310  *		ENXIO
23311  */
23312 
23313 static int
23314 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
23315 {
23316 	struct sd_lun		*un = NULL;
23317 	struct mhioctkown	*tkown = NULL;
23318 	int			rval = 0;
23319 
23320 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23321 		return (ENXIO);
23322 	}
23323 
23324 	if (arg != NULL) {
23325 		tkown = (struct mhioctkown *)
23326 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
23327 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
23328 		if (rval != 0) {
23329 			rval = EFAULT;
23330 			goto error;
23331 		}
23332 	}
23333 
23334 	rval = sd_take_ownership(dev, tkown);
23335 	mutex_enter(SD_MUTEX(un));
23336 	if (rval == 0) {
23337 		un->un_resvd_status |= SD_RESERVE;
23338 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
23339 			sd_reinstate_resv_delay =
23340 			    tkown->reinstate_resv_delay * 1000;
23341 		} else {
23342 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
23343 		}
23344 		/*
23345 		 * Give the scsi_watch routine interval set by
23346 		 * the MHIOCENFAILFAST ioctl precedence here.
23347 		 */
23348 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
23349 			mutex_exit(SD_MUTEX(un));
23350 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
23351 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
23352 			    "sd_mhdioc_takeown : %d\n",
23353 			    sd_reinstate_resv_delay);
23354 		} else {
23355 			mutex_exit(SD_MUTEX(un));
23356 		}
23357 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
23358 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23359 	} else {
23360 		un->un_resvd_status &= ~SD_RESERVE;
23361 		mutex_exit(SD_MUTEX(un));
23362 	}
23363 
23364 error:
23365 	if (tkown != NULL) {
23366 		kmem_free(tkown, sizeof (struct mhioctkown));
23367 	}
23368 	return (rval);
23369 }
23370 
23371 
23372 /*
23373  *    Function: sd_mhdioc_release
23374  *
23375  * Description: This routine is the driver entry point for handling ioctl
23376  *		requests to release exclusive access rights to the multihost
23377  *		disk (MHIOCRELEASE).
23378  *
23379  *   Arguments: dev	- the device number
23380  *
23381  * Return Code: 0
23382  *		ENXIO
23383  */
23384 
23385 static int
23386 sd_mhdioc_release(dev_t dev)
23387 {
23388 	struct sd_lun		*un = NULL;
23389 	timeout_id_t		resvd_timeid_save;
23390 	int			resvd_status_save;
23391 	int			rval = 0;
23392 
23393 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23394 		return (ENXIO);
23395 	}
23396 
23397 	mutex_enter(SD_MUTEX(un));
23398 	resvd_status_save = un->un_resvd_status;
23399 	un->un_resvd_status &=
23400 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
23401 	if (un->un_resvd_timeid) {
23402 		resvd_timeid_save = un->un_resvd_timeid;
23403 		un->un_resvd_timeid = NULL;
23404 		mutex_exit(SD_MUTEX(un));
23405 		(void) untimeout(resvd_timeid_save);
23406 	} else {
23407 		mutex_exit(SD_MUTEX(un));
23408 	}
23409 
23410 	/*
23411 	 * destroy any pending timeout thread that may be attempting to
23412 	 * reinstate reservation on this device.
23413 	 */
23414 	sd_rmv_resv_reclaim_req(dev);
23415 
23416 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
23417 		mutex_enter(SD_MUTEX(un));
23418 		if ((un->un_mhd_token) &&
23419 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
23420 			mutex_exit(SD_MUTEX(un));
23421 			(void) sd_check_mhd(dev, 0);
23422 		} else {
23423 			mutex_exit(SD_MUTEX(un));
23424 		}
23425 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
23426 		    sd_mhd_reset_notify_cb, (caddr_t)un);
23427 	} else {
23428 		/*
23429 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
23430 		 */
23431 		mutex_enter(SD_MUTEX(un));
23432 		un->un_resvd_status = resvd_status_save;
23433 		mutex_exit(SD_MUTEX(un));
23434 	}
23435 	return (rval);
23436 }
23437 
23438 
23439 /*
23440  *    Function: sd_mhdioc_register_devid
23441  *
23442  * Description: This routine is the driver entry point for handling ioctl
23443  *		requests to register the device id (MHIOCREREGISTERDEVID).
23444  *
23445  *		Note: The implementation for this ioctl has been updated to
23446  *		be consistent with the original PSARC case (1999/357)
23447  *		(4375899, 4241671, 4220005)
23448  *
23449  *   Arguments: dev	- the device number
23450  *
23451  * Return Code: 0
23452  *		ENXIO
23453  */
23454 
23455 static int
23456 sd_mhdioc_register_devid(dev_t dev)
23457 {
23458 	struct sd_lun	*un = NULL;
23459 	int		rval = 0;
23460 	sd_ssc_t	*ssc;
23461 
23462 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23463 		return (ENXIO);
23464 	}
23465 
23466 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23467 
23468 	mutex_enter(SD_MUTEX(un));
23469 
23470 	/* If a devid already exists, de-register it */
23471 	if (un->un_devid != NULL) {
23472 		ddi_devid_unregister(SD_DEVINFO(un));
23473 		/*
23474 		 * After unregister devid, needs to free devid memory
23475 		 */
23476 		ddi_devid_free(un->un_devid);
23477 		un->un_devid = NULL;
23478 	}
23479 
23480 	/* Check for reservation conflict */
23481 	mutex_exit(SD_MUTEX(un));
23482 	ssc = sd_ssc_init(un);
23483 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
23484 	mutex_enter(SD_MUTEX(un));
23485 
23486 	switch (rval) {
23487 	case 0:
23488 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
23489 		break;
23490 	case EACCES:
23491 		break;
23492 	default:
23493 		rval = EIO;
23494 	}
23495 
23496 	mutex_exit(SD_MUTEX(un));
23497 	if (rval != 0) {
23498 		if (rval == EIO)
23499 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23500 		else
23501 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23502 	}
23503 	sd_ssc_fini(ssc);
23504 	return (rval);
23505 }
23506 
23507 
23508 /*
23509  *    Function: sd_mhdioc_inkeys
23510  *
23511  * Description: This routine is the driver entry point for handling ioctl
23512  *		requests to issue the SCSI-3 Persistent In Read Keys command
23513  *		to the device (MHIOCGRP_INKEYS).
23514  *
23515  *   Arguments: dev	- the device number
23516  *		arg	- user provided in_keys structure
23517  *		flag	- this argument is a pass through to ddi_copyxxx()
23518  *			  directly from the mode argument of ioctl().
23519  *
23520  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
23521  *		ENXIO
23522  *		EFAULT
23523  */
23524 
23525 static int
23526 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
23527 {
23528 	struct sd_lun		*un;
23529 	mhioc_inkeys_t		inkeys;
23530 	int			rval = 0;
23531 
23532 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23533 		return (ENXIO);
23534 	}
23535 
23536 #ifdef _MULTI_DATAMODEL
23537 	switch (ddi_model_convert_from(flag & FMODELS)) {
23538 	case DDI_MODEL_ILP32: {
23539 		struct mhioc_inkeys32	inkeys32;
23540 
23541 		if (ddi_copyin(arg, &inkeys32,
23542 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
23543 			return (EFAULT);
23544 		}
23545 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
23546 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23547 		    &inkeys, flag)) != 0) {
23548 			return (rval);
23549 		}
23550 		inkeys32.generation = inkeys.generation;
23551 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
23552 		    flag) != 0) {
23553 			return (EFAULT);
23554 		}
23555 		break;
23556 	}
23557 	case DDI_MODEL_NONE:
23558 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
23559 		    flag) != 0) {
23560 			return (EFAULT);
23561 		}
23562 		if ((rval = sd_persistent_reservation_in_read_keys(un,
23563 		    &inkeys, flag)) != 0) {
23564 			return (rval);
23565 		}
23566 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
23567 		    flag) != 0) {
23568 			return (EFAULT);
23569 		}
23570 		break;
23571 	}
23572 
23573 #else /* ! _MULTI_DATAMODEL */
23574 
23575 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
23576 		return (EFAULT);
23577 	}
23578 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
23579 	if (rval != 0) {
23580 		return (rval);
23581 	}
23582 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
23583 		return (EFAULT);
23584 	}
23585 
23586 #endif /* _MULTI_DATAMODEL */
23587 
23588 	return (rval);
23589 }
23590 
23591 
23592 /*
23593  *    Function: sd_mhdioc_inresv
23594  *
23595  * Description: This routine is the driver entry point for handling ioctl
23596  *		requests to issue the SCSI-3 Persistent In Read Reservations
23597  *		command to the device (MHIOCGRP_INKEYS).
23598  *
23599  *   Arguments: dev	- the device number
23600  *		arg	- user provided in_resv structure
23601  *		flag	- this argument is a pass through to ddi_copyxxx()
23602  *			  directly from the mode argument of ioctl().
23603  *
23604  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
23605  *		ENXIO
23606  *		EFAULT
23607  */
23608 
23609 static int
23610 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
23611 {
23612 	struct sd_lun		*un;
23613 	mhioc_inresvs_t		inresvs;
23614 	int			rval = 0;
23615 
23616 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23617 		return (ENXIO);
23618 	}
23619 
23620 #ifdef _MULTI_DATAMODEL
23621 
23622 	switch (ddi_model_convert_from(flag & FMODELS)) {
23623 	case DDI_MODEL_ILP32: {
23624 		struct mhioc_inresvs32	inresvs32;
23625 
23626 		if (ddi_copyin(arg, &inresvs32,
23627 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23628 			return (EFAULT);
23629 		}
23630 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
23631 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23632 		    &inresvs, flag)) != 0) {
23633 			return (rval);
23634 		}
23635 		inresvs32.generation = inresvs.generation;
23636 		if (ddi_copyout(&inresvs32, arg,
23637 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
23638 			return (EFAULT);
23639 		}
23640 		break;
23641 	}
23642 	case DDI_MODEL_NONE:
23643 		if (ddi_copyin(arg, &inresvs,
23644 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23645 			return (EFAULT);
23646 		}
23647 		if ((rval = sd_persistent_reservation_in_read_resv(un,
23648 		    &inresvs, flag)) != 0) {
23649 			return (rval);
23650 		}
23651 		if (ddi_copyout(&inresvs, arg,
23652 		    sizeof (mhioc_inresvs_t), flag) != 0) {
23653 			return (EFAULT);
23654 		}
23655 		break;
23656 	}
23657 
23658 #else /* ! _MULTI_DATAMODEL */
23659 
23660 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
23661 		return (EFAULT);
23662 	}
23663 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
23664 	if (rval != 0) {
23665 		return (rval);
23666 	}
23667 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
23668 		return (EFAULT);
23669 	}
23670 
23671 #endif /* ! _MULTI_DATAMODEL */
23672 
23673 	return (rval);
23674 }
23675 
23676 
23677 /*
23678  * The following routines support the clustering functionality described below
23679  * and implement lost reservation reclaim functionality.
23680  *
23681  * Clustering
23682  * ----------
23683  * The clustering code uses two different, independent forms of SCSI
23684  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
23685  * Persistent Group Reservations. For any particular disk, it will use either
23686  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
23687  *
23688  * SCSI-2
23689  * The cluster software takes ownership of a multi-hosted disk by issuing the
23690  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
23691  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
23692  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
23693  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
23694  * driver. The meaning of failfast is that if the driver (on this host) ever
23695  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
23696  * it should immediately panic the host. The motivation for this ioctl is that
23697  * if this host does encounter reservation conflict, the underlying cause is
23698  * that some other host of the cluster has decided that this host is no longer
23699  * in the cluster and has seized control of the disks for itself. Since this
23700  * host is no longer in the cluster, it ought to panic itself. The
23701  * MHIOCENFAILFAST ioctl does two things:
23702  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
23703  *      error to panic the host
23704  *      (b) it sets up a periodic timer to test whether this host still has
23705  *      "access" (in that no other host has reserved the device):  if the
23706  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
23707  *      purpose of that periodic timer is to handle scenarios where the host is
23708  *      otherwise temporarily quiescent, temporarily doing no real i/o.
23709  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
23710  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
23711  * the device itself.
23712  *
23713  * SCSI-3 PGR
23714  * A direct semantic implementation of the SCSI-3 Persistent Reservation
23715  * facility is supported through the shared multihost disk ioctls
23716  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
23717  * MHIOCGRP_PREEMPTANDABORT)
23718  *
23719  * Reservation Reclaim:
23720  * --------------------
23721  * To support the lost reservation reclaim operations this driver creates a
23722  * single thread to handle reinstating reservations on all devices that have
23723  * lost reservations sd_resv_reclaim_requests are logged for all devices that
23724  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
23725  * and the reservation reclaim thread loops through the requests to regain the
23726  * lost reservations.
23727  */
23728 
23729 /*
23730  *    Function: sd_check_mhd()
23731  *
23732  * Description: This function sets up and submits a scsi watch request or
23733  *		terminates an existing watch request. This routine is used in
23734  *		support of reservation reclaim.
23735  *
23736  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
23737  *			 among multiple watches that share the callback function
23738  *		interval - the number of microseconds specifying the watch
23739  *			   interval for issuing TEST UNIT READY commands. If
23740  *			   set to 0 the watch should be terminated. If the
23741  *			   interval is set to 0 and if the device is required
23742  *			   to hold reservation while disabling failfast, the
23743  *			   watch is restarted with an interval of
23744  *			   reinstate_resv_delay.
23745  *
23746  * Return Code: 0	   - Successful submit/terminate of scsi watch request
23747  *		ENXIO      - Indicates an invalid device was specified
23748  *		EAGAIN     - Unable to submit the scsi watch request
23749  */
23750 
23751 static int
23752 sd_check_mhd(dev_t dev, int interval)
23753 {
23754 	struct sd_lun	*un;
23755 	opaque_t	token;
23756 
23757 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23758 		return (ENXIO);
23759 	}
23760 
23761 	/* is this a watch termination request? */
23762 	if (interval == 0) {
23763 		mutex_enter(SD_MUTEX(un));
23764 		/* if there is an existing watch task then terminate it */
23765 		if (un->un_mhd_token) {
23766 			token = un->un_mhd_token;
23767 			un->un_mhd_token = NULL;
23768 			mutex_exit(SD_MUTEX(un));
23769 			(void) scsi_watch_request_terminate(token,
23770 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
23771 			mutex_enter(SD_MUTEX(un));
23772 		} else {
23773 			mutex_exit(SD_MUTEX(un));
23774 			/*
23775 			 * Note: If we return here we don't check for the
23776 			 * failfast case. This is the original legacy
23777 			 * implementation but perhaps we should be checking
23778 			 * the failfast case.
23779 			 */
23780 			return (0);
23781 		}
23782 		/*
23783 		 * If the device is required to hold reservation while
23784 		 * disabling failfast, we need to restart the scsi_watch
23785 		 * routine with an interval of reinstate_resv_delay.
23786 		 */
23787 		if (un->un_resvd_status & SD_RESERVE) {
23788 			interval = sd_reinstate_resv_delay/1000;
23789 		} else {
23790 			/* no failfast so bail */
23791 			mutex_exit(SD_MUTEX(un));
23792 			return (0);
23793 		}
23794 		mutex_exit(SD_MUTEX(un));
23795 	}
23796 
23797 	/*
23798 	 * adjust minimum time interval to 1 second,
23799 	 * and convert from msecs to usecs
23800 	 */
23801 	if (interval > 0 && interval < 1000) {
23802 		interval = 1000;
23803 	}
23804 	interval *= 1000;
23805 
23806 	/*
23807 	 * submit the request to the scsi_watch service
23808 	 */
23809 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
23810 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
23811 	if (token == NULL) {
23812 		return (EAGAIN);
23813 	}
23814 
23815 	/*
23816 	 * save token for termination later on
23817 	 */
23818 	mutex_enter(SD_MUTEX(un));
23819 	un->un_mhd_token = token;
23820 	mutex_exit(SD_MUTEX(un));
23821 	return (0);
23822 }
23823 
23824 
23825 /*
23826  *    Function: sd_mhd_watch_cb()
23827  *
23828  * Description: This function is the call back function used by the scsi watch
23829  *		facility. The scsi watch facility sends the "Test Unit Ready"
23830  *		and processes the status. If applicable (i.e. a "Unit Attention"
23831  *		status and automatic "Request Sense" not used) the scsi watch
23832  *		facility will send a "Request Sense" and retrieve the sense data
23833  *		to be passed to this callback function. In either case the
23834  *		automatic "Request Sense" or the facility submitting one, this
23835  *		callback is passed the status and sense data.
23836  *
23837  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23838  *			among multiple watches that share this callback function
23839  *		resultp - scsi watch facility result packet containing scsi
23840  *			  packet, status byte and sense data
23841  *
23842  * Return Code: 0 - continue the watch task
23843  *		non-zero - terminate the watch task
23844  */
23845 
23846 static int
23847 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23848 {
23849 	struct sd_lun			*un;
23850 	struct scsi_status		*statusp;
23851 	uint8_t				*sensep;
23852 	struct scsi_pkt			*pkt;
23853 	uchar_t				actual_sense_length;
23854 	dev_t  				dev = (dev_t)arg;
23855 
23856 	ASSERT(resultp != NULL);
23857 	statusp			= resultp->statusp;
23858 	sensep			= (uint8_t *)resultp->sensep;
23859 	pkt			= resultp->pkt;
23860 	actual_sense_length	= resultp->actual_sense_length;
23861 
23862 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23863 		return (ENXIO);
23864 	}
23865 
23866 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
23867 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
23868 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
23869 
23870 	/* Begin processing of the status and/or sense data */
23871 	if (pkt->pkt_reason != CMD_CMPLT) {
23872 		/* Handle the incomplete packet */
23873 		sd_mhd_watch_incomplete(un, pkt);
23874 		return (0);
23875 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
23876 		if (*((unsigned char *)statusp)
23877 		    == STATUS_RESERVATION_CONFLICT) {
23878 			/*
23879 			 * Handle a reservation conflict by panicking if
23880 			 * configured for failfast or by logging the conflict
23881 			 * and updating the reservation status
23882 			 */
23883 			mutex_enter(SD_MUTEX(un));
23884 			if ((un->un_resvd_status & SD_FAILFAST) &&
23885 			    (sd_failfast_enable)) {
23886 				sd_panic_for_res_conflict(un);
23887 				/*NOTREACHED*/
23888 			}
23889 			SD_INFO(SD_LOG_IOCTL_MHD, un,
23890 			    "sd_mhd_watch_cb: Reservation Conflict\n");
23891 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
23892 			mutex_exit(SD_MUTEX(un));
23893 		}
23894 	}
23895 
23896 	if (sensep != NULL) {
23897 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
23898 			mutex_enter(SD_MUTEX(un));
23899 			if ((scsi_sense_asc(sensep) ==
23900 			    SD_SCSI_RESET_SENSE_CODE) &&
23901 			    (un->un_resvd_status & SD_RESERVE)) {
23902 				/*
23903 				 * The additional sense code indicates a power
23904 				 * on or bus device reset has occurred; update
23905 				 * the reservation status.
23906 				 */
23907 				un->un_resvd_status |=
23908 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
23909 				SD_INFO(SD_LOG_IOCTL_MHD, un,
23910 				    "sd_mhd_watch_cb: Lost Reservation\n");
23911 			}
23912 		} else {
23913 			return (0);
23914 		}
23915 	} else {
23916 		mutex_enter(SD_MUTEX(un));
23917 	}
23918 
23919 	if ((un->un_resvd_status & SD_RESERVE) &&
23920 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
23921 		if (un->un_resvd_status & SD_WANT_RESERVE) {
23922 			/*
23923 			 * A reset occurred in between the last probe and this
23924 			 * one so if a timeout is pending cancel it.
23925 			 */
23926 			if (un->un_resvd_timeid) {
23927 				timeout_id_t temp_id = un->un_resvd_timeid;
23928 				un->un_resvd_timeid = NULL;
23929 				mutex_exit(SD_MUTEX(un));
23930 				(void) untimeout(temp_id);
23931 				mutex_enter(SD_MUTEX(un));
23932 			}
23933 			un->un_resvd_status &= ~SD_WANT_RESERVE;
23934 		}
23935 		if (un->un_resvd_timeid == 0) {
23936 			/* Schedule a timeout to handle the lost reservation */
23937 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
23938 			    (void *)dev,
23939 			    drv_usectohz(sd_reinstate_resv_delay));
23940 		}
23941 	}
23942 	mutex_exit(SD_MUTEX(un));
23943 	return (0);
23944 }
23945 
23946 
23947 /*
23948  *    Function: sd_mhd_watch_incomplete()
23949  *
23950  * Description: This function is used to find out why a scsi pkt sent by the
23951  *		scsi watch facility was not completed. Under some scenarios this
23952  *		routine will return. Otherwise it will send a bus reset to see
23953  *		if the drive is still online.
23954  *
23955  *   Arguments: un  - driver soft state (unit) structure
23956  *		pkt - incomplete scsi pkt
23957  */
23958 
23959 static void
23960 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
23961 {
23962 	int	be_chatty;
23963 	int	perr;
23964 
23965 	ASSERT(pkt != NULL);
23966 	ASSERT(un != NULL);
23967 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
23968 	perr		= (pkt->pkt_statistics & STAT_PERR);
23969 
23970 	mutex_enter(SD_MUTEX(un));
23971 	if (un->un_state == SD_STATE_DUMPING) {
23972 		mutex_exit(SD_MUTEX(un));
23973 		return;
23974 	}
23975 
23976 	switch (pkt->pkt_reason) {
23977 	case CMD_UNX_BUS_FREE:
23978 		/*
23979 		 * If we had a parity error that caused the target to drop BSY*,
23980 		 * don't be chatty about it.
23981 		 */
23982 		if (perr && be_chatty) {
23983 			be_chatty = 0;
23984 		}
23985 		break;
23986 	case CMD_TAG_REJECT:
23987 		/*
23988 		 * The SCSI-2 spec states that a tag reject will be sent by the
23989 		 * target if tagged queuing is not supported. A tag reject may
23990 		 * also be sent during certain initialization periods or to
23991 		 * control internal resources. For the latter case the target
23992 		 * may also return Queue Full.
23993 		 *
23994 		 * If this driver receives a tag reject from a target that is
23995 		 * going through an init period or controlling internal
23996 		 * resources tagged queuing will be disabled. This is a less
23997 		 * than optimal behavior but the driver is unable to determine
23998 		 * the target state and assumes tagged queueing is not supported
23999 		 */
24000 		pkt->pkt_flags = 0;
24001 		un->un_tagflags = 0;
24002 
24003 		if (un->un_f_opt_queueing == TRUE) {
24004 			un->un_throttle = min(un->un_throttle, 3);
24005 		} else {
24006 			un->un_throttle = 1;
24007 		}
24008 		mutex_exit(SD_MUTEX(un));
24009 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24010 		mutex_enter(SD_MUTEX(un));
24011 		break;
24012 	case CMD_INCOMPLETE:
24013 		/*
24014 		 * The transport stopped with an abnormal state, fallthrough and
24015 		 * reset the target and/or bus unless selection did not complete
24016 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24017 		 * go through a target/bus reset
24018 		 */
24019 		if (pkt->pkt_state == STATE_GOT_BUS) {
24020 			break;
24021 		}
24022 		/*FALLTHROUGH*/
24023 
24024 	case CMD_TIMEOUT:
24025 	default:
24026 		/*
24027 		 * The lun may still be running the command, so a lun reset
24028 		 * should be attempted. If the lun reset fails or cannot be
24029 		 * issued, than try a target reset. Lastly try a bus reset.
24030 		 */
24031 		if ((pkt->pkt_statistics &
24032 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24033 			int reset_retval = 0;
24034 			mutex_exit(SD_MUTEX(un));
24035 			if (un->un_f_allow_bus_device_reset == TRUE) {
24036 				if (un->un_f_lun_reset_enabled == TRUE) {
24037 					reset_retval =
24038 					    scsi_reset(SD_ADDRESS(un),
24039 					    RESET_LUN);
24040 				}
24041 				if (reset_retval == 0) {
24042 					reset_retval =
24043 					    scsi_reset(SD_ADDRESS(un),
24044 					    RESET_TARGET);
24045 				}
24046 			}
24047 			if (reset_retval == 0) {
24048 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24049 			}
24050 			mutex_enter(SD_MUTEX(un));
24051 		}
24052 		break;
24053 	}
24054 
24055 	/* A device/bus reset has occurred; update the reservation status. */
24056 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24057 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24058 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24059 			un->un_resvd_status |=
24060 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24061 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24062 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24063 		}
24064 	}
24065 
24066 	/*
24067 	 * The disk has been turned off; Update the device state.
24068 	 *
24069 	 * Note: Should we be offlining the disk here?
24070 	 */
24071 	if (pkt->pkt_state == STATE_GOT_BUS) {
24072 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24073 		    "Disk not responding to selection\n");
24074 		if (un->un_state != SD_STATE_OFFLINE) {
24075 			New_state(un, SD_STATE_OFFLINE);
24076 		}
24077 	} else if (be_chatty) {
24078 		/*
24079 		 * suppress messages if they are all the same pkt reason;
24080 		 * with TQ, many (up to 256) are returned with the same
24081 		 * pkt_reason
24082 		 */
24083 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24084 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24085 			    "sd_mhd_watch_incomplete: "
24086 			    "SCSI transport failed: reason '%s'\n",
24087 			    scsi_rname(pkt->pkt_reason));
24088 		}
24089 	}
24090 	un->un_last_pkt_reason = pkt->pkt_reason;
24091 	mutex_exit(SD_MUTEX(un));
24092 }
24093 
24094 
24095 /*
24096  *    Function: sd_sname()
24097  *
24098  * Description: This is a simple little routine to return a string containing
24099  *		a printable description of command status byte for use in
24100  *		logging.
24101  *
24102  *   Arguments: status - pointer to a status byte
24103  *
24104  * Return Code: char * - string containing status description.
24105  */
24106 
24107 static char *
24108 sd_sname(uchar_t status)
24109 {
24110 	switch (status & STATUS_MASK) {
24111 	case STATUS_GOOD:
24112 		return ("good status");
24113 	case STATUS_CHECK:
24114 		return ("check condition");
24115 	case STATUS_MET:
24116 		return ("condition met");
24117 	case STATUS_BUSY:
24118 		return ("busy");
24119 	case STATUS_INTERMEDIATE:
24120 		return ("intermediate");
24121 	case STATUS_INTERMEDIATE_MET:
24122 		return ("intermediate - condition met");
24123 	case STATUS_RESERVATION_CONFLICT:
24124 		return ("reservation_conflict");
24125 	case STATUS_TERMINATED:
24126 		return ("command terminated");
24127 	case STATUS_QFULL:
24128 		return ("queue full");
24129 	default:
24130 		return ("<unknown status>");
24131 	}
24132 }
24133 
24134 
24135 /*
24136  *    Function: sd_mhd_resvd_recover()
24137  *
24138  * Description: This function adds a reservation entry to the
24139  *		sd_resv_reclaim_request list and signals the reservation
24140  *		reclaim thread that there is work pending. If the reservation
24141  *		reclaim thread has not been previously created this function
24142  *		will kick it off.
24143  *
24144  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24145  *			among multiple watches that share this callback function
24146  *
24147  *     Context: This routine is called by timeout() and is run in interrupt
24148  *		context. It must not sleep or call other functions which may
24149  *		sleep.
24150  */
24151 
24152 static void
24153 sd_mhd_resvd_recover(void *arg)
24154 {
24155 	dev_t			dev = (dev_t)arg;
24156 	struct sd_lun		*un;
24157 	struct sd_thr_request	*sd_treq = NULL;
24158 	struct sd_thr_request	*sd_cur = NULL;
24159 	struct sd_thr_request	*sd_prev = NULL;
24160 	int			already_there = 0;
24161 
24162 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24163 		return;
24164 	}
24165 
24166 	mutex_enter(SD_MUTEX(un));
24167 	un->un_resvd_timeid = NULL;
24168 	if (un->un_resvd_status & SD_WANT_RESERVE) {
24169 		/*
24170 		 * There was a reset so don't issue the reserve, allow the
24171 		 * sd_mhd_watch_cb callback function to notice this and
24172 		 * reschedule the timeout for reservation.
24173 		 */
24174 		mutex_exit(SD_MUTEX(un));
24175 		return;
24176 	}
24177 	mutex_exit(SD_MUTEX(un));
24178 
24179 	/*
24180 	 * Add this device to the sd_resv_reclaim_request list and the
24181 	 * sd_resv_reclaim_thread should take care of the rest.
24182 	 *
24183 	 * Note: We can't sleep in this context so if the memory allocation
24184 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
24185 	 * reschedule the timeout for reservation.  (4378460)
24186 	 */
24187 	sd_treq = (struct sd_thr_request *)
24188 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
24189 	if (sd_treq == NULL) {
24190 		return;
24191 	}
24192 
24193 	sd_treq->sd_thr_req_next = NULL;
24194 	sd_treq->dev = dev;
24195 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24196 	if (sd_tr.srq_thr_req_head == NULL) {
24197 		sd_tr.srq_thr_req_head = sd_treq;
24198 	} else {
24199 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
24200 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
24201 			if (sd_cur->dev == dev) {
24202 				/*
24203 				 * already in Queue so don't log
24204 				 * another request for the device
24205 				 */
24206 				already_there = 1;
24207 				break;
24208 			}
24209 			sd_prev = sd_cur;
24210 		}
24211 		if (!already_there) {
24212 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
24213 			    "logging request for %lx\n", dev);
24214 			sd_prev->sd_thr_req_next = sd_treq;
24215 		} else {
24216 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
24217 		}
24218 	}
24219 
24220 	/*
24221 	 * Create a kernel thread to do the reservation reclaim and free up this
24222 	 * thread. We cannot block this thread while we go away to do the
24223 	 * reservation reclaim
24224 	 */
24225 	if (sd_tr.srq_resv_reclaim_thread == NULL)
24226 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
24227 		    sd_resv_reclaim_thread, NULL,
24228 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
24229 
24230 	/* Tell the reservation reclaim thread that it has work to do */
24231 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
24232 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24233 }
24234 
24235 /*
24236  *    Function: sd_resv_reclaim_thread()
24237  *
24238  * Description: This function implements the reservation reclaim operations
24239  *
24240  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
24241  *		      among multiple watches that share this callback function
24242  */
24243 
24244 static void
24245 sd_resv_reclaim_thread()
24246 {
24247 	struct sd_lun		*un;
24248 	struct sd_thr_request	*sd_mhreq;
24249 
24250 	/* Wait for work */
24251 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24252 	if (sd_tr.srq_thr_req_head == NULL) {
24253 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
24254 		    &sd_tr.srq_resv_reclaim_mutex);
24255 	}
24256 
24257 	/* Loop while we have work */
24258 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
24259 		un = ddi_get_soft_state(sd_state,
24260 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
24261 		if (un == NULL) {
24262 			/*
24263 			 * softstate structure is NULL so just
24264 			 * dequeue the request and continue
24265 			 */
24266 			sd_tr.srq_thr_req_head =
24267 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24268 			kmem_free(sd_tr.srq_thr_cur_req,
24269 			    sizeof (struct sd_thr_request));
24270 			continue;
24271 		}
24272 
24273 		/* dequeue the request */
24274 		sd_mhreq = sd_tr.srq_thr_cur_req;
24275 		sd_tr.srq_thr_req_head =
24276 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
24277 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24278 
24279 		/*
24280 		 * Reclaim reservation only if SD_RESERVE is still set. There
24281 		 * may have been a call to MHIOCRELEASE before we got here.
24282 		 */
24283 		mutex_enter(SD_MUTEX(un));
24284 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24285 			/*
24286 			 * Note: The SD_LOST_RESERVE flag is cleared before
24287 			 * reclaiming the reservation. If this is done after the
24288 			 * call to sd_reserve_release a reservation loss in the
24289 			 * window between pkt completion of reserve cmd and
24290 			 * mutex_enter below may not be recognized
24291 			 */
24292 			un->un_resvd_status &= ~SD_LOST_RESERVE;
24293 			mutex_exit(SD_MUTEX(un));
24294 
24295 			if (sd_reserve_release(sd_mhreq->dev,
24296 			    SD_RESERVE) == 0) {
24297 				mutex_enter(SD_MUTEX(un));
24298 				un->un_resvd_status |= SD_RESERVE;
24299 				mutex_exit(SD_MUTEX(un));
24300 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24301 				    "sd_resv_reclaim_thread: "
24302 				    "Reservation Recovered\n");
24303 			} else {
24304 				mutex_enter(SD_MUTEX(un));
24305 				un->un_resvd_status |= SD_LOST_RESERVE;
24306 				mutex_exit(SD_MUTEX(un));
24307 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24308 				    "sd_resv_reclaim_thread: Failed "
24309 				    "Reservation Recovery\n");
24310 			}
24311 		} else {
24312 			mutex_exit(SD_MUTEX(un));
24313 		}
24314 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24315 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
24316 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24317 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
24318 		/*
24319 		 * wakeup the destroy thread if anyone is waiting on
24320 		 * us to complete.
24321 		 */
24322 		cv_signal(&sd_tr.srq_inprocess_cv);
24323 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
24324 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
24325 	}
24326 
24327 	/*
24328 	 * cleanup the sd_tr structure now that this thread will not exist
24329 	 */
24330 	ASSERT(sd_tr.srq_thr_req_head == NULL);
24331 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
24332 	sd_tr.srq_resv_reclaim_thread = NULL;
24333 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24334 	thread_exit();
24335 }
24336 
24337 
24338 /*
24339  *    Function: sd_rmv_resv_reclaim_req()
24340  *
24341  * Description: This function removes any pending reservation reclaim requests
24342  *		for the specified device.
24343  *
24344  *   Arguments: dev - the device 'dev_t'
24345  */
24346 
24347 static void
24348 sd_rmv_resv_reclaim_req(dev_t dev)
24349 {
24350 	struct sd_thr_request *sd_mhreq;
24351 	struct sd_thr_request *sd_prev;
24352 
24353 	/* Remove a reservation reclaim request from the list */
24354 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
24355 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
24356 		/*
24357 		 * We are attempting to reinstate reservation for
24358 		 * this device. We wait for sd_reserve_release()
24359 		 * to return before we return.
24360 		 */
24361 		cv_wait(&sd_tr.srq_inprocess_cv,
24362 		    &sd_tr.srq_resv_reclaim_mutex);
24363 	} else {
24364 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
24365 		if (sd_mhreq && sd_mhreq->dev == dev) {
24366 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
24367 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24368 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24369 			return;
24370 		}
24371 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
24372 			if (sd_mhreq && sd_mhreq->dev == dev) {
24373 				break;
24374 			}
24375 			sd_prev = sd_mhreq;
24376 		}
24377 		if (sd_mhreq != NULL) {
24378 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
24379 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
24380 		}
24381 	}
24382 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
24383 }
24384 
24385 
24386 /*
24387  *    Function: sd_mhd_reset_notify_cb()
24388  *
24389  * Description: This is a call back function for scsi_reset_notify. This
24390  *		function updates the softstate reserved status and logs the
24391  *		reset. The driver scsi watch facility callback function
24392  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
24393  *		will reclaim the reservation.
24394  *
24395  *   Arguments: arg  - driver soft state (unit) structure
24396  */
24397 
24398 static void
24399 sd_mhd_reset_notify_cb(caddr_t arg)
24400 {
24401 	struct sd_lun *un = (struct sd_lun *)arg;
24402 
24403 	mutex_enter(SD_MUTEX(un));
24404 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24405 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
24406 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24407 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
24408 	}
24409 	mutex_exit(SD_MUTEX(un));
24410 }
24411 
24412 
24413 /*
24414  *    Function: sd_take_ownership()
24415  *
24416  * Description: This routine implements an algorithm to achieve a stable
24417  *		reservation on disks which don't implement priority reserve,
24418  *		and makes sure that other host lose re-reservation attempts.
24419  *		This algorithm contains of a loop that keeps issuing the RESERVE
24420  *		for some period of time (min_ownership_delay, default 6 seconds)
24421  *		During that loop, it looks to see if there has been a bus device
24422  *		reset or bus reset (both of which cause an existing reservation
24423  *		to be lost). If the reservation is lost issue RESERVE until a
24424  *		period of min_ownership_delay with no resets has gone by, or
24425  *		until max_ownership_delay has expired. This loop ensures that
24426  *		the host really did manage to reserve the device, in spite of
24427  *		resets. The looping for min_ownership_delay (default six
24428  *		seconds) is important to early generation clustering products,
24429  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
24430  *		MHIOCENFAILFAST periodic timer of two seconds. By having
24431  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
24432  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
24433  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
24434  *		have already noticed, via the MHIOCENFAILFAST polling, that it
24435  *		no longer "owns" the disk and will have panicked itself.  Thus,
24436  *		the host issuing the MHIOCTKOWN is assured (with timing
24437  *		dependencies) that by the time it actually starts to use the
24438  *		disk for real work, the old owner is no longer accessing it.
24439  *
24440  *		min_ownership_delay is the minimum amount of time for which the
24441  *		disk must be reserved continuously devoid of resets before the
24442  *		MHIOCTKOWN ioctl will return success.
24443  *
24444  *		max_ownership_delay indicates the amount of time by which the
24445  *		take ownership should succeed or timeout with an error.
24446  *
24447  *   Arguments: dev - the device 'dev_t'
24448  *		*p  - struct containing timing info.
24449  *
24450  * Return Code: 0 for success or error code
24451  */
24452 
24453 static int
24454 sd_take_ownership(dev_t dev, struct mhioctkown *p)
24455 {
24456 	struct sd_lun	*un;
24457 	int		rval;
24458 	int		err;
24459 	int		reservation_count   = 0;
24460 	int		min_ownership_delay =  6000000; /* in usec */
24461 	int		max_ownership_delay = 30000000; /* in usec */
24462 	clock_t		start_time;	/* starting time of this algorithm */
24463 	clock_t		end_time;	/* time limit for giving up */
24464 	clock_t		ownership_time;	/* time limit for stable ownership */
24465 	clock_t		current_time;
24466 	clock_t		previous_current_time;
24467 
24468 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24469 		return (ENXIO);
24470 	}
24471 
24472 	/*
24473 	 * Attempt a device reservation. A priority reservation is requested.
24474 	 */
24475 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
24476 	    != SD_SUCCESS) {
24477 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
24478 		    "sd_take_ownership: return(1)=%d\n", rval);
24479 		return (rval);
24480 	}
24481 
24482 	/* Update the softstate reserved status to indicate the reservation */
24483 	mutex_enter(SD_MUTEX(un));
24484 	un->un_resvd_status |= SD_RESERVE;
24485 	un->un_resvd_status &=
24486 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
24487 	mutex_exit(SD_MUTEX(un));
24488 
24489 	if (p != NULL) {
24490 		if (p->min_ownership_delay != 0) {
24491 			min_ownership_delay = p->min_ownership_delay * 1000;
24492 		}
24493 		if (p->max_ownership_delay != 0) {
24494 			max_ownership_delay = p->max_ownership_delay * 1000;
24495 		}
24496 	}
24497 	SD_INFO(SD_LOG_IOCTL_MHD, un,
24498 	    "sd_take_ownership: min, max delays: %d, %d\n",
24499 	    min_ownership_delay, max_ownership_delay);
24500 
24501 	start_time = ddi_get_lbolt();
24502 	current_time	= start_time;
24503 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
24504 	end_time	= start_time + drv_usectohz(max_ownership_delay);
24505 
24506 	while (current_time - end_time < 0) {
24507 		delay(drv_usectohz(500000));
24508 
24509 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
24510 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
24511 				mutex_enter(SD_MUTEX(un));
24512 				rval = (un->un_resvd_status &
24513 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
24514 				mutex_exit(SD_MUTEX(un));
24515 				break;
24516 			}
24517 		}
24518 		previous_current_time = current_time;
24519 		current_time = ddi_get_lbolt();
24520 		mutex_enter(SD_MUTEX(un));
24521 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
24522 			ownership_time = ddi_get_lbolt() +
24523 			    drv_usectohz(min_ownership_delay);
24524 			reservation_count = 0;
24525 		} else {
24526 			reservation_count++;
24527 		}
24528 		un->un_resvd_status |= SD_RESERVE;
24529 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
24530 		mutex_exit(SD_MUTEX(un));
24531 
24532 		SD_INFO(SD_LOG_IOCTL_MHD, un,
24533 		    "sd_take_ownership: ticks for loop iteration=%ld, "
24534 		    "reservation=%s\n", (current_time - previous_current_time),
24535 		    reservation_count ? "ok" : "reclaimed");
24536 
24537 		if (current_time - ownership_time >= 0 &&
24538 		    reservation_count >= 4) {
24539 			rval = 0; /* Achieved a stable ownership */
24540 			break;
24541 		}
24542 		if (current_time - end_time >= 0) {
24543 			rval = EACCES; /* No ownership in max possible time */
24544 			break;
24545 		}
24546 	}
24547 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24548 	    "sd_take_ownership: return(2)=%d\n", rval);
24549 	return (rval);
24550 }
24551 
24552 
24553 /*
24554  *    Function: sd_reserve_release()
24555  *
24556  * Description: This function builds and sends scsi RESERVE, RELEASE, and
24557  *		PRIORITY RESERVE commands based on a user specified command type
24558  *
24559  *   Arguments: dev - the device 'dev_t'
24560  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
24561  *		      SD_RESERVE, SD_RELEASE
24562  *
24563  * Return Code: 0 or Error Code
24564  */
24565 
24566 static int
24567 sd_reserve_release(dev_t dev, int cmd)
24568 {
24569 	struct uscsi_cmd	*com = NULL;
24570 	struct sd_lun		*un = NULL;
24571 	char			cdb[CDB_GROUP0];
24572 	int			rval;
24573 
24574 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
24575 	    (cmd == SD_PRIORITY_RESERVE));
24576 
24577 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24578 		return (ENXIO);
24579 	}
24580 
24581 	/* instantiate and initialize the command and cdb */
24582 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24583 	bzero(cdb, CDB_GROUP0);
24584 	com->uscsi_flags   = USCSI_SILENT;
24585 	com->uscsi_timeout = un->un_reserve_release_time;
24586 	com->uscsi_cdblen  = CDB_GROUP0;
24587 	com->uscsi_cdb	   = cdb;
24588 	if (cmd == SD_RELEASE) {
24589 		cdb[0] = SCMD_RELEASE;
24590 	} else {
24591 		cdb[0] = SCMD_RESERVE;
24592 	}
24593 
24594 	/* Send the command. */
24595 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24596 	    SD_PATH_STANDARD);
24597 
24598 	/*
24599 	 * "break" a reservation that is held by another host, by issuing a
24600 	 * reset if priority reserve is desired, and we could not get the
24601 	 * device.
24602 	 */
24603 	if ((cmd == SD_PRIORITY_RESERVE) &&
24604 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24605 		/*
24606 		 * First try to reset the LUN. If we cannot, then try a target
24607 		 * reset, followed by a bus reset if the target reset fails.
24608 		 */
24609 		int reset_retval = 0;
24610 		if (un->un_f_lun_reset_enabled == TRUE) {
24611 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
24612 		}
24613 		if (reset_retval == 0) {
24614 			/* The LUN reset either failed or was not issued */
24615 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
24616 		}
24617 		if ((reset_retval == 0) &&
24618 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
24619 			rval = EIO;
24620 			kmem_free(com, sizeof (*com));
24621 			return (rval);
24622 		}
24623 
24624 		bzero(com, sizeof (struct uscsi_cmd));
24625 		com->uscsi_flags   = USCSI_SILENT;
24626 		com->uscsi_cdb	   = cdb;
24627 		com->uscsi_cdblen  = CDB_GROUP0;
24628 		com->uscsi_timeout = 5;
24629 
24630 		/*
24631 		 * Reissue the last reserve command, this time without request
24632 		 * sense.  Assume that it is just a regular reserve command.
24633 		 */
24634 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24635 		    SD_PATH_STANDARD);
24636 	}
24637 
24638 	/* Return an error if still getting a reservation conflict. */
24639 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
24640 		rval = EACCES;
24641 	}
24642 
24643 	kmem_free(com, sizeof (*com));
24644 	return (rval);
24645 }
24646 
24647 
24648 #define	SD_NDUMP_RETRIES	12
24649 /*
24650  *	System Crash Dump routine
24651  */
24652 
24653 static int
24654 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
24655 {
24656 	int		instance;
24657 	int		partition;
24658 	int		i;
24659 	int		err;
24660 	struct sd_lun	*un;
24661 	struct scsi_pkt *wr_pktp;
24662 	struct buf	*wr_bp;
24663 	struct buf	wr_buf;
24664 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
24665 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
24666 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
24667 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
24668 	size_t		io_start_offset;
24669 	int		doing_rmw = FALSE;
24670 	int		rval;
24671 	ssize_t		dma_resid;
24672 	daddr_t		oblkno;
24673 	diskaddr_t	nblks = 0;
24674 	diskaddr_t	start_block;
24675 
24676 	instance = SDUNIT(dev);
24677 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
24678 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
24679 		return (ENXIO);
24680 	}
24681 
24682 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
24683 
24684 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
24685 
24686 	partition = SDPART(dev);
24687 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
24688 
24689 	/* Validate blocks to dump at against partition size. */
24690 
24691 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
24692 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
24693 
24694 	if ((blkno + nblk) > nblks) {
24695 		SD_TRACE(SD_LOG_DUMP, un,
24696 		    "sddump: dump range larger than partition: "
24697 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
24698 		    blkno, nblk, nblks);
24699 		return (EINVAL);
24700 	}
24701 
24702 	mutex_enter(&un->un_pm_mutex);
24703 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24704 		struct scsi_pkt *start_pktp;
24705 
24706 		mutex_exit(&un->un_pm_mutex);
24707 
24708 		/*
24709 		 * use pm framework to power on HBA 1st
24710 		 */
24711 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
24712 
24713 		/*
24714 		 * Dump no long uses sdpower to power on a device, it's
24715 		 * in-line here so it can be done in polled mode.
24716 		 */
24717 
24718 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
24719 
24720 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
24721 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
24722 
24723 		if (start_pktp == NULL) {
24724 			/* We were not given a SCSI packet, fail. */
24725 			return (EIO);
24726 		}
24727 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
24728 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
24729 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
24730 		start_pktp->pkt_flags = FLAG_NOINTR;
24731 
24732 		mutex_enter(SD_MUTEX(un));
24733 		SD_FILL_SCSI1_LUN(un, start_pktp);
24734 		mutex_exit(SD_MUTEX(un));
24735 		/*
24736 		 * Scsi_poll returns 0 (success) if the command completes and
24737 		 * the status block is STATUS_GOOD.
24738 		 */
24739 		if (sd_scsi_poll(un, start_pktp) != 0) {
24740 			scsi_destroy_pkt(start_pktp);
24741 			return (EIO);
24742 		}
24743 		scsi_destroy_pkt(start_pktp);
24744 		(void) sd_ddi_pm_resume(un);
24745 	} else {
24746 		mutex_exit(&un->un_pm_mutex);
24747 	}
24748 
24749 	mutex_enter(SD_MUTEX(un));
24750 	un->un_throttle = 0;
24751 
24752 	/*
24753 	 * The first time through, reset the specific target device.
24754 	 * However, when cpr calls sddump we know that sd is in a
24755 	 * a good state so no bus reset is required.
24756 	 * Clear sense data via Request Sense cmd.
24757 	 * In sddump we don't care about allow_bus_device_reset anymore
24758 	 */
24759 
24760 	if ((un->un_state != SD_STATE_SUSPENDED) &&
24761 	    (un->un_state != SD_STATE_DUMPING)) {
24762 
24763 		New_state(un, SD_STATE_DUMPING);
24764 
24765 		if (un->un_f_is_fibre == FALSE) {
24766 			mutex_exit(SD_MUTEX(un));
24767 			/*
24768 			 * Attempt a bus reset for parallel scsi.
24769 			 *
24770 			 * Note: A bus reset is required because on some host
24771 			 * systems (i.e. E420R) a bus device reset is
24772 			 * insufficient to reset the state of the target.
24773 			 *
24774 			 * Note: Don't issue the reset for fibre-channel,
24775 			 * because this tends to hang the bus (loop) for
24776 			 * too long while everyone is logging out and in
24777 			 * and the deadman timer for dumping will fire
24778 			 * before the dump is complete.
24779 			 */
24780 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
24781 				mutex_enter(SD_MUTEX(un));
24782 				Restore_state(un);
24783 				mutex_exit(SD_MUTEX(un));
24784 				return (EIO);
24785 			}
24786 
24787 			/* Delay to give the device some recovery time. */
24788 			drv_usecwait(10000);
24789 
24790 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
24791 				SD_INFO(SD_LOG_DUMP, un,
24792 				    "sddump: sd_send_polled_RQS failed\n");
24793 			}
24794 			mutex_enter(SD_MUTEX(un));
24795 		}
24796 	}
24797 
24798 	/*
24799 	 * Convert the partition-relative block number to a
24800 	 * disk physical block number.
24801 	 */
24802 	blkno += start_block;
24803 
24804 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
24805 
24806 
24807 	/*
24808 	 * Check if the device has a non-512 block size.
24809 	 */
24810 	wr_bp = NULL;
24811 	if (NOT_DEVBSIZE(un)) {
24812 		tgt_byte_offset = blkno * un->un_sys_blocksize;
24813 		tgt_byte_count = nblk * un->un_sys_blocksize;
24814 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
24815 		    (tgt_byte_count % un->un_tgt_blocksize)) {
24816 			doing_rmw = TRUE;
24817 			/*
24818 			 * Calculate the block number and number of block
24819 			 * in terms of the media block size.
24820 			 */
24821 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24822 			tgt_nblk =
24823 			    ((tgt_byte_offset + tgt_byte_count +
24824 			    (un->un_tgt_blocksize - 1)) /
24825 			    un->un_tgt_blocksize) - tgt_blkno;
24826 
24827 			/*
24828 			 * Invoke the routine which is going to do read part
24829 			 * of read-modify-write.
24830 			 * Note that this routine returns a pointer to
24831 			 * a valid bp in wr_bp.
24832 			 */
24833 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
24834 			    &wr_bp);
24835 			if (err) {
24836 				mutex_exit(SD_MUTEX(un));
24837 				return (err);
24838 			}
24839 			/*
24840 			 * Offset is being calculated as -
24841 			 * (original block # * system block size) -
24842 			 * (new block # * target block size)
24843 			 */
24844 			io_start_offset =
24845 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
24846 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
24847 
24848 			ASSERT((io_start_offset >= 0) &&
24849 			    (io_start_offset < un->un_tgt_blocksize));
24850 			/*
24851 			 * Do the modify portion of read modify write.
24852 			 */
24853 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
24854 			    (size_t)nblk * un->un_sys_blocksize);
24855 		} else {
24856 			doing_rmw = FALSE;
24857 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
24858 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
24859 		}
24860 
24861 		/* Convert blkno and nblk to target blocks */
24862 		blkno = tgt_blkno;
24863 		nblk = tgt_nblk;
24864 	} else {
24865 		wr_bp = &wr_buf;
24866 		bzero(wr_bp, sizeof (struct buf));
24867 		wr_bp->b_flags		= B_BUSY;
24868 		wr_bp->b_un.b_addr	= addr;
24869 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
24870 		wr_bp->b_resid		= 0;
24871 	}
24872 
24873 	mutex_exit(SD_MUTEX(un));
24874 
24875 	/*
24876 	 * Obtain a SCSI packet for the write command.
24877 	 * It should be safe to call the allocator here without
24878 	 * worrying about being locked for DVMA mapping because
24879 	 * the address we're passed is already a DVMA mapping
24880 	 *
24881 	 * We are also not going to worry about semaphore ownership
24882 	 * in the dump buffer. Dumping is single threaded at present.
24883 	 */
24884 
24885 	wr_pktp = NULL;
24886 
24887 	dma_resid = wr_bp->b_bcount;
24888 	oblkno = blkno;
24889 
24890 	while (dma_resid != 0) {
24891 
24892 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24893 		wr_bp->b_flags &= ~B_ERROR;
24894 
24895 		if (un->un_partial_dma_supported == 1) {
24896 			blkno = oblkno +
24897 			    ((wr_bp->b_bcount - dma_resid) /
24898 			    un->un_tgt_blocksize);
24899 			nblk = dma_resid / un->un_tgt_blocksize;
24900 
24901 			if (wr_pktp) {
24902 				/*
24903 				 * Partial DMA transfers after initial transfer
24904 				 */
24905 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
24906 				    blkno, nblk);
24907 			} else {
24908 				/* Initial transfer */
24909 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24910 				    un->un_pkt_flags, NULL_FUNC, NULL,
24911 				    blkno, nblk);
24912 			}
24913 		} else {
24914 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
24915 			    0, NULL_FUNC, NULL, blkno, nblk);
24916 		}
24917 
24918 		if (rval == 0) {
24919 			/* We were given a SCSI packet, continue. */
24920 			break;
24921 		}
24922 
24923 		if (i == 0) {
24924 			if (wr_bp->b_flags & B_ERROR) {
24925 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24926 				    "no resources for dumping; "
24927 				    "error code: 0x%x, retrying",
24928 				    geterror(wr_bp));
24929 			} else {
24930 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24931 				    "no resources for dumping; retrying");
24932 			}
24933 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
24934 			if (wr_bp->b_flags & B_ERROR) {
24935 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24936 				    "no resources for dumping; error code: "
24937 				    "0x%x, retrying\n", geterror(wr_bp));
24938 			}
24939 		} else {
24940 			if (wr_bp->b_flags & B_ERROR) {
24941 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24942 				    "no resources for dumping; "
24943 				    "error code: 0x%x, retries failed, "
24944 				    "giving up.\n", geterror(wr_bp));
24945 			} else {
24946 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
24947 				    "no resources for dumping; "
24948 				    "retries failed, giving up.\n");
24949 			}
24950 			mutex_enter(SD_MUTEX(un));
24951 			Restore_state(un);
24952 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
24953 				mutex_exit(SD_MUTEX(un));
24954 				scsi_free_consistent_buf(wr_bp);
24955 			} else {
24956 				mutex_exit(SD_MUTEX(un));
24957 			}
24958 			return (EIO);
24959 		}
24960 		drv_usecwait(10000);
24961 	}
24962 
24963 	if (un->un_partial_dma_supported == 1) {
24964 		/*
24965 		 * save the resid from PARTIAL_DMA
24966 		 */
24967 		dma_resid = wr_pktp->pkt_resid;
24968 		if (dma_resid != 0)
24969 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
24970 		wr_pktp->pkt_resid = 0;
24971 	} else {
24972 		dma_resid = 0;
24973 	}
24974 
24975 	/* SunBug 1222170 */
24976 	wr_pktp->pkt_flags = FLAG_NOINTR;
24977 
24978 	err = EIO;
24979 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
24980 
24981 		/*
24982 		 * Scsi_poll returns 0 (success) if the command completes and
24983 		 * the status block is STATUS_GOOD.  We should only check
24984 		 * errors if this condition is not true.  Even then we should
24985 		 * send our own request sense packet only if we have a check
24986 		 * condition and auto request sense has not been performed by
24987 		 * the hba.
24988 		 */
24989 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
24990 
24991 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
24992 		    (wr_pktp->pkt_resid == 0)) {
24993 			err = SD_SUCCESS;
24994 			break;
24995 		}
24996 
24997 		/*
24998 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
24999 		 */
25000 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25001 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25002 			    "Error while dumping state...Device is gone\n");
25003 			break;
25004 		}
25005 
25006 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25007 			SD_INFO(SD_LOG_DUMP, un,
25008 			    "sddump: write failed with CHECK, try # %d\n", i);
25009 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25010 				(void) sd_send_polled_RQS(un);
25011 			}
25012 
25013 			continue;
25014 		}
25015 
25016 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25017 			int reset_retval = 0;
25018 
25019 			SD_INFO(SD_LOG_DUMP, un,
25020 			    "sddump: write failed with BUSY, try # %d\n", i);
25021 
25022 			if (un->un_f_lun_reset_enabled == TRUE) {
25023 				reset_retval = scsi_reset(SD_ADDRESS(un),
25024 				    RESET_LUN);
25025 			}
25026 			if (reset_retval == 0) {
25027 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25028 			}
25029 			(void) sd_send_polled_RQS(un);
25030 
25031 		} else {
25032 			SD_INFO(SD_LOG_DUMP, un,
25033 			    "sddump: write failed with 0x%x, try # %d\n",
25034 			    SD_GET_PKT_STATUS(wr_pktp), i);
25035 			mutex_enter(SD_MUTEX(un));
25036 			sd_reset_target(un, wr_pktp);
25037 			mutex_exit(SD_MUTEX(un));
25038 		}
25039 
25040 		/*
25041 		 * If we are not getting anywhere with lun/target resets,
25042 		 * let's reset the bus.
25043 		 */
25044 		if (i == SD_NDUMP_RETRIES/2) {
25045 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25046 			(void) sd_send_polled_RQS(un);
25047 		}
25048 	}
25049 	}
25050 
25051 	scsi_destroy_pkt(wr_pktp);
25052 	mutex_enter(SD_MUTEX(un));
25053 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25054 		mutex_exit(SD_MUTEX(un));
25055 		scsi_free_consistent_buf(wr_bp);
25056 	} else {
25057 		mutex_exit(SD_MUTEX(un));
25058 	}
25059 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25060 	return (err);
25061 }
25062 
25063 /*
25064  *    Function: sd_scsi_poll()
25065  *
25066  * Description: This is a wrapper for the scsi_poll call.
25067  *
25068  *   Arguments: sd_lun - The unit structure
25069  *              scsi_pkt - The scsi packet being sent to the device.
25070  *
25071  * Return Code: 0 - Command completed successfully with good status
25072  *             -1 - Command failed.  This could indicate a check condition
25073  *                  or other status value requiring recovery action.
25074  *
25075  * NOTE: This code is only called off sddump().
25076  */
25077 
25078 static int
25079 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25080 {
25081 	int status;
25082 
25083 	ASSERT(un != NULL);
25084 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25085 	ASSERT(pktp != NULL);
25086 
25087 	status = SD_SUCCESS;
25088 
25089 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25090 		pktp->pkt_flags |= un->un_tagflags;
25091 		pktp->pkt_flags &= ~FLAG_NODISCON;
25092 	}
25093 
25094 	status = sd_ddi_scsi_poll(pktp);
25095 	/*
25096 	 * Scsi_poll returns 0 (success) if the command completes and the
25097 	 * status block is STATUS_GOOD.  We should only check errors if this
25098 	 * condition is not true.  Even then we should send our own request
25099 	 * sense packet only if we have a check condition and auto
25100 	 * request sense has not been performed by the hba.
25101 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25102 	 */
25103 	if ((status != SD_SUCCESS) &&
25104 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25105 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25106 	    (pktp->pkt_reason != CMD_DEV_GONE))
25107 		(void) sd_send_polled_RQS(un);
25108 
25109 	return (status);
25110 }
25111 
25112 /*
25113  *    Function: sd_send_polled_RQS()
25114  *
25115  * Description: This sends the request sense command to a device.
25116  *
25117  *   Arguments: sd_lun - The unit structure
25118  *
25119  * Return Code: 0 - Command completed successfully with good status
25120  *             -1 - Command failed.
25121  *
25122  */
25123 
25124 static int
25125 sd_send_polled_RQS(struct sd_lun *un)
25126 {
25127 	int	ret_val;
25128 	struct	scsi_pkt	*rqs_pktp;
25129 	struct	buf		*rqs_bp;
25130 
25131 	ASSERT(un != NULL);
25132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25133 
25134 	ret_val = SD_SUCCESS;
25135 
25136 	rqs_pktp = un->un_rqs_pktp;
25137 	rqs_bp	 = un->un_rqs_bp;
25138 
25139 	mutex_enter(SD_MUTEX(un));
25140 
25141 	if (un->un_sense_isbusy) {
25142 		ret_val = SD_FAILURE;
25143 		mutex_exit(SD_MUTEX(un));
25144 		return (ret_val);
25145 	}
25146 
25147 	/*
25148 	 * If the request sense buffer (and packet) is not in use,
25149 	 * let's set the un_sense_isbusy and send our packet
25150 	 */
25151 	un->un_sense_isbusy 	= 1;
25152 	rqs_pktp->pkt_resid  	= 0;
25153 	rqs_pktp->pkt_reason 	= 0;
25154 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
25155 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
25156 
25157 	mutex_exit(SD_MUTEX(un));
25158 
25159 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
25160 	    " 0x%p\n", rqs_bp->b_un.b_addr);
25161 
25162 	/*
25163 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
25164 	 * axle - it has a call into us!
25165 	 */
25166 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
25167 		SD_INFO(SD_LOG_COMMON, un,
25168 		    "sd_send_polled_RQS: RQS failed\n");
25169 	}
25170 
25171 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
25172 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
25173 
25174 	mutex_enter(SD_MUTEX(un));
25175 	un->un_sense_isbusy = 0;
25176 	mutex_exit(SD_MUTEX(un));
25177 
25178 	return (ret_val);
25179 }
25180 
25181 /*
25182  * Defines needed for localized version of the scsi_poll routine.
25183  */
25184 #define	CSEC		10000			/* usecs */
25185 #define	SEC_TO_CSEC	(1000000/CSEC)
25186 
25187 /*
25188  *    Function: sd_ddi_scsi_poll()
25189  *
25190  * Description: Localized version of the scsi_poll routine.  The purpose is to
25191  *		send a scsi_pkt to a device as a polled command.  This version
25192  *		is to ensure more robust handling of transport errors.
25193  *		Specifically this routine cures not ready, coming ready
25194  *		transition for power up and reset of sonoma's.  This can take
25195  *		up to 45 seconds for power-on and 20 seconds for reset of a
25196  * 		sonoma lun.
25197  *
25198  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
25199  *
25200  * Return Code: 0 - Command completed successfully with good status
25201  *             -1 - Command failed.
25202  *
25203  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
25204  * be fixed (removing this code), we need to determine how to handle the
25205  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
25206  *
25207  * NOTE: This code is only called off sddump().
25208  */
25209 static int
25210 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
25211 {
25212 	int			rval = -1;
25213 	int			savef;
25214 	long			savet;
25215 	void			(*savec)();
25216 	int			timeout;
25217 	int			busy_count;
25218 	int			poll_delay;
25219 	int			rc;
25220 	uint8_t			*sensep;
25221 	struct scsi_arq_status	*arqstat;
25222 	extern int		do_polled_io;
25223 
25224 	ASSERT(pkt->pkt_scbp);
25225 
25226 	/*
25227 	 * save old flags..
25228 	 */
25229 	savef = pkt->pkt_flags;
25230 	savec = pkt->pkt_comp;
25231 	savet = pkt->pkt_time;
25232 
25233 	pkt->pkt_flags |= FLAG_NOINTR;
25234 
25235 	/*
25236 	 * XXX there is nothing in the SCSA spec that states that we should not
25237 	 * do a callback for polled cmds; however, removing this will break sd
25238 	 * and probably other target drivers
25239 	 */
25240 	pkt->pkt_comp = NULL;
25241 
25242 	/*
25243 	 * we don't like a polled command without timeout.
25244 	 * 60 seconds seems long enough.
25245 	 */
25246 	if (pkt->pkt_time == 0)
25247 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
25248 
25249 	/*
25250 	 * Send polled cmd.
25251 	 *
25252 	 * We do some error recovery for various errors.  Tran_busy,
25253 	 * queue full, and non-dispatched commands are retried every 10 msec.
25254 	 * as they are typically transient failures.  Busy status and Not
25255 	 * Ready are retried every second as this status takes a while to
25256 	 * change.
25257 	 */
25258 	timeout = pkt->pkt_time * SEC_TO_CSEC;
25259 
25260 	for (busy_count = 0; busy_count < timeout; busy_count++) {
25261 		/*
25262 		 * Initialize pkt status variables.
25263 		 */
25264 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
25265 
25266 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
25267 			if (rc != TRAN_BUSY) {
25268 				/* Transport failed - give up. */
25269 				break;
25270 			} else {
25271 				/* Transport busy - try again. */
25272 				poll_delay = 1 * CSEC;		/* 10 msec. */
25273 			}
25274 		} else {
25275 			/*
25276 			 * Transport accepted - check pkt status.
25277 			 */
25278 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
25279 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25280 			    (rc == STATUS_CHECK) &&
25281 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
25282 				arqstat =
25283 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
25284 				sensep = (uint8_t *)&arqstat->sts_sensedata;
25285 			} else {
25286 				sensep = NULL;
25287 			}
25288 
25289 			if ((pkt->pkt_reason == CMD_CMPLT) &&
25290 			    (rc == STATUS_GOOD)) {
25291 				/* No error - we're done */
25292 				rval = 0;
25293 				break;
25294 
25295 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
25296 				/* Lost connection - give up */
25297 				break;
25298 
25299 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
25300 			    (pkt->pkt_state == 0)) {
25301 				/* Pkt not dispatched - try again. */
25302 				poll_delay = 1 * CSEC;		/* 10 msec. */
25303 
25304 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25305 			    (rc == STATUS_QFULL)) {
25306 				/* Queue full - try again. */
25307 				poll_delay = 1 * CSEC;		/* 10 msec. */
25308 
25309 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
25310 			    (rc == STATUS_BUSY)) {
25311 				/* Busy - try again. */
25312 				poll_delay = 100 * CSEC;	/* 1 sec. */
25313 				busy_count += (SEC_TO_CSEC - 1);
25314 
25315 			} else if ((sensep != NULL) &&
25316 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
25317 				/*
25318 				 * Unit Attention - try again.
25319 				 * Pretend it took 1 sec.
25320 				 * NOTE: 'continue' avoids poll_delay
25321 				 */
25322 				busy_count += (SEC_TO_CSEC - 1);
25323 				continue;
25324 
25325 			} else if ((sensep != NULL) &&
25326 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
25327 			    (scsi_sense_asc(sensep) == 0x04) &&
25328 			    (scsi_sense_ascq(sensep) == 0x01)) {
25329 				/*
25330 				 * Not ready -> ready - try again.
25331 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
25332 				 * ...same as STATUS_BUSY
25333 				 */
25334 				poll_delay = 100 * CSEC;	/* 1 sec. */
25335 				busy_count += (SEC_TO_CSEC - 1);
25336 
25337 			} else {
25338 				/* BAD status - give up. */
25339 				break;
25340 			}
25341 		}
25342 
25343 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
25344 		    !do_polled_io) {
25345 			delay(drv_usectohz(poll_delay));
25346 		} else {
25347 			/* we busy wait during cpr_dump or interrupt threads */
25348 			drv_usecwait(poll_delay);
25349 		}
25350 	}
25351 
25352 	pkt->pkt_flags = savef;
25353 	pkt->pkt_comp = savec;
25354 	pkt->pkt_time = savet;
25355 
25356 	/* return on error */
25357 	if (rval)
25358 		return (rval);
25359 
25360 	/*
25361 	 * This is not a performance critical code path.
25362 	 *
25363 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
25364 	 * issues associated with looking at DMA memory prior to
25365 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
25366 	 */
25367 	scsi_sync_pkt(pkt);
25368 	return (0);
25369 }
25370 
25371 
25372 
25373 /*
25374  *    Function: sd_persistent_reservation_in_read_keys
25375  *
25376  * Description: This routine is the driver entry point for handling CD-ROM
25377  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
25378  *		by sending the SCSI-3 PRIN commands to the device.
25379  *		Processes the read keys command response by copying the
25380  *		reservation key information into the user provided buffer.
25381  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
25382  *
25383  *   Arguments: un   -  Pointer to soft state struct for the target.
25384  *		usrp -	user provided pointer to multihost Persistent In Read
25385  *			Keys structure (mhioc_inkeys_t)
25386  *		flag -	this argument is a pass through to ddi_copyxxx()
25387  *			directly from the mode argument of ioctl().
25388  *
25389  * Return Code: 0   - Success
25390  *		EACCES
25391  *		ENOTSUP
25392  *		errno return code from sd_send_scsi_cmd()
25393  *
25394  *     Context: Can sleep. Does not return until command is completed.
25395  */
25396 
25397 static int
25398 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
25399     mhioc_inkeys_t *usrp, int flag)
25400 {
25401 #ifdef _MULTI_DATAMODEL
25402 	struct mhioc_key_list32	li32;
25403 #endif
25404 	sd_prin_readkeys_t	*in;
25405 	mhioc_inkeys_t		*ptr;
25406 	mhioc_key_list_t	li;
25407 	uchar_t			*data_bufp;
25408 	int 			data_len;
25409 	int			rval = 0;
25410 	size_t			copysz;
25411 	sd_ssc_t		*ssc;
25412 
25413 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
25414 		return (EINVAL);
25415 	}
25416 	bzero(&li, sizeof (mhioc_key_list_t));
25417 
25418 	ssc = sd_ssc_init(un);
25419 
25420 	/*
25421 	 * Get the listsize from user
25422 	 */
25423 #ifdef _MULTI_DATAMODEL
25424 
25425 	switch (ddi_model_convert_from(flag & FMODELS)) {
25426 	case DDI_MODEL_ILP32:
25427 		copysz = sizeof (struct mhioc_key_list32);
25428 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
25429 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25430 			    "sd_persistent_reservation_in_read_keys: "
25431 			    "failed ddi_copyin: mhioc_key_list32_t\n");
25432 			rval = EFAULT;
25433 			goto done;
25434 		}
25435 		li.listsize = li32.listsize;
25436 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
25437 		break;
25438 
25439 	case DDI_MODEL_NONE:
25440 		copysz = sizeof (mhioc_key_list_t);
25441 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25442 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25443 			    "sd_persistent_reservation_in_read_keys: "
25444 			    "failed ddi_copyin: mhioc_key_list_t\n");
25445 			rval = EFAULT;
25446 			goto done;
25447 		}
25448 		break;
25449 	}
25450 
25451 #else /* ! _MULTI_DATAMODEL */
25452 	copysz = sizeof (mhioc_key_list_t);
25453 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
25454 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25455 		    "sd_persistent_reservation_in_read_keys: "
25456 		    "failed ddi_copyin: mhioc_key_list_t\n");
25457 		rval = EFAULT;
25458 		goto done;
25459 	}
25460 #endif
25461 
25462 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
25463 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
25464 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25465 
25466 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
25467 	    data_len, data_bufp);
25468 	if (rval != 0) {
25469 		if (rval == EIO)
25470 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25471 		else
25472 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25473 		goto done;
25474 	}
25475 	in = (sd_prin_readkeys_t *)data_bufp;
25476 	ptr->generation = BE_32(in->generation);
25477 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
25478 
25479 	/*
25480 	 * Return the min(listsize, listlen) keys
25481 	 */
25482 #ifdef _MULTI_DATAMODEL
25483 
25484 	switch (ddi_model_convert_from(flag & FMODELS)) {
25485 	case DDI_MODEL_ILP32:
25486 		li32.listlen = li.listlen;
25487 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
25488 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25489 			    "sd_persistent_reservation_in_read_keys: "
25490 			    "failed ddi_copyout: mhioc_key_list32_t\n");
25491 			rval = EFAULT;
25492 			goto done;
25493 		}
25494 		break;
25495 
25496 	case DDI_MODEL_NONE:
25497 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25498 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25499 			    "sd_persistent_reservation_in_read_keys: "
25500 			    "failed ddi_copyout: mhioc_key_list_t\n");
25501 			rval = EFAULT;
25502 			goto done;
25503 		}
25504 		break;
25505 	}
25506 
25507 #else /* ! _MULTI_DATAMODEL */
25508 
25509 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
25510 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25511 		    "sd_persistent_reservation_in_read_keys: "
25512 		    "failed ddi_copyout: mhioc_key_list_t\n");
25513 		rval = EFAULT;
25514 		goto done;
25515 	}
25516 
25517 #endif /* _MULTI_DATAMODEL */
25518 
25519 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
25520 	    li.listsize * MHIOC_RESV_KEY_SIZE);
25521 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
25522 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25523 		    "sd_persistent_reservation_in_read_keys: "
25524 		    "failed ddi_copyout: keylist\n");
25525 		rval = EFAULT;
25526 	}
25527 done:
25528 	sd_ssc_fini(ssc);
25529 	kmem_free(data_bufp, data_len);
25530 	return (rval);
25531 }
25532 
25533 
25534 /*
25535  *    Function: sd_persistent_reservation_in_read_resv
25536  *
25537  * Description: This routine is the driver entry point for handling CD-ROM
25538  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
25539  *		by sending the SCSI-3 PRIN commands to the device.
25540  *		Process the read persistent reservations command response by
25541  *		copying the reservation information into the user provided
25542  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
25543  *
25544  *   Arguments: un   -  Pointer to soft state struct for the target.
25545  *		usrp -	user provided pointer to multihost Persistent In Read
25546  *			Keys structure (mhioc_inkeys_t)
25547  *		flag -	this argument is a pass through to ddi_copyxxx()
25548  *			directly from the mode argument of ioctl().
25549  *
25550  * Return Code: 0   - Success
25551  *		EACCES
25552  *		ENOTSUP
25553  *		errno return code from sd_send_scsi_cmd()
25554  *
25555  *     Context: Can sleep. Does not return until command is completed.
25556  */
25557 
25558 static int
25559 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
25560     mhioc_inresvs_t *usrp, int flag)
25561 {
25562 #ifdef _MULTI_DATAMODEL
25563 	struct mhioc_resv_desc_list32 resvlist32;
25564 #endif
25565 	sd_prin_readresv_t	*in;
25566 	mhioc_inresvs_t		*ptr;
25567 	sd_readresv_desc_t	*readresv_ptr;
25568 	mhioc_resv_desc_list_t	resvlist;
25569 	mhioc_resv_desc_t 	resvdesc;
25570 	uchar_t			*data_bufp = NULL;
25571 	int 			data_len;
25572 	int			rval = 0;
25573 	int			i;
25574 	size_t			copysz;
25575 	mhioc_resv_desc_t	*bufp;
25576 	sd_ssc_t		*ssc;
25577 
25578 	if ((ptr = usrp) == NULL) {
25579 		return (EINVAL);
25580 	}
25581 
25582 	ssc = sd_ssc_init(un);
25583 
25584 	/*
25585 	 * Get the listsize from user
25586 	 */
25587 #ifdef _MULTI_DATAMODEL
25588 	switch (ddi_model_convert_from(flag & FMODELS)) {
25589 	case DDI_MODEL_ILP32:
25590 		copysz = sizeof (struct mhioc_resv_desc_list32);
25591 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
25592 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25593 			    "sd_persistent_reservation_in_read_resv: "
25594 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25595 			rval = EFAULT;
25596 			goto done;
25597 		}
25598 		resvlist.listsize = resvlist32.listsize;
25599 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
25600 		break;
25601 
25602 	case DDI_MODEL_NONE:
25603 		copysz = sizeof (mhioc_resv_desc_list_t);
25604 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25605 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25606 			    "sd_persistent_reservation_in_read_resv: "
25607 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25608 			rval = EFAULT;
25609 			goto done;
25610 		}
25611 		break;
25612 	}
25613 #else /* ! _MULTI_DATAMODEL */
25614 	copysz = sizeof (mhioc_resv_desc_list_t);
25615 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
25616 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25617 		    "sd_persistent_reservation_in_read_resv: "
25618 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
25619 		rval = EFAULT;
25620 		goto done;
25621 	}
25622 #endif /* ! _MULTI_DATAMODEL */
25623 
25624 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
25625 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
25626 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
25627 
25628 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
25629 	    data_len, data_bufp);
25630 	if (rval != 0) {
25631 		if (rval == EIO)
25632 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
25633 		else
25634 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
25635 		goto done;
25636 	}
25637 	in = (sd_prin_readresv_t *)data_bufp;
25638 	ptr->generation = BE_32(in->generation);
25639 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
25640 
25641 	/*
25642 	 * Return the min(listsize, listlen( keys
25643 	 */
25644 #ifdef _MULTI_DATAMODEL
25645 
25646 	switch (ddi_model_convert_from(flag & FMODELS)) {
25647 	case DDI_MODEL_ILP32:
25648 		resvlist32.listlen = resvlist.listlen;
25649 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
25650 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25651 			    "sd_persistent_reservation_in_read_resv: "
25652 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25653 			rval = EFAULT;
25654 			goto done;
25655 		}
25656 		break;
25657 
25658 	case DDI_MODEL_NONE:
25659 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25660 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25661 			    "sd_persistent_reservation_in_read_resv: "
25662 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25663 			rval = EFAULT;
25664 			goto done;
25665 		}
25666 		break;
25667 	}
25668 
25669 #else /* ! _MULTI_DATAMODEL */
25670 
25671 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
25672 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25673 		    "sd_persistent_reservation_in_read_resv: "
25674 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
25675 		rval = EFAULT;
25676 		goto done;
25677 	}
25678 
25679 #endif /* ! _MULTI_DATAMODEL */
25680 
25681 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
25682 	bufp = resvlist.list;
25683 	copysz = sizeof (mhioc_resv_desc_t);
25684 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
25685 	    i++, readresv_ptr++, bufp++) {
25686 
25687 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
25688 		    MHIOC_RESV_KEY_SIZE);
25689 		resvdesc.type  = readresv_ptr->type;
25690 		resvdesc.scope = readresv_ptr->scope;
25691 		resvdesc.scope_specific_addr =
25692 		    BE_32(readresv_ptr->scope_specific_addr);
25693 
25694 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
25695 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25696 			    "sd_persistent_reservation_in_read_resv: "
25697 			    "failed ddi_copyout: resvlist\n");
25698 			rval = EFAULT;
25699 			goto done;
25700 		}
25701 	}
25702 done:
25703 	sd_ssc_fini(ssc);
25704 	/* only if data_bufp is allocated, we need to free it */
25705 	if (data_bufp) {
25706 		kmem_free(data_bufp, data_len);
25707 	}
25708 	return (rval);
25709 }
25710 
25711 
25712 /*
25713  *    Function: sr_change_blkmode()
25714  *
25715  * Description: This routine is the driver entry point for handling CD-ROM
25716  *		block mode ioctl requests. Support for returning and changing
25717  *		the current block size in use by the device is implemented. The
25718  *		LBA size is changed via a MODE SELECT Block Descriptor.
25719  *
25720  *		This routine issues a mode sense with an allocation length of
25721  *		12 bytes for the mode page header and a single block descriptor.
25722  *
25723  *   Arguments: dev - the device 'dev_t'
25724  *		cmd - the request type; one of CDROMGBLKMODE (get) or
25725  *		      CDROMSBLKMODE (set)
25726  *		data - current block size or requested block size
25727  *		flag - this argument is a pass through to ddi_copyxxx() directly
25728  *		       from the mode argument of ioctl().
25729  *
25730  * Return Code: the code returned by sd_send_scsi_cmd()
25731  *		EINVAL if invalid arguments are provided
25732  *		EFAULT if ddi_copyxxx() fails
25733  *		ENXIO if fail ddi_get_soft_state
25734  *		EIO if invalid mode sense block descriptor length
25735  *
25736  */
25737 
25738 static int
25739 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
25740 {
25741 	struct sd_lun			*un = NULL;
25742 	struct mode_header		*sense_mhp, *select_mhp;
25743 	struct block_descriptor		*sense_desc, *select_desc;
25744 	int				current_bsize;
25745 	int				rval = EINVAL;
25746 	uchar_t				*sense = NULL;
25747 	uchar_t				*select = NULL;
25748 	sd_ssc_t			*ssc;
25749 
25750 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
25751 
25752 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25753 		return (ENXIO);
25754 	}
25755 
25756 	/*
25757 	 * The block length is changed via the Mode Select block descriptor, the
25758 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
25759 	 * required as part of this routine. Therefore the mode sense allocation
25760 	 * length is specified to be the length of a mode page header and a
25761 	 * block descriptor.
25762 	 */
25763 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25764 
25765 	ssc = sd_ssc_init(un);
25766 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25767 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
25768 	sd_ssc_fini(ssc);
25769 	if (rval != 0) {
25770 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25771 		    "sr_change_blkmode: Mode Sense Failed\n");
25772 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25773 		return (rval);
25774 	}
25775 
25776 	/* Check the block descriptor len to handle only 1 block descriptor */
25777 	sense_mhp = (struct mode_header *)sense;
25778 	if ((sense_mhp->bdesc_length == 0) ||
25779 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
25780 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25781 		    "sr_change_blkmode: Mode Sense returned invalid block"
25782 		    " descriptor length\n");
25783 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25784 		return (EIO);
25785 	}
25786 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
25787 	current_bsize = ((sense_desc->blksize_hi << 16) |
25788 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
25789 
25790 	/* Process command */
25791 	switch (cmd) {
25792 	case CDROMGBLKMODE:
25793 		/* Return the block size obtained during the mode sense */
25794 		if (ddi_copyout(&current_bsize, (void *)data,
25795 		    sizeof (int), flag) != 0)
25796 			rval = EFAULT;
25797 		break;
25798 	case CDROMSBLKMODE:
25799 		/* Validate the requested block size */
25800 		switch (data) {
25801 		case CDROM_BLK_512:
25802 		case CDROM_BLK_1024:
25803 		case CDROM_BLK_2048:
25804 		case CDROM_BLK_2056:
25805 		case CDROM_BLK_2336:
25806 		case CDROM_BLK_2340:
25807 		case CDROM_BLK_2352:
25808 		case CDROM_BLK_2368:
25809 		case CDROM_BLK_2448:
25810 		case CDROM_BLK_2646:
25811 		case CDROM_BLK_2647:
25812 			break;
25813 		default:
25814 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25815 			    "sr_change_blkmode: "
25816 			    "Block Size '%ld' Not Supported\n", data);
25817 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25818 			return (EINVAL);
25819 		}
25820 
25821 		/*
25822 		 * The current block size matches the requested block size so
25823 		 * there is no need to send the mode select to change the size
25824 		 */
25825 		if (current_bsize == data) {
25826 			break;
25827 		}
25828 
25829 		/* Build the select data for the requested block size */
25830 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
25831 		select_mhp = (struct mode_header *)select;
25832 		select_desc =
25833 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
25834 		/*
25835 		 * The LBA size is changed via the block descriptor, so the
25836 		 * descriptor is built according to the user data
25837 		 */
25838 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
25839 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
25840 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
25841 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
25842 
25843 		/* Send the mode select for the requested block size */
25844 		ssc = sd_ssc_init(un);
25845 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25846 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25847 		    SD_PATH_STANDARD);
25848 		sd_ssc_fini(ssc);
25849 		if (rval != 0) {
25850 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25851 			    "sr_change_blkmode: Mode Select Failed\n");
25852 			/*
25853 			 * The mode select failed for the requested block size,
25854 			 * so reset the data for the original block size and
25855 			 * send it to the target. The error is indicated by the
25856 			 * return value for the failed mode select.
25857 			 */
25858 			select_desc->blksize_hi  = sense_desc->blksize_hi;
25859 			select_desc->blksize_mid = sense_desc->blksize_mid;
25860 			select_desc->blksize_lo  = sense_desc->blksize_lo;
25861 			ssc = sd_ssc_init(un);
25862 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
25863 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
25864 			    SD_PATH_STANDARD);
25865 			sd_ssc_fini(ssc);
25866 		} else {
25867 			ASSERT(!mutex_owned(SD_MUTEX(un)));
25868 			mutex_enter(SD_MUTEX(un));
25869 			sd_update_block_info(un, (uint32_t)data, 0);
25870 			mutex_exit(SD_MUTEX(un));
25871 		}
25872 		break;
25873 	default:
25874 		/* should not reach here, but check anyway */
25875 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25876 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
25877 		rval = EINVAL;
25878 		break;
25879 	}
25880 
25881 	if (select) {
25882 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
25883 	}
25884 	if (sense) {
25885 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
25886 	}
25887 	return (rval);
25888 }
25889 
25890 
25891 /*
25892  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
25893  * implement driver support for getting and setting the CD speed. The command
25894  * set used will be based on the device type. If the device has not been
25895  * identified as MMC the Toshiba vendor specific mode page will be used. If
25896  * the device is MMC but does not support the Real Time Streaming feature
25897  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
25898  * be used to read the speed.
25899  */
25900 
25901 /*
25902  *    Function: sr_change_speed()
25903  *
25904  * Description: This routine is the driver entry point for handling CD-ROM
25905  *		drive speed ioctl requests for devices supporting the Toshiba
25906  *		vendor specific drive speed mode page. Support for returning
25907  *		and changing the current drive speed in use by the device is
25908  *		implemented.
25909  *
25910  *   Arguments: dev - the device 'dev_t'
25911  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
25912  *		      CDROMSDRVSPEED (set)
25913  *		data - current drive speed or requested drive speed
25914  *		flag - this argument is a pass through to ddi_copyxxx() directly
25915  *		       from the mode argument of ioctl().
25916  *
25917  * Return Code: the code returned by sd_send_scsi_cmd()
25918  *		EINVAL if invalid arguments are provided
25919  *		EFAULT if ddi_copyxxx() fails
25920  *		ENXIO if fail ddi_get_soft_state
25921  *		EIO if invalid mode sense block descriptor length
25922  */
25923 
25924 static int
25925 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
25926 {
25927 	struct sd_lun			*un = NULL;
25928 	struct mode_header		*sense_mhp, *select_mhp;
25929 	struct mode_speed		*sense_page, *select_page;
25930 	int				current_speed;
25931 	int				rval = EINVAL;
25932 	int				bd_len;
25933 	uchar_t				*sense = NULL;
25934 	uchar_t				*select = NULL;
25935 	sd_ssc_t			*ssc;
25936 
25937 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
25938 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25939 		return (ENXIO);
25940 	}
25941 
25942 	/*
25943 	 * Note: The drive speed is being modified here according to a Toshiba
25944 	 * vendor specific mode page (0x31).
25945 	 */
25946 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
25947 
25948 	ssc = sd_ssc_init(un);
25949 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
25950 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
25951 	    SD_PATH_STANDARD);
25952 	sd_ssc_fini(ssc);
25953 	if (rval != 0) {
25954 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25955 		    "sr_change_speed: Mode Sense Failed\n");
25956 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25957 		return (rval);
25958 	}
25959 	sense_mhp  = (struct mode_header *)sense;
25960 
25961 	/* Check the block descriptor len to handle only 1 block descriptor */
25962 	bd_len = sense_mhp->bdesc_length;
25963 	if (bd_len > MODE_BLK_DESC_LENGTH) {
25964 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25965 		    "sr_change_speed: Mode Sense returned invalid block "
25966 		    "descriptor length\n");
25967 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
25968 		return (EIO);
25969 	}
25970 
25971 	sense_page = (struct mode_speed *)
25972 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25973 	current_speed = sense_page->speed;
25974 
25975 	/* Process command */
25976 	switch (cmd) {
25977 	case CDROMGDRVSPEED:
25978 		/* Return the drive speed obtained during the mode sense */
25979 		if (current_speed == 0x2) {
25980 			current_speed = CDROM_TWELVE_SPEED;
25981 		}
25982 		if (ddi_copyout(&current_speed, (void *)data,
25983 		    sizeof (int), flag) != 0) {
25984 			rval = EFAULT;
25985 		}
25986 		break;
25987 	case CDROMSDRVSPEED:
25988 		/* Validate the requested drive speed */
25989 		switch ((uchar_t)data) {
25990 		case CDROM_TWELVE_SPEED:
25991 			data = 0x2;
25992 			/*FALLTHROUGH*/
25993 		case CDROM_NORMAL_SPEED:
25994 		case CDROM_DOUBLE_SPEED:
25995 		case CDROM_QUAD_SPEED:
25996 		case CDROM_MAXIMUM_SPEED:
25997 			break;
25998 		default:
25999 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26000 			    "sr_change_speed: "
26001 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26002 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26003 			return (EINVAL);
26004 		}
26005 
26006 		/*
26007 		 * The current drive speed matches the requested drive speed so
26008 		 * there is no need to send the mode select to change the speed
26009 		 */
26010 		if (current_speed == data) {
26011 			break;
26012 		}
26013 
26014 		/* Build the select data for the requested drive speed */
26015 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26016 		select_mhp = (struct mode_header *)select;
26017 		select_mhp->bdesc_length = 0;
26018 		select_page =
26019 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26020 		select_page =
26021 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26022 		select_page->mode_page.code = CDROM_MODE_SPEED;
26023 		select_page->mode_page.length = 2;
26024 		select_page->speed = (uchar_t)data;
26025 
26026 		/* Send the mode select for the requested block size */
26027 		ssc = sd_ssc_init(un);
26028 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
26029 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26030 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26031 		sd_ssc_fini(ssc);
26032 		if (rval != 0) {
26033 			/*
26034 			 * The mode select failed for the requested drive speed,
26035 			 * so reset the data for the original drive speed and
26036 			 * send it to the target. The error is indicated by the
26037 			 * return value for the failed mode select.
26038 			 */
26039 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26040 			    "sr_drive_speed: Mode Select Failed\n");
26041 			select_page->speed = sense_page->speed;
26042 			ssc = sd_ssc_init(un);
26043 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
26044 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26045 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26046 			sd_ssc_fini(ssc);
26047 		}
26048 		break;
26049 	default:
26050 		/* should not reach here, but check anyway */
26051 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26052 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26053 		rval = EINVAL;
26054 		break;
26055 	}
26056 
26057 	if (select) {
26058 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26059 	}
26060 	if (sense) {
26061 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26062 	}
26063 
26064 	return (rval);
26065 }
26066 
26067 
26068 /*
26069  *    Function: sr_atapi_change_speed()
26070  *
26071  * Description: This routine is the driver entry point for handling CD-ROM
26072  *		drive speed ioctl requests for MMC devices that do not support
26073  *		the Real Time Streaming feature (0x107).
26074  *
26075  *		Note: This routine will use the SET SPEED command which may not
26076  *		be supported by all devices.
26077  *
26078  *   Arguments: dev- the device 'dev_t'
26079  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26080  *		     CDROMSDRVSPEED (set)
26081  *		data- current drive speed or requested drive speed
26082  *		flag- this argument is a pass through to ddi_copyxxx() directly
26083  *		      from the mode argument of ioctl().
26084  *
26085  * Return Code: the code returned by sd_send_scsi_cmd()
26086  *		EINVAL if invalid arguments are provided
26087  *		EFAULT if ddi_copyxxx() fails
26088  *		ENXIO if fail ddi_get_soft_state
26089  *		EIO if invalid mode sense block descriptor length
26090  */
26091 
26092 static int
26093 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26094 {
26095 	struct sd_lun			*un;
26096 	struct uscsi_cmd		*com = NULL;
26097 	struct mode_header_grp2		*sense_mhp;
26098 	uchar_t				*sense_page;
26099 	uchar_t				*sense = NULL;
26100 	char				cdb[CDB_GROUP5];
26101 	int				bd_len;
26102 	int				current_speed = 0;
26103 	int				max_speed = 0;
26104 	int				rval;
26105 	sd_ssc_t			*ssc;
26106 
26107 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26108 
26109 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26110 		return (ENXIO);
26111 	}
26112 
26113 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26114 
26115 	ssc = sd_ssc_init(un);
26116 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
26117 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26118 	    SD_PATH_STANDARD);
26119 	sd_ssc_fini(ssc);
26120 	if (rval != 0) {
26121 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26122 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26123 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26124 		return (rval);
26125 	}
26126 
26127 	/* Check the block descriptor len to handle only 1 block descriptor */
26128 	sense_mhp = (struct mode_header_grp2 *)sense;
26129 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26130 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26131 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26132 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26133 		    "block descriptor length\n");
26134 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26135 		return (EIO);
26136 	}
26137 
26138 	/* Calculate the current and maximum drive speeds */
26139 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26140 	current_speed = (sense_page[14] << 8) | sense_page[15];
26141 	max_speed = (sense_page[8] << 8) | sense_page[9];
26142 
26143 	/* Process the command */
26144 	switch (cmd) {
26145 	case CDROMGDRVSPEED:
26146 		current_speed /= SD_SPEED_1X;
26147 		if (ddi_copyout(&current_speed, (void *)data,
26148 		    sizeof (int), flag) != 0)
26149 			rval = EFAULT;
26150 		break;
26151 	case CDROMSDRVSPEED:
26152 		/* Convert the speed code to KB/sec */
26153 		switch ((uchar_t)data) {
26154 		case CDROM_NORMAL_SPEED:
26155 			current_speed = SD_SPEED_1X;
26156 			break;
26157 		case CDROM_DOUBLE_SPEED:
26158 			current_speed = 2 * SD_SPEED_1X;
26159 			break;
26160 		case CDROM_QUAD_SPEED:
26161 			current_speed = 4 * SD_SPEED_1X;
26162 			break;
26163 		case CDROM_TWELVE_SPEED:
26164 			current_speed = 12 * SD_SPEED_1X;
26165 			break;
26166 		case CDROM_MAXIMUM_SPEED:
26167 			current_speed = 0xffff;
26168 			break;
26169 		default:
26170 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26171 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26172 			    (uchar_t)data);
26173 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26174 			return (EINVAL);
26175 		}
26176 
26177 		/* Check the request against the drive's max speed. */
26178 		if (current_speed != 0xffff) {
26179 			if (current_speed > max_speed) {
26180 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26181 				return (EINVAL);
26182 			}
26183 		}
26184 
26185 		/*
26186 		 * Build and send the SET SPEED command
26187 		 *
26188 		 * Note: The SET SPEED (0xBB) command used in this routine is
26189 		 * obsolete per the SCSI MMC spec but still supported in the
26190 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26191 		 * therefore the command is still implemented in this routine.
26192 		 */
26193 		bzero(cdb, sizeof (cdb));
26194 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
26195 		cdb[2] = (uchar_t)(current_speed >> 8);
26196 		cdb[3] = (uchar_t)current_speed;
26197 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26198 		com->uscsi_cdb	   = (caddr_t)cdb;
26199 		com->uscsi_cdblen  = CDB_GROUP5;
26200 		com->uscsi_bufaddr = NULL;
26201 		com->uscsi_buflen  = 0;
26202 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
26203 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
26204 		break;
26205 	default:
26206 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26207 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
26208 		rval = EINVAL;
26209 	}
26210 
26211 	if (sense) {
26212 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26213 	}
26214 	if (com) {
26215 		kmem_free(com, sizeof (*com));
26216 	}
26217 	return (rval);
26218 }
26219 
26220 
26221 /*
26222  *    Function: sr_pause_resume()
26223  *
26224  * Description: This routine is the driver entry point for handling CD-ROM
26225  *		pause/resume ioctl requests. This only affects the audio play
26226  *		operation.
26227  *
26228  *   Arguments: dev - the device 'dev_t'
26229  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
26230  *		      for setting the resume bit of the cdb.
26231  *
26232  * Return Code: the code returned by sd_send_scsi_cmd()
26233  *		EINVAL if invalid mode specified
26234  *
26235  */
26236 
26237 static int
26238 sr_pause_resume(dev_t dev, int cmd)
26239 {
26240 	struct sd_lun		*un;
26241 	struct uscsi_cmd	*com;
26242 	char			cdb[CDB_GROUP1];
26243 	int			rval;
26244 
26245 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26246 		return (ENXIO);
26247 	}
26248 
26249 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26250 	bzero(cdb, CDB_GROUP1);
26251 	cdb[0] = SCMD_PAUSE_RESUME;
26252 	switch (cmd) {
26253 	case CDROMRESUME:
26254 		cdb[8] = 1;
26255 		break;
26256 	case CDROMPAUSE:
26257 		cdb[8] = 0;
26258 		break;
26259 	default:
26260 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
26261 		    " Command '%x' Not Supported\n", cmd);
26262 		rval = EINVAL;
26263 		goto done;
26264 	}
26265 
26266 	com->uscsi_cdb    = cdb;
26267 	com->uscsi_cdblen = CDB_GROUP1;
26268 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26269 
26270 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26271 	    SD_PATH_STANDARD);
26272 
26273 done:
26274 	kmem_free(com, sizeof (*com));
26275 	return (rval);
26276 }
26277 
26278 
26279 /*
26280  *    Function: sr_play_msf()
26281  *
26282  * Description: This routine is the driver entry point for handling CD-ROM
26283  *		ioctl requests to output the audio signals at the specified
26284  *		starting address and continue the audio play until the specified
26285  *		ending address (CDROMPLAYMSF) The address is in Minute Second
26286  *		Frame (MSF) format.
26287  *
26288  *   Arguments: dev	- the device 'dev_t'
26289  *		data	- pointer to user provided audio msf structure,
26290  *		          specifying start/end addresses.
26291  *		flag	- this argument is a pass through to ddi_copyxxx()
26292  *		          directly from the mode argument of ioctl().
26293  *
26294  * Return Code: the code returned by sd_send_scsi_cmd()
26295  *		EFAULT if ddi_copyxxx() fails
26296  *		ENXIO if fail ddi_get_soft_state
26297  *		EINVAL if data pointer is NULL
26298  */
26299 
26300 static int
26301 sr_play_msf(dev_t dev, caddr_t data, int flag)
26302 {
26303 	struct sd_lun		*un;
26304 	struct uscsi_cmd	*com;
26305 	struct cdrom_msf	msf_struct;
26306 	struct cdrom_msf	*msf = &msf_struct;
26307 	char			cdb[CDB_GROUP1];
26308 	int			rval;
26309 
26310 	if (data == NULL) {
26311 		return (EINVAL);
26312 	}
26313 
26314 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26315 		return (ENXIO);
26316 	}
26317 
26318 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
26319 		return (EFAULT);
26320 	}
26321 
26322 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26323 	bzero(cdb, CDB_GROUP1);
26324 	cdb[0] = SCMD_PLAYAUDIO_MSF;
26325 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
26326 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
26327 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
26328 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
26329 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
26330 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
26331 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
26332 	} else {
26333 		cdb[3] = msf->cdmsf_min0;
26334 		cdb[4] = msf->cdmsf_sec0;
26335 		cdb[5] = msf->cdmsf_frame0;
26336 		cdb[6] = msf->cdmsf_min1;
26337 		cdb[7] = msf->cdmsf_sec1;
26338 		cdb[8] = msf->cdmsf_frame1;
26339 	}
26340 	com->uscsi_cdb    = cdb;
26341 	com->uscsi_cdblen = CDB_GROUP1;
26342 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26343 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26344 	    SD_PATH_STANDARD);
26345 	kmem_free(com, sizeof (*com));
26346 	return (rval);
26347 }
26348 
26349 
26350 /*
26351  *    Function: sr_play_trkind()
26352  *
26353  * Description: This routine is the driver entry point for handling CD-ROM
26354  *		ioctl requests to output the audio signals at the specified
26355  *		starting address and continue the audio play until the specified
26356  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
26357  *		format.
26358  *
26359  *   Arguments: dev	- the device 'dev_t'
26360  *		data	- pointer to user provided audio track/index structure,
26361  *		          specifying start/end addresses.
26362  *		flag	- this argument is a pass through to ddi_copyxxx()
26363  *		          directly from the mode argument of ioctl().
26364  *
26365  * Return Code: the code returned by sd_send_scsi_cmd()
26366  *		EFAULT if ddi_copyxxx() fails
26367  *		ENXIO if fail ddi_get_soft_state
26368  *		EINVAL if data pointer is NULL
26369  */
26370 
26371 static int
26372 sr_play_trkind(dev_t dev, caddr_t data, int flag)
26373 {
26374 	struct cdrom_ti		ti_struct;
26375 	struct cdrom_ti		*ti = &ti_struct;
26376 	struct uscsi_cmd	*com = NULL;
26377 	char			cdb[CDB_GROUP1];
26378 	int			rval;
26379 
26380 	if (data == NULL) {
26381 		return (EINVAL);
26382 	}
26383 
26384 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
26385 		return (EFAULT);
26386 	}
26387 
26388 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26389 	bzero(cdb, CDB_GROUP1);
26390 	cdb[0] = SCMD_PLAYAUDIO_TI;
26391 	cdb[4] = ti->cdti_trk0;
26392 	cdb[5] = ti->cdti_ind0;
26393 	cdb[7] = ti->cdti_trk1;
26394 	cdb[8] = ti->cdti_ind1;
26395 	com->uscsi_cdb    = cdb;
26396 	com->uscsi_cdblen = CDB_GROUP1;
26397 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
26398 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26399 	    SD_PATH_STANDARD);
26400 	kmem_free(com, sizeof (*com));
26401 	return (rval);
26402 }
26403 
26404 
26405 /*
26406  *    Function: sr_read_all_subcodes()
26407  *
26408  * Description: This routine is the driver entry point for handling CD-ROM
26409  *		ioctl requests to return raw subcode data while the target is
26410  *		playing audio (CDROMSUBCODE).
26411  *
26412  *   Arguments: dev	- the device 'dev_t'
26413  *		data	- pointer to user provided cdrom subcode structure,
26414  *		          specifying the transfer length and address.
26415  *		flag	- this argument is a pass through to ddi_copyxxx()
26416  *		          directly from the mode argument of ioctl().
26417  *
26418  * Return Code: the code returned by sd_send_scsi_cmd()
26419  *		EFAULT if ddi_copyxxx() fails
26420  *		ENXIO if fail ddi_get_soft_state
26421  *		EINVAL if data pointer is NULL
26422  */
26423 
26424 static int
26425 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
26426 {
26427 	struct sd_lun		*un = NULL;
26428 	struct uscsi_cmd	*com = NULL;
26429 	struct cdrom_subcode	*subcode = NULL;
26430 	int			rval;
26431 	size_t			buflen;
26432 	char			cdb[CDB_GROUP5];
26433 
26434 #ifdef _MULTI_DATAMODEL
26435 	/* To support ILP32 applications in an LP64 world */
26436 	struct cdrom_subcode32		cdrom_subcode32;
26437 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
26438 #endif
26439 	if (data == NULL) {
26440 		return (EINVAL);
26441 	}
26442 
26443 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26444 		return (ENXIO);
26445 	}
26446 
26447 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
26448 
26449 #ifdef _MULTI_DATAMODEL
26450 	switch (ddi_model_convert_from(flag & FMODELS)) {
26451 	case DDI_MODEL_ILP32:
26452 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
26453 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26454 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26455 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26456 			return (EFAULT);
26457 		}
26458 		/* Convert the ILP32 uscsi data from the application to LP64 */
26459 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
26460 		break;
26461 	case DDI_MODEL_NONE:
26462 		if (ddi_copyin(data, subcode,
26463 		    sizeof (struct cdrom_subcode), flag)) {
26464 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26465 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
26466 			kmem_free(subcode, sizeof (struct cdrom_subcode));
26467 			return (EFAULT);
26468 		}
26469 		break;
26470 	}
26471 #else /* ! _MULTI_DATAMODEL */
26472 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
26473 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26474 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
26475 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26476 		return (EFAULT);
26477 	}
26478 #endif /* _MULTI_DATAMODEL */
26479 
26480 	/*
26481 	 * Since MMC-2 expects max 3 bytes for length, check if the
26482 	 * length input is greater than 3 bytes
26483 	 */
26484 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
26485 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26486 		    "sr_read_all_subcodes: "
26487 		    "cdrom transfer length too large: %d (limit %d)\n",
26488 		    subcode->cdsc_length, 0xFFFFFF);
26489 		kmem_free(subcode, sizeof (struct cdrom_subcode));
26490 		return (EINVAL);
26491 	}
26492 
26493 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
26494 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26495 	bzero(cdb, CDB_GROUP5);
26496 
26497 	if (un->un_f_mmc_cap == TRUE) {
26498 		cdb[0] = (char)SCMD_READ_CD;
26499 		cdb[2] = (char)0xff;
26500 		cdb[3] = (char)0xff;
26501 		cdb[4] = (char)0xff;
26502 		cdb[5] = (char)0xff;
26503 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26504 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26505 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
26506 		cdb[10] = 1;
26507 	} else {
26508 		/*
26509 		 * Note: A vendor specific command (0xDF) is being used her to
26510 		 * request a read of all subcodes.
26511 		 */
26512 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
26513 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
26514 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
26515 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
26516 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
26517 	}
26518 	com->uscsi_cdb	   = cdb;
26519 	com->uscsi_cdblen  = CDB_GROUP5;
26520 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
26521 	com->uscsi_buflen  = buflen;
26522 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26523 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
26524 	    SD_PATH_STANDARD);
26525 	kmem_free(subcode, sizeof (struct cdrom_subcode));
26526 	kmem_free(com, sizeof (*com));
26527 	return (rval);
26528 }
26529 
26530 
26531 /*
26532  *    Function: sr_read_subchannel()
26533  *
26534  * Description: This routine is the driver entry point for handling CD-ROM
26535  *		ioctl requests to return the Q sub-channel data of the CD
26536  *		current position block. (CDROMSUBCHNL) The data includes the
26537  *		track number, index number, absolute CD-ROM address (LBA or MSF
26538  *		format per the user) , track relative CD-ROM address (LBA or MSF
26539  *		format per the user), control data and audio status.
26540  *
26541  *   Arguments: dev	- the device 'dev_t'
26542  *		data	- pointer to user provided cdrom sub-channel structure
26543  *		flag	- this argument is a pass through to ddi_copyxxx()
26544  *		          directly from the mode argument of ioctl().
26545  *
26546  * Return Code: the code returned by sd_send_scsi_cmd()
26547  *		EFAULT if ddi_copyxxx() fails
26548  *		ENXIO if fail ddi_get_soft_state
26549  *		EINVAL if data pointer is NULL
26550  */
26551 
26552 static int
26553 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
26554 {
26555 	struct sd_lun		*un;
26556 	struct uscsi_cmd	*com;
26557 	struct cdrom_subchnl	subchanel;
26558 	struct cdrom_subchnl	*subchnl = &subchanel;
26559 	char			cdb[CDB_GROUP1];
26560 	caddr_t			buffer;
26561 	int			rval;
26562 
26563 	if (data == NULL) {
26564 		return (EINVAL);
26565 	}
26566 
26567 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26568 	    (un->un_state == SD_STATE_OFFLINE)) {
26569 		return (ENXIO);
26570 	}
26571 
26572 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
26573 		return (EFAULT);
26574 	}
26575 
26576 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
26577 	bzero(cdb, CDB_GROUP1);
26578 	cdb[0] = SCMD_READ_SUBCHANNEL;
26579 	/* Set the MSF bit based on the user requested address format */
26580 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
26581 	/*
26582 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
26583 	 * returned
26584 	 */
26585 	cdb[2] = 0x40;
26586 	/*
26587 	 * Set byte 3 to specify the return data format. A value of 0x01
26588 	 * indicates that the CD-ROM current position should be returned.
26589 	 */
26590 	cdb[3] = 0x01;
26591 	cdb[8] = 0x10;
26592 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26593 	com->uscsi_cdb	   = cdb;
26594 	com->uscsi_cdblen  = CDB_GROUP1;
26595 	com->uscsi_bufaddr = buffer;
26596 	com->uscsi_buflen  = 16;
26597 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26598 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26599 	    SD_PATH_STANDARD);
26600 	if (rval != 0) {
26601 		kmem_free(buffer, 16);
26602 		kmem_free(com, sizeof (*com));
26603 		return (rval);
26604 	}
26605 
26606 	/* Process the returned Q sub-channel data */
26607 	subchnl->cdsc_audiostatus = buffer[1];
26608 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
26609 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
26610 	subchnl->cdsc_trk	= buffer[6];
26611 	subchnl->cdsc_ind	= buffer[7];
26612 	if (subchnl->cdsc_format & CDROM_LBA) {
26613 		subchnl->cdsc_absaddr.lba =
26614 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26615 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26616 		subchnl->cdsc_reladdr.lba =
26617 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
26618 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
26619 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
26620 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
26621 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
26622 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
26623 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
26624 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
26625 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
26626 	} else {
26627 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
26628 		subchnl->cdsc_absaddr.msf.second = buffer[10];
26629 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
26630 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
26631 		subchnl->cdsc_reladdr.msf.second = buffer[14];
26632 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
26633 	}
26634 	kmem_free(buffer, 16);
26635 	kmem_free(com, sizeof (*com));
26636 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
26637 	    != 0) {
26638 		return (EFAULT);
26639 	}
26640 	return (rval);
26641 }
26642 
26643 
26644 /*
26645  *    Function: sr_read_tocentry()
26646  *
26647  * Description: This routine is the driver entry point for handling CD-ROM
26648  *		ioctl requests to read from the Table of Contents (TOC)
26649  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
26650  *		fields, the starting address (LBA or MSF format per the user)
26651  *		and the data mode if the user specified track is a data track.
26652  *
26653  *		Note: The READ HEADER (0x44) command used in this routine is
26654  *		obsolete per the SCSI MMC spec but still supported in the
26655  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
26656  *		therefore the command is still implemented in this routine.
26657  *
26658  *   Arguments: dev	- the device 'dev_t'
26659  *		data	- pointer to user provided toc entry structure,
26660  *			  specifying the track # and the address format
26661  *			  (LBA or MSF).
26662  *		flag	- this argument is a pass through to ddi_copyxxx()
26663  *		          directly from the mode argument of ioctl().
26664  *
26665  * Return Code: the code returned by sd_send_scsi_cmd()
26666  *		EFAULT if ddi_copyxxx() fails
26667  *		ENXIO if fail ddi_get_soft_state
26668  *		EINVAL if data pointer is NULL
26669  */
26670 
26671 static int
26672 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
26673 {
26674 	struct sd_lun		*un = NULL;
26675 	struct uscsi_cmd	*com;
26676 	struct cdrom_tocentry	toc_entry;
26677 	struct cdrom_tocentry	*entry = &toc_entry;
26678 	caddr_t			buffer;
26679 	int			rval;
26680 	char			cdb[CDB_GROUP1];
26681 
26682 	if (data == NULL) {
26683 		return (EINVAL);
26684 	}
26685 
26686 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26687 	    (un->un_state == SD_STATE_OFFLINE)) {
26688 		return (ENXIO);
26689 	}
26690 
26691 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
26692 		return (EFAULT);
26693 	}
26694 
26695 	/* Validate the requested track and address format */
26696 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
26697 		return (EINVAL);
26698 	}
26699 
26700 	if (entry->cdte_track == 0) {
26701 		return (EINVAL);
26702 	}
26703 
26704 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
26705 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26706 	bzero(cdb, CDB_GROUP1);
26707 
26708 	cdb[0] = SCMD_READ_TOC;
26709 	/* Set the MSF bit based on the user requested address format  */
26710 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
26711 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26712 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
26713 	} else {
26714 		cdb[6] = entry->cdte_track;
26715 	}
26716 
26717 	/*
26718 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26719 	 * (4 byte TOC response header + 8 byte track descriptor)
26720 	 */
26721 	cdb[8] = 12;
26722 	com->uscsi_cdb	   = cdb;
26723 	com->uscsi_cdblen  = CDB_GROUP1;
26724 	com->uscsi_bufaddr = buffer;
26725 	com->uscsi_buflen  = 0x0C;
26726 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
26727 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26728 	    SD_PATH_STANDARD);
26729 	if (rval != 0) {
26730 		kmem_free(buffer, 12);
26731 		kmem_free(com, sizeof (*com));
26732 		return (rval);
26733 	}
26734 
26735 	/* Process the toc entry */
26736 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
26737 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
26738 	if (entry->cdte_format & CDROM_LBA) {
26739 		entry->cdte_addr.lba =
26740 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26741 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26742 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
26743 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
26744 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
26745 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
26746 		/*
26747 		 * Send a READ TOC command using the LBA address format to get
26748 		 * the LBA for the track requested so it can be used in the
26749 		 * READ HEADER request
26750 		 *
26751 		 * Note: The MSF bit of the READ HEADER command specifies the
26752 		 * output format. The block address specified in that command
26753 		 * must be in LBA format.
26754 		 */
26755 		cdb[1] = 0;
26756 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26757 		    SD_PATH_STANDARD);
26758 		if (rval != 0) {
26759 			kmem_free(buffer, 12);
26760 			kmem_free(com, sizeof (*com));
26761 			return (rval);
26762 		}
26763 	} else {
26764 		entry->cdte_addr.msf.minute	= buffer[9];
26765 		entry->cdte_addr.msf.second	= buffer[10];
26766 		entry->cdte_addr.msf.frame	= buffer[11];
26767 		/*
26768 		 * Send a READ TOC command using the LBA address format to get
26769 		 * the LBA for the track requested so it can be used in the
26770 		 * READ HEADER request
26771 		 *
26772 		 * Note: The MSF bit of the READ HEADER command specifies the
26773 		 * output format. The block address specified in that command
26774 		 * must be in LBA format.
26775 		 */
26776 		cdb[1] = 0;
26777 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26778 		    SD_PATH_STANDARD);
26779 		if (rval != 0) {
26780 			kmem_free(buffer, 12);
26781 			kmem_free(com, sizeof (*com));
26782 			return (rval);
26783 		}
26784 	}
26785 
26786 	/*
26787 	 * Build and send the READ HEADER command to determine the data mode of
26788 	 * the user specified track.
26789 	 */
26790 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
26791 	    (entry->cdte_track != CDROM_LEADOUT)) {
26792 		bzero(cdb, CDB_GROUP1);
26793 		cdb[0] = SCMD_READ_HEADER;
26794 		cdb[2] = buffer[8];
26795 		cdb[3] = buffer[9];
26796 		cdb[4] = buffer[10];
26797 		cdb[5] = buffer[11];
26798 		cdb[8] = 0x08;
26799 		com->uscsi_buflen = 0x08;
26800 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26801 		    SD_PATH_STANDARD);
26802 		if (rval == 0) {
26803 			entry->cdte_datamode = buffer[0];
26804 		} else {
26805 			/*
26806 			 * READ HEADER command failed, since this is
26807 			 * obsoleted in one spec, its better to return
26808 			 * -1 for an invlid track so that we can still
26809 			 * receive the rest of the TOC data.
26810 			 */
26811 			entry->cdte_datamode = (uchar_t)-1;
26812 		}
26813 	} else {
26814 		entry->cdte_datamode = (uchar_t)-1;
26815 	}
26816 
26817 	kmem_free(buffer, 12);
26818 	kmem_free(com, sizeof (*com));
26819 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
26820 		return (EFAULT);
26821 
26822 	return (rval);
26823 }
26824 
26825 
26826 /*
26827  *    Function: sr_read_tochdr()
26828  *
26829  * Description: This routine is the driver entry point for handling CD-ROM
26830  * 		ioctl requests to read the Table of Contents (TOC) header
26831  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
26832  *		and ending track numbers
26833  *
26834  *   Arguments: dev	- the device 'dev_t'
26835  *		data	- pointer to user provided toc header structure,
26836  *			  specifying the starting and ending track numbers.
26837  *		flag	- this argument is a pass through to ddi_copyxxx()
26838  *			  directly from the mode argument of ioctl().
26839  *
26840  * Return Code: the code returned by sd_send_scsi_cmd()
26841  *		EFAULT if ddi_copyxxx() fails
26842  *		ENXIO if fail ddi_get_soft_state
26843  *		EINVAL if data pointer is NULL
26844  */
26845 
26846 static int
26847 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
26848 {
26849 	struct sd_lun		*un;
26850 	struct uscsi_cmd	*com;
26851 	struct cdrom_tochdr	toc_header;
26852 	struct cdrom_tochdr	*hdr = &toc_header;
26853 	char			cdb[CDB_GROUP1];
26854 	int			rval;
26855 	caddr_t			buffer;
26856 
26857 	if (data == NULL) {
26858 		return (EINVAL);
26859 	}
26860 
26861 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26862 	    (un->un_state == SD_STATE_OFFLINE)) {
26863 		return (ENXIO);
26864 	}
26865 
26866 	buffer = kmem_zalloc(4, KM_SLEEP);
26867 	bzero(cdb, CDB_GROUP1);
26868 	cdb[0] = SCMD_READ_TOC;
26869 	/*
26870 	 * Specifying a track number of 0x00 in the READ TOC command indicates
26871 	 * that the TOC header should be returned
26872 	 */
26873 	cdb[6] = 0x00;
26874 	/*
26875 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
26876 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
26877 	 */
26878 	cdb[8] = 0x04;
26879 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26880 	com->uscsi_cdb	   = cdb;
26881 	com->uscsi_cdblen  = CDB_GROUP1;
26882 	com->uscsi_bufaddr = buffer;
26883 	com->uscsi_buflen  = 0x04;
26884 	com->uscsi_timeout = 300;
26885 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26886 
26887 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26888 	    SD_PATH_STANDARD);
26889 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
26890 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
26891 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
26892 	} else {
26893 		hdr->cdth_trk0 = buffer[2];
26894 		hdr->cdth_trk1 = buffer[3];
26895 	}
26896 	kmem_free(buffer, 4);
26897 	kmem_free(com, sizeof (*com));
26898 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
26899 		return (EFAULT);
26900 	}
26901 	return (rval);
26902 }
26903 
26904 
26905 /*
26906  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
26907  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
26908  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
26909  * digital audio and extended architecture digital audio. These modes are
26910  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
26911  * MMC specs.
26912  *
26913  * In addition to support for the various data formats these routines also
26914  * include support for devices that implement only the direct access READ
26915  * commands (0x08, 0x28), devices that implement the READ_CD commands
26916  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
26917  * READ CDXA commands (0xD8, 0xDB)
26918  */
26919 
26920 /*
26921  *    Function: sr_read_mode1()
26922  *
26923  * Description: This routine is the driver entry point for handling CD-ROM
26924  *		ioctl read mode1 requests (CDROMREADMODE1).
26925  *
26926  *   Arguments: dev	- the device 'dev_t'
26927  *		data	- pointer to user provided cd read structure specifying
26928  *			  the lba buffer address and length.
26929  *		flag	- this argument is a pass through to ddi_copyxxx()
26930  *			  directly from the mode argument of ioctl().
26931  *
26932  * Return Code: the code returned by sd_send_scsi_cmd()
26933  *		EFAULT if ddi_copyxxx() fails
26934  *		ENXIO if fail ddi_get_soft_state
26935  *		EINVAL if data pointer is NULL
26936  */
26937 
26938 static int
26939 sr_read_mode1(dev_t dev, caddr_t data, int flag)
26940 {
26941 	struct sd_lun		*un;
26942 	struct cdrom_read	mode1_struct;
26943 	struct cdrom_read	*mode1 = &mode1_struct;
26944 	int			rval;
26945 	sd_ssc_t		*ssc;
26946 
26947 #ifdef _MULTI_DATAMODEL
26948 	/* To support ILP32 applications in an LP64 world */
26949 	struct cdrom_read32	cdrom_read32;
26950 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
26951 #endif /* _MULTI_DATAMODEL */
26952 
26953 	if (data == NULL) {
26954 		return (EINVAL);
26955 	}
26956 
26957 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26958 	    (un->un_state == SD_STATE_OFFLINE)) {
26959 		return (ENXIO);
26960 	}
26961 
26962 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26963 	    "sd_read_mode1: entry: un:0x%p\n", un);
26964 
26965 #ifdef _MULTI_DATAMODEL
26966 	switch (ddi_model_convert_from(flag & FMODELS)) {
26967 	case DDI_MODEL_ILP32:
26968 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
26969 			return (EFAULT);
26970 		}
26971 		/* Convert the ILP32 uscsi data from the application to LP64 */
26972 		cdrom_read32tocdrom_read(cdrd32, mode1);
26973 		break;
26974 	case DDI_MODEL_NONE:
26975 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26976 			return (EFAULT);
26977 		}
26978 	}
26979 #else /* ! _MULTI_DATAMODEL */
26980 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
26981 		return (EFAULT);
26982 	}
26983 #endif /* _MULTI_DATAMODEL */
26984 
26985 	ssc = sd_ssc_init(un);
26986 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
26987 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
26988 	sd_ssc_fini(ssc);
26989 
26990 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
26991 	    "sd_read_mode1: exit: un:0x%p\n", un);
26992 
26993 	return (rval);
26994 }
26995 
26996 
26997 /*
26998  *    Function: sr_read_cd_mode2()
26999  *
27000  * Description: This routine is the driver entry point for handling CD-ROM
27001  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27002  *		support the READ CD (0xBE) command or the 1st generation
27003  *		READ CD (0xD4) command.
27004  *
27005  *   Arguments: dev	- the device 'dev_t'
27006  *		data	- pointer to user provided cd read structure specifying
27007  *			  the lba buffer address and length.
27008  *		flag	- this argument is a pass through to ddi_copyxxx()
27009  *			  directly from the mode argument of ioctl().
27010  *
27011  * Return Code: the code returned by sd_send_scsi_cmd()
27012  *		EFAULT if ddi_copyxxx() fails
27013  *		ENXIO if fail ddi_get_soft_state
27014  *		EINVAL if data pointer is NULL
27015  */
27016 
27017 static int
27018 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27019 {
27020 	struct sd_lun		*un;
27021 	struct uscsi_cmd	*com;
27022 	struct cdrom_read	mode2_struct;
27023 	struct cdrom_read	*mode2 = &mode2_struct;
27024 	uchar_t			cdb[CDB_GROUP5];
27025 	int			nblocks;
27026 	int			rval;
27027 #ifdef _MULTI_DATAMODEL
27028 	/*  To support ILP32 applications in an LP64 world */
27029 	struct cdrom_read32	cdrom_read32;
27030 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27031 #endif /* _MULTI_DATAMODEL */
27032 
27033 	if (data == NULL) {
27034 		return (EINVAL);
27035 	}
27036 
27037 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27038 	    (un->un_state == SD_STATE_OFFLINE)) {
27039 		return (ENXIO);
27040 	}
27041 
27042 #ifdef _MULTI_DATAMODEL
27043 	switch (ddi_model_convert_from(flag & FMODELS)) {
27044 	case DDI_MODEL_ILP32:
27045 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27046 			return (EFAULT);
27047 		}
27048 		/* Convert the ILP32 uscsi data from the application to LP64 */
27049 		cdrom_read32tocdrom_read(cdrd32, mode2);
27050 		break;
27051 	case DDI_MODEL_NONE:
27052 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27053 			return (EFAULT);
27054 		}
27055 		break;
27056 	}
27057 
27058 #else /* ! _MULTI_DATAMODEL */
27059 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27060 		return (EFAULT);
27061 	}
27062 #endif /* _MULTI_DATAMODEL */
27063 
27064 	bzero(cdb, sizeof (cdb));
27065 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27066 		/* Read command supported by 1st generation atapi drives */
27067 		cdb[0] = SCMD_READ_CDD4;
27068 	} else {
27069 		/* Universal CD Access Command */
27070 		cdb[0] = SCMD_READ_CD;
27071 	}
27072 
27073 	/*
27074 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27075 	 */
27076 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27077 
27078 	/* set the start address */
27079 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27080 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27081 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27082 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27083 
27084 	/* set the transfer length */
27085 	nblocks = mode2->cdread_buflen / 2336;
27086 	cdb[6] = (uchar_t)(nblocks >> 16);
27087 	cdb[7] = (uchar_t)(nblocks >> 8);
27088 	cdb[8] = (uchar_t)nblocks;
27089 
27090 	/* set the filter bits */
27091 	cdb[9] = CDROM_READ_CD_USERDATA;
27092 
27093 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27094 	com->uscsi_cdb = (caddr_t)cdb;
27095 	com->uscsi_cdblen = sizeof (cdb);
27096 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27097 	com->uscsi_buflen = mode2->cdread_buflen;
27098 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27099 
27100 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27101 	    SD_PATH_STANDARD);
27102 	kmem_free(com, sizeof (*com));
27103 	return (rval);
27104 }
27105 
27106 
27107 /*
27108  *    Function: sr_read_mode2()
27109  *
27110  * Description: This routine is the driver entry point for handling CD-ROM
27111  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27112  *		do not support the READ CD (0xBE) command.
27113  *
27114  *   Arguments: dev	- the device 'dev_t'
27115  *		data	- pointer to user provided cd read structure specifying
27116  *			  the lba buffer address and length.
27117  *		flag	- this argument is a pass through to ddi_copyxxx()
27118  *			  directly from the mode argument of ioctl().
27119  *
27120  * Return Code: the code returned by sd_send_scsi_cmd()
27121  *		EFAULT if ddi_copyxxx() fails
27122  *		ENXIO if fail ddi_get_soft_state
27123  *		EINVAL if data pointer is NULL
27124  *		EIO if fail to reset block size
27125  *		EAGAIN if commands are in progress in the driver
27126  */
27127 
27128 static int
27129 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27130 {
27131 	struct sd_lun		*un;
27132 	struct cdrom_read	mode2_struct;
27133 	struct cdrom_read	*mode2 = &mode2_struct;
27134 	int			rval;
27135 	uint32_t		restore_blksize;
27136 	struct uscsi_cmd	*com;
27137 	uchar_t			cdb[CDB_GROUP0];
27138 	int			nblocks;
27139 
27140 #ifdef _MULTI_DATAMODEL
27141 	/* To support ILP32 applications in an LP64 world */
27142 	struct cdrom_read32	cdrom_read32;
27143 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27144 #endif /* _MULTI_DATAMODEL */
27145 
27146 	if (data == NULL) {
27147 		return (EINVAL);
27148 	}
27149 
27150 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27151 	    (un->un_state == SD_STATE_OFFLINE)) {
27152 		return (ENXIO);
27153 	}
27154 
27155 	/*
27156 	 * Because this routine will update the device and driver block size
27157 	 * being used we want to make sure there are no commands in progress.
27158 	 * If commands are in progress the user will have to try again.
27159 	 *
27160 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27161 	 * in sdioctl to protect commands from sdioctl through to the top of
27162 	 * sd_uscsi_strategy. See sdioctl for details.
27163 	 */
27164 	mutex_enter(SD_MUTEX(un));
27165 	if (un->un_ncmds_in_driver != 1) {
27166 		mutex_exit(SD_MUTEX(un));
27167 		return (EAGAIN);
27168 	}
27169 	mutex_exit(SD_MUTEX(un));
27170 
27171 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27172 	    "sd_read_mode2: entry: un:0x%p\n", un);
27173 
27174 #ifdef _MULTI_DATAMODEL
27175 	switch (ddi_model_convert_from(flag & FMODELS)) {
27176 	case DDI_MODEL_ILP32:
27177 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27178 			return (EFAULT);
27179 		}
27180 		/* Convert the ILP32 uscsi data from the application to LP64 */
27181 		cdrom_read32tocdrom_read(cdrd32, mode2);
27182 		break;
27183 	case DDI_MODEL_NONE:
27184 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27185 			return (EFAULT);
27186 		}
27187 		break;
27188 	}
27189 #else /* ! _MULTI_DATAMODEL */
27190 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
27191 		return (EFAULT);
27192 	}
27193 #endif /* _MULTI_DATAMODEL */
27194 
27195 	/* Store the current target block size for restoration later */
27196 	restore_blksize = un->un_tgt_blocksize;
27197 
27198 	/* Change the device and soft state target block size to 2336 */
27199 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
27200 		rval = EIO;
27201 		goto done;
27202 	}
27203 
27204 
27205 	bzero(cdb, sizeof (cdb));
27206 
27207 	/* set READ operation */
27208 	cdb[0] = SCMD_READ;
27209 
27210 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
27211 	mode2->cdread_lba >>= 2;
27212 
27213 	/* set the start address */
27214 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
27215 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27216 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
27217 
27218 	/* set the transfer length */
27219 	nblocks = mode2->cdread_buflen / 2336;
27220 	cdb[4] = (uchar_t)nblocks & 0xFF;
27221 
27222 	/* build command */
27223 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27224 	com->uscsi_cdb = (caddr_t)cdb;
27225 	com->uscsi_cdblen = sizeof (cdb);
27226 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27227 	com->uscsi_buflen = mode2->cdread_buflen;
27228 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27229 
27230 	/*
27231 	 * Issue SCSI command with user space address for read buffer.
27232 	 *
27233 	 * This sends the command through main channel in the driver.
27234 	 *
27235 	 * Since this is accessed via an IOCTL call, we go through the
27236 	 * standard path, so that if the device was powered down, then
27237 	 * it would be 'awakened' to handle the command.
27238 	 */
27239 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27240 	    SD_PATH_STANDARD);
27241 
27242 	kmem_free(com, sizeof (*com));
27243 
27244 	/* Restore the device and soft state target block size */
27245 	if (sr_sector_mode(dev, restore_blksize) != 0) {
27246 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27247 		    "can't do switch back to mode 1\n");
27248 		/*
27249 		 * If sd_send_scsi_READ succeeded we still need to report
27250 		 * an error because we failed to reset the block size
27251 		 */
27252 		if (rval == 0) {
27253 			rval = EIO;
27254 		}
27255 	}
27256 
27257 done:
27258 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27259 	    "sd_read_mode2: exit: un:0x%p\n", un);
27260 
27261 	return (rval);
27262 }
27263 
27264 
27265 /*
27266  *    Function: sr_sector_mode()
27267  *
27268  * Description: This utility function is used by sr_read_mode2 to set the target
27269  *		block size based on the user specified size. This is a legacy
27270  *		implementation based upon a vendor specific mode page
27271  *
27272  *   Arguments: dev	- the device 'dev_t'
27273  *		data	- flag indicating if block size is being set to 2336 or
27274  *			  512.
27275  *
27276  * Return Code: the code returned by sd_send_scsi_cmd()
27277  *		EFAULT if ddi_copyxxx() fails
27278  *		ENXIO if fail ddi_get_soft_state
27279  *		EINVAL if data pointer is NULL
27280  */
27281 
27282 static int
27283 sr_sector_mode(dev_t dev, uint32_t blksize)
27284 {
27285 	struct sd_lun	*un;
27286 	uchar_t		*sense;
27287 	uchar_t		*select;
27288 	int		rval;
27289 	sd_ssc_t	*ssc;
27290 
27291 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27292 	    (un->un_state == SD_STATE_OFFLINE)) {
27293 		return (ENXIO);
27294 	}
27295 
27296 	sense = kmem_zalloc(20, KM_SLEEP);
27297 
27298 	/* Note: This is a vendor specific mode page (0x81) */
27299 	ssc = sd_ssc_init(un);
27300 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
27301 	    SD_PATH_STANDARD);
27302 	sd_ssc_fini(ssc);
27303 	if (rval != 0) {
27304 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27305 		    "sr_sector_mode: Mode Sense failed\n");
27306 		kmem_free(sense, 20);
27307 		return (rval);
27308 	}
27309 	select = kmem_zalloc(20, KM_SLEEP);
27310 	select[3] = 0x08;
27311 	select[10] = ((blksize >> 8) & 0xff);
27312 	select[11] = (blksize & 0xff);
27313 	select[12] = 0x01;
27314 	select[13] = 0x06;
27315 	select[14] = sense[14];
27316 	select[15] = sense[15];
27317 	if (blksize == SD_MODE2_BLKSIZE) {
27318 		select[14] |= 0x01;
27319 	}
27320 
27321 	ssc = sd_ssc_init(un);
27322 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
27323 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27324 	sd_ssc_fini(ssc);
27325 	if (rval != 0) {
27326 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27327 		    "sr_sector_mode: Mode Select failed\n");
27328 	} else {
27329 		/*
27330 		 * Only update the softstate block size if we successfully
27331 		 * changed the device block mode.
27332 		 */
27333 		mutex_enter(SD_MUTEX(un));
27334 		sd_update_block_info(un, blksize, 0);
27335 		mutex_exit(SD_MUTEX(un));
27336 	}
27337 	kmem_free(sense, 20);
27338 	kmem_free(select, 20);
27339 	return (rval);
27340 }
27341 
27342 
27343 /*
27344  *    Function: sr_read_cdda()
27345  *
27346  * Description: This routine is the driver entry point for handling CD-ROM
27347  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
27348  *		the target supports CDDA these requests are handled via a vendor
27349  *		specific command (0xD8) If the target does not support CDDA
27350  *		these requests are handled via the READ CD command (0xBE).
27351  *
27352  *   Arguments: dev	- the device 'dev_t'
27353  *		data	- pointer to user provided CD-DA structure specifying
27354  *			  the track starting address, transfer length, and
27355  *			  subcode options.
27356  *		flag	- this argument is a pass through to ddi_copyxxx()
27357  *			  directly from the mode argument of ioctl().
27358  *
27359  * Return Code: the code returned by sd_send_scsi_cmd()
27360  *		EFAULT if ddi_copyxxx() fails
27361  *		ENXIO if fail ddi_get_soft_state
27362  *		EINVAL if invalid arguments are provided
27363  *		ENOTTY
27364  */
27365 
27366 static int
27367 sr_read_cdda(dev_t dev, caddr_t data, int flag)
27368 {
27369 	struct sd_lun			*un;
27370 	struct uscsi_cmd		*com;
27371 	struct cdrom_cdda		*cdda;
27372 	int				rval;
27373 	size_t				buflen;
27374 	char				cdb[CDB_GROUP5];
27375 
27376 #ifdef _MULTI_DATAMODEL
27377 	/* To support ILP32 applications in an LP64 world */
27378 	struct cdrom_cdda32	cdrom_cdda32;
27379 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
27380 #endif /* _MULTI_DATAMODEL */
27381 
27382 	if (data == NULL) {
27383 		return (EINVAL);
27384 	}
27385 
27386 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27387 		return (ENXIO);
27388 	}
27389 
27390 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
27391 
27392 #ifdef _MULTI_DATAMODEL
27393 	switch (ddi_model_convert_from(flag & FMODELS)) {
27394 	case DDI_MODEL_ILP32:
27395 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
27396 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27397 			    "sr_read_cdda: ddi_copyin Failed\n");
27398 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27399 			return (EFAULT);
27400 		}
27401 		/* Convert the ILP32 uscsi data from the application to LP64 */
27402 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
27403 		break;
27404 	case DDI_MODEL_NONE:
27405 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27406 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27407 			    "sr_read_cdda: ddi_copyin Failed\n");
27408 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27409 			return (EFAULT);
27410 		}
27411 		break;
27412 	}
27413 #else /* ! _MULTI_DATAMODEL */
27414 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
27415 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27416 		    "sr_read_cdda: ddi_copyin Failed\n");
27417 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27418 		return (EFAULT);
27419 	}
27420 #endif /* _MULTI_DATAMODEL */
27421 
27422 	/*
27423 	 * Since MMC-2 expects max 3 bytes for length, check if the
27424 	 * length input is greater than 3 bytes
27425 	 */
27426 	if ((cdda->cdda_length & 0xFF000000) != 0) {
27427 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
27428 		    "cdrom transfer length too large: %d (limit %d)\n",
27429 		    cdda->cdda_length, 0xFFFFFF);
27430 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27431 		return (EINVAL);
27432 	}
27433 
27434 	switch (cdda->cdda_subcode) {
27435 	case CDROM_DA_NO_SUBCODE:
27436 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
27437 		break;
27438 	case CDROM_DA_SUBQ:
27439 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
27440 		break;
27441 	case CDROM_DA_ALL_SUBCODE:
27442 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
27443 		break;
27444 	case CDROM_DA_SUBCODE_ONLY:
27445 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
27446 		break;
27447 	default:
27448 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27449 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
27450 		    cdda->cdda_subcode);
27451 		kmem_free(cdda, sizeof (struct cdrom_cdda));
27452 		return (EINVAL);
27453 	}
27454 
27455 	/* Build and send the command */
27456 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27457 	bzero(cdb, CDB_GROUP5);
27458 
27459 	if (un->un_f_cfg_cdda == TRUE) {
27460 		cdb[0] = (char)SCMD_READ_CD;
27461 		cdb[1] = 0x04;
27462 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27463 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27464 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27465 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27466 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27467 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27468 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
27469 		cdb[9] = 0x10;
27470 		switch (cdda->cdda_subcode) {
27471 		case CDROM_DA_NO_SUBCODE :
27472 			cdb[10] = 0x0;
27473 			break;
27474 		case CDROM_DA_SUBQ :
27475 			cdb[10] = 0x2;
27476 			break;
27477 		case CDROM_DA_ALL_SUBCODE :
27478 			cdb[10] = 0x1;
27479 			break;
27480 		case CDROM_DA_SUBCODE_ONLY :
27481 			/* FALLTHROUGH */
27482 		default :
27483 			kmem_free(cdda, sizeof (struct cdrom_cdda));
27484 			kmem_free(com, sizeof (*com));
27485 			return (ENOTTY);
27486 		}
27487 	} else {
27488 		cdb[0] = (char)SCMD_READ_CDDA;
27489 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
27490 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
27491 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
27492 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
27493 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
27494 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
27495 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
27496 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
27497 		cdb[10] = cdda->cdda_subcode;
27498 	}
27499 
27500 	com->uscsi_cdb = cdb;
27501 	com->uscsi_cdblen = CDB_GROUP5;
27502 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
27503 	com->uscsi_buflen = buflen;
27504 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27505 
27506 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27507 	    SD_PATH_STANDARD);
27508 
27509 	kmem_free(cdda, sizeof (struct cdrom_cdda));
27510 	kmem_free(com, sizeof (*com));
27511 	return (rval);
27512 }
27513 
27514 
27515 /*
27516  *    Function: sr_read_cdxa()
27517  *
27518  * Description: This routine is the driver entry point for handling CD-ROM
27519  *		ioctl requests to return CD-XA (Extended Architecture) data.
27520  *		(CDROMCDXA).
27521  *
27522  *   Arguments: dev	- the device 'dev_t'
27523  *		data	- pointer to user provided CD-XA structure specifying
27524  *			  the data starting address, transfer length, and format
27525  *		flag	- this argument is a pass through to ddi_copyxxx()
27526  *			  directly from the mode argument of ioctl().
27527  *
27528  * Return Code: the code returned by sd_send_scsi_cmd()
27529  *		EFAULT if ddi_copyxxx() fails
27530  *		ENXIO if fail ddi_get_soft_state
27531  *		EINVAL if data pointer is NULL
27532  */
27533 
27534 static int
27535 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
27536 {
27537 	struct sd_lun		*un;
27538 	struct uscsi_cmd	*com;
27539 	struct cdrom_cdxa	*cdxa;
27540 	int			rval;
27541 	size_t			buflen;
27542 	char			cdb[CDB_GROUP5];
27543 	uchar_t			read_flags;
27544 
27545 #ifdef _MULTI_DATAMODEL
27546 	/* To support ILP32 applications in an LP64 world */
27547 	struct cdrom_cdxa32		cdrom_cdxa32;
27548 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
27549 #endif /* _MULTI_DATAMODEL */
27550 
27551 	if (data == NULL) {
27552 		return (EINVAL);
27553 	}
27554 
27555 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27556 		return (ENXIO);
27557 	}
27558 
27559 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
27560 
27561 #ifdef _MULTI_DATAMODEL
27562 	switch (ddi_model_convert_from(flag & FMODELS)) {
27563 	case DDI_MODEL_ILP32:
27564 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
27565 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27566 			return (EFAULT);
27567 		}
27568 		/*
27569 		 * Convert the ILP32 uscsi data from the
27570 		 * application to LP64 for internal use.
27571 		 */
27572 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
27573 		break;
27574 	case DDI_MODEL_NONE:
27575 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27576 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27577 			return (EFAULT);
27578 		}
27579 		break;
27580 	}
27581 #else /* ! _MULTI_DATAMODEL */
27582 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
27583 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27584 		return (EFAULT);
27585 	}
27586 #endif /* _MULTI_DATAMODEL */
27587 
27588 	/*
27589 	 * Since MMC-2 expects max 3 bytes for length, check if the
27590 	 * length input is greater than 3 bytes
27591 	 */
27592 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
27593 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
27594 		    "cdrom transfer length too large: %d (limit %d)\n",
27595 		    cdxa->cdxa_length, 0xFFFFFF);
27596 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27597 		return (EINVAL);
27598 	}
27599 
27600 	switch (cdxa->cdxa_format) {
27601 	case CDROM_XA_DATA:
27602 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
27603 		read_flags = 0x10;
27604 		break;
27605 	case CDROM_XA_SECTOR_DATA:
27606 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
27607 		read_flags = 0xf8;
27608 		break;
27609 	case CDROM_XA_DATA_W_ERROR:
27610 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
27611 		read_flags = 0xfc;
27612 		break;
27613 	default:
27614 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27615 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
27616 		    cdxa->cdxa_format);
27617 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27618 		return (EINVAL);
27619 	}
27620 
27621 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27622 	bzero(cdb, CDB_GROUP5);
27623 	if (un->un_f_mmc_cap == TRUE) {
27624 		cdb[0] = (char)SCMD_READ_CD;
27625 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27626 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27627 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27628 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27629 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27630 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27631 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
27632 		cdb[9] = (char)read_flags;
27633 	} else {
27634 		/*
27635 		 * Note: A vendor specific command (0xDB) is being used her to
27636 		 * request a read of all subcodes.
27637 		 */
27638 		cdb[0] = (char)SCMD_READ_CDXA;
27639 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
27640 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
27641 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
27642 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
27643 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
27644 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
27645 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
27646 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
27647 		cdb[10] = cdxa->cdxa_format;
27648 	}
27649 	com->uscsi_cdb	   = cdb;
27650 	com->uscsi_cdblen  = CDB_GROUP5;
27651 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
27652 	com->uscsi_buflen  = buflen;
27653 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27654 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27655 	    SD_PATH_STANDARD);
27656 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
27657 	kmem_free(com, sizeof (*com));
27658 	return (rval);
27659 }
27660 
27661 
27662 /*
27663  *    Function: sr_eject()
27664  *
27665  * Description: This routine is the driver entry point for handling CD-ROM
27666  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
27667  *
27668  *   Arguments: dev	- the device 'dev_t'
27669  *
27670  * Return Code: the code returned by sd_send_scsi_cmd()
27671  */
27672 
27673 static int
27674 sr_eject(dev_t dev)
27675 {
27676 	struct sd_lun	*un;
27677 	int		rval;
27678 	sd_ssc_t	*ssc;
27679 
27680 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27681 	    (un->un_state == SD_STATE_OFFLINE)) {
27682 		return (ENXIO);
27683 	}
27684 
27685 	/*
27686 	 * To prevent race conditions with the eject
27687 	 * command, keep track of an eject command as
27688 	 * it progresses. If we are already handling
27689 	 * an eject command in the driver for the given
27690 	 * unit and another request to eject is received
27691 	 * immediately return EAGAIN so we don't lose
27692 	 * the command if the current eject command fails.
27693 	 */
27694 	mutex_enter(SD_MUTEX(un));
27695 	if (un->un_f_ejecting == TRUE) {
27696 		mutex_exit(SD_MUTEX(un));
27697 		return (EAGAIN);
27698 	}
27699 	un->un_f_ejecting = TRUE;
27700 	mutex_exit(SD_MUTEX(un));
27701 
27702 	ssc = sd_ssc_init(un);
27703 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
27704 	    SD_PATH_STANDARD);
27705 	sd_ssc_fini(ssc);
27706 
27707 	if (rval != 0) {
27708 		mutex_enter(SD_MUTEX(un));
27709 		un->un_f_ejecting = FALSE;
27710 		mutex_exit(SD_MUTEX(un));
27711 		return (rval);
27712 	}
27713 
27714 	ssc = sd_ssc_init(un);
27715 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_TARGET_EJECT,
27716 	    SD_PATH_STANDARD);
27717 	sd_ssc_fini(ssc);
27718 
27719 	if (rval == 0) {
27720 		mutex_enter(SD_MUTEX(un));
27721 		sr_ejected(un);
27722 		un->un_mediastate = DKIO_EJECTED;
27723 		un->un_f_ejecting = FALSE;
27724 		cv_broadcast(&un->un_state_cv);
27725 		mutex_exit(SD_MUTEX(un));
27726 	} else {
27727 		mutex_enter(SD_MUTEX(un));
27728 		un->un_f_ejecting = FALSE;
27729 		mutex_exit(SD_MUTEX(un));
27730 	}
27731 	return (rval);
27732 }
27733 
27734 
27735 /*
27736  *    Function: sr_ejected()
27737  *
27738  * Description: This routine updates the soft state structure to invalidate the
27739  *		geometry information after the media has been ejected or a
27740  *		media eject has been detected.
27741  *
27742  *   Arguments: un - driver soft state (unit) structure
27743  */
27744 
27745 static void
27746 sr_ejected(struct sd_lun *un)
27747 {
27748 	struct sd_errstats *stp;
27749 
27750 	ASSERT(un != NULL);
27751 	ASSERT(mutex_owned(SD_MUTEX(un)));
27752 
27753 	un->un_f_blockcount_is_valid	= FALSE;
27754 	un->un_f_tgt_blocksize_is_valid	= FALSE;
27755 	mutex_exit(SD_MUTEX(un));
27756 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
27757 	mutex_enter(SD_MUTEX(un));
27758 
27759 	if (un->un_errstats != NULL) {
27760 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
27761 		stp->sd_capacity.value.ui64 = 0;
27762 	}
27763 }
27764 
27765 
27766 /*
27767  *    Function: sr_check_wp()
27768  *
27769  * Description: This routine checks the write protection of a removable
27770  *      media disk and hotpluggable devices via the write protect bit of
27771  *      the Mode Page Header device specific field. Some devices choke
27772  *      on unsupported mode page. In order to workaround this issue,
27773  *      this routine has been implemented to use 0x3f mode page(request
27774  *      for all pages) for all device types.
27775  *
27776  *   Arguments: dev             - the device 'dev_t'
27777  *
27778  * Return Code: int indicating if the device is write protected (1) or not (0)
27779  *
27780  *     Context: Kernel thread.
27781  *
27782  */
27783 
27784 static int
27785 sr_check_wp(dev_t dev)
27786 {
27787 	struct sd_lun	*un;
27788 	uchar_t		device_specific;
27789 	uchar_t		*sense;
27790 	int		hdrlen;
27791 	int		rval = FALSE;
27792 	int		status;
27793 	sd_ssc_t	*ssc;
27794 
27795 	/*
27796 	 * Note: The return codes for this routine should be reworked to
27797 	 * properly handle the case of a NULL softstate.
27798 	 */
27799 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27800 		return (FALSE);
27801 	}
27802 
27803 	if (un->un_f_cfg_is_atapi == TRUE) {
27804 		/*
27805 		 * The mode page contents are not required; set the allocation
27806 		 * length for the mode page header only
27807 		 */
27808 		hdrlen = MODE_HEADER_LENGTH_GRP2;
27809 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27810 		ssc = sd_ssc_init(un);
27811 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
27812 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27813 		sd_ssc_fini(ssc);
27814 		if (status != 0)
27815 			goto err_exit;
27816 		device_specific =
27817 		    ((struct mode_header_grp2 *)sense)->device_specific;
27818 	} else {
27819 		hdrlen = MODE_HEADER_LENGTH;
27820 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
27821 		ssc = sd_ssc_init(un);
27822 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
27823 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
27824 		sd_ssc_fini(ssc);
27825 		if (status != 0)
27826 			goto err_exit;
27827 		device_specific =
27828 		    ((struct mode_header *)sense)->device_specific;
27829 	}
27830 
27831 
27832 	/*
27833 	 * Write protect mode sense failed; not all disks
27834 	 * understand this query. Return FALSE assuming that
27835 	 * these devices are not writable.
27836 	 */
27837 	if (device_specific & WRITE_PROTECT) {
27838 		rval = TRUE;
27839 	}
27840 
27841 err_exit:
27842 	kmem_free(sense, hdrlen);
27843 	return (rval);
27844 }
27845 
27846 /*
27847  *    Function: sr_volume_ctrl()
27848  *
27849  * Description: This routine is the driver entry point for handling CD-ROM
27850  *		audio output volume ioctl requests. (CDROMVOLCTRL)
27851  *
27852  *   Arguments: dev	- the device 'dev_t'
27853  *		data	- pointer to user audio volume control structure
27854  *		flag	- this argument is a pass through to ddi_copyxxx()
27855  *			  directly from the mode argument of ioctl().
27856  *
27857  * Return Code: the code returned by sd_send_scsi_cmd()
27858  *		EFAULT if ddi_copyxxx() fails
27859  *		ENXIO if fail ddi_get_soft_state
27860  *		EINVAL if data pointer is NULL
27861  *
27862  */
27863 
27864 static int
27865 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
27866 {
27867 	struct sd_lun		*un;
27868 	struct cdrom_volctrl    volume;
27869 	struct cdrom_volctrl    *vol = &volume;
27870 	uchar_t			*sense_page;
27871 	uchar_t			*select_page;
27872 	uchar_t			*sense;
27873 	uchar_t			*select;
27874 	int			sense_buflen;
27875 	int			select_buflen;
27876 	int			rval;
27877 	sd_ssc_t		*ssc;
27878 
27879 	if (data == NULL) {
27880 		return (EINVAL);
27881 	}
27882 
27883 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27884 	    (un->un_state == SD_STATE_OFFLINE)) {
27885 		return (ENXIO);
27886 	}
27887 
27888 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
27889 		return (EFAULT);
27890 	}
27891 
27892 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
27893 		struct mode_header_grp2		*sense_mhp;
27894 		struct mode_header_grp2		*select_mhp;
27895 		int				bd_len;
27896 
27897 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
27898 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
27899 		    MODEPAGE_AUDIO_CTRL_LEN;
27900 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27901 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27902 		ssc = sd_ssc_init(un);
27903 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27904 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27905 		    SD_PATH_STANDARD);
27906 		sd_ssc_fini(ssc);
27907 
27908 		if (rval != 0) {
27909 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
27910 			    "sr_volume_ctrl: Mode Sense Failed\n");
27911 			kmem_free(sense, sense_buflen);
27912 			kmem_free(select, select_buflen);
27913 			return (rval);
27914 		}
27915 		sense_mhp = (struct mode_header_grp2 *)sense;
27916 		select_mhp = (struct mode_header_grp2 *)select;
27917 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
27918 		    sense_mhp->bdesc_length_lo;
27919 		if (bd_len > MODE_BLK_DESC_LENGTH) {
27920 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27921 			    "sr_volume_ctrl: Mode Sense returned invalid "
27922 			    "block descriptor length\n");
27923 			kmem_free(sense, sense_buflen);
27924 			kmem_free(select, select_buflen);
27925 			return (EIO);
27926 		}
27927 		sense_page = (uchar_t *)
27928 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27929 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
27930 		select_mhp->length_msb = 0;
27931 		select_mhp->length_lsb = 0;
27932 		select_mhp->bdesc_length_hi = 0;
27933 		select_mhp->bdesc_length_lo = 0;
27934 	} else {
27935 		struct mode_header		*sense_mhp, *select_mhp;
27936 
27937 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27938 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
27939 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
27940 		select = kmem_zalloc(select_buflen, KM_SLEEP);
27941 		ssc = sd_ssc_init(un);
27942 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27943 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
27944 		    SD_PATH_STANDARD);
27945 		sd_ssc_fini(ssc);
27946 
27947 		if (rval != 0) {
27948 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27949 			    "sr_volume_ctrl: Mode Sense Failed\n");
27950 			kmem_free(sense, sense_buflen);
27951 			kmem_free(select, select_buflen);
27952 			return (rval);
27953 		}
27954 		sense_mhp  = (struct mode_header *)sense;
27955 		select_mhp = (struct mode_header *)select;
27956 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
27957 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27958 			    "sr_volume_ctrl: Mode Sense returned invalid "
27959 			    "block descriptor length\n");
27960 			kmem_free(sense, sense_buflen);
27961 			kmem_free(select, select_buflen);
27962 			return (EIO);
27963 		}
27964 		sense_page = (uchar_t *)
27965 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27966 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
27967 		select_mhp->length = 0;
27968 		select_mhp->bdesc_length = 0;
27969 	}
27970 	/*
27971 	 * Note: An audio control data structure could be created and overlayed
27972 	 * on the following in place of the array indexing method implemented.
27973 	 */
27974 
27975 	/* Build the select data for the user volume data */
27976 	select_page[0] = MODEPAGE_AUDIO_CTRL;
27977 	select_page[1] = 0xE;
27978 	/* Set the immediate bit */
27979 	select_page[2] = 0x04;
27980 	/* Zero out reserved fields */
27981 	select_page[3] = 0x00;
27982 	select_page[4] = 0x00;
27983 	/* Return sense data for fields not to be modified */
27984 	select_page[5] = sense_page[5];
27985 	select_page[6] = sense_page[6];
27986 	select_page[7] = sense_page[7];
27987 	/* Set the user specified volume levels for channel 0 and 1 */
27988 	select_page[8] = 0x01;
27989 	select_page[9] = vol->channel0;
27990 	select_page[10] = 0x02;
27991 	select_page[11] = vol->channel1;
27992 	/* Channel 2 and 3 are currently unsupported so return the sense data */
27993 	select_page[12] = sense_page[12];
27994 	select_page[13] = sense_page[13];
27995 	select_page[14] = sense_page[14];
27996 	select_page[15] = sense_page[15];
27997 
27998 	ssc = sd_ssc_init(un);
27999 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28000 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
28001 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28002 	} else {
28003 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
28004 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28005 	}
28006 	sd_ssc_fini(ssc);
28007 
28008 	kmem_free(sense, sense_buflen);
28009 	kmem_free(select, select_buflen);
28010 	return (rval);
28011 }
28012 
28013 
28014 /*
28015  *    Function: sr_read_sony_session_offset()
28016  *
28017  * Description: This routine is the driver entry point for handling CD-ROM
28018  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28019  *		The address of the first track in the last session of a
28020  *		multi-session CD-ROM is returned
28021  *
28022  *		Note: This routine uses a vendor specific key value in the
28023  *		command control field without implementing any vendor check here
28024  *		or in the ioctl routine.
28025  *
28026  *   Arguments: dev	- the device 'dev_t'
28027  *		data	- pointer to an int to hold the requested address
28028  *		flag	- this argument is a pass through to ddi_copyxxx()
28029  *			  directly from the mode argument of ioctl().
28030  *
28031  * Return Code: the code returned by sd_send_scsi_cmd()
28032  *		EFAULT if ddi_copyxxx() fails
28033  *		ENXIO if fail ddi_get_soft_state
28034  *		EINVAL if data pointer is NULL
28035  */
28036 
28037 static int
28038 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28039 {
28040 	struct sd_lun		*un;
28041 	struct uscsi_cmd	*com;
28042 	caddr_t			buffer;
28043 	char			cdb[CDB_GROUP1];
28044 	int			session_offset = 0;
28045 	int			rval;
28046 
28047 	if (data == NULL) {
28048 		return (EINVAL);
28049 	}
28050 
28051 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28052 	    (un->un_state == SD_STATE_OFFLINE)) {
28053 		return (ENXIO);
28054 	}
28055 
28056 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28057 	bzero(cdb, CDB_GROUP1);
28058 	cdb[0] = SCMD_READ_TOC;
28059 	/*
28060 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28061 	 * (4 byte TOC response header + 8 byte response data)
28062 	 */
28063 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28064 	/* Byte 9 is the control byte. A vendor specific value is used */
28065 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28066 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28067 	com->uscsi_cdb = cdb;
28068 	com->uscsi_cdblen = CDB_GROUP1;
28069 	com->uscsi_bufaddr = buffer;
28070 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28071 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28072 
28073 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28074 	    SD_PATH_STANDARD);
28075 	if (rval != 0) {
28076 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28077 		kmem_free(com, sizeof (*com));
28078 		return (rval);
28079 	}
28080 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28081 		session_offset =
28082 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28083 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28084 		/*
28085 		 * Offset returned offset in current lbasize block's. Convert to
28086 		 * 2k block's to return to the user
28087 		 */
28088 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28089 			session_offset >>= 2;
28090 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28091 			session_offset >>= 1;
28092 		}
28093 	}
28094 
28095 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28096 		rval = EFAULT;
28097 	}
28098 
28099 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28100 	kmem_free(com, sizeof (*com));
28101 	return (rval);
28102 }
28103 
28104 
28105 /*
28106  *    Function: sd_wm_cache_constructor()
28107  *
28108  * Description: Cache Constructor for the wmap cache for the read/modify/write
28109  * 		devices.
28110  *
28111  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28112  *		un	- sd_lun structure for the device.
28113  *		flag	- the km flags passed to constructor
28114  *
28115  * Return Code: 0 on success.
28116  *		-1 on failure.
28117  */
28118 
28119 /*ARGSUSED*/
28120 static int
28121 sd_wm_cache_constructor(void *wm, void *un, int flags)
28122 {
28123 	bzero(wm, sizeof (struct sd_w_map));
28124 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28125 	return (0);
28126 }
28127 
28128 
28129 /*
28130  *    Function: sd_wm_cache_destructor()
28131  *
28132  * Description: Cache destructor for the wmap cache for the read/modify/write
28133  * 		devices.
28134  *
28135  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28136  *		un	- sd_lun structure for the device.
28137  */
28138 /*ARGSUSED*/
28139 static void
28140 sd_wm_cache_destructor(void *wm, void *un)
28141 {
28142 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28143 }
28144 
28145 
28146 /*
28147  *    Function: sd_range_lock()
28148  *
28149  * Description: Lock the range of blocks specified as parameter to ensure
28150  *		that read, modify write is atomic and no other i/o writes
28151  *		to the same location. The range is specified in terms
28152  *		of start and end blocks. Block numbers are the actual
28153  *		media block numbers and not system.
28154  *
28155  *   Arguments: un	- sd_lun structure for the device.
28156  *		startb - The starting block number
28157  *		endb - The end block number
28158  *		typ - type of i/o - simple/read_modify_write
28159  *
28160  * Return Code: wm  - pointer to the wmap structure.
28161  *
28162  *     Context: This routine can sleep.
28163  */
28164 
28165 static struct sd_w_map *
28166 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28167 {
28168 	struct sd_w_map *wmp = NULL;
28169 	struct sd_w_map *sl_wmp = NULL;
28170 	struct sd_w_map *tmp_wmp;
28171 	wm_state state = SD_WM_CHK_LIST;
28172 
28173 
28174 	ASSERT(un != NULL);
28175 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28176 
28177 	mutex_enter(SD_MUTEX(un));
28178 
28179 	while (state != SD_WM_DONE) {
28180 
28181 		switch (state) {
28182 		case SD_WM_CHK_LIST:
28183 			/*
28184 			 * This is the starting state. Check the wmap list
28185 			 * to see if the range is currently available.
28186 			 */
28187 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28188 				/*
28189 				 * If this is a simple write and no rmw
28190 				 * i/o is pending then try to lock the
28191 				 * range as the range should be available.
28192 				 */
28193 				state = SD_WM_LOCK_RANGE;
28194 			} else {
28195 				tmp_wmp = sd_get_range(un, startb, endb);
28196 				if (tmp_wmp != NULL) {
28197 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28198 						/*
28199 						 * Should not keep onlist wmps
28200 						 * while waiting this macro
28201 						 * will also do wmp = NULL;
28202 						 */
28203 						FREE_ONLIST_WMAP(un, wmp);
28204 					}
28205 					/*
28206 					 * sl_wmp is the wmap on which wait
28207 					 * is done, since the tmp_wmp points
28208 					 * to the inuse wmap, set sl_wmp to
28209 					 * tmp_wmp and change the state to sleep
28210 					 */
28211 					sl_wmp = tmp_wmp;
28212 					state = SD_WM_WAIT_MAP;
28213 				} else {
28214 					state = SD_WM_LOCK_RANGE;
28215 				}
28216 
28217 			}
28218 			break;
28219 
28220 		case SD_WM_LOCK_RANGE:
28221 			ASSERT(un->un_wm_cache);
28222 			/*
28223 			 * The range need to be locked, try to get a wmap.
28224 			 * First attempt it with NO_SLEEP, want to avoid a sleep
28225 			 * if possible as we will have to release the sd mutex
28226 			 * if we have to sleep.
28227 			 */
28228 			if (wmp == NULL)
28229 				wmp = kmem_cache_alloc(un->un_wm_cache,
28230 				    KM_NOSLEEP);
28231 			if (wmp == NULL) {
28232 				mutex_exit(SD_MUTEX(un));
28233 				_NOTE(DATA_READABLE_WITHOUT_LOCK
28234 				    (sd_lun::un_wm_cache))
28235 				wmp = kmem_cache_alloc(un->un_wm_cache,
28236 				    KM_SLEEP);
28237 				mutex_enter(SD_MUTEX(un));
28238 				/*
28239 				 * we released the mutex so recheck and go to
28240 				 * check list state.
28241 				 */
28242 				state = SD_WM_CHK_LIST;
28243 			} else {
28244 				/*
28245 				 * We exit out of state machine since we
28246 				 * have the wmap. Do the housekeeping first.
28247 				 * place the wmap on the wmap list if it is not
28248 				 * on it already and then set the state to done.
28249 				 */
28250 				wmp->wm_start = startb;
28251 				wmp->wm_end = endb;
28252 				wmp->wm_flags = typ | SD_WM_BUSY;
28253 				if (typ & SD_WTYPE_RMW) {
28254 					un->un_rmw_count++;
28255 				}
28256 				/*
28257 				 * If not already on the list then link
28258 				 */
28259 				if (!ONLIST(un, wmp)) {
28260 					wmp->wm_next = un->un_wm;
28261 					wmp->wm_prev = NULL;
28262 					if (wmp->wm_next)
28263 						wmp->wm_next->wm_prev = wmp;
28264 					un->un_wm = wmp;
28265 				}
28266 				state = SD_WM_DONE;
28267 			}
28268 			break;
28269 
28270 		case SD_WM_WAIT_MAP:
28271 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
28272 			/*
28273 			 * Wait is done on sl_wmp, which is set in the
28274 			 * check_list state.
28275 			 */
28276 			sl_wmp->wm_wanted_count++;
28277 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
28278 			sl_wmp->wm_wanted_count--;
28279 			/*
28280 			 * We can reuse the memory from the completed sl_wmp
28281 			 * lock range for our new lock, but only if noone is
28282 			 * waiting for it.
28283 			 */
28284 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
28285 			if (sl_wmp->wm_wanted_count == 0) {
28286 				if (wmp != NULL)
28287 					CHK_N_FREEWMP(un, wmp);
28288 				wmp = sl_wmp;
28289 			}
28290 			sl_wmp = NULL;
28291 			/*
28292 			 * After waking up, need to recheck for availability of
28293 			 * range.
28294 			 */
28295 			state = SD_WM_CHK_LIST;
28296 			break;
28297 
28298 		default:
28299 			panic("sd_range_lock: "
28300 			    "Unknown state %d in sd_range_lock", state);
28301 			/*NOTREACHED*/
28302 		} /* switch(state) */
28303 
28304 	} /* while(state != SD_WM_DONE) */
28305 
28306 	mutex_exit(SD_MUTEX(un));
28307 
28308 	ASSERT(wmp != NULL);
28309 
28310 	return (wmp);
28311 }
28312 
28313 
28314 /*
28315  *    Function: sd_get_range()
28316  *
28317  * Description: Find if there any overlapping I/O to this one
28318  *		Returns the write-map of 1st such I/O, NULL otherwise.
28319  *
28320  *   Arguments: un	- sd_lun structure for the device.
28321  *		startb - The starting block number
28322  *		endb - The end block number
28323  *
28324  * Return Code: wm  - pointer to the wmap structure.
28325  */
28326 
28327 static struct sd_w_map *
28328 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
28329 {
28330 	struct sd_w_map *wmp;
28331 
28332 	ASSERT(un != NULL);
28333 
28334 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
28335 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
28336 			continue;
28337 		}
28338 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
28339 			break;
28340 		}
28341 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
28342 			break;
28343 		}
28344 	}
28345 
28346 	return (wmp);
28347 }
28348 
28349 
28350 /*
28351  *    Function: sd_free_inlist_wmap()
28352  *
28353  * Description: Unlink and free a write map struct.
28354  *
28355  *   Arguments: un      - sd_lun structure for the device.
28356  *		wmp	- sd_w_map which needs to be unlinked.
28357  */
28358 
28359 static void
28360 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
28361 {
28362 	ASSERT(un != NULL);
28363 
28364 	if (un->un_wm == wmp) {
28365 		un->un_wm = wmp->wm_next;
28366 	} else {
28367 		wmp->wm_prev->wm_next = wmp->wm_next;
28368 	}
28369 
28370 	if (wmp->wm_next) {
28371 		wmp->wm_next->wm_prev = wmp->wm_prev;
28372 	}
28373 
28374 	wmp->wm_next = wmp->wm_prev = NULL;
28375 
28376 	kmem_cache_free(un->un_wm_cache, wmp);
28377 }
28378 
28379 
28380 /*
28381  *    Function: sd_range_unlock()
28382  *
28383  * Description: Unlock the range locked by wm.
28384  *		Free write map if nobody else is waiting on it.
28385  *
28386  *   Arguments: un      - sd_lun structure for the device.
28387  *              wmp     - sd_w_map which needs to be unlinked.
28388  */
28389 
28390 static void
28391 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
28392 {
28393 	ASSERT(un != NULL);
28394 	ASSERT(wm != NULL);
28395 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28396 
28397 	mutex_enter(SD_MUTEX(un));
28398 
28399 	if (wm->wm_flags & SD_WTYPE_RMW) {
28400 		un->un_rmw_count--;
28401 	}
28402 
28403 	if (wm->wm_wanted_count) {
28404 		wm->wm_flags = 0;
28405 		/*
28406 		 * Broadcast that the wmap is available now.
28407 		 */
28408 		cv_broadcast(&wm->wm_avail);
28409 	} else {
28410 		/*
28411 		 * If no one is waiting on the map, it should be free'ed.
28412 		 */
28413 		sd_free_inlist_wmap(un, wm);
28414 	}
28415 
28416 	mutex_exit(SD_MUTEX(un));
28417 }
28418 
28419 
28420 /*
28421  *    Function: sd_read_modify_write_task
28422  *
28423  * Description: Called from a taskq thread to initiate the write phase of
28424  *		a read-modify-write request.  This is used for targets where
28425  *		un->un_sys_blocksize != un->un_tgt_blocksize.
28426  *
28427  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
28428  *
28429  *     Context: Called under taskq thread context.
28430  */
28431 
28432 static void
28433 sd_read_modify_write_task(void *arg)
28434 {
28435 	struct sd_mapblocksize_info	*bsp;
28436 	struct buf	*bp;
28437 	struct sd_xbuf	*xp;
28438 	struct sd_lun	*un;
28439 
28440 	bp = arg;	/* The bp is given in arg */
28441 	ASSERT(bp != NULL);
28442 
28443 	/* Get the pointer to the layer-private data struct */
28444 	xp = SD_GET_XBUF(bp);
28445 	ASSERT(xp != NULL);
28446 	bsp = xp->xb_private;
28447 	ASSERT(bsp != NULL);
28448 
28449 	un = SD_GET_UN(bp);
28450 	ASSERT(un != NULL);
28451 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28452 
28453 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28454 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
28455 
28456 	/*
28457 	 * This is the write phase of a read-modify-write request, called
28458 	 * under the context of a taskq thread in response to the completion
28459 	 * of the read portion of the rmw request completing under interrupt
28460 	 * context. The write request must be sent from here down the iostart
28461 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
28462 	 * we use the layer index saved in the layer-private data area.
28463 	 */
28464 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
28465 
28466 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
28467 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
28468 }
28469 
28470 
28471 /*
28472  *    Function: sddump_do_read_of_rmw()
28473  *
28474  * Description: This routine will be called from sddump, If sddump is called
28475  *		with an I/O which not aligned on device blocksize boundary
28476  *		then the write has to be converted to read-modify-write.
28477  *		Do the read part here in order to keep sddump simple.
28478  *		Note - That the sd_mutex is held across the call to this
28479  *		routine.
28480  *
28481  *   Arguments: un	- sd_lun
28482  *		blkno	- block number in terms of media block size.
28483  *		nblk	- number of blocks.
28484  *		bpp	- pointer to pointer to the buf structure. On return
28485  *			from this function, *bpp points to the valid buffer
28486  *			to which the write has to be done.
28487  *
28488  * Return Code: 0 for success or errno-type return code
28489  */
28490 
28491 static int
28492 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
28493 	struct buf **bpp)
28494 {
28495 	int err;
28496 	int i;
28497 	int rval;
28498 	struct buf *bp;
28499 	struct scsi_pkt *pkt = NULL;
28500 	uint32_t target_blocksize;
28501 
28502 	ASSERT(un != NULL);
28503 	ASSERT(mutex_owned(SD_MUTEX(un)));
28504 
28505 	target_blocksize = un->un_tgt_blocksize;
28506 
28507 	mutex_exit(SD_MUTEX(un));
28508 
28509 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
28510 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
28511 	if (bp == NULL) {
28512 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28513 		    "no resources for dumping; giving up");
28514 		err = ENOMEM;
28515 		goto done;
28516 	}
28517 
28518 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
28519 	    blkno, nblk);
28520 	if (rval != 0) {
28521 		scsi_free_consistent_buf(bp);
28522 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28523 		    "no resources for dumping; giving up");
28524 		err = ENOMEM;
28525 		goto done;
28526 	}
28527 
28528 	pkt->pkt_flags |= FLAG_NOINTR;
28529 
28530 	err = EIO;
28531 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
28532 
28533 		/*
28534 		 * Scsi_poll returns 0 (success) if the command completes and
28535 		 * the status block is STATUS_GOOD.  We should only check
28536 		 * errors if this condition is not true.  Even then we should
28537 		 * send our own request sense packet only if we have a check
28538 		 * condition and auto request sense has not been performed by
28539 		 * the hba.
28540 		 */
28541 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
28542 
28543 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
28544 			err = 0;
28545 			break;
28546 		}
28547 
28548 		/*
28549 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
28550 		 * no need to read RQS data.
28551 		 */
28552 		if (pkt->pkt_reason == CMD_DEV_GONE) {
28553 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28554 			    "Error while dumping state with rmw..."
28555 			    "Device is gone\n");
28556 			break;
28557 		}
28558 
28559 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
28560 			SD_INFO(SD_LOG_DUMP, un,
28561 			    "sddump: read failed with CHECK, try # %d\n", i);
28562 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
28563 				(void) sd_send_polled_RQS(un);
28564 			}
28565 
28566 			continue;
28567 		}
28568 
28569 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
28570 			int reset_retval = 0;
28571 
28572 			SD_INFO(SD_LOG_DUMP, un,
28573 			    "sddump: read failed with BUSY, try # %d\n", i);
28574 
28575 			if (un->un_f_lun_reset_enabled == TRUE) {
28576 				reset_retval = scsi_reset(SD_ADDRESS(un),
28577 				    RESET_LUN);
28578 			}
28579 			if (reset_retval == 0) {
28580 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
28581 			}
28582 			(void) sd_send_polled_RQS(un);
28583 
28584 		} else {
28585 			SD_INFO(SD_LOG_DUMP, un,
28586 			    "sddump: read failed with 0x%x, try # %d\n",
28587 			    SD_GET_PKT_STATUS(pkt), i);
28588 			mutex_enter(SD_MUTEX(un));
28589 			sd_reset_target(un, pkt);
28590 			mutex_exit(SD_MUTEX(un));
28591 		}
28592 
28593 		/*
28594 		 * If we are not getting anywhere with lun/target resets,
28595 		 * let's reset the bus.
28596 		 */
28597 		if (i > SD_NDUMP_RETRIES/2) {
28598 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
28599 			(void) sd_send_polled_RQS(un);
28600 		}
28601 
28602 	}
28603 	scsi_destroy_pkt(pkt);
28604 
28605 	if (err != 0) {
28606 		scsi_free_consistent_buf(bp);
28607 		*bpp = NULL;
28608 	} else {
28609 		*bpp = bp;
28610 	}
28611 
28612 done:
28613 	mutex_enter(SD_MUTEX(un));
28614 	return (err);
28615 }
28616 
28617 
28618 /*
28619  *    Function: sd_failfast_flushq
28620  *
28621  * Description: Take all bp's on the wait queue that have B_FAILFAST set
28622  *		in b_flags and move them onto the failfast queue, then kick
28623  *		off a thread to return all bp's on the failfast queue to
28624  *		their owners with an error set.
28625  *
28626  *   Arguments: un - pointer to the soft state struct for the instance.
28627  *
28628  *     Context: may execute in interrupt context.
28629  */
28630 
28631 static void
28632 sd_failfast_flushq(struct sd_lun *un)
28633 {
28634 	struct buf *bp;
28635 	struct buf *next_waitq_bp;
28636 	struct buf *prev_waitq_bp = NULL;
28637 
28638 	ASSERT(un != NULL);
28639 	ASSERT(mutex_owned(SD_MUTEX(un)));
28640 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
28641 	ASSERT(un->un_failfast_bp == NULL);
28642 
28643 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28644 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
28645 
28646 	/*
28647 	 * Check if we should flush all bufs when entering failfast state, or
28648 	 * just those with B_FAILFAST set.
28649 	 */
28650 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
28651 		/*
28652 		 * Move *all* bp's on the wait queue to the failfast flush
28653 		 * queue, including those that do NOT have B_FAILFAST set.
28654 		 */
28655 		if (un->un_failfast_headp == NULL) {
28656 			ASSERT(un->un_failfast_tailp == NULL);
28657 			un->un_failfast_headp = un->un_waitq_headp;
28658 		} else {
28659 			ASSERT(un->un_failfast_tailp != NULL);
28660 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
28661 		}
28662 
28663 		un->un_failfast_tailp = un->un_waitq_tailp;
28664 
28665 		/* update kstat for each bp moved out of the waitq */
28666 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
28667 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28668 		}
28669 
28670 		/* empty the waitq */
28671 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
28672 
28673 	} else {
28674 		/*
28675 		 * Go thru the wait queue, pick off all entries with
28676 		 * B_FAILFAST set, and move these onto the failfast queue.
28677 		 */
28678 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
28679 			/*
28680 			 * Save the pointer to the next bp on the wait queue,
28681 			 * so we get to it on the next iteration of this loop.
28682 			 */
28683 			next_waitq_bp = bp->av_forw;
28684 
28685 			/*
28686 			 * If this bp from the wait queue does NOT have
28687 			 * B_FAILFAST set, just move on to the next element
28688 			 * in the wait queue. Note, this is the only place
28689 			 * where it is correct to set prev_waitq_bp.
28690 			 */
28691 			if ((bp->b_flags & B_FAILFAST) == 0) {
28692 				prev_waitq_bp = bp;
28693 				continue;
28694 			}
28695 
28696 			/*
28697 			 * Remove the bp from the wait queue.
28698 			 */
28699 			if (bp == un->un_waitq_headp) {
28700 				/* The bp is the first element of the waitq. */
28701 				un->un_waitq_headp = next_waitq_bp;
28702 				if (un->un_waitq_headp == NULL) {
28703 					/* The wait queue is now empty */
28704 					un->un_waitq_tailp = NULL;
28705 				}
28706 			} else {
28707 				/*
28708 				 * The bp is either somewhere in the middle
28709 				 * or at the end of the wait queue.
28710 				 */
28711 				ASSERT(un->un_waitq_headp != NULL);
28712 				ASSERT(prev_waitq_bp != NULL);
28713 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
28714 				    == 0);
28715 				if (bp == un->un_waitq_tailp) {
28716 					/* bp is the last entry on the waitq. */
28717 					ASSERT(next_waitq_bp == NULL);
28718 					un->un_waitq_tailp = prev_waitq_bp;
28719 				}
28720 				prev_waitq_bp->av_forw = next_waitq_bp;
28721 			}
28722 			bp->av_forw = NULL;
28723 
28724 			/*
28725 			 * update kstat since the bp is moved out of
28726 			 * the waitq
28727 			 */
28728 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
28729 
28730 			/*
28731 			 * Now put the bp onto the failfast queue.
28732 			 */
28733 			if (un->un_failfast_headp == NULL) {
28734 				/* failfast queue is currently empty */
28735 				ASSERT(un->un_failfast_tailp == NULL);
28736 				un->un_failfast_headp =
28737 				    un->un_failfast_tailp = bp;
28738 			} else {
28739 				/* Add the bp to the end of the failfast q */
28740 				ASSERT(un->un_failfast_tailp != NULL);
28741 				ASSERT(un->un_failfast_tailp->b_flags &
28742 				    B_FAILFAST);
28743 				un->un_failfast_tailp->av_forw = bp;
28744 				un->un_failfast_tailp = bp;
28745 			}
28746 		}
28747 	}
28748 
28749 	/*
28750 	 * Now return all bp's on the failfast queue to their owners.
28751 	 */
28752 	while ((bp = un->un_failfast_headp) != NULL) {
28753 
28754 		un->un_failfast_headp = bp->av_forw;
28755 		if (un->un_failfast_headp == NULL) {
28756 			un->un_failfast_tailp = NULL;
28757 		}
28758 
28759 		/*
28760 		 * We want to return the bp with a failure error code, but
28761 		 * we do not want a call to sd_start_cmds() to occur here,
28762 		 * so use sd_return_failed_command_no_restart() instead of
28763 		 * sd_return_failed_command().
28764 		 */
28765 		sd_return_failed_command_no_restart(un, bp, EIO);
28766 	}
28767 
28768 	/* Flush the xbuf queues if required. */
28769 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
28770 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
28771 	}
28772 
28773 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
28774 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
28775 }
28776 
28777 
28778 /*
28779  *    Function: sd_failfast_flushq_callback
28780  *
28781  * Description: Return TRUE if the given bp meets the criteria for failfast
28782  *		flushing. Used with ddi_xbuf_flushq(9F).
28783  *
28784  *   Arguments: bp - ptr to buf struct to be examined.
28785  *
28786  *     Context: Any
28787  */
28788 
28789 static int
28790 sd_failfast_flushq_callback(struct buf *bp)
28791 {
28792 	/*
28793 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
28794 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
28795 	 */
28796 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
28797 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
28798 }
28799 
28800 
28801 
28802 /*
28803  * Function: sd_setup_next_xfer
28804  *
28805  * Description: Prepare next I/O operation using DMA_PARTIAL
28806  *
28807  */
28808 
28809 static int
28810 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
28811     struct scsi_pkt *pkt, struct sd_xbuf *xp)
28812 {
28813 	ssize_t	num_blks_not_xfered;
28814 	daddr_t	strt_blk_num;
28815 	ssize_t	bytes_not_xfered;
28816 	int	rval;
28817 
28818 	ASSERT(pkt->pkt_resid == 0);
28819 
28820 	/*
28821 	 * Calculate next block number and amount to be transferred.
28822 	 *
28823 	 * How much data NOT transfered to the HBA yet.
28824 	 */
28825 	bytes_not_xfered = xp->xb_dma_resid;
28826 
28827 	/*
28828 	 * figure how many blocks NOT transfered to the HBA yet.
28829 	 */
28830 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
28831 
28832 	/*
28833 	 * set starting block number to the end of what WAS transfered.
28834 	 */
28835 	strt_blk_num = xp->xb_blkno +
28836 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
28837 
28838 	/*
28839 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
28840 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
28841 	 * the disk mutex here.
28842 	 */
28843 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
28844 	    strt_blk_num, num_blks_not_xfered);
28845 
28846 	if (rval == 0) {
28847 
28848 		/*
28849 		 * Success.
28850 		 *
28851 		 * Adjust things if there are still more blocks to be
28852 		 * transfered.
28853 		 */
28854 		xp->xb_dma_resid = pkt->pkt_resid;
28855 		pkt->pkt_resid = 0;
28856 
28857 		return (1);
28858 	}
28859 
28860 	/*
28861 	 * There's really only one possible return value from
28862 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
28863 	 * returns NULL.
28864 	 */
28865 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
28866 
28867 	bp->b_resid = bp->b_bcount;
28868 	bp->b_flags |= B_ERROR;
28869 
28870 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28871 	    "Error setting up next portion of DMA transfer\n");
28872 
28873 	return (0);
28874 }
28875 
28876 /*
28877  *    Function: sd_panic_for_res_conflict
28878  *
28879  * Description: Call panic with a string formatted with "Reservation Conflict"
28880  *		and a human readable identifier indicating the SD instance
28881  *		that experienced the reservation conflict.
28882  *
28883  *   Arguments: un - pointer to the soft state struct for the instance.
28884  *
28885  *     Context: may execute in interrupt context.
28886  */
28887 
28888 #define	SD_RESV_CONFLICT_FMT_LEN 40
28889 void
28890 sd_panic_for_res_conflict(struct sd_lun *un)
28891 {
28892 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
28893 	char path_str[MAXPATHLEN];
28894 
28895 	(void) snprintf(panic_str, sizeof (panic_str),
28896 	    "Reservation Conflict\nDisk: %s",
28897 	    ddi_pathname(SD_DEVINFO(un), path_str));
28898 
28899 	panic(panic_str);
28900 }
28901 
28902 /*
28903  * Note: The following sd_faultinjection_ioctl( ) routines implement
28904  * driver support for handling fault injection for error analysis
28905  * causing faults in multiple layers of the driver.
28906  *
28907  */
28908 
28909 #ifdef SD_FAULT_INJECTION
28910 static uint_t   sd_fault_injection_on = 0;
28911 
28912 /*
28913  *    Function: sd_faultinjection_ioctl()
28914  *
28915  * Description: This routine is the driver entry point for handling
28916  *              faultinjection ioctls to inject errors into the
28917  *              layer model
28918  *
28919  *   Arguments: cmd	- the ioctl cmd received
28920  *		arg	- the arguments from user and returns
28921  */
28922 
28923 static void
28924 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
28925 
28926 	uint_t i = 0;
28927 	uint_t rval;
28928 
28929 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
28930 
28931 	mutex_enter(SD_MUTEX(un));
28932 
28933 	switch (cmd) {
28934 	case SDIOCRUN:
28935 		/* Allow pushed faults to be injected */
28936 		SD_INFO(SD_LOG_SDTEST, un,
28937 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
28938 
28939 		sd_fault_injection_on = 1;
28940 
28941 		SD_INFO(SD_LOG_IOERR, un,
28942 		    "sd_faultinjection_ioctl: run finished\n");
28943 		break;
28944 
28945 	case SDIOCSTART:
28946 		/* Start Injection Session */
28947 		SD_INFO(SD_LOG_SDTEST, un,
28948 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
28949 
28950 		sd_fault_injection_on = 0;
28951 		un->sd_injection_mask = 0xFFFFFFFF;
28952 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28953 			un->sd_fi_fifo_pkt[i] = NULL;
28954 			un->sd_fi_fifo_xb[i] = NULL;
28955 			un->sd_fi_fifo_un[i] = NULL;
28956 			un->sd_fi_fifo_arq[i] = NULL;
28957 		}
28958 		un->sd_fi_fifo_start = 0;
28959 		un->sd_fi_fifo_end = 0;
28960 
28961 		mutex_enter(&(un->un_fi_mutex));
28962 		un->sd_fi_log[0] = '\0';
28963 		un->sd_fi_buf_len = 0;
28964 		mutex_exit(&(un->un_fi_mutex));
28965 
28966 		SD_INFO(SD_LOG_IOERR, un,
28967 		    "sd_faultinjection_ioctl: start finished\n");
28968 		break;
28969 
28970 	case SDIOCSTOP:
28971 		/* Stop Injection Session */
28972 		SD_INFO(SD_LOG_SDTEST, un,
28973 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
28974 		sd_fault_injection_on = 0;
28975 		un->sd_injection_mask = 0x0;
28976 
28977 		/* Empty stray or unuseds structs from fifo */
28978 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
28979 			if (un->sd_fi_fifo_pkt[i] != NULL) {
28980 				kmem_free(un->sd_fi_fifo_pkt[i],
28981 				    sizeof (struct sd_fi_pkt));
28982 			}
28983 			if (un->sd_fi_fifo_xb[i] != NULL) {
28984 				kmem_free(un->sd_fi_fifo_xb[i],
28985 				    sizeof (struct sd_fi_xb));
28986 			}
28987 			if (un->sd_fi_fifo_un[i] != NULL) {
28988 				kmem_free(un->sd_fi_fifo_un[i],
28989 				    sizeof (struct sd_fi_un));
28990 			}
28991 			if (un->sd_fi_fifo_arq[i] != NULL) {
28992 				kmem_free(un->sd_fi_fifo_arq[i],
28993 				    sizeof (struct sd_fi_arq));
28994 			}
28995 			un->sd_fi_fifo_pkt[i] = NULL;
28996 			un->sd_fi_fifo_un[i] = NULL;
28997 			un->sd_fi_fifo_xb[i] = NULL;
28998 			un->sd_fi_fifo_arq[i] = NULL;
28999 		}
29000 		un->sd_fi_fifo_start = 0;
29001 		un->sd_fi_fifo_end = 0;
29002 
29003 		SD_INFO(SD_LOG_IOERR, un,
29004 		    "sd_faultinjection_ioctl: stop finished\n");
29005 		break;
29006 
29007 	case SDIOCINSERTPKT:
29008 		/* Store a packet struct to be pushed onto fifo */
29009 		SD_INFO(SD_LOG_SDTEST, un,
29010 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29011 
29012 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29013 
29014 		sd_fault_injection_on = 0;
29015 
29016 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29017 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29018 			kmem_free(un->sd_fi_fifo_pkt[i],
29019 			    sizeof (struct sd_fi_pkt));
29020 		}
29021 		if (arg != NULL) {
29022 			un->sd_fi_fifo_pkt[i] =
29023 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29024 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29025 				/* Alloc failed don't store anything */
29026 				break;
29027 			}
29028 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29029 			    sizeof (struct sd_fi_pkt), 0);
29030 			if (rval == -1) {
29031 				kmem_free(un->sd_fi_fifo_pkt[i],
29032 				    sizeof (struct sd_fi_pkt));
29033 				un->sd_fi_fifo_pkt[i] = NULL;
29034 			}
29035 		} else {
29036 			SD_INFO(SD_LOG_IOERR, un,
29037 			    "sd_faultinjection_ioctl: pkt null\n");
29038 		}
29039 		break;
29040 
29041 	case SDIOCINSERTXB:
29042 		/* Store a xb struct to be pushed onto fifo */
29043 		SD_INFO(SD_LOG_SDTEST, un,
29044 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29045 
29046 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29047 
29048 		sd_fault_injection_on = 0;
29049 
29050 		if (un->sd_fi_fifo_xb[i] != NULL) {
29051 			kmem_free(un->sd_fi_fifo_xb[i],
29052 			    sizeof (struct sd_fi_xb));
29053 			un->sd_fi_fifo_xb[i] = NULL;
29054 		}
29055 		if (arg != NULL) {
29056 			un->sd_fi_fifo_xb[i] =
29057 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29058 			if (un->sd_fi_fifo_xb[i] == NULL) {
29059 				/* Alloc failed don't store anything */
29060 				break;
29061 			}
29062 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29063 			    sizeof (struct sd_fi_xb), 0);
29064 
29065 			if (rval == -1) {
29066 				kmem_free(un->sd_fi_fifo_xb[i],
29067 				    sizeof (struct sd_fi_xb));
29068 				un->sd_fi_fifo_xb[i] = NULL;
29069 			}
29070 		} else {
29071 			SD_INFO(SD_LOG_IOERR, un,
29072 			    "sd_faultinjection_ioctl: xb null\n");
29073 		}
29074 		break;
29075 
29076 	case SDIOCINSERTUN:
29077 		/* Store a un struct to be pushed onto fifo */
29078 		SD_INFO(SD_LOG_SDTEST, un,
29079 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29080 
29081 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29082 
29083 		sd_fault_injection_on = 0;
29084 
29085 		if (un->sd_fi_fifo_un[i] != NULL) {
29086 			kmem_free(un->sd_fi_fifo_un[i],
29087 			    sizeof (struct sd_fi_un));
29088 			un->sd_fi_fifo_un[i] = NULL;
29089 		}
29090 		if (arg != NULL) {
29091 			un->sd_fi_fifo_un[i] =
29092 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29093 			if (un->sd_fi_fifo_un[i] == NULL) {
29094 				/* Alloc failed don't store anything */
29095 				break;
29096 			}
29097 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29098 			    sizeof (struct sd_fi_un), 0);
29099 			if (rval == -1) {
29100 				kmem_free(un->sd_fi_fifo_un[i],
29101 				    sizeof (struct sd_fi_un));
29102 				un->sd_fi_fifo_un[i] = NULL;
29103 			}
29104 
29105 		} else {
29106 			SD_INFO(SD_LOG_IOERR, un,
29107 			    "sd_faultinjection_ioctl: un null\n");
29108 		}
29109 
29110 		break;
29111 
29112 	case SDIOCINSERTARQ:
29113 		/* Store a arq struct to be pushed onto fifo */
29114 		SD_INFO(SD_LOG_SDTEST, un,
29115 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29116 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29117 
29118 		sd_fault_injection_on = 0;
29119 
29120 		if (un->sd_fi_fifo_arq[i] != NULL) {
29121 			kmem_free(un->sd_fi_fifo_arq[i],
29122 			    sizeof (struct sd_fi_arq));
29123 			un->sd_fi_fifo_arq[i] = NULL;
29124 		}
29125 		if (arg != NULL) {
29126 			un->sd_fi_fifo_arq[i] =
29127 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29128 			if (un->sd_fi_fifo_arq[i] == NULL) {
29129 				/* Alloc failed don't store anything */
29130 				break;
29131 			}
29132 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29133 			    sizeof (struct sd_fi_arq), 0);
29134 			if (rval == -1) {
29135 				kmem_free(un->sd_fi_fifo_arq[i],
29136 				    sizeof (struct sd_fi_arq));
29137 				un->sd_fi_fifo_arq[i] = NULL;
29138 			}
29139 
29140 		} else {
29141 			SD_INFO(SD_LOG_IOERR, un,
29142 			    "sd_faultinjection_ioctl: arq null\n");
29143 		}
29144 
29145 		break;
29146 
29147 	case SDIOCPUSH:
29148 		/* Push stored xb, pkt, un, and arq onto fifo */
29149 		sd_fault_injection_on = 0;
29150 
29151 		if (arg != NULL) {
29152 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29153 			if (rval != -1 &&
29154 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29155 				un->sd_fi_fifo_end += i;
29156 			}
29157 		} else {
29158 			SD_INFO(SD_LOG_IOERR, un,
29159 			    "sd_faultinjection_ioctl: push arg null\n");
29160 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29161 				un->sd_fi_fifo_end++;
29162 			}
29163 		}
29164 		SD_INFO(SD_LOG_IOERR, un,
29165 		    "sd_faultinjection_ioctl: push to end=%d\n",
29166 		    un->sd_fi_fifo_end);
29167 		break;
29168 
29169 	case SDIOCRETRIEVE:
29170 		/* Return buffer of log from Injection session */
29171 		SD_INFO(SD_LOG_SDTEST, un,
29172 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29173 
29174 		sd_fault_injection_on = 0;
29175 
29176 		mutex_enter(&(un->un_fi_mutex));
29177 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29178 		    un->sd_fi_buf_len+1, 0);
29179 		mutex_exit(&(un->un_fi_mutex));
29180 
29181 		if (rval == -1) {
29182 			/*
29183 			 * arg is possibly invalid setting
29184 			 * it to NULL for return
29185 			 */
29186 			arg = NULL;
29187 		}
29188 		break;
29189 	}
29190 
29191 	mutex_exit(SD_MUTEX(un));
29192 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29193 			    " exit\n");
29194 }
29195 
29196 
29197 /*
29198  *    Function: sd_injection_log()
29199  *
29200  * Description: This routine adds buff to the already existing injection log
29201  *              for retrieval via faultinjection_ioctl for use in fault
29202  *              detection and recovery
29203  *
29204  *   Arguments: buf - the string to add to the log
29205  */
29206 
29207 static void
29208 sd_injection_log(char *buf, struct sd_lun *un)
29209 {
29210 	uint_t len;
29211 
29212 	ASSERT(un != NULL);
29213 	ASSERT(buf != NULL);
29214 
29215 	mutex_enter(&(un->un_fi_mutex));
29216 
29217 	len = min(strlen(buf), 255);
29218 	/* Add logged value to Injection log to be returned later */
29219 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29220 		uint_t	offset = strlen((char *)un->sd_fi_log);
29221 		char *destp = (char *)un->sd_fi_log + offset;
29222 		int i;
29223 		for (i = 0; i < len; i++) {
29224 			*destp++ = *buf++;
29225 		}
29226 		un->sd_fi_buf_len += len;
29227 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29228 	}
29229 
29230 	mutex_exit(&(un->un_fi_mutex));
29231 }
29232 
29233 
29234 /*
29235  *    Function: sd_faultinjection()
29236  *
29237  * Description: This routine takes the pkt and changes its
29238  *		content based on error injection scenerio.
29239  *
29240  *   Arguments: pktp	- packet to be changed
29241  */
29242 
29243 static void
29244 sd_faultinjection(struct scsi_pkt *pktp)
29245 {
29246 	uint_t i;
29247 	struct sd_fi_pkt *fi_pkt;
29248 	struct sd_fi_xb *fi_xb;
29249 	struct sd_fi_un *fi_un;
29250 	struct sd_fi_arq *fi_arq;
29251 	struct buf *bp;
29252 	struct sd_xbuf *xb;
29253 	struct sd_lun *un;
29254 
29255 	ASSERT(pktp != NULL);
29256 
29257 	/* pull bp xb and un from pktp */
29258 	bp = (struct buf *)pktp->pkt_private;
29259 	xb = SD_GET_XBUF(bp);
29260 	un = SD_GET_UN(bp);
29261 
29262 	ASSERT(un != NULL);
29263 
29264 	mutex_enter(SD_MUTEX(un));
29265 
29266 	SD_TRACE(SD_LOG_SDTEST, un,
29267 	    "sd_faultinjection: entry Injection from sdintr\n");
29268 
29269 	/* if injection is off return */
29270 	if (sd_fault_injection_on == 0 ||
29271 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
29272 		mutex_exit(SD_MUTEX(un));
29273 		return;
29274 	}
29275 
29276 	SD_INFO(SD_LOG_SDTEST, un,
29277 	    "sd_faultinjection: is working for copying\n");
29278 
29279 	/* take next set off fifo */
29280 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
29281 
29282 	fi_pkt = un->sd_fi_fifo_pkt[i];
29283 	fi_xb = un->sd_fi_fifo_xb[i];
29284 	fi_un = un->sd_fi_fifo_un[i];
29285 	fi_arq = un->sd_fi_fifo_arq[i];
29286 
29287 
29288 	/* set variables accordingly */
29289 	/* set pkt if it was on fifo */
29290 	if (fi_pkt != NULL) {
29291 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
29292 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
29293 		if (fi_pkt->pkt_cdbp != 0xff)
29294 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
29295 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
29296 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
29297 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
29298 
29299 	}
29300 	/* set xb if it was on fifo */
29301 	if (fi_xb != NULL) {
29302 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
29303 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
29304 		if (fi_xb->xb_retry_count != 0)
29305 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
29306 		SD_CONDSET(xb, xb, xb_victim_retry_count,
29307 		    "xb_victim_retry_count");
29308 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
29309 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
29310 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
29311 
29312 		/* copy in block data from sense */
29313 		/*
29314 		 * if (fi_xb->xb_sense_data[0] != -1) {
29315 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
29316 		 *	SENSE_LENGTH);
29317 		 * }
29318 		 */
29319 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
29320 
29321 		/* copy in extended sense codes */
29322 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29323 		    xb, es_code, "es_code");
29324 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29325 		    xb, es_key, "es_key");
29326 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29327 		    xb, es_add_code, "es_add_code");
29328 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
29329 		    xb, es_qual_code, "es_qual_code");
29330 		struct scsi_extended_sense *esp;
29331 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
29332 		esp->es_class = CLASS_EXTENDED_SENSE;
29333 	}
29334 
29335 	/* set un if it was on fifo */
29336 	if (fi_un != NULL) {
29337 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
29338 		SD_CONDSET(un, un, un_ctype, "un_ctype");
29339 		SD_CONDSET(un, un, un_reset_retry_count,
29340 		    "un_reset_retry_count");
29341 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
29342 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
29343 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
29344 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
29345 		    "un_f_allow_bus_device_reset");
29346 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
29347 
29348 	}
29349 
29350 	/* copy in auto request sense if it was on fifo */
29351 	if (fi_arq != NULL) {
29352 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
29353 	}
29354 
29355 	/* free structs */
29356 	if (un->sd_fi_fifo_pkt[i] != NULL) {
29357 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
29358 	}
29359 	if (un->sd_fi_fifo_xb[i] != NULL) {
29360 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
29361 	}
29362 	if (un->sd_fi_fifo_un[i] != NULL) {
29363 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
29364 	}
29365 	if (un->sd_fi_fifo_arq[i] != NULL) {
29366 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
29367 	}
29368 
29369 	/*
29370 	 * kmem_free does not gurantee to set to NULL
29371 	 * since we uses these to determine if we set
29372 	 * values or not lets confirm they are always
29373 	 * NULL after free
29374 	 */
29375 	un->sd_fi_fifo_pkt[i] = NULL;
29376 	un->sd_fi_fifo_un[i] = NULL;
29377 	un->sd_fi_fifo_xb[i] = NULL;
29378 	un->sd_fi_fifo_arq[i] = NULL;
29379 
29380 	un->sd_fi_fifo_start++;
29381 
29382 	mutex_exit(SD_MUTEX(un));
29383 
29384 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
29385 }
29386 
29387 #endif /* SD_FAULT_INJECTION */
29388 
29389 /*
29390  * This routine is invoked in sd_unit_attach(). Before calling it, the
29391  * properties in conf file should be processed already, and "hotpluggable"
29392  * property was processed also.
29393  *
29394  * The sd driver distinguishes 3 different type of devices: removable media,
29395  * non-removable media, and hotpluggable. Below the differences are defined:
29396  *
29397  * 1. Device ID
29398  *
29399  *     The device ID of a device is used to identify this device. Refer to
29400  *     ddi_devid_register(9F).
29401  *
29402  *     For a non-removable media disk device which can provide 0x80 or 0x83
29403  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
29404  *     device ID is created to identify this device. For other non-removable
29405  *     media devices, a default device ID is created only if this device has
29406  *     at least 2 alter cylinders. Otherwise, this device has no devid.
29407  *
29408  *     -------------------------------------------------------
29409  *     removable media   hotpluggable  | Can Have Device ID
29410  *     -------------------------------------------------------
29411  *         false             false     |     Yes
29412  *         false             true      |     Yes
29413  *         true                x       |     No
29414  *     ------------------------------------------------------
29415  *
29416  *
29417  * 2. SCSI group 4 commands
29418  *
29419  *     In SCSI specs, only some commands in group 4 command set can use
29420  *     8-byte addresses that can be used to access >2TB storage spaces.
29421  *     Other commands have no such capability. Without supporting group4,
29422  *     it is impossible to make full use of storage spaces of a disk with
29423  *     capacity larger than 2TB.
29424  *
29425  *     -----------------------------------------------
29426  *     removable media   hotpluggable   LP64  |  Group
29427  *     -----------------------------------------------
29428  *           false          false       false |   1
29429  *           false          false       true  |   4
29430  *           false          true        false |   1
29431  *           false          true        true  |   4
29432  *           true             x           x   |   5
29433  *     -----------------------------------------------
29434  *
29435  *
29436  * 3. Check for VTOC Label
29437  *
29438  *     If a direct-access disk has no EFI label, sd will check if it has a
29439  *     valid VTOC label. Now, sd also does that check for removable media
29440  *     and hotpluggable devices.
29441  *
29442  *     --------------------------------------------------------------
29443  *     Direct-Access   removable media    hotpluggable |  Check Label
29444  *     -------------------------------------------------------------
29445  *         false          false           false        |   No
29446  *         false          false           true         |   No
29447  *         false          true            false        |   Yes
29448  *         false          true            true         |   Yes
29449  *         true            x                x          |   Yes
29450  *     --------------------------------------------------------------
29451  *
29452  *
29453  * 4. Building default VTOC label
29454  *
29455  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
29456  *     If those devices have no valid VTOC label, sd(7d) will attempt to
29457  *     create default VTOC for them. Currently sd creates default VTOC label
29458  *     for all devices on x86 platform (VTOC_16), but only for removable
29459  *     media devices on SPARC (VTOC_8).
29460  *
29461  *     -----------------------------------------------------------
29462  *       removable media hotpluggable platform   |   Default Label
29463  *     -----------------------------------------------------------
29464  *             false          false    sparc     |     No
29465  *             false          true      x86      |     Yes
29466  *             false          true     sparc     |     Yes
29467  *             true             x        x       |     Yes
29468  *     ----------------------------------------------------------
29469  *
29470  *
29471  * 5. Supported blocksizes of target devices
29472  *
29473  *     Sd supports non-512-byte blocksize for removable media devices only.
29474  *     For other devices, only 512-byte blocksize is supported. This may be
29475  *     changed in near future because some RAID devices require non-512-byte
29476  *     blocksize
29477  *
29478  *     -----------------------------------------------------------
29479  *     removable media    hotpluggable    | non-512-byte blocksize
29480  *     -----------------------------------------------------------
29481  *           false          false         |   No
29482  *           false          true          |   No
29483  *           true             x           |   Yes
29484  *     -----------------------------------------------------------
29485  *
29486  *
29487  * 6. Automatic mount & unmount
29488  *
29489  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
29490  *     if a device is removable media device. It return 1 for removable media
29491  *     devices, and 0 for others.
29492  *
29493  *     The automatic mounting subsystem should distinguish between the types
29494  *     of devices and apply automounting policies to each.
29495  *
29496  *
29497  * 7. fdisk partition management
29498  *
29499  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
29500  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
29501  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
29502  *     fdisk partitions on both x86 and SPARC platform.
29503  *
29504  *     -----------------------------------------------------------
29505  *       platform   removable media  USB/1394  |  fdisk supported
29506  *     -----------------------------------------------------------
29507  *        x86         X               X        |       true
29508  *     ------------------------------------------------------------
29509  *        sparc       X               X        |       false
29510  *     ------------------------------------------------------------
29511  *
29512  *
29513  * 8. MBOOT/MBR
29514  *
29515  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
29516  *     read/write mboot for removable media devices on sparc platform.
29517  *
29518  *     -----------------------------------------------------------
29519  *       platform   removable media  USB/1394  |  mboot supported
29520  *     -----------------------------------------------------------
29521  *        x86         X               X        |       true
29522  *     ------------------------------------------------------------
29523  *        sparc      false           false     |       false
29524  *        sparc      false           true      |       true
29525  *        sparc      true            false     |       true
29526  *        sparc      true            true      |       true
29527  *     ------------------------------------------------------------
29528  *
29529  *
29530  * 9.  error handling during opening device
29531  *
29532  *     If failed to open a disk device, an errno is returned. For some kinds
29533  *     of errors, different errno is returned depending on if this device is
29534  *     a removable media device. This brings USB/1394 hard disks in line with
29535  *     expected hard disk behavior. It is not expected that this breaks any
29536  *     application.
29537  *
29538  *     ------------------------------------------------------
29539  *       removable media    hotpluggable   |  errno
29540  *     ------------------------------------------------------
29541  *             false          false        |   EIO
29542  *             false          true         |   EIO
29543  *             true             x          |   ENXIO
29544  *     ------------------------------------------------------
29545  *
29546  *
29547  * 11. ioctls: DKIOCEJECT, CDROMEJECT
29548  *
29549  *     These IOCTLs are applicable only to removable media devices.
29550  *
29551  *     -----------------------------------------------------------
29552  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
29553  *     -----------------------------------------------------------
29554  *             false          false        |     No
29555  *             false          true         |     No
29556  *             true            x           |     Yes
29557  *     -----------------------------------------------------------
29558  *
29559  *
29560  * 12. Kstats for partitions
29561  *
29562  *     sd creates partition kstat for non-removable media devices. USB and
29563  *     Firewire hard disks now have partition kstats
29564  *
29565  *      ------------------------------------------------------
29566  *       removable media    hotpluggable   |   kstat
29567  *      ------------------------------------------------------
29568  *             false          false        |    Yes
29569  *             false          true         |    Yes
29570  *             true             x          |    No
29571  *       ------------------------------------------------------
29572  *
29573  *
29574  * 13. Removable media & hotpluggable properties
29575  *
29576  *     Sd driver creates a "removable-media" property for removable media
29577  *     devices. Parent nexus drivers create a "hotpluggable" property if
29578  *     it supports hotplugging.
29579  *
29580  *     ---------------------------------------------------------------------
29581  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
29582  *     ---------------------------------------------------------------------
29583  *       false            false       |    No                   No
29584  *       false            true        |    No                   Yes
29585  *       true             false       |    Yes                  No
29586  *       true             true        |    Yes                  Yes
29587  *     ---------------------------------------------------------------------
29588  *
29589  *
29590  * 14. Power Management
29591  *
29592  *     sd only power manages removable media devices or devices that support
29593  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
29594  *
29595  *     A parent nexus that supports hotplugging can also set "pm-capable"
29596  *     if the disk can be power managed.
29597  *
29598  *     ------------------------------------------------------------
29599  *       removable media hotpluggable pm-capable  |   power manage
29600  *     ------------------------------------------------------------
29601  *             false          false     false     |     No
29602  *             false          false     true      |     Yes
29603  *             false          true      false     |     No
29604  *             false          true      true      |     Yes
29605  *             true             x        x        |     Yes
29606  *     ------------------------------------------------------------
29607  *
29608  *      USB and firewire hard disks can now be power managed independently
29609  *      of the framebuffer
29610  *
29611  *
29612  * 15. Support for USB disks with capacity larger than 1TB
29613  *
29614  *     Currently, sd doesn't permit a fixed disk device with capacity
29615  *     larger than 1TB to be used in a 32-bit operating system environment.
29616  *     However, sd doesn't do that for removable media devices. Instead, it
29617  *     assumes that removable media devices cannot have a capacity larger
29618  *     than 1TB. Therefore, using those devices on 32-bit system is partially
29619  *     supported, which can cause some unexpected results.
29620  *
29621  *     ---------------------------------------------------------------------
29622  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
29623  *     ---------------------------------------------------------------------
29624  *             false          false  |   true         |     no
29625  *             false          true   |   true         |     no
29626  *             true           false  |   true         |     Yes
29627  *             true           true   |   true         |     Yes
29628  *     ---------------------------------------------------------------------
29629  *
29630  *
29631  * 16. Check write-protection at open time
29632  *
29633  *     When a removable media device is being opened for writing without NDELAY
29634  *     flag, sd will check if this device is writable. If attempting to open
29635  *     without NDELAY flag a write-protected device, this operation will abort.
29636  *
29637  *     ------------------------------------------------------------
29638  *       removable media    USB/1394   |   WP Check
29639  *     ------------------------------------------------------------
29640  *             false          false    |     No
29641  *             false          true     |     No
29642  *             true           false    |     Yes
29643  *             true           true     |     Yes
29644  *     ------------------------------------------------------------
29645  *
29646  *
29647  * 17. syslog when corrupted VTOC is encountered
29648  *
29649  *      Currently, if an invalid VTOC is encountered, sd only print syslog
29650  *      for fixed SCSI disks.
29651  *     ------------------------------------------------------------
29652  *       removable media    USB/1394   |   print syslog
29653  *     ------------------------------------------------------------
29654  *             false          false    |     Yes
29655  *             false          true     |     No
29656  *             true           false    |     No
29657  *             true           true     |     No
29658  *     ------------------------------------------------------------
29659  */
29660 static void
29661 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
29662 {
29663 	int	pm_capable_prop;
29664 
29665 	ASSERT(un->un_sd);
29666 	ASSERT(un->un_sd->sd_inq);
29667 
29668 	/*
29669 	 * Enable SYNC CACHE support for all devices.
29670 	 */
29671 	un->un_f_sync_cache_supported = TRUE;
29672 
29673 	/*
29674 	 * Set the sync cache required flag to false.
29675 	 * This would ensure that there is no SYNC CACHE
29676 	 * sent when there are no writes
29677 	 */
29678 	un->un_f_sync_cache_required = FALSE;
29679 
29680 	if (un->un_sd->sd_inq->inq_rmb) {
29681 		/*
29682 		 * The media of this device is removable. And for this kind
29683 		 * of devices, it is possible to change medium after opening
29684 		 * devices. Thus we should support this operation.
29685 		 */
29686 		un->un_f_has_removable_media = TRUE;
29687 
29688 		/*
29689 		 * support non-512-byte blocksize of removable media devices
29690 		 */
29691 		un->un_f_non_devbsize_supported = TRUE;
29692 
29693 		/*
29694 		 * Assume that all removable media devices support DOOR_LOCK
29695 		 */
29696 		un->un_f_doorlock_supported = TRUE;
29697 
29698 		/*
29699 		 * For a removable media device, it is possible to be opened
29700 		 * with NDELAY flag when there is no media in drive, in this
29701 		 * case we don't care if device is writable. But if without
29702 		 * NDELAY flag, we need to check if media is write-protected.
29703 		 */
29704 		un->un_f_chk_wp_open = TRUE;
29705 
29706 		/*
29707 		 * need to start a SCSI watch thread to monitor media state,
29708 		 * when media is being inserted or ejected, notify syseventd.
29709 		 */
29710 		un->un_f_monitor_media_state = TRUE;
29711 
29712 		/*
29713 		 * Some devices don't support START_STOP_UNIT command.
29714 		 * Therefore, we'd better check if a device supports it
29715 		 * before sending it.
29716 		 */
29717 		un->un_f_check_start_stop = TRUE;
29718 
29719 		/*
29720 		 * support eject media ioctl:
29721 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
29722 		 */
29723 		un->un_f_eject_media_supported = TRUE;
29724 
29725 		/*
29726 		 * Because many removable-media devices don't support
29727 		 * LOG_SENSE, we couldn't use this command to check if
29728 		 * a removable media device support power-management.
29729 		 * We assume that they support power-management via
29730 		 * START_STOP_UNIT command and can be spun up and down
29731 		 * without limitations.
29732 		 */
29733 		un->un_f_pm_supported = TRUE;
29734 
29735 		/*
29736 		 * Need to create a zero length (Boolean) property
29737 		 * removable-media for the removable media devices.
29738 		 * Note that the return value of the property is not being
29739 		 * checked, since if unable to create the property
29740 		 * then do not want the attach to fail altogether. Consistent
29741 		 * with other property creation in attach.
29742 		 */
29743 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
29744 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
29745 
29746 	} else {
29747 		/*
29748 		 * create device ID for device
29749 		 */
29750 		un->un_f_devid_supported = TRUE;
29751 
29752 		/*
29753 		 * Spin up non-removable-media devices once it is attached
29754 		 */
29755 		un->un_f_attach_spinup = TRUE;
29756 
29757 		/*
29758 		 * According to SCSI specification, Sense data has two kinds of
29759 		 * format: fixed format, and descriptor format. At present, we
29760 		 * don't support descriptor format sense data for removable
29761 		 * media.
29762 		 */
29763 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
29764 			un->un_f_descr_format_supported = TRUE;
29765 		}
29766 
29767 		/*
29768 		 * kstats are created only for non-removable media devices.
29769 		 *
29770 		 * Set this in sd.conf to 0 in order to disable kstats.  The
29771 		 * default is 1, so they are enabled by default.
29772 		 */
29773 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
29774 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
29775 		    "enable-partition-kstats", 1));
29776 
29777 		/*
29778 		 * Check if HBA has set the "pm-capable" property.
29779 		 * If "pm-capable" exists and is non-zero then we can
29780 		 * power manage the device without checking the start/stop
29781 		 * cycle count log sense page.
29782 		 *
29783 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
29784 		 * then we should not power manage the device.
29785 		 *
29786 		 * If "pm-capable" doesn't exist then pm_capable_prop will
29787 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
29788 		 * sd will check the start/stop cycle count log sense page
29789 		 * and power manage the device if the cycle count limit has
29790 		 * not been exceeded.
29791 		 */
29792 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
29793 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
29794 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
29795 			un->un_f_log_sense_supported = TRUE;
29796 		} else {
29797 			/*
29798 			 * pm-capable property exists.
29799 			 *
29800 			 * Convert "TRUE" values for pm_capable_prop to
29801 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
29802 			 * later. "TRUE" values are any values except
29803 			 * SD_PM_CAPABLE_FALSE (0) and
29804 			 * SD_PM_CAPABLE_UNDEFINED (-1)
29805 			 */
29806 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
29807 				un->un_f_log_sense_supported = FALSE;
29808 			} else {
29809 				un->un_f_pm_supported = TRUE;
29810 			}
29811 
29812 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
29813 			    "sd_unit_attach: un:0x%p pm-capable "
29814 			    "property set to %d.\n", un, un->un_f_pm_supported);
29815 		}
29816 	}
29817 
29818 	if (un->un_f_is_hotpluggable) {
29819 
29820 		/*
29821 		 * Have to watch hotpluggable devices as well, since
29822 		 * that's the only way for userland applications to
29823 		 * detect hot removal while device is busy/mounted.
29824 		 */
29825 		un->un_f_monitor_media_state = TRUE;
29826 
29827 		un->un_f_check_start_stop = TRUE;
29828 
29829 	}
29830 }
29831 
29832 /*
29833  * sd_tg_rdwr:
29834  * Provides rdwr access for cmlb via sd_tgops. The start_block is
29835  * in sys block size, req_length in bytes.
29836  *
29837  */
29838 static int
29839 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
29840     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
29841 {
29842 	struct sd_lun *un;
29843 	int path_flag = (int)(uintptr_t)tg_cookie;
29844 	char *dkl = NULL;
29845 	diskaddr_t real_addr = start_block;
29846 	diskaddr_t first_byte, end_block;
29847 
29848 	size_t	buffer_size = reqlength;
29849 	int rval = 0;
29850 	diskaddr_t	cap;
29851 	uint32_t	lbasize;
29852 	sd_ssc_t	*ssc;
29853 
29854 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29855 	if (un == NULL)
29856 		return (ENXIO);
29857 
29858 	if (cmd != TG_READ && cmd != TG_WRITE)
29859 		return (EINVAL);
29860 
29861 	ssc = sd_ssc_init(un);
29862 	mutex_enter(SD_MUTEX(un));
29863 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
29864 		mutex_exit(SD_MUTEX(un));
29865 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29866 		    &lbasize, path_flag);
29867 		if (rval != 0)
29868 			goto done1;
29869 		mutex_enter(SD_MUTEX(un));
29870 		sd_update_block_info(un, lbasize, cap);
29871 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
29872 			mutex_exit(SD_MUTEX(un));
29873 			rval = EIO;
29874 			goto done;
29875 		}
29876 	}
29877 
29878 	if (NOT_DEVBSIZE(un)) {
29879 		/*
29880 		 * sys_blocksize != tgt_blocksize, need to re-adjust
29881 		 * blkno and save the index to beginning of dk_label
29882 		 */
29883 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
29884 		real_addr = first_byte / un->un_tgt_blocksize;
29885 
29886 		end_block = (first_byte + reqlength +
29887 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
29888 
29889 		/* round up buffer size to multiple of target block size */
29890 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
29891 
29892 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
29893 		    "label_addr: 0x%x allocation size: 0x%x\n",
29894 		    real_addr, buffer_size);
29895 
29896 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
29897 		    (reqlength % un->un_tgt_blocksize) != 0)
29898 			/* the request is not aligned */
29899 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
29900 	}
29901 
29902 	/*
29903 	 * The MMC standard allows READ CAPACITY to be
29904 	 * inaccurate by a bounded amount (in the interest of
29905 	 * response latency).  As a result, failed READs are
29906 	 * commonplace (due to the reading of metadata and not
29907 	 * data). Depending on the per-Vendor/drive Sense data,
29908 	 * the failed READ can cause many (unnecessary) retries.
29909 	 */
29910 
29911 	if (ISCD(un) && (cmd == TG_READ) &&
29912 	    (un->un_f_blockcount_is_valid == TRUE) &&
29913 	    ((start_block == (un->un_blockcount - 1))||
29914 	    (start_block == (un->un_blockcount - 2)))) {
29915 			path_flag = SD_PATH_DIRECT_PRIORITY;
29916 	}
29917 
29918 	mutex_exit(SD_MUTEX(un));
29919 	if (cmd == TG_READ) {
29920 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
29921 		    buffer_size, real_addr, path_flag);
29922 		if (dkl != NULL)
29923 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
29924 			    real_addr), bufaddr, reqlength);
29925 	} else {
29926 		if (dkl) {
29927 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
29928 			    real_addr, path_flag);
29929 			if (rval) {
29930 				goto done1;
29931 			}
29932 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
29933 			    real_addr), reqlength);
29934 		}
29935 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
29936 		    buffer_size, real_addr, path_flag);
29937 	}
29938 
29939 done1:
29940 	if (dkl != NULL)
29941 		kmem_free(dkl, buffer_size);
29942 
29943 	if (rval != 0) {
29944 		if (rval == EIO)
29945 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
29946 		else
29947 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
29948 	}
29949 done:
29950 	sd_ssc_fini(ssc);
29951 	return (rval);
29952 }
29953 
29954 
29955 static int
29956 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
29957 {
29958 
29959 	struct sd_lun *un;
29960 	diskaddr_t	cap;
29961 	uint32_t	lbasize;
29962 	int		path_flag = (int)(uintptr_t)tg_cookie;
29963 	int		ret = 0;
29964 
29965 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
29966 	if (un == NULL)
29967 		return (ENXIO);
29968 
29969 	switch (cmd) {
29970 	case TG_GETPHYGEOM:
29971 	case TG_GETVIRTGEOM:
29972 	case TG_GETCAPACITY:
29973 	case TG_GETBLOCKSIZE:
29974 		mutex_enter(SD_MUTEX(un));
29975 
29976 		if ((un->un_f_blockcount_is_valid == TRUE) &&
29977 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
29978 			cap = un->un_blockcount;
29979 			lbasize = un->un_tgt_blocksize;
29980 			mutex_exit(SD_MUTEX(un));
29981 		} else {
29982 			sd_ssc_t	*ssc;
29983 			mutex_exit(SD_MUTEX(un));
29984 			ssc = sd_ssc_init(un);
29985 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
29986 			    &lbasize, path_flag);
29987 			if (ret != 0) {
29988 				if (ret == EIO)
29989 					sd_ssc_assessment(ssc,
29990 					    SD_FMT_STATUS_CHECK);
29991 				else
29992 					sd_ssc_assessment(ssc,
29993 					    SD_FMT_IGNORE);
29994 				sd_ssc_fini(ssc);
29995 				return (ret);
29996 			}
29997 			sd_ssc_fini(ssc);
29998 			mutex_enter(SD_MUTEX(un));
29999 			sd_update_block_info(un, lbasize, cap);
30000 			if ((un->un_f_blockcount_is_valid == FALSE) ||
30001 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
30002 				mutex_exit(SD_MUTEX(un));
30003 				return (EIO);
30004 			}
30005 			mutex_exit(SD_MUTEX(un));
30006 		}
30007 
30008 		if (cmd == TG_GETCAPACITY) {
30009 			*(diskaddr_t *)arg = cap;
30010 			return (0);
30011 		}
30012 
30013 		if (cmd == TG_GETBLOCKSIZE) {
30014 			*(uint32_t *)arg = lbasize;
30015 			return (0);
30016 		}
30017 
30018 		if (cmd == TG_GETPHYGEOM)
30019 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
30020 			    cap, lbasize, path_flag);
30021 		else
30022 			/* TG_GETVIRTGEOM */
30023 			ret = sd_get_virtual_geometry(un,
30024 			    (cmlb_geom_t *)arg, cap, lbasize);
30025 
30026 		return (ret);
30027 
30028 	case TG_GETATTR:
30029 		mutex_enter(SD_MUTEX(un));
30030 		((tg_attribute_t *)arg)->media_is_writable =
30031 		    un->un_f_mmc_writable_media;
30032 		mutex_exit(SD_MUTEX(un));
30033 		return (0);
30034 	default:
30035 		return (ENOTTY);
30036 
30037 	}
30038 }
30039 
30040 /*
30041  *    Function: sd_ssc_ereport_post
30042  *
30043  * Description: Will be called when SD driver need to post an ereport.
30044  *
30045  *    Context: Kernel thread or interrupt context.
30046  */
30047 static void
30048 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
30049 {
30050 	int uscsi_path_instance = 0;
30051 	uchar_t	uscsi_pkt_reason;
30052 	uint32_t uscsi_pkt_state;
30053 	uint32_t uscsi_pkt_statistics;
30054 	uint64_t uscsi_ena;
30055 	uchar_t op_code;
30056 	uint8_t *sensep;
30057 	union scsi_cdb *cdbp;
30058 	uint_t cdblen = 0;
30059 	uint_t senlen = 0;
30060 	struct sd_lun *un;
30061 	dev_info_t *dip;
30062 	char *devid;
30063 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
30064 	    SSC_FLAGS_INVALID_STATUS |
30065 	    SSC_FLAGS_INVALID_SENSE |
30066 	    SSC_FLAGS_INVALID_DATA;
30067 	char assessment[16];
30068 
30069 	ASSERT(ssc != NULL);
30070 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
30071 	ASSERT(ssc->ssc_uscsi_info != NULL);
30072 
30073 	un = ssc->ssc_un;
30074 	ASSERT(un != NULL);
30075 
30076 	dip = un->un_sd->sd_dev;
30077 
30078 	/*
30079 	 * Get the devid:
30080 	 *	devid will only be passed to non-transport error reports.
30081 	 */
30082 	devid = DEVI(dip)->devi_devid_str;
30083 
30084 	/*
30085 	 * If we are syncing or dumping, the command will not be executed
30086 	 * so we bypass this situation.
30087 	 */
30088 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
30089 	    (un->un_state == SD_STATE_DUMPING))
30090 		return;
30091 
30092 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
30093 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
30094 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
30095 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
30096 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
30097 
30098 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
30099 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
30100 
30101 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
30102 	if (cdbp == NULL) {
30103 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30104 		    "sd_ssc_ereport_post meet empty cdb\n");
30105 		return;
30106 	}
30107 
30108 	op_code = cdbp->scc_cmd;
30109 
30110 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
30111 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
30112 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
30113 
30114 	if (senlen > 0)
30115 		ASSERT(sensep != NULL);
30116 
30117 	/*
30118 	 * Initialize drv_assess to corresponding values.
30119 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
30120 	 * on the sense-key returned back.
30121 	 */
30122 	switch (drv_assess) {
30123 		case SD_FM_DRV_RECOVERY:
30124 			(void) sprintf(assessment, "%s", "recovered");
30125 			break;
30126 		case SD_FM_DRV_RETRY:
30127 			(void) sprintf(assessment, "%s", "retry");
30128 			break;
30129 		case SD_FM_DRV_NOTICE:
30130 			(void) sprintf(assessment, "%s", "info");
30131 			break;
30132 		case SD_FM_DRV_FATAL:
30133 		default:
30134 			(void) sprintf(assessment, "%s", "unknown");
30135 	}
30136 	/*
30137 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
30138 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
30139 	 * driver-assessment will always be "recovered" here.
30140 	 */
30141 	if (drv_assess == SD_FM_DRV_RECOVERY) {
30142 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30143 		    "cmd.disk.recovered", uscsi_ena, devid, DDI_NOSLEEP,
30144 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30145 		    "driver-assessment", DATA_TYPE_STRING, assessment,
30146 		    "op-code", DATA_TYPE_UINT8, op_code,
30147 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30148 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30149 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30150 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30151 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30152 		    NULL);
30153 		return;
30154 	}
30155 
30156 	/*
30157 	 * If there is un-expected/un-decodable data, we should post
30158 	 * ereport.io.scsi.cmd.disk.dev.uderr.
30159 	 * driver-assessment will be set based on parameter drv_assess.
30160 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
30161 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
30162 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
30163 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
30164 	 */
30165 	if (ssc->ssc_flags & ssc_invalid_flags) {
30166 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
30167 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30168 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30169 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30170 			    "driver-assessment", DATA_TYPE_STRING,
30171 			    drv_assess == SD_FM_DRV_FATAL ?
30172 			    "fail" : assessment,
30173 			    "op-code", DATA_TYPE_UINT8, op_code,
30174 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30175 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30176 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30177 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30178 			    "pkt-stats", DATA_TYPE_UINT32,
30179 			    uscsi_pkt_statistics,
30180 			    "stat-code", DATA_TYPE_UINT8,
30181 			    ssc->ssc_uscsi_cmd->uscsi_status,
30182 			    "un-decode-info", DATA_TYPE_STRING,
30183 			    ssc->ssc_info,
30184 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30185 			    senlen, sensep,
30186 			    NULL);
30187 		} else {
30188 			/*
30189 			 * For other type of invalid data, the
30190 			 * un-decode-value field would be empty because the
30191 			 * un-decodable content could be seen from upper
30192 			 * level payload or inside un-decode-info.
30193 			 */
30194 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30195 			    "cmd.disk.dev.uderr", uscsi_ena, devid, DDI_NOSLEEP,
30196 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30197 			    "driver-assessment", DATA_TYPE_STRING,
30198 			    drv_assess == SD_FM_DRV_FATAL ?
30199 			    "fail" : assessment,
30200 			    "op-code", DATA_TYPE_UINT8, op_code,
30201 			    "cdb", DATA_TYPE_UINT8_ARRAY,
30202 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30203 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30204 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
30205 			    "pkt-stats", DATA_TYPE_UINT32,
30206 			    uscsi_pkt_statistics,
30207 			    "stat-code", DATA_TYPE_UINT8,
30208 			    ssc->ssc_uscsi_cmd->uscsi_status,
30209 			    "un-decode-info", DATA_TYPE_STRING,
30210 			    ssc->ssc_info,
30211 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
30212 			    0, NULL,
30213 			    NULL);
30214 		}
30215 		ssc->ssc_flags &= ~ssc_invalid_flags;
30216 		return;
30217 	}
30218 
30219 	if (uscsi_pkt_reason != CMD_CMPLT ||
30220 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
30221 		/*
30222 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
30223 		 * set inside sd_start_cmds due to errors(bad packet or
30224 		 * fatal transport error), we should take it as a
30225 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
30226 		 * driver-assessment will be set based on drv_assess.
30227 		 * We will set devid to NULL because it is a transport
30228 		 * error.
30229 		 */
30230 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
30231 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
30232 
30233 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
30234 		    "cmd.disk.tran", uscsi_ena, NULL, DDI_NOSLEEP, FM_VERSION,
30235 		    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30236 		    "driver-assessment", DATA_TYPE_STRING,
30237 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30238 		    "op-code", DATA_TYPE_UINT8, op_code,
30239 		    "cdb", DATA_TYPE_UINT8_ARRAY,
30240 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30241 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
30242 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
30243 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
30244 		    NULL);
30245 	} else {
30246 		/*
30247 		 * If we got here, we have a completed command, and we need
30248 		 * to further investigate the sense data to see what kind
30249 		 * of ereport we should post.
30250 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
30251 		 * if sense-key == 0x3.
30252 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
30253 		 * driver-assessment will be set based on the parameter
30254 		 * drv_assess.
30255 		 */
30256 		if (senlen > 0) {
30257 			/*
30258 			 * Here we have sense data available.
30259 			 */
30260 			uint8_t sense_key;
30261 			sense_key = scsi_sense_key(sensep);
30262 			if (sense_key == 0x3) {
30263 				/*
30264 				 * sense-key == 0x3(medium error),
30265 				 * driver-assessment should be "fatal" if
30266 				 * drv_assess is SD_FM_DRV_FATAL.
30267 				 */
30268 				scsi_fm_ereport_post(un->un_sd,
30269 				    uscsi_path_instance,
30270 				    "cmd.disk.dev.rqs.merr",
30271 				    uscsi_ena, devid, DDI_NOSLEEP, FM_VERSION,
30272 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30273 				    "driver-assessment",
30274 				    DATA_TYPE_STRING,
30275 				    drv_assess == SD_FM_DRV_FATAL ?
30276 				    "fatal" : assessment,
30277 				    "op-code",
30278 				    DATA_TYPE_UINT8, op_code,
30279 				    "cdb",
30280 				    DATA_TYPE_UINT8_ARRAY, cdblen,
30281 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
30282 				    "pkt-reason",
30283 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
30284 				    "pkt-state",
30285 				    DATA_TYPE_UINT8, uscsi_pkt_state,
30286 				    "pkt-stats",
30287 				    DATA_TYPE_UINT32,
30288 				    uscsi_pkt_statistics,
30289 				    "stat-code",
30290 				    DATA_TYPE_UINT8,
30291 				    ssc->ssc_uscsi_cmd->uscsi_status,
30292 				    "key",
30293 				    DATA_TYPE_UINT8,
30294 				    scsi_sense_key(sensep),
30295 				    "asc",
30296 				    DATA_TYPE_UINT8,
30297 				    scsi_sense_asc(sensep),
30298 				    "ascq",
30299 				    DATA_TYPE_UINT8,
30300 				    scsi_sense_ascq(sensep),
30301 				    "sense-data",
30302 				    DATA_TYPE_UINT8_ARRAY,
30303 				    senlen, sensep,
30304 				    "lba",
30305 				    DATA_TYPE_UINT64,
30306 				    ssc->ssc_uscsi_info->ui_lba,
30307 				    NULL);
30308 				} else {
30309 					/*
30310 					 * if sense-key == 0x4(hardware
30311 					 * error), driver-assessment should
30312 					 * be "fatal" if drv_assess is
30313 					 * SD_FM_DRV_FATAL.
30314 					 */
30315 					scsi_fm_ereport_post(un->un_sd,
30316 					    uscsi_path_instance,
30317 					    "cmd.disk.dev.rqs.derr",
30318 					    uscsi_ena, devid, DDI_NOSLEEP,
30319 					    FM_VERSION,
30320 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
30321 					    "driver-assessment",
30322 					    DATA_TYPE_STRING,
30323 					    drv_assess == SD_FM_DRV_FATAL ?
30324 					    (sense_key == 0x4 ?
30325 					    "fatal" : "fail") : assessment,
30326 					    "op-code",
30327 					    DATA_TYPE_UINT8, op_code,
30328 					    "cdb",
30329 					    DATA_TYPE_UINT8_ARRAY, cdblen,
30330 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
30331 					    "pkt-reason",
30332 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
30333 					    "pkt-state",
30334 					    DATA_TYPE_UINT8, uscsi_pkt_state,
30335 					    "pkt-stats",
30336 					    DATA_TYPE_UINT32,
30337 					    uscsi_pkt_statistics,
30338 					    "stat-code",
30339 					    DATA_TYPE_UINT8,
30340 					    ssc->ssc_uscsi_cmd->uscsi_status,
30341 					    "key",
30342 					    DATA_TYPE_UINT8,
30343 					    scsi_sense_key(sensep),
30344 					    "asc",
30345 					    DATA_TYPE_UINT8,
30346 					    scsi_sense_asc(sensep),
30347 					    "ascq",
30348 					    DATA_TYPE_UINT8,
30349 					    scsi_sense_ascq(sensep),
30350 					    "sense-data",
30351 					    DATA_TYPE_UINT8_ARRAY,
30352 					    senlen, sensep,
30353 					    NULL);
30354 				}
30355 		} else {
30356 			/*
30357 			 * For stat_code == STATUS_GOOD, this is not a
30358 			 * hardware error.
30359 			 */
30360 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
30361 				return;
30362 
30363 			/*
30364 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
30365 			 * stat-code but with sense data unavailable.
30366 			 * driver-assessment will be set based on parameter
30367 			 * drv_assess.
30368 			 */
30369 			scsi_fm_ereport_post(un->un_sd,
30370 			    uscsi_path_instance, "cmd.disk.dev.serr", uscsi_ena,
30371 			    devid, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8,
30372 			    FM_EREPORT_VERS0,
30373 			    "driver-assessment", DATA_TYPE_STRING,
30374 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
30375 			    "op-code", DATA_TYPE_UINT8, op_code,
30376 			    "cdb",
30377 			    DATA_TYPE_UINT8_ARRAY,
30378 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
30379 			    "pkt-reason",
30380 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
30381 			    "pkt-state",
30382 			    DATA_TYPE_UINT8, uscsi_pkt_state,
30383 			    "pkt-stats",
30384 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
30385 			    "stat-code",
30386 			    DATA_TYPE_UINT8,
30387 			    ssc->ssc_uscsi_cmd->uscsi_status,
30388 			    NULL);
30389 		}
30390 	}
30391 }
30392 
30393 /*
30394  *     Function: sd_ssc_extract_info
30395  *
30396  * Description: Extract information available to help generate ereport.
30397  *
30398  *     Context: Kernel thread or interrupt context.
30399  */
30400 static void
30401 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
30402     struct buf *bp, struct sd_xbuf *xp)
30403 {
30404 	size_t senlen = 0;
30405 	union scsi_cdb *cdbp;
30406 	int path_instance;
30407 	/*
30408 	 * Need scsi_cdb_size array to determine the cdb length.
30409 	 */
30410 	extern uchar_t	scsi_cdb_size[];
30411 
30412 	ASSERT(un != NULL);
30413 	ASSERT(pktp != NULL);
30414 	ASSERT(bp != NULL);
30415 	ASSERT(xp != NULL);
30416 	ASSERT(ssc != NULL);
30417 	ASSERT(mutex_owned(SD_MUTEX(un)));
30418 
30419 	/*
30420 	 * Transfer the cdb buffer pointer here.
30421 	 */
30422 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
30423 
30424 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
30425 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
30426 
30427 	/*
30428 	 * Transfer the sense data buffer pointer if sense data is available,
30429 	 * calculate the sense data length first.
30430 	 */
30431 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
30432 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
30433 		/*
30434 		 * For arq case, we will enter here.
30435 		 */
30436 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
30437 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
30438 		} else {
30439 			senlen = SENSE_LENGTH;
30440 		}
30441 	} else {
30442 		/*
30443 		 * For non-arq case, we will enter this branch.
30444 		 */
30445 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
30446 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
30447 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
30448 		}
30449 
30450 	}
30451 
30452 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
30453 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
30454 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
30455 
30456 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
30457 
30458 	/*
30459 	 * Only transfer path_instance when scsi_pkt was properly allocated.
30460 	 */
30461 	path_instance = pktp->pkt_path_instance;
30462 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
30463 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
30464 	else
30465 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
30466 
30467 	/*
30468 	 * Copy in the other fields we may need when posting ereport.
30469 	 */
30470 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
30471 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
30472 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
30473 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
30474 
30475 	/*
30476 	 * For partially read/write command, we will not create ena
30477 	 * in case of a successful command be reconized as recovered.
30478 	 */
30479 	if ((pktp->pkt_reason == CMD_CMPLT) &&
30480 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
30481 	    (senlen == 0)) {
30482 		return;
30483 	}
30484 
30485 	/*
30486 	 * To associate ereports of a single command execution flow, we
30487 	 * need a shared ena for a specific command.
30488 	 */
30489 	if (xp->xb_ena == 0)
30490 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
30491 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
30492 }
30493