xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 2acf01fd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
29  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
30  */
31 /*
32  * Copyright 2011 cyril.galibern@opensvc.com
33  */
34 
35 /*
36  * SCSI disk target driver.
37  */
38 #include <sys/scsi/scsi.h>
39 #include <sys/dkbad.h>
40 #include <sys/dklabel.h>
41 #include <sys/dkio.h>
42 #include <sys/fdio.h>
43 #include <sys/cdio.h>
44 #include <sys/mhd.h>
45 #include <sys/vtoc.h>
46 #include <sys/dktp/fdisk.h>
47 #include <sys/kstat.h>
48 #include <sys/vtrace.h>
49 #include <sys/note.h>
50 #include <sys/thread.h>
51 #include <sys/proc.h>
52 #include <sys/efi_partition.h>
53 #include <sys/var.h>
54 #include <sys/aio_req.h>
55 
56 #ifdef __lock_lint
57 #define	_LP64
58 #define	__amd64
59 #endif
60 
61 #if (defined(__fibre))
62 /* Note: is there a leadville version of the following? */
63 #include <sys/fc4/fcal_linkapp.h>
64 #endif
65 #include <sys/taskq.h>
66 #include <sys/uuid.h>
67 #include <sys/byteorder.h>
68 #include <sys/sdt.h>
69 
70 #include "sd_xbuf.h"
71 
72 #include <sys/scsi/targets/sddef.h>
73 #include <sys/cmlb.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/sysevent/dev.h>
76 
77 #include <sys/fm/protocol.h>
78 
79 /*
80  * Loadable module info.
81  */
82 #if (defined(__fibre))
83 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
84 #else /* !__fibre */
85 #define	SD_MODULE_NAME	"SCSI Disk Driver"
86 #endif /* !__fibre */
87 
88 /*
89  * Define the interconnect type, to allow the driver to distinguish
90  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
91  *
92  * This is really for backward compatibility. In the future, the driver
93  * should actually check the "interconnect-type" property as reported by
94  * the HBA; however at present this property is not defined by all HBAs,
95  * so we will use this #define (1) to permit the driver to run in
96  * backward-compatibility mode; and (2) to print a notification message
97  * if an FC HBA does not support the "interconnect-type" property.  The
98  * behavior of the driver will be to assume parallel SCSI behaviors unless
99  * the "interconnect-type" property is defined by the HBA **AND** has a
100  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
101  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
102  * Channel behaviors (as per the old ssd).  (Note that the
103  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
104  * will result in the driver assuming parallel SCSI behaviors.)
105  *
106  * (see common/sys/scsi/impl/services.h)
107  *
108  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
109  * since some FC HBAs may already support that, and there is some code in
110  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
111  * default would confuse that code, and besides things should work fine
112  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
113  * "interconnect_type" property.
114  *
115  */
116 #if (defined(__fibre))
117 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
118 #else
119 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
120 #endif
121 
122 /*
123  * The name of the driver, established from the module name in _init.
124  */
125 static	char *sd_label			= NULL;
126 
127 /*
128  * Driver name is unfortunately prefixed on some driver.conf properties.
129  */
130 #if (defined(__fibre))
131 #define	sd_max_xfer_size		ssd_max_xfer_size
132 #define	sd_config_list			ssd_config_list
133 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
134 static	char *sd_config_list		= "ssd-config-list";
135 #else
136 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
137 static	char *sd_config_list		= "sd-config-list";
138 #endif
139 
140 /*
141  * Driver global variables
142  */
143 
144 #if (defined(__fibre))
145 /*
146  * These #defines are to avoid namespace collisions that occur because this
147  * code is currently used to compile two separate driver modules: sd and ssd.
148  * All global variables need to be treated this way (even if declared static)
149  * in order to allow the debugger to resolve the names properly.
150  * It is anticipated that in the near future the ssd module will be obsoleted,
151  * at which time this namespace issue should go away.
152  */
153 #define	sd_state			ssd_state
154 #define	sd_io_time			ssd_io_time
155 #define	sd_failfast_enable		ssd_failfast_enable
156 #define	sd_ua_retry_count		ssd_ua_retry_count
157 #define	sd_report_pfa			ssd_report_pfa
158 #define	sd_max_throttle			ssd_max_throttle
159 #define	sd_min_throttle			ssd_min_throttle
160 #define	sd_rot_delay			ssd_rot_delay
161 
162 #define	sd_retry_on_reservation_conflict	\
163 					ssd_retry_on_reservation_conflict
164 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
165 #define	sd_resv_conflict_name		ssd_resv_conflict_name
166 
167 #define	sd_component_mask		ssd_component_mask
168 #define	sd_level_mask			ssd_level_mask
169 #define	sd_debug_un			ssd_debug_un
170 #define	sd_error_level			ssd_error_level
171 
172 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
173 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
174 
175 #define	sd_tr				ssd_tr
176 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
177 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
178 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
179 #define	sd_check_media_time		ssd_check_media_time
180 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
181 #define	sd_label_mutex			ssd_label_mutex
182 #define	sd_detach_mutex			ssd_detach_mutex
183 #define	sd_log_buf			ssd_log_buf
184 #define	sd_log_mutex			ssd_log_mutex
185 
186 #define	sd_disk_table			ssd_disk_table
187 #define	sd_disk_table_size		ssd_disk_table_size
188 #define	sd_sense_mutex			ssd_sense_mutex
189 #define	sd_cdbtab			ssd_cdbtab
190 
191 #define	sd_cb_ops			ssd_cb_ops
192 #define	sd_ops				ssd_ops
193 #define	sd_additional_codes		ssd_additional_codes
194 #define	sd_tgops			ssd_tgops
195 
196 #define	sd_minor_data			ssd_minor_data
197 #define	sd_minor_data_efi		ssd_minor_data_efi
198 
199 #define	sd_tq				ssd_tq
200 #define	sd_wmr_tq			ssd_wmr_tq
201 #define	sd_taskq_name			ssd_taskq_name
202 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
203 #define	sd_taskq_minalloc		ssd_taskq_minalloc
204 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
205 
206 #define	sd_dump_format_string		ssd_dump_format_string
207 
208 #define	sd_iostart_chain		ssd_iostart_chain
209 #define	sd_iodone_chain			ssd_iodone_chain
210 
211 #define	sd_pm_idletime			ssd_pm_idletime
212 
213 #define	sd_force_pm_supported		ssd_force_pm_supported
214 
215 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
216 
217 #define	sd_ssc_init			ssd_ssc_init
218 #define	sd_ssc_send			ssd_ssc_send
219 #define	sd_ssc_fini			ssd_ssc_fini
220 #define	sd_ssc_assessment		ssd_ssc_assessment
221 #define	sd_ssc_post			ssd_ssc_post
222 #define	sd_ssc_print			ssd_ssc_print
223 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
224 #define	sd_ssc_set_info			ssd_ssc_set_info
225 #define	sd_ssc_extract_info		ssd_ssc_extract_info
226 
227 #endif
228 
229 #ifdef	SDDEBUG
230 int	sd_force_pm_supported		= 0;
231 #endif	/* SDDEBUG */
232 
233 void *sd_state				= NULL;
234 int sd_io_time				= SD_IO_TIME;
235 int sd_failfast_enable			= 1;
236 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
237 int sd_report_pfa			= 1;
238 int sd_max_throttle			= SD_MAX_THROTTLE;
239 int sd_min_throttle			= SD_MIN_THROTTLE;
240 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
241 int sd_qfull_throttle_enable		= TRUE;
242 
243 int sd_retry_on_reservation_conflict	= 1;
244 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
245 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
246 
247 static int sd_dtype_optical_bind	= -1;
248 
249 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
250 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
251 
252 /*
253  * Global data for debug logging. To enable debug printing, sd_component_mask
254  * and sd_level_mask should be set to the desired bit patterns as outlined in
255  * sddef.h.
256  */
257 uint_t	sd_component_mask		= 0x0;
258 uint_t	sd_level_mask			= 0x0;
259 struct	sd_lun *sd_debug_un		= NULL;
260 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
261 
262 /* Note: these may go away in the future... */
263 static uint32_t	sd_xbuf_active_limit	= 512;
264 static uint32_t sd_xbuf_reserve_limit	= 16;
265 
266 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
267 
268 /*
269  * Timer value used to reset the throttle after it has been reduced
270  * (typically in response to TRAN_BUSY or STATUS_QFULL)
271  */
272 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
273 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
274 
275 /*
276  * Interval value associated with the media change scsi watch.
277  */
278 static int sd_check_media_time		= 3000000;
279 
280 /*
281  * Wait value used for in progress operations during a DDI_SUSPEND
282  */
283 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
284 
285 /*
286  * sd_label_mutex protects a static buffer used in the disk label
287  * component of the driver
288  */
289 static kmutex_t sd_label_mutex;
290 
291 /*
292  * sd_detach_mutex protects un_layer_count, un_detach_count, and
293  * un_opens_in_progress in the sd_lun structure.
294  */
295 static kmutex_t sd_detach_mutex;
296 
297 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
298 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
299 
300 /*
301  * Global buffer and mutex for debug logging
302  */
303 static char	sd_log_buf[1024];
304 static kmutex_t	sd_log_mutex;
305 
306 /*
307  * Structs and globals for recording attached lun information.
308  * This maintains a chain. Each node in the chain represents a SCSI controller.
309  * The structure records the number of luns attached to each target connected
310  * with the controller.
311  * For parallel scsi device only.
312  */
313 struct sd_scsi_hba_tgt_lun {
314 	struct sd_scsi_hba_tgt_lun	*next;
315 	dev_info_t			*pdip;
316 	int				nlun[NTARGETS_WIDE];
317 };
318 
319 /*
320  * Flag to indicate the lun is attached or detached
321  */
322 #define	SD_SCSI_LUN_ATTACH	0
323 #define	SD_SCSI_LUN_DETACH	1
324 
325 static kmutex_t	sd_scsi_target_lun_mutex;
326 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
327 
328 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
329     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
330 
331 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
332     sd_scsi_target_lun_head))
333 
334 /*
335  * "Smart" Probe Caching structs, globals, #defines, etc.
336  * For parallel scsi and non-self-identify device only.
337  */
338 
339 /*
340  * The following resources and routines are implemented to support
341  * "smart" probing, which caches the scsi_probe() results in an array,
342  * in order to help avoid long probe times.
343  */
344 struct sd_scsi_probe_cache {
345 	struct	sd_scsi_probe_cache	*next;
346 	dev_info_t	*pdip;
347 	int		cache[NTARGETS_WIDE];
348 };
349 
350 static kmutex_t	sd_scsi_probe_cache_mutex;
351 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
352 
353 /*
354  * Really we only need protection on the head of the linked list, but
355  * better safe than sorry.
356  */
357 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
358     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
359 
360 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
361     sd_scsi_probe_cache_head))
362 
363 /*
364  * Power attribute table
365  */
366 static sd_power_attr_ss sd_pwr_ss = {
367 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
368 	{0, 100},
369 	{30, 0},
370 	{20000, 0}
371 };
372 
373 static sd_power_attr_pc sd_pwr_pc = {
374 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
375 		"3=active", NULL },
376 	{0, 0, 0, 100},
377 	{90, 90, 20, 0},
378 	{15000, 15000, 1000, 0}
379 };
380 
381 /*
382  * Power level to power condition
383  */
384 static int sd_pl2pc[] = {
385 	SD_TARGET_START_VALID,
386 	SD_TARGET_STANDBY,
387 	SD_TARGET_IDLE,
388 	SD_TARGET_ACTIVE
389 };
390 
391 /*
392  * Vendor specific data name property declarations
393  */
394 
395 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
396 
397 static sd_tunables seagate_properties = {
398 	SEAGATE_THROTTLE_VALUE,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0
407 };
408 
409 
410 static sd_tunables fujitsu_properties = {
411 	FUJITSU_THROTTLE_VALUE,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0
420 };
421 
422 static sd_tunables ibm_properties = {
423 	IBM_THROTTLE_VALUE,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0
432 };
433 
434 static sd_tunables purple_properties = {
435 	PURPLE_THROTTLE_VALUE,
436 	0,
437 	0,
438 	PURPLE_BUSY_RETRIES,
439 	PURPLE_RESET_RETRY_COUNT,
440 	PURPLE_RESERVE_RELEASE_TIME,
441 	0,
442 	0,
443 	0
444 };
445 
446 static sd_tunables sve_properties = {
447 	SVE_THROTTLE_VALUE,
448 	0,
449 	0,
450 	SVE_BUSY_RETRIES,
451 	SVE_RESET_RETRY_COUNT,
452 	SVE_RESERVE_RELEASE_TIME,
453 	SVE_MIN_THROTTLE_VALUE,
454 	SVE_DISKSORT_DISABLED_FLAG,
455 	0
456 };
457 
458 static sd_tunables maserati_properties = {
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0,
466 	MASERATI_DISKSORT_DISABLED_FLAG,
467 	MASERATI_LUN_RESET_ENABLED_FLAG
468 };
469 
470 static sd_tunables pirus_properties = {
471 	PIRUS_THROTTLE_VALUE,
472 	0,
473 	PIRUS_NRR_COUNT,
474 	PIRUS_BUSY_RETRIES,
475 	PIRUS_RESET_RETRY_COUNT,
476 	0,
477 	PIRUS_MIN_THROTTLE_VALUE,
478 	PIRUS_DISKSORT_DISABLED_FLAG,
479 	PIRUS_LUN_RESET_ENABLED_FLAG
480 };
481 
482 #endif
483 
484 #if (defined(__sparc) && !defined(__fibre)) || \
485 	(defined(__i386) || defined(__amd64))
486 
487 
488 static sd_tunables elite_properties = {
489 	ELITE_THROTTLE_VALUE,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0,
497 	0
498 };
499 
500 static sd_tunables st31200n_properties = {
501 	ST31200N_THROTTLE_VALUE,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0,
509 	0
510 };
511 
512 #endif /* Fibre or not */
513 
514 static sd_tunables lsi_properties_scsi = {
515 	LSI_THROTTLE_VALUE,
516 	0,
517 	LSI_NOTREADY_RETRIES,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0,
523 	0
524 };
525 
526 static sd_tunables symbios_properties = {
527 	SYMBIOS_THROTTLE_VALUE,
528 	0,
529 	SYMBIOS_NOTREADY_RETRIES,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0,
535 	0
536 };
537 
538 static sd_tunables lsi_properties = {
539 	0,
540 	0,
541 	LSI_NOTREADY_RETRIES,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0,
547 	0
548 };
549 
550 static sd_tunables lsi_oem_properties = {
551 	0,
552 	0,
553 	LSI_OEM_NOTREADY_RETRIES,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	0,
560 	1
561 };
562 
563 
564 
565 #if (defined(SD_PROP_TST))
566 
567 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
568 #define	SD_TST_THROTTLE_VAL	16
569 #define	SD_TST_NOTREADY_VAL	12
570 #define	SD_TST_BUSY_VAL		60
571 #define	SD_TST_RST_RETRY_VAL	36
572 #define	SD_TST_RSV_REL_TIME	60
573 
574 static sd_tunables tst_properties = {
575 	SD_TST_THROTTLE_VAL,
576 	SD_TST_CTYPE_VAL,
577 	SD_TST_NOTREADY_VAL,
578 	SD_TST_BUSY_VAL,
579 	SD_TST_RST_RETRY_VAL,
580 	SD_TST_RSV_REL_TIME,
581 	0,
582 	0,
583 	0
584 };
585 #endif
586 
587 /* This is similar to the ANSI toupper implementation */
588 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
589 
590 /*
591  * Static Driver Configuration Table
592  *
593  * This is the table of disks which need throttle adjustment (or, perhaps
594  * something else as defined by the flags at a future time.)  device_id
595  * is a string consisting of concatenated vid (vendor), pid (product/model)
596  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
597  * the parts of the string are as defined by the sizes in the scsi_inquiry
598  * structure.  Device type is searched as far as the device_id string is
599  * defined.  Flags defines which values are to be set in the driver from the
600  * properties list.
601  *
602  * Entries below which begin and end with a "*" are a special case.
603  * These do not have a specific vendor, and the string which follows
604  * can appear anywhere in the 16 byte PID portion of the inquiry data.
605  *
606  * Entries below which begin and end with a " " (blank) are a special
607  * case. The comparison function will treat multiple consecutive blanks
608  * as equivalent to a single blank. For example, this causes a
609  * sd_disk_table entry of " NEC CDROM " to match a device's id string
610  * of  "NEC       CDROM".
611  *
612  * Note: The MD21 controller type has been obsoleted.
613  *	 ST318202F is a Legacy device
614  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
615  *	 made with an FC connection. The entries here are a legacy.
616  */
617 static sd_disk_config_t sd_disk_table[] = {
618 #if defined(__fibre) || defined(__i386) || defined(__amd64)
619 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
633 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
642 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
646 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
668 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
669 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
670 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
671 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
672 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
673 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
674 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
675 			SD_CONF_BSET_BSY_RETRY_COUNT|
676 			SD_CONF_BSET_RST_RETRIES|
677 			SD_CONF_BSET_RSV_REL_TIME,
678 		&purple_properties },
679 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
680 		SD_CONF_BSET_BSY_RETRY_COUNT|
681 		SD_CONF_BSET_RST_RETRIES|
682 		SD_CONF_BSET_RSV_REL_TIME|
683 		SD_CONF_BSET_MIN_THROTTLE|
684 		SD_CONF_BSET_DISKSORT_DISABLED,
685 		&sve_properties },
686 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
687 			SD_CONF_BSET_BSY_RETRY_COUNT|
688 			SD_CONF_BSET_RST_RETRIES|
689 			SD_CONF_BSET_RSV_REL_TIME,
690 		&purple_properties },
691 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
692 		SD_CONF_BSET_LUN_RESET_ENABLED,
693 		&maserati_properties },
694 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
695 		SD_CONF_BSET_NRR_COUNT|
696 		SD_CONF_BSET_BSY_RETRY_COUNT|
697 		SD_CONF_BSET_RST_RETRIES|
698 		SD_CONF_BSET_MIN_THROTTLE|
699 		SD_CONF_BSET_DISKSORT_DISABLED|
700 		SD_CONF_BSET_LUN_RESET_ENABLED,
701 		&pirus_properties },
702 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
703 		SD_CONF_BSET_NRR_COUNT|
704 		SD_CONF_BSET_BSY_RETRY_COUNT|
705 		SD_CONF_BSET_RST_RETRIES|
706 		SD_CONF_BSET_MIN_THROTTLE|
707 		SD_CONF_BSET_DISKSORT_DISABLED|
708 		SD_CONF_BSET_LUN_RESET_ENABLED,
709 		&pirus_properties },
710 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
711 		SD_CONF_BSET_NRR_COUNT|
712 		SD_CONF_BSET_BSY_RETRY_COUNT|
713 		SD_CONF_BSET_RST_RETRIES|
714 		SD_CONF_BSET_MIN_THROTTLE|
715 		SD_CONF_BSET_DISKSORT_DISABLED|
716 		SD_CONF_BSET_LUN_RESET_ENABLED,
717 		&pirus_properties },
718 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
719 		SD_CONF_BSET_NRR_COUNT|
720 		SD_CONF_BSET_BSY_RETRY_COUNT|
721 		SD_CONF_BSET_RST_RETRIES|
722 		SD_CONF_BSET_MIN_THROTTLE|
723 		SD_CONF_BSET_DISKSORT_DISABLED|
724 		SD_CONF_BSET_LUN_RESET_ENABLED,
725 		&pirus_properties },
726 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
727 		SD_CONF_BSET_NRR_COUNT|
728 		SD_CONF_BSET_BSY_RETRY_COUNT|
729 		SD_CONF_BSET_RST_RETRIES|
730 		SD_CONF_BSET_MIN_THROTTLE|
731 		SD_CONF_BSET_DISKSORT_DISABLED|
732 		SD_CONF_BSET_LUN_RESET_ENABLED,
733 		&pirus_properties },
734 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
735 		SD_CONF_BSET_NRR_COUNT|
736 		SD_CONF_BSET_BSY_RETRY_COUNT|
737 		SD_CONF_BSET_RST_RETRIES|
738 		SD_CONF_BSET_MIN_THROTTLE|
739 		SD_CONF_BSET_DISKSORT_DISABLED|
740 		SD_CONF_BSET_LUN_RESET_ENABLED,
741 		&pirus_properties },
742 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
748 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
749 #endif /* fibre or NON-sparc platforms */
750 #if ((defined(__sparc) && !defined(__fibre)) ||\
751 	(defined(__i386) || defined(__amd64)))
752 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
753 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
754 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
755 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
756 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
764 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
765 	    &symbios_properties },
766 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
767 	    &lsi_properties_scsi },
768 #if defined(__i386) || defined(__amd64)
769 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
770 				    | SD_CONF_BSET_READSUB_BCD
771 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
772 				    | SD_CONF_BSET_NO_READ_HEADER
773 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
774 
775 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
776 				    | SD_CONF_BSET_READSUB_BCD
777 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
778 				    | SD_CONF_BSET_NO_READ_HEADER
779 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
780 #endif /* __i386 || __amd64 */
781 #endif /* sparc NON-fibre or NON-sparc platforms */
782 
783 #if (defined(SD_PROP_TST))
784 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
785 				| SD_CONF_BSET_CTYPE
786 				| SD_CONF_BSET_NRR_COUNT
787 				| SD_CONF_BSET_FAB_DEVID
788 				| SD_CONF_BSET_NOCACHE
789 				| SD_CONF_BSET_BSY_RETRY_COUNT
790 				| SD_CONF_BSET_PLAYMSF_BCD
791 				| SD_CONF_BSET_READSUB_BCD
792 				| SD_CONF_BSET_READ_TOC_TRK_BCD
793 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
794 				| SD_CONF_BSET_NO_READ_HEADER
795 				| SD_CONF_BSET_READ_CD_XD4
796 				| SD_CONF_BSET_RST_RETRIES
797 				| SD_CONF_BSET_RSV_REL_TIME
798 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
799 #endif
800 };
801 
802 static const int sd_disk_table_size =
803 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
804 
805 /*
806  * Emulation mode disk drive VID/PID table
807  */
808 static char sd_flash_dev_table[][25] = {
809 	"ATA     MARVELL SD88SA02",
810 	"MARVELL SD88SA02",
811 	"TOSHIBA THNSNV05",
812 };
813 
814 static const int sd_flash_dev_table_size =
815 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
816 
817 #define	SD_INTERCONNECT_PARALLEL	0
818 #define	SD_INTERCONNECT_FABRIC		1
819 #define	SD_INTERCONNECT_FIBRE		2
820 #define	SD_INTERCONNECT_SSA		3
821 #define	SD_INTERCONNECT_SATA		4
822 #define	SD_INTERCONNECT_SAS		5
823 
824 #define	SD_IS_PARALLEL_SCSI(un)		\
825 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
826 #define	SD_IS_SERIAL(un)		\
827 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
828 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
829 
830 /*
831  * Definitions used by device id registration routines
832  */
833 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
834 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
835 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
836 
837 static kmutex_t sd_sense_mutex = {0};
838 
839 /*
840  * Macros for updates of the driver state
841  */
842 #define	New_state(un, s)        \
843 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
844 #define	Restore_state(un)	\
845 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
846 
847 static struct sd_cdbinfo sd_cdbtab[] = {
848 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
849 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
850 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
851 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
852 };
853 
854 /*
855  * Specifies the number of seconds that must have elapsed since the last
856  * cmd. has completed for a device to be declared idle to the PM framework.
857  */
858 static int sd_pm_idletime = 1;
859 
860 /*
861  * Internal function prototypes
862  */
863 
864 #if (defined(__fibre))
865 /*
866  * These #defines are to avoid namespace collisions that occur because this
867  * code is currently used to compile two separate driver modules: sd and ssd.
868  * All function names need to be treated this way (even if declared static)
869  * in order to allow the debugger to resolve the names properly.
870  * It is anticipated that in the near future the ssd module will be obsoleted,
871  * at which time this ugliness should go away.
872  */
873 #define	sd_log_trace			ssd_log_trace
874 #define	sd_log_info			ssd_log_info
875 #define	sd_log_err			ssd_log_err
876 #define	sdprobe				ssdprobe
877 #define	sdinfo				ssdinfo
878 #define	sd_prop_op			ssd_prop_op
879 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
880 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
881 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
882 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
883 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
884 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
885 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
886 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
887 #define	sd_spin_up_unit			ssd_spin_up_unit
888 #define	sd_enable_descr_sense		ssd_enable_descr_sense
889 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
890 #define	sd_set_mmc_caps			ssd_set_mmc_caps
891 #define	sd_read_unit_properties		ssd_read_unit_properties
892 #define	sd_process_sdconf_file		ssd_process_sdconf_file
893 #define	sd_process_sdconf_table		ssd_process_sdconf_table
894 #define	sd_sdconf_id_match		ssd_sdconf_id_match
895 #define	sd_blank_cmp			ssd_blank_cmp
896 #define	sd_chk_vers1_data		ssd_chk_vers1_data
897 #define	sd_set_vers1_properties		ssd_set_vers1_properties
898 #define	sd_check_solid_state		ssd_check_solid_state
899 #define	sd_check_emulation_mode		ssd_check_emulation_mode
900 
901 #define	sd_get_physical_geometry	ssd_get_physical_geometry
902 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
903 #define	sd_update_block_info		ssd_update_block_info
904 #define	sd_register_devid		ssd_register_devid
905 #define	sd_get_devid			ssd_get_devid
906 #define	sd_create_devid			ssd_create_devid
907 #define	sd_write_deviceid		ssd_write_deviceid
908 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
909 #define	sd_setup_pm			ssd_setup_pm
910 #define	sd_create_pm_components		ssd_create_pm_components
911 #define	sd_ddi_suspend			ssd_ddi_suspend
912 #define	sd_ddi_resume			ssd_ddi_resume
913 #define	sd_pm_state_change		ssd_pm_state_change
914 #define	sdpower				ssdpower
915 #define	sdattach			ssdattach
916 #define	sddetach			ssddetach
917 #define	sd_unit_attach			ssd_unit_attach
918 #define	sd_unit_detach			ssd_unit_detach
919 #define	sd_set_unit_attributes		ssd_set_unit_attributes
920 #define	sd_create_errstats		ssd_create_errstats
921 #define	sd_set_errstats			ssd_set_errstats
922 #define	sd_set_pstats			ssd_set_pstats
923 #define	sddump				ssddump
924 #define	sd_scsi_poll			ssd_scsi_poll
925 #define	sd_send_polled_RQS		ssd_send_polled_RQS
926 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
927 #define	sd_init_event_callbacks		ssd_init_event_callbacks
928 #define	sd_event_callback		ssd_event_callback
929 #define	sd_cache_control		ssd_cache_control
930 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
931 #define	sd_get_nv_sup			ssd_get_nv_sup
932 #define	sd_make_device			ssd_make_device
933 #define	sdopen				ssdopen
934 #define	sdclose				ssdclose
935 #define	sd_ready_and_valid		ssd_ready_and_valid
936 #define	sdmin				ssdmin
937 #define	sdread				ssdread
938 #define	sdwrite				ssdwrite
939 #define	sdaread				ssdaread
940 #define	sdawrite			ssdawrite
941 #define	sdstrategy			ssdstrategy
942 #define	sdioctl				ssdioctl
943 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
944 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
945 #define	sd_checksum_iostart		ssd_checksum_iostart
946 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
947 #define	sd_pm_iostart			ssd_pm_iostart
948 #define	sd_core_iostart			ssd_core_iostart
949 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
950 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
951 #define	sd_checksum_iodone		ssd_checksum_iodone
952 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
953 #define	sd_pm_iodone			ssd_pm_iodone
954 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
955 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
956 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
957 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
958 #define	sd_buf_iodone			ssd_buf_iodone
959 #define	sd_uscsi_strategy		ssd_uscsi_strategy
960 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
961 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
962 #define	sd_uscsi_iodone			ssd_uscsi_iodone
963 #define	sd_xbuf_strategy		ssd_xbuf_strategy
964 #define	sd_xbuf_init			ssd_xbuf_init
965 #define	sd_pm_entry			ssd_pm_entry
966 #define	sd_pm_exit			ssd_pm_exit
967 
968 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
969 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
970 
971 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
972 #define	sdintr				ssdintr
973 #define	sd_start_cmds			ssd_start_cmds
974 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
975 #define	sd_bioclone_alloc		ssd_bioclone_alloc
976 #define	sd_bioclone_free		ssd_bioclone_free
977 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
978 #define	sd_shadow_buf_free		ssd_shadow_buf_free
979 #define	sd_print_transport_rejected_message	\
980 					ssd_print_transport_rejected_message
981 #define	sd_retry_command		ssd_retry_command
982 #define	sd_set_retry_bp			ssd_set_retry_bp
983 #define	sd_send_request_sense_command	ssd_send_request_sense_command
984 #define	sd_start_retry_command		ssd_start_retry_command
985 #define	sd_start_direct_priority_command	\
986 					ssd_start_direct_priority_command
987 #define	sd_return_failed_command	ssd_return_failed_command
988 #define	sd_return_failed_command_no_restart	\
989 					ssd_return_failed_command_no_restart
990 #define	sd_return_command		ssd_return_command
991 #define	sd_sync_with_callback		ssd_sync_with_callback
992 #define	sdrunout			ssdrunout
993 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
994 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
995 #define	sd_reduce_throttle		ssd_reduce_throttle
996 #define	sd_restore_throttle		ssd_restore_throttle
997 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
998 #define	sd_init_cdb_limits		ssd_init_cdb_limits
999 #define	sd_pkt_status_good		ssd_pkt_status_good
1000 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1001 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1002 #define	sd_pkt_status_reservation_conflict	\
1003 					ssd_pkt_status_reservation_conflict
1004 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1005 #define	sd_handle_request_sense		ssd_handle_request_sense
1006 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1007 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1008 #define	sd_validate_sense_data		ssd_validate_sense_data
1009 #define	sd_decode_sense			ssd_decode_sense
1010 #define	sd_print_sense_msg		ssd_print_sense_msg
1011 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1012 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1013 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1014 #define	sd_sense_key_medium_or_hardware_error	\
1015 					ssd_sense_key_medium_or_hardware_error
1016 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1017 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1018 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1019 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1020 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1021 #define	sd_sense_key_default		ssd_sense_key_default
1022 #define	sd_print_retry_msg		ssd_print_retry_msg
1023 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1024 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1025 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1026 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1027 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1028 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1029 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1030 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1031 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1032 #define	sd_reset_target			ssd_reset_target
1033 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1034 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1035 #define	sd_taskq_create			ssd_taskq_create
1036 #define	sd_taskq_delete			ssd_taskq_delete
1037 #define	sd_target_change_task		ssd_target_change_task
1038 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1039 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1040 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1041 #define	sd_media_change_task		ssd_media_change_task
1042 #define	sd_handle_mchange		ssd_handle_mchange
1043 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1044 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1045 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1046 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1047 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1048 					sd_send_scsi_feature_GET_CONFIGURATION
1049 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1050 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1051 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1052 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1053 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1054 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1055 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1056 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1057 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1058 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1059 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1060 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1061 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1062 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1063 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1064 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1065 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1066 #define	sd_alloc_rqs			ssd_alloc_rqs
1067 #define	sd_free_rqs			ssd_free_rqs
1068 #define	sd_dump_memory			ssd_dump_memory
1069 #define	sd_get_media_info_com		ssd_get_media_info_com
1070 #define	sd_get_media_info		ssd_get_media_info
1071 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1072 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1073 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1074 #define	sd_strtok_r			ssd_strtok_r
1075 #define	sd_set_properties		ssd_set_properties
1076 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1077 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1078 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1079 #define	sd_check_mhd			ssd_check_mhd
1080 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1081 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1082 #define	sd_sname			ssd_sname
1083 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1084 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1085 #define	sd_take_ownership		ssd_take_ownership
1086 #define	sd_reserve_release		ssd_reserve_release
1087 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1088 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1089 #define	sd_persistent_reservation_in_read_keys	\
1090 					ssd_persistent_reservation_in_read_keys
1091 #define	sd_persistent_reservation_in_read_resv	\
1092 					ssd_persistent_reservation_in_read_resv
1093 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1094 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1095 #define	sd_mhdioc_release		ssd_mhdioc_release
1096 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1097 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1098 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1099 #define	sr_change_blkmode		ssr_change_blkmode
1100 #define	sr_change_speed			ssr_change_speed
1101 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1102 #define	sr_pause_resume			ssr_pause_resume
1103 #define	sr_play_msf			ssr_play_msf
1104 #define	sr_play_trkind			ssr_play_trkind
1105 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1106 #define	sr_read_subchannel		ssr_read_subchannel
1107 #define	sr_read_tocentry		ssr_read_tocentry
1108 #define	sr_read_tochdr			ssr_read_tochdr
1109 #define	sr_read_cdda			ssr_read_cdda
1110 #define	sr_read_cdxa			ssr_read_cdxa
1111 #define	sr_read_mode1			ssr_read_mode1
1112 #define	sr_read_mode2			ssr_read_mode2
1113 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1114 #define	sr_sector_mode			ssr_sector_mode
1115 #define	sr_eject			ssr_eject
1116 #define	sr_ejected			ssr_ejected
1117 #define	sr_check_wp			ssr_check_wp
1118 #define	sd_watch_request_submit		ssd_watch_request_submit
1119 #define	sd_check_media			ssd_check_media
1120 #define	sd_media_watch_cb		ssd_media_watch_cb
1121 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1122 #define	sr_volume_ctrl			ssr_volume_ctrl
1123 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1124 #define	sd_log_page_supported		ssd_log_page_supported
1125 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1126 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1127 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1128 #define	sd_range_lock			ssd_range_lock
1129 #define	sd_get_range			ssd_get_range
1130 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1131 #define	sd_range_unlock			ssd_range_unlock
1132 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1133 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1134 
1135 #define	sd_iostart_chain		ssd_iostart_chain
1136 #define	sd_iodone_chain			ssd_iodone_chain
1137 #define	sd_initpkt_map			ssd_initpkt_map
1138 #define	sd_destroypkt_map		ssd_destroypkt_map
1139 #define	sd_chain_type_map		ssd_chain_type_map
1140 #define	sd_chain_index_map		ssd_chain_index_map
1141 
1142 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1143 #define	sd_failfast_flushq		ssd_failfast_flushq
1144 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1145 
1146 #define	sd_is_lsi			ssd_is_lsi
1147 #define	sd_tg_rdwr			ssd_tg_rdwr
1148 #define	sd_tg_getinfo			ssd_tg_getinfo
1149 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1150 
1151 #endif	/* #if (defined(__fibre)) */
1152 
1153 
1154 int _init(void);
1155 int _fini(void);
1156 int _info(struct modinfo *modinfop);
1157 
1158 /*PRINTFLIKE3*/
1159 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1160 /*PRINTFLIKE3*/
1161 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1162 /*PRINTFLIKE3*/
1163 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1164 
1165 static int sdprobe(dev_info_t *devi);
1166 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1167     void **result);
1168 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1169     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1170 
1171 /*
1172  * Smart probe for parallel scsi
1173  */
1174 static void sd_scsi_probe_cache_init(void);
1175 static void sd_scsi_probe_cache_fini(void);
1176 static void sd_scsi_clear_probe_cache(void);
1177 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1178 
1179 /*
1180  * Attached luns on target for parallel scsi
1181  */
1182 static void sd_scsi_target_lun_init(void);
1183 static void sd_scsi_target_lun_fini(void);
1184 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1185 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1186 
1187 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1188 
1189 /*
1190  * Using sd_ssc_init to establish sd_ssc_t struct
1191  * Using sd_ssc_send to send uscsi internal command
1192  * Using sd_ssc_fini to free sd_ssc_t struct
1193  */
1194 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1195 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1196     int flag, enum uio_seg dataspace, int path_flag);
1197 static void sd_ssc_fini(sd_ssc_t *ssc);
1198 
1199 /*
1200  * Using sd_ssc_assessment to set correct type-of-assessment
1201  * Using sd_ssc_post to post ereport & system log
1202  *       sd_ssc_post will call sd_ssc_print to print system log
1203  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1204  */
1205 static void sd_ssc_assessment(sd_ssc_t *ssc,
1206     enum sd_type_assessment tp_assess);
1207 
1208 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1209 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1210 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1211     enum sd_driver_assessment drv_assess);
1212 
1213 /*
1214  * Using sd_ssc_set_info to mark an un-decodable-data error.
1215  * Using sd_ssc_extract_info to transfer information from internal
1216  *       data structures to sd_ssc_t.
1217  */
1218 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1219     const char *fmt, ...);
1220 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1221     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1222 
1223 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1224     enum uio_seg dataspace, int path_flag);
1225 
1226 #ifdef _LP64
1227 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1228 static void	sd_reenable_dsense_task(void *arg);
1229 #endif /* _LP64 */
1230 
1231 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1232 
1233 static void sd_read_unit_properties(struct sd_lun *un);
1234 static int  sd_process_sdconf_file(struct sd_lun *un);
1235 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1236 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1237 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1238 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1239     int *data_list, sd_tunables *values);
1240 static void sd_process_sdconf_table(struct sd_lun *un);
1241 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1243 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1244 	int list_len, char *dataname_ptr);
1245 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1246     sd_tunables *prop_list);
1247 
1248 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1249     int reservation_flag);
1250 static int  sd_get_devid(sd_ssc_t *ssc);
1251 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1252 static int  sd_write_deviceid(sd_ssc_t *ssc);
1253 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1254 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1255 
1256 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1257 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1258 
1259 static int  sd_ddi_suspend(dev_info_t *devi);
1260 static int  sd_ddi_resume(dev_info_t *devi);
1261 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1262 static int  sdpower(dev_info_t *devi, int component, int level);
1263 
1264 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1265 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1266 static int  sd_unit_attach(dev_info_t *devi);
1267 static int  sd_unit_detach(dev_info_t *devi);
1268 
1269 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1270 static void sd_create_errstats(struct sd_lun *un, int instance);
1271 static void sd_set_errstats(struct sd_lun *un);
1272 static void sd_set_pstats(struct sd_lun *un);
1273 
1274 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1275 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1276 static int  sd_send_polled_RQS(struct sd_lun *un);
1277 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1278 
1279 #if (defined(__fibre))
1280 /*
1281  * Event callbacks (photon)
1282  */
1283 static void sd_init_event_callbacks(struct sd_lun *un);
1284 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1285 #endif
1286 
1287 /*
1288  * Defines for sd_cache_control
1289  */
1290 
1291 #define	SD_CACHE_ENABLE		1
1292 #define	SD_CACHE_DISABLE	0
1293 #define	SD_CACHE_NOCHANGE	-1
1294 
1295 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1296 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1297 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1298 static dev_t sd_make_device(dev_info_t *devi);
1299 static void  sd_check_solid_state(sd_ssc_t *ssc);
1300 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1301 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1302 	uint64_t capacity);
1303 
1304 /*
1305  * Driver entry point functions.
1306  */
1307 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1308 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1309 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1310 
1311 static void sdmin(struct buf *bp);
1312 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1314 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1316 
1317 static int sdstrategy(struct buf *bp);
1318 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1319 
1320 /*
1321  * Function prototypes for layering functions in the iostart chain.
1322  */
1323 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1324 	struct buf *bp);
1325 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1326 	struct buf *bp);
1327 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1328 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1329 	struct buf *bp);
1330 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1332 
1333 /*
1334  * Function prototypes for layering functions in the iodone chain.
1335  */
1336 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1338 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1339 	struct buf *bp);
1340 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1341 	struct buf *bp);
1342 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1343 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1344 	struct buf *bp);
1345 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1346 
1347 /*
1348  * Prototypes for functions to support buf(9S) based IO.
1349  */
1350 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1351 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1352 static void sd_destroypkt_for_buf(struct buf *);
1353 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1354 	struct buf *bp, int flags,
1355 	int (*callback)(caddr_t), caddr_t callback_arg,
1356 	diskaddr_t lba, uint32_t blockcount);
1357 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1358 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1359 
1360 /*
1361  * Prototypes for functions to support USCSI IO.
1362  */
1363 static int sd_uscsi_strategy(struct buf *bp);
1364 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1365 static void sd_destroypkt_for_uscsi(struct buf *);
1366 
1367 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1368 	uchar_t chain_type, void *pktinfop);
1369 
1370 static int  sd_pm_entry(struct sd_lun *un);
1371 static void sd_pm_exit(struct sd_lun *un);
1372 
1373 static void sd_pm_idletimeout_handler(void *arg);
1374 
1375 /*
1376  * sd_core internal functions (used at the sd_core_io layer).
1377  */
1378 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1379 static void sdintr(struct scsi_pkt *pktp);
1380 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1381 
1382 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1383 	enum uio_seg dataspace, int path_flag);
1384 
1385 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1386 	daddr_t blkno, int (*func)(struct buf *));
1387 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1388 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1389 static void sd_bioclone_free(struct buf *bp);
1390 static void sd_shadow_buf_free(struct buf *bp);
1391 
1392 static void sd_print_transport_rejected_message(struct sd_lun *un,
1393 	struct sd_xbuf *xp, int code);
1394 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1395     void *arg, int code);
1396 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1397     void *arg, int code);
1398 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1399     void *arg, int code);
1400 
1401 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1402 	int retry_check_flag,
1403 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1404 		int c),
1405 	void *user_arg, int failure_code,  clock_t retry_delay,
1406 	void (*statp)(kstat_io_t *));
1407 
1408 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1409 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1410 
1411 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1412 	struct scsi_pkt *pktp);
1413 static void sd_start_retry_command(void *arg);
1414 static void sd_start_direct_priority_command(void *arg);
1415 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1416 	int errcode);
1417 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1418 	struct buf *bp, int errcode);
1419 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1420 static void sd_sync_with_callback(struct sd_lun *un);
1421 static int sdrunout(caddr_t arg);
1422 
1423 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1424 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1425 
1426 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1427 static void sd_restore_throttle(void *arg);
1428 
1429 static void sd_init_cdb_limits(struct sd_lun *un);
1430 
1431 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1432 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1433 
1434 /*
1435  * Error handling functions
1436  */
1437 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1438 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1439 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1440 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1442 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1444 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1445 
1446 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1447 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1448 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1449 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1451 	struct sd_xbuf *xp, size_t actual_len);
1452 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 
1455 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1456 	void *arg, int code);
1457 
1458 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1459 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1460 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1461 	uint8_t *sense_datap,
1462 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1463 static void sd_sense_key_not_ready(struct sd_lun *un,
1464 	uint8_t *sense_datap,
1465 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1466 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1467 	uint8_t *sense_datap,
1468 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_sense_key_unit_attention(struct sd_lun *un,
1472 	uint8_t *sense_datap,
1473 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1474 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1475 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1476 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1477 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1478 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1479 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1480 static void sd_sense_key_default(struct sd_lun *un,
1481 	uint8_t *sense_datap,
1482 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1483 
1484 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1485 	void *arg, int flag);
1486 
1487 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1488 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1489 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1490 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1491 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1492 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1493 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1494 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1495 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1496 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1497 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1498 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1499 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1500 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1501 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1502 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1503 
1504 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1505 
1506 static void sd_start_stop_unit_callback(void *arg);
1507 static void sd_start_stop_unit_task(void *arg);
1508 
1509 static void sd_taskq_create(void);
1510 static void sd_taskq_delete(void);
1511 static void sd_target_change_task(void *arg);
1512 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1513 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1514 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1515 static void sd_media_change_task(void *arg);
1516 
1517 static int sd_handle_mchange(struct sd_lun *un);
1518 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1519 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1520 	uint32_t *lbap, int path_flag);
1521 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1522 	uint32_t *lbap, uint32_t *psp, int path_flag);
1523 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1524 	int flag, int path_flag);
1525 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1526 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1527 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1528 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1529 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1530 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1531 	uchar_t usr_cmd, uchar_t *usr_bufp);
1532 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1533 	struct dk_callback *dkc);
1534 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1535 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1536 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1537 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1538 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1539 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1540 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1541 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1542 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1543 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1544 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1545 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1546 	size_t buflen, daddr_t start_block, int path_flag);
1547 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1548 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1549 	path_flag)
1550 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1551 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1552 	path_flag)
1553 
1554 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1555 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1556 	uint16_t param_ptr, int path_flag);
1557 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1558 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1559 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1560 
1561 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1562 static void sd_free_rqs(struct sd_lun *un);
1563 
1564 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1565 	uchar_t *data, int len, int fmt);
1566 static void sd_panic_for_res_conflict(struct sd_lun *un);
1567 
1568 /*
1569  * Disk Ioctl Function Prototypes
1570  */
1571 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1572 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1574 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1575 
1576 /*
1577  * Multi-host Ioctl Prototypes
1578  */
1579 static int sd_check_mhd(dev_t dev, int interval);
1580 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1581 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1582 static char *sd_sname(uchar_t status);
1583 static void sd_mhd_resvd_recover(void *arg);
1584 static void sd_resv_reclaim_thread();
1585 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1586 static int sd_reserve_release(dev_t dev, int cmd);
1587 static void sd_rmv_resv_reclaim_req(dev_t dev);
1588 static void sd_mhd_reset_notify_cb(caddr_t arg);
1589 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1590 	mhioc_inkeys_t *usrp, int flag);
1591 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1592 	mhioc_inresvs_t *usrp, int flag);
1593 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1595 static int sd_mhdioc_release(dev_t dev);
1596 static int sd_mhdioc_register_devid(dev_t dev);
1597 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1598 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1599 
1600 /*
1601  * SCSI removable prototypes
1602  */
1603 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1606 static int sr_pause_resume(dev_t dev, int mode);
1607 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1608 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1618 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1619 static int sr_eject(dev_t dev);
1620 static void sr_ejected(register struct sd_lun *un);
1621 static int sr_check_wp(dev_t dev);
1622 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1623 static int sd_check_media(dev_t dev, enum dkio_state state);
1624 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1625 static void sd_delayed_cv_broadcast(void *arg);
1626 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1627 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1628 
1629 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1630 
1631 /*
1632  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1633  */
1634 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1635 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1636 static void sd_wm_cache_destructor(void *wm, void *un);
1637 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1638 	daddr_t endb, ushort_t typ);
1639 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1640 	daddr_t endb);
1641 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1642 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1643 static void sd_read_modify_write_task(void * arg);
1644 static int
1645 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1646 	struct buf **bpp);
1647 
1648 
1649 /*
1650  * Function prototypes for failfast support.
1651  */
1652 static void sd_failfast_flushq(struct sd_lun *un);
1653 static int sd_failfast_flushq_callback(struct buf *bp);
1654 
1655 /*
1656  * Function prototypes to check for lsi devices
1657  */
1658 static void sd_is_lsi(struct sd_lun *un);
1659 
1660 /*
1661  * Function prototypes for partial DMA support
1662  */
1663 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1664 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1665 
1666 
1667 /* Function prototypes for cmlb */
1668 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1669     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1670 
1671 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1672 
1673 /*
1674  * For printing RMW warning message timely
1675  */
1676 static void sd_rmw_msg_print_handler(void *arg);
1677 
1678 /*
1679  * Constants for failfast support:
1680  *
1681  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1682  * failfast processing being performed.
1683  *
1684  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1685  * failfast processing on all bufs with B_FAILFAST set.
1686  */
1687 
1688 #define	SD_FAILFAST_INACTIVE		0
1689 #define	SD_FAILFAST_ACTIVE		1
1690 
1691 /*
1692  * Bitmask to control behavior of buf(9S) flushes when a transition to
1693  * the failfast state occurs. Optional bits include:
1694  *
1695  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1696  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1697  * be flushed.
1698  *
1699  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1700  * driver, in addition to the regular wait queue. This includes the xbuf
1701  * queues. When clear, only the driver's wait queue will be flushed.
1702  */
1703 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1704 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1705 
1706 /*
1707  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1708  * to flush all queues within the driver.
1709  */
1710 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1711 
1712 
1713 /*
1714  * SD Testing Fault Injection
1715  */
1716 #ifdef SD_FAULT_INJECTION
1717 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1718 static void sd_faultinjection(struct scsi_pkt *pktp);
1719 static void sd_injection_log(char *buf, struct sd_lun *un);
1720 #endif
1721 
1722 /*
1723  * Device driver ops vector
1724  */
1725 static struct cb_ops sd_cb_ops = {
1726 	sdopen,			/* open */
1727 	sdclose,		/* close */
1728 	sdstrategy,		/* strategy */
1729 	nodev,			/* print */
1730 	sddump,			/* dump */
1731 	sdread,			/* read */
1732 	sdwrite,		/* write */
1733 	sdioctl,		/* ioctl */
1734 	nodev,			/* devmap */
1735 	nodev,			/* mmap */
1736 	nodev,			/* segmap */
1737 	nochpoll,		/* poll */
1738 	sd_prop_op,		/* cb_prop_op */
1739 	0,			/* streamtab  */
1740 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1741 	CB_REV,			/* cb_rev */
1742 	sdaread, 		/* async I/O read entry point */
1743 	sdawrite		/* async I/O write entry point */
1744 };
1745 
1746 struct dev_ops sd_ops = {
1747 	DEVO_REV,		/* devo_rev, */
1748 	0,			/* refcnt  */
1749 	sdinfo,			/* info */
1750 	nulldev,		/* identify */
1751 	sdprobe,		/* probe */
1752 	sdattach,		/* attach */
1753 	sddetach,		/* detach */
1754 	nodev,			/* reset */
1755 	&sd_cb_ops,		/* driver operations */
1756 	NULL,			/* bus operations */
1757 	sdpower,		/* power */
1758 	ddi_quiesce_not_needed,		/* quiesce */
1759 };
1760 
1761 /*
1762  * This is the loadable module wrapper.
1763  */
1764 #include <sys/modctl.h>
1765 
1766 #ifndef XPV_HVM_DRIVER
1767 static struct modldrv modldrv = {
1768 	&mod_driverops,		/* Type of module. This one is a driver */
1769 	SD_MODULE_NAME,		/* Module name. */
1770 	&sd_ops			/* driver ops */
1771 };
1772 
1773 static struct modlinkage modlinkage = {
1774 	MODREV_1, &modldrv, NULL
1775 };
1776 
1777 #else /* XPV_HVM_DRIVER */
1778 static struct modlmisc modlmisc = {
1779 	&mod_miscops,		/* Type of module. This one is a misc */
1780 	"HVM " SD_MODULE_NAME,		/* Module name. */
1781 };
1782 
1783 static struct modlinkage modlinkage = {
1784 	MODREV_1, &modlmisc, NULL
1785 };
1786 
1787 #endif /* XPV_HVM_DRIVER */
1788 
1789 static cmlb_tg_ops_t sd_tgops = {
1790 	TG_DK_OPS_VERSION_1,
1791 	sd_tg_rdwr,
1792 	sd_tg_getinfo
1793 };
1794 
1795 static struct scsi_asq_key_strings sd_additional_codes[] = {
1796 	0x81, 0, "Logical Unit is Reserved",
1797 	0x85, 0, "Audio Address Not Valid",
1798 	0xb6, 0, "Media Load Mechanism Failed",
1799 	0xB9, 0, "Audio Play Operation Aborted",
1800 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1801 	0x53, 2, "Medium removal prevented",
1802 	0x6f, 0, "Authentication failed during key exchange",
1803 	0x6f, 1, "Key not present",
1804 	0x6f, 2, "Key not established",
1805 	0x6f, 3, "Read without proper authentication",
1806 	0x6f, 4, "Mismatched region to this logical unit",
1807 	0x6f, 5, "Region reset count error",
1808 	0xffff, 0x0, NULL
1809 };
1810 
1811 
1812 /*
1813  * Struct for passing printing information for sense data messages
1814  */
1815 struct sd_sense_info {
1816 	int	ssi_severity;
1817 	int	ssi_pfa_flag;
1818 };
1819 
1820 /*
1821  * Table of function pointers for iostart-side routines. Separate "chains"
1822  * of layered function calls are formed by placing the function pointers
1823  * sequentially in the desired order. Functions are called according to an
1824  * incrementing table index ordering. The last function in each chain must
1825  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1826  * in the sd_iodone_chain[] array.
1827  *
1828  * Note: It may seem more natural to organize both the iostart and iodone
1829  * functions together, into an array of structures (or some similar
1830  * organization) with a common index, rather than two separate arrays which
1831  * must be maintained in synchronization. The purpose of this division is
1832  * to achieve improved performance: individual arrays allows for more
1833  * effective cache line utilization on certain platforms.
1834  */
1835 
1836 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1837 
1838 
1839 static sd_chain_t sd_iostart_chain[] = {
1840 
1841 	/* Chain for buf IO for disk drive targets (PM enabled) */
1842 	sd_mapblockaddr_iostart,	/* Index: 0 */
1843 	sd_pm_iostart,			/* Index: 1 */
1844 	sd_core_iostart,		/* Index: 2 */
1845 
1846 	/* Chain for buf IO for disk drive targets (PM disabled) */
1847 	sd_mapblockaddr_iostart,	/* Index: 3 */
1848 	sd_core_iostart,		/* Index: 4 */
1849 
1850 	/*
1851 	 * Chain for buf IO for removable-media or large sector size
1852 	 * disk drive targets with RMW needed (PM enabled)
1853 	 */
1854 	sd_mapblockaddr_iostart,	/* Index: 5 */
1855 	sd_mapblocksize_iostart,	/* Index: 6 */
1856 	sd_pm_iostart,			/* Index: 7 */
1857 	sd_core_iostart,		/* Index: 8 */
1858 
1859 	/*
1860 	 * Chain for buf IO for removable-media or large sector size
1861 	 * disk drive targets with RMW needed (PM disabled)
1862 	 */
1863 	sd_mapblockaddr_iostart,	/* Index: 9 */
1864 	sd_mapblocksize_iostart,	/* Index: 10 */
1865 	sd_core_iostart,		/* Index: 11 */
1866 
1867 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1868 	sd_mapblockaddr_iostart,	/* Index: 12 */
1869 	sd_checksum_iostart,		/* Index: 13 */
1870 	sd_pm_iostart,			/* Index: 14 */
1871 	sd_core_iostart,		/* Index: 15 */
1872 
1873 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1874 	sd_mapblockaddr_iostart,	/* Index: 16 */
1875 	sd_checksum_iostart,		/* Index: 17 */
1876 	sd_core_iostart,		/* Index: 18 */
1877 
1878 	/* Chain for USCSI commands (all targets) */
1879 	sd_pm_iostart,			/* Index: 19 */
1880 	sd_core_iostart,		/* Index: 20 */
1881 
1882 	/* Chain for checksumming USCSI commands (all targets) */
1883 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1884 	sd_pm_iostart,			/* Index: 22 */
1885 	sd_core_iostart,		/* Index: 23 */
1886 
1887 	/* Chain for "direct" USCSI commands (all targets) */
1888 	sd_core_iostart,		/* Index: 24 */
1889 
1890 	/* Chain for "direct priority" USCSI commands (all targets) */
1891 	sd_core_iostart,		/* Index: 25 */
1892 
1893 	/*
1894 	 * Chain for buf IO for large sector size disk drive targets
1895 	 * with RMW needed with checksumming (PM enabled)
1896 	 */
1897 	sd_mapblockaddr_iostart,	/* Index: 26 */
1898 	sd_mapblocksize_iostart,	/* Index: 27 */
1899 	sd_checksum_iostart,		/* Index: 28 */
1900 	sd_pm_iostart,			/* Index: 29 */
1901 	sd_core_iostart,		/* Index: 30 */
1902 
1903 	/*
1904 	 * Chain for buf IO for large sector size disk drive targets
1905 	 * with RMW needed with checksumming (PM disabled)
1906 	 */
1907 	sd_mapblockaddr_iostart,	/* Index: 31 */
1908 	sd_mapblocksize_iostart,	/* Index: 32 */
1909 	sd_checksum_iostart,		/* Index: 33 */
1910 	sd_core_iostart,		/* Index: 34 */
1911 
1912 };
1913 
1914 /*
1915  * Macros to locate the first function of each iostart chain in the
1916  * sd_iostart_chain[] array. These are located by the index in the array.
1917  */
1918 #define	SD_CHAIN_DISK_IOSTART			0
1919 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1920 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1921 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1922 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1923 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1924 #define	SD_CHAIN_CHKSUM_IOSTART			12
1925 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1926 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1927 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1928 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1929 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1930 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1931 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1932 
1933 
1934 /*
1935  * Table of function pointers for the iodone-side routines for the driver-
1936  * internal layering mechanism.  The calling sequence for iodone routines
1937  * uses a decrementing table index, so the last routine called in a chain
1938  * must be at the lowest array index location for that chain.  The last
1939  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1940  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1941  * of the functions in an iodone side chain must correspond to the ordering
1942  * of the iostart routines for that chain.  Note that there is no iodone
1943  * side routine that corresponds to sd_core_iostart(), so there is no
1944  * entry in the table for this.
1945  */
1946 
1947 static sd_chain_t sd_iodone_chain[] = {
1948 
1949 	/* Chain for buf IO for disk drive targets (PM enabled) */
1950 	sd_buf_iodone,			/* Index: 0 */
1951 	sd_mapblockaddr_iodone,		/* Index: 1 */
1952 	sd_pm_iodone,			/* Index: 2 */
1953 
1954 	/* Chain for buf IO for disk drive targets (PM disabled) */
1955 	sd_buf_iodone,			/* Index: 3 */
1956 	sd_mapblockaddr_iodone,		/* Index: 4 */
1957 
1958 	/*
1959 	 * Chain for buf IO for removable-media or large sector size
1960 	 * disk drive targets with RMW needed (PM enabled)
1961 	 */
1962 	sd_buf_iodone,			/* Index: 5 */
1963 	sd_mapblockaddr_iodone,		/* Index: 6 */
1964 	sd_mapblocksize_iodone,		/* Index: 7 */
1965 	sd_pm_iodone,			/* Index: 8 */
1966 
1967 	/*
1968 	 * Chain for buf IO for removable-media or large sector size
1969 	 * disk drive targets with RMW needed (PM disabled)
1970 	 */
1971 	sd_buf_iodone,			/* Index: 9 */
1972 	sd_mapblockaddr_iodone,		/* Index: 10 */
1973 	sd_mapblocksize_iodone,		/* Index: 11 */
1974 
1975 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1976 	sd_buf_iodone,			/* Index: 12 */
1977 	sd_mapblockaddr_iodone,		/* Index: 13 */
1978 	sd_checksum_iodone,		/* Index: 14 */
1979 	sd_pm_iodone,			/* Index: 15 */
1980 
1981 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1982 	sd_buf_iodone,			/* Index: 16 */
1983 	sd_mapblockaddr_iodone,		/* Index: 17 */
1984 	sd_checksum_iodone,		/* Index: 18 */
1985 
1986 	/* Chain for USCSI commands (non-checksum targets) */
1987 	sd_uscsi_iodone,		/* Index: 19 */
1988 	sd_pm_iodone,			/* Index: 20 */
1989 
1990 	/* Chain for USCSI commands (checksum targets) */
1991 	sd_uscsi_iodone,		/* Index: 21 */
1992 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1993 	sd_pm_iodone,			/* Index: 22 */
1994 
1995 	/* Chain for "direct" USCSI commands (all targets) */
1996 	sd_uscsi_iodone,		/* Index: 24 */
1997 
1998 	/* Chain for "direct priority" USCSI commands (all targets) */
1999 	sd_uscsi_iodone,		/* Index: 25 */
2000 
2001 	/*
2002 	 * Chain for buf IO for large sector size disk drive targets
2003 	 * with checksumming (PM enabled)
2004 	 */
2005 	sd_buf_iodone,			/* Index: 26 */
2006 	sd_mapblockaddr_iodone,		/* Index: 27 */
2007 	sd_mapblocksize_iodone,		/* Index: 28 */
2008 	sd_checksum_iodone,		/* Index: 29 */
2009 	sd_pm_iodone,			/* Index: 30 */
2010 
2011 	/*
2012 	 * Chain for buf IO for large sector size disk drive targets
2013 	 * with checksumming (PM disabled)
2014 	 */
2015 	sd_buf_iodone,			/* Index: 31 */
2016 	sd_mapblockaddr_iodone,		/* Index: 32 */
2017 	sd_mapblocksize_iodone,		/* Index: 33 */
2018 	sd_checksum_iodone,		/* Index: 34 */
2019 };
2020 
2021 
2022 /*
2023  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2024  * each iodone-side chain. These are located by the array index, but as the
2025  * iodone side functions are called in a decrementing-index order, the
2026  * highest index number in each chain must be specified (as these correspond
2027  * to the first function in the iodone chain that will be called by the core
2028  * at IO completion time).
2029  */
2030 
2031 #define	SD_CHAIN_DISK_IODONE			2
2032 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2033 #define	SD_CHAIN_RMMEDIA_IODONE			8
2034 #define	SD_CHAIN_MSS_DISK_IODONE		8
2035 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2036 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2037 #define	SD_CHAIN_CHKSUM_IODONE			15
2038 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2039 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2040 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2041 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2042 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2043 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2044 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2045 
2046 
2047 
2048 /*
2049  * Array to map a layering chain index to the appropriate initpkt routine.
2050  * The redundant entries are present so that the index used for accessing
2051  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2052  * with this table as well.
2053  */
2054 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2055 
2056 static sd_initpkt_t	sd_initpkt_map[] = {
2057 
2058 	/* Chain for buf IO for disk drive targets (PM enabled) */
2059 	sd_initpkt_for_buf,		/* Index: 0 */
2060 	sd_initpkt_for_buf,		/* Index: 1 */
2061 	sd_initpkt_for_buf,		/* Index: 2 */
2062 
2063 	/* Chain for buf IO for disk drive targets (PM disabled) */
2064 	sd_initpkt_for_buf,		/* Index: 3 */
2065 	sd_initpkt_for_buf,		/* Index: 4 */
2066 
2067 	/*
2068 	 * Chain for buf IO for removable-media or large sector size
2069 	 * disk drive targets (PM enabled)
2070 	 */
2071 	sd_initpkt_for_buf,		/* Index: 5 */
2072 	sd_initpkt_for_buf,		/* Index: 6 */
2073 	sd_initpkt_for_buf,		/* Index: 7 */
2074 	sd_initpkt_for_buf,		/* Index: 8 */
2075 
2076 	/*
2077 	 * Chain for buf IO for removable-media or large sector size
2078 	 * disk drive targets (PM disabled)
2079 	 */
2080 	sd_initpkt_for_buf,		/* Index: 9 */
2081 	sd_initpkt_for_buf,		/* Index: 10 */
2082 	sd_initpkt_for_buf,		/* Index: 11 */
2083 
2084 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2085 	sd_initpkt_for_buf,		/* Index: 12 */
2086 	sd_initpkt_for_buf,		/* Index: 13 */
2087 	sd_initpkt_for_buf,		/* Index: 14 */
2088 	sd_initpkt_for_buf,		/* Index: 15 */
2089 
2090 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2091 	sd_initpkt_for_buf,		/* Index: 16 */
2092 	sd_initpkt_for_buf,		/* Index: 17 */
2093 	sd_initpkt_for_buf,		/* Index: 18 */
2094 
2095 	/* Chain for USCSI commands (non-checksum targets) */
2096 	sd_initpkt_for_uscsi,		/* Index: 19 */
2097 	sd_initpkt_for_uscsi,		/* Index: 20 */
2098 
2099 	/* Chain for USCSI commands (checksum targets) */
2100 	sd_initpkt_for_uscsi,		/* Index: 21 */
2101 	sd_initpkt_for_uscsi,		/* Index: 22 */
2102 	sd_initpkt_for_uscsi,		/* Index: 22 */
2103 
2104 	/* Chain for "direct" USCSI commands (all targets) */
2105 	sd_initpkt_for_uscsi,		/* Index: 24 */
2106 
2107 	/* Chain for "direct priority" USCSI commands (all targets) */
2108 	sd_initpkt_for_uscsi,		/* Index: 25 */
2109 
2110 	/*
2111 	 * Chain for buf IO for large sector size disk drive targets
2112 	 * with checksumming (PM enabled)
2113 	 */
2114 	sd_initpkt_for_buf,		/* Index: 26 */
2115 	sd_initpkt_for_buf,		/* Index: 27 */
2116 	sd_initpkt_for_buf,		/* Index: 28 */
2117 	sd_initpkt_for_buf,		/* Index: 29 */
2118 	sd_initpkt_for_buf,		/* Index: 30 */
2119 
2120 	/*
2121 	 * Chain for buf IO for large sector size disk drive targets
2122 	 * with checksumming (PM disabled)
2123 	 */
2124 	sd_initpkt_for_buf,		/* Index: 31 */
2125 	sd_initpkt_for_buf,		/* Index: 32 */
2126 	sd_initpkt_for_buf,		/* Index: 33 */
2127 	sd_initpkt_for_buf,		/* Index: 34 */
2128 };
2129 
2130 
2131 /*
2132  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2133  * The redundant entries are present so that the index used for accessing
2134  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2135  * with this table as well.
2136  */
2137 typedef void (*sd_destroypkt_t)(struct buf *);
2138 
2139 static sd_destroypkt_t	sd_destroypkt_map[] = {
2140 
2141 	/* Chain for buf IO for disk drive targets (PM enabled) */
2142 	sd_destroypkt_for_buf,		/* Index: 0 */
2143 	sd_destroypkt_for_buf,		/* Index: 1 */
2144 	sd_destroypkt_for_buf,		/* Index: 2 */
2145 
2146 	/* Chain for buf IO for disk drive targets (PM disabled) */
2147 	sd_destroypkt_for_buf,		/* Index: 3 */
2148 	sd_destroypkt_for_buf,		/* Index: 4 */
2149 
2150 	/*
2151 	 * Chain for buf IO for removable-media or large sector size
2152 	 * disk drive targets (PM enabled)
2153 	 */
2154 	sd_destroypkt_for_buf,		/* Index: 5 */
2155 	sd_destroypkt_for_buf,		/* Index: 6 */
2156 	sd_destroypkt_for_buf,		/* Index: 7 */
2157 	sd_destroypkt_for_buf,		/* Index: 8 */
2158 
2159 	/*
2160 	 * Chain for buf IO for removable-media or large sector size
2161 	 * disk drive targets (PM disabled)
2162 	 */
2163 	sd_destroypkt_for_buf,		/* Index: 9 */
2164 	sd_destroypkt_for_buf,		/* Index: 10 */
2165 	sd_destroypkt_for_buf,		/* Index: 11 */
2166 
2167 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2168 	sd_destroypkt_for_buf,		/* Index: 12 */
2169 	sd_destroypkt_for_buf,		/* Index: 13 */
2170 	sd_destroypkt_for_buf,		/* Index: 14 */
2171 	sd_destroypkt_for_buf,		/* Index: 15 */
2172 
2173 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2174 	sd_destroypkt_for_buf,		/* Index: 16 */
2175 	sd_destroypkt_for_buf,		/* Index: 17 */
2176 	sd_destroypkt_for_buf,		/* Index: 18 */
2177 
2178 	/* Chain for USCSI commands (non-checksum targets) */
2179 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2180 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2181 
2182 	/* Chain for USCSI commands (checksum targets) */
2183 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2184 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2185 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2186 
2187 	/* Chain for "direct" USCSI commands (all targets) */
2188 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2189 
2190 	/* Chain for "direct priority" USCSI commands (all targets) */
2191 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2192 
2193 	/*
2194 	 * Chain for buf IO for large sector size disk drive targets
2195 	 * with checksumming (PM disabled)
2196 	 */
2197 	sd_destroypkt_for_buf,		/* Index: 26 */
2198 	sd_destroypkt_for_buf,		/* Index: 27 */
2199 	sd_destroypkt_for_buf,		/* Index: 28 */
2200 	sd_destroypkt_for_buf,		/* Index: 29 */
2201 	sd_destroypkt_for_buf,		/* Index: 30 */
2202 
2203 	/*
2204 	 * Chain for buf IO for large sector size disk drive targets
2205 	 * with checksumming (PM enabled)
2206 	 */
2207 	sd_destroypkt_for_buf,		/* Index: 31 */
2208 	sd_destroypkt_for_buf,		/* Index: 32 */
2209 	sd_destroypkt_for_buf,		/* Index: 33 */
2210 	sd_destroypkt_for_buf,		/* Index: 34 */
2211 };
2212 
2213 
2214 
2215 /*
2216  * Array to map a layering chain index to the appropriate chain "type".
2217  * The chain type indicates a specific property/usage of the chain.
2218  * The redundant entries are present so that the index used for accessing
2219  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2220  * with this table as well.
2221  */
2222 
2223 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2224 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2225 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2226 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2227 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2228 						/* (for error recovery) */
2229 
2230 static int sd_chain_type_map[] = {
2231 
2232 	/* Chain for buf IO for disk drive targets (PM enabled) */
2233 	SD_CHAIN_BUFIO,			/* Index: 0 */
2234 	SD_CHAIN_BUFIO,			/* Index: 1 */
2235 	SD_CHAIN_BUFIO,			/* Index: 2 */
2236 
2237 	/* Chain for buf IO for disk drive targets (PM disabled) */
2238 	SD_CHAIN_BUFIO,			/* Index: 3 */
2239 	SD_CHAIN_BUFIO,			/* Index: 4 */
2240 
2241 	/*
2242 	 * Chain for buf IO for removable-media or large sector size
2243 	 * disk drive targets (PM enabled)
2244 	 */
2245 	SD_CHAIN_BUFIO,			/* Index: 5 */
2246 	SD_CHAIN_BUFIO,			/* Index: 6 */
2247 	SD_CHAIN_BUFIO,			/* Index: 7 */
2248 	SD_CHAIN_BUFIO,			/* Index: 8 */
2249 
2250 	/*
2251 	 * Chain for buf IO for removable-media or large sector size
2252 	 * disk drive targets (PM disabled)
2253 	 */
2254 	SD_CHAIN_BUFIO,			/* Index: 9 */
2255 	SD_CHAIN_BUFIO,			/* Index: 10 */
2256 	SD_CHAIN_BUFIO,			/* Index: 11 */
2257 
2258 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2259 	SD_CHAIN_BUFIO,			/* Index: 12 */
2260 	SD_CHAIN_BUFIO,			/* Index: 13 */
2261 	SD_CHAIN_BUFIO,			/* Index: 14 */
2262 	SD_CHAIN_BUFIO,			/* Index: 15 */
2263 
2264 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2265 	SD_CHAIN_BUFIO,			/* Index: 16 */
2266 	SD_CHAIN_BUFIO,			/* Index: 17 */
2267 	SD_CHAIN_BUFIO,			/* Index: 18 */
2268 
2269 	/* Chain for USCSI commands (non-checksum targets) */
2270 	SD_CHAIN_USCSI,			/* Index: 19 */
2271 	SD_CHAIN_USCSI,			/* Index: 20 */
2272 
2273 	/* Chain for USCSI commands (checksum targets) */
2274 	SD_CHAIN_USCSI,			/* Index: 21 */
2275 	SD_CHAIN_USCSI,			/* Index: 22 */
2276 	SD_CHAIN_USCSI,			/* Index: 23 */
2277 
2278 	/* Chain for "direct" USCSI commands (all targets) */
2279 	SD_CHAIN_DIRECT,		/* Index: 24 */
2280 
2281 	/* Chain for "direct priority" USCSI commands (all targets) */
2282 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2283 
2284 	/*
2285 	 * Chain for buf IO for large sector size disk drive targets
2286 	 * with checksumming (PM enabled)
2287 	 */
2288 	SD_CHAIN_BUFIO,			/* Index: 26 */
2289 	SD_CHAIN_BUFIO,			/* Index: 27 */
2290 	SD_CHAIN_BUFIO,			/* Index: 28 */
2291 	SD_CHAIN_BUFIO,			/* Index: 29 */
2292 	SD_CHAIN_BUFIO,			/* Index: 30 */
2293 
2294 	/*
2295 	 * Chain for buf IO for large sector size disk drive targets
2296 	 * with checksumming (PM disabled)
2297 	 */
2298 	SD_CHAIN_BUFIO,			/* Index: 31 */
2299 	SD_CHAIN_BUFIO,			/* Index: 32 */
2300 	SD_CHAIN_BUFIO,			/* Index: 33 */
2301 	SD_CHAIN_BUFIO,			/* Index: 34 */
2302 };
2303 
2304 
2305 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2306 #define	SD_IS_BUFIO(xp)			\
2307 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2308 
2309 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2310 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2311 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2312 
2313 
2314 
2315 /*
2316  * Struct, array, and macros to map a specific chain to the appropriate
2317  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2318  *
2319  * The sd_chain_index_map[] array is used at attach time to set the various
2320  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2321  * chain to be used with the instance. This allows different instances to use
2322  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2323  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2324  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2325  * dynamically & without the use of locking; and (2) a layer may update the
2326  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2327  * to allow for deferred processing of an IO within the same chain from a
2328  * different execution context.
2329  */
2330 
2331 struct sd_chain_index {
2332 	int	sci_iostart_index;
2333 	int	sci_iodone_index;
2334 };
2335 
2336 static struct sd_chain_index	sd_chain_index_map[] = {
2337 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2338 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2339 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2340 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2341 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2342 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2343 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2344 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2345 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2346 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2347 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2348 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2349 
2350 };
2351 
2352 
2353 /*
2354  * The following are indexes into the sd_chain_index_map[] array.
2355  */
2356 
2357 /* un->un_buf_chain_type must be set to one of these */
2358 #define	SD_CHAIN_INFO_DISK		0
2359 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2360 #define	SD_CHAIN_INFO_RMMEDIA		2
2361 #define	SD_CHAIN_INFO_MSS_DISK		2
2362 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2363 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2364 #define	SD_CHAIN_INFO_CHKSUM		4
2365 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2366 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2367 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2368 
2369 /* un->un_uscsi_chain_type must be set to one of these */
2370 #define	SD_CHAIN_INFO_USCSI_CMD		6
2371 /* USCSI with PM disabled is the same as DIRECT */
2372 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2373 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2374 
2375 /* un->un_direct_chain_type must be set to one of these */
2376 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2377 
2378 /* un->un_priority_chain_type must be set to one of these */
2379 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2380 
2381 /* size for devid inquiries */
2382 #define	MAX_INQUIRY_SIZE		0xF0
2383 
2384 /*
2385  * Macros used by functions to pass a given buf(9S) struct along to the
2386  * next function in the layering chain for further processing.
2387  *
2388  * In the following macros, passing more than three arguments to the called
2389  * routines causes the optimizer for the SPARC compiler to stop doing tail
2390  * call elimination which results in significant performance degradation.
2391  */
2392 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2393 	((*(sd_iostart_chain[index]))(index, un, bp))
2394 
2395 #define	SD_BEGIN_IODONE(index, un, bp)	\
2396 	((*(sd_iodone_chain[index]))(index, un, bp))
2397 
2398 #define	SD_NEXT_IOSTART(index, un, bp)				\
2399 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2400 
2401 #define	SD_NEXT_IODONE(index, un, bp)				\
2402 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2403 
2404 /*
2405  *    Function: _init
2406  *
2407  * Description: This is the driver _init(9E) entry point.
2408  *
2409  * Return Code: Returns the value from mod_install(9F) or
2410  *		ddi_soft_state_init(9F) as appropriate.
2411  *
2412  *     Context: Called when driver module loaded.
2413  */
2414 
2415 int
2416 _init(void)
2417 {
2418 	int	err;
2419 
2420 	/* establish driver name from module name */
2421 	sd_label = (char *)mod_modname(&modlinkage);
2422 
2423 #ifndef XPV_HVM_DRIVER
2424 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2425 	    SD_MAXUNIT);
2426 	if (err != 0) {
2427 		return (err);
2428 	}
2429 
2430 #else /* XPV_HVM_DRIVER */
2431 	/* Remove the leading "hvm_" from the module name */
2432 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2433 	sd_label += strlen("hvm_");
2434 
2435 #endif /* XPV_HVM_DRIVER */
2436 
2437 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2438 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2439 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2440 
2441 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2442 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2443 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2444 
2445 	/*
2446 	 * it's ok to init here even for fibre device
2447 	 */
2448 	sd_scsi_probe_cache_init();
2449 
2450 	sd_scsi_target_lun_init();
2451 
2452 	/*
2453 	 * Creating taskq before mod_install ensures that all callers (threads)
2454 	 * that enter the module after a successful mod_install encounter
2455 	 * a valid taskq.
2456 	 */
2457 	sd_taskq_create();
2458 
2459 	err = mod_install(&modlinkage);
2460 	if (err != 0) {
2461 		/* delete taskq if install fails */
2462 		sd_taskq_delete();
2463 
2464 		mutex_destroy(&sd_detach_mutex);
2465 		mutex_destroy(&sd_log_mutex);
2466 		mutex_destroy(&sd_label_mutex);
2467 
2468 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2469 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2470 		cv_destroy(&sd_tr.srq_inprocess_cv);
2471 
2472 		sd_scsi_probe_cache_fini();
2473 
2474 		sd_scsi_target_lun_fini();
2475 
2476 #ifndef XPV_HVM_DRIVER
2477 		ddi_soft_state_fini(&sd_state);
2478 #endif /* !XPV_HVM_DRIVER */
2479 		return (err);
2480 	}
2481 
2482 	return (err);
2483 }
2484 
2485 
2486 /*
2487  *    Function: _fini
2488  *
2489  * Description: This is the driver _fini(9E) entry point.
2490  *
2491  * Return Code: Returns the value from mod_remove(9F)
2492  *
2493  *     Context: Called when driver module is unloaded.
2494  */
2495 
2496 int
2497 _fini(void)
2498 {
2499 	int err;
2500 
2501 	if ((err = mod_remove(&modlinkage)) != 0) {
2502 		return (err);
2503 	}
2504 
2505 	sd_taskq_delete();
2506 
2507 	mutex_destroy(&sd_detach_mutex);
2508 	mutex_destroy(&sd_log_mutex);
2509 	mutex_destroy(&sd_label_mutex);
2510 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2511 
2512 	sd_scsi_probe_cache_fini();
2513 
2514 	sd_scsi_target_lun_fini();
2515 
2516 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2517 	cv_destroy(&sd_tr.srq_inprocess_cv);
2518 
2519 #ifndef XPV_HVM_DRIVER
2520 	ddi_soft_state_fini(&sd_state);
2521 #endif /* !XPV_HVM_DRIVER */
2522 
2523 	return (err);
2524 }
2525 
2526 
2527 /*
2528  *    Function: _info
2529  *
2530  * Description: This is the driver _info(9E) entry point.
2531  *
2532  *   Arguments: modinfop - pointer to the driver modinfo structure
2533  *
2534  * Return Code: Returns the value from mod_info(9F).
2535  *
2536  *     Context: Kernel thread context
2537  */
2538 
2539 int
2540 _info(struct modinfo *modinfop)
2541 {
2542 	return (mod_info(&modlinkage, modinfop));
2543 }
2544 
2545 
2546 /*
2547  * The following routines implement the driver message logging facility.
2548  * They provide component- and level- based debug output filtering.
2549  * Output may also be restricted to messages for a single instance by
2550  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2551  * to NULL, then messages for all instances are printed.
2552  *
2553  * These routines have been cloned from each other due to the language
2554  * constraints of macros and variable argument list processing.
2555  */
2556 
2557 
2558 /*
2559  *    Function: sd_log_err
2560  *
2561  * Description: This routine is called by the SD_ERROR macro for debug
2562  *		logging of error conditions.
2563  *
2564  *   Arguments: comp - driver component being logged
2565  *		dev  - pointer to driver info structure
2566  *		fmt  - error string and format to be logged
2567  */
2568 
2569 static void
2570 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2571 {
2572 	va_list		ap;
2573 	dev_info_t	*dev;
2574 
2575 	ASSERT(un != NULL);
2576 	dev = SD_DEVINFO(un);
2577 	ASSERT(dev != NULL);
2578 
2579 	/*
2580 	 * Filter messages based on the global component and level masks.
2581 	 * Also print if un matches the value of sd_debug_un, or if
2582 	 * sd_debug_un is set to NULL.
2583 	 */
2584 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2585 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2586 		mutex_enter(&sd_log_mutex);
2587 		va_start(ap, fmt);
2588 		(void) vsprintf(sd_log_buf, fmt, ap);
2589 		va_end(ap);
2590 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2591 		mutex_exit(&sd_log_mutex);
2592 	}
2593 #ifdef SD_FAULT_INJECTION
2594 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2595 	if (un->sd_injection_mask & comp) {
2596 		mutex_enter(&sd_log_mutex);
2597 		va_start(ap, fmt);
2598 		(void) vsprintf(sd_log_buf, fmt, ap);
2599 		va_end(ap);
2600 		sd_injection_log(sd_log_buf, un);
2601 		mutex_exit(&sd_log_mutex);
2602 	}
2603 #endif
2604 }
2605 
2606 
2607 /*
2608  *    Function: sd_log_info
2609  *
2610  * Description: This routine is called by the SD_INFO macro for debug
2611  *		logging of general purpose informational conditions.
2612  *
2613  *   Arguments: comp - driver component being logged
2614  *		dev  - pointer to driver info structure
2615  *		fmt  - info string and format to be logged
2616  */
2617 
2618 static void
2619 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2620 {
2621 	va_list		ap;
2622 	dev_info_t	*dev;
2623 
2624 	ASSERT(un != NULL);
2625 	dev = SD_DEVINFO(un);
2626 	ASSERT(dev != NULL);
2627 
2628 	/*
2629 	 * Filter messages based on the global component and level masks.
2630 	 * Also print if un matches the value of sd_debug_un, or if
2631 	 * sd_debug_un is set to NULL.
2632 	 */
2633 	if ((sd_component_mask & component) &&
2634 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2635 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2636 		mutex_enter(&sd_log_mutex);
2637 		va_start(ap, fmt);
2638 		(void) vsprintf(sd_log_buf, fmt, ap);
2639 		va_end(ap);
2640 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2641 		mutex_exit(&sd_log_mutex);
2642 	}
2643 #ifdef SD_FAULT_INJECTION
2644 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2645 	if (un->sd_injection_mask & component) {
2646 		mutex_enter(&sd_log_mutex);
2647 		va_start(ap, fmt);
2648 		(void) vsprintf(sd_log_buf, fmt, ap);
2649 		va_end(ap);
2650 		sd_injection_log(sd_log_buf, un);
2651 		mutex_exit(&sd_log_mutex);
2652 	}
2653 #endif
2654 }
2655 
2656 
2657 /*
2658  *    Function: sd_log_trace
2659  *
2660  * Description: This routine is called by the SD_TRACE macro for debug
2661  *		logging of trace conditions (i.e. function entry/exit).
2662  *
2663  *   Arguments: comp - driver component being logged
2664  *		dev  - pointer to driver info structure
2665  *		fmt  - trace string and format to be logged
2666  */
2667 
2668 static void
2669 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2670 {
2671 	va_list		ap;
2672 	dev_info_t	*dev;
2673 
2674 	ASSERT(un != NULL);
2675 	dev = SD_DEVINFO(un);
2676 	ASSERT(dev != NULL);
2677 
2678 	/*
2679 	 * Filter messages based on the global component and level masks.
2680 	 * Also print if un matches the value of sd_debug_un, or if
2681 	 * sd_debug_un is set to NULL.
2682 	 */
2683 	if ((sd_component_mask & component) &&
2684 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2685 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2686 		mutex_enter(&sd_log_mutex);
2687 		va_start(ap, fmt);
2688 		(void) vsprintf(sd_log_buf, fmt, ap);
2689 		va_end(ap);
2690 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2691 		mutex_exit(&sd_log_mutex);
2692 	}
2693 #ifdef SD_FAULT_INJECTION
2694 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2695 	if (un->sd_injection_mask & component) {
2696 		mutex_enter(&sd_log_mutex);
2697 		va_start(ap, fmt);
2698 		(void) vsprintf(sd_log_buf, fmt, ap);
2699 		va_end(ap);
2700 		sd_injection_log(sd_log_buf, un);
2701 		mutex_exit(&sd_log_mutex);
2702 	}
2703 #endif
2704 }
2705 
2706 
2707 /*
2708  *    Function: sdprobe
2709  *
2710  * Description: This is the driver probe(9e) entry point function.
2711  *
2712  *   Arguments: devi - opaque device info handle
2713  *
2714  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2715  *              DDI_PROBE_FAILURE: If the probe failed.
2716  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2717  *				   but may be present in the future.
2718  */
2719 
2720 static int
2721 sdprobe(dev_info_t *devi)
2722 {
2723 	struct scsi_device	*devp;
2724 	int			rval;
2725 #ifndef XPV_HVM_DRIVER
2726 	int			instance = ddi_get_instance(devi);
2727 #endif /* !XPV_HVM_DRIVER */
2728 
2729 	/*
2730 	 * if it wasn't for pln, sdprobe could actually be nulldev
2731 	 * in the "__fibre" case.
2732 	 */
2733 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2734 		return (DDI_PROBE_DONTCARE);
2735 	}
2736 
2737 	devp = ddi_get_driver_private(devi);
2738 
2739 	if (devp == NULL) {
2740 		/* Ooops... nexus driver is mis-configured... */
2741 		return (DDI_PROBE_FAILURE);
2742 	}
2743 
2744 #ifndef XPV_HVM_DRIVER
2745 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2746 		return (DDI_PROBE_PARTIAL);
2747 	}
2748 #endif /* !XPV_HVM_DRIVER */
2749 
2750 	/*
2751 	 * Call the SCSA utility probe routine to see if we actually
2752 	 * have a target at this SCSI nexus.
2753 	 */
2754 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2755 	case SCSIPROBE_EXISTS:
2756 		switch (devp->sd_inq->inq_dtype) {
2757 		case DTYPE_DIRECT:
2758 			rval = DDI_PROBE_SUCCESS;
2759 			break;
2760 		case DTYPE_RODIRECT:
2761 			/* CDs etc. Can be removable media */
2762 			rval = DDI_PROBE_SUCCESS;
2763 			break;
2764 		case DTYPE_OPTICAL:
2765 			/*
2766 			 * Rewritable optical driver HP115AA
2767 			 * Can also be removable media
2768 			 */
2769 
2770 			/*
2771 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2772 			 * pre solaris 9 sparc sd behavior is required
2773 			 *
2774 			 * If first time through and sd_dtype_optical_bind
2775 			 * has not been set in /etc/system check properties
2776 			 */
2777 
2778 			if (sd_dtype_optical_bind  < 0) {
2779 				sd_dtype_optical_bind = ddi_prop_get_int
2780 				    (DDI_DEV_T_ANY, devi, 0,
2781 				    "optical-device-bind", 1);
2782 			}
2783 
2784 			if (sd_dtype_optical_bind == 0) {
2785 				rval = DDI_PROBE_FAILURE;
2786 			} else {
2787 				rval = DDI_PROBE_SUCCESS;
2788 			}
2789 			break;
2790 
2791 		case DTYPE_NOTPRESENT:
2792 		default:
2793 			rval = DDI_PROBE_FAILURE;
2794 			break;
2795 		}
2796 		break;
2797 	default:
2798 		rval = DDI_PROBE_PARTIAL;
2799 		break;
2800 	}
2801 
2802 	/*
2803 	 * This routine checks for resource allocation prior to freeing,
2804 	 * so it will take care of the "smart probing" case where a
2805 	 * scsi_probe() may or may not have been issued and will *not*
2806 	 * free previously-freed resources.
2807 	 */
2808 	scsi_unprobe(devp);
2809 	return (rval);
2810 }
2811 
2812 
2813 /*
2814  *    Function: sdinfo
2815  *
2816  * Description: This is the driver getinfo(9e) entry point function.
2817  * 		Given the device number, return the devinfo pointer from
2818  *		the scsi_device structure or the instance number
2819  *		associated with the dev_t.
2820  *
2821  *   Arguments: dip     - pointer to device info structure
2822  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2823  *			  DDI_INFO_DEVT2INSTANCE)
2824  *		arg     - driver dev_t
2825  *		resultp - user buffer for request response
2826  *
2827  * Return Code: DDI_SUCCESS
2828  *              DDI_FAILURE
2829  */
2830 /* ARGSUSED */
2831 static int
2832 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2833 {
2834 	struct sd_lun	*un;
2835 	dev_t		dev;
2836 	int		instance;
2837 	int		error;
2838 
2839 	switch (infocmd) {
2840 	case DDI_INFO_DEVT2DEVINFO:
2841 		dev = (dev_t)arg;
2842 		instance = SDUNIT(dev);
2843 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2844 			return (DDI_FAILURE);
2845 		}
2846 		*result = (void *) SD_DEVINFO(un);
2847 		error = DDI_SUCCESS;
2848 		break;
2849 	case DDI_INFO_DEVT2INSTANCE:
2850 		dev = (dev_t)arg;
2851 		instance = SDUNIT(dev);
2852 		*result = (void *)(uintptr_t)instance;
2853 		error = DDI_SUCCESS;
2854 		break;
2855 	default:
2856 		error = DDI_FAILURE;
2857 	}
2858 	return (error);
2859 }
2860 
2861 /*
2862  *    Function: sd_prop_op
2863  *
2864  * Description: This is the driver prop_op(9e) entry point function.
2865  *		Return the number of blocks for the partition in question
2866  *		or forward the request to the property facilities.
2867  *
2868  *   Arguments: dev       - device number
2869  *		dip       - pointer to device info structure
2870  *		prop_op   - property operator
2871  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2872  *		name      - pointer to property name
2873  *		valuep    - pointer or address of the user buffer
2874  *		lengthp   - property length
2875  *
2876  * Return Code: DDI_PROP_SUCCESS
2877  *              DDI_PROP_NOT_FOUND
2878  *              DDI_PROP_UNDEFINED
2879  *              DDI_PROP_NO_MEMORY
2880  *              DDI_PROP_BUF_TOO_SMALL
2881  */
2882 
2883 static int
2884 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2885 	char *name, caddr_t valuep, int *lengthp)
2886 {
2887 	struct sd_lun	*un;
2888 
2889 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2890 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2891 		    name, valuep, lengthp));
2892 
2893 	return (cmlb_prop_op(un->un_cmlbhandle,
2894 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2895 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2896 }
2897 
2898 /*
2899  * The following functions are for smart probing:
2900  * sd_scsi_probe_cache_init()
2901  * sd_scsi_probe_cache_fini()
2902  * sd_scsi_clear_probe_cache()
2903  * sd_scsi_probe_with_cache()
2904  */
2905 
2906 /*
2907  *    Function: sd_scsi_probe_cache_init
2908  *
2909  * Description: Initializes the probe response cache mutex and head pointer.
2910  *
2911  *     Context: Kernel thread context
2912  */
2913 
2914 static void
2915 sd_scsi_probe_cache_init(void)
2916 {
2917 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2918 	sd_scsi_probe_cache_head = NULL;
2919 }
2920 
2921 
2922 /*
2923  *    Function: sd_scsi_probe_cache_fini
2924  *
2925  * Description: Frees all resources associated with the probe response cache.
2926  *
2927  *     Context: Kernel thread context
2928  */
2929 
2930 static void
2931 sd_scsi_probe_cache_fini(void)
2932 {
2933 	struct sd_scsi_probe_cache *cp;
2934 	struct sd_scsi_probe_cache *ncp;
2935 
2936 	/* Clean up our smart probing linked list */
2937 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2938 		ncp = cp->next;
2939 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2940 	}
2941 	sd_scsi_probe_cache_head = NULL;
2942 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2943 }
2944 
2945 
2946 /*
2947  *    Function: sd_scsi_clear_probe_cache
2948  *
2949  * Description: This routine clears the probe response cache. This is
2950  *		done when open() returns ENXIO so that when deferred
2951  *		attach is attempted (possibly after a device has been
2952  *		turned on) we will retry the probe. Since we don't know
2953  *		which target we failed to open, we just clear the
2954  *		entire cache.
2955  *
2956  *     Context: Kernel thread context
2957  */
2958 
2959 static void
2960 sd_scsi_clear_probe_cache(void)
2961 {
2962 	struct sd_scsi_probe_cache	*cp;
2963 	int				i;
2964 
2965 	mutex_enter(&sd_scsi_probe_cache_mutex);
2966 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2967 		/*
2968 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2969 		 * force probing to be performed the next time
2970 		 * sd_scsi_probe_with_cache is called.
2971 		 */
2972 		for (i = 0; i < NTARGETS_WIDE; i++) {
2973 			cp->cache[i] = SCSIPROBE_EXISTS;
2974 		}
2975 	}
2976 	mutex_exit(&sd_scsi_probe_cache_mutex);
2977 }
2978 
2979 
2980 /*
2981  *    Function: sd_scsi_probe_with_cache
2982  *
2983  * Description: This routine implements support for a scsi device probe
2984  *		with cache. The driver maintains a cache of the target
2985  *		responses to scsi probes. If we get no response from a
2986  *		target during a probe inquiry, we remember that, and we
2987  *		avoid additional calls to scsi_probe on non-zero LUNs
2988  *		on the same target until the cache is cleared. By doing
2989  *		so we avoid the 1/4 sec selection timeout for nonzero
2990  *		LUNs. lun0 of a target is always probed.
2991  *
2992  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2993  *              waitfunc - indicates what the allocator routines should
2994  *			   do when resources are not available. This value
2995  *			   is passed on to scsi_probe() when that routine
2996  *			   is called.
2997  *
2998  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2999  *		otherwise the value returned by scsi_probe(9F).
3000  *
3001  *     Context: Kernel thread context
3002  */
3003 
3004 static int
3005 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3006 {
3007 	struct sd_scsi_probe_cache	*cp;
3008 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3009 	int		lun, tgt;
3010 
3011 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3012 	    SCSI_ADDR_PROP_LUN, 0);
3013 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3014 	    SCSI_ADDR_PROP_TARGET, -1);
3015 
3016 	/* Make sure caching enabled and target in range */
3017 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3018 		/* do it the old way (no cache) */
3019 		return (scsi_probe(devp, waitfn));
3020 	}
3021 
3022 	mutex_enter(&sd_scsi_probe_cache_mutex);
3023 
3024 	/* Find the cache for this scsi bus instance */
3025 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3026 		if (cp->pdip == pdip) {
3027 			break;
3028 		}
3029 	}
3030 
3031 	/* If we can't find a cache for this pdip, create one */
3032 	if (cp == NULL) {
3033 		int i;
3034 
3035 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3036 		    KM_SLEEP);
3037 		cp->pdip = pdip;
3038 		cp->next = sd_scsi_probe_cache_head;
3039 		sd_scsi_probe_cache_head = cp;
3040 		for (i = 0; i < NTARGETS_WIDE; i++) {
3041 			cp->cache[i] = SCSIPROBE_EXISTS;
3042 		}
3043 	}
3044 
3045 	mutex_exit(&sd_scsi_probe_cache_mutex);
3046 
3047 	/* Recompute the cache for this target if LUN zero */
3048 	if (lun == 0) {
3049 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3050 	}
3051 
3052 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3053 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3054 		return (SCSIPROBE_NORESP);
3055 	}
3056 
3057 	/* Do the actual probe; save & return the result */
3058 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3059 }
3060 
3061 
3062 /*
3063  *    Function: sd_scsi_target_lun_init
3064  *
3065  * Description: Initializes the attached lun chain mutex and head pointer.
3066  *
3067  *     Context: Kernel thread context
3068  */
3069 
3070 static void
3071 sd_scsi_target_lun_init(void)
3072 {
3073 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3074 	sd_scsi_target_lun_head = NULL;
3075 }
3076 
3077 
3078 /*
3079  *    Function: sd_scsi_target_lun_fini
3080  *
3081  * Description: Frees all resources associated with the attached lun
3082  *              chain
3083  *
3084  *     Context: Kernel thread context
3085  */
3086 
3087 static void
3088 sd_scsi_target_lun_fini(void)
3089 {
3090 	struct sd_scsi_hba_tgt_lun	*cp;
3091 	struct sd_scsi_hba_tgt_lun	*ncp;
3092 
3093 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3094 		ncp = cp->next;
3095 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3096 	}
3097 	sd_scsi_target_lun_head = NULL;
3098 	mutex_destroy(&sd_scsi_target_lun_mutex);
3099 }
3100 
3101 
3102 /*
3103  *    Function: sd_scsi_get_target_lun_count
3104  *
3105  * Description: This routine will check in the attached lun chain to see
3106  * 		how many luns are attached on the required SCSI controller
3107  * 		and target. Currently, some capabilities like tagged queue
3108  *		are supported per target based by HBA. So all luns in a
3109  *		target have the same capabilities. Based on this assumption,
3110  * 		sd should only set these capabilities once per target. This
3111  *		function is called when sd needs to decide how many luns
3112  *		already attached on a target.
3113  *
3114  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3115  *			  controller device.
3116  *              target	- The target ID on the controller's SCSI bus.
3117  *
3118  * Return Code: The number of luns attached on the required target and
3119  *		controller.
3120  *		-1 if target ID is not in parallel SCSI scope or the given
3121  * 		dip is not in the chain.
3122  *
3123  *     Context: Kernel thread context
3124  */
3125 
3126 static int
3127 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3128 {
3129 	struct sd_scsi_hba_tgt_lun	*cp;
3130 
3131 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3132 		return (-1);
3133 	}
3134 
3135 	mutex_enter(&sd_scsi_target_lun_mutex);
3136 
3137 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3138 		if (cp->pdip == dip) {
3139 			break;
3140 		}
3141 	}
3142 
3143 	mutex_exit(&sd_scsi_target_lun_mutex);
3144 
3145 	if (cp == NULL) {
3146 		return (-1);
3147 	}
3148 
3149 	return (cp->nlun[target]);
3150 }
3151 
3152 
3153 /*
3154  *    Function: sd_scsi_update_lun_on_target
3155  *
3156  * Description: This routine is used to update the attached lun chain when a
3157  *		lun is attached or detached on a target.
3158  *
3159  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3160  *                        controller device.
3161  *              target  - The target ID on the controller's SCSI bus.
3162  *		flag	- Indicate the lun is attached or detached.
3163  *
3164  *     Context: Kernel thread context
3165  */
3166 
3167 static void
3168 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3169 {
3170 	struct sd_scsi_hba_tgt_lun	*cp;
3171 
3172 	mutex_enter(&sd_scsi_target_lun_mutex);
3173 
3174 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3175 		if (cp->pdip == dip) {
3176 			break;
3177 		}
3178 	}
3179 
3180 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3181 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3182 		    KM_SLEEP);
3183 		cp->pdip = dip;
3184 		cp->next = sd_scsi_target_lun_head;
3185 		sd_scsi_target_lun_head = cp;
3186 	}
3187 
3188 	mutex_exit(&sd_scsi_target_lun_mutex);
3189 
3190 	if (cp != NULL) {
3191 		if (flag == SD_SCSI_LUN_ATTACH) {
3192 			cp->nlun[target] ++;
3193 		} else {
3194 			cp->nlun[target] --;
3195 		}
3196 	}
3197 }
3198 
3199 
3200 /*
3201  *    Function: sd_spin_up_unit
3202  *
3203  * Description: Issues the following commands to spin-up the device:
3204  *		START STOP UNIT, and INQUIRY.
3205  *
3206  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3207  *                      structure for this target.
3208  *
3209  * Return Code: 0 - success
3210  *		EIO - failure
3211  *		EACCES - reservation conflict
3212  *
3213  *     Context: Kernel thread context
3214  */
3215 
3216 static int
3217 sd_spin_up_unit(sd_ssc_t *ssc)
3218 {
3219 	size_t	resid		= 0;
3220 	int	has_conflict	= FALSE;
3221 	uchar_t *bufaddr;
3222 	int 	status;
3223 	struct sd_lun	*un;
3224 
3225 	ASSERT(ssc != NULL);
3226 	un = ssc->ssc_un;
3227 	ASSERT(un != NULL);
3228 
3229 	/*
3230 	 * Send a throwaway START UNIT command.
3231 	 *
3232 	 * If we fail on this, we don't care presently what precisely
3233 	 * is wrong.  EMC's arrays will also fail this with a check
3234 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3235 	 * we don't want to fail the attach because it may become
3236 	 * "active" later.
3237 	 * We don't know if power condition is supported or not at
3238 	 * this stage, use START STOP bit.
3239 	 */
3240 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3241 	    SD_TARGET_START, SD_PATH_DIRECT);
3242 
3243 	if (status != 0) {
3244 		if (status == EACCES)
3245 			has_conflict = TRUE;
3246 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3247 	}
3248 
3249 	/*
3250 	 * Send another INQUIRY command to the target. This is necessary for
3251 	 * non-removable media direct access devices because their INQUIRY data
3252 	 * may not be fully qualified until they are spun up (perhaps via the
3253 	 * START command above).  Note: This seems to be needed for some
3254 	 * legacy devices only.) The INQUIRY command should succeed even if a
3255 	 * Reservation Conflict is present.
3256 	 */
3257 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3258 
3259 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3260 	    != 0) {
3261 		kmem_free(bufaddr, SUN_INQSIZE);
3262 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3263 		return (EIO);
3264 	}
3265 
3266 	/*
3267 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3268 	 * Note that this routine does not return a failure here even if the
3269 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3270 	 */
3271 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3272 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3273 	}
3274 
3275 	kmem_free(bufaddr, SUN_INQSIZE);
3276 
3277 	/* If we hit a reservation conflict above, tell the caller. */
3278 	if (has_conflict == TRUE) {
3279 		return (EACCES);
3280 	}
3281 
3282 	return (0);
3283 }
3284 
3285 #ifdef _LP64
3286 /*
3287  *    Function: sd_enable_descr_sense
3288  *
3289  * Description: This routine attempts to select descriptor sense format
3290  *		using the Control mode page.  Devices that support 64 bit
3291  *		LBAs (for >2TB luns) should also implement descriptor
3292  *		sense data so we will call this function whenever we see
3293  *		a lun larger than 2TB.  If for some reason the device
3294  *		supports 64 bit LBAs but doesn't support descriptor sense
3295  *		presumably the mode select will fail.  Everything will
3296  *		continue to work normally except that we will not get
3297  *		complete sense data for commands that fail with an LBA
3298  *		larger than 32 bits.
3299  *
3300  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3301  *                      structure for this target.
3302  *
3303  *     Context: Kernel thread context only
3304  */
3305 
3306 static void
3307 sd_enable_descr_sense(sd_ssc_t *ssc)
3308 {
3309 	uchar_t			*header;
3310 	struct mode_control_scsi3 *ctrl_bufp;
3311 	size_t			buflen;
3312 	size_t			bd_len;
3313 	int			status;
3314 	struct sd_lun		*un;
3315 
3316 	ASSERT(ssc != NULL);
3317 	un = ssc->ssc_un;
3318 	ASSERT(un != NULL);
3319 
3320 	/*
3321 	 * Read MODE SENSE page 0xA, Control Mode Page
3322 	 */
3323 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3324 	    sizeof (struct mode_control_scsi3);
3325 	header = kmem_zalloc(buflen, KM_SLEEP);
3326 
3327 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3328 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3329 
3330 	if (status != 0) {
3331 		SD_ERROR(SD_LOG_COMMON, un,
3332 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3333 		goto eds_exit;
3334 	}
3335 
3336 	/*
3337 	 * Determine size of Block Descriptors in order to locate
3338 	 * the mode page data. ATAPI devices return 0, SCSI devices
3339 	 * should return MODE_BLK_DESC_LENGTH.
3340 	 */
3341 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3342 
3343 	/* Clear the mode data length field for MODE SELECT */
3344 	((struct mode_header *)header)->length = 0;
3345 
3346 	ctrl_bufp = (struct mode_control_scsi3 *)
3347 	    (header + MODE_HEADER_LENGTH + bd_len);
3348 
3349 	/*
3350 	 * If the page length is smaller than the expected value,
3351 	 * the target device doesn't support D_SENSE. Bail out here.
3352 	 */
3353 	if (ctrl_bufp->mode_page.length <
3354 	    sizeof (struct mode_control_scsi3) - 2) {
3355 		SD_ERROR(SD_LOG_COMMON, un,
3356 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3357 		goto eds_exit;
3358 	}
3359 
3360 	/*
3361 	 * Clear PS bit for MODE SELECT
3362 	 */
3363 	ctrl_bufp->mode_page.ps = 0;
3364 
3365 	/*
3366 	 * Set D_SENSE to enable descriptor sense format.
3367 	 */
3368 	ctrl_bufp->d_sense = 1;
3369 
3370 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3371 
3372 	/*
3373 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3374 	 */
3375 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3376 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3377 
3378 	if (status != 0) {
3379 		SD_INFO(SD_LOG_COMMON, un,
3380 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3381 	} else {
3382 		kmem_free(header, buflen);
3383 		return;
3384 	}
3385 
3386 eds_exit:
3387 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3388 	kmem_free(header, buflen);
3389 }
3390 
3391 /*
3392  *    Function: sd_reenable_dsense_task
3393  *
3394  * Description: Re-enable descriptor sense after device or bus reset
3395  *
3396  *     Context: Executes in a taskq() thread context
3397  */
3398 static void
3399 sd_reenable_dsense_task(void *arg)
3400 {
3401 	struct	sd_lun	*un = arg;
3402 	sd_ssc_t	*ssc;
3403 
3404 	ASSERT(un != NULL);
3405 
3406 	ssc = sd_ssc_init(un);
3407 	sd_enable_descr_sense(ssc);
3408 	sd_ssc_fini(ssc);
3409 }
3410 #endif /* _LP64 */
3411 
3412 /*
3413  *    Function: sd_set_mmc_caps
3414  *
3415  * Description: This routine determines if the device is MMC compliant and if
3416  *		the device supports CDDA via a mode sense of the CDVD
3417  *		capabilities mode page. Also checks if the device is a
3418  *		dvdram writable device.
3419  *
3420  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3421  *                      structure for this target.
3422  *
3423  *     Context: Kernel thread context only
3424  */
3425 
3426 static void
3427 sd_set_mmc_caps(sd_ssc_t *ssc)
3428 {
3429 	struct mode_header_grp2		*sense_mhp;
3430 	uchar_t				*sense_page;
3431 	caddr_t				buf;
3432 	int				bd_len;
3433 	int				status;
3434 	struct uscsi_cmd		com;
3435 	int				rtn;
3436 	uchar_t				*out_data_rw, *out_data_hd;
3437 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3438 	uchar_t				*out_data_gesn;
3439 	int				gesn_len;
3440 	struct sd_lun			*un;
3441 
3442 	ASSERT(ssc != NULL);
3443 	un = ssc->ssc_un;
3444 	ASSERT(un != NULL);
3445 
3446 	/*
3447 	 * The flags which will be set in this function are - mmc compliant,
3448 	 * dvdram writable device, cdda support. Initialize them to FALSE
3449 	 * and if a capability is detected - it will be set to TRUE.
3450 	 */
3451 	un->un_f_mmc_cap = FALSE;
3452 	un->un_f_dvdram_writable_device = FALSE;
3453 	un->un_f_cfg_cdda = FALSE;
3454 
3455 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3456 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3457 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3458 
3459 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3460 
3461 	if (status != 0) {
3462 		/* command failed; just return */
3463 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3464 		return;
3465 	}
3466 	/*
3467 	 * If the mode sense request for the CDROM CAPABILITIES
3468 	 * page (0x2A) succeeds the device is assumed to be MMC.
3469 	 */
3470 	un->un_f_mmc_cap = TRUE;
3471 
3472 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3473 	if (un->un_f_mmc_gesn_polling) {
3474 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3475 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3476 
3477 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3478 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3479 
3480 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3481 
3482 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3483 			un->un_f_mmc_gesn_polling = FALSE;
3484 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3485 			    "sd_set_mmc_caps: gesn not supported "
3486 			    "%d %x %x %x %x\n", rtn,
3487 			    out_data_gesn[0], out_data_gesn[1],
3488 			    out_data_gesn[2], out_data_gesn[3]);
3489 		}
3490 
3491 		kmem_free(out_data_gesn, gesn_len);
3492 	}
3493 
3494 	/* Get to the page data */
3495 	sense_mhp = (struct mode_header_grp2 *)buf;
3496 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3497 	    sense_mhp->bdesc_length_lo;
3498 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3499 		/*
3500 		 * We did not get back the expected block descriptor
3501 		 * length so we cannot determine if the device supports
3502 		 * CDDA. However, we still indicate the device is MMC
3503 		 * according to the successful response to the page
3504 		 * 0x2A mode sense request.
3505 		 */
3506 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3507 		    "sd_set_mmc_caps: Mode Sense returned "
3508 		    "invalid block descriptor length\n");
3509 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3510 		return;
3511 	}
3512 
3513 	/* See if read CDDA is supported */
3514 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3515 	    bd_len);
3516 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3517 
3518 	/* See if writing DVD RAM is supported. */
3519 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3520 	if (un->un_f_dvdram_writable_device == TRUE) {
3521 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3522 		return;
3523 	}
3524 
3525 	/*
3526 	 * If the device presents DVD or CD capabilities in the mode
3527 	 * page, we can return here since a RRD will not have
3528 	 * these capabilities.
3529 	 */
3530 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3531 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3532 		return;
3533 	}
3534 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3535 
3536 	/*
3537 	 * If un->un_f_dvdram_writable_device is still FALSE,
3538 	 * check for a Removable Rigid Disk (RRD).  A RRD
3539 	 * device is identified by the features RANDOM_WRITABLE and
3540 	 * HARDWARE_DEFECT_MANAGEMENT.
3541 	 */
3542 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3543 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3544 
3545 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3546 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3547 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3548 
3549 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3550 
3551 	if (rtn != 0) {
3552 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3553 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3554 		return;
3555 	}
3556 
3557 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3558 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3559 
3560 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3561 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3562 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3563 
3564 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3565 
3566 	if (rtn == 0) {
3567 		/*
3568 		 * We have good information, check for random writable
3569 		 * and hardware defect features.
3570 		 */
3571 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3572 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3573 			un->un_f_dvdram_writable_device = TRUE;
3574 		}
3575 	}
3576 
3577 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3578 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3579 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3580 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3581 }
3582 
3583 /*
3584  *    Function: sd_check_for_writable_cd
3585  *
3586  * Description: This routine determines if the media in the device is
3587  *		writable or not. It uses the get configuration command (0x46)
3588  *		to determine if the media is writable
3589  *
3590  *   Arguments: un - driver soft state (unit) structure
3591  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3592  *                           chain and the normal command waitq, or
3593  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3594  *                           "direct" chain and bypass the normal command
3595  *                           waitq.
3596  *
3597  *     Context: Never called at interrupt context.
3598  */
3599 
3600 static void
3601 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3602 {
3603 	struct uscsi_cmd		com;
3604 	uchar_t				*out_data;
3605 	uchar_t				*rqbuf;
3606 	int				rtn;
3607 	uchar_t				*out_data_rw, *out_data_hd;
3608 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3609 	struct mode_header_grp2		*sense_mhp;
3610 	uchar_t				*sense_page;
3611 	caddr_t				buf;
3612 	int				bd_len;
3613 	int				status;
3614 	struct sd_lun			*un;
3615 
3616 	ASSERT(ssc != NULL);
3617 	un = ssc->ssc_un;
3618 	ASSERT(un != NULL);
3619 	ASSERT(mutex_owned(SD_MUTEX(un)));
3620 
3621 	/*
3622 	 * Initialize the writable media to false, if configuration info.
3623 	 * tells us otherwise then only we will set it.
3624 	 */
3625 	un->un_f_mmc_writable_media = FALSE;
3626 	mutex_exit(SD_MUTEX(un));
3627 
3628 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3629 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3630 
3631 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3632 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3633 
3634 	if (rtn != 0)
3635 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3636 
3637 	mutex_enter(SD_MUTEX(un));
3638 	if (rtn == 0) {
3639 		/*
3640 		 * We have good information, check for writable DVD.
3641 		 */
3642 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3643 			un->un_f_mmc_writable_media = TRUE;
3644 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3645 			kmem_free(rqbuf, SENSE_LENGTH);
3646 			return;
3647 		}
3648 	}
3649 
3650 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3651 	kmem_free(rqbuf, SENSE_LENGTH);
3652 
3653 	/*
3654 	 * Determine if this is a RRD type device.
3655 	 */
3656 	mutex_exit(SD_MUTEX(un));
3657 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3658 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3659 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3660 
3661 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3662 
3663 	mutex_enter(SD_MUTEX(un));
3664 	if (status != 0) {
3665 		/* command failed; just return */
3666 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3667 		return;
3668 	}
3669 
3670 	/* Get to the page data */
3671 	sense_mhp = (struct mode_header_grp2 *)buf;
3672 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3673 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3674 		/*
3675 		 * We did not get back the expected block descriptor length so
3676 		 * we cannot check the mode page.
3677 		 */
3678 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3679 		    "sd_check_for_writable_cd: Mode Sense returned "
3680 		    "invalid block descriptor length\n");
3681 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3682 		return;
3683 	}
3684 
3685 	/*
3686 	 * If the device presents DVD or CD capabilities in the mode
3687 	 * page, we can return here since a RRD device will not have
3688 	 * these capabilities.
3689 	 */
3690 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3691 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3692 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3693 		return;
3694 	}
3695 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3696 
3697 	/*
3698 	 * If un->un_f_mmc_writable_media is still FALSE,
3699 	 * check for RRD type media.  A RRD device is identified
3700 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3701 	 */
3702 	mutex_exit(SD_MUTEX(un));
3703 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3704 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3705 
3706 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3707 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3708 	    RANDOM_WRITABLE, path_flag);
3709 
3710 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3711 	if (rtn != 0) {
3712 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3713 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3714 		mutex_enter(SD_MUTEX(un));
3715 		return;
3716 	}
3717 
3718 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3719 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3720 
3721 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3722 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3723 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3724 
3725 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3726 	mutex_enter(SD_MUTEX(un));
3727 	if (rtn == 0) {
3728 		/*
3729 		 * We have good information, check for random writable
3730 		 * and hardware defect features as current.
3731 		 */
3732 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3733 		    (out_data_rw[10] & 0x1) &&
3734 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3735 		    (out_data_hd[10] & 0x1)) {
3736 			un->un_f_mmc_writable_media = TRUE;
3737 		}
3738 	}
3739 
3740 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3741 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3742 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3743 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3744 }
3745 
3746 /*
3747  *    Function: sd_read_unit_properties
3748  *
3749  * Description: The following implements a property lookup mechanism.
3750  *		Properties for particular disks (keyed on vendor, model
3751  *		and rev numbers) are sought in the sd.conf file via
3752  *		sd_process_sdconf_file(), and if not found there, are
3753  *		looked for in a list hardcoded in this driver via
3754  *		sd_process_sdconf_table() Once located the properties
3755  *		are used to update the driver unit structure.
3756  *
3757  *   Arguments: un - driver soft state (unit) structure
3758  */
3759 
3760 static void
3761 sd_read_unit_properties(struct sd_lun *un)
3762 {
3763 	/*
3764 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3765 	 * the "sd-config-list" property (from the sd.conf file) or if
3766 	 * there was not a match for the inquiry vid/pid. If this event
3767 	 * occurs the static driver configuration table is searched for
3768 	 * a match.
3769 	 */
3770 	ASSERT(un != NULL);
3771 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3772 		sd_process_sdconf_table(un);
3773 	}
3774 
3775 	/* check for LSI device */
3776 	sd_is_lsi(un);
3777 
3778 
3779 }
3780 
3781 
3782 /*
3783  *    Function: sd_process_sdconf_file
3784  *
3785  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3786  *		driver's config file (ie, sd.conf) and update the driver
3787  *		soft state structure accordingly.
3788  *
3789  *   Arguments: un - driver soft state (unit) structure
3790  *
3791  * Return Code: SD_SUCCESS - The properties were successfully set according
3792  *			     to the driver configuration file.
3793  *		SD_FAILURE - The driver config list was not obtained or
3794  *			     there was no vid/pid match. This indicates that
3795  *			     the static config table should be used.
3796  *
3797  * The config file has a property, "sd-config-list". Currently we support
3798  * two kinds of formats. For both formats, the value of this property
3799  * is a list of duplets:
3800  *
3801  *  sd-config-list=
3802  *	<duplet>,
3803  *	[,<duplet>]*;
3804  *
3805  * For the improved format, where
3806  *
3807  *     <duplet>:= "<vid+pid>","<tunable-list>"
3808  *
3809  * and
3810  *
3811  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3812  *     <tunable> =        <name> : <value>
3813  *
3814  * The <vid+pid> is the string that is returned by the target device on a
3815  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3816  * to apply to all target devices with the specified <vid+pid>.
3817  *
3818  * Each <tunable> is a "<name> : <value>" pair.
3819  *
3820  * For the old format, the structure of each duplet is as follows:
3821  *
3822  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3823  *
3824  * The first entry of the duplet is the device ID string (the concatenated
3825  * vid & pid; not to be confused with a device_id).  This is defined in
3826  * the same way as in the sd_disk_table.
3827  *
3828  * The second part of the duplet is a string that identifies a
3829  * data-property-name-list. The data-property-name-list is defined as
3830  * follows:
3831  *
3832  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3833  *
3834  * The syntax of <data-property-name> depends on the <version> field.
3835  *
3836  * If version = SD_CONF_VERSION_1 we have the following syntax:
3837  *
3838  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3839  *
3840  * where the prop0 value will be used to set prop0 if bit0 set in the
3841  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3842  *
3843  */
3844 
3845 static int
3846 sd_process_sdconf_file(struct sd_lun *un)
3847 {
3848 	char	**config_list = NULL;
3849 	uint_t	nelements;
3850 	char	*vidptr;
3851 	int	vidlen;
3852 	char	*dnlist_ptr;
3853 	char	*dataname_ptr;
3854 	char	*dataname_lasts;
3855 	int	*data_list = NULL;
3856 	uint_t	data_list_len;
3857 	int	rval = SD_FAILURE;
3858 	int	i;
3859 
3860 	ASSERT(un != NULL);
3861 
3862 	/* Obtain the configuration list associated with the .conf file */
3863 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3864 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3865 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3866 		return (SD_FAILURE);
3867 	}
3868 
3869 	/*
3870 	 * Compare vids in each duplet to the inquiry vid - if a match is
3871 	 * made, get the data value and update the soft state structure
3872 	 * accordingly.
3873 	 *
3874 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3875 	 * otherwise.
3876 	 */
3877 	if (nelements & 1) {
3878 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3879 		    "sd-config-list should show as pairs of strings.\n");
3880 		if (config_list)
3881 			ddi_prop_free(config_list);
3882 		return (SD_FAILURE);
3883 	}
3884 
3885 	for (i = 0; i < nelements; i += 2) {
3886 		/*
3887 		 * Note: The assumption here is that each vid entry is on
3888 		 * a unique line from its associated duplet.
3889 		 */
3890 		vidptr = config_list[i];
3891 		vidlen = (int)strlen(vidptr);
3892 		if (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS) {
3893 			continue;
3894 		}
3895 
3896 		/*
3897 		 * dnlist contains 1 or more blank separated
3898 		 * data-property-name entries
3899 		 */
3900 		dnlist_ptr = config_list[i + 1];
3901 
3902 		if (strchr(dnlist_ptr, ':') != NULL) {
3903 			/*
3904 			 * Decode the improved format sd-config-list.
3905 			 */
3906 			sd_nvpair_str_decode(un, dnlist_ptr);
3907 		} else {
3908 			/*
3909 			 * The old format sd-config-list, loop through all
3910 			 * data-property-name entries in the
3911 			 * data-property-name-list
3912 			 * setting the properties for each.
3913 			 */
3914 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3915 			    &dataname_lasts); dataname_ptr != NULL;
3916 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3917 			    &dataname_lasts)) {
3918 				int version;
3919 
3920 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921 				    "sd_process_sdconf_file: disk:%s, "
3922 				    "data:%s\n", vidptr, dataname_ptr);
3923 
3924 				/* Get the data list */
3925 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3926 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3927 				    &data_list_len) != DDI_PROP_SUCCESS) {
3928 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 					    "sd_process_sdconf_file: data "
3930 					    "property (%s) has no value\n",
3931 					    dataname_ptr);
3932 					continue;
3933 				}
3934 
3935 				version = data_list[0];
3936 
3937 				if (version == SD_CONF_VERSION_1) {
3938 					sd_tunables values;
3939 
3940 					/* Set the properties */
3941 					if (sd_chk_vers1_data(un, data_list[1],
3942 					    &data_list[2], data_list_len,
3943 					    dataname_ptr) == SD_SUCCESS) {
3944 						sd_get_tunables_from_conf(un,
3945 						    data_list[1], &data_list[2],
3946 						    &values);
3947 						sd_set_vers1_properties(un,
3948 						    data_list[1], &values);
3949 						rval = SD_SUCCESS;
3950 					} else {
3951 						rval = SD_FAILURE;
3952 					}
3953 				} else {
3954 					scsi_log(SD_DEVINFO(un), sd_label,
3955 					    CE_WARN, "data property %s version "
3956 					    "0x%x is invalid.",
3957 					    dataname_ptr, version);
3958 					rval = SD_FAILURE;
3959 				}
3960 				if (data_list)
3961 					ddi_prop_free(data_list);
3962 			}
3963 		}
3964 	}
3965 
3966 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3967 	if (config_list) {
3968 		ddi_prop_free(config_list);
3969 	}
3970 
3971 	return (rval);
3972 }
3973 
3974 /*
3975  *    Function: sd_nvpair_str_decode()
3976  *
3977  * Description: Parse the improved format sd-config-list to get
3978  *    each entry of tunable, which includes a name-value pair.
3979  *    Then call sd_set_properties() to set the property.
3980  *
3981  *   Arguments: un - driver soft state (unit) structure
3982  *    nvpair_str - the tunable list
3983  */
3984 static void
3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3986 {
3987 	char	*nv, *name, *value, *token;
3988 	char	*nv_lasts, *v_lasts, *x_lasts;
3989 
3990 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3991 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3992 		token = sd_strtok_r(nv, ":", &v_lasts);
3993 		name  = sd_strtok_r(token, " \t", &x_lasts);
3994 		token = sd_strtok_r(NULL, ":", &v_lasts);
3995 		value = sd_strtok_r(token, " \t", &x_lasts);
3996 		if (name == NULL || value == NULL) {
3997 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998 			    "sd_nvpair_str_decode: "
3999 			    "name or value is not valid!\n");
4000 		} else {
4001 			sd_set_properties(un, name, value);
4002 		}
4003 	}
4004 }
4005 
4006 /*
4007  *    Function: sd_strtok_r()
4008  *
4009  * Description: This function uses strpbrk and strspn to break
4010  *    string into tokens on sequentially subsequent calls. Return
4011  *    NULL when no non-separator characters remain. The first
4012  *    argument is NULL for subsequent calls.
4013  */
4014 static char *
4015 sd_strtok_r(char *string, const char *sepset, char **lasts)
4016 {
4017 	char	*q, *r;
4018 
4019 	/* First or subsequent call */
4020 	if (string == NULL)
4021 		string = *lasts;
4022 
4023 	if (string == NULL)
4024 		return (NULL);
4025 
4026 	/* Skip leading separators */
4027 	q = string + strspn(string, sepset);
4028 
4029 	if (*q == '\0')
4030 		return (NULL);
4031 
4032 	if ((r = strpbrk(q, sepset)) == NULL)
4033 		*lasts = NULL;
4034 	else {
4035 		*r = '\0';
4036 		*lasts = r + 1;
4037 	}
4038 	return (q);
4039 }
4040 
4041 /*
4042  *    Function: sd_set_properties()
4043  *
4044  * Description: Set device properties based on the improved
4045  *    format sd-config-list.
4046  *
4047  *   Arguments: un - driver soft state (unit) structure
4048  *    name  - supported tunable name
4049  *    value - tunable value
4050  */
4051 static void
4052 sd_set_properties(struct sd_lun *un, char *name, char *value)
4053 {
4054 	char	*endptr = NULL;
4055 	long	val = 0;
4056 
4057 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4058 		if (strcasecmp(value, "true") == 0) {
4059 			un->un_f_suppress_cache_flush = TRUE;
4060 		} else if (strcasecmp(value, "false") == 0) {
4061 			un->un_f_suppress_cache_flush = FALSE;
4062 		} else {
4063 			goto value_invalid;
4064 		}
4065 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4066 		    "suppress_cache_flush flag set to %d\n",
4067 		    un->un_f_suppress_cache_flush);
4068 		return;
4069 	}
4070 
4071 	if (strcasecmp(name, "controller-type") == 0) {
4072 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4073 			un->un_ctype = val;
4074 		} else {
4075 			goto value_invalid;
4076 		}
4077 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4078 		    "ctype set to %d\n", un->un_ctype);
4079 		return;
4080 	}
4081 
4082 	if (strcasecmp(name, "delay-busy") == 0) {
4083 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4084 			un->un_busy_timeout = drv_usectohz(val / 1000);
4085 		} else {
4086 			goto value_invalid;
4087 		}
4088 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4089 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4090 		return;
4091 	}
4092 
4093 	if (strcasecmp(name, "disksort") == 0) {
4094 		if (strcasecmp(value, "true") == 0) {
4095 			un->un_f_disksort_disabled = FALSE;
4096 		} else if (strcasecmp(value, "false") == 0) {
4097 			un->un_f_disksort_disabled = TRUE;
4098 		} else {
4099 			goto value_invalid;
4100 		}
4101 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4102 		    "disksort disabled flag set to %d\n",
4103 		    un->un_f_disksort_disabled);
4104 		return;
4105 	}
4106 
4107 	if (strcasecmp(name, "power-condition") == 0) {
4108 		if (strcasecmp(value, "true") == 0) {
4109 			un->un_f_power_condition_disabled = FALSE;
4110 		} else if (strcasecmp(value, "false") == 0) {
4111 			un->un_f_power_condition_disabled = TRUE;
4112 		} else {
4113 			goto value_invalid;
4114 		}
4115 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4116 		    "power condition disabled flag set to %d\n",
4117 		    un->un_f_power_condition_disabled);
4118 		return;
4119 	}
4120 
4121 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4122 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4123 			un->un_reserve_release_time = val;
4124 		} else {
4125 			goto value_invalid;
4126 		}
4127 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4128 		    "reservation release timeout set to %d\n",
4129 		    un->un_reserve_release_time);
4130 		return;
4131 	}
4132 
4133 	if (strcasecmp(name, "reset-lun") == 0) {
4134 		if (strcasecmp(value, "true") == 0) {
4135 			un->un_f_lun_reset_enabled = TRUE;
4136 		} else if (strcasecmp(value, "false") == 0) {
4137 			un->un_f_lun_reset_enabled = FALSE;
4138 		} else {
4139 			goto value_invalid;
4140 		}
4141 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4142 		    "lun reset enabled flag set to %d\n",
4143 		    un->un_f_lun_reset_enabled);
4144 		return;
4145 	}
4146 
4147 	if (strcasecmp(name, "retries-busy") == 0) {
4148 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4149 			un->un_busy_retry_count = val;
4150 		} else {
4151 			goto value_invalid;
4152 		}
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4154 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4155 		return;
4156 	}
4157 
4158 	if (strcasecmp(name, "retries-timeout") == 0) {
4159 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160 			un->un_retry_count = val;
4161 		} else {
4162 			goto value_invalid;
4163 		}
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165 		    "timeout retry count set to %d\n", un->un_retry_count);
4166 		return;
4167 	}
4168 
4169 	if (strcasecmp(name, "retries-notready") == 0) {
4170 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4171 			un->un_notready_retry_count = val;
4172 		} else {
4173 			goto value_invalid;
4174 		}
4175 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4176 		    "notready retry count set to %d\n",
4177 		    un->un_notready_retry_count);
4178 		return;
4179 	}
4180 
4181 	if (strcasecmp(name, "retries-reset") == 0) {
4182 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4183 			un->un_reset_retry_count = val;
4184 		} else {
4185 			goto value_invalid;
4186 		}
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4188 		    "reset retry count set to %d\n",
4189 		    un->un_reset_retry_count);
4190 		return;
4191 	}
4192 
4193 	if (strcasecmp(name, "throttle-max") == 0) {
4194 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4195 			un->un_saved_throttle = un->un_throttle = val;
4196 		} else {
4197 			goto value_invalid;
4198 		}
4199 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4200 		    "throttle set to %d\n", un->un_throttle);
4201 	}
4202 
4203 	if (strcasecmp(name, "throttle-min") == 0) {
4204 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4205 			un->un_min_throttle = val;
4206 		} else {
4207 			goto value_invalid;
4208 		}
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4210 		    "min throttle set to %d\n", un->un_min_throttle);
4211 	}
4212 
4213 	if (strcasecmp(name, "rmw-type") == 0) {
4214 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4215 			un->un_f_rmw_type = val;
4216 		} else {
4217 			goto value_invalid;
4218 		}
4219 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4220 		    "RMW type set to %d\n", un->un_f_rmw_type);
4221 	}
4222 
4223 	if (strcasecmp(name, "physical-block-size") == 0) {
4224 		if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4225 		    ISP2(val) && val >= un->un_tgt_blocksize &&
4226 		    val >= un->un_sys_blocksize) {
4227 			un->un_phy_blocksize = val;
4228 		} else {
4229 			goto value_invalid;
4230 		}
4231 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4232 		    "physical block size set to %d\n", un->un_phy_blocksize);
4233 	}
4234 
4235 	if (strcasecmp(name, "retries-victim") == 0) {
4236 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4237 			un->un_victim_retry_count = val;
4238 		} else {
4239 			goto value_invalid;
4240 		}
4241 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4242 		    "victim retry count set to %d\n",
4243 		    un->un_victim_retry_count);
4244 		return;
4245 	}
4246 
4247 	/*
4248 	 * Validate the throttle values.
4249 	 * If any of the numbers are invalid, set everything to defaults.
4250 	 */
4251 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4252 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4253 	    (un->un_min_throttle > un->un_throttle)) {
4254 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4255 		un->un_min_throttle = sd_min_throttle;
4256 	}
4257 
4258 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4259 		if (strcasecmp(value, "true") == 0) {
4260 			un->un_f_mmc_gesn_polling = TRUE;
4261 		} else if (strcasecmp(value, "false") == 0) {
4262 			un->un_f_mmc_gesn_polling = FALSE;
4263 		} else {
4264 			goto value_invalid;
4265 		}
4266 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4267 		    "mmc-gesn-polling set to %d\n",
4268 		    un->un_f_mmc_gesn_polling);
4269 	}
4270 
4271 	return;
4272 
4273 value_invalid:
4274 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4275 	    "value of prop %s is invalid\n", name);
4276 }
4277 
4278 /*
4279  *    Function: sd_get_tunables_from_conf()
4280  *
4281  *
4282  *    This function reads the data list from the sd.conf file and pulls
4283  *    the values that can have numeric values as arguments and places
4284  *    the values in the appropriate sd_tunables member.
4285  *    Since the order of the data list members varies across platforms
4286  *    This function reads them from the data list in a platform specific
4287  *    order and places them into the correct sd_tunable member that is
4288  *    consistent across all platforms.
4289  */
4290 static void
4291 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4292     sd_tunables *values)
4293 {
4294 	int i;
4295 	int mask;
4296 
4297 	bzero(values, sizeof (sd_tunables));
4298 
4299 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4300 
4301 		mask = 1 << i;
4302 		if (mask > flags) {
4303 			break;
4304 		}
4305 
4306 		switch (mask & flags) {
4307 		case 0:	/* This mask bit not set in flags */
4308 			continue;
4309 		case SD_CONF_BSET_THROTTLE:
4310 			values->sdt_throttle = data_list[i];
4311 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312 			    "sd_get_tunables_from_conf: throttle = %d\n",
4313 			    values->sdt_throttle);
4314 			break;
4315 		case SD_CONF_BSET_CTYPE:
4316 			values->sdt_ctype = data_list[i];
4317 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318 			    "sd_get_tunables_from_conf: ctype = %d\n",
4319 			    values->sdt_ctype);
4320 			break;
4321 		case SD_CONF_BSET_NRR_COUNT:
4322 			values->sdt_not_rdy_retries = data_list[i];
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4325 			    values->sdt_not_rdy_retries);
4326 			break;
4327 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4328 			values->sdt_busy_retries = data_list[i];
4329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4331 			    values->sdt_busy_retries);
4332 			break;
4333 		case SD_CONF_BSET_RST_RETRIES:
4334 			values->sdt_reset_retries = data_list[i];
4335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4337 			    values->sdt_reset_retries);
4338 			break;
4339 		case SD_CONF_BSET_RSV_REL_TIME:
4340 			values->sdt_reserv_rel_time = data_list[i];
4341 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4342 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4343 			    values->sdt_reserv_rel_time);
4344 			break;
4345 		case SD_CONF_BSET_MIN_THROTTLE:
4346 			values->sdt_min_throttle = data_list[i];
4347 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4348 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4349 			    values->sdt_min_throttle);
4350 			break;
4351 		case SD_CONF_BSET_DISKSORT_DISABLED:
4352 			values->sdt_disk_sort_dis = data_list[i];
4353 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4354 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4355 			    values->sdt_disk_sort_dis);
4356 			break;
4357 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4358 			values->sdt_lun_reset_enable = data_list[i];
4359 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4360 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4361 			    "\n", values->sdt_lun_reset_enable);
4362 			break;
4363 		case SD_CONF_BSET_CACHE_IS_NV:
4364 			values->sdt_suppress_cache_flush = data_list[i];
4365 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4366 			    "sd_get_tunables_from_conf: \
4367 			    suppress_cache_flush = %d"
4368 			    "\n", values->sdt_suppress_cache_flush);
4369 			break;
4370 		case SD_CONF_BSET_PC_DISABLED:
4371 			values->sdt_disk_sort_dis = data_list[i];
4372 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4373 			    "sd_get_tunables_from_conf: power_condition_dis = "
4374 			    "%d\n", values->sdt_power_condition_dis);
4375 			break;
4376 		}
4377 	}
4378 }
4379 
4380 /*
4381  *    Function: sd_process_sdconf_table
4382  *
4383  * Description: Search the static configuration table for a match on the
4384  *		inquiry vid/pid and update the driver soft state structure
4385  *		according to the table property values for the device.
4386  *
4387  *		The form of a configuration table entry is:
4388  *		  <vid+pid>,<flags>,<property-data>
4389  *		  "SEAGATE ST42400N",1,0x40000,
4390  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4391  *
4392  *   Arguments: un - driver soft state (unit) structure
4393  */
4394 
4395 static void
4396 sd_process_sdconf_table(struct sd_lun *un)
4397 {
4398 	char	*id = NULL;
4399 	int	table_index;
4400 	int	idlen;
4401 
4402 	ASSERT(un != NULL);
4403 	for (table_index = 0; table_index < sd_disk_table_size;
4404 	    table_index++) {
4405 		id = sd_disk_table[table_index].device_id;
4406 		idlen = strlen(id);
4407 
4408 		/*
4409 		 * The static configuration table currently does not
4410 		 * implement version 10 properties. Additionally,
4411 		 * multiple data-property-name entries are not
4412 		 * implemented in the static configuration table.
4413 		 */
4414 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4415 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4416 			    "sd_process_sdconf_table: disk %s\n", id);
4417 			sd_set_vers1_properties(un,
4418 			    sd_disk_table[table_index].flags,
4419 			    sd_disk_table[table_index].properties);
4420 			break;
4421 		}
4422 	}
4423 }
4424 
4425 
4426 /*
4427  *    Function: sd_sdconf_id_match
4428  *
4429  * Description: This local function implements a case sensitive vid/pid
4430  *		comparison as well as the boundary cases of wild card and
4431  *		multiple blanks.
4432  *
4433  *		Note: An implicit assumption made here is that the scsi
4434  *		inquiry structure will always keep the vid, pid and
4435  *		revision strings in consecutive sequence, so they can be
4436  *		read as a single string. If this assumption is not the
4437  *		case, a separate string, to be used for the check, needs
4438  *		to be built with these strings concatenated.
4439  *
4440  *   Arguments: un - driver soft state (unit) structure
4441  *		id - table or config file vid/pid
4442  *		idlen  - length of the vid/pid (bytes)
4443  *
4444  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4445  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4446  */
4447 
4448 static int
4449 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4450 {
4451 	struct scsi_inquiry	*sd_inq;
4452 	int 			rval = SD_SUCCESS;
4453 
4454 	ASSERT(un != NULL);
4455 	sd_inq = un->un_sd->sd_inq;
4456 	ASSERT(id != NULL);
4457 
4458 	/*
4459 	 * We use the inq_vid as a pointer to a buffer containing the
4460 	 * vid and pid and use the entire vid/pid length of the table
4461 	 * entry for the comparison. This works because the inq_pid
4462 	 * data member follows inq_vid in the scsi_inquiry structure.
4463 	 */
4464 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4465 		/*
4466 		 * The user id string is compared to the inquiry vid/pid
4467 		 * using a case insensitive comparison and ignoring
4468 		 * multiple spaces.
4469 		 */
4470 		rval = sd_blank_cmp(un, id, idlen);
4471 		if (rval != SD_SUCCESS) {
4472 			/*
4473 			 * User id strings that start and end with a "*"
4474 			 * are a special case. These do not have a
4475 			 * specific vendor, and the product string can
4476 			 * appear anywhere in the 16 byte PID portion of
4477 			 * the inquiry data. This is a simple strstr()
4478 			 * type search for the user id in the inquiry data.
4479 			 */
4480 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4481 				char	*pidptr = &id[1];
4482 				int	i;
4483 				int	j;
4484 				int	pidstrlen = idlen - 2;
4485 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4486 				    pidstrlen;
4487 
4488 				if (j < 0) {
4489 					return (SD_FAILURE);
4490 				}
4491 				for (i = 0; i < j; i++) {
4492 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4493 					    pidptr, pidstrlen) == 0) {
4494 						rval = SD_SUCCESS;
4495 						break;
4496 					}
4497 				}
4498 			}
4499 		}
4500 	}
4501 	return (rval);
4502 }
4503 
4504 
4505 /*
4506  *    Function: sd_blank_cmp
4507  *
4508  * Description: If the id string starts and ends with a space, treat
4509  *		multiple consecutive spaces as equivalent to a single
4510  *		space. For example, this causes a sd_disk_table entry
4511  *		of " NEC CDROM " to match a device's id string of
4512  *		"NEC       CDROM".
4513  *
4514  *		Note: The success exit condition for this routine is if
4515  *		the pointer to the table entry is '\0' and the cnt of
4516  *		the inquiry length is zero. This will happen if the inquiry
4517  *		string returned by the device is padded with spaces to be
4518  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4519  *		SCSI spec states that the inquiry string is to be padded with
4520  *		spaces.
4521  *
4522  *   Arguments: un - driver soft state (unit) structure
4523  *		id - table or config file vid/pid
4524  *		idlen  - length of the vid/pid (bytes)
4525  *
4526  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4527  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4528  */
4529 
4530 static int
4531 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4532 {
4533 	char		*p1;
4534 	char		*p2;
4535 	int		cnt;
4536 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4537 	    sizeof (SD_INQUIRY(un)->inq_pid);
4538 
4539 	ASSERT(un != NULL);
4540 	p2 = un->un_sd->sd_inq->inq_vid;
4541 	ASSERT(id != NULL);
4542 	p1 = id;
4543 
4544 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4545 		/*
4546 		 * Note: string p1 is terminated by a NUL but string p2
4547 		 * isn't.  The end of p2 is determined by cnt.
4548 		 */
4549 		for (;;) {
4550 			/* skip over any extra blanks in both strings */
4551 			while ((*p1 != '\0') && (*p1 == ' ')) {
4552 				p1++;
4553 			}
4554 			while ((cnt != 0) && (*p2 == ' ')) {
4555 				p2++;
4556 				cnt--;
4557 			}
4558 
4559 			/* compare the two strings */
4560 			if ((cnt == 0) ||
4561 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4562 				break;
4563 			}
4564 			while ((cnt > 0) &&
4565 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4566 				p1++;
4567 				p2++;
4568 				cnt--;
4569 			}
4570 		}
4571 	}
4572 
4573 	/* return SD_SUCCESS if both strings match */
4574 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4575 }
4576 
4577 
4578 /*
4579  *    Function: sd_chk_vers1_data
4580  *
4581  * Description: Verify the version 1 device properties provided by the
4582  *		user via the configuration file
4583  *
4584  *   Arguments: un	     - driver soft state (unit) structure
4585  *		flags	     - integer mask indicating properties to be set
4586  *		prop_list    - integer list of property values
4587  *		list_len     - number of the elements
4588  *
4589  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4590  *		SD_FAILURE - Indicates the user provided data is invalid
4591  */
4592 
4593 static int
4594 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4595     int list_len, char *dataname_ptr)
4596 {
4597 	int i;
4598 	int mask = 1;
4599 	int index = 0;
4600 
4601 	ASSERT(un != NULL);
4602 
4603 	/* Check for a NULL property name and list */
4604 	if (dataname_ptr == NULL) {
4605 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4606 		    "sd_chk_vers1_data: NULL data property name.");
4607 		return (SD_FAILURE);
4608 	}
4609 	if (prop_list == NULL) {
4610 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4611 		    "sd_chk_vers1_data: %s NULL data property list.",
4612 		    dataname_ptr);
4613 		return (SD_FAILURE);
4614 	}
4615 
4616 	/* Display a warning if undefined bits are set in the flags */
4617 	if (flags & ~SD_CONF_BIT_MASK) {
4618 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4619 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4620 		    "Properties not set.",
4621 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4622 		return (SD_FAILURE);
4623 	}
4624 
4625 	/*
4626 	 * Verify the length of the list by identifying the highest bit set
4627 	 * in the flags and validating that the property list has a length
4628 	 * up to the index of this bit.
4629 	 */
4630 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4631 		if (flags & mask) {
4632 			index++;
4633 		}
4634 		mask = 1 << i;
4635 	}
4636 	if (list_len < (index + 2)) {
4637 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4638 		    "sd_chk_vers1_data: "
4639 		    "Data property list %s size is incorrect. "
4640 		    "Properties not set.", dataname_ptr);
4641 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4642 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4643 		return (SD_FAILURE);
4644 	}
4645 	return (SD_SUCCESS);
4646 }
4647 
4648 
4649 /*
4650  *    Function: sd_set_vers1_properties
4651  *
4652  * Description: Set version 1 device properties based on a property list
4653  *		retrieved from the driver configuration file or static
4654  *		configuration table. Version 1 properties have the format:
4655  *
4656  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4657  *
4658  *		where the prop0 value will be used to set prop0 if bit0
4659  *		is set in the flags
4660  *
4661  *   Arguments: un	     - driver soft state (unit) structure
4662  *		flags	     - integer mask indicating properties to be set
4663  *		prop_list    - integer list of property values
4664  */
4665 
4666 static void
4667 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4668 {
4669 	ASSERT(un != NULL);
4670 
4671 	/*
4672 	 * Set the flag to indicate cache is to be disabled. An attempt
4673 	 * to disable the cache via sd_cache_control() will be made
4674 	 * later during attach once the basic initialization is complete.
4675 	 */
4676 	if (flags & SD_CONF_BSET_NOCACHE) {
4677 		un->un_f_opt_disable_cache = TRUE;
4678 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4679 		    "sd_set_vers1_properties: caching disabled flag set\n");
4680 	}
4681 
4682 	/* CD-specific configuration parameters */
4683 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4684 		un->un_f_cfg_playmsf_bcd = TRUE;
4685 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4686 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4687 	}
4688 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4689 		un->un_f_cfg_readsub_bcd = TRUE;
4690 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4691 		    "sd_set_vers1_properties: readsub_bcd set\n");
4692 	}
4693 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4694 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4695 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4696 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4697 	}
4698 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4699 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4700 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4701 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4702 	}
4703 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4704 		un->un_f_cfg_no_read_header = TRUE;
4705 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4706 		    "sd_set_vers1_properties: no_read_header set\n");
4707 	}
4708 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4709 		un->un_f_cfg_read_cd_xd4 = TRUE;
4710 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4711 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4712 	}
4713 
4714 	/* Support for devices which do not have valid/unique serial numbers */
4715 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4716 		un->un_f_opt_fab_devid = TRUE;
4717 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4718 		    "sd_set_vers1_properties: fab_devid bit set\n");
4719 	}
4720 
4721 	/* Support for user throttle configuration */
4722 	if (flags & SD_CONF_BSET_THROTTLE) {
4723 		ASSERT(prop_list != NULL);
4724 		un->un_saved_throttle = un->un_throttle =
4725 		    prop_list->sdt_throttle;
4726 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4727 		    "sd_set_vers1_properties: throttle set to %d\n",
4728 		    prop_list->sdt_throttle);
4729 	}
4730 
4731 	/* Set the per disk retry count according to the conf file or table. */
4732 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4733 		ASSERT(prop_list != NULL);
4734 		if (prop_list->sdt_not_rdy_retries) {
4735 			un->un_notready_retry_count =
4736 			    prop_list->sdt_not_rdy_retries;
4737 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4738 			    "sd_set_vers1_properties: not ready retry count"
4739 			    " set to %d\n", un->un_notready_retry_count);
4740 		}
4741 	}
4742 
4743 	/* The controller type is reported for generic disk driver ioctls */
4744 	if (flags & SD_CONF_BSET_CTYPE) {
4745 		ASSERT(prop_list != NULL);
4746 		switch (prop_list->sdt_ctype) {
4747 		case CTYPE_CDROM:
4748 			un->un_ctype = prop_list->sdt_ctype;
4749 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4750 			    "sd_set_vers1_properties: ctype set to "
4751 			    "CTYPE_CDROM\n");
4752 			break;
4753 		case CTYPE_CCS:
4754 			un->un_ctype = prop_list->sdt_ctype;
4755 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4756 			    "sd_set_vers1_properties: ctype set to "
4757 			    "CTYPE_CCS\n");
4758 			break;
4759 		case CTYPE_ROD:		/* RW optical */
4760 			un->un_ctype = prop_list->sdt_ctype;
4761 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4762 			    "sd_set_vers1_properties: ctype set to "
4763 			    "CTYPE_ROD\n");
4764 			break;
4765 		default:
4766 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4767 			    "sd_set_vers1_properties: Could not set "
4768 			    "invalid ctype value (%d)",
4769 			    prop_list->sdt_ctype);
4770 		}
4771 	}
4772 
4773 	/* Purple failover timeout */
4774 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4775 		ASSERT(prop_list != NULL);
4776 		un->un_busy_retry_count =
4777 		    prop_list->sdt_busy_retries;
4778 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4779 		    "sd_set_vers1_properties: "
4780 		    "busy retry count set to %d\n",
4781 		    un->un_busy_retry_count);
4782 	}
4783 
4784 	/* Purple reset retry count */
4785 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4786 		ASSERT(prop_list != NULL);
4787 		un->un_reset_retry_count =
4788 		    prop_list->sdt_reset_retries;
4789 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4790 		    "sd_set_vers1_properties: "
4791 		    "reset retry count set to %d\n",
4792 		    un->un_reset_retry_count);
4793 	}
4794 
4795 	/* Purple reservation release timeout */
4796 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4797 		ASSERT(prop_list != NULL);
4798 		un->un_reserve_release_time =
4799 		    prop_list->sdt_reserv_rel_time;
4800 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4801 		    "sd_set_vers1_properties: "
4802 		    "reservation release timeout set to %d\n",
4803 		    un->un_reserve_release_time);
4804 	}
4805 
4806 	/*
4807 	 * Driver flag telling the driver to verify that no commands are pending
4808 	 * for a device before issuing a Test Unit Ready. This is a workaround
4809 	 * for a firmware bug in some Seagate eliteI drives.
4810 	 */
4811 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4812 		un->un_f_cfg_tur_check = TRUE;
4813 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4814 		    "sd_set_vers1_properties: tur queue check set\n");
4815 	}
4816 
4817 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4818 		un->un_min_throttle = prop_list->sdt_min_throttle;
4819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4820 		    "sd_set_vers1_properties: min throttle set to %d\n",
4821 		    un->un_min_throttle);
4822 	}
4823 
4824 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4825 		un->un_f_disksort_disabled =
4826 		    (prop_list->sdt_disk_sort_dis != 0) ?
4827 		    TRUE : FALSE;
4828 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4829 		    "sd_set_vers1_properties: disksort disabled "
4830 		    "flag set to %d\n",
4831 		    prop_list->sdt_disk_sort_dis);
4832 	}
4833 
4834 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4835 		un->un_f_lun_reset_enabled =
4836 		    (prop_list->sdt_lun_reset_enable != 0) ?
4837 		    TRUE : FALSE;
4838 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4839 		    "sd_set_vers1_properties: lun reset enabled "
4840 		    "flag set to %d\n",
4841 		    prop_list->sdt_lun_reset_enable);
4842 	}
4843 
4844 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4845 		un->un_f_suppress_cache_flush =
4846 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4847 		    TRUE : FALSE;
4848 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4849 		    "sd_set_vers1_properties: suppress_cache_flush "
4850 		    "flag set to %d\n",
4851 		    prop_list->sdt_suppress_cache_flush);
4852 	}
4853 
4854 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4855 		un->un_f_power_condition_disabled =
4856 		    (prop_list->sdt_power_condition_dis != 0) ?
4857 		    TRUE : FALSE;
4858 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4859 		    "sd_set_vers1_properties: power_condition_disabled "
4860 		    "flag set to %d\n",
4861 		    prop_list->sdt_power_condition_dis);
4862 	}
4863 
4864 	/*
4865 	 * Validate the throttle values.
4866 	 * If any of the numbers are invalid, set everything to defaults.
4867 	 */
4868 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4869 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4870 	    (un->un_min_throttle > un->un_throttle)) {
4871 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4872 		un->un_min_throttle = sd_min_throttle;
4873 	}
4874 }
4875 
4876 /*
4877  *   Function: sd_is_lsi()
4878  *
4879  *   Description: Check for lsi devices, step through the static device
4880  *	table to match vid/pid.
4881  *
4882  *   Args: un - ptr to sd_lun
4883  *
4884  *   Notes:  When creating new LSI property, need to add the new LSI property
4885  *		to this function.
4886  */
4887 static void
4888 sd_is_lsi(struct sd_lun *un)
4889 {
4890 	char	*id = NULL;
4891 	int	table_index;
4892 	int	idlen;
4893 	void	*prop;
4894 
4895 	ASSERT(un != NULL);
4896 	for (table_index = 0; table_index < sd_disk_table_size;
4897 	    table_index++) {
4898 		id = sd_disk_table[table_index].device_id;
4899 		idlen = strlen(id);
4900 		if (idlen == 0) {
4901 			continue;
4902 		}
4903 
4904 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4905 			prop = sd_disk_table[table_index].properties;
4906 			if (prop == &lsi_properties ||
4907 			    prop == &lsi_oem_properties ||
4908 			    prop == &lsi_properties_scsi ||
4909 			    prop == &symbios_properties) {
4910 				un->un_f_cfg_is_lsi = TRUE;
4911 			}
4912 			break;
4913 		}
4914 	}
4915 }
4916 
4917 /*
4918  *    Function: sd_get_physical_geometry
4919  *
4920  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4921  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4922  *		target, and use this information to initialize the physical
4923  *		geometry cache specified by pgeom_p.
4924  *
4925  *		MODE SENSE is an optional command, so failure in this case
4926  *		does not necessarily denote an error. We want to use the
4927  *		MODE SENSE commands to derive the physical geometry of the
4928  *		device, but if either command fails, the logical geometry is
4929  *		used as the fallback for disk label geometry in cmlb.
4930  *
4931  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4932  *		have already been initialized for the current target and
4933  *		that the current values be passed as args so that we don't
4934  *		end up ever trying to use -1 as a valid value. This could
4935  *		happen if either value is reset while we're not holding
4936  *		the mutex.
4937  *
4938  *   Arguments: un - driver soft state (unit) structure
4939  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4940  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4941  *			to use the USCSI "direct" chain and bypass the normal
4942  *			command waitq.
4943  *
4944  *     Context: Kernel thread only (can sleep).
4945  */
4946 
4947 static int
4948 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4949 	diskaddr_t capacity, int lbasize, int path_flag)
4950 {
4951 	struct	mode_format	*page3p;
4952 	struct	mode_geometry	*page4p;
4953 	struct	mode_header	*headerp;
4954 	int	sector_size;
4955 	int	nsect;
4956 	int	nhead;
4957 	int	ncyl;
4958 	int	intrlv;
4959 	int	spc;
4960 	diskaddr_t	modesense_capacity;
4961 	int	rpm;
4962 	int	bd_len;
4963 	int	mode_header_length;
4964 	uchar_t	*p3bufp;
4965 	uchar_t	*p4bufp;
4966 	int	cdbsize;
4967 	int 	ret = EIO;
4968 	sd_ssc_t *ssc;
4969 	int	status;
4970 
4971 	ASSERT(un != NULL);
4972 
4973 	if (lbasize == 0) {
4974 		if (ISCD(un)) {
4975 			lbasize = 2048;
4976 		} else {
4977 			lbasize = un->un_sys_blocksize;
4978 		}
4979 	}
4980 	pgeom_p->g_secsize = (unsigned short)lbasize;
4981 
4982 	/*
4983 	 * If the unit is a cd/dvd drive MODE SENSE page three
4984 	 * and MODE SENSE page four are reserved (see SBC spec
4985 	 * and MMC spec). To prevent soft errors just return
4986 	 * using the default LBA size.
4987 	 */
4988 	if (ISCD(un))
4989 		return (ret);
4990 
4991 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4992 
4993 	/*
4994 	 * Retrieve MODE SENSE page 3 - Format Device Page
4995 	 */
4996 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4997 	ssc = sd_ssc_init(un);
4998 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4999 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
5000 	if (status != 0) {
5001 		SD_ERROR(SD_LOG_COMMON, un,
5002 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5003 		goto page3_exit;
5004 	}
5005 
5006 	/*
5007 	 * Determine size of Block Descriptors in order to locate the mode
5008 	 * page data.  ATAPI devices return 0, SCSI devices should return
5009 	 * MODE_BLK_DESC_LENGTH.
5010 	 */
5011 	headerp = (struct mode_header *)p3bufp;
5012 	if (un->un_f_cfg_is_atapi == TRUE) {
5013 		struct mode_header_grp2 *mhp =
5014 		    (struct mode_header_grp2 *)headerp;
5015 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5016 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5017 	} else {
5018 		mode_header_length = MODE_HEADER_LENGTH;
5019 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5020 	}
5021 
5022 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5023 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5024 		    "sd_get_physical_geometry: received unexpected bd_len "
5025 		    "of %d, page3\n", bd_len);
5026 		status = EIO;
5027 		goto page3_exit;
5028 	}
5029 
5030 	page3p = (struct mode_format *)
5031 	    ((caddr_t)headerp + mode_header_length + bd_len);
5032 
5033 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5034 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5035 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5036 		    "%d\n", page3p->mode_page.code);
5037 		status = EIO;
5038 		goto page3_exit;
5039 	}
5040 
5041 	/*
5042 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5043 	 * complete successfully; otherwise, revert to the logical geometry.
5044 	 * So, we need to save everything in temporary variables.
5045 	 */
5046 	sector_size = BE_16(page3p->data_bytes_sect);
5047 
5048 	/*
5049 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5050 	 */
5051 	if (sector_size == 0) {
5052 		sector_size = un->un_sys_blocksize;
5053 	} else {
5054 		sector_size &= ~(un->un_sys_blocksize - 1);
5055 	}
5056 
5057 	nsect  = BE_16(page3p->sect_track);
5058 	intrlv = BE_16(page3p->interleave);
5059 
5060 	SD_INFO(SD_LOG_COMMON, un,
5061 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5062 	SD_INFO(SD_LOG_COMMON, un,
5063 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5064 	    page3p->mode_page.code, nsect, sector_size);
5065 	SD_INFO(SD_LOG_COMMON, un,
5066 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5067 	    BE_16(page3p->track_skew),
5068 	    BE_16(page3p->cylinder_skew));
5069 
5070 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5071 
5072 	/*
5073 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5074 	 */
5075 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5076 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5077 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5078 	if (status != 0) {
5079 		SD_ERROR(SD_LOG_COMMON, un,
5080 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5081 		goto page4_exit;
5082 	}
5083 
5084 	/*
5085 	 * Determine size of Block Descriptors in order to locate the mode
5086 	 * page data.  ATAPI devices return 0, SCSI devices should return
5087 	 * MODE_BLK_DESC_LENGTH.
5088 	 */
5089 	headerp = (struct mode_header *)p4bufp;
5090 	if (un->un_f_cfg_is_atapi == TRUE) {
5091 		struct mode_header_grp2 *mhp =
5092 		    (struct mode_header_grp2 *)headerp;
5093 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5094 	} else {
5095 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5096 	}
5097 
5098 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5099 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5100 		    "sd_get_physical_geometry: received unexpected bd_len of "
5101 		    "%d, page4\n", bd_len);
5102 		status = EIO;
5103 		goto page4_exit;
5104 	}
5105 
5106 	page4p = (struct mode_geometry *)
5107 	    ((caddr_t)headerp + mode_header_length + bd_len);
5108 
5109 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5110 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5111 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5112 		    "%d\n", page4p->mode_page.code);
5113 		status = EIO;
5114 		goto page4_exit;
5115 	}
5116 
5117 	/*
5118 	 * Stash the data now, after we know that both commands completed.
5119 	 */
5120 
5121 
5122 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5123 	spc   = nhead * nsect;
5124 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5125 	rpm   = BE_16(page4p->rpm);
5126 
5127 	modesense_capacity = spc * ncyl;
5128 
5129 	SD_INFO(SD_LOG_COMMON, un,
5130 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5131 	SD_INFO(SD_LOG_COMMON, un,
5132 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5133 	SD_INFO(SD_LOG_COMMON, un,
5134 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5135 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5136 	    (void *)pgeom_p, capacity);
5137 
5138 	/*
5139 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5140 	 * the product of C * H * S returned by MODE SENSE >= that returned
5141 	 * by read capacity. This is an idiosyncrasy of the original x86
5142 	 * disk subsystem.
5143 	 */
5144 	if (modesense_capacity >= capacity) {
5145 		SD_INFO(SD_LOG_COMMON, un,
5146 		    "sd_get_physical_geometry: adjusting acyl; "
5147 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5148 		    (modesense_capacity - capacity + spc - 1) / spc);
5149 		if (sector_size != 0) {
5150 			/* 1243403: NEC D38x7 drives don't support sec size */
5151 			pgeom_p->g_secsize = (unsigned short)sector_size;
5152 		}
5153 		pgeom_p->g_nsect    = (unsigned short)nsect;
5154 		pgeom_p->g_nhead    = (unsigned short)nhead;
5155 		pgeom_p->g_capacity = capacity;
5156 		pgeom_p->g_acyl	    =
5157 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5158 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5159 	}
5160 
5161 	pgeom_p->g_rpm    = (unsigned short)rpm;
5162 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5163 	ret = 0;
5164 
5165 	SD_INFO(SD_LOG_COMMON, un,
5166 	    "sd_get_physical_geometry: mode sense geometry:\n");
5167 	SD_INFO(SD_LOG_COMMON, un,
5168 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5169 	    nsect, sector_size, intrlv);
5170 	SD_INFO(SD_LOG_COMMON, un,
5171 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5172 	    nhead, ncyl, rpm, modesense_capacity);
5173 	SD_INFO(SD_LOG_COMMON, un,
5174 	    "sd_get_physical_geometry: (cached)\n");
5175 	SD_INFO(SD_LOG_COMMON, un,
5176 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5177 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5178 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5179 	SD_INFO(SD_LOG_COMMON, un,
5180 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5181 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5182 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5183 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5184 
5185 page4_exit:
5186 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5187 
5188 page3_exit:
5189 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5190 
5191 	if (status != 0) {
5192 		if (status == EIO) {
5193 			/*
5194 			 * Some disks do not support mode sense(6), we
5195 			 * should ignore this kind of error(sense key is
5196 			 * 0x5 - illegal request).
5197 			 */
5198 			uint8_t *sensep;
5199 			int senlen;
5200 
5201 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5202 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5203 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5204 
5205 			if (senlen > 0 &&
5206 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5207 				sd_ssc_assessment(ssc,
5208 				    SD_FMT_IGNORE_COMPROMISE);
5209 			} else {
5210 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5211 			}
5212 		} else {
5213 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5214 		}
5215 	}
5216 	sd_ssc_fini(ssc);
5217 	return (ret);
5218 }
5219 
5220 /*
5221  *    Function: sd_get_virtual_geometry
5222  *
5223  * Description: Ask the controller to tell us about the target device.
5224  *
5225  *   Arguments: un - pointer to softstate
5226  *		capacity - disk capacity in #blocks
5227  *		lbasize - disk block size in bytes
5228  *
5229  *     Context: Kernel thread only
5230  */
5231 
5232 static int
5233 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5234     diskaddr_t capacity, int lbasize)
5235 {
5236 	uint_t	geombuf;
5237 	int	spc;
5238 
5239 	ASSERT(un != NULL);
5240 
5241 	/* Set sector size, and total number of sectors */
5242 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5243 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5244 
5245 	/* Let the HBA tell us its geometry */
5246 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5247 
5248 	/* A value of -1 indicates an undefined "geometry" property */
5249 	if (geombuf == (-1)) {
5250 		return (EINVAL);
5251 	}
5252 
5253 	/* Initialize the logical geometry cache. */
5254 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5255 	lgeom_p->g_nsect   = geombuf & 0xffff;
5256 	lgeom_p->g_secsize = un->un_sys_blocksize;
5257 
5258 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5259 
5260 	/*
5261 	 * Note: The driver originally converted the capacity value from
5262 	 * target blocks to system blocks. However, the capacity value passed
5263 	 * to this routine is already in terms of system blocks (this scaling
5264 	 * is done when the READ CAPACITY command is issued and processed).
5265 	 * This 'error' may have gone undetected because the usage of g_ncyl
5266 	 * (which is based upon g_capacity) is very limited within the driver
5267 	 */
5268 	lgeom_p->g_capacity = capacity;
5269 
5270 	/*
5271 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5272 	 * hba may return zero values if the device has been removed.
5273 	 */
5274 	if (spc == 0) {
5275 		lgeom_p->g_ncyl = 0;
5276 	} else {
5277 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5278 	}
5279 	lgeom_p->g_acyl = 0;
5280 
5281 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5282 	return (0);
5283 
5284 }
5285 /*
5286  *    Function: sd_update_block_info
5287  *
5288  * Description: Calculate a byte count to sector count bitshift value
5289  *		from sector size.
5290  *
5291  *   Arguments: un: unit struct.
5292  *		lbasize: new target sector size
5293  *		capacity: new target capacity, ie. block count
5294  *
5295  *     Context: Kernel thread context
5296  */
5297 
5298 static void
5299 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5300 {
5301 	if (lbasize != 0) {
5302 		un->un_tgt_blocksize = lbasize;
5303 		un->un_f_tgt_blocksize_is_valid = TRUE;
5304 		if (!un->un_f_has_removable_media) {
5305 			un->un_sys_blocksize = lbasize;
5306 		}
5307 	}
5308 
5309 	if (capacity != 0) {
5310 		un->un_blockcount		= capacity;
5311 		un->un_f_blockcount_is_valid	= TRUE;
5312 
5313 		/*
5314 		 * The capacity has changed so update the errstats.
5315 		 */
5316 		if (un->un_errstats != NULL) {
5317 			struct sd_errstats *stp;
5318 
5319 			capacity *= un->un_sys_blocksize;
5320 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5321 			if (stp->sd_capacity.value.ui64 < capacity)
5322 				stp->sd_capacity.value.ui64 = capacity;
5323 		}
5324 	}
5325 }
5326 
5327 
5328 /*
5329  *    Function: sd_register_devid
5330  *
5331  * Description: This routine will obtain the device id information from the
5332  *		target, obtain the serial number, and register the device
5333  *		id with the ddi framework.
5334  *
5335  *   Arguments: devi - the system's dev_info_t for the device.
5336  *		un - driver soft state (unit) structure
5337  *		reservation_flag - indicates if a reservation conflict
5338  *		occurred during attach
5339  *
5340  *     Context: Kernel Thread
5341  */
5342 static void
5343 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5344 {
5345 	int		rval		= 0;
5346 	uchar_t		*inq80		= NULL;
5347 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5348 	size_t		inq80_resid	= 0;
5349 	uchar_t		*inq83		= NULL;
5350 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5351 	size_t		inq83_resid	= 0;
5352 	int		dlen, len;
5353 	char		*sn;
5354 	struct sd_lun	*un;
5355 
5356 	ASSERT(ssc != NULL);
5357 	un = ssc->ssc_un;
5358 	ASSERT(un != NULL);
5359 	ASSERT(mutex_owned(SD_MUTEX(un)));
5360 	ASSERT((SD_DEVINFO(un)) == devi);
5361 
5362 
5363 	/*
5364 	 * We check the availability of the World Wide Name (0x83) and Unit
5365 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5366 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5367 	 * 0x83 is available, that is the best choice.  Our next choice is
5368 	 * 0x80.  If neither are available, we munge the devid from the device
5369 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5370 	 * to fabricate a devid for non-Sun qualified disks.
5371 	 */
5372 	if (sd_check_vpd_page_support(ssc) == 0) {
5373 		/* collect page 80 data if available */
5374 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5375 
5376 			mutex_exit(SD_MUTEX(un));
5377 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5378 
5379 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5380 			    0x01, 0x80, &inq80_resid);
5381 
5382 			if (rval != 0) {
5383 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5384 				kmem_free(inq80, inq80_len);
5385 				inq80 = NULL;
5386 				inq80_len = 0;
5387 			} else if (ddi_prop_exists(
5388 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5389 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5390 			    INQUIRY_SERIAL_NO) == 0) {
5391 				/*
5392 				 * If we don't already have a serial number
5393 				 * property, do quick verify of data returned
5394 				 * and define property.
5395 				 */
5396 				dlen = inq80_len - inq80_resid;
5397 				len = (size_t)inq80[3];
5398 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5399 					/*
5400 					 * Ensure sn termination, skip leading
5401 					 * blanks, and create property
5402 					 * 'inquiry-serial-no'.
5403 					 */
5404 					sn = (char *)&inq80[4];
5405 					sn[len] = 0;
5406 					while (*sn && (*sn == ' '))
5407 						sn++;
5408 					if (*sn) {
5409 						(void) ddi_prop_update_string(
5410 						    DDI_DEV_T_NONE,
5411 						    SD_DEVINFO(un),
5412 						    INQUIRY_SERIAL_NO, sn);
5413 					}
5414 				}
5415 			}
5416 			mutex_enter(SD_MUTEX(un));
5417 		}
5418 
5419 		/* collect page 83 data if available */
5420 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5421 			mutex_exit(SD_MUTEX(un));
5422 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5423 
5424 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5425 			    0x01, 0x83, &inq83_resid);
5426 
5427 			if (rval != 0) {
5428 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5429 				kmem_free(inq83, inq83_len);
5430 				inq83 = NULL;
5431 				inq83_len = 0;
5432 			}
5433 			mutex_enter(SD_MUTEX(un));
5434 		}
5435 	}
5436 
5437 	/*
5438 	 * If transport has already registered a devid for this target
5439 	 * then that takes precedence over the driver's determination
5440 	 * of the devid.
5441 	 *
5442 	 * NOTE: The reason this check is done here instead of at the beginning
5443 	 * of the function is to allow the code above to create the
5444 	 * 'inquiry-serial-no' property.
5445 	 */
5446 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5447 		ASSERT(un->un_devid);
5448 		un->un_f_devid_transport_defined = TRUE;
5449 		goto cleanup; /* use devid registered by the transport */
5450 	}
5451 
5452 	/*
5453 	 * This is the case of antiquated Sun disk drives that have the
5454 	 * FAB_DEVID property set in the disk_table.  These drives
5455 	 * manage the devid's by storing them in last 2 available sectors
5456 	 * on the drive and have them fabricated by the ddi layer by calling
5457 	 * ddi_devid_init and passing the DEVID_FAB flag.
5458 	 */
5459 	if (un->un_f_opt_fab_devid == TRUE) {
5460 		/*
5461 		 * Depending on EINVAL isn't reliable, since a reserved disk
5462 		 * may result in invalid geometry, so check to make sure a
5463 		 * reservation conflict did not occur during attach.
5464 		 */
5465 		if ((sd_get_devid(ssc) == EINVAL) &&
5466 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5467 			/*
5468 			 * The devid is invalid AND there is no reservation
5469 			 * conflict.  Fabricate a new devid.
5470 			 */
5471 			(void) sd_create_devid(ssc);
5472 		}
5473 
5474 		/* Register the devid if it exists */
5475 		if (un->un_devid != NULL) {
5476 			(void) ddi_devid_register(SD_DEVINFO(un),
5477 			    un->un_devid);
5478 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5479 			    "sd_register_devid: Devid Fabricated\n");
5480 		}
5481 		goto cleanup;
5482 	}
5483 
5484 	/* encode best devid possible based on data available */
5485 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5486 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5487 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5488 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5489 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5490 
5491 		/* devid successfully encoded, register devid */
5492 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5493 
5494 	} else {
5495 		/*
5496 		 * Unable to encode a devid based on data available.
5497 		 * This is not a Sun qualified disk.  Older Sun disk
5498 		 * drives that have the SD_FAB_DEVID property
5499 		 * set in the disk_table and non Sun qualified
5500 		 * disks are treated in the same manner.  These
5501 		 * drives manage the devid's by storing them in
5502 		 * last 2 available sectors on the drive and
5503 		 * have them fabricated by the ddi layer by
5504 		 * calling ddi_devid_init and passing the
5505 		 * DEVID_FAB flag.
5506 		 * Create a fabricate devid only if there's no
5507 		 * fabricate devid existed.
5508 		 */
5509 		if (sd_get_devid(ssc) == EINVAL) {
5510 			(void) sd_create_devid(ssc);
5511 		}
5512 		un->un_f_opt_fab_devid = TRUE;
5513 
5514 		/* Register the devid if it exists */
5515 		if (un->un_devid != NULL) {
5516 			(void) ddi_devid_register(SD_DEVINFO(un),
5517 			    un->un_devid);
5518 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5519 			    "sd_register_devid: devid fabricated using "
5520 			    "ddi framework\n");
5521 		}
5522 	}
5523 
5524 cleanup:
5525 	/* clean up resources */
5526 	if (inq80 != NULL) {
5527 		kmem_free(inq80, inq80_len);
5528 	}
5529 	if (inq83 != NULL) {
5530 		kmem_free(inq83, inq83_len);
5531 	}
5532 }
5533 
5534 
5535 
5536 /*
5537  *    Function: sd_get_devid
5538  *
5539  * Description: This routine will return 0 if a valid device id has been
5540  *		obtained from the target and stored in the soft state. If a
5541  *		valid device id has not been previously read and stored, a
5542  *		read attempt will be made.
5543  *
5544  *   Arguments: un - driver soft state (unit) structure
5545  *
5546  * Return Code: 0 if we successfully get the device id
5547  *
5548  *     Context: Kernel Thread
5549  */
5550 
5551 static int
5552 sd_get_devid(sd_ssc_t *ssc)
5553 {
5554 	struct dk_devid		*dkdevid;
5555 	ddi_devid_t		tmpid;
5556 	uint_t			*ip;
5557 	size_t			sz;
5558 	diskaddr_t		blk;
5559 	int			status;
5560 	int			chksum;
5561 	int			i;
5562 	size_t			buffer_size;
5563 	struct sd_lun		*un;
5564 
5565 	ASSERT(ssc != NULL);
5566 	un = ssc->ssc_un;
5567 	ASSERT(un != NULL);
5568 	ASSERT(mutex_owned(SD_MUTEX(un)));
5569 
5570 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5571 	    un);
5572 
5573 	if (un->un_devid != NULL) {
5574 		return (0);
5575 	}
5576 
5577 	mutex_exit(SD_MUTEX(un));
5578 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5579 	    (void *)SD_PATH_DIRECT) != 0) {
5580 		mutex_enter(SD_MUTEX(un));
5581 		return (EINVAL);
5582 	}
5583 
5584 	/*
5585 	 * Read and verify device id, stored in the reserved cylinders at the
5586 	 * end of the disk. Backup label is on the odd sectors of the last
5587 	 * track of the last cylinder. Device id will be on track of the next
5588 	 * to last cylinder.
5589 	 */
5590 	mutex_enter(SD_MUTEX(un));
5591 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5592 	mutex_exit(SD_MUTEX(un));
5593 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5594 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5595 	    SD_PATH_DIRECT);
5596 
5597 	if (status != 0) {
5598 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5599 		goto error;
5600 	}
5601 
5602 	/* Validate the revision */
5603 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5604 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5605 		status = EINVAL;
5606 		goto error;
5607 	}
5608 
5609 	/* Calculate the checksum */
5610 	chksum = 0;
5611 	ip = (uint_t *)dkdevid;
5612 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5613 	    i++) {
5614 		chksum ^= ip[i];
5615 	}
5616 
5617 	/* Compare the checksums */
5618 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5619 		status = EINVAL;
5620 		goto error;
5621 	}
5622 
5623 	/* Validate the device id */
5624 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5625 		status = EINVAL;
5626 		goto error;
5627 	}
5628 
5629 	/*
5630 	 * Store the device id in the driver soft state
5631 	 */
5632 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5633 	tmpid = kmem_alloc(sz, KM_SLEEP);
5634 
5635 	mutex_enter(SD_MUTEX(un));
5636 
5637 	un->un_devid = tmpid;
5638 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5639 
5640 	kmem_free(dkdevid, buffer_size);
5641 
5642 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5643 
5644 	return (status);
5645 error:
5646 	mutex_enter(SD_MUTEX(un));
5647 	kmem_free(dkdevid, buffer_size);
5648 	return (status);
5649 }
5650 
5651 
5652 /*
5653  *    Function: sd_create_devid
5654  *
5655  * Description: This routine will fabricate the device id and write it
5656  *		to the disk.
5657  *
5658  *   Arguments: un - driver soft state (unit) structure
5659  *
5660  * Return Code: value of the fabricated device id
5661  *
5662  *     Context: Kernel Thread
5663  */
5664 
5665 static ddi_devid_t
5666 sd_create_devid(sd_ssc_t *ssc)
5667 {
5668 	struct sd_lun	*un;
5669 
5670 	ASSERT(ssc != NULL);
5671 	un = ssc->ssc_un;
5672 	ASSERT(un != NULL);
5673 
5674 	/* Fabricate the devid */
5675 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5676 	    == DDI_FAILURE) {
5677 		return (NULL);
5678 	}
5679 
5680 	/* Write the devid to disk */
5681 	if (sd_write_deviceid(ssc) != 0) {
5682 		ddi_devid_free(un->un_devid);
5683 		un->un_devid = NULL;
5684 	}
5685 
5686 	return (un->un_devid);
5687 }
5688 
5689 
5690 /*
5691  *    Function: sd_write_deviceid
5692  *
5693  * Description: This routine will write the device id to the disk
5694  *		reserved sector.
5695  *
5696  *   Arguments: un - driver soft state (unit) structure
5697  *
5698  * Return Code: EINVAL
5699  *		value returned by sd_send_scsi_cmd
5700  *
5701  *     Context: Kernel Thread
5702  */
5703 
5704 static int
5705 sd_write_deviceid(sd_ssc_t *ssc)
5706 {
5707 	struct dk_devid		*dkdevid;
5708 	uchar_t			*buf;
5709 	diskaddr_t		blk;
5710 	uint_t			*ip, chksum;
5711 	int			status;
5712 	int			i;
5713 	struct sd_lun		*un;
5714 
5715 	ASSERT(ssc != NULL);
5716 	un = ssc->ssc_un;
5717 	ASSERT(un != NULL);
5718 	ASSERT(mutex_owned(SD_MUTEX(un)));
5719 
5720 	mutex_exit(SD_MUTEX(un));
5721 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5722 	    (void *)SD_PATH_DIRECT) != 0) {
5723 		mutex_enter(SD_MUTEX(un));
5724 		return (-1);
5725 	}
5726 
5727 
5728 	/* Allocate the buffer */
5729 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5730 	dkdevid = (struct dk_devid *)buf;
5731 
5732 	/* Fill in the revision */
5733 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5734 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5735 
5736 	/* Copy in the device id */
5737 	mutex_enter(SD_MUTEX(un));
5738 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5739 	    ddi_devid_sizeof(un->un_devid));
5740 	mutex_exit(SD_MUTEX(un));
5741 
5742 	/* Calculate the checksum */
5743 	chksum = 0;
5744 	ip = (uint_t *)dkdevid;
5745 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5746 	    i++) {
5747 		chksum ^= ip[i];
5748 	}
5749 
5750 	/* Fill-in checksum */
5751 	DKD_FORMCHKSUM(chksum, dkdevid);
5752 
5753 	/* Write the reserved sector */
5754 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5755 	    SD_PATH_DIRECT);
5756 	if (status != 0)
5757 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5758 
5759 	kmem_free(buf, un->un_sys_blocksize);
5760 
5761 	mutex_enter(SD_MUTEX(un));
5762 	return (status);
5763 }
5764 
5765 
5766 /*
5767  *    Function: sd_check_vpd_page_support
5768  *
5769  * Description: This routine sends an inquiry command with the EVPD bit set and
5770  *		a page code of 0x00 to the device. It is used to determine which
5771  *		vital product pages are available to find the devid. We are
5772  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5773  *		the device does not support that command.
5774  *
5775  *   Arguments: un  - driver soft state (unit) structure
5776  *
5777  * Return Code: 0 - success
5778  *		1 - check condition
5779  *
5780  *     Context: This routine can sleep.
5781  */
5782 
5783 static int
5784 sd_check_vpd_page_support(sd_ssc_t *ssc)
5785 {
5786 	uchar_t	*page_list	= NULL;
5787 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5788 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5789 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5790 	int    	rval		= 0;
5791 	int	counter;
5792 	struct sd_lun		*un;
5793 
5794 	ASSERT(ssc != NULL);
5795 	un = ssc->ssc_un;
5796 	ASSERT(un != NULL);
5797 	ASSERT(mutex_owned(SD_MUTEX(un)));
5798 
5799 	mutex_exit(SD_MUTEX(un));
5800 
5801 	/*
5802 	 * We'll set the page length to the maximum to save figuring it out
5803 	 * with an additional call.
5804 	 */
5805 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5806 
5807 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5808 	    page_code, NULL);
5809 
5810 	if (rval != 0)
5811 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5812 
5813 	mutex_enter(SD_MUTEX(un));
5814 
5815 	/*
5816 	 * Now we must validate that the device accepted the command, as some
5817 	 * drives do not support it.  If the drive does support it, we will
5818 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5819 	 * not, we return -1.
5820 	 */
5821 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5822 		/* Loop to find one of the 2 pages we need */
5823 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5824 
5825 		/*
5826 		 * Pages are returned in ascending order, and 0x83 is what we
5827 		 * are hoping for.
5828 		 */
5829 		while ((page_list[counter] <= 0xB1) &&
5830 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5831 		    VPD_HEAD_OFFSET))) {
5832 			/*
5833 			 * Add 3 because page_list[3] is the number of
5834 			 * pages minus 3
5835 			 */
5836 
5837 			switch (page_list[counter]) {
5838 			case 0x00:
5839 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5840 				break;
5841 			case 0x80:
5842 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5843 				break;
5844 			case 0x81:
5845 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5846 				break;
5847 			case 0x82:
5848 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5849 				break;
5850 			case 0x83:
5851 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5852 				break;
5853 			case 0x86:
5854 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5855 				break;
5856 			case 0xB1:
5857 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5858 				break;
5859 			}
5860 			counter++;
5861 		}
5862 
5863 	} else {
5864 		rval = -1;
5865 
5866 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5867 		    "sd_check_vpd_page_support: This drive does not implement "
5868 		    "VPD pages.\n");
5869 	}
5870 
5871 	kmem_free(page_list, page_length);
5872 
5873 	return (rval);
5874 }
5875 
5876 
5877 /*
5878  *    Function: sd_setup_pm
5879  *
5880  * Description: Initialize Power Management on the device
5881  *
5882  *     Context: Kernel Thread
5883  */
5884 
5885 static void
5886 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5887 {
5888 	uint_t		log_page_size;
5889 	uchar_t		*log_page_data;
5890 	int		rval = 0;
5891 	struct sd_lun	*un;
5892 
5893 	ASSERT(ssc != NULL);
5894 	un = ssc->ssc_un;
5895 	ASSERT(un != NULL);
5896 
5897 	/*
5898 	 * Since we are called from attach, holding a mutex for
5899 	 * un is unnecessary. Because some of the routines called
5900 	 * from here require SD_MUTEX to not be held, assert this
5901 	 * right up front.
5902 	 */
5903 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5904 	/*
5905 	 * Since the sd device does not have the 'reg' property,
5906 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5907 	 * The following code is to tell cpr that this device
5908 	 * DOES need to be suspended and resumed.
5909 	 */
5910 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5911 	    "pm-hardware-state", "needs-suspend-resume");
5912 
5913 	/*
5914 	 * This complies with the new power management framework
5915 	 * for certain desktop machines. Create the pm_components
5916 	 * property as a string array property.
5917 	 * If un_f_pm_supported is TRUE, that means the disk
5918 	 * attached HBA has set the "pm-capable" property and
5919 	 * the value of this property is bigger than 0.
5920 	 */
5921 	if (un->un_f_pm_supported) {
5922 		/*
5923 		 * not all devices have a motor, try it first.
5924 		 * some devices may return ILLEGAL REQUEST, some
5925 		 * will hang
5926 		 * The following START_STOP_UNIT is used to check if target
5927 		 * device has a motor.
5928 		 */
5929 		un->un_f_start_stop_supported = TRUE;
5930 
5931 		if (un->un_f_power_condition_supported) {
5932 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5933 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5934 			    SD_PATH_DIRECT);
5935 			if (rval != 0) {
5936 				un->un_f_power_condition_supported = FALSE;
5937 			}
5938 		}
5939 		if (!un->un_f_power_condition_supported) {
5940 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5941 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5942 		}
5943 		if (rval != 0) {
5944 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5945 			un->un_f_start_stop_supported = FALSE;
5946 		}
5947 
5948 		/*
5949 		 * create pm properties anyways otherwise the parent can't
5950 		 * go to sleep
5951 		 */
5952 		un->un_f_pm_is_enabled = TRUE;
5953 		(void) sd_create_pm_components(devi, un);
5954 
5955 		/*
5956 		 * If it claims that log sense is supported, check it out.
5957 		 */
5958 		if (un->un_f_log_sense_supported) {
5959 			rval = sd_log_page_supported(ssc,
5960 			    START_STOP_CYCLE_PAGE);
5961 			if (rval == 1) {
5962 				/* Page found, use it. */
5963 				un->un_start_stop_cycle_page =
5964 				    START_STOP_CYCLE_PAGE;
5965 			} else {
5966 				/*
5967 				 * Page not found or log sense is not
5968 				 * supported.
5969 				 * Notice we do not check the old style
5970 				 * START_STOP_CYCLE_VU_PAGE because this
5971 				 * code path does not apply to old disks.
5972 				 */
5973 				un->un_f_log_sense_supported = FALSE;
5974 				un->un_f_pm_log_sense_smart = FALSE;
5975 			}
5976 		}
5977 
5978 		return;
5979 	}
5980 
5981 	/*
5982 	 * For the disk whose attached HBA has not set the "pm-capable"
5983 	 * property, check if it supports the power management.
5984 	 */
5985 	if (!un->un_f_log_sense_supported) {
5986 		un->un_power_level = SD_SPINDLE_ON;
5987 		un->un_f_pm_is_enabled = FALSE;
5988 		return;
5989 	}
5990 
5991 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5992 
5993 #ifdef	SDDEBUG
5994 	if (sd_force_pm_supported) {
5995 		/* Force a successful result */
5996 		rval = 1;
5997 	}
5998 #endif
5999 
6000 	/*
6001 	 * If the start-stop cycle counter log page is not supported
6002 	 * or if the pm-capable property is set to be false (0),
6003 	 * then we should not create the pm_components property.
6004 	 */
6005 	if (rval == -1) {
6006 		/*
6007 		 * Error.
6008 		 * Reading log sense failed, most likely this is
6009 		 * an older drive that does not support log sense.
6010 		 * If this fails auto-pm is not supported.
6011 		 */
6012 		un->un_power_level = SD_SPINDLE_ON;
6013 		un->un_f_pm_is_enabled = FALSE;
6014 
6015 	} else if (rval == 0) {
6016 		/*
6017 		 * Page not found.
6018 		 * The start stop cycle counter is implemented as page
6019 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6020 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6021 		 */
6022 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6023 			/*
6024 			 * Page found, use this one.
6025 			 */
6026 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6027 			un->un_f_pm_is_enabled = TRUE;
6028 		} else {
6029 			/*
6030 			 * Error or page not found.
6031 			 * auto-pm is not supported for this device.
6032 			 */
6033 			un->un_power_level = SD_SPINDLE_ON;
6034 			un->un_f_pm_is_enabled = FALSE;
6035 		}
6036 	} else {
6037 		/*
6038 		 * Page found, use it.
6039 		 */
6040 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6041 		un->un_f_pm_is_enabled = TRUE;
6042 	}
6043 
6044 
6045 	if (un->un_f_pm_is_enabled == TRUE) {
6046 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6047 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6048 
6049 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6050 		    log_page_size, un->un_start_stop_cycle_page,
6051 		    0x01, 0, SD_PATH_DIRECT);
6052 
6053 		if (rval != 0) {
6054 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6055 		}
6056 
6057 #ifdef	SDDEBUG
6058 		if (sd_force_pm_supported) {
6059 			/* Force a successful result */
6060 			rval = 0;
6061 		}
6062 #endif
6063 
6064 		/*
6065 		 * If the Log sense for Page( Start/stop cycle counter page)
6066 		 * succeeds, then power management is supported and we can
6067 		 * enable auto-pm.
6068 		 */
6069 		if (rval == 0)  {
6070 			(void) sd_create_pm_components(devi, un);
6071 		} else {
6072 			un->un_power_level = SD_SPINDLE_ON;
6073 			un->un_f_pm_is_enabled = FALSE;
6074 		}
6075 
6076 		kmem_free(log_page_data, log_page_size);
6077 	}
6078 }
6079 
6080 
6081 /*
6082  *    Function: sd_create_pm_components
6083  *
6084  * Description: Initialize PM property.
6085  *
6086  *     Context: Kernel thread context
6087  */
6088 
6089 static void
6090 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6091 {
6092 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6093 
6094 	if (un->un_f_power_condition_supported) {
6095 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6096 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6097 		    != DDI_PROP_SUCCESS) {
6098 			un->un_power_level = SD_SPINDLE_ACTIVE;
6099 			un->un_f_pm_is_enabled = FALSE;
6100 			return;
6101 		}
6102 	} else {
6103 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6104 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6105 		    != DDI_PROP_SUCCESS) {
6106 			un->un_power_level = SD_SPINDLE_ON;
6107 			un->un_f_pm_is_enabled = FALSE;
6108 			return;
6109 		}
6110 	}
6111 	/*
6112 	 * When components are initially created they are idle,
6113 	 * power up any non-removables.
6114 	 * Note: the return value of pm_raise_power can't be used
6115 	 * for determining if PM should be enabled for this device.
6116 	 * Even if you check the return values and remove this
6117 	 * property created above, the PM framework will not honor the
6118 	 * change after the first call to pm_raise_power. Hence,
6119 	 * removal of that property does not help if pm_raise_power
6120 	 * fails. In the case of removable media, the start/stop
6121 	 * will fail if the media is not present.
6122 	 */
6123 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6124 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6125 		mutex_enter(SD_MUTEX(un));
6126 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6127 		mutex_enter(&un->un_pm_mutex);
6128 		/* Set to on and not busy. */
6129 		un->un_pm_count = 0;
6130 	} else {
6131 		mutex_enter(SD_MUTEX(un));
6132 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6133 		mutex_enter(&un->un_pm_mutex);
6134 		/* Set to off. */
6135 		un->un_pm_count = -1;
6136 	}
6137 	mutex_exit(&un->un_pm_mutex);
6138 	mutex_exit(SD_MUTEX(un));
6139 }
6140 
6141 
6142 /*
6143  *    Function: sd_ddi_suspend
6144  *
6145  * Description: Performs system power-down operations. This includes
6146  *		setting the drive state to indicate its suspended so
6147  *		that no new commands will be accepted. Also, wait for
6148  *		all commands that are in transport or queued to a timer
6149  *		for retry to complete. All timeout threads are cancelled.
6150  *
6151  * Return Code: DDI_FAILURE or DDI_SUCCESS
6152  *
6153  *     Context: Kernel thread context
6154  */
6155 
6156 static int
6157 sd_ddi_suspend(dev_info_t *devi)
6158 {
6159 	struct	sd_lun	*un;
6160 	clock_t		wait_cmds_complete;
6161 
6162 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6163 	if (un == NULL) {
6164 		return (DDI_FAILURE);
6165 	}
6166 
6167 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6168 
6169 	mutex_enter(SD_MUTEX(un));
6170 
6171 	/* Return success if the device is already suspended. */
6172 	if (un->un_state == SD_STATE_SUSPENDED) {
6173 		mutex_exit(SD_MUTEX(un));
6174 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6175 		    "device already suspended, exiting\n");
6176 		return (DDI_SUCCESS);
6177 	}
6178 
6179 	/* Return failure if the device is being used by HA */
6180 	if (un->un_resvd_status &
6181 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6182 		mutex_exit(SD_MUTEX(un));
6183 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6184 		    "device in use by HA, exiting\n");
6185 		return (DDI_FAILURE);
6186 	}
6187 
6188 	/*
6189 	 * Return failure if the device is in a resource wait
6190 	 * or power changing state.
6191 	 */
6192 	if ((un->un_state == SD_STATE_RWAIT) ||
6193 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6194 		mutex_exit(SD_MUTEX(un));
6195 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6196 		    "device in resource wait state, exiting\n");
6197 		return (DDI_FAILURE);
6198 	}
6199 
6200 
6201 	un->un_save_state = un->un_last_state;
6202 	New_state(un, SD_STATE_SUSPENDED);
6203 
6204 	/*
6205 	 * Wait for all commands that are in transport or queued to a timer
6206 	 * for retry to complete.
6207 	 *
6208 	 * While waiting, no new commands will be accepted or sent because of
6209 	 * the new state we set above.
6210 	 *
6211 	 * Wait till current operation has completed. If we are in the resource
6212 	 * wait state (with an intr outstanding) then we need to wait till the
6213 	 * intr completes and starts the next cmd. We want to wait for
6214 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6215 	 */
6216 	wait_cmds_complete = ddi_get_lbolt() +
6217 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6218 
6219 	while (un->un_ncmds_in_transport != 0) {
6220 		/*
6221 		 * Fail if commands do not finish in the specified time.
6222 		 */
6223 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6224 		    wait_cmds_complete) == -1) {
6225 			/*
6226 			 * Undo the state changes made above. Everything
6227 			 * must go back to it's original value.
6228 			 */
6229 			Restore_state(un);
6230 			un->un_last_state = un->un_save_state;
6231 			/* Wake up any threads that might be waiting. */
6232 			cv_broadcast(&un->un_suspend_cv);
6233 			mutex_exit(SD_MUTEX(un));
6234 			SD_ERROR(SD_LOG_IO_PM, un,
6235 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6236 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6237 			return (DDI_FAILURE);
6238 		}
6239 	}
6240 
6241 	/*
6242 	 * Cancel SCSI watch thread and timeouts, if any are active
6243 	 */
6244 
6245 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6246 		opaque_t temp_token = un->un_swr_token;
6247 		mutex_exit(SD_MUTEX(un));
6248 		scsi_watch_suspend(temp_token);
6249 		mutex_enter(SD_MUTEX(un));
6250 	}
6251 
6252 	if (un->un_reset_throttle_timeid != NULL) {
6253 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6254 		un->un_reset_throttle_timeid = NULL;
6255 		mutex_exit(SD_MUTEX(un));
6256 		(void) untimeout(temp_id);
6257 		mutex_enter(SD_MUTEX(un));
6258 	}
6259 
6260 	if (un->un_dcvb_timeid != NULL) {
6261 		timeout_id_t temp_id = un->un_dcvb_timeid;
6262 		un->un_dcvb_timeid = NULL;
6263 		mutex_exit(SD_MUTEX(un));
6264 		(void) untimeout(temp_id);
6265 		mutex_enter(SD_MUTEX(un));
6266 	}
6267 
6268 	mutex_enter(&un->un_pm_mutex);
6269 	if (un->un_pm_timeid != NULL) {
6270 		timeout_id_t temp_id = un->un_pm_timeid;
6271 		un->un_pm_timeid = NULL;
6272 		mutex_exit(&un->un_pm_mutex);
6273 		mutex_exit(SD_MUTEX(un));
6274 		(void) untimeout(temp_id);
6275 		mutex_enter(SD_MUTEX(un));
6276 	} else {
6277 		mutex_exit(&un->un_pm_mutex);
6278 	}
6279 
6280 	if (un->un_rmw_msg_timeid != NULL) {
6281 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6282 		un->un_rmw_msg_timeid = NULL;
6283 		mutex_exit(SD_MUTEX(un));
6284 		(void) untimeout(temp_id);
6285 		mutex_enter(SD_MUTEX(un));
6286 	}
6287 
6288 	if (un->un_retry_timeid != NULL) {
6289 		timeout_id_t temp_id = un->un_retry_timeid;
6290 		un->un_retry_timeid = NULL;
6291 		mutex_exit(SD_MUTEX(un));
6292 		(void) untimeout(temp_id);
6293 		mutex_enter(SD_MUTEX(un));
6294 
6295 		if (un->un_retry_bp != NULL) {
6296 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6297 			un->un_waitq_headp = un->un_retry_bp;
6298 			if (un->un_waitq_tailp == NULL) {
6299 				un->un_waitq_tailp = un->un_retry_bp;
6300 			}
6301 			un->un_retry_bp = NULL;
6302 			un->un_retry_statp = NULL;
6303 		}
6304 	}
6305 
6306 	if (un->un_direct_priority_timeid != NULL) {
6307 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6308 		un->un_direct_priority_timeid = NULL;
6309 		mutex_exit(SD_MUTEX(un));
6310 		(void) untimeout(temp_id);
6311 		mutex_enter(SD_MUTEX(un));
6312 	}
6313 
6314 	if (un->un_f_is_fibre == TRUE) {
6315 		/*
6316 		 * Remove callbacks for insert and remove events
6317 		 */
6318 		if (un->un_insert_event != NULL) {
6319 			mutex_exit(SD_MUTEX(un));
6320 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6321 			mutex_enter(SD_MUTEX(un));
6322 			un->un_insert_event = NULL;
6323 		}
6324 
6325 		if (un->un_remove_event != NULL) {
6326 			mutex_exit(SD_MUTEX(un));
6327 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6328 			mutex_enter(SD_MUTEX(un));
6329 			un->un_remove_event = NULL;
6330 		}
6331 	}
6332 
6333 	mutex_exit(SD_MUTEX(un));
6334 
6335 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6336 
6337 	return (DDI_SUCCESS);
6338 }
6339 
6340 
6341 /*
6342  *    Function: sd_ddi_resume
6343  *
6344  * Description: Performs system power-up operations..
6345  *
6346  * Return Code: DDI_SUCCESS
6347  *		DDI_FAILURE
6348  *
6349  *     Context: Kernel thread context
6350  */
6351 
6352 static int
6353 sd_ddi_resume(dev_info_t *devi)
6354 {
6355 	struct	sd_lun	*un;
6356 
6357 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6358 	if (un == NULL) {
6359 		return (DDI_FAILURE);
6360 	}
6361 
6362 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6363 
6364 	mutex_enter(SD_MUTEX(un));
6365 	Restore_state(un);
6366 
6367 	/*
6368 	 * Restore the state which was saved to give the
6369 	 * the right state in un_last_state
6370 	 */
6371 	un->un_last_state = un->un_save_state;
6372 	/*
6373 	 * Note: throttle comes back at full.
6374 	 * Also note: this MUST be done before calling pm_raise_power
6375 	 * otherwise the system can get hung in biowait. The scenario where
6376 	 * this'll happen is under cpr suspend. Writing of the system
6377 	 * state goes through sddump, which writes 0 to un_throttle. If
6378 	 * writing the system state then fails, example if the partition is
6379 	 * too small, then cpr attempts a resume. If throttle isn't restored
6380 	 * from the saved value until after calling pm_raise_power then
6381 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6382 	 * in biowait.
6383 	 */
6384 	un->un_throttle = un->un_saved_throttle;
6385 
6386 	/*
6387 	 * The chance of failure is very rare as the only command done in power
6388 	 * entry point is START command when you transition from 0->1 or
6389 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6390 	 * which suspend was done. Ignore the return value as the resume should
6391 	 * not be failed. In the case of removable media the media need not be
6392 	 * inserted and hence there is a chance that raise power will fail with
6393 	 * media not present.
6394 	 */
6395 	if (un->un_f_attach_spinup) {
6396 		mutex_exit(SD_MUTEX(un));
6397 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6398 		    SD_PM_STATE_ACTIVE(un));
6399 		mutex_enter(SD_MUTEX(un));
6400 	}
6401 
6402 	/*
6403 	 * Don't broadcast to the suspend cv and therefore possibly
6404 	 * start I/O until after power has been restored.
6405 	 */
6406 	cv_broadcast(&un->un_suspend_cv);
6407 	cv_broadcast(&un->un_state_cv);
6408 
6409 	/* restart thread */
6410 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6411 		scsi_watch_resume(un->un_swr_token);
6412 	}
6413 
6414 #if (defined(__fibre))
6415 	if (un->un_f_is_fibre == TRUE) {
6416 		/*
6417 		 * Add callbacks for insert and remove events
6418 		 */
6419 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6420 			sd_init_event_callbacks(un);
6421 		}
6422 	}
6423 #endif
6424 
6425 	/*
6426 	 * Transport any pending commands to the target.
6427 	 *
6428 	 * If this is a low-activity device commands in queue will have to wait
6429 	 * until new commands come in, which may take awhile. Also, we
6430 	 * specifically don't check un_ncmds_in_transport because we know that
6431 	 * there really are no commands in progress after the unit was
6432 	 * suspended and we could have reached the throttle level, been
6433 	 * suspended, and have no new commands coming in for awhile. Highly
6434 	 * unlikely, but so is the low-activity disk scenario.
6435 	 */
6436 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6437 
6438 	sd_start_cmds(un, NULL);
6439 	mutex_exit(SD_MUTEX(un));
6440 
6441 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6442 
6443 	return (DDI_SUCCESS);
6444 }
6445 
6446 
6447 /*
6448  *    Function: sd_pm_state_change
6449  *
6450  * Description: Change the driver power state.
6451  * 		Someone else is required to actually change the driver
6452  * 		power level.
6453  *
6454  *   Arguments: un - driver soft state (unit) structure
6455  *              level - the power level that is changed to
6456  *              flag - to decide how to change the power state
6457  *
6458  * Return Code: DDI_SUCCESS
6459  *
6460  *     Context: Kernel thread context
6461  */
6462 static int
6463 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6464 {
6465 	ASSERT(un != NULL);
6466 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6467 
6468 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6469 	mutex_enter(SD_MUTEX(un));
6470 
6471 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6472 		un->un_power_level = level;
6473 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6474 		mutex_enter(&un->un_pm_mutex);
6475 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6476 			un->un_pm_count++;
6477 			ASSERT(un->un_pm_count == 0);
6478 		}
6479 		mutex_exit(&un->un_pm_mutex);
6480 	} else {
6481 		/*
6482 		 * Exit if power management is not enabled for this device,
6483 		 * or if the device is being used by HA.
6484 		 */
6485 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6486 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6487 			mutex_exit(SD_MUTEX(un));
6488 			SD_TRACE(SD_LOG_POWER, un,
6489 			    "sd_pm_state_change: exiting\n");
6490 			return (DDI_FAILURE);
6491 		}
6492 
6493 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6494 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6495 
6496 		/*
6497 		 * See if the device is not busy, ie.:
6498 		 *    - we have no commands in the driver for this device
6499 		 *    - not waiting for resources
6500 		 */
6501 		if ((un->un_ncmds_in_driver == 0) &&
6502 		    (un->un_state != SD_STATE_RWAIT)) {
6503 			/*
6504 			 * The device is not busy, so it is OK to go to low
6505 			 * power state. Indicate low power, but rely on someone
6506 			 * else to actually change it.
6507 			 */
6508 			mutex_enter(&un->un_pm_mutex);
6509 			un->un_pm_count = -1;
6510 			mutex_exit(&un->un_pm_mutex);
6511 			un->un_power_level = level;
6512 		}
6513 	}
6514 
6515 	mutex_exit(SD_MUTEX(un));
6516 
6517 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6518 
6519 	return (DDI_SUCCESS);
6520 }
6521 
6522 
6523 /*
6524  *    Function: sd_pm_idletimeout_handler
6525  *
6526  * Description: A timer routine that's active only while a device is busy.
6527  *		The purpose is to extend slightly the pm framework's busy
6528  *		view of the device to prevent busy/idle thrashing for
6529  *		back-to-back commands. Do this by comparing the current time
6530  *		to the time at which the last command completed and when the
6531  *		difference is greater than sd_pm_idletime, call
6532  *		pm_idle_component. In addition to indicating idle to the pm
6533  *		framework, update the chain type to again use the internal pm
6534  *		layers of the driver.
6535  *
6536  *   Arguments: arg - driver soft state (unit) structure
6537  *
6538  *     Context: Executes in a timeout(9F) thread context
6539  */
6540 
6541 static void
6542 sd_pm_idletimeout_handler(void *arg)
6543 {
6544 	struct sd_lun *un = arg;
6545 
6546 	time_t	now;
6547 
6548 	mutex_enter(&sd_detach_mutex);
6549 	if (un->un_detach_count != 0) {
6550 		/* Abort if the instance is detaching */
6551 		mutex_exit(&sd_detach_mutex);
6552 		return;
6553 	}
6554 	mutex_exit(&sd_detach_mutex);
6555 
6556 	now = ddi_get_time();
6557 	/*
6558 	 * Grab both mutexes, in the proper order, since we're accessing
6559 	 * both PM and softstate variables.
6560 	 */
6561 	mutex_enter(SD_MUTEX(un));
6562 	mutex_enter(&un->un_pm_mutex);
6563 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6564 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6565 		/*
6566 		 * Update the chain types.
6567 		 * This takes affect on the next new command received.
6568 		 */
6569 		if (un->un_f_non_devbsize_supported) {
6570 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6571 		} else {
6572 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6573 		}
6574 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6575 
6576 		SD_TRACE(SD_LOG_IO_PM, un,
6577 		    "sd_pm_idletimeout_handler: idling device\n");
6578 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6579 		un->un_pm_idle_timeid = NULL;
6580 	} else {
6581 		un->un_pm_idle_timeid =
6582 		    timeout(sd_pm_idletimeout_handler, un,
6583 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6584 	}
6585 	mutex_exit(&un->un_pm_mutex);
6586 	mutex_exit(SD_MUTEX(un));
6587 }
6588 
6589 
6590 /*
6591  *    Function: sd_pm_timeout_handler
6592  *
6593  * Description: Callback to tell framework we are idle.
6594  *
6595  *     Context: timeout(9f) thread context.
6596  */
6597 
6598 static void
6599 sd_pm_timeout_handler(void *arg)
6600 {
6601 	struct sd_lun *un = arg;
6602 
6603 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6604 	mutex_enter(&un->un_pm_mutex);
6605 	un->un_pm_timeid = NULL;
6606 	mutex_exit(&un->un_pm_mutex);
6607 }
6608 
6609 
6610 /*
6611  *    Function: sdpower
6612  *
6613  * Description: PM entry point.
6614  *
6615  * Return Code: DDI_SUCCESS
6616  *		DDI_FAILURE
6617  *
6618  *     Context: Kernel thread context
6619  */
6620 
6621 static int
6622 sdpower(dev_info_t *devi, int component, int level)
6623 {
6624 	struct sd_lun	*un;
6625 	int		instance;
6626 	int		rval = DDI_SUCCESS;
6627 	uint_t		i, log_page_size, maxcycles, ncycles;
6628 	uchar_t		*log_page_data;
6629 	int		log_sense_page;
6630 	int		medium_present;
6631 	time_t		intvlp;
6632 	struct pm_trans_data	sd_pm_tran_data;
6633 	uchar_t		save_state;
6634 	int		sval;
6635 	uchar_t		state_before_pm;
6636 	int		got_semaphore_here;
6637 	sd_ssc_t	*ssc;
6638 	int	last_power_level;
6639 
6640 	instance = ddi_get_instance(devi);
6641 
6642 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6643 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6644 		return (DDI_FAILURE);
6645 	}
6646 
6647 	ssc = sd_ssc_init(un);
6648 
6649 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6650 
6651 	/*
6652 	 * Must synchronize power down with close.
6653 	 * Attempt to decrement/acquire the open/close semaphore,
6654 	 * but do NOT wait on it. If it's not greater than zero,
6655 	 * ie. it can't be decremented without waiting, then
6656 	 * someone else, either open or close, already has it
6657 	 * and the try returns 0. Use that knowledge here to determine
6658 	 * if it's OK to change the device power level.
6659 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6660 	 * here.
6661 	 */
6662 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6663 
6664 	mutex_enter(SD_MUTEX(un));
6665 
6666 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6667 	    un->un_ncmds_in_driver);
6668 
6669 	/*
6670 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6671 	 * already being processed in the driver, or if the semaphore was
6672 	 * not gotten here it indicates an open or close is being processed.
6673 	 * At the same time somebody is requesting to go to a lower power
6674 	 * that can't perform I/O, which can't happen, therefore we need to
6675 	 * return failure.
6676 	 */
6677 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6678 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6679 		mutex_exit(SD_MUTEX(un));
6680 
6681 		if (got_semaphore_here != 0) {
6682 			sema_v(&un->un_semoclose);
6683 		}
6684 		SD_TRACE(SD_LOG_IO_PM, un,
6685 		    "sdpower: exit, device has queued cmds.\n");
6686 
6687 		goto sdpower_failed;
6688 	}
6689 
6690 	/*
6691 	 * if it is OFFLINE that means the disk is completely dead
6692 	 * in our case we have to put the disk in on or off by sending commands
6693 	 * Of course that will fail anyway so return back here.
6694 	 *
6695 	 * Power changes to a device that's OFFLINE or SUSPENDED
6696 	 * are not allowed.
6697 	 */
6698 	if ((un->un_state == SD_STATE_OFFLINE) ||
6699 	    (un->un_state == SD_STATE_SUSPENDED)) {
6700 		mutex_exit(SD_MUTEX(un));
6701 
6702 		if (got_semaphore_here != 0) {
6703 			sema_v(&un->un_semoclose);
6704 		}
6705 		SD_TRACE(SD_LOG_IO_PM, un,
6706 		    "sdpower: exit, device is off-line.\n");
6707 
6708 		goto sdpower_failed;
6709 	}
6710 
6711 	/*
6712 	 * Change the device's state to indicate it's power level
6713 	 * is being changed. Do this to prevent a power off in the
6714 	 * middle of commands, which is especially bad on devices
6715 	 * that are really powered off instead of just spun down.
6716 	 */
6717 	state_before_pm = un->un_state;
6718 	un->un_state = SD_STATE_PM_CHANGING;
6719 
6720 	mutex_exit(SD_MUTEX(un));
6721 
6722 	/*
6723 	 * If log sense command is not supported, bypass the
6724 	 * following checking, otherwise, check the log sense
6725 	 * information for this device.
6726 	 */
6727 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6728 	    un->un_f_log_sense_supported) {
6729 		/*
6730 		 * Get the log sense information to understand whether the
6731 		 * the powercycle counts have gone beyond the threshhold.
6732 		 */
6733 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6734 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6735 
6736 		mutex_enter(SD_MUTEX(un));
6737 		log_sense_page = un->un_start_stop_cycle_page;
6738 		mutex_exit(SD_MUTEX(un));
6739 
6740 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6741 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6742 
6743 		if (rval != 0) {
6744 			if (rval == EIO)
6745 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6746 			else
6747 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6748 		}
6749 
6750 #ifdef	SDDEBUG
6751 		if (sd_force_pm_supported) {
6752 			/* Force a successful result */
6753 			rval = 0;
6754 		}
6755 #endif
6756 		if (rval != 0) {
6757 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6758 			    "Log Sense Failed\n");
6759 
6760 			kmem_free(log_page_data, log_page_size);
6761 			/* Cannot support power management on those drives */
6762 
6763 			if (got_semaphore_here != 0) {
6764 				sema_v(&un->un_semoclose);
6765 			}
6766 			/*
6767 			 * On exit put the state back to it's original value
6768 			 * and broadcast to anyone waiting for the power
6769 			 * change completion.
6770 			 */
6771 			mutex_enter(SD_MUTEX(un));
6772 			un->un_state = state_before_pm;
6773 			cv_broadcast(&un->un_suspend_cv);
6774 			mutex_exit(SD_MUTEX(un));
6775 			SD_TRACE(SD_LOG_IO_PM, un,
6776 			    "sdpower: exit, Log Sense Failed.\n");
6777 
6778 			goto sdpower_failed;
6779 		}
6780 
6781 		/*
6782 		 * From the page data - Convert the essential information to
6783 		 * pm_trans_data
6784 		 */
6785 		maxcycles =
6786 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6787 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6788 
6789 		ncycles =
6790 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6791 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6792 
6793 		if (un->un_f_pm_log_sense_smart) {
6794 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6795 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6796 			sd_pm_tran_data.un.smart_count.flag = 0;
6797 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6798 		} else {
6799 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6800 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6801 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6802 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6803 				    log_page_data[8+i];
6804 			}
6805 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6806 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6807 		}
6808 
6809 		kmem_free(log_page_data, log_page_size);
6810 
6811 		/*
6812 		 * Call pm_trans_check routine to get the Ok from
6813 		 * the global policy
6814 		 */
6815 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6816 #ifdef	SDDEBUG
6817 		if (sd_force_pm_supported) {
6818 			/* Force a successful result */
6819 			rval = 1;
6820 		}
6821 #endif
6822 		switch (rval) {
6823 		case 0:
6824 			/*
6825 			 * Not Ok to Power cycle or error in parameters passed
6826 			 * Would have given the advised time to consider power
6827 			 * cycle. Based on the new intvlp parameter we are
6828 			 * supposed to pretend we are busy so that pm framework
6829 			 * will never call our power entry point. Because of
6830 			 * that install a timeout handler and wait for the
6831 			 * recommended time to elapse so that power management
6832 			 * can be effective again.
6833 			 *
6834 			 * To effect this behavior, call pm_busy_component to
6835 			 * indicate to the framework this device is busy.
6836 			 * By not adjusting un_pm_count the rest of PM in
6837 			 * the driver will function normally, and independent
6838 			 * of this but because the framework is told the device
6839 			 * is busy it won't attempt powering down until it gets
6840 			 * a matching idle. The timeout handler sends this.
6841 			 * Note: sd_pm_entry can't be called here to do this
6842 			 * because sdpower may have been called as a result
6843 			 * of a call to pm_raise_power from within sd_pm_entry.
6844 			 *
6845 			 * If a timeout handler is already active then
6846 			 * don't install another.
6847 			 */
6848 			mutex_enter(&un->un_pm_mutex);
6849 			if (un->un_pm_timeid == NULL) {
6850 				un->un_pm_timeid =
6851 				    timeout(sd_pm_timeout_handler,
6852 				    un, intvlp * drv_usectohz(1000000));
6853 				mutex_exit(&un->un_pm_mutex);
6854 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6855 			} else {
6856 				mutex_exit(&un->un_pm_mutex);
6857 			}
6858 			if (got_semaphore_here != 0) {
6859 				sema_v(&un->un_semoclose);
6860 			}
6861 			/*
6862 			 * On exit put the state back to it's original value
6863 			 * and broadcast to anyone waiting for the power
6864 			 * change completion.
6865 			 */
6866 			mutex_enter(SD_MUTEX(un));
6867 			un->un_state = state_before_pm;
6868 			cv_broadcast(&un->un_suspend_cv);
6869 			mutex_exit(SD_MUTEX(un));
6870 
6871 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6872 			    "trans check Failed, not ok to power cycle.\n");
6873 
6874 			goto sdpower_failed;
6875 		case -1:
6876 			if (got_semaphore_here != 0) {
6877 				sema_v(&un->un_semoclose);
6878 			}
6879 			/*
6880 			 * On exit put the state back to it's original value
6881 			 * and broadcast to anyone waiting for the power
6882 			 * change completion.
6883 			 */
6884 			mutex_enter(SD_MUTEX(un));
6885 			un->un_state = state_before_pm;
6886 			cv_broadcast(&un->un_suspend_cv);
6887 			mutex_exit(SD_MUTEX(un));
6888 			SD_TRACE(SD_LOG_IO_PM, un,
6889 			    "sdpower: exit, trans check command Failed.\n");
6890 
6891 			goto sdpower_failed;
6892 		}
6893 	}
6894 
6895 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6896 		/*
6897 		 * Save the last state... if the STOP FAILS we need it
6898 		 * for restoring
6899 		 */
6900 		mutex_enter(SD_MUTEX(un));
6901 		save_state = un->un_last_state;
6902 		last_power_level = un->un_power_level;
6903 		/*
6904 		 * There must not be any cmds. getting processed
6905 		 * in the driver when we get here. Power to the
6906 		 * device is potentially going off.
6907 		 */
6908 		ASSERT(un->un_ncmds_in_driver == 0);
6909 		mutex_exit(SD_MUTEX(un));
6910 
6911 		/*
6912 		 * For now PM suspend the device completely before spindle is
6913 		 * turned off
6914 		 */
6915 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6916 		    == DDI_FAILURE) {
6917 			if (got_semaphore_here != 0) {
6918 				sema_v(&un->un_semoclose);
6919 			}
6920 			/*
6921 			 * On exit put the state back to it's original value
6922 			 * and broadcast to anyone waiting for the power
6923 			 * change completion.
6924 			 */
6925 			mutex_enter(SD_MUTEX(un));
6926 			un->un_state = state_before_pm;
6927 			un->un_power_level = last_power_level;
6928 			cv_broadcast(&un->un_suspend_cv);
6929 			mutex_exit(SD_MUTEX(un));
6930 			SD_TRACE(SD_LOG_IO_PM, un,
6931 			    "sdpower: exit, PM suspend Failed.\n");
6932 
6933 			goto sdpower_failed;
6934 		}
6935 	}
6936 
6937 	/*
6938 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6939 	 * close, or strategy. Dump no long uses this routine, it uses it's
6940 	 * own code so it can be done in polled mode.
6941 	 */
6942 
6943 	medium_present = TRUE;
6944 
6945 	/*
6946 	 * When powering up, issue a TUR in case the device is at unit
6947 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6948 	 * a deadlock on un_pm_busy_cv will occur.
6949 	 */
6950 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6951 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6952 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6953 		if (sval != 0)
6954 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6955 	}
6956 
6957 	if (un->un_f_power_condition_supported) {
6958 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6959 		    "IDLE", "ACTIVE"};
6960 		SD_TRACE(SD_LOG_IO_PM, un,
6961 		    "sdpower: sending \'%s\' power condition",
6962 		    pm_condition_name[level]);
6963 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6964 		    sd_pl2pc[level], SD_PATH_DIRECT);
6965 	} else {
6966 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6967 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6968 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6969 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6970 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6971 	}
6972 	if (sval != 0) {
6973 		if (sval == EIO)
6974 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6975 		else
6976 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6977 	}
6978 
6979 	/* Command failed, check for media present. */
6980 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6981 		medium_present = FALSE;
6982 	}
6983 
6984 	/*
6985 	 * The conditions of interest here are:
6986 	 *   if a spindle off with media present fails,
6987 	 *	then restore the state and return an error.
6988 	 *   else if a spindle on fails,
6989 	 *	then return an error (there's no state to restore).
6990 	 * In all other cases we setup for the new state
6991 	 * and return success.
6992 	 */
6993 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6994 		if ((medium_present == TRUE) && (sval != 0)) {
6995 			/* The stop command from above failed */
6996 			rval = DDI_FAILURE;
6997 			/*
6998 			 * The stop command failed, and we have media
6999 			 * present. Put the level back by calling the
7000 			 * sd_pm_resume() and set the state back to
7001 			 * it's previous value.
7002 			 */
7003 			(void) sd_pm_state_change(un, last_power_level,
7004 			    SD_PM_STATE_ROLLBACK);
7005 			mutex_enter(SD_MUTEX(un));
7006 			un->un_last_state = save_state;
7007 			mutex_exit(SD_MUTEX(un));
7008 		} else if (un->un_f_monitor_media_state) {
7009 			/*
7010 			 * The stop command from above succeeded.
7011 			 * Terminate watch thread in case of removable media
7012 			 * devices going into low power state. This is as per
7013 			 * the requirements of pm framework, otherwise commands
7014 			 * will be generated for the device (through watch
7015 			 * thread), even when the device is in low power state.
7016 			 */
7017 			mutex_enter(SD_MUTEX(un));
7018 			un->un_f_watcht_stopped = FALSE;
7019 			if (un->un_swr_token != NULL) {
7020 				opaque_t temp_token = un->un_swr_token;
7021 				un->un_f_watcht_stopped = TRUE;
7022 				un->un_swr_token = NULL;
7023 				mutex_exit(SD_MUTEX(un));
7024 				(void) scsi_watch_request_terminate(temp_token,
7025 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7026 			} else {
7027 				mutex_exit(SD_MUTEX(un));
7028 			}
7029 		}
7030 	} else {
7031 		/*
7032 		 * The level requested is I/O capable.
7033 		 * Legacy behavior: return success on a failed spinup
7034 		 * if there is no media in the drive.
7035 		 * Do this by looking at medium_present here.
7036 		 */
7037 		if ((sval != 0) && medium_present) {
7038 			/* The start command from above failed */
7039 			rval = DDI_FAILURE;
7040 		} else {
7041 			/*
7042 			 * The start command from above succeeded
7043 			 * PM resume the devices now that we have
7044 			 * started the disks
7045 			 */
7046 			(void) sd_pm_state_change(un, level,
7047 			    SD_PM_STATE_CHANGE);
7048 
7049 			/*
7050 			 * Resume the watch thread since it was suspended
7051 			 * when the device went into low power mode.
7052 			 */
7053 			if (un->un_f_monitor_media_state) {
7054 				mutex_enter(SD_MUTEX(un));
7055 				if (un->un_f_watcht_stopped == TRUE) {
7056 					opaque_t temp_token;
7057 
7058 					un->un_f_watcht_stopped = FALSE;
7059 					mutex_exit(SD_MUTEX(un));
7060 					temp_token =
7061 					    sd_watch_request_submit(un);
7062 					mutex_enter(SD_MUTEX(un));
7063 					un->un_swr_token = temp_token;
7064 				}
7065 				mutex_exit(SD_MUTEX(un));
7066 			}
7067 		}
7068 	}
7069 
7070 	if (got_semaphore_here != 0) {
7071 		sema_v(&un->un_semoclose);
7072 	}
7073 	/*
7074 	 * On exit put the state back to it's original value
7075 	 * and broadcast to anyone waiting for the power
7076 	 * change completion.
7077 	 */
7078 	mutex_enter(SD_MUTEX(un));
7079 	un->un_state = state_before_pm;
7080 	cv_broadcast(&un->un_suspend_cv);
7081 	mutex_exit(SD_MUTEX(un));
7082 
7083 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7084 
7085 	sd_ssc_fini(ssc);
7086 	return (rval);
7087 
7088 sdpower_failed:
7089 
7090 	sd_ssc_fini(ssc);
7091 	return (DDI_FAILURE);
7092 }
7093 
7094 
7095 
7096 /*
7097  *    Function: sdattach
7098  *
7099  * Description: Driver's attach(9e) entry point function.
7100  *
7101  *   Arguments: devi - opaque device info handle
7102  *		cmd  - attach  type
7103  *
7104  * Return Code: DDI_SUCCESS
7105  *		DDI_FAILURE
7106  *
7107  *     Context: Kernel thread context
7108  */
7109 
7110 static int
7111 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7112 {
7113 	switch (cmd) {
7114 	case DDI_ATTACH:
7115 		return (sd_unit_attach(devi));
7116 	case DDI_RESUME:
7117 		return (sd_ddi_resume(devi));
7118 	default:
7119 		break;
7120 	}
7121 	return (DDI_FAILURE);
7122 }
7123 
7124 
7125 /*
7126  *    Function: sddetach
7127  *
7128  * Description: Driver's detach(9E) entry point function.
7129  *
7130  *   Arguments: devi - opaque device info handle
7131  *		cmd  - detach  type
7132  *
7133  * Return Code: DDI_SUCCESS
7134  *		DDI_FAILURE
7135  *
7136  *     Context: Kernel thread context
7137  */
7138 
7139 static int
7140 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7141 {
7142 	switch (cmd) {
7143 	case DDI_DETACH:
7144 		return (sd_unit_detach(devi));
7145 	case DDI_SUSPEND:
7146 		return (sd_ddi_suspend(devi));
7147 	default:
7148 		break;
7149 	}
7150 	return (DDI_FAILURE);
7151 }
7152 
7153 
7154 /*
7155  *     Function: sd_sync_with_callback
7156  *
7157  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7158  *		 state while the callback routine is active.
7159  *
7160  *    Arguments: un: softstate structure for the instance
7161  *
7162  *	Context: Kernel thread context
7163  */
7164 
7165 static void
7166 sd_sync_with_callback(struct sd_lun *un)
7167 {
7168 	ASSERT(un != NULL);
7169 
7170 	mutex_enter(SD_MUTEX(un));
7171 
7172 	ASSERT(un->un_in_callback >= 0);
7173 
7174 	while (un->un_in_callback > 0) {
7175 		mutex_exit(SD_MUTEX(un));
7176 		delay(2);
7177 		mutex_enter(SD_MUTEX(un));
7178 	}
7179 
7180 	mutex_exit(SD_MUTEX(un));
7181 }
7182 
7183 /*
7184  *    Function: sd_unit_attach
7185  *
7186  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7187  *		the soft state structure for the device and performs
7188  *		all necessary structure and device initializations.
7189  *
7190  *   Arguments: devi: the system's dev_info_t for the device.
7191  *
7192  * Return Code: DDI_SUCCESS if attach is successful.
7193  *		DDI_FAILURE if any part of the attach fails.
7194  *
7195  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7196  *		Kernel thread context only.  Can sleep.
7197  */
7198 
7199 static int
7200 sd_unit_attach(dev_info_t *devi)
7201 {
7202 	struct	scsi_device	*devp;
7203 	struct	sd_lun		*un;
7204 	char			*variantp;
7205 	char			name_str[48];
7206 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7207 	int	instance;
7208 	int	rval;
7209 	int	wc_enabled;
7210 	int	tgt;
7211 	uint64_t	capacity;
7212 	uint_t		lbasize = 0;
7213 	dev_info_t	*pdip = ddi_get_parent(devi);
7214 	int		offbyone = 0;
7215 	int		geom_label_valid = 0;
7216 	sd_ssc_t	*ssc;
7217 	int		status;
7218 	struct sd_fm_internal	*sfip = NULL;
7219 	int		max_xfer_size;
7220 
7221 	/*
7222 	 * Retrieve the target driver's private data area. This was set
7223 	 * up by the HBA.
7224 	 */
7225 	devp = ddi_get_driver_private(devi);
7226 
7227 	/*
7228 	 * Retrieve the target ID of the device.
7229 	 */
7230 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7231 	    SCSI_ADDR_PROP_TARGET, -1);
7232 
7233 	/*
7234 	 * Since we have no idea what state things were left in by the last
7235 	 * user of the device, set up some 'default' settings, ie. turn 'em
7236 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7237 	 * Do this before the scsi_probe, which sends an inquiry.
7238 	 * This is a fix for bug (4430280).
7239 	 * Of special importance is wide-xfer. The drive could have been left
7240 	 * in wide transfer mode by the last driver to communicate with it,
7241 	 * this includes us. If that's the case, and if the following is not
7242 	 * setup properly or we don't re-negotiate with the drive prior to
7243 	 * transferring data to/from the drive, it causes bus parity errors,
7244 	 * data overruns, and unexpected interrupts. This first occurred when
7245 	 * the fix for bug (4378686) was made.
7246 	 */
7247 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7248 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7249 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7250 
7251 	/*
7252 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7253 	 * on a target. Setting it per lun instance actually sets the
7254 	 * capability of this target, which affects those luns already
7255 	 * attached on the same target. So during attach, we can only disable
7256 	 * this capability only when no other lun has been attached on this
7257 	 * target. By doing this, we assume a target has the same tagged-qing
7258 	 * capability for every lun. The condition can be removed when HBA
7259 	 * is changed to support per lun based tagged-qing capability.
7260 	 */
7261 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7262 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7263 	}
7264 
7265 	/*
7266 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7267 	 * This call will allocate and fill in the scsi_inquiry structure
7268 	 * and point the sd_inq member of the scsi_device structure to it.
7269 	 * If the attach succeeds, then this memory will not be de-allocated
7270 	 * (via scsi_unprobe()) until the instance is detached.
7271 	 */
7272 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7273 		goto probe_failed;
7274 	}
7275 
7276 	/*
7277 	 * Check the device type as specified in the inquiry data and
7278 	 * claim it if it is of a type that we support.
7279 	 */
7280 	switch (devp->sd_inq->inq_dtype) {
7281 	case DTYPE_DIRECT:
7282 		break;
7283 	case DTYPE_RODIRECT:
7284 		break;
7285 	case DTYPE_OPTICAL:
7286 		break;
7287 	case DTYPE_NOTPRESENT:
7288 	default:
7289 		/* Unsupported device type; fail the attach. */
7290 		goto probe_failed;
7291 	}
7292 
7293 	/*
7294 	 * Allocate the soft state structure for this unit.
7295 	 *
7296 	 * We rely upon this memory being set to all zeroes by
7297 	 * ddi_soft_state_zalloc().  We assume that any member of the
7298 	 * soft state structure that is not explicitly initialized by
7299 	 * this routine will have a value of zero.
7300 	 */
7301 	instance = ddi_get_instance(devp->sd_dev);
7302 #ifndef XPV_HVM_DRIVER
7303 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7304 		goto probe_failed;
7305 	}
7306 #endif /* !XPV_HVM_DRIVER */
7307 
7308 	/*
7309 	 * Retrieve a pointer to the newly-allocated soft state.
7310 	 *
7311 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7312 	 * was successful, unless something has gone horribly wrong and the
7313 	 * ddi's soft state internals are corrupt (in which case it is
7314 	 * probably better to halt here than just fail the attach....)
7315 	 */
7316 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7317 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7318 		    instance);
7319 		/*NOTREACHED*/
7320 	}
7321 
7322 	/*
7323 	 * Link the back ptr of the driver soft state to the scsi_device
7324 	 * struct for this lun.
7325 	 * Save a pointer to the softstate in the driver-private area of
7326 	 * the scsi_device struct.
7327 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7328 	 * we first set un->un_sd below.
7329 	 */
7330 	un->un_sd = devp;
7331 	devp->sd_private = (opaque_t)un;
7332 
7333 	/*
7334 	 * The following must be after devp is stored in the soft state struct.
7335 	 */
7336 #ifdef SDDEBUG
7337 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7338 	    "%s_unit_attach: un:0x%p instance:%d\n",
7339 	    ddi_driver_name(devi), un, instance);
7340 #endif
7341 
7342 	/*
7343 	 * Set up the device type and node type (for the minor nodes).
7344 	 * By default we assume that the device can at least support the
7345 	 * Common Command Set. Call it a CD-ROM if it reports itself
7346 	 * as a RODIRECT device.
7347 	 */
7348 	switch (devp->sd_inq->inq_dtype) {
7349 	case DTYPE_RODIRECT:
7350 		un->un_node_type = DDI_NT_CD_CHAN;
7351 		un->un_ctype	 = CTYPE_CDROM;
7352 		break;
7353 	case DTYPE_OPTICAL:
7354 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7355 		un->un_ctype	 = CTYPE_ROD;
7356 		break;
7357 	default:
7358 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7359 		un->un_ctype	 = CTYPE_CCS;
7360 		break;
7361 	}
7362 
7363 	/*
7364 	 * Try to read the interconnect type from the HBA.
7365 	 *
7366 	 * Note: This driver is currently compiled as two binaries, a parallel
7367 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7368 	 * differences are determined at compile time. In the future a single
7369 	 * binary will be provided and the interconnect type will be used to
7370 	 * differentiate between fibre and parallel scsi behaviors. At that time
7371 	 * it will be necessary for all fibre channel HBAs to support this
7372 	 * property.
7373 	 *
7374 	 * set un_f_is_fiber to TRUE ( default fiber )
7375 	 */
7376 	un->un_f_is_fibre = TRUE;
7377 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7378 	case INTERCONNECT_SSA:
7379 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7380 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7381 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7382 		break;
7383 	case INTERCONNECT_PARALLEL:
7384 		un->un_f_is_fibre = FALSE;
7385 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7387 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7388 		break;
7389 	case INTERCONNECT_SAS:
7390 		un->un_f_is_fibre = FALSE;
7391 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7392 		un->un_node_type = DDI_NT_BLOCK_SAS;
7393 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7394 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7395 		break;
7396 	case INTERCONNECT_SATA:
7397 		un->un_f_is_fibre = FALSE;
7398 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7399 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7400 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7401 		break;
7402 	case INTERCONNECT_FIBRE:
7403 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7404 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7405 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7406 		break;
7407 	case INTERCONNECT_FABRIC:
7408 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7409 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7410 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7411 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7412 		break;
7413 	default:
7414 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7415 		/*
7416 		 * The HBA does not support the "interconnect-type" property
7417 		 * (or did not provide a recognized type).
7418 		 *
7419 		 * Note: This will be obsoleted when a single fibre channel
7420 		 * and parallel scsi driver is delivered. In the meantime the
7421 		 * interconnect type will be set to the platform default.If that
7422 		 * type is not parallel SCSI, it means that we should be
7423 		 * assuming "ssd" semantics. However, here this also means that
7424 		 * the FC HBA is not supporting the "interconnect-type" property
7425 		 * like we expect it to, so log this occurrence.
7426 		 */
7427 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7428 		if (!SD_IS_PARALLEL_SCSI(un)) {
7429 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7430 			    "sd_unit_attach: un:0x%p Assuming "
7431 			    "INTERCONNECT_FIBRE\n", un);
7432 		} else {
7433 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7434 			    "sd_unit_attach: un:0x%p Assuming "
7435 			    "INTERCONNECT_PARALLEL\n", un);
7436 			un->un_f_is_fibre = FALSE;
7437 		}
7438 #else
7439 		/*
7440 		 * Note: This source will be implemented when a single fibre
7441 		 * channel and parallel scsi driver is delivered. The default
7442 		 * will be to assume that if a device does not support the
7443 		 * "interconnect-type" property it is a parallel SCSI HBA and
7444 		 * we will set the interconnect type for parallel scsi.
7445 		 */
7446 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7447 		un->un_f_is_fibre = FALSE;
7448 #endif
7449 		break;
7450 	}
7451 
7452 	if (un->un_f_is_fibre == TRUE) {
7453 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7454 		    SCSI_VERSION_3) {
7455 			switch (un->un_interconnect_type) {
7456 			case SD_INTERCONNECT_FIBRE:
7457 			case SD_INTERCONNECT_SSA:
7458 				un->un_node_type = DDI_NT_BLOCK_WWN;
7459 				break;
7460 			default:
7461 				break;
7462 			}
7463 		}
7464 	}
7465 
7466 	/*
7467 	 * Initialize the Request Sense command for the target
7468 	 */
7469 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7470 		goto alloc_rqs_failed;
7471 	}
7472 
7473 	/*
7474 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7475 	 * with separate binary for sd and ssd.
7476 	 *
7477 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7478 	 * The hardcoded values will go away when Sparc uses 1 binary
7479 	 * for sd and ssd.  This hardcoded values need to match
7480 	 * SD_RETRY_COUNT in sddef.h
7481 	 * The value used is base on interconnect type.
7482 	 * fibre = 3, parallel = 5
7483 	 */
7484 #if defined(__i386) || defined(__amd64)
7485 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7486 #else
7487 	un->un_retry_count = SD_RETRY_COUNT;
7488 #endif
7489 
7490 	/*
7491 	 * Set the per disk retry count to the default number of retries
7492 	 * for disks and CDROMs. This value can be overridden by the
7493 	 * disk property list or an entry in sd.conf.
7494 	 */
7495 	un->un_notready_retry_count =
7496 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7497 	    : DISK_NOT_READY_RETRY_COUNT(un);
7498 
7499 	/*
7500 	 * Set the busy retry count to the default value of un_retry_count.
7501 	 * This can be overridden by entries in sd.conf or the device
7502 	 * config table.
7503 	 */
7504 	un->un_busy_retry_count = un->un_retry_count;
7505 
7506 	/*
7507 	 * Init the reset threshold for retries.  This number determines
7508 	 * how many retries must be performed before a reset can be issued
7509 	 * (for certain error conditions). This can be overridden by entries
7510 	 * in sd.conf or the device config table.
7511 	 */
7512 	un->un_reset_retry_count = (un->un_retry_count / 2);
7513 
7514 	/*
7515 	 * Set the victim_retry_count to the default un_retry_count
7516 	 */
7517 	un->un_victim_retry_count = (2 * un->un_retry_count);
7518 
7519 	/*
7520 	 * Set the reservation release timeout to the default value of
7521 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7522 	 * device config table.
7523 	 */
7524 	un->un_reserve_release_time = 5;
7525 
7526 	/*
7527 	 * Set up the default maximum transfer size. Note that this may
7528 	 * get updated later in the attach, when setting up default wide
7529 	 * operations for disks.
7530 	 */
7531 #if defined(__i386) || defined(__amd64)
7532 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7533 	un->un_partial_dma_supported = 1;
7534 #else
7535 	un->un_max_xfer_size = (uint_t)maxphys;
7536 #endif
7537 
7538 	/*
7539 	 * Get "allow bus device reset" property (defaults to "enabled" if
7540 	 * the property was not defined). This is to disable bus resets for
7541 	 * certain kinds of error recovery. Note: In the future when a run-time
7542 	 * fibre check is available the soft state flag should default to
7543 	 * enabled.
7544 	 */
7545 	if (un->un_f_is_fibre == TRUE) {
7546 		un->un_f_allow_bus_device_reset = TRUE;
7547 	} else {
7548 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7549 		    "allow-bus-device-reset", 1) != 0) {
7550 			un->un_f_allow_bus_device_reset = TRUE;
7551 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7552 			    "sd_unit_attach: un:0x%p Bus device reset "
7553 			    "enabled\n", un);
7554 		} else {
7555 			un->un_f_allow_bus_device_reset = FALSE;
7556 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7557 			    "sd_unit_attach: un:0x%p Bus device reset "
7558 			    "disabled\n", un);
7559 		}
7560 	}
7561 
7562 	/*
7563 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7564 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7565 	 *
7566 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7567 	 * property. The new "variant" property with a value of "atapi" has been
7568 	 * introduced so that future 'variants' of standard SCSI behavior (like
7569 	 * atapi) could be specified by the underlying HBA drivers by supplying
7570 	 * a new value for the "variant" property, instead of having to define a
7571 	 * new property.
7572 	 */
7573 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7574 		un->un_f_cfg_is_atapi = TRUE;
7575 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7576 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7577 	}
7578 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7579 	    &variantp) == DDI_PROP_SUCCESS) {
7580 		if (strcmp(variantp, "atapi") == 0) {
7581 			un->un_f_cfg_is_atapi = TRUE;
7582 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7583 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7584 		}
7585 		ddi_prop_free(variantp);
7586 	}
7587 
7588 	un->un_cmd_timeout	= SD_IO_TIME;
7589 
7590 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7591 
7592 	/* Info on current states, statuses, etc. (Updated frequently) */
7593 	un->un_state		= SD_STATE_NORMAL;
7594 	un->un_last_state	= SD_STATE_NORMAL;
7595 
7596 	/* Control & status info for command throttling */
7597 	un->un_throttle		= sd_max_throttle;
7598 	un->un_saved_throttle	= sd_max_throttle;
7599 	un->un_min_throttle	= sd_min_throttle;
7600 
7601 	if (un->un_f_is_fibre == TRUE) {
7602 		un->un_f_use_adaptive_throttle = TRUE;
7603 	} else {
7604 		un->un_f_use_adaptive_throttle = FALSE;
7605 	}
7606 
7607 	/* Removable media support. */
7608 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7609 	un->un_mediastate		= DKIO_NONE;
7610 	un->un_specified_mediastate	= DKIO_NONE;
7611 
7612 	/* CVs for suspend/resume (PM or DR) */
7613 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7614 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7615 
7616 	/* Power management support. */
7617 	un->un_power_level = SD_SPINDLE_UNINIT;
7618 
7619 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7620 	un->un_f_wcc_inprog = 0;
7621 
7622 	/*
7623 	 * The open/close semaphore is used to serialize threads executing
7624 	 * in the driver's open & close entry point routines for a given
7625 	 * instance.
7626 	 */
7627 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7628 
7629 	/*
7630 	 * The conf file entry and softstate variable is a forceful override,
7631 	 * meaning a non-zero value must be entered to change the default.
7632 	 */
7633 	un->un_f_disksort_disabled = FALSE;
7634 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7635 	un->un_f_enable_rmw = FALSE;
7636 
7637 	/*
7638 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7639 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7640 	 */
7641 	un->un_f_mmc_gesn_polling = TRUE;
7642 
7643 	/*
7644 	 * physical sector size defaults to DEV_BSIZE currently. We can
7645 	 * override this value via the driver configuration file so we must
7646 	 * set it before calling sd_read_unit_properties().
7647 	 */
7648 	un->un_phy_blocksize = DEV_BSIZE;
7649 
7650 	/*
7651 	 * Retrieve the properties from the static driver table or the driver
7652 	 * configuration file (.conf) for this unit and update the soft state
7653 	 * for the device as needed for the indicated properties.
7654 	 * Note: the property configuration needs to occur here as some of the
7655 	 * following routines may have dependencies on soft state flags set
7656 	 * as part of the driver property configuration.
7657 	 */
7658 	sd_read_unit_properties(un);
7659 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7660 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7661 
7662 	/*
7663 	 * Only if a device has "hotpluggable" property, it is
7664 	 * treated as hotpluggable device. Otherwise, it is
7665 	 * regarded as non-hotpluggable one.
7666 	 */
7667 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7668 	    -1) != -1) {
7669 		un->un_f_is_hotpluggable = TRUE;
7670 	}
7671 
7672 	/*
7673 	 * set unit's attributes(flags) according to "hotpluggable" and
7674 	 * RMB bit in INQUIRY data.
7675 	 */
7676 	sd_set_unit_attributes(un, devi);
7677 
7678 	/*
7679 	 * By default, we mark the capacity, lbasize, and geometry
7680 	 * as invalid. Only if we successfully read a valid capacity
7681 	 * will we update the un_blockcount and un_tgt_blocksize with the
7682 	 * valid values (the geometry will be validated later).
7683 	 */
7684 	un->un_f_blockcount_is_valid	= FALSE;
7685 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7686 
7687 	/*
7688 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7689 	 * otherwise.
7690 	 */
7691 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7692 	un->un_blockcount = 0;
7693 
7694 	/*
7695 	 * Set up the per-instance info needed to determine the correct
7696 	 * CDBs and other info for issuing commands to the target.
7697 	 */
7698 	sd_init_cdb_limits(un);
7699 
7700 	/*
7701 	 * Set up the IO chains to use, based upon the target type.
7702 	 */
7703 	if (un->un_f_non_devbsize_supported) {
7704 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7705 	} else {
7706 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7707 	}
7708 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7709 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7710 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7711 
7712 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7713 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7714 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7715 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7716 
7717 
7718 	if (ISCD(un)) {
7719 		un->un_additional_codes = sd_additional_codes;
7720 	} else {
7721 		un->un_additional_codes = NULL;
7722 	}
7723 
7724 	/*
7725 	 * Create the kstats here so they can be available for attach-time
7726 	 * routines that send commands to the unit (either polled or via
7727 	 * sd_send_scsi_cmd).
7728 	 *
7729 	 * Note: This is a critical sequence that needs to be maintained:
7730 	 *	1) Instantiate the kstats here, before any routines using the
7731 	 *	   iopath (i.e. sd_send_scsi_cmd).
7732 	 *	2) Instantiate and initialize the partition stats
7733 	 *	   (sd_set_pstats).
7734 	 *	3) Initialize the error stats (sd_set_errstats), following
7735 	 *	   sd_validate_geometry(),sd_register_devid(),
7736 	 *	   and sd_cache_control().
7737 	 */
7738 
7739 	un->un_stats = kstat_create(sd_label, instance,
7740 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7741 	if (un->un_stats != NULL) {
7742 		un->un_stats->ks_lock = SD_MUTEX(un);
7743 		kstat_install(un->un_stats);
7744 	}
7745 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7746 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7747 
7748 	sd_create_errstats(un, instance);
7749 	if (un->un_errstats == NULL) {
7750 		goto create_errstats_failed;
7751 	}
7752 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7753 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7754 
7755 	/*
7756 	 * The following if/else code was relocated here from below as part
7757 	 * of the fix for bug (4430280). However with the default setup added
7758 	 * on entry to this routine, it's no longer absolutely necessary for
7759 	 * this to be before the call to sd_spin_up_unit.
7760 	 */
7761 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7762 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7763 		    (devp->sd_inq->inq_ansi == 5)) &&
7764 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7765 
7766 		/*
7767 		 * If tagged queueing is supported by the target
7768 		 * and by the host adapter then we will enable it
7769 		 */
7770 		un->un_tagflags = 0;
7771 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7772 		    (un->un_f_arq_enabled == TRUE)) {
7773 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7774 			    1, 1) == 1) {
7775 				un->un_tagflags = FLAG_STAG;
7776 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7777 				    "sd_unit_attach: un:0x%p tag queueing "
7778 				    "enabled\n", un);
7779 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7780 			    "untagged-qing", 0) == 1) {
7781 				un->un_f_opt_queueing = TRUE;
7782 				un->un_saved_throttle = un->un_throttle =
7783 				    min(un->un_throttle, 3);
7784 			} else {
7785 				un->un_f_opt_queueing = FALSE;
7786 				un->un_saved_throttle = un->un_throttle = 1;
7787 			}
7788 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7789 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7790 			/* The Host Adapter supports internal queueing. */
7791 			un->un_f_opt_queueing = TRUE;
7792 			un->un_saved_throttle = un->un_throttle =
7793 			    min(un->un_throttle, 3);
7794 		} else {
7795 			un->un_f_opt_queueing = FALSE;
7796 			un->un_saved_throttle = un->un_throttle = 1;
7797 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7798 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7799 		}
7800 
7801 		/*
7802 		 * Enable large transfers for SATA/SAS drives
7803 		 */
7804 		if (SD_IS_SERIAL(un)) {
7805 			un->un_max_xfer_size =
7806 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7807 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7808 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7809 			    "sd_unit_attach: un:0x%p max transfer "
7810 			    "size=0x%x\n", un, un->un_max_xfer_size);
7811 
7812 		}
7813 
7814 		/* Setup or tear down default wide operations for disks */
7815 
7816 		/*
7817 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7818 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7819 		 * system and be set to different values. In the future this
7820 		 * code may need to be updated when the ssd module is
7821 		 * obsoleted and removed from the system. (4299588)
7822 		 */
7823 		if (SD_IS_PARALLEL_SCSI(un) &&
7824 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7825 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7826 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7827 			    1, 1) == 1) {
7828 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7829 				    "sd_unit_attach: un:0x%p Wide Transfer "
7830 				    "enabled\n", un);
7831 			}
7832 
7833 			/*
7834 			 * If tagged queuing has also been enabled, then
7835 			 * enable large xfers
7836 			 */
7837 			if (un->un_saved_throttle == sd_max_throttle) {
7838 				un->un_max_xfer_size =
7839 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7840 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7841 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7842 				    "sd_unit_attach: un:0x%p max transfer "
7843 				    "size=0x%x\n", un, un->un_max_xfer_size);
7844 			}
7845 		} else {
7846 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7847 			    0, 1) == 1) {
7848 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7849 				    "sd_unit_attach: un:0x%p "
7850 				    "Wide Transfer disabled\n", un);
7851 			}
7852 		}
7853 	} else {
7854 		un->un_tagflags = FLAG_STAG;
7855 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7856 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7857 	}
7858 
7859 	/*
7860 	 * If this target supports LUN reset, try to enable it.
7861 	 */
7862 	if (un->un_f_lun_reset_enabled) {
7863 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7864 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7865 			    "un:0x%p lun_reset capability set\n", un);
7866 		} else {
7867 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7868 			    "un:0x%p lun-reset capability not set\n", un);
7869 		}
7870 	}
7871 
7872 	/*
7873 	 * Adjust the maximum transfer size. This is to fix
7874 	 * the problem of partial DMA support on SPARC. Some
7875 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7876 	 * size, which requires partial DMA support on SPARC.
7877 	 * In the future the SPARC pci nexus driver may solve
7878 	 * the problem instead of this fix.
7879 	 */
7880 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7881 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7882 		/* We need DMA partial even on sparc to ensure sddump() works */
7883 		un->un_max_xfer_size = max_xfer_size;
7884 		if (un->un_partial_dma_supported == 0)
7885 			un->un_partial_dma_supported = 1;
7886 	}
7887 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7888 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7889 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7890 		    un->un_max_xfer_size) == 1) {
7891 			un->un_buf_breakup_supported = 1;
7892 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7893 			    "un:0x%p Buf breakup enabled\n", un);
7894 		}
7895 	}
7896 
7897 	/*
7898 	 * Set PKT_DMA_PARTIAL flag.
7899 	 */
7900 	if (un->un_partial_dma_supported == 1) {
7901 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7902 	} else {
7903 		un->un_pkt_flags = 0;
7904 	}
7905 
7906 	/* Initialize sd_ssc_t for internal uscsi commands */
7907 	ssc = sd_ssc_init(un);
7908 	scsi_fm_init(devp);
7909 
7910 	/*
7911 	 * Allocate memory for SCSI FMA stuffs.
7912 	 */
7913 	un->un_fm_private =
7914 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7915 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7916 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7917 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7918 	sfip->fm_ssc.ssc_un = un;
7919 
7920 	if (ISCD(un) ||
7921 	    un->un_f_has_removable_media ||
7922 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7923 		/*
7924 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7925 		 * Their log are unchanged.
7926 		 */
7927 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7928 	} else {
7929 		/*
7930 		 * If enter here, it should be non-CDROM and FM-capable
7931 		 * device, and it will not keep the old scsi_log as before
7932 		 * in /var/adm/messages. However, the property
7933 		 * "fm-scsi-log" will control whether the FM telemetry will
7934 		 * be logged in /var/adm/messages.
7935 		 */
7936 		int fm_scsi_log;
7937 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7938 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7939 
7940 		if (fm_scsi_log)
7941 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7942 		else
7943 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7944 	}
7945 
7946 	/*
7947 	 * At this point in the attach, we have enough info in the
7948 	 * soft state to be able to issue commands to the target.
7949 	 *
7950 	 * All command paths used below MUST issue their commands as
7951 	 * SD_PATH_DIRECT. This is important as intermediate layers
7952 	 * are not all initialized yet (such as PM).
7953 	 */
7954 
7955 	/*
7956 	 * Send a TEST UNIT READY command to the device. This should clear
7957 	 * any outstanding UNIT ATTENTION that may be present.
7958 	 *
7959 	 * Note: Don't check for success, just track if there is a reservation,
7960 	 * this is a throw away command to clear any unit attentions.
7961 	 *
7962 	 * Note: This MUST be the first command issued to the target during
7963 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7964 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7965 	 * with attempts at spinning up a device with no media.
7966 	 */
7967 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7968 	if (status != 0) {
7969 		if (status == EACCES)
7970 			reservation_flag = SD_TARGET_IS_RESERVED;
7971 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7972 	}
7973 
7974 	/*
7975 	 * If the device is NOT a removable media device, attempt to spin
7976 	 * it up (using the START_STOP_UNIT command) and read its capacity
7977 	 * (using the READ CAPACITY command).  Note, however, that either
7978 	 * of these could fail and in some cases we would continue with
7979 	 * the attach despite the failure (see below).
7980 	 */
7981 	if (un->un_f_descr_format_supported) {
7982 
7983 		switch (sd_spin_up_unit(ssc)) {
7984 		case 0:
7985 			/*
7986 			 * Spin-up was successful; now try to read the
7987 			 * capacity.  If successful then save the results
7988 			 * and mark the capacity & lbasize as valid.
7989 			 */
7990 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7991 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7992 
7993 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7994 			    &lbasize, SD_PATH_DIRECT);
7995 
7996 			switch (status) {
7997 			case 0: {
7998 				if (capacity > DK_MAX_BLOCKS) {
7999 #ifdef _LP64
8000 					if ((capacity + 1) >
8001 					    SD_GROUP1_MAX_ADDRESS) {
8002 						/*
8003 						 * Enable descriptor format
8004 						 * sense data so that we can
8005 						 * get 64 bit sense data
8006 						 * fields.
8007 						 */
8008 						sd_enable_descr_sense(ssc);
8009 					}
8010 #else
8011 					/* 32-bit kernels can't handle this */
8012 					scsi_log(SD_DEVINFO(un),
8013 					    sd_label, CE_WARN,
8014 					    "disk has %llu blocks, which "
8015 					    "is too large for a 32-bit "
8016 					    "kernel", capacity);
8017 
8018 #if defined(__i386) || defined(__amd64)
8019 					/*
8020 					 * 1TB disk was treated as (1T - 512)B
8021 					 * in the past, so that it might have
8022 					 * valid VTOC and solaris partitions,
8023 					 * we have to allow it to continue to
8024 					 * work.
8025 					 */
8026 					if (capacity -1 > DK_MAX_BLOCKS)
8027 #endif
8028 					goto spinup_failed;
8029 #endif
8030 				}
8031 
8032 				/*
8033 				 * Here it's not necessary to check the case:
8034 				 * the capacity of the device is bigger than
8035 				 * what the max hba cdb can support. Because
8036 				 * sd_send_scsi_READ_CAPACITY will retrieve
8037 				 * the capacity by sending USCSI command, which
8038 				 * is constrained by the max hba cdb. Actually,
8039 				 * sd_send_scsi_READ_CAPACITY will return
8040 				 * EINVAL when using bigger cdb than required
8041 				 * cdb length. Will handle this case in
8042 				 * "case EINVAL".
8043 				 */
8044 
8045 				/*
8046 				 * The following relies on
8047 				 * sd_send_scsi_READ_CAPACITY never
8048 				 * returning 0 for capacity and/or lbasize.
8049 				 */
8050 				sd_update_block_info(un, lbasize, capacity);
8051 
8052 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8053 				    "sd_unit_attach: un:0x%p capacity = %ld "
8054 				    "blocks; lbasize= %ld.\n", un,
8055 				    un->un_blockcount, un->un_tgt_blocksize);
8056 
8057 				break;
8058 			}
8059 			case EINVAL:
8060 				/*
8061 				 * In the case where the max-cdb-length property
8062 				 * is smaller than the required CDB length for
8063 				 * a SCSI device, a target driver can fail to
8064 				 * attach to that device.
8065 				 */
8066 				scsi_log(SD_DEVINFO(un),
8067 				    sd_label, CE_WARN,
8068 				    "disk capacity is too large "
8069 				    "for current cdb length");
8070 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8071 
8072 				goto spinup_failed;
8073 			case EACCES:
8074 				/*
8075 				 * Should never get here if the spin-up
8076 				 * succeeded, but code it in anyway.
8077 				 * From here, just continue with the attach...
8078 				 */
8079 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8080 				    "sd_unit_attach: un:0x%p "
8081 				    "sd_send_scsi_READ_CAPACITY "
8082 				    "returned reservation conflict\n", un);
8083 				reservation_flag = SD_TARGET_IS_RESERVED;
8084 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8085 				break;
8086 			default:
8087 				/*
8088 				 * Likewise, should never get here if the
8089 				 * spin-up succeeded. Just continue with
8090 				 * the attach...
8091 				 */
8092 				if (status == EIO)
8093 					sd_ssc_assessment(ssc,
8094 					    SD_FMT_STATUS_CHECK);
8095 				else
8096 					sd_ssc_assessment(ssc,
8097 					    SD_FMT_IGNORE);
8098 				break;
8099 			}
8100 			break;
8101 		case EACCES:
8102 			/*
8103 			 * Device is reserved by another host.  In this case
8104 			 * we could not spin it up or read the capacity, but
8105 			 * we continue with the attach anyway.
8106 			 */
8107 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8108 			    "sd_unit_attach: un:0x%p spin-up reservation "
8109 			    "conflict.\n", un);
8110 			reservation_flag = SD_TARGET_IS_RESERVED;
8111 			break;
8112 		default:
8113 			/* Fail the attach if the spin-up failed. */
8114 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8115 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8116 			goto spinup_failed;
8117 		}
8118 
8119 	}
8120 
8121 	/*
8122 	 * Check to see if this is a MMC drive
8123 	 */
8124 	if (ISCD(un)) {
8125 		sd_set_mmc_caps(ssc);
8126 	}
8127 
8128 	/*
8129 	 * Add a zero-length attribute to tell the world we support
8130 	 * kernel ioctls (for layered drivers)
8131 	 */
8132 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8133 	    DDI_KERNEL_IOCTL, NULL, 0);
8134 
8135 	/*
8136 	 * Add a boolean property to tell the world we support
8137 	 * the B_FAILFAST flag (for layered drivers)
8138 	 */
8139 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8140 	    "ddi-failfast-supported", NULL, 0);
8141 
8142 	/*
8143 	 * Initialize power management
8144 	 */
8145 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8146 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8147 	sd_setup_pm(ssc, devi);
8148 	if (un->un_f_pm_is_enabled == FALSE) {
8149 		/*
8150 		 * For performance, point to a jump table that does
8151 		 * not include pm.
8152 		 * The direct and priority chains don't change with PM.
8153 		 *
8154 		 * Note: this is currently done based on individual device
8155 		 * capabilities. When an interface for determining system
8156 		 * power enabled state becomes available, or when additional
8157 		 * layers are added to the command chain, these values will
8158 		 * have to be re-evaluated for correctness.
8159 		 */
8160 		if (un->un_f_non_devbsize_supported) {
8161 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8162 		} else {
8163 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8164 		}
8165 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8166 	}
8167 
8168 	/*
8169 	 * This property is set to 0 by HA software to avoid retries
8170 	 * on a reserved disk. (The preferred property name is
8171 	 * "retry-on-reservation-conflict") (1189689)
8172 	 *
8173 	 * Note: The use of a global here can have unintended consequences. A
8174 	 * per instance variable is preferable to match the capabilities of
8175 	 * different underlying hba's (4402600)
8176 	 */
8177 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8178 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8179 	    sd_retry_on_reservation_conflict);
8180 	if (sd_retry_on_reservation_conflict != 0) {
8181 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8182 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8183 		    sd_retry_on_reservation_conflict);
8184 	}
8185 
8186 	/* Set up options for QFULL handling. */
8187 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8188 	    "qfull-retries", -1)) != -1) {
8189 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8190 		    rval, 1);
8191 	}
8192 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8193 	    "qfull-retry-interval", -1)) != -1) {
8194 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8195 		    rval, 1);
8196 	}
8197 
8198 	/*
8199 	 * This just prints a message that announces the existence of the
8200 	 * device. The message is always printed in the system logfile, but
8201 	 * only appears on the console if the system is booted with the
8202 	 * -v (verbose) argument.
8203 	 */
8204 	ddi_report_dev(devi);
8205 
8206 	un->un_mediastate = DKIO_NONE;
8207 
8208 	/*
8209 	 * Check if this is a SSD(Solid State Drive).
8210 	 */
8211 	sd_check_solid_state(ssc);
8212 
8213 	/*
8214 	 * Check whether the drive is in emulation mode.
8215 	 */
8216 	sd_check_emulation_mode(ssc);
8217 
8218 	cmlb_alloc_handle(&un->un_cmlbhandle);
8219 
8220 #if defined(__i386) || defined(__amd64)
8221 	/*
8222 	 * On x86, compensate for off-by-1 legacy error
8223 	 */
8224 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8225 	    (lbasize == un->un_sys_blocksize))
8226 		offbyone = CMLB_OFF_BY_ONE;
8227 #endif
8228 
8229 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8230 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8231 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8232 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8233 	    (void *)SD_PATH_DIRECT) != 0) {
8234 		goto cmlb_attach_failed;
8235 	}
8236 
8237 
8238 	/*
8239 	 * Read and validate the device's geometry (ie, disk label)
8240 	 * A new unformatted drive will not have a valid geometry, but
8241 	 * the driver needs to successfully attach to this device so
8242 	 * the drive can be formatted via ioctls.
8243 	 */
8244 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8245 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8246 
8247 	mutex_enter(SD_MUTEX(un));
8248 
8249 	/*
8250 	 * Read and initialize the devid for the unit.
8251 	 */
8252 	if (un->un_f_devid_supported) {
8253 		sd_register_devid(ssc, devi, reservation_flag);
8254 	}
8255 	mutex_exit(SD_MUTEX(un));
8256 
8257 #if (defined(__fibre))
8258 	/*
8259 	 * Register callbacks for fibre only.  You can't do this solely
8260 	 * on the basis of the devid_type because this is hba specific.
8261 	 * We need to query our hba capabilities to find out whether to
8262 	 * register or not.
8263 	 */
8264 	if (un->un_f_is_fibre) {
8265 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8266 			sd_init_event_callbacks(un);
8267 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8268 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8269 			    un);
8270 		}
8271 	}
8272 #endif
8273 
8274 	if (un->un_f_opt_disable_cache == TRUE) {
8275 		/*
8276 		 * Disable both read cache and write cache.  This is
8277 		 * the historic behavior of the keywords in the config file.
8278 		 */
8279 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8280 		    0) {
8281 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8282 			    "sd_unit_attach: un:0x%p Could not disable "
8283 			    "caching", un);
8284 			goto devid_failed;
8285 		}
8286 	}
8287 
8288 	/*
8289 	 * Check the value of the WCE bit now and
8290 	 * set un_f_write_cache_enabled accordingly.
8291 	 */
8292 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8293 	mutex_enter(SD_MUTEX(un));
8294 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8295 	mutex_exit(SD_MUTEX(un));
8296 
8297 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8298 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8299 	    un->un_f_enable_rmw) {
8300 		if (!(un->un_wm_cache)) {
8301 			(void) snprintf(name_str, sizeof (name_str),
8302 			    "%s%d_cache",
8303 			    ddi_driver_name(SD_DEVINFO(un)),
8304 			    ddi_get_instance(SD_DEVINFO(un)));
8305 			un->un_wm_cache = kmem_cache_create(
8306 			    name_str, sizeof (struct sd_w_map),
8307 			    8, sd_wm_cache_constructor,
8308 			    sd_wm_cache_destructor, NULL,
8309 			    (void *)un, NULL, 0);
8310 			if (!(un->un_wm_cache)) {
8311 				goto wm_cache_failed;
8312 			}
8313 		}
8314 	}
8315 
8316 	/*
8317 	 * Check the value of the NV_SUP bit and set
8318 	 * un_f_suppress_cache_flush accordingly.
8319 	 */
8320 	sd_get_nv_sup(ssc);
8321 
8322 	/*
8323 	 * Find out what type of reservation this disk supports.
8324 	 */
8325 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8326 
8327 	switch (status) {
8328 	case 0:
8329 		/*
8330 		 * SCSI-3 reservations are supported.
8331 		 */
8332 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8333 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8334 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8335 		break;
8336 	case ENOTSUP:
8337 		/*
8338 		 * The PERSISTENT RESERVE IN command would not be recognized by
8339 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8340 		 */
8341 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8342 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8343 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8344 
8345 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8346 		break;
8347 	default:
8348 		/*
8349 		 * default to SCSI-3 reservations
8350 		 */
8351 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8352 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8353 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8354 
8355 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8356 		break;
8357 	}
8358 
8359 	/*
8360 	 * Set the pstat and error stat values here, so data obtained during the
8361 	 * previous attach-time routines is available.
8362 	 *
8363 	 * Note: This is a critical sequence that needs to be maintained:
8364 	 *	1) Instantiate the kstats before any routines using the iopath
8365 	 *	   (i.e. sd_send_scsi_cmd).
8366 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8367 	 *	   stats (sd_set_pstats)here, following
8368 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8369 	 *	   sd_cache_control().
8370 	 */
8371 
8372 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8373 		sd_set_pstats(un);
8374 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8375 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8376 	}
8377 
8378 	sd_set_errstats(un);
8379 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8380 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8381 
8382 
8383 	/*
8384 	 * After successfully attaching an instance, we record the information
8385 	 * of how many luns have been attached on the relative target and
8386 	 * controller for parallel SCSI. This information is used when sd tries
8387 	 * to set the tagged queuing capability in HBA.
8388 	 */
8389 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8390 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8391 	}
8392 
8393 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8394 	    "sd_unit_attach: un:0x%p exit success\n", un);
8395 
8396 	/* Uninitialize sd_ssc_t pointer */
8397 	sd_ssc_fini(ssc);
8398 
8399 	return (DDI_SUCCESS);
8400 
8401 	/*
8402 	 * An error occurred during the attach; clean up & return failure.
8403 	 */
8404 wm_cache_failed:
8405 devid_failed:
8406 
8407 setup_pm_failed:
8408 	ddi_remove_minor_node(devi, NULL);
8409 
8410 cmlb_attach_failed:
8411 	/*
8412 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8413 	 */
8414 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8415 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8416 
8417 	/*
8418 	 * Refer to the comments of setting tagged-qing in the beginning of
8419 	 * sd_unit_attach. We can only disable tagged queuing when there is
8420 	 * no lun attached on the target.
8421 	 */
8422 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8423 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8424 	}
8425 
8426 	if (un->un_f_is_fibre == FALSE) {
8427 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8428 	}
8429 
8430 spinup_failed:
8431 
8432 	/* Uninitialize sd_ssc_t pointer */
8433 	sd_ssc_fini(ssc);
8434 
8435 	mutex_enter(SD_MUTEX(un));
8436 
8437 	/* Deallocate SCSI FMA memory spaces */
8438 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8439 
8440 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8441 	if (un->un_direct_priority_timeid != NULL) {
8442 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8443 		un->un_direct_priority_timeid = NULL;
8444 		mutex_exit(SD_MUTEX(un));
8445 		(void) untimeout(temp_id);
8446 		mutex_enter(SD_MUTEX(un));
8447 	}
8448 
8449 	/* Cancel any pending start/stop timeouts */
8450 	if (un->un_startstop_timeid != NULL) {
8451 		timeout_id_t temp_id = un->un_startstop_timeid;
8452 		un->un_startstop_timeid = NULL;
8453 		mutex_exit(SD_MUTEX(un));
8454 		(void) untimeout(temp_id);
8455 		mutex_enter(SD_MUTEX(un));
8456 	}
8457 
8458 	/* Cancel any pending reset-throttle timeouts */
8459 	if (un->un_reset_throttle_timeid != NULL) {
8460 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8461 		un->un_reset_throttle_timeid = NULL;
8462 		mutex_exit(SD_MUTEX(un));
8463 		(void) untimeout(temp_id);
8464 		mutex_enter(SD_MUTEX(un));
8465 	}
8466 
8467 	/* Cancel rmw warning message timeouts */
8468 	if (un->un_rmw_msg_timeid != NULL) {
8469 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8470 		un->un_rmw_msg_timeid = NULL;
8471 		mutex_exit(SD_MUTEX(un));
8472 		(void) untimeout(temp_id);
8473 		mutex_enter(SD_MUTEX(un));
8474 	}
8475 
8476 	/* Cancel any pending retry timeouts */
8477 	if (un->un_retry_timeid != NULL) {
8478 		timeout_id_t temp_id = un->un_retry_timeid;
8479 		un->un_retry_timeid = NULL;
8480 		mutex_exit(SD_MUTEX(un));
8481 		(void) untimeout(temp_id);
8482 		mutex_enter(SD_MUTEX(un));
8483 	}
8484 
8485 	/* Cancel any pending delayed cv broadcast timeouts */
8486 	if (un->un_dcvb_timeid != NULL) {
8487 		timeout_id_t temp_id = un->un_dcvb_timeid;
8488 		un->un_dcvb_timeid = NULL;
8489 		mutex_exit(SD_MUTEX(un));
8490 		(void) untimeout(temp_id);
8491 		mutex_enter(SD_MUTEX(un));
8492 	}
8493 
8494 	mutex_exit(SD_MUTEX(un));
8495 
8496 	/* There should not be any in-progress I/O so ASSERT this check */
8497 	ASSERT(un->un_ncmds_in_transport == 0);
8498 	ASSERT(un->un_ncmds_in_driver == 0);
8499 
8500 	/* Do not free the softstate if the callback routine is active */
8501 	sd_sync_with_callback(un);
8502 
8503 	/*
8504 	 * Partition stats apparently are not used with removables. These would
8505 	 * not have been created during attach, so no need to clean them up...
8506 	 */
8507 	if (un->un_errstats != NULL) {
8508 		kstat_delete(un->un_errstats);
8509 		un->un_errstats = NULL;
8510 	}
8511 
8512 create_errstats_failed:
8513 
8514 	if (un->un_stats != NULL) {
8515 		kstat_delete(un->un_stats);
8516 		un->un_stats = NULL;
8517 	}
8518 
8519 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8520 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8521 
8522 	ddi_prop_remove_all(devi);
8523 	sema_destroy(&un->un_semoclose);
8524 	cv_destroy(&un->un_state_cv);
8525 
8526 getrbuf_failed:
8527 
8528 	sd_free_rqs(un);
8529 
8530 alloc_rqs_failed:
8531 
8532 	devp->sd_private = NULL;
8533 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8534 
8535 get_softstate_failed:
8536 	/*
8537 	 * Note: the man pages are unclear as to whether or not doing a
8538 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8539 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8540 	 * ddi_get_soft_state() fails.  The implication seems to be
8541 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8542 	 */
8543 #ifndef XPV_HVM_DRIVER
8544 	ddi_soft_state_free(sd_state, instance);
8545 #endif /* !XPV_HVM_DRIVER */
8546 
8547 probe_failed:
8548 	scsi_unprobe(devp);
8549 
8550 	return (DDI_FAILURE);
8551 }
8552 
8553 
8554 /*
8555  *    Function: sd_unit_detach
8556  *
8557  * Description: Performs DDI_DETACH processing for sddetach().
8558  *
8559  * Return Code: DDI_SUCCESS
8560  *		DDI_FAILURE
8561  *
8562  *     Context: Kernel thread context
8563  */
8564 
8565 static int
8566 sd_unit_detach(dev_info_t *devi)
8567 {
8568 	struct scsi_device	*devp;
8569 	struct sd_lun		*un;
8570 	int			i;
8571 	int			tgt;
8572 	dev_t			dev;
8573 	dev_info_t		*pdip = ddi_get_parent(devi);
8574 #ifndef XPV_HVM_DRIVER
8575 	int			instance = ddi_get_instance(devi);
8576 #endif /* !XPV_HVM_DRIVER */
8577 
8578 	mutex_enter(&sd_detach_mutex);
8579 
8580 	/*
8581 	 * Fail the detach for any of the following:
8582 	 *  - Unable to get the sd_lun struct for the instance
8583 	 *  - A layered driver has an outstanding open on the instance
8584 	 *  - Another thread is already detaching this instance
8585 	 *  - Another thread is currently performing an open
8586 	 */
8587 	devp = ddi_get_driver_private(devi);
8588 	if ((devp == NULL) ||
8589 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8590 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8591 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8592 		mutex_exit(&sd_detach_mutex);
8593 		return (DDI_FAILURE);
8594 	}
8595 
8596 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8597 
8598 	/*
8599 	 * Mark this instance as currently in a detach, to inhibit any
8600 	 * opens from a layered driver.
8601 	 */
8602 	un->un_detach_count++;
8603 	mutex_exit(&sd_detach_mutex);
8604 
8605 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8606 	    SCSI_ADDR_PROP_TARGET, -1);
8607 
8608 	dev = sd_make_device(SD_DEVINFO(un));
8609 
8610 #ifndef lint
8611 	_NOTE(COMPETING_THREADS_NOW);
8612 #endif
8613 
8614 	mutex_enter(SD_MUTEX(un));
8615 
8616 	/*
8617 	 * Fail the detach if there are any outstanding layered
8618 	 * opens on this device.
8619 	 */
8620 	for (i = 0; i < NDKMAP; i++) {
8621 		if (un->un_ocmap.lyropen[i] != 0) {
8622 			goto err_notclosed;
8623 		}
8624 	}
8625 
8626 	/*
8627 	 * Verify there are NO outstanding commands issued to this device.
8628 	 * ie, un_ncmds_in_transport == 0.
8629 	 * It's possible to have outstanding commands through the physio
8630 	 * code path, even though everything's closed.
8631 	 */
8632 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8633 	    (un->un_direct_priority_timeid != NULL) ||
8634 	    (un->un_state == SD_STATE_RWAIT)) {
8635 		mutex_exit(SD_MUTEX(un));
8636 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8637 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8638 		goto err_stillbusy;
8639 	}
8640 
8641 	/*
8642 	 * If we have the device reserved, release the reservation.
8643 	 */
8644 	if ((un->un_resvd_status & SD_RESERVE) &&
8645 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8646 		mutex_exit(SD_MUTEX(un));
8647 		/*
8648 		 * Note: sd_reserve_release sends a command to the device
8649 		 * via the sd_ioctlcmd() path, and can sleep.
8650 		 */
8651 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8652 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8653 			    "sd_dr_detach: Cannot release reservation \n");
8654 		}
8655 	} else {
8656 		mutex_exit(SD_MUTEX(un));
8657 	}
8658 
8659 	/*
8660 	 * Untimeout any reserve recover, throttle reset, restart unit
8661 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8662 	 * from getting nulled by their callback functions.
8663 	 */
8664 	mutex_enter(SD_MUTEX(un));
8665 	if (un->un_resvd_timeid != NULL) {
8666 		timeout_id_t temp_id = un->un_resvd_timeid;
8667 		un->un_resvd_timeid = NULL;
8668 		mutex_exit(SD_MUTEX(un));
8669 		(void) untimeout(temp_id);
8670 		mutex_enter(SD_MUTEX(un));
8671 	}
8672 
8673 	if (un->un_reset_throttle_timeid != NULL) {
8674 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8675 		un->un_reset_throttle_timeid = NULL;
8676 		mutex_exit(SD_MUTEX(un));
8677 		(void) untimeout(temp_id);
8678 		mutex_enter(SD_MUTEX(un));
8679 	}
8680 
8681 	if (un->un_startstop_timeid != NULL) {
8682 		timeout_id_t temp_id = un->un_startstop_timeid;
8683 		un->un_startstop_timeid = NULL;
8684 		mutex_exit(SD_MUTEX(un));
8685 		(void) untimeout(temp_id);
8686 		mutex_enter(SD_MUTEX(un));
8687 	}
8688 
8689 	if (un->un_rmw_msg_timeid != NULL) {
8690 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8691 		un->un_rmw_msg_timeid = NULL;
8692 		mutex_exit(SD_MUTEX(un));
8693 		(void) untimeout(temp_id);
8694 		mutex_enter(SD_MUTEX(un));
8695 	}
8696 
8697 	if (un->un_dcvb_timeid != NULL) {
8698 		timeout_id_t temp_id = un->un_dcvb_timeid;
8699 		un->un_dcvb_timeid = NULL;
8700 		mutex_exit(SD_MUTEX(un));
8701 		(void) untimeout(temp_id);
8702 	} else {
8703 		mutex_exit(SD_MUTEX(un));
8704 	}
8705 
8706 	/* Remove any pending reservation reclaim requests for this device */
8707 	sd_rmv_resv_reclaim_req(dev);
8708 
8709 	mutex_enter(SD_MUTEX(un));
8710 
8711 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8712 	if (un->un_direct_priority_timeid != NULL) {
8713 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8714 		un->un_direct_priority_timeid = NULL;
8715 		mutex_exit(SD_MUTEX(un));
8716 		(void) untimeout(temp_id);
8717 		mutex_enter(SD_MUTEX(un));
8718 	}
8719 
8720 	/* Cancel any active multi-host disk watch thread requests */
8721 	if (un->un_mhd_token != NULL) {
8722 		mutex_exit(SD_MUTEX(un));
8723 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8724 		if (scsi_watch_request_terminate(un->un_mhd_token,
8725 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8726 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8727 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8728 			/*
8729 			 * Note: We are returning here after having removed
8730 			 * some driver timeouts above. This is consistent with
8731 			 * the legacy implementation but perhaps the watch
8732 			 * terminate call should be made with the wait flag set.
8733 			 */
8734 			goto err_stillbusy;
8735 		}
8736 		mutex_enter(SD_MUTEX(un));
8737 		un->un_mhd_token = NULL;
8738 	}
8739 
8740 	if (un->un_swr_token != NULL) {
8741 		mutex_exit(SD_MUTEX(un));
8742 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8743 		if (scsi_watch_request_terminate(un->un_swr_token,
8744 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8745 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8746 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8747 			/*
8748 			 * Note: We are returning here after having removed
8749 			 * some driver timeouts above. This is consistent with
8750 			 * the legacy implementation but perhaps the watch
8751 			 * terminate call should be made with the wait flag set.
8752 			 */
8753 			goto err_stillbusy;
8754 		}
8755 		mutex_enter(SD_MUTEX(un));
8756 		un->un_swr_token = NULL;
8757 	}
8758 
8759 	mutex_exit(SD_MUTEX(un));
8760 
8761 	/*
8762 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8763 	 * if we have not registered one.
8764 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8765 	 */
8766 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8767 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8768 
8769 	/*
8770 	 * protect the timeout pointers from getting nulled by
8771 	 * their callback functions during the cancellation process.
8772 	 * In such a scenario untimeout can be invoked with a null value.
8773 	 */
8774 	_NOTE(NO_COMPETING_THREADS_NOW);
8775 
8776 	mutex_enter(&un->un_pm_mutex);
8777 	if (un->un_pm_idle_timeid != NULL) {
8778 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8779 		un->un_pm_idle_timeid = NULL;
8780 		mutex_exit(&un->un_pm_mutex);
8781 
8782 		/*
8783 		 * Timeout is active; cancel it.
8784 		 * Note that it'll never be active on a device
8785 		 * that does not support PM therefore we don't
8786 		 * have to check before calling pm_idle_component.
8787 		 */
8788 		(void) untimeout(temp_id);
8789 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8790 		mutex_enter(&un->un_pm_mutex);
8791 	}
8792 
8793 	/*
8794 	 * Check whether there is already a timeout scheduled for power
8795 	 * management. If yes then don't lower the power here, that's.
8796 	 * the timeout handler's job.
8797 	 */
8798 	if (un->un_pm_timeid != NULL) {
8799 		timeout_id_t temp_id = un->un_pm_timeid;
8800 		un->un_pm_timeid = NULL;
8801 		mutex_exit(&un->un_pm_mutex);
8802 		/*
8803 		 * Timeout is active; cancel it.
8804 		 * Note that it'll never be active on a device
8805 		 * that does not support PM therefore we don't
8806 		 * have to check before calling pm_idle_component.
8807 		 */
8808 		(void) untimeout(temp_id);
8809 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8810 
8811 	} else {
8812 		mutex_exit(&un->un_pm_mutex);
8813 		if ((un->un_f_pm_is_enabled == TRUE) &&
8814 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8815 		    != DDI_SUCCESS)) {
8816 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8817 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8818 			/*
8819 			 * Fix for bug: 4297749, item # 13
8820 			 * The above test now includes a check to see if PM is
8821 			 * supported by this device before call
8822 			 * pm_lower_power().
8823 			 * Note, the following is not dead code. The call to
8824 			 * pm_lower_power above will generate a call back into
8825 			 * our sdpower routine which might result in a timeout
8826 			 * handler getting activated. Therefore the following
8827 			 * code is valid and necessary.
8828 			 */
8829 			mutex_enter(&un->un_pm_mutex);
8830 			if (un->un_pm_timeid != NULL) {
8831 				timeout_id_t temp_id = un->un_pm_timeid;
8832 				un->un_pm_timeid = NULL;
8833 				mutex_exit(&un->un_pm_mutex);
8834 				(void) untimeout(temp_id);
8835 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8836 			} else {
8837 				mutex_exit(&un->un_pm_mutex);
8838 			}
8839 		}
8840 	}
8841 
8842 	/*
8843 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8844 	 * Relocated here from above to be after the call to
8845 	 * pm_lower_power, which was getting errors.
8846 	 */
8847 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8848 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8849 
8850 	/*
8851 	 * Currently, tagged queuing is supported per target based by HBA.
8852 	 * Setting this per lun instance actually sets the capability of this
8853 	 * target in HBA, which affects those luns already attached on the
8854 	 * same target. So during detach, we can only disable this capability
8855 	 * only when this is the only lun left on this target. By doing
8856 	 * this, we assume a target has the same tagged queuing capability
8857 	 * for every lun. The condition can be removed when HBA is changed to
8858 	 * support per lun based tagged queuing capability.
8859 	 */
8860 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8861 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8862 	}
8863 
8864 	if (un->un_f_is_fibre == FALSE) {
8865 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8866 	}
8867 
8868 	/*
8869 	 * Remove any event callbacks, fibre only
8870 	 */
8871 	if (un->un_f_is_fibre == TRUE) {
8872 		if ((un->un_insert_event != NULL) &&
8873 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8874 		    DDI_SUCCESS)) {
8875 			/*
8876 			 * Note: We are returning here after having done
8877 			 * substantial cleanup above. This is consistent
8878 			 * with the legacy implementation but this may not
8879 			 * be the right thing to do.
8880 			 */
8881 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8882 			    "sd_dr_detach: Cannot cancel insert event\n");
8883 			goto err_remove_event;
8884 		}
8885 		un->un_insert_event = NULL;
8886 
8887 		if ((un->un_remove_event != NULL) &&
8888 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8889 		    DDI_SUCCESS)) {
8890 			/*
8891 			 * Note: We are returning here after having done
8892 			 * substantial cleanup above. This is consistent
8893 			 * with the legacy implementation but this may not
8894 			 * be the right thing to do.
8895 			 */
8896 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8897 			    "sd_dr_detach: Cannot cancel remove event\n");
8898 			goto err_remove_event;
8899 		}
8900 		un->un_remove_event = NULL;
8901 	}
8902 
8903 	/* Do not free the softstate if the callback routine is active */
8904 	sd_sync_with_callback(un);
8905 
8906 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8907 	cmlb_free_handle(&un->un_cmlbhandle);
8908 
8909 	/*
8910 	 * Hold the detach mutex here, to make sure that no other threads ever
8911 	 * can access a (partially) freed soft state structure.
8912 	 */
8913 	mutex_enter(&sd_detach_mutex);
8914 
8915 	/*
8916 	 * Clean up the soft state struct.
8917 	 * Cleanup is done in reverse order of allocs/inits.
8918 	 * At this point there should be no competing threads anymore.
8919 	 */
8920 
8921 	scsi_fm_fini(devp);
8922 
8923 	/*
8924 	 * Deallocate memory for SCSI FMA.
8925 	 */
8926 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8927 
8928 	/*
8929 	 * Unregister and free device id if it was not registered
8930 	 * by the transport.
8931 	 */
8932 	if (un->un_f_devid_transport_defined == FALSE)
8933 		ddi_devid_unregister(devi);
8934 
8935 	/*
8936 	 * free the devid structure if allocated before (by ddi_devid_init()
8937 	 * or ddi_devid_get()).
8938 	 */
8939 	if (un->un_devid) {
8940 		ddi_devid_free(un->un_devid);
8941 		un->un_devid = NULL;
8942 	}
8943 
8944 	/*
8945 	 * Destroy wmap cache if it exists.
8946 	 */
8947 	if (un->un_wm_cache != NULL) {
8948 		kmem_cache_destroy(un->un_wm_cache);
8949 		un->un_wm_cache = NULL;
8950 	}
8951 
8952 	/*
8953 	 * kstat cleanup is done in detach for all device types (4363169).
8954 	 * We do not want to fail detach if the device kstats are not deleted
8955 	 * since there is a confusion about the devo_refcnt for the device.
8956 	 * We just delete the kstats and let detach complete successfully.
8957 	 */
8958 	if (un->un_stats != NULL) {
8959 		kstat_delete(un->un_stats);
8960 		un->un_stats = NULL;
8961 	}
8962 	if (un->un_errstats != NULL) {
8963 		kstat_delete(un->un_errstats);
8964 		un->un_errstats = NULL;
8965 	}
8966 
8967 	/* Remove partition stats */
8968 	if (un->un_f_pkstats_enabled) {
8969 		for (i = 0; i < NSDMAP; i++) {
8970 			if (un->un_pstats[i] != NULL) {
8971 				kstat_delete(un->un_pstats[i]);
8972 				un->un_pstats[i] = NULL;
8973 			}
8974 		}
8975 	}
8976 
8977 	/* Remove xbuf registration */
8978 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8979 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8980 
8981 	/* Remove driver properties */
8982 	ddi_prop_remove_all(devi);
8983 
8984 	mutex_destroy(&un->un_pm_mutex);
8985 	cv_destroy(&un->un_pm_busy_cv);
8986 
8987 	cv_destroy(&un->un_wcc_cv);
8988 
8989 	/* Open/close semaphore */
8990 	sema_destroy(&un->un_semoclose);
8991 
8992 	/* Removable media condvar. */
8993 	cv_destroy(&un->un_state_cv);
8994 
8995 	/* Suspend/resume condvar. */
8996 	cv_destroy(&un->un_suspend_cv);
8997 	cv_destroy(&un->un_disk_busy_cv);
8998 
8999 	sd_free_rqs(un);
9000 
9001 	/* Free up soft state */
9002 	devp->sd_private = NULL;
9003 
9004 	bzero(un, sizeof (struct sd_lun));
9005 #ifndef XPV_HVM_DRIVER
9006 	ddi_soft_state_free(sd_state, instance);
9007 #endif /* !XPV_HVM_DRIVER */
9008 
9009 	mutex_exit(&sd_detach_mutex);
9010 
9011 	/* This frees up the INQUIRY data associated with the device. */
9012 	scsi_unprobe(devp);
9013 
9014 	/*
9015 	 * After successfully detaching an instance, we update the information
9016 	 * of how many luns have been attached in the relative target and
9017 	 * controller for parallel SCSI. This information is used when sd tries
9018 	 * to set the tagged queuing capability in HBA.
9019 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9020 	 * check if the device is parallel SCSI. However, we don't need to
9021 	 * check here because we've already checked during attach. No device
9022 	 * that is not parallel SCSI is in the chain.
9023 	 */
9024 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9025 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9026 	}
9027 
9028 	return (DDI_SUCCESS);
9029 
9030 err_notclosed:
9031 	mutex_exit(SD_MUTEX(un));
9032 
9033 err_stillbusy:
9034 	_NOTE(NO_COMPETING_THREADS_NOW);
9035 
9036 err_remove_event:
9037 	mutex_enter(&sd_detach_mutex);
9038 	un->un_detach_count--;
9039 	mutex_exit(&sd_detach_mutex);
9040 
9041 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9042 	return (DDI_FAILURE);
9043 }
9044 
9045 
9046 /*
9047  *    Function: sd_create_errstats
9048  *
9049  * Description: This routine instantiates the device error stats.
9050  *
9051  *		Note: During attach the stats are instantiated first so they are
9052  *		available for attach-time routines that utilize the driver
9053  *		iopath to send commands to the device. The stats are initialized
9054  *		separately so data obtained during some attach-time routines is
9055  *		available. (4362483)
9056  *
9057  *   Arguments: un - driver soft state (unit) structure
9058  *		instance - driver instance
9059  *
9060  *     Context: Kernel thread context
9061  */
9062 
9063 static void
9064 sd_create_errstats(struct sd_lun *un, int instance)
9065 {
9066 	struct	sd_errstats	*stp;
9067 	char	kstatmodule_err[KSTAT_STRLEN];
9068 	char	kstatname[KSTAT_STRLEN];
9069 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9070 
9071 	ASSERT(un != NULL);
9072 
9073 	if (un->un_errstats != NULL) {
9074 		return;
9075 	}
9076 
9077 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9078 	    "%serr", sd_label);
9079 	(void) snprintf(kstatname, sizeof (kstatname),
9080 	    "%s%d,err", sd_label, instance);
9081 
9082 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9083 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9084 
9085 	if (un->un_errstats == NULL) {
9086 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9087 		    "sd_create_errstats: Failed kstat_create\n");
9088 		return;
9089 	}
9090 
9091 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9092 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9093 	    KSTAT_DATA_UINT32);
9094 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9095 	    KSTAT_DATA_UINT32);
9096 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9097 	    KSTAT_DATA_UINT32);
9098 	kstat_named_init(&stp->sd_vid,		"Vendor",
9099 	    KSTAT_DATA_CHAR);
9100 	kstat_named_init(&stp->sd_pid,		"Product",
9101 	    KSTAT_DATA_CHAR);
9102 	kstat_named_init(&stp->sd_revision,	"Revision",
9103 	    KSTAT_DATA_CHAR);
9104 	kstat_named_init(&stp->sd_serial,	"Serial No",
9105 	    KSTAT_DATA_CHAR);
9106 	kstat_named_init(&stp->sd_capacity,	"Size",
9107 	    KSTAT_DATA_ULONGLONG);
9108 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9109 	    KSTAT_DATA_UINT32);
9110 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9111 	    KSTAT_DATA_UINT32);
9112 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9113 	    KSTAT_DATA_UINT32);
9114 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9115 	    KSTAT_DATA_UINT32);
9116 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9117 	    KSTAT_DATA_UINT32);
9118 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9119 	    KSTAT_DATA_UINT32);
9120 
9121 	un->un_errstats->ks_private = un;
9122 	un->un_errstats->ks_update  = nulldev;
9123 
9124 	kstat_install(un->un_errstats);
9125 }
9126 
9127 
9128 /*
9129  *    Function: sd_set_errstats
9130  *
9131  * Description: This routine sets the value of the vendor id, product id,
9132  *		revision, serial number, and capacity device error stats.
9133  *
9134  *		Note: During attach the stats are instantiated first so they are
9135  *		available for attach-time routines that utilize the driver
9136  *		iopath to send commands to the device. The stats are initialized
9137  *		separately so data obtained during some attach-time routines is
9138  *		available. (4362483)
9139  *
9140  *   Arguments: un - driver soft state (unit) structure
9141  *
9142  *     Context: Kernel thread context
9143  */
9144 
9145 static void
9146 sd_set_errstats(struct sd_lun *un)
9147 {
9148 	struct	sd_errstats	*stp;
9149 	char 			*sn;
9150 
9151 	ASSERT(un != NULL);
9152 	ASSERT(un->un_errstats != NULL);
9153 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9154 	ASSERT(stp != NULL);
9155 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9156 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9157 	(void) strncpy(stp->sd_revision.value.c,
9158 	    un->un_sd->sd_inq->inq_revision, 4);
9159 
9160 	/*
9161 	 * All the errstats are persistent across detach/attach,
9162 	 * so reset all the errstats here in case of the hot
9163 	 * replacement of disk drives, except for not changed
9164 	 * Sun qualified drives.
9165 	 */
9166 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9167 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9168 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9169 		stp->sd_softerrs.value.ui32 = 0;
9170 		stp->sd_harderrs.value.ui32 = 0;
9171 		stp->sd_transerrs.value.ui32 = 0;
9172 		stp->sd_rq_media_err.value.ui32 = 0;
9173 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9174 		stp->sd_rq_nodev_err.value.ui32 = 0;
9175 		stp->sd_rq_recov_err.value.ui32 = 0;
9176 		stp->sd_rq_illrq_err.value.ui32 = 0;
9177 		stp->sd_rq_pfa_err.value.ui32 = 0;
9178 	}
9179 
9180 	/*
9181 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9182 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9183 	 * (4376302))
9184 	 */
9185 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9186 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9187 		    sizeof (SD_INQUIRY(un)->inq_serial));
9188 	} else {
9189 		/*
9190 		 * Set the "Serial No" kstat for non-Sun qualified drives
9191 		 */
9192 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9193 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9194 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9195 			(void) strlcpy(stp->sd_serial.value.c, sn,
9196 			    sizeof (stp->sd_serial.value.c));
9197 			ddi_prop_free(sn);
9198 		}
9199 	}
9200 
9201 	if (un->un_f_blockcount_is_valid != TRUE) {
9202 		/*
9203 		 * Set capacity error stat to 0 for no media. This ensures
9204 		 * a valid capacity is displayed in response to 'iostat -E'
9205 		 * when no media is present in the device.
9206 		 */
9207 		stp->sd_capacity.value.ui64 = 0;
9208 	} else {
9209 		/*
9210 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9211 		 * capacity.
9212 		 *
9213 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9214 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9215 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9216 		 */
9217 		stp->sd_capacity.value.ui64 = (uint64_t)
9218 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9219 	}
9220 }
9221 
9222 
9223 /*
9224  *    Function: sd_set_pstats
9225  *
9226  * Description: This routine instantiates and initializes the partition
9227  *              stats for each partition with more than zero blocks.
9228  *		(4363169)
9229  *
9230  *   Arguments: un - driver soft state (unit) structure
9231  *
9232  *     Context: Kernel thread context
9233  */
9234 
9235 static void
9236 sd_set_pstats(struct sd_lun *un)
9237 {
9238 	char	kstatname[KSTAT_STRLEN];
9239 	int	instance;
9240 	int	i;
9241 	diskaddr_t	nblks = 0;
9242 	char	*partname = NULL;
9243 
9244 	ASSERT(un != NULL);
9245 
9246 	instance = ddi_get_instance(SD_DEVINFO(un));
9247 
9248 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9249 	for (i = 0; i < NSDMAP; i++) {
9250 
9251 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9252 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9253 			continue;
9254 		mutex_enter(SD_MUTEX(un));
9255 
9256 		if ((un->un_pstats[i] == NULL) &&
9257 		    (nblks != 0)) {
9258 
9259 			(void) snprintf(kstatname, sizeof (kstatname),
9260 			    "%s%d,%s", sd_label, instance,
9261 			    partname);
9262 
9263 			un->un_pstats[i] = kstat_create(sd_label,
9264 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9265 			    1, KSTAT_FLAG_PERSISTENT);
9266 			if (un->un_pstats[i] != NULL) {
9267 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9268 				kstat_install(un->un_pstats[i]);
9269 			}
9270 		}
9271 		mutex_exit(SD_MUTEX(un));
9272 	}
9273 }
9274 
9275 
9276 #if (defined(__fibre))
9277 /*
9278  *    Function: sd_init_event_callbacks
9279  *
9280  * Description: This routine initializes the insertion and removal event
9281  *		callbacks. (fibre only)
9282  *
9283  *   Arguments: un - driver soft state (unit) structure
9284  *
9285  *     Context: Kernel thread context
9286  */
9287 
9288 static void
9289 sd_init_event_callbacks(struct sd_lun *un)
9290 {
9291 	ASSERT(un != NULL);
9292 
9293 	if ((un->un_insert_event == NULL) &&
9294 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9295 	    &un->un_insert_event) == DDI_SUCCESS)) {
9296 		/*
9297 		 * Add the callback for an insertion event
9298 		 */
9299 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9300 		    un->un_insert_event, sd_event_callback, (void *)un,
9301 		    &(un->un_insert_cb_id));
9302 	}
9303 
9304 	if ((un->un_remove_event == NULL) &&
9305 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9306 	    &un->un_remove_event) == DDI_SUCCESS)) {
9307 		/*
9308 		 * Add the callback for a removal event
9309 		 */
9310 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9311 		    un->un_remove_event, sd_event_callback, (void *)un,
9312 		    &(un->un_remove_cb_id));
9313 	}
9314 }
9315 
9316 
9317 /*
9318  *    Function: sd_event_callback
9319  *
9320  * Description: This routine handles insert/remove events (photon). The
9321  *		state is changed to OFFLINE which can be used to supress
9322  *		error msgs. (fibre only)
9323  *
9324  *   Arguments: un - driver soft state (unit) structure
9325  *
9326  *     Context: Callout thread context
9327  */
9328 /* ARGSUSED */
9329 static void
9330 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9331     void *bus_impldata)
9332 {
9333 	struct sd_lun *un = (struct sd_lun *)arg;
9334 
9335 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9336 	if (event == un->un_insert_event) {
9337 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9338 		mutex_enter(SD_MUTEX(un));
9339 		if (un->un_state == SD_STATE_OFFLINE) {
9340 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9341 				un->un_state = un->un_last_state;
9342 			} else {
9343 				/*
9344 				 * We have gone through SUSPEND/RESUME while
9345 				 * we were offline. Restore the last state
9346 				 */
9347 				un->un_state = un->un_save_state;
9348 			}
9349 		}
9350 		mutex_exit(SD_MUTEX(un));
9351 
9352 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9353 	} else if (event == un->un_remove_event) {
9354 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9355 		mutex_enter(SD_MUTEX(un));
9356 		/*
9357 		 * We need to handle an event callback that occurs during
9358 		 * the suspend operation, since we don't prevent it.
9359 		 */
9360 		if (un->un_state != SD_STATE_OFFLINE) {
9361 			if (un->un_state != SD_STATE_SUSPENDED) {
9362 				New_state(un, SD_STATE_OFFLINE);
9363 			} else {
9364 				un->un_last_state = SD_STATE_OFFLINE;
9365 			}
9366 		}
9367 		mutex_exit(SD_MUTEX(un));
9368 	} else {
9369 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9370 		    "!Unknown event\n");
9371 	}
9372 
9373 }
9374 #endif
9375 
9376 /*
9377  *    Function: sd_cache_control()
9378  *
9379  * Description: This routine is the driver entry point for setting
9380  *		read and write caching by modifying the WCE (write cache
9381  *		enable) and RCD (read cache disable) bits of mode
9382  *		page 8 (MODEPAGE_CACHING).
9383  *
9384  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9385  *                      structure for this target.
9386  *		rcd_flag - flag for controlling the read cache
9387  *		wce_flag - flag for controlling the write cache
9388  *
9389  * Return Code: EIO
9390  *		code returned by sd_send_scsi_MODE_SENSE and
9391  *		sd_send_scsi_MODE_SELECT
9392  *
9393  *     Context: Kernel Thread
9394  */
9395 
9396 static int
9397 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9398 {
9399 	struct mode_caching	*mode_caching_page;
9400 	uchar_t			*header;
9401 	size_t			buflen;
9402 	int			hdrlen;
9403 	int			bd_len;
9404 	int			rval = 0;
9405 	struct mode_header_grp2	*mhp;
9406 	struct sd_lun		*un;
9407 	int			status;
9408 
9409 	ASSERT(ssc != NULL);
9410 	un = ssc->ssc_un;
9411 	ASSERT(un != NULL);
9412 
9413 	/*
9414 	 * Do a test unit ready, otherwise a mode sense may not work if this
9415 	 * is the first command sent to the device after boot.
9416 	 */
9417 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9418 	if (status != 0)
9419 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9420 
9421 	if (un->un_f_cfg_is_atapi == TRUE) {
9422 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9423 	} else {
9424 		hdrlen = MODE_HEADER_LENGTH;
9425 	}
9426 
9427 	/*
9428 	 * Allocate memory for the retrieved mode page and its headers.  Set
9429 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9430 	 * we get all of the mode sense data otherwise, the mode select
9431 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9432 	 */
9433 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9434 	    sizeof (struct mode_cache_scsi3);
9435 
9436 	header = kmem_zalloc(buflen, KM_SLEEP);
9437 
9438 	/* Get the information from the device. */
9439 	if (un->un_f_cfg_is_atapi == TRUE) {
9440 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9441 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9442 	} else {
9443 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9444 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9445 	}
9446 
9447 	if (rval != 0) {
9448 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9449 		    "sd_cache_control: Mode Sense Failed\n");
9450 		goto mode_sense_failed;
9451 	}
9452 
9453 	/*
9454 	 * Determine size of Block Descriptors in order to locate
9455 	 * the mode page data. ATAPI devices return 0, SCSI devices
9456 	 * should return MODE_BLK_DESC_LENGTH.
9457 	 */
9458 	if (un->un_f_cfg_is_atapi == TRUE) {
9459 		mhp	= (struct mode_header_grp2 *)header;
9460 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9461 	} else {
9462 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9463 	}
9464 
9465 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9466 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9467 		    "sd_cache_control: Mode Sense returned invalid block "
9468 		    "descriptor length\n");
9469 		rval = EIO;
9470 		goto mode_sense_failed;
9471 	}
9472 
9473 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9474 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9475 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9476 		    "sd_cache_control: Mode Sense caching page code mismatch "
9477 		    "%d\n", mode_caching_page->mode_page.code);
9478 		rval = EIO;
9479 		goto mode_sense_failed;
9480 	}
9481 
9482 	/* Check the relevant bits on successful mode sense. */
9483 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9484 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9485 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9486 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9487 
9488 		size_t sbuflen;
9489 		uchar_t save_pg;
9490 
9491 		/*
9492 		 * Construct select buffer length based on the
9493 		 * length of the sense data returned.
9494 		 */
9495 		sbuflen =  hdrlen + bd_len +
9496 		    sizeof (struct mode_page) +
9497 		    (int)mode_caching_page->mode_page.length;
9498 
9499 		/*
9500 		 * Set the caching bits as requested.
9501 		 */
9502 		if (rcd_flag == SD_CACHE_ENABLE)
9503 			mode_caching_page->rcd = 0;
9504 		else if (rcd_flag == SD_CACHE_DISABLE)
9505 			mode_caching_page->rcd = 1;
9506 
9507 		if (wce_flag == SD_CACHE_ENABLE)
9508 			mode_caching_page->wce = 1;
9509 		else if (wce_flag == SD_CACHE_DISABLE)
9510 			mode_caching_page->wce = 0;
9511 
9512 		/*
9513 		 * Save the page if the mode sense says the
9514 		 * drive supports it.
9515 		 */
9516 		save_pg = mode_caching_page->mode_page.ps ?
9517 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9518 
9519 		/* Clear reserved bits before mode select. */
9520 		mode_caching_page->mode_page.ps = 0;
9521 
9522 		/*
9523 		 * Clear out mode header for mode select.
9524 		 * The rest of the retrieved page will be reused.
9525 		 */
9526 		bzero(header, hdrlen);
9527 
9528 		if (un->un_f_cfg_is_atapi == TRUE) {
9529 			mhp = (struct mode_header_grp2 *)header;
9530 			mhp->bdesc_length_hi = bd_len >> 8;
9531 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9532 		} else {
9533 			((struct mode_header *)header)->bdesc_length = bd_len;
9534 		}
9535 
9536 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9537 
9538 		/* Issue mode select to change the cache settings */
9539 		if (un->un_f_cfg_is_atapi == TRUE) {
9540 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9541 			    sbuflen, save_pg, SD_PATH_DIRECT);
9542 		} else {
9543 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9544 			    sbuflen, save_pg, SD_PATH_DIRECT);
9545 		}
9546 
9547 	}
9548 
9549 
9550 mode_sense_failed:
9551 
9552 	kmem_free(header, buflen);
9553 
9554 	if (rval != 0) {
9555 		if (rval == EIO)
9556 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9557 		else
9558 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9559 	}
9560 	return (rval);
9561 }
9562 
9563 
9564 /*
9565  *    Function: sd_get_write_cache_enabled()
9566  *
9567  * Description: This routine is the driver entry point for determining if
9568  *		write caching is enabled.  It examines the WCE (write cache
9569  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9570  *
9571  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9572  *                      structure for this target.
9573  *		is_enabled - pointer to int where write cache enabled state
9574  *		is returned (non-zero -> write cache enabled)
9575  *
9576  *
9577  * Return Code: EIO
9578  *		code returned by sd_send_scsi_MODE_SENSE
9579  *
9580  *     Context: Kernel Thread
9581  *
9582  * NOTE: If ioctl is added to disable write cache, this sequence should
9583  * be followed so that no locking is required for accesses to
9584  * un->un_f_write_cache_enabled:
9585  * 	do mode select to clear wce
9586  * 	do synchronize cache to flush cache
9587  * 	set un->un_f_write_cache_enabled = FALSE
9588  *
9589  * Conversely, an ioctl to enable the write cache should be done
9590  * in this order:
9591  * 	set un->un_f_write_cache_enabled = TRUE
9592  * 	do mode select to set wce
9593  */
9594 
9595 static int
9596 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9597 {
9598 	struct mode_caching	*mode_caching_page;
9599 	uchar_t			*header;
9600 	size_t			buflen;
9601 	int			hdrlen;
9602 	int			bd_len;
9603 	int			rval = 0;
9604 	struct sd_lun		*un;
9605 	int			status;
9606 
9607 	ASSERT(ssc != NULL);
9608 	un = ssc->ssc_un;
9609 	ASSERT(un != NULL);
9610 	ASSERT(is_enabled != NULL);
9611 
9612 	/* in case of error, flag as enabled */
9613 	*is_enabled = TRUE;
9614 
9615 	/*
9616 	 * Do a test unit ready, otherwise a mode sense may not work if this
9617 	 * is the first command sent to the device after boot.
9618 	 */
9619 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9620 
9621 	if (status != 0)
9622 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9623 
9624 	if (un->un_f_cfg_is_atapi == TRUE) {
9625 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9626 	} else {
9627 		hdrlen = MODE_HEADER_LENGTH;
9628 	}
9629 
9630 	/*
9631 	 * Allocate memory for the retrieved mode page and its headers.  Set
9632 	 * a pointer to the page itself.
9633 	 */
9634 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9635 	header = kmem_zalloc(buflen, KM_SLEEP);
9636 
9637 	/* Get the information from the device. */
9638 	if (un->un_f_cfg_is_atapi == TRUE) {
9639 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9640 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9641 	} else {
9642 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9643 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9644 	}
9645 
9646 	if (rval != 0) {
9647 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9648 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9649 		goto mode_sense_failed;
9650 	}
9651 
9652 	/*
9653 	 * Determine size of Block Descriptors in order to locate
9654 	 * the mode page data. ATAPI devices return 0, SCSI devices
9655 	 * should return MODE_BLK_DESC_LENGTH.
9656 	 */
9657 	if (un->un_f_cfg_is_atapi == TRUE) {
9658 		struct mode_header_grp2	*mhp;
9659 		mhp	= (struct mode_header_grp2 *)header;
9660 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9661 	} else {
9662 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9663 	}
9664 
9665 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9666 		/* FMA should make upset complain here */
9667 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9668 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9669 		    "block descriptor length\n");
9670 		rval = EIO;
9671 		goto mode_sense_failed;
9672 	}
9673 
9674 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9675 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9676 		/* FMA could make upset complain here */
9677 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9678 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9679 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9680 		rval = EIO;
9681 		goto mode_sense_failed;
9682 	}
9683 	*is_enabled = mode_caching_page->wce;
9684 
9685 mode_sense_failed:
9686 	if (rval == 0) {
9687 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9688 	} else if (rval == EIO) {
9689 		/*
9690 		 * Some disks do not support mode sense(6), we
9691 		 * should ignore this kind of error(sense key is
9692 		 * 0x5 - illegal request).
9693 		 */
9694 		uint8_t *sensep;
9695 		int senlen;
9696 
9697 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9698 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9699 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9700 
9701 		if (senlen > 0 &&
9702 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9703 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9704 		} else {
9705 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9706 		}
9707 	} else {
9708 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9709 	}
9710 	kmem_free(header, buflen);
9711 	return (rval);
9712 }
9713 
9714 /*
9715  *    Function: sd_get_nv_sup()
9716  *
9717  * Description: This routine is the driver entry point for
9718  * determining whether non-volatile cache is supported. This
9719  * determination process works as follows:
9720  *
9721  * 1. sd first queries sd.conf on whether
9722  * suppress_cache_flush bit is set for this device.
9723  *
9724  * 2. if not there, then queries the internal disk table.
9725  *
9726  * 3. if either sd.conf or internal disk table specifies
9727  * cache flush be suppressed, we don't bother checking
9728  * NV_SUP bit.
9729  *
9730  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9731  * the optional INQUIRY VPD page 0x86. If the device
9732  * supports VPD page 0x86, sd examines the NV_SUP
9733  * (non-volatile cache support) bit in the INQUIRY VPD page
9734  * 0x86:
9735  *   o If NV_SUP bit is set, sd assumes the device has a
9736  *   non-volatile cache and set the
9737  *   un_f_sync_nv_supported to TRUE.
9738  *   o Otherwise cache is not non-volatile,
9739  *   un_f_sync_nv_supported is set to FALSE.
9740  *
9741  * Arguments: un - driver soft state (unit) structure
9742  *
9743  * Return Code:
9744  *
9745  *     Context: Kernel Thread
9746  */
9747 
9748 static void
9749 sd_get_nv_sup(sd_ssc_t *ssc)
9750 {
9751 	int		rval		= 0;
9752 	uchar_t		*inq86		= NULL;
9753 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9754 	size_t		inq86_resid	= 0;
9755 	struct		dk_callback *dkc;
9756 	struct sd_lun	*un;
9757 
9758 	ASSERT(ssc != NULL);
9759 	un = ssc->ssc_un;
9760 	ASSERT(un != NULL);
9761 
9762 	mutex_enter(SD_MUTEX(un));
9763 
9764 	/*
9765 	 * Be conservative on the device's support of
9766 	 * SYNC_NV bit: un_f_sync_nv_supported is
9767 	 * initialized to be false.
9768 	 */
9769 	un->un_f_sync_nv_supported = FALSE;
9770 
9771 	/*
9772 	 * If either sd.conf or internal disk table
9773 	 * specifies cache flush be suppressed, then
9774 	 * we don't bother checking NV_SUP bit.
9775 	 */
9776 	if (un->un_f_suppress_cache_flush == TRUE) {
9777 		mutex_exit(SD_MUTEX(un));
9778 		return;
9779 	}
9780 
9781 	if (sd_check_vpd_page_support(ssc) == 0 &&
9782 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9783 		mutex_exit(SD_MUTEX(un));
9784 		/* collect page 86 data if available */
9785 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9786 
9787 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9788 		    0x01, 0x86, &inq86_resid);
9789 
9790 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9791 			SD_TRACE(SD_LOG_COMMON, un,
9792 			    "sd_get_nv_sup: \
9793 			    successfully get VPD page: %x \
9794 			    PAGE LENGTH: %x BYTE 6: %x\n",
9795 			    inq86[1], inq86[3], inq86[6]);
9796 
9797 			mutex_enter(SD_MUTEX(un));
9798 			/*
9799 			 * check the value of NV_SUP bit: only if the device
9800 			 * reports NV_SUP bit to be 1, the
9801 			 * un_f_sync_nv_supported bit will be set to true.
9802 			 */
9803 			if (inq86[6] & SD_VPD_NV_SUP) {
9804 				un->un_f_sync_nv_supported = TRUE;
9805 			}
9806 			mutex_exit(SD_MUTEX(un));
9807 		} else if (rval != 0) {
9808 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9809 		}
9810 
9811 		kmem_free(inq86, inq86_len);
9812 	} else {
9813 		mutex_exit(SD_MUTEX(un));
9814 	}
9815 
9816 	/*
9817 	 * Send a SYNC CACHE command to check whether
9818 	 * SYNC_NV bit is supported. This command should have
9819 	 * un_f_sync_nv_supported set to correct value.
9820 	 */
9821 	mutex_enter(SD_MUTEX(un));
9822 	if (un->un_f_sync_nv_supported) {
9823 		mutex_exit(SD_MUTEX(un));
9824 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9825 		dkc->dkc_flag = FLUSH_VOLATILE;
9826 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9827 
9828 		/*
9829 		 * Send a TEST UNIT READY command to the device. This should
9830 		 * clear any outstanding UNIT ATTENTION that may be present.
9831 		 */
9832 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9833 		if (rval != 0)
9834 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9835 
9836 		kmem_free(dkc, sizeof (struct dk_callback));
9837 	} else {
9838 		mutex_exit(SD_MUTEX(un));
9839 	}
9840 
9841 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9842 	    un_f_suppress_cache_flush is set to %d\n",
9843 	    un->un_f_suppress_cache_flush);
9844 }
9845 
9846 /*
9847  *    Function: sd_make_device
9848  *
9849  * Description: Utility routine to return the Solaris device number from
9850  *		the data in the device's dev_info structure.
9851  *
9852  * Return Code: The Solaris device number
9853  *
9854  *     Context: Any
9855  */
9856 
9857 static dev_t
9858 sd_make_device(dev_info_t *devi)
9859 {
9860 	return (makedevice(ddi_driver_major(devi),
9861 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9862 }
9863 
9864 
9865 /*
9866  *    Function: sd_pm_entry
9867  *
9868  * Description: Called at the start of a new command to manage power
9869  *		and busy status of a device. This includes determining whether
9870  *		the current power state of the device is sufficient for
9871  *		performing the command or whether it must be changed.
9872  *		The PM framework is notified appropriately.
9873  *		Only with a return status of DDI_SUCCESS will the
9874  *		component be busy to the framework.
9875  *
9876  *		All callers of sd_pm_entry must check the return status
9877  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9878  *		of DDI_FAILURE indicates the device failed to power up.
9879  *		In this case un_pm_count has been adjusted so the result
9880  *		on exit is still powered down, ie. count is less than 0.
9881  *		Calling sd_pm_exit with this count value hits an ASSERT.
9882  *
9883  * Return Code: DDI_SUCCESS or DDI_FAILURE
9884  *
9885  *     Context: Kernel thread context.
9886  */
9887 
9888 static int
9889 sd_pm_entry(struct sd_lun *un)
9890 {
9891 	int return_status = DDI_SUCCESS;
9892 
9893 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9894 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9895 
9896 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9897 
9898 	if (un->un_f_pm_is_enabled == FALSE) {
9899 		SD_TRACE(SD_LOG_IO_PM, un,
9900 		    "sd_pm_entry: exiting, PM not enabled\n");
9901 		return (return_status);
9902 	}
9903 
9904 	/*
9905 	 * Just increment a counter if PM is enabled. On the transition from
9906 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9907 	 * the count with each IO and mark the device as idle when the count
9908 	 * hits 0.
9909 	 *
9910 	 * If the count is less than 0 the device is powered down. If a powered
9911 	 * down device is successfully powered up then the count must be
9912 	 * incremented to reflect the power up. Note that it'll get incremented
9913 	 * a second time to become busy.
9914 	 *
9915 	 * Because the following has the potential to change the device state
9916 	 * and must release the un_pm_mutex to do so, only one thread can be
9917 	 * allowed through at a time.
9918 	 */
9919 
9920 	mutex_enter(&un->un_pm_mutex);
9921 	while (un->un_pm_busy == TRUE) {
9922 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9923 	}
9924 	un->un_pm_busy = TRUE;
9925 
9926 	if (un->un_pm_count < 1) {
9927 
9928 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9929 
9930 		/*
9931 		 * Indicate we are now busy so the framework won't attempt to
9932 		 * power down the device. This call will only fail if either
9933 		 * we passed a bad component number or the device has no
9934 		 * components. Neither of these should ever happen.
9935 		 */
9936 		mutex_exit(&un->un_pm_mutex);
9937 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9938 		ASSERT(return_status == DDI_SUCCESS);
9939 
9940 		mutex_enter(&un->un_pm_mutex);
9941 
9942 		if (un->un_pm_count < 0) {
9943 			mutex_exit(&un->un_pm_mutex);
9944 
9945 			SD_TRACE(SD_LOG_IO_PM, un,
9946 			    "sd_pm_entry: power up component\n");
9947 
9948 			/*
9949 			 * pm_raise_power will cause sdpower to be called
9950 			 * which brings the device power level to the
9951 			 * desired state, If successful, un_pm_count and
9952 			 * un_power_level will be updated appropriately.
9953 			 */
9954 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9955 			    SD_PM_STATE_ACTIVE(un));
9956 
9957 			mutex_enter(&un->un_pm_mutex);
9958 
9959 			if (return_status != DDI_SUCCESS) {
9960 				/*
9961 				 * Power up failed.
9962 				 * Idle the device and adjust the count
9963 				 * so the result on exit is that we're
9964 				 * still powered down, ie. count is less than 0.
9965 				 */
9966 				SD_TRACE(SD_LOG_IO_PM, un,
9967 				    "sd_pm_entry: power up failed,"
9968 				    " idle the component\n");
9969 
9970 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9971 				un->un_pm_count--;
9972 			} else {
9973 				/*
9974 				 * Device is powered up, verify the
9975 				 * count is non-negative.
9976 				 * This is debug only.
9977 				 */
9978 				ASSERT(un->un_pm_count == 0);
9979 			}
9980 		}
9981 
9982 		if (return_status == DDI_SUCCESS) {
9983 			/*
9984 			 * For performance, now that the device has been tagged
9985 			 * as busy, and it's known to be powered up, update the
9986 			 * chain types to use jump tables that do not include
9987 			 * pm. This significantly lowers the overhead and
9988 			 * therefore improves performance.
9989 			 */
9990 
9991 			mutex_exit(&un->un_pm_mutex);
9992 			mutex_enter(SD_MUTEX(un));
9993 			SD_TRACE(SD_LOG_IO_PM, un,
9994 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9995 			    un->un_uscsi_chain_type);
9996 
9997 			if (un->un_f_non_devbsize_supported) {
9998 				un->un_buf_chain_type =
9999 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10000 			} else {
10001 				un->un_buf_chain_type =
10002 				    SD_CHAIN_INFO_DISK_NO_PM;
10003 			}
10004 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10005 
10006 			SD_TRACE(SD_LOG_IO_PM, un,
10007 			    "             changed  uscsi_chain_type to   %d\n",
10008 			    un->un_uscsi_chain_type);
10009 			mutex_exit(SD_MUTEX(un));
10010 			mutex_enter(&un->un_pm_mutex);
10011 
10012 			if (un->un_pm_idle_timeid == NULL) {
10013 				/* 300 ms. */
10014 				un->un_pm_idle_timeid =
10015 				    timeout(sd_pm_idletimeout_handler, un,
10016 				    (drv_usectohz((clock_t)300000)));
10017 				/*
10018 				 * Include an extra call to busy which keeps the
10019 				 * device busy with-respect-to the PM layer
10020 				 * until the timer fires, at which time it'll
10021 				 * get the extra idle call.
10022 				 */
10023 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10024 			}
10025 		}
10026 	}
10027 	un->un_pm_busy = FALSE;
10028 	/* Next... */
10029 	cv_signal(&un->un_pm_busy_cv);
10030 
10031 	un->un_pm_count++;
10032 
10033 	SD_TRACE(SD_LOG_IO_PM, un,
10034 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10035 
10036 	mutex_exit(&un->un_pm_mutex);
10037 
10038 	return (return_status);
10039 }
10040 
10041 
10042 /*
10043  *    Function: sd_pm_exit
10044  *
10045  * Description: Called at the completion of a command to manage busy
10046  *		status for the device. If the device becomes idle the
10047  *		PM framework is notified.
10048  *
10049  *     Context: Kernel thread context
10050  */
10051 
10052 static void
10053 sd_pm_exit(struct sd_lun *un)
10054 {
10055 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10056 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10057 
10058 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10059 
10060 	/*
10061 	 * After attach the following flag is only read, so don't
10062 	 * take the penalty of acquiring a mutex for it.
10063 	 */
10064 	if (un->un_f_pm_is_enabled == TRUE) {
10065 
10066 		mutex_enter(&un->un_pm_mutex);
10067 		un->un_pm_count--;
10068 
10069 		SD_TRACE(SD_LOG_IO_PM, un,
10070 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10071 
10072 		ASSERT(un->un_pm_count >= 0);
10073 		if (un->un_pm_count == 0) {
10074 			mutex_exit(&un->un_pm_mutex);
10075 
10076 			SD_TRACE(SD_LOG_IO_PM, un,
10077 			    "sd_pm_exit: idle component\n");
10078 
10079 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10080 
10081 		} else {
10082 			mutex_exit(&un->un_pm_mutex);
10083 		}
10084 	}
10085 
10086 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10087 }
10088 
10089 
10090 /*
10091  *    Function: sdopen
10092  *
10093  * Description: Driver's open(9e) entry point function.
10094  *
10095  *   Arguments: dev_i   - pointer to device number
10096  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10097  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10098  *		cred_p  - user credential pointer
10099  *
10100  * Return Code: EINVAL
10101  *		ENXIO
10102  *		EIO
10103  *		EROFS
10104  *		EBUSY
10105  *
10106  *     Context: Kernel thread context
10107  */
10108 /* ARGSUSED */
10109 static int
10110 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10111 {
10112 	struct sd_lun	*un;
10113 	int		nodelay;
10114 	int		part;
10115 	uint64_t	partmask;
10116 	int		instance;
10117 	dev_t		dev;
10118 	int		rval = EIO;
10119 	diskaddr_t	nblks = 0;
10120 	diskaddr_t	label_cap;
10121 
10122 	/* Validate the open type */
10123 	if (otyp >= OTYPCNT) {
10124 		return (EINVAL);
10125 	}
10126 
10127 	dev = *dev_p;
10128 	instance = SDUNIT(dev);
10129 	mutex_enter(&sd_detach_mutex);
10130 
10131 	/*
10132 	 * Fail the open if there is no softstate for the instance, or
10133 	 * if another thread somewhere is trying to detach the instance.
10134 	 */
10135 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10136 	    (un->un_detach_count != 0)) {
10137 		mutex_exit(&sd_detach_mutex);
10138 		/*
10139 		 * The probe cache only needs to be cleared when open (9e) fails
10140 		 * with ENXIO (4238046).
10141 		 */
10142 		/*
10143 		 * un-conditionally clearing probe cache is ok with
10144 		 * separate sd/ssd binaries
10145 		 * x86 platform can be an issue with both parallel
10146 		 * and fibre in 1 binary
10147 		 */
10148 		sd_scsi_clear_probe_cache();
10149 		return (ENXIO);
10150 	}
10151 
10152 	/*
10153 	 * The un_layer_count is to prevent another thread in specfs from
10154 	 * trying to detach the instance, which can happen when we are
10155 	 * called from a higher-layer driver instead of thru specfs.
10156 	 * This will not be needed when DDI provides a layered driver
10157 	 * interface that allows specfs to know that an instance is in
10158 	 * use by a layered driver & should not be detached.
10159 	 *
10160 	 * Note: the semantics for layered driver opens are exactly one
10161 	 * close for every open.
10162 	 */
10163 	if (otyp == OTYP_LYR) {
10164 		un->un_layer_count++;
10165 	}
10166 
10167 	/*
10168 	 * Keep a count of the current # of opens in progress. This is because
10169 	 * some layered drivers try to call us as a regular open. This can
10170 	 * cause problems that we cannot prevent, however by keeping this count
10171 	 * we can at least keep our open and detach routines from racing against
10172 	 * each other under such conditions.
10173 	 */
10174 	un->un_opens_in_progress++;
10175 	mutex_exit(&sd_detach_mutex);
10176 
10177 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10178 	part	 = SDPART(dev);
10179 	partmask = 1 << part;
10180 
10181 	/*
10182 	 * We use a semaphore here in order to serialize
10183 	 * open and close requests on the device.
10184 	 */
10185 	sema_p(&un->un_semoclose);
10186 
10187 	mutex_enter(SD_MUTEX(un));
10188 
10189 	/*
10190 	 * All device accesses go thru sdstrategy() where we check
10191 	 * on suspend status but there could be a scsi_poll command,
10192 	 * which bypasses sdstrategy(), so we need to check pm
10193 	 * status.
10194 	 */
10195 
10196 	if (!nodelay) {
10197 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10198 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10199 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10200 		}
10201 
10202 		mutex_exit(SD_MUTEX(un));
10203 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10204 			rval = EIO;
10205 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10206 			    "sdopen: sd_pm_entry failed\n");
10207 			goto open_failed_with_pm;
10208 		}
10209 		mutex_enter(SD_MUTEX(un));
10210 	}
10211 
10212 	/* check for previous exclusive open */
10213 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10214 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10215 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10216 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10217 
10218 	if (un->un_exclopen & (partmask)) {
10219 		goto excl_open_fail;
10220 	}
10221 
10222 	if (flag & FEXCL) {
10223 		int i;
10224 		if (un->un_ocmap.lyropen[part]) {
10225 			goto excl_open_fail;
10226 		}
10227 		for (i = 0; i < (OTYPCNT - 1); i++) {
10228 			if (un->un_ocmap.regopen[i] & (partmask)) {
10229 				goto excl_open_fail;
10230 			}
10231 		}
10232 	}
10233 
10234 	/*
10235 	 * Check the write permission if this is a removable media device,
10236 	 * NDELAY has not been set, and writable permission is requested.
10237 	 *
10238 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10239 	 * attempt will fail with EIO as part of the I/O processing. This is a
10240 	 * more permissive implementation that allows the open to succeed and
10241 	 * WRITE attempts to fail when appropriate.
10242 	 */
10243 	if (un->un_f_chk_wp_open) {
10244 		if ((flag & FWRITE) && (!nodelay)) {
10245 			mutex_exit(SD_MUTEX(un));
10246 			/*
10247 			 * Defer the check for write permission on writable
10248 			 * DVD drive till sdstrategy and will not fail open even
10249 			 * if FWRITE is set as the device can be writable
10250 			 * depending upon the media and the media can change
10251 			 * after the call to open().
10252 			 */
10253 			if (un->un_f_dvdram_writable_device == FALSE) {
10254 				if (ISCD(un) || sr_check_wp(dev)) {
10255 				rval = EROFS;
10256 				mutex_enter(SD_MUTEX(un));
10257 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10258 				    "write to cd or write protected media\n");
10259 				goto open_fail;
10260 				}
10261 			}
10262 			mutex_enter(SD_MUTEX(un));
10263 		}
10264 	}
10265 
10266 	/*
10267 	 * If opening in NDELAY/NONBLOCK mode, just return.
10268 	 * Check if disk is ready and has a valid geometry later.
10269 	 */
10270 	if (!nodelay) {
10271 		sd_ssc_t	*ssc;
10272 
10273 		mutex_exit(SD_MUTEX(un));
10274 		ssc = sd_ssc_init(un);
10275 		rval = sd_ready_and_valid(ssc, part);
10276 		sd_ssc_fini(ssc);
10277 		mutex_enter(SD_MUTEX(un));
10278 		/*
10279 		 * Fail if device is not ready or if the number of disk
10280 		 * blocks is zero or negative for non CD devices.
10281 		 */
10282 
10283 		nblks = 0;
10284 
10285 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10286 			/* if cmlb_partinfo fails, nblks remains 0 */
10287 			mutex_exit(SD_MUTEX(un));
10288 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10289 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10290 			mutex_enter(SD_MUTEX(un));
10291 		}
10292 
10293 		if ((rval != SD_READY_VALID) ||
10294 		    (!ISCD(un) && nblks <= 0)) {
10295 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10296 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10297 			    "device not ready or invalid disk block value\n");
10298 			goto open_fail;
10299 		}
10300 #if defined(__i386) || defined(__amd64)
10301 	} else {
10302 		uchar_t *cp;
10303 		/*
10304 		 * x86 requires special nodelay handling, so that p0 is
10305 		 * always defined and accessible.
10306 		 * Invalidate geometry only if device is not already open.
10307 		 */
10308 		cp = &un->un_ocmap.chkd[0];
10309 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10310 			if (*cp != (uchar_t)0) {
10311 				break;
10312 			}
10313 			cp++;
10314 		}
10315 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10316 			mutex_exit(SD_MUTEX(un));
10317 			cmlb_invalidate(un->un_cmlbhandle,
10318 			    (void *)SD_PATH_DIRECT);
10319 			mutex_enter(SD_MUTEX(un));
10320 		}
10321 
10322 #endif
10323 	}
10324 
10325 	if (otyp == OTYP_LYR) {
10326 		un->un_ocmap.lyropen[part]++;
10327 	} else {
10328 		un->un_ocmap.regopen[otyp] |= partmask;
10329 	}
10330 
10331 	/* Set up open and exclusive open flags */
10332 	if (flag & FEXCL) {
10333 		un->un_exclopen |= (partmask);
10334 	}
10335 
10336 	/*
10337 	 * If the lun is EFI labeled and lun capacity is greater than the
10338 	 * capacity contained in the label, log a sys-event to notify the
10339 	 * interested module.
10340 	 * To avoid an infinite loop of logging sys-event, we only log the
10341 	 * event when the lun is not opened in NDELAY mode. The event handler
10342 	 * should open the lun in NDELAY mode.
10343 	 */
10344 	if (!nodelay) {
10345 		mutex_exit(SD_MUTEX(un));
10346 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10347 		    (void*)SD_PATH_DIRECT) == 0) {
10348 			mutex_enter(SD_MUTEX(un));
10349 			if (un->un_f_blockcount_is_valid &&
10350 			    un->un_blockcount > label_cap &&
10351 			    un->un_f_expnevent == B_FALSE) {
10352 				un->un_f_expnevent = B_TRUE;
10353 				mutex_exit(SD_MUTEX(un));
10354 				sd_log_lun_expansion_event(un,
10355 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10356 				mutex_enter(SD_MUTEX(un));
10357 			}
10358 		} else {
10359 			mutex_enter(SD_MUTEX(un));
10360 		}
10361 	}
10362 
10363 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10364 	    "open of part %d type %d\n", part, otyp);
10365 
10366 	mutex_exit(SD_MUTEX(un));
10367 	if (!nodelay) {
10368 		sd_pm_exit(un);
10369 	}
10370 
10371 	sema_v(&un->un_semoclose);
10372 
10373 	mutex_enter(&sd_detach_mutex);
10374 	un->un_opens_in_progress--;
10375 	mutex_exit(&sd_detach_mutex);
10376 
10377 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10378 	return (DDI_SUCCESS);
10379 
10380 excl_open_fail:
10381 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10382 	rval = EBUSY;
10383 
10384 open_fail:
10385 	mutex_exit(SD_MUTEX(un));
10386 
10387 	/*
10388 	 * On a failed open we must exit the pm management.
10389 	 */
10390 	if (!nodelay) {
10391 		sd_pm_exit(un);
10392 	}
10393 open_failed_with_pm:
10394 	sema_v(&un->un_semoclose);
10395 
10396 	mutex_enter(&sd_detach_mutex);
10397 	un->un_opens_in_progress--;
10398 	if (otyp == OTYP_LYR) {
10399 		un->un_layer_count--;
10400 	}
10401 	mutex_exit(&sd_detach_mutex);
10402 
10403 	return (rval);
10404 }
10405 
10406 
10407 /*
10408  *    Function: sdclose
10409  *
10410  * Description: Driver's close(9e) entry point function.
10411  *
10412  *   Arguments: dev    - device number
10413  *		flag   - file status flag, informational only
10414  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10415  *		cred_p - user credential pointer
10416  *
10417  * Return Code: ENXIO
10418  *
10419  *     Context: Kernel thread context
10420  */
10421 /* ARGSUSED */
10422 static int
10423 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10424 {
10425 	struct sd_lun	*un;
10426 	uchar_t		*cp;
10427 	int		part;
10428 	int		nodelay;
10429 	int		rval = 0;
10430 
10431 	/* Validate the open type */
10432 	if (otyp >= OTYPCNT) {
10433 		return (ENXIO);
10434 	}
10435 
10436 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10437 		return (ENXIO);
10438 	}
10439 
10440 	part = SDPART(dev);
10441 	nodelay = flag & (FNDELAY | FNONBLOCK);
10442 
10443 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10444 	    "sdclose: close of part %d type %d\n", part, otyp);
10445 
10446 	/*
10447 	 * We use a semaphore here in order to serialize
10448 	 * open and close requests on the device.
10449 	 */
10450 	sema_p(&un->un_semoclose);
10451 
10452 	mutex_enter(SD_MUTEX(un));
10453 
10454 	/* Don't proceed if power is being changed. */
10455 	while (un->un_state == SD_STATE_PM_CHANGING) {
10456 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10457 	}
10458 
10459 	if (un->un_exclopen & (1 << part)) {
10460 		un->un_exclopen &= ~(1 << part);
10461 	}
10462 
10463 	/* Update the open partition map */
10464 	if (otyp == OTYP_LYR) {
10465 		un->un_ocmap.lyropen[part] -= 1;
10466 	} else {
10467 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10468 	}
10469 
10470 	cp = &un->un_ocmap.chkd[0];
10471 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10472 		if (*cp != NULL) {
10473 			break;
10474 		}
10475 		cp++;
10476 	}
10477 
10478 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10479 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10480 
10481 		/*
10482 		 * We avoid persistance upon the last close, and set
10483 		 * the throttle back to the maximum.
10484 		 */
10485 		un->un_throttle = un->un_saved_throttle;
10486 
10487 		if (un->un_state == SD_STATE_OFFLINE) {
10488 			if (un->un_f_is_fibre == FALSE) {
10489 				scsi_log(SD_DEVINFO(un), sd_label,
10490 				    CE_WARN, "offline\n");
10491 			}
10492 			mutex_exit(SD_MUTEX(un));
10493 			cmlb_invalidate(un->un_cmlbhandle,
10494 			    (void *)SD_PATH_DIRECT);
10495 			mutex_enter(SD_MUTEX(un));
10496 
10497 		} else {
10498 			/*
10499 			 * Flush any outstanding writes in NVRAM cache.
10500 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10501 			 * cmd, it may not work for non-Pluto devices.
10502 			 * SYNCHRONIZE CACHE is not required for removables,
10503 			 * except DVD-RAM drives.
10504 			 *
10505 			 * Also note: because SYNCHRONIZE CACHE is currently
10506 			 * the only command issued here that requires the
10507 			 * drive be powered up, only do the power up before
10508 			 * sending the Sync Cache command. If additional
10509 			 * commands are added which require a powered up
10510 			 * drive, the following sequence may have to change.
10511 			 *
10512 			 * And finally, note that parallel SCSI on SPARC
10513 			 * only issues a Sync Cache to DVD-RAM, a newly
10514 			 * supported device.
10515 			 */
10516 #if defined(__i386) || defined(__amd64)
10517 			if ((un->un_f_sync_cache_supported &&
10518 			    un->un_f_sync_cache_required) ||
10519 			    un->un_f_dvdram_writable_device == TRUE) {
10520 #else
10521 			if (un->un_f_dvdram_writable_device == TRUE) {
10522 #endif
10523 				mutex_exit(SD_MUTEX(un));
10524 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10525 					rval =
10526 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10527 					    NULL);
10528 					/* ignore error if not supported */
10529 					if (rval == ENOTSUP) {
10530 						rval = 0;
10531 					} else if (rval != 0) {
10532 						rval = EIO;
10533 					}
10534 					sd_pm_exit(un);
10535 				} else {
10536 					rval = EIO;
10537 				}
10538 				mutex_enter(SD_MUTEX(un));
10539 			}
10540 
10541 			/*
10542 			 * For devices which supports DOOR_LOCK, send an ALLOW
10543 			 * MEDIA REMOVAL command, but don't get upset if it
10544 			 * fails. We need to raise the power of the drive before
10545 			 * we can call sd_send_scsi_DOORLOCK()
10546 			 */
10547 			if (un->un_f_doorlock_supported) {
10548 				mutex_exit(SD_MUTEX(un));
10549 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10550 					sd_ssc_t	*ssc;
10551 
10552 					ssc = sd_ssc_init(un);
10553 					rval = sd_send_scsi_DOORLOCK(ssc,
10554 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10555 					if (rval != 0)
10556 						sd_ssc_assessment(ssc,
10557 						    SD_FMT_IGNORE);
10558 					sd_ssc_fini(ssc);
10559 
10560 					sd_pm_exit(un);
10561 					if (ISCD(un) && (rval != 0) &&
10562 					    (nodelay != 0)) {
10563 						rval = ENXIO;
10564 					}
10565 				} else {
10566 					rval = EIO;
10567 				}
10568 				mutex_enter(SD_MUTEX(un));
10569 			}
10570 
10571 			/*
10572 			 * If a device has removable media, invalidate all
10573 			 * parameters related to media, such as geometry,
10574 			 * blocksize, and blockcount.
10575 			 */
10576 			if (un->un_f_has_removable_media) {
10577 				sr_ejected(un);
10578 			}
10579 
10580 			/*
10581 			 * Destroy the cache (if it exists) which was
10582 			 * allocated for the write maps since this is
10583 			 * the last close for this media.
10584 			 */
10585 			if (un->un_wm_cache) {
10586 				/*
10587 				 * Check if there are pending commands.
10588 				 * and if there are give a warning and
10589 				 * do not destroy the cache.
10590 				 */
10591 				if (un->un_ncmds_in_driver > 0) {
10592 					scsi_log(SD_DEVINFO(un),
10593 					    sd_label, CE_WARN,
10594 					    "Unable to clean up memory "
10595 					    "because of pending I/O\n");
10596 				} else {
10597 					kmem_cache_destroy(
10598 					    un->un_wm_cache);
10599 					un->un_wm_cache = NULL;
10600 				}
10601 			}
10602 		}
10603 	}
10604 
10605 	mutex_exit(SD_MUTEX(un));
10606 	sema_v(&un->un_semoclose);
10607 
10608 	if (otyp == OTYP_LYR) {
10609 		mutex_enter(&sd_detach_mutex);
10610 		/*
10611 		 * The detach routine may run when the layer count
10612 		 * drops to zero.
10613 		 */
10614 		un->un_layer_count--;
10615 		mutex_exit(&sd_detach_mutex);
10616 	}
10617 
10618 	return (rval);
10619 }
10620 
10621 
10622 /*
10623  *    Function: sd_ready_and_valid
10624  *
10625  * Description: Test if device is ready and has a valid geometry.
10626  *
10627  *   Arguments: ssc - sd_ssc_t will contain un
10628  *		un  - driver soft state (unit) structure
10629  *
10630  * Return Code: SD_READY_VALID		ready and valid label
10631  *		SD_NOT_READY_VALID	not ready, no label
10632  *		SD_RESERVED_BY_OTHERS	reservation conflict
10633  *
10634  *     Context: Never called at interrupt context.
10635  */
10636 
10637 static int
10638 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10639 {
10640 	struct sd_errstats	*stp;
10641 	uint64_t		capacity;
10642 	uint_t			lbasize;
10643 	int			rval = SD_READY_VALID;
10644 	char			name_str[48];
10645 	boolean_t		is_valid;
10646 	struct sd_lun		*un;
10647 	int			status;
10648 
10649 	ASSERT(ssc != NULL);
10650 	un = ssc->ssc_un;
10651 	ASSERT(un != NULL);
10652 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10653 
10654 	mutex_enter(SD_MUTEX(un));
10655 	/*
10656 	 * If a device has removable media, we must check if media is
10657 	 * ready when checking if this device is ready and valid.
10658 	 */
10659 	if (un->un_f_has_removable_media) {
10660 		mutex_exit(SD_MUTEX(un));
10661 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10662 
10663 		if (status != 0) {
10664 			rval = SD_NOT_READY_VALID;
10665 			mutex_enter(SD_MUTEX(un));
10666 
10667 			/* Ignore all failed status for removalbe media */
10668 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10669 
10670 			goto done;
10671 		}
10672 
10673 		is_valid = SD_IS_VALID_LABEL(un);
10674 		mutex_enter(SD_MUTEX(un));
10675 		if (!is_valid ||
10676 		    (un->un_f_blockcount_is_valid == FALSE) ||
10677 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10678 
10679 			/* capacity has to be read every open. */
10680 			mutex_exit(SD_MUTEX(un));
10681 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10682 			    &lbasize, SD_PATH_DIRECT);
10683 
10684 			if (status != 0) {
10685 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10686 
10687 				cmlb_invalidate(un->un_cmlbhandle,
10688 				    (void *)SD_PATH_DIRECT);
10689 				mutex_enter(SD_MUTEX(un));
10690 				rval = SD_NOT_READY_VALID;
10691 
10692 				goto done;
10693 			} else {
10694 				mutex_enter(SD_MUTEX(un));
10695 				sd_update_block_info(un, lbasize, capacity);
10696 			}
10697 		}
10698 
10699 		/*
10700 		 * Check if the media in the device is writable or not.
10701 		 */
10702 		if (!is_valid && ISCD(un)) {
10703 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10704 		}
10705 
10706 	} else {
10707 		/*
10708 		 * Do a test unit ready to clear any unit attention from non-cd
10709 		 * devices.
10710 		 */
10711 		mutex_exit(SD_MUTEX(un));
10712 
10713 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10714 		if (status != 0) {
10715 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10716 		}
10717 
10718 		mutex_enter(SD_MUTEX(un));
10719 	}
10720 
10721 
10722 	/*
10723 	 * If this is a non 512 block device, allocate space for
10724 	 * the wmap cache. This is being done here since every time
10725 	 * a media is changed this routine will be called and the
10726 	 * block size is a function of media rather than device.
10727 	 */
10728 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10729 	    un->un_f_non_devbsize_supported) &&
10730 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10731 	    un->un_f_enable_rmw) {
10732 		if (!(un->un_wm_cache)) {
10733 			(void) snprintf(name_str, sizeof (name_str),
10734 			    "%s%d_cache",
10735 			    ddi_driver_name(SD_DEVINFO(un)),
10736 			    ddi_get_instance(SD_DEVINFO(un)));
10737 			un->un_wm_cache = kmem_cache_create(
10738 			    name_str, sizeof (struct sd_w_map),
10739 			    8, sd_wm_cache_constructor,
10740 			    sd_wm_cache_destructor, NULL,
10741 			    (void *)un, NULL, 0);
10742 			if (!(un->un_wm_cache)) {
10743 				rval = ENOMEM;
10744 				goto done;
10745 			}
10746 		}
10747 	}
10748 
10749 	if (un->un_state == SD_STATE_NORMAL) {
10750 		/*
10751 		 * If the target is not yet ready here (defined by a TUR
10752 		 * failure), invalidate the geometry and print an 'offline'
10753 		 * message. This is a legacy message, as the state of the
10754 		 * target is not actually changed to SD_STATE_OFFLINE.
10755 		 *
10756 		 * If the TUR fails for EACCES (Reservation Conflict),
10757 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10758 		 * reservation conflict. If the TUR fails for other
10759 		 * reasons, SD_NOT_READY_VALID will be returned.
10760 		 */
10761 		int err;
10762 
10763 		mutex_exit(SD_MUTEX(un));
10764 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10765 		mutex_enter(SD_MUTEX(un));
10766 
10767 		if (err != 0) {
10768 			mutex_exit(SD_MUTEX(un));
10769 			cmlb_invalidate(un->un_cmlbhandle,
10770 			    (void *)SD_PATH_DIRECT);
10771 			mutex_enter(SD_MUTEX(un));
10772 			if (err == EACCES) {
10773 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10774 				    "reservation conflict\n");
10775 				rval = SD_RESERVED_BY_OTHERS;
10776 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10777 			} else {
10778 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10779 				    "drive offline\n");
10780 				rval = SD_NOT_READY_VALID;
10781 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10782 			}
10783 			goto done;
10784 		}
10785 	}
10786 
10787 	if (un->un_f_format_in_progress == FALSE) {
10788 		mutex_exit(SD_MUTEX(un));
10789 
10790 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10791 		    (void *)SD_PATH_DIRECT);
10792 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10793 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10794 			rval = SD_NOT_READY_VALID;
10795 			mutex_enter(SD_MUTEX(un));
10796 
10797 			goto done;
10798 		}
10799 		if (un->un_f_pkstats_enabled) {
10800 			sd_set_pstats(un);
10801 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10802 			    "sd_ready_and_valid: un:0x%p pstats created and "
10803 			    "set\n", un);
10804 		}
10805 		mutex_enter(SD_MUTEX(un));
10806 	}
10807 
10808 	/*
10809 	 * If this device supports DOOR_LOCK command, try and send
10810 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10811 	 * if it fails. For a CD, however, it is an error
10812 	 */
10813 	if (un->un_f_doorlock_supported) {
10814 		mutex_exit(SD_MUTEX(un));
10815 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10816 		    SD_PATH_DIRECT);
10817 
10818 		if ((status != 0) && ISCD(un)) {
10819 			rval = SD_NOT_READY_VALID;
10820 			mutex_enter(SD_MUTEX(un));
10821 
10822 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10823 
10824 			goto done;
10825 		} else if (status != 0)
10826 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10827 		mutex_enter(SD_MUTEX(un));
10828 	}
10829 
10830 	/* The state has changed, inform the media watch routines */
10831 	un->un_mediastate = DKIO_INSERTED;
10832 	cv_broadcast(&un->un_state_cv);
10833 	rval = SD_READY_VALID;
10834 
10835 done:
10836 
10837 	/*
10838 	 * Initialize the capacity kstat value, if no media previously
10839 	 * (capacity kstat is 0) and a media has been inserted
10840 	 * (un_blockcount > 0).
10841 	 */
10842 	if (un->un_errstats != NULL) {
10843 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10844 		if ((stp->sd_capacity.value.ui64 == 0) &&
10845 		    (un->un_f_blockcount_is_valid == TRUE)) {
10846 			stp->sd_capacity.value.ui64 =
10847 			    (uint64_t)((uint64_t)un->un_blockcount *
10848 			    un->un_sys_blocksize);
10849 		}
10850 	}
10851 
10852 	mutex_exit(SD_MUTEX(un));
10853 	return (rval);
10854 }
10855 
10856 
10857 /*
10858  *    Function: sdmin
10859  *
10860  * Description: Routine to limit the size of a data transfer. Used in
10861  *		conjunction with physio(9F).
10862  *
10863  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10864  *
10865  *     Context: Kernel thread context.
10866  */
10867 
10868 static void
10869 sdmin(struct buf *bp)
10870 {
10871 	struct sd_lun	*un;
10872 	int		instance;
10873 
10874 	instance = SDUNIT(bp->b_edev);
10875 
10876 	un = ddi_get_soft_state(sd_state, instance);
10877 	ASSERT(un != NULL);
10878 
10879 	/*
10880 	 * We depend on buf breakup to restrict
10881 	 * IO size if it is enabled.
10882 	 */
10883 	if (un->un_buf_breakup_supported) {
10884 		return;
10885 	}
10886 
10887 	if (bp->b_bcount > un->un_max_xfer_size) {
10888 		bp->b_bcount = un->un_max_xfer_size;
10889 	}
10890 }
10891 
10892 
10893 /*
10894  *    Function: sdread
10895  *
10896  * Description: Driver's read(9e) entry point function.
10897  *
10898  *   Arguments: dev   - device number
10899  *		uio   - structure pointer describing where data is to be stored
10900  *			in user's space
10901  *		cred_p  - user credential pointer
10902  *
10903  * Return Code: ENXIO
10904  *		EIO
10905  *		EINVAL
10906  *		value returned by physio
10907  *
10908  *     Context: Kernel thread context.
10909  */
10910 /* ARGSUSED */
10911 static int
10912 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10913 {
10914 	struct sd_lun	*un = NULL;
10915 	int		secmask;
10916 	int		err = 0;
10917 	sd_ssc_t	*ssc;
10918 
10919 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10920 		return (ENXIO);
10921 	}
10922 
10923 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10924 
10925 
10926 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10927 		mutex_enter(SD_MUTEX(un));
10928 		/*
10929 		 * Because the call to sd_ready_and_valid will issue I/O we
10930 		 * must wait here if either the device is suspended or
10931 		 * if it's power level is changing.
10932 		 */
10933 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10934 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10935 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10936 		}
10937 		un->un_ncmds_in_driver++;
10938 		mutex_exit(SD_MUTEX(un));
10939 
10940 		/* Initialize sd_ssc_t for internal uscsi commands */
10941 		ssc = sd_ssc_init(un);
10942 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10943 			err = EIO;
10944 		} else {
10945 			err = 0;
10946 		}
10947 		sd_ssc_fini(ssc);
10948 
10949 		mutex_enter(SD_MUTEX(un));
10950 		un->un_ncmds_in_driver--;
10951 		ASSERT(un->un_ncmds_in_driver >= 0);
10952 		mutex_exit(SD_MUTEX(un));
10953 		if (err != 0)
10954 			return (err);
10955 	}
10956 
10957 	/*
10958 	 * Read requests are restricted to multiples of the system block size.
10959 	 */
10960 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10961 	    !un->un_f_enable_rmw)
10962 		secmask = un->un_tgt_blocksize - 1;
10963 	else
10964 		secmask = DEV_BSIZE - 1;
10965 
10966 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10967 		SD_ERROR(SD_LOG_READ_WRITE, un,
10968 		    "sdread: file offset not modulo %d\n",
10969 		    secmask + 1);
10970 		err = EINVAL;
10971 	} else if (uio->uio_iov->iov_len & (secmask)) {
10972 		SD_ERROR(SD_LOG_READ_WRITE, un,
10973 		    "sdread: transfer length not modulo %d\n",
10974 		    secmask + 1);
10975 		err = EINVAL;
10976 	} else {
10977 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10978 	}
10979 
10980 	return (err);
10981 }
10982 
10983 
10984 /*
10985  *    Function: sdwrite
10986  *
10987  * Description: Driver's write(9e) entry point function.
10988  *
10989  *   Arguments: dev   - device number
10990  *		uio   - structure pointer describing where data is stored in
10991  *			user's space
10992  *		cred_p  - user credential pointer
10993  *
10994  * Return Code: ENXIO
10995  *		EIO
10996  *		EINVAL
10997  *		value returned by physio
10998  *
10999  *     Context: Kernel thread context.
11000  */
11001 /* ARGSUSED */
11002 static int
11003 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11004 {
11005 	struct sd_lun	*un = NULL;
11006 	int		secmask;
11007 	int		err = 0;
11008 	sd_ssc_t	*ssc;
11009 
11010 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11011 		return (ENXIO);
11012 	}
11013 
11014 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11015 
11016 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11017 		mutex_enter(SD_MUTEX(un));
11018 		/*
11019 		 * Because the call to sd_ready_and_valid will issue I/O we
11020 		 * must wait here if either the device is suspended or
11021 		 * if it's power level is changing.
11022 		 */
11023 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11024 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11025 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11026 		}
11027 		un->un_ncmds_in_driver++;
11028 		mutex_exit(SD_MUTEX(un));
11029 
11030 		/* Initialize sd_ssc_t for internal uscsi commands */
11031 		ssc = sd_ssc_init(un);
11032 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11033 			err = EIO;
11034 		} else {
11035 			err = 0;
11036 		}
11037 		sd_ssc_fini(ssc);
11038 
11039 		mutex_enter(SD_MUTEX(un));
11040 		un->un_ncmds_in_driver--;
11041 		ASSERT(un->un_ncmds_in_driver >= 0);
11042 		mutex_exit(SD_MUTEX(un));
11043 		if (err != 0)
11044 			return (err);
11045 	}
11046 
11047 	/*
11048 	 * Write requests are restricted to multiples of the system block size.
11049 	 */
11050 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11051 	    !un->un_f_enable_rmw)
11052 		secmask = un->un_tgt_blocksize - 1;
11053 	else
11054 		secmask = DEV_BSIZE - 1;
11055 
11056 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11057 		SD_ERROR(SD_LOG_READ_WRITE, un,
11058 		    "sdwrite: file offset not modulo %d\n",
11059 		    secmask + 1);
11060 		err = EINVAL;
11061 	} else if (uio->uio_iov->iov_len & (secmask)) {
11062 		SD_ERROR(SD_LOG_READ_WRITE, un,
11063 		    "sdwrite: transfer length not modulo %d\n",
11064 		    secmask + 1);
11065 		err = EINVAL;
11066 	} else {
11067 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11068 	}
11069 
11070 	return (err);
11071 }
11072 
11073 
11074 /*
11075  *    Function: sdaread
11076  *
11077  * Description: Driver's aread(9e) entry point function.
11078  *
11079  *   Arguments: dev   - device number
11080  *		aio   - structure pointer describing where data is to be stored
11081  *		cred_p  - user credential pointer
11082  *
11083  * Return Code: ENXIO
11084  *		EIO
11085  *		EINVAL
11086  *		value returned by aphysio
11087  *
11088  *     Context: Kernel thread context.
11089  */
11090 /* ARGSUSED */
11091 static int
11092 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11093 {
11094 	struct sd_lun	*un = NULL;
11095 	struct uio	*uio = aio->aio_uio;
11096 	int		secmask;
11097 	int		err = 0;
11098 	sd_ssc_t	*ssc;
11099 
11100 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11101 		return (ENXIO);
11102 	}
11103 
11104 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11105 
11106 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11107 		mutex_enter(SD_MUTEX(un));
11108 		/*
11109 		 * Because the call to sd_ready_and_valid will issue I/O we
11110 		 * must wait here if either the device is suspended or
11111 		 * if it's power level is changing.
11112 		 */
11113 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11114 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11115 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11116 		}
11117 		un->un_ncmds_in_driver++;
11118 		mutex_exit(SD_MUTEX(un));
11119 
11120 		/* Initialize sd_ssc_t for internal uscsi commands */
11121 		ssc = sd_ssc_init(un);
11122 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11123 			err = EIO;
11124 		} else {
11125 			err = 0;
11126 		}
11127 		sd_ssc_fini(ssc);
11128 
11129 		mutex_enter(SD_MUTEX(un));
11130 		un->un_ncmds_in_driver--;
11131 		ASSERT(un->un_ncmds_in_driver >= 0);
11132 		mutex_exit(SD_MUTEX(un));
11133 		if (err != 0)
11134 			return (err);
11135 	}
11136 
11137 	/*
11138 	 * Read requests are restricted to multiples of the system block size.
11139 	 */
11140 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11141 	    !un->un_f_enable_rmw)
11142 		secmask = un->un_tgt_blocksize - 1;
11143 	else
11144 		secmask = DEV_BSIZE - 1;
11145 
11146 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11147 		SD_ERROR(SD_LOG_READ_WRITE, un,
11148 		    "sdaread: file offset not modulo %d\n",
11149 		    secmask + 1);
11150 		err = EINVAL;
11151 	} else if (uio->uio_iov->iov_len & (secmask)) {
11152 		SD_ERROR(SD_LOG_READ_WRITE, un,
11153 		    "sdaread: transfer length not modulo %d\n",
11154 		    secmask + 1);
11155 		err = EINVAL;
11156 	} else {
11157 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11158 	}
11159 
11160 	return (err);
11161 }
11162 
11163 
11164 /*
11165  *    Function: sdawrite
11166  *
11167  * Description: Driver's awrite(9e) entry point function.
11168  *
11169  *   Arguments: dev   - device number
11170  *		aio   - structure pointer describing where data is stored
11171  *		cred_p  - user credential pointer
11172  *
11173  * Return Code: ENXIO
11174  *		EIO
11175  *		EINVAL
11176  *		value returned by aphysio
11177  *
11178  *     Context: Kernel thread context.
11179  */
11180 /* ARGSUSED */
11181 static int
11182 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11183 {
11184 	struct sd_lun	*un = NULL;
11185 	struct uio	*uio = aio->aio_uio;
11186 	int		secmask;
11187 	int		err = 0;
11188 	sd_ssc_t	*ssc;
11189 
11190 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11191 		return (ENXIO);
11192 	}
11193 
11194 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11195 
11196 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11197 		mutex_enter(SD_MUTEX(un));
11198 		/*
11199 		 * Because the call to sd_ready_and_valid will issue I/O we
11200 		 * must wait here if either the device is suspended or
11201 		 * if it's power level is changing.
11202 		 */
11203 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11204 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11205 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11206 		}
11207 		un->un_ncmds_in_driver++;
11208 		mutex_exit(SD_MUTEX(un));
11209 
11210 		/* Initialize sd_ssc_t for internal uscsi commands */
11211 		ssc = sd_ssc_init(un);
11212 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11213 			err = EIO;
11214 		} else {
11215 			err = 0;
11216 		}
11217 		sd_ssc_fini(ssc);
11218 
11219 		mutex_enter(SD_MUTEX(un));
11220 		un->un_ncmds_in_driver--;
11221 		ASSERT(un->un_ncmds_in_driver >= 0);
11222 		mutex_exit(SD_MUTEX(un));
11223 		if (err != 0)
11224 			return (err);
11225 	}
11226 
11227 	/*
11228 	 * Write requests are restricted to multiples of the system block size.
11229 	 */
11230 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11231 	    !un->un_f_enable_rmw)
11232 		secmask = un->un_tgt_blocksize - 1;
11233 	else
11234 		secmask = DEV_BSIZE - 1;
11235 
11236 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11237 		SD_ERROR(SD_LOG_READ_WRITE, un,
11238 		    "sdawrite: file offset not modulo %d\n",
11239 		    secmask + 1);
11240 		err = EINVAL;
11241 	} else if (uio->uio_iov->iov_len & (secmask)) {
11242 		SD_ERROR(SD_LOG_READ_WRITE, un,
11243 		    "sdawrite: transfer length not modulo %d\n",
11244 		    secmask + 1);
11245 		err = EINVAL;
11246 	} else {
11247 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11248 	}
11249 
11250 	return (err);
11251 }
11252 
11253 
11254 
11255 
11256 
11257 /*
11258  * Driver IO processing follows the following sequence:
11259  *
11260  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11261  *         |                |                     ^
11262  *         v                v                     |
11263  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11264  *         |                |                     |                   |
11265  *         v                |                     |                   |
11266  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11267  *         |                |                     ^                   ^
11268  *         v                v                     |                   |
11269  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11270  *         |                |                     |                   |
11271  *     +---+                |                     +------------+      +-------+
11272  *     |                    |                                  |              |
11273  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11274  *     |                    v                                  |              |
11275  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11276  *     |                    |                                  ^              |
11277  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11278  *     |                    v                                  |              |
11279  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11280  *     |                    |                                  ^              |
11281  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11282  *     |                    v                                  |              |
11283  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11284  *     |                    |                                  ^              |
11285  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11286  *     |                    v                                  |              |
11287  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11288  *     |                    |                                  ^              |
11289  *     |                    |                                  |              |
11290  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11291  *                          |                           ^
11292  *                          v                           |
11293  *                   sd_core_iostart()                  |
11294  *                          |                           |
11295  *                          |                           +------>(*destroypkt)()
11296  *                          +-> sd_start_cmds() <-+     |           |
11297  *                          |                     |     |           v
11298  *                          |                     |     |  scsi_destroy_pkt(9F)
11299  *                          |                     |     |
11300  *                          +->(*initpkt)()       +- sdintr()
11301  *                          |  |                        |  |
11302  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11303  *                          |  +-> scsi_setup_cdb(9F)   |
11304  *                          |                           |
11305  *                          +--> scsi_transport(9F)     |
11306  *                                     |                |
11307  *                                     +----> SCSA ---->+
11308  *
11309  *
11310  * This code is based upon the following presumptions:
11311  *
11312  *   - iostart and iodone functions operate on buf(9S) structures. These
11313  *     functions perform the necessary operations on the buf(9S) and pass
11314  *     them along to the next function in the chain by using the macros
11315  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11316  *     (for iodone side functions).
11317  *
11318  *   - The iostart side functions may sleep. The iodone side functions
11319  *     are called under interrupt context and may NOT sleep. Therefore
11320  *     iodone side functions also may not call iostart side functions.
11321  *     (NOTE: iostart side functions should NOT sleep for memory, as
11322  *     this could result in deadlock.)
11323  *
11324  *   - An iostart side function may call its corresponding iodone side
11325  *     function directly (if necessary).
11326  *
11327  *   - In the event of an error, an iostart side function can return a buf(9S)
11328  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11329  *     b_error in the usual way of course).
11330  *
11331  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11332  *     requests to the iostart side functions.  The iostart side functions in
11333  *     this case would be called under the context of a taskq thread, so it's
11334  *     OK for them to block/sleep/spin in this case.
11335  *
11336  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11337  *     pass them along to the next function in the chain.  The corresponding
11338  *     iodone side functions must coalesce the "shadow" bufs and return
11339  *     the "original" buf to the next higher layer.
11340  *
11341  *   - The b_private field of the buf(9S) struct holds a pointer to
11342  *     an sd_xbuf struct, which contains information needed to
11343  *     construct the scsi_pkt for the command.
11344  *
11345  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11346  *     layer must acquire & release the SD_MUTEX(un) as needed.
11347  */
11348 
11349 
11350 /*
11351  * Create taskq for all targets in the system. This is created at
11352  * _init(9E) and destroyed at _fini(9E).
11353  *
11354  * Note: here we set the minalloc to a reasonably high number to ensure that
11355  * we will have an adequate supply of task entries available at interrupt time.
11356  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11357  * sd_create_taskq().  Since we do not want to sleep for allocations at
11358  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11359  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11360  * requests any one instant in time.
11361  */
11362 #define	SD_TASKQ_NUMTHREADS	8
11363 #define	SD_TASKQ_MINALLOC	256
11364 #define	SD_TASKQ_MAXALLOC	256
11365 
11366 static taskq_t	*sd_tq = NULL;
11367 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11368 
11369 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11370 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11371 
11372 /*
11373  * The following task queue is being created for the write part of
11374  * read-modify-write of non-512 block size devices.
11375  * Limit the number of threads to 1 for now. This number has been chosen
11376  * considering the fact that it applies only to dvd ram drives/MO drives
11377  * currently. Performance for which is not main criteria at this stage.
11378  * Note: It needs to be explored if we can use a single taskq in future
11379  */
11380 #define	SD_WMR_TASKQ_NUMTHREADS	1
11381 static taskq_t	*sd_wmr_tq = NULL;
11382 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11383 
11384 /*
11385  *    Function: sd_taskq_create
11386  *
11387  * Description: Create taskq thread(s) and preallocate task entries
11388  *
11389  * Return Code: Returns a pointer to the allocated taskq_t.
11390  *
11391  *     Context: Can sleep. Requires blockable context.
11392  *
11393  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11394  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11395  *		- taskq_create() will block for memory, also it will panic
11396  *		  if it cannot create the requested number of threads.
11397  *		- Currently taskq_create() creates threads that cannot be
11398  *		  swapped.
11399  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11400  *		  supply of taskq entries at interrupt time (ie, so that we
11401  *		  do not have to sleep for memory)
11402  */
11403 
11404 static void
11405 sd_taskq_create(void)
11406 {
11407 	char	taskq_name[TASKQ_NAMELEN];
11408 
11409 	ASSERT(sd_tq == NULL);
11410 	ASSERT(sd_wmr_tq == NULL);
11411 
11412 	(void) snprintf(taskq_name, sizeof (taskq_name),
11413 	    "%s_drv_taskq", sd_label);
11414 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11415 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11416 	    TASKQ_PREPOPULATE));
11417 
11418 	(void) snprintf(taskq_name, sizeof (taskq_name),
11419 	    "%s_rmw_taskq", sd_label);
11420 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11421 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11422 	    TASKQ_PREPOPULATE));
11423 }
11424 
11425 
11426 /*
11427  *    Function: sd_taskq_delete
11428  *
11429  * Description: Complementary cleanup routine for sd_taskq_create().
11430  *
11431  *     Context: Kernel thread context.
11432  */
11433 
11434 static void
11435 sd_taskq_delete(void)
11436 {
11437 	ASSERT(sd_tq != NULL);
11438 	ASSERT(sd_wmr_tq != NULL);
11439 	taskq_destroy(sd_tq);
11440 	taskq_destroy(sd_wmr_tq);
11441 	sd_tq = NULL;
11442 	sd_wmr_tq = NULL;
11443 }
11444 
11445 
11446 /*
11447  *    Function: sdstrategy
11448  *
11449  * Description: Driver's strategy (9E) entry point function.
11450  *
11451  *   Arguments: bp - pointer to buf(9S)
11452  *
11453  * Return Code: Always returns zero
11454  *
11455  *     Context: Kernel thread context.
11456  */
11457 
11458 static int
11459 sdstrategy(struct buf *bp)
11460 {
11461 	struct sd_lun *un;
11462 
11463 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11464 	if (un == NULL) {
11465 		bioerror(bp, EIO);
11466 		bp->b_resid = bp->b_bcount;
11467 		biodone(bp);
11468 		return (0);
11469 	}
11470 
11471 	/* As was done in the past, fail new cmds. if state is dumping. */
11472 	if (un->un_state == SD_STATE_DUMPING) {
11473 		bioerror(bp, ENXIO);
11474 		bp->b_resid = bp->b_bcount;
11475 		biodone(bp);
11476 		return (0);
11477 	}
11478 
11479 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11480 
11481 	/*
11482 	 * Commands may sneak in while we released the mutex in
11483 	 * DDI_SUSPEND, we should block new commands. However, old
11484 	 * commands that are still in the driver at this point should
11485 	 * still be allowed to drain.
11486 	 */
11487 	mutex_enter(SD_MUTEX(un));
11488 	/*
11489 	 * Must wait here if either the device is suspended or
11490 	 * if it's power level is changing.
11491 	 */
11492 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11493 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11494 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11495 	}
11496 
11497 	un->un_ncmds_in_driver++;
11498 
11499 	/*
11500 	 * atapi: Since we are running the CD for now in PIO mode we need to
11501 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11502 	 * the HBA's init_pkt routine.
11503 	 */
11504 	if (un->un_f_cfg_is_atapi == TRUE) {
11505 		mutex_exit(SD_MUTEX(un));
11506 		bp_mapin(bp);
11507 		mutex_enter(SD_MUTEX(un));
11508 	}
11509 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11510 	    un->un_ncmds_in_driver);
11511 
11512 	if (bp->b_flags & B_WRITE)
11513 		un->un_f_sync_cache_required = TRUE;
11514 
11515 	mutex_exit(SD_MUTEX(un));
11516 
11517 	/*
11518 	 * This will (eventually) allocate the sd_xbuf area and
11519 	 * call sd_xbuf_strategy().  We just want to return the
11520 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11521 	 * imized tail call which saves us a stack frame.
11522 	 */
11523 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11524 }
11525 
11526 
11527 /*
11528  *    Function: sd_xbuf_strategy
11529  *
11530  * Description: Function for initiating IO operations via the
11531  *		ddi_xbuf_qstrategy() mechanism.
11532  *
11533  *     Context: Kernel thread context.
11534  */
11535 
11536 static void
11537 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11538 {
11539 	struct sd_lun *un = arg;
11540 
11541 	ASSERT(bp != NULL);
11542 	ASSERT(xp != NULL);
11543 	ASSERT(un != NULL);
11544 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11545 
11546 	/*
11547 	 * Initialize the fields in the xbuf and save a pointer to the
11548 	 * xbuf in bp->b_private.
11549 	 */
11550 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11551 
11552 	/* Send the buf down the iostart chain */
11553 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11554 }
11555 
11556 
11557 /*
11558  *    Function: sd_xbuf_init
11559  *
11560  * Description: Prepare the given sd_xbuf struct for use.
11561  *
11562  *   Arguments: un - ptr to softstate
11563  *		bp - ptr to associated buf(9S)
11564  *		xp - ptr to associated sd_xbuf
11565  *		chain_type - IO chain type to use:
11566  *			SD_CHAIN_NULL
11567  *			SD_CHAIN_BUFIO
11568  *			SD_CHAIN_USCSI
11569  *			SD_CHAIN_DIRECT
11570  *			SD_CHAIN_DIRECT_PRIORITY
11571  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11572  *			initialization; may be NULL if none.
11573  *
11574  *     Context: Kernel thread context
11575  */
11576 
11577 static void
11578 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11579 	uchar_t chain_type, void *pktinfop)
11580 {
11581 	int index;
11582 
11583 	ASSERT(un != NULL);
11584 	ASSERT(bp != NULL);
11585 	ASSERT(xp != NULL);
11586 
11587 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11588 	    bp, chain_type);
11589 
11590 	xp->xb_un	= un;
11591 	xp->xb_pktp	= NULL;
11592 	xp->xb_pktinfo	= pktinfop;
11593 	xp->xb_private	= bp->b_private;
11594 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11595 
11596 	/*
11597 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11598 	 * upon the specified chain type to use.
11599 	 */
11600 	switch (chain_type) {
11601 	case SD_CHAIN_NULL:
11602 		/*
11603 		 * Fall thru to just use the values for the buf type, even
11604 		 * tho for the NULL chain these values will never be used.
11605 		 */
11606 		/* FALLTHRU */
11607 	case SD_CHAIN_BUFIO:
11608 		index = un->un_buf_chain_type;
11609 		if ((!un->un_f_has_removable_media) &&
11610 		    (un->un_tgt_blocksize != 0) &&
11611 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11612 		    un->un_f_enable_rmw)) {
11613 			int secmask = 0, blknomask = 0;
11614 			if (un->un_f_enable_rmw) {
11615 				blknomask =
11616 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11617 				secmask = un->un_phy_blocksize - 1;
11618 			} else {
11619 				blknomask =
11620 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11621 				secmask = un->un_tgt_blocksize - 1;
11622 			}
11623 
11624 			if ((bp->b_lblkno & (blknomask)) ||
11625 			    (bp->b_bcount & (secmask))) {
11626 				if ((un->un_f_rmw_type !=
11627 				    SD_RMW_TYPE_RETURN_ERROR) ||
11628 				    un->un_f_enable_rmw) {
11629 					if (un->un_f_pm_is_enabled == FALSE)
11630 						index =
11631 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11632 					else
11633 						index =
11634 						    SD_CHAIN_INFO_MSS_DISK;
11635 				}
11636 			}
11637 		}
11638 		break;
11639 	case SD_CHAIN_USCSI:
11640 		index = un->un_uscsi_chain_type;
11641 		break;
11642 	case SD_CHAIN_DIRECT:
11643 		index = un->un_direct_chain_type;
11644 		break;
11645 	case SD_CHAIN_DIRECT_PRIORITY:
11646 		index = un->un_priority_chain_type;
11647 		break;
11648 	default:
11649 		/* We're really broken if we ever get here... */
11650 		panic("sd_xbuf_init: illegal chain type!");
11651 		/*NOTREACHED*/
11652 	}
11653 
11654 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11655 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11656 
11657 	/*
11658 	 * It might be a bit easier to simply bzero the entire xbuf above,
11659 	 * but it turns out that since we init a fair number of members anyway,
11660 	 * we save a fair number cycles by doing explicit assignment of zero.
11661 	 */
11662 	xp->xb_pkt_flags	= 0;
11663 	xp->xb_dma_resid	= 0;
11664 	xp->xb_retry_count	= 0;
11665 	xp->xb_victim_retry_count = 0;
11666 	xp->xb_ua_retry_count	= 0;
11667 	xp->xb_nr_retry_count	= 0;
11668 	xp->xb_sense_bp		= NULL;
11669 	xp->xb_sense_status	= 0;
11670 	xp->xb_sense_state	= 0;
11671 	xp->xb_sense_resid	= 0;
11672 	xp->xb_ena		= 0;
11673 
11674 	bp->b_private	= xp;
11675 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11676 	bp->b_resid	= 0;
11677 	bp->av_forw	= NULL;
11678 	bp->av_back	= NULL;
11679 	bioerror(bp, 0);
11680 
11681 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11682 }
11683 
11684 
11685 /*
11686  *    Function: sd_uscsi_strategy
11687  *
11688  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11689  *
11690  *   Arguments: bp - buf struct ptr
11691  *
11692  * Return Code: Always returns 0
11693  *
11694  *     Context: Kernel thread context
11695  */
11696 
11697 static int
11698 sd_uscsi_strategy(struct buf *bp)
11699 {
11700 	struct sd_lun		*un;
11701 	struct sd_uscsi_info	*uip;
11702 	struct sd_xbuf		*xp;
11703 	uchar_t			chain_type;
11704 	uchar_t			cmd;
11705 
11706 	ASSERT(bp != NULL);
11707 
11708 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11709 	if (un == NULL) {
11710 		bioerror(bp, EIO);
11711 		bp->b_resid = bp->b_bcount;
11712 		biodone(bp);
11713 		return (0);
11714 	}
11715 
11716 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11717 
11718 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11719 
11720 	/*
11721 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11722 	 */
11723 	ASSERT(bp->b_private != NULL);
11724 	uip = (struct sd_uscsi_info *)bp->b_private;
11725 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11726 
11727 	mutex_enter(SD_MUTEX(un));
11728 	/*
11729 	 * atapi: Since we are running the CD for now in PIO mode we need to
11730 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11731 	 * the HBA's init_pkt routine.
11732 	 */
11733 	if (un->un_f_cfg_is_atapi == TRUE) {
11734 		mutex_exit(SD_MUTEX(un));
11735 		bp_mapin(bp);
11736 		mutex_enter(SD_MUTEX(un));
11737 	}
11738 	un->un_ncmds_in_driver++;
11739 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11740 	    un->un_ncmds_in_driver);
11741 
11742 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11743 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11744 		un->un_f_sync_cache_required = TRUE;
11745 
11746 	mutex_exit(SD_MUTEX(un));
11747 
11748 	switch (uip->ui_flags) {
11749 	case SD_PATH_DIRECT:
11750 		chain_type = SD_CHAIN_DIRECT;
11751 		break;
11752 	case SD_PATH_DIRECT_PRIORITY:
11753 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11754 		break;
11755 	default:
11756 		chain_type = SD_CHAIN_USCSI;
11757 		break;
11758 	}
11759 
11760 	/*
11761 	 * We may allocate extra buf for external USCSI commands. If the
11762 	 * application asks for bigger than 20-byte sense data via USCSI,
11763 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11764 	 */
11765 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11766 	    SENSE_LENGTH) {
11767 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11768 		    MAX_SENSE_LENGTH, KM_SLEEP);
11769 	} else {
11770 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11771 	}
11772 
11773 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11774 
11775 	/* Use the index obtained within xbuf_init */
11776 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11777 
11778 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11779 
11780 	return (0);
11781 }
11782 
11783 /*
11784  *    Function: sd_send_scsi_cmd
11785  *
11786  * Description: Runs a USCSI command for user (when called thru sdioctl),
11787  *		or for the driver
11788  *
11789  *   Arguments: dev - the dev_t for the device
11790  *		incmd - ptr to a valid uscsi_cmd struct
11791  *		flag - bit flag, indicating open settings, 32/64 bit type
11792  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11793  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11794  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11795  *			to use the USCSI "direct" chain and bypass the normal
11796  *			command waitq.
11797  *
11798  * Return Code: 0 -  successful completion of the given command
11799  *		EIO - scsi_uscsi_handle_command() failed
11800  *		ENXIO  - soft state not found for specified dev
11801  *		EINVAL
11802  *		EFAULT - copyin/copyout error
11803  *		return code of scsi_uscsi_handle_command():
11804  *			EIO
11805  *			ENXIO
11806  *			EACCES
11807  *
11808  *     Context: Waits for command to complete. Can sleep.
11809  */
11810 
11811 static int
11812 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11813 	enum uio_seg dataspace, int path_flag)
11814 {
11815 	struct sd_lun	*un;
11816 	sd_ssc_t	*ssc;
11817 	int		rval;
11818 
11819 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11820 	if (un == NULL) {
11821 		return (ENXIO);
11822 	}
11823 
11824 	/*
11825 	 * Using sd_ssc_send to handle uscsi cmd
11826 	 */
11827 	ssc = sd_ssc_init(un);
11828 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11829 	sd_ssc_fini(ssc);
11830 
11831 	return (rval);
11832 }
11833 
11834 /*
11835  *    Function: sd_ssc_init
11836  *
11837  * Description: Uscsi end-user call this function to initialize necessary
11838  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11839  *
11840  *              The return value of sd_send_scsi_cmd will be treated as a
11841  *              fault in various conditions. Even it is not Zero, some
11842  *              callers may ignore the return value. That is to say, we can
11843  *              not make an accurate assessment in sdintr, since if a
11844  *              command is failed in sdintr it does not mean the caller of
11845  *              sd_send_scsi_cmd will treat it as a real failure.
11846  *
11847  *              To avoid printing too many error logs for a failed uscsi
11848  *              packet that the caller may not treat it as a failure, the
11849  *              sd will keep silent for handling all uscsi commands.
11850  *
11851  *              During detach->attach and attach-open, for some types of
11852  *              problems, the driver should be providing information about
11853  *              the problem encountered. Device use USCSI_SILENT, which
11854  *              suppresses all driver information. The result is that no
11855  *              information about the problem is available. Being
11856  *              completely silent during this time is inappropriate. The
11857  *              driver needs a more selective filter than USCSI_SILENT, so
11858  *              that information related to faults is provided.
11859  *
11860  *              To make the accurate accessment, the caller  of
11861  *              sd_send_scsi_USCSI_CMD should take the ownership and
11862  *              get necessary information to print error messages.
11863  *
11864  *              If we want to print necessary info of uscsi command, we need to
11865  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11866  *              assessment. We use sd_ssc_init to alloc necessary
11867  *              structs for sending an uscsi command and we are also
11868  *              responsible for free the memory by calling
11869  *              sd_ssc_fini.
11870  *
11871  *              The calling secquences will look like:
11872  *              sd_ssc_init->
11873  *
11874  *                  ...
11875  *
11876  *                  sd_send_scsi_USCSI_CMD->
11877  *                      sd_ssc_send-> - - - sdintr
11878  *                  ...
11879  *
11880  *                  if we think the return value should be treated as a
11881  *                  failure, we make the accessment here and print out
11882  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11883  *
11884  *                  ...
11885  *
11886  *              sd_ssc_fini
11887  *
11888  *
11889  *   Arguments: un - pointer to driver soft state (unit) structure for this
11890  *                   target.
11891  *
11892  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11893  *                         uscsi_cmd and sd_uscsi_info.
11894  *                  NULL - if can not alloc memory for sd_ssc_t struct
11895  *
11896  *     Context: Kernel Thread.
11897  */
11898 static sd_ssc_t *
11899 sd_ssc_init(struct sd_lun *un)
11900 {
11901 	sd_ssc_t		*ssc;
11902 	struct uscsi_cmd	*ucmdp;
11903 	struct sd_uscsi_info	*uip;
11904 
11905 	ASSERT(un != NULL);
11906 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11907 
11908 	/*
11909 	 * Allocate sd_ssc_t structure
11910 	 */
11911 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11912 
11913 	/*
11914 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11915 	 */
11916 	ucmdp = scsi_uscsi_alloc();
11917 
11918 	/*
11919 	 * Allocate sd_uscsi_info structure
11920 	 */
11921 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11922 
11923 	ssc->ssc_uscsi_cmd = ucmdp;
11924 	ssc->ssc_uscsi_info = uip;
11925 	ssc->ssc_un = un;
11926 
11927 	return (ssc);
11928 }
11929 
11930 /*
11931  * Function: sd_ssc_fini
11932  *
11933  * Description: To free sd_ssc_t and it's hanging off
11934  *
11935  * Arguments: ssc - struct pointer of sd_ssc_t.
11936  */
11937 static void
11938 sd_ssc_fini(sd_ssc_t *ssc)
11939 {
11940 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11941 
11942 	if (ssc->ssc_uscsi_info != NULL) {
11943 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11944 		ssc->ssc_uscsi_info = NULL;
11945 	}
11946 
11947 	kmem_free(ssc, sizeof (sd_ssc_t));
11948 	ssc = NULL;
11949 }
11950 
11951 /*
11952  * Function: sd_ssc_send
11953  *
11954  * Description: Runs a USCSI command for user when called through sdioctl,
11955  *              or for the driver.
11956  *
11957  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11958  *                    sd_uscsi_info in.
11959  *		incmd - ptr to a valid uscsi_cmd struct
11960  *		flag - bit flag, indicating open settings, 32/64 bit type
11961  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11962  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11963  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11964  *			to use the USCSI "direct" chain and bypass the normal
11965  *			command waitq.
11966  *
11967  * Return Code: 0 -  successful completion of the given command
11968  *		EIO - scsi_uscsi_handle_command() failed
11969  *		ENXIO  - soft state not found for specified dev
11970  *		ECANCELED - command cancelled due to low power
11971  *		EINVAL
11972  *		EFAULT - copyin/copyout error
11973  *		return code of scsi_uscsi_handle_command():
11974  *			EIO
11975  *			ENXIO
11976  *			EACCES
11977  *
11978  *     Context: Kernel Thread;
11979  *              Waits for command to complete. Can sleep.
11980  */
11981 static int
11982 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11983 	enum uio_seg dataspace, int path_flag)
11984 {
11985 	struct sd_uscsi_info	*uip;
11986 	struct uscsi_cmd	*uscmd;
11987 	struct sd_lun		*un;
11988 	dev_t			dev;
11989 
11990 	int	format = 0;
11991 	int	rval;
11992 
11993 	ASSERT(ssc != NULL);
11994 	un = ssc->ssc_un;
11995 	ASSERT(un != NULL);
11996 	uscmd = ssc->ssc_uscsi_cmd;
11997 	ASSERT(uscmd != NULL);
11998 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11999 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12000 		/*
12001 		 * If enter here, it indicates that the previous uscsi
12002 		 * command has not been processed by sd_ssc_assessment.
12003 		 * This is violating our rules of FMA telemetry processing.
12004 		 * We should print out this message and the last undisposed
12005 		 * uscsi command.
12006 		 */
12007 		if (uscmd->uscsi_cdb != NULL) {
12008 			SD_INFO(SD_LOG_SDTEST, un,
12009 			    "sd_ssc_send is missing the alternative "
12010 			    "sd_ssc_assessment when running command 0x%x.\n",
12011 			    uscmd->uscsi_cdb[0]);
12012 		}
12013 		/*
12014 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12015 		 * the initial status.
12016 		 */
12017 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12018 	}
12019 
12020 	/*
12021 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
12022 	 * followed to avoid missing FMA telemetries.
12023 	 */
12024 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12025 
12026 	/*
12027 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12028 	 * command immediately.
12029 	 */
12030 	mutex_enter(SD_MUTEX(un));
12031 	mutex_enter(&un->un_pm_mutex);
12032 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12033 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12034 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12035 		    "un:0x%p is in low power\n", un);
12036 		mutex_exit(&un->un_pm_mutex);
12037 		mutex_exit(SD_MUTEX(un));
12038 		return (ECANCELED);
12039 	}
12040 	mutex_exit(&un->un_pm_mutex);
12041 	mutex_exit(SD_MUTEX(un));
12042 
12043 #ifdef SDDEBUG
12044 	switch (dataspace) {
12045 	case UIO_USERSPACE:
12046 		SD_TRACE(SD_LOG_IO, un,
12047 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12048 		break;
12049 	case UIO_SYSSPACE:
12050 		SD_TRACE(SD_LOG_IO, un,
12051 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12052 		break;
12053 	default:
12054 		SD_TRACE(SD_LOG_IO, un,
12055 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12056 		break;
12057 	}
12058 #endif
12059 
12060 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12061 	    SD_ADDRESS(un), &uscmd);
12062 	if (rval != 0) {
12063 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12064 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12065 		return (rval);
12066 	}
12067 
12068 	if ((uscmd->uscsi_cdb != NULL) &&
12069 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12070 		mutex_enter(SD_MUTEX(un));
12071 		un->un_f_format_in_progress = TRUE;
12072 		mutex_exit(SD_MUTEX(un));
12073 		format = 1;
12074 	}
12075 
12076 	/*
12077 	 * Allocate an sd_uscsi_info struct and fill it with the info
12078 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12079 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12080 	 * since we allocate the buf here in this function, we do not
12081 	 * need to preserve the prior contents of b_private.
12082 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12083 	 */
12084 	uip = ssc->ssc_uscsi_info;
12085 	uip->ui_flags = path_flag;
12086 	uip->ui_cmdp = uscmd;
12087 
12088 	/*
12089 	 * Commands sent with priority are intended for error recovery
12090 	 * situations, and do not have retries performed.
12091 	 */
12092 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12093 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12094 	}
12095 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12096 
12097 	dev = SD_GET_DEV(un);
12098 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12099 	    sd_uscsi_strategy, NULL, uip);
12100 
12101 	/*
12102 	 * mark ssc_flags right after handle_cmd to make sure
12103 	 * the uscsi has been sent
12104 	 */
12105 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12106 
12107 #ifdef SDDEBUG
12108 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12109 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12110 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12111 	if (uscmd->uscsi_bufaddr != NULL) {
12112 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12113 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12114 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12115 		if (dataspace == UIO_SYSSPACE) {
12116 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12117 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12118 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12119 		}
12120 	}
12121 #endif
12122 
12123 	if (format == 1) {
12124 		mutex_enter(SD_MUTEX(un));
12125 		un->un_f_format_in_progress = FALSE;
12126 		mutex_exit(SD_MUTEX(un));
12127 	}
12128 
12129 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12130 
12131 	return (rval);
12132 }
12133 
12134 /*
12135  *     Function: sd_ssc_print
12136  *
12137  * Description: Print information available to the console.
12138  *
12139  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12140  *                    sd_uscsi_info in.
12141  *            sd_severity - log level.
12142  *     Context: Kernel thread or interrupt context.
12143  */
12144 static void
12145 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12146 {
12147 	struct uscsi_cmd	*ucmdp;
12148 	struct scsi_device	*devp;
12149 	dev_info_t 		*devinfo;
12150 	uchar_t			*sensep;
12151 	int			senlen;
12152 	union scsi_cdb		*cdbp;
12153 	uchar_t			com;
12154 	extern struct scsi_key_strings scsi_cmds[];
12155 
12156 	ASSERT(ssc != NULL);
12157 	ASSERT(ssc->ssc_un != NULL);
12158 
12159 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12160 		return;
12161 	ucmdp = ssc->ssc_uscsi_cmd;
12162 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12163 	devinfo = SD_DEVINFO(ssc->ssc_un);
12164 	ASSERT(ucmdp != NULL);
12165 	ASSERT(devp != NULL);
12166 	ASSERT(devinfo != NULL);
12167 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12168 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12169 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12170 
12171 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12172 	if (cdbp == NULL)
12173 		return;
12174 	/* We don't print log if no sense data available. */
12175 	if (senlen == 0)
12176 		sensep = NULL;
12177 	com = cdbp->scc_cmd;
12178 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12179 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12180 }
12181 
12182 /*
12183  *     Function: sd_ssc_assessment
12184  *
12185  * Description: We use this function to make an assessment at the point
12186  *              where SD driver may encounter a potential error.
12187  *
12188  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12189  *                  sd_uscsi_info in.
12190  *            tp_assess - a hint of strategy for ereport posting.
12191  *            Possible values of tp_assess include:
12192  *                SD_FMT_IGNORE - we don't post any ereport because we're
12193  *                sure that it is ok to ignore the underlying problems.
12194  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12195  *                but it might be not correct to ignore the underlying hardware
12196  *                error.
12197  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12198  *                payload driver-assessment of value "fail" or
12199  *                "fatal"(depending on what information we have here). This
12200  *                assessment value is usually set when SD driver think there
12201  *                is a potential error occurred(Typically, when return value
12202  *                of the SCSI command is EIO).
12203  *                SD_FMT_STANDARD - we will post an ereport with the payload
12204  *                driver-assessment of value "info". This assessment value is
12205  *                set when the SCSI command returned successfully and with
12206  *                sense data sent back.
12207  *
12208  *     Context: Kernel thread.
12209  */
12210 static void
12211 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12212 {
12213 	int senlen = 0;
12214 	struct uscsi_cmd *ucmdp = NULL;
12215 	struct sd_lun *un;
12216 
12217 	ASSERT(ssc != NULL);
12218 	un = ssc->ssc_un;
12219 	ASSERT(un != NULL);
12220 	ucmdp = ssc->ssc_uscsi_cmd;
12221 	ASSERT(ucmdp != NULL);
12222 
12223 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12224 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12225 	} else {
12226 		/*
12227 		 * If enter here, it indicates that we have a wrong
12228 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12229 		 * both of which should be called in a pair in case of
12230 		 * loss of FMA telemetries.
12231 		 */
12232 		if (ucmdp->uscsi_cdb != NULL) {
12233 			SD_INFO(SD_LOG_SDTEST, un,
12234 			    "sd_ssc_assessment is missing the "
12235 			    "alternative sd_ssc_send when running 0x%x, "
12236 			    "or there are superfluous sd_ssc_assessment for "
12237 			    "the same sd_ssc_send.\n",
12238 			    ucmdp->uscsi_cdb[0]);
12239 		}
12240 		/*
12241 		 * Set the ssc_flags to the initial value to avoid passing
12242 		 * down dirty flags to the following sd_ssc_send function.
12243 		 */
12244 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12245 		return;
12246 	}
12247 
12248 	/*
12249 	 * Only handle an issued command which is waiting for assessment.
12250 	 * A command which is not issued will not have
12251 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12252 	 */
12253 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12254 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12255 		return;
12256 	} else {
12257 		/*
12258 		 * For an issued command, we should clear this flag in
12259 		 * order to make the sd_ssc_t structure be used off
12260 		 * multiple uscsi commands.
12261 		 */
12262 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12263 	}
12264 
12265 	/*
12266 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12267 	 * commands here. And we should clear the ssc_flags before return.
12268 	 */
12269 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12270 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12271 		return;
12272 	}
12273 
12274 	switch (tp_assess) {
12275 	case SD_FMT_IGNORE:
12276 	case SD_FMT_IGNORE_COMPROMISE:
12277 		break;
12278 	case SD_FMT_STATUS_CHECK:
12279 		/*
12280 		 * For a failed command(including the succeeded command
12281 		 * with invalid data sent back).
12282 		 */
12283 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12284 		break;
12285 	case SD_FMT_STANDARD:
12286 		/*
12287 		 * Always for the succeeded commands probably with sense
12288 		 * data sent back.
12289 		 * Limitation:
12290 		 *	We can only handle a succeeded command with sense
12291 		 *	data sent back when auto-request-sense is enabled.
12292 		 */
12293 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12294 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12295 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12296 		    (un->un_f_arq_enabled == TRUE) &&
12297 		    senlen > 0 &&
12298 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12299 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12300 		}
12301 		break;
12302 	default:
12303 		/*
12304 		 * Should not have other type of assessment.
12305 		 */
12306 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12307 		    "sd_ssc_assessment got wrong "
12308 		    "sd_type_assessment %d.\n", tp_assess);
12309 		break;
12310 	}
12311 	/*
12312 	 * Clear up the ssc_flags before return.
12313 	 */
12314 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12315 }
12316 
12317 /*
12318  *    Function: sd_ssc_post
12319  *
12320  * Description: 1. read the driver property to get fm-scsi-log flag.
12321  *              2. print log if fm_log_capable is non-zero.
12322  *              3. call sd_ssc_ereport_post to post ereport if possible.
12323  *
12324  *    Context: May be called from kernel thread or interrupt context.
12325  */
12326 static void
12327 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12328 {
12329 	struct sd_lun	*un;
12330 	int		sd_severity;
12331 
12332 	ASSERT(ssc != NULL);
12333 	un = ssc->ssc_un;
12334 	ASSERT(un != NULL);
12335 
12336 	/*
12337 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12338 	 * by directly called from sdintr context.
12339 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12340 	 * Clear the ssc_flags before return in case we've set
12341 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12342 	 * driver.
12343 	 */
12344 	if (ISCD(un) || un->un_f_has_removable_media) {
12345 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12346 		return;
12347 	}
12348 
12349 	switch (sd_assess) {
12350 		case SD_FM_DRV_FATAL:
12351 			sd_severity = SCSI_ERR_FATAL;
12352 			break;
12353 		case SD_FM_DRV_RECOVERY:
12354 			sd_severity = SCSI_ERR_RECOVERED;
12355 			break;
12356 		case SD_FM_DRV_RETRY:
12357 			sd_severity = SCSI_ERR_RETRYABLE;
12358 			break;
12359 		case SD_FM_DRV_NOTICE:
12360 			sd_severity = SCSI_ERR_INFO;
12361 			break;
12362 		default:
12363 			sd_severity = SCSI_ERR_UNKNOWN;
12364 	}
12365 	/* print log */
12366 	sd_ssc_print(ssc, sd_severity);
12367 
12368 	/* always post ereport */
12369 	sd_ssc_ereport_post(ssc, sd_assess);
12370 }
12371 
12372 /*
12373  *    Function: sd_ssc_set_info
12374  *
12375  * Description: Mark ssc_flags and set ssc_info which would be the
12376  *              payload of uderr ereport. This function will cause
12377  *              sd_ssc_ereport_post to post uderr ereport only.
12378  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12379  *              the function will also call SD_ERROR or scsi_log for a
12380  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12381  *
12382  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12383  *                  sd_uscsi_info in.
12384  *            ssc_flags - indicate the sub-category of a uderr.
12385  *            comp - this argument is meaningful only when
12386  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12387  *                   values include:
12388  *                   > 0, SD_ERROR is used with comp as the driver logging
12389  *                   component;
12390  *                   = 0, scsi-log is used to log error telemetries;
12391  *                   < 0, no log available for this telemetry.
12392  *
12393  *    Context: Kernel thread or interrupt context
12394  */
12395 static void
12396 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12397 {
12398 	va_list	ap;
12399 
12400 	ASSERT(ssc != NULL);
12401 	ASSERT(ssc->ssc_un != NULL);
12402 
12403 	ssc->ssc_flags |= ssc_flags;
12404 	va_start(ap, fmt);
12405 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12406 	va_end(ap);
12407 
12408 	/*
12409 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12410 	 * with invalid data sent back. For non-uscsi command, the
12411 	 * following code will be bypassed.
12412 	 */
12413 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12414 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12415 			/*
12416 			 * If the error belong to certain component and we
12417 			 * do not want it to show up on the console, we
12418 			 * will use SD_ERROR, otherwise scsi_log is
12419 			 * preferred.
12420 			 */
12421 			if (comp > 0) {
12422 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12423 			} else if (comp == 0) {
12424 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12425 				    CE_WARN, ssc->ssc_info);
12426 			}
12427 		}
12428 	}
12429 }
12430 
12431 /*
12432  *    Function: sd_buf_iodone
12433  *
12434  * Description: Frees the sd_xbuf & returns the buf to its originator.
12435  *
12436  *     Context: May be called from interrupt context.
12437  */
12438 /* ARGSUSED */
12439 static void
12440 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12441 {
12442 	struct sd_xbuf *xp;
12443 
12444 	ASSERT(un != NULL);
12445 	ASSERT(bp != NULL);
12446 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12447 
12448 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12449 
12450 	xp = SD_GET_XBUF(bp);
12451 	ASSERT(xp != NULL);
12452 
12453 	/* xbuf is gone after this */
12454 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12455 		mutex_enter(SD_MUTEX(un));
12456 
12457 		/*
12458 		 * Grab time when the cmd completed.
12459 		 * This is used for determining if the system has been
12460 		 * idle long enough to make it idle to the PM framework.
12461 		 * This is for lowering the overhead, and therefore improving
12462 		 * performance per I/O operation.
12463 		 */
12464 		un->un_pm_idle_time = ddi_get_time();
12465 
12466 		un->un_ncmds_in_driver--;
12467 		ASSERT(un->un_ncmds_in_driver >= 0);
12468 		SD_INFO(SD_LOG_IO, un,
12469 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12470 		    un->un_ncmds_in_driver);
12471 
12472 		mutex_exit(SD_MUTEX(un));
12473 	}
12474 
12475 	biodone(bp);				/* bp is gone after this */
12476 
12477 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12478 }
12479 
12480 
12481 /*
12482  *    Function: sd_uscsi_iodone
12483  *
12484  * Description: Frees the sd_xbuf & returns the buf to its originator.
12485  *
12486  *     Context: May be called from interrupt context.
12487  */
12488 /* ARGSUSED */
12489 static void
12490 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12491 {
12492 	struct sd_xbuf *xp;
12493 
12494 	ASSERT(un != NULL);
12495 	ASSERT(bp != NULL);
12496 
12497 	xp = SD_GET_XBUF(bp);
12498 	ASSERT(xp != NULL);
12499 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12500 
12501 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12502 
12503 	bp->b_private = xp->xb_private;
12504 
12505 	mutex_enter(SD_MUTEX(un));
12506 
12507 	/*
12508 	 * Grab time when the cmd completed.
12509 	 * This is used for determining if the system has been
12510 	 * idle long enough to make it idle to the PM framework.
12511 	 * This is for lowering the overhead, and therefore improving
12512 	 * performance per I/O operation.
12513 	 */
12514 	un->un_pm_idle_time = ddi_get_time();
12515 
12516 	un->un_ncmds_in_driver--;
12517 	ASSERT(un->un_ncmds_in_driver >= 0);
12518 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12519 	    un->un_ncmds_in_driver);
12520 
12521 	mutex_exit(SD_MUTEX(un));
12522 
12523 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12524 	    SENSE_LENGTH) {
12525 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12526 		    MAX_SENSE_LENGTH);
12527 	} else {
12528 		kmem_free(xp, sizeof (struct sd_xbuf));
12529 	}
12530 
12531 	biodone(bp);
12532 
12533 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12534 }
12535 
12536 
12537 /*
12538  *    Function: sd_mapblockaddr_iostart
12539  *
12540  * Description: Verify request lies within the partition limits for
12541  *		the indicated minor device.  Issue "overrun" buf if
12542  *		request would exceed partition range.  Converts
12543  *		partition-relative block address to absolute.
12544  *
12545  *              Upon exit of this function:
12546  *              1.I/O is aligned
12547  *                 xp->xb_blkno represents the absolute sector address
12548  *              2.I/O is misaligned
12549  *                 xp->xb_blkno represents the absolute logical block address
12550  *                 based on DEV_BSIZE. The logical block address will be
12551  *                 converted to physical sector address in sd_mapblocksize_\
12552  *                 iostart.
12553  *              3.I/O is misaligned but is aligned in "overrun" buf
12554  *                 xp->xb_blkno represents the absolute logical block address
12555  *                 based on DEV_BSIZE. The logical block address will be
12556  *                 converted to physical sector address in sd_mapblocksize_\
12557  *                 iostart. But no RMW will be issued in this case.
12558  *
12559  *     Context: Can sleep
12560  *
12561  *      Issues: This follows what the old code did, in terms of accessing
12562  *		some of the partition info in the unit struct without holding
12563  *		the mutext.  This is a general issue, if the partition info
12564  *		can be altered while IO is in progress... as soon as we send
12565  *		a buf, its partitioning can be invalid before it gets to the
12566  *		device.  Probably the right fix is to move partitioning out
12567  *		of the driver entirely.
12568  */
12569 
12570 static void
12571 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12572 {
12573 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12574 	daddr_t	blocknum;	/* Block number specified by the buf */
12575 	size_t	requested_nblocks;
12576 	size_t	available_nblocks;
12577 	int	partition;
12578 	diskaddr_t	partition_offset;
12579 	struct sd_xbuf *xp;
12580 	int secmask = 0, blknomask = 0;
12581 	ushort_t is_aligned = TRUE;
12582 
12583 	ASSERT(un != NULL);
12584 	ASSERT(bp != NULL);
12585 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12586 
12587 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12588 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12589 
12590 	xp = SD_GET_XBUF(bp);
12591 	ASSERT(xp != NULL);
12592 
12593 	/*
12594 	 * If the geometry is not indicated as valid, attempt to access
12595 	 * the unit & verify the geometry/label. This can be the case for
12596 	 * removable-media devices, of if the device was opened in
12597 	 * NDELAY/NONBLOCK mode.
12598 	 */
12599 	partition = SDPART(bp->b_edev);
12600 
12601 	if (!SD_IS_VALID_LABEL(un)) {
12602 		sd_ssc_t *ssc;
12603 		/*
12604 		 * Initialize sd_ssc_t for internal uscsi commands
12605 		 * In case of potential porformance issue, we need
12606 		 * to alloc memory only if there is invalid label
12607 		 */
12608 		ssc = sd_ssc_init(un);
12609 
12610 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12611 			/*
12612 			 * For removable devices it is possible to start an
12613 			 * I/O without a media by opening the device in nodelay
12614 			 * mode. Also for writable CDs there can be many
12615 			 * scenarios where there is no geometry yet but volume
12616 			 * manager is trying to issue a read() just because
12617 			 * it can see TOC on the CD. So do not print a message
12618 			 * for removables.
12619 			 */
12620 			if (!un->un_f_has_removable_media) {
12621 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12622 				    "i/o to invalid geometry\n");
12623 			}
12624 			bioerror(bp, EIO);
12625 			bp->b_resid = bp->b_bcount;
12626 			SD_BEGIN_IODONE(index, un, bp);
12627 
12628 			sd_ssc_fini(ssc);
12629 			return;
12630 		}
12631 		sd_ssc_fini(ssc);
12632 	}
12633 
12634 	nblocks = 0;
12635 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12636 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12637 
12638 	if (un->un_f_enable_rmw) {
12639 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12640 		secmask = un->un_phy_blocksize - 1;
12641 	} else {
12642 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12643 		secmask = un->un_tgt_blocksize - 1;
12644 	}
12645 
12646 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12647 		is_aligned = FALSE;
12648 	}
12649 
12650 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12651 		/*
12652 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12653 		 * Convert the logical block number to target's physical sector
12654 		 * number.
12655 		 */
12656 		if (is_aligned) {
12657 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12658 		} else {
12659 			/*
12660 			 * There is no RMW if we're just reading, so don't
12661 			 * warn or error out because of it.
12662 			 */
12663 			if (bp->b_flags & B_READ) {
12664 				/*EMPTY*/
12665 			} else if (!un->un_f_enable_rmw &&
12666 			    un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) {
12667 				bp->b_flags |= B_ERROR;
12668 				goto error_exit;
12669 			} else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) {
12670 				mutex_enter(SD_MUTEX(un));
12671 				if (!un->un_f_enable_rmw &&
12672 				    un->un_rmw_msg_timeid == NULL) {
12673 					scsi_log(SD_DEVINFO(un), sd_label,
12674 					    CE_WARN, "I/O request is not "
12675 					    "aligned with %d disk sector size. "
12676 					    "It is handled through Read Modify "
12677 					    "Write but the performance is "
12678 					    "very low.\n",
12679 					    un->un_tgt_blocksize);
12680 					un->un_rmw_msg_timeid =
12681 					    timeout(sd_rmw_msg_print_handler,
12682 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12683 				} else {
12684 					un->un_rmw_incre_count ++;
12685 				}
12686 				mutex_exit(SD_MUTEX(un));
12687 			}
12688 
12689 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12690 			partition_offset = SD_TGT2SYSBLOCK(un,
12691 			    partition_offset);
12692 		}
12693 	}
12694 
12695 	/*
12696 	 * blocknum is the starting block number of the request. At this
12697 	 * point it is still relative to the start of the minor device.
12698 	 */
12699 	blocknum = xp->xb_blkno;
12700 
12701 	/*
12702 	 * Legacy: If the starting block number is one past the last block
12703 	 * in the partition, do not set B_ERROR in the buf.
12704 	 */
12705 	if (blocknum == nblocks)  {
12706 		goto error_exit;
12707 	}
12708 
12709 	/*
12710 	 * Confirm that the first block of the request lies within the
12711 	 * partition limits. Also the requested number of bytes must be
12712 	 * a multiple of the system block size.
12713 	 */
12714 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12715 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12716 		bp->b_flags |= B_ERROR;
12717 		goto error_exit;
12718 	}
12719 
12720 	/*
12721 	 * If the requsted # blocks exceeds the available # blocks, that
12722 	 * is an overrun of the partition.
12723 	 */
12724 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12725 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12726 	} else {
12727 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12728 	}
12729 
12730 	available_nblocks = (size_t)(nblocks - blocknum);
12731 	ASSERT(nblocks >= blocknum);
12732 
12733 	if (requested_nblocks > available_nblocks) {
12734 		size_t resid;
12735 
12736 		/*
12737 		 * Allocate an "overrun" buf to allow the request to proceed
12738 		 * for the amount of space available in the partition. The
12739 		 * amount not transferred will be added into the b_resid
12740 		 * when the operation is complete. The overrun buf
12741 		 * replaces the original buf here, and the original buf
12742 		 * is saved inside the overrun buf, for later use.
12743 		 */
12744 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12745 			resid = SD_TGTBLOCKS2BYTES(un,
12746 			    (offset_t)(requested_nblocks - available_nblocks));
12747 		} else {
12748 			resid = SD_SYSBLOCKS2BYTES(
12749 			    (offset_t)(requested_nblocks - available_nblocks));
12750 		}
12751 
12752 		size_t count = bp->b_bcount - resid;
12753 		/*
12754 		 * Note: count is an unsigned entity thus it'll NEVER
12755 		 * be less than 0 so ASSERT the original values are
12756 		 * correct.
12757 		 */
12758 		ASSERT(bp->b_bcount >= resid);
12759 
12760 		bp = sd_bioclone_alloc(bp, count, blocknum,
12761 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12762 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12763 		ASSERT(xp != NULL);
12764 	}
12765 
12766 	/* At this point there should be no residual for this buf. */
12767 	ASSERT(bp->b_resid == 0);
12768 
12769 	/* Convert the block number to an absolute address. */
12770 	xp->xb_blkno += partition_offset;
12771 
12772 	SD_NEXT_IOSTART(index, un, bp);
12773 
12774 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12775 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12776 
12777 	return;
12778 
12779 error_exit:
12780 	bp->b_resid = bp->b_bcount;
12781 	SD_BEGIN_IODONE(index, un, bp);
12782 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12783 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12784 }
12785 
12786 
12787 /*
12788  *    Function: sd_mapblockaddr_iodone
12789  *
12790  * Description: Completion-side processing for partition management.
12791  *
12792  *     Context: May be called under interrupt context
12793  */
12794 
12795 static void
12796 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12797 {
12798 	/* int	partition; */	/* Not used, see below. */
12799 	ASSERT(un != NULL);
12800 	ASSERT(bp != NULL);
12801 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12802 
12803 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12804 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12805 
12806 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12807 		/*
12808 		 * We have an "overrun" buf to deal with...
12809 		 */
12810 		struct sd_xbuf	*xp;
12811 		struct buf	*obp;	/* ptr to the original buf */
12812 
12813 		xp = SD_GET_XBUF(bp);
12814 		ASSERT(xp != NULL);
12815 
12816 		/* Retrieve the pointer to the original buf */
12817 		obp = (struct buf *)xp->xb_private;
12818 		ASSERT(obp != NULL);
12819 
12820 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12821 		bioerror(obp, bp->b_error);
12822 
12823 		sd_bioclone_free(bp);
12824 
12825 		/*
12826 		 * Get back the original buf.
12827 		 * Note that since the restoration of xb_blkno below
12828 		 * was removed, the sd_xbuf is not needed.
12829 		 */
12830 		bp = obp;
12831 		/*
12832 		 * xp = SD_GET_XBUF(bp);
12833 		 * ASSERT(xp != NULL);
12834 		 */
12835 	}
12836 
12837 	/*
12838 	 * Convert sd->xb_blkno back to a minor-device relative value.
12839 	 * Note: this has been commented out, as it is not needed in the
12840 	 * current implementation of the driver (ie, since this function
12841 	 * is at the top of the layering chains, so the info will be
12842 	 * discarded) and it is in the "hot" IO path.
12843 	 *
12844 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12845 	 * xp->xb_blkno -= un->un_offset[partition];
12846 	 */
12847 
12848 	SD_NEXT_IODONE(index, un, bp);
12849 
12850 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12851 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12852 }
12853 
12854 
12855 /*
12856  *    Function: sd_mapblocksize_iostart
12857  *
12858  * Description: Convert between system block size (un->un_sys_blocksize)
12859  *		and target block size (un->un_tgt_blocksize).
12860  *
12861  *     Context: Can sleep to allocate resources.
12862  *
12863  * Assumptions: A higher layer has already performed any partition validation,
12864  *		and converted the xp->xb_blkno to an absolute value relative
12865  *		to the start of the device.
12866  *
12867  *		It is also assumed that the higher layer has implemented
12868  *		an "overrun" mechanism for the case where the request would
12869  *		read/write beyond the end of a partition.  In this case we
12870  *		assume (and ASSERT) that bp->b_resid == 0.
12871  *
12872  *		Note: The implementation for this routine assumes the target
12873  *		block size remains constant between allocation and transport.
12874  */
12875 
12876 static void
12877 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12878 {
12879 	struct sd_mapblocksize_info	*bsp;
12880 	struct sd_xbuf			*xp;
12881 	offset_t first_byte;
12882 	daddr_t	start_block, end_block;
12883 	daddr_t	request_bytes;
12884 	ushort_t is_aligned = FALSE;
12885 
12886 	ASSERT(un != NULL);
12887 	ASSERT(bp != NULL);
12888 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12889 	ASSERT(bp->b_resid == 0);
12890 
12891 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12892 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12893 
12894 	/*
12895 	 * For a non-writable CD, a write request is an error
12896 	 */
12897 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12898 	    (un->un_f_mmc_writable_media == FALSE)) {
12899 		bioerror(bp, EIO);
12900 		bp->b_resid = bp->b_bcount;
12901 		SD_BEGIN_IODONE(index, un, bp);
12902 		return;
12903 	}
12904 
12905 	/*
12906 	 * We do not need a shadow buf if the device is using
12907 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12908 	 * In this case there is no layer-private data block allocated.
12909 	 */
12910 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12911 	    (bp->b_bcount == 0)) {
12912 		goto done;
12913 	}
12914 
12915 #if defined(__i386) || defined(__amd64)
12916 	/* We do not support non-block-aligned transfers for ROD devices */
12917 	ASSERT(!ISROD(un));
12918 #endif
12919 
12920 	xp = SD_GET_XBUF(bp);
12921 	ASSERT(xp != NULL);
12922 
12923 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12924 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12925 	    un->un_tgt_blocksize, DEV_BSIZE);
12926 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12927 	    "request start block:0x%x\n", xp->xb_blkno);
12928 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12929 	    "request len:0x%x\n", bp->b_bcount);
12930 
12931 	/*
12932 	 * Allocate the layer-private data area for the mapblocksize layer.
12933 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12934 	 * struct to store the pointer to their layer-private data block, but
12935 	 * each layer also has the responsibility of restoring the prior
12936 	 * contents of xb_private before returning the buf/xbuf to the
12937 	 * higher layer that sent it.
12938 	 *
12939 	 * Here we save the prior contents of xp->xb_private into the
12940 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12941 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12942 	 * the layer-private area and returning the buf/xbuf to the layer
12943 	 * that sent it.
12944 	 *
12945 	 * Note that here we use kmem_zalloc for the allocation as there are
12946 	 * parts of the mapblocksize code that expect certain fields to be
12947 	 * zero unless explicitly set to a required value.
12948 	 */
12949 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12950 	bsp->mbs_oprivate = xp->xb_private;
12951 	xp->xb_private = bsp;
12952 
12953 	/*
12954 	 * This treats the data on the disk (target) as an array of bytes.
12955 	 * first_byte is the byte offset, from the beginning of the device,
12956 	 * to the location of the request. This is converted from a
12957 	 * un->un_sys_blocksize block address to a byte offset, and then back
12958 	 * to a block address based upon a un->un_tgt_blocksize block size.
12959 	 *
12960 	 * xp->xb_blkno should be absolute upon entry into this function,
12961 	 * but, but it is based upon partitions that use the "system"
12962 	 * block size. It must be adjusted to reflect the block size of
12963 	 * the target.
12964 	 *
12965 	 * Note that end_block is actually the block that follows the last
12966 	 * block of the request, but that's what is needed for the computation.
12967 	 */
12968 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12969 	if (un->un_f_enable_rmw) {
12970 		start_block = xp->xb_blkno =
12971 		    (first_byte / un->un_phy_blocksize) *
12972 		    (un->un_phy_blocksize / DEV_BSIZE);
12973 		end_block   = ((first_byte + bp->b_bcount +
12974 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12975 		    (un->un_phy_blocksize / DEV_BSIZE);
12976 	} else {
12977 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12978 		end_block   = (first_byte + bp->b_bcount +
12979 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12980 	}
12981 
12982 	/* request_bytes is rounded up to a multiple of the target block size */
12983 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12984 
12985 	/*
12986 	 * See if the starting address of the request and the request
12987 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12988 	 * then we do not need to allocate a shadow buf to handle the request.
12989 	 */
12990 	if (un->un_f_enable_rmw) {
12991 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12992 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12993 			is_aligned = TRUE;
12994 		}
12995 	} else {
12996 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12997 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12998 			is_aligned = TRUE;
12999 		}
13000 	}
13001 
13002 	if ((bp->b_flags & B_READ) == 0) {
13003 		/*
13004 		 * Lock the range for a write operation. An aligned request is
13005 		 * considered a simple write; otherwise the request must be a
13006 		 * read-modify-write.
13007 		 */
13008 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13009 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13010 	}
13011 
13012 	/*
13013 	 * Alloc a shadow buf if the request is not aligned. Also, this is
13014 	 * where the READ command is generated for a read-modify-write. (The
13015 	 * write phase is deferred until after the read completes.)
13016 	 */
13017 	if (is_aligned == FALSE) {
13018 
13019 		struct sd_mapblocksize_info	*shadow_bsp;
13020 		struct sd_xbuf	*shadow_xp;
13021 		struct buf	*shadow_bp;
13022 
13023 		/*
13024 		 * Allocate the shadow buf and it associated xbuf. Note that
13025 		 * after this call the xb_blkno value in both the original
13026 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13027 		 * same: absolute relative to the start of the device, and
13028 		 * adjusted for the target block size. The b_blkno in the
13029 		 * shadow buf will also be set to this value. We should never
13030 		 * change b_blkno in the original bp however.
13031 		 *
13032 		 * Note also that the shadow buf will always need to be a
13033 		 * READ command, regardless of whether the incoming command
13034 		 * is a READ or a WRITE.
13035 		 */
13036 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13037 		    xp->xb_blkno,
13038 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13039 
13040 		shadow_xp = SD_GET_XBUF(shadow_bp);
13041 
13042 		/*
13043 		 * Allocate the layer-private data for the shadow buf.
13044 		 * (No need to preserve xb_private in the shadow xbuf.)
13045 		 */
13046 		shadow_xp->xb_private = shadow_bsp =
13047 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13048 
13049 		/*
13050 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13051 		 * to figure out where the start of the user data is (based upon
13052 		 * the system block size) in the data returned by the READ
13053 		 * command (which will be based upon the target blocksize). Note
13054 		 * that this is only really used if the request is unaligned.
13055 		 */
13056 		if (un->un_f_enable_rmw) {
13057 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13058 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13059 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13060 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13061 		} else {
13062 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13063 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13064 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13065 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13066 		}
13067 
13068 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13069 
13070 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13071 
13072 		/* Transfer the wmap (if any) to the shadow buf */
13073 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13074 		bsp->mbs_wmp = NULL;
13075 
13076 		/*
13077 		 * The shadow buf goes on from here in place of the
13078 		 * original buf.
13079 		 */
13080 		shadow_bsp->mbs_orig_bp = bp;
13081 		bp = shadow_bp;
13082 	}
13083 
13084 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13085 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13086 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13087 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13088 	    request_bytes);
13089 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13090 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13091 
13092 done:
13093 	SD_NEXT_IOSTART(index, un, bp);
13094 
13095 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13096 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13097 }
13098 
13099 
13100 /*
13101  *    Function: sd_mapblocksize_iodone
13102  *
13103  * Description: Completion side processing for block-size mapping.
13104  *
13105  *     Context: May be called under interrupt context
13106  */
13107 
13108 static void
13109 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13110 {
13111 	struct sd_mapblocksize_info	*bsp;
13112 	struct sd_xbuf	*xp;
13113 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13114 	struct buf	*orig_bp;	/* ptr to the original buf */
13115 	offset_t	shadow_end;
13116 	offset_t	request_end;
13117 	offset_t	shadow_start;
13118 	ssize_t		copy_offset;
13119 	size_t		copy_length;
13120 	size_t		shortfall;
13121 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13122 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13123 
13124 	ASSERT(un != NULL);
13125 	ASSERT(bp != NULL);
13126 
13127 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13128 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13129 
13130 	/*
13131 	 * There is no shadow buf or layer-private data if the target is
13132 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13133 	 */
13134 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13135 	    (bp->b_bcount == 0)) {
13136 		goto exit;
13137 	}
13138 
13139 	xp = SD_GET_XBUF(bp);
13140 	ASSERT(xp != NULL);
13141 
13142 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13143 	bsp = xp->xb_private;
13144 
13145 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13146 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13147 
13148 	if (is_write) {
13149 		/*
13150 		 * For a WRITE request we must free up the block range that
13151 		 * we have locked up.  This holds regardless of whether this is
13152 		 * an aligned write request or a read-modify-write request.
13153 		 */
13154 		sd_range_unlock(un, bsp->mbs_wmp);
13155 		bsp->mbs_wmp = NULL;
13156 	}
13157 
13158 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13159 		/*
13160 		 * An aligned read or write command will have no shadow buf;
13161 		 * there is not much else to do with it.
13162 		 */
13163 		goto done;
13164 	}
13165 
13166 	orig_bp = bsp->mbs_orig_bp;
13167 	ASSERT(orig_bp != NULL);
13168 	orig_xp = SD_GET_XBUF(orig_bp);
13169 	ASSERT(orig_xp != NULL);
13170 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13171 
13172 	if (!is_write && has_wmap) {
13173 		/*
13174 		 * A READ with a wmap means this is the READ phase of a
13175 		 * read-modify-write. If an error occurred on the READ then
13176 		 * we do not proceed with the WRITE phase or copy any data.
13177 		 * Just release the write maps and return with an error.
13178 		 */
13179 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13180 			orig_bp->b_resid = orig_bp->b_bcount;
13181 			bioerror(orig_bp, bp->b_error);
13182 			sd_range_unlock(un, bsp->mbs_wmp);
13183 			goto freebuf_done;
13184 		}
13185 	}
13186 
13187 	/*
13188 	 * Here is where we set up to copy the data from the shadow buf
13189 	 * into the space associated with the original buf.
13190 	 *
13191 	 * To deal with the conversion between block sizes, these
13192 	 * computations treat the data as an array of bytes, with the
13193 	 * first byte (byte 0) corresponding to the first byte in the
13194 	 * first block on the disk.
13195 	 */
13196 
13197 	/*
13198 	 * shadow_start and shadow_len indicate the location and size of
13199 	 * the data returned with the shadow IO request.
13200 	 */
13201 	if (un->un_f_enable_rmw) {
13202 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13203 	} else {
13204 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13205 	}
13206 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13207 
13208 	/*
13209 	 * copy_offset gives the offset (in bytes) from the start of the first
13210 	 * block of the READ request to the beginning of the data.  We retrieve
13211 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13212 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13213 	 * data to be copied (in bytes).
13214 	 */
13215 	copy_offset  = bsp->mbs_copy_offset;
13216 	if (un->un_f_enable_rmw) {
13217 		ASSERT((copy_offset >= 0) &&
13218 		    (copy_offset < un->un_phy_blocksize));
13219 	} else {
13220 		ASSERT((copy_offset >= 0) &&
13221 		    (copy_offset < un->un_tgt_blocksize));
13222 	}
13223 
13224 	copy_length  = orig_bp->b_bcount;
13225 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13226 
13227 	/*
13228 	 * Set up the resid and error fields of orig_bp as appropriate.
13229 	 */
13230 	if (shadow_end >= request_end) {
13231 		/* We got all the requested data; set resid to zero */
13232 		orig_bp->b_resid = 0;
13233 	} else {
13234 		/*
13235 		 * We failed to get enough data to fully satisfy the original
13236 		 * request. Just copy back whatever data we got and set
13237 		 * up the residual and error code as required.
13238 		 *
13239 		 * 'shortfall' is the amount by which the data received with the
13240 		 * shadow buf has "fallen short" of the requested amount.
13241 		 */
13242 		shortfall = (size_t)(request_end - shadow_end);
13243 
13244 		if (shortfall > orig_bp->b_bcount) {
13245 			/*
13246 			 * We did not get enough data to even partially
13247 			 * fulfill the original request.  The residual is
13248 			 * equal to the amount requested.
13249 			 */
13250 			orig_bp->b_resid = orig_bp->b_bcount;
13251 		} else {
13252 			/*
13253 			 * We did not get all the data that we requested
13254 			 * from the device, but we will try to return what
13255 			 * portion we did get.
13256 			 */
13257 			orig_bp->b_resid = shortfall;
13258 		}
13259 		ASSERT(copy_length >= orig_bp->b_resid);
13260 		copy_length  -= orig_bp->b_resid;
13261 	}
13262 
13263 	/* Propagate the error code from the shadow buf to the original buf */
13264 	bioerror(orig_bp, bp->b_error);
13265 
13266 	if (is_write) {
13267 		goto freebuf_done;	/* No data copying for a WRITE */
13268 	}
13269 
13270 	if (has_wmap) {
13271 		/*
13272 		 * This is a READ command from the READ phase of a
13273 		 * read-modify-write request. We have to copy the data given
13274 		 * by the user OVER the data returned by the READ command,
13275 		 * then convert the command from a READ to a WRITE and send
13276 		 * it back to the target.
13277 		 */
13278 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13279 		    copy_length);
13280 
13281 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13282 
13283 		/*
13284 		 * Dispatch the WRITE command to the taskq thread, which
13285 		 * will in turn send the command to the target. When the
13286 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13287 		 * will get called again as part of the iodone chain
13288 		 * processing for it. Note that we will still be dealing
13289 		 * with the shadow buf at that point.
13290 		 */
13291 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13292 		    KM_NOSLEEP) != 0) {
13293 			/*
13294 			 * Dispatch was successful so we are done. Return
13295 			 * without going any higher up the iodone chain. Do
13296 			 * not free up any layer-private data until after the
13297 			 * WRITE completes.
13298 			 */
13299 			return;
13300 		}
13301 
13302 		/*
13303 		 * Dispatch of the WRITE command failed; set up the error
13304 		 * condition and send this IO back up the iodone chain.
13305 		 */
13306 		bioerror(orig_bp, EIO);
13307 		orig_bp->b_resid = orig_bp->b_bcount;
13308 
13309 	} else {
13310 		/*
13311 		 * This is a regular READ request (ie, not a RMW). Copy the
13312 		 * data from the shadow buf into the original buf. The
13313 		 * copy_offset compensates for any "misalignment" between the
13314 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13315 		 * original buf (with its un->un_sys_blocksize blocks).
13316 		 */
13317 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13318 		    copy_length);
13319 	}
13320 
13321 freebuf_done:
13322 
13323 	/*
13324 	 * At this point we still have both the shadow buf AND the original
13325 	 * buf to deal with, as well as the layer-private data area in each.
13326 	 * Local variables are as follows:
13327 	 *
13328 	 * bp -- points to shadow buf
13329 	 * xp -- points to xbuf of shadow buf
13330 	 * bsp -- points to layer-private data area of shadow buf
13331 	 * orig_bp -- points to original buf
13332 	 *
13333 	 * First free the shadow buf and its associated xbuf, then free the
13334 	 * layer-private data area from the shadow buf. There is no need to
13335 	 * restore xb_private in the shadow xbuf.
13336 	 */
13337 	sd_shadow_buf_free(bp);
13338 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13339 
13340 	/*
13341 	 * Now update the local variables to point to the original buf, xbuf,
13342 	 * and layer-private area.
13343 	 */
13344 	bp = orig_bp;
13345 	xp = SD_GET_XBUF(bp);
13346 	ASSERT(xp != NULL);
13347 	ASSERT(xp == orig_xp);
13348 	bsp = xp->xb_private;
13349 	ASSERT(bsp != NULL);
13350 
13351 done:
13352 	/*
13353 	 * Restore xb_private to whatever it was set to by the next higher
13354 	 * layer in the chain, then free the layer-private data area.
13355 	 */
13356 	xp->xb_private = bsp->mbs_oprivate;
13357 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13358 
13359 exit:
13360 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13361 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13362 
13363 	SD_NEXT_IODONE(index, un, bp);
13364 }
13365 
13366 
13367 /*
13368  *    Function: sd_checksum_iostart
13369  *
13370  * Description: A stub function for a layer that's currently not used.
13371  *		For now just a placeholder.
13372  *
13373  *     Context: Kernel thread context
13374  */
13375 
13376 static void
13377 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13378 {
13379 	ASSERT(un != NULL);
13380 	ASSERT(bp != NULL);
13381 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13382 	SD_NEXT_IOSTART(index, un, bp);
13383 }
13384 
13385 
13386 /*
13387  *    Function: sd_checksum_iodone
13388  *
13389  * Description: A stub function for a layer that's currently not used.
13390  *		For now just a placeholder.
13391  *
13392  *     Context: May be called under interrupt context
13393  */
13394 
13395 static void
13396 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13397 {
13398 	ASSERT(un != NULL);
13399 	ASSERT(bp != NULL);
13400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13401 	SD_NEXT_IODONE(index, un, bp);
13402 }
13403 
13404 
13405 /*
13406  *    Function: sd_checksum_uscsi_iostart
13407  *
13408  * Description: A stub function for a layer that's currently not used.
13409  *		For now just a placeholder.
13410  *
13411  *     Context: Kernel thread context
13412  */
13413 
13414 static void
13415 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13416 {
13417 	ASSERT(un != NULL);
13418 	ASSERT(bp != NULL);
13419 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13420 	SD_NEXT_IOSTART(index, un, bp);
13421 }
13422 
13423 
13424 /*
13425  *    Function: sd_checksum_uscsi_iodone
13426  *
13427  * Description: A stub function for a layer that's currently not used.
13428  *		For now just a placeholder.
13429  *
13430  *     Context: May be called under interrupt context
13431  */
13432 
13433 static void
13434 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13435 {
13436 	ASSERT(un != NULL);
13437 	ASSERT(bp != NULL);
13438 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13439 	SD_NEXT_IODONE(index, un, bp);
13440 }
13441 
13442 
13443 /*
13444  *    Function: sd_pm_iostart
13445  *
13446  * Description: iostart-side routine for Power mangement.
13447  *
13448  *     Context: Kernel thread context
13449  */
13450 
13451 static void
13452 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13453 {
13454 	ASSERT(un != NULL);
13455 	ASSERT(bp != NULL);
13456 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13457 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13458 
13459 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13460 
13461 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13462 		/*
13463 		 * Set up to return the failed buf back up the 'iodone'
13464 		 * side of the calling chain.
13465 		 */
13466 		bioerror(bp, EIO);
13467 		bp->b_resid = bp->b_bcount;
13468 
13469 		SD_BEGIN_IODONE(index, un, bp);
13470 
13471 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13472 		return;
13473 	}
13474 
13475 	SD_NEXT_IOSTART(index, un, bp);
13476 
13477 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13478 }
13479 
13480 
13481 /*
13482  *    Function: sd_pm_iodone
13483  *
13484  * Description: iodone-side routine for power mangement.
13485  *
13486  *     Context: may be called from interrupt context
13487  */
13488 
13489 static void
13490 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13491 {
13492 	ASSERT(un != NULL);
13493 	ASSERT(bp != NULL);
13494 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13495 
13496 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13497 
13498 	/*
13499 	 * After attach the following flag is only read, so don't
13500 	 * take the penalty of acquiring a mutex for it.
13501 	 */
13502 	if (un->un_f_pm_is_enabled == TRUE) {
13503 		sd_pm_exit(un);
13504 	}
13505 
13506 	SD_NEXT_IODONE(index, un, bp);
13507 
13508 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13509 }
13510 
13511 
13512 /*
13513  *    Function: sd_core_iostart
13514  *
13515  * Description: Primary driver function for enqueuing buf(9S) structs from
13516  *		the system and initiating IO to the target device
13517  *
13518  *     Context: Kernel thread context. Can sleep.
13519  *
13520  * Assumptions:  - The given xp->xb_blkno is absolute
13521  *		   (ie, relative to the start of the device).
13522  *		 - The IO is to be done using the native blocksize of
13523  *		   the device, as specified in un->un_tgt_blocksize.
13524  */
13525 /* ARGSUSED */
13526 static void
13527 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13528 {
13529 	struct sd_xbuf *xp;
13530 
13531 	ASSERT(un != NULL);
13532 	ASSERT(bp != NULL);
13533 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13534 	ASSERT(bp->b_resid == 0);
13535 
13536 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13537 
13538 	xp = SD_GET_XBUF(bp);
13539 	ASSERT(xp != NULL);
13540 
13541 	mutex_enter(SD_MUTEX(un));
13542 
13543 	/*
13544 	 * If we are currently in the failfast state, fail any new IO
13545 	 * that has B_FAILFAST set, then return.
13546 	 */
13547 	if ((bp->b_flags & B_FAILFAST) &&
13548 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13549 		mutex_exit(SD_MUTEX(un));
13550 		bioerror(bp, EIO);
13551 		bp->b_resid = bp->b_bcount;
13552 		SD_BEGIN_IODONE(index, un, bp);
13553 		return;
13554 	}
13555 
13556 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13557 		/*
13558 		 * Priority command -- transport it immediately.
13559 		 *
13560 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13561 		 * because all direct priority commands should be associated
13562 		 * with error recovery actions which we don't want to retry.
13563 		 */
13564 		sd_start_cmds(un, bp);
13565 	} else {
13566 		/*
13567 		 * Normal command -- add it to the wait queue, then start
13568 		 * transporting commands from the wait queue.
13569 		 */
13570 		sd_add_buf_to_waitq(un, bp);
13571 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13572 		sd_start_cmds(un, NULL);
13573 	}
13574 
13575 	mutex_exit(SD_MUTEX(un));
13576 
13577 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13578 }
13579 
13580 
13581 /*
13582  *    Function: sd_init_cdb_limits
13583  *
13584  * Description: This is to handle scsi_pkt initialization differences
13585  *		between the driver platforms.
13586  *
13587  *		Legacy behaviors:
13588  *
13589  *		If the block number or the sector count exceeds the
13590  *		capabilities of a Group 0 command, shift over to a
13591  *		Group 1 command. We don't blindly use Group 1
13592  *		commands because a) some drives (CDC Wren IVs) get a
13593  *		bit confused, and b) there is probably a fair amount
13594  *		of speed difference for a target to receive and decode
13595  *		a 10 byte command instead of a 6 byte command.
13596  *
13597  *		The xfer time difference of 6 vs 10 byte CDBs is
13598  *		still significant so this code is still worthwhile.
13599  *		10 byte CDBs are very inefficient with the fas HBA driver
13600  *		and older disks. Each CDB byte took 1 usec with some
13601  *		popular disks.
13602  *
13603  *     Context: Must be called at attach time
13604  */
13605 
13606 static void
13607 sd_init_cdb_limits(struct sd_lun *un)
13608 {
13609 	int hba_cdb_limit;
13610 
13611 	/*
13612 	 * Use CDB_GROUP1 commands for most devices except for
13613 	 * parallel SCSI fixed drives in which case we get better
13614 	 * performance using CDB_GROUP0 commands (where applicable).
13615 	 */
13616 	un->un_mincdb = SD_CDB_GROUP1;
13617 #if !defined(__fibre)
13618 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13619 	    !un->un_f_has_removable_media) {
13620 		un->un_mincdb = SD_CDB_GROUP0;
13621 	}
13622 #endif
13623 
13624 	/*
13625 	 * Try to read the max-cdb-length supported by HBA.
13626 	 */
13627 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13628 	if (0 >= un->un_max_hba_cdb) {
13629 		un->un_max_hba_cdb = CDB_GROUP4;
13630 		hba_cdb_limit = SD_CDB_GROUP4;
13631 	} else if (0 < un->un_max_hba_cdb &&
13632 	    un->un_max_hba_cdb < CDB_GROUP1) {
13633 		hba_cdb_limit = SD_CDB_GROUP0;
13634 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13635 	    un->un_max_hba_cdb < CDB_GROUP5) {
13636 		hba_cdb_limit = SD_CDB_GROUP1;
13637 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13638 	    un->un_max_hba_cdb < CDB_GROUP4) {
13639 		hba_cdb_limit = SD_CDB_GROUP5;
13640 	} else {
13641 		hba_cdb_limit = SD_CDB_GROUP4;
13642 	}
13643 
13644 	/*
13645 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13646 	 * commands for fixed disks unless we are building for a 32 bit
13647 	 * kernel.
13648 	 */
13649 #ifdef _LP64
13650 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13651 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13652 #else
13653 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13654 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13655 #endif
13656 
13657 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13658 	    ? sizeof (struct scsi_arq_status) : 1);
13659 	if (!ISCD(un))
13660 		un->un_cmd_timeout = (ushort_t)sd_io_time;
13661 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13662 }
13663 
13664 
13665 /*
13666  *    Function: sd_initpkt_for_buf
13667  *
13668  * Description: Allocate and initialize for transport a scsi_pkt struct,
13669  *		based upon the info specified in the given buf struct.
13670  *
13671  *		Assumes the xb_blkno in the request is absolute (ie,
13672  *		relative to the start of the device (NOT partition!).
13673  *		Also assumes that the request is using the native block
13674  *		size of the device (as returned by the READ CAPACITY
13675  *		command).
13676  *
13677  * Return Code: SD_PKT_ALLOC_SUCCESS
13678  *		SD_PKT_ALLOC_FAILURE
13679  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13680  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13681  *
13682  *     Context: Kernel thread and may be called from software interrupt context
13683  *		as part of a sdrunout callback. This function may not block or
13684  *		call routines that block
13685  */
13686 
13687 static int
13688 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13689 {
13690 	struct sd_xbuf	*xp;
13691 	struct scsi_pkt *pktp = NULL;
13692 	struct sd_lun	*un;
13693 	size_t		blockcount;
13694 	daddr_t		startblock;
13695 	int		rval;
13696 	int		cmd_flags;
13697 
13698 	ASSERT(bp != NULL);
13699 	ASSERT(pktpp != NULL);
13700 	xp = SD_GET_XBUF(bp);
13701 	ASSERT(xp != NULL);
13702 	un = SD_GET_UN(bp);
13703 	ASSERT(un != NULL);
13704 	ASSERT(mutex_owned(SD_MUTEX(un)));
13705 	ASSERT(bp->b_resid == 0);
13706 
13707 	SD_TRACE(SD_LOG_IO_CORE, un,
13708 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13709 
13710 	mutex_exit(SD_MUTEX(un));
13711 
13712 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13713 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13714 		/*
13715 		 * Already have a scsi_pkt -- just need DMA resources.
13716 		 * We must recompute the CDB in case the mapping returns
13717 		 * a nonzero pkt_resid.
13718 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13719 		 * that is being retried, the unmap/remap of the DMA resouces
13720 		 * will result in the entire transfer starting over again
13721 		 * from the very first block.
13722 		 */
13723 		ASSERT(xp->xb_pktp != NULL);
13724 		pktp = xp->xb_pktp;
13725 	} else {
13726 		pktp = NULL;
13727 	}
13728 #endif /* __i386 || __amd64 */
13729 
13730 	startblock = xp->xb_blkno;	/* Absolute block num. */
13731 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13732 
13733 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13734 
13735 	/*
13736 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13737 	 * call scsi_init_pkt, and build the CDB.
13738 	 */
13739 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13740 	    cmd_flags, sdrunout, (caddr_t)un,
13741 	    startblock, blockcount);
13742 
13743 	if (rval == 0) {
13744 		/*
13745 		 * Success.
13746 		 *
13747 		 * If partial DMA is being used and required for this transfer.
13748 		 * set it up here.
13749 		 */
13750 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13751 		    (pktp->pkt_resid != 0)) {
13752 
13753 			/*
13754 			 * Save the CDB length and pkt_resid for the
13755 			 * next xfer
13756 			 */
13757 			xp->xb_dma_resid = pktp->pkt_resid;
13758 
13759 			/* rezero resid */
13760 			pktp->pkt_resid = 0;
13761 
13762 		} else {
13763 			xp->xb_dma_resid = 0;
13764 		}
13765 
13766 		pktp->pkt_flags = un->un_tagflags;
13767 		pktp->pkt_time  = un->un_cmd_timeout;
13768 		pktp->pkt_comp  = sdintr;
13769 
13770 		pktp->pkt_private = bp;
13771 		*pktpp = pktp;
13772 
13773 		SD_TRACE(SD_LOG_IO_CORE, un,
13774 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13775 
13776 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13777 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13778 #endif
13779 
13780 		mutex_enter(SD_MUTEX(un));
13781 		return (SD_PKT_ALLOC_SUCCESS);
13782 
13783 	}
13784 
13785 	/*
13786 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13787 	 * from sd_setup_rw_pkt.
13788 	 */
13789 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13790 
13791 	if (rval == SD_PKT_ALLOC_FAILURE) {
13792 		*pktpp = NULL;
13793 		/*
13794 		 * Set the driver state to RWAIT to indicate the driver
13795 		 * is waiting on resource allocations. The driver will not
13796 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13797 		 */
13798 		mutex_enter(SD_MUTEX(un));
13799 		New_state(un, SD_STATE_RWAIT);
13800 
13801 		SD_ERROR(SD_LOG_IO_CORE, un,
13802 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13803 
13804 		if ((bp->b_flags & B_ERROR) != 0) {
13805 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13806 		}
13807 		return (SD_PKT_ALLOC_FAILURE);
13808 	} else {
13809 		/*
13810 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13811 		 *
13812 		 * This should never happen.  Maybe someone messed with the
13813 		 * kernel's minphys?
13814 		 */
13815 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13816 		    "Request rejected: too large for CDB: "
13817 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13818 		SD_ERROR(SD_LOG_IO_CORE, un,
13819 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13820 		mutex_enter(SD_MUTEX(un));
13821 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13822 
13823 	}
13824 }
13825 
13826 
13827 /*
13828  *    Function: sd_destroypkt_for_buf
13829  *
13830  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13831  *
13832  *     Context: Kernel thread or interrupt context
13833  */
13834 
13835 static void
13836 sd_destroypkt_for_buf(struct buf *bp)
13837 {
13838 	ASSERT(bp != NULL);
13839 	ASSERT(SD_GET_UN(bp) != NULL);
13840 
13841 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13842 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13843 
13844 	ASSERT(SD_GET_PKTP(bp) != NULL);
13845 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13846 
13847 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13848 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13849 }
13850 
13851 /*
13852  *    Function: sd_setup_rw_pkt
13853  *
13854  * Description: Determines appropriate CDB group for the requested LBA
13855  *		and transfer length, calls scsi_init_pkt, and builds
13856  *		the CDB.  Do not use for partial DMA transfers except
13857  *		for the initial transfer since the CDB size must
13858  *		remain constant.
13859  *
13860  *     Context: Kernel thread and may be called from software interrupt
13861  *		context as part of a sdrunout callback. This function may not
13862  *		block or call routines that block
13863  */
13864 
13865 
13866 int
13867 sd_setup_rw_pkt(struct sd_lun *un,
13868     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13869     int (*callback)(caddr_t), caddr_t callback_arg,
13870     diskaddr_t lba, uint32_t blockcount)
13871 {
13872 	struct scsi_pkt *return_pktp;
13873 	union scsi_cdb *cdbp;
13874 	struct sd_cdbinfo *cp = NULL;
13875 	int i;
13876 
13877 	/*
13878 	 * See which size CDB to use, based upon the request.
13879 	 */
13880 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13881 
13882 		/*
13883 		 * Check lba and block count against sd_cdbtab limits.
13884 		 * In the partial DMA case, we have to use the same size
13885 		 * CDB for all the transfers.  Check lba + blockcount
13886 		 * against the max LBA so we know that segment of the
13887 		 * transfer can use the CDB we select.
13888 		 */
13889 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13890 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13891 
13892 			/*
13893 			 * The command will fit into the CDB type
13894 			 * specified by sd_cdbtab[i].
13895 			 */
13896 			cp = sd_cdbtab + i;
13897 
13898 			/*
13899 			 * Call scsi_init_pkt so we can fill in the
13900 			 * CDB.
13901 			 */
13902 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13903 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13904 			    flags, callback, callback_arg);
13905 
13906 			if (return_pktp != NULL) {
13907 
13908 				/*
13909 				 * Return new value of pkt
13910 				 */
13911 				*pktpp = return_pktp;
13912 
13913 				/*
13914 				 * To be safe, zero the CDB insuring there is
13915 				 * no leftover data from a previous command.
13916 				 */
13917 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13918 
13919 				/*
13920 				 * Handle partial DMA mapping
13921 				 */
13922 				if (return_pktp->pkt_resid != 0) {
13923 
13924 					/*
13925 					 * Not going to xfer as many blocks as
13926 					 * originally expected
13927 					 */
13928 					blockcount -=
13929 					    SD_BYTES2TGTBLOCKS(un,
13930 					    return_pktp->pkt_resid);
13931 				}
13932 
13933 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13934 
13935 				/*
13936 				 * Set command byte based on the CDB
13937 				 * type we matched.
13938 				 */
13939 				cdbp->scc_cmd = cp->sc_grpmask |
13940 				    ((bp->b_flags & B_READ) ?
13941 				    SCMD_READ : SCMD_WRITE);
13942 
13943 				SD_FILL_SCSI1_LUN(un, return_pktp);
13944 
13945 				/*
13946 				 * Fill in LBA and length
13947 				 */
13948 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13949 				    (cp->sc_grpcode == CDB_GROUP4) ||
13950 				    (cp->sc_grpcode == CDB_GROUP0) ||
13951 				    (cp->sc_grpcode == CDB_GROUP5));
13952 
13953 				if (cp->sc_grpcode == CDB_GROUP1) {
13954 					FORMG1ADDR(cdbp, lba);
13955 					FORMG1COUNT(cdbp, blockcount);
13956 					return (0);
13957 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13958 					FORMG4LONGADDR(cdbp, lba);
13959 					FORMG4COUNT(cdbp, blockcount);
13960 					return (0);
13961 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13962 					FORMG0ADDR(cdbp, lba);
13963 					FORMG0COUNT(cdbp, blockcount);
13964 					return (0);
13965 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13966 					FORMG5ADDR(cdbp, lba);
13967 					FORMG5COUNT(cdbp, blockcount);
13968 					return (0);
13969 				}
13970 
13971 				/*
13972 				 * It should be impossible to not match one
13973 				 * of the CDB types above, so we should never
13974 				 * reach this point.  Set the CDB command byte
13975 				 * to test-unit-ready to avoid writing
13976 				 * to somewhere we don't intend.
13977 				 */
13978 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13979 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13980 			} else {
13981 				/*
13982 				 * Couldn't get scsi_pkt
13983 				 */
13984 				return (SD_PKT_ALLOC_FAILURE);
13985 			}
13986 		}
13987 	}
13988 
13989 	/*
13990 	 * None of the available CDB types were suitable.  This really
13991 	 * should never happen:  on a 64 bit system we support
13992 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13993 	 * and on a 32 bit system we will refuse to bind to a device
13994 	 * larger than 2TB so addresses will never be larger than 32 bits.
13995 	 */
13996 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13997 }
13998 
13999 /*
14000  *    Function: sd_setup_next_rw_pkt
14001  *
14002  * Description: Setup packet for partial DMA transfers, except for the
14003  * 		initial transfer.  sd_setup_rw_pkt should be used for
14004  *		the initial transfer.
14005  *
14006  *     Context: Kernel thread and may be called from interrupt context.
14007  */
14008 
14009 int
14010 sd_setup_next_rw_pkt(struct sd_lun *un,
14011     struct scsi_pkt *pktp, struct buf *bp,
14012     diskaddr_t lba, uint32_t blockcount)
14013 {
14014 	uchar_t com;
14015 	union scsi_cdb *cdbp;
14016 	uchar_t cdb_group_id;
14017 
14018 	ASSERT(pktp != NULL);
14019 	ASSERT(pktp->pkt_cdbp != NULL);
14020 
14021 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14022 	com = cdbp->scc_cmd;
14023 	cdb_group_id = CDB_GROUPID(com);
14024 
14025 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14026 	    (cdb_group_id == CDB_GROUPID_1) ||
14027 	    (cdb_group_id == CDB_GROUPID_4) ||
14028 	    (cdb_group_id == CDB_GROUPID_5));
14029 
14030 	/*
14031 	 * Move pkt to the next portion of the xfer.
14032 	 * func is NULL_FUNC so we do not have to release
14033 	 * the disk mutex here.
14034 	 */
14035 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14036 	    NULL_FUNC, NULL) == pktp) {
14037 		/* Success.  Handle partial DMA */
14038 		if (pktp->pkt_resid != 0) {
14039 			blockcount -=
14040 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14041 		}
14042 
14043 		cdbp->scc_cmd = com;
14044 		SD_FILL_SCSI1_LUN(un, pktp);
14045 		if (cdb_group_id == CDB_GROUPID_1) {
14046 			FORMG1ADDR(cdbp, lba);
14047 			FORMG1COUNT(cdbp, blockcount);
14048 			return (0);
14049 		} else if (cdb_group_id == CDB_GROUPID_4) {
14050 			FORMG4LONGADDR(cdbp, lba);
14051 			FORMG4COUNT(cdbp, blockcount);
14052 			return (0);
14053 		} else if (cdb_group_id == CDB_GROUPID_0) {
14054 			FORMG0ADDR(cdbp, lba);
14055 			FORMG0COUNT(cdbp, blockcount);
14056 			return (0);
14057 		} else if (cdb_group_id == CDB_GROUPID_5) {
14058 			FORMG5ADDR(cdbp, lba);
14059 			FORMG5COUNT(cdbp, blockcount);
14060 			return (0);
14061 		}
14062 
14063 		/* Unreachable */
14064 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14065 	}
14066 
14067 	/*
14068 	 * Error setting up next portion of cmd transfer.
14069 	 * Something is definitely very wrong and this
14070 	 * should not happen.
14071 	 */
14072 	return (SD_PKT_ALLOC_FAILURE);
14073 }
14074 
14075 /*
14076  *    Function: sd_initpkt_for_uscsi
14077  *
14078  * Description: Allocate and initialize for transport a scsi_pkt struct,
14079  *		based upon the info specified in the given uscsi_cmd struct.
14080  *
14081  * Return Code: SD_PKT_ALLOC_SUCCESS
14082  *		SD_PKT_ALLOC_FAILURE
14083  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14084  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14085  *
14086  *     Context: Kernel thread and may be called from software interrupt context
14087  *		as part of a sdrunout callback. This function may not block or
14088  *		call routines that block
14089  */
14090 
14091 static int
14092 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14093 {
14094 	struct uscsi_cmd *uscmd;
14095 	struct sd_xbuf	*xp;
14096 	struct scsi_pkt	*pktp;
14097 	struct sd_lun	*un;
14098 	uint32_t	flags = 0;
14099 
14100 	ASSERT(bp != NULL);
14101 	ASSERT(pktpp != NULL);
14102 	xp = SD_GET_XBUF(bp);
14103 	ASSERT(xp != NULL);
14104 	un = SD_GET_UN(bp);
14105 	ASSERT(un != NULL);
14106 	ASSERT(mutex_owned(SD_MUTEX(un)));
14107 
14108 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14109 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14110 	ASSERT(uscmd != NULL);
14111 
14112 	SD_TRACE(SD_LOG_IO_CORE, un,
14113 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14114 
14115 	/*
14116 	 * Allocate the scsi_pkt for the command.
14117 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14118 	 *	 during scsi_init_pkt time and will continue to use the
14119 	 *	 same path as long as the same scsi_pkt is used without
14120 	 *	 intervening scsi_dma_free(). Since uscsi command does
14121 	 *	 not call scsi_dmafree() before retry failed command, it
14122 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14123 	 *	 set such that scsi_vhci can use other available path for
14124 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14125 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14126 	 */
14127 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14128 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14129 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14130 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14131 		    - sizeof (struct scsi_extended_sense)), 0,
14132 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14133 		    sdrunout, (caddr_t)un);
14134 	} else {
14135 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14136 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14137 		    sizeof (struct scsi_arq_status), 0,
14138 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14139 		    sdrunout, (caddr_t)un);
14140 	}
14141 
14142 	if (pktp == NULL) {
14143 		*pktpp = NULL;
14144 		/*
14145 		 * Set the driver state to RWAIT to indicate the driver
14146 		 * is waiting on resource allocations. The driver will not
14147 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14148 		 */
14149 		New_state(un, SD_STATE_RWAIT);
14150 
14151 		SD_ERROR(SD_LOG_IO_CORE, un,
14152 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14153 
14154 		if ((bp->b_flags & B_ERROR) != 0) {
14155 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14156 		}
14157 		return (SD_PKT_ALLOC_FAILURE);
14158 	}
14159 
14160 	/*
14161 	 * We do not do DMA breakup for USCSI commands, so return failure
14162 	 * here if all the needed DMA resources were not allocated.
14163 	 */
14164 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14165 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14166 		scsi_destroy_pkt(pktp);
14167 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14168 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14169 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14170 	}
14171 
14172 	/* Init the cdb from the given uscsi struct */
14173 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14174 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14175 
14176 	SD_FILL_SCSI1_LUN(un, pktp);
14177 
14178 	/*
14179 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14180 	 * for listing of the supported flags.
14181 	 */
14182 
14183 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14184 		flags |= FLAG_SILENT;
14185 	}
14186 
14187 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14188 		flags |= FLAG_DIAGNOSE;
14189 	}
14190 
14191 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14192 		flags |= FLAG_ISOLATE;
14193 	}
14194 
14195 	if (un->un_f_is_fibre == FALSE) {
14196 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14197 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14198 		}
14199 	}
14200 
14201 	/*
14202 	 * Set the pkt flags here so we save time later.
14203 	 * Note: These flags are NOT in the uscsi man page!!!
14204 	 */
14205 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14206 		flags |= FLAG_HEAD;
14207 	}
14208 
14209 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14210 		flags |= FLAG_NOINTR;
14211 	}
14212 
14213 	/*
14214 	 * For tagged queueing, things get a bit complicated.
14215 	 * Check first for head of queue and last for ordered queue.
14216 	 * If neither head nor order, use the default driver tag flags.
14217 	 */
14218 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14219 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14220 			flags |= FLAG_HTAG;
14221 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14222 			flags |= FLAG_OTAG;
14223 		} else {
14224 			flags |= un->un_tagflags & FLAG_TAGMASK;
14225 		}
14226 	}
14227 
14228 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14229 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14230 	}
14231 
14232 	pktp->pkt_flags = flags;
14233 
14234 	/* Transfer uscsi information to scsi_pkt */
14235 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14236 
14237 	/* Copy the caller's CDB into the pkt... */
14238 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14239 
14240 	if (uscmd->uscsi_timeout == 0) {
14241 		pktp->pkt_time = un->un_uscsi_timeout;
14242 	} else {
14243 		pktp->pkt_time = uscmd->uscsi_timeout;
14244 	}
14245 
14246 	/* need it later to identify USCSI request in sdintr */
14247 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14248 
14249 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14250 
14251 	pktp->pkt_private = bp;
14252 	pktp->pkt_comp = sdintr;
14253 	*pktpp = pktp;
14254 
14255 	SD_TRACE(SD_LOG_IO_CORE, un,
14256 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14257 
14258 	return (SD_PKT_ALLOC_SUCCESS);
14259 }
14260 
14261 
14262 /*
14263  *    Function: sd_destroypkt_for_uscsi
14264  *
14265  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14266  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14267  *		struct.
14268  *
14269  *     Context: May be called under interrupt context
14270  */
14271 
14272 static void
14273 sd_destroypkt_for_uscsi(struct buf *bp)
14274 {
14275 	struct uscsi_cmd *uscmd;
14276 	struct sd_xbuf	*xp;
14277 	struct scsi_pkt	*pktp;
14278 	struct sd_lun	*un;
14279 	struct sd_uscsi_info *suip;
14280 
14281 	ASSERT(bp != NULL);
14282 	xp = SD_GET_XBUF(bp);
14283 	ASSERT(xp != NULL);
14284 	un = SD_GET_UN(bp);
14285 	ASSERT(un != NULL);
14286 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14287 	pktp = SD_GET_PKTP(bp);
14288 	ASSERT(pktp != NULL);
14289 
14290 	SD_TRACE(SD_LOG_IO_CORE, un,
14291 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14292 
14293 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14294 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14295 	ASSERT(uscmd != NULL);
14296 
14297 	/* Save the status and the residual into the uscsi_cmd struct */
14298 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14299 	uscmd->uscsi_resid  = bp->b_resid;
14300 
14301 	/* Transfer scsi_pkt information to uscsi */
14302 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14303 
14304 	/*
14305 	 * If enabled, copy any saved sense data into the area specified
14306 	 * by the uscsi command.
14307 	 */
14308 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14309 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14310 		/*
14311 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14312 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14313 		 */
14314 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14315 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14316 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14317 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14318 			    MAX_SENSE_LENGTH);
14319 		} else {
14320 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14321 			    SENSE_LENGTH);
14322 		}
14323 	}
14324 	/*
14325 	 * The following assignments are for SCSI FMA.
14326 	 */
14327 	ASSERT(xp->xb_private != NULL);
14328 	suip = (struct sd_uscsi_info *)xp->xb_private;
14329 	suip->ui_pkt_reason = pktp->pkt_reason;
14330 	suip->ui_pkt_state = pktp->pkt_state;
14331 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14332 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14333 
14334 	/* We are done with the scsi_pkt; free it now */
14335 	ASSERT(SD_GET_PKTP(bp) != NULL);
14336 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14337 
14338 	SD_TRACE(SD_LOG_IO_CORE, un,
14339 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14340 }
14341 
14342 
14343 /*
14344  *    Function: sd_bioclone_alloc
14345  *
14346  * Description: Allocate a buf(9S) and init it as per the given buf
14347  *		and the various arguments.  The associated sd_xbuf
14348  *		struct is (nearly) duplicated.  The struct buf *bp
14349  *		argument is saved in new_xp->xb_private.
14350  *
14351  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14352  *		datalen - size of data area for the shadow bp
14353  *		blkno - starting LBA
14354  *		func - function pointer for b_iodone in the shadow buf. (May
14355  *			be NULL if none.)
14356  *
14357  * Return Code: Pointer to allocates buf(9S) struct
14358  *
14359  *     Context: Can sleep.
14360  */
14361 
14362 static struct buf *
14363 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14364 	daddr_t blkno, int (*func)(struct buf *))
14365 {
14366 	struct	sd_lun	*un;
14367 	struct	sd_xbuf	*xp;
14368 	struct	sd_xbuf	*new_xp;
14369 	struct	buf	*new_bp;
14370 
14371 	ASSERT(bp != NULL);
14372 	xp = SD_GET_XBUF(bp);
14373 	ASSERT(xp != NULL);
14374 	un = SD_GET_UN(bp);
14375 	ASSERT(un != NULL);
14376 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14377 
14378 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14379 	    NULL, KM_SLEEP);
14380 
14381 	new_bp->b_lblkno	= blkno;
14382 
14383 	/*
14384 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14385 	 * original xbuf into it.
14386 	 */
14387 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14388 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14389 
14390 	/*
14391 	 * The given bp is automatically saved in the xb_private member
14392 	 * of the new xbuf.  Callers are allowed to depend on this.
14393 	 */
14394 	new_xp->xb_private = bp;
14395 
14396 	new_bp->b_private  = new_xp;
14397 
14398 	return (new_bp);
14399 }
14400 
14401 /*
14402  *    Function: sd_shadow_buf_alloc
14403  *
14404  * Description: Allocate a buf(9S) and init it as per the given buf
14405  *		and the various arguments.  The associated sd_xbuf
14406  *		struct is (nearly) duplicated.  The struct buf *bp
14407  *		argument is saved in new_xp->xb_private.
14408  *
14409  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14410  *		datalen - size of data area for the shadow bp
14411  *		bflags - B_READ or B_WRITE (pseudo flag)
14412  *		blkno - starting LBA
14413  *		func - function pointer for b_iodone in the shadow buf. (May
14414  *			be NULL if none.)
14415  *
14416  * Return Code: Pointer to allocates buf(9S) struct
14417  *
14418  *     Context: Can sleep.
14419  */
14420 
14421 static struct buf *
14422 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14423 	daddr_t blkno, int (*func)(struct buf *))
14424 {
14425 	struct	sd_lun	*un;
14426 	struct	sd_xbuf	*xp;
14427 	struct	sd_xbuf	*new_xp;
14428 	struct	buf	*new_bp;
14429 
14430 	ASSERT(bp != NULL);
14431 	xp = SD_GET_XBUF(bp);
14432 	ASSERT(xp != NULL);
14433 	un = SD_GET_UN(bp);
14434 	ASSERT(un != NULL);
14435 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14436 
14437 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14438 		bp_mapin(bp);
14439 	}
14440 
14441 	bflags &= (B_READ | B_WRITE);
14442 #if defined(__i386) || defined(__amd64)
14443 	new_bp = getrbuf(KM_SLEEP);
14444 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14445 	new_bp->b_bcount = datalen;
14446 	new_bp->b_flags = bflags |
14447 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14448 #else
14449 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14450 	    datalen, bflags, SLEEP_FUNC, NULL);
14451 #endif
14452 	new_bp->av_forw	= NULL;
14453 	new_bp->av_back	= NULL;
14454 	new_bp->b_dev	= bp->b_dev;
14455 	new_bp->b_blkno	= blkno;
14456 	new_bp->b_iodone = func;
14457 	new_bp->b_edev	= bp->b_edev;
14458 	new_bp->b_resid	= 0;
14459 
14460 	/* We need to preserve the B_FAILFAST flag */
14461 	if (bp->b_flags & B_FAILFAST) {
14462 		new_bp->b_flags |= B_FAILFAST;
14463 	}
14464 
14465 	/*
14466 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14467 	 * original xbuf into it.
14468 	 */
14469 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14470 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14471 
14472 	/* Need later to copy data between the shadow buf & original buf! */
14473 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14474 
14475 	/*
14476 	 * The given bp is automatically saved in the xb_private member
14477 	 * of the new xbuf.  Callers are allowed to depend on this.
14478 	 */
14479 	new_xp->xb_private = bp;
14480 
14481 	new_bp->b_private  = new_xp;
14482 
14483 	return (new_bp);
14484 }
14485 
14486 /*
14487  *    Function: sd_bioclone_free
14488  *
14489  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14490  *		in the larger than partition operation.
14491  *
14492  *     Context: May be called under interrupt context
14493  */
14494 
14495 static void
14496 sd_bioclone_free(struct buf *bp)
14497 {
14498 	struct sd_xbuf	*xp;
14499 
14500 	ASSERT(bp != NULL);
14501 	xp = SD_GET_XBUF(bp);
14502 	ASSERT(xp != NULL);
14503 
14504 	/*
14505 	 * Call bp_mapout() before freeing the buf,  in case a lower
14506 	 * layer or HBA  had done a bp_mapin().  we must do this here
14507 	 * as we are the "originator" of the shadow buf.
14508 	 */
14509 	bp_mapout(bp);
14510 
14511 	/*
14512 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14513 	 * never gets confused by a stale value in this field. (Just a little
14514 	 * extra defensiveness here.)
14515 	 */
14516 	bp->b_iodone = NULL;
14517 
14518 	freerbuf(bp);
14519 
14520 	kmem_free(xp, sizeof (struct sd_xbuf));
14521 }
14522 
14523 /*
14524  *    Function: sd_shadow_buf_free
14525  *
14526  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14527  *
14528  *     Context: May be called under interrupt context
14529  */
14530 
14531 static void
14532 sd_shadow_buf_free(struct buf *bp)
14533 {
14534 	struct sd_xbuf	*xp;
14535 
14536 	ASSERT(bp != NULL);
14537 	xp = SD_GET_XBUF(bp);
14538 	ASSERT(xp != NULL);
14539 
14540 #if defined(__sparc)
14541 	/*
14542 	 * Call bp_mapout() before freeing the buf,  in case a lower
14543 	 * layer or HBA  had done a bp_mapin().  we must do this here
14544 	 * as we are the "originator" of the shadow buf.
14545 	 */
14546 	bp_mapout(bp);
14547 #endif
14548 
14549 	/*
14550 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14551 	 * never gets confused by a stale value in this field. (Just a little
14552 	 * extra defensiveness here.)
14553 	 */
14554 	bp->b_iodone = NULL;
14555 
14556 #if defined(__i386) || defined(__amd64)
14557 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14558 	freerbuf(bp);
14559 #else
14560 	scsi_free_consistent_buf(bp);
14561 #endif
14562 
14563 	kmem_free(xp, sizeof (struct sd_xbuf));
14564 }
14565 
14566 
14567 /*
14568  *    Function: sd_print_transport_rejected_message
14569  *
14570  * Description: This implements the ludicrously complex rules for printing
14571  *		a "transport rejected" message.  This is to address the
14572  *		specific problem of having a flood of this error message
14573  *		produced when a failover occurs.
14574  *
14575  *     Context: Any.
14576  */
14577 
14578 static void
14579 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14580 	int code)
14581 {
14582 	ASSERT(un != NULL);
14583 	ASSERT(mutex_owned(SD_MUTEX(un)));
14584 	ASSERT(xp != NULL);
14585 
14586 	/*
14587 	 * Print the "transport rejected" message under the following
14588 	 * conditions:
14589 	 *
14590 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14591 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14592 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14593 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14594 	 *   scsi_transport(9F) (which indicates that the target might have
14595 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14596 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14597 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14598 	 *   from scsi_transport().
14599 	 *
14600 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14601 	 * the preceeding cases in order for the message to be printed.
14602 	 */
14603 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14604 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14605 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14606 		    (code != TRAN_FATAL_ERROR) ||
14607 		    (un->un_tran_fatal_count == 1)) {
14608 			switch (code) {
14609 			case TRAN_BADPKT:
14610 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14611 				    "transport rejected bad packet\n");
14612 				break;
14613 			case TRAN_FATAL_ERROR:
14614 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14615 				    "transport rejected fatal error\n");
14616 				break;
14617 			default:
14618 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14619 				    "transport rejected (%d)\n", code);
14620 				break;
14621 			}
14622 		}
14623 	}
14624 }
14625 
14626 
14627 /*
14628  *    Function: sd_add_buf_to_waitq
14629  *
14630  * Description: Add the given buf(9S) struct to the wait queue for the
14631  *		instance.  If sorting is enabled, then the buf is added
14632  *		to the queue via an elevator sort algorithm (a la
14633  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14634  *		If sorting is not enabled, then the buf is just added
14635  *		to the end of the wait queue.
14636  *
14637  * Return Code: void
14638  *
14639  *     Context: Does not sleep/block, therefore technically can be called
14640  *		from any context.  However if sorting is enabled then the
14641  *		execution time is indeterminate, and may take long if
14642  *		the wait queue grows large.
14643  */
14644 
14645 static void
14646 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14647 {
14648 	struct buf *ap;
14649 
14650 	ASSERT(bp != NULL);
14651 	ASSERT(un != NULL);
14652 	ASSERT(mutex_owned(SD_MUTEX(un)));
14653 
14654 	/* If the queue is empty, add the buf as the only entry & return. */
14655 	if (un->un_waitq_headp == NULL) {
14656 		ASSERT(un->un_waitq_tailp == NULL);
14657 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14658 		bp->av_forw = NULL;
14659 		return;
14660 	}
14661 
14662 	ASSERT(un->un_waitq_tailp != NULL);
14663 
14664 	/*
14665 	 * If sorting is disabled, just add the buf to the tail end of
14666 	 * the wait queue and return.
14667 	 */
14668 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14669 		un->un_waitq_tailp->av_forw = bp;
14670 		un->un_waitq_tailp = bp;
14671 		bp->av_forw = NULL;
14672 		return;
14673 	}
14674 
14675 	/*
14676 	 * Sort thru the list of requests currently on the wait queue
14677 	 * and add the new buf request at the appropriate position.
14678 	 *
14679 	 * The un->un_waitq_headp is an activity chain pointer on which
14680 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14681 	 * first queue holds those requests which are positioned after
14682 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14683 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14684 	 * Thus we implement a one way scan, retracting after reaching
14685 	 * the end of the drive to the first request on the second
14686 	 * queue, at which time it becomes the first queue.
14687 	 * A one-way scan is natural because of the way UNIX read-ahead
14688 	 * blocks are allocated.
14689 	 *
14690 	 * If we lie after the first request, then we must locate the
14691 	 * second request list and add ourselves to it.
14692 	 */
14693 	ap = un->un_waitq_headp;
14694 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14695 		while (ap->av_forw != NULL) {
14696 			/*
14697 			 * Look for an "inversion" in the (normally
14698 			 * ascending) block numbers. This indicates
14699 			 * the start of the second request list.
14700 			 */
14701 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14702 				/*
14703 				 * Search the second request list for the
14704 				 * first request at a larger block number.
14705 				 * We go before that; however if there is
14706 				 * no such request, we go at the end.
14707 				 */
14708 				do {
14709 					if (SD_GET_BLKNO(bp) <
14710 					    SD_GET_BLKNO(ap->av_forw)) {
14711 						goto insert;
14712 					}
14713 					ap = ap->av_forw;
14714 				} while (ap->av_forw != NULL);
14715 				goto insert;		/* after last */
14716 			}
14717 			ap = ap->av_forw;
14718 		}
14719 
14720 		/*
14721 		 * No inversions... we will go after the last, and
14722 		 * be the first request in the second request list.
14723 		 */
14724 		goto insert;
14725 	}
14726 
14727 	/*
14728 	 * Request is at/after the current request...
14729 	 * sort in the first request list.
14730 	 */
14731 	while (ap->av_forw != NULL) {
14732 		/*
14733 		 * We want to go after the current request (1) if
14734 		 * there is an inversion after it (i.e. it is the end
14735 		 * of the first request list), or (2) if the next
14736 		 * request is a larger block no. than our request.
14737 		 */
14738 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14739 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14740 			goto insert;
14741 		}
14742 		ap = ap->av_forw;
14743 	}
14744 
14745 	/*
14746 	 * Neither a second list nor a larger request, therefore
14747 	 * we go at the end of the first list (which is the same
14748 	 * as the end of the whole schebang).
14749 	 */
14750 insert:
14751 	bp->av_forw = ap->av_forw;
14752 	ap->av_forw = bp;
14753 
14754 	/*
14755 	 * If we inserted onto the tail end of the waitq, make sure the
14756 	 * tail pointer is updated.
14757 	 */
14758 	if (ap == un->un_waitq_tailp) {
14759 		un->un_waitq_tailp = bp;
14760 	}
14761 }
14762 
14763 
14764 /*
14765  *    Function: sd_start_cmds
14766  *
14767  * Description: Remove and transport cmds from the driver queues.
14768  *
14769  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14770  *
14771  *		immed_bp - ptr to a buf to be transported immediately. Only
14772  *		the immed_bp is transported; bufs on the waitq are not
14773  *		processed and the un_retry_bp is not checked.  If immed_bp is
14774  *		NULL, then normal queue processing is performed.
14775  *
14776  *     Context: May be called from kernel thread context, interrupt context,
14777  *		or runout callback context. This function may not block or
14778  *		call routines that block.
14779  */
14780 
14781 static void
14782 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14783 {
14784 	struct	sd_xbuf	*xp;
14785 	struct	buf	*bp;
14786 	void	(*statp)(kstat_io_t *);
14787 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14788 	void	(*saved_statp)(kstat_io_t *);
14789 #endif
14790 	int	rval;
14791 	struct sd_fm_internal *sfip = NULL;
14792 
14793 	ASSERT(un != NULL);
14794 	ASSERT(mutex_owned(SD_MUTEX(un)));
14795 	ASSERT(un->un_ncmds_in_transport >= 0);
14796 	ASSERT(un->un_throttle >= 0);
14797 
14798 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14799 
14800 	do {
14801 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14802 		saved_statp = NULL;
14803 #endif
14804 
14805 		/*
14806 		 * If we are syncing or dumping, fail the command to
14807 		 * avoid recursively calling back into scsi_transport().
14808 		 * The dump I/O itself uses a separate code path so this
14809 		 * only prevents non-dump I/O from being sent while dumping.
14810 		 * File system sync takes place before dumping begins.
14811 		 * During panic, filesystem I/O is allowed provided
14812 		 * un_in_callback is <= 1.  This is to prevent recursion
14813 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14814 		 * sd_start_cmds and so on.  See panic.c for more information
14815 		 * about the states the system can be in during panic.
14816 		 */
14817 		if ((un->un_state == SD_STATE_DUMPING) ||
14818 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14819 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14820 			    "sd_start_cmds: panicking\n");
14821 			goto exit;
14822 		}
14823 
14824 		if ((bp = immed_bp) != NULL) {
14825 			/*
14826 			 * We have a bp that must be transported immediately.
14827 			 * It's OK to transport the immed_bp here without doing
14828 			 * the throttle limit check because the immed_bp is
14829 			 * always used in a retry/recovery case. This means
14830 			 * that we know we are not at the throttle limit by
14831 			 * virtue of the fact that to get here we must have
14832 			 * already gotten a command back via sdintr(). This also
14833 			 * relies on (1) the command on un_retry_bp preventing
14834 			 * further commands from the waitq from being issued;
14835 			 * and (2) the code in sd_retry_command checking the
14836 			 * throttle limit before issuing a delayed or immediate
14837 			 * retry. This holds even if the throttle limit is
14838 			 * currently ratcheted down from its maximum value.
14839 			 */
14840 			statp = kstat_runq_enter;
14841 			if (bp == un->un_retry_bp) {
14842 				ASSERT((un->un_retry_statp == NULL) ||
14843 				    (un->un_retry_statp == kstat_waitq_enter) ||
14844 				    (un->un_retry_statp ==
14845 				    kstat_runq_back_to_waitq));
14846 				/*
14847 				 * If the waitq kstat was incremented when
14848 				 * sd_set_retry_bp() queued this bp for a retry,
14849 				 * then we must set up statp so that the waitq
14850 				 * count will get decremented correctly below.
14851 				 * Also we must clear un->un_retry_statp to
14852 				 * ensure that we do not act on a stale value
14853 				 * in this field.
14854 				 */
14855 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14856 				    (un->un_retry_statp ==
14857 				    kstat_runq_back_to_waitq)) {
14858 					statp = kstat_waitq_to_runq;
14859 				}
14860 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14861 				saved_statp = un->un_retry_statp;
14862 #endif
14863 				un->un_retry_statp = NULL;
14864 
14865 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14866 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14867 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14868 				    un, un->un_retry_bp, un->un_throttle,
14869 				    un->un_ncmds_in_transport);
14870 			} else {
14871 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14872 				    "processing priority bp:0x%p\n", bp);
14873 			}
14874 
14875 		} else if ((bp = un->un_waitq_headp) != NULL) {
14876 			/*
14877 			 * A command on the waitq is ready to go, but do not
14878 			 * send it if:
14879 			 *
14880 			 * (1) the throttle limit has been reached, or
14881 			 * (2) a retry is pending, or
14882 			 * (3) a START_STOP_UNIT callback pending, or
14883 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14884 			 *	command is pending.
14885 			 *
14886 			 * For all of these conditions, IO processing will
14887 			 * restart after the condition is cleared.
14888 			 */
14889 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14890 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14891 				    "sd_start_cmds: exiting, "
14892 				    "throttle limit reached!\n");
14893 				goto exit;
14894 			}
14895 			if (un->un_retry_bp != NULL) {
14896 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14897 				    "sd_start_cmds: exiting, retry pending!\n");
14898 				goto exit;
14899 			}
14900 			if (un->un_startstop_timeid != NULL) {
14901 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14902 				    "sd_start_cmds: exiting, "
14903 				    "START_STOP pending!\n");
14904 				goto exit;
14905 			}
14906 			if (un->un_direct_priority_timeid != NULL) {
14907 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14908 				    "sd_start_cmds: exiting, "
14909 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14910 				goto exit;
14911 			}
14912 
14913 			/* Dequeue the command */
14914 			un->un_waitq_headp = bp->av_forw;
14915 			if (un->un_waitq_headp == NULL) {
14916 				un->un_waitq_tailp = NULL;
14917 			}
14918 			bp->av_forw = NULL;
14919 			statp = kstat_waitq_to_runq;
14920 			SD_TRACE(SD_LOG_IO_CORE, un,
14921 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14922 
14923 		} else {
14924 			/* No work to do so bail out now */
14925 			SD_TRACE(SD_LOG_IO_CORE, un,
14926 			    "sd_start_cmds: no more work, exiting!\n");
14927 			goto exit;
14928 		}
14929 
14930 		/*
14931 		 * Reset the state to normal. This is the mechanism by which
14932 		 * the state transitions from either SD_STATE_RWAIT or
14933 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14934 		 * If state is SD_STATE_PM_CHANGING then this command is
14935 		 * part of the device power control and the state must
14936 		 * not be put back to normal. Doing so would would
14937 		 * allow new commands to proceed when they shouldn't,
14938 		 * the device may be going off.
14939 		 */
14940 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14941 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14942 			New_state(un, SD_STATE_NORMAL);
14943 		}
14944 
14945 		xp = SD_GET_XBUF(bp);
14946 		ASSERT(xp != NULL);
14947 
14948 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14949 		/*
14950 		 * Allocate the scsi_pkt if we need one, or attach DMA
14951 		 * resources if we have a scsi_pkt that needs them. The
14952 		 * latter should only occur for commands that are being
14953 		 * retried.
14954 		 */
14955 		if ((xp->xb_pktp == NULL) ||
14956 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14957 #else
14958 		if (xp->xb_pktp == NULL) {
14959 #endif
14960 			/*
14961 			 * There is no scsi_pkt allocated for this buf. Call
14962 			 * the initpkt function to allocate & init one.
14963 			 *
14964 			 * The scsi_init_pkt runout callback functionality is
14965 			 * implemented as follows:
14966 			 *
14967 			 * 1) The initpkt function always calls
14968 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14969 			 *    callback routine.
14970 			 * 2) A successful packet allocation is initialized and
14971 			 *    the I/O is transported.
14972 			 * 3) The I/O associated with an allocation resource
14973 			 *    failure is left on its queue to be retried via
14974 			 *    runout or the next I/O.
14975 			 * 4) The I/O associated with a DMA error is removed
14976 			 *    from the queue and failed with EIO. Processing of
14977 			 *    the transport queues is also halted to be
14978 			 *    restarted via runout or the next I/O.
14979 			 * 5) The I/O associated with a CDB size or packet
14980 			 *    size error is removed from the queue and failed
14981 			 *    with EIO. Processing of the transport queues is
14982 			 *    continued.
14983 			 *
14984 			 * Note: there is no interface for canceling a runout
14985 			 * callback. To prevent the driver from detaching or
14986 			 * suspending while a runout is pending the driver
14987 			 * state is set to SD_STATE_RWAIT
14988 			 *
14989 			 * Note: using the scsi_init_pkt callback facility can
14990 			 * result in an I/O request persisting at the head of
14991 			 * the list which cannot be satisfied even after
14992 			 * multiple retries. In the future the driver may
14993 			 * implement some kind of maximum runout count before
14994 			 * failing an I/O.
14995 			 *
14996 			 * Note: the use of funcp below may seem superfluous,
14997 			 * but it helps warlock figure out the correct
14998 			 * initpkt function calls (see [s]sd.wlcmd).
14999 			 */
15000 			struct scsi_pkt	*pktp;
15001 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
15002 
15003 			ASSERT(bp != un->un_rqs_bp);
15004 
15005 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
15006 			switch ((*funcp)(bp, &pktp)) {
15007 			case  SD_PKT_ALLOC_SUCCESS:
15008 				xp->xb_pktp = pktp;
15009 				SD_TRACE(SD_LOG_IO_CORE, un,
15010 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15011 				    pktp);
15012 				goto got_pkt;
15013 
15014 			case SD_PKT_ALLOC_FAILURE:
15015 				/*
15016 				 * Temporary (hopefully) resource depletion.
15017 				 * Since retries and RQS commands always have a
15018 				 * scsi_pkt allocated, these cases should never
15019 				 * get here. So the only cases this needs to
15020 				 * handle is a bp from the waitq (which we put
15021 				 * back onto the waitq for sdrunout), or a bp
15022 				 * sent as an immed_bp (which we just fail).
15023 				 */
15024 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15025 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15026 
15027 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15028 
15029 				if (bp == immed_bp) {
15030 					/*
15031 					 * If SD_XB_DMA_FREED is clear, then
15032 					 * this is a failure to allocate a
15033 					 * scsi_pkt, and we must fail the
15034 					 * command.
15035 					 */
15036 					if ((xp->xb_pkt_flags &
15037 					    SD_XB_DMA_FREED) == 0) {
15038 						break;
15039 					}
15040 
15041 					/*
15042 					 * If this immediate command is NOT our
15043 					 * un_retry_bp, then we must fail it.
15044 					 */
15045 					if (bp != un->un_retry_bp) {
15046 						break;
15047 					}
15048 
15049 					/*
15050 					 * We get here if this cmd is our
15051 					 * un_retry_bp that was DMAFREED, but
15052 					 * scsi_init_pkt() failed to reallocate
15053 					 * DMA resources when we attempted to
15054 					 * retry it. This can happen when an
15055 					 * mpxio failover is in progress, but
15056 					 * we don't want to just fail the
15057 					 * command in this case.
15058 					 *
15059 					 * Use timeout(9F) to restart it after
15060 					 * a 100ms delay.  We don't want to
15061 					 * let sdrunout() restart it, because
15062 					 * sdrunout() is just supposed to start
15063 					 * commands that are sitting on the
15064 					 * wait queue.  The un_retry_bp stays
15065 					 * set until the command completes, but
15066 					 * sdrunout can be called many times
15067 					 * before that happens.  Since sdrunout
15068 					 * cannot tell if the un_retry_bp is
15069 					 * already in the transport, it could
15070 					 * end up calling scsi_transport() for
15071 					 * the un_retry_bp multiple times.
15072 					 *
15073 					 * Also: don't schedule the callback
15074 					 * if some other callback is already
15075 					 * pending.
15076 					 */
15077 					if (un->un_retry_statp == NULL) {
15078 						/*
15079 						 * restore the kstat pointer to
15080 						 * keep kstat counts coherent
15081 						 * when we do retry the command.
15082 						 */
15083 						un->un_retry_statp =
15084 						    saved_statp;
15085 					}
15086 
15087 					if ((un->un_startstop_timeid == NULL) &&
15088 					    (un->un_retry_timeid == NULL) &&
15089 					    (un->un_direct_priority_timeid ==
15090 					    NULL)) {
15091 
15092 						un->un_retry_timeid =
15093 						    timeout(
15094 						    sd_start_retry_command,
15095 						    un, SD_RESTART_TIMEOUT);
15096 					}
15097 					goto exit;
15098 				}
15099 
15100 #else
15101 				if (bp == immed_bp) {
15102 					break;	/* Just fail the command */
15103 				}
15104 #endif
15105 
15106 				/* Add the buf back to the head of the waitq */
15107 				bp->av_forw = un->un_waitq_headp;
15108 				un->un_waitq_headp = bp;
15109 				if (un->un_waitq_tailp == NULL) {
15110 					un->un_waitq_tailp = bp;
15111 				}
15112 				goto exit;
15113 
15114 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15115 				/*
15116 				 * HBA DMA resource failure. Fail the command
15117 				 * and continue processing of the queues.
15118 				 */
15119 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15120 				    "sd_start_cmds: "
15121 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15122 				break;
15123 
15124 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15125 				/*
15126 				 * Note:x86: Partial DMA mapping not supported
15127 				 * for USCSI commands, and all the needed DMA
15128 				 * resources were not allocated.
15129 				 */
15130 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15131 				    "sd_start_cmds: "
15132 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15133 				break;
15134 
15135 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15136 				/*
15137 				 * Note:x86: Request cannot fit into CDB based
15138 				 * on lba and len.
15139 				 */
15140 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15141 				    "sd_start_cmds: "
15142 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15143 				break;
15144 
15145 			default:
15146 				/* Should NEVER get here! */
15147 				panic("scsi_initpkt error");
15148 				/*NOTREACHED*/
15149 			}
15150 
15151 			/*
15152 			 * Fatal error in allocating a scsi_pkt for this buf.
15153 			 * Update kstats & return the buf with an error code.
15154 			 * We must use sd_return_failed_command_no_restart() to
15155 			 * avoid a recursive call back into sd_start_cmds().
15156 			 * However this also means that we must keep processing
15157 			 * the waitq here in order to avoid stalling.
15158 			 */
15159 			if (statp == kstat_waitq_to_runq) {
15160 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15161 			}
15162 			sd_return_failed_command_no_restart(un, bp, EIO);
15163 			if (bp == immed_bp) {
15164 				/* immed_bp is gone by now, so clear this */
15165 				immed_bp = NULL;
15166 			}
15167 			continue;
15168 		}
15169 got_pkt:
15170 		if (bp == immed_bp) {
15171 			/* goto the head of the class.... */
15172 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15173 		}
15174 
15175 		un->un_ncmds_in_transport++;
15176 		SD_UPDATE_KSTATS(un, statp, bp);
15177 
15178 		/*
15179 		 * Call scsi_transport() to send the command to the target.
15180 		 * According to SCSA architecture, we must drop the mutex here
15181 		 * before calling scsi_transport() in order to avoid deadlock.
15182 		 * Note that the scsi_pkt's completion routine can be executed
15183 		 * (from interrupt context) even before the call to
15184 		 * scsi_transport() returns.
15185 		 */
15186 		SD_TRACE(SD_LOG_IO_CORE, un,
15187 		    "sd_start_cmds: calling scsi_transport()\n");
15188 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15189 
15190 		mutex_exit(SD_MUTEX(un));
15191 		rval = scsi_transport(xp->xb_pktp);
15192 		mutex_enter(SD_MUTEX(un));
15193 
15194 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15195 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15196 
15197 		switch (rval) {
15198 		case TRAN_ACCEPT:
15199 			/* Clear this with every pkt accepted by the HBA */
15200 			un->un_tran_fatal_count = 0;
15201 			break;	/* Success; try the next cmd (if any) */
15202 
15203 		case TRAN_BUSY:
15204 			un->un_ncmds_in_transport--;
15205 			ASSERT(un->un_ncmds_in_transport >= 0);
15206 
15207 			/*
15208 			 * Don't retry request sense, the sense data
15209 			 * is lost when another request is sent.
15210 			 * Free up the rqs buf and retry
15211 			 * the original failed cmd.  Update kstat.
15212 			 */
15213 			if (bp == un->un_rqs_bp) {
15214 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15215 				bp = sd_mark_rqs_idle(un, xp);
15216 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15217 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15218 				    kstat_waitq_enter);
15219 				goto exit;
15220 			}
15221 
15222 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15223 			/*
15224 			 * Free the DMA resources for the  scsi_pkt. This will
15225 			 * allow mpxio to select another path the next time
15226 			 * we call scsi_transport() with this scsi_pkt.
15227 			 * See sdintr() for the rationalization behind this.
15228 			 */
15229 			if ((un->un_f_is_fibre == TRUE) &&
15230 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15231 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15232 				scsi_dmafree(xp->xb_pktp);
15233 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15234 			}
15235 #endif
15236 
15237 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15238 				/*
15239 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15240 				 * are for error recovery situations. These do
15241 				 * not use the normal command waitq, so if they
15242 				 * get a TRAN_BUSY we cannot put them back onto
15243 				 * the waitq for later retry. One possible
15244 				 * problem is that there could already be some
15245 				 * other command on un_retry_bp that is waiting
15246 				 * for this one to complete, so we would be
15247 				 * deadlocked if we put this command back onto
15248 				 * the waitq for later retry (since un_retry_bp
15249 				 * must complete before the driver gets back to
15250 				 * commands on the waitq).
15251 				 *
15252 				 * To avoid deadlock we must schedule a callback
15253 				 * that will restart this command after a set
15254 				 * interval.  This should keep retrying for as
15255 				 * long as the underlying transport keeps
15256 				 * returning TRAN_BUSY (just like for other
15257 				 * commands).  Use the same timeout interval as
15258 				 * for the ordinary TRAN_BUSY retry.
15259 				 */
15260 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15261 				    "sd_start_cmds: scsi_transport() returned "
15262 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15263 
15264 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15265 				un->un_direct_priority_timeid =
15266 				    timeout(sd_start_direct_priority_command,
15267 				    bp, un->un_busy_timeout / 500);
15268 
15269 				goto exit;
15270 			}
15271 
15272 			/*
15273 			 * For TRAN_BUSY, we want to reduce the throttle value,
15274 			 * unless we are retrying a command.
15275 			 */
15276 			if (bp != un->un_retry_bp) {
15277 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15278 			}
15279 
15280 			/*
15281 			 * Set up the bp to be tried again 10 ms later.
15282 			 * Note:x86: Is there a timeout value in the sd_lun
15283 			 * for this condition?
15284 			 */
15285 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15286 			    kstat_runq_back_to_waitq);
15287 			goto exit;
15288 
15289 		case TRAN_FATAL_ERROR:
15290 			un->un_tran_fatal_count++;
15291 			/* FALLTHRU */
15292 
15293 		case TRAN_BADPKT:
15294 		default:
15295 			un->un_ncmds_in_transport--;
15296 			ASSERT(un->un_ncmds_in_transport >= 0);
15297 
15298 			/*
15299 			 * If this is our REQUEST SENSE command with a
15300 			 * transport error, we must get back the pointers
15301 			 * to the original buf, and mark the REQUEST
15302 			 * SENSE command as "available".
15303 			 */
15304 			if (bp == un->un_rqs_bp) {
15305 				bp = sd_mark_rqs_idle(un, xp);
15306 				xp = SD_GET_XBUF(bp);
15307 			} else {
15308 				/*
15309 				 * Legacy behavior: do not update transport
15310 				 * error count for request sense commands.
15311 				 */
15312 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15313 			}
15314 
15315 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15316 			sd_print_transport_rejected_message(un, xp, rval);
15317 
15318 			/*
15319 			 * This command will be terminated by SD driver due
15320 			 * to a fatal transport error. We should post
15321 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15322 			 * of "fail" for any command to indicate this
15323 			 * situation.
15324 			 */
15325 			if (xp->xb_ena > 0) {
15326 				ASSERT(un->un_fm_private != NULL);
15327 				sfip = un->un_fm_private;
15328 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15329 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15330 				    xp->xb_pktp, bp, xp);
15331 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15332 			}
15333 
15334 			/*
15335 			 * We must use sd_return_failed_command_no_restart() to
15336 			 * avoid a recursive call back into sd_start_cmds().
15337 			 * However this also means that we must keep processing
15338 			 * the waitq here in order to avoid stalling.
15339 			 */
15340 			sd_return_failed_command_no_restart(un, bp, EIO);
15341 
15342 			/*
15343 			 * Notify any threads waiting in sd_ddi_suspend() that
15344 			 * a command completion has occurred.
15345 			 */
15346 			if (un->un_state == SD_STATE_SUSPENDED) {
15347 				cv_broadcast(&un->un_disk_busy_cv);
15348 			}
15349 
15350 			if (bp == immed_bp) {
15351 				/* immed_bp is gone by now, so clear this */
15352 				immed_bp = NULL;
15353 			}
15354 			break;
15355 		}
15356 
15357 	} while (immed_bp == NULL);
15358 
15359 exit:
15360 	ASSERT(mutex_owned(SD_MUTEX(un)));
15361 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15362 }
15363 
15364 
15365 /*
15366  *    Function: sd_return_command
15367  *
15368  * Description: Returns a command to its originator (with or without an
15369  *		error).  Also starts commands waiting to be transported
15370  *		to the target.
15371  *
15372  *     Context: May be called from interrupt, kernel, or timeout context
15373  */
15374 
15375 static void
15376 sd_return_command(struct sd_lun *un, struct buf *bp)
15377 {
15378 	struct sd_xbuf *xp;
15379 	struct scsi_pkt *pktp;
15380 	struct sd_fm_internal *sfip;
15381 
15382 	ASSERT(bp != NULL);
15383 	ASSERT(un != NULL);
15384 	ASSERT(mutex_owned(SD_MUTEX(un)));
15385 	ASSERT(bp != un->un_rqs_bp);
15386 	xp = SD_GET_XBUF(bp);
15387 	ASSERT(xp != NULL);
15388 
15389 	pktp = SD_GET_PKTP(bp);
15390 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15391 	ASSERT(sfip != NULL);
15392 
15393 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15394 
15395 	/*
15396 	 * Note: check for the "sdrestart failed" case.
15397 	 */
15398 	if ((un->un_partial_dma_supported == 1) &&
15399 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15400 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15401 	    (xp->xb_pktp->pkt_resid == 0)) {
15402 
15403 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15404 			/*
15405 			 * Successfully set up next portion of cmd
15406 			 * transfer, try sending it
15407 			 */
15408 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15409 			    NULL, NULL, 0, (clock_t)0, NULL);
15410 			sd_start_cmds(un, NULL);
15411 			return;	/* Note:x86: need a return here? */
15412 		}
15413 	}
15414 
15415 	/*
15416 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15417 	 * can happen if upon being re-tried the failfast bp either
15418 	 * succeeded or encountered another error (possibly even a different
15419 	 * error than the one that precipitated the failfast state, but in
15420 	 * that case it would have had to exhaust retries as well). Regardless,
15421 	 * this should not occur whenever the instance is in the active
15422 	 * failfast state.
15423 	 */
15424 	if (bp == un->un_failfast_bp) {
15425 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15426 		un->un_failfast_bp = NULL;
15427 	}
15428 
15429 	/*
15430 	 * Clear the failfast state upon successful completion of ANY cmd.
15431 	 */
15432 	if (bp->b_error == 0) {
15433 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15434 		/*
15435 		 * If this is a successful command, but used to be retried,
15436 		 * we will take it as a recovered command and post an
15437 		 * ereport with driver-assessment of "recovered".
15438 		 */
15439 		if (xp->xb_ena > 0) {
15440 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15441 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15442 		}
15443 	} else {
15444 		/*
15445 		 * If this is a failed non-USCSI command we will post an
15446 		 * ereport with driver-assessment set accordingly("fail" or
15447 		 * "fatal").
15448 		 */
15449 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15450 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15451 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15452 		}
15453 	}
15454 
15455 	/*
15456 	 * This is used if the command was retried one or more times. Show that
15457 	 * we are done with it, and allow processing of the waitq to resume.
15458 	 */
15459 	if (bp == un->un_retry_bp) {
15460 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15461 		    "sd_return_command: un:0x%p: "
15462 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15463 		un->un_retry_bp = NULL;
15464 		un->un_retry_statp = NULL;
15465 	}
15466 
15467 	SD_UPDATE_RDWR_STATS(un, bp);
15468 	SD_UPDATE_PARTITION_STATS(un, bp);
15469 
15470 	switch (un->un_state) {
15471 	case SD_STATE_SUSPENDED:
15472 		/*
15473 		 * Notify any threads waiting in sd_ddi_suspend() that
15474 		 * a command completion has occurred.
15475 		 */
15476 		cv_broadcast(&un->un_disk_busy_cv);
15477 		break;
15478 	default:
15479 		sd_start_cmds(un, NULL);
15480 		break;
15481 	}
15482 
15483 	/* Return this command up the iodone chain to its originator. */
15484 	mutex_exit(SD_MUTEX(un));
15485 
15486 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15487 	xp->xb_pktp = NULL;
15488 
15489 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15490 
15491 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15492 	mutex_enter(SD_MUTEX(un));
15493 
15494 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15495 }
15496 
15497 
15498 /*
15499  *    Function: sd_return_failed_command
15500  *
15501  * Description: Command completion when an error occurred.
15502  *
15503  *     Context: May be called from interrupt context
15504  */
15505 
15506 static void
15507 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15508 {
15509 	ASSERT(bp != NULL);
15510 	ASSERT(un != NULL);
15511 	ASSERT(mutex_owned(SD_MUTEX(un)));
15512 
15513 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15514 	    "sd_return_failed_command: entry\n");
15515 
15516 	/*
15517 	 * b_resid could already be nonzero due to a partial data
15518 	 * transfer, so do not change it here.
15519 	 */
15520 	SD_BIOERROR(bp, errcode);
15521 
15522 	sd_return_command(un, bp);
15523 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15524 	    "sd_return_failed_command: exit\n");
15525 }
15526 
15527 
15528 /*
15529  *    Function: sd_return_failed_command_no_restart
15530  *
15531  * Description: Same as sd_return_failed_command, but ensures that no
15532  *		call back into sd_start_cmds will be issued.
15533  *
15534  *     Context: May be called from interrupt context
15535  */
15536 
15537 static void
15538 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15539 	int errcode)
15540 {
15541 	struct sd_xbuf *xp;
15542 
15543 	ASSERT(bp != NULL);
15544 	ASSERT(un != NULL);
15545 	ASSERT(mutex_owned(SD_MUTEX(un)));
15546 	xp = SD_GET_XBUF(bp);
15547 	ASSERT(xp != NULL);
15548 	ASSERT(errcode != 0);
15549 
15550 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15551 	    "sd_return_failed_command_no_restart: entry\n");
15552 
15553 	/*
15554 	 * b_resid could already be nonzero due to a partial data
15555 	 * transfer, so do not change it here.
15556 	 */
15557 	SD_BIOERROR(bp, errcode);
15558 
15559 	/*
15560 	 * If this is the failfast bp, clear it. This can happen if the
15561 	 * failfast bp encounterd a fatal error when we attempted to
15562 	 * re-try it (such as a scsi_transport(9F) failure).  However
15563 	 * we should NOT be in an active failfast state if the failfast
15564 	 * bp is not NULL.
15565 	 */
15566 	if (bp == un->un_failfast_bp) {
15567 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15568 		un->un_failfast_bp = NULL;
15569 	}
15570 
15571 	if (bp == un->un_retry_bp) {
15572 		/*
15573 		 * This command was retried one or more times. Show that we are
15574 		 * done with it, and allow processing of the waitq to resume.
15575 		 */
15576 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15577 		    "sd_return_failed_command_no_restart: "
15578 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15579 		un->un_retry_bp = NULL;
15580 		un->un_retry_statp = NULL;
15581 	}
15582 
15583 	SD_UPDATE_RDWR_STATS(un, bp);
15584 	SD_UPDATE_PARTITION_STATS(un, bp);
15585 
15586 	mutex_exit(SD_MUTEX(un));
15587 
15588 	if (xp->xb_pktp != NULL) {
15589 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15590 		xp->xb_pktp = NULL;
15591 	}
15592 
15593 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15594 
15595 	mutex_enter(SD_MUTEX(un));
15596 
15597 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15598 	    "sd_return_failed_command_no_restart: exit\n");
15599 }
15600 
15601 
15602 /*
15603  *    Function: sd_retry_command
15604  *
15605  * Description: queue up a command for retry, or (optionally) fail it
15606  *		if retry counts are exhausted.
15607  *
15608  *   Arguments: un - Pointer to the sd_lun struct for the target.
15609  *
15610  *		bp - Pointer to the buf for the command to be retried.
15611  *
15612  *		retry_check_flag - Flag to see which (if any) of the retry
15613  *		   counts should be decremented/checked. If the indicated
15614  *		   retry count is exhausted, then the command will not be
15615  *		   retried; it will be failed instead. This should use a
15616  *		   value equal to one of the following:
15617  *
15618  *			SD_RETRIES_NOCHECK
15619  *			SD_RESD_RETRIES_STANDARD
15620  *			SD_RETRIES_VICTIM
15621  *
15622  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15623  *		   if the check should be made to see of FLAG_ISOLATE is set
15624  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15625  *		   not retried, it is simply failed.
15626  *
15627  *		user_funcp - Ptr to function to call before dispatching the
15628  *		   command. May be NULL if no action needs to be performed.
15629  *		   (Primarily intended for printing messages.)
15630  *
15631  *		user_arg - Optional argument to be passed along to
15632  *		   the user_funcp call.
15633  *
15634  *		failure_code - errno return code to set in the bp if the
15635  *		   command is going to be failed.
15636  *
15637  *		retry_delay - Retry delay interval in (clock_t) units. May
15638  *		   be zero which indicates that the retry should be retried
15639  *		   immediately (ie, without an intervening delay).
15640  *
15641  *		statp - Ptr to kstat function to be updated if the command
15642  *		   is queued for a delayed retry. May be NULL if no kstat
15643  *		   update is desired.
15644  *
15645  *     Context: May be called from interrupt context.
15646  */
15647 
15648 static void
15649 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15650 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15651 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15652 	void (*statp)(kstat_io_t *))
15653 {
15654 	struct sd_xbuf	*xp;
15655 	struct scsi_pkt	*pktp;
15656 	struct sd_fm_internal *sfip;
15657 
15658 	ASSERT(un != NULL);
15659 	ASSERT(mutex_owned(SD_MUTEX(un)));
15660 	ASSERT(bp != NULL);
15661 	xp = SD_GET_XBUF(bp);
15662 	ASSERT(xp != NULL);
15663 	pktp = SD_GET_PKTP(bp);
15664 	ASSERT(pktp != NULL);
15665 
15666 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15667 	ASSERT(sfip != NULL);
15668 
15669 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15670 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15671 
15672 	/*
15673 	 * If we are syncing or dumping, fail the command to avoid
15674 	 * recursively calling back into scsi_transport().
15675 	 */
15676 	if (ddi_in_panic()) {
15677 		goto fail_command_no_log;
15678 	}
15679 
15680 	/*
15681 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15682 	 * log an error and fail the command.
15683 	 */
15684 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15685 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15686 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15687 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15688 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15689 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15690 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15691 		goto fail_command;
15692 	}
15693 
15694 	/*
15695 	 * If we are suspended, then put the command onto head of the
15696 	 * wait queue since we don't want to start more commands, and
15697 	 * clear the un_retry_bp. Next time when we are resumed, will
15698 	 * handle the command in the wait queue.
15699 	 */
15700 	switch (un->un_state) {
15701 	case SD_STATE_SUSPENDED:
15702 	case SD_STATE_DUMPING:
15703 		bp->av_forw = un->un_waitq_headp;
15704 		un->un_waitq_headp = bp;
15705 		if (un->un_waitq_tailp == NULL) {
15706 			un->un_waitq_tailp = bp;
15707 		}
15708 		if (bp == un->un_retry_bp) {
15709 			un->un_retry_bp = NULL;
15710 			un->un_retry_statp = NULL;
15711 		}
15712 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15713 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15714 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15715 		return;
15716 	default:
15717 		break;
15718 	}
15719 
15720 	/*
15721 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15722 	 * is set; if it is then we do not want to retry the command.
15723 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15724 	 */
15725 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15726 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15727 			goto fail_command;
15728 		}
15729 	}
15730 
15731 
15732 	/*
15733 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15734 	 * command timeout or a selection timeout has occurred. This means
15735 	 * that we were unable to establish an kind of communication with
15736 	 * the target, and subsequent retries and/or commands are likely
15737 	 * to encounter similar results and take a long time to complete.
15738 	 *
15739 	 * If this is a failfast error condition, we need to update the
15740 	 * failfast state, even if this bp does not have B_FAILFAST set.
15741 	 */
15742 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15743 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15744 			ASSERT(un->un_failfast_bp == NULL);
15745 			/*
15746 			 * If we are already in the active failfast state, and
15747 			 * another failfast error condition has been detected,
15748 			 * then fail this command if it has B_FAILFAST set.
15749 			 * If B_FAILFAST is clear, then maintain the legacy
15750 			 * behavior of retrying heroically, even tho this will
15751 			 * take a lot more time to fail the command.
15752 			 */
15753 			if (bp->b_flags & B_FAILFAST) {
15754 				goto fail_command;
15755 			}
15756 		} else {
15757 			/*
15758 			 * We're not in the active failfast state, but we
15759 			 * have a failfast error condition, so we must begin
15760 			 * transition to the next state. We do this regardless
15761 			 * of whether or not this bp has B_FAILFAST set.
15762 			 */
15763 			if (un->un_failfast_bp == NULL) {
15764 				/*
15765 				 * This is the first bp to meet a failfast
15766 				 * condition so save it on un_failfast_bp &
15767 				 * do normal retry processing. Do not enter
15768 				 * active failfast state yet. This marks
15769 				 * entry into the "failfast pending" state.
15770 				 */
15771 				un->un_failfast_bp = bp;
15772 
15773 			} else if (un->un_failfast_bp == bp) {
15774 				/*
15775 				 * This is the second time *this* bp has
15776 				 * encountered a failfast error condition,
15777 				 * so enter active failfast state & flush
15778 				 * queues as appropriate.
15779 				 */
15780 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15781 				un->un_failfast_bp = NULL;
15782 				sd_failfast_flushq(un);
15783 
15784 				/*
15785 				 * Fail this bp now if B_FAILFAST set;
15786 				 * otherwise continue with retries. (It would
15787 				 * be pretty ironic if this bp succeeded on a
15788 				 * subsequent retry after we just flushed all
15789 				 * the queues).
15790 				 */
15791 				if (bp->b_flags & B_FAILFAST) {
15792 					goto fail_command;
15793 				}
15794 
15795 #if !defined(lint) && !defined(__lint)
15796 			} else {
15797 				/*
15798 				 * If neither of the preceeding conditionals
15799 				 * was true, it means that there is some
15800 				 * *other* bp that has met an inital failfast
15801 				 * condition and is currently either being
15802 				 * retried or is waiting to be retried. In
15803 				 * that case we should perform normal retry
15804 				 * processing on *this* bp, since there is a
15805 				 * chance that the current failfast condition
15806 				 * is transient and recoverable. If that does
15807 				 * not turn out to be the case, then retries
15808 				 * will be cleared when the wait queue is
15809 				 * flushed anyway.
15810 				 */
15811 #endif
15812 			}
15813 		}
15814 	} else {
15815 		/*
15816 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15817 		 * likely were able to at least establish some level of
15818 		 * communication with the target and subsequent commands
15819 		 * and/or retries are likely to get through to the target,
15820 		 * In this case we want to be aggressive about clearing
15821 		 * the failfast state. Note that this does not affect
15822 		 * the "failfast pending" condition.
15823 		 */
15824 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15825 	}
15826 
15827 
15828 	/*
15829 	 * Check the specified retry count to see if we can still do
15830 	 * any retries with this pkt before we should fail it.
15831 	 */
15832 	switch (retry_check_flag & SD_RETRIES_MASK) {
15833 	case SD_RETRIES_VICTIM:
15834 		/*
15835 		 * Check the victim retry count. If exhausted, then fall
15836 		 * thru & check against the standard retry count.
15837 		 */
15838 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15839 			/* Increment count & proceed with the retry */
15840 			xp->xb_victim_retry_count++;
15841 			break;
15842 		}
15843 		/* Victim retries exhausted, fall back to std. retries... */
15844 		/* FALLTHRU */
15845 
15846 	case SD_RETRIES_STANDARD:
15847 		if (xp->xb_retry_count >= un->un_retry_count) {
15848 			/* Retries exhausted, fail the command */
15849 			SD_TRACE(SD_LOG_IO_CORE, un,
15850 			    "sd_retry_command: retries exhausted!\n");
15851 			/*
15852 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15853 			 * commands with nonzero pkt_resid.
15854 			 */
15855 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15856 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15857 			    (pktp->pkt_resid != 0)) {
15858 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15859 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15860 					SD_UPDATE_B_RESID(bp, pktp);
15861 				}
15862 			}
15863 			goto fail_command;
15864 		}
15865 		xp->xb_retry_count++;
15866 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15867 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15868 		break;
15869 
15870 	case SD_RETRIES_UA:
15871 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15872 			/* Retries exhausted, fail the command */
15873 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15874 			    "Unit Attention retries exhausted. "
15875 			    "Check the target.\n");
15876 			goto fail_command;
15877 		}
15878 		xp->xb_ua_retry_count++;
15879 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15880 		    "sd_retry_command: retry count:%d\n",
15881 		    xp->xb_ua_retry_count);
15882 		break;
15883 
15884 	case SD_RETRIES_BUSY:
15885 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15886 			/* Retries exhausted, fail the command */
15887 			SD_TRACE(SD_LOG_IO_CORE, un,
15888 			    "sd_retry_command: retries exhausted!\n");
15889 			goto fail_command;
15890 		}
15891 		xp->xb_retry_count++;
15892 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15893 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15894 		break;
15895 
15896 	case SD_RETRIES_NOCHECK:
15897 	default:
15898 		/* No retry count to check. Just proceed with the retry */
15899 		break;
15900 	}
15901 
15902 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15903 
15904 	/*
15905 	 * If this is a non-USCSI command being retried
15906 	 * during execution last time, we should post an ereport with
15907 	 * driver-assessment of the value "retry".
15908 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15909 	 * hardware errors, we bypass ereport posting.
15910 	 */
15911 	if (failure_code != 0) {
15912 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15913 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15914 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15915 		}
15916 	}
15917 
15918 	/*
15919 	 * If we were given a zero timeout, we must attempt to retry the
15920 	 * command immediately (ie, without a delay).
15921 	 */
15922 	if (retry_delay == 0) {
15923 		/*
15924 		 * Check some limiting conditions to see if we can actually
15925 		 * do the immediate retry.  If we cannot, then we must
15926 		 * fall back to queueing up a delayed retry.
15927 		 */
15928 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15929 			/*
15930 			 * We are at the throttle limit for the target,
15931 			 * fall back to delayed retry.
15932 			 */
15933 			retry_delay = un->un_busy_timeout;
15934 			statp = kstat_waitq_enter;
15935 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15936 			    "sd_retry_command: immed. retry hit "
15937 			    "throttle!\n");
15938 		} else {
15939 			/*
15940 			 * We're clear to proceed with the immediate retry.
15941 			 * First call the user-provided function (if any)
15942 			 */
15943 			if (user_funcp != NULL) {
15944 				(*user_funcp)(un, bp, user_arg,
15945 				    SD_IMMEDIATE_RETRY_ISSUED);
15946 #ifdef __lock_lint
15947 				sd_print_incomplete_msg(un, bp, user_arg,
15948 				    SD_IMMEDIATE_RETRY_ISSUED);
15949 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15950 				    SD_IMMEDIATE_RETRY_ISSUED);
15951 				sd_print_sense_failed_msg(un, bp, user_arg,
15952 				    SD_IMMEDIATE_RETRY_ISSUED);
15953 #endif
15954 			}
15955 
15956 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15957 			    "sd_retry_command: issuing immediate retry\n");
15958 
15959 			/*
15960 			 * Call sd_start_cmds() to transport the command to
15961 			 * the target.
15962 			 */
15963 			sd_start_cmds(un, bp);
15964 
15965 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15966 			    "sd_retry_command exit\n");
15967 			return;
15968 		}
15969 	}
15970 
15971 	/*
15972 	 * Set up to retry the command after a delay.
15973 	 * First call the user-provided function (if any)
15974 	 */
15975 	if (user_funcp != NULL) {
15976 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15977 	}
15978 
15979 	sd_set_retry_bp(un, bp, retry_delay, statp);
15980 
15981 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15982 	return;
15983 
15984 fail_command:
15985 
15986 	if (user_funcp != NULL) {
15987 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15988 	}
15989 
15990 fail_command_no_log:
15991 
15992 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15993 	    "sd_retry_command: returning failed command\n");
15994 
15995 	sd_return_failed_command(un, bp, failure_code);
15996 
15997 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15998 }
15999 
16000 
16001 /*
16002  *    Function: sd_set_retry_bp
16003  *
16004  * Description: Set up the given bp for retry.
16005  *
16006  *   Arguments: un - ptr to associated softstate
16007  *		bp - ptr to buf(9S) for the command
16008  *		retry_delay - time interval before issuing retry (may be 0)
16009  *		statp - optional pointer to kstat function
16010  *
16011  *     Context: May be called under interrupt context
16012  */
16013 
16014 static void
16015 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16016 	void (*statp)(kstat_io_t *))
16017 {
16018 	ASSERT(un != NULL);
16019 	ASSERT(mutex_owned(SD_MUTEX(un)));
16020 	ASSERT(bp != NULL);
16021 
16022 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16023 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16024 
16025 	/*
16026 	 * Indicate that the command is being retried. This will not allow any
16027 	 * other commands on the wait queue to be transported to the target
16028 	 * until this command has been completed (success or failure). The
16029 	 * "retry command" is not transported to the target until the given
16030 	 * time delay expires, unless the user specified a 0 retry_delay.
16031 	 *
16032 	 * Note: the timeout(9F) callback routine is what actually calls
16033 	 * sd_start_cmds() to transport the command, with the exception of a
16034 	 * zero retry_delay. The only current implementor of a zero retry delay
16035 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16036 	 */
16037 	if (un->un_retry_bp == NULL) {
16038 		ASSERT(un->un_retry_statp == NULL);
16039 		un->un_retry_bp = bp;
16040 
16041 		/*
16042 		 * If the user has not specified a delay the command should
16043 		 * be queued and no timeout should be scheduled.
16044 		 */
16045 		if (retry_delay == 0) {
16046 			/*
16047 			 * Save the kstat pointer that will be used in the
16048 			 * call to SD_UPDATE_KSTATS() below, so that
16049 			 * sd_start_cmds() can correctly decrement the waitq
16050 			 * count when it is time to transport this command.
16051 			 */
16052 			un->un_retry_statp = statp;
16053 			goto done;
16054 		}
16055 	}
16056 
16057 	if (un->un_retry_bp == bp) {
16058 		/*
16059 		 * Save the kstat pointer that will be used in the call to
16060 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16061 		 * correctly decrement the waitq count when it is time to
16062 		 * transport this command.
16063 		 */
16064 		un->un_retry_statp = statp;
16065 
16066 		/*
16067 		 * Schedule a timeout if:
16068 		 *   1) The user has specified a delay.
16069 		 *   2) There is not a START_STOP_UNIT callback pending.
16070 		 *
16071 		 * If no delay has been specified, then it is up to the caller
16072 		 * to ensure that IO processing continues without stalling.
16073 		 * Effectively, this means that the caller will issue the
16074 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16075 		 * callback does this after the START STOP UNIT command has
16076 		 * completed. In either of these cases we should not schedule
16077 		 * a timeout callback here.  Also don't schedule the timeout if
16078 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16079 		 */
16080 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16081 		    (un->un_direct_priority_timeid == NULL)) {
16082 			un->un_retry_timeid =
16083 			    timeout(sd_start_retry_command, un, retry_delay);
16084 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16085 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16086 			    " bp:0x%p un_retry_timeid:0x%p\n",
16087 			    un, bp, un->un_retry_timeid);
16088 		}
16089 	} else {
16090 		/*
16091 		 * We only get in here if there is already another command
16092 		 * waiting to be retried.  In this case, we just put the
16093 		 * given command onto the wait queue, so it can be transported
16094 		 * after the current retry command has completed.
16095 		 *
16096 		 * Also we have to make sure that if the command at the head
16097 		 * of the wait queue is the un_failfast_bp, that we do not
16098 		 * put ahead of it any other commands that are to be retried.
16099 		 */
16100 		if ((un->un_failfast_bp != NULL) &&
16101 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16102 			/*
16103 			 * Enqueue this command AFTER the first command on
16104 			 * the wait queue (which is also un_failfast_bp).
16105 			 */
16106 			bp->av_forw = un->un_waitq_headp->av_forw;
16107 			un->un_waitq_headp->av_forw = bp;
16108 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16109 				un->un_waitq_tailp = bp;
16110 			}
16111 		} else {
16112 			/* Enqueue this command at the head of the waitq. */
16113 			bp->av_forw = un->un_waitq_headp;
16114 			un->un_waitq_headp = bp;
16115 			if (un->un_waitq_tailp == NULL) {
16116 				un->un_waitq_tailp = bp;
16117 			}
16118 		}
16119 
16120 		if (statp == NULL) {
16121 			statp = kstat_waitq_enter;
16122 		}
16123 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16124 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16125 	}
16126 
16127 done:
16128 	if (statp != NULL) {
16129 		SD_UPDATE_KSTATS(un, statp, bp);
16130 	}
16131 
16132 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16133 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16134 }
16135 
16136 
16137 /*
16138  *    Function: sd_start_retry_command
16139  *
16140  * Description: Start the command that has been waiting on the target's
16141  *		retry queue.  Called from timeout(9F) context after the
16142  *		retry delay interval has expired.
16143  *
16144  *   Arguments: arg - pointer to associated softstate for the device.
16145  *
16146  *     Context: timeout(9F) thread context.  May not sleep.
16147  */
16148 
16149 static void
16150 sd_start_retry_command(void *arg)
16151 {
16152 	struct sd_lun *un = arg;
16153 
16154 	ASSERT(un != NULL);
16155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16156 
16157 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16158 	    "sd_start_retry_command: entry\n");
16159 
16160 	mutex_enter(SD_MUTEX(un));
16161 
16162 	un->un_retry_timeid = NULL;
16163 
16164 	if (un->un_retry_bp != NULL) {
16165 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16166 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16167 		    un, un->un_retry_bp);
16168 		sd_start_cmds(un, un->un_retry_bp);
16169 	}
16170 
16171 	mutex_exit(SD_MUTEX(un));
16172 
16173 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16174 	    "sd_start_retry_command: exit\n");
16175 }
16176 
16177 /*
16178  *    Function: sd_rmw_msg_print_handler
16179  *
16180  * Description: If RMW mode is enabled and warning message is triggered
16181  *              print I/O count during a fixed interval.
16182  *
16183  *   Arguments: arg - pointer to associated softstate for the device.
16184  *
16185  *     Context: timeout(9F) thread context. May not sleep.
16186  */
16187 static void
16188 sd_rmw_msg_print_handler(void *arg)
16189 {
16190 	struct sd_lun *un = arg;
16191 
16192 	ASSERT(un != NULL);
16193 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16194 
16195 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16196 	    "sd_rmw_msg_print_handler: entry\n");
16197 
16198 	mutex_enter(SD_MUTEX(un));
16199 
16200 	if (un->un_rmw_incre_count > 0) {
16201 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16202 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16203 		    "sector size in %ld seconds. They are handled through "
16204 		    "Read Modify Write but the performance is very low!\n",
16205 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16206 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16207 		un->un_rmw_incre_count = 0;
16208 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16209 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16210 	} else {
16211 		un->un_rmw_msg_timeid = NULL;
16212 	}
16213 
16214 	mutex_exit(SD_MUTEX(un));
16215 
16216 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16217 	    "sd_rmw_msg_print_handler: exit\n");
16218 }
16219 
16220 /*
16221  *    Function: sd_start_direct_priority_command
16222  *
16223  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16224  *		received TRAN_BUSY when we called scsi_transport() to send it
16225  *		to the underlying HBA. This function is called from timeout(9F)
16226  *		context after the delay interval has expired.
16227  *
16228  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16229  *
16230  *     Context: timeout(9F) thread context.  May not sleep.
16231  */
16232 
16233 static void
16234 sd_start_direct_priority_command(void *arg)
16235 {
16236 	struct buf	*priority_bp = arg;
16237 	struct sd_lun	*un;
16238 
16239 	ASSERT(priority_bp != NULL);
16240 	un = SD_GET_UN(priority_bp);
16241 	ASSERT(un != NULL);
16242 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16243 
16244 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16245 	    "sd_start_direct_priority_command: entry\n");
16246 
16247 	mutex_enter(SD_MUTEX(un));
16248 	un->un_direct_priority_timeid = NULL;
16249 	sd_start_cmds(un, priority_bp);
16250 	mutex_exit(SD_MUTEX(un));
16251 
16252 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16253 	    "sd_start_direct_priority_command: exit\n");
16254 }
16255 
16256 
16257 /*
16258  *    Function: sd_send_request_sense_command
16259  *
16260  * Description: Sends a REQUEST SENSE command to the target
16261  *
16262  *     Context: May be called from interrupt context.
16263  */
16264 
16265 static void
16266 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16267 	struct scsi_pkt *pktp)
16268 {
16269 	ASSERT(bp != NULL);
16270 	ASSERT(un != NULL);
16271 	ASSERT(mutex_owned(SD_MUTEX(un)));
16272 
16273 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16274 	    "entry: buf:0x%p\n", bp);
16275 
16276 	/*
16277 	 * If we are syncing or dumping, then fail the command to avoid a
16278 	 * recursive callback into scsi_transport(). Also fail the command
16279 	 * if we are suspended (legacy behavior).
16280 	 */
16281 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16282 	    (un->un_state == SD_STATE_DUMPING)) {
16283 		sd_return_failed_command(un, bp, EIO);
16284 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16285 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16286 		return;
16287 	}
16288 
16289 	/*
16290 	 * Retry the failed command and don't issue the request sense if:
16291 	 *    1) the sense buf is busy
16292 	 *    2) we have 1 or more outstanding commands on the target
16293 	 *    (the sense data will be cleared or invalidated any way)
16294 	 *
16295 	 * Note: There could be an issue with not checking a retry limit here,
16296 	 * the problem is determining which retry limit to check.
16297 	 */
16298 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16299 		/* Don't retry if the command is flagged as non-retryable */
16300 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16301 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16302 			    NULL, NULL, 0, un->un_busy_timeout,
16303 			    kstat_waitq_enter);
16304 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16305 			    "sd_send_request_sense_command: "
16306 			    "at full throttle, retrying exit\n");
16307 		} else {
16308 			sd_return_failed_command(un, bp, EIO);
16309 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16310 			    "sd_send_request_sense_command: "
16311 			    "at full throttle, non-retryable exit\n");
16312 		}
16313 		return;
16314 	}
16315 
16316 	sd_mark_rqs_busy(un, bp);
16317 	sd_start_cmds(un, un->un_rqs_bp);
16318 
16319 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16320 	    "sd_send_request_sense_command: exit\n");
16321 }
16322 
16323 
16324 /*
16325  *    Function: sd_mark_rqs_busy
16326  *
16327  * Description: Indicate that the request sense bp for this instance is
16328  *		in use.
16329  *
16330  *     Context: May be called under interrupt context
16331  */
16332 
16333 static void
16334 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16335 {
16336 	struct sd_xbuf	*sense_xp;
16337 
16338 	ASSERT(un != NULL);
16339 	ASSERT(bp != NULL);
16340 	ASSERT(mutex_owned(SD_MUTEX(un)));
16341 	ASSERT(un->un_sense_isbusy == 0);
16342 
16343 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16344 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16345 
16346 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16347 	ASSERT(sense_xp != NULL);
16348 
16349 	SD_INFO(SD_LOG_IO, un,
16350 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16351 
16352 	ASSERT(sense_xp->xb_pktp != NULL);
16353 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16354 	    == (FLAG_SENSING | FLAG_HEAD));
16355 
16356 	un->un_sense_isbusy = 1;
16357 	un->un_rqs_bp->b_resid = 0;
16358 	sense_xp->xb_pktp->pkt_resid  = 0;
16359 	sense_xp->xb_pktp->pkt_reason = 0;
16360 
16361 	/* So we can get back the bp at interrupt time! */
16362 	sense_xp->xb_sense_bp = bp;
16363 
16364 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16365 
16366 	/*
16367 	 * Mark this buf as awaiting sense data. (This is already set in
16368 	 * the pkt_flags for the RQS packet.)
16369 	 */
16370 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16371 
16372 	/* Request sense down same path */
16373 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16374 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16375 		sense_xp->xb_pktp->pkt_path_instance =
16376 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16377 
16378 	sense_xp->xb_retry_count	= 0;
16379 	sense_xp->xb_victim_retry_count = 0;
16380 	sense_xp->xb_ua_retry_count	= 0;
16381 	sense_xp->xb_nr_retry_count 	= 0;
16382 	sense_xp->xb_dma_resid  = 0;
16383 
16384 	/* Clean up the fields for auto-request sense */
16385 	sense_xp->xb_sense_status = 0;
16386 	sense_xp->xb_sense_state  = 0;
16387 	sense_xp->xb_sense_resid  = 0;
16388 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16389 
16390 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16391 }
16392 
16393 
16394 /*
16395  *    Function: sd_mark_rqs_idle
16396  *
16397  * Description: SD_MUTEX must be held continuously through this routine
16398  *		to prevent reuse of the rqs struct before the caller can
16399  *		complete it's processing.
16400  *
16401  * Return Code: Pointer to the RQS buf
16402  *
16403  *     Context: May be called under interrupt context
16404  */
16405 
16406 static struct buf *
16407 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16408 {
16409 	struct buf *bp;
16410 	ASSERT(un != NULL);
16411 	ASSERT(sense_xp != NULL);
16412 	ASSERT(mutex_owned(SD_MUTEX(un)));
16413 	ASSERT(un->un_sense_isbusy != 0);
16414 
16415 	un->un_sense_isbusy = 0;
16416 	bp = sense_xp->xb_sense_bp;
16417 	sense_xp->xb_sense_bp = NULL;
16418 
16419 	/* This pkt is no longer interested in getting sense data */
16420 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16421 
16422 	return (bp);
16423 }
16424 
16425 
16426 
16427 /*
16428  *    Function: sd_alloc_rqs
16429  *
16430  * Description: Set up the unit to receive auto request sense data
16431  *
16432  * Return Code: DDI_SUCCESS or DDI_FAILURE
16433  *
16434  *     Context: Called under attach(9E) context
16435  */
16436 
16437 static int
16438 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16439 {
16440 	struct sd_xbuf *xp;
16441 
16442 	ASSERT(un != NULL);
16443 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16444 	ASSERT(un->un_rqs_bp == NULL);
16445 	ASSERT(un->un_rqs_pktp == NULL);
16446 
16447 	/*
16448 	 * First allocate the required buf and scsi_pkt structs, then set up
16449 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16450 	 */
16451 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16452 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16453 	if (un->un_rqs_bp == NULL) {
16454 		return (DDI_FAILURE);
16455 	}
16456 
16457 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16458 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16459 
16460 	if (un->un_rqs_pktp == NULL) {
16461 		sd_free_rqs(un);
16462 		return (DDI_FAILURE);
16463 	}
16464 
16465 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16466 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16467 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16468 
16469 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16470 
16471 	/* Set up the other needed members in the ARQ scsi_pkt. */
16472 	un->un_rqs_pktp->pkt_comp   = sdintr;
16473 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16474 	un->un_rqs_pktp->pkt_flags |=
16475 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16476 
16477 	/*
16478 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16479 	 * provide any intpkt, destroypkt routines as we take care of
16480 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16481 	 */
16482 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16483 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16484 	xp->xb_pktp = un->un_rqs_pktp;
16485 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16486 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16487 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16488 
16489 	/*
16490 	 * Save the pointer to the request sense private bp so it can
16491 	 * be retrieved in sdintr.
16492 	 */
16493 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16494 	ASSERT(un->un_rqs_bp->b_private == xp);
16495 
16496 	/*
16497 	 * See if the HBA supports auto-request sense for the specified
16498 	 * target/lun. If it does, then try to enable it (if not already
16499 	 * enabled).
16500 	 *
16501 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16502 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16503 	 * return success.  However, in both of these cases ARQ is always
16504 	 * enabled and scsi_ifgetcap will always return true. The best approach
16505 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16506 	 *
16507 	 * The 3rd case is the HBA (adp) always return enabled on
16508 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16509 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16510 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16511 	 */
16512 
16513 	if (un->un_f_is_fibre == TRUE) {
16514 		un->un_f_arq_enabled = TRUE;
16515 	} else {
16516 #if defined(__i386) || defined(__amd64)
16517 		/*
16518 		 * Circumvent the Adaptec bug, remove this code when
16519 		 * the bug is fixed
16520 		 */
16521 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16522 #endif
16523 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16524 		case 0:
16525 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16526 			    "sd_alloc_rqs: HBA supports ARQ\n");
16527 			/*
16528 			 * ARQ is supported by this HBA but currently is not
16529 			 * enabled. Attempt to enable it and if successful then
16530 			 * mark this instance as ARQ enabled.
16531 			 */
16532 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16533 			    == 1) {
16534 				/* Successfully enabled ARQ in the HBA */
16535 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16536 				    "sd_alloc_rqs: ARQ enabled\n");
16537 				un->un_f_arq_enabled = TRUE;
16538 			} else {
16539 				/* Could not enable ARQ in the HBA */
16540 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16541 				    "sd_alloc_rqs: failed ARQ enable\n");
16542 				un->un_f_arq_enabled = FALSE;
16543 			}
16544 			break;
16545 		case 1:
16546 			/*
16547 			 * ARQ is supported by this HBA and is already enabled.
16548 			 * Just mark ARQ as enabled for this instance.
16549 			 */
16550 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16551 			    "sd_alloc_rqs: ARQ already enabled\n");
16552 			un->un_f_arq_enabled = TRUE;
16553 			break;
16554 		default:
16555 			/*
16556 			 * ARQ is not supported by this HBA; disable it for this
16557 			 * instance.
16558 			 */
16559 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16560 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16561 			un->un_f_arq_enabled = FALSE;
16562 			break;
16563 		}
16564 	}
16565 
16566 	return (DDI_SUCCESS);
16567 }
16568 
16569 
16570 /*
16571  *    Function: sd_free_rqs
16572  *
16573  * Description: Cleanup for the pre-instance RQS command.
16574  *
16575  *     Context: Kernel thread context
16576  */
16577 
16578 static void
16579 sd_free_rqs(struct sd_lun *un)
16580 {
16581 	ASSERT(un != NULL);
16582 
16583 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16584 
16585 	/*
16586 	 * If consistent memory is bound to a scsi_pkt, the pkt
16587 	 * has to be destroyed *before* freeing the consistent memory.
16588 	 * Don't change the sequence of this operations.
16589 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16590 	 * after it was freed in scsi_free_consistent_buf().
16591 	 */
16592 	if (un->un_rqs_pktp != NULL) {
16593 		scsi_destroy_pkt(un->un_rqs_pktp);
16594 		un->un_rqs_pktp = NULL;
16595 	}
16596 
16597 	if (un->un_rqs_bp != NULL) {
16598 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16599 		if (xp != NULL) {
16600 			kmem_free(xp, sizeof (struct sd_xbuf));
16601 		}
16602 		scsi_free_consistent_buf(un->un_rqs_bp);
16603 		un->un_rqs_bp = NULL;
16604 	}
16605 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16606 }
16607 
16608 
16609 
16610 /*
16611  *    Function: sd_reduce_throttle
16612  *
16613  * Description: Reduces the maximum # of outstanding commands on a
16614  *		target to the current number of outstanding commands.
16615  *		Queues a tiemout(9F) callback to restore the limit
16616  *		after a specified interval has elapsed.
16617  *		Typically used when we get a TRAN_BUSY return code
16618  *		back from scsi_transport().
16619  *
16620  *   Arguments: un - ptr to the sd_lun softstate struct
16621  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16622  *
16623  *     Context: May be called from interrupt context
16624  */
16625 
16626 static void
16627 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16628 {
16629 	ASSERT(un != NULL);
16630 	ASSERT(mutex_owned(SD_MUTEX(un)));
16631 	ASSERT(un->un_ncmds_in_transport >= 0);
16632 
16633 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16634 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16635 	    un, un->un_throttle, un->un_ncmds_in_transport);
16636 
16637 	if (un->un_throttle > 1) {
16638 		if (un->un_f_use_adaptive_throttle == TRUE) {
16639 			switch (throttle_type) {
16640 			case SD_THROTTLE_TRAN_BUSY:
16641 				if (un->un_busy_throttle == 0) {
16642 					un->un_busy_throttle = un->un_throttle;
16643 				}
16644 				break;
16645 			case SD_THROTTLE_QFULL:
16646 				un->un_busy_throttle = 0;
16647 				break;
16648 			default:
16649 				ASSERT(FALSE);
16650 			}
16651 
16652 			if (un->un_ncmds_in_transport > 0) {
16653 				un->un_throttle = un->un_ncmds_in_transport;
16654 			}
16655 
16656 		} else {
16657 			if (un->un_ncmds_in_transport == 0) {
16658 				un->un_throttle = 1;
16659 			} else {
16660 				un->un_throttle = un->un_ncmds_in_transport;
16661 			}
16662 		}
16663 	}
16664 
16665 	/* Reschedule the timeout if none is currently active */
16666 	if (un->un_reset_throttle_timeid == NULL) {
16667 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16668 		    un, SD_THROTTLE_RESET_INTERVAL);
16669 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16670 		    "sd_reduce_throttle: timeout scheduled!\n");
16671 	}
16672 
16673 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16674 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16675 }
16676 
16677 
16678 
16679 /*
16680  *    Function: sd_restore_throttle
16681  *
16682  * Description: Callback function for timeout(9F).  Resets the current
16683  *		value of un->un_throttle to its default.
16684  *
16685  *   Arguments: arg - pointer to associated softstate for the device.
16686  *
16687  *     Context: May be called from interrupt context
16688  */
16689 
16690 static void
16691 sd_restore_throttle(void *arg)
16692 {
16693 	struct sd_lun	*un = arg;
16694 
16695 	ASSERT(un != NULL);
16696 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16697 
16698 	mutex_enter(SD_MUTEX(un));
16699 
16700 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16701 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16702 
16703 	un->un_reset_throttle_timeid = NULL;
16704 
16705 	if (un->un_f_use_adaptive_throttle == TRUE) {
16706 		/*
16707 		 * If un_busy_throttle is nonzero, then it contains the
16708 		 * value that un_throttle was when we got a TRAN_BUSY back
16709 		 * from scsi_transport(). We want to revert back to this
16710 		 * value.
16711 		 *
16712 		 * In the QFULL case, the throttle limit will incrementally
16713 		 * increase until it reaches max throttle.
16714 		 */
16715 		if (un->un_busy_throttle > 0) {
16716 			un->un_throttle = un->un_busy_throttle;
16717 			un->un_busy_throttle = 0;
16718 		} else {
16719 			/*
16720 			 * increase throttle by 10% open gate slowly, schedule
16721 			 * another restore if saved throttle has not been
16722 			 * reached
16723 			 */
16724 			short throttle;
16725 			if (sd_qfull_throttle_enable) {
16726 				throttle = un->un_throttle +
16727 				    max((un->un_throttle / 10), 1);
16728 				un->un_throttle =
16729 				    (throttle < un->un_saved_throttle) ?
16730 				    throttle : un->un_saved_throttle;
16731 				if (un->un_throttle < un->un_saved_throttle) {
16732 					un->un_reset_throttle_timeid =
16733 					    timeout(sd_restore_throttle,
16734 					    un,
16735 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16736 				}
16737 			}
16738 		}
16739 
16740 		/*
16741 		 * If un_throttle has fallen below the low-water mark, we
16742 		 * restore the maximum value here (and allow it to ratchet
16743 		 * down again if necessary).
16744 		 */
16745 		if (un->un_throttle < un->un_min_throttle) {
16746 			un->un_throttle = un->un_saved_throttle;
16747 		}
16748 	} else {
16749 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16750 		    "restoring limit from 0x%x to 0x%x\n",
16751 		    un->un_throttle, un->un_saved_throttle);
16752 		un->un_throttle = un->un_saved_throttle;
16753 	}
16754 
16755 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16756 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16757 
16758 	sd_start_cmds(un, NULL);
16759 
16760 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16761 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16762 	    un, un->un_throttle);
16763 
16764 	mutex_exit(SD_MUTEX(un));
16765 
16766 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16767 }
16768 
16769 /*
16770  *    Function: sdrunout
16771  *
16772  * Description: Callback routine for scsi_init_pkt when a resource allocation
16773  *		fails.
16774  *
16775  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16776  *		soft state instance.
16777  *
16778  * Return Code: The scsi_init_pkt routine allows for the callback function to
16779  *		return a 0 indicating the callback should be rescheduled or a 1
16780  *		indicating not to reschedule. This routine always returns 1
16781  *		because the driver always provides a callback function to
16782  *		scsi_init_pkt. This results in a callback always being scheduled
16783  *		(via the scsi_init_pkt callback implementation) if a resource
16784  *		failure occurs.
16785  *
16786  *     Context: This callback function may not block or call routines that block
16787  *
16788  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16789  *		request persisting at the head of the list which cannot be
16790  *		satisfied even after multiple retries. In the future the driver
16791  *		may implement some time of maximum runout count before failing
16792  *		an I/O.
16793  */
16794 
16795 static int
16796 sdrunout(caddr_t arg)
16797 {
16798 	struct sd_lun	*un = (struct sd_lun *)arg;
16799 
16800 	ASSERT(un != NULL);
16801 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16802 
16803 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16804 
16805 	mutex_enter(SD_MUTEX(un));
16806 	sd_start_cmds(un, NULL);
16807 	mutex_exit(SD_MUTEX(un));
16808 	/*
16809 	 * This callback routine always returns 1 (i.e. do not reschedule)
16810 	 * because we always specify sdrunout as the callback handler for
16811 	 * scsi_init_pkt inside the call to sd_start_cmds.
16812 	 */
16813 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16814 	return (1);
16815 }
16816 
16817 
16818 /*
16819  *    Function: sdintr
16820  *
16821  * Description: Completion callback routine for scsi_pkt(9S) structs
16822  *		sent to the HBA driver via scsi_transport(9F).
16823  *
16824  *     Context: Interrupt context
16825  */
16826 
16827 static void
16828 sdintr(struct scsi_pkt *pktp)
16829 {
16830 	struct buf	*bp;
16831 	struct sd_xbuf	*xp;
16832 	struct sd_lun	*un;
16833 	size_t		actual_len;
16834 	sd_ssc_t	*sscp;
16835 
16836 	ASSERT(pktp != NULL);
16837 	bp = (struct buf *)pktp->pkt_private;
16838 	ASSERT(bp != NULL);
16839 	xp = SD_GET_XBUF(bp);
16840 	ASSERT(xp != NULL);
16841 	ASSERT(xp->xb_pktp != NULL);
16842 	un = SD_GET_UN(bp);
16843 	ASSERT(un != NULL);
16844 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16845 
16846 #ifdef SD_FAULT_INJECTION
16847 
16848 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16849 	/* SD FaultInjection */
16850 	sd_faultinjection(pktp);
16851 
16852 #endif /* SD_FAULT_INJECTION */
16853 
16854 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16855 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16856 
16857 	mutex_enter(SD_MUTEX(un));
16858 
16859 	ASSERT(un->un_fm_private != NULL);
16860 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16861 	ASSERT(sscp != NULL);
16862 
16863 	/* Reduce the count of the #commands currently in transport */
16864 	un->un_ncmds_in_transport--;
16865 	ASSERT(un->un_ncmds_in_transport >= 0);
16866 
16867 	/* Increment counter to indicate that the callback routine is active */
16868 	un->un_in_callback++;
16869 
16870 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16871 
16872 #ifdef	SDDEBUG
16873 	if (bp == un->un_retry_bp) {
16874 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16875 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16876 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16877 	}
16878 #endif
16879 
16880 	/*
16881 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16882 	 * state if needed.
16883 	 */
16884 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16885 		/* Prevent multiple console messages for the same failure. */
16886 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16887 			un->un_last_pkt_reason = CMD_DEV_GONE;
16888 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16889 			    "Command failed to complete...Device is gone\n");
16890 		}
16891 		if (un->un_mediastate != DKIO_DEV_GONE) {
16892 			un->un_mediastate = DKIO_DEV_GONE;
16893 			cv_broadcast(&un->un_state_cv);
16894 		}
16895 		/*
16896 		 * If the command happens to be the REQUEST SENSE command,
16897 		 * free up the rqs buf and fail the original command.
16898 		 */
16899 		if (bp == un->un_rqs_bp) {
16900 			bp = sd_mark_rqs_idle(un, xp);
16901 		}
16902 		sd_return_failed_command(un, bp, EIO);
16903 		goto exit;
16904 	}
16905 
16906 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16907 		SD_TRACE(SD_LOG_COMMON, un,
16908 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16909 	}
16910 
16911 	/*
16912 	 * First see if the pkt has auto-request sense data with it....
16913 	 * Look at the packet state first so we don't take a performance
16914 	 * hit looking at the arq enabled flag unless absolutely necessary.
16915 	 */
16916 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16917 	    (un->un_f_arq_enabled == TRUE)) {
16918 		/*
16919 		 * The HBA did an auto request sense for this command so check
16920 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16921 		 * driver command that should not be retried.
16922 		 */
16923 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16924 			/*
16925 			 * Save the relevant sense info into the xp for the
16926 			 * original cmd.
16927 			 */
16928 			struct scsi_arq_status *asp;
16929 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16930 			xp->xb_sense_status =
16931 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16932 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16933 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16934 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16935 				actual_len = MAX_SENSE_LENGTH -
16936 				    xp->xb_sense_resid;
16937 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16938 				    MAX_SENSE_LENGTH);
16939 			} else {
16940 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16941 					actual_len = MAX_SENSE_LENGTH -
16942 					    xp->xb_sense_resid;
16943 				} else {
16944 					actual_len = SENSE_LENGTH -
16945 					    xp->xb_sense_resid;
16946 				}
16947 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16948 					if ((((struct uscsi_cmd *)
16949 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16950 					    actual_len) {
16951 						xp->xb_sense_resid =
16952 						    (((struct uscsi_cmd *)
16953 						    (xp->xb_pktinfo))->
16954 						    uscsi_rqlen) - actual_len;
16955 					} else {
16956 						xp->xb_sense_resid = 0;
16957 					}
16958 				}
16959 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16960 				    SENSE_LENGTH);
16961 			}
16962 
16963 			/* fail the command */
16964 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16965 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16966 			sd_return_failed_command(un, bp, EIO);
16967 			goto exit;
16968 		}
16969 
16970 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16971 		/*
16972 		 * We want to either retry or fail this command, so free
16973 		 * the DMA resources here.  If we retry the command then
16974 		 * the DMA resources will be reallocated in sd_start_cmds().
16975 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16976 		 * causes the *entire* transfer to start over again from the
16977 		 * beginning of the request, even for PARTIAL chunks that
16978 		 * have already transferred successfully.
16979 		 */
16980 		if ((un->un_f_is_fibre == TRUE) &&
16981 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16982 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16983 			scsi_dmafree(pktp);
16984 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16985 		}
16986 #endif
16987 
16988 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16989 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16990 
16991 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16992 		goto exit;
16993 	}
16994 
16995 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16996 	if (pktp->pkt_flags & FLAG_SENSING)  {
16997 		/* This pktp is from the unit's REQUEST_SENSE command */
16998 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16999 		    "sdintr: sd_handle_request_sense\n");
17000 		sd_handle_request_sense(un, bp, xp, pktp);
17001 		goto exit;
17002 	}
17003 
17004 	/*
17005 	 * Check to see if the command successfully completed as requested;
17006 	 * this is the most common case (and also the hot performance path).
17007 	 *
17008 	 * Requirements for successful completion are:
17009 	 * pkt_reason is CMD_CMPLT and packet status is status good.
17010 	 * In addition:
17011 	 * - A residual of zero indicates successful completion no matter what
17012 	 *   the command is.
17013 	 * - If the residual is not zero and the command is not a read or
17014 	 *   write, then it's still defined as successful completion. In other
17015 	 *   words, if the command is a read or write the residual must be
17016 	 *   zero for successful completion.
17017 	 * - If the residual is not zero and the command is a read or
17018 	 *   write, and it's a USCSICMD, then it's still defined as
17019 	 *   successful completion.
17020 	 */
17021 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17022 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17023 
17024 		/*
17025 		 * Since this command is returned with a good status, we
17026 		 * can reset the count for Sonoma failover.
17027 		 */
17028 		un->un_sonoma_failure_count = 0;
17029 
17030 		/*
17031 		 * Return all USCSI commands on good status
17032 		 */
17033 		if (pktp->pkt_resid == 0) {
17034 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17035 			    "sdintr: returning command for resid == 0\n");
17036 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17037 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17038 			SD_UPDATE_B_RESID(bp, pktp);
17039 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17040 			    "sdintr: returning command for resid != 0\n");
17041 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17042 			SD_UPDATE_B_RESID(bp, pktp);
17043 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17044 			    "sdintr: returning uscsi command\n");
17045 		} else {
17046 			goto not_successful;
17047 		}
17048 		sd_return_command(un, bp);
17049 
17050 		/*
17051 		 * Decrement counter to indicate that the callback routine
17052 		 * is done.
17053 		 */
17054 		un->un_in_callback--;
17055 		ASSERT(un->un_in_callback >= 0);
17056 		mutex_exit(SD_MUTEX(un));
17057 
17058 		return;
17059 	}
17060 
17061 not_successful:
17062 
17063 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17064 	/*
17065 	 * The following is based upon knowledge of the underlying transport
17066 	 * and its use of DMA resources.  This code should be removed when
17067 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17068 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17069 	 * and sd_start_cmds().
17070 	 *
17071 	 * Free any DMA resources associated with this command if there
17072 	 * is a chance it could be retried or enqueued for later retry.
17073 	 * If we keep the DMA binding then mpxio cannot reissue the
17074 	 * command on another path whenever a path failure occurs.
17075 	 *
17076 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17077 	 * causes the *entire* transfer to start over again from the
17078 	 * beginning of the request, even for PARTIAL chunks that
17079 	 * have already transferred successfully.
17080 	 *
17081 	 * This is only done for non-uscsi commands (and also skipped for the
17082 	 * driver's internal RQS command). Also just do this for Fibre Channel
17083 	 * devices as these are the only ones that support mpxio.
17084 	 */
17085 	if ((un->un_f_is_fibre == TRUE) &&
17086 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17087 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17088 		scsi_dmafree(pktp);
17089 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17090 	}
17091 #endif
17092 
17093 	/*
17094 	 * The command did not successfully complete as requested so check
17095 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17096 	 * driver command that should not be retried so just return. If
17097 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17098 	 */
17099 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17100 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17101 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17102 		/*
17103 		 * Issue a request sense if a check condition caused the error
17104 		 * (we handle the auto request sense case above), otherwise
17105 		 * just fail the command.
17106 		 */
17107 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17108 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17109 			sd_send_request_sense_command(un, bp, pktp);
17110 		} else {
17111 			sd_return_failed_command(un, bp, EIO);
17112 		}
17113 		goto exit;
17114 	}
17115 
17116 	/*
17117 	 * The command did not successfully complete as requested so process
17118 	 * the error, retry, and/or attempt recovery.
17119 	 */
17120 	switch (pktp->pkt_reason) {
17121 	case CMD_CMPLT:
17122 		switch (SD_GET_PKT_STATUS(pktp)) {
17123 		case STATUS_GOOD:
17124 			/*
17125 			 * The command completed successfully with a non-zero
17126 			 * residual
17127 			 */
17128 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17129 			    "sdintr: STATUS_GOOD \n");
17130 			sd_pkt_status_good(un, bp, xp, pktp);
17131 			break;
17132 
17133 		case STATUS_CHECK:
17134 		case STATUS_TERMINATED:
17135 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17136 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17137 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17138 			break;
17139 
17140 		case STATUS_BUSY:
17141 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17142 			    "sdintr: STATUS_BUSY\n");
17143 			sd_pkt_status_busy(un, bp, xp, pktp);
17144 			break;
17145 
17146 		case STATUS_RESERVATION_CONFLICT:
17147 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17148 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17149 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17150 			break;
17151 
17152 		case STATUS_QFULL:
17153 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17154 			    "sdintr: STATUS_QFULL\n");
17155 			sd_pkt_status_qfull(un, bp, xp, pktp);
17156 			break;
17157 
17158 		case STATUS_MET:
17159 		case STATUS_INTERMEDIATE:
17160 		case STATUS_SCSI2:
17161 		case STATUS_INTERMEDIATE_MET:
17162 		case STATUS_ACA_ACTIVE:
17163 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17164 			    "Unexpected SCSI status received: 0x%x\n",
17165 			    SD_GET_PKT_STATUS(pktp));
17166 			/*
17167 			 * Mark the ssc_flags when detected invalid status
17168 			 * code for non-USCSI command.
17169 			 */
17170 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17171 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17172 				    0, "stat-code");
17173 			}
17174 			sd_return_failed_command(un, bp, EIO);
17175 			break;
17176 
17177 		default:
17178 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17179 			    "Invalid SCSI status received: 0x%x\n",
17180 			    SD_GET_PKT_STATUS(pktp));
17181 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17182 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17183 				    0, "stat-code");
17184 			}
17185 			sd_return_failed_command(un, bp, EIO);
17186 			break;
17187 
17188 		}
17189 		break;
17190 
17191 	case CMD_INCOMPLETE:
17192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17193 		    "sdintr:  CMD_INCOMPLETE\n");
17194 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17195 		break;
17196 	case CMD_TRAN_ERR:
17197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17198 		    "sdintr: CMD_TRAN_ERR\n");
17199 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17200 		break;
17201 	case CMD_RESET:
17202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17203 		    "sdintr: CMD_RESET \n");
17204 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17205 		break;
17206 	case CMD_ABORTED:
17207 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17208 		    "sdintr: CMD_ABORTED \n");
17209 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17210 		break;
17211 	case CMD_TIMEOUT:
17212 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17213 		    "sdintr: CMD_TIMEOUT\n");
17214 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17215 		break;
17216 	case CMD_UNX_BUS_FREE:
17217 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17218 		    "sdintr: CMD_UNX_BUS_FREE \n");
17219 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17220 		break;
17221 	case CMD_TAG_REJECT:
17222 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17223 		    "sdintr: CMD_TAG_REJECT\n");
17224 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17225 		break;
17226 	default:
17227 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17228 		    "sdintr: default\n");
17229 		/*
17230 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17231 		 */
17232 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17233 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17234 			    0, "pkt-reason");
17235 		}
17236 		sd_pkt_reason_default(un, bp, xp, pktp);
17237 		break;
17238 	}
17239 
17240 exit:
17241 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17242 
17243 	/* Decrement counter to indicate that the callback routine is done. */
17244 	un->un_in_callback--;
17245 	ASSERT(un->un_in_callback >= 0);
17246 
17247 	/*
17248 	 * At this point, the pkt has been dispatched, ie, it is either
17249 	 * being re-tried or has been returned to its caller and should
17250 	 * not be referenced.
17251 	 */
17252 
17253 	mutex_exit(SD_MUTEX(un));
17254 }
17255 
17256 
17257 /*
17258  *    Function: sd_print_incomplete_msg
17259  *
17260  * Description: Prints the error message for a CMD_INCOMPLETE error.
17261  *
17262  *   Arguments: un - ptr to associated softstate for the device.
17263  *		bp - ptr to the buf(9S) for the command.
17264  *		arg - message string ptr
17265  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17266  *			or SD_NO_RETRY_ISSUED.
17267  *
17268  *     Context: May be called under interrupt context
17269  */
17270 
17271 static void
17272 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17273 {
17274 	struct scsi_pkt	*pktp;
17275 	char	*msgp;
17276 	char	*cmdp = arg;
17277 
17278 	ASSERT(un != NULL);
17279 	ASSERT(mutex_owned(SD_MUTEX(un)));
17280 	ASSERT(bp != NULL);
17281 	ASSERT(arg != NULL);
17282 	pktp = SD_GET_PKTP(bp);
17283 	ASSERT(pktp != NULL);
17284 
17285 	switch (code) {
17286 	case SD_DELAYED_RETRY_ISSUED:
17287 	case SD_IMMEDIATE_RETRY_ISSUED:
17288 		msgp = "retrying";
17289 		break;
17290 	case SD_NO_RETRY_ISSUED:
17291 	default:
17292 		msgp = "giving up";
17293 		break;
17294 	}
17295 
17296 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17297 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17298 		    "incomplete %s- %s\n", cmdp, msgp);
17299 	}
17300 }
17301 
17302 
17303 
17304 /*
17305  *    Function: sd_pkt_status_good
17306  *
17307  * Description: Processing for a STATUS_GOOD code in pkt_status.
17308  *
17309  *     Context: May be called under interrupt context
17310  */
17311 
17312 static void
17313 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17314 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17315 {
17316 	char	*cmdp;
17317 
17318 	ASSERT(un != NULL);
17319 	ASSERT(mutex_owned(SD_MUTEX(un)));
17320 	ASSERT(bp != NULL);
17321 	ASSERT(xp != NULL);
17322 	ASSERT(pktp != NULL);
17323 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17324 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17325 	ASSERT(pktp->pkt_resid != 0);
17326 
17327 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17328 
17329 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17330 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17331 	case SCMD_READ:
17332 		cmdp = "read";
17333 		break;
17334 	case SCMD_WRITE:
17335 		cmdp = "write";
17336 		break;
17337 	default:
17338 		SD_UPDATE_B_RESID(bp, pktp);
17339 		sd_return_command(un, bp);
17340 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17341 		return;
17342 	}
17343 
17344 	/*
17345 	 * See if we can retry the read/write, preferrably immediately.
17346 	 * If retries are exhaused, then sd_retry_command() will update
17347 	 * the b_resid count.
17348 	 */
17349 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17350 	    cmdp, EIO, (clock_t)0, NULL);
17351 
17352 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17353 }
17354 
17355 
17356 
17357 
17358 
17359 /*
17360  *    Function: sd_handle_request_sense
17361  *
17362  * Description: Processing for non-auto Request Sense command.
17363  *
17364  *   Arguments: un - ptr to associated softstate
17365  *		sense_bp - ptr to buf(9S) for the RQS command
17366  *		sense_xp - ptr to the sd_xbuf for the RQS command
17367  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17368  *
17369  *     Context: May be called under interrupt context
17370  */
17371 
17372 static void
17373 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17374 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17375 {
17376 	struct buf	*cmd_bp;	/* buf for the original command */
17377 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17378 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17379 	size_t		actual_len;	/* actual sense data length */
17380 
17381 	ASSERT(un != NULL);
17382 	ASSERT(mutex_owned(SD_MUTEX(un)));
17383 	ASSERT(sense_bp != NULL);
17384 	ASSERT(sense_xp != NULL);
17385 	ASSERT(sense_pktp != NULL);
17386 
17387 	/*
17388 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17389 	 * RQS command and not the original command.
17390 	 */
17391 	ASSERT(sense_pktp == un->un_rqs_pktp);
17392 	ASSERT(sense_bp   == un->un_rqs_bp);
17393 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17394 	    (FLAG_SENSING | FLAG_HEAD));
17395 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17396 	    FLAG_SENSING) == FLAG_SENSING);
17397 
17398 	/* These are the bp, xp, and pktp for the original command */
17399 	cmd_bp = sense_xp->xb_sense_bp;
17400 	cmd_xp = SD_GET_XBUF(cmd_bp);
17401 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17402 
17403 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17404 		/*
17405 		 * The REQUEST SENSE command failed.  Release the REQUEST
17406 		 * SENSE command for re-use, get back the bp for the original
17407 		 * command, and attempt to re-try the original command if
17408 		 * FLAG_DIAGNOSE is not set in the original packet.
17409 		 */
17410 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17411 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17412 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17413 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17414 			    NULL, NULL, EIO, (clock_t)0, NULL);
17415 			return;
17416 		}
17417 	}
17418 
17419 	/*
17420 	 * Save the relevant sense info into the xp for the original cmd.
17421 	 *
17422 	 * Note: if the request sense failed the state info will be zero
17423 	 * as set in sd_mark_rqs_busy()
17424 	 */
17425 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17426 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17427 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17428 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17429 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17430 	    SENSE_LENGTH)) {
17431 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17432 		    MAX_SENSE_LENGTH);
17433 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17434 	} else {
17435 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17436 		    SENSE_LENGTH);
17437 		if (actual_len < SENSE_LENGTH) {
17438 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17439 		} else {
17440 			cmd_xp->xb_sense_resid = 0;
17441 		}
17442 	}
17443 
17444 	/*
17445 	 *  Free up the RQS command....
17446 	 *  NOTE:
17447 	 *	Must do this BEFORE calling sd_validate_sense_data!
17448 	 *	sd_validate_sense_data may return the original command in
17449 	 *	which case the pkt will be freed and the flags can no
17450 	 *	longer be touched.
17451 	 *	SD_MUTEX is held through this process until the command
17452 	 *	is dispatched based upon the sense data, so there are
17453 	 *	no race conditions.
17454 	 */
17455 	(void) sd_mark_rqs_idle(un, sense_xp);
17456 
17457 	/*
17458 	 * For a retryable command see if we have valid sense data, if so then
17459 	 * turn it over to sd_decode_sense() to figure out the right course of
17460 	 * action. Just fail a non-retryable command.
17461 	 */
17462 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17463 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17464 		    SD_SENSE_DATA_IS_VALID) {
17465 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17466 		}
17467 	} else {
17468 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17469 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17470 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17471 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17472 		sd_return_failed_command(un, cmd_bp, EIO);
17473 	}
17474 }
17475 
17476 
17477 
17478 
17479 /*
17480  *    Function: sd_handle_auto_request_sense
17481  *
17482  * Description: Processing for auto-request sense information.
17483  *
17484  *   Arguments: un - ptr to associated softstate
17485  *		bp - ptr to buf(9S) for the command
17486  *		xp - ptr to the sd_xbuf for the command
17487  *		pktp - ptr to the scsi_pkt(9S) for the command
17488  *
17489  *     Context: May be called under interrupt context
17490  */
17491 
17492 static void
17493 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17494 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17495 {
17496 	struct scsi_arq_status *asp;
17497 	size_t actual_len;
17498 
17499 	ASSERT(un != NULL);
17500 	ASSERT(mutex_owned(SD_MUTEX(un)));
17501 	ASSERT(bp != NULL);
17502 	ASSERT(xp != NULL);
17503 	ASSERT(pktp != NULL);
17504 	ASSERT(pktp != un->un_rqs_pktp);
17505 	ASSERT(bp   != un->un_rqs_bp);
17506 
17507 	/*
17508 	 * For auto-request sense, we get a scsi_arq_status back from
17509 	 * the HBA, with the sense data in the sts_sensedata member.
17510 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17511 	 */
17512 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17513 
17514 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17515 		/*
17516 		 * The auto REQUEST SENSE failed; see if we can re-try
17517 		 * the original command.
17518 		 */
17519 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17520 		    "auto request sense failed (reason=%s)\n",
17521 		    scsi_rname(asp->sts_rqpkt_reason));
17522 
17523 		sd_reset_target(un, pktp);
17524 
17525 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17526 		    NULL, NULL, EIO, (clock_t)0, NULL);
17527 		return;
17528 	}
17529 
17530 	/* Save the relevant sense info into the xp for the original cmd. */
17531 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17532 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17533 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17534 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17535 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17536 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17537 		    MAX_SENSE_LENGTH);
17538 	} else {
17539 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17540 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17541 		} else {
17542 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17543 		}
17544 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17545 			if ((((struct uscsi_cmd *)
17546 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17547 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17548 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17549 				    actual_len;
17550 			} else {
17551 				xp->xb_sense_resid = 0;
17552 			}
17553 		}
17554 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17555 	}
17556 
17557 	/*
17558 	 * See if we have valid sense data, if so then turn it over to
17559 	 * sd_decode_sense() to figure out the right course of action.
17560 	 */
17561 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17562 	    SD_SENSE_DATA_IS_VALID) {
17563 		sd_decode_sense(un, bp, xp, pktp);
17564 	}
17565 }
17566 
17567 
17568 /*
17569  *    Function: sd_print_sense_failed_msg
17570  *
17571  * Description: Print log message when RQS has failed.
17572  *
17573  *   Arguments: un - ptr to associated softstate
17574  *		bp - ptr to buf(9S) for the command
17575  *		arg - generic message string ptr
17576  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17577  *			or SD_NO_RETRY_ISSUED
17578  *
17579  *     Context: May be called from interrupt context
17580  */
17581 
17582 static void
17583 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17584 	int code)
17585 {
17586 	char	*msgp = arg;
17587 
17588 	ASSERT(un != NULL);
17589 	ASSERT(mutex_owned(SD_MUTEX(un)));
17590 	ASSERT(bp != NULL);
17591 
17592 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17593 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17594 	}
17595 }
17596 
17597 
17598 /*
17599  *    Function: sd_validate_sense_data
17600  *
17601  * Description: Check the given sense data for validity.
17602  *		If the sense data is not valid, the command will
17603  *		be either failed or retried!
17604  *
17605  * Return Code: SD_SENSE_DATA_IS_INVALID
17606  *		SD_SENSE_DATA_IS_VALID
17607  *
17608  *     Context: May be called from interrupt context
17609  */
17610 
17611 static int
17612 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17613 	size_t actual_len)
17614 {
17615 	struct scsi_extended_sense *esp;
17616 	struct	scsi_pkt *pktp;
17617 	char	*msgp = NULL;
17618 	sd_ssc_t *sscp;
17619 
17620 	ASSERT(un != NULL);
17621 	ASSERT(mutex_owned(SD_MUTEX(un)));
17622 	ASSERT(bp != NULL);
17623 	ASSERT(bp != un->un_rqs_bp);
17624 	ASSERT(xp != NULL);
17625 	ASSERT(un->un_fm_private != NULL);
17626 
17627 	pktp = SD_GET_PKTP(bp);
17628 	ASSERT(pktp != NULL);
17629 
17630 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17631 	ASSERT(sscp != NULL);
17632 
17633 	/*
17634 	 * Check the status of the RQS command (auto or manual).
17635 	 */
17636 	switch (xp->xb_sense_status & STATUS_MASK) {
17637 	case STATUS_GOOD:
17638 		break;
17639 
17640 	case STATUS_RESERVATION_CONFLICT:
17641 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17642 		return (SD_SENSE_DATA_IS_INVALID);
17643 
17644 	case STATUS_BUSY:
17645 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17646 		    "Busy Status on REQUEST SENSE\n");
17647 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17648 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17649 		return (SD_SENSE_DATA_IS_INVALID);
17650 
17651 	case STATUS_QFULL:
17652 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17653 		    "QFULL Status on REQUEST SENSE\n");
17654 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17655 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17656 		return (SD_SENSE_DATA_IS_INVALID);
17657 
17658 	case STATUS_CHECK:
17659 	case STATUS_TERMINATED:
17660 		msgp = "Check Condition on REQUEST SENSE\n";
17661 		goto sense_failed;
17662 
17663 	default:
17664 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17665 		goto sense_failed;
17666 	}
17667 
17668 	/*
17669 	 * See if we got the minimum required amount of sense data.
17670 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17671 	 * or less.
17672 	 */
17673 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17674 	    (actual_len == 0)) {
17675 		msgp = "Request Sense couldn't get sense data\n";
17676 		goto sense_failed;
17677 	}
17678 
17679 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17680 		msgp = "Not enough sense information\n";
17681 		/* Mark the ssc_flags for detecting invalid sense data */
17682 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17683 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17684 			    "sense-data");
17685 		}
17686 		goto sense_failed;
17687 	}
17688 
17689 	/*
17690 	 * We require the extended sense data
17691 	 */
17692 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17693 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17694 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17695 			static char tmp[8];
17696 			static char buf[148];
17697 			char *p = (char *)(xp->xb_sense_data);
17698 			int i;
17699 
17700 			mutex_enter(&sd_sense_mutex);
17701 			(void) strcpy(buf, "undecodable sense information:");
17702 			for (i = 0; i < actual_len; i++) {
17703 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17704 				(void) strcpy(&buf[strlen(buf)], tmp);
17705 			}
17706 			i = strlen(buf);
17707 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17708 
17709 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17710 				scsi_log(SD_DEVINFO(un), sd_label,
17711 				    CE_WARN, buf);
17712 			}
17713 			mutex_exit(&sd_sense_mutex);
17714 		}
17715 
17716 		/* Mark the ssc_flags for detecting invalid sense data */
17717 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17718 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17719 			    "sense-data");
17720 		}
17721 
17722 		/* Note: Legacy behavior, fail the command with no retry */
17723 		sd_return_failed_command(un, bp, EIO);
17724 		return (SD_SENSE_DATA_IS_INVALID);
17725 	}
17726 
17727 	/*
17728 	 * Check that es_code is valid (es_class concatenated with es_code
17729 	 * make up the "response code" field.  es_class will always be 7, so
17730 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17731 	 * format.
17732 	 */
17733 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17734 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17735 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17736 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17737 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17738 		/* Mark the ssc_flags for detecting invalid sense data */
17739 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17740 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17741 			    "sense-data");
17742 		}
17743 		goto sense_failed;
17744 	}
17745 
17746 	return (SD_SENSE_DATA_IS_VALID);
17747 
17748 sense_failed:
17749 	/*
17750 	 * If the request sense failed (for whatever reason), attempt
17751 	 * to retry the original command.
17752 	 */
17753 #if defined(__i386) || defined(__amd64)
17754 	/*
17755 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17756 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17757 	 * for both SCSI/FC.
17758 	 * The SD_RETRY_DELAY value need to be adjusted here
17759 	 * when SD_RETRY_DELAY change in sddef.h
17760 	 */
17761 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17762 	    sd_print_sense_failed_msg, msgp, EIO,
17763 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17764 #else
17765 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17766 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17767 #endif
17768 
17769 	return (SD_SENSE_DATA_IS_INVALID);
17770 }
17771 
17772 /*
17773  *    Function: sd_decode_sense
17774  *
17775  * Description: Take recovery action(s) when SCSI Sense Data is received.
17776  *
17777  *     Context: Interrupt context.
17778  */
17779 
17780 static void
17781 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17782 	struct scsi_pkt *pktp)
17783 {
17784 	uint8_t sense_key;
17785 
17786 	ASSERT(un != NULL);
17787 	ASSERT(mutex_owned(SD_MUTEX(un)));
17788 	ASSERT(bp != NULL);
17789 	ASSERT(bp != un->un_rqs_bp);
17790 	ASSERT(xp != NULL);
17791 	ASSERT(pktp != NULL);
17792 
17793 	sense_key = scsi_sense_key(xp->xb_sense_data);
17794 
17795 	switch (sense_key) {
17796 	case KEY_NO_SENSE:
17797 		sd_sense_key_no_sense(un, bp, xp, pktp);
17798 		break;
17799 	case KEY_RECOVERABLE_ERROR:
17800 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17801 		    bp, xp, pktp);
17802 		break;
17803 	case KEY_NOT_READY:
17804 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17805 		    bp, xp, pktp);
17806 		break;
17807 	case KEY_MEDIUM_ERROR:
17808 	case KEY_HARDWARE_ERROR:
17809 		sd_sense_key_medium_or_hardware_error(un,
17810 		    xp->xb_sense_data, bp, xp, pktp);
17811 		break;
17812 	case KEY_ILLEGAL_REQUEST:
17813 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17814 		break;
17815 	case KEY_UNIT_ATTENTION:
17816 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17817 		    bp, xp, pktp);
17818 		break;
17819 	case KEY_WRITE_PROTECT:
17820 	case KEY_VOLUME_OVERFLOW:
17821 	case KEY_MISCOMPARE:
17822 		sd_sense_key_fail_command(un, bp, xp, pktp);
17823 		break;
17824 	case KEY_BLANK_CHECK:
17825 		sd_sense_key_blank_check(un, bp, xp, pktp);
17826 		break;
17827 	case KEY_ABORTED_COMMAND:
17828 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17829 		break;
17830 	case KEY_VENDOR_UNIQUE:
17831 	case KEY_COPY_ABORTED:
17832 	case KEY_EQUAL:
17833 	case KEY_RESERVED:
17834 	default:
17835 		sd_sense_key_default(un, xp->xb_sense_data,
17836 		    bp, xp, pktp);
17837 		break;
17838 	}
17839 }
17840 
17841 
17842 /*
17843  *    Function: sd_dump_memory
17844  *
17845  * Description: Debug logging routine to print the contents of a user provided
17846  *		buffer. The output of the buffer is broken up into 256 byte
17847  *		segments due to a size constraint of the scsi_log.
17848  *		implementation.
17849  *
17850  *   Arguments: un - ptr to softstate
17851  *		comp - component mask
17852  *		title - "title" string to preceed data when printed
17853  *		data - ptr to data block to be printed
17854  *		len - size of data block to be printed
17855  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17856  *
17857  *     Context: May be called from interrupt context
17858  */
17859 
17860 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17861 
17862 static char *sd_dump_format_string[] = {
17863 		" 0x%02x",
17864 		" %c"
17865 };
17866 
17867 static void
17868 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17869     int len, int fmt)
17870 {
17871 	int	i, j;
17872 	int	avail_count;
17873 	int	start_offset;
17874 	int	end_offset;
17875 	size_t	entry_len;
17876 	char	*bufp;
17877 	char	*local_buf;
17878 	char	*format_string;
17879 
17880 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17881 
17882 	/*
17883 	 * In the debug version of the driver, this function is called from a
17884 	 * number of places which are NOPs in the release driver.
17885 	 * The debug driver therefore has additional methods of filtering
17886 	 * debug output.
17887 	 */
17888 #ifdef SDDEBUG
17889 	/*
17890 	 * In the debug version of the driver we can reduce the amount of debug
17891 	 * messages by setting sd_error_level to something other than
17892 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17893 	 * sd_component_mask.
17894 	 */
17895 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17896 	    (sd_error_level != SCSI_ERR_ALL)) {
17897 		return;
17898 	}
17899 	if (((sd_component_mask & comp) == 0) ||
17900 	    (sd_error_level != SCSI_ERR_ALL)) {
17901 		return;
17902 	}
17903 #else
17904 	if (sd_error_level != SCSI_ERR_ALL) {
17905 		return;
17906 	}
17907 #endif
17908 
17909 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17910 	bufp = local_buf;
17911 	/*
17912 	 * Available length is the length of local_buf[], minus the
17913 	 * length of the title string, minus one for the ":", minus
17914 	 * one for the newline, minus one for the NULL terminator.
17915 	 * This gives the #bytes available for holding the printed
17916 	 * values from the given data buffer.
17917 	 */
17918 	if (fmt == SD_LOG_HEX) {
17919 		format_string = sd_dump_format_string[0];
17920 	} else /* SD_LOG_CHAR */ {
17921 		format_string = sd_dump_format_string[1];
17922 	}
17923 	/*
17924 	 * Available count is the number of elements from the given
17925 	 * data buffer that we can fit into the available length.
17926 	 * This is based upon the size of the format string used.
17927 	 * Make one entry and find it's size.
17928 	 */
17929 	(void) sprintf(bufp, format_string, data[0]);
17930 	entry_len = strlen(bufp);
17931 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17932 
17933 	j = 0;
17934 	while (j < len) {
17935 		bufp = local_buf;
17936 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17937 		start_offset = j;
17938 
17939 		end_offset = start_offset + avail_count;
17940 
17941 		(void) sprintf(bufp, "%s:", title);
17942 		bufp += strlen(bufp);
17943 		for (i = start_offset; ((i < end_offset) && (j < len));
17944 		    i++, j++) {
17945 			(void) sprintf(bufp, format_string, data[i]);
17946 			bufp += entry_len;
17947 		}
17948 		(void) sprintf(bufp, "\n");
17949 
17950 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17951 	}
17952 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17953 }
17954 
17955 /*
17956  *    Function: sd_print_sense_msg
17957  *
17958  * Description: Log a message based upon the given sense data.
17959  *
17960  *   Arguments: un - ptr to associated softstate
17961  *		bp - ptr to buf(9S) for the command
17962  *		arg - ptr to associate sd_sense_info struct
17963  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17964  *			or SD_NO_RETRY_ISSUED
17965  *
17966  *     Context: May be called from interrupt context
17967  */
17968 
17969 static void
17970 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17971 {
17972 	struct sd_xbuf	*xp;
17973 	struct scsi_pkt	*pktp;
17974 	uint8_t *sensep;
17975 	daddr_t request_blkno;
17976 	diskaddr_t err_blkno;
17977 	int severity;
17978 	int pfa_flag;
17979 	extern struct scsi_key_strings scsi_cmds[];
17980 
17981 	ASSERT(un != NULL);
17982 	ASSERT(mutex_owned(SD_MUTEX(un)));
17983 	ASSERT(bp != NULL);
17984 	xp = SD_GET_XBUF(bp);
17985 	ASSERT(xp != NULL);
17986 	pktp = SD_GET_PKTP(bp);
17987 	ASSERT(pktp != NULL);
17988 	ASSERT(arg != NULL);
17989 
17990 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17991 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17992 
17993 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17994 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17995 		severity = SCSI_ERR_RETRYABLE;
17996 	}
17997 
17998 	/* Use absolute block number for the request block number */
17999 	request_blkno = xp->xb_blkno;
18000 
18001 	/*
18002 	 * Now try to get the error block number from the sense data
18003 	 */
18004 	sensep = xp->xb_sense_data;
18005 
18006 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
18007 	    (uint64_t *)&err_blkno)) {
18008 		/*
18009 		 * We retrieved the error block number from the information
18010 		 * portion of the sense data.
18011 		 *
18012 		 * For USCSI commands we are better off using the error
18013 		 * block no. as the requested block no. (This is the best
18014 		 * we can estimate.)
18015 		 */
18016 		if ((SD_IS_BUFIO(xp) == FALSE) &&
18017 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18018 			request_blkno = err_blkno;
18019 		}
18020 	} else {
18021 		/*
18022 		 * Without the es_valid bit set (for fixed format) or an
18023 		 * information descriptor (for descriptor format) we cannot
18024 		 * be certain of the error blkno, so just use the
18025 		 * request_blkno.
18026 		 */
18027 		err_blkno = (diskaddr_t)request_blkno;
18028 	}
18029 
18030 	/*
18031 	 * The following will log the buffer contents for the release driver
18032 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18033 	 * level is set to verbose.
18034 	 */
18035 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18036 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18037 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18038 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18039 
18040 	if (pfa_flag == FALSE) {
18041 		/* This is normally only set for USCSI */
18042 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18043 			return;
18044 		}
18045 
18046 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18047 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18048 		    (severity < sd_error_level))) {
18049 			return;
18050 		}
18051 	}
18052 	/*
18053 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18054 	 */
18055 	if ((SD_IS_LSI(un)) &&
18056 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18057 	    (scsi_sense_asc(sensep) == 0x94) &&
18058 	    (scsi_sense_ascq(sensep) == 0x01)) {
18059 		un->un_sonoma_failure_count++;
18060 		if (un->un_sonoma_failure_count > 1) {
18061 			return;
18062 		}
18063 	}
18064 
18065 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18066 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18067 	    (pktp->pkt_resid == 0))) {
18068 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18069 		    request_blkno, err_blkno, scsi_cmds,
18070 		    (struct scsi_extended_sense *)sensep,
18071 		    un->un_additional_codes, NULL);
18072 	}
18073 }
18074 
18075 /*
18076  *    Function: sd_sense_key_no_sense
18077  *
18078  * Description: Recovery action when sense data was not received.
18079  *
18080  *     Context: May be called from interrupt context
18081  */
18082 
18083 static void
18084 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18085 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18086 {
18087 	struct sd_sense_info	si;
18088 
18089 	ASSERT(un != NULL);
18090 	ASSERT(mutex_owned(SD_MUTEX(un)));
18091 	ASSERT(bp != NULL);
18092 	ASSERT(xp != NULL);
18093 	ASSERT(pktp != NULL);
18094 
18095 	si.ssi_severity = SCSI_ERR_FATAL;
18096 	si.ssi_pfa_flag = FALSE;
18097 
18098 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18099 
18100 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18101 	    &si, EIO, (clock_t)0, NULL);
18102 }
18103 
18104 
18105 /*
18106  *    Function: sd_sense_key_recoverable_error
18107  *
18108  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18109  *
18110  *     Context: May be called from interrupt context
18111  */
18112 
18113 static void
18114 sd_sense_key_recoverable_error(struct sd_lun *un,
18115 	uint8_t *sense_datap,
18116 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18117 {
18118 	struct sd_sense_info	si;
18119 	uint8_t asc = scsi_sense_asc(sense_datap);
18120 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18121 
18122 	ASSERT(un != NULL);
18123 	ASSERT(mutex_owned(SD_MUTEX(un)));
18124 	ASSERT(bp != NULL);
18125 	ASSERT(xp != NULL);
18126 	ASSERT(pktp != NULL);
18127 
18128 	/*
18129 	 * 0x00, 0x1D: ATA PASSTHROUGH INFORMATION AVAILABLE
18130 	 */
18131 	if (asc == 0x00 && ascq == 0x1D) {
18132 		sd_return_command(un, bp);
18133 		return;
18134 	}
18135 
18136 	/*
18137 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18138 	 */
18139 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18140 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18141 		si.ssi_severity = SCSI_ERR_INFO;
18142 		si.ssi_pfa_flag = TRUE;
18143 	} else {
18144 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18145 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18146 		si.ssi_severity = SCSI_ERR_RECOVERED;
18147 		si.ssi_pfa_flag = FALSE;
18148 	}
18149 
18150 	if (pktp->pkt_resid == 0) {
18151 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18152 		sd_return_command(un, bp);
18153 		return;
18154 	}
18155 
18156 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18157 	    &si, EIO, (clock_t)0, NULL);
18158 }
18159 
18160 
18161 
18162 
18163 /*
18164  *    Function: sd_sense_key_not_ready
18165  *
18166  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18167  *
18168  *     Context: May be called from interrupt context
18169  */
18170 
18171 static void
18172 sd_sense_key_not_ready(struct sd_lun *un,
18173 	uint8_t *sense_datap,
18174 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18175 {
18176 	struct sd_sense_info	si;
18177 	uint8_t asc = scsi_sense_asc(sense_datap);
18178 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18179 
18180 	ASSERT(un != NULL);
18181 	ASSERT(mutex_owned(SD_MUTEX(un)));
18182 	ASSERT(bp != NULL);
18183 	ASSERT(xp != NULL);
18184 	ASSERT(pktp != NULL);
18185 
18186 	si.ssi_severity = SCSI_ERR_FATAL;
18187 	si.ssi_pfa_flag = FALSE;
18188 
18189 	/*
18190 	 * Update error stats after first NOT READY error. Disks may have
18191 	 * been powered down and may need to be restarted.  For CDROMs,
18192 	 * report NOT READY errors only if media is present.
18193 	 */
18194 	if ((ISCD(un) && (asc == 0x3A)) ||
18195 	    (xp->xb_nr_retry_count > 0)) {
18196 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18197 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18198 	}
18199 
18200 	/*
18201 	 * Just fail if the "not ready" retry limit has been reached.
18202 	 */
18203 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18204 		/* Special check for error message printing for removables. */
18205 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18206 		    (ascq >= 0x04)) {
18207 			si.ssi_severity = SCSI_ERR_ALL;
18208 		}
18209 		goto fail_command;
18210 	}
18211 
18212 	/*
18213 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18214 	 * what to do.
18215 	 */
18216 	switch (asc) {
18217 	case 0x04:	/* LOGICAL UNIT NOT READY */
18218 		/*
18219 		 * disk drives that don't spin up result in a very long delay
18220 		 * in format without warning messages. We will log a message
18221 		 * if the error level is set to verbose.
18222 		 */
18223 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18224 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18225 			    "logical unit not ready, resetting disk\n");
18226 		}
18227 
18228 		/*
18229 		 * There are different requirements for CDROMs and disks for
18230 		 * the number of retries.  If a CD-ROM is giving this, it is
18231 		 * probably reading TOC and is in the process of getting
18232 		 * ready, so we should keep on trying for a long time to make
18233 		 * sure that all types of media are taken in account (for
18234 		 * some media the drive takes a long time to read TOC).  For
18235 		 * disks we do not want to retry this too many times as this
18236 		 * can cause a long hang in format when the drive refuses to
18237 		 * spin up (a very common failure).
18238 		 */
18239 		switch (ascq) {
18240 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18241 			/*
18242 			 * Disk drives frequently refuse to spin up which
18243 			 * results in a very long hang in format without
18244 			 * warning messages.
18245 			 *
18246 			 * Note: This code preserves the legacy behavior of
18247 			 * comparing xb_nr_retry_count against zero for fibre
18248 			 * channel targets instead of comparing against the
18249 			 * un_reset_retry_count value.  The reason for this
18250 			 * discrepancy has been so utterly lost beneath the
18251 			 * Sands of Time that even Indiana Jones could not
18252 			 * find it.
18253 			 */
18254 			if (un->un_f_is_fibre == TRUE) {
18255 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18256 				    (xp->xb_nr_retry_count > 0)) &&
18257 				    (un->un_startstop_timeid == NULL)) {
18258 					scsi_log(SD_DEVINFO(un), sd_label,
18259 					    CE_WARN, "logical unit not ready, "
18260 					    "resetting disk\n");
18261 					sd_reset_target(un, pktp);
18262 				}
18263 			} else {
18264 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18265 				    (xp->xb_nr_retry_count >
18266 				    un->un_reset_retry_count)) &&
18267 				    (un->un_startstop_timeid == NULL)) {
18268 					scsi_log(SD_DEVINFO(un), sd_label,
18269 					    CE_WARN, "logical unit not ready, "
18270 					    "resetting disk\n");
18271 					sd_reset_target(un, pktp);
18272 				}
18273 			}
18274 			break;
18275 
18276 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18277 			/*
18278 			 * If the target is in the process of becoming
18279 			 * ready, just proceed with the retry. This can
18280 			 * happen with CD-ROMs that take a long time to
18281 			 * read TOC after a power cycle or reset.
18282 			 */
18283 			goto do_retry;
18284 
18285 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18286 			break;
18287 
18288 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18289 			/*
18290 			 * Retries cannot help here so just fail right away.
18291 			 */
18292 			goto fail_command;
18293 
18294 		case 0x88:
18295 			/*
18296 			 * Vendor-unique code for T3/T4: it indicates a
18297 			 * path problem in a mutipathed config, but as far as
18298 			 * the target driver is concerned it equates to a fatal
18299 			 * error, so we should just fail the command right away
18300 			 * (without printing anything to the console). If this
18301 			 * is not a T3/T4, fall thru to the default recovery
18302 			 * action.
18303 			 * T3/T4 is FC only, don't need to check is_fibre
18304 			 */
18305 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18306 				sd_return_failed_command(un, bp, EIO);
18307 				return;
18308 			}
18309 			/* FALLTHRU */
18310 
18311 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18312 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18313 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18314 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18315 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18316 		default:    /* Possible future codes in SCSI spec? */
18317 			/*
18318 			 * For removable-media devices, do not retry if
18319 			 * ASCQ > 2 as these result mostly from USCSI commands
18320 			 * on MMC devices issued to check status of an
18321 			 * operation initiated in immediate mode.  Also for
18322 			 * ASCQ >= 4 do not print console messages as these
18323 			 * mainly represent a user-initiated operation
18324 			 * instead of a system failure.
18325 			 */
18326 			if (un->un_f_has_removable_media) {
18327 				si.ssi_severity = SCSI_ERR_ALL;
18328 				goto fail_command;
18329 			}
18330 			break;
18331 		}
18332 
18333 		/*
18334 		 * As part of our recovery attempt for the NOT READY
18335 		 * condition, we issue a START STOP UNIT command. However
18336 		 * we want to wait for a short delay before attempting this
18337 		 * as there may still be more commands coming back from the
18338 		 * target with the check condition. To do this we use
18339 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18340 		 * the delay interval expires. (sd_start_stop_unit_callback()
18341 		 * dispatches sd_start_stop_unit_task(), which will issue
18342 		 * the actual START STOP UNIT command. The delay interval
18343 		 * is one-half of the delay that we will use to retry the
18344 		 * command that generated the NOT READY condition.
18345 		 *
18346 		 * Note that we could just dispatch sd_start_stop_unit_task()
18347 		 * from here and allow it to sleep for the delay interval,
18348 		 * but then we would be tying up the taskq thread
18349 		 * uncesessarily for the duration of the delay.
18350 		 *
18351 		 * Do not issue the START STOP UNIT if the current command
18352 		 * is already a START STOP UNIT.
18353 		 */
18354 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18355 			break;
18356 		}
18357 
18358 		/*
18359 		 * Do not schedule the timeout if one is already pending.
18360 		 */
18361 		if (un->un_startstop_timeid != NULL) {
18362 			SD_INFO(SD_LOG_ERROR, un,
18363 			    "sd_sense_key_not_ready: restart already issued to"
18364 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18365 			    ddi_get_instance(SD_DEVINFO(un)));
18366 			break;
18367 		}
18368 
18369 		/*
18370 		 * Schedule the START STOP UNIT command, then queue the command
18371 		 * for a retry.
18372 		 *
18373 		 * Note: A timeout is not scheduled for this retry because we
18374 		 * want the retry to be serial with the START_STOP_UNIT. The
18375 		 * retry will be started when the START_STOP_UNIT is completed
18376 		 * in sd_start_stop_unit_task.
18377 		 */
18378 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18379 		    un, un->un_busy_timeout / 2);
18380 		xp->xb_nr_retry_count++;
18381 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18382 		return;
18383 
18384 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18385 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18386 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18387 			    "unit does not respond to selection\n");
18388 		}
18389 		break;
18390 
18391 	case 0x3A:	/* MEDIUM NOT PRESENT */
18392 		if (sd_error_level >= SCSI_ERR_FATAL) {
18393 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18394 			    "Caddy not inserted in drive\n");
18395 		}
18396 
18397 		sr_ejected(un);
18398 		un->un_mediastate = DKIO_EJECTED;
18399 		/* The state has changed, inform the media watch routines */
18400 		cv_broadcast(&un->un_state_cv);
18401 		/* Just fail if no media is present in the drive. */
18402 		goto fail_command;
18403 
18404 	default:
18405 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18406 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18407 			    "Unit not Ready. Additional sense code 0x%x\n",
18408 			    asc);
18409 		}
18410 		break;
18411 	}
18412 
18413 do_retry:
18414 
18415 	/*
18416 	 * Retry the command, as some targets may report NOT READY for
18417 	 * several seconds after being reset.
18418 	 */
18419 	xp->xb_nr_retry_count++;
18420 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18421 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18422 	    &si, EIO, un->un_busy_timeout, NULL);
18423 
18424 	return;
18425 
18426 fail_command:
18427 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18428 	sd_return_failed_command(un, bp, EIO);
18429 }
18430 
18431 
18432 
18433 /*
18434  *    Function: sd_sense_key_medium_or_hardware_error
18435  *
18436  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18437  *		sense key.
18438  *
18439  *     Context: May be called from interrupt context
18440  */
18441 
18442 static void
18443 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18444 	uint8_t *sense_datap,
18445 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18446 {
18447 	struct sd_sense_info	si;
18448 	uint8_t sense_key = scsi_sense_key(sense_datap);
18449 	uint8_t asc = scsi_sense_asc(sense_datap);
18450 
18451 	ASSERT(un != NULL);
18452 	ASSERT(mutex_owned(SD_MUTEX(un)));
18453 	ASSERT(bp != NULL);
18454 	ASSERT(xp != NULL);
18455 	ASSERT(pktp != NULL);
18456 
18457 	si.ssi_severity = SCSI_ERR_FATAL;
18458 	si.ssi_pfa_flag = FALSE;
18459 
18460 	if (sense_key == KEY_MEDIUM_ERROR) {
18461 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18462 	}
18463 
18464 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18465 
18466 	if ((un->un_reset_retry_count != 0) &&
18467 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18468 		mutex_exit(SD_MUTEX(un));
18469 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18470 		if (un->un_f_allow_bus_device_reset == TRUE) {
18471 
18472 			boolean_t try_resetting_target = B_TRUE;
18473 
18474 			/*
18475 			 * We need to be able to handle specific ASC when we are
18476 			 * handling a KEY_HARDWARE_ERROR. In particular
18477 			 * taking the default action of resetting the target may
18478 			 * not be the appropriate way to attempt recovery.
18479 			 * Resetting a target because of a single LUN failure
18480 			 * victimizes all LUNs on that target.
18481 			 *
18482 			 * This is true for the LSI arrays, if an LSI
18483 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18484 			 * should trust it.
18485 			 */
18486 
18487 			if (sense_key == KEY_HARDWARE_ERROR) {
18488 				switch (asc) {
18489 				case 0x84:
18490 					if (SD_IS_LSI(un)) {
18491 						try_resetting_target = B_FALSE;
18492 					}
18493 					break;
18494 				default:
18495 					break;
18496 				}
18497 			}
18498 
18499 			if (try_resetting_target == B_TRUE) {
18500 				int reset_retval = 0;
18501 				if (un->un_f_lun_reset_enabled == TRUE) {
18502 					SD_TRACE(SD_LOG_IO_CORE, un,
18503 					    "sd_sense_key_medium_or_hardware_"
18504 					    "error: issuing RESET_LUN\n");
18505 					reset_retval =
18506 					    scsi_reset(SD_ADDRESS(un),
18507 					    RESET_LUN);
18508 				}
18509 				if (reset_retval == 0) {
18510 					SD_TRACE(SD_LOG_IO_CORE, un,
18511 					    "sd_sense_key_medium_or_hardware_"
18512 					    "error: issuing RESET_TARGET\n");
18513 					(void) scsi_reset(SD_ADDRESS(un),
18514 					    RESET_TARGET);
18515 				}
18516 			}
18517 		}
18518 		mutex_enter(SD_MUTEX(un));
18519 	}
18520 
18521 	/*
18522 	 * This really ought to be a fatal error, but we will retry anyway
18523 	 * as some drives report this as a spurious error.
18524 	 */
18525 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18526 	    &si, EIO, (clock_t)0, NULL);
18527 }
18528 
18529 
18530 
18531 /*
18532  *    Function: sd_sense_key_illegal_request
18533  *
18534  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18535  *
18536  *     Context: May be called from interrupt context
18537  */
18538 
18539 static void
18540 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18541 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18542 {
18543 	struct sd_sense_info	si;
18544 
18545 	ASSERT(un != NULL);
18546 	ASSERT(mutex_owned(SD_MUTEX(un)));
18547 	ASSERT(bp != NULL);
18548 	ASSERT(xp != NULL);
18549 	ASSERT(pktp != NULL);
18550 
18551 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18552 
18553 	si.ssi_severity = SCSI_ERR_INFO;
18554 	si.ssi_pfa_flag = FALSE;
18555 
18556 	/* Pointless to retry if the target thinks it's an illegal request */
18557 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18558 	sd_return_failed_command(un, bp, EIO);
18559 }
18560 
18561 
18562 
18563 
18564 /*
18565  *    Function: sd_sense_key_unit_attention
18566  *
18567  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18568  *
18569  *     Context: May be called from interrupt context
18570  */
18571 
18572 static void
18573 sd_sense_key_unit_attention(struct sd_lun *un,
18574 	uint8_t *sense_datap,
18575 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18576 {
18577 	/*
18578 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18579 	 * like Sonoma can return UNIT ATTENTION close to a minute
18580 	 * under certain conditions.
18581 	 */
18582 	int	retry_check_flag = SD_RETRIES_UA;
18583 	boolean_t	kstat_updated = B_FALSE;
18584 	struct	sd_sense_info		si;
18585 	uint8_t asc = scsi_sense_asc(sense_datap);
18586 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18587 
18588 	ASSERT(un != NULL);
18589 	ASSERT(mutex_owned(SD_MUTEX(un)));
18590 	ASSERT(bp != NULL);
18591 	ASSERT(xp != NULL);
18592 	ASSERT(pktp != NULL);
18593 
18594 	si.ssi_severity = SCSI_ERR_INFO;
18595 	si.ssi_pfa_flag = FALSE;
18596 
18597 
18598 	switch (asc) {
18599 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18600 		if (sd_report_pfa != 0) {
18601 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18602 			si.ssi_pfa_flag = TRUE;
18603 			retry_check_flag = SD_RETRIES_STANDARD;
18604 			goto do_retry;
18605 		}
18606 
18607 		break;
18608 
18609 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18610 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18611 			un->un_resvd_status |=
18612 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18613 		}
18614 #ifdef _LP64
18615 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18616 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18617 			    un, KM_NOSLEEP) == 0) {
18618 				/*
18619 				 * If we can't dispatch the task we'll just
18620 				 * live without descriptor sense.  We can
18621 				 * try again on the next "unit attention"
18622 				 */
18623 				SD_ERROR(SD_LOG_ERROR, un,
18624 				    "sd_sense_key_unit_attention: "
18625 				    "Could not dispatch "
18626 				    "sd_reenable_dsense_task\n");
18627 			}
18628 		}
18629 #endif /* _LP64 */
18630 		/* FALLTHRU */
18631 
18632 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18633 		if (!un->un_f_has_removable_media) {
18634 			break;
18635 		}
18636 
18637 		/*
18638 		 * When we get a unit attention from a removable-media device,
18639 		 * it may be in a state that will take a long time to recover
18640 		 * (e.g., from a reset).  Since we are executing in interrupt
18641 		 * context here, we cannot wait around for the device to come
18642 		 * back. So hand this command off to sd_media_change_task()
18643 		 * for deferred processing under taskq thread context. (Note
18644 		 * that the command still may be failed if a problem is
18645 		 * encountered at a later time.)
18646 		 */
18647 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18648 		    KM_NOSLEEP) == 0) {
18649 			/*
18650 			 * Cannot dispatch the request so fail the command.
18651 			 */
18652 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18653 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18654 			si.ssi_severity = SCSI_ERR_FATAL;
18655 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18656 			sd_return_failed_command(un, bp, EIO);
18657 		}
18658 
18659 		/*
18660 		 * If failed to dispatch sd_media_change_task(), we already
18661 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18662 		 * we should update kstat later if it encounters an error. So,
18663 		 * we update kstat_updated flag here.
18664 		 */
18665 		kstat_updated = B_TRUE;
18666 
18667 		/*
18668 		 * Either the command has been successfully dispatched to a
18669 		 * task Q for retrying, or the dispatch failed. In either case
18670 		 * do NOT retry again by calling sd_retry_command. This sets up
18671 		 * two retries of the same command and when one completes and
18672 		 * frees the resources the other will access freed memory,
18673 		 * a bad thing.
18674 		 */
18675 		return;
18676 
18677 	default:
18678 		break;
18679 	}
18680 
18681 	/*
18682 	 * ASC  ASCQ
18683 	 *  2A   09	Capacity data has changed
18684 	 *  2A   01	Mode parameters changed
18685 	 *  3F   0E	Reported luns data has changed
18686 	 * Arrays that support logical unit expansion should report
18687 	 * capacity changes(2Ah/09). Mode parameters changed and
18688 	 * reported luns data has changed are the approximation.
18689 	 */
18690 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18691 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18692 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18693 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18694 		    KM_NOSLEEP) == 0) {
18695 			SD_ERROR(SD_LOG_ERROR, un,
18696 			    "sd_sense_key_unit_attention: "
18697 			    "Could not dispatch sd_target_change_task\n");
18698 		}
18699 	}
18700 
18701 	/*
18702 	 * Update kstat if we haven't done that.
18703 	 */
18704 	if (!kstat_updated) {
18705 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18706 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18707 	}
18708 
18709 do_retry:
18710 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18711 	    EIO, SD_UA_RETRY_DELAY, NULL);
18712 }
18713 
18714 
18715 
18716 /*
18717  *    Function: sd_sense_key_fail_command
18718  *
18719  * Description: Use to fail a command when we don't like the sense key that
18720  *		was returned.
18721  *
18722  *     Context: May be called from interrupt context
18723  */
18724 
18725 static void
18726 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18727 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18728 {
18729 	struct sd_sense_info	si;
18730 
18731 	ASSERT(un != NULL);
18732 	ASSERT(mutex_owned(SD_MUTEX(un)));
18733 	ASSERT(bp != NULL);
18734 	ASSERT(xp != NULL);
18735 	ASSERT(pktp != NULL);
18736 
18737 	si.ssi_severity = SCSI_ERR_FATAL;
18738 	si.ssi_pfa_flag = FALSE;
18739 
18740 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18741 	sd_return_failed_command(un, bp, EIO);
18742 }
18743 
18744 
18745 
18746 /*
18747  *    Function: sd_sense_key_blank_check
18748  *
18749  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18750  *		Has no monetary connotation.
18751  *
18752  *     Context: May be called from interrupt context
18753  */
18754 
18755 static void
18756 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18757 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18758 {
18759 	struct sd_sense_info	si;
18760 
18761 	ASSERT(un != NULL);
18762 	ASSERT(mutex_owned(SD_MUTEX(un)));
18763 	ASSERT(bp != NULL);
18764 	ASSERT(xp != NULL);
18765 	ASSERT(pktp != NULL);
18766 
18767 	/*
18768 	 * Blank check is not fatal for removable devices, therefore
18769 	 * it does not require a console message.
18770 	 */
18771 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18772 	    SCSI_ERR_FATAL;
18773 	si.ssi_pfa_flag = FALSE;
18774 
18775 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18776 	sd_return_failed_command(un, bp, EIO);
18777 }
18778 
18779 
18780 
18781 
18782 /*
18783  *    Function: sd_sense_key_aborted_command
18784  *
18785  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18786  *
18787  *     Context: May be called from interrupt context
18788  */
18789 
18790 static void
18791 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18792 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18793 {
18794 	struct sd_sense_info	si;
18795 
18796 	ASSERT(un != NULL);
18797 	ASSERT(mutex_owned(SD_MUTEX(un)));
18798 	ASSERT(bp != NULL);
18799 	ASSERT(xp != NULL);
18800 	ASSERT(pktp != NULL);
18801 
18802 	si.ssi_severity = SCSI_ERR_FATAL;
18803 	si.ssi_pfa_flag = FALSE;
18804 
18805 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18806 
18807 	/*
18808 	 * This really ought to be a fatal error, but we will retry anyway
18809 	 * as some drives report this as a spurious error.
18810 	 */
18811 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18812 	    &si, EIO, drv_usectohz(100000), NULL);
18813 }
18814 
18815 
18816 
18817 /*
18818  *    Function: sd_sense_key_default
18819  *
18820  * Description: Default recovery action for several SCSI sense keys (basically
18821  *		attempts a retry).
18822  *
18823  *     Context: May be called from interrupt context
18824  */
18825 
18826 static void
18827 sd_sense_key_default(struct sd_lun *un,
18828 	uint8_t *sense_datap,
18829 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18830 {
18831 	struct sd_sense_info	si;
18832 	uint8_t sense_key = scsi_sense_key(sense_datap);
18833 
18834 	ASSERT(un != NULL);
18835 	ASSERT(mutex_owned(SD_MUTEX(un)));
18836 	ASSERT(bp != NULL);
18837 	ASSERT(xp != NULL);
18838 	ASSERT(pktp != NULL);
18839 
18840 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18841 
18842 	/*
18843 	 * Undecoded sense key.	Attempt retries and hope that will fix
18844 	 * the problem.  Otherwise, we're dead.
18845 	 */
18846 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18847 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18848 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18849 	}
18850 
18851 	si.ssi_severity = SCSI_ERR_FATAL;
18852 	si.ssi_pfa_flag = FALSE;
18853 
18854 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18855 	    &si, EIO, (clock_t)0, NULL);
18856 }
18857 
18858 
18859 
18860 /*
18861  *    Function: sd_print_retry_msg
18862  *
18863  * Description: Print a message indicating the retry action being taken.
18864  *
18865  *   Arguments: un - ptr to associated softstate
18866  *		bp - ptr to buf(9S) for the command
18867  *		arg - not used.
18868  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18869  *			or SD_NO_RETRY_ISSUED
18870  *
18871  *     Context: May be called from interrupt context
18872  */
18873 /* ARGSUSED */
18874 static void
18875 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18876 {
18877 	struct sd_xbuf	*xp;
18878 	struct scsi_pkt *pktp;
18879 	char *reasonp;
18880 	char *msgp;
18881 
18882 	ASSERT(un != NULL);
18883 	ASSERT(mutex_owned(SD_MUTEX(un)));
18884 	ASSERT(bp != NULL);
18885 	pktp = SD_GET_PKTP(bp);
18886 	ASSERT(pktp != NULL);
18887 	xp = SD_GET_XBUF(bp);
18888 	ASSERT(xp != NULL);
18889 
18890 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18891 	mutex_enter(&un->un_pm_mutex);
18892 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18893 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18894 	    (pktp->pkt_flags & FLAG_SILENT)) {
18895 		mutex_exit(&un->un_pm_mutex);
18896 		goto update_pkt_reason;
18897 	}
18898 	mutex_exit(&un->un_pm_mutex);
18899 
18900 	/*
18901 	 * Suppress messages if they are all the same pkt_reason; with
18902 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18903 	 * If we are in panic, then suppress the retry messages.
18904 	 */
18905 	switch (flag) {
18906 	case SD_NO_RETRY_ISSUED:
18907 		msgp = "giving up";
18908 		break;
18909 	case SD_IMMEDIATE_RETRY_ISSUED:
18910 	case SD_DELAYED_RETRY_ISSUED:
18911 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18912 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18913 		    (sd_error_level != SCSI_ERR_ALL))) {
18914 			return;
18915 		}
18916 		msgp = "retrying command";
18917 		break;
18918 	default:
18919 		goto update_pkt_reason;
18920 	}
18921 
18922 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18923 	    scsi_rname(pktp->pkt_reason));
18924 
18925 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18926 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18927 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18928 	}
18929 
18930 update_pkt_reason:
18931 	/*
18932 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18933 	 * This is to prevent multiple console messages for the same failure
18934 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18935 	 * when the command is retried successfully because there still may be
18936 	 * more commands coming back with the same value of pktp->pkt_reason.
18937 	 */
18938 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18939 		un->un_last_pkt_reason = pktp->pkt_reason;
18940 	}
18941 }
18942 
18943 
18944 /*
18945  *    Function: sd_print_cmd_incomplete_msg
18946  *
18947  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18948  *
18949  *   Arguments: un - ptr to associated softstate
18950  *		bp - ptr to buf(9S) for the command
18951  *		arg - passed to sd_print_retry_msg()
18952  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18953  *			or SD_NO_RETRY_ISSUED
18954  *
18955  *     Context: May be called from interrupt context
18956  */
18957 
18958 static void
18959 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18960 	int code)
18961 {
18962 	dev_info_t	*dip;
18963 
18964 	ASSERT(un != NULL);
18965 	ASSERT(mutex_owned(SD_MUTEX(un)));
18966 	ASSERT(bp != NULL);
18967 
18968 	switch (code) {
18969 	case SD_NO_RETRY_ISSUED:
18970 		/* Command was failed. Someone turned off this target? */
18971 		if (un->un_state != SD_STATE_OFFLINE) {
18972 			/*
18973 			 * Suppress message if we are detaching and
18974 			 * device has been disconnected
18975 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18976 			 * private interface and not part of the DDI
18977 			 */
18978 			dip = un->un_sd->sd_dev;
18979 			if (!(DEVI_IS_DETACHING(dip) &&
18980 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18981 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18982 				"disk not responding to selection\n");
18983 			}
18984 			New_state(un, SD_STATE_OFFLINE);
18985 		}
18986 		break;
18987 
18988 	case SD_DELAYED_RETRY_ISSUED:
18989 	case SD_IMMEDIATE_RETRY_ISSUED:
18990 	default:
18991 		/* Command was successfully queued for retry */
18992 		sd_print_retry_msg(un, bp, arg, code);
18993 		break;
18994 	}
18995 }
18996 
18997 
18998 /*
18999  *    Function: sd_pkt_reason_cmd_incomplete
19000  *
19001  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
19002  *
19003  *     Context: May be called from interrupt context
19004  */
19005 
19006 static void
19007 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
19008 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19009 {
19010 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
19011 
19012 	ASSERT(un != NULL);
19013 	ASSERT(mutex_owned(SD_MUTEX(un)));
19014 	ASSERT(bp != NULL);
19015 	ASSERT(xp != NULL);
19016 	ASSERT(pktp != NULL);
19017 
19018 	/* Do not do a reset if selection did not complete */
19019 	/* Note: Should this not just check the bit? */
19020 	if (pktp->pkt_state != STATE_GOT_BUS) {
19021 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19022 		sd_reset_target(un, pktp);
19023 	}
19024 
19025 	/*
19026 	 * If the target was not successfully selected, then set
19027 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
19028 	 * with the target, and further retries and/or commands are
19029 	 * likely to take a long time.
19030 	 */
19031 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19032 		flag |= SD_RETRIES_FAILFAST;
19033 	}
19034 
19035 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19036 
19037 	sd_retry_command(un, bp, flag,
19038 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19039 }
19040 
19041 
19042 
19043 /*
19044  *    Function: sd_pkt_reason_cmd_tran_err
19045  *
19046  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19047  *
19048  *     Context: May be called from interrupt context
19049  */
19050 
19051 static void
19052 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19053 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19054 {
19055 	ASSERT(un != NULL);
19056 	ASSERT(mutex_owned(SD_MUTEX(un)));
19057 	ASSERT(bp != NULL);
19058 	ASSERT(xp != NULL);
19059 	ASSERT(pktp != NULL);
19060 
19061 	/*
19062 	 * Do not reset if we got a parity error, or if
19063 	 * selection did not complete.
19064 	 */
19065 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19066 	/* Note: Should this not just check the bit for pkt_state? */
19067 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19068 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19069 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19070 		sd_reset_target(un, pktp);
19071 	}
19072 
19073 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19074 
19075 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19076 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19077 }
19078 
19079 
19080 
19081 /*
19082  *    Function: sd_pkt_reason_cmd_reset
19083  *
19084  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19085  *
19086  *     Context: May be called from interrupt context
19087  */
19088 
19089 static void
19090 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19091 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19092 {
19093 	ASSERT(un != NULL);
19094 	ASSERT(mutex_owned(SD_MUTEX(un)));
19095 	ASSERT(bp != NULL);
19096 	ASSERT(xp != NULL);
19097 	ASSERT(pktp != NULL);
19098 
19099 	/* The target may still be running the command, so try to reset. */
19100 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19101 	sd_reset_target(un, pktp);
19102 
19103 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19104 
19105 	/*
19106 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19107 	 * reset because another target on this bus caused it. The target
19108 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19109 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19110 	 */
19111 
19112 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19113 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19114 }
19115 
19116 
19117 
19118 
19119 /*
19120  *    Function: sd_pkt_reason_cmd_aborted
19121  *
19122  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19123  *
19124  *     Context: May be called from interrupt context
19125  */
19126 
19127 static void
19128 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19129 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19130 {
19131 	ASSERT(un != NULL);
19132 	ASSERT(mutex_owned(SD_MUTEX(un)));
19133 	ASSERT(bp != NULL);
19134 	ASSERT(xp != NULL);
19135 	ASSERT(pktp != NULL);
19136 
19137 	/* The target may still be running the command, so try to reset. */
19138 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19139 	sd_reset_target(un, pktp);
19140 
19141 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19142 
19143 	/*
19144 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19145 	 * aborted because another target on this bus caused it. The target
19146 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19147 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19148 	 */
19149 
19150 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19151 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19152 }
19153 
19154 
19155 
19156 /*
19157  *    Function: sd_pkt_reason_cmd_timeout
19158  *
19159  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19160  *
19161  *     Context: May be called from interrupt context
19162  */
19163 
19164 static void
19165 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19166 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19167 {
19168 	ASSERT(un != NULL);
19169 	ASSERT(mutex_owned(SD_MUTEX(un)));
19170 	ASSERT(bp != NULL);
19171 	ASSERT(xp != NULL);
19172 	ASSERT(pktp != NULL);
19173 
19174 
19175 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19176 	sd_reset_target(un, pktp);
19177 
19178 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19179 
19180 	/*
19181 	 * A command timeout indicates that we could not establish
19182 	 * communication with the target, so set SD_RETRIES_FAILFAST
19183 	 * as further retries/commands are likely to take a long time.
19184 	 */
19185 	sd_retry_command(un, bp,
19186 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19187 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19188 }
19189 
19190 
19191 
19192 /*
19193  *    Function: sd_pkt_reason_cmd_unx_bus_free
19194  *
19195  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19196  *
19197  *     Context: May be called from interrupt context
19198  */
19199 
19200 static void
19201 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19202 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19203 {
19204 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19205 
19206 	ASSERT(un != NULL);
19207 	ASSERT(mutex_owned(SD_MUTEX(un)));
19208 	ASSERT(bp != NULL);
19209 	ASSERT(xp != NULL);
19210 	ASSERT(pktp != NULL);
19211 
19212 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19213 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19214 
19215 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19216 	    sd_print_retry_msg : NULL;
19217 
19218 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19219 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19220 }
19221 
19222 
19223 /*
19224  *    Function: sd_pkt_reason_cmd_tag_reject
19225  *
19226  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19227  *
19228  *     Context: May be called from interrupt context
19229  */
19230 
19231 static void
19232 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19233 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19234 {
19235 	ASSERT(un != NULL);
19236 	ASSERT(mutex_owned(SD_MUTEX(un)));
19237 	ASSERT(bp != NULL);
19238 	ASSERT(xp != NULL);
19239 	ASSERT(pktp != NULL);
19240 
19241 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19242 	pktp->pkt_flags = 0;
19243 	un->un_tagflags = 0;
19244 	if (un->un_f_opt_queueing == TRUE) {
19245 		un->un_throttle = min(un->un_throttle, 3);
19246 	} else {
19247 		un->un_throttle = 1;
19248 	}
19249 	mutex_exit(SD_MUTEX(un));
19250 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19251 	mutex_enter(SD_MUTEX(un));
19252 
19253 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19254 
19255 	/* Legacy behavior not to check retry counts here. */
19256 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19257 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19258 }
19259 
19260 
19261 /*
19262  *    Function: sd_pkt_reason_default
19263  *
19264  * Description: Default recovery actions for SCSA pkt_reason values that
19265  *		do not have more explicit recovery actions.
19266  *
19267  *     Context: May be called from interrupt context
19268  */
19269 
19270 static void
19271 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19272 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19273 {
19274 	ASSERT(un != NULL);
19275 	ASSERT(mutex_owned(SD_MUTEX(un)));
19276 	ASSERT(bp != NULL);
19277 	ASSERT(xp != NULL);
19278 	ASSERT(pktp != NULL);
19279 
19280 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19281 	sd_reset_target(un, pktp);
19282 
19283 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19284 
19285 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19286 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19287 }
19288 
19289 
19290 
19291 /*
19292  *    Function: sd_pkt_status_check_condition
19293  *
19294  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19295  *
19296  *     Context: May be called from interrupt context
19297  */
19298 
19299 static void
19300 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19301 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19302 {
19303 	ASSERT(un != NULL);
19304 	ASSERT(mutex_owned(SD_MUTEX(un)));
19305 	ASSERT(bp != NULL);
19306 	ASSERT(xp != NULL);
19307 	ASSERT(pktp != NULL);
19308 
19309 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19310 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19311 
19312 	/*
19313 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19314 	 * command will be retried after the request sense). Otherwise, retry
19315 	 * the command. Note: we are issuing the request sense even though the
19316 	 * retry limit may have been reached for the failed command.
19317 	 */
19318 	if (un->un_f_arq_enabled == FALSE) {
19319 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19320 		    "no ARQ, sending request sense command\n");
19321 		sd_send_request_sense_command(un, bp, pktp);
19322 	} else {
19323 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19324 		    "ARQ,retrying request sense command\n");
19325 #if defined(__i386) || defined(__amd64)
19326 		/*
19327 		 * The SD_RETRY_DELAY value need to be adjusted here
19328 		 * when SD_RETRY_DELAY change in sddef.h
19329 		 */
19330 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19331 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19332 		    NULL);
19333 #else
19334 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19335 		    EIO, SD_RETRY_DELAY, NULL);
19336 #endif
19337 	}
19338 
19339 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19340 }
19341 
19342 
19343 /*
19344  *    Function: sd_pkt_status_busy
19345  *
19346  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19347  *
19348  *     Context: May be called from interrupt context
19349  */
19350 
19351 static void
19352 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19353 	struct scsi_pkt *pktp)
19354 {
19355 	ASSERT(un != NULL);
19356 	ASSERT(mutex_owned(SD_MUTEX(un)));
19357 	ASSERT(bp != NULL);
19358 	ASSERT(xp != NULL);
19359 	ASSERT(pktp != NULL);
19360 
19361 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19362 	    "sd_pkt_status_busy: entry\n");
19363 
19364 	/* If retries are exhausted, just fail the command. */
19365 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19366 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19367 		    "device busy too long\n");
19368 		sd_return_failed_command(un, bp, EIO);
19369 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19370 		    "sd_pkt_status_busy: exit\n");
19371 		return;
19372 	}
19373 	xp->xb_retry_count++;
19374 
19375 	/*
19376 	 * Try to reset the target. However, we do not want to perform
19377 	 * more than one reset if the device continues to fail. The reset
19378 	 * will be performed when the retry count reaches the reset
19379 	 * threshold.  This threshold should be set such that at least
19380 	 * one retry is issued before the reset is performed.
19381 	 */
19382 	if (xp->xb_retry_count ==
19383 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19384 		int rval = 0;
19385 		mutex_exit(SD_MUTEX(un));
19386 		if (un->un_f_allow_bus_device_reset == TRUE) {
19387 			/*
19388 			 * First try to reset the LUN; if we cannot then
19389 			 * try to reset the target.
19390 			 */
19391 			if (un->un_f_lun_reset_enabled == TRUE) {
19392 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19393 				    "sd_pkt_status_busy: RESET_LUN\n");
19394 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19395 			}
19396 			if (rval == 0) {
19397 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19398 				    "sd_pkt_status_busy: RESET_TARGET\n");
19399 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19400 			}
19401 		}
19402 		if (rval == 0) {
19403 			/*
19404 			 * If the RESET_LUN and/or RESET_TARGET failed,
19405 			 * try RESET_ALL
19406 			 */
19407 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19408 			    "sd_pkt_status_busy: RESET_ALL\n");
19409 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19410 		}
19411 		mutex_enter(SD_MUTEX(un));
19412 		if (rval == 0) {
19413 			/*
19414 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19415 			 * At this point we give up & fail the command.
19416 			 */
19417 			sd_return_failed_command(un, bp, EIO);
19418 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19419 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19420 			return;
19421 		}
19422 	}
19423 
19424 	/*
19425 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19426 	 * we have already checked the retry counts above.
19427 	 */
19428 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19429 	    EIO, un->un_busy_timeout, NULL);
19430 
19431 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19432 	    "sd_pkt_status_busy: exit\n");
19433 }
19434 
19435 
19436 /*
19437  *    Function: sd_pkt_status_reservation_conflict
19438  *
19439  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19440  *		command status.
19441  *
19442  *     Context: May be called from interrupt context
19443  */
19444 
19445 static void
19446 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19447 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19448 {
19449 	ASSERT(un != NULL);
19450 	ASSERT(mutex_owned(SD_MUTEX(un)));
19451 	ASSERT(bp != NULL);
19452 	ASSERT(xp != NULL);
19453 	ASSERT(pktp != NULL);
19454 
19455 	/*
19456 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19457 	 * conflict could be due to various reasons like incorrect keys, not
19458 	 * registered or not reserved etc. So, we return EACCES to the caller.
19459 	 */
19460 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19461 		int cmd = SD_GET_PKT_OPCODE(pktp);
19462 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19463 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19464 			sd_return_failed_command(un, bp, EACCES);
19465 			return;
19466 		}
19467 	}
19468 
19469 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19470 
19471 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19472 		if (sd_failfast_enable != 0) {
19473 			/* By definition, we must panic here.... */
19474 			sd_panic_for_res_conflict(un);
19475 			/*NOTREACHED*/
19476 		}
19477 		SD_ERROR(SD_LOG_IO, un,
19478 		    "sd_handle_resv_conflict: Disk Reserved\n");
19479 		sd_return_failed_command(un, bp, EACCES);
19480 		return;
19481 	}
19482 
19483 	/*
19484 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19485 	 * property is set (default is 1). Retries will not succeed
19486 	 * on a disk reserved by another initiator. HA systems
19487 	 * may reset this via sd.conf to avoid these retries.
19488 	 *
19489 	 * Note: The legacy return code for this failure is EIO, however EACCES
19490 	 * seems more appropriate for a reservation conflict.
19491 	 */
19492 	if (sd_retry_on_reservation_conflict == 0) {
19493 		SD_ERROR(SD_LOG_IO, un,
19494 		    "sd_handle_resv_conflict: Device Reserved\n");
19495 		sd_return_failed_command(un, bp, EIO);
19496 		return;
19497 	}
19498 
19499 	/*
19500 	 * Retry the command if we can.
19501 	 *
19502 	 * Note: The legacy return code for this failure is EIO, however EACCES
19503 	 * seems more appropriate for a reservation conflict.
19504 	 */
19505 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19506 	    (clock_t)2, NULL);
19507 }
19508 
19509 
19510 
19511 /*
19512  *    Function: sd_pkt_status_qfull
19513  *
19514  * Description: Handle a QUEUE FULL condition from the target.  This can
19515  *		occur if the HBA does not handle the queue full condition.
19516  *		(Basically this means third-party HBAs as Sun HBAs will
19517  *		handle the queue full condition.)  Note that if there are
19518  *		some commands already in the transport, then the queue full
19519  *		has occurred because the queue for this nexus is actually
19520  *		full. If there are no commands in the transport, then the
19521  *		queue full is resulting from some other initiator or lun
19522  *		consuming all the resources at the target.
19523  *
19524  *     Context: May be called from interrupt context
19525  */
19526 
19527 static void
19528 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19529 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19530 {
19531 	ASSERT(un != NULL);
19532 	ASSERT(mutex_owned(SD_MUTEX(un)));
19533 	ASSERT(bp != NULL);
19534 	ASSERT(xp != NULL);
19535 	ASSERT(pktp != NULL);
19536 
19537 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19538 	    "sd_pkt_status_qfull: entry\n");
19539 
19540 	/*
19541 	 * Just lower the QFULL throttle and retry the command.  Note that
19542 	 * we do not limit the number of retries here.
19543 	 */
19544 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19545 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19546 	    SD_RESTART_TIMEOUT, NULL);
19547 
19548 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19549 	    "sd_pkt_status_qfull: exit\n");
19550 }
19551 
19552 
19553 /*
19554  *    Function: sd_reset_target
19555  *
19556  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19557  *		RESET_TARGET, or RESET_ALL.
19558  *
19559  *     Context: May be called under interrupt context.
19560  */
19561 
19562 static void
19563 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19564 {
19565 	int rval = 0;
19566 
19567 	ASSERT(un != NULL);
19568 	ASSERT(mutex_owned(SD_MUTEX(un)));
19569 	ASSERT(pktp != NULL);
19570 
19571 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19572 
19573 	/*
19574 	 * No need to reset if the transport layer has already done so.
19575 	 */
19576 	if ((pktp->pkt_statistics &
19577 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19578 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19579 		    "sd_reset_target: no reset\n");
19580 		return;
19581 	}
19582 
19583 	mutex_exit(SD_MUTEX(un));
19584 
19585 	if (un->un_f_allow_bus_device_reset == TRUE) {
19586 		if (un->un_f_lun_reset_enabled == TRUE) {
19587 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19588 			    "sd_reset_target: RESET_LUN\n");
19589 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19590 		}
19591 		if (rval == 0) {
19592 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19593 			    "sd_reset_target: RESET_TARGET\n");
19594 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19595 		}
19596 	}
19597 
19598 	if (rval == 0) {
19599 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19600 		    "sd_reset_target: RESET_ALL\n");
19601 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19602 	}
19603 
19604 	mutex_enter(SD_MUTEX(un));
19605 
19606 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19607 }
19608 
19609 /*
19610  *    Function: sd_target_change_task
19611  *
19612  * Description: Handle dynamic target change
19613  *
19614  *     Context: Executes in a taskq() thread context
19615  */
19616 static void
19617 sd_target_change_task(void *arg)
19618 {
19619 	struct sd_lun		*un = arg;
19620 	uint64_t		capacity;
19621 	diskaddr_t		label_cap;
19622 	uint_t			lbasize;
19623 	sd_ssc_t		*ssc;
19624 
19625 	ASSERT(un != NULL);
19626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19627 
19628 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19629 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19630 		return;
19631 	}
19632 
19633 	ssc = sd_ssc_init(un);
19634 
19635 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19636 	    &lbasize, SD_PATH_DIRECT) != 0) {
19637 		SD_ERROR(SD_LOG_ERROR, un,
19638 		    "sd_target_change_task: fail to read capacity\n");
19639 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19640 		goto task_exit;
19641 	}
19642 
19643 	mutex_enter(SD_MUTEX(un));
19644 	if (capacity <= un->un_blockcount) {
19645 		mutex_exit(SD_MUTEX(un));
19646 		goto task_exit;
19647 	}
19648 
19649 	sd_update_block_info(un, lbasize, capacity);
19650 	mutex_exit(SD_MUTEX(un));
19651 
19652 	/*
19653 	 * If lun is EFI labeled and lun capacity is greater than the
19654 	 * capacity contained in the label, log a sys event.
19655 	 */
19656 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19657 	    (void*)SD_PATH_DIRECT) == 0) {
19658 		mutex_enter(SD_MUTEX(un));
19659 		if (un->un_f_blockcount_is_valid &&
19660 		    un->un_blockcount > label_cap) {
19661 			mutex_exit(SD_MUTEX(un));
19662 			sd_log_lun_expansion_event(un, KM_SLEEP);
19663 		} else {
19664 			mutex_exit(SD_MUTEX(un));
19665 		}
19666 	}
19667 
19668 task_exit:
19669 	sd_ssc_fini(ssc);
19670 }
19671 
19672 
19673 /*
19674  *    Function: sd_log_dev_status_event
19675  *
19676  * Description: Log EC_dev_status sysevent
19677  *
19678  *     Context: Never called from interrupt context
19679  */
19680 static void
19681 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19682 {
19683 	int err;
19684 	char			*path;
19685 	nvlist_t		*attr_list;
19686 
19687 	/* Allocate and build sysevent attribute list */
19688 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19689 	if (err != 0) {
19690 		SD_ERROR(SD_LOG_ERROR, un,
19691 		    "sd_log_dev_status_event: fail to allocate space\n");
19692 		return;
19693 	}
19694 
19695 	path = kmem_alloc(MAXPATHLEN, km_flag);
19696 	if (path == NULL) {
19697 		nvlist_free(attr_list);
19698 		SD_ERROR(SD_LOG_ERROR, un,
19699 		    "sd_log_dev_status_event: fail to allocate space\n");
19700 		return;
19701 	}
19702 	/*
19703 	 * Add path attribute to identify the lun.
19704 	 * We are using minor node 'a' as the sysevent attribute.
19705 	 */
19706 	(void) snprintf(path, MAXPATHLEN, "/devices");
19707 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19708 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19709 	    ":a");
19710 
19711 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19712 	if (err != 0) {
19713 		nvlist_free(attr_list);
19714 		kmem_free(path, MAXPATHLEN);
19715 		SD_ERROR(SD_LOG_ERROR, un,
19716 		    "sd_log_dev_status_event: fail to add attribute\n");
19717 		return;
19718 	}
19719 
19720 	/* Log dynamic lun expansion sysevent */
19721 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19722 	    esc, attr_list, NULL, km_flag);
19723 	if (err != DDI_SUCCESS) {
19724 		SD_ERROR(SD_LOG_ERROR, un,
19725 		    "sd_log_dev_status_event: fail to log sysevent\n");
19726 	}
19727 
19728 	nvlist_free(attr_list);
19729 	kmem_free(path, MAXPATHLEN);
19730 }
19731 
19732 
19733 /*
19734  *    Function: sd_log_lun_expansion_event
19735  *
19736  * Description: Log lun expansion sys event
19737  *
19738  *     Context: Never called from interrupt context
19739  */
19740 static void
19741 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19742 {
19743 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19744 }
19745 
19746 
19747 /*
19748  *    Function: sd_log_eject_request_event
19749  *
19750  * Description: Log eject request sysevent
19751  *
19752  *     Context: Never called from interrupt context
19753  */
19754 static void
19755 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19756 {
19757 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19758 }
19759 
19760 
19761 /*
19762  *    Function: sd_media_change_task
19763  *
19764  * Description: Recovery action for CDROM to become available.
19765  *
19766  *     Context: Executes in a taskq() thread context
19767  */
19768 
19769 static void
19770 sd_media_change_task(void *arg)
19771 {
19772 	struct	scsi_pkt	*pktp = arg;
19773 	struct	sd_lun		*un;
19774 	struct	buf		*bp;
19775 	struct	sd_xbuf		*xp;
19776 	int	err		= 0;
19777 	int	retry_count	= 0;
19778 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19779 	struct	sd_sense_info	si;
19780 
19781 	ASSERT(pktp != NULL);
19782 	bp = (struct buf *)pktp->pkt_private;
19783 	ASSERT(bp != NULL);
19784 	xp = SD_GET_XBUF(bp);
19785 	ASSERT(xp != NULL);
19786 	un = SD_GET_UN(bp);
19787 	ASSERT(un != NULL);
19788 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19789 	ASSERT(un->un_f_monitor_media_state);
19790 
19791 	si.ssi_severity = SCSI_ERR_INFO;
19792 	si.ssi_pfa_flag = FALSE;
19793 
19794 	/*
19795 	 * When a reset is issued on a CDROM, it takes a long time to
19796 	 * recover. First few attempts to read capacity and other things
19797 	 * related to handling unit attention fail (with a ASC 0x4 and
19798 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19799 	 * to limit the retries in other cases of genuine failures like
19800 	 * no media in drive.
19801 	 */
19802 	while (retry_count++ < retry_limit) {
19803 		if ((err = sd_handle_mchange(un)) == 0) {
19804 			break;
19805 		}
19806 		if (err == EAGAIN) {
19807 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19808 		}
19809 		/* Sleep for 0.5 sec. & try again */
19810 		delay(drv_usectohz(500000));
19811 	}
19812 
19813 	/*
19814 	 * Dispatch (retry or fail) the original command here,
19815 	 * along with appropriate console messages....
19816 	 *
19817 	 * Must grab the mutex before calling sd_retry_command,
19818 	 * sd_print_sense_msg and sd_return_failed_command.
19819 	 */
19820 	mutex_enter(SD_MUTEX(un));
19821 	if (err != SD_CMD_SUCCESS) {
19822 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19823 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19824 		si.ssi_severity = SCSI_ERR_FATAL;
19825 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19826 		sd_return_failed_command(un, bp, EIO);
19827 	} else {
19828 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19829 		    &si, EIO, (clock_t)0, NULL);
19830 	}
19831 	mutex_exit(SD_MUTEX(un));
19832 }
19833 
19834 
19835 
19836 /*
19837  *    Function: sd_handle_mchange
19838  *
19839  * Description: Perform geometry validation & other recovery when CDROM
19840  *		has been removed from drive.
19841  *
19842  * Return Code: 0 for success
19843  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19844  *		sd_send_scsi_READ_CAPACITY()
19845  *
19846  *     Context: Executes in a taskq() thread context
19847  */
19848 
19849 static int
19850 sd_handle_mchange(struct sd_lun *un)
19851 {
19852 	uint64_t	capacity;
19853 	uint32_t	lbasize;
19854 	int		rval;
19855 	sd_ssc_t	*ssc;
19856 
19857 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19858 	ASSERT(un->un_f_monitor_media_state);
19859 
19860 	ssc = sd_ssc_init(un);
19861 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19862 	    SD_PATH_DIRECT_PRIORITY);
19863 
19864 	if (rval != 0)
19865 		goto failed;
19866 
19867 	mutex_enter(SD_MUTEX(un));
19868 	sd_update_block_info(un, lbasize, capacity);
19869 
19870 	if (un->un_errstats != NULL) {
19871 		struct	sd_errstats *stp =
19872 		    (struct sd_errstats *)un->un_errstats->ks_data;
19873 		stp->sd_capacity.value.ui64 = (uint64_t)
19874 		    ((uint64_t)un->un_blockcount *
19875 		    (uint64_t)un->un_tgt_blocksize);
19876 	}
19877 
19878 	/*
19879 	 * Check if the media in the device is writable or not
19880 	 */
19881 	if (ISCD(un)) {
19882 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19883 	}
19884 
19885 	/*
19886 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19887 	 * valid geometry.
19888 	 */
19889 	mutex_exit(SD_MUTEX(un));
19890 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19891 
19892 
19893 	if (cmlb_validate(un->un_cmlbhandle, 0,
19894 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19895 		sd_ssc_fini(ssc);
19896 		return (EIO);
19897 	} else {
19898 		if (un->un_f_pkstats_enabled) {
19899 			sd_set_pstats(un);
19900 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19901 			    "sd_handle_mchange: un:0x%p pstats created and "
19902 			    "set\n", un);
19903 		}
19904 	}
19905 
19906 	/*
19907 	 * Try to lock the door
19908 	 */
19909 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19910 	    SD_PATH_DIRECT_PRIORITY);
19911 failed:
19912 	if (rval != 0)
19913 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19914 	sd_ssc_fini(ssc);
19915 	return (rval);
19916 }
19917 
19918 
19919 /*
19920  *    Function: sd_send_scsi_DOORLOCK
19921  *
19922  * Description: Issue the scsi DOOR LOCK command
19923  *
19924  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19925  *                      structure for this target.
19926  *		flag  - SD_REMOVAL_ALLOW
19927  *			SD_REMOVAL_PREVENT
19928  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19929  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19930  *			to use the USCSI "direct" chain and bypass the normal
19931  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19932  *			command is issued as part of an error recovery action.
19933  *
19934  * Return Code: 0   - Success
19935  *		errno return code from sd_ssc_send()
19936  *
19937  *     Context: Can sleep.
19938  */
19939 
19940 static int
19941 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19942 {
19943 	struct scsi_extended_sense	sense_buf;
19944 	union scsi_cdb		cdb;
19945 	struct uscsi_cmd	ucmd_buf;
19946 	int			status;
19947 	struct sd_lun		*un;
19948 
19949 	ASSERT(ssc != NULL);
19950 	un = ssc->ssc_un;
19951 	ASSERT(un != NULL);
19952 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19953 
19954 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19955 
19956 	/* already determined doorlock is not supported, fake success */
19957 	if (un->un_f_doorlock_supported == FALSE) {
19958 		return (0);
19959 	}
19960 
19961 	/*
19962 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19963 	 * ignore the command so we can complete the eject
19964 	 * operation.
19965 	 */
19966 	if (flag == SD_REMOVAL_PREVENT) {
19967 		mutex_enter(SD_MUTEX(un));
19968 		if (un->un_f_ejecting == TRUE) {
19969 			mutex_exit(SD_MUTEX(un));
19970 			return (EAGAIN);
19971 		}
19972 		mutex_exit(SD_MUTEX(un));
19973 	}
19974 
19975 	bzero(&cdb, sizeof (cdb));
19976 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19977 
19978 	cdb.scc_cmd = SCMD_DOORLOCK;
19979 	cdb.cdb_opaque[4] = (uchar_t)flag;
19980 
19981 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19982 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19983 	ucmd_buf.uscsi_bufaddr	= NULL;
19984 	ucmd_buf.uscsi_buflen	= 0;
19985 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19986 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19987 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19988 	ucmd_buf.uscsi_timeout	= 15;
19989 
19990 	SD_TRACE(SD_LOG_IO, un,
19991 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19992 
19993 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19994 	    UIO_SYSSPACE, path_flag);
19995 
19996 	if (status == 0)
19997 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19998 
19999 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
20000 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20001 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
20002 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20003 
20004 		/* fake success and skip subsequent doorlock commands */
20005 		un->un_f_doorlock_supported = FALSE;
20006 		return (0);
20007 	}
20008 
20009 	return (status);
20010 }
20011 
20012 /*
20013  *    Function: sd_send_scsi_READ_CAPACITY
20014  *
20015  * Description: This routine uses the scsi READ CAPACITY command to determine
20016  *		the device capacity in number of blocks and the device native
20017  *		block size. If this function returns a failure, then the
20018  *		values in *capp and *lbap are undefined.  If the capacity
20019  *		returned is 0xffffffff then the lun is too large for a
20020  *		normal READ CAPACITY command and the results of a
20021  *		READ CAPACITY 16 will be used instead.
20022  *
20023  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20024  *		capp - ptr to unsigned 64-bit variable to receive the
20025  *			capacity value from the command.
20026  *		lbap - ptr to unsigned 32-bit varaible to receive the
20027  *			block size value from the command
20028  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20029  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20030  *			to use the USCSI "direct" chain and bypass the normal
20031  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20032  *			command is issued as part of an error recovery action.
20033  *
20034  * Return Code: 0   - Success
20035  *		EIO - IO error
20036  *		EACCES - Reservation conflict detected
20037  *		EAGAIN - Device is becoming ready
20038  *		errno return code from sd_ssc_send()
20039  *
20040  *     Context: Can sleep.  Blocks until command completes.
20041  */
20042 
20043 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20044 
20045 static int
20046 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20047 	int path_flag)
20048 {
20049 	struct	scsi_extended_sense	sense_buf;
20050 	struct	uscsi_cmd	ucmd_buf;
20051 	union	scsi_cdb	cdb;
20052 	uint32_t		*capacity_buf;
20053 	uint64_t		capacity;
20054 	uint32_t		lbasize;
20055 	uint32_t		pbsize;
20056 	int			status;
20057 	struct sd_lun		*un;
20058 
20059 	ASSERT(ssc != NULL);
20060 
20061 	un = ssc->ssc_un;
20062 	ASSERT(un != NULL);
20063 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20064 	ASSERT(capp != NULL);
20065 	ASSERT(lbap != NULL);
20066 
20067 	SD_TRACE(SD_LOG_IO, un,
20068 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20069 
20070 	/*
20071 	 * First send a READ_CAPACITY command to the target.
20072 	 * (This command is mandatory under SCSI-2.)
20073 	 *
20074 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20075 	 * Medium Indicator bit is cleared.  The address field must be
20076 	 * zero if the PMI bit is zero.
20077 	 */
20078 	bzero(&cdb, sizeof (cdb));
20079 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20080 
20081 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20082 
20083 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20084 
20085 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20086 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20087 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20088 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20089 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20090 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20091 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20092 	ucmd_buf.uscsi_timeout	= 60;
20093 
20094 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20095 	    UIO_SYSSPACE, path_flag);
20096 
20097 	switch (status) {
20098 	case 0:
20099 		/* Return failure if we did not get valid capacity data. */
20100 		if (ucmd_buf.uscsi_resid != 0) {
20101 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20102 			    "sd_send_scsi_READ_CAPACITY received invalid "
20103 			    "capacity data");
20104 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20105 			return (EIO);
20106 		}
20107 		/*
20108 		 * Read capacity and block size from the READ CAPACITY 10 data.
20109 		 * This data may be adjusted later due to device specific
20110 		 * issues.
20111 		 *
20112 		 * According to the SCSI spec, the READ CAPACITY 10
20113 		 * command returns the following:
20114 		 *
20115 		 *  bytes 0-3: Maximum logical block address available.
20116 		 *		(MSB in byte:0 & LSB in byte:3)
20117 		 *
20118 		 *  bytes 4-7: Block length in bytes
20119 		 *		(MSB in byte:4 & LSB in byte:7)
20120 		 *
20121 		 */
20122 		capacity = BE_32(capacity_buf[0]);
20123 		lbasize = BE_32(capacity_buf[1]);
20124 
20125 		/*
20126 		 * Done with capacity_buf
20127 		 */
20128 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20129 
20130 		/*
20131 		 * if the reported capacity is set to all 0xf's, then
20132 		 * this disk is too large and requires SBC-2 commands.
20133 		 * Reissue the request using READ CAPACITY 16.
20134 		 */
20135 		if (capacity == 0xffffffff) {
20136 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20137 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20138 			    &lbasize, &pbsize, path_flag);
20139 			if (status != 0) {
20140 				return (status);
20141 			} else {
20142 				goto rc16_done;
20143 			}
20144 		}
20145 		break;	/* Success! */
20146 	case EIO:
20147 		switch (ucmd_buf.uscsi_status) {
20148 		case STATUS_RESERVATION_CONFLICT:
20149 			status = EACCES;
20150 			break;
20151 		case STATUS_CHECK:
20152 			/*
20153 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20154 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20155 			 */
20156 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20157 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20158 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20159 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20160 				return (EAGAIN);
20161 			}
20162 			break;
20163 		default:
20164 			break;
20165 		}
20166 		/* FALLTHRU */
20167 	default:
20168 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20169 		return (status);
20170 	}
20171 
20172 	/*
20173 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20174 	 * (2352 and 0 are common) so for these devices always force the value
20175 	 * to 2048 as required by the ATAPI specs.
20176 	 */
20177 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20178 		lbasize = 2048;
20179 	}
20180 
20181 	/*
20182 	 * Get the maximum LBA value from the READ CAPACITY data.
20183 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20184 	 * was cleared when issuing the command. This means that the LBA
20185 	 * returned from the device is the LBA of the last logical block
20186 	 * on the logical unit.  The actual logical block count will be
20187 	 * this value plus one.
20188 	 */
20189 	capacity += 1;
20190 
20191 	/*
20192 	 * Currently, for removable media, the capacity is saved in terms
20193 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20194 	 */
20195 	if (un->un_f_has_removable_media)
20196 		capacity *= (lbasize / un->un_sys_blocksize);
20197 
20198 rc16_done:
20199 
20200 	/*
20201 	 * Copy the values from the READ CAPACITY command into the space
20202 	 * provided by the caller.
20203 	 */
20204 	*capp = capacity;
20205 	*lbap = lbasize;
20206 
20207 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20208 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20209 
20210 	/*
20211 	 * Both the lbasize and capacity from the device must be nonzero,
20212 	 * otherwise we assume that the values are not valid and return
20213 	 * failure to the caller. (4203735)
20214 	 */
20215 	if ((capacity == 0) || (lbasize == 0)) {
20216 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20217 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20218 		    "capacity %llu lbasize %d", capacity, lbasize);
20219 		return (EIO);
20220 	}
20221 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20222 	return (0);
20223 }
20224 
20225 /*
20226  *    Function: sd_send_scsi_READ_CAPACITY_16
20227  *
20228  * Description: This routine uses the scsi READ CAPACITY 16 command to
20229  *		determine the device capacity in number of blocks and the
20230  *		device native block size.  If this function returns a failure,
20231  *		then the values in *capp and *lbap are undefined.
20232  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20233  *              which will apply any device specific adjustments to capacity
20234  *              and lbasize. One exception is it is also called by
20235  *              sd_get_media_info_ext. In that function, there is no need to
20236  *              adjust the capacity and lbasize.
20237  *
20238  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20239  *		capp - ptr to unsigned 64-bit variable to receive the
20240  *			capacity value from the command.
20241  *		lbap - ptr to unsigned 32-bit varaible to receive the
20242  *			block size value from the command
20243  *              psp  - ptr to unsigned 32-bit variable to receive the
20244  *                      physical block size value from the command
20245  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20246  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20247  *			to use the USCSI "direct" chain and bypass the normal
20248  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20249  *			this command is issued as part of an error recovery
20250  *			action.
20251  *
20252  * Return Code: 0   - Success
20253  *		EIO - IO error
20254  *		EACCES - Reservation conflict detected
20255  *		EAGAIN - Device is becoming ready
20256  *		errno return code from sd_ssc_send()
20257  *
20258  *     Context: Can sleep.  Blocks until command completes.
20259  */
20260 
20261 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20262 
20263 static int
20264 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20265 	uint32_t *lbap, uint32_t *psp, int path_flag)
20266 {
20267 	struct	scsi_extended_sense	sense_buf;
20268 	struct	uscsi_cmd	ucmd_buf;
20269 	union	scsi_cdb	cdb;
20270 	uint64_t		*capacity16_buf;
20271 	uint64_t		capacity;
20272 	uint32_t		lbasize;
20273 	uint32_t		pbsize;
20274 	uint32_t		lbpb_exp;
20275 	int			status;
20276 	struct sd_lun		*un;
20277 
20278 	ASSERT(ssc != NULL);
20279 
20280 	un = ssc->ssc_un;
20281 	ASSERT(un != NULL);
20282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20283 	ASSERT(capp != NULL);
20284 	ASSERT(lbap != NULL);
20285 
20286 	SD_TRACE(SD_LOG_IO, un,
20287 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20288 
20289 	/*
20290 	 * First send a READ_CAPACITY_16 command to the target.
20291 	 *
20292 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20293 	 * Medium Indicator bit is cleared.  The address field must be
20294 	 * zero if the PMI bit is zero.
20295 	 */
20296 	bzero(&cdb, sizeof (cdb));
20297 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20298 
20299 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20300 
20301 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20302 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20303 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20304 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20305 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20306 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20307 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20308 	ucmd_buf.uscsi_timeout	= 60;
20309 
20310 	/*
20311 	 * Read Capacity (16) is a Service Action In command.  One
20312 	 * command byte (0x9E) is overloaded for multiple operations,
20313 	 * with the second CDB byte specifying the desired operation
20314 	 */
20315 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20316 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20317 
20318 	/*
20319 	 * Fill in allocation length field
20320 	 */
20321 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20322 
20323 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20324 	    UIO_SYSSPACE, path_flag);
20325 
20326 	switch (status) {
20327 	case 0:
20328 		/* Return failure if we did not get valid capacity data. */
20329 		if (ucmd_buf.uscsi_resid > 20) {
20330 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20331 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20332 			    "capacity data");
20333 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20334 			return (EIO);
20335 		}
20336 
20337 		/*
20338 		 * Read capacity and block size from the READ CAPACITY 16 data.
20339 		 * This data may be adjusted later due to device specific
20340 		 * issues.
20341 		 *
20342 		 * According to the SCSI spec, the READ CAPACITY 16
20343 		 * command returns the following:
20344 		 *
20345 		 *  bytes 0-7: Maximum logical block address available.
20346 		 *		(MSB in byte:0 & LSB in byte:7)
20347 		 *
20348 		 *  bytes 8-11: Block length in bytes
20349 		 *		(MSB in byte:8 & LSB in byte:11)
20350 		 *
20351 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20352 		 */
20353 		capacity = BE_64(capacity16_buf[0]);
20354 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20355 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20356 
20357 		pbsize = lbasize << lbpb_exp;
20358 
20359 		/*
20360 		 * Done with capacity16_buf
20361 		 */
20362 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20363 
20364 		/*
20365 		 * if the reported capacity is set to all 0xf's, then
20366 		 * this disk is too large.  This could only happen with
20367 		 * a device that supports LBAs larger than 64 bits which
20368 		 * are not defined by any current T10 standards.
20369 		 */
20370 		if (capacity == 0xffffffffffffffff) {
20371 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20372 			    "disk is too large");
20373 			return (EIO);
20374 		}
20375 		break;	/* Success! */
20376 	case EIO:
20377 		switch (ucmd_buf.uscsi_status) {
20378 		case STATUS_RESERVATION_CONFLICT:
20379 			status = EACCES;
20380 			break;
20381 		case STATUS_CHECK:
20382 			/*
20383 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20384 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20385 			 */
20386 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20387 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20388 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20389 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20390 				return (EAGAIN);
20391 			}
20392 			break;
20393 		default:
20394 			break;
20395 		}
20396 		/* FALLTHRU */
20397 	default:
20398 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20399 		return (status);
20400 	}
20401 
20402 	/*
20403 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20404 	 * (2352 and 0 are common) so for these devices always force the value
20405 	 * to 2048 as required by the ATAPI specs.
20406 	 */
20407 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20408 		lbasize = 2048;
20409 	}
20410 
20411 	/*
20412 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20413 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20414 	 * was cleared when issuing the command. This means that the LBA
20415 	 * returned from the device is the LBA of the last logical block
20416 	 * on the logical unit.  The actual logical block count will be
20417 	 * this value plus one.
20418 	 */
20419 	capacity += 1;
20420 
20421 	/*
20422 	 * Currently, for removable media, the capacity is saved in terms
20423 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20424 	 */
20425 	if (un->un_f_has_removable_media)
20426 		capacity *= (lbasize / un->un_sys_blocksize);
20427 
20428 	*capp = capacity;
20429 	*lbap = lbasize;
20430 	*psp = pbsize;
20431 
20432 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20433 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20434 	    capacity, lbasize, pbsize);
20435 
20436 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20437 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20438 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20439 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20440 		return (EIO);
20441 	}
20442 
20443 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20444 	return (0);
20445 }
20446 
20447 
20448 /*
20449  *    Function: sd_send_scsi_START_STOP_UNIT
20450  *
20451  * Description: Issue a scsi START STOP UNIT command to the target.
20452  *
20453  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20454  *                       structure for this target.
20455  *      pc_flag - SD_POWER_CONDITION
20456  *                SD_START_STOP
20457  *		flag  - SD_TARGET_START
20458  *			SD_TARGET_STOP
20459  *			SD_TARGET_EJECT
20460  *			SD_TARGET_CLOSE
20461  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20462  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20463  *			to use the USCSI "direct" chain and bypass the normal
20464  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20465  *			command is issued as part of an error recovery action.
20466  *
20467  * Return Code: 0   - Success
20468  *		EIO - IO error
20469  *		EACCES - Reservation conflict detected
20470  *		ENXIO  - Not Ready, medium not present
20471  *		errno return code from sd_ssc_send()
20472  *
20473  *     Context: Can sleep.
20474  */
20475 
20476 static int
20477 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20478     int path_flag)
20479 {
20480 	struct	scsi_extended_sense	sense_buf;
20481 	union scsi_cdb		cdb;
20482 	struct uscsi_cmd	ucmd_buf;
20483 	int			status;
20484 	struct sd_lun		*un;
20485 
20486 	ASSERT(ssc != NULL);
20487 	un = ssc->ssc_un;
20488 	ASSERT(un != NULL);
20489 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20490 
20491 	SD_TRACE(SD_LOG_IO, un,
20492 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20493 
20494 	if (un->un_f_check_start_stop &&
20495 	    (pc_flag == SD_START_STOP) &&
20496 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20497 	    (un->un_f_start_stop_supported != TRUE)) {
20498 		return (0);
20499 	}
20500 
20501 	/*
20502 	 * If we are performing an eject operation and
20503 	 * we receive any command other than SD_TARGET_EJECT
20504 	 * we should immediately return.
20505 	 */
20506 	if (flag != SD_TARGET_EJECT) {
20507 		mutex_enter(SD_MUTEX(un));
20508 		if (un->un_f_ejecting == TRUE) {
20509 			mutex_exit(SD_MUTEX(un));
20510 			return (EAGAIN);
20511 		}
20512 		mutex_exit(SD_MUTEX(un));
20513 	}
20514 
20515 	bzero(&cdb, sizeof (cdb));
20516 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20517 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20518 
20519 	cdb.scc_cmd = SCMD_START_STOP;
20520 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20521 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20522 
20523 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20524 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20525 	ucmd_buf.uscsi_bufaddr	= NULL;
20526 	ucmd_buf.uscsi_buflen	= 0;
20527 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20528 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20529 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20530 	ucmd_buf.uscsi_timeout	= 200;
20531 
20532 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20533 	    UIO_SYSSPACE, path_flag);
20534 
20535 	switch (status) {
20536 	case 0:
20537 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20538 		break;	/* Success! */
20539 	case EIO:
20540 		switch (ucmd_buf.uscsi_status) {
20541 		case STATUS_RESERVATION_CONFLICT:
20542 			status = EACCES;
20543 			break;
20544 		case STATUS_CHECK:
20545 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20546 				switch (scsi_sense_key(
20547 				    (uint8_t *)&sense_buf)) {
20548 				case KEY_ILLEGAL_REQUEST:
20549 					status = ENOTSUP;
20550 					break;
20551 				case KEY_NOT_READY:
20552 					if (scsi_sense_asc(
20553 					    (uint8_t *)&sense_buf)
20554 					    == 0x3A) {
20555 						status = ENXIO;
20556 					}
20557 					break;
20558 				default:
20559 					break;
20560 				}
20561 			}
20562 			break;
20563 		default:
20564 			break;
20565 		}
20566 		break;
20567 	default:
20568 		break;
20569 	}
20570 
20571 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20572 
20573 	return (status);
20574 }
20575 
20576 
20577 /*
20578  *    Function: sd_start_stop_unit_callback
20579  *
20580  * Description: timeout(9F) callback to begin recovery process for a
20581  *		device that has spun down.
20582  *
20583  *   Arguments: arg - pointer to associated softstate struct.
20584  *
20585  *     Context: Executes in a timeout(9F) thread context
20586  */
20587 
20588 static void
20589 sd_start_stop_unit_callback(void *arg)
20590 {
20591 	struct sd_lun	*un = arg;
20592 	ASSERT(un != NULL);
20593 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20594 
20595 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20596 
20597 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20598 }
20599 
20600 
20601 /*
20602  *    Function: sd_start_stop_unit_task
20603  *
20604  * Description: Recovery procedure when a drive is spun down.
20605  *
20606  *   Arguments: arg - pointer to associated softstate struct.
20607  *
20608  *     Context: Executes in a taskq() thread context
20609  */
20610 
20611 static void
20612 sd_start_stop_unit_task(void *arg)
20613 {
20614 	struct sd_lun	*un = arg;
20615 	sd_ssc_t	*ssc;
20616 	int		power_level;
20617 	int		rval;
20618 
20619 	ASSERT(un != NULL);
20620 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20621 
20622 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20623 
20624 	/*
20625 	 * Some unformatted drives report not ready error, no need to
20626 	 * restart if format has been initiated.
20627 	 */
20628 	mutex_enter(SD_MUTEX(un));
20629 	if (un->un_f_format_in_progress == TRUE) {
20630 		mutex_exit(SD_MUTEX(un));
20631 		return;
20632 	}
20633 	mutex_exit(SD_MUTEX(un));
20634 
20635 	ssc = sd_ssc_init(un);
20636 	/*
20637 	 * When a START STOP command is issued from here, it is part of a
20638 	 * failure recovery operation and must be issued before any other
20639 	 * commands, including any pending retries. Thus it must be sent
20640 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20641 	 * succeeds or not, we will start I/O after the attempt.
20642 	 * If power condition is supported and the current power level
20643 	 * is capable of performing I/O, we should set the power condition
20644 	 * to that level. Otherwise, set the power condition to ACTIVE.
20645 	 */
20646 	if (un->un_f_power_condition_supported) {
20647 		mutex_enter(SD_MUTEX(un));
20648 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20649 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20650 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20651 		mutex_exit(SD_MUTEX(un));
20652 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20653 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20654 	} else {
20655 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20656 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20657 	}
20658 
20659 	if (rval != 0)
20660 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20661 	sd_ssc_fini(ssc);
20662 	/*
20663 	 * The above call blocks until the START_STOP_UNIT command completes.
20664 	 * Now that it has completed, we must re-try the original IO that
20665 	 * received the NOT READY condition in the first place. There are
20666 	 * three possible conditions here:
20667 	 *
20668 	 *  (1) The original IO is on un_retry_bp.
20669 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20670 	 *	is NULL.
20671 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20672 	 *	points to some other, unrelated bp.
20673 	 *
20674 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20675 	 * as the argument. If un_retry_bp is NULL, this will initiate
20676 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20677 	 * then this will process the bp on un_retry_bp. That may or may not
20678 	 * be the original IO, but that does not matter: the important thing
20679 	 * is to keep the IO processing going at this point.
20680 	 *
20681 	 * Note: This is a very specific error recovery sequence associated
20682 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20683 	 * serialize the I/O with completion of the spin-up.
20684 	 */
20685 	mutex_enter(SD_MUTEX(un));
20686 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20687 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20688 	    un, un->un_retry_bp);
20689 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20690 	sd_start_cmds(un, un->un_retry_bp);
20691 	mutex_exit(SD_MUTEX(un));
20692 
20693 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20694 }
20695 
20696 
20697 /*
20698  *    Function: sd_send_scsi_INQUIRY
20699  *
20700  * Description: Issue the scsi INQUIRY command.
20701  *
20702  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20703  *                      structure for this target.
20704  *		bufaddr
20705  *		buflen
20706  *		evpd
20707  *		page_code
20708  *		page_length
20709  *
20710  * Return Code: 0   - Success
20711  *		errno return code from sd_ssc_send()
20712  *
20713  *     Context: Can sleep. Does not return until command is completed.
20714  */
20715 
20716 static int
20717 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20718 	uchar_t evpd, uchar_t page_code, size_t *residp)
20719 {
20720 	union scsi_cdb		cdb;
20721 	struct uscsi_cmd	ucmd_buf;
20722 	int			status;
20723 	struct sd_lun		*un;
20724 
20725 	ASSERT(ssc != NULL);
20726 	un = ssc->ssc_un;
20727 	ASSERT(un != NULL);
20728 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20729 	ASSERT(bufaddr != NULL);
20730 
20731 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20732 
20733 	bzero(&cdb, sizeof (cdb));
20734 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20735 	bzero(bufaddr, buflen);
20736 
20737 	cdb.scc_cmd = SCMD_INQUIRY;
20738 	cdb.cdb_opaque[1] = evpd;
20739 	cdb.cdb_opaque[2] = page_code;
20740 	FORMG0COUNT(&cdb, buflen);
20741 
20742 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20743 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20744 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20745 	ucmd_buf.uscsi_buflen	= buflen;
20746 	ucmd_buf.uscsi_rqbuf	= NULL;
20747 	ucmd_buf.uscsi_rqlen	= 0;
20748 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20749 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20750 
20751 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20752 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20753 
20754 	/*
20755 	 * Only handle status == 0, the upper-level caller
20756 	 * will put different assessment based on the context.
20757 	 */
20758 	if (status == 0)
20759 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20760 
20761 	if ((status == 0) && (residp != NULL)) {
20762 		*residp = ucmd_buf.uscsi_resid;
20763 	}
20764 
20765 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20766 
20767 	return (status);
20768 }
20769 
20770 
20771 /*
20772  *    Function: sd_send_scsi_TEST_UNIT_READY
20773  *
20774  * Description: Issue the scsi TEST UNIT READY command.
20775  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20776  *		prevent retrying failed commands. Use this when the intent
20777  *		is either to check for device readiness, to clear a Unit
20778  *		Attention, or to clear any outstanding sense data.
20779  *		However under specific conditions the expected behavior
20780  *		is for retries to bring a device ready, so use the flag
20781  *		with caution.
20782  *
20783  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20784  *                      structure for this target.
20785  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20786  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20787  *			0: dont check for media present, do retries on cmd.
20788  *
20789  * Return Code: 0   - Success
20790  *		EIO - IO error
20791  *		EACCES - Reservation conflict detected
20792  *		ENXIO  - Not Ready, medium not present
20793  *		errno return code from sd_ssc_send()
20794  *
20795  *     Context: Can sleep. Does not return until command is completed.
20796  */
20797 
20798 static int
20799 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20800 {
20801 	struct	scsi_extended_sense	sense_buf;
20802 	union scsi_cdb		cdb;
20803 	struct uscsi_cmd	ucmd_buf;
20804 	int			status;
20805 	struct sd_lun		*un;
20806 
20807 	ASSERT(ssc != NULL);
20808 	un = ssc->ssc_un;
20809 	ASSERT(un != NULL);
20810 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20811 
20812 	SD_TRACE(SD_LOG_IO, un,
20813 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20814 
20815 	/*
20816 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20817 	 * timeouts when they receive a TUR and the queue is not empty. Check
20818 	 * the configuration flag set during attach (indicating the drive has
20819 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20820 	 * TUR. If there are
20821 	 * pending commands return success, this is a bit arbitrary but is ok
20822 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20823 	 * configurations.
20824 	 */
20825 	if (un->un_f_cfg_tur_check == TRUE) {
20826 		mutex_enter(SD_MUTEX(un));
20827 		if (un->un_ncmds_in_transport != 0) {
20828 			mutex_exit(SD_MUTEX(un));
20829 			return (0);
20830 		}
20831 		mutex_exit(SD_MUTEX(un));
20832 	}
20833 
20834 	bzero(&cdb, sizeof (cdb));
20835 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20836 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20837 
20838 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20839 
20840 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20841 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20842 	ucmd_buf.uscsi_bufaddr	= NULL;
20843 	ucmd_buf.uscsi_buflen	= 0;
20844 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20845 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20846 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20847 
20848 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20849 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20850 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20851 	}
20852 	ucmd_buf.uscsi_timeout	= 60;
20853 
20854 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20855 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20856 	    SD_PATH_STANDARD));
20857 
20858 	switch (status) {
20859 	case 0:
20860 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20861 		break;	/* Success! */
20862 	case EIO:
20863 		switch (ucmd_buf.uscsi_status) {
20864 		case STATUS_RESERVATION_CONFLICT:
20865 			status = EACCES;
20866 			break;
20867 		case STATUS_CHECK:
20868 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20869 				break;
20870 			}
20871 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20872 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20873 			    KEY_NOT_READY) &&
20874 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20875 				status = ENXIO;
20876 			}
20877 			break;
20878 		default:
20879 			break;
20880 		}
20881 		break;
20882 	default:
20883 		break;
20884 	}
20885 
20886 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20887 
20888 	return (status);
20889 }
20890 
20891 /*
20892  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20893  *
20894  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20895  *
20896  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20897  *                      structure for this target.
20898  *
20899  * Return Code: 0   - Success
20900  *		EACCES
20901  *		ENOTSUP
20902  *		errno return code from sd_ssc_send()
20903  *
20904  *     Context: Can sleep. Does not return until command is completed.
20905  */
20906 
20907 static int
20908 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20909 	uint16_t data_len, uchar_t *data_bufp)
20910 {
20911 	struct scsi_extended_sense	sense_buf;
20912 	union scsi_cdb		cdb;
20913 	struct uscsi_cmd	ucmd_buf;
20914 	int			status;
20915 	int			no_caller_buf = FALSE;
20916 	struct sd_lun		*un;
20917 
20918 	ASSERT(ssc != NULL);
20919 	un = ssc->ssc_un;
20920 	ASSERT(un != NULL);
20921 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20922 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20923 
20924 	SD_TRACE(SD_LOG_IO, un,
20925 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20926 
20927 	bzero(&cdb, sizeof (cdb));
20928 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20929 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20930 	if (data_bufp == NULL) {
20931 		/* Allocate a default buf if the caller did not give one */
20932 		ASSERT(data_len == 0);
20933 		data_len  = MHIOC_RESV_KEY_SIZE;
20934 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20935 		no_caller_buf = TRUE;
20936 	}
20937 
20938 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20939 	cdb.cdb_opaque[1] = usr_cmd;
20940 	FORMG1COUNT(&cdb, data_len);
20941 
20942 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20943 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20944 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20945 	ucmd_buf.uscsi_buflen	= data_len;
20946 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20947 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20948 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20949 	ucmd_buf.uscsi_timeout	= 60;
20950 
20951 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20952 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20953 
20954 	switch (status) {
20955 	case 0:
20956 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20957 
20958 		break;	/* Success! */
20959 	case EIO:
20960 		switch (ucmd_buf.uscsi_status) {
20961 		case STATUS_RESERVATION_CONFLICT:
20962 			status = EACCES;
20963 			break;
20964 		case STATUS_CHECK:
20965 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20966 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20967 			    KEY_ILLEGAL_REQUEST)) {
20968 				status = ENOTSUP;
20969 			}
20970 			break;
20971 		default:
20972 			break;
20973 		}
20974 		break;
20975 	default:
20976 		break;
20977 	}
20978 
20979 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20980 
20981 	if (no_caller_buf == TRUE) {
20982 		kmem_free(data_bufp, data_len);
20983 	}
20984 
20985 	return (status);
20986 }
20987 
20988 
20989 /*
20990  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20991  *
20992  * Description: This routine is the driver entry point for handling CD-ROM
20993  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20994  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20995  *		device.
20996  *
20997  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20998  *                      for the target.
20999  *		usr_cmd SCSI-3 reservation facility command (one of
21000  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
21001  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
21002  *		usr_bufp - user provided pointer register, reserve descriptor or
21003  *			preempt and abort structure (mhioc_register_t,
21004  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
21005  *
21006  * Return Code: 0   - Success
21007  *		EACCES
21008  *		ENOTSUP
21009  *		errno return code from sd_ssc_send()
21010  *
21011  *     Context: Can sleep. Does not return until command is completed.
21012  */
21013 
21014 static int
21015 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
21016 	uchar_t	*usr_bufp)
21017 {
21018 	struct scsi_extended_sense	sense_buf;
21019 	union scsi_cdb		cdb;
21020 	struct uscsi_cmd	ucmd_buf;
21021 	int			status;
21022 	uchar_t			data_len = sizeof (sd_prout_t);
21023 	sd_prout_t		*prp;
21024 	struct sd_lun		*un;
21025 
21026 	ASSERT(ssc != NULL);
21027 	un = ssc->ssc_un;
21028 	ASSERT(un != NULL);
21029 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21030 	ASSERT(data_len == 24);	/* required by scsi spec */
21031 
21032 	SD_TRACE(SD_LOG_IO, un,
21033 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21034 
21035 	if (usr_bufp == NULL) {
21036 		return (EINVAL);
21037 	}
21038 
21039 	bzero(&cdb, sizeof (cdb));
21040 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21041 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21042 	prp = kmem_zalloc(data_len, KM_SLEEP);
21043 
21044 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21045 	cdb.cdb_opaque[1] = usr_cmd;
21046 	FORMG1COUNT(&cdb, data_len);
21047 
21048 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21049 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21050 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21051 	ucmd_buf.uscsi_buflen	= data_len;
21052 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21053 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21054 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21055 	ucmd_buf.uscsi_timeout	= 60;
21056 
21057 	switch (usr_cmd) {
21058 	case SD_SCSI3_REGISTER: {
21059 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21060 
21061 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21062 		bcopy(ptr->newkey.key, prp->service_key,
21063 		    MHIOC_RESV_KEY_SIZE);
21064 		prp->aptpl = ptr->aptpl;
21065 		break;
21066 	}
21067 	case SD_SCSI3_CLEAR: {
21068 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21069 
21070 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21071 		break;
21072 	}
21073 	case SD_SCSI3_RESERVE:
21074 	case SD_SCSI3_RELEASE: {
21075 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21076 
21077 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21078 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21079 		cdb.cdb_opaque[2] = ptr->type;
21080 		break;
21081 	}
21082 	case SD_SCSI3_PREEMPTANDABORT: {
21083 		mhioc_preemptandabort_t *ptr =
21084 		    (mhioc_preemptandabort_t *)usr_bufp;
21085 
21086 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21087 		bcopy(ptr->victim_key.key, prp->service_key,
21088 		    MHIOC_RESV_KEY_SIZE);
21089 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21090 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21091 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21092 		break;
21093 	}
21094 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21095 	{
21096 		mhioc_registerandignorekey_t *ptr;
21097 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21098 		bcopy(ptr->newkey.key,
21099 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21100 		prp->aptpl = ptr->aptpl;
21101 		break;
21102 	}
21103 	default:
21104 		ASSERT(FALSE);
21105 		break;
21106 	}
21107 
21108 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21109 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21110 
21111 	switch (status) {
21112 	case 0:
21113 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21114 		break;	/* Success! */
21115 	case EIO:
21116 		switch (ucmd_buf.uscsi_status) {
21117 		case STATUS_RESERVATION_CONFLICT:
21118 			status = EACCES;
21119 			break;
21120 		case STATUS_CHECK:
21121 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21122 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21123 			    KEY_ILLEGAL_REQUEST)) {
21124 				status = ENOTSUP;
21125 			}
21126 			break;
21127 		default:
21128 			break;
21129 		}
21130 		break;
21131 	default:
21132 		break;
21133 	}
21134 
21135 	kmem_free(prp, data_len);
21136 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21137 	return (status);
21138 }
21139 
21140 
21141 /*
21142  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21143  *
21144  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21145  *
21146  *   Arguments: un - pointer to the target's soft state struct
21147  *              dkc - pointer to the callback structure
21148  *
21149  * Return Code: 0 - success
21150  *		errno-type error code
21151  *
21152  *     Context: kernel thread context only.
21153  *
21154  *  _______________________________________________________________
21155  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21156  * |FLUSH_VOLATILE|              | operation                       |
21157  * |______________|______________|_________________________________|
21158  * | 0            | NULL         | Synchronous flush on both       |
21159  * |              |              | volatile and non-volatile cache |
21160  * |______________|______________|_________________________________|
21161  * | 1            | NULL         | Synchronous flush on volatile   |
21162  * |              |              | cache; disk drivers may suppress|
21163  * |              |              | flush if disk table indicates   |
21164  * |              |              | non-volatile cache              |
21165  * |______________|______________|_________________________________|
21166  * | 0            | !NULL        | Asynchronous flush on both      |
21167  * |              |              | volatile and non-volatile cache;|
21168  * |______________|______________|_________________________________|
21169  * | 1            | !NULL        | Asynchronous flush on volatile  |
21170  * |              |              | cache; disk drivers may suppress|
21171  * |              |              | flush if disk table indicates   |
21172  * |              |              | non-volatile cache              |
21173  * |______________|______________|_________________________________|
21174  *
21175  */
21176 
21177 static int
21178 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21179 {
21180 	struct sd_uscsi_info	*uip;
21181 	struct uscsi_cmd	*uscmd;
21182 	union scsi_cdb		*cdb;
21183 	struct buf		*bp;
21184 	int			rval = 0;
21185 	int			is_async;
21186 
21187 	SD_TRACE(SD_LOG_IO, un,
21188 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21189 
21190 	ASSERT(un != NULL);
21191 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21192 
21193 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21194 		is_async = FALSE;
21195 	} else {
21196 		is_async = TRUE;
21197 	}
21198 
21199 	mutex_enter(SD_MUTEX(un));
21200 	/* check whether cache flush should be suppressed */
21201 	if (un->un_f_suppress_cache_flush == TRUE) {
21202 		mutex_exit(SD_MUTEX(un));
21203 		/*
21204 		 * suppress the cache flush if the device is told to do
21205 		 * so by sd.conf or disk table
21206 		 */
21207 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21208 		    skip the cache flush since suppress_cache_flush is %d!\n",
21209 		    un->un_f_suppress_cache_flush);
21210 
21211 		if (is_async == TRUE) {
21212 			/* invoke callback for asynchronous flush */
21213 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21214 		}
21215 		return (rval);
21216 	}
21217 	mutex_exit(SD_MUTEX(un));
21218 
21219 	/*
21220 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21221 	 * set properly
21222 	 */
21223 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21224 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21225 
21226 	mutex_enter(SD_MUTEX(un));
21227 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21228 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21229 		/*
21230 		 * if the device supports SYNC_NV bit, turn on
21231 		 * the SYNC_NV bit to only flush volatile cache
21232 		 */
21233 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21234 	}
21235 	mutex_exit(SD_MUTEX(un));
21236 
21237 	/*
21238 	 * First get some memory for the uscsi_cmd struct and cdb
21239 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21240 	 */
21241 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21242 	uscmd->uscsi_cdblen = CDB_GROUP1;
21243 	uscmd->uscsi_cdb = (caddr_t)cdb;
21244 	uscmd->uscsi_bufaddr = NULL;
21245 	uscmd->uscsi_buflen = 0;
21246 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21247 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21248 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21249 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21250 	uscmd->uscsi_timeout = sd_io_time;
21251 
21252 	/*
21253 	 * Allocate an sd_uscsi_info struct and fill it with the info
21254 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21255 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21256 	 * since we allocate the buf here in this function, we do not
21257 	 * need to preserve the prior contents of b_private.
21258 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21259 	 */
21260 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21261 	uip->ui_flags = SD_PATH_DIRECT;
21262 	uip->ui_cmdp  = uscmd;
21263 
21264 	bp = getrbuf(KM_SLEEP);
21265 	bp->b_private = uip;
21266 
21267 	/*
21268 	 * Setup buffer to carry uscsi request.
21269 	 */
21270 	bp->b_flags  = B_BUSY;
21271 	bp->b_bcount = 0;
21272 	bp->b_blkno  = 0;
21273 
21274 	if (is_async == TRUE) {
21275 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21276 		uip->ui_dkc = *dkc;
21277 	}
21278 
21279 	bp->b_edev = SD_GET_DEV(un);
21280 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21281 
21282 	/*
21283 	 * Unset un_f_sync_cache_required flag
21284 	 */
21285 	mutex_enter(SD_MUTEX(un));
21286 	un->un_f_sync_cache_required = FALSE;
21287 	mutex_exit(SD_MUTEX(un));
21288 
21289 	(void) sd_uscsi_strategy(bp);
21290 
21291 	/*
21292 	 * If synchronous request, wait for completion
21293 	 * If async just return and let b_iodone callback
21294 	 * cleanup.
21295 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21296 	 * but it was also incremented in sd_uscsi_strategy(), so
21297 	 * we should be ok.
21298 	 */
21299 	if (is_async == FALSE) {
21300 		(void) biowait(bp);
21301 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21302 	}
21303 
21304 	return (rval);
21305 }
21306 
21307 
21308 static int
21309 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21310 {
21311 	struct sd_uscsi_info *uip;
21312 	struct uscsi_cmd *uscmd;
21313 	uint8_t *sense_buf;
21314 	struct sd_lun *un;
21315 	int status;
21316 	union scsi_cdb *cdb;
21317 
21318 	uip = (struct sd_uscsi_info *)(bp->b_private);
21319 	ASSERT(uip != NULL);
21320 
21321 	uscmd = uip->ui_cmdp;
21322 	ASSERT(uscmd != NULL);
21323 
21324 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21325 	ASSERT(sense_buf != NULL);
21326 
21327 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21328 	ASSERT(un != NULL);
21329 
21330 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21331 
21332 	status = geterror(bp);
21333 	switch (status) {
21334 	case 0:
21335 		break;	/* Success! */
21336 	case EIO:
21337 		switch (uscmd->uscsi_status) {
21338 		case STATUS_RESERVATION_CONFLICT:
21339 			/* Ignore reservation conflict */
21340 			status = 0;
21341 			goto done;
21342 
21343 		case STATUS_CHECK:
21344 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21345 			    (scsi_sense_key(sense_buf) ==
21346 			    KEY_ILLEGAL_REQUEST)) {
21347 				/* Ignore Illegal Request error */
21348 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21349 					mutex_enter(SD_MUTEX(un));
21350 					un->un_f_sync_nv_supported = FALSE;
21351 					mutex_exit(SD_MUTEX(un));
21352 					status = 0;
21353 					SD_TRACE(SD_LOG_IO, un,
21354 					    "un_f_sync_nv_supported \
21355 					    is set to false.\n");
21356 					goto done;
21357 				}
21358 
21359 				mutex_enter(SD_MUTEX(un));
21360 				un->un_f_sync_cache_supported = FALSE;
21361 				mutex_exit(SD_MUTEX(un));
21362 				SD_TRACE(SD_LOG_IO, un,
21363 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21364 				    un_f_sync_cache_supported set to false \
21365 				    with asc = %x, ascq = %x\n",
21366 				    scsi_sense_asc(sense_buf),
21367 				    scsi_sense_ascq(sense_buf));
21368 				status = ENOTSUP;
21369 				goto done;
21370 			}
21371 			break;
21372 		default:
21373 			break;
21374 		}
21375 		/* FALLTHRU */
21376 	default:
21377 		/*
21378 		 * Turn on the un_f_sync_cache_required flag
21379 		 * since the SYNC CACHE command failed
21380 		 */
21381 		mutex_enter(SD_MUTEX(un));
21382 		un->un_f_sync_cache_required = TRUE;
21383 		mutex_exit(SD_MUTEX(un));
21384 
21385 		/*
21386 		 * Don't log an error message if this device
21387 		 * has removable media.
21388 		 */
21389 		if (!un->un_f_has_removable_media) {
21390 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21391 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21392 		}
21393 		break;
21394 	}
21395 
21396 done:
21397 	if (uip->ui_dkc.dkc_callback != NULL) {
21398 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21399 	}
21400 
21401 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21402 	freerbuf(bp);
21403 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21404 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21405 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21406 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21407 
21408 	return (status);
21409 }
21410 
21411 
21412 /*
21413  *    Function: sd_send_scsi_GET_CONFIGURATION
21414  *
21415  * Description: Issues the get configuration command to the device.
21416  *		Called from sd_check_for_writable_cd & sd_get_media_info
21417  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21418  *   Arguments: ssc
21419  *		ucmdbuf
21420  *		rqbuf
21421  *		rqbuflen
21422  *		bufaddr
21423  *		buflen
21424  *		path_flag
21425  *
21426  * Return Code: 0   - Success
21427  *		errno return code from sd_ssc_send()
21428  *
21429  *     Context: Can sleep. Does not return until command is completed.
21430  *
21431  */
21432 
21433 static int
21434 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21435 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21436 	int path_flag)
21437 {
21438 	char	cdb[CDB_GROUP1];
21439 	int	status;
21440 	struct sd_lun	*un;
21441 
21442 	ASSERT(ssc != NULL);
21443 	un = ssc->ssc_un;
21444 	ASSERT(un != NULL);
21445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21446 	ASSERT(bufaddr != NULL);
21447 	ASSERT(ucmdbuf != NULL);
21448 	ASSERT(rqbuf != NULL);
21449 
21450 	SD_TRACE(SD_LOG_IO, un,
21451 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21452 
21453 	bzero(cdb, sizeof (cdb));
21454 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21455 	bzero(rqbuf, rqbuflen);
21456 	bzero(bufaddr, buflen);
21457 
21458 	/*
21459 	 * Set up cdb field for the get configuration command.
21460 	 */
21461 	cdb[0] = SCMD_GET_CONFIGURATION;
21462 	cdb[1] = 0x02;  /* Requested Type */
21463 	cdb[8] = SD_PROFILE_HEADER_LEN;
21464 	ucmdbuf->uscsi_cdb = cdb;
21465 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21466 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21467 	ucmdbuf->uscsi_buflen = buflen;
21468 	ucmdbuf->uscsi_timeout = sd_io_time;
21469 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21470 	ucmdbuf->uscsi_rqlen = rqbuflen;
21471 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21472 
21473 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21474 	    UIO_SYSSPACE, path_flag);
21475 
21476 	switch (status) {
21477 	case 0:
21478 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21479 		break;  /* Success! */
21480 	case EIO:
21481 		switch (ucmdbuf->uscsi_status) {
21482 		case STATUS_RESERVATION_CONFLICT:
21483 			status = EACCES;
21484 			break;
21485 		default:
21486 			break;
21487 		}
21488 		break;
21489 	default:
21490 		break;
21491 	}
21492 
21493 	if (status == 0) {
21494 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21495 		    "sd_send_scsi_GET_CONFIGURATION: data",
21496 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21497 	}
21498 
21499 	SD_TRACE(SD_LOG_IO, un,
21500 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21501 
21502 	return (status);
21503 }
21504 
21505 /*
21506  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21507  *
21508  * Description: Issues the get configuration command to the device to
21509  *              retrieve a specific feature. Called from
21510  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21511  *   Arguments: ssc
21512  *              ucmdbuf
21513  *              rqbuf
21514  *              rqbuflen
21515  *              bufaddr
21516  *              buflen
21517  *		feature
21518  *
21519  * Return Code: 0   - Success
21520  *              errno return code from sd_ssc_send()
21521  *
21522  *     Context: Can sleep. Does not return until command is completed.
21523  *
21524  */
21525 static int
21526 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21527 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21528 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21529 {
21530 	char    cdb[CDB_GROUP1];
21531 	int	status;
21532 	struct sd_lun	*un;
21533 
21534 	ASSERT(ssc != NULL);
21535 	un = ssc->ssc_un;
21536 	ASSERT(un != NULL);
21537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21538 	ASSERT(bufaddr != NULL);
21539 	ASSERT(ucmdbuf != NULL);
21540 	ASSERT(rqbuf != NULL);
21541 
21542 	SD_TRACE(SD_LOG_IO, un,
21543 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21544 
21545 	bzero(cdb, sizeof (cdb));
21546 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21547 	bzero(rqbuf, rqbuflen);
21548 	bzero(bufaddr, buflen);
21549 
21550 	/*
21551 	 * Set up cdb field for the get configuration command.
21552 	 */
21553 	cdb[0] = SCMD_GET_CONFIGURATION;
21554 	cdb[1] = 0x02;  /* Requested Type */
21555 	cdb[3] = feature;
21556 	cdb[8] = buflen;
21557 	ucmdbuf->uscsi_cdb = cdb;
21558 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21559 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21560 	ucmdbuf->uscsi_buflen = buflen;
21561 	ucmdbuf->uscsi_timeout = sd_io_time;
21562 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21563 	ucmdbuf->uscsi_rqlen = rqbuflen;
21564 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21565 
21566 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21567 	    UIO_SYSSPACE, path_flag);
21568 
21569 	switch (status) {
21570 	case 0:
21571 
21572 		break;  /* Success! */
21573 	case EIO:
21574 		switch (ucmdbuf->uscsi_status) {
21575 		case STATUS_RESERVATION_CONFLICT:
21576 			status = EACCES;
21577 			break;
21578 		default:
21579 			break;
21580 		}
21581 		break;
21582 	default:
21583 		break;
21584 	}
21585 
21586 	if (status == 0) {
21587 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21588 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21589 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21590 	}
21591 
21592 	SD_TRACE(SD_LOG_IO, un,
21593 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21594 
21595 	return (status);
21596 }
21597 
21598 
21599 /*
21600  *    Function: sd_send_scsi_MODE_SENSE
21601  *
21602  * Description: Utility function for issuing a scsi MODE SENSE command.
21603  *		Note: This routine uses a consistent implementation for Group0,
21604  *		Group1, and Group2 commands across all platforms. ATAPI devices
21605  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21606  *
21607  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21608  *                      structure for this target.
21609  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21610  *			  CDB_GROUP[1|2] (10 byte).
21611  *		bufaddr - buffer for page data retrieved from the target.
21612  *		buflen - size of page to be retrieved.
21613  *		page_code - page code of data to be retrieved from the target.
21614  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21615  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21616  *			to use the USCSI "direct" chain and bypass the normal
21617  *			command waitq.
21618  *
21619  * Return Code: 0   - Success
21620  *		errno return code from sd_ssc_send()
21621  *
21622  *     Context: Can sleep. Does not return until command is completed.
21623  */
21624 
21625 static int
21626 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21627 	size_t buflen,  uchar_t page_code, int path_flag)
21628 {
21629 	struct	scsi_extended_sense	sense_buf;
21630 	union scsi_cdb		cdb;
21631 	struct uscsi_cmd	ucmd_buf;
21632 	int			status;
21633 	int			headlen;
21634 	struct sd_lun		*un;
21635 
21636 	ASSERT(ssc != NULL);
21637 	un = ssc->ssc_un;
21638 	ASSERT(un != NULL);
21639 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21640 	ASSERT(bufaddr != NULL);
21641 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21642 	    (cdbsize == CDB_GROUP2));
21643 
21644 	SD_TRACE(SD_LOG_IO, un,
21645 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21646 
21647 	bzero(&cdb, sizeof (cdb));
21648 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21649 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21650 	bzero(bufaddr, buflen);
21651 
21652 	if (cdbsize == CDB_GROUP0) {
21653 		cdb.scc_cmd = SCMD_MODE_SENSE;
21654 		cdb.cdb_opaque[2] = page_code;
21655 		FORMG0COUNT(&cdb, buflen);
21656 		headlen = MODE_HEADER_LENGTH;
21657 	} else {
21658 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21659 		cdb.cdb_opaque[2] = page_code;
21660 		FORMG1COUNT(&cdb, buflen);
21661 		headlen = MODE_HEADER_LENGTH_GRP2;
21662 	}
21663 
21664 	ASSERT(headlen <= buflen);
21665 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21666 
21667 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21668 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21669 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21670 	ucmd_buf.uscsi_buflen	= buflen;
21671 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21672 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21673 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21674 	ucmd_buf.uscsi_timeout	= 60;
21675 
21676 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21677 	    UIO_SYSSPACE, path_flag);
21678 
21679 	switch (status) {
21680 	case 0:
21681 		/*
21682 		 * sr_check_wp() uses 0x3f page code and check the header of
21683 		 * mode page to determine if target device is write-protected.
21684 		 * But some USB devices return 0 bytes for 0x3f page code. For
21685 		 * this case, make sure that mode page header is returned at
21686 		 * least.
21687 		 */
21688 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21689 			status = EIO;
21690 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21691 			    "mode page header is not returned");
21692 		}
21693 		break;	/* Success! */
21694 	case EIO:
21695 		switch (ucmd_buf.uscsi_status) {
21696 		case STATUS_RESERVATION_CONFLICT:
21697 			status = EACCES;
21698 			break;
21699 		default:
21700 			break;
21701 		}
21702 		break;
21703 	default:
21704 		break;
21705 	}
21706 
21707 	if (status == 0) {
21708 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21709 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21710 	}
21711 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21712 
21713 	return (status);
21714 }
21715 
21716 
21717 /*
21718  *    Function: sd_send_scsi_MODE_SELECT
21719  *
21720  * Description: Utility function for issuing a scsi MODE SELECT command.
21721  *		Note: This routine uses a consistent implementation for Group0,
21722  *		Group1, and Group2 commands across all platforms. ATAPI devices
21723  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21724  *
21725  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21726  *                      structure for this target.
21727  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21728  *			  CDB_GROUP[1|2] (10 byte).
21729  *		bufaddr - buffer for page data retrieved from the target.
21730  *		buflen - size of page to be retrieved.
21731  *		save_page - boolean to determin if SP bit should be set.
21732  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21733  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21734  *			to use the USCSI "direct" chain and bypass the normal
21735  *			command waitq.
21736  *
21737  * Return Code: 0   - Success
21738  *		errno return code from sd_ssc_send()
21739  *
21740  *     Context: Can sleep. Does not return until command is completed.
21741  */
21742 
21743 static int
21744 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21745 	size_t buflen,  uchar_t save_page, int path_flag)
21746 {
21747 	struct	scsi_extended_sense	sense_buf;
21748 	union scsi_cdb		cdb;
21749 	struct uscsi_cmd	ucmd_buf;
21750 	int			status;
21751 	struct sd_lun		*un;
21752 
21753 	ASSERT(ssc != NULL);
21754 	un = ssc->ssc_un;
21755 	ASSERT(un != NULL);
21756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21757 	ASSERT(bufaddr != NULL);
21758 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21759 	    (cdbsize == CDB_GROUP2));
21760 
21761 	SD_TRACE(SD_LOG_IO, un,
21762 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21763 
21764 	bzero(&cdb, sizeof (cdb));
21765 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21766 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21767 
21768 	/* Set the PF bit for many third party drives */
21769 	cdb.cdb_opaque[1] = 0x10;
21770 
21771 	/* Set the savepage(SP) bit if given */
21772 	if (save_page == SD_SAVE_PAGE) {
21773 		cdb.cdb_opaque[1] |= 0x01;
21774 	}
21775 
21776 	if (cdbsize == CDB_GROUP0) {
21777 		cdb.scc_cmd = SCMD_MODE_SELECT;
21778 		FORMG0COUNT(&cdb, buflen);
21779 	} else {
21780 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21781 		FORMG1COUNT(&cdb, buflen);
21782 	}
21783 
21784 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21785 
21786 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21787 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21788 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21789 	ucmd_buf.uscsi_buflen	= buflen;
21790 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21791 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21792 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21793 	ucmd_buf.uscsi_timeout	= 60;
21794 
21795 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21796 	    UIO_SYSSPACE, path_flag);
21797 
21798 	switch (status) {
21799 	case 0:
21800 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21801 		break;	/* Success! */
21802 	case EIO:
21803 		switch (ucmd_buf.uscsi_status) {
21804 		case STATUS_RESERVATION_CONFLICT:
21805 			status = EACCES;
21806 			break;
21807 		default:
21808 			break;
21809 		}
21810 		break;
21811 	default:
21812 		break;
21813 	}
21814 
21815 	if (status == 0) {
21816 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21817 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21818 	}
21819 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21820 
21821 	return (status);
21822 }
21823 
21824 
21825 /*
21826  *    Function: sd_send_scsi_RDWR
21827  *
21828  * Description: Issue a scsi READ or WRITE command with the given parameters.
21829  *
21830  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21831  *                      structure for this target.
21832  *		cmd:	 SCMD_READ or SCMD_WRITE
21833  *		bufaddr: Address of caller's buffer to receive the RDWR data
21834  *		buflen:  Length of caller's buffer receive the RDWR data.
21835  *		start_block: Block number for the start of the RDWR operation.
21836  *			 (Assumes target-native block size.)
21837  *		residp:  Pointer to variable to receive the redisual of the
21838  *			 RDWR operation (may be NULL of no residual requested).
21839  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21840  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21841  *			to use the USCSI "direct" chain and bypass the normal
21842  *			command waitq.
21843  *
21844  * Return Code: 0   - Success
21845  *		errno return code from sd_ssc_send()
21846  *
21847  *     Context: Can sleep. Does not return until command is completed.
21848  */
21849 
21850 static int
21851 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21852 	size_t buflen, daddr_t start_block, int path_flag)
21853 {
21854 	struct	scsi_extended_sense	sense_buf;
21855 	union scsi_cdb		cdb;
21856 	struct uscsi_cmd	ucmd_buf;
21857 	uint32_t		block_count;
21858 	int			status;
21859 	int			cdbsize;
21860 	uchar_t			flag;
21861 	struct sd_lun		*un;
21862 
21863 	ASSERT(ssc != NULL);
21864 	un = ssc->ssc_un;
21865 	ASSERT(un != NULL);
21866 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21867 	ASSERT(bufaddr != NULL);
21868 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21869 
21870 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21871 
21872 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21873 		return (EINVAL);
21874 	}
21875 
21876 	mutex_enter(SD_MUTEX(un));
21877 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21878 	mutex_exit(SD_MUTEX(un));
21879 
21880 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21881 
21882 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21883 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21884 	    bufaddr, buflen, start_block, block_count);
21885 
21886 	bzero(&cdb, sizeof (cdb));
21887 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21888 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21889 
21890 	/* Compute CDB size to use */
21891 	if (start_block > 0xffffffff)
21892 		cdbsize = CDB_GROUP4;
21893 	else if ((start_block & 0xFFE00000) ||
21894 	    (un->un_f_cfg_is_atapi == TRUE))
21895 		cdbsize = CDB_GROUP1;
21896 	else
21897 		cdbsize = CDB_GROUP0;
21898 
21899 	switch (cdbsize) {
21900 	case CDB_GROUP0:	/* 6-byte CDBs */
21901 		cdb.scc_cmd = cmd;
21902 		FORMG0ADDR(&cdb, start_block);
21903 		FORMG0COUNT(&cdb, block_count);
21904 		break;
21905 	case CDB_GROUP1:	/* 10-byte CDBs */
21906 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21907 		FORMG1ADDR(&cdb, start_block);
21908 		FORMG1COUNT(&cdb, block_count);
21909 		break;
21910 	case CDB_GROUP4:	/* 16-byte CDBs */
21911 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21912 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21913 		FORMG4COUNT(&cdb, block_count);
21914 		break;
21915 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21916 	default:
21917 		/* All others reserved */
21918 		return (EINVAL);
21919 	}
21920 
21921 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21922 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21923 
21924 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21925 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21926 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21927 	ucmd_buf.uscsi_buflen	= buflen;
21928 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21929 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21930 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21931 	ucmd_buf.uscsi_timeout	= 60;
21932 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21933 	    UIO_SYSSPACE, path_flag);
21934 
21935 	switch (status) {
21936 	case 0:
21937 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21938 		break;	/* Success! */
21939 	case EIO:
21940 		switch (ucmd_buf.uscsi_status) {
21941 		case STATUS_RESERVATION_CONFLICT:
21942 			status = EACCES;
21943 			break;
21944 		default:
21945 			break;
21946 		}
21947 		break;
21948 	default:
21949 		break;
21950 	}
21951 
21952 	if (status == 0) {
21953 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21954 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21955 	}
21956 
21957 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21958 
21959 	return (status);
21960 }
21961 
21962 
21963 /*
21964  *    Function: sd_send_scsi_LOG_SENSE
21965  *
21966  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21967  *
21968  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21969  *                      structure for this target.
21970  *
21971  * Return Code: 0   - Success
21972  *		errno return code from sd_ssc_send()
21973  *
21974  *     Context: Can sleep. Does not return until command is completed.
21975  */
21976 
21977 static int
21978 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21979 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21980 	int path_flag)
21981 
21982 {
21983 	struct scsi_extended_sense	sense_buf;
21984 	union scsi_cdb		cdb;
21985 	struct uscsi_cmd	ucmd_buf;
21986 	int			status;
21987 	struct sd_lun		*un;
21988 
21989 	ASSERT(ssc != NULL);
21990 	un = ssc->ssc_un;
21991 	ASSERT(un != NULL);
21992 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21993 
21994 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21995 
21996 	bzero(&cdb, sizeof (cdb));
21997 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21998 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21999 
22000 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
22001 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
22002 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
22003 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
22004 	FORMG1COUNT(&cdb, buflen);
22005 
22006 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22007 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22008 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22009 	ucmd_buf.uscsi_buflen	= buflen;
22010 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
22011 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
22012 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
22013 	ucmd_buf.uscsi_timeout	= 60;
22014 
22015 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22016 	    UIO_SYSSPACE, path_flag);
22017 
22018 	switch (status) {
22019 	case 0:
22020 		break;
22021 	case EIO:
22022 		switch (ucmd_buf.uscsi_status) {
22023 		case STATUS_RESERVATION_CONFLICT:
22024 			status = EACCES;
22025 			break;
22026 		case STATUS_CHECK:
22027 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22028 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22029 				KEY_ILLEGAL_REQUEST) &&
22030 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22031 				/*
22032 				 * ASC 0x24: INVALID FIELD IN CDB
22033 				 */
22034 				switch (page_code) {
22035 				case START_STOP_CYCLE_PAGE:
22036 					/*
22037 					 * The start stop cycle counter is
22038 					 * implemented as page 0x31 in earlier
22039 					 * generation disks. In new generation
22040 					 * disks the start stop cycle counter is
22041 					 * implemented as page 0xE. To properly
22042 					 * handle this case if an attempt for
22043 					 * log page 0xE is made and fails we
22044 					 * will try again using page 0x31.
22045 					 *
22046 					 * Network storage BU committed to
22047 					 * maintain the page 0x31 for this
22048 					 * purpose and will not have any other
22049 					 * page implemented with page code 0x31
22050 					 * until all disks transition to the
22051 					 * standard page.
22052 					 */
22053 					mutex_enter(SD_MUTEX(un));
22054 					un->un_start_stop_cycle_page =
22055 					    START_STOP_CYCLE_VU_PAGE;
22056 					cdb.cdb_opaque[2] =
22057 					    (char)(page_control << 6) |
22058 					    un->un_start_stop_cycle_page;
22059 					mutex_exit(SD_MUTEX(un));
22060 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22061 					status = sd_ssc_send(
22062 					    ssc, &ucmd_buf, FKIOCTL,
22063 					    UIO_SYSSPACE, path_flag);
22064 
22065 					break;
22066 				case TEMPERATURE_PAGE:
22067 					status = ENOTTY;
22068 					break;
22069 				default:
22070 					break;
22071 				}
22072 			}
22073 			break;
22074 		default:
22075 			break;
22076 		}
22077 		break;
22078 	default:
22079 		break;
22080 	}
22081 
22082 	if (status == 0) {
22083 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22084 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22085 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22086 	}
22087 
22088 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22089 
22090 	return (status);
22091 }
22092 
22093 
22094 /*
22095  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22096  *
22097  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22098  *
22099  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22100  *                      structure for this target.
22101  *		bufaddr
22102  *		buflen
22103  *		class_req
22104  *
22105  * Return Code: 0   - Success
22106  *		errno return code from sd_ssc_send()
22107  *
22108  *     Context: Can sleep. Does not return until command is completed.
22109  */
22110 
22111 static int
22112 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22113 	size_t buflen, uchar_t class_req)
22114 {
22115 	union scsi_cdb		cdb;
22116 	struct uscsi_cmd	ucmd_buf;
22117 	int			status;
22118 	struct sd_lun		*un;
22119 
22120 	ASSERT(ssc != NULL);
22121 	un = ssc->ssc_un;
22122 	ASSERT(un != NULL);
22123 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22124 	ASSERT(bufaddr != NULL);
22125 
22126 	SD_TRACE(SD_LOG_IO, un,
22127 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22128 
22129 	bzero(&cdb, sizeof (cdb));
22130 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22131 	bzero(bufaddr, buflen);
22132 
22133 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22134 	cdb.cdb_opaque[1] = 1; /* polled */
22135 	cdb.cdb_opaque[4] = class_req;
22136 	FORMG1COUNT(&cdb, buflen);
22137 
22138 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22139 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22140 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22141 	ucmd_buf.uscsi_buflen	= buflen;
22142 	ucmd_buf.uscsi_rqbuf	= NULL;
22143 	ucmd_buf.uscsi_rqlen	= 0;
22144 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22145 	ucmd_buf.uscsi_timeout	= 60;
22146 
22147 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22148 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22149 
22150 	/*
22151 	 * Only handle status == 0, the upper-level caller
22152 	 * will put different assessment based on the context.
22153 	 */
22154 	if (status == 0) {
22155 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22156 
22157 		if (ucmd_buf.uscsi_resid != 0) {
22158 			status = EIO;
22159 		}
22160 	}
22161 
22162 	SD_TRACE(SD_LOG_IO, un,
22163 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22164 
22165 	return (status);
22166 }
22167 
22168 
22169 static boolean_t
22170 sd_gesn_media_data_valid(uchar_t *data)
22171 {
22172 	uint16_t			len;
22173 
22174 	len = (data[1] << 8) | data[0];
22175 	return ((len >= 6) &&
22176 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22177 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22178 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22179 }
22180 
22181 
22182 /*
22183  *    Function: sdioctl
22184  *
22185  * Description: Driver's ioctl(9e) entry point function.
22186  *
22187  *   Arguments: dev     - device number
22188  *		cmd     - ioctl operation to be performed
22189  *		arg     - user argument, contains data to be set or reference
22190  *			  parameter for get
22191  *		flag    - bit flag, indicating open settings, 32/64 bit type
22192  *		cred_p  - user credential pointer
22193  *		rval_p  - calling process return value (OPT)
22194  *
22195  * Return Code: EINVAL
22196  *		ENOTTY
22197  *		ENXIO
22198  *		EIO
22199  *		EFAULT
22200  *		ENOTSUP
22201  *		EPERM
22202  *
22203  *     Context: Called from the device switch at normal priority.
22204  */
22205 
22206 static int
22207 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22208 {
22209 	struct sd_lun	*un = NULL;
22210 	int		err = 0;
22211 	int		i = 0;
22212 	cred_t		*cr;
22213 	int		tmprval = EINVAL;
22214 	boolean_t	is_valid;
22215 	sd_ssc_t	*ssc;
22216 
22217 	/*
22218 	 * All device accesses go thru sdstrategy where we check on suspend
22219 	 * status
22220 	 */
22221 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22222 		return (ENXIO);
22223 	}
22224 
22225 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22226 
22227 	/* Initialize sd_ssc_t for internal uscsi commands */
22228 	ssc = sd_ssc_init(un);
22229 
22230 	is_valid = SD_IS_VALID_LABEL(un);
22231 
22232 	/*
22233 	 * Moved this wait from sd_uscsi_strategy to here for
22234 	 * reasons of deadlock prevention. Internal driver commands,
22235 	 * specifically those to change a devices power level, result
22236 	 * in a call to sd_uscsi_strategy.
22237 	 */
22238 	mutex_enter(SD_MUTEX(un));
22239 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22240 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22241 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22242 	}
22243 	/*
22244 	 * Twiddling the counter here protects commands from now
22245 	 * through to the top of sd_uscsi_strategy. Without the
22246 	 * counter inc. a power down, for example, could get in
22247 	 * after the above check for state is made and before
22248 	 * execution gets to the top of sd_uscsi_strategy.
22249 	 * That would cause problems.
22250 	 */
22251 	un->un_ncmds_in_driver++;
22252 
22253 	if (!is_valid &&
22254 	    (flag & (FNDELAY | FNONBLOCK))) {
22255 		switch (cmd) {
22256 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22257 		case DKIOCGVTOC:
22258 		case DKIOCGEXTVTOC:
22259 		case DKIOCGAPART:
22260 		case DKIOCPARTINFO:
22261 		case DKIOCEXTPARTINFO:
22262 		case DKIOCSGEOM:
22263 		case DKIOCSAPART:
22264 		case DKIOCGETEFI:
22265 		case DKIOCPARTITION:
22266 		case DKIOCSVTOC:
22267 		case DKIOCSEXTVTOC:
22268 		case DKIOCSETEFI:
22269 		case DKIOCGMBOOT:
22270 		case DKIOCSMBOOT:
22271 		case DKIOCG_PHYGEOM:
22272 		case DKIOCG_VIRTGEOM:
22273 #if defined(__i386) || defined(__amd64)
22274 		case DKIOCSETEXTPART:
22275 #endif
22276 			/* let cmlb handle it */
22277 			goto skip_ready_valid;
22278 
22279 		case CDROMPAUSE:
22280 		case CDROMRESUME:
22281 		case CDROMPLAYMSF:
22282 		case CDROMPLAYTRKIND:
22283 		case CDROMREADTOCHDR:
22284 		case CDROMREADTOCENTRY:
22285 		case CDROMSTOP:
22286 		case CDROMSTART:
22287 		case CDROMVOLCTRL:
22288 		case CDROMSUBCHNL:
22289 		case CDROMREADMODE2:
22290 		case CDROMREADMODE1:
22291 		case CDROMREADOFFSET:
22292 		case CDROMSBLKMODE:
22293 		case CDROMGBLKMODE:
22294 		case CDROMGDRVSPEED:
22295 		case CDROMSDRVSPEED:
22296 		case CDROMCDDA:
22297 		case CDROMCDXA:
22298 		case CDROMSUBCODE:
22299 			if (!ISCD(un)) {
22300 				un->un_ncmds_in_driver--;
22301 				ASSERT(un->un_ncmds_in_driver >= 0);
22302 				mutex_exit(SD_MUTEX(un));
22303 				err = ENOTTY;
22304 				goto done_without_assess;
22305 			}
22306 			break;
22307 		case FDEJECT:
22308 		case DKIOCEJECT:
22309 		case CDROMEJECT:
22310 			if (!un->un_f_eject_media_supported) {
22311 				un->un_ncmds_in_driver--;
22312 				ASSERT(un->un_ncmds_in_driver >= 0);
22313 				mutex_exit(SD_MUTEX(un));
22314 				err = ENOTTY;
22315 				goto done_without_assess;
22316 			}
22317 			break;
22318 		case DKIOCFLUSHWRITECACHE:
22319 			mutex_exit(SD_MUTEX(un));
22320 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22321 			if (err != 0) {
22322 				mutex_enter(SD_MUTEX(un));
22323 				un->un_ncmds_in_driver--;
22324 				ASSERT(un->un_ncmds_in_driver >= 0);
22325 				mutex_exit(SD_MUTEX(un));
22326 				err = EIO;
22327 				goto done_quick_assess;
22328 			}
22329 			mutex_enter(SD_MUTEX(un));
22330 			/* FALLTHROUGH */
22331 		case DKIOCREMOVABLE:
22332 		case DKIOCHOTPLUGGABLE:
22333 		case DKIOCINFO:
22334 		case DKIOCGMEDIAINFO:
22335 		case DKIOCGMEDIAINFOEXT:
22336 		case DKIOCSOLIDSTATE:
22337 		case MHIOCENFAILFAST:
22338 		case MHIOCSTATUS:
22339 		case MHIOCTKOWN:
22340 		case MHIOCRELEASE:
22341 		case MHIOCGRP_INKEYS:
22342 		case MHIOCGRP_INRESV:
22343 		case MHIOCGRP_REGISTER:
22344 		case MHIOCGRP_CLEAR:
22345 		case MHIOCGRP_RESERVE:
22346 		case MHIOCGRP_PREEMPTANDABORT:
22347 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22348 		case CDROMCLOSETRAY:
22349 		case USCSICMD:
22350 			goto skip_ready_valid;
22351 		default:
22352 			break;
22353 		}
22354 
22355 		mutex_exit(SD_MUTEX(un));
22356 		err = sd_ready_and_valid(ssc, SDPART(dev));
22357 		mutex_enter(SD_MUTEX(un));
22358 
22359 		if (err != SD_READY_VALID) {
22360 			switch (cmd) {
22361 			case DKIOCSTATE:
22362 			case CDROMGDRVSPEED:
22363 			case CDROMSDRVSPEED:
22364 			case FDEJECT:	/* for eject command */
22365 			case DKIOCEJECT:
22366 			case CDROMEJECT:
22367 			case DKIOCREMOVABLE:
22368 			case DKIOCHOTPLUGGABLE:
22369 				break;
22370 			default:
22371 				if (un->un_f_has_removable_media) {
22372 					err = ENXIO;
22373 				} else {
22374 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22375 					if (err == SD_RESERVED_BY_OTHERS) {
22376 						err = EACCES;
22377 					} else {
22378 						err = EIO;
22379 					}
22380 				}
22381 				un->un_ncmds_in_driver--;
22382 				ASSERT(un->un_ncmds_in_driver >= 0);
22383 				mutex_exit(SD_MUTEX(un));
22384 
22385 				goto done_without_assess;
22386 			}
22387 		}
22388 	}
22389 
22390 skip_ready_valid:
22391 	mutex_exit(SD_MUTEX(un));
22392 
22393 	switch (cmd) {
22394 	case DKIOCINFO:
22395 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22396 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22397 		break;
22398 
22399 	case DKIOCGMEDIAINFO:
22400 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22401 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22402 		break;
22403 
22404 	case DKIOCGMEDIAINFOEXT:
22405 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22406 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22407 		break;
22408 
22409 	case DKIOCGGEOM:
22410 	case DKIOCGVTOC:
22411 	case DKIOCGEXTVTOC:
22412 	case DKIOCGAPART:
22413 	case DKIOCPARTINFO:
22414 	case DKIOCEXTPARTINFO:
22415 	case DKIOCSGEOM:
22416 	case DKIOCSAPART:
22417 	case DKIOCGETEFI:
22418 	case DKIOCPARTITION:
22419 	case DKIOCSVTOC:
22420 	case DKIOCSEXTVTOC:
22421 	case DKIOCSETEFI:
22422 	case DKIOCGMBOOT:
22423 	case DKIOCSMBOOT:
22424 	case DKIOCG_PHYGEOM:
22425 	case DKIOCG_VIRTGEOM:
22426 #if defined(__i386) || defined(__amd64)
22427 	case DKIOCSETEXTPART:
22428 #endif
22429 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22430 
22431 		/* TUR should spin up */
22432 
22433 		if (un->un_f_has_removable_media)
22434 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22435 			    SD_CHECK_FOR_MEDIA);
22436 
22437 		else
22438 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22439 
22440 		if (err != 0)
22441 			goto done_with_assess;
22442 
22443 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22444 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22445 
22446 		if ((err == 0) &&
22447 		    ((cmd == DKIOCSETEFI) ||
22448 		    (un->un_f_pkstats_enabled) &&
22449 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22450 		    cmd == DKIOCSEXTVTOC))) {
22451 
22452 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22453 			    (void *)SD_PATH_DIRECT);
22454 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22455 				sd_set_pstats(un);
22456 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22457 				    "sd_ioctl: un:0x%p pstats created and "
22458 				    "set\n", un);
22459 			}
22460 		}
22461 
22462 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22463 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22464 
22465 			mutex_enter(SD_MUTEX(un));
22466 			if (un->un_f_devid_supported &&
22467 			    (un->un_f_opt_fab_devid == TRUE)) {
22468 				if (un->un_devid == NULL) {
22469 					sd_register_devid(ssc, SD_DEVINFO(un),
22470 					    SD_TARGET_IS_UNRESERVED);
22471 				} else {
22472 					/*
22473 					 * The device id for this disk
22474 					 * has been fabricated. The
22475 					 * device id must be preserved
22476 					 * by writing it back out to
22477 					 * disk.
22478 					 */
22479 					if (sd_write_deviceid(ssc) != 0) {
22480 						ddi_devid_free(un->un_devid);
22481 						un->un_devid = NULL;
22482 					}
22483 				}
22484 			}
22485 			mutex_exit(SD_MUTEX(un));
22486 		}
22487 
22488 		break;
22489 
22490 	case DKIOCLOCK:
22491 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22492 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22493 		    SD_PATH_STANDARD);
22494 		goto done_with_assess;
22495 
22496 	case DKIOCUNLOCK:
22497 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22498 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22499 		    SD_PATH_STANDARD);
22500 		goto done_with_assess;
22501 
22502 	case DKIOCSTATE: {
22503 		enum dkio_state		state;
22504 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22505 
22506 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22507 			err = EFAULT;
22508 		} else {
22509 			err = sd_check_media(dev, state);
22510 			if (err == 0) {
22511 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22512 				    sizeof (int), flag) != 0)
22513 					err = EFAULT;
22514 			}
22515 		}
22516 		break;
22517 	}
22518 
22519 	case DKIOCREMOVABLE:
22520 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22521 		i = un->un_f_has_removable_media ? 1 : 0;
22522 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22523 			err = EFAULT;
22524 		} else {
22525 			err = 0;
22526 		}
22527 		break;
22528 
22529 	case DKIOCSOLIDSTATE:
22530 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSOLIDSTATE\n");
22531 		i = un->un_f_is_solid_state ? 1 : 0;
22532 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22533 			err = EFAULT;
22534 		} else {
22535 			err = 0;
22536 		}
22537 		break;
22538 
22539 	case DKIOCHOTPLUGGABLE:
22540 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22541 		i = un->un_f_is_hotpluggable ? 1 : 0;
22542 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22543 			err = EFAULT;
22544 		} else {
22545 			err = 0;
22546 		}
22547 		break;
22548 
22549 	case DKIOCREADONLY:
22550 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22551 		i = 0;
22552 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22553 		    (sr_check_wp(dev) != 0)) {
22554 			i = 1;
22555 		}
22556 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22557 			err = EFAULT;
22558 		} else {
22559 			err = 0;
22560 		}
22561 		break;
22562 
22563 	case DKIOCGTEMPERATURE:
22564 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22565 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22566 		break;
22567 
22568 	case MHIOCENFAILFAST:
22569 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22570 		if ((err = drv_priv(cred_p)) == 0) {
22571 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22572 		}
22573 		break;
22574 
22575 	case MHIOCTKOWN:
22576 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22577 		if ((err = drv_priv(cred_p)) == 0) {
22578 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22579 		}
22580 		break;
22581 
22582 	case MHIOCRELEASE:
22583 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22584 		if ((err = drv_priv(cred_p)) == 0) {
22585 			err = sd_mhdioc_release(dev);
22586 		}
22587 		break;
22588 
22589 	case MHIOCSTATUS:
22590 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22591 		if ((err = drv_priv(cred_p)) == 0) {
22592 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22593 			case 0:
22594 				err = 0;
22595 				break;
22596 			case EACCES:
22597 				*rval_p = 1;
22598 				err = 0;
22599 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22600 				break;
22601 			default:
22602 				err = EIO;
22603 				goto done_with_assess;
22604 			}
22605 		}
22606 		break;
22607 
22608 	case MHIOCQRESERVE:
22609 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22610 		if ((err = drv_priv(cred_p)) == 0) {
22611 			err = sd_reserve_release(dev, SD_RESERVE);
22612 		}
22613 		break;
22614 
22615 	case MHIOCREREGISTERDEVID:
22616 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22617 		if (drv_priv(cred_p) == EPERM) {
22618 			err = EPERM;
22619 		} else if (!un->un_f_devid_supported) {
22620 			err = ENOTTY;
22621 		} else {
22622 			err = sd_mhdioc_register_devid(dev);
22623 		}
22624 		break;
22625 
22626 	case MHIOCGRP_INKEYS:
22627 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22628 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22629 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22630 				err = ENOTSUP;
22631 			} else {
22632 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22633 				    flag);
22634 			}
22635 		}
22636 		break;
22637 
22638 	case MHIOCGRP_INRESV:
22639 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22640 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22641 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22642 				err = ENOTSUP;
22643 			} else {
22644 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22645 			}
22646 		}
22647 		break;
22648 
22649 	case MHIOCGRP_REGISTER:
22650 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22651 		if ((err = drv_priv(cred_p)) != EPERM) {
22652 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22653 				err = ENOTSUP;
22654 			} else if (arg != NULL) {
22655 				mhioc_register_t reg;
22656 				if (ddi_copyin((void *)arg, &reg,
22657 				    sizeof (mhioc_register_t), flag) != 0) {
22658 					err = EFAULT;
22659 				} else {
22660 					err =
22661 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22662 					    ssc, SD_SCSI3_REGISTER,
22663 					    (uchar_t *)&reg);
22664 					if (err != 0)
22665 						goto done_with_assess;
22666 				}
22667 			}
22668 		}
22669 		break;
22670 
22671 	case MHIOCGRP_CLEAR:
22672 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22673 		if ((err = drv_priv(cred_p)) != EPERM) {
22674 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22675 				err = ENOTSUP;
22676 			} else if (arg != NULL) {
22677 				mhioc_register_t reg;
22678 				if (ddi_copyin((void *)arg, &reg,
22679 				    sizeof (mhioc_register_t), flag) != 0) {
22680 					err = EFAULT;
22681 				} else {
22682 					err =
22683 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22684 					    ssc, SD_SCSI3_CLEAR,
22685 					    (uchar_t *)&reg);
22686 					if (err != 0)
22687 						goto done_with_assess;
22688 				}
22689 			}
22690 		}
22691 		break;
22692 
22693 	case MHIOCGRP_RESERVE:
22694 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22695 		if ((err = drv_priv(cred_p)) != EPERM) {
22696 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22697 				err = ENOTSUP;
22698 			} else if (arg != NULL) {
22699 				mhioc_resv_desc_t resv_desc;
22700 				if (ddi_copyin((void *)arg, &resv_desc,
22701 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22702 					err = EFAULT;
22703 				} else {
22704 					err =
22705 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22706 					    ssc, SD_SCSI3_RESERVE,
22707 					    (uchar_t *)&resv_desc);
22708 					if (err != 0)
22709 						goto done_with_assess;
22710 				}
22711 			}
22712 		}
22713 		break;
22714 
22715 	case MHIOCGRP_PREEMPTANDABORT:
22716 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22717 		if ((err = drv_priv(cred_p)) != EPERM) {
22718 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22719 				err = ENOTSUP;
22720 			} else if (arg != NULL) {
22721 				mhioc_preemptandabort_t preempt_abort;
22722 				if (ddi_copyin((void *)arg, &preempt_abort,
22723 				    sizeof (mhioc_preemptandabort_t),
22724 				    flag) != 0) {
22725 					err = EFAULT;
22726 				} else {
22727 					err =
22728 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22729 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22730 					    (uchar_t *)&preempt_abort);
22731 					if (err != 0)
22732 						goto done_with_assess;
22733 				}
22734 			}
22735 		}
22736 		break;
22737 
22738 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22739 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22740 		if ((err = drv_priv(cred_p)) != EPERM) {
22741 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22742 				err = ENOTSUP;
22743 			} else if (arg != NULL) {
22744 				mhioc_registerandignorekey_t r_and_i;
22745 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22746 				    sizeof (mhioc_registerandignorekey_t),
22747 				    flag) != 0) {
22748 					err = EFAULT;
22749 				} else {
22750 					err =
22751 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22752 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22753 					    (uchar_t *)&r_and_i);
22754 					if (err != 0)
22755 						goto done_with_assess;
22756 				}
22757 			}
22758 		}
22759 		break;
22760 
22761 	case USCSICMD:
22762 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22763 		cr = ddi_get_cred();
22764 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22765 			err = EPERM;
22766 		} else {
22767 			enum uio_seg	uioseg;
22768 
22769 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22770 			    UIO_USERSPACE;
22771 			if (un->un_f_format_in_progress == TRUE) {
22772 				err = EAGAIN;
22773 				break;
22774 			}
22775 
22776 			err = sd_ssc_send(ssc,
22777 			    (struct uscsi_cmd *)arg,
22778 			    flag, uioseg, SD_PATH_STANDARD);
22779 			if (err != 0)
22780 				goto done_with_assess;
22781 			else
22782 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22783 		}
22784 		break;
22785 
22786 	case CDROMPAUSE:
22787 	case CDROMRESUME:
22788 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22789 		if (!ISCD(un)) {
22790 			err = ENOTTY;
22791 		} else {
22792 			err = sr_pause_resume(dev, cmd);
22793 		}
22794 		break;
22795 
22796 	case CDROMPLAYMSF:
22797 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22798 		if (!ISCD(un)) {
22799 			err = ENOTTY;
22800 		} else {
22801 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22802 		}
22803 		break;
22804 
22805 	case CDROMPLAYTRKIND:
22806 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22807 #if defined(__i386) || defined(__amd64)
22808 		/*
22809 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22810 		 */
22811 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22812 #else
22813 		if (!ISCD(un)) {
22814 #endif
22815 			err = ENOTTY;
22816 		} else {
22817 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22818 		}
22819 		break;
22820 
22821 	case CDROMREADTOCHDR:
22822 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22823 		if (!ISCD(un)) {
22824 			err = ENOTTY;
22825 		} else {
22826 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22827 		}
22828 		break;
22829 
22830 	case CDROMREADTOCENTRY:
22831 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22832 		if (!ISCD(un)) {
22833 			err = ENOTTY;
22834 		} else {
22835 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22836 		}
22837 		break;
22838 
22839 	case CDROMSTOP:
22840 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22841 		if (!ISCD(un)) {
22842 			err = ENOTTY;
22843 		} else {
22844 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22845 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22846 			goto done_with_assess;
22847 		}
22848 		break;
22849 
22850 	case CDROMSTART:
22851 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22852 		if (!ISCD(un)) {
22853 			err = ENOTTY;
22854 		} else {
22855 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22856 			    SD_TARGET_START, SD_PATH_STANDARD);
22857 			goto done_with_assess;
22858 		}
22859 		break;
22860 
22861 	case CDROMCLOSETRAY:
22862 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22863 		if (!ISCD(un)) {
22864 			err = ENOTTY;
22865 		} else {
22866 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22867 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22868 			goto done_with_assess;
22869 		}
22870 		break;
22871 
22872 	case FDEJECT:	/* for eject command */
22873 	case DKIOCEJECT:
22874 	case CDROMEJECT:
22875 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22876 		if (!un->un_f_eject_media_supported) {
22877 			err = ENOTTY;
22878 		} else {
22879 			err = sr_eject(dev);
22880 		}
22881 		break;
22882 
22883 	case CDROMVOLCTRL:
22884 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22885 		if (!ISCD(un)) {
22886 			err = ENOTTY;
22887 		} else {
22888 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22889 		}
22890 		break;
22891 
22892 	case CDROMSUBCHNL:
22893 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22894 		if (!ISCD(un)) {
22895 			err = ENOTTY;
22896 		} else {
22897 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22898 		}
22899 		break;
22900 
22901 	case CDROMREADMODE2:
22902 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22903 		if (!ISCD(un)) {
22904 			err = ENOTTY;
22905 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22906 			/*
22907 			 * If the drive supports READ CD, use that instead of
22908 			 * switching the LBA size via a MODE SELECT
22909 			 * Block Descriptor
22910 			 */
22911 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22912 		} else {
22913 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22914 		}
22915 		break;
22916 
22917 	case CDROMREADMODE1:
22918 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22919 		if (!ISCD(un)) {
22920 			err = ENOTTY;
22921 		} else {
22922 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22923 		}
22924 		break;
22925 
22926 	case CDROMREADOFFSET:
22927 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22928 		if (!ISCD(un)) {
22929 			err = ENOTTY;
22930 		} else {
22931 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22932 			    flag);
22933 		}
22934 		break;
22935 
22936 	case CDROMSBLKMODE:
22937 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22938 		/*
22939 		 * There is no means of changing block size in case of atapi
22940 		 * drives, thus return ENOTTY if drive type is atapi
22941 		 */
22942 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22943 			err = ENOTTY;
22944 		} else if (un->un_f_mmc_cap == TRUE) {
22945 
22946 			/*
22947 			 * MMC Devices do not support changing the
22948 			 * logical block size
22949 			 *
22950 			 * Note: EINVAL is being returned instead of ENOTTY to
22951 			 * maintain consistancy with the original mmc
22952 			 * driver update.
22953 			 */
22954 			err = EINVAL;
22955 		} else {
22956 			mutex_enter(SD_MUTEX(un));
22957 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22958 			    (un->un_ncmds_in_transport > 0)) {
22959 				mutex_exit(SD_MUTEX(un));
22960 				err = EINVAL;
22961 			} else {
22962 				mutex_exit(SD_MUTEX(un));
22963 				err = sr_change_blkmode(dev, cmd, arg, flag);
22964 			}
22965 		}
22966 		break;
22967 
22968 	case CDROMGBLKMODE:
22969 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22970 		if (!ISCD(un)) {
22971 			err = ENOTTY;
22972 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22973 		    (un->un_f_blockcount_is_valid != FALSE)) {
22974 			/*
22975 			 * Drive is an ATAPI drive so return target block
22976 			 * size for ATAPI drives since we cannot change the
22977 			 * blocksize on ATAPI drives. Used primarily to detect
22978 			 * if an ATAPI cdrom is present.
22979 			 */
22980 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22981 			    sizeof (int), flag) != 0) {
22982 				err = EFAULT;
22983 			} else {
22984 				err = 0;
22985 			}
22986 
22987 		} else {
22988 			/*
22989 			 * Drive supports changing block sizes via a Mode
22990 			 * Select.
22991 			 */
22992 			err = sr_change_blkmode(dev, cmd, arg, flag);
22993 		}
22994 		break;
22995 
22996 	case CDROMGDRVSPEED:
22997 	case CDROMSDRVSPEED:
22998 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22999 		if (!ISCD(un)) {
23000 			err = ENOTTY;
23001 		} else if (un->un_f_mmc_cap == TRUE) {
23002 			/*
23003 			 * Note: In the future the driver implementation
23004 			 * for getting and
23005 			 * setting cd speed should entail:
23006 			 * 1) If non-mmc try the Toshiba mode page
23007 			 *    (sr_change_speed)
23008 			 * 2) If mmc but no support for Real Time Streaming try
23009 			 *    the SET CD SPEED (0xBB) command
23010 			 *   (sr_atapi_change_speed)
23011 			 * 3) If mmc and support for Real Time Streaming
23012 			 *    try the GET PERFORMANCE and SET STREAMING
23013 			 *    commands (not yet implemented, 4380808)
23014 			 */
23015 			/*
23016 			 * As per recent MMC spec, CD-ROM speed is variable
23017 			 * and changes with LBA. Since there is no such
23018 			 * things as drive speed now, fail this ioctl.
23019 			 *
23020 			 * Note: EINVAL is returned for consistancy of original
23021 			 * implementation which included support for getting
23022 			 * the drive speed of mmc devices but not setting
23023 			 * the drive speed. Thus EINVAL would be returned
23024 			 * if a set request was made for an mmc device.
23025 			 * We no longer support get or set speed for
23026 			 * mmc but need to remain consistent with regard
23027 			 * to the error code returned.
23028 			 */
23029 			err = EINVAL;
23030 		} else if (un->un_f_cfg_is_atapi == TRUE) {
23031 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
23032 		} else {
23033 			err = sr_change_speed(dev, cmd, arg, flag);
23034 		}
23035 		break;
23036 
23037 	case CDROMCDDA:
23038 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23039 		if (!ISCD(un)) {
23040 			err = ENOTTY;
23041 		} else {
23042 			err = sr_read_cdda(dev, (void *)arg, flag);
23043 		}
23044 		break;
23045 
23046 	case CDROMCDXA:
23047 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23048 		if (!ISCD(un)) {
23049 			err = ENOTTY;
23050 		} else {
23051 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23052 		}
23053 		break;
23054 
23055 	case CDROMSUBCODE:
23056 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23057 		if (!ISCD(un)) {
23058 			err = ENOTTY;
23059 		} else {
23060 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23061 		}
23062 		break;
23063 
23064 
23065 #ifdef SDDEBUG
23066 /* RESET/ABORTS testing ioctls */
23067 	case DKIOCRESET: {
23068 		int	reset_level;
23069 
23070 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23071 			err = EFAULT;
23072 		} else {
23073 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23074 			    "reset_level = 0x%lx\n", reset_level);
23075 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23076 				err = 0;
23077 			} else {
23078 				err = EIO;
23079 			}
23080 		}
23081 		break;
23082 	}
23083 
23084 	case DKIOCABORT:
23085 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23086 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23087 			err = 0;
23088 		} else {
23089 			err = EIO;
23090 		}
23091 		break;
23092 #endif
23093 
23094 #ifdef SD_FAULT_INJECTION
23095 /* SDIOC FaultInjection testing ioctls */
23096 	case SDIOCSTART:
23097 	case SDIOCSTOP:
23098 	case SDIOCINSERTPKT:
23099 	case SDIOCINSERTXB:
23100 	case SDIOCINSERTUN:
23101 	case SDIOCINSERTARQ:
23102 	case SDIOCPUSH:
23103 	case SDIOCRETRIEVE:
23104 	case SDIOCRUN:
23105 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23106 		    "SDIOC detected cmd:0x%X:\n", cmd);
23107 		/* call error generator */
23108 		sd_faultinjection_ioctl(cmd, arg, un);
23109 		err = 0;
23110 		break;
23111 
23112 #endif /* SD_FAULT_INJECTION */
23113 
23114 	case DKIOCFLUSHWRITECACHE:
23115 		{
23116 			struct dk_callback *dkc = (struct dk_callback *)arg;
23117 
23118 			mutex_enter(SD_MUTEX(un));
23119 			if (!un->un_f_sync_cache_supported ||
23120 			    !un->un_f_write_cache_enabled) {
23121 				err = un->un_f_sync_cache_supported ?
23122 				    0 : ENOTSUP;
23123 				mutex_exit(SD_MUTEX(un));
23124 				if ((flag & FKIOCTL) && dkc != NULL &&
23125 				    dkc->dkc_callback != NULL) {
23126 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23127 					    err);
23128 					/*
23129 					 * Did callback and reported error.
23130 					 * Since we did a callback, ioctl
23131 					 * should return 0.
23132 					 */
23133 					err = 0;
23134 				}
23135 				break;
23136 			}
23137 			mutex_exit(SD_MUTEX(un));
23138 
23139 			if ((flag & FKIOCTL) && dkc != NULL &&
23140 			    dkc->dkc_callback != NULL) {
23141 				/* async SYNC CACHE request */
23142 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23143 			} else {
23144 				/* synchronous SYNC CACHE request */
23145 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23146 			}
23147 		}
23148 		break;
23149 
23150 	case DKIOCGETWCE: {
23151 
23152 		int wce;
23153 
23154 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23155 			break;
23156 		}
23157 
23158 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23159 			err = EFAULT;
23160 		}
23161 		break;
23162 	}
23163 
23164 	case DKIOCSETWCE: {
23165 
23166 		int wce, sync_supported;
23167 		int cur_wce = 0;
23168 
23169 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23170 			err = EFAULT;
23171 			break;
23172 		}
23173 
23174 		/*
23175 		 * Synchronize multiple threads trying to enable
23176 		 * or disable the cache via the un_f_wcc_cv
23177 		 * condition variable.
23178 		 */
23179 		mutex_enter(SD_MUTEX(un));
23180 
23181 		/*
23182 		 * Don't allow the cache to be enabled if the
23183 		 * config file has it disabled.
23184 		 */
23185 		if (un->un_f_opt_disable_cache && wce) {
23186 			mutex_exit(SD_MUTEX(un));
23187 			err = EINVAL;
23188 			break;
23189 		}
23190 
23191 		/*
23192 		 * Wait for write cache change in progress
23193 		 * bit to be clear before proceeding.
23194 		 */
23195 		while (un->un_f_wcc_inprog)
23196 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23197 
23198 		un->un_f_wcc_inprog = 1;
23199 
23200 		mutex_exit(SD_MUTEX(un));
23201 
23202 		/*
23203 		 * Get the current write cache state
23204 		 */
23205 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23206 			mutex_enter(SD_MUTEX(un));
23207 			un->un_f_wcc_inprog = 0;
23208 			cv_broadcast(&un->un_wcc_cv);
23209 			mutex_exit(SD_MUTEX(un));
23210 			break;
23211 		}
23212 
23213 		mutex_enter(SD_MUTEX(un));
23214 		un->un_f_write_cache_enabled = (cur_wce != 0);
23215 
23216 		if (un->un_f_write_cache_enabled && wce == 0) {
23217 			/*
23218 			 * Disable the write cache.  Don't clear
23219 			 * un_f_write_cache_enabled until after
23220 			 * the mode select and flush are complete.
23221 			 */
23222 			sync_supported = un->un_f_sync_cache_supported;
23223 
23224 			/*
23225 			 * If cache flush is suppressed, we assume that the
23226 			 * controller firmware will take care of managing the
23227 			 * write cache for us: no need to explicitly
23228 			 * disable it.
23229 			 */
23230 			if (!un->un_f_suppress_cache_flush) {
23231 				mutex_exit(SD_MUTEX(un));
23232 				if ((err = sd_cache_control(ssc,
23233 				    SD_CACHE_NOCHANGE,
23234 				    SD_CACHE_DISABLE)) == 0 &&
23235 				    sync_supported) {
23236 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23237 					    NULL);
23238 				}
23239 			} else {
23240 				mutex_exit(SD_MUTEX(un));
23241 			}
23242 
23243 			mutex_enter(SD_MUTEX(un));
23244 			if (err == 0) {
23245 				un->un_f_write_cache_enabled = 0;
23246 			}
23247 
23248 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23249 			/*
23250 			 * Set un_f_write_cache_enabled first, so there is
23251 			 * no window where the cache is enabled, but the
23252 			 * bit says it isn't.
23253 			 */
23254 			un->un_f_write_cache_enabled = 1;
23255 
23256 			/*
23257 			 * If cache flush is suppressed, we assume that the
23258 			 * controller firmware will take care of managing the
23259 			 * write cache for us: no need to explicitly
23260 			 * enable it.
23261 			 */
23262 			if (!un->un_f_suppress_cache_flush) {
23263 				mutex_exit(SD_MUTEX(un));
23264 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23265 				    SD_CACHE_ENABLE);
23266 			} else {
23267 				mutex_exit(SD_MUTEX(un));
23268 			}
23269 
23270 			mutex_enter(SD_MUTEX(un));
23271 
23272 			if (err) {
23273 				un->un_f_write_cache_enabled = 0;
23274 			}
23275 		}
23276 
23277 		un->un_f_wcc_inprog = 0;
23278 		cv_broadcast(&un->un_wcc_cv);
23279 		mutex_exit(SD_MUTEX(un));
23280 		break;
23281 	}
23282 
23283 	default:
23284 		err = ENOTTY;
23285 		break;
23286 	}
23287 	mutex_enter(SD_MUTEX(un));
23288 	un->un_ncmds_in_driver--;
23289 	ASSERT(un->un_ncmds_in_driver >= 0);
23290 	mutex_exit(SD_MUTEX(un));
23291 
23292 
23293 done_without_assess:
23294 	sd_ssc_fini(ssc);
23295 
23296 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23297 	return (err);
23298 
23299 done_with_assess:
23300 	mutex_enter(SD_MUTEX(un));
23301 	un->un_ncmds_in_driver--;
23302 	ASSERT(un->un_ncmds_in_driver >= 0);
23303 	mutex_exit(SD_MUTEX(un));
23304 
23305 done_quick_assess:
23306 	if (err != 0)
23307 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23308 	/* Uninitialize sd_ssc_t pointer */
23309 	sd_ssc_fini(ssc);
23310 
23311 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23312 	return (err);
23313 }
23314 
23315 
23316 /*
23317  *    Function: sd_dkio_ctrl_info
23318  *
23319  * Description: This routine is the driver entry point for handling controller
23320  *		information ioctl requests (DKIOCINFO).
23321  *
23322  *   Arguments: dev  - the device number
23323  *		arg  - pointer to user provided dk_cinfo structure
23324  *		       specifying the controller type and attributes.
23325  *		flag - this argument is a pass through to ddi_copyxxx()
23326  *		       directly from the mode argument of ioctl().
23327  *
23328  * Return Code: 0
23329  *		EFAULT
23330  *		ENXIO
23331  */
23332 
23333 static int
23334 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23335 {
23336 	struct sd_lun	*un = NULL;
23337 	struct dk_cinfo	*info;
23338 	dev_info_t	*pdip;
23339 	int		lun, tgt;
23340 
23341 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23342 		return (ENXIO);
23343 	}
23344 
23345 	info = (struct dk_cinfo *)
23346 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23347 
23348 	switch (un->un_ctype) {
23349 	case CTYPE_CDROM:
23350 		info->dki_ctype = DKC_CDROM;
23351 		break;
23352 	default:
23353 		info->dki_ctype = DKC_SCSI_CCS;
23354 		break;
23355 	}
23356 	pdip = ddi_get_parent(SD_DEVINFO(un));
23357 	info->dki_cnum = ddi_get_instance(pdip);
23358 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23359 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23360 	} else {
23361 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23362 		    DK_DEVLEN - 1);
23363 	}
23364 
23365 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23366 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23367 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23368 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23369 
23370 	/* Unit Information */
23371 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23372 	info->dki_slave = ((tgt << 3) | lun);
23373 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23374 	    DK_DEVLEN - 1);
23375 	info->dki_flags = DKI_FMTVOL;
23376 	info->dki_partition = SDPART(dev);
23377 
23378 	/* Max Transfer size of this device in blocks */
23379 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23380 	info->dki_addr = 0;
23381 	info->dki_space = 0;
23382 	info->dki_prio = 0;
23383 	info->dki_vec = 0;
23384 
23385 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23386 		kmem_free(info, sizeof (struct dk_cinfo));
23387 		return (EFAULT);
23388 	} else {
23389 		kmem_free(info, sizeof (struct dk_cinfo));
23390 		return (0);
23391 	}
23392 }
23393 
23394 /*
23395  *    Function: sd_get_media_info_com
23396  *
23397  * Description: This routine returns the information required to populate
23398  *		the fields for the dk_minfo/dk_minfo_ext structures.
23399  *
23400  *   Arguments: dev		- the device number
23401  *		dki_media_type	- media_type
23402  *		dki_lbsize	- logical block size
23403  *		dki_capacity	- capacity in blocks
23404  *		dki_pbsize	- physical block size (if requested)
23405  *
23406  * Return Code: 0
23407  *		EACCESS
23408  *		EFAULT
23409  *		ENXIO
23410  *		EIO
23411  */
23412 static int
23413 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23414 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23415 {
23416 	struct sd_lun		*un = NULL;
23417 	struct uscsi_cmd	com;
23418 	struct scsi_inquiry	*sinq;
23419 	u_longlong_t		media_capacity;
23420 	uint64_t		capacity;
23421 	uint_t			lbasize;
23422 	uint_t			pbsize;
23423 	uchar_t			*out_data;
23424 	uchar_t			*rqbuf;
23425 	int			rval = 0;
23426 	int			rtn;
23427 	sd_ssc_t		*ssc;
23428 
23429 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23430 	    (un->un_state == SD_STATE_OFFLINE)) {
23431 		return (ENXIO);
23432 	}
23433 
23434 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23435 
23436 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23437 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23438 	ssc = sd_ssc_init(un);
23439 
23440 	/* Issue a TUR to determine if the drive is ready with media present */
23441 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23442 	if (rval == ENXIO) {
23443 		goto done;
23444 	} else if (rval != 0) {
23445 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23446 	}
23447 
23448 	/* Now get configuration data */
23449 	if (ISCD(un)) {
23450 		*dki_media_type = DK_CDROM;
23451 
23452 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23453 		if (un->un_f_mmc_cap == TRUE) {
23454 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23455 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23456 			    SD_PATH_STANDARD);
23457 
23458 			if (rtn) {
23459 				/*
23460 				 * We ignore all failures for CD and need to
23461 				 * put the assessment before processing code
23462 				 * to avoid missing assessment for FMA.
23463 				 */
23464 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23465 				/*
23466 				 * Failed for other than an illegal request
23467 				 * or command not supported
23468 				 */
23469 				if ((com.uscsi_status == STATUS_CHECK) &&
23470 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23471 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23472 					    (rqbuf[12] != 0x20)) {
23473 						rval = EIO;
23474 						goto no_assessment;
23475 					}
23476 				}
23477 			} else {
23478 				/*
23479 				 * The GET CONFIGURATION command succeeded
23480 				 * so set the media type according to the
23481 				 * returned data
23482 				 */
23483 				*dki_media_type = out_data[6];
23484 				*dki_media_type <<= 8;
23485 				*dki_media_type |= out_data[7];
23486 			}
23487 		}
23488 	} else {
23489 		/*
23490 		 * The profile list is not available, so we attempt to identify
23491 		 * the media type based on the inquiry data
23492 		 */
23493 		sinq = un->un_sd->sd_inq;
23494 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23495 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23496 			/* This is a direct access device  or optical disk */
23497 			*dki_media_type = DK_FIXED_DISK;
23498 
23499 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23500 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23501 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23502 					*dki_media_type = DK_ZIP;
23503 				} else if (
23504 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23505 					*dki_media_type = DK_JAZ;
23506 				}
23507 			}
23508 		} else {
23509 			/*
23510 			 * Not a CD, direct access or optical disk so return
23511 			 * unknown media
23512 			 */
23513 			*dki_media_type = DK_UNKNOWN;
23514 		}
23515 	}
23516 
23517 	/*
23518 	 * Now read the capacity so we can provide the lbasize,
23519 	 * pbsize and capacity.
23520 	 */
23521 	if (dki_pbsize && un->un_f_descr_format_supported) {
23522 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23523 		    &pbsize, SD_PATH_DIRECT);
23524 
23525 		/*
23526 		 * Override the physical blocksize if the instance already
23527 		 * has a larger value.
23528 		 */
23529 		pbsize = MAX(pbsize, un->un_phy_blocksize);
23530 	}
23531 
23532 	if (dki_pbsize == NULL || rval != 0 ||
23533 	    !un->un_f_descr_format_supported) {
23534 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23535 		    SD_PATH_DIRECT);
23536 
23537 		switch (rval) {
23538 		case 0:
23539 			if (un->un_f_enable_rmw &&
23540 			    un->un_phy_blocksize != 0) {
23541 				pbsize = un->un_phy_blocksize;
23542 			} else {
23543 				pbsize = lbasize;
23544 			}
23545 			media_capacity = capacity;
23546 
23547 			/*
23548 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23549 			 * un->un_sys_blocksize chunks. So we need to convert
23550 			 * it into cap.lbsize chunks.
23551 			 */
23552 			if (un->un_f_has_removable_media) {
23553 				media_capacity *= un->un_sys_blocksize;
23554 				media_capacity /= lbasize;
23555 			}
23556 			break;
23557 		case EACCES:
23558 			rval = EACCES;
23559 			goto done;
23560 		default:
23561 			rval = EIO;
23562 			goto done;
23563 		}
23564 	} else {
23565 		if (un->un_f_enable_rmw &&
23566 		    !ISP2(pbsize % DEV_BSIZE)) {
23567 			pbsize = SSD_SECSIZE;
23568 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23569 		    !ISP2(pbsize % DEV_BSIZE)) {
23570 			pbsize = lbasize = DEV_BSIZE;
23571 		}
23572 		media_capacity = capacity;
23573 	}
23574 
23575 	/*
23576 	 * If lun is expanded dynamically, update the un structure.
23577 	 */
23578 	mutex_enter(SD_MUTEX(un));
23579 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23580 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23581 	    (capacity > un->un_blockcount)) {
23582 		un->un_f_expnevent = B_FALSE;
23583 		sd_update_block_info(un, lbasize, capacity);
23584 	}
23585 	mutex_exit(SD_MUTEX(un));
23586 
23587 	*dki_lbsize = lbasize;
23588 	*dki_capacity = media_capacity;
23589 	if (dki_pbsize)
23590 		*dki_pbsize = pbsize;
23591 
23592 done:
23593 	if (rval != 0) {
23594 		if (rval == EIO)
23595 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23596 		else
23597 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23598 	}
23599 no_assessment:
23600 	sd_ssc_fini(ssc);
23601 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23602 	kmem_free(rqbuf, SENSE_LENGTH);
23603 	return (rval);
23604 }
23605 
23606 /*
23607  *    Function: sd_get_media_info
23608  *
23609  * Description: This routine is the driver entry point for handling ioctl
23610  *		requests for the media type or command set profile used by the
23611  *		drive to operate on the media (DKIOCGMEDIAINFO).
23612  *
23613  *   Arguments: dev	- the device number
23614  *		arg	- pointer to user provided dk_minfo structure
23615  *			  specifying the media type, logical block size and
23616  *			  drive capacity.
23617  *		flag	- this argument is a pass through to ddi_copyxxx()
23618  *			  directly from the mode argument of ioctl().
23619  *
23620  * Return Code: returns the value from sd_get_media_info_com
23621  */
23622 static int
23623 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23624 {
23625 	struct dk_minfo		mi;
23626 	int			rval;
23627 
23628 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23629 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23630 
23631 	if (rval)
23632 		return (rval);
23633 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23634 		rval = EFAULT;
23635 	return (rval);
23636 }
23637 
23638 /*
23639  *    Function: sd_get_media_info_ext
23640  *
23641  * Description: This routine is the driver entry point for handling ioctl
23642  *		requests for the media type or command set profile used by the
23643  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23644  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23645  *		of this ioctl contains both logical block size and physical
23646  *		block size.
23647  *
23648  *
23649  *   Arguments: dev	- the device number
23650  *		arg	- pointer to user provided dk_minfo_ext structure
23651  *			  specifying the media type, logical block size,
23652  *			  physical block size and disk capacity.
23653  *		flag	- this argument is a pass through to ddi_copyxxx()
23654  *			  directly from the mode argument of ioctl().
23655  *
23656  * Return Code: returns the value from sd_get_media_info_com
23657  */
23658 static int
23659 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23660 {
23661 	struct dk_minfo_ext	mie;
23662 	int			rval = 0;
23663 
23664 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23665 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23666 
23667 	if (rval)
23668 		return (rval);
23669 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23670 		rval = EFAULT;
23671 	return (rval);
23672 
23673 }
23674 
23675 /*
23676  *    Function: sd_watch_request_submit
23677  *
23678  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23679  *		depending on which is supported by device.
23680  */
23681 static opaque_t
23682 sd_watch_request_submit(struct sd_lun *un)
23683 {
23684 	dev_t			dev;
23685 
23686 	/* All submissions are unified to use same device number */
23687 	dev = sd_make_device(SD_DEVINFO(un));
23688 
23689 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23690 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23691 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23692 		    (caddr_t)dev));
23693 	} else {
23694 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23695 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23696 		    (caddr_t)dev));
23697 	}
23698 }
23699 
23700 
23701 /*
23702  *    Function: sd_check_media
23703  *
23704  * Description: This utility routine implements the functionality for the
23705  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23706  *		driver state changes from that specified by the user
23707  *		(inserted or ejected). For example, if the user specifies
23708  *		DKIO_EJECTED and the current media state is inserted this
23709  *		routine will immediately return DKIO_INSERTED. However, if the
23710  *		current media state is not inserted the user thread will be
23711  *		blocked until the drive state changes. If DKIO_NONE is specified
23712  *		the user thread will block until a drive state change occurs.
23713  *
23714  *   Arguments: dev  - the device number
23715  *		state  - user pointer to a dkio_state, updated with the current
23716  *			drive state at return.
23717  *
23718  * Return Code: ENXIO
23719  *		EIO
23720  *		EAGAIN
23721  *		EINTR
23722  */
23723 
23724 static int
23725 sd_check_media(dev_t dev, enum dkio_state state)
23726 {
23727 	struct sd_lun		*un = NULL;
23728 	enum dkio_state		prev_state;
23729 	opaque_t		token = NULL;
23730 	int			rval = 0;
23731 	sd_ssc_t		*ssc;
23732 
23733 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23734 		return (ENXIO);
23735 	}
23736 
23737 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23738 
23739 	ssc = sd_ssc_init(un);
23740 
23741 	mutex_enter(SD_MUTEX(un));
23742 
23743 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23744 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23745 
23746 	prev_state = un->un_mediastate;
23747 
23748 	/* is there anything to do? */
23749 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23750 		/*
23751 		 * submit the request to the scsi_watch service;
23752 		 * scsi_media_watch_cb() does the real work
23753 		 */
23754 		mutex_exit(SD_MUTEX(un));
23755 
23756 		/*
23757 		 * This change handles the case where a scsi watch request is
23758 		 * added to a device that is powered down. To accomplish this
23759 		 * we power up the device before adding the scsi watch request,
23760 		 * since the scsi watch sends a TUR directly to the device
23761 		 * which the device cannot handle if it is powered down.
23762 		 */
23763 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23764 			mutex_enter(SD_MUTEX(un));
23765 			goto done;
23766 		}
23767 
23768 		token = sd_watch_request_submit(un);
23769 
23770 		sd_pm_exit(un);
23771 
23772 		mutex_enter(SD_MUTEX(un));
23773 		if (token == NULL) {
23774 			rval = EAGAIN;
23775 			goto done;
23776 		}
23777 
23778 		/*
23779 		 * This is a special case IOCTL that doesn't return
23780 		 * until the media state changes. Routine sdpower
23781 		 * knows about and handles this so don't count it
23782 		 * as an active cmd in the driver, which would
23783 		 * keep the device busy to the pm framework.
23784 		 * If the count isn't decremented the device can't
23785 		 * be powered down.
23786 		 */
23787 		un->un_ncmds_in_driver--;
23788 		ASSERT(un->un_ncmds_in_driver >= 0);
23789 
23790 		/*
23791 		 * if a prior request had been made, this will be the same
23792 		 * token, as scsi_watch was designed that way.
23793 		 */
23794 		un->un_swr_token = token;
23795 		un->un_specified_mediastate = state;
23796 
23797 		/*
23798 		 * now wait for media change
23799 		 * we will not be signalled unless mediastate == state but it is
23800 		 * still better to test for this condition, since there is a
23801 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23802 		 */
23803 		SD_TRACE(SD_LOG_COMMON, un,
23804 		    "sd_check_media: waiting for media state change\n");
23805 		while (un->un_mediastate == state) {
23806 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23807 				SD_TRACE(SD_LOG_COMMON, un,
23808 				    "sd_check_media: waiting for media state "
23809 				    "was interrupted\n");
23810 				un->un_ncmds_in_driver++;
23811 				rval = EINTR;
23812 				goto done;
23813 			}
23814 			SD_TRACE(SD_LOG_COMMON, un,
23815 			    "sd_check_media: received signal, state=%x\n",
23816 			    un->un_mediastate);
23817 		}
23818 		/*
23819 		 * Inc the counter to indicate the device once again
23820 		 * has an active outstanding cmd.
23821 		 */
23822 		un->un_ncmds_in_driver++;
23823 	}
23824 
23825 	/* invalidate geometry */
23826 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23827 		sr_ejected(un);
23828 	}
23829 
23830 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23831 		uint64_t	capacity;
23832 		uint_t		lbasize;
23833 
23834 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23835 		mutex_exit(SD_MUTEX(un));
23836 		/*
23837 		 * Since the following routines use SD_PATH_DIRECT, we must
23838 		 * call PM directly before the upcoming disk accesses. This
23839 		 * may cause the disk to be power/spin up.
23840 		 */
23841 
23842 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23843 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23844 			    &capacity, &lbasize, SD_PATH_DIRECT);
23845 			if (rval != 0) {
23846 				sd_pm_exit(un);
23847 				if (rval == EIO)
23848 					sd_ssc_assessment(ssc,
23849 					    SD_FMT_STATUS_CHECK);
23850 				else
23851 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23852 				mutex_enter(SD_MUTEX(un));
23853 				goto done;
23854 			}
23855 		} else {
23856 			rval = EIO;
23857 			mutex_enter(SD_MUTEX(un));
23858 			goto done;
23859 		}
23860 		mutex_enter(SD_MUTEX(un));
23861 
23862 		sd_update_block_info(un, lbasize, capacity);
23863 
23864 		/*
23865 		 *  Check if the media in the device is writable or not
23866 		 */
23867 		if (ISCD(un)) {
23868 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23869 		}
23870 
23871 		mutex_exit(SD_MUTEX(un));
23872 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23873 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23874 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23875 			sd_set_pstats(un);
23876 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23877 			    "sd_check_media: un:0x%p pstats created and "
23878 			    "set\n", un);
23879 		}
23880 
23881 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23882 		    SD_PATH_DIRECT);
23883 
23884 		sd_pm_exit(un);
23885 
23886 		if (rval != 0) {
23887 			if (rval == EIO)
23888 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23889 			else
23890 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23891 		}
23892 
23893 		mutex_enter(SD_MUTEX(un));
23894 	}
23895 done:
23896 	sd_ssc_fini(ssc);
23897 	un->un_f_watcht_stopped = FALSE;
23898 	if (token != NULL && un->un_swr_token != NULL) {
23899 		/*
23900 		 * Use of this local token and the mutex ensures that we avoid
23901 		 * some race conditions associated with terminating the
23902 		 * scsi watch.
23903 		 */
23904 		token = un->un_swr_token;
23905 		mutex_exit(SD_MUTEX(un));
23906 		(void) scsi_watch_request_terminate(token,
23907 		    SCSI_WATCH_TERMINATE_WAIT);
23908 		if (scsi_watch_get_ref_count(token) == 0) {
23909 			mutex_enter(SD_MUTEX(un));
23910 			un->un_swr_token = (opaque_t)NULL;
23911 		} else {
23912 			mutex_enter(SD_MUTEX(un));
23913 		}
23914 	}
23915 
23916 	/*
23917 	 * Update the capacity kstat value, if no media previously
23918 	 * (capacity kstat is 0) and a media has been inserted
23919 	 * (un_f_blockcount_is_valid == TRUE)
23920 	 */
23921 	if (un->un_errstats) {
23922 		struct sd_errstats	*stp = NULL;
23923 
23924 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23925 		if ((stp->sd_capacity.value.ui64 == 0) &&
23926 		    (un->un_f_blockcount_is_valid == TRUE)) {
23927 			stp->sd_capacity.value.ui64 =
23928 			    (uint64_t)((uint64_t)un->un_blockcount *
23929 			    un->un_sys_blocksize);
23930 		}
23931 	}
23932 	mutex_exit(SD_MUTEX(un));
23933 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23934 	return (rval);
23935 }
23936 
23937 
23938 /*
23939  *    Function: sd_delayed_cv_broadcast
23940  *
23941  * Description: Delayed cv_broadcast to allow for target to recover from media
23942  *		insertion.
23943  *
23944  *   Arguments: arg - driver soft state (unit) structure
23945  */
23946 
23947 static void
23948 sd_delayed_cv_broadcast(void *arg)
23949 {
23950 	struct sd_lun *un = arg;
23951 
23952 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23953 
23954 	mutex_enter(SD_MUTEX(un));
23955 	un->un_dcvb_timeid = NULL;
23956 	cv_broadcast(&un->un_state_cv);
23957 	mutex_exit(SD_MUTEX(un));
23958 }
23959 
23960 
23961 /*
23962  *    Function: sd_media_watch_cb
23963  *
23964  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23965  *		routine processes the TUR sense data and updates the driver
23966  *		state if a transition has occurred. The user thread
23967  *		(sd_check_media) is then signalled.
23968  *
23969  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23970  *			among multiple watches that share this callback function
23971  *		resultp - scsi watch facility result packet containing scsi
23972  *			  packet, status byte and sense data
23973  *
23974  * Return Code: 0 for success, -1 for failure
23975  */
23976 
23977 static int
23978 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23979 {
23980 	struct sd_lun			*un;
23981 	struct scsi_status		*statusp = resultp->statusp;
23982 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23983 	enum dkio_state			state = DKIO_NONE;
23984 	dev_t				dev = (dev_t)arg;
23985 	uchar_t				actual_sense_length;
23986 	uint8_t				skey, asc, ascq;
23987 
23988 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23989 		return (-1);
23990 	}
23991 	actual_sense_length = resultp->actual_sense_length;
23992 
23993 	mutex_enter(SD_MUTEX(un));
23994 	SD_TRACE(SD_LOG_COMMON, un,
23995 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23996 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23997 
23998 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23999 		un->un_mediastate = DKIO_DEV_GONE;
24000 		cv_broadcast(&un->un_state_cv);
24001 		mutex_exit(SD_MUTEX(un));
24002 
24003 		return (0);
24004 	}
24005 
24006 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
24007 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
24008 			if ((resultp->mmc_data[5] &
24009 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
24010 				state = DKIO_INSERTED;
24011 			} else {
24012 				state = DKIO_EJECTED;
24013 			}
24014 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
24015 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
24016 				sd_log_eject_request_event(un, KM_NOSLEEP);
24017 			}
24018 		}
24019 	} else if (sensep != NULL) {
24020 		/*
24021 		 * If there was a check condition then sensep points to valid
24022 		 * sense data. If status was not a check condition but a
24023 		 * reservation or busy status then the new state is DKIO_NONE.
24024 		 */
24025 		skey = scsi_sense_key(sensep);
24026 		asc = scsi_sense_asc(sensep);
24027 		ascq = scsi_sense_ascq(sensep);
24028 
24029 		SD_INFO(SD_LOG_COMMON, un,
24030 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24031 		    skey, asc, ascq);
24032 		/* This routine only uses up to 13 bytes of sense data. */
24033 		if (actual_sense_length >= 13) {
24034 			if (skey == KEY_UNIT_ATTENTION) {
24035 				if (asc == 0x28) {
24036 					state = DKIO_INSERTED;
24037 				}
24038 			} else if (skey == KEY_NOT_READY) {
24039 				/*
24040 				 * Sense data of 02/06/00 means that the
24041 				 * drive could not read the media (No
24042 				 * reference position found). In this case
24043 				 * to prevent a hang on the DKIOCSTATE IOCTL
24044 				 * we set the media state to DKIO_INSERTED.
24045 				 */
24046 				if (asc == 0x06 && ascq == 0x00)
24047 					state = DKIO_INSERTED;
24048 
24049 				/*
24050 				 * if 02/04/02  means that the host
24051 				 * should send start command. Explicitly
24052 				 * leave the media state as is
24053 				 * (inserted) as the media is inserted
24054 				 * and host has stopped device for PM
24055 				 * reasons. Upon next true read/write
24056 				 * to this media will bring the
24057 				 * device to the right state good for
24058 				 * media access.
24059 				 */
24060 				if (asc == 0x3a) {
24061 					state = DKIO_EJECTED;
24062 				} else {
24063 					/*
24064 					 * If the drive is busy with an
24065 					 * operation or long write, keep the
24066 					 * media in an inserted state.
24067 					 */
24068 
24069 					if ((asc == 0x04) &&
24070 					    ((ascq == 0x02) ||
24071 					    (ascq == 0x07) ||
24072 					    (ascq == 0x08))) {
24073 						state = DKIO_INSERTED;
24074 					}
24075 				}
24076 			} else if (skey == KEY_NO_SENSE) {
24077 				if ((asc == 0x00) && (ascq == 0x00)) {
24078 					/*
24079 					 * Sense Data 00/00/00 does not provide
24080 					 * any information about the state of
24081 					 * the media. Ignore it.
24082 					 */
24083 					mutex_exit(SD_MUTEX(un));
24084 					return (0);
24085 				}
24086 			}
24087 		}
24088 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24089 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24090 		state = DKIO_INSERTED;
24091 	}
24092 
24093 	SD_TRACE(SD_LOG_COMMON, un,
24094 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24095 	    state, un->un_specified_mediastate);
24096 
24097 	/*
24098 	 * now signal the waiting thread if this is *not* the specified state;
24099 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24100 	 * to recover
24101 	 */
24102 	if (state != un->un_specified_mediastate) {
24103 		un->un_mediastate = state;
24104 		if (state == DKIO_INSERTED) {
24105 			/*
24106 			 * delay the signal to give the drive a chance
24107 			 * to do what it apparently needs to do
24108 			 */
24109 			SD_TRACE(SD_LOG_COMMON, un,
24110 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24111 			if (un->un_dcvb_timeid == NULL) {
24112 				un->un_dcvb_timeid =
24113 				    timeout(sd_delayed_cv_broadcast, un,
24114 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24115 			}
24116 		} else {
24117 			SD_TRACE(SD_LOG_COMMON, un,
24118 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24119 			cv_broadcast(&un->un_state_cv);
24120 		}
24121 	}
24122 	mutex_exit(SD_MUTEX(un));
24123 	return (0);
24124 }
24125 
24126 
24127 /*
24128  *    Function: sd_dkio_get_temp
24129  *
24130  * Description: This routine is the driver entry point for handling ioctl
24131  *		requests to get the disk temperature.
24132  *
24133  *   Arguments: dev  - the device number
24134  *		arg  - pointer to user provided dk_temperature structure.
24135  *		flag - this argument is a pass through to ddi_copyxxx()
24136  *		       directly from the mode argument of ioctl().
24137  *
24138  * Return Code: 0
24139  *		EFAULT
24140  *		ENXIO
24141  *		EAGAIN
24142  */
24143 
24144 static int
24145 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24146 {
24147 	struct sd_lun		*un = NULL;
24148 	struct dk_temperature	*dktemp = NULL;
24149 	uchar_t			*temperature_page;
24150 	int			rval = 0;
24151 	int			path_flag = SD_PATH_STANDARD;
24152 	sd_ssc_t		*ssc;
24153 
24154 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24155 		return (ENXIO);
24156 	}
24157 
24158 	ssc = sd_ssc_init(un);
24159 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24160 
24161 	/* copyin the disk temp argument to get the user flags */
24162 	if (ddi_copyin((void *)arg, dktemp,
24163 	    sizeof (struct dk_temperature), flag) != 0) {
24164 		rval = EFAULT;
24165 		goto done;
24166 	}
24167 
24168 	/* Initialize the temperature to invalid. */
24169 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24170 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24171 
24172 	/*
24173 	 * Note: Investigate removing the "bypass pm" semantic.
24174 	 * Can we just bypass PM always?
24175 	 */
24176 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24177 		path_flag = SD_PATH_DIRECT;
24178 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24179 		mutex_enter(&un->un_pm_mutex);
24180 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24181 			/*
24182 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24183 			 * in low power mode, we can not wake it up, Need to
24184 			 * return EAGAIN.
24185 			 */
24186 			mutex_exit(&un->un_pm_mutex);
24187 			rval = EAGAIN;
24188 			goto done;
24189 		} else {
24190 			/*
24191 			 * Indicate to PM the device is busy. This is required
24192 			 * to avoid a race - i.e. the ioctl is issuing a
24193 			 * command and the pm framework brings down the device
24194 			 * to low power mode (possible power cut-off on some
24195 			 * platforms).
24196 			 */
24197 			mutex_exit(&un->un_pm_mutex);
24198 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24199 				rval = EAGAIN;
24200 				goto done;
24201 			}
24202 		}
24203 	}
24204 
24205 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24206 
24207 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24208 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24209 	if (rval != 0)
24210 		goto done2;
24211 
24212 	/*
24213 	 * For the current temperature verify that the parameter length is 0x02
24214 	 * and the parameter code is 0x00
24215 	 */
24216 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24217 	    (temperature_page[5] == 0x00)) {
24218 		if (temperature_page[9] == 0xFF) {
24219 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24220 		} else {
24221 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24222 		}
24223 	}
24224 
24225 	/*
24226 	 * For the reference temperature verify that the parameter
24227 	 * length is 0x02 and the parameter code is 0x01
24228 	 */
24229 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24230 	    (temperature_page[11] == 0x01)) {
24231 		if (temperature_page[15] == 0xFF) {
24232 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24233 		} else {
24234 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24235 		}
24236 	}
24237 
24238 	/* Do the copyout regardless of the temperature commands status. */
24239 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24240 	    flag) != 0) {
24241 		rval = EFAULT;
24242 		goto done1;
24243 	}
24244 
24245 done2:
24246 	if (rval != 0) {
24247 		if (rval == EIO)
24248 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24249 		else
24250 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24251 	}
24252 done1:
24253 	if (path_flag == SD_PATH_DIRECT) {
24254 		sd_pm_exit(un);
24255 	}
24256 
24257 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24258 done:
24259 	sd_ssc_fini(ssc);
24260 	if (dktemp != NULL) {
24261 		kmem_free(dktemp, sizeof (struct dk_temperature));
24262 	}
24263 
24264 	return (rval);
24265 }
24266 
24267 
24268 /*
24269  *    Function: sd_log_page_supported
24270  *
24271  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24272  *		supported log pages.
24273  *
24274  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24275  *                      structure for this target.
24276  *		log_page -
24277  *
24278  * Return Code: -1 - on error (log sense is optional and may not be supported).
24279  *		0  - log page not found.
24280  *  		1  - log page found.
24281  */
24282 
24283 static int
24284 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24285 {
24286 	uchar_t *log_page_data;
24287 	int	i;
24288 	int	match = 0;
24289 	int	log_size;
24290 	int	status = 0;
24291 	struct sd_lun	*un;
24292 
24293 	ASSERT(ssc != NULL);
24294 	un = ssc->ssc_un;
24295 	ASSERT(un != NULL);
24296 
24297 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24298 
24299 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24300 	    SD_PATH_DIRECT);
24301 
24302 	if (status != 0) {
24303 		if (status == EIO) {
24304 			/*
24305 			 * Some disks do not support log sense, we
24306 			 * should ignore this kind of error(sense key is
24307 			 * 0x5 - illegal request).
24308 			 */
24309 			uint8_t *sensep;
24310 			int senlen;
24311 
24312 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24313 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24314 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24315 
24316 			if (senlen > 0 &&
24317 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24318 				sd_ssc_assessment(ssc,
24319 				    SD_FMT_IGNORE_COMPROMISE);
24320 			} else {
24321 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24322 			}
24323 		} else {
24324 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24325 		}
24326 
24327 		SD_ERROR(SD_LOG_COMMON, un,
24328 		    "sd_log_page_supported: failed log page retrieval\n");
24329 		kmem_free(log_page_data, 0xFF);
24330 		return (-1);
24331 	}
24332 
24333 	log_size = log_page_data[3];
24334 
24335 	/*
24336 	 * The list of supported log pages start from the fourth byte. Check
24337 	 * until we run out of log pages or a match is found.
24338 	 */
24339 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24340 		if (log_page_data[i] == log_page) {
24341 			match++;
24342 		}
24343 	}
24344 	kmem_free(log_page_data, 0xFF);
24345 	return (match);
24346 }
24347 
24348 
24349 /*
24350  *    Function: sd_mhdioc_failfast
24351  *
24352  * Description: This routine is the driver entry point for handling ioctl
24353  *		requests to enable/disable the multihost failfast option.
24354  *		(MHIOCENFAILFAST)
24355  *
24356  *   Arguments: dev	- the device number
24357  *		arg	- user specified probing interval.
24358  *		flag	- this argument is a pass through to ddi_copyxxx()
24359  *			  directly from the mode argument of ioctl().
24360  *
24361  * Return Code: 0
24362  *		EFAULT
24363  *		ENXIO
24364  */
24365 
24366 static int
24367 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24368 {
24369 	struct sd_lun	*un = NULL;
24370 	int		mh_time;
24371 	int		rval = 0;
24372 
24373 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24374 		return (ENXIO);
24375 	}
24376 
24377 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24378 		return (EFAULT);
24379 
24380 	if (mh_time) {
24381 		mutex_enter(SD_MUTEX(un));
24382 		un->un_resvd_status |= SD_FAILFAST;
24383 		mutex_exit(SD_MUTEX(un));
24384 		/*
24385 		 * If mh_time is INT_MAX, then this ioctl is being used for
24386 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24387 		 */
24388 		if (mh_time != INT_MAX) {
24389 			rval = sd_check_mhd(dev, mh_time);
24390 		}
24391 	} else {
24392 		(void) sd_check_mhd(dev, 0);
24393 		mutex_enter(SD_MUTEX(un));
24394 		un->un_resvd_status &= ~SD_FAILFAST;
24395 		mutex_exit(SD_MUTEX(un));
24396 	}
24397 	return (rval);
24398 }
24399 
24400 
24401 /*
24402  *    Function: sd_mhdioc_takeown
24403  *
24404  * Description: This routine is the driver entry point for handling ioctl
24405  *		requests to forcefully acquire exclusive access rights to the
24406  *		multihost disk (MHIOCTKOWN).
24407  *
24408  *   Arguments: dev	- the device number
24409  *		arg	- user provided structure specifying the delay
24410  *			  parameters in milliseconds
24411  *		flag	- this argument is a pass through to ddi_copyxxx()
24412  *			  directly from the mode argument of ioctl().
24413  *
24414  * Return Code: 0
24415  *		EFAULT
24416  *		ENXIO
24417  */
24418 
24419 static int
24420 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24421 {
24422 	struct sd_lun		*un = NULL;
24423 	struct mhioctkown	*tkown = NULL;
24424 	int			rval = 0;
24425 
24426 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24427 		return (ENXIO);
24428 	}
24429 
24430 	if (arg != NULL) {
24431 		tkown = (struct mhioctkown *)
24432 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24433 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24434 		if (rval != 0) {
24435 			rval = EFAULT;
24436 			goto error;
24437 		}
24438 	}
24439 
24440 	rval = sd_take_ownership(dev, tkown);
24441 	mutex_enter(SD_MUTEX(un));
24442 	if (rval == 0) {
24443 		un->un_resvd_status |= SD_RESERVE;
24444 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24445 			sd_reinstate_resv_delay =
24446 			    tkown->reinstate_resv_delay * 1000;
24447 		} else {
24448 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24449 		}
24450 		/*
24451 		 * Give the scsi_watch routine interval set by
24452 		 * the MHIOCENFAILFAST ioctl precedence here.
24453 		 */
24454 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24455 			mutex_exit(SD_MUTEX(un));
24456 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24457 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24458 			    "sd_mhdioc_takeown : %d\n",
24459 			    sd_reinstate_resv_delay);
24460 		} else {
24461 			mutex_exit(SD_MUTEX(un));
24462 		}
24463 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24464 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24465 	} else {
24466 		un->un_resvd_status &= ~SD_RESERVE;
24467 		mutex_exit(SD_MUTEX(un));
24468 	}
24469 
24470 error:
24471 	if (tkown != NULL) {
24472 		kmem_free(tkown, sizeof (struct mhioctkown));
24473 	}
24474 	return (rval);
24475 }
24476 
24477 
24478 /*
24479  *    Function: sd_mhdioc_release
24480  *
24481  * Description: This routine is the driver entry point for handling ioctl
24482  *		requests to release exclusive access rights to the multihost
24483  *		disk (MHIOCRELEASE).
24484  *
24485  *   Arguments: dev	- the device number
24486  *
24487  * Return Code: 0
24488  *		ENXIO
24489  */
24490 
24491 static int
24492 sd_mhdioc_release(dev_t dev)
24493 {
24494 	struct sd_lun		*un = NULL;
24495 	timeout_id_t		resvd_timeid_save;
24496 	int			resvd_status_save;
24497 	int			rval = 0;
24498 
24499 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24500 		return (ENXIO);
24501 	}
24502 
24503 	mutex_enter(SD_MUTEX(un));
24504 	resvd_status_save = un->un_resvd_status;
24505 	un->un_resvd_status &=
24506 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24507 	if (un->un_resvd_timeid) {
24508 		resvd_timeid_save = un->un_resvd_timeid;
24509 		un->un_resvd_timeid = NULL;
24510 		mutex_exit(SD_MUTEX(un));
24511 		(void) untimeout(resvd_timeid_save);
24512 	} else {
24513 		mutex_exit(SD_MUTEX(un));
24514 	}
24515 
24516 	/*
24517 	 * destroy any pending timeout thread that may be attempting to
24518 	 * reinstate reservation on this device.
24519 	 */
24520 	sd_rmv_resv_reclaim_req(dev);
24521 
24522 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24523 		mutex_enter(SD_MUTEX(un));
24524 		if ((un->un_mhd_token) &&
24525 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24526 			mutex_exit(SD_MUTEX(un));
24527 			(void) sd_check_mhd(dev, 0);
24528 		} else {
24529 			mutex_exit(SD_MUTEX(un));
24530 		}
24531 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24532 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24533 	} else {
24534 		/*
24535 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24536 		 */
24537 		mutex_enter(SD_MUTEX(un));
24538 		un->un_resvd_status = resvd_status_save;
24539 		mutex_exit(SD_MUTEX(un));
24540 	}
24541 	return (rval);
24542 }
24543 
24544 
24545 /*
24546  *    Function: sd_mhdioc_register_devid
24547  *
24548  * Description: This routine is the driver entry point for handling ioctl
24549  *		requests to register the device id (MHIOCREREGISTERDEVID).
24550  *
24551  *		Note: The implementation for this ioctl has been updated to
24552  *		be consistent with the original PSARC case (1999/357)
24553  *		(4375899, 4241671, 4220005)
24554  *
24555  *   Arguments: dev	- the device number
24556  *
24557  * Return Code: 0
24558  *		ENXIO
24559  */
24560 
24561 static int
24562 sd_mhdioc_register_devid(dev_t dev)
24563 {
24564 	struct sd_lun	*un = NULL;
24565 	int		rval = 0;
24566 	sd_ssc_t	*ssc;
24567 
24568 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24569 		return (ENXIO);
24570 	}
24571 
24572 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24573 
24574 	mutex_enter(SD_MUTEX(un));
24575 
24576 	/* If a devid already exists, de-register it */
24577 	if (un->un_devid != NULL) {
24578 		ddi_devid_unregister(SD_DEVINFO(un));
24579 		/*
24580 		 * After unregister devid, needs to free devid memory
24581 		 */
24582 		ddi_devid_free(un->un_devid);
24583 		un->un_devid = NULL;
24584 	}
24585 
24586 	/* Check for reservation conflict */
24587 	mutex_exit(SD_MUTEX(un));
24588 	ssc = sd_ssc_init(un);
24589 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24590 	mutex_enter(SD_MUTEX(un));
24591 
24592 	switch (rval) {
24593 	case 0:
24594 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24595 		break;
24596 	case EACCES:
24597 		break;
24598 	default:
24599 		rval = EIO;
24600 	}
24601 
24602 	mutex_exit(SD_MUTEX(un));
24603 	if (rval != 0) {
24604 		if (rval == EIO)
24605 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24606 		else
24607 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24608 	}
24609 	sd_ssc_fini(ssc);
24610 	return (rval);
24611 }
24612 
24613 
24614 /*
24615  *    Function: sd_mhdioc_inkeys
24616  *
24617  * Description: This routine is the driver entry point for handling ioctl
24618  *		requests to issue the SCSI-3 Persistent In Read Keys command
24619  *		to the device (MHIOCGRP_INKEYS).
24620  *
24621  *   Arguments: dev	- the device number
24622  *		arg	- user provided in_keys structure
24623  *		flag	- this argument is a pass through to ddi_copyxxx()
24624  *			  directly from the mode argument of ioctl().
24625  *
24626  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24627  *		ENXIO
24628  *		EFAULT
24629  */
24630 
24631 static int
24632 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24633 {
24634 	struct sd_lun		*un;
24635 	mhioc_inkeys_t		inkeys;
24636 	int			rval = 0;
24637 
24638 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24639 		return (ENXIO);
24640 	}
24641 
24642 #ifdef _MULTI_DATAMODEL
24643 	switch (ddi_model_convert_from(flag & FMODELS)) {
24644 	case DDI_MODEL_ILP32: {
24645 		struct mhioc_inkeys32	inkeys32;
24646 
24647 		if (ddi_copyin(arg, &inkeys32,
24648 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24649 			return (EFAULT);
24650 		}
24651 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24652 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24653 		    &inkeys, flag)) != 0) {
24654 			return (rval);
24655 		}
24656 		inkeys32.generation = inkeys.generation;
24657 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24658 		    flag) != 0) {
24659 			return (EFAULT);
24660 		}
24661 		break;
24662 	}
24663 	case DDI_MODEL_NONE:
24664 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24665 		    flag) != 0) {
24666 			return (EFAULT);
24667 		}
24668 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24669 		    &inkeys, flag)) != 0) {
24670 			return (rval);
24671 		}
24672 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24673 		    flag) != 0) {
24674 			return (EFAULT);
24675 		}
24676 		break;
24677 	}
24678 
24679 #else /* ! _MULTI_DATAMODEL */
24680 
24681 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24682 		return (EFAULT);
24683 	}
24684 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24685 	if (rval != 0) {
24686 		return (rval);
24687 	}
24688 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24689 		return (EFAULT);
24690 	}
24691 
24692 #endif /* _MULTI_DATAMODEL */
24693 
24694 	return (rval);
24695 }
24696 
24697 
24698 /*
24699  *    Function: sd_mhdioc_inresv
24700  *
24701  * Description: This routine is the driver entry point for handling ioctl
24702  *		requests to issue the SCSI-3 Persistent In Read Reservations
24703  *		command to the device (MHIOCGRP_INKEYS).
24704  *
24705  *   Arguments: dev	- the device number
24706  *		arg	- user provided in_resv structure
24707  *		flag	- this argument is a pass through to ddi_copyxxx()
24708  *			  directly from the mode argument of ioctl().
24709  *
24710  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24711  *		ENXIO
24712  *		EFAULT
24713  */
24714 
24715 static int
24716 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24717 {
24718 	struct sd_lun		*un;
24719 	mhioc_inresvs_t		inresvs;
24720 	int			rval = 0;
24721 
24722 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24723 		return (ENXIO);
24724 	}
24725 
24726 #ifdef _MULTI_DATAMODEL
24727 
24728 	switch (ddi_model_convert_from(flag & FMODELS)) {
24729 	case DDI_MODEL_ILP32: {
24730 		struct mhioc_inresvs32	inresvs32;
24731 
24732 		if (ddi_copyin(arg, &inresvs32,
24733 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24734 			return (EFAULT);
24735 		}
24736 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24737 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24738 		    &inresvs, flag)) != 0) {
24739 			return (rval);
24740 		}
24741 		inresvs32.generation = inresvs.generation;
24742 		if (ddi_copyout(&inresvs32, arg,
24743 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24744 			return (EFAULT);
24745 		}
24746 		break;
24747 	}
24748 	case DDI_MODEL_NONE:
24749 		if (ddi_copyin(arg, &inresvs,
24750 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24751 			return (EFAULT);
24752 		}
24753 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24754 		    &inresvs, flag)) != 0) {
24755 			return (rval);
24756 		}
24757 		if (ddi_copyout(&inresvs, arg,
24758 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24759 			return (EFAULT);
24760 		}
24761 		break;
24762 	}
24763 
24764 #else /* ! _MULTI_DATAMODEL */
24765 
24766 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24767 		return (EFAULT);
24768 	}
24769 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24770 	if (rval != 0) {
24771 		return (rval);
24772 	}
24773 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24774 		return (EFAULT);
24775 	}
24776 
24777 #endif /* ! _MULTI_DATAMODEL */
24778 
24779 	return (rval);
24780 }
24781 
24782 
24783 /*
24784  * The following routines support the clustering functionality described below
24785  * and implement lost reservation reclaim functionality.
24786  *
24787  * Clustering
24788  * ----------
24789  * The clustering code uses two different, independent forms of SCSI
24790  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24791  * Persistent Group Reservations. For any particular disk, it will use either
24792  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24793  *
24794  * SCSI-2
24795  * The cluster software takes ownership of a multi-hosted disk by issuing the
24796  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24797  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24798  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24799  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24800  * driver. The meaning of failfast is that if the driver (on this host) ever
24801  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24802  * it should immediately panic the host. The motivation for this ioctl is that
24803  * if this host does encounter reservation conflict, the underlying cause is
24804  * that some other host of the cluster has decided that this host is no longer
24805  * in the cluster and has seized control of the disks for itself. Since this
24806  * host is no longer in the cluster, it ought to panic itself. The
24807  * MHIOCENFAILFAST ioctl does two things:
24808  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24809  *      error to panic the host
24810  *      (b) it sets up a periodic timer to test whether this host still has
24811  *      "access" (in that no other host has reserved the device):  if the
24812  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24813  *      purpose of that periodic timer is to handle scenarios where the host is
24814  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24815  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24816  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24817  * the device itself.
24818  *
24819  * SCSI-3 PGR
24820  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24821  * facility is supported through the shared multihost disk ioctls
24822  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24823  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24824  *
24825  * Reservation Reclaim:
24826  * --------------------
24827  * To support the lost reservation reclaim operations this driver creates a
24828  * single thread to handle reinstating reservations on all devices that have
24829  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24830  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24831  * and the reservation reclaim thread loops through the requests to regain the
24832  * lost reservations.
24833  */
24834 
24835 /*
24836  *    Function: sd_check_mhd()
24837  *
24838  * Description: This function sets up and submits a scsi watch request or
24839  *		terminates an existing watch request. This routine is used in
24840  *		support of reservation reclaim.
24841  *
24842  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24843  *			 among multiple watches that share the callback function
24844  *		interval - the number of microseconds specifying the watch
24845  *			   interval for issuing TEST UNIT READY commands. If
24846  *			   set to 0 the watch should be terminated. If the
24847  *			   interval is set to 0 and if the device is required
24848  *			   to hold reservation while disabling failfast, the
24849  *			   watch is restarted with an interval of
24850  *			   reinstate_resv_delay.
24851  *
24852  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24853  *		ENXIO      - Indicates an invalid device was specified
24854  *		EAGAIN     - Unable to submit the scsi watch request
24855  */
24856 
24857 static int
24858 sd_check_mhd(dev_t dev, int interval)
24859 {
24860 	struct sd_lun	*un;
24861 	opaque_t	token;
24862 
24863 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24864 		return (ENXIO);
24865 	}
24866 
24867 	/* is this a watch termination request? */
24868 	if (interval == 0) {
24869 		mutex_enter(SD_MUTEX(un));
24870 		/* if there is an existing watch task then terminate it */
24871 		if (un->un_mhd_token) {
24872 			token = un->un_mhd_token;
24873 			un->un_mhd_token = NULL;
24874 			mutex_exit(SD_MUTEX(un));
24875 			(void) scsi_watch_request_terminate(token,
24876 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24877 			mutex_enter(SD_MUTEX(un));
24878 		} else {
24879 			mutex_exit(SD_MUTEX(un));
24880 			/*
24881 			 * Note: If we return here we don't check for the
24882 			 * failfast case. This is the original legacy
24883 			 * implementation but perhaps we should be checking
24884 			 * the failfast case.
24885 			 */
24886 			return (0);
24887 		}
24888 		/*
24889 		 * If the device is required to hold reservation while
24890 		 * disabling failfast, we need to restart the scsi_watch
24891 		 * routine with an interval of reinstate_resv_delay.
24892 		 */
24893 		if (un->un_resvd_status & SD_RESERVE) {
24894 			interval = sd_reinstate_resv_delay/1000;
24895 		} else {
24896 			/* no failfast so bail */
24897 			mutex_exit(SD_MUTEX(un));
24898 			return (0);
24899 		}
24900 		mutex_exit(SD_MUTEX(un));
24901 	}
24902 
24903 	/*
24904 	 * adjust minimum time interval to 1 second,
24905 	 * and convert from msecs to usecs
24906 	 */
24907 	if (interval > 0 && interval < 1000) {
24908 		interval = 1000;
24909 	}
24910 	interval *= 1000;
24911 
24912 	/*
24913 	 * submit the request to the scsi_watch service
24914 	 */
24915 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24916 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24917 	if (token == NULL) {
24918 		return (EAGAIN);
24919 	}
24920 
24921 	/*
24922 	 * save token for termination later on
24923 	 */
24924 	mutex_enter(SD_MUTEX(un));
24925 	un->un_mhd_token = token;
24926 	mutex_exit(SD_MUTEX(un));
24927 	return (0);
24928 }
24929 
24930 
24931 /*
24932  *    Function: sd_mhd_watch_cb()
24933  *
24934  * Description: This function is the call back function used by the scsi watch
24935  *		facility. The scsi watch facility sends the "Test Unit Ready"
24936  *		and processes the status. If applicable (i.e. a "Unit Attention"
24937  *		status and automatic "Request Sense" not used) the scsi watch
24938  *		facility will send a "Request Sense" and retrieve the sense data
24939  *		to be passed to this callback function. In either case the
24940  *		automatic "Request Sense" or the facility submitting one, this
24941  *		callback is passed the status and sense data.
24942  *
24943  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24944  *			among multiple watches that share this callback function
24945  *		resultp - scsi watch facility result packet containing scsi
24946  *			  packet, status byte and sense data
24947  *
24948  * Return Code: 0 - continue the watch task
24949  *		non-zero - terminate the watch task
24950  */
24951 
24952 static int
24953 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24954 {
24955 	struct sd_lun			*un;
24956 	struct scsi_status		*statusp;
24957 	uint8_t				*sensep;
24958 	struct scsi_pkt			*pkt;
24959 	uchar_t				actual_sense_length;
24960 	dev_t  				dev = (dev_t)arg;
24961 
24962 	ASSERT(resultp != NULL);
24963 	statusp			= resultp->statusp;
24964 	sensep			= (uint8_t *)resultp->sensep;
24965 	pkt			= resultp->pkt;
24966 	actual_sense_length	= resultp->actual_sense_length;
24967 
24968 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24969 		return (ENXIO);
24970 	}
24971 
24972 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24973 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24974 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24975 
24976 	/* Begin processing of the status and/or sense data */
24977 	if (pkt->pkt_reason != CMD_CMPLT) {
24978 		/* Handle the incomplete packet */
24979 		sd_mhd_watch_incomplete(un, pkt);
24980 		return (0);
24981 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24982 		if (*((unsigned char *)statusp)
24983 		    == STATUS_RESERVATION_CONFLICT) {
24984 			/*
24985 			 * Handle a reservation conflict by panicking if
24986 			 * configured for failfast or by logging the conflict
24987 			 * and updating the reservation status
24988 			 */
24989 			mutex_enter(SD_MUTEX(un));
24990 			if ((un->un_resvd_status & SD_FAILFAST) &&
24991 			    (sd_failfast_enable)) {
24992 				sd_panic_for_res_conflict(un);
24993 				/*NOTREACHED*/
24994 			}
24995 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24996 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24997 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24998 			mutex_exit(SD_MUTEX(un));
24999 		}
25000 	}
25001 
25002 	if (sensep != NULL) {
25003 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25004 			mutex_enter(SD_MUTEX(un));
25005 			if ((scsi_sense_asc(sensep) ==
25006 			    SD_SCSI_RESET_SENSE_CODE) &&
25007 			    (un->un_resvd_status & SD_RESERVE)) {
25008 				/*
25009 				 * The additional sense code indicates a power
25010 				 * on or bus device reset has occurred; update
25011 				 * the reservation status.
25012 				 */
25013 				un->un_resvd_status |=
25014 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25015 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25016 				    "sd_mhd_watch_cb: Lost Reservation\n");
25017 			}
25018 		} else {
25019 			return (0);
25020 		}
25021 	} else {
25022 		mutex_enter(SD_MUTEX(un));
25023 	}
25024 
25025 	if ((un->un_resvd_status & SD_RESERVE) &&
25026 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25027 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25028 			/*
25029 			 * A reset occurred in between the last probe and this
25030 			 * one so if a timeout is pending cancel it.
25031 			 */
25032 			if (un->un_resvd_timeid) {
25033 				timeout_id_t temp_id = un->un_resvd_timeid;
25034 				un->un_resvd_timeid = NULL;
25035 				mutex_exit(SD_MUTEX(un));
25036 				(void) untimeout(temp_id);
25037 				mutex_enter(SD_MUTEX(un));
25038 			}
25039 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25040 		}
25041 		if (un->un_resvd_timeid == 0) {
25042 			/* Schedule a timeout to handle the lost reservation */
25043 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25044 			    (void *)dev,
25045 			    drv_usectohz(sd_reinstate_resv_delay));
25046 		}
25047 	}
25048 	mutex_exit(SD_MUTEX(un));
25049 	return (0);
25050 }
25051 
25052 
25053 /*
25054  *    Function: sd_mhd_watch_incomplete()
25055  *
25056  * Description: This function is used to find out why a scsi pkt sent by the
25057  *		scsi watch facility was not completed. Under some scenarios this
25058  *		routine will return. Otherwise it will send a bus reset to see
25059  *		if the drive is still online.
25060  *
25061  *   Arguments: un  - driver soft state (unit) structure
25062  *		pkt - incomplete scsi pkt
25063  */
25064 
25065 static void
25066 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25067 {
25068 	int	be_chatty;
25069 	int	perr;
25070 
25071 	ASSERT(pkt != NULL);
25072 	ASSERT(un != NULL);
25073 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25074 	perr		= (pkt->pkt_statistics & STAT_PERR);
25075 
25076 	mutex_enter(SD_MUTEX(un));
25077 	if (un->un_state == SD_STATE_DUMPING) {
25078 		mutex_exit(SD_MUTEX(un));
25079 		return;
25080 	}
25081 
25082 	switch (pkt->pkt_reason) {
25083 	case CMD_UNX_BUS_FREE:
25084 		/*
25085 		 * If we had a parity error that caused the target to drop BSY*,
25086 		 * don't be chatty about it.
25087 		 */
25088 		if (perr && be_chatty) {
25089 			be_chatty = 0;
25090 		}
25091 		break;
25092 	case CMD_TAG_REJECT:
25093 		/*
25094 		 * The SCSI-2 spec states that a tag reject will be sent by the
25095 		 * target if tagged queuing is not supported. A tag reject may
25096 		 * also be sent during certain initialization periods or to
25097 		 * control internal resources. For the latter case the target
25098 		 * may also return Queue Full.
25099 		 *
25100 		 * If this driver receives a tag reject from a target that is
25101 		 * going through an init period or controlling internal
25102 		 * resources tagged queuing will be disabled. This is a less
25103 		 * than optimal behavior but the driver is unable to determine
25104 		 * the target state and assumes tagged queueing is not supported
25105 		 */
25106 		pkt->pkt_flags = 0;
25107 		un->un_tagflags = 0;
25108 
25109 		if (un->un_f_opt_queueing == TRUE) {
25110 			un->un_throttle = min(un->un_throttle, 3);
25111 		} else {
25112 			un->un_throttle = 1;
25113 		}
25114 		mutex_exit(SD_MUTEX(un));
25115 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25116 		mutex_enter(SD_MUTEX(un));
25117 		break;
25118 	case CMD_INCOMPLETE:
25119 		/*
25120 		 * The transport stopped with an abnormal state, fallthrough and
25121 		 * reset the target and/or bus unless selection did not complete
25122 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25123 		 * go through a target/bus reset
25124 		 */
25125 		if (pkt->pkt_state == STATE_GOT_BUS) {
25126 			break;
25127 		}
25128 		/*FALLTHROUGH*/
25129 
25130 	case CMD_TIMEOUT:
25131 	default:
25132 		/*
25133 		 * The lun may still be running the command, so a lun reset
25134 		 * should be attempted. If the lun reset fails or cannot be
25135 		 * issued, than try a target reset. Lastly try a bus reset.
25136 		 */
25137 		if ((pkt->pkt_statistics &
25138 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25139 			int reset_retval = 0;
25140 			mutex_exit(SD_MUTEX(un));
25141 			if (un->un_f_allow_bus_device_reset == TRUE) {
25142 				if (un->un_f_lun_reset_enabled == TRUE) {
25143 					reset_retval =
25144 					    scsi_reset(SD_ADDRESS(un),
25145 					    RESET_LUN);
25146 				}
25147 				if (reset_retval == 0) {
25148 					reset_retval =
25149 					    scsi_reset(SD_ADDRESS(un),
25150 					    RESET_TARGET);
25151 				}
25152 			}
25153 			if (reset_retval == 0) {
25154 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25155 			}
25156 			mutex_enter(SD_MUTEX(un));
25157 		}
25158 		break;
25159 	}
25160 
25161 	/* A device/bus reset has occurred; update the reservation status. */
25162 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25163 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25164 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25165 			un->un_resvd_status |=
25166 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25167 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25168 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25169 		}
25170 	}
25171 
25172 	/*
25173 	 * The disk has been turned off; Update the device state.
25174 	 *
25175 	 * Note: Should we be offlining the disk here?
25176 	 */
25177 	if (pkt->pkt_state == STATE_GOT_BUS) {
25178 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25179 		    "Disk not responding to selection\n");
25180 		if (un->un_state != SD_STATE_OFFLINE) {
25181 			New_state(un, SD_STATE_OFFLINE);
25182 		}
25183 	} else if (be_chatty) {
25184 		/*
25185 		 * suppress messages if they are all the same pkt reason;
25186 		 * with TQ, many (up to 256) are returned with the same
25187 		 * pkt_reason
25188 		 */
25189 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25190 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25191 			    "sd_mhd_watch_incomplete: "
25192 			    "SCSI transport failed: reason '%s'\n",
25193 			    scsi_rname(pkt->pkt_reason));
25194 		}
25195 	}
25196 	un->un_last_pkt_reason = pkt->pkt_reason;
25197 	mutex_exit(SD_MUTEX(un));
25198 }
25199 
25200 
25201 /*
25202  *    Function: sd_sname()
25203  *
25204  * Description: This is a simple little routine to return a string containing
25205  *		a printable description of command status byte for use in
25206  *		logging.
25207  *
25208  *   Arguments: status - pointer to a status byte
25209  *
25210  * Return Code: char * - string containing status description.
25211  */
25212 
25213 static char *
25214 sd_sname(uchar_t status)
25215 {
25216 	switch (status & STATUS_MASK) {
25217 	case STATUS_GOOD:
25218 		return ("good status");
25219 	case STATUS_CHECK:
25220 		return ("check condition");
25221 	case STATUS_MET:
25222 		return ("condition met");
25223 	case STATUS_BUSY:
25224 		return ("busy");
25225 	case STATUS_INTERMEDIATE:
25226 		return ("intermediate");
25227 	case STATUS_INTERMEDIATE_MET:
25228 		return ("intermediate - condition met");
25229 	case STATUS_RESERVATION_CONFLICT:
25230 		return ("reservation_conflict");
25231 	case STATUS_TERMINATED:
25232 		return ("command terminated");
25233 	case STATUS_QFULL:
25234 		return ("queue full");
25235 	default:
25236 		return ("<unknown status>");
25237 	}
25238 }
25239 
25240 
25241 /*
25242  *    Function: sd_mhd_resvd_recover()
25243  *
25244  * Description: This function adds a reservation entry to the
25245  *		sd_resv_reclaim_request list and signals the reservation
25246  *		reclaim thread that there is work pending. If the reservation
25247  *		reclaim thread has not been previously created this function
25248  *		will kick it off.
25249  *
25250  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25251  *			among multiple watches that share this callback function
25252  *
25253  *     Context: This routine is called by timeout() and is run in interrupt
25254  *		context. It must not sleep or call other functions which may
25255  *		sleep.
25256  */
25257 
25258 static void
25259 sd_mhd_resvd_recover(void *arg)
25260 {
25261 	dev_t			dev = (dev_t)arg;
25262 	struct sd_lun		*un;
25263 	struct sd_thr_request	*sd_treq = NULL;
25264 	struct sd_thr_request	*sd_cur = NULL;
25265 	struct sd_thr_request	*sd_prev = NULL;
25266 	int			already_there = 0;
25267 
25268 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25269 		return;
25270 	}
25271 
25272 	mutex_enter(SD_MUTEX(un));
25273 	un->un_resvd_timeid = NULL;
25274 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25275 		/*
25276 		 * There was a reset so don't issue the reserve, allow the
25277 		 * sd_mhd_watch_cb callback function to notice this and
25278 		 * reschedule the timeout for reservation.
25279 		 */
25280 		mutex_exit(SD_MUTEX(un));
25281 		return;
25282 	}
25283 	mutex_exit(SD_MUTEX(un));
25284 
25285 	/*
25286 	 * Add this device to the sd_resv_reclaim_request list and the
25287 	 * sd_resv_reclaim_thread should take care of the rest.
25288 	 *
25289 	 * Note: We can't sleep in this context so if the memory allocation
25290 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25291 	 * reschedule the timeout for reservation.  (4378460)
25292 	 */
25293 	sd_treq = (struct sd_thr_request *)
25294 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25295 	if (sd_treq == NULL) {
25296 		return;
25297 	}
25298 
25299 	sd_treq->sd_thr_req_next = NULL;
25300 	sd_treq->dev = dev;
25301 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25302 	if (sd_tr.srq_thr_req_head == NULL) {
25303 		sd_tr.srq_thr_req_head = sd_treq;
25304 	} else {
25305 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25306 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25307 			if (sd_cur->dev == dev) {
25308 				/*
25309 				 * already in Queue so don't log
25310 				 * another request for the device
25311 				 */
25312 				already_there = 1;
25313 				break;
25314 			}
25315 			sd_prev = sd_cur;
25316 		}
25317 		if (!already_there) {
25318 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25319 			    "logging request for %lx\n", dev);
25320 			sd_prev->sd_thr_req_next = sd_treq;
25321 		} else {
25322 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25323 		}
25324 	}
25325 
25326 	/*
25327 	 * Create a kernel thread to do the reservation reclaim and free up this
25328 	 * thread. We cannot block this thread while we go away to do the
25329 	 * reservation reclaim
25330 	 */
25331 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25332 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25333 		    sd_resv_reclaim_thread, NULL,
25334 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25335 
25336 	/* Tell the reservation reclaim thread that it has work to do */
25337 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25338 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25339 }
25340 
25341 /*
25342  *    Function: sd_resv_reclaim_thread()
25343  *
25344  * Description: This function implements the reservation reclaim operations
25345  *
25346  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25347  *		      among multiple watches that share this callback function
25348  */
25349 
25350 static void
25351 sd_resv_reclaim_thread()
25352 {
25353 	struct sd_lun		*un;
25354 	struct sd_thr_request	*sd_mhreq;
25355 
25356 	/* Wait for work */
25357 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25358 	if (sd_tr.srq_thr_req_head == NULL) {
25359 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25360 		    &sd_tr.srq_resv_reclaim_mutex);
25361 	}
25362 
25363 	/* Loop while we have work */
25364 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25365 		un = ddi_get_soft_state(sd_state,
25366 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25367 		if (un == NULL) {
25368 			/*
25369 			 * softstate structure is NULL so just
25370 			 * dequeue the request and continue
25371 			 */
25372 			sd_tr.srq_thr_req_head =
25373 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25374 			kmem_free(sd_tr.srq_thr_cur_req,
25375 			    sizeof (struct sd_thr_request));
25376 			continue;
25377 		}
25378 
25379 		/* dequeue the request */
25380 		sd_mhreq = sd_tr.srq_thr_cur_req;
25381 		sd_tr.srq_thr_req_head =
25382 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25383 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25384 
25385 		/*
25386 		 * Reclaim reservation only if SD_RESERVE is still set. There
25387 		 * may have been a call to MHIOCRELEASE before we got here.
25388 		 */
25389 		mutex_enter(SD_MUTEX(un));
25390 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25391 			/*
25392 			 * Note: The SD_LOST_RESERVE flag is cleared before
25393 			 * reclaiming the reservation. If this is done after the
25394 			 * call to sd_reserve_release a reservation loss in the
25395 			 * window between pkt completion of reserve cmd and
25396 			 * mutex_enter below may not be recognized
25397 			 */
25398 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25399 			mutex_exit(SD_MUTEX(un));
25400 
25401 			if (sd_reserve_release(sd_mhreq->dev,
25402 			    SD_RESERVE) == 0) {
25403 				mutex_enter(SD_MUTEX(un));
25404 				un->un_resvd_status |= SD_RESERVE;
25405 				mutex_exit(SD_MUTEX(un));
25406 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25407 				    "sd_resv_reclaim_thread: "
25408 				    "Reservation Recovered\n");
25409 			} else {
25410 				mutex_enter(SD_MUTEX(un));
25411 				un->un_resvd_status |= SD_LOST_RESERVE;
25412 				mutex_exit(SD_MUTEX(un));
25413 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25414 				    "sd_resv_reclaim_thread: Failed "
25415 				    "Reservation Recovery\n");
25416 			}
25417 		} else {
25418 			mutex_exit(SD_MUTEX(un));
25419 		}
25420 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25421 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25422 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25423 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25424 		/*
25425 		 * wakeup the destroy thread if anyone is waiting on
25426 		 * us to complete.
25427 		 */
25428 		cv_signal(&sd_tr.srq_inprocess_cv);
25429 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25430 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25431 	}
25432 
25433 	/*
25434 	 * cleanup the sd_tr structure now that this thread will not exist
25435 	 */
25436 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25437 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25438 	sd_tr.srq_resv_reclaim_thread = NULL;
25439 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25440 	thread_exit();
25441 }
25442 
25443 
25444 /*
25445  *    Function: sd_rmv_resv_reclaim_req()
25446  *
25447  * Description: This function removes any pending reservation reclaim requests
25448  *		for the specified device.
25449  *
25450  *   Arguments: dev - the device 'dev_t'
25451  */
25452 
25453 static void
25454 sd_rmv_resv_reclaim_req(dev_t dev)
25455 {
25456 	struct sd_thr_request *sd_mhreq;
25457 	struct sd_thr_request *sd_prev;
25458 
25459 	/* Remove a reservation reclaim request from the list */
25460 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25461 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25462 		/*
25463 		 * We are attempting to reinstate reservation for
25464 		 * this device. We wait for sd_reserve_release()
25465 		 * to return before we return.
25466 		 */
25467 		cv_wait(&sd_tr.srq_inprocess_cv,
25468 		    &sd_tr.srq_resv_reclaim_mutex);
25469 	} else {
25470 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25471 		if (sd_mhreq && sd_mhreq->dev == dev) {
25472 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25473 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25474 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25475 			return;
25476 		}
25477 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25478 			if (sd_mhreq && sd_mhreq->dev == dev) {
25479 				break;
25480 			}
25481 			sd_prev = sd_mhreq;
25482 		}
25483 		if (sd_mhreq != NULL) {
25484 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25485 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25486 		}
25487 	}
25488 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25489 }
25490 
25491 
25492 /*
25493  *    Function: sd_mhd_reset_notify_cb()
25494  *
25495  * Description: This is a call back function for scsi_reset_notify. This
25496  *		function updates the softstate reserved status and logs the
25497  *		reset. The driver scsi watch facility callback function
25498  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25499  *		will reclaim the reservation.
25500  *
25501  *   Arguments: arg  - driver soft state (unit) structure
25502  */
25503 
25504 static void
25505 sd_mhd_reset_notify_cb(caddr_t arg)
25506 {
25507 	struct sd_lun *un = (struct sd_lun *)arg;
25508 
25509 	mutex_enter(SD_MUTEX(un));
25510 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25511 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25512 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25513 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25514 	}
25515 	mutex_exit(SD_MUTEX(un));
25516 }
25517 
25518 
25519 /*
25520  *    Function: sd_take_ownership()
25521  *
25522  * Description: This routine implements an algorithm to achieve a stable
25523  *		reservation on disks which don't implement priority reserve,
25524  *		and makes sure that other host lose re-reservation attempts.
25525  *		This algorithm contains of a loop that keeps issuing the RESERVE
25526  *		for some period of time (min_ownership_delay, default 6 seconds)
25527  *		During that loop, it looks to see if there has been a bus device
25528  *		reset or bus reset (both of which cause an existing reservation
25529  *		to be lost). If the reservation is lost issue RESERVE until a
25530  *		period of min_ownership_delay with no resets has gone by, or
25531  *		until max_ownership_delay has expired. This loop ensures that
25532  *		the host really did manage to reserve the device, in spite of
25533  *		resets. The looping for min_ownership_delay (default six
25534  *		seconds) is important to early generation clustering products,
25535  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25536  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25537  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25538  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25539  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25540  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25541  *		no longer "owns" the disk and will have panicked itself.  Thus,
25542  *		the host issuing the MHIOCTKOWN is assured (with timing
25543  *		dependencies) that by the time it actually starts to use the
25544  *		disk for real work, the old owner is no longer accessing it.
25545  *
25546  *		min_ownership_delay is the minimum amount of time for which the
25547  *		disk must be reserved continuously devoid of resets before the
25548  *		MHIOCTKOWN ioctl will return success.
25549  *
25550  *		max_ownership_delay indicates the amount of time by which the
25551  *		take ownership should succeed or timeout with an error.
25552  *
25553  *   Arguments: dev - the device 'dev_t'
25554  *		*p  - struct containing timing info.
25555  *
25556  * Return Code: 0 for success or error code
25557  */
25558 
25559 static int
25560 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25561 {
25562 	struct sd_lun	*un;
25563 	int		rval;
25564 	int		err;
25565 	int		reservation_count   = 0;
25566 	int		min_ownership_delay =  6000000; /* in usec */
25567 	int		max_ownership_delay = 30000000; /* in usec */
25568 	clock_t		start_time;	/* starting time of this algorithm */
25569 	clock_t		end_time;	/* time limit for giving up */
25570 	clock_t		ownership_time;	/* time limit for stable ownership */
25571 	clock_t		current_time;
25572 	clock_t		previous_current_time;
25573 
25574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25575 		return (ENXIO);
25576 	}
25577 
25578 	/*
25579 	 * Attempt a device reservation. A priority reservation is requested.
25580 	 */
25581 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25582 	    != SD_SUCCESS) {
25583 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25584 		    "sd_take_ownership: return(1)=%d\n", rval);
25585 		return (rval);
25586 	}
25587 
25588 	/* Update the softstate reserved status to indicate the reservation */
25589 	mutex_enter(SD_MUTEX(un));
25590 	un->un_resvd_status |= SD_RESERVE;
25591 	un->un_resvd_status &=
25592 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25593 	mutex_exit(SD_MUTEX(un));
25594 
25595 	if (p != NULL) {
25596 		if (p->min_ownership_delay != 0) {
25597 			min_ownership_delay = p->min_ownership_delay * 1000;
25598 		}
25599 		if (p->max_ownership_delay != 0) {
25600 			max_ownership_delay = p->max_ownership_delay * 1000;
25601 		}
25602 	}
25603 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25604 	    "sd_take_ownership: min, max delays: %d, %d\n",
25605 	    min_ownership_delay, max_ownership_delay);
25606 
25607 	start_time = ddi_get_lbolt();
25608 	current_time	= start_time;
25609 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25610 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25611 
25612 	while (current_time - end_time < 0) {
25613 		delay(drv_usectohz(500000));
25614 
25615 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25616 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25617 				mutex_enter(SD_MUTEX(un));
25618 				rval = (un->un_resvd_status &
25619 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25620 				mutex_exit(SD_MUTEX(un));
25621 				break;
25622 			}
25623 		}
25624 		previous_current_time = current_time;
25625 		current_time = ddi_get_lbolt();
25626 		mutex_enter(SD_MUTEX(un));
25627 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25628 			ownership_time = ddi_get_lbolt() +
25629 			    drv_usectohz(min_ownership_delay);
25630 			reservation_count = 0;
25631 		} else {
25632 			reservation_count++;
25633 		}
25634 		un->un_resvd_status |= SD_RESERVE;
25635 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25636 		mutex_exit(SD_MUTEX(un));
25637 
25638 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25639 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25640 		    "reservation=%s\n", (current_time - previous_current_time),
25641 		    reservation_count ? "ok" : "reclaimed");
25642 
25643 		if (current_time - ownership_time >= 0 &&
25644 		    reservation_count >= 4) {
25645 			rval = 0; /* Achieved a stable ownership */
25646 			break;
25647 		}
25648 		if (current_time - end_time >= 0) {
25649 			rval = EACCES; /* No ownership in max possible time */
25650 			break;
25651 		}
25652 	}
25653 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25654 	    "sd_take_ownership: return(2)=%d\n", rval);
25655 	return (rval);
25656 }
25657 
25658 
25659 /*
25660  *    Function: sd_reserve_release()
25661  *
25662  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25663  *		PRIORITY RESERVE commands based on a user specified command type
25664  *
25665  *   Arguments: dev - the device 'dev_t'
25666  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25667  *		      SD_RESERVE, SD_RELEASE
25668  *
25669  * Return Code: 0 or Error Code
25670  */
25671 
25672 static int
25673 sd_reserve_release(dev_t dev, int cmd)
25674 {
25675 	struct uscsi_cmd	*com = NULL;
25676 	struct sd_lun		*un = NULL;
25677 	char			cdb[CDB_GROUP0];
25678 	int			rval;
25679 
25680 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25681 	    (cmd == SD_PRIORITY_RESERVE));
25682 
25683 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25684 		return (ENXIO);
25685 	}
25686 
25687 	/* instantiate and initialize the command and cdb */
25688 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25689 	bzero(cdb, CDB_GROUP0);
25690 	com->uscsi_flags   = USCSI_SILENT;
25691 	com->uscsi_timeout = un->un_reserve_release_time;
25692 	com->uscsi_cdblen  = CDB_GROUP0;
25693 	com->uscsi_cdb	   = cdb;
25694 	if (cmd == SD_RELEASE) {
25695 		cdb[0] = SCMD_RELEASE;
25696 	} else {
25697 		cdb[0] = SCMD_RESERVE;
25698 	}
25699 
25700 	/* Send the command. */
25701 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25702 	    SD_PATH_STANDARD);
25703 
25704 	/*
25705 	 * "break" a reservation that is held by another host, by issuing a
25706 	 * reset if priority reserve is desired, and we could not get the
25707 	 * device.
25708 	 */
25709 	if ((cmd == SD_PRIORITY_RESERVE) &&
25710 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25711 		/*
25712 		 * First try to reset the LUN. If we cannot, then try a target
25713 		 * reset, followed by a bus reset if the target reset fails.
25714 		 */
25715 		int reset_retval = 0;
25716 		if (un->un_f_lun_reset_enabled == TRUE) {
25717 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25718 		}
25719 		if (reset_retval == 0) {
25720 			/* The LUN reset either failed or was not issued */
25721 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25722 		}
25723 		if ((reset_retval == 0) &&
25724 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25725 			rval = EIO;
25726 			kmem_free(com, sizeof (*com));
25727 			return (rval);
25728 		}
25729 
25730 		bzero(com, sizeof (struct uscsi_cmd));
25731 		com->uscsi_flags   = USCSI_SILENT;
25732 		com->uscsi_cdb	   = cdb;
25733 		com->uscsi_cdblen  = CDB_GROUP0;
25734 		com->uscsi_timeout = 5;
25735 
25736 		/*
25737 		 * Reissue the last reserve command, this time without request
25738 		 * sense.  Assume that it is just a regular reserve command.
25739 		 */
25740 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25741 		    SD_PATH_STANDARD);
25742 	}
25743 
25744 	/* Return an error if still getting a reservation conflict. */
25745 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25746 		rval = EACCES;
25747 	}
25748 
25749 	kmem_free(com, sizeof (*com));
25750 	return (rval);
25751 }
25752 
25753 
25754 #define	SD_NDUMP_RETRIES	12
25755 /*
25756  *	System Crash Dump routine
25757  */
25758 
25759 static int
25760 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25761 {
25762 	int		instance;
25763 	int		partition;
25764 	int		i;
25765 	int		err;
25766 	struct sd_lun	*un;
25767 	struct scsi_pkt *wr_pktp;
25768 	struct buf	*wr_bp;
25769 	struct buf	wr_buf;
25770 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25771 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25772 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25773 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25774 	size_t		io_start_offset;
25775 	int		doing_rmw = FALSE;
25776 	int		rval;
25777 	ssize_t		dma_resid;
25778 	daddr_t		oblkno;
25779 	diskaddr_t	nblks = 0;
25780 	diskaddr_t	start_block;
25781 
25782 	instance = SDUNIT(dev);
25783 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25784 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25785 		return (ENXIO);
25786 	}
25787 
25788 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25789 
25790 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25791 
25792 	partition = SDPART(dev);
25793 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25794 
25795 	if (!(NOT_DEVBSIZE(un))) {
25796 		int secmask = 0;
25797 		int blknomask = 0;
25798 
25799 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25800 		secmask = un->un_tgt_blocksize - 1;
25801 
25802 		if (blkno & blknomask) {
25803 			SD_TRACE(SD_LOG_DUMP, un,
25804 			    "sddump: dump start block not modulo %d\n",
25805 			    un->un_tgt_blocksize);
25806 			return (EINVAL);
25807 		}
25808 
25809 		if ((nblk * DEV_BSIZE) & secmask) {
25810 			SD_TRACE(SD_LOG_DUMP, un,
25811 			    "sddump: dump length not modulo %d\n",
25812 			    un->un_tgt_blocksize);
25813 			return (EINVAL);
25814 		}
25815 
25816 	}
25817 
25818 	/* Validate blocks to dump at against partition size. */
25819 
25820 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25821 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25822 
25823 	if (NOT_DEVBSIZE(un)) {
25824 		if ((blkno + nblk) > nblks) {
25825 			SD_TRACE(SD_LOG_DUMP, un,
25826 			    "sddump: dump range larger than partition: "
25827 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25828 			    blkno, nblk, nblks);
25829 			return (EINVAL);
25830 		}
25831 	} else {
25832 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25833 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25834 			SD_TRACE(SD_LOG_DUMP, un,
25835 			    "sddump: dump range larger than partition: "
25836 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25837 			    blkno, nblk, nblks);
25838 			return (EINVAL);
25839 		}
25840 	}
25841 
25842 	mutex_enter(&un->un_pm_mutex);
25843 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25844 		struct scsi_pkt *start_pktp;
25845 
25846 		mutex_exit(&un->un_pm_mutex);
25847 
25848 		/*
25849 		 * use pm framework to power on HBA 1st
25850 		 */
25851 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25852 		    SD_PM_STATE_ACTIVE(un));
25853 
25854 		/*
25855 		 * Dump no long uses sdpower to power on a device, it's
25856 		 * in-line here so it can be done in polled mode.
25857 		 */
25858 
25859 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25860 
25861 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25862 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25863 
25864 		if (start_pktp == NULL) {
25865 			/* We were not given a SCSI packet, fail. */
25866 			return (EIO);
25867 		}
25868 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25869 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25870 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25871 		start_pktp->pkt_flags = FLAG_NOINTR;
25872 
25873 		mutex_enter(SD_MUTEX(un));
25874 		SD_FILL_SCSI1_LUN(un, start_pktp);
25875 		mutex_exit(SD_MUTEX(un));
25876 		/*
25877 		 * Scsi_poll returns 0 (success) if the command completes and
25878 		 * the status block is STATUS_GOOD.
25879 		 */
25880 		if (sd_scsi_poll(un, start_pktp) != 0) {
25881 			scsi_destroy_pkt(start_pktp);
25882 			return (EIO);
25883 		}
25884 		scsi_destroy_pkt(start_pktp);
25885 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25886 		    SD_PM_STATE_CHANGE);
25887 	} else {
25888 		mutex_exit(&un->un_pm_mutex);
25889 	}
25890 
25891 	mutex_enter(SD_MUTEX(un));
25892 	un->un_throttle = 0;
25893 
25894 	/*
25895 	 * The first time through, reset the specific target device.
25896 	 * However, when cpr calls sddump we know that sd is in a
25897 	 * a good state so no bus reset is required.
25898 	 * Clear sense data via Request Sense cmd.
25899 	 * In sddump we don't care about allow_bus_device_reset anymore
25900 	 */
25901 
25902 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25903 	    (un->un_state != SD_STATE_DUMPING)) {
25904 
25905 		New_state(un, SD_STATE_DUMPING);
25906 
25907 		if (un->un_f_is_fibre == FALSE) {
25908 			mutex_exit(SD_MUTEX(un));
25909 			/*
25910 			 * Attempt a bus reset for parallel scsi.
25911 			 *
25912 			 * Note: A bus reset is required because on some host
25913 			 * systems (i.e. E420R) a bus device reset is
25914 			 * insufficient to reset the state of the target.
25915 			 *
25916 			 * Note: Don't issue the reset for fibre-channel,
25917 			 * because this tends to hang the bus (loop) for
25918 			 * too long while everyone is logging out and in
25919 			 * and the deadman timer for dumping will fire
25920 			 * before the dump is complete.
25921 			 */
25922 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25923 				mutex_enter(SD_MUTEX(un));
25924 				Restore_state(un);
25925 				mutex_exit(SD_MUTEX(un));
25926 				return (EIO);
25927 			}
25928 
25929 			/* Delay to give the device some recovery time. */
25930 			drv_usecwait(10000);
25931 
25932 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25933 				SD_INFO(SD_LOG_DUMP, un,
25934 				    "sddump: sd_send_polled_RQS failed\n");
25935 			}
25936 			mutex_enter(SD_MUTEX(un));
25937 		}
25938 	}
25939 
25940 	/*
25941 	 * Convert the partition-relative block number to a
25942 	 * disk physical block number.
25943 	 */
25944 	if (NOT_DEVBSIZE(un)) {
25945 		blkno += start_block;
25946 	} else {
25947 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25948 		blkno += start_block;
25949 	}
25950 
25951 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25952 
25953 
25954 	/*
25955 	 * Check if the device has a non-512 block size.
25956 	 */
25957 	wr_bp = NULL;
25958 	if (NOT_DEVBSIZE(un)) {
25959 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25960 		tgt_byte_count = nblk * un->un_sys_blocksize;
25961 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25962 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25963 			doing_rmw = TRUE;
25964 			/*
25965 			 * Calculate the block number and number of block
25966 			 * in terms of the media block size.
25967 			 */
25968 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25969 			tgt_nblk =
25970 			    ((tgt_byte_offset + tgt_byte_count +
25971 			    (un->un_tgt_blocksize - 1)) /
25972 			    un->un_tgt_blocksize) - tgt_blkno;
25973 
25974 			/*
25975 			 * Invoke the routine which is going to do read part
25976 			 * of read-modify-write.
25977 			 * Note that this routine returns a pointer to
25978 			 * a valid bp in wr_bp.
25979 			 */
25980 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25981 			    &wr_bp);
25982 			if (err) {
25983 				mutex_exit(SD_MUTEX(un));
25984 				return (err);
25985 			}
25986 			/*
25987 			 * Offset is being calculated as -
25988 			 * (original block # * system block size) -
25989 			 * (new block # * target block size)
25990 			 */
25991 			io_start_offset =
25992 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25993 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25994 
25995 			ASSERT((io_start_offset >= 0) &&
25996 			    (io_start_offset < un->un_tgt_blocksize));
25997 			/*
25998 			 * Do the modify portion of read modify write.
25999 			 */
26000 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26001 			    (size_t)nblk * un->un_sys_blocksize);
26002 		} else {
26003 			doing_rmw = FALSE;
26004 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26005 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26006 		}
26007 
26008 		/* Convert blkno and nblk to target blocks */
26009 		blkno = tgt_blkno;
26010 		nblk = tgt_nblk;
26011 	} else {
26012 		wr_bp = &wr_buf;
26013 		bzero(wr_bp, sizeof (struct buf));
26014 		wr_bp->b_flags		= B_BUSY;
26015 		wr_bp->b_un.b_addr	= addr;
26016 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26017 		wr_bp->b_resid		= 0;
26018 	}
26019 
26020 	mutex_exit(SD_MUTEX(un));
26021 
26022 	/*
26023 	 * Obtain a SCSI packet for the write command.
26024 	 * It should be safe to call the allocator here without
26025 	 * worrying about being locked for DVMA mapping because
26026 	 * the address we're passed is already a DVMA mapping
26027 	 *
26028 	 * We are also not going to worry about semaphore ownership
26029 	 * in the dump buffer. Dumping is single threaded at present.
26030 	 */
26031 
26032 	wr_pktp = NULL;
26033 
26034 	dma_resid = wr_bp->b_bcount;
26035 	oblkno = blkno;
26036 
26037 	if (!(NOT_DEVBSIZE(un))) {
26038 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26039 	}
26040 
26041 	while (dma_resid != 0) {
26042 
26043 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26044 		wr_bp->b_flags &= ~B_ERROR;
26045 
26046 		if (un->un_partial_dma_supported == 1) {
26047 			blkno = oblkno +
26048 			    ((wr_bp->b_bcount - dma_resid) /
26049 			    un->un_tgt_blocksize);
26050 			nblk = dma_resid / un->un_tgt_blocksize;
26051 
26052 			if (wr_pktp) {
26053 				/*
26054 				 * Partial DMA transfers after initial transfer
26055 				 */
26056 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26057 				    blkno, nblk);
26058 			} else {
26059 				/* Initial transfer */
26060 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26061 				    un->un_pkt_flags, NULL_FUNC, NULL,
26062 				    blkno, nblk);
26063 			}
26064 		} else {
26065 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26066 			    0, NULL_FUNC, NULL, blkno, nblk);
26067 		}
26068 
26069 		if (rval == 0) {
26070 			/* We were given a SCSI packet, continue. */
26071 			break;
26072 		}
26073 
26074 		if (i == 0) {
26075 			if (wr_bp->b_flags & B_ERROR) {
26076 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26077 				    "no resources for dumping; "
26078 				    "error code: 0x%x, retrying",
26079 				    geterror(wr_bp));
26080 			} else {
26081 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26082 				    "no resources for dumping; retrying");
26083 			}
26084 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26085 			if (wr_bp->b_flags & B_ERROR) {
26086 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26087 				    "no resources for dumping; error code: "
26088 				    "0x%x, retrying\n", geterror(wr_bp));
26089 			}
26090 		} else {
26091 			if (wr_bp->b_flags & B_ERROR) {
26092 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26093 				    "no resources for dumping; "
26094 				    "error code: 0x%x, retries failed, "
26095 				    "giving up.\n", geterror(wr_bp));
26096 			} else {
26097 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26098 				    "no resources for dumping; "
26099 				    "retries failed, giving up.\n");
26100 			}
26101 			mutex_enter(SD_MUTEX(un));
26102 			Restore_state(un);
26103 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26104 				mutex_exit(SD_MUTEX(un));
26105 				scsi_free_consistent_buf(wr_bp);
26106 			} else {
26107 				mutex_exit(SD_MUTEX(un));
26108 			}
26109 			return (EIO);
26110 		}
26111 		drv_usecwait(10000);
26112 	}
26113 
26114 	if (un->un_partial_dma_supported == 1) {
26115 		/*
26116 		 * save the resid from PARTIAL_DMA
26117 		 */
26118 		dma_resid = wr_pktp->pkt_resid;
26119 		if (dma_resid != 0)
26120 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26121 		wr_pktp->pkt_resid = 0;
26122 	} else {
26123 		dma_resid = 0;
26124 	}
26125 
26126 	/* SunBug 1222170 */
26127 	wr_pktp->pkt_flags = FLAG_NOINTR;
26128 
26129 	err = EIO;
26130 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26131 
26132 		/*
26133 		 * Scsi_poll returns 0 (success) if the command completes and
26134 		 * the status block is STATUS_GOOD.  We should only check
26135 		 * errors if this condition is not true.  Even then we should
26136 		 * send our own request sense packet only if we have a check
26137 		 * condition and auto request sense has not been performed by
26138 		 * the hba.
26139 		 */
26140 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26141 
26142 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26143 		    (wr_pktp->pkt_resid == 0)) {
26144 			err = SD_SUCCESS;
26145 			break;
26146 		}
26147 
26148 		/*
26149 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26150 		 */
26151 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26152 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26153 			    "Error while dumping state...Device is gone\n");
26154 			break;
26155 		}
26156 
26157 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26158 			SD_INFO(SD_LOG_DUMP, un,
26159 			    "sddump: write failed with CHECK, try # %d\n", i);
26160 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26161 				(void) sd_send_polled_RQS(un);
26162 			}
26163 
26164 			continue;
26165 		}
26166 
26167 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26168 			int reset_retval = 0;
26169 
26170 			SD_INFO(SD_LOG_DUMP, un,
26171 			    "sddump: write failed with BUSY, try # %d\n", i);
26172 
26173 			if (un->un_f_lun_reset_enabled == TRUE) {
26174 				reset_retval = scsi_reset(SD_ADDRESS(un),
26175 				    RESET_LUN);
26176 			}
26177 			if (reset_retval == 0) {
26178 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26179 			}
26180 			(void) sd_send_polled_RQS(un);
26181 
26182 		} else {
26183 			SD_INFO(SD_LOG_DUMP, un,
26184 			    "sddump: write failed with 0x%x, try # %d\n",
26185 			    SD_GET_PKT_STATUS(wr_pktp), i);
26186 			mutex_enter(SD_MUTEX(un));
26187 			sd_reset_target(un, wr_pktp);
26188 			mutex_exit(SD_MUTEX(un));
26189 		}
26190 
26191 		/*
26192 		 * If we are not getting anywhere with lun/target resets,
26193 		 * let's reset the bus.
26194 		 */
26195 		if (i == SD_NDUMP_RETRIES/2) {
26196 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26197 			(void) sd_send_polled_RQS(un);
26198 		}
26199 	}
26200 	}
26201 
26202 	scsi_destroy_pkt(wr_pktp);
26203 	mutex_enter(SD_MUTEX(un));
26204 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26205 		mutex_exit(SD_MUTEX(un));
26206 		scsi_free_consistent_buf(wr_bp);
26207 	} else {
26208 		mutex_exit(SD_MUTEX(un));
26209 	}
26210 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26211 	return (err);
26212 }
26213 
26214 /*
26215  *    Function: sd_scsi_poll()
26216  *
26217  * Description: This is a wrapper for the scsi_poll call.
26218  *
26219  *   Arguments: sd_lun - The unit structure
26220  *              scsi_pkt - The scsi packet being sent to the device.
26221  *
26222  * Return Code: 0 - Command completed successfully with good status
26223  *             -1 - Command failed.  This could indicate a check condition
26224  *                  or other status value requiring recovery action.
26225  *
26226  * NOTE: This code is only called off sddump().
26227  */
26228 
26229 static int
26230 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26231 {
26232 	int status;
26233 
26234 	ASSERT(un != NULL);
26235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26236 	ASSERT(pktp != NULL);
26237 
26238 	status = SD_SUCCESS;
26239 
26240 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26241 		pktp->pkt_flags |= un->un_tagflags;
26242 		pktp->pkt_flags &= ~FLAG_NODISCON;
26243 	}
26244 
26245 	status = sd_ddi_scsi_poll(pktp);
26246 	/*
26247 	 * Scsi_poll returns 0 (success) if the command completes and the
26248 	 * status block is STATUS_GOOD.  We should only check errors if this
26249 	 * condition is not true.  Even then we should send our own request
26250 	 * sense packet only if we have a check condition and auto
26251 	 * request sense has not been performed by the hba.
26252 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26253 	 */
26254 	if ((status != SD_SUCCESS) &&
26255 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26256 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26257 	    (pktp->pkt_reason != CMD_DEV_GONE))
26258 		(void) sd_send_polled_RQS(un);
26259 
26260 	return (status);
26261 }
26262 
26263 /*
26264  *    Function: sd_send_polled_RQS()
26265  *
26266  * Description: This sends the request sense command to a device.
26267  *
26268  *   Arguments: sd_lun - The unit structure
26269  *
26270  * Return Code: 0 - Command completed successfully with good status
26271  *             -1 - Command failed.
26272  *
26273  */
26274 
26275 static int
26276 sd_send_polled_RQS(struct sd_lun *un)
26277 {
26278 	int	ret_val;
26279 	struct	scsi_pkt	*rqs_pktp;
26280 	struct	buf		*rqs_bp;
26281 
26282 	ASSERT(un != NULL);
26283 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26284 
26285 	ret_val = SD_SUCCESS;
26286 
26287 	rqs_pktp = un->un_rqs_pktp;
26288 	rqs_bp	 = un->un_rqs_bp;
26289 
26290 	mutex_enter(SD_MUTEX(un));
26291 
26292 	if (un->un_sense_isbusy) {
26293 		ret_val = SD_FAILURE;
26294 		mutex_exit(SD_MUTEX(un));
26295 		return (ret_val);
26296 	}
26297 
26298 	/*
26299 	 * If the request sense buffer (and packet) is not in use,
26300 	 * let's set the un_sense_isbusy and send our packet
26301 	 */
26302 	un->un_sense_isbusy 	= 1;
26303 	rqs_pktp->pkt_resid  	= 0;
26304 	rqs_pktp->pkt_reason 	= 0;
26305 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26306 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26307 
26308 	mutex_exit(SD_MUTEX(un));
26309 
26310 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26311 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26312 
26313 	/*
26314 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26315 	 * axle - it has a call into us!
26316 	 */
26317 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26318 		SD_INFO(SD_LOG_COMMON, un,
26319 		    "sd_send_polled_RQS: RQS failed\n");
26320 	}
26321 
26322 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26323 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26324 
26325 	mutex_enter(SD_MUTEX(un));
26326 	un->un_sense_isbusy = 0;
26327 	mutex_exit(SD_MUTEX(un));
26328 
26329 	return (ret_val);
26330 }
26331 
26332 /*
26333  * Defines needed for localized version of the scsi_poll routine.
26334  */
26335 #define	CSEC		10000			/* usecs */
26336 #define	SEC_TO_CSEC	(1000000/CSEC)
26337 
26338 /*
26339  *    Function: sd_ddi_scsi_poll()
26340  *
26341  * Description: Localized version of the scsi_poll routine.  The purpose is to
26342  *		send a scsi_pkt to a device as a polled command.  This version
26343  *		is to ensure more robust handling of transport errors.
26344  *		Specifically this routine cures not ready, coming ready
26345  *		transition for power up and reset of sonoma's.  This can take
26346  *		up to 45 seconds for power-on and 20 seconds for reset of a
26347  * 		sonoma lun.
26348  *
26349  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26350  *
26351  * Return Code: 0 - Command completed successfully with good status
26352  *             -1 - Command failed.
26353  *
26354  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26355  * be fixed (removing this code), we need to determine how to handle the
26356  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26357  *
26358  * NOTE: This code is only called off sddump().
26359  */
26360 static int
26361 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26362 {
26363 	int			rval = -1;
26364 	int			savef;
26365 	long			savet;
26366 	void			(*savec)();
26367 	int			timeout;
26368 	int			busy_count;
26369 	int			poll_delay;
26370 	int			rc;
26371 	uint8_t			*sensep;
26372 	struct scsi_arq_status	*arqstat;
26373 	extern int		do_polled_io;
26374 
26375 	ASSERT(pkt->pkt_scbp);
26376 
26377 	/*
26378 	 * save old flags..
26379 	 */
26380 	savef = pkt->pkt_flags;
26381 	savec = pkt->pkt_comp;
26382 	savet = pkt->pkt_time;
26383 
26384 	pkt->pkt_flags |= FLAG_NOINTR;
26385 
26386 	/*
26387 	 * XXX there is nothing in the SCSA spec that states that we should not
26388 	 * do a callback for polled cmds; however, removing this will break sd
26389 	 * and probably other target drivers
26390 	 */
26391 	pkt->pkt_comp = NULL;
26392 
26393 	/*
26394 	 * we don't like a polled command without timeout.
26395 	 * 60 seconds seems long enough.
26396 	 */
26397 	if (pkt->pkt_time == 0)
26398 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26399 
26400 	/*
26401 	 * Send polled cmd.
26402 	 *
26403 	 * We do some error recovery for various errors.  Tran_busy,
26404 	 * queue full, and non-dispatched commands are retried every 10 msec.
26405 	 * as they are typically transient failures.  Busy status and Not
26406 	 * Ready are retried every second as this status takes a while to
26407 	 * change.
26408 	 */
26409 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26410 
26411 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26412 		/*
26413 		 * Initialize pkt status variables.
26414 		 */
26415 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26416 
26417 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26418 			if (rc != TRAN_BUSY) {
26419 				/* Transport failed - give up. */
26420 				break;
26421 			} else {
26422 				/* Transport busy - try again. */
26423 				poll_delay = 1 * CSEC;		/* 10 msec. */
26424 			}
26425 		} else {
26426 			/*
26427 			 * Transport accepted - check pkt status.
26428 			 */
26429 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26430 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26431 			    (rc == STATUS_CHECK) &&
26432 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26433 				arqstat =
26434 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26435 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26436 			} else {
26437 				sensep = NULL;
26438 			}
26439 
26440 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26441 			    (rc == STATUS_GOOD)) {
26442 				/* No error - we're done */
26443 				rval = 0;
26444 				break;
26445 
26446 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26447 				/* Lost connection - give up */
26448 				break;
26449 
26450 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26451 			    (pkt->pkt_state == 0)) {
26452 				/* Pkt not dispatched - try again. */
26453 				poll_delay = 1 * CSEC;		/* 10 msec. */
26454 
26455 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26456 			    (rc == STATUS_QFULL)) {
26457 				/* Queue full - try again. */
26458 				poll_delay = 1 * CSEC;		/* 10 msec. */
26459 
26460 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26461 			    (rc == STATUS_BUSY)) {
26462 				/* Busy - try again. */
26463 				poll_delay = 100 * CSEC;	/* 1 sec. */
26464 				busy_count += (SEC_TO_CSEC - 1);
26465 
26466 			} else if ((sensep != NULL) &&
26467 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26468 				/*
26469 				 * Unit Attention - try again.
26470 				 * Pretend it took 1 sec.
26471 				 * NOTE: 'continue' avoids poll_delay
26472 				 */
26473 				busy_count += (SEC_TO_CSEC - 1);
26474 				continue;
26475 
26476 			} else if ((sensep != NULL) &&
26477 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26478 			    (scsi_sense_asc(sensep) == 0x04) &&
26479 			    (scsi_sense_ascq(sensep) == 0x01)) {
26480 				/*
26481 				 * Not ready -> ready - try again.
26482 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26483 				 * ...same as STATUS_BUSY
26484 				 */
26485 				poll_delay = 100 * CSEC;	/* 1 sec. */
26486 				busy_count += (SEC_TO_CSEC - 1);
26487 
26488 			} else {
26489 				/* BAD status - give up. */
26490 				break;
26491 			}
26492 		}
26493 
26494 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26495 		    !do_polled_io) {
26496 			delay(drv_usectohz(poll_delay));
26497 		} else {
26498 			/* we busy wait during cpr_dump or interrupt threads */
26499 			drv_usecwait(poll_delay);
26500 		}
26501 	}
26502 
26503 	pkt->pkt_flags = savef;
26504 	pkt->pkt_comp = savec;
26505 	pkt->pkt_time = savet;
26506 
26507 	/* return on error */
26508 	if (rval)
26509 		return (rval);
26510 
26511 	/*
26512 	 * This is not a performance critical code path.
26513 	 *
26514 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26515 	 * issues associated with looking at DMA memory prior to
26516 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26517 	 */
26518 	scsi_sync_pkt(pkt);
26519 	return (0);
26520 }
26521 
26522 
26523 
26524 /*
26525  *    Function: sd_persistent_reservation_in_read_keys
26526  *
26527  * Description: This routine is the driver entry point for handling CD-ROM
26528  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26529  *		by sending the SCSI-3 PRIN commands to the device.
26530  *		Processes the read keys command response by copying the
26531  *		reservation key information into the user provided buffer.
26532  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26533  *
26534  *   Arguments: un   -  Pointer to soft state struct for the target.
26535  *		usrp -	user provided pointer to multihost Persistent In Read
26536  *			Keys structure (mhioc_inkeys_t)
26537  *		flag -	this argument is a pass through to ddi_copyxxx()
26538  *			directly from the mode argument of ioctl().
26539  *
26540  * Return Code: 0   - Success
26541  *		EACCES
26542  *		ENOTSUP
26543  *		errno return code from sd_send_scsi_cmd()
26544  *
26545  *     Context: Can sleep. Does not return until command is completed.
26546  */
26547 
26548 static int
26549 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26550     mhioc_inkeys_t *usrp, int flag)
26551 {
26552 #ifdef _MULTI_DATAMODEL
26553 	struct mhioc_key_list32	li32;
26554 #endif
26555 	sd_prin_readkeys_t	*in;
26556 	mhioc_inkeys_t		*ptr;
26557 	mhioc_key_list_t	li;
26558 	uchar_t			*data_bufp;
26559 	int 			data_len;
26560 	int			rval = 0;
26561 	size_t			copysz;
26562 	sd_ssc_t		*ssc;
26563 
26564 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26565 		return (EINVAL);
26566 	}
26567 	bzero(&li, sizeof (mhioc_key_list_t));
26568 
26569 	ssc = sd_ssc_init(un);
26570 
26571 	/*
26572 	 * Get the listsize from user
26573 	 */
26574 #ifdef _MULTI_DATAMODEL
26575 
26576 	switch (ddi_model_convert_from(flag & FMODELS)) {
26577 	case DDI_MODEL_ILP32:
26578 		copysz = sizeof (struct mhioc_key_list32);
26579 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26580 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26581 			    "sd_persistent_reservation_in_read_keys: "
26582 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26583 			rval = EFAULT;
26584 			goto done;
26585 		}
26586 		li.listsize = li32.listsize;
26587 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26588 		break;
26589 
26590 	case DDI_MODEL_NONE:
26591 		copysz = sizeof (mhioc_key_list_t);
26592 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26593 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26594 			    "sd_persistent_reservation_in_read_keys: "
26595 			    "failed ddi_copyin: mhioc_key_list_t\n");
26596 			rval = EFAULT;
26597 			goto done;
26598 		}
26599 		break;
26600 	}
26601 
26602 #else /* ! _MULTI_DATAMODEL */
26603 	copysz = sizeof (mhioc_key_list_t);
26604 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26605 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26606 		    "sd_persistent_reservation_in_read_keys: "
26607 		    "failed ddi_copyin: mhioc_key_list_t\n");
26608 		rval = EFAULT;
26609 		goto done;
26610 	}
26611 #endif
26612 
26613 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26614 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26615 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26616 
26617 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26618 	    data_len, data_bufp);
26619 	if (rval != 0) {
26620 		if (rval == EIO)
26621 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26622 		else
26623 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26624 		goto done;
26625 	}
26626 	in = (sd_prin_readkeys_t *)data_bufp;
26627 	ptr->generation = BE_32(in->generation);
26628 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26629 
26630 	/*
26631 	 * Return the min(listsize, listlen) keys
26632 	 */
26633 #ifdef _MULTI_DATAMODEL
26634 
26635 	switch (ddi_model_convert_from(flag & FMODELS)) {
26636 	case DDI_MODEL_ILP32:
26637 		li32.listlen = li.listlen;
26638 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26639 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26640 			    "sd_persistent_reservation_in_read_keys: "
26641 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26642 			rval = EFAULT;
26643 			goto done;
26644 		}
26645 		break;
26646 
26647 	case DDI_MODEL_NONE:
26648 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26649 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26650 			    "sd_persistent_reservation_in_read_keys: "
26651 			    "failed ddi_copyout: mhioc_key_list_t\n");
26652 			rval = EFAULT;
26653 			goto done;
26654 		}
26655 		break;
26656 	}
26657 
26658 #else /* ! _MULTI_DATAMODEL */
26659 
26660 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26661 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26662 		    "sd_persistent_reservation_in_read_keys: "
26663 		    "failed ddi_copyout: mhioc_key_list_t\n");
26664 		rval = EFAULT;
26665 		goto done;
26666 	}
26667 
26668 #endif /* _MULTI_DATAMODEL */
26669 
26670 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26671 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26672 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26673 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26674 		    "sd_persistent_reservation_in_read_keys: "
26675 		    "failed ddi_copyout: keylist\n");
26676 		rval = EFAULT;
26677 	}
26678 done:
26679 	sd_ssc_fini(ssc);
26680 	kmem_free(data_bufp, data_len);
26681 	return (rval);
26682 }
26683 
26684 
26685 /*
26686  *    Function: sd_persistent_reservation_in_read_resv
26687  *
26688  * Description: This routine is the driver entry point for handling CD-ROM
26689  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26690  *		by sending the SCSI-3 PRIN commands to the device.
26691  *		Process the read persistent reservations command response by
26692  *		copying the reservation information into the user provided
26693  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26694  *
26695  *   Arguments: un   -  Pointer to soft state struct for the target.
26696  *		usrp -	user provided pointer to multihost Persistent In Read
26697  *			Keys structure (mhioc_inkeys_t)
26698  *		flag -	this argument is a pass through to ddi_copyxxx()
26699  *			directly from the mode argument of ioctl().
26700  *
26701  * Return Code: 0   - Success
26702  *		EACCES
26703  *		ENOTSUP
26704  *		errno return code from sd_send_scsi_cmd()
26705  *
26706  *     Context: Can sleep. Does not return until command is completed.
26707  */
26708 
26709 static int
26710 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26711     mhioc_inresvs_t *usrp, int flag)
26712 {
26713 #ifdef _MULTI_DATAMODEL
26714 	struct mhioc_resv_desc_list32 resvlist32;
26715 #endif
26716 	sd_prin_readresv_t	*in;
26717 	mhioc_inresvs_t		*ptr;
26718 	sd_readresv_desc_t	*readresv_ptr;
26719 	mhioc_resv_desc_list_t	resvlist;
26720 	mhioc_resv_desc_t 	resvdesc;
26721 	uchar_t			*data_bufp = NULL;
26722 	int 			data_len;
26723 	int			rval = 0;
26724 	int			i;
26725 	size_t			copysz;
26726 	mhioc_resv_desc_t	*bufp;
26727 	sd_ssc_t		*ssc;
26728 
26729 	if ((ptr = usrp) == NULL) {
26730 		return (EINVAL);
26731 	}
26732 
26733 	ssc = sd_ssc_init(un);
26734 
26735 	/*
26736 	 * Get the listsize from user
26737 	 */
26738 #ifdef _MULTI_DATAMODEL
26739 	switch (ddi_model_convert_from(flag & FMODELS)) {
26740 	case DDI_MODEL_ILP32:
26741 		copysz = sizeof (struct mhioc_resv_desc_list32);
26742 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26743 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26744 			    "sd_persistent_reservation_in_read_resv: "
26745 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26746 			rval = EFAULT;
26747 			goto done;
26748 		}
26749 		resvlist.listsize = resvlist32.listsize;
26750 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26751 		break;
26752 
26753 	case DDI_MODEL_NONE:
26754 		copysz = sizeof (mhioc_resv_desc_list_t);
26755 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26756 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26757 			    "sd_persistent_reservation_in_read_resv: "
26758 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26759 			rval = EFAULT;
26760 			goto done;
26761 		}
26762 		break;
26763 	}
26764 #else /* ! _MULTI_DATAMODEL */
26765 	copysz = sizeof (mhioc_resv_desc_list_t);
26766 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26767 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26768 		    "sd_persistent_reservation_in_read_resv: "
26769 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26770 		rval = EFAULT;
26771 		goto done;
26772 	}
26773 #endif /* ! _MULTI_DATAMODEL */
26774 
26775 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26776 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26777 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26778 
26779 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26780 	    data_len, data_bufp);
26781 	if (rval != 0) {
26782 		if (rval == EIO)
26783 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26784 		else
26785 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26786 		goto done;
26787 	}
26788 	in = (sd_prin_readresv_t *)data_bufp;
26789 	ptr->generation = BE_32(in->generation);
26790 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26791 
26792 	/*
26793 	 * Return the min(listsize, listlen( keys
26794 	 */
26795 #ifdef _MULTI_DATAMODEL
26796 
26797 	switch (ddi_model_convert_from(flag & FMODELS)) {
26798 	case DDI_MODEL_ILP32:
26799 		resvlist32.listlen = resvlist.listlen;
26800 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26801 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26802 			    "sd_persistent_reservation_in_read_resv: "
26803 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26804 			rval = EFAULT;
26805 			goto done;
26806 		}
26807 		break;
26808 
26809 	case DDI_MODEL_NONE:
26810 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26811 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26812 			    "sd_persistent_reservation_in_read_resv: "
26813 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26814 			rval = EFAULT;
26815 			goto done;
26816 		}
26817 		break;
26818 	}
26819 
26820 #else /* ! _MULTI_DATAMODEL */
26821 
26822 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26823 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26824 		    "sd_persistent_reservation_in_read_resv: "
26825 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26826 		rval = EFAULT;
26827 		goto done;
26828 	}
26829 
26830 #endif /* ! _MULTI_DATAMODEL */
26831 
26832 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26833 	bufp = resvlist.list;
26834 	copysz = sizeof (mhioc_resv_desc_t);
26835 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26836 	    i++, readresv_ptr++, bufp++) {
26837 
26838 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26839 		    MHIOC_RESV_KEY_SIZE);
26840 		resvdesc.type  = readresv_ptr->type;
26841 		resvdesc.scope = readresv_ptr->scope;
26842 		resvdesc.scope_specific_addr =
26843 		    BE_32(readresv_ptr->scope_specific_addr);
26844 
26845 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26846 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26847 			    "sd_persistent_reservation_in_read_resv: "
26848 			    "failed ddi_copyout: resvlist\n");
26849 			rval = EFAULT;
26850 			goto done;
26851 		}
26852 	}
26853 done:
26854 	sd_ssc_fini(ssc);
26855 	/* only if data_bufp is allocated, we need to free it */
26856 	if (data_bufp) {
26857 		kmem_free(data_bufp, data_len);
26858 	}
26859 	return (rval);
26860 }
26861 
26862 
26863 /*
26864  *    Function: sr_change_blkmode()
26865  *
26866  * Description: This routine is the driver entry point for handling CD-ROM
26867  *		block mode ioctl requests. Support for returning and changing
26868  *		the current block size in use by the device is implemented. The
26869  *		LBA size is changed via a MODE SELECT Block Descriptor.
26870  *
26871  *		This routine issues a mode sense with an allocation length of
26872  *		12 bytes for the mode page header and a single block descriptor.
26873  *
26874  *   Arguments: dev - the device 'dev_t'
26875  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26876  *		      CDROMSBLKMODE (set)
26877  *		data - current block size or requested block size
26878  *		flag - this argument is a pass through to ddi_copyxxx() directly
26879  *		       from the mode argument of ioctl().
26880  *
26881  * Return Code: the code returned by sd_send_scsi_cmd()
26882  *		EINVAL if invalid arguments are provided
26883  *		EFAULT if ddi_copyxxx() fails
26884  *		ENXIO if fail ddi_get_soft_state
26885  *		EIO if invalid mode sense block descriptor length
26886  *
26887  */
26888 
26889 static int
26890 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26891 {
26892 	struct sd_lun			*un = NULL;
26893 	struct mode_header		*sense_mhp, *select_mhp;
26894 	struct block_descriptor		*sense_desc, *select_desc;
26895 	int				current_bsize;
26896 	int				rval = EINVAL;
26897 	uchar_t				*sense = NULL;
26898 	uchar_t				*select = NULL;
26899 	sd_ssc_t			*ssc;
26900 
26901 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26902 
26903 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26904 		return (ENXIO);
26905 	}
26906 
26907 	/*
26908 	 * The block length is changed via the Mode Select block descriptor, the
26909 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26910 	 * required as part of this routine. Therefore the mode sense allocation
26911 	 * length is specified to be the length of a mode page header and a
26912 	 * block descriptor.
26913 	 */
26914 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26915 
26916 	ssc = sd_ssc_init(un);
26917 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26918 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26919 	sd_ssc_fini(ssc);
26920 	if (rval != 0) {
26921 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26922 		    "sr_change_blkmode: Mode Sense Failed\n");
26923 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26924 		return (rval);
26925 	}
26926 
26927 	/* Check the block descriptor len to handle only 1 block descriptor */
26928 	sense_mhp = (struct mode_header *)sense;
26929 	if ((sense_mhp->bdesc_length == 0) ||
26930 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26931 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26932 		    "sr_change_blkmode: Mode Sense returned invalid block"
26933 		    " descriptor length\n");
26934 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26935 		return (EIO);
26936 	}
26937 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26938 	current_bsize = ((sense_desc->blksize_hi << 16) |
26939 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26940 
26941 	/* Process command */
26942 	switch (cmd) {
26943 	case CDROMGBLKMODE:
26944 		/* Return the block size obtained during the mode sense */
26945 		if (ddi_copyout(&current_bsize, (void *)data,
26946 		    sizeof (int), flag) != 0)
26947 			rval = EFAULT;
26948 		break;
26949 	case CDROMSBLKMODE:
26950 		/* Validate the requested block size */
26951 		switch (data) {
26952 		case CDROM_BLK_512:
26953 		case CDROM_BLK_1024:
26954 		case CDROM_BLK_2048:
26955 		case CDROM_BLK_2056:
26956 		case CDROM_BLK_2336:
26957 		case CDROM_BLK_2340:
26958 		case CDROM_BLK_2352:
26959 		case CDROM_BLK_2368:
26960 		case CDROM_BLK_2448:
26961 		case CDROM_BLK_2646:
26962 		case CDROM_BLK_2647:
26963 			break;
26964 		default:
26965 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26966 			    "sr_change_blkmode: "
26967 			    "Block Size '%ld' Not Supported\n", data);
26968 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26969 			return (EINVAL);
26970 		}
26971 
26972 		/*
26973 		 * The current block size matches the requested block size so
26974 		 * there is no need to send the mode select to change the size
26975 		 */
26976 		if (current_bsize == data) {
26977 			break;
26978 		}
26979 
26980 		/* Build the select data for the requested block size */
26981 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26982 		select_mhp = (struct mode_header *)select;
26983 		select_desc =
26984 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26985 		/*
26986 		 * The LBA size is changed via the block descriptor, so the
26987 		 * descriptor is built according to the user data
26988 		 */
26989 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26990 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26991 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26992 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26993 
26994 		/* Send the mode select for the requested block size */
26995 		ssc = sd_ssc_init(un);
26996 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26997 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26998 		    SD_PATH_STANDARD);
26999 		sd_ssc_fini(ssc);
27000 		if (rval != 0) {
27001 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27002 			    "sr_change_blkmode: Mode Select Failed\n");
27003 			/*
27004 			 * The mode select failed for the requested block size,
27005 			 * so reset the data for the original block size and
27006 			 * send it to the target. The error is indicated by the
27007 			 * return value for the failed mode select.
27008 			 */
27009 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27010 			select_desc->blksize_mid = sense_desc->blksize_mid;
27011 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27012 			ssc = sd_ssc_init(un);
27013 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
27014 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27015 			    SD_PATH_STANDARD);
27016 			sd_ssc_fini(ssc);
27017 		} else {
27018 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27019 			mutex_enter(SD_MUTEX(un));
27020 			sd_update_block_info(un, (uint32_t)data, 0);
27021 			mutex_exit(SD_MUTEX(un));
27022 		}
27023 		break;
27024 	default:
27025 		/* should not reach here, but check anyway */
27026 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27027 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27028 		rval = EINVAL;
27029 		break;
27030 	}
27031 
27032 	if (select) {
27033 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27034 	}
27035 	if (sense) {
27036 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27037 	}
27038 	return (rval);
27039 }
27040 
27041 
27042 /*
27043  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27044  * implement driver support for getting and setting the CD speed. The command
27045  * set used will be based on the device type. If the device has not been
27046  * identified as MMC the Toshiba vendor specific mode page will be used. If
27047  * the device is MMC but does not support the Real Time Streaming feature
27048  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27049  * be used to read the speed.
27050  */
27051 
27052 /*
27053  *    Function: sr_change_speed()
27054  *
27055  * Description: This routine is the driver entry point for handling CD-ROM
27056  *		drive speed ioctl requests for devices supporting the Toshiba
27057  *		vendor specific drive speed mode page. Support for returning
27058  *		and changing the current drive speed in use by the device is
27059  *		implemented.
27060  *
27061  *   Arguments: dev - the device 'dev_t'
27062  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27063  *		      CDROMSDRVSPEED (set)
27064  *		data - current drive speed or requested drive speed
27065  *		flag - this argument is a pass through to ddi_copyxxx() directly
27066  *		       from the mode argument of ioctl().
27067  *
27068  * Return Code: the code returned by sd_send_scsi_cmd()
27069  *		EINVAL if invalid arguments are provided
27070  *		EFAULT if ddi_copyxxx() fails
27071  *		ENXIO if fail ddi_get_soft_state
27072  *		EIO if invalid mode sense block descriptor length
27073  */
27074 
27075 static int
27076 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27077 {
27078 	struct sd_lun			*un = NULL;
27079 	struct mode_header		*sense_mhp, *select_mhp;
27080 	struct mode_speed		*sense_page, *select_page;
27081 	int				current_speed;
27082 	int				rval = EINVAL;
27083 	int				bd_len;
27084 	uchar_t				*sense = NULL;
27085 	uchar_t				*select = NULL;
27086 	sd_ssc_t			*ssc;
27087 
27088 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27089 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27090 		return (ENXIO);
27091 	}
27092 
27093 	/*
27094 	 * Note: The drive speed is being modified here according to a Toshiba
27095 	 * vendor specific mode page (0x31).
27096 	 */
27097 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27098 
27099 	ssc = sd_ssc_init(un);
27100 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27101 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27102 	    SD_PATH_STANDARD);
27103 	sd_ssc_fini(ssc);
27104 	if (rval != 0) {
27105 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27106 		    "sr_change_speed: Mode Sense Failed\n");
27107 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27108 		return (rval);
27109 	}
27110 	sense_mhp  = (struct mode_header *)sense;
27111 
27112 	/* Check the block descriptor len to handle only 1 block descriptor */
27113 	bd_len = sense_mhp->bdesc_length;
27114 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27115 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27116 		    "sr_change_speed: Mode Sense returned invalid block "
27117 		    "descriptor length\n");
27118 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27119 		return (EIO);
27120 	}
27121 
27122 	sense_page = (struct mode_speed *)
27123 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27124 	current_speed = sense_page->speed;
27125 
27126 	/* Process command */
27127 	switch (cmd) {
27128 	case CDROMGDRVSPEED:
27129 		/* Return the drive speed obtained during the mode sense */
27130 		if (current_speed == 0x2) {
27131 			current_speed = CDROM_TWELVE_SPEED;
27132 		}
27133 		if (ddi_copyout(&current_speed, (void *)data,
27134 		    sizeof (int), flag) != 0) {
27135 			rval = EFAULT;
27136 		}
27137 		break;
27138 	case CDROMSDRVSPEED:
27139 		/* Validate the requested drive speed */
27140 		switch ((uchar_t)data) {
27141 		case CDROM_TWELVE_SPEED:
27142 			data = 0x2;
27143 			/*FALLTHROUGH*/
27144 		case CDROM_NORMAL_SPEED:
27145 		case CDROM_DOUBLE_SPEED:
27146 		case CDROM_QUAD_SPEED:
27147 		case CDROM_MAXIMUM_SPEED:
27148 			break;
27149 		default:
27150 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27151 			    "sr_change_speed: "
27152 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27153 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27154 			return (EINVAL);
27155 		}
27156 
27157 		/*
27158 		 * The current drive speed matches the requested drive speed so
27159 		 * there is no need to send the mode select to change the speed
27160 		 */
27161 		if (current_speed == data) {
27162 			break;
27163 		}
27164 
27165 		/* Build the select data for the requested drive speed */
27166 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27167 		select_mhp = (struct mode_header *)select;
27168 		select_mhp->bdesc_length = 0;
27169 		select_page =
27170 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27171 		select_page =
27172 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27173 		select_page->mode_page.code = CDROM_MODE_SPEED;
27174 		select_page->mode_page.length = 2;
27175 		select_page->speed = (uchar_t)data;
27176 
27177 		/* Send the mode select for the requested block size */
27178 		ssc = sd_ssc_init(un);
27179 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27180 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27181 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27182 		sd_ssc_fini(ssc);
27183 		if (rval != 0) {
27184 			/*
27185 			 * The mode select failed for the requested drive speed,
27186 			 * so reset the data for the original drive speed and
27187 			 * send it to the target. The error is indicated by the
27188 			 * return value for the failed mode select.
27189 			 */
27190 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27191 			    "sr_drive_speed: Mode Select Failed\n");
27192 			select_page->speed = sense_page->speed;
27193 			ssc = sd_ssc_init(un);
27194 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27195 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27196 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27197 			sd_ssc_fini(ssc);
27198 		}
27199 		break;
27200 	default:
27201 		/* should not reach here, but check anyway */
27202 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27203 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27204 		rval = EINVAL;
27205 		break;
27206 	}
27207 
27208 	if (select) {
27209 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27210 	}
27211 	if (sense) {
27212 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27213 	}
27214 
27215 	return (rval);
27216 }
27217 
27218 
27219 /*
27220  *    Function: sr_atapi_change_speed()
27221  *
27222  * Description: This routine is the driver entry point for handling CD-ROM
27223  *		drive speed ioctl requests for MMC devices that do not support
27224  *		the Real Time Streaming feature (0x107).
27225  *
27226  *		Note: This routine will use the SET SPEED command which may not
27227  *		be supported by all devices.
27228  *
27229  *   Arguments: dev- the device 'dev_t'
27230  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27231  *		     CDROMSDRVSPEED (set)
27232  *		data- current drive speed or requested drive speed
27233  *		flag- this argument is a pass through to ddi_copyxxx() directly
27234  *		      from the mode argument of ioctl().
27235  *
27236  * Return Code: the code returned by sd_send_scsi_cmd()
27237  *		EINVAL if invalid arguments are provided
27238  *		EFAULT if ddi_copyxxx() fails
27239  *		ENXIO if fail ddi_get_soft_state
27240  *		EIO if invalid mode sense block descriptor length
27241  */
27242 
27243 static int
27244 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27245 {
27246 	struct sd_lun			*un;
27247 	struct uscsi_cmd		*com = NULL;
27248 	struct mode_header_grp2		*sense_mhp;
27249 	uchar_t				*sense_page;
27250 	uchar_t				*sense = NULL;
27251 	char				cdb[CDB_GROUP5];
27252 	int				bd_len;
27253 	int				current_speed = 0;
27254 	int				max_speed = 0;
27255 	int				rval;
27256 	sd_ssc_t			*ssc;
27257 
27258 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27259 
27260 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27261 		return (ENXIO);
27262 	}
27263 
27264 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27265 
27266 	ssc = sd_ssc_init(un);
27267 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27268 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27269 	    SD_PATH_STANDARD);
27270 	sd_ssc_fini(ssc);
27271 	if (rval != 0) {
27272 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27273 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27274 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27275 		return (rval);
27276 	}
27277 
27278 	/* Check the block descriptor len to handle only 1 block descriptor */
27279 	sense_mhp = (struct mode_header_grp2 *)sense;
27280 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27281 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27282 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27283 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27284 		    "block descriptor length\n");
27285 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27286 		return (EIO);
27287 	}
27288 
27289 	/* Calculate the current and maximum drive speeds */
27290 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27291 	current_speed = (sense_page[14] << 8) | sense_page[15];
27292 	max_speed = (sense_page[8] << 8) | sense_page[9];
27293 
27294 	/* Process the command */
27295 	switch (cmd) {
27296 	case CDROMGDRVSPEED:
27297 		current_speed /= SD_SPEED_1X;
27298 		if (ddi_copyout(&current_speed, (void *)data,
27299 		    sizeof (int), flag) != 0)
27300 			rval = EFAULT;
27301 		break;
27302 	case CDROMSDRVSPEED:
27303 		/* Convert the speed code to KB/sec */
27304 		switch ((uchar_t)data) {
27305 		case CDROM_NORMAL_SPEED:
27306 			current_speed = SD_SPEED_1X;
27307 			break;
27308 		case CDROM_DOUBLE_SPEED:
27309 			current_speed = 2 * SD_SPEED_1X;
27310 			break;
27311 		case CDROM_QUAD_SPEED:
27312 			current_speed = 4 * SD_SPEED_1X;
27313 			break;
27314 		case CDROM_TWELVE_SPEED:
27315 			current_speed = 12 * SD_SPEED_1X;
27316 			break;
27317 		case CDROM_MAXIMUM_SPEED:
27318 			current_speed = 0xffff;
27319 			break;
27320 		default:
27321 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27322 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27323 			    (uchar_t)data);
27324 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27325 			return (EINVAL);
27326 		}
27327 
27328 		/* Check the request against the drive's max speed. */
27329 		if (current_speed != 0xffff) {
27330 			if (current_speed > max_speed) {
27331 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27332 				return (EINVAL);
27333 			}
27334 		}
27335 
27336 		/*
27337 		 * Build and send the SET SPEED command
27338 		 *
27339 		 * Note: The SET SPEED (0xBB) command used in this routine is
27340 		 * obsolete per the SCSI MMC spec but still supported in the
27341 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27342 		 * therefore the command is still implemented in this routine.
27343 		 */
27344 		bzero(cdb, sizeof (cdb));
27345 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27346 		cdb[2] = (uchar_t)(current_speed >> 8);
27347 		cdb[3] = (uchar_t)current_speed;
27348 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27349 		com->uscsi_cdb	   = (caddr_t)cdb;
27350 		com->uscsi_cdblen  = CDB_GROUP5;
27351 		com->uscsi_bufaddr = NULL;
27352 		com->uscsi_buflen  = 0;
27353 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27354 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27355 		break;
27356 	default:
27357 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27358 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27359 		rval = EINVAL;
27360 	}
27361 
27362 	if (sense) {
27363 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27364 	}
27365 	if (com) {
27366 		kmem_free(com, sizeof (*com));
27367 	}
27368 	return (rval);
27369 }
27370 
27371 
27372 /*
27373  *    Function: sr_pause_resume()
27374  *
27375  * Description: This routine is the driver entry point for handling CD-ROM
27376  *		pause/resume ioctl requests. This only affects the audio play
27377  *		operation.
27378  *
27379  *   Arguments: dev - the device 'dev_t'
27380  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27381  *		      for setting the resume bit of the cdb.
27382  *
27383  * Return Code: the code returned by sd_send_scsi_cmd()
27384  *		EINVAL if invalid mode specified
27385  *
27386  */
27387 
27388 static int
27389 sr_pause_resume(dev_t dev, int cmd)
27390 {
27391 	struct sd_lun		*un;
27392 	struct uscsi_cmd	*com;
27393 	char			cdb[CDB_GROUP1];
27394 	int			rval;
27395 
27396 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27397 		return (ENXIO);
27398 	}
27399 
27400 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27401 	bzero(cdb, CDB_GROUP1);
27402 	cdb[0] = SCMD_PAUSE_RESUME;
27403 	switch (cmd) {
27404 	case CDROMRESUME:
27405 		cdb[8] = 1;
27406 		break;
27407 	case CDROMPAUSE:
27408 		cdb[8] = 0;
27409 		break;
27410 	default:
27411 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27412 		    " Command '%x' Not Supported\n", cmd);
27413 		rval = EINVAL;
27414 		goto done;
27415 	}
27416 
27417 	com->uscsi_cdb    = cdb;
27418 	com->uscsi_cdblen = CDB_GROUP1;
27419 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27420 
27421 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27422 	    SD_PATH_STANDARD);
27423 
27424 done:
27425 	kmem_free(com, sizeof (*com));
27426 	return (rval);
27427 }
27428 
27429 
27430 /*
27431  *    Function: sr_play_msf()
27432  *
27433  * Description: This routine is the driver entry point for handling CD-ROM
27434  *		ioctl requests to output the audio signals at the specified
27435  *		starting address and continue the audio play until the specified
27436  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27437  *		Frame (MSF) format.
27438  *
27439  *   Arguments: dev	- the device 'dev_t'
27440  *		data	- pointer to user provided audio msf structure,
27441  *		          specifying start/end addresses.
27442  *		flag	- this argument is a pass through to ddi_copyxxx()
27443  *		          directly from the mode argument of ioctl().
27444  *
27445  * Return Code: the code returned by sd_send_scsi_cmd()
27446  *		EFAULT if ddi_copyxxx() fails
27447  *		ENXIO if fail ddi_get_soft_state
27448  *		EINVAL if data pointer is NULL
27449  */
27450 
27451 static int
27452 sr_play_msf(dev_t dev, caddr_t data, int flag)
27453 {
27454 	struct sd_lun		*un;
27455 	struct uscsi_cmd	*com;
27456 	struct cdrom_msf	msf_struct;
27457 	struct cdrom_msf	*msf = &msf_struct;
27458 	char			cdb[CDB_GROUP1];
27459 	int			rval;
27460 
27461 	if (data == NULL) {
27462 		return (EINVAL);
27463 	}
27464 
27465 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27466 		return (ENXIO);
27467 	}
27468 
27469 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27470 		return (EFAULT);
27471 	}
27472 
27473 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27474 	bzero(cdb, CDB_GROUP1);
27475 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27476 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27477 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27478 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27479 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27480 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27481 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27482 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27483 	} else {
27484 		cdb[3] = msf->cdmsf_min0;
27485 		cdb[4] = msf->cdmsf_sec0;
27486 		cdb[5] = msf->cdmsf_frame0;
27487 		cdb[6] = msf->cdmsf_min1;
27488 		cdb[7] = msf->cdmsf_sec1;
27489 		cdb[8] = msf->cdmsf_frame1;
27490 	}
27491 	com->uscsi_cdb    = cdb;
27492 	com->uscsi_cdblen = CDB_GROUP1;
27493 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27494 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27495 	    SD_PATH_STANDARD);
27496 	kmem_free(com, sizeof (*com));
27497 	return (rval);
27498 }
27499 
27500 
27501 /*
27502  *    Function: sr_play_trkind()
27503  *
27504  * Description: This routine is the driver entry point for handling CD-ROM
27505  *		ioctl requests to output the audio signals at the specified
27506  *		starting address and continue the audio play until the specified
27507  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27508  *		format.
27509  *
27510  *   Arguments: dev	- the device 'dev_t'
27511  *		data	- pointer to user provided audio track/index structure,
27512  *		          specifying start/end addresses.
27513  *		flag	- this argument is a pass through to ddi_copyxxx()
27514  *		          directly from the mode argument of ioctl().
27515  *
27516  * Return Code: the code returned by sd_send_scsi_cmd()
27517  *		EFAULT if ddi_copyxxx() fails
27518  *		ENXIO if fail ddi_get_soft_state
27519  *		EINVAL if data pointer is NULL
27520  */
27521 
27522 static int
27523 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27524 {
27525 	struct cdrom_ti		ti_struct;
27526 	struct cdrom_ti		*ti = &ti_struct;
27527 	struct uscsi_cmd	*com = NULL;
27528 	char			cdb[CDB_GROUP1];
27529 	int			rval;
27530 
27531 	if (data == NULL) {
27532 		return (EINVAL);
27533 	}
27534 
27535 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27536 		return (EFAULT);
27537 	}
27538 
27539 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27540 	bzero(cdb, CDB_GROUP1);
27541 	cdb[0] = SCMD_PLAYAUDIO_TI;
27542 	cdb[4] = ti->cdti_trk0;
27543 	cdb[5] = ti->cdti_ind0;
27544 	cdb[7] = ti->cdti_trk1;
27545 	cdb[8] = ti->cdti_ind1;
27546 	com->uscsi_cdb    = cdb;
27547 	com->uscsi_cdblen = CDB_GROUP1;
27548 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27549 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27550 	    SD_PATH_STANDARD);
27551 	kmem_free(com, sizeof (*com));
27552 	return (rval);
27553 }
27554 
27555 
27556 /*
27557  *    Function: sr_read_all_subcodes()
27558  *
27559  * Description: This routine is the driver entry point for handling CD-ROM
27560  *		ioctl requests to return raw subcode data while the target is
27561  *		playing audio (CDROMSUBCODE).
27562  *
27563  *   Arguments: dev	- the device 'dev_t'
27564  *		data	- pointer to user provided cdrom subcode structure,
27565  *		          specifying the transfer length and address.
27566  *		flag	- this argument is a pass through to ddi_copyxxx()
27567  *		          directly from the mode argument of ioctl().
27568  *
27569  * Return Code: the code returned by sd_send_scsi_cmd()
27570  *		EFAULT if ddi_copyxxx() fails
27571  *		ENXIO if fail ddi_get_soft_state
27572  *		EINVAL if data pointer is NULL
27573  */
27574 
27575 static int
27576 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27577 {
27578 	struct sd_lun		*un = NULL;
27579 	struct uscsi_cmd	*com = NULL;
27580 	struct cdrom_subcode	*subcode = NULL;
27581 	int			rval;
27582 	size_t			buflen;
27583 	char			cdb[CDB_GROUP5];
27584 
27585 #ifdef _MULTI_DATAMODEL
27586 	/* To support ILP32 applications in an LP64 world */
27587 	struct cdrom_subcode32		cdrom_subcode32;
27588 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27589 #endif
27590 	if (data == NULL) {
27591 		return (EINVAL);
27592 	}
27593 
27594 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27595 		return (ENXIO);
27596 	}
27597 
27598 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27599 
27600 #ifdef _MULTI_DATAMODEL
27601 	switch (ddi_model_convert_from(flag & FMODELS)) {
27602 	case DDI_MODEL_ILP32:
27603 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27604 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27605 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27606 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27607 			return (EFAULT);
27608 		}
27609 		/* Convert the ILP32 uscsi data from the application to LP64 */
27610 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27611 		break;
27612 	case DDI_MODEL_NONE:
27613 		if (ddi_copyin(data, subcode,
27614 		    sizeof (struct cdrom_subcode), flag)) {
27615 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27616 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27617 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27618 			return (EFAULT);
27619 		}
27620 		break;
27621 	}
27622 #else /* ! _MULTI_DATAMODEL */
27623 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27624 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27625 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27626 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27627 		return (EFAULT);
27628 	}
27629 #endif /* _MULTI_DATAMODEL */
27630 
27631 	/*
27632 	 * Since MMC-2 expects max 3 bytes for length, check if the
27633 	 * length input is greater than 3 bytes
27634 	 */
27635 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27636 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27637 		    "sr_read_all_subcodes: "
27638 		    "cdrom transfer length too large: %d (limit %d)\n",
27639 		    subcode->cdsc_length, 0xFFFFFF);
27640 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27641 		return (EINVAL);
27642 	}
27643 
27644 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27645 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27646 	bzero(cdb, CDB_GROUP5);
27647 
27648 	if (un->un_f_mmc_cap == TRUE) {
27649 		cdb[0] = (char)SCMD_READ_CD;
27650 		cdb[2] = (char)0xff;
27651 		cdb[3] = (char)0xff;
27652 		cdb[4] = (char)0xff;
27653 		cdb[5] = (char)0xff;
27654 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27655 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27656 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27657 		cdb[10] = 1;
27658 	} else {
27659 		/*
27660 		 * Note: A vendor specific command (0xDF) is being used her to
27661 		 * request a read of all subcodes.
27662 		 */
27663 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27664 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27665 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27666 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27667 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27668 	}
27669 	com->uscsi_cdb	   = cdb;
27670 	com->uscsi_cdblen  = CDB_GROUP5;
27671 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27672 	com->uscsi_buflen  = buflen;
27673 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27674 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27675 	    SD_PATH_STANDARD);
27676 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27677 	kmem_free(com, sizeof (*com));
27678 	return (rval);
27679 }
27680 
27681 
27682 /*
27683  *    Function: sr_read_subchannel()
27684  *
27685  * Description: This routine is the driver entry point for handling CD-ROM
27686  *		ioctl requests to return the Q sub-channel data of the CD
27687  *		current position block. (CDROMSUBCHNL) The data includes the
27688  *		track number, index number, absolute CD-ROM address (LBA or MSF
27689  *		format per the user) , track relative CD-ROM address (LBA or MSF
27690  *		format per the user), control data and audio status.
27691  *
27692  *   Arguments: dev	- the device 'dev_t'
27693  *		data	- pointer to user provided cdrom sub-channel structure
27694  *		flag	- this argument is a pass through to ddi_copyxxx()
27695  *		          directly from the mode argument of ioctl().
27696  *
27697  * Return Code: the code returned by sd_send_scsi_cmd()
27698  *		EFAULT if ddi_copyxxx() fails
27699  *		ENXIO if fail ddi_get_soft_state
27700  *		EINVAL if data pointer is NULL
27701  */
27702 
27703 static int
27704 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27705 {
27706 	struct sd_lun		*un;
27707 	struct uscsi_cmd	*com;
27708 	struct cdrom_subchnl	subchanel;
27709 	struct cdrom_subchnl	*subchnl = &subchanel;
27710 	char			cdb[CDB_GROUP1];
27711 	caddr_t			buffer;
27712 	int			rval;
27713 
27714 	if (data == NULL) {
27715 		return (EINVAL);
27716 	}
27717 
27718 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27719 	    (un->un_state == SD_STATE_OFFLINE)) {
27720 		return (ENXIO);
27721 	}
27722 
27723 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27724 		return (EFAULT);
27725 	}
27726 
27727 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27728 	bzero(cdb, CDB_GROUP1);
27729 	cdb[0] = SCMD_READ_SUBCHANNEL;
27730 	/* Set the MSF bit based on the user requested address format */
27731 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27732 	/*
27733 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27734 	 * returned
27735 	 */
27736 	cdb[2] = 0x40;
27737 	/*
27738 	 * Set byte 3 to specify the return data format. A value of 0x01
27739 	 * indicates that the CD-ROM current position should be returned.
27740 	 */
27741 	cdb[3] = 0x01;
27742 	cdb[8] = 0x10;
27743 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27744 	com->uscsi_cdb	   = cdb;
27745 	com->uscsi_cdblen  = CDB_GROUP1;
27746 	com->uscsi_bufaddr = buffer;
27747 	com->uscsi_buflen  = 16;
27748 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27749 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27750 	    SD_PATH_STANDARD);
27751 	if (rval != 0) {
27752 		kmem_free(buffer, 16);
27753 		kmem_free(com, sizeof (*com));
27754 		return (rval);
27755 	}
27756 
27757 	/* Process the returned Q sub-channel data */
27758 	subchnl->cdsc_audiostatus = buffer[1];
27759 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27760 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27761 	subchnl->cdsc_trk	= buffer[6];
27762 	subchnl->cdsc_ind	= buffer[7];
27763 	if (subchnl->cdsc_format & CDROM_LBA) {
27764 		subchnl->cdsc_absaddr.lba =
27765 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27766 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27767 		subchnl->cdsc_reladdr.lba =
27768 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27769 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27770 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27771 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27772 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27773 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27774 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27775 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27776 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27777 	} else {
27778 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27779 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27780 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27781 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27782 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27783 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27784 	}
27785 	kmem_free(buffer, 16);
27786 	kmem_free(com, sizeof (*com));
27787 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27788 	    != 0) {
27789 		return (EFAULT);
27790 	}
27791 	return (rval);
27792 }
27793 
27794 
27795 /*
27796  *    Function: sr_read_tocentry()
27797  *
27798  * Description: This routine is the driver entry point for handling CD-ROM
27799  *		ioctl requests to read from the Table of Contents (TOC)
27800  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27801  *		fields, the starting address (LBA or MSF format per the user)
27802  *		and the data mode if the user specified track is a data track.
27803  *
27804  *		Note: The READ HEADER (0x44) command used in this routine is
27805  *		obsolete per the SCSI MMC spec but still supported in the
27806  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27807  *		therefore the command is still implemented in this routine.
27808  *
27809  *   Arguments: dev	- the device 'dev_t'
27810  *		data	- pointer to user provided toc entry structure,
27811  *			  specifying the track # and the address format
27812  *			  (LBA or MSF).
27813  *		flag	- this argument is a pass through to ddi_copyxxx()
27814  *		          directly from the mode argument of ioctl().
27815  *
27816  * Return Code: the code returned by sd_send_scsi_cmd()
27817  *		EFAULT if ddi_copyxxx() fails
27818  *		ENXIO if fail ddi_get_soft_state
27819  *		EINVAL if data pointer is NULL
27820  */
27821 
27822 static int
27823 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27824 {
27825 	struct sd_lun		*un = NULL;
27826 	struct uscsi_cmd	*com;
27827 	struct cdrom_tocentry	toc_entry;
27828 	struct cdrom_tocentry	*entry = &toc_entry;
27829 	caddr_t			buffer;
27830 	int			rval;
27831 	char			cdb[CDB_GROUP1];
27832 
27833 	if (data == NULL) {
27834 		return (EINVAL);
27835 	}
27836 
27837 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27838 	    (un->un_state == SD_STATE_OFFLINE)) {
27839 		return (ENXIO);
27840 	}
27841 
27842 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27843 		return (EFAULT);
27844 	}
27845 
27846 	/* Validate the requested track and address format */
27847 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27848 		return (EINVAL);
27849 	}
27850 
27851 	if (entry->cdte_track == 0) {
27852 		return (EINVAL);
27853 	}
27854 
27855 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27856 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27857 	bzero(cdb, CDB_GROUP1);
27858 
27859 	cdb[0] = SCMD_READ_TOC;
27860 	/* Set the MSF bit based on the user requested address format  */
27861 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27862 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27863 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27864 	} else {
27865 		cdb[6] = entry->cdte_track;
27866 	}
27867 
27868 	/*
27869 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27870 	 * (4 byte TOC response header + 8 byte track descriptor)
27871 	 */
27872 	cdb[8] = 12;
27873 	com->uscsi_cdb	   = cdb;
27874 	com->uscsi_cdblen  = CDB_GROUP1;
27875 	com->uscsi_bufaddr = buffer;
27876 	com->uscsi_buflen  = 0x0C;
27877 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27878 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27879 	    SD_PATH_STANDARD);
27880 	if (rval != 0) {
27881 		kmem_free(buffer, 12);
27882 		kmem_free(com, sizeof (*com));
27883 		return (rval);
27884 	}
27885 
27886 	/* Process the toc entry */
27887 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27888 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27889 	if (entry->cdte_format & CDROM_LBA) {
27890 		entry->cdte_addr.lba =
27891 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27892 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27893 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27894 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27895 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27896 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27897 		/*
27898 		 * Send a READ TOC command using the LBA address format to get
27899 		 * the LBA for the track requested so it can be used in the
27900 		 * READ HEADER request
27901 		 *
27902 		 * Note: The MSF bit of the READ HEADER command specifies the
27903 		 * output format. The block address specified in that command
27904 		 * must be in LBA format.
27905 		 */
27906 		cdb[1] = 0;
27907 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27908 		    SD_PATH_STANDARD);
27909 		if (rval != 0) {
27910 			kmem_free(buffer, 12);
27911 			kmem_free(com, sizeof (*com));
27912 			return (rval);
27913 		}
27914 	} else {
27915 		entry->cdte_addr.msf.minute	= buffer[9];
27916 		entry->cdte_addr.msf.second	= buffer[10];
27917 		entry->cdte_addr.msf.frame	= buffer[11];
27918 		/*
27919 		 * Send a READ TOC command using the LBA address format to get
27920 		 * the LBA for the track requested so it can be used in the
27921 		 * READ HEADER request
27922 		 *
27923 		 * Note: The MSF bit of the READ HEADER command specifies the
27924 		 * output format. The block address specified in that command
27925 		 * must be in LBA format.
27926 		 */
27927 		cdb[1] = 0;
27928 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27929 		    SD_PATH_STANDARD);
27930 		if (rval != 0) {
27931 			kmem_free(buffer, 12);
27932 			kmem_free(com, sizeof (*com));
27933 			return (rval);
27934 		}
27935 	}
27936 
27937 	/*
27938 	 * Build and send the READ HEADER command to determine the data mode of
27939 	 * the user specified track.
27940 	 */
27941 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27942 	    (entry->cdte_track != CDROM_LEADOUT)) {
27943 		bzero(cdb, CDB_GROUP1);
27944 		cdb[0] = SCMD_READ_HEADER;
27945 		cdb[2] = buffer[8];
27946 		cdb[3] = buffer[9];
27947 		cdb[4] = buffer[10];
27948 		cdb[5] = buffer[11];
27949 		cdb[8] = 0x08;
27950 		com->uscsi_buflen = 0x08;
27951 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27952 		    SD_PATH_STANDARD);
27953 		if (rval == 0) {
27954 			entry->cdte_datamode = buffer[0];
27955 		} else {
27956 			/*
27957 			 * READ HEADER command failed, since this is
27958 			 * obsoleted in one spec, its better to return
27959 			 * -1 for an invlid track so that we can still
27960 			 * receive the rest of the TOC data.
27961 			 */
27962 			entry->cdte_datamode = (uchar_t)-1;
27963 		}
27964 	} else {
27965 		entry->cdte_datamode = (uchar_t)-1;
27966 	}
27967 
27968 	kmem_free(buffer, 12);
27969 	kmem_free(com, sizeof (*com));
27970 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27971 		return (EFAULT);
27972 
27973 	return (rval);
27974 }
27975 
27976 
27977 /*
27978  *    Function: sr_read_tochdr()
27979  *
27980  * Description: This routine is the driver entry point for handling CD-ROM
27981  * 		ioctl requests to read the Table of Contents (TOC) header
27982  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27983  *		and ending track numbers
27984  *
27985  *   Arguments: dev	- the device 'dev_t'
27986  *		data	- pointer to user provided toc header structure,
27987  *			  specifying the starting and ending track numbers.
27988  *		flag	- this argument is a pass through to ddi_copyxxx()
27989  *			  directly from the mode argument of ioctl().
27990  *
27991  * Return Code: the code returned by sd_send_scsi_cmd()
27992  *		EFAULT if ddi_copyxxx() fails
27993  *		ENXIO if fail ddi_get_soft_state
27994  *		EINVAL if data pointer is NULL
27995  */
27996 
27997 static int
27998 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27999 {
28000 	struct sd_lun		*un;
28001 	struct uscsi_cmd	*com;
28002 	struct cdrom_tochdr	toc_header;
28003 	struct cdrom_tochdr	*hdr = &toc_header;
28004 	char			cdb[CDB_GROUP1];
28005 	int			rval;
28006 	caddr_t			buffer;
28007 
28008 	if (data == NULL) {
28009 		return (EINVAL);
28010 	}
28011 
28012 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28013 	    (un->un_state == SD_STATE_OFFLINE)) {
28014 		return (ENXIO);
28015 	}
28016 
28017 	buffer = kmem_zalloc(4, KM_SLEEP);
28018 	bzero(cdb, CDB_GROUP1);
28019 	cdb[0] = SCMD_READ_TOC;
28020 	/*
28021 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28022 	 * that the TOC header should be returned
28023 	 */
28024 	cdb[6] = 0x00;
28025 	/*
28026 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28027 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28028 	 */
28029 	cdb[8] = 0x04;
28030 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28031 	com->uscsi_cdb	   = cdb;
28032 	com->uscsi_cdblen  = CDB_GROUP1;
28033 	com->uscsi_bufaddr = buffer;
28034 	com->uscsi_buflen  = 0x04;
28035 	com->uscsi_timeout = 300;
28036 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28037 
28038 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28039 	    SD_PATH_STANDARD);
28040 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28041 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28042 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28043 	} else {
28044 		hdr->cdth_trk0 = buffer[2];
28045 		hdr->cdth_trk1 = buffer[3];
28046 	}
28047 	kmem_free(buffer, 4);
28048 	kmem_free(com, sizeof (*com));
28049 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28050 		return (EFAULT);
28051 	}
28052 	return (rval);
28053 }
28054 
28055 
28056 /*
28057  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28058  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28059  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28060  * digital audio and extended architecture digital audio. These modes are
28061  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28062  * MMC specs.
28063  *
28064  * In addition to support for the various data formats these routines also
28065  * include support for devices that implement only the direct access READ
28066  * commands (0x08, 0x28), devices that implement the READ_CD commands
28067  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28068  * READ CDXA commands (0xD8, 0xDB)
28069  */
28070 
28071 /*
28072  *    Function: sr_read_mode1()
28073  *
28074  * Description: This routine is the driver entry point for handling CD-ROM
28075  *		ioctl read mode1 requests (CDROMREADMODE1).
28076  *
28077  *   Arguments: dev	- the device 'dev_t'
28078  *		data	- pointer to user provided cd read structure specifying
28079  *			  the lba buffer address and length.
28080  *		flag	- this argument is a pass through to ddi_copyxxx()
28081  *			  directly from the mode argument of ioctl().
28082  *
28083  * Return Code: the code returned by sd_send_scsi_cmd()
28084  *		EFAULT if ddi_copyxxx() fails
28085  *		ENXIO if fail ddi_get_soft_state
28086  *		EINVAL if data pointer is NULL
28087  */
28088 
28089 static int
28090 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28091 {
28092 	struct sd_lun		*un;
28093 	struct cdrom_read	mode1_struct;
28094 	struct cdrom_read	*mode1 = &mode1_struct;
28095 	int			rval;
28096 	sd_ssc_t		*ssc;
28097 
28098 #ifdef _MULTI_DATAMODEL
28099 	/* To support ILP32 applications in an LP64 world */
28100 	struct cdrom_read32	cdrom_read32;
28101 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28102 #endif /* _MULTI_DATAMODEL */
28103 
28104 	if (data == NULL) {
28105 		return (EINVAL);
28106 	}
28107 
28108 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28109 	    (un->un_state == SD_STATE_OFFLINE)) {
28110 		return (ENXIO);
28111 	}
28112 
28113 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28114 	    "sd_read_mode1: entry: un:0x%p\n", un);
28115 
28116 #ifdef _MULTI_DATAMODEL
28117 	switch (ddi_model_convert_from(flag & FMODELS)) {
28118 	case DDI_MODEL_ILP32:
28119 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28120 			return (EFAULT);
28121 		}
28122 		/* Convert the ILP32 uscsi data from the application to LP64 */
28123 		cdrom_read32tocdrom_read(cdrd32, mode1);
28124 		break;
28125 	case DDI_MODEL_NONE:
28126 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28127 			return (EFAULT);
28128 		}
28129 	}
28130 #else /* ! _MULTI_DATAMODEL */
28131 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28132 		return (EFAULT);
28133 	}
28134 #endif /* _MULTI_DATAMODEL */
28135 
28136 	ssc = sd_ssc_init(un);
28137 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28138 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28139 	sd_ssc_fini(ssc);
28140 
28141 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28142 	    "sd_read_mode1: exit: un:0x%p\n", un);
28143 
28144 	return (rval);
28145 }
28146 
28147 
28148 /*
28149  *    Function: sr_read_cd_mode2()
28150  *
28151  * Description: This routine is the driver entry point for handling CD-ROM
28152  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28153  *		support the READ CD (0xBE) command or the 1st generation
28154  *		READ CD (0xD4) command.
28155  *
28156  *   Arguments: dev	- the device 'dev_t'
28157  *		data	- pointer to user provided cd read structure specifying
28158  *			  the lba buffer address and length.
28159  *		flag	- this argument is a pass through to ddi_copyxxx()
28160  *			  directly from the mode argument of ioctl().
28161  *
28162  * Return Code: the code returned by sd_send_scsi_cmd()
28163  *		EFAULT if ddi_copyxxx() fails
28164  *		ENXIO if fail ddi_get_soft_state
28165  *		EINVAL if data pointer is NULL
28166  */
28167 
28168 static int
28169 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28170 {
28171 	struct sd_lun		*un;
28172 	struct uscsi_cmd	*com;
28173 	struct cdrom_read	mode2_struct;
28174 	struct cdrom_read	*mode2 = &mode2_struct;
28175 	uchar_t			cdb[CDB_GROUP5];
28176 	int			nblocks;
28177 	int			rval;
28178 #ifdef _MULTI_DATAMODEL
28179 	/*  To support ILP32 applications in an LP64 world */
28180 	struct cdrom_read32	cdrom_read32;
28181 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28182 #endif /* _MULTI_DATAMODEL */
28183 
28184 	if (data == NULL) {
28185 		return (EINVAL);
28186 	}
28187 
28188 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28189 	    (un->un_state == SD_STATE_OFFLINE)) {
28190 		return (ENXIO);
28191 	}
28192 
28193 #ifdef _MULTI_DATAMODEL
28194 	switch (ddi_model_convert_from(flag & FMODELS)) {
28195 	case DDI_MODEL_ILP32:
28196 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28197 			return (EFAULT);
28198 		}
28199 		/* Convert the ILP32 uscsi data from the application to LP64 */
28200 		cdrom_read32tocdrom_read(cdrd32, mode2);
28201 		break;
28202 	case DDI_MODEL_NONE:
28203 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28204 			return (EFAULT);
28205 		}
28206 		break;
28207 	}
28208 
28209 #else /* ! _MULTI_DATAMODEL */
28210 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28211 		return (EFAULT);
28212 	}
28213 #endif /* _MULTI_DATAMODEL */
28214 
28215 	bzero(cdb, sizeof (cdb));
28216 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28217 		/* Read command supported by 1st generation atapi drives */
28218 		cdb[0] = SCMD_READ_CDD4;
28219 	} else {
28220 		/* Universal CD Access Command */
28221 		cdb[0] = SCMD_READ_CD;
28222 	}
28223 
28224 	/*
28225 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28226 	 */
28227 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28228 
28229 	/* set the start address */
28230 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28231 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28232 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28233 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28234 
28235 	/* set the transfer length */
28236 	nblocks = mode2->cdread_buflen / 2336;
28237 	cdb[6] = (uchar_t)(nblocks >> 16);
28238 	cdb[7] = (uchar_t)(nblocks >> 8);
28239 	cdb[8] = (uchar_t)nblocks;
28240 
28241 	/* set the filter bits */
28242 	cdb[9] = CDROM_READ_CD_USERDATA;
28243 
28244 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28245 	com->uscsi_cdb = (caddr_t)cdb;
28246 	com->uscsi_cdblen = sizeof (cdb);
28247 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28248 	com->uscsi_buflen = mode2->cdread_buflen;
28249 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28250 
28251 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28252 	    SD_PATH_STANDARD);
28253 	kmem_free(com, sizeof (*com));
28254 	return (rval);
28255 }
28256 
28257 
28258 /*
28259  *    Function: sr_read_mode2()
28260  *
28261  * Description: This routine is the driver entry point for handling CD-ROM
28262  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28263  *		do not support the READ CD (0xBE) command.
28264  *
28265  *   Arguments: dev	- the device 'dev_t'
28266  *		data	- pointer to user provided cd read structure specifying
28267  *			  the lba buffer address and length.
28268  *		flag	- this argument is a pass through to ddi_copyxxx()
28269  *			  directly from the mode argument of ioctl().
28270  *
28271  * Return Code: the code returned by sd_send_scsi_cmd()
28272  *		EFAULT if ddi_copyxxx() fails
28273  *		ENXIO if fail ddi_get_soft_state
28274  *		EINVAL if data pointer is NULL
28275  *		EIO if fail to reset block size
28276  *		EAGAIN if commands are in progress in the driver
28277  */
28278 
28279 static int
28280 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28281 {
28282 	struct sd_lun		*un;
28283 	struct cdrom_read	mode2_struct;
28284 	struct cdrom_read	*mode2 = &mode2_struct;
28285 	int			rval;
28286 	uint32_t		restore_blksize;
28287 	struct uscsi_cmd	*com;
28288 	uchar_t			cdb[CDB_GROUP0];
28289 	int			nblocks;
28290 
28291 #ifdef _MULTI_DATAMODEL
28292 	/* To support ILP32 applications in an LP64 world */
28293 	struct cdrom_read32	cdrom_read32;
28294 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28295 #endif /* _MULTI_DATAMODEL */
28296 
28297 	if (data == NULL) {
28298 		return (EINVAL);
28299 	}
28300 
28301 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28302 	    (un->un_state == SD_STATE_OFFLINE)) {
28303 		return (ENXIO);
28304 	}
28305 
28306 	/*
28307 	 * Because this routine will update the device and driver block size
28308 	 * being used we want to make sure there are no commands in progress.
28309 	 * If commands are in progress the user will have to try again.
28310 	 *
28311 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28312 	 * in sdioctl to protect commands from sdioctl through to the top of
28313 	 * sd_uscsi_strategy. See sdioctl for details.
28314 	 */
28315 	mutex_enter(SD_MUTEX(un));
28316 	if (un->un_ncmds_in_driver != 1) {
28317 		mutex_exit(SD_MUTEX(un));
28318 		return (EAGAIN);
28319 	}
28320 	mutex_exit(SD_MUTEX(un));
28321 
28322 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28323 	    "sd_read_mode2: entry: un:0x%p\n", un);
28324 
28325 #ifdef _MULTI_DATAMODEL
28326 	switch (ddi_model_convert_from(flag & FMODELS)) {
28327 	case DDI_MODEL_ILP32:
28328 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28329 			return (EFAULT);
28330 		}
28331 		/* Convert the ILP32 uscsi data from the application to LP64 */
28332 		cdrom_read32tocdrom_read(cdrd32, mode2);
28333 		break;
28334 	case DDI_MODEL_NONE:
28335 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28336 			return (EFAULT);
28337 		}
28338 		break;
28339 	}
28340 #else /* ! _MULTI_DATAMODEL */
28341 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28342 		return (EFAULT);
28343 	}
28344 #endif /* _MULTI_DATAMODEL */
28345 
28346 	/* Store the current target block size for restoration later */
28347 	restore_blksize = un->un_tgt_blocksize;
28348 
28349 	/* Change the device and soft state target block size to 2336 */
28350 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28351 		rval = EIO;
28352 		goto done;
28353 	}
28354 
28355 
28356 	bzero(cdb, sizeof (cdb));
28357 
28358 	/* set READ operation */
28359 	cdb[0] = SCMD_READ;
28360 
28361 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28362 	mode2->cdread_lba >>= 2;
28363 
28364 	/* set the start address */
28365 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28366 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28367 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28368 
28369 	/* set the transfer length */
28370 	nblocks = mode2->cdread_buflen / 2336;
28371 	cdb[4] = (uchar_t)nblocks & 0xFF;
28372 
28373 	/* build command */
28374 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28375 	com->uscsi_cdb = (caddr_t)cdb;
28376 	com->uscsi_cdblen = sizeof (cdb);
28377 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28378 	com->uscsi_buflen = mode2->cdread_buflen;
28379 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28380 
28381 	/*
28382 	 * Issue SCSI command with user space address for read buffer.
28383 	 *
28384 	 * This sends the command through main channel in the driver.
28385 	 *
28386 	 * Since this is accessed via an IOCTL call, we go through the
28387 	 * standard path, so that if the device was powered down, then
28388 	 * it would be 'awakened' to handle the command.
28389 	 */
28390 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28391 	    SD_PATH_STANDARD);
28392 
28393 	kmem_free(com, sizeof (*com));
28394 
28395 	/* Restore the device and soft state target block size */
28396 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28397 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28398 		    "can't do switch back to mode 1\n");
28399 		/*
28400 		 * If sd_send_scsi_READ succeeded we still need to report
28401 		 * an error because we failed to reset the block size
28402 		 */
28403 		if (rval == 0) {
28404 			rval = EIO;
28405 		}
28406 	}
28407 
28408 done:
28409 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28410 	    "sd_read_mode2: exit: un:0x%p\n", un);
28411 
28412 	return (rval);
28413 }
28414 
28415 
28416 /*
28417  *    Function: sr_sector_mode()
28418  *
28419  * Description: This utility function is used by sr_read_mode2 to set the target
28420  *		block size based on the user specified size. This is a legacy
28421  *		implementation based upon a vendor specific mode page
28422  *
28423  *   Arguments: dev	- the device 'dev_t'
28424  *		data	- flag indicating if block size is being set to 2336 or
28425  *			  512.
28426  *
28427  * Return Code: the code returned by sd_send_scsi_cmd()
28428  *		EFAULT if ddi_copyxxx() fails
28429  *		ENXIO if fail ddi_get_soft_state
28430  *		EINVAL if data pointer is NULL
28431  */
28432 
28433 static int
28434 sr_sector_mode(dev_t dev, uint32_t blksize)
28435 {
28436 	struct sd_lun	*un;
28437 	uchar_t		*sense;
28438 	uchar_t		*select;
28439 	int		rval;
28440 	sd_ssc_t	*ssc;
28441 
28442 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28443 	    (un->un_state == SD_STATE_OFFLINE)) {
28444 		return (ENXIO);
28445 	}
28446 
28447 	sense = kmem_zalloc(20, KM_SLEEP);
28448 
28449 	/* Note: This is a vendor specific mode page (0x81) */
28450 	ssc = sd_ssc_init(un);
28451 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28452 	    SD_PATH_STANDARD);
28453 	sd_ssc_fini(ssc);
28454 	if (rval != 0) {
28455 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28456 		    "sr_sector_mode: Mode Sense failed\n");
28457 		kmem_free(sense, 20);
28458 		return (rval);
28459 	}
28460 	select = kmem_zalloc(20, KM_SLEEP);
28461 	select[3] = 0x08;
28462 	select[10] = ((blksize >> 8) & 0xff);
28463 	select[11] = (blksize & 0xff);
28464 	select[12] = 0x01;
28465 	select[13] = 0x06;
28466 	select[14] = sense[14];
28467 	select[15] = sense[15];
28468 	if (blksize == SD_MODE2_BLKSIZE) {
28469 		select[14] |= 0x01;
28470 	}
28471 
28472 	ssc = sd_ssc_init(un);
28473 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28474 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28475 	sd_ssc_fini(ssc);
28476 	if (rval != 0) {
28477 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28478 		    "sr_sector_mode: Mode Select failed\n");
28479 	} else {
28480 		/*
28481 		 * Only update the softstate block size if we successfully
28482 		 * changed the device block mode.
28483 		 */
28484 		mutex_enter(SD_MUTEX(un));
28485 		sd_update_block_info(un, blksize, 0);
28486 		mutex_exit(SD_MUTEX(un));
28487 	}
28488 	kmem_free(sense, 20);
28489 	kmem_free(select, 20);
28490 	return (rval);
28491 }
28492 
28493 
28494 /*
28495  *    Function: sr_read_cdda()
28496  *
28497  * Description: This routine is the driver entry point for handling CD-ROM
28498  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28499  *		the target supports CDDA these requests are handled via a vendor
28500  *		specific command (0xD8) If the target does not support CDDA
28501  *		these requests are handled via the READ CD command (0xBE).
28502  *
28503  *   Arguments: dev	- the device 'dev_t'
28504  *		data	- pointer to user provided CD-DA structure specifying
28505  *			  the track starting address, transfer length, and
28506  *			  subcode options.
28507  *		flag	- this argument is a pass through to ddi_copyxxx()
28508  *			  directly from the mode argument of ioctl().
28509  *
28510  * Return Code: the code returned by sd_send_scsi_cmd()
28511  *		EFAULT if ddi_copyxxx() fails
28512  *		ENXIO if fail ddi_get_soft_state
28513  *		EINVAL if invalid arguments are provided
28514  *		ENOTTY
28515  */
28516 
28517 static int
28518 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28519 {
28520 	struct sd_lun			*un;
28521 	struct uscsi_cmd		*com;
28522 	struct cdrom_cdda		*cdda;
28523 	int				rval;
28524 	size_t				buflen;
28525 	char				cdb[CDB_GROUP5];
28526 
28527 #ifdef _MULTI_DATAMODEL
28528 	/* To support ILP32 applications in an LP64 world */
28529 	struct cdrom_cdda32	cdrom_cdda32;
28530 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28531 #endif /* _MULTI_DATAMODEL */
28532 
28533 	if (data == NULL) {
28534 		return (EINVAL);
28535 	}
28536 
28537 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28538 		return (ENXIO);
28539 	}
28540 
28541 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28542 
28543 #ifdef _MULTI_DATAMODEL
28544 	switch (ddi_model_convert_from(flag & FMODELS)) {
28545 	case DDI_MODEL_ILP32:
28546 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28547 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28548 			    "sr_read_cdda: ddi_copyin Failed\n");
28549 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28550 			return (EFAULT);
28551 		}
28552 		/* Convert the ILP32 uscsi data from the application to LP64 */
28553 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28554 		break;
28555 	case DDI_MODEL_NONE:
28556 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28557 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28558 			    "sr_read_cdda: ddi_copyin Failed\n");
28559 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28560 			return (EFAULT);
28561 		}
28562 		break;
28563 	}
28564 #else /* ! _MULTI_DATAMODEL */
28565 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28566 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28567 		    "sr_read_cdda: ddi_copyin Failed\n");
28568 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28569 		return (EFAULT);
28570 	}
28571 #endif /* _MULTI_DATAMODEL */
28572 
28573 	/*
28574 	 * Since MMC-2 expects max 3 bytes for length, check if the
28575 	 * length input is greater than 3 bytes
28576 	 */
28577 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28578 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28579 		    "cdrom transfer length too large: %d (limit %d)\n",
28580 		    cdda->cdda_length, 0xFFFFFF);
28581 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28582 		return (EINVAL);
28583 	}
28584 
28585 	switch (cdda->cdda_subcode) {
28586 	case CDROM_DA_NO_SUBCODE:
28587 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28588 		break;
28589 	case CDROM_DA_SUBQ:
28590 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28591 		break;
28592 	case CDROM_DA_ALL_SUBCODE:
28593 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28594 		break;
28595 	case CDROM_DA_SUBCODE_ONLY:
28596 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28597 		break;
28598 	default:
28599 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28600 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28601 		    cdda->cdda_subcode);
28602 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28603 		return (EINVAL);
28604 	}
28605 
28606 	/* Build and send the command */
28607 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28608 	bzero(cdb, CDB_GROUP5);
28609 
28610 	if (un->un_f_cfg_cdda == TRUE) {
28611 		cdb[0] = (char)SCMD_READ_CD;
28612 		cdb[1] = 0x04;
28613 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28614 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28615 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28616 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28617 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28618 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28619 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28620 		cdb[9] = 0x10;
28621 		switch (cdda->cdda_subcode) {
28622 		case CDROM_DA_NO_SUBCODE :
28623 			cdb[10] = 0x0;
28624 			break;
28625 		case CDROM_DA_SUBQ :
28626 			cdb[10] = 0x2;
28627 			break;
28628 		case CDROM_DA_ALL_SUBCODE :
28629 			cdb[10] = 0x1;
28630 			break;
28631 		case CDROM_DA_SUBCODE_ONLY :
28632 			/* FALLTHROUGH */
28633 		default :
28634 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28635 			kmem_free(com, sizeof (*com));
28636 			return (ENOTTY);
28637 		}
28638 	} else {
28639 		cdb[0] = (char)SCMD_READ_CDDA;
28640 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28641 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28642 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28643 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28644 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28645 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28646 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28647 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28648 		cdb[10] = cdda->cdda_subcode;
28649 	}
28650 
28651 	com->uscsi_cdb = cdb;
28652 	com->uscsi_cdblen = CDB_GROUP5;
28653 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28654 	com->uscsi_buflen = buflen;
28655 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28656 
28657 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28658 	    SD_PATH_STANDARD);
28659 
28660 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28661 	kmem_free(com, sizeof (*com));
28662 	return (rval);
28663 }
28664 
28665 
28666 /*
28667  *    Function: sr_read_cdxa()
28668  *
28669  * Description: This routine is the driver entry point for handling CD-ROM
28670  *		ioctl requests to return CD-XA (Extended Architecture) data.
28671  *		(CDROMCDXA).
28672  *
28673  *   Arguments: dev	- the device 'dev_t'
28674  *		data	- pointer to user provided CD-XA structure specifying
28675  *			  the data starting address, transfer length, and format
28676  *		flag	- this argument is a pass through to ddi_copyxxx()
28677  *			  directly from the mode argument of ioctl().
28678  *
28679  * Return Code: the code returned by sd_send_scsi_cmd()
28680  *		EFAULT if ddi_copyxxx() fails
28681  *		ENXIO if fail ddi_get_soft_state
28682  *		EINVAL if data pointer is NULL
28683  */
28684 
28685 static int
28686 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28687 {
28688 	struct sd_lun		*un;
28689 	struct uscsi_cmd	*com;
28690 	struct cdrom_cdxa	*cdxa;
28691 	int			rval;
28692 	size_t			buflen;
28693 	char			cdb[CDB_GROUP5];
28694 	uchar_t			read_flags;
28695 
28696 #ifdef _MULTI_DATAMODEL
28697 	/* To support ILP32 applications in an LP64 world */
28698 	struct cdrom_cdxa32		cdrom_cdxa32;
28699 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28700 #endif /* _MULTI_DATAMODEL */
28701 
28702 	if (data == NULL) {
28703 		return (EINVAL);
28704 	}
28705 
28706 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28707 		return (ENXIO);
28708 	}
28709 
28710 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28711 
28712 #ifdef _MULTI_DATAMODEL
28713 	switch (ddi_model_convert_from(flag & FMODELS)) {
28714 	case DDI_MODEL_ILP32:
28715 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28716 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28717 			return (EFAULT);
28718 		}
28719 		/*
28720 		 * Convert the ILP32 uscsi data from the
28721 		 * application to LP64 for internal use.
28722 		 */
28723 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28724 		break;
28725 	case DDI_MODEL_NONE:
28726 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28727 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28728 			return (EFAULT);
28729 		}
28730 		break;
28731 	}
28732 #else /* ! _MULTI_DATAMODEL */
28733 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28734 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28735 		return (EFAULT);
28736 	}
28737 #endif /* _MULTI_DATAMODEL */
28738 
28739 	/*
28740 	 * Since MMC-2 expects max 3 bytes for length, check if the
28741 	 * length input is greater than 3 bytes
28742 	 */
28743 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28744 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28745 		    "cdrom transfer length too large: %d (limit %d)\n",
28746 		    cdxa->cdxa_length, 0xFFFFFF);
28747 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28748 		return (EINVAL);
28749 	}
28750 
28751 	switch (cdxa->cdxa_format) {
28752 	case CDROM_XA_DATA:
28753 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28754 		read_flags = 0x10;
28755 		break;
28756 	case CDROM_XA_SECTOR_DATA:
28757 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28758 		read_flags = 0xf8;
28759 		break;
28760 	case CDROM_XA_DATA_W_ERROR:
28761 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28762 		read_flags = 0xfc;
28763 		break;
28764 	default:
28765 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28766 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28767 		    cdxa->cdxa_format);
28768 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28769 		return (EINVAL);
28770 	}
28771 
28772 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28773 	bzero(cdb, CDB_GROUP5);
28774 	if (un->un_f_mmc_cap == TRUE) {
28775 		cdb[0] = (char)SCMD_READ_CD;
28776 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28777 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28778 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28779 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28780 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28781 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28782 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28783 		cdb[9] = (char)read_flags;
28784 	} else {
28785 		/*
28786 		 * Note: A vendor specific command (0xDB) is being used her to
28787 		 * request a read of all subcodes.
28788 		 */
28789 		cdb[0] = (char)SCMD_READ_CDXA;
28790 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28791 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28792 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28793 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28794 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28795 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28796 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28797 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28798 		cdb[10] = cdxa->cdxa_format;
28799 	}
28800 	com->uscsi_cdb	   = cdb;
28801 	com->uscsi_cdblen  = CDB_GROUP5;
28802 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28803 	com->uscsi_buflen  = buflen;
28804 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28805 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28806 	    SD_PATH_STANDARD);
28807 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28808 	kmem_free(com, sizeof (*com));
28809 	return (rval);
28810 }
28811 
28812 
28813 /*
28814  *    Function: sr_eject()
28815  *
28816  * Description: This routine is the driver entry point for handling CD-ROM
28817  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28818  *
28819  *   Arguments: dev	- the device 'dev_t'
28820  *
28821  * Return Code: the code returned by sd_send_scsi_cmd()
28822  */
28823 
28824 static int
28825 sr_eject(dev_t dev)
28826 {
28827 	struct sd_lun	*un;
28828 	int		rval;
28829 	sd_ssc_t	*ssc;
28830 
28831 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28832 	    (un->un_state == SD_STATE_OFFLINE)) {
28833 		return (ENXIO);
28834 	}
28835 
28836 	/*
28837 	 * To prevent race conditions with the eject
28838 	 * command, keep track of an eject command as
28839 	 * it progresses. If we are already handling
28840 	 * an eject command in the driver for the given
28841 	 * unit and another request to eject is received
28842 	 * immediately return EAGAIN so we don't lose
28843 	 * the command if the current eject command fails.
28844 	 */
28845 	mutex_enter(SD_MUTEX(un));
28846 	if (un->un_f_ejecting == TRUE) {
28847 		mutex_exit(SD_MUTEX(un));
28848 		return (EAGAIN);
28849 	}
28850 	un->un_f_ejecting = TRUE;
28851 	mutex_exit(SD_MUTEX(un));
28852 
28853 	ssc = sd_ssc_init(un);
28854 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28855 	    SD_PATH_STANDARD);
28856 	sd_ssc_fini(ssc);
28857 
28858 	if (rval != 0) {
28859 		mutex_enter(SD_MUTEX(un));
28860 		un->un_f_ejecting = FALSE;
28861 		mutex_exit(SD_MUTEX(un));
28862 		return (rval);
28863 	}
28864 
28865 	ssc = sd_ssc_init(un);
28866 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28867 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28868 	sd_ssc_fini(ssc);
28869 
28870 	if (rval == 0) {
28871 		mutex_enter(SD_MUTEX(un));
28872 		sr_ejected(un);
28873 		un->un_mediastate = DKIO_EJECTED;
28874 		un->un_f_ejecting = FALSE;
28875 		cv_broadcast(&un->un_state_cv);
28876 		mutex_exit(SD_MUTEX(un));
28877 	} else {
28878 		mutex_enter(SD_MUTEX(un));
28879 		un->un_f_ejecting = FALSE;
28880 		mutex_exit(SD_MUTEX(un));
28881 	}
28882 	return (rval);
28883 }
28884 
28885 
28886 /*
28887  *    Function: sr_ejected()
28888  *
28889  * Description: This routine updates the soft state structure to invalidate the
28890  *		geometry information after the media has been ejected or a
28891  *		media eject has been detected.
28892  *
28893  *   Arguments: un - driver soft state (unit) structure
28894  */
28895 
28896 static void
28897 sr_ejected(struct sd_lun *un)
28898 {
28899 	struct sd_errstats *stp;
28900 
28901 	ASSERT(un != NULL);
28902 	ASSERT(mutex_owned(SD_MUTEX(un)));
28903 
28904 	un->un_f_blockcount_is_valid	= FALSE;
28905 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28906 	mutex_exit(SD_MUTEX(un));
28907 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28908 	mutex_enter(SD_MUTEX(un));
28909 
28910 	if (un->un_errstats != NULL) {
28911 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28912 		stp->sd_capacity.value.ui64 = 0;
28913 	}
28914 }
28915 
28916 
28917 /*
28918  *    Function: sr_check_wp()
28919  *
28920  * Description: This routine checks the write protection of a removable
28921  *      media disk and hotpluggable devices via the write protect bit of
28922  *      the Mode Page Header device specific field. Some devices choke
28923  *      on unsupported mode page. In order to workaround this issue,
28924  *      this routine has been implemented to use 0x3f mode page(request
28925  *      for all pages) for all device types.
28926  *
28927  *   Arguments: dev             - the device 'dev_t'
28928  *
28929  * Return Code: int indicating if the device is write protected (1) or not (0)
28930  *
28931  *     Context: Kernel thread.
28932  *
28933  */
28934 
28935 static int
28936 sr_check_wp(dev_t dev)
28937 {
28938 	struct sd_lun	*un;
28939 	uchar_t		device_specific;
28940 	uchar_t		*sense;
28941 	int		hdrlen;
28942 	int		rval = FALSE;
28943 	int		status;
28944 	sd_ssc_t	*ssc;
28945 
28946 	/*
28947 	 * Note: The return codes for this routine should be reworked to
28948 	 * properly handle the case of a NULL softstate.
28949 	 */
28950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28951 		return (FALSE);
28952 	}
28953 
28954 	if (un->un_f_cfg_is_atapi == TRUE) {
28955 		/*
28956 		 * The mode page contents are not required; set the allocation
28957 		 * length for the mode page header only
28958 		 */
28959 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28960 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28961 		ssc = sd_ssc_init(un);
28962 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28963 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28964 		sd_ssc_fini(ssc);
28965 		if (status != 0)
28966 			goto err_exit;
28967 		device_specific =
28968 		    ((struct mode_header_grp2 *)sense)->device_specific;
28969 	} else {
28970 		hdrlen = MODE_HEADER_LENGTH;
28971 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28972 		ssc = sd_ssc_init(un);
28973 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28974 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28975 		sd_ssc_fini(ssc);
28976 		if (status != 0)
28977 			goto err_exit;
28978 		device_specific =
28979 		    ((struct mode_header *)sense)->device_specific;
28980 	}
28981 
28982 
28983 	/*
28984 	 * Write protect mode sense failed; not all disks
28985 	 * understand this query. Return FALSE assuming that
28986 	 * these devices are not writable.
28987 	 */
28988 	if (device_specific & WRITE_PROTECT) {
28989 		rval = TRUE;
28990 	}
28991 
28992 err_exit:
28993 	kmem_free(sense, hdrlen);
28994 	return (rval);
28995 }
28996 
28997 /*
28998  *    Function: sr_volume_ctrl()
28999  *
29000  * Description: This routine is the driver entry point for handling CD-ROM
29001  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29002  *
29003  *   Arguments: dev	- the device 'dev_t'
29004  *		data	- pointer to user audio volume control structure
29005  *		flag	- this argument is a pass through to ddi_copyxxx()
29006  *			  directly from the mode argument of ioctl().
29007  *
29008  * Return Code: the code returned by sd_send_scsi_cmd()
29009  *		EFAULT if ddi_copyxxx() fails
29010  *		ENXIO if fail ddi_get_soft_state
29011  *		EINVAL if data pointer is NULL
29012  *
29013  */
29014 
29015 static int
29016 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29017 {
29018 	struct sd_lun		*un;
29019 	struct cdrom_volctrl    volume;
29020 	struct cdrom_volctrl    *vol = &volume;
29021 	uchar_t			*sense_page;
29022 	uchar_t			*select_page;
29023 	uchar_t			*sense;
29024 	uchar_t			*select;
29025 	int			sense_buflen;
29026 	int			select_buflen;
29027 	int			rval;
29028 	sd_ssc_t		*ssc;
29029 
29030 	if (data == NULL) {
29031 		return (EINVAL);
29032 	}
29033 
29034 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29035 	    (un->un_state == SD_STATE_OFFLINE)) {
29036 		return (ENXIO);
29037 	}
29038 
29039 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29040 		return (EFAULT);
29041 	}
29042 
29043 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29044 		struct mode_header_grp2		*sense_mhp;
29045 		struct mode_header_grp2		*select_mhp;
29046 		int				bd_len;
29047 
29048 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29049 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29050 		    MODEPAGE_AUDIO_CTRL_LEN;
29051 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29052 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29053 		ssc = sd_ssc_init(un);
29054 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29055 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29056 		    SD_PATH_STANDARD);
29057 		sd_ssc_fini(ssc);
29058 
29059 		if (rval != 0) {
29060 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29061 			    "sr_volume_ctrl: Mode Sense Failed\n");
29062 			kmem_free(sense, sense_buflen);
29063 			kmem_free(select, select_buflen);
29064 			return (rval);
29065 		}
29066 		sense_mhp = (struct mode_header_grp2 *)sense;
29067 		select_mhp = (struct mode_header_grp2 *)select;
29068 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29069 		    sense_mhp->bdesc_length_lo;
29070 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29071 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29072 			    "sr_volume_ctrl: Mode Sense returned invalid "
29073 			    "block descriptor length\n");
29074 			kmem_free(sense, sense_buflen);
29075 			kmem_free(select, select_buflen);
29076 			return (EIO);
29077 		}
29078 		sense_page = (uchar_t *)
29079 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29080 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29081 		select_mhp->length_msb = 0;
29082 		select_mhp->length_lsb = 0;
29083 		select_mhp->bdesc_length_hi = 0;
29084 		select_mhp->bdesc_length_lo = 0;
29085 	} else {
29086 		struct mode_header		*sense_mhp, *select_mhp;
29087 
29088 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29089 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29090 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29091 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29092 		ssc = sd_ssc_init(un);
29093 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29094 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29095 		    SD_PATH_STANDARD);
29096 		sd_ssc_fini(ssc);
29097 
29098 		if (rval != 0) {
29099 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29100 			    "sr_volume_ctrl: Mode Sense Failed\n");
29101 			kmem_free(sense, sense_buflen);
29102 			kmem_free(select, select_buflen);
29103 			return (rval);
29104 		}
29105 		sense_mhp  = (struct mode_header *)sense;
29106 		select_mhp = (struct mode_header *)select;
29107 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29108 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29109 			    "sr_volume_ctrl: Mode Sense returned invalid "
29110 			    "block descriptor length\n");
29111 			kmem_free(sense, sense_buflen);
29112 			kmem_free(select, select_buflen);
29113 			return (EIO);
29114 		}
29115 		sense_page = (uchar_t *)
29116 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29117 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29118 		select_mhp->length = 0;
29119 		select_mhp->bdesc_length = 0;
29120 	}
29121 	/*
29122 	 * Note: An audio control data structure could be created and overlayed
29123 	 * on the following in place of the array indexing method implemented.
29124 	 */
29125 
29126 	/* Build the select data for the user volume data */
29127 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29128 	select_page[1] = 0xE;
29129 	/* Set the immediate bit */
29130 	select_page[2] = 0x04;
29131 	/* Zero out reserved fields */
29132 	select_page[3] = 0x00;
29133 	select_page[4] = 0x00;
29134 	/* Return sense data for fields not to be modified */
29135 	select_page[5] = sense_page[5];
29136 	select_page[6] = sense_page[6];
29137 	select_page[7] = sense_page[7];
29138 	/* Set the user specified volume levels for channel 0 and 1 */
29139 	select_page[8] = 0x01;
29140 	select_page[9] = vol->channel0;
29141 	select_page[10] = 0x02;
29142 	select_page[11] = vol->channel1;
29143 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29144 	select_page[12] = sense_page[12];
29145 	select_page[13] = sense_page[13];
29146 	select_page[14] = sense_page[14];
29147 	select_page[15] = sense_page[15];
29148 
29149 	ssc = sd_ssc_init(un);
29150 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29151 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29152 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29153 	} else {
29154 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29155 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29156 	}
29157 	sd_ssc_fini(ssc);
29158 
29159 	kmem_free(sense, sense_buflen);
29160 	kmem_free(select, select_buflen);
29161 	return (rval);
29162 }
29163 
29164 
29165 /*
29166  *    Function: sr_read_sony_session_offset()
29167  *
29168  * Description: This routine is the driver entry point for handling CD-ROM
29169  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29170  *		The address of the first track in the last session of a
29171  *		multi-session CD-ROM is returned
29172  *
29173  *		Note: This routine uses a vendor specific key value in the
29174  *		command control field without implementing any vendor check here
29175  *		or in the ioctl routine.
29176  *
29177  *   Arguments: dev	- the device 'dev_t'
29178  *		data	- pointer to an int to hold the requested address
29179  *		flag	- this argument is a pass through to ddi_copyxxx()
29180  *			  directly from the mode argument of ioctl().
29181  *
29182  * Return Code: the code returned by sd_send_scsi_cmd()
29183  *		EFAULT if ddi_copyxxx() fails
29184  *		ENXIO if fail ddi_get_soft_state
29185  *		EINVAL if data pointer is NULL
29186  */
29187 
29188 static int
29189 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29190 {
29191 	struct sd_lun		*un;
29192 	struct uscsi_cmd	*com;
29193 	caddr_t			buffer;
29194 	char			cdb[CDB_GROUP1];
29195 	int			session_offset = 0;
29196 	int			rval;
29197 
29198 	if (data == NULL) {
29199 		return (EINVAL);
29200 	}
29201 
29202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29203 	    (un->un_state == SD_STATE_OFFLINE)) {
29204 		return (ENXIO);
29205 	}
29206 
29207 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29208 	bzero(cdb, CDB_GROUP1);
29209 	cdb[0] = SCMD_READ_TOC;
29210 	/*
29211 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29212 	 * (4 byte TOC response header + 8 byte response data)
29213 	 */
29214 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29215 	/* Byte 9 is the control byte. A vendor specific value is used */
29216 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29217 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29218 	com->uscsi_cdb = cdb;
29219 	com->uscsi_cdblen = CDB_GROUP1;
29220 	com->uscsi_bufaddr = buffer;
29221 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29222 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29223 
29224 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29225 	    SD_PATH_STANDARD);
29226 	if (rval != 0) {
29227 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29228 		kmem_free(com, sizeof (*com));
29229 		return (rval);
29230 	}
29231 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29232 		session_offset =
29233 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29234 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29235 		/*
29236 		 * Offset returned offset in current lbasize block's. Convert to
29237 		 * 2k block's to return to the user
29238 		 */
29239 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29240 			session_offset >>= 2;
29241 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29242 			session_offset >>= 1;
29243 		}
29244 	}
29245 
29246 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29247 		rval = EFAULT;
29248 	}
29249 
29250 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29251 	kmem_free(com, sizeof (*com));
29252 	return (rval);
29253 }
29254 
29255 
29256 /*
29257  *    Function: sd_wm_cache_constructor()
29258  *
29259  * Description: Cache Constructor for the wmap cache for the read/modify/write
29260  * 		devices.
29261  *
29262  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29263  *		un	- sd_lun structure for the device.
29264  *		flag	- the km flags passed to constructor
29265  *
29266  * Return Code: 0 on success.
29267  *		-1 on failure.
29268  */
29269 
29270 /*ARGSUSED*/
29271 static int
29272 sd_wm_cache_constructor(void *wm, void *un, int flags)
29273 {
29274 	bzero(wm, sizeof (struct sd_w_map));
29275 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29276 	return (0);
29277 }
29278 
29279 
29280 /*
29281  *    Function: sd_wm_cache_destructor()
29282  *
29283  * Description: Cache destructor for the wmap cache for the read/modify/write
29284  * 		devices.
29285  *
29286  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29287  *		un	- sd_lun structure for the device.
29288  */
29289 /*ARGSUSED*/
29290 static void
29291 sd_wm_cache_destructor(void *wm, void *un)
29292 {
29293 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29294 }
29295 
29296 
29297 /*
29298  *    Function: sd_range_lock()
29299  *
29300  * Description: Lock the range of blocks specified as parameter to ensure
29301  *		that read, modify write is atomic and no other i/o writes
29302  *		to the same location. The range is specified in terms
29303  *		of start and end blocks. Block numbers are the actual
29304  *		media block numbers and not system.
29305  *
29306  *   Arguments: un	- sd_lun structure for the device.
29307  *		startb - The starting block number
29308  *		endb - The end block number
29309  *		typ - type of i/o - simple/read_modify_write
29310  *
29311  * Return Code: wm  - pointer to the wmap structure.
29312  *
29313  *     Context: This routine can sleep.
29314  */
29315 
29316 static struct sd_w_map *
29317 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29318 {
29319 	struct sd_w_map *wmp = NULL;
29320 	struct sd_w_map *sl_wmp = NULL;
29321 	struct sd_w_map *tmp_wmp;
29322 	wm_state state = SD_WM_CHK_LIST;
29323 
29324 
29325 	ASSERT(un != NULL);
29326 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29327 
29328 	mutex_enter(SD_MUTEX(un));
29329 
29330 	while (state != SD_WM_DONE) {
29331 
29332 		switch (state) {
29333 		case SD_WM_CHK_LIST:
29334 			/*
29335 			 * This is the starting state. Check the wmap list
29336 			 * to see if the range is currently available.
29337 			 */
29338 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29339 				/*
29340 				 * If this is a simple write and no rmw
29341 				 * i/o is pending then try to lock the
29342 				 * range as the range should be available.
29343 				 */
29344 				state = SD_WM_LOCK_RANGE;
29345 			} else {
29346 				tmp_wmp = sd_get_range(un, startb, endb);
29347 				if (tmp_wmp != NULL) {
29348 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29349 						/*
29350 						 * Should not keep onlist wmps
29351 						 * while waiting this macro
29352 						 * will also do wmp = NULL;
29353 						 */
29354 						FREE_ONLIST_WMAP(un, wmp);
29355 					}
29356 					/*
29357 					 * sl_wmp is the wmap on which wait
29358 					 * is done, since the tmp_wmp points
29359 					 * to the inuse wmap, set sl_wmp to
29360 					 * tmp_wmp and change the state to sleep
29361 					 */
29362 					sl_wmp = tmp_wmp;
29363 					state = SD_WM_WAIT_MAP;
29364 				} else {
29365 					state = SD_WM_LOCK_RANGE;
29366 				}
29367 
29368 			}
29369 			break;
29370 
29371 		case SD_WM_LOCK_RANGE:
29372 			ASSERT(un->un_wm_cache);
29373 			/*
29374 			 * The range need to be locked, try to get a wmap.
29375 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29376 			 * if possible as we will have to release the sd mutex
29377 			 * if we have to sleep.
29378 			 */
29379 			if (wmp == NULL)
29380 				wmp = kmem_cache_alloc(un->un_wm_cache,
29381 				    KM_NOSLEEP);
29382 			if (wmp == NULL) {
29383 				mutex_exit(SD_MUTEX(un));
29384 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29385 				    (sd_lun::un_wm_cache))
29386 				wmp = kmem_cache_alloc(un->un_wm_cache,
29387 				    KM_SLEEP);
29388 				mutex_enter(SD_MUTEX(un));
29389 				/*
29390 				 * we released the mutex so recheck and go to
29391 				 * check list state.
29392 				 */
29393 				state = SD_WM_CHK_LIST;
29394 			} else {
29395 				/*
29396 				 * We exit out of state machine since we
29397 				 * have the wmap. Do the housekeeping first.
29398 				 * place the wmap on the wmap list if it is not
29399 				 * on it already and then set the state to done.
29400 				 */
29401 				wmp->wm_start = startb;
29402 				wmp->wm_end = endb;
29403 				wmp->wm_flags = typ | SD_WM_BUSY;
29404 				if (typ & SD_WTYPE_RMW) {
29405 					un->un_rmw_count++;
29406 				}
29407 				/*
29408 				 * If not already on the list then link
29409 				 */
29410 				if (!ONLIST(un, wmp)) {
29411 					wmp->wm_next = un->un_wm;
29412 					wmp->wm_prev = NULL;
29413 					if (wmp->wm_next)
29414 						wmp->wm_next->wm_prev = wmp;
29415 					un->un_wm = wmp;
29416 				}
29417 				state = SD_WM_DONE;
29418 			}
29419 			break;
29420 
29421 		case SD_WM_WAIT_MAP:
29422 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29423 			/*
29424 			 * Wait is done on sl_wmp, which is set in the
29425 			 * check_list state.
29426 			 */
29427 			sl_wmp->wm_wanted_count++;
29428 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29429 			sl_wmp->wm_wanted_count--;
29430 			/*
29431 			 * We can reuse the memory from the completed sl_wmp
29432 			 * lock range for our new lock, but only if noone is
29433 			 * waiting for it.
29434 			 */
29435 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29436 			if (sl_wmp->wm_wanted_count == 0) {
29437 				if (wmp != NULL)
29438 					CHK_N_FREEWMP(un, wmp);
29439 				wmp = sl_wmp;
29440 			}
29441 			sl_wmp = NULL;
29442 			/*
29443 			 * After waking up, need to recheck for availability of
29444 			 * range.
29445 			 */
29446 			state = SD_WM_CHK_LIST;
29447 			break;
29448 
29449 		default:
29450 			panic("sd_range_lock: "
29451 			    "Unknown state %d in sd_range_lock", state);
29452 			/*NOTREACHED*/
29453 		} /* switch(state) */
29454 
29455 	} /* while(state != SD_WM_DONE) */
29456 
29457 	mutex_exit(SD_MUTEX(un));
29458 
29459 	ASSERT(wmp != NULL);
29460 
29461 	return (wmp);
29462 }
29463 
29464 
29465 /*
29466  *    Function: sd_get_range()
29467  *
29468  * Description: Find if there any overlapping I/O to this one
29469  *		Returns the write-map of 1st such I/O, NULL otherwise.
29470  *
29471  *   Arguments: un	- sd_lun structure for the device.
29472  *		startb - The starting block number
29473  *		endb - The end block number
29474  *
29475  * Return Code: wm  - pointer to the wmap structure.
29476  */
29477 
29478 static struct sd_w_map *
29479 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29480 {
29481 	struct sd_w_map *wmp;
29482 
29483 	ASSERT(un != NULL);
29484 
29485 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29486 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29487 			continue;
29488 		}
29489 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29490 			break;
29491 		}
29492 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29493 			break;
29494 		}
29495 	}
29496 
29497 	return (wmp);
29498 }
29499 
29500 
29501 /*
29502  *    Function: sd_free_inlist_wmap()
29503  *
29504  * Description: Unlink and free a write map struct.
29505  *
29506  *   Arguments: un      - sd_lun structure for the device.
29507  *		wmp	- sd_w_map which needs to be unlinked.
29508  */
29509 
29510 static void
29511 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29512 {
29513 	ASSERT(un != NULL);
29514 
29515 	if (un->un_wm == wmp) {
29516 		un->un_wm = wmp->wm_next;
29517 	} else {
29518 		wmp->wm_prev->wm_next = wmp->wm_next;
29519 	}
29520 
29521 	if (wmp->wm_next) {
29522 		wmp->wm_next->wm_prev = wmp->wm_prev;
29523 	}
29524 
29525 	wmp->wm_next = wmp->wm_prev = NULL;
29526 
29527 	kmem_cache_free(un->un_wm_cache, wmp);
29528 }
29529 
29530 
29531 /*
29532  *    Function: sd_range_unlock()
29533  *
29534  * Description: Unlock the range locked by wm.
29535  *		Free write map if nobody else is waiting on it.
29536  *
29537  *   Arguments: un      - sd_lun structure for the device.
29538  *              wmp     - sd_w_map which needs to be unlinked.
29539  */
29540 
29541 static void
29542 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29543 {
29544 	ASSERT(un != NULL);
29545 	ASSERT(wm != NULL);
29546 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29547 
29548 	mutex_enter(SD_MUTEX(un));
29549 
29550 	if (wm->wm_flags & SD_WTYPE_RMW) {
29551 		un->un_rmw_count--;
29552 	}
29553 
29554 	if (wm->wm_wanted_count) {
29555 		wm->wm_flags = 0;
29556 		/*
29557 		 * Broadcast that the wmap is available now.
29558 		 */
29559 		cv_broadcast(&wm->wm_avail);
29560 	} else {
29561 		/*
29562 		 * If no one is waiting on the map, it should be free'ed.
29563 		 */
29564 		sd_free_inlist_wmap(un, wm);
29565 	}
29566 
29567 	mutex_exit(SD_MUTEX(un));
29568 }
29569 
29570 
29571 /*
29572  *    Function: sd_read_modify_write_task
29573  *
29574  * Description: Called from a taskq thread to initiate the write phase of
29575  *		a read-modify-write request.  This is used for targets where
29576  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29577  *
29578  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29579  *
29580  *     Context: Called under taskq thread context.
29581  */
29582 
29583 static void
29584 sd_read_modify_write_task(void *arg)
29585 {
29586 	struct sd_mapblocksize_info	*bsp;
29587 	struct buf	*bp;
29588 	struct sd_xbuf	*xp;
29589 	struct sd_lun	*un;
29590 
29591 	bp = arg;	/* The bp is given in arg */
29592 	ASSERT(bp != NULL);
29593 
29594 	/* Get the pointer to the layer-private data struct */
29595 	xp = SD_GET_XBUF(bp);
29596 	ASSERT(xp != NULL);
29597 	bsp = xp->xb_private;
29598 	ASSERT(bsp != NULL);
29599 
29600 	un = SD_GET_UN(bp);
29601 	ASSERT(un != NULL);
29602 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29603 
29604 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29605 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29606 
29607 	/*
29608 	 * This is the write phase of a read-modify-write request, called
29609 	 * under the context of a taskq thread in response to the completion
29610 	 * of the read portion of the rmw request completing under interrupt
29611 	 * context. The write request must be sent from here down the iostart
29612 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29613 	 * we use the layer index saved in the layer-private data area.
29614 	 */
29615 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29616 
29617 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29618 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29619 }
29620 
29621 
29622 /*
29623  *    Function: sddump_do_read_of_rmw()
29624  *
29625  * Description: This routine will be called from sddump, If sddump is called
29626  *		with an I/O which not aligned on device blocksize boundary
29627  *		then the write has to be converted to read-modify-write.
29628  *		Do the read part here in order to keep sddump simple.
29629  *		Note - That the sd_mutex is held across the call to this
29630  *		routine.
29631  *
29632  *   Arguments: un	- sd_lun
29633  *		blkno	- block number in terms of media block size.
29634  *		nblk	- number of blocks.
29635  *		bpp	- pointer to pointer to the buf structure. On return
29636  *			from this function, *bpp points to the valid buffer
29637  *			to which the write has to be done.
29638  *
29639  * Return Code: 0 for success or errno-type return code
29640  */
29641 
29642 static int
29643 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29644 	struct buf **bpp)
29645 {
29646 	int err;
29647 	int i;
29648 	int rval;
29649 	struct buf *bp;
29650 	struct scsi_pkt *pkt = NULL;
29651 	uint32_t target_blocksize;
29652 
29653 	ASSERT(un != NULL);
29654 	ASSERT(mutex_owned(SD_MUTEX(un)));
29655 
29656 	target_blocksize = un->un_tgt_blocksize;
29657 
29658 	mutex_exit(SD_MUTEX(un));
29659 
29660 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29661 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29662 	if (bp == NULL) {
29663 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29664 		    "no resources for dumping; giving up");
29665 		err = ENOMEM;
29666 		goto done;
29667 	}
29668 
29669 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29670 	    blkno, nblk);
29671 	if (rval != 0) {
29672 		scsi_free_consistent_buf(bp);
29673 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29674 		    "no resources for dumping; giving up");
29675 		err = ENOMEM;
29676 		goto done;
29677 	}
29678 
29679 	pkt->pkt_flags |= FLAG_NOINTR;
29680 
29681 	err = EIO;
29682 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29683 
29684 		/*
29685 		 * Scsi_poll returns 0 (success) if the command completes and
29686 		 * the status block is STATUS_GOOD.  We should only check
29687 		 * errors if this condition is not true.  Even then we should
29688 		 * send our own request sense packet only if we have a check
29689 		 * condition and auto request sense has not been performed by
29690 		 * the hba.
29691 		 */
29692 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29693 
29694 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29695 			err = 0;
29696 			break;
29697 		}
29698 
29699 		/*
29700 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29701 		 * no need to read RQS data.
29702 		 */
29703 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29704 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29705 			    "Error while dumping state with rmw..."
29706 			    "Device is gone\n");
29707 			break;
29708 		}
29709 
29710 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29711 			SD_INFO(SD_LOG_DUMP, un,
29712 			    "sddump: read failed with CHECK, try # %d\n", i);
29713 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29714 				(void) sd_send_polled_RQS(un);
29715 			}
29716 
29717 			continue;
29718 		}
29719 
29720 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29721 			int reset_retval = 0;
29722 
29723 			SD_INFO(SD_LOG_DUMP, un,
29724 			    "sddump: read failed with BUSY, try # %d\n", i);
29725 
29726 			if (un->un_f_lun_reset_enabled == TRUE) {
29727 				reset_retval = scsi_reset(SD_ADDRESS(un),
29728 				    RESET_LUN);
29729 			}
29730 			if (reset_retval == 0) {
29731 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29732 			}
29733 			(void) sd_send_polled_RQS(un);
29734 
29735 		} else {
29736 			SD_INFO(SD_LOG_DUMP, un,
29737 			    "sddump: read failed with 0x%x, try # %d\n",
29738 			    SD_GET_PKT_STATUS(pkt), i);
29739 			mutex_enter(SD_MUTEX(un));
29740 			sd_reset_target(un, pkt);
29741 			mutex_exit(SD_MUTEX(un));
29742 		}
29743 
29744 		/*
29745 		 * If we are not getting anywhere with lun/target resets,
29746 		 * let's reset the bus.
29747 		 */
29748 		if (i > SD_NDUMP_RETRIES/2) {
29749 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29750 			(void) sd_send_polled_RQS(un);
29751 		}
29752 
29753 	}
29754 	scsi_destroy_pkt(pkt);
29755 
29756 	if (err != 0) {
29757 		scsi_free_consistent_buf(bp);
29758 		*bpp = NULL;
29759 	} else {
29760 		*bpp = bp;
29761 	}
29762 
29763 done:
29764 	mutex_enter(SD_MUTEX(un));
29765 	return (err);
29766 }
29767 
29768 
29769 /*
29770  *    Function: sd_failfast_flushq
29771  *
29772  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29773  *		in b_flags and move them onto the failfast queue, then kick
29774  *		off a thread to return all bp's on the failfast queue to
29775  *		their owners with an error set.
29776  *
29777  *   Arguments: un - pointer to the soft state struct for the instance.
29778  *
29779  *     Context: may execute in interrupt context.
29780  */
29781 
29782 static void
29783 sd_failfast_flushq(struct sd_lun *un)
29784 {
29785 	struct buf *bp;
29786 	struct buf *next_waitq_bp;
29787 	struct buf *prev_waitq_bp = NULL;
29788 
29789 	ASSERT(un != NULL);
29790 	ASSERT(mutex_owned(SD_MUTEX(un)));
29791 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29792 	ASSERT(un->un_failfast_bp == NULL);
29793 
29794 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29795 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29796 
29797 	/*
29798 	 * Check if we should flush all bufs when entering failfast state, or
29799 	 * just those with B_FAILFAST set.
29800 	 */
29801 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29802 		/*
29803 		 * Move *all* bp's on the wait queue to the failfast flush
29804 		 * queue, including those that do NOT have B_FAILFAST set.
29805 		 */
29806 		if (un->un_failfast_headp == NULL) {
29807 			ASSERT(un->un_failfast_tailp == NULL);
29808 			un->un_failfast_headp = un->un_waitq_headp;
29809 		} else {
29810 			ASSERT(un->un_failfast_tailp != NULL);
29811 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29812 		}
29813 
29814 		un->un_failfast_tailp = un->un_waitq_tailp;
29815 
29816 		/* update kstat for each bp moved out of the waitq */
29817 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29818 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29819 		}
29820 
29821 		/* empty the waitq */
29822 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29823 
29824 	} else {
29825 		/*
29826 		 * Go thru the wait queue, pick off all entries with
29827 		 * B_FAILFAST set, and move these onto the failfast queue.
29828 		 */
29829 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29830 			/*
29831 			 * Save the pointer to the next bp on the wait queue,
29832 			 * so we get to it on the next iteration of this loop.
29833 			 */
29834 			next_waitq_bp = bp->av_forw;
29835 
29836 			/*
29837 			 * If this bp from the wait queue does NOT have
29838 			 * B_FAILFAST set, just move on to the next element
29839 			 * in the wait queue. Note, this is the only place
29840 			 * where it is correct to set prev_waitq_bp.
29841 			 */
29842 			if ((bp->b_flags & B_FAILFAST) == 0) {
29843 				prev_waitq_bp = bp;
29844 				continue;
29845 			}
29846 
29847 			/*
29848 			 * Remove the bp from the wait queue.
29849 			 */
29850 			if (bp == un->un_waitq_headp) {
29851 				/* The bp is the first element of the waitq. */
29852 				un->un_waitq_headp = next_waitq_bp;
29853 				if (un->un_waitq_headp == NULL) {
29854 					/* The wait queue is now empty */
29855 					un->un_waitq_tailp = NULL;
29856 				}
29857 			} else {
29858 				/*
29859 				 * The bp is either somewhere in the middle
29860 				 * or at the end of the wait queue.
29861 				 */
29862 				ASSERT(un->un_waitq_headp != NULL);
29863 				ASSERT(prev_waitq_bp != NULL);
29864 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29865 				    == 0);
29866 				if (bp == un->un_waitq_tailp) {
29867 					/* bp is the last entry on the waitq. */
29868 					ASSERT(next_waitq_bp == NULL);
29869 					un->un_waitq_tailp = prev_waitq_bp;
29870 				}
29871 				prev_waitq_bp->av_forw = next_waitq_bp;
29872 			}
29873 			bp->av_forw = NULL;
29874 
29875 			/*
29876 			 * update kstat since the bp is moved out of
29877 			 * the waitq
29878 			 */
29879 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29880 
29881 			/*
29882 			 * Now put the bp onto the failfast queue.
29883 			 */
29884 			if (un->un_failfast_headp == NULL) {
29885 				/* failfast queue is currently empty */
29886 				ASSERT(un->un_failfast_tailp == NULL);
29887 				un->un_failfast_headp =
29888 				    un->un_failfast_tailp = bp;
29889 			} else {
29890 				/* Add the bp to the end of the failfast q */
29891 				ASSERT(un->un_failfast_tailp != NULL);
29892 				ASSERT(un->un_failfast_tailp->b_flags &
29893 				    B_FAILFAST);
29894 				un->un_failfast_tailp->av_forw = bp;
29895 				un->un_failfast_tailp = bp;
29896 			}
29897 		}
29898 	}
29899 
29900 	/*
29901 	 * Now return all bp's on the failfast queue to their owners.
29902 	 */
29903 	while ((bp = un->un_failfast_headp) != NULL) {
29904 
29905 		un->un_failfast_headp = bp->av_forw;
29906 		if (un->un_failfast_headp == NULL) {
29907 			un->un_failfast_tailp = NULL;
29908 		}
29909 
29910 		/*
29911 		 * We want to return the bp with a failure error code, but
29912 		 * we do not want a call to sd_start_cmds() to occur here,
29913 		 * so use sd_return_failed_command_no_restart() instead of
29914 		 * sd_return_failed_command().
29915 		 */
29916 		sd_return_failed_command_no_restart(un, bp, EIO);
29917 	}
29918 
29919 	/* Flush the xbuf queues if required. */
29920 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29921 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29922 	}
29923 
29924 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29925 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29926 }
29927 
29928 
29929 /*
29930  *    Function: sd_failfast_flushq_callback
29931  *
29932  * Description: Return TRUE if the given bp meets the criteria for failfast
29933  *		flushing. Used with ddi_xbuf_flushq(9F).
29934  *
29935  *   Arguments: bp - ptr to buf struct to be examined.
29936  *
29937  *     Context: Any
29938  */
29939 
29940 static int
29941 sd_failfast_flushq_callback(struct buf *bp)
29942 {
29943 	/*
29944 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29945 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29946 	 */
29947 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29948 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29949 }
29950 
29951 
29952 
29953 /*
29954  * Function: sd_setup_next_xfer
29955  *
29956  * Description: Prepare next I/O operation using DMA_PARTIAL
29957  *
29958  */
29959 
29960 static int
29961 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29962     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29963 {
29964 	ssize_t	num_blks_not_xfered;
29965 	daddr_t	strt_blk_num;
29966 	ssize_t	bytes_not_xfered;
29967 	int	rval;
29968 
29969 	ASSERT(pkt->pkt_resid == 0);
29970 
29971 	/*
29972 	 * Calculate next block number and amount to be transferred.
29973 	 *
29974 	 * How much data NOT transfered to the HBA yet.
29975 	 */
29976 	bytes_not_xfered = xp->xb_dma_resid;
29977 
29978 	/*
29979 	 * figure how many blocks NOT transfered to the HBA yet.
29980 	 */
29981 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29982 
29983 	/*
29984 	 * set starting block number to the end of what WAS transfered.
29985 	 */
29986 	strt_blk_num = xp->xb_blkno +
29987 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29988 
29989 	/*
29990 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29991 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29992 	 * the disk mutex here.
29993 	 */
29994 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29995 	    strt_blk_num, num_blks_not_xfered);
29996 
29997 	if (rval == 0) {
29998 
29999 		/*
30000 		 * Success.
30001 		 *
30002 		 * Adjust things if there are still more blocks to be
30003 		 * transfered.
30004 		 */
30005 		xp->xb_dma_resid = pkt->pkt_resid;
30006 		pkt->pkt_resid = 0;
30007 
30008 		return (1);
30009 	}
30010 
30011 	/*
30012 	 * There's really only one possible return value from
30013 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30014 	 * returns NULL.
30015 	 */
30016 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30017 
30018 	bp->b_resid = bp->b_bcount;
30019 	bp->b_flags |= B_ERROR;
30020 
30021 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30022 	    "Error setting up next portion of DMA transfer\n");
30023 
30024 	return (0);
30025 }
30026 
30027 /*
30028  *    Function: sd_panic_for_res_conflict
30029  *
30030  * Description: Call panic with a string formatted with "Reservation Conflict"
30031  *		and a human readable identifier indicating the SD instance
30032  *		that experienced the reservation conflict.
30033  *
30034  *   Arguments: un - pointer to the soft state struct for the instance.
30035  *
30036  *     Context: may execute in interrupt context.
30037  */
30038 
30039 #define	SD_RESV_CONFLICT_FMT_LEN 40
30040 void
30041 sd_panic_for_res_conflict(struct sd_lun *un)
30042 {
30043 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30044 	char path_str[MAXPATHLEN];
30045 
30046 	(void) snprintf(panic_str, sizeof (panic_str),
30047 	    "Reservation Conflict\nDisk: %s",
30048 	    ddi_pathname(SD_DEVINFO(un), path_str));
30049 
30050 	panic(panic_str);
30051 }
30052 
30053 /*
30054  * Note: The following sd_faultinjection_ioctl( ) routines implement
30055  * driver support for handling fault injection for error analysis
30056  * causing faults in multiple layers of the driver.
30057  *
30058  */
30059 
30060 #ifdef SD_FAULT_INJECTION
30061 static uint_t   sd_fault_injection_on = 0;
30062 
30063 /*
30064  *    Function: sd_faultinjection_ioctl()
30065  *
30066  * Description: This routine is the driver entry point for handling
30067  *              faultinjection ioctls to inject errors into the
30068  *              layer model
30069  *
30070  *   Arguments: cmd	- the ioctl cmd received
30071  *		arg	- the arguments from user and returns
30072  */
30073 
30074 static void
30075 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30076 
30077 	uint_t i = 0;
30078 	uint_t rval;
30079 
30080 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30081 
30082 	mutex_enter(SD_MUTEX(un));
30083 
30084 	switch (cmd) {
30085 	case SDIOCRUN:
30086 		/* Allow pushed faults to be injected */
30087 		SD_INFO(SD_LOG_SDTEST, un,
30088 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30089 
30090 		sd_fault_injection_on = 1;
30091 
30092 		SD_INFO(SD_LOG_IOERR, un,
30093 		    "sd_faultinjection_ioctl: run finished\n");
30094 		break;
30095 
30096 	case SDIOCSTART:
30097 		/* Start Injection Session */
30098 		SD_INFO(SD_LOG_SDTEST, un,
30099 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30100 
30101 		sd_fault_injection_on = 0;
30102 		un->sd_injection_mask = 0xFFFFFFFF;
30103 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30104 			un->sd_fi_fifo_pkt[i] = NULL;
30105 			un->sd_fi_fifo_xb[i] = NULL;
30106 			un->sd_fi_fifo_un[i] = NULL;
30107 			un->sd_fi_fifo_arq[i] = NULL;
30108 		}
30109 		un->sd_fi_fifo_start = 0;
30110 		un->sd_fi_fifo_end = 0;
30111 
30112 		mutex_enter(&(un->un_fi_mutex));
30113 		un->sd_fi_log[0] = '\0';
30114 		un->sd_fi_buf_len = 0;
30115 		mutex_exit(&(un->un_fi_mutex));
30116 
30117 		SD_INFO(SD_LOG_IOERR, un,
30118 		    "sd_faultinjection_ioctl: start finished\n");
30119 		break;
30120 
30121 	case SDIOCSTOP:
30122 		/* Stop Injection Session */
30123 		SD_INFO(SD_LOG_SDTEST, un,
30124 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30125 		sd_fault_injection_on = 0;
30126 		un->sd_injection_mask = 0x0;
30127 
30128 		/* Empty stray or unuseds structs from fifo */
30129 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30130 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30131 				kmem_free(un->sd_fi_fifo_pkt[i],
30132 				    sizeof (struct sd_fi_pkt));
30133 			}
30134 			if (un->sd_fi_fifo_xb[i] != NULL) {
30135 				kmem_free(un->sd_fi_fifo_xb[i],
30136 				    sizeof (struct sd_fi_xb));
30137 			}
30138 			if (un->sd_fi_fifo_un[i] != NULL) {
30139 				kmem_free(un->sd_fi_fifo_un[i],
30140 				    sizeof (struct sd_fi_un));
30141 			}
30142 			if (un->sd_fi_fifo_arq[i] != NULL) {
30143 				kmem_free(un->sd_fi_fifo_arq[i],
30144 				    sizeof (struct sd_fi_arq));
30145 			}
30146 			un->sd_fi_fifo_pkt[i] = NULL;
30147 			un->sd_fi_fifo_un[i] = NULL;
30148 			un->sd_fi_fifo_xb[i] = NULL;
30149 			un->sd_fi_fifo_arq[i] = NULL;
30150 		}
30151 		un->sd_fi_fifo_start = 0;
30152 		un->sd_fi_fifo_end = 0;
30153 
30154 		SD_INFO(SD_LOG_IOERR, un,
30155 		    "sd_faultinjection_ioctl: stop finished\n");
30156 		break;
30157 
30158 	case SDIOCINSERTPKT:
30159 		/* Store a packet struct to be pushed onto fifo */
30160 		SD_INFO(SD_LOG_SDTEST, un,
30161 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30162 
30163 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30164 
30165 		sd_fault_injection_on = 0;
30166 
30167 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30168 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30169 			kmem_free(un->sd_fi_fifo_pkt[i],
30170 			    sizeof (struct sd_fi_pkt));
30171 		}
30172 		if (arg != NULL) {
30173 			un->sd_fi_fifo_pkt[i] =
30174 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30175 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30176 				/* Alloc failed don't store anything */
30177 				break;
30178 			}
30179 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30180 			    sizeof (struct sd_fi_pkt), 0);
30181 			if (rval == -1) {
30182 				kmem_free(un->sd_fi_fifo_pkt[i],
30183 				    sizeof (struct sd_fi_pkt));
30184 				un->sd_fi_fifo_pkt[i] = NULL;
30185 			}
30186 		} else {
30187 			SD_INFO(SD_LOG_IOERR, un,
30188 			    "sd_faultinjection_ioctl: pkt null\n");
30189 		}
30190 		break;
30191 
30192 	case SDIOCINSERTXB:
30193 		/* Store a xb struct to be pushed onto fifo */
30194 		SD_INFO(SD_LOG_SDTEST, un,
30195 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30196 
30197 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30198 
30199 		sd_fault_injection_on = 0;
30200 
30201 		if (un->sd_fi_fifo_xb[i] != NULL) {
30202 			kmem_free(un->sd_fi_fifo_xb[i],
30203 			    sizeof (struct sd_fi_xb));
30204 			un->sd_fi_fifo_xb[i] = NULL;
30205 		}
30206 		if (arg != NULL) {
30207 			un->sd_fi_fifo_xb[i] =
30208 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30209 			if (un->sd_fi_fifo_xb[i] == NULL) {
30210 				/* Alloc failed don't store anything */
30211 				break;
30212 			}
30213 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30214 			    sizeof (struct sd_fi_xb), 0);
30215 
30216 			if (rval == -1) {
30217 				kmem_free(un->sd_fi_fifo_xb[i],
30218 				    sizeof (struct sd_fi_xb));
30219 				un->sd_fi_fifo_xb[i] = NULL;
30220 			}
30221 		} else {
30222 			SD_INFO(SD_LOG_IOERR, un,
30223 			    "sd_faultinjection_ioctl: xb null\n");
30224 		}
30225 		break;
30226 
30227 	case SDIOCINSERTUN:
30228 		/* Store a un struct to be pushed onto fifo */
30229 		SD_INFO(SD_LOG_SDTEST, un,
30230 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30231 
30232 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30233 
30234 		sd_fault_injection_on = 0;
30235 
30236 		if (un->sd_fi_fifo_un[i] != NULL) {
30237 			kmem_free(un->sd_fi_fifo_un[i],
30238 			    sizeof (struct sd_fi_un));
30239 			un->sd_fi_fifo_un[i] = NULL;
30240 		}
30241 		if (arg != NULL) {
30242 			un->sd_fi_fifo_un[i] =
30243 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30244 			if (un->sd_fi_fifo_un[i] == NULL) {
30245 				/* Alloc failed don't store anything */
30246 				break;
30247 			}
30248 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30249 			    sizeof (struct sd_fi_un), 0);
30250 			if (rval == -1) {
30251 				kmem_free(un->sd_fi_fifo_un[i],
30252 				    sizeof (struct sd_fi_un));
30253 				un->sd_fi_fifo_un[i] = NULL;
30254 			}
30255 
30256 		} else {
30257 			SD_INFO(SD_LOG_IOERR, un,
30258 			    "sd_faultinjection_ioctl: un null\n");
30259 		}
30260 
30261 		break;
30262 
30263 	case SDIOCINSERTARQ:
30264 		/* Store a arq struct to be pushed onto fifo */
30265 		SD_INFO(SD_LOG_SDTEST, un,
30266 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30267 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30268 
30269 		sd_fault_injection_on = 0;
30270 
30271 		if (un->sd_fi_fifo_arq[i] != NULL) {
30272 			kmem_free(un->sd_fi_fifo_arq[i],
30273 			    sizeof (struct sd_fi_arq));
30274 			un->sd_fi_fifo_arq[i] = NULL;
30275 		}
30276 		if (arg != NULL) {
30277 			un->sd_fi_fifo_arq[i] =
30278 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30279 			if (un->sd_fi_fifo_arq[i] == NULL) {
30280 				/* Alloc failed don't store anything */
30281 				break;
30282 			}
30283 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30284 			    sizeof (struct sd_fi_arq), 0);
30285 			if (rval == -1) {
30286 				kmem_free(un->sd_fi_fifo_arq[i],
30287 				    sizeof (struct sd_fi_arq));
30288 				un->sd_fi_fifo_arq[i] = NULL;
30289 			}
30290 
30291 		} else {
30292 			SD_INFO(SD_LOG_IOERR, un,
30293 			    "sd_faultinjection_ioctl: arq null\n");
30294 		}
30295 
30296 		break;
30297 
30298 	case SDIOCPUSH:
30299 		/* Push stored xb, pkt, un, and arq onto fifo */
30300 		sd_fault_injection_on = 0;
30301 
30302 		if (arg != NULL) {
30303 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30304 			if (rval != -1 &&
30305 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30306 				un->sd_fi_fifo_end += i;
30307 			}
30308 		} else {
30309 			SD_INFO(SD_LOG_IOERR, un,
30310 			    "sd_faultinjection_ioctl: push arg null\n");
30311 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30312 				un->sd_fi_fifo_end++;
30313 			}
30314 		}
30315 		SD_INFO(SD_LOG_IOERR, un,
30316 		    "sd_faultinjection_ioctl: push to end=%d\n",
30317 		    un->sd_fi_fifo_end);
30318 		break;
30319 
30320 	case SDIOCRETRIEVE:
30321 		/* Return buffer of log from Injection session */
30322 		SD_INFO(SD_LOG_SDTEST, un,
30323 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30324 
30325 		sd_fault_injection_on = 0;
30326 
30327 		mutex_enter(&(un->un_fi_mutex));
30328 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30329 		    un->sd_fi_buf_len+1, 0);
30330 		mutex_exit(&(un->un_fi_mutex));
30331 
30332 		if (rval == -1) {
30333 			/*
30334 			 * arg is possibly invalid setting
30335 			 * it to NULL for return
30336 			 */
30337 			arg = NULL;
30338 		}
30339 		break;
30340 	}
30341 
30342 	mutex_exit(SD_MUTEX(un));
30343 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30344 			    " exit\n");
30345 }
30346 
30347 
30348 /*
30349  *    Function: sd_injection_log()
30350  *
30351  * Description: This routine adds buff to the already existing injection log
30352  *              for retrieval via faultinjection_ioctl for use in fault
30353  *              detection and recovery
30354  *
30355  *   Arguments: buf - the string to add to the log
30356  */
30357 
30358 static void
30359 sd_injection_log(char *buf, struct sd_lun *un)
30360 {
30361 	uint_t len;
30362 
30363 	ASSERT(un != NULL);
30364 	ASSERT(buf != NULL);
30365 
30366 	mutex_enter(&(un->un_fi_mutex));
30367 
30368 	len = min(strlen(buf), 255);
30369 	/* Add logged value to Injection log to be returned later */
30370 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30371 		uint_t	offset = strlen((char *)un->sd_fi_log);
30372 		char *destp = (char *)un->sd_fi_log + offset;
30373 		int i;
30374 		for (i = 0; i < len; i++) {
30375 			*destp++ = *buf++;
30376 		}
30377 		un->sd_fi_buf_len += len;
30378 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30379 	}
30380 
30381 	mutex_exit(&(un->un_fi_mutex));
30382 }
30383 
30384 
30385 /*
30386  *    Function: sd_faultinjection()
30387  *
30388  * Description: This routine takes the pkt and changes its
30389  *		content based on error injection scenerio.
30390  *
30391  *   Arguments: pktp	- packet to be changed
30392  */
30393 
30394 static void
30395 sd_faultinjection(struct scsi_pkt *pktp)
30396 {
30397 	uint_t i;
30398 	struct sd_fi_pkt *fi_pkt;
30399 	struct sd_fi_xb *fi_xb;
30400 	struct sd_fi_un *fi_un;
30401 	struct sd_fi_arq *fi_arq;
30402 	struct buf *bp;
30403 	struct sd_xbuf *xb;
30404 	struct sd_lun *un;
30405 
30406 	ASSERT(pktp != NULL);
30407 
30408 	/* pull bp xb and un from pktp */
30409 	bp = (struct buf *)pktp->pkt_private;
30410 	xb = SD_GET_XBUF(bp);
30411 	un = SD_GET_UN(bp);
30412 
30413 	ASSERT(un != NULL);
30414 
30415 	mutex_enter(SD_MUTEX(un));
30416 
30417 	SD_TRACE(SD_LOG_SDTEST, un,
30418 	    "sd_faultinjection: entry Injection from sdintr\n");
30419 
30420 	/* if injection is off return */
30421 	if (sd_fault_injection_on == 0 ||
30422 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30423 		mutex_exit(SD_MUTEX(un));
30424 		return;
30425 	}
30426 
30427 	SD_INFO(SD_LOG_SDTEST, un,
30428 	    "sd_faultinjection: is working for copying\n");
30429 
30430 	/* take next set off fifo */
30431 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30432 
30433 	fi_pkt = un->sd_fi_fifo_pkt[i];
30434 	fi_xb = un->sd_fi_fifo_xb[i];
30435 	fi_un = un->sd_fi_fifo_un[i];
30436 	fi_arq = un->sd_fi_fifo_arq[i];
30437 
30438 
30439 	/* set variables accordingly */
30440 	/* set pkt if it was on fifo */
30441 	if (fi_pkt != NULL) {
30442 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30443 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30444 		if (fi_pkt->pkt_cdbp != 0xff)
30445 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30446 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30447 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30448 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30449 
30450 	}
30451 	/* set xb if it was on fifo */
30452 	if (fi_xb != NULL) {
30453 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30454 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30455 		if (fi_xb->xb_retry_count != 0)
30456 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30457 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30458 		    "xb_victim_retry_count");
30459 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30460 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30461 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30462 
30463 		/* copy in block data from sense */
30464 		/*
30465 		 * if (fi_xb->xb_sense_data[0] != -1) {
30466 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30467 		 *	SENSE_LENGTH);
30468 		 * }
30469 		 */
30470 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30471 
30472 		/* copy in extended sense codes */
30473 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30474 		    xb, es_code, "es_code");
30475 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30476 		    xb, es_key, "es_key");
30477 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30478 		    xb, es_add_code, "es_add_code");
30479 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30480 		    xb, es_qual_code, "es_qual_code");
30481 		struct scsi_extended_sense *esp;
30482 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30483 		esp->es_class = CLASS_EXTENDED_SENSE;
30484 	}
30485 
30486 	/* set un if it was on fifo */
30487 	if (fi_un != NULL) {
30488 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30489 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30490 		SD_CONDSET(un, un, un_reset_retry_count,
30491 		    "un_reset_retry_count");
30492 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30493 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30494 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30495 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30496 		    "un_f_allow_bus_device_reset");
30497 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30498 
30499 	}
30500 
30501 	/* copy in auto request sense if it was on fifo */
30502 	if (fi_arq != NULL) {
30503 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30504 	}
30505 
30506 	/* free structs */
30507 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30508 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30509 	}
30510 	if (un->sd_fi_fifo_xb[i] != NULL) {
30511 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30512 	}
30513 	if (un->sd_fi_fifo_un[i] != NULL) {
30514 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30515 	}
30516 	if (un->sd_fi_fifo_arq[i] != NULL) {
30517 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30518 	}
30519 
30520 	/*
30521 	 * kmem_free does not gurantee to set to NULL
30522 	 * since we uses these to determine if we set
30523 	 * values or not lets confirm they are always
30524 	 * NULL after free
30525 	 */
30526 	un->sd_fi_fifo_pkt[i] = NULL;
30527 	un->sd_fi_fifo_un[i] = NULL;
30528 	un->sd_fi_fifo_xb[i] = NULL;
30529 	un->sd_fi_fifo_arq[i] = NULL;
30530 
30531 	un->sd_fi_fifo_start++;
30532 
30533 	mutex_exit(SD_MUTEX(un));
30534 
30535 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30536 }
30537 
30538 #endif /* SD_FAULT_INJECTION */
30539 
30540 /*
30541  * This routine is invoked in sd_unit_attach(). Before calling it, the
30542  * properties in conf file should be processed already, and "hotpluggable"
30543  * property was processed also.
30544  *
30545  * The sd driver distinguishes 3 different type of devices: removable media,
30546  * non-removable media, and hotpluggable. Below the differences are defined:
30547  *
30548  * 1. Device ID
30549  *
30550  *     The device ID of a device is used to identify this device. Refer to
30551  *     ddi_devid_register(9F).
30552  *
30553  *     For a non-removable media disk device which can provide 0x80 or 0x83
30554  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30555  *     device ID is created to identify this device. For other non-removable
30556  *     media devices, a default device ID is created only if this device has
30557  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30558  *
30559  *     -------------------------------------------------------
30560  *     removable media   hotpluggable  | Can Have Device ID
30561  *     -------------------------------------------------------
30562  *         false             false     |     Yes
30563  *         false             true      |     Yes
30564  *         true                x       |     No
30565  *     ------------------------------------------------------
30566  *
30567  *
30568  * 2. SCSI group 4 commands
30569  *
30570  *     In SCSI specs, only some commands in group 4 command set can use
30571  *     8-byte addresses that can be used to access >2TB storage spaces.
30572  *     Other commands have no such capability. Without supporting group4,
30573  *     it is impossible to make full use of storage spaces of a disk with
30574  *     capacity larger than 2TB.
30575  *
30576  *     -----------------------------------------------
30577  *     removable media   hotpluggable   LP64  |  Group
30578  *     -----------------------------------------------
30579  *           false          false       false |   1
30580  *           false          false       true  |   4
30581  *           false          true        false |   1
30582  *           false          true        true  |   4
30583  *           true             x           x   |   5
30584  *     -----------------------------------------------
30585  *
30586  *
30587  * 3. Check for VTOC Label
30588  *
30589  *     If a direct-access disk has no EFI label, sd will check if it has a
30590  *     valid VTOC label. Now, sd also does that check for removable media
30591  *     and hotpluggable devices.
30592  *
30593  *     --------------------------------------------------------------
30594  *     Direct-Access   removable media    hotpluggable |  Check Label
30595  *     -------------------------------------------------------------
30596  *         false          false           false        |   No
30597  *         false          false           true         |   No
30598  *         false          true            false        |   Yes
30599  *         false          true            true         |   Yes
30600  *         true            x                x          |   Yes
30601  *     --------------------------------------------------------------
30602  *
30603  *
30604  * 4. Building default VTOC label
30605  *
30606  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30607  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30608  *     create default VTOC for them. Currently sd creates default VTOC label
30609  *     for all devices on x86 platform (VTOC_16), but only for removable
30610  *     media devices on SPARC (VTOC_8).
30611  *
30612  *     -----------------------------------------------------------
30613  *       removable media hotpluggable platform   |   Default Label
30614  *     -----------------------------------------------------------
30615  *             false          false    sparc     |     No
30616  *             false          true      x86      |     Yes
30617  *             false          true     sparc     |     Yes
30618  *             true             x        x       |     Yes
30619  *     ----------------------------------------------------------
30620  *
30621  *
30622  * 5. Supported blocksizes of target devices
30623  *
30624  *     Sd supports non-512-byte blocksize for removable media devices only.
30625  *     For other devices, only 512-byte blocksize is supported. This may be
30626  *     changed in near future because some RAID devices require non-512-byte
30627  *     blocksize
30628  *
30629  *     -----------------------------------------------------------
30630  *     removable media    hotpluggable    | non-512-byte blocksize
30631  *     -----------------------------------------------------------
30632  *           false          false         |   No
30633  *           false          true          |   No
30634  *           true             x           |   Yes
30635  *     -----------------------------------------------------------
30636  *
30637  *
30638  * 6. Automatic mount & unmount
30639  *
30640  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30641  *     if a device is removable media device. It return 1 for removable media
30642  *     devices, and 0 for others.
30643  *
30644  *     The automatic mounting subsystem should distinguish between the types
30645  *     of devices and apply automounting policies to each.
30646  *
30647  *
30648  * 7. fdisk partition management
30649  *
30650  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30651  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30652  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30653  *     fdisk partitions on both x86 and SPARC platform.
30654  *
30655  *     -----------------------------------------------------------
30656  *       platform   removable media  USB/1394  |  fdisk supported
30657  *     -----------------------------------------------------------
30658  *        x86         X               X        |       true
30659  *     ------------------------------------------------------------
30660  *        sparc       X               X        |       false
30661  *     ------------------------------------------------------------
30662  *
30663  *
30664  * 8. MBOOT/MBR
30665  *
30666  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30667  *     read/write mboot for removable media devices on sparc platform.
30668  *
30669  *     -----------------------------------------------------------
30670  *       platform   removable media  USB/1394  |  mboot supported
30671  *     -----------------------------------------------------------
30672  *        x86         X               X        |       true
30673  *     ------------------------------------------------------------
30674  *        sparc      false           false     |       false
30675  *        sparc      false           true      |       true
30676  *        sparc      true            false     |       true
30677  *        sparc      true            true      |       true
30678  *     ------------------------------------------------------------
30679  *
30680  *
30681  * 9.  error handling during opening device
30682  *
30683  *     If failed to open a disk device, an errno is returned. For some kinds
30684  *     of errors, different errno is returned depending on if this device is
30685  *     a removable media device. This brings USB/1394 hard disks in line with
30686  *     expected hard disk behavior. It is not expected that this breaks any
30687  *     application.
30688  *
30689  *     ------------------------------------------------------
30690  *       removable media    hotpluggable   |  errno
30691  *     ------------------------------------------------------
30692  *             false          false        |   EIO
30693  *             false          true         |   EIO
30694  *             true             x          |   ENXIO
30695  *     ------------------------------------------------------
30696  *
30697  *
30698  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30699  *
30700  *     These IOCTLs are applicable only to removable media devices.
30701  *
30702  *     -----------------------------------------------------------
30703  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30704  *     -----------------------------------------------------------
30705  *             false          false        |     No
30706  *             false          true         |     No
30707  *             true            x           |     Yes
30708  *     -----------------------------------------------------------
30709  *
30710  *
30711  * 12. Kstats for partitions
30712  *
30713  *     sd creates partition kstat for non-removable media devices. USB and
30714  *     Firewire hard disks now have partition kstats
30715  *
30716  *      ------------------------------------------------------
30717  *       removable media    hotpluggable   |   kstat
30718  *      ------------------------------------------------------
30719  *             false          false        |    Yes
30720  *             false          true         |    Yes
30721  *             true             x          |    No
30722  *       ------------------------------------------------------
30723  *
30724  *
30725  * 13. Removable media & hotpluggable properties
30726  *
30727  *     Sd driver creates a "removable-media" property for removable media
30728  *     devices. Parent nexus drivers create a "hotpluggable" property if
30729  *     it supports hotplugging.
30730  *
30731  *     ---------------------------------------------------------------------
30732  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30733  *     ---------------------------------------------------------------------
30734  *       false            false       |    No                   No
30735  *       false            true        |    No                   Yes
30736  *       true             false       |    Yes                  No
30737  *       true             true        |    Yes                  Yes
30738  *     ---------------------------------------------------------------------
30739  *
30740  *
30741  * 14. Power Management
30742  *
30743  *     sd only power manages removable media devices or devices that support
30744  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30745  *
30746  *     A parent nexus that supports hotplugging can also set "pm-capable"
30747  *     if the disk can be power managed.
30748  *
30749  *     ------------------------------------------------------------
30750  *       removable media hotpluggable pm-capable  |   power manage
30751  *     ------------------------------------------------------------
30752  *             false          false     false     |     No
30753  *             false          false     true      |     Yes
30754  *             false          true      false     |     No
30755  *             false          true      true      |     Yes
30756  *             true             x        x        |     Yes
30757  *     ------------------------------------------------------------
30758  *
30759  *      USB and firewire hard disks can now be power managed independently
30760  *      of the framebuffer
30761  *
30762  *
30763  * 15. Support for USB disks with capacity larger than 1TB
30764  *
30765  *     Currently, sd doesn't permit a fixed disk device with capacity
30766  *     larger than 1TB to be used in a 32-bit operating system environment.
30767  *     However, sd doesn't do that for removable media devices. Instead, it
30768  *     assumes that removable media devices cannot have a capacity larger
30769  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30770  *     supported, which can cause some unexpected results.
30771  *
30772  *     ---------------------------------------------------------------------
30773  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30774  *     ---------------------------------------------------------------------
30775  *             false          false  |   true         |     no
30776  *             false          true   |   true         |     no
30777  *             true           false  |   true         |     Yes
30778  *             true           true   |   true         |     Yes
30779  *     ---------------------------------------------------------------------
30780  *
30781  *
30782  * 16. Check write-protection at open time
30783  *
30784  *     When a removable media device is being opened for writing without NDELAY
30785  *     flag, sd will check if this device is writable. If attempting to open
30786  *     without NDELAY flag a write-protected device, this operation will abort.
30787  *
30788  *     ------------------------------------------------------------
30789  *       removable media    USB/1394   |   WP Check
30790  *     ------------------------------------------------------------
30791  *             false          false    |     No
30792  *             false          true     |     No
30793  *             true           false    |     Yes
30794  *             true           true     |     Yes
30795  *     ------------------------------------------------------------
30796  *
30797  *
30798  * 17. syslog when corrupted VTOC is encountered
30799  *
30800  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30801  *      for fixed SCSI disks.
30802  *     ------------------------------------------------------------
30803  *       removable media    USB/1394   |   print syslog
30804  *     ------------------------------------------------------------
30805  *             false          false    |     Yes
30806  *             false          true     |     No
30807  *             true           false    |     No
30808  *             true           true     |     No
30809  *     ------------------------------------------------------------
30810  */
30811 static void
30812 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30813 {
30814 	int	pm_cap;
30815 
30816 	ASSERT(un->un_sd);
30817 	ASSERT(un->un_sd->sd_inq);
30818 
30819 	/*
30820 	 * Enable SYNC CACHE support for all devices.
30821 	 */
30822 	un->un_f_sync_cache_supported = TRUE;
30823 
30824 	/*
30825 	 * Set the sync cache required flag to false.
30826 	 * This would ensure that there is no SYNC CACHE
30827 	 * sent when there are no writes
30828 	 */
30829 	un->un_f_sync_cache_required = FALSE;
30830 
30831 	if (un->un_sd->sd_inq->inq_rmb) {
30832 		/*
30833 		 * The media of this device is removable. And for this kind
30834 		 * of devices, it is possible to change medium after opening
30835 		 * devices. Thus we should support this operation.
30836 		 */
30837 		un->un_f_has_removable_media = TRUE;
30838 
30839 		/*
30840 		 * support non-512-byte blocksize of removable media devices
30841 		 */
30842 		un->un_f_non_devbsize_supported = TRUE;
30843 
30844 		/*
30845 		 * Assume that all removable media devices support DOOR_LOCK
30846 		 */
30847 		un->un_f_doorlock_supported = TRUE;
30848 
30849 		/*
30850 		 * For a removable media device, it is possible to be opened
30851 		 * with NDELAY flag when there is no media in drive, in this
30852 		 * case we don't care if device is writable. But if without
30853 		 * NDELAY flag, we need to check if media is write-protected.
30854 		 */
30855 		un->un_f_chk_wp_open = TRUE;
30856 
30857 		/*
30858 		 * need to start a SCSI watch thread to monitor media state,
30859 		 * when media is being inserted or ejected, notify syseventd.
30860 		 */
30861 		un->un_f_monitor_media_state = TRUE;
30862 
30863 		/*
30864 		 * Some devices don't support START_STOP_UNIT command.
30865 		 * Therefore, we'd better check if a device supports it
30866 		 * before sending it.
30867 		 */
30868 		un->un_f_check_start_stop = TRUE;
30869 
30870 		/*
30871 		 * support eject media ioctl:
30872 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30873 		 */
30874 		un->un_f_eject_media_supported = TRUE;
30875 
30876 		/*
30877 		 * Because many removable-media devices don't support
30878 		 * LOG_SENSE, we couldn't use this command to check if
30879 		 * a removable media device support power-management.
30880 		 * We assume that they support power-management via
30881 		 * START_STOP_UNIT command and can be spun up and down
30882 		 * without limitations.
30883 		 */
30884 		un->un_f_pm_supported = TRUE;
30885 
30886 		/*
30887 		 * Need to create a zero length (Boolean) property
30888 		 * removable-media for the removable media devices.
30889 		 * Note that the return value of the property is not being
30890 		 * checked, since if unable to create the property
30891 		 * then do not want the attach to fail altogether. Consistent
30892 		 * with other property creation in attach.
30893 		 */
30894 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30895 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30896 
30897 	} else {
30898 		/*
30899 		 * create device ID for device
30900 		 */
30901 		un->un_f_devid_supported = TRUE;
30902 
30903 		/*
30904 		 * Spin up non-removable-media devices once it is attached
30905 		 */
30906 		un->un_f_attach_spinup = TRUE;
30907 
30908 		/*
30909 		 * According to SCSI specification, Sense data has two kinds of
30910 		 * format: fixed format, and descriptor format. At present, we
30911 		 * don't support descriptor format sense data for removable
30912 		 * media.
30913 		 */
30914 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30915 			un->un_f_descr_format_supported = TRUE;
30916 		}
30917 
30918 		/*
30919 		 * kstats are created only for non-removable media devices.
30920 		 *
30921 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30922 		 * default is 1, so they are enabled by default.
30923 		 */
30924 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30925 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30926 		    "enable-partition-kstats", 1));
30927 
30928 		/*
30929 		 * Check if HBA has set the "pm-capable" property.
30930 		 * If "pm-capable" exists and is non-zero then we can
30931 		 * power manage the device without checking the start/stop
30932 		 * cycle count log sense page.
30933 		 *
30934 		 * If "pm-capable" exists and is set to be false (0),
30935 		 * then we should not power manage the device.
30936 		 *
30937 		 * If "pm-capable" doesn't exist then pm_cap will
30938 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30939 		 * sd will check the start/stop cycle count log sense page
30940 		 * and power manage the device if the cycle count limit has
30941 		 * not been exceeded.
30942 		 */
30943 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30944 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30945 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30946 			un->un_f_log_sense_supported = TRUE;
30947 			if (!un->un_f_power_condition_disabled &&
30948 			    SD_INQUIRY(un)->inq_ansi == 6) {
30949 				un->un_f_power_condition_supported = TRUE;
30950 			}
30951 		} else {
30952 			/*
30953 			 * pm-capable property exists.
30954 			 *
30955 			 * Convert "TRUE" values for pm_cap to
30956 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30957 			 * later. "TRUE" values are any values defined in
30958 			 * inquiry.h.
30959 			 */
30960 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30961 				un->un_f_log_sense_supported = FALSE;
30962 			} else {
30963 				/* SD_PM_CAPABLE_IS_TRUE case */
30964 				un->un_f_pm_supported = TRUE;
30965 				if (!un->un_f_power_condition_disabled &&
30966 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30967 					un->un_f_power_condition_supported =
30968 					    TRUE;
30969 				}
30970 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30971 					un->un_f_log_sense_supported = TRUE;
30972 					un->un_f_pm_log_sense_smart =
30973 					    SD_PM_CAP_SMART_LOG(pm_cap);
30974 				}
30975 			}
30976 
30977 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30978 			    "sd_unit_attach: un:0x%p pm-capable "
30979 			    "property set to %d.\n", un, un->un_f_pm_supported);
30980 		}
30981 	}
30982 
30983 	if (un->un_f_is_hotpluggable) {
30984 
30985 		/*
30986 		 * Have to watch hotpluggable devices as well, since
30987 		 * that's the only way for userland applications to
30988 		 * detect hot removal while device is busy/mounted.
30989 		 */
30990 		un->un_f_monitor_media_state = TRUE;
30991 
30992 		un->un_f_check_start_stop = TRUE;
30993 
30994 	}
30995 }
30996 
30997 /*
30998  * sd_tg_rdwr:
30999  * Provides rdwr access for cmlb via sd_tgops. The start_block is
31000  * in sys block size, req_length in bytes.
31001  *
31002  */
31003 static int
31004 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
31005     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
31006 {
31007 	struct sd_lun *un;
31008 	int path_flag = (int)(uintptr_t)tg_cookie;
31009 	char *dkl = NULL;
31010 	diskaddr_t real_addr = start_block;
31011 	diskaddr_t first_byte, end_block;
31012 
31013 	size_t	buffer_size = reqlength;
31014 	int rval = 0;
31015 	diskaddr_t	cap;
31016 	uint32_t	lbasize;
31017 	sd_ssc_t	*ssc;
31018 
31019 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31020 	if (un == NULL)
31021 		return (ENXIO);
31022 
31023 	if (cmd != TG_READ && cmd != TG_WRITE)
31024 		return (EINVAL);
31025 
31026 	ssc = sd_ssc_init(un);
31027 	mutex_enter(SD_MUTEX(un));
31028 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
31029 		mutex_exit(SD_MUTEX(un));
31030 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31031 		    &lbasize, path_flag);
31032 		if (rval != 0)
31033 			goto done1;
31034 		mutex_enter(SD_MUTEX(un));
31035 		sd_update_block_info(un, lbasize, cap);
31036 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31037 			mutex_exit(SD_MUTEX(un));
31038 			rval = EIO;
31039 			goto done;
31040 		}
31041 	}
31042 
31043 	if (NOT_DEVBSIZE(un)) {
31044 		/*
31045 		 * sys_blocksize != tgt_blocksize, need to re-adjust
31046 		 * blkno and save the index to beginning of dk_label
31047 		 */
31048 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31049 		real_addr = first_byte / un->un_tgt_blocksize;
31050 
31051 		end_block = (first_byte + reqlength +
31052 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31053 
31054 		/* round up buffer size to multiple of target block size */
31055 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31056 
31057 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31058 		    "label_addr: 0x%x allocation size: 0x%x\n",
31059 		    real_addr, buffer_size);
31060 
31061 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31062 		    (reqlength % un->un_tgt_blocksize) != 0)
31063 			/* the request is not aligned */
31064 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31065 	}
31066 
31067 	/*
31068 	 * The MMC standard allows READ CAPACITY to be
31069 	 * inaccurate by a bounded amount (in the interest of
31070 	 * response latency).  As a result, failed READs are
31071 	 * commonplace (due to the reading of metadata and not
31072 	 * data). Depending on the per-Vendor/drive Sense data,
31073 	 * the failed READ can cause many (unnecessary) retries.
31074 	 */
31075 
31076 	if (ISCD(un) && (cmd == TG_READ) &&
31077 	    (un->un_f_blockcount_is_valid == TRUE) &&
31078 	    ((start_block == (un->un_blockcount - 1))||
31079 	    (start_block == (un->un_blockcount - 2)))) {
31080 			path_flag = SD_PATH_DIRECT_PRIORITY;
31081 	}
31082 
31083 	mutex_exit(SD_MUTEX(un));
31084 	if (cmd == TG_READ) {
31085 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31086 		    buffer_size, real_addr, path_flag);
31087 		if (dkl != NULL)
31088 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31089 			    real_addr), bufaddr, reqlength);
31090 	} else {
31091 		if (dkl) {
31092 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31093 			    real_addr, path_flag);
31094 			if (rval) {
31095 				goto done1;
31096 			}
31097 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31098 			    real_addr), reqlength);
31099 		}
31100 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31101 		    buffer_size, real_addr, path_flag);
31102 	}
31103 
31104 done1:
31105 	if (dkl != NULL)
31106 		kmem_free(dkl, buffer_size);
31107 
31108 	if (rval != 0) {
31109 		if (rval == EIO)
31110 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31111 		else
31112 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31113 	}
31114 done:
31115 	sd_ssc_fini(ssc);
31116 	return (rval);
31117 }
31118 
31119 
31120 static int
31121 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31122 {
31123 
31124 	struct sd_lun *un;
31125 	diskaddr_t	cap;
31126 	uint32_t	lbasize;
31127 	int		path_flag = (int)(uintptr_t)tg_cookie;
31128 	int		ret = 0;
31129 
31130 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31131 	if (un == NULL)
31132 		return (ENXIO);
31133 
31134 	switch (cmd) {
31135 	case TG_GETPHYGEOM:
31136 	case TG_GETVIRTGEOM:
31137 	case TG_GETCAPACITY:
31138 	case TG_GETBLOCKSIZE:
31139 		mutex_enter(SD_MUTEX(un));
31140 
31141 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31142 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31143 			cap = un->un_blockcount;
31144 			lbasize = un->un_tgt_blocksize;
31145 			mutex_exit(SD_MUTEX(un));
31146 		} else {
31147 			sd_ssc_t	*ssc;
31148 			mutex_exit(SD_MUTEX(un));
31149 			ssc = sd_ssc_init(un);
31150 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31151 			    &lbasize, path_flag);
31152 			if (ret != 0) {
31153 				if (ret == EIO)
31154 					sd_ssc_assessment(ssc,
31155 					    SD_FMT_STATUS_CHECK);
31156 				else
31157 					sd_ssc_assessment(ssc,
31158 					    SD_FMT_IGNORE);
31159 				sd_ssc_fini(ssc);
31160 				return (ret);
31161 			}
31162 			sd_ssc_fini(ssc);
31163 			mutex_enter(SD_MUTEX(un));
31164 			sd_update_block_info(un, lbasize, cap);
31165 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31166 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31167 				mutex_exit(SD_MUTEX(un));
31168 				return (EIO);
31169 			}
31170 			mutex_exit(SD_MUTEX(un));
31171 		}
31172 
31173 		if (cmd == TG_GETCAPACITY) {
31174 			*(diskaddr_t *)arg = cap;
31175 			return (0);
31176 		}
31177 
31178 		if (cmd == TG_GETBLOCKSIZE) {
31179 			*(uint32_t *)arg = lbasize;
31180 			return (0);
31181 		}
31182 
31183 		if (cmd == TG_GETPHYGEOM)
31184 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31185 			    cap, lbasize, path_flag);
31186 		else
31187 			/* TG_GETVIRTGEOM */
31188 			ret = sd_get_virtual_geometry(un,
31189 			    (cmlb_geom_t *)arg, cap, lbasize);
31190 
31191 		return (ret);
31192 
31193 	case TG_GETATTR:
31194 		mutex_enter(SD_MUTEX(un));
31195 		((tg_attribute_t *)arg)->media_is_writable =
31196 		    un->un_f_mmc_writable_media;
31197 		((tg_attribute_t *)arg)->media_is_solid_state =
31198 		    un->un_f_is_solid_state;
31199 		mutex_exit(SD_MUTEX(un));
31200 		return (0);
31201 	default:
31202 		return (ENOTTY);
31203 
31204 	}
31205 }
31206 
31207 /*
31208  *    Function: sd_ssc_ereport_post
31209  *
31210  * Description: Will be called when SD driver need to post an ereport.
31211  *
31212  *    Context: Kernel thread or interrupt context.
31213  */
31214 
31215 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31216 
31217 static void
31218 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31219 {
31220 	int uscsi_path_instance = 0;
31221 	uchar_t	uscsi_pkt_reason;
31222 	uint32_t uscsi_pkt_state;
31223 	uint32_t uscsi_pkt_statistics;
31224 	uint64_t uscsi_ena;
31225 	uchar_t op_code;
31226 	uint8_t *sensep;
31227 	union scsi_cdb *cdbp;
31228 	uint_t cdblen = 0;
31229 	uint_t senlen = 0;
31230 	struct sd_lun *un;
31231 	dev_info_t *dip;
31232 	char *devid;
31233 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31234 	    SSC_FLAGS_INVALID_STATUS |
31235 	    SSC_FLAGS_INVALID_SENSE |
31236 	    SSC_FLAGS_INVALID_DATA;
31237 	char assessment[16];
31238 
31239 	ASSERT(ssc != NULL);
31240 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31241 	ASSERT(ssc->ssc_uscsi_info != NULL);
31242 
31243 	un = ssc->ssc_un;
31244 	ASSERT(un != NULL);
31245 
31246 	dip = un->un_sd->sd_dev;
31247 
31248 	/*
31249 	 * Get the devid:
31250 	 *	devid will only be passed to non-transport error reports.
31251 	 */
31252 	devid = DEVI(dip)->devi_devid_str;
31253 
31254 	/*
31255 	 * If we are syncing or dumping, the command will not be executed
31256 	 * so we bypass this situation.
31257 	 */
31258 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31259 	    (un->un_state == SD_STATE_DUMPING))
31260 		return;
31261 
31262 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31263 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31264 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31265 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31266 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31267 
31268 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31269 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31270 
31271 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31272 	if (cdbp == NULL) {
31273 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31274 		    "sd_ssc_ereport_post meet empty cdb\n");
31275 		return;
31276 	}
31277 
31278 	op_code = cdbp->scc_cmd;
31279 
31280 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31281 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31282 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31283 
31284 	if (senlen > 0)
31285 		ASSERT(sensep != NULL);
31286 
31287 	/*
31288 	 * Initialize drv_assess to corresponding values.
31289 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31290 	 * on the sense-key returned back.
31291 	 */
31292 	switch (drv_assess) {
31293 		case SD_FM_DRV_RECOVERY:
31294 			(void) sprintf(assessment, "%s", "recovered");
31295 			break;
31296 		case SD_FM_DRV_RETRY:
31297 			(void) sprintf(assessment, "%s", "retry");
31298 			break;
31299 		case SD_FM_DRV_NOTICE:
31300 			(void) sprintf(assessment, "%s", "info");
31301 			break;
31302 		case SD_FM_DRV_FATAL:
31303 		default:
31304 			(void) sprintf(assessment, "%s", "unknown");
31305 	}
31306 	/*
31307 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31308 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31309 	 * driver-assessment will always be "recovered" here.
31310 	 */
31311 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31312 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31313 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31314 		    DDI_NOSLEEP, NULL,
31315 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31316 		    DEVID_IF_KNOWN(devid),
31317 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31318 		    "op-code", DATA_TYPE_UINT8, op_code,
31319 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31320 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31321 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31322 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31323 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31324 		    NULL);
31325 		return;
31326 	}
31327 
31328 	/*
31329 	 * If there is un-expected/un-decodable data, we should post
31330 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31331 	 * driver-assessment will be set based on parameter drv_assess.
31332 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31333 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31334 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31335 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31336 	 */
31337 	if (ssc->ssc_flags & ssc_invalid_flags) {
31338 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31339 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31340 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31341 			    NULL, DDI_NOSLEEP, NULL,
31342 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31343 			    DEVID_IF_KNOWN(devid),
31344 			    "driver-assessment", DATA_TYPE_STRING,
31345 			    drv_assess == SD_FM_DRV_FATAL ?
31346 			    "fail" : assessment,
31347 			    "op-code", DATA_TYPE_UINT8, op_code,
31348 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31349 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31350 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31351 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31352 			    "pkt-stats", DATA_TYPE_UINT32,
31353 			    uscsi_pkt_statistics,
31354 			    "stat-code", DATA_TYPE_UINT8,
31355 			    ssc->ssc_uscsi_cmd->uscsi_status,
31356 			    "un-decode-info", DATA_TYPE_STRING,
31357 			    ssc->ssc_info,
31358 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31359 			    senlen, sensep,
31360 			    NULL);
31361 		} else {
31362 			/*
31363 			 * For other type of invalid data, the
31364 			 * un-decode-value field would be empty because the
31365 			 * un-decodable content could be seen from upper
31366 			 * level payload or inside un-decode-info.
31367 			 */
31368 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31369 			    NULL,
31370 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31371 			    NULL, DDI_NOSLEEP, NULL,
31372 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31373 			    DEVID_IF_KNOWN(devid),
31374 			    "driver-assessment", DATA_TYPE_STRING,
31375 			    drv_assess == SD_FM_DRV_FATAL ?
31376 			    "fail" : assessment,
31377 			    "op-code", DATA_TYPE_UINT8, op_code,
31378 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31379 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31380 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31381 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31382 			    "pkt-stats", DATA_TYPE_UINT32,
31383 			    uscsi_pkt_statistics,
31384 			    "stat-code", DATA_TYPE_UINT8,
31385 			    ssc->ssc_uscsi_cmd->uscsi_status,
31386 			    "un-decode-info", DATA_TYPE_STRING,
31387 			    ssc->ssc_info,
31388 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31389 			    0, NULL,
31390 			    NULL);
31391 		}
31392 		ssc->ssc_flags &= ~ssc_invalid_flags;
31393 		return;
31394 	}
31395 
31396 	if (uscsi_pkt_reason != CMD_CMPLT ||
31397 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31398 		/*
31399 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31400 		 * set inside sd_start_cmds due to errors(bad packet or
31401 		 * fatal transport error), we should take it as a
31402 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31403 		 * driver-assessment will be set based on drv_assess.
31404 		 * We will set devid to NULL because it is a transport
31405 		 * error.
31406 		 */
31407 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31408 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31409 
31410 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31411 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31412 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31413 		    DEVID_IF_KNOWN(devid),
31414 		    "driver-assessment", DATA_TYPE_STRING,
31415 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31416 		    "op-code", DATA_TYPE_UINT8, op_code,
31417 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31418 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31419 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31420 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31421 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31422 		    NULL);
31423 	} else {
31424 		/*
31425 		 * If we got here, we have a completed command, and we need
31426 		 * to further investigate the sense data to see what kind
31427 		 * of ereport we should post.
31428 		 * No ereport is needed if sense-key is KEY_RECOVERABLE_ERROR
31429 		 * and asc/ascq is "ATA PASS-THROUGH INFORMATION AVAILABLE".
31430 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr if sense-key is
31431 		 * KEY_MEDIUM_ERROR.
31432 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31433 		 * driver-assessment will be set based on the parameter
31434 		 * drv_assess.
31435 		 */
31436 		if (senlen > 0) {
31437 			/*
31438 			 * Here we have sense data available.
31439 			 */
31440 			uint8_t sense_key = scsi_sense_key(sensep);
31441 			uint8_t sense_asc = scsi_sense_asc(sensep);
31442 			uint8_t sense_ascq = scsi_sense_ascq(sensep);
31443 
31444 			if (sense_key == KEY_RECOVERABLE_ERROR &&
31445 			    sense_asc == 0x00 && sense_ascq == 0x1d)
31446 				return;
31447 
31448 			if (sense_key == KEY_MEDIUM_ERROR) {
31449 				/*
31450 				 * driver-assessment should be "fatal" if
31451 				 * drv_assess is SD_FM_DRV_FATAL.
31452 				 */
31453 				scsi_fm_ereport_post(un->un_sd,
31454 				    uscsi_path_instance, NULL,
31455 				    "cmd.disk.dev.rqs.merr",
31456 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31457 				    FM_VERSION, DATA_TYPE_UINT8,
31458 				    FM_EREPORT_VERS0,
31459 				    DEVID_IF_KNOWN(devid),
31460 				    "driver-assessment",
31461 				    DATA_TYPE_STRING,
31462 				    drv_assess == SD_FM_DRV_FATAL ?
31463 				    "fatal" : assessment,
31464 				    "op-code",
31465 				    DATA_TYPE_UINT8, op_code,
31466 				    "cdb",
31467 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31468 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31469 				    "pkt-reason",
31470 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31471 				    "pkt-state",
31472 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31473 				    "pkt-stats",
31474 				    DATA_TYPE_UINT32,
31475 				    uscsi_pkt_statistics,
31476 				    "stat-code",
31477 				    DATA_TYPE_UINT8,
31478 				    ssc->ssc_uscsi_cmd->uscsi_status,
31479 				    "key",
31480 				    DATA_TYPE_UINT8,
31481 				    scsi_sense_key(sensep),
31482 				    "asc",
31483 				    DATA_TYPE_UINT8,
31484 				    scsi_sense_asc(sensep),
31485 				    "ascq",
31486 				    DATA_TYPE_UINT8,
31487 				    scsi_sense_ascq(sensep),
31488 				    "sense-data",
31489 				    DATA_TYPE_UINT8_ARRAY,
31490 				    senlen, sensep,
31491 				    "lba",
31492 				    DATA_TYPE_UINT64,
31493 				    ssc->ssc_uscsi_info->ui_lba,
31494 				    NULL);
31495 			} else {
31496 				/*
31497 				 * if sense-key == 0x4(hardware
31498 				 * error), driver-assessment should
31499 				 * be "fatal" if drv_assess is
31500 				 * SD_FM_DRV_FATAL.
31501 				 */
31502 				scsi_fm_ereport_post(un->un_sd,
31503 				    uscsi_path_instance, NULL,
31504 				    "cmd.disk.dev.rqs.derr",
31505 				    uscsi_ena, devid,
31506 				    NULL, DDI_NOSLEEP, NULL,
31507 				    FM_VERSION,
31508 				    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31509 				    DEVID_IF_KNOWN(devid),
31510 				    "driver-assessment",
31511 				    DATA_TYPE_STRING,
31512 				    drv_assess == SD_FM_DRV_FATAL ?
31513 				    (sense_key == 0x4 ?
31514 				    "fatal" : "fail") : assessment,
31515 				    "op-code",
31516 				    DATA_TYPE_UINT8, op_code,
31517 				    "cdb",
31518 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31519 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31520 				    "pkt-reason",
31521 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31522 				    "pkt-state",
31523 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31524 				    "pkt-stats",
31525 				    DATA_TYPE_UINT32,
31526 				    uscsi_pkt_statistics,
31527 				    "stat-code",
31528 				    DATA_TYPE_UINT8,
31529 				    ssc->ssc_uscsi_cmd->uscsi_status,
31530 				    "key",
31531 				    DATA_TYPE_UINT8,
31532 				    scsi_sense_key(sensep),
31533 				    "asc",
31534 				    DATA_TYPE_UINT8,
31535 				    scsi_sense_asc(sensep),
31536 				    "ascq",
31537 				    DATA_TYPE_UINT8,
31538 				    scsi_sense_ascq(sensep),
31539 				    "sense-data",
31540 				    DATA_TYPE_UINT8_ARRAY,
31541 				    senlen, sensep,
31542 				    NULL);
31543 			}
31544 		} else {
31545 			/*
31546 			 * For stat_code == STATUS_GOOD, this is not a
31547 			 * hardware error.
31548 			 */
31549 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31550 				return;
31551 
31552 			/*
31553 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31554 			 * stat-code but with sense data unavailable.
31555 			 * driver-assessment will be set based on parameter
31556 			 * drv_assess.
31557 			 */
31558 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31559 			    NULL,
31560 			    "cmd.disk.dev.serr", uscsi_ena,
31561 			    devid, NULL, DDI_NOSLEEP, NULL,
31562 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31563 			    DEVID_IF_KNOWN(devid),
31564 			    "driver-assessment", DATA_TYPE_STRING,
31565 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31566 			    "op-code", DATA_TYPE_UINT8, op_code,
31567 			    "cdb",
31568 			    DATA_TYPE_UINT8_ARRAY,
31569 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31570 			    "pkt-reason",
31571 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31572 			    "pkt-state",
31573 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31574 			    "pkt-stats",
31575 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31576 			    "stat-code",
31577 			    DATA_TYPE_UINT8,
31578 			    ssc->ssc_uscsi_cmd->uscsi_status,
31579 			    NULL);
31580 		}
31581 	}
31582 }
31583 
31584 /*
31585  *     Function: sd_ssc_extract_info
31586  *
31587  * Description: Extract information available to help generate ereport.
31588  *
31589  *     Context: Kernel thread or interrupt context.
31590  */
31591 static void
31592 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31593     struct buf *bp, struct sd_xbuf *xp)
31594 {
31595 	size_t senlen = 0;
31596 	union scsi_cdb *cdbp;
31597 	int path_instance;
31598 	/*
31599 	 * Need scsi_cdb_size array to determine the cdb length.
31600 	 */
31601 	extern uchar_t	scsi_cdb_size[];
31602 
31603 	ASSERT(un != NULL);
31604 	ASSERT(pktp != NULL);
31605 	ASSERT(bp != NULL);
31606 	ASSERT(xp != NULL);
31607 	ASSERT(ssc != NULL);
31608 	ASSERT(mutex_owned(SD_MUTEX(un)));
31609 
31610 	/*
31611 	 * Transfer the cdb buffer pointer here.
31612 	 */
31613 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31614 
31615 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31616 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31617 
31618 	/*
31619 	 * Transfer the sense data buffer pointer if sense data is available,
31620 	 * calculate the sense data length first.
31621 	 */
31622 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31623 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31624 		/*
31625 		 * For arq case, we will enter here.
31626 		 */
31627 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31628 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31629 		} else {
31630 			senlen = SENSE_LENGTH;
31631 		}
31632 	} else {
31633 		/*
31634 		 * For non-arq case, we will enter this branch.
31635 		 */
31636 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31637 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31638 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31639 		}
31640 
31641 	}
31642 
31643 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31644 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31645 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31646 
31647 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31648 
31649 	/*
31650 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31651 	 */
31652 	path_instance = pktp->pkt_path_instance;
31653 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31654 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31655 	else
31656 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31657 
31658 	/*
31659 	 * Copy in the other fields we may need when posting ereport.
31660 	 */
31661 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31662 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31663 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31664 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31665 
31666 	/*
31667 	 * For partially read/write command, we will not create ena
31668 	 * in case of a successful command be reconized as recovered.
31669 	 */
31670 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31671 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31672 	    (senlen == 0)) {
31673 		return;
31674 	}
31675 
31676 	/*
31677 	 * To associate ereports of a single command execution flow, we
31678 	 * need a shared ena for a specific command.
31679 	 */
31680 	if (xp->xb_ena == 0)
31681 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31682 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31683 }
31684 
31685 
31686 /*
31687  *     Function: sd_check_solid_state
31688  *
31689  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31690  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31691  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31692  *              device is a solid state drive.
31693  *
31694  *     Context: Kernel thread or interrupt context.
31695  */
31696 
31697 static void
31698 sd_check_solid_state(sd_ssc_t *ssc)
31699 {
31700 	int		rval		= 0;
31701 	uchar_t		*inqb1		= NULL;
31702 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31703 	size_t		inqb1_resid	= 0;
31704 	struct sd_lun	*un;
31705 
31706 	ASSERT(ssc != NULL);
31707 	un = ssc->ssc_un;
31708 	ASSERT(un != NULL);
31709 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31710 
31711 	mutex_enter(SD_MUTEX(un));
31712 	un->un_f_is_solid_state = FALSE;
31713 
31714 	if (ISCD(un)) {
31715 		mutex_exit(SD_MUTEX(un));
31716 		return;
31717 	}
31718 
31719 	if (sd_check_vpd_page_support(ssc) == 0 &&
31720 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31721 		mutex_exit(SD_MUTEX(un));
31722 		/* collect page b1 data */
31723 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31724 
31725 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31726 		    0x01, 0xB1, &inqb1_resid);
31727 
31728 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31729 			SD_TRACE(SD_LOG_COMMON, un,
31730 			    "sd_check_solid_state: \
31731 			    successfully get VPD page: %x \
31732 			    PAGE LENGTH: %x BYTE 4: %x \
31733 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31734 			    inqb1[5]);
31735 
31736 			mutex_enter(SD_MUTEX(un));
31737 			/*
31738 			 * Check the MEDIUM ROTATION RATE. If it is set
31739 			 * to 1, the device is a solid state drive.
31740 			 */
31741 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31742 				un->un_f_is_solid_state = TRUE;
31743 				/* solid state drives don't need disksort */
31744 				un->un_f_disksort_disabled = TRUE;
31745 			}
31746 			mutex_exit(SD_MUTEX(un));
31747 		} else if (rval != 0) {
31748 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31749 		}
31750 
31751 		kmem_free(inqb1, inqb1_len);
31752 	} else {
31753 		mutex_exit(SD_MUTEX(un));
31754 	}
31755 }
31756 
31757 /*
31758  *	Function: sd_check_emulation_mode
31759  *
31760  *   Description: Check whether the SSD is at emulation mode
31761  *		  by issuing READ_CAPACITY_16 to see whether
31762  *		  we can get physical block size of the drive.
31763  *
31764  *	 Context: Kernel thread or interrupt context.
31765  */
31766 
31767 static void
31768 sd_check_emulation_mode(sd_ssc_t *ssc)
31769 {
31770 	int		rval = 0;
31771 	uint64_t	capacity;
31772 	uint_t		lbasize;
31773 	uint_t		pbsize;
31774 	int		i;
31775 	int		devid_len;
31776 	struct sd_lun	*un;
31777 
31778 	ASSERT(ssc != NULL);
31779 	un = ssc->ssc_un;
31780 	ASSERT(un != NULL);
31781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31782 
31783 	mutex_enter(SD_MUTEX(un));
31784 	if (ISCD(un)) {
31785 		mutex_exit(SD_MUTEX(un));
31786 		return;
31787 	}
31788 
31789 	if (un->un_f_descr_format_supported) {
31790 		mutex_exit(SD_MUTEX(un));
31791 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31792 		    &pbsize, SD_PATH_DIRECT);
31793 		mutex_enter(SD_MUTEX(un));
31794 
31795 		if (rval != 0) {
31796 			un->un_phy_blocksize = DEV_BSIZE;
31797 		} else {
31798 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31799 				un->un_phy_blocksize = DEV_BSIZE;
31800 			} else if (pbsize > un->un_phy_blocksize) {
31801 				/*
31802 				 * Don't reset the physical blocksize
31803 				 * unless we've detected a larger value.
31804 				 */
31805 				un->un_phy_blocksize = pbsize;
31806 			}
31807 		}
31808 	}
31809 
31810 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31811 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31812 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31813 		    == SD_SUCCESS) {
31814 			un->un_phy_blocksize = SSD_SECSIZE;
31815 			if (un->un_f_is_solid_state &&
31816 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31817 				un->un_f_enable_rmw = TRUE;
31818 		}
31819 	}
31820 
31821 	mutex_exit(SD_MUTEX(un));
31822 }
31823